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Abstract

This dissertation is a compilation of publications and publication manuscripts that seek to
improve the accessibility of large data sets for multiple different stakeholders. Therefore,
it focuses on three essential aspects (i) data structures and abstraction, (ii) perception of
data visualizations and their interactivity, and (iii) user experience. The thesis explores
these facets using the extensive student data set from the University of Vienna.

The first publication defines the abstract concept of a study path which represents the
reported mental model of how the progress in a curriculum is perceived. This concept is
then used to calculate a distance metric, making it possible to numerically express the
difference between study paths. We show that this metric can then be used for clustering
and predicting study paths. This abstraction makes the data approachable and intuitive
to use.

The second publication manuscript focuses on human perception for interpreting data
distributions in histograms. It evaluates the error when judging distribution shapes in
terms of the maximum number of shown bars in a histogram. We directly compare
these findings to commonly used recommendations for choosing histogram binnings. Our
work finds that notably fewer bins than common binning methods recommend achieve
comparable perceptional errors when judging distributions but are easier to comprehend
for the viewer.

The third publication presents a novel intuitive brushing technique for parallel coordinate
plots. It uses established concepts for highlighting lines in parallel coordinate plots and
makes them easily accessible by reducing the interaction to a simple click-and-drag mouse
gesture. The intuitive usage approach of this brushing method reduces the mental load
when interacting with parallel coordinate plots and, therefore, makes them easier to grasp.

Finally, the fourth publication manuscript describes the implementation and evaluation
of a user interface for semester planning. This four-year user-centered design process
shows the value of a well-integrated, easy-to-use user interface. The manuscript also
abstracts the semester planning process into a broadly applicable abstract planning task
that provides a guideline for future planning tools. It concludes with an analysis of
different evaluation approaches for the design process and how a combination of different
methods can benefit from another.

These four publications and manuscripts deal with different aspects, driven by different
stakeholders that all need access to the same large data set. Each individual approach
and any combination of presented approaches help make large quantities of data more
accessible to expert and non-expert users equally.
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Kurzfassung

Diese Dissertation ist eine Sammlung von Publikationen und Manuskripten welche
die Zugänglichkeit großer Datensets für mehrere unterschiedliche Interessenträger zu
verbessern. Um dies zu erreichen liegt der Fokus auf den drei wesentlichen Aspekten
(i) Datenstrukturierung und Datenabstraktion, (ii) Wahrnehmung von Datenvisualis-
ierungen und deren Interaktionsmöglichkeiten, und (iii) dem Nutzererlebnis. Um dies
zu ergründen wird der umfassende Datensatz der Studentendaten der Universität Wien
verwendet.

Die erste Publikation definiert das abstrakte Konzept des Studienpfads, welches dem
mentalen Modell wie Fortschritt im Studium empfunden wird entspricht. Auf Basis
dieses Modells wird eine Distanzmetrik berechnet, die den Unterschied zwischen zwei
Studienpfaden numerisch ausdrücken kann. Dadurch können Studienpfade gruppiert und
auch für Vorhersagen verwendet werden. Diese Abstraktion macht die Studiendaten den
Interessenträgern leichter zugänglich und intuitiv nutzbar.

Die zweite Arbeit fokussiert sich auf die menschliche Perzeption bei der Interpretation
von Datenverteilungen in Histogrammen. Sie evaluiert den perzeptuellen Fehler bei
der Identifikation von Verteilungskurven im Verhältnis zur maximalen Anzahl der im
Histogramm gezeigten Balken. Diese Observation wird direkt mit anderen in der Liter-
atur häufig angewandten Methodiken zur Bestimmung der Klassenhäufigkeit verglichen.
Unserer Arbeit zeigt, dass mit erheblich weniger Klassen bereits vergleichbar niedrige
perzeptuelle Fehler erzielt werden können, und diese außerdem für den Betrachter leichter
verständlich sind.

Die dritte Publikation stellt eine neuartige, intuitive Markiermethode für Linien in
Parallelen Koordinaten Diagrammen vor. Dafür werden bekannte Konzepte der Mar-
kierung von Parallelen Koordinaten verwendet, welche mittels Reduktion der benötigten
Maus-Aktionen zu einer einzelnen Klick- und Ziehinteraktion zusammengefasst werden.
Die intuitive Verwendbarkeit der neuen Methode reduziert die mentale Anstrengung
beim Interagieren mit Parallelen Koordinaten Diagrammen und macht diese dadurch
verständlicher.

Das vierte und letzte Manuskript beschreibt die Implementation und Evaluation einer
nutzerfreundlichen Bedienoberfläche für die Semesterplanung von Studierenden. Anhand
einer vierjährigen Designstudie wird der Mehrwert, den ein gut integriertes, leicht zu
verwendendes Interface bringt, beleuchtet. In dem Manuskript wird außerdem der
Prozess der Semesterplanung soweit abstrahiert, dass dieser auf eine große Bandbreite
allgemeiner Planungsprozesse angewendet werden kann. Dieser abstrakte Planprozess
kann als Richtlinie für die Erstellung zukünftiger Planungstools fungieren. Abschließend
beleuchtet eine Analyse unterschiedliche Evaluationsmethoden im Designprozess und
zeigt, wie eine Kombination dieser Methoden deren Ergebnisse noch verbessern kann.
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Kurzfassung

Diese vier Publikationen und Manuskripte behandeln unterschiedliche Aspekte des
Zugriffs auf den gleichen darunterliegenden Datensatz aus der Perspektive mehrerer In-
teressenträger. Jede der gezeigten Methoden für sich, aber auch deren Kombination, helfen
dabei große Datenmengen für Experten und Nicht-Experten gleichermaßen zugänglich zu
machen.
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1 Preamble

Universities already collect a substantial amount of data each semester. Even focussing
on student data alone, disregarding all personnel, building, facility, and research data,
a near-insurmountable data collection remains. The University of Vienna registered 15
faculties, 178 curricula, and 88, 756 students in the most recent count from the winter
semester of 2019 [oV19]. Each relevant action of each student is stored in a central
database. Included are course and exam registrations, received grades, graduations, new
study registrations, dropouts, curricula changes, and submitted theses. More than a
million new data points are added to this database each year. These vast quantities of
data collected and stored can easily hide essential factors or be overwhelming, even to
expert users.

In order to complete their studies, students have to complete a set amount of credits,
which are defined by the European Credit Transfer System (ECTS). 180 ECTS are needed
for a typical Bachelor’s program, 120 ECTS for a Master’s program. A positive grade in
either a course, an exam, or a thesis is required to gain ECTS. Completing courses is,
therefore, the most critical aspect of any curriculum, which is also the focal point of this
work.

This core student data set is an event-based data set which consists of the following
information:

• course/exam information (including ECTS)

• course/exam registrations

• course/exam grades

• personal student data

• instructors

• curricula texts

• date and time of each event

These data are the basis of a multitude of workflows all across the university. Some
examples of stakeholders and their workflows that use data from this set include:

• the presidents’ office
e.g., key performance indicators, global budget definition, issuing of new curricula,
semester and year summaries, faculty evaluations
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1 Preamble

• finance and controlling
e.g., calculating the budget for individual curricula, paying teachers, monitoring
spent budget and evaluating its effectiveness

• administrative planning
e.g., planning of courses and exams, assigning teachers to courses, creating new,
and closing unneeded courses

• instructors
e.g., planning individual courses, planning exams, booking rooms, grading students

• students
e.g., planning which courses to take next, printing their academic records, managing
scholarships

Even though this list of tasks is nowhere near exhaustive, it shows that this data is both
increasingly large and crucial to multiple different stakeholders. Each stakeholder and
each task need different parts, aggregations, views, methods, and approaches to access
those data properly. The raw data contains all information necessary to accomplish those
tasks but is not helpful to most stakeholders since they typically are not data analysts.

My Master’s thesis and the resulting publication OCP - Operational Curricular Planning:
A Visual Decision Support System for Planning Teaching Resources at Universities [SM18]
aims to help administrative planners to offer suitable courses for the upcoming semester.
Comparative visualization of past and planned semesters and the accessibility of task-
specific aggregated data support their decision-making process. Based on this knowledge,
this thesis seeks to extend the topic of accessibility of large data sets by answering the
following research questions:

RQ1: How do data representations have to differ in order to accomplish different tasks
from different stakeholders efficiently??

RQ2: How can perception and interaction be used to make data visualizations more
comprehensible and easier to use?

RQ3: How does the process of creating a research prototype differ from the process of
creating a ready-to-use-tool?

1.1 Abstraction and Structure

A crucial factor that makes raw data hard to understand for non-experts is the lack of
clarity. Raw data is commonly stored in tabular form, often distributed across multiple
databases. This very abstract representation does not fit with the experts’ understanding
of the data. For example, a workshop we held in early 2019, which included members of
all stakeholders listed above, showed that the users have an explicit mental image when
thinking about aspects of their work. Thus, they have difficulty making sense of existing
data if it does not fit with that mental image.

2



1.2 Perception and Interaction

In our work A Distance Metric for Sets of Events, shown in chapter 2, we synthesize
study paths from the existing data, which represent the mental image of the surveyed
stakeholders. To make these study paths more accessible, we present a distance metric that
makes these structures comparable to each other. This metric can cluster similar study
paths, and help experts understand the students’ actual path to complete their studies.
The use of this metric for predictive analysis also shows potential for administrative
planning of semesters.

The planning tool we present in chapter 5 Designing a Semester Planner for Students
combines different aspects of the data, which were initially available from different sources.
This combination closely represents the task of planning as identified in an initial study
of the planning process. Furthermore, familiarization with the abstracted data enhances
its accessibility. We achieve this by showing the aggregated data in the commonly-known
patterns of a shopping cart and a calendar. These patterns prove to be intuitively usable
for users of the tool.

1.2 Perception and Interaction

While choosing a visual encoding that respects both the underlying data and task
appropriately is essential, it is also necessary that the user correctly perceives what is
shown. Working with student data and multiple stakeholders, we frequently encountered
the need to use histograms as means of understanding data. The most common question
we faced was how many bins to use in a specific situation. Many different methods for
choosing the correct amount of bins in a histogram have been published in the past. They
all focus on the characteristics of the underlying data. In our work on histogram binning
(see chapter 3), we show that reducing the number of bins up to a certain amount results in
equally few errors as high bin counts when judging distribution shapes. This user-centered
approach suggests a perception-based amount of bins which makes histograms easier to
understand for non-expert users.

The analysis of how students progress in their studies led us to use parallel coordinate
plots. We noticed that this multi-dimensional data visualization method is not very
approachable for novice users. Most insights generated by this technique rely on different
interaction methods to sort, filter, or highlight parts of the chart. A multitude of
highlighting techniques allow all sorts of individual selections of lines in parallel coordinate
plots. In Selective Angular Brushing of Parallel Coordinate Plots shown in chapter 4, we
renew an existing brushing method by making it more intuitive to use, therefore more
user-friendly in the process. This highlighting method proved helpful when visualizing
study paths in parallel coordinate plots.

1.3 User Experience

The user interface and, therefore, the user experience is vital for accessibility and accept-
ance of any visualization tool. A well-designed tool that provides a good user experience
will motivate users to come back and use it. On the other hand, a tool that only shows

3



1 Preamble

the required data without considering the user experience makes users question if they
want to continue using it each time they are frustrated with one of its parts.

Students at our faculty often struggle to finish their Bachelor’s degree in the recommen-
ded number of semesters. A short, informal survey showed that a notable amount of lost
time could be attributed to issues while planning which courses to take. Unawareness of
additional options, general misconceptions, and missing information while establishing a
semester plan are significant contributors to prolonged study times. To tackle this issue,
we created a tool that helps students plan their next semester. Chapter 5 Designing a
Semester Planner for Students describes the abstraction and creation process that ulti-
mately tries to mimic the existing planning process closely. The tool assists the process,
enhances it, and avoids compromising flexibility in planning. This extensive user-centered
design process resulted in an intuitive user interface that combines functionality and data
to create a positive user experience, and is currently used by more than 11, 000 students
every semester.

4



2 A Distance Metric for Sets of Events

Synopsis
© 2020 IEEE. Reprinted, with permission, from Raphael SAHANN, Claudia PLANT, and
Torsten MÖLLER. "A Distance Metric for Sets of Events.", 2020 IEEE 7th International
Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2020 [SPM20].

This paper was presented at the IEEE Conference on Data Science and Advanced
Algorithms (DSAA) on October 9, 2020, nominally hosted in Sydney, but finally occurred
as an online conference.

Raphael Sahann did all research and writing of the paper. Torsten Möller assisted the
formalization of some of the formulas in Appendix A. Both Claudia Plant and Torsten
Möller gave feedback on the writing and pointed Raphael towards helpful resources
regarding the related work and the conceptualization of some experiments.
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Abstract—In this work, we introduce a novel distance metric
that describes the distance between sets of events, where events in
the most common form are actions that happen at a given time.
More generally, an event can be any object that is in an ordered
relation to other objects. In our case, an event is a course taken
by a student that happens during a specific semester. Calculating
the distance uses the difference between the positional relations
of all individual events in the set. For this, we do not use the
absolute position of events but instead use the sum of differences
of the relations before, concurrent, and after to express distance.
We describe our metric algorithmically and evaluate it formally
as well as exemplary on an existing data set of student exams. We
also show that the results of the metric are intuitive to interpret
for humans by comparing them to the results of a user study
that we ran.

This metric can be applied to a range of problems that rely on
the positional relation of events by removing the dependency of
timestamps for events and replacing them with a set of ordered
identifiers. We show a specific application of the metric by
tackling the problem of clustering and predicting study paths
from university students.

Index Terms—distance metric, event, student data, user study,
clustering

I. INTRODUCTION

The problem of clustering sets of events initially emerged
after the introduction of a new curriculum at our faculty.
The immediate questions that arose were whether the new
curriculum works, how it compares to the old curriculum,
and the difference in student performance between the two?
Comparing student grades is one way to tackle some of
this, but it does not show the actual picture. We wanted to
understand what factors make students successful or let them
fail and whether the new curriculum affects that. Hence we
needed a way to cluster students into meaningful groups, not
only based on their grades but instead focusing on the way
they approach their studies.

By looking at courses and their semesters as sets of events
that are time-dependent to each other, we needed a way to
cluster them. Therefore, we introduce the notion of study
paths, which represents all courses a student takes of the same
curriculum as sets of events. The idea is that if we cluster
similar study paths, we can easily find clusters of students
who finish their studies faster than others, students who work
while studying, or even students that are more likely to drop
out.

The most straightforward approach would be to treat study
paths as time series since we know the exact date and time of
each exam taken. This approach does not capture the classes’
actual nature since an exam usually happens on the last date
of a class in the semester, but the actual class lasted the
whole semester. It also poses the issue of date-inconsistencies
between semesters, which is problematic when comparing
two different paths. An exam that might have happened on
a Monday in one semester could be on a Wednesday in the
next year, and vice versa. Therefore comparing the time series
of two students who started their studies one year apart might
show differences, even though they took the same classes in
the same respective semesters, just because the exam dates
were different. We needed a possibility to specify that two
events are concurrent — in this case, two courses happening
in the same semester — and the structure of a time series
could not provide that.

Therefore, we introduce our distance metric, which distin-
guishes between three positional relations, namely before, con-
current, and after. Using these relations, the metric abstracts
from absolute times or specific time distances, and can detect
distinct structural differences. Figure 1 shows the idea of how
our metric calculates the distance, and section III describes
the underlying method and all details of our method.

The remainder of the paper is organized as follows:
1) in section III we define a novel metric to measure the

distance between sets of events and evaluate it
2) we apply our metric for clustering and prediction of

study paths in section IV
3) we ran a user study to evaluate the performance and

intuitiveness of our metric, shown in section V
Section II reviews the related work and section VI discusses

different approaches we considered, the limitations of the
presented metric and also highlights future work. Finally,
section VII concludes the paper.

II. RELATED WORK

Our initial approach to tackle similarity of study paths was
using a representation of our data set as time series. Fu [1],
as well as Ding et al. [2], show a plethora of approaches and
problems in data mining tackled using some form of time
series representation. Dynamic Time Warping [3] is one of
the most common approaches when dealing with time series,

2 A Distance Metric for Sets of Events
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Fig. 1. Two sets of events to compare are shown in step 1. Each event consists of an object (A, B, C or D) and a time interval (I, II or III). Using the order
information from the intervals a matrix of positional relations is constructed for each set (step 2). Finally, in step 3, the distance is calculated by evaluating
the differences between the two matrices. This distance measure quantifies the distance between two sets of events. The details of this process are described
in section III.

as it can handle different length inputs and is more robust
than Euclidean distances [4], [5]. The problem we faced when
working with time series was that they did not account for
date changes over multiple semesters, namely a course that
happened on one day might be scheduled on another day of the
week the following semester. So two students who attended the
same classes in different semesters were treated as dissimilar
because the courses switched weekdays.

The works on sequential patterns mining [6] and temporal
association rules [7]–[9] could further be used to gather data
and dynamically determine the window sizes for time intervals
in our metric. Our proposed metric could then be used to
detect similarities and cluster results from these sets defined
by temporal association rules.

In order to understand the structures better, we started to
look for solutions with simplified versions of study paths
using a shorthand string representation, which we introduce
in section III-A. Since the string representation worked well
for creating a mental model of a study path, we considered
different string metrics to evaluate our study paths. Cohen et
al. [10], [11] describe different approaches and compare them.

We also considered different graph-based metrics [12], but
graphs always consist of single nodes and do not facilitate the
inclusion of concurrency. In order to introduce concurrency
into the graph representation, we created artificial bundling
nodes before and after each set, which we linked to all
nodes within that set. These nodes affected the size of the
compared structure and skewed the results increasingly as
the number of sets rose. We finally abandoned this approach
because it was not a feasible solution, neither structurally nor
computationally.

A. Metrics used for comparison

As a reference to compare our metric against after testing
it, we used the following three well-known distances:

1) Energy distance [13], [14]
The Energy Distance is a statistical difference metric that

measures the distance between distributions of random
vectors.

2) Earth-Mover’s distance [15]
It is sometimes also known as the Wasserstein metric and
is also a measure of the distance between two probability
distributions, and is informally described as the cost of
turning one pile of dirt over a set region into another
pile, where cost is equal the amount of dirt, times the
distance moved.

3) Damerau-Levenshtein distance [16], [17]
The Damerau-Levenshtein distance is a string metric
measuring the edit distance between two strings. In
addition to the traditional Levenshtein distance, it also
includes the transposition of two adjacent characters as
an available edit option.

We chose both the Energy distance and the Earth-Mover’s
distance because the courses in the data set associated with our
initial problem also have a certain probability of appearing in
a specific semester, which is individual for each student.

We also included the Damerau-Levenshtein distance be-
cause it matched our approach when dealing with string
representations of study paths the closest. It is also a widely
used standard in the field of text analysis.

When testing Dynamic Time Warping and Euclidean dis-
tance, we found that they produced worse results than the
other considered metrics, which is why we left them out of
the comparison.

III. A DISTANCE METRIC FOR SETS OF EVENTS

Figure 1 shows the core concept of our metric, which takes
two sets of events, builds a matrix of relational differences for
each using -1, 0, and 1 to express before, concurrent and after,
and calculates the distance using the differences between two
of these matrices.

In this section, we describe the method we developed in
detail, its properties, as well as a shorthand notation for sets
of events, which we use over the remainder of the paper to
facilitate legibility and understandability.

2.3 A Distance Metric For Sets Of Events
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Fig. 2. A timeline view of set S1. Each interval j, j+1, j+2 on the timeline
represents a time-interval during which all occurring events are considered
concurrent.

A. Notation

We introduce a shorthand notation of sets of events that
will be used over the remainder of the paper to facilitate the
reading of examples. A capital letter (e.g., A, B) denotes an
event in the set. Dashes separate objects belonging to time
intervals, and the reading direction is from left to right, where
the leftmost group of objects is the earliest interval, and the
rightmost group is the latest. The placement of an item within
a group does not matter, but we generally write objects in
alphabetical order to improve legibility. Table I provides some
examples.

TABLE I
EXAMPLES OF THE SET NOTATION USED IN THIS WORK

AB a group of two events A and B which happen simultaneously (both
in interval one)

A-B-C three groups, each containing one event, A happens before B and
C, B happens after A but before C and C happens after A and B

A-BC two groups, group 1 containing only event A and group 2 containing
B and C, where B and C happen simultaneously and both happen
after A

A-CB identical to the previous row

Using this notation, set 1 from figure 1 is written as
A-D-BC and set 2 is B-AC-D.

B. Distance Metric

This metric builds on three relations between events: before,
concurrent, and after. The idea of this metric is that events
in the past can influence the outcome of a later event, but
not vice versa. As an example: a class already taken by a
student builds knowledge, which is then present in all future
courses. The notion of concurrent in terms of courses applies
to two courses taken in the same semester — these courses
incrementally build knowledge over the whole timespan, from
which the student can benefit. Therefore, in terms of education,
relations are explained as follows: before denotes already
acquired experience, concurrent is simultaneously acquiring
knowledge, and after is still unknown.

Using these relations, we calculate a distance score between
zero and one, where zero represents complete similarity, and
one is entirely different.

We now illustrate calculating the score by the example of
the distance between set S1 A-BC-D (see fig. 2) and set S2
D-BC-E (see fig. 3). The first step is to separate all events
into those appearing in both sets – the overlap – and those
contained in only one. As seen in figure 4, in this example,
the overlap is B,C,D, and the non-overlapping members are
A and E. Events in the non-overlapping set contribute one

Fig. 3. A timeline view of set S2. The arrows represent the positional relations
that are considered in our approach (a). The relations before and after do not
only apply to neighbouring intervals (a), but also across multiple (b).

Fig. 4. The blue circle shows the events of set S1, the yellow circle shows
set S2 and in the green area in the middle the overlap of events that appear
in both sets is shown.

to the overall sum because they only appear in one set, and
therefore, the distance is maximal.

Applying the metric to sets of different sizes and, therefore,
sequences of different lengths, works for all combinations,
because we use this separation into overlapping and non-
overlapping members. When comparing a short and a long se-
quence, many events will only be present in the long sequence.
Each of these events adds the maximal distance of one to the
overall sum, which is then weighted by the number of events in
total. Since all events are weighted equally, overlapping events
occur twice, while non-overlapping events only occur once.
Thus the resulting distance is not disproportionally skewed by
size differences.

Next, we create a matrix of relational positions for each
set (see fig. 5). A row represents an event. The relations we
use are -1 for before, 0 for concurrent, and 1 for after. The
first row in figure 5, therefore, should be read as follows: B
happens concurrently with B, B happens concurrently with C,
and B happens before D. To reduce the computing load, we
only look at the upper triangular matrices since the resulting
matrices are skew-symmetric, and the diagonal is always zero.
In the next step, we compare each position in the first matrix
with the matching position from the second matrix and create a
sum of all differences by adding one each time the two entries
are not identical (highlighted positions in fig. 5). Finally, we
normalize the resulting sum by dividing it by the number of
entries compared.

2 A Distance Metric for Sets of Events
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Fig. 5. Matrices of positional differences from set 1 A-BC-D (a) and set 2
D-BC-E (b). A and E are omitted because they are in the non-overlap. The
highlighted entries are pairs of different entries in the two matrices, and each
pair contributes one to the sum of positional differences.

The sum of positional distances, therefore, is

pos dist =
1

n2 − n
n∑

i=1

n∑

j=1

sgn( |ai,j − bi,j | ) (1)

where ai,j and bi,j are the positions in the matrices from
set 1 and set 2, respectively, and n is the number of entries.

In this example, the first entry in the first row is identical,
but the second entry in the first row and the entry in the second
row are different. The resulting normalized sum is 2/3.

The last step combines the results from the overlapping, and
the non-overlapping parts by weighing them by the number of
events they represent. The overlap represents three events from
set 1 and three events from set 2, which results in a weight of
3×2 = 6. The non-overlap are two events, which gives a sum
of 2

3 × 6 + 2 × 1 = 6. This sum normalized by the number
of events in total (8) results in 6

8 = 3
4 as the final distance

between the set A-BC-D and D-BC-E.
Note that we normalized by the number of events in total,

and not the sum of events in the union of the two sets. If we
instead use the number of events in the union, we skew the
results towards the events in the non-overlap. As an example
the difference of A-B vs. A-X results in 1

2 using all events,
but 1

3 when using only the union of the sets.
This calculation fulfills the axioms of identity of indis-

cernibles, symmetry and the triangle inequality, as well as the
condition of non-negativity, which thus qualifies it as metric.
We provide the full mathematical description of the metric and
the proof of all axioms in appendix A.

IV. EXPERIMENTS

This section describes the data as well as the different tasks
we tested using our metric.

Find the code and an anonymous version of the data
used in this section in the supplementary GitHub archive
https://github.com/VDA-univie/set-of-events-distance-metric.
Instructions on how to generate the results and the images
are in appendix section B, which can also be found in the
GitHub archive.

A. Data – Exam Corpus

We based our approach on the corpus of exam grade data
from the University of Vienna. The exam corpus is initially

an event-based data set where new entries are added whenever
a student gets a grade. A row, therefore, contains information
about an exam, the student who took it, the course to which
the exam belongs, the date, the semester, and the grade.

We aggregate all exams for each student and curriculum and
divide them into sets of individual semesters to use the data.
The exam is happening on an individual date, but the course
to which that exam belongs usually lasts the whole semester.
Therefore, we specify an event to be the combination of the
course and the semester the student took it. Since the semesters
are in temporal relation to each other, we end up with a set
consisting of courses ordered into time intervals (semesters).
We call the resulting structure the study path of a student, a
set of events that contains the information which courses this
student took and in which order. A student can have multiple
distinct study paths (e.g., Bachelors and Masters).

B. Clustering

TABLE II
COMPARISON OF CLUSTERING PERFORMANCE SCORES USING DBSCAN

TO CLUSTER THE RESULTS OF THREE VARIATIONS OF THE TEST SET WITH
100 PATHS. THE FIRST SECTION WAS GENERATED BY REARRANGING
COURSES WITH THE FOLLOWING PROBABILITY: 70% CHANCE THAT

COURSES STAYED IN THE SAME SEMESTER, 20% CHANCE TO MOVE ONE
SEMESTER UP OR DOWN AND 10% CHANCE TO MOVE TWO SEMESTERS UP

OR DOWN. EM STANDS FOR EARTH MOVERS DISTANCE, AND DLEV IS
THE DAMERAU-LEVENSHTEIN DISTANCE.

distance normalized
parameters metric mutual info cluster noise

70-20-10

our metric 1 4 0
Energy 0.73399 6 1
EM 0.66943 9 4
DLev 0.46348 10 53

50-30-20

our metric 1 4 0
Energy 0.72334 7 1
EM 0.56801 14 14
DLev 0.07689 1 98

30-40-30

our metric 1 4 0
Energy 0.70399 5 3
EM 0.53881 14 19
DLev 0.00004 0 100

To test the clustering robustness of our metric, we use
study paths from the exam corpus data set. Since there is
no ground truth available, we synthesize a test set from the
existing data. We chose four study paths for this task, that start
in the same semester, are from the same curriculum and are
all finished successfully. The only difference between these
paths is their grade point average (GPA), being 4.0, 3.0, 2.0,
and 1.0. From each of these paths, we build variations by
changing the position of the courses. In the first iteration, each
course had a 50% chance to stay in the same semester, a 30%
chance to move one semester randomly up or down, and a
20% chance to move two semesters up or down. Using this
setup, we then generated 24 new paths from each study path,
which all combined — including the original study paths —
gave us a labeled test set of 100 paths. Figure 6 shows the
resulting distance matrix using our distance metric for this

2.4 Experiments
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Fig. 6. The heatmaps of the resulting distance matrices are calculated using synthesized study paths, which stem from four actual study paths, using 50-30-20
variation probabilities. Our metric clearly shows the distinct clusters every 25 rows, which are the generated variations of each of the four input paths. Paths
2 and 3 are closer together than the rest, which is why both Earth Mover and Energy distance have trouble distinguishing those. We found that Damerau-
Levenshtein works better for short paths, which explains the poor result since the input paths chosen for this experiment are all finished studies and contain
around 60 events each.

test configuration. The first column contains the original path
with a GPA of 4.0, and the next 24 entries are the variations
we built from that path. Index 25 in the heatmap is the original
path with GPA 3.0, followed by its variations, continuing in
this fashion. We ran the same experiments with 1000 paths and
got similar results, but the resulting heatmaps are not possible
to visualize due to space limitations, which is why we omitted
them here.

We chose the representation of the results as heatmap
because it clearly shows the differences between the variants
of the generated paths. It is especially noteworthy that the
distances between the paths with a GPA of 4.0 and 1.0 are the
highest, and the distances between the paths from 2.0 and 1.0
are relatively close to each other in comparison.

To evaluate the results, we compared them against differ-
ence calculations using the Energy distance [18], the Earth
Movers distance [15] as well as the Damerau-Levenshtein
distance [16], [17]. We then used k means as well as DB-
SCAN (epsilon: 0.8, min. points: 5) to find clusters in the
resulting distances. Finally, we repeated the same setup using
different probabilities of changes as well as a higher number
of generated paths. Table II shows the resulting clustering
performance measures for the above-described probabilities
(50-30-20), as well as the probabilities 70-20-10 and 30-40-30,

each evaluated with 100 paths. The results from k means were
omitted here and can be found in appendix section C since,
in a real-world scenario, the number of clusters is usually
unknown.

Table II shows that our proposed metric achieved optimal
results for all three iterations of the test set, while the other
distance measures could not reproduce the same results. The
most problems for the other measures stem from the similarity
between the paths with a GPA of 3.0 and 2.0. This closeness
leads to intersections between the two. DBSCAN did not find
any clusters using the Damerau-Levenshtein distance on the
50-30-20 test set, which is noteworthy since using k means,
given four clusters, the Damerau-Levenshtein distance per-
formed better than the Earth Movers and the Energy distance.
Our metric got optimal results using k means clustering as
well (see appendix C).

The appendix for this paper can be found at the sup-
plementary GitHub archive https://github.com/VDA-univie/
set-of-events-distance-metric.

C. Clustering real data

We also clustered real study paths using the four metrics
and the same DBSCAN setup from before. For this, we do not
have ground truth about the clusters, so we chose to show the
resulting clusters as heatmaps in figure 7. The results from our

2 A Distance Metric for Sets of Events
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Fig. 7. The distance matrices from clustering a sample of 100 study paths with DBSCAN (epsilon 1.3, min. points 4) using the four different metrics. The
cluster labels sort the rows. Black segmented bars to the left of the heatmaps indicate the rows belonging to the same cluster, and the grey bar shows the
noise. Using our metric DBSCAN found 7 clusters and 39 rows were noise; Earth Movers finds 3 clusters, 81 rows of noise; Energy finds 7 clusters, 60 rows
of noise; and Damerau-Levenshtein finds 4 clusters and 17 rows of noise.

metric show values spread across the spectrum, and clusters
accordingly. It finds seven clusters and 37 rows of noise. The
spread and size of the clusters fit with the expectations we
had about the data, and we confirmed samples of them by
manually comparing the clustered paths.

Earth Movers and Energy distance have many results in
the extreme regions at the upper and lower end of the range
and do not produce values evenly spread across the spectrum.
The vast difference in individual distances makes it hard to
cluster and, consequently, both those distance measures find
more noise than clusters. Clustering with the Earth Movers
distance results in three clusters and 81 rows of noise and the
Energy distance finds seven clusters and 60 rows of noise.

Damerau-Levenshtein has almost all values in the range
of 0.7 to 0.9. Therefore, it finds mainly one massive cluster
containing all rows with values from that range, which does
not represent the underlying data at all. Overall, it finds four
clusters and 17 rows of noise.

We sampled results from all distance measures and com-
pared the clustered paths, and our metric produced results
similar to manual clustering, while most samples from the
other metrics seemed more randomly clustered.

D. Prediction

We used the results of our metric to test a simple prediction
of the number of semesters a student from the exam corpus
is going to need until he or she finishes. For this task, we

sampled 1000 paths, then cut these paths after two, three, and
four semesters. We then computed the distance matrices of
800 of these paths for every amount of cut off semesters. The
remaining 200 paths — also cut accordingly — were then used
to find the k nearest neighbors. Of these neighbors, we then
averaged the actual number of semesters of the full path and
used that as a prediction for the given path.

Table III shows the results for all semesters, using a k of
40 and the previously used distance metric. We tested other
values for k between 5 and 50, and we finally chose a k of
40 because it had the least average error across all metrics
and semesters. We also chose to omit predicting after the
first semester, because the faculty requires a specific set of
courses for the first semester. Therefore, students can only
start choosing which courses to take in the second semester.
The number of semesters of the paths used ranges from 1 to
18, with an average of 7 semesters.

The results in table III show that our metric starts at
an average error of about 1/5 of a semester and steadily
decreases with additional data from more semesters. Both
Energy distance and Earth Movers distance are not well suited
for this task, and their results varied massively across runs.
The Damerau-Levenshtein (DLev) distance produced similar
results to our metric for a low number of courses, most of
them even better than the results from our metric, especially
at lower k’s. However, as soon as the paths got longer, the
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TABLE III
THE AVERAGE ERROR OF PREDICTING THE NUMBER OF SEMESTERS OF

STUDY PATHS FROM THE EXAM CORPUS USING THE AVERAGE AMOUNT OF
THE 40 NEAREST NEIGHBORS. PREDICTIONS WERE MADE WITH 800

PATHS AS TRAINING DATA AND 200 PATHS FOR TESTING.

semester our metric Energy EM DLev

2 0.1954 0.2934 0.2479 0.1350
3 0.1821 0.5898 0.5642 0.1432
4 0.1382 0.3786 0.3429 0.2822

DLev distance produced increasingly worse results.
This straightforward application of our metric for prediction

shows potential for even more uses, e.g., predicting the courses
of the following semester for capacity planning at universities.
The Future Work section (VI-E) talks about more uses for our
metric in prediction.

E. Generic inputs

The exam corpus data set we used for testing has two issues
— it is not easy to understand for someone who does not know
our faculty, and it contains sensible data from our students,
which makes it impossible for us to publish it. We tackled
this problem by including a module that converts the string
representation of paths — as described in section III-A — into
the set of events structure with which the metric can work. This
conversion module makes it easy to create individual paths that
everybody can understand and use these to test the metric. It
also allows us to create anonymous string representations of
the actual study paths from our exam corpus data set, which
we can provide publicly.

The string conversion module accepts arbitrary Unicode
strings as input where each character is a single event and
uses dashes for the separation of sets. Therefore, it is easy to
apply our metric on all kinds of other external data sets by
transforming them into this string representation.

V. USER STUDY

To assess how users would judge the difference between
study paths, we conducted an online survey using generic
study path representations and compared its results with the
results from our metric. This section introduces a different
shorthand notation, which we used in the user study, describes
the study design, and discusses the results.

A. Study design

Fig. 8. Example of a study path representation in the user study (Q5 in our
survey)

To find out whether our metric represents our users’ intu-
ition, we designed a study that tested the users’ understanding
of the distance between study paths. For this, we conducted
an online survey with 15 questions in total. Each question was
asking the users to rate the similarity between two study paths.
The study paths were laid out in a tabular fashion, shown in
figure 8, where each cell represents a semester, and each course
(capital letter) appears in a new row. We chose this layout over
the representation shown in section III-A, because the pilot for
this study clarified, that the textual notation introduced a bias
from reading the paths like words and comparing them by their
”sound.” This pilot also showed that it was more intuitive for
the users to judge similarities instead of differences, which
is why we transformed our distance measure into a similarity
measure for this study by calculating (1− dist).

The questions asked were chosen as follows:
• one pairing of two opposite paths (A-B-C-D vs.
D-C-B-A)

• one pairing of the same path twice (A-B-C-D vs.
A-B-C-D)

• five more path pairings of paths with four items each,
spread evenly across the similarity spectrum, chosen
randomly

• three pairings with eight items each (handcrafted, such
that the first path is easy to comprehend)

• three pairings with twelve items each (also handcrafted)
• two pairings with miss-matched events (e.g. A-B-C-D

vs A-B-X-Y)
We gave the users a choice of five possible similarities

for each question (0%, 25%, 50%, 75%, and 100%) from
which they had to pick the closest one. At the beginning
of the survey, a short textual task introduction was given,
as well as two explained examples using pairings with three
courses each for reference. The full survey with the intro-
duction and all questions, as well as all answers, can be
found in the supplementary GitHub archive https://github.com/
VDA-univie/set-of-events-distance-metric.

B. Results

Thirty-four participants took part in that survey, all with
a university background, to ensure they had a general un-
derstanding of the concept of a study path. The participants
include undergrad, graduate, and postgraduate students of
multiple faculties from different universities. We used 33 of
the results and excluded one participant who judged both the
identical and the opposite paths with 50% similarity.

Figure 9 shows the exact results for each question of the
survey. Q1 through Q15 are the questions, the rows 0% to
100% show the number of times the participant chose an
answer. Avg similarity is the average similarity that the users
picked for a question, calc similarity is the similarity produced
by our metric and difference is the difference between the
two similarities. The total average difference between the
calculated results and the results from the user study is
15.72%. The results show that the average difference of the
short paths, with only four courses each (questions 1-7), have
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Fig. 9. This table shows the individual results of the user study. Columns Q1 through Q15 are the questions from the survey, and the percentages are the
possible answers for the questions. The values in these rows and the overlaid histogram show how often users picked that option, and the red lines indicate
the calculated results from our metric. Bottom part: Avg similarity is the average answer given by the users, calc similarity is the similarity calculated by our
metric, and the last row is the difference between the two.

Fig. 10. The average answer of each question (including the standard
deviation) compared to the calculated results from our metric — the red
diagonal acts as a reference for full correlation.

a lower average difference to the calculated results at 11.62%
compared to the difference of 21.88% between the longer paths
(with eight and twelve courses – questions 8-13).

The comparison of the average answers to the calculated
results in figure 10 shows the users generally underestimate
the similarity between two paths, the only notable exclusions
from that being question 1 (AB-CD vs. ABCD) and question 7
(D-AB-C vs. CD-AB). In question 1, false judgment appears
to happen because moving two of the four courses creates the
same paths. In terms of our metric, the matrix of positional
relations is all zero for ABCD, and the matrix for AB-CD
contains two zeroes and two ones in each row. The users
miss that the diagonal does not contribute to the sum since
the relation of an event to itself always stays zero, therefore,
moving one event changes two relations, and only one stays
identical. A similar misjudgment seems to happen for question
7 because moving C from the back to the front changes its
relation to all three other events, thus changing three of the
six positional relations.

Questions 3 (identical paths) and 4 (opposite paths) are
almost identical between users and metric, but interest-
ingly so are questions 5 (A-D-BC vs. B-AC-D) and 13
(A-BC-DEF-G vs DFG-AE-C-B). The latter two show a

much higher standard deviation, however. Question 5, question
10, and question 11 stand out since their standard deviation
is above 25%, which is higher than the differences in pos-
sible answers. The fashion in which we crafted questions
10 (ABC-DEF-GHI-JKL vs. GHI-JKL-ABC-DEF — where
we just swapped semesters 1, 2 and 3, 4 while leaving
their contents identical) and 11 (ABC-DEF-GHI-JKL vs.
AB-CD-EF-GH-IJ-KL — where we did not swap courses,
but instead just changed the number of courses in each
semester) shows that the participants put a different weight in
the order of courses versus the semesters they were taken in.
Users who put the weight in the order were generally closer to
the calculated results in Q10 and Q11 because the metric also
scores based on the relation of the courses. The other group
of responses was that of users that put more weight in the
respective semesters the courses were taken in, and, therefore,
had a higher difference to the metric results.

The two questions with different events both score close
to the calculated result, interestingly in Q15 (A-B-C-D vs.
W-X-Y-Z) two users still answered that the similarity is
50%. This result could be because they judged the events and
the structure of the paths separately, and the two paths are
structurally identical — four sets with one event each.

The feedback from the users after taking the survey also
showed that they had more issues judging the longer paths
compared to the short ones. Most users reported coming up
with specific criteria to estimate the similarity, which they
could apply to the short examples easily, while they tended
to use their intuition for longer paths.

Concluding the results of the user study show that the metric
does not fully cover the intuition of all users we asked, but with
an overall average difference of 15.72%, it comes reasonably
close, and it even decreases for shorter paths to 11.62%. The
average study path for which we apply this metric has 40+
different courses, which is a much more substantial amount
than tested in this study. Therefore, the task of manually
comparing sets of events becomes more error-prone, and thus
a stable metric is very valuable.

VI. DISCUSSION

In this section, we discuss the results of our metric and talk
about current limitations. We also give an overview of the
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alternatives we explored and list some future projects to use
and advance the metric.

A. Variations of the Levenshtein distance (string edit distance)

At first, we tried to use available metrics with slight adap-
tations to fit our problem’s requirements. Since we abstracted
the idea of finding similar study paths as a reordering problem,
we first chose the Levenshtein distance [17]. We assigned
each course a unique Unicode character and then concatenated
these characters in their respective order. We tried different
approaches with the resulting strings: every semester being a
word, the full path being a word — with and without including
0 cost swaps within semesters – but all approaches failed.

While the initial test cases seemed promising, a straight-
forward test case could not be solved, namely the distance
between ABC-D and D-ABC. It was maximal in all cases
that we tried because every letter is shifted by one and thus
compared to its neighbor. When every semester is a word
ABC is compared to D and vice versa, so the distance is still
maximal. The only version in which it did not turn out to
be maximal was a multi-word scenario where we matched
every word with the closest distance from the other path and
tried summing up only the closest distances, thus comparing
ABC to ABC and D to D which gave us a distance of 0. The
actual result for this example from our metric is 0.5, since the
positional relation between D and all other courses changes,
but the remaining relation within courses stays unchanged.

B. Variations of the Graph Edit Distance

Our second approach was looking at the problem from the
perspective of graphs. By defining the semesters as nodes and
their temporal relation as directed edges, we tried appropriate
versions of the graph edit distance [12]. The main issue we
encountered with this was that nodes within graphs could not
consist of multiple items. When trying to circumvent that by
putting concurrent nodes in parallel, we ran into the prob-
lem that we would run into issues with circular connections
between courses that introduced unwanted variations in the
resulting distances. Another option was to introduce artificial
separation nodes after each parallel set, but this made the
resulting graphs proportionally longer and, therefore, skewed
the results of long paths versus short ones.

The final issue with this method was the computing time,
which grows exponentially based on the size of the graph, and
since we want to compare multiple thousands of paths with
lengths of up to one hundred courses, this approach was not
a feasible option.

C. Variations of our own Metric

We settled for the distance as a weighted sum of positional
differences early in the process, but the way the difference
of time intervals was calculated varied. Initially, we used the
difference between the actual positions and not only their
relation to each other. E.g. the positional relation between A
and C in A-B-C would be -2, since A is two intervals before

C. The result of this was that long paths had huge distances
between them, which did not compare well against short paths.

The second version we tried has only one difference to the
final metric, namely equation 11, did not have the signum
function in the sum. This implies that a difference between
before (-1) and after (1) contributed double the amount than
a difference between before and concurrent (0) or concurrent
and after, since |ai,j − bi,j | = 2 for a = 1 and b = −1, but it
is only 1 for a = 1 and b = 0. The problem with this version
is that when calculating the distance between a path with an
even number of semesters and a path with an odd number of
semesters, the maximal distance can never be one since at least
one object would only contribute 1 to the total sum. E.g., the
distance between the paths A-B-C and BC-A: the matrices of
positional relations of the two are the following:

MA-B-C =



0 −1 −1
1 0 1
1 −1 0


 and MBC-A =




0 1 1
−1 0 0
−1 0 0




(2)
The result of the sum of their differences using the signum
function is 6, averaged by 1/n(n − 1) the distance between
the two paths is 1, since all courses happen in a different order.
If the signum function is left out, the sum of differences in this
example is 10, normalized by 1/2n(n−1) results in 0.833. In
contrast, the distance between A-B-C and C-B-A, where also
all courses happen in a different order, is 1 in both variants,
therefore making the variant without the signum function less
consistent.

Our final version of the metric includes the signum function,
which ensures that every difference between positional rela-
tions contributes precisely 1 to the final sum, thus removing
the problems mentioned above.

D. Limitations

A current limitation of our approach is that every event can
only appear once, which can easily be tackled by uniquely
identifying duplicate events (e.g., instead of having AA, la-
beling them A1A2). It might be a limitation on the one hand,
but can also be used as a benefit when using the metric to
predict multiple occurrences of the same event. For example,
when dealing with study paths, we use this to determine if
a student had multiple failed attempts of one course and in
which semesters they were.

Another limitation is that events that do not occur in both
compared sets just add one to the sum of differences and do
not contribute to the structure of the path that is compared by
the positional distance function. It works well for the exam
corpus because the knowledge of a course that one student did
not yet take is not available for other courses. In other data
sets, which do not depend on knowledge of previous events,
this fact might limit the usability of the metric.

E. Future work

We intend to use the results of the metric as a predictor
for planning future semesters at the University of Vienna.
Predicting could be done by finding the closest paths to every
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currently active student and, based on these paths, computing
probabilities for courses that this student is most likely to take
in the next semester. We are also looking into using the results
from our metric as weights for building a Markov-Chain of all
courses in our faculty, which we can then use to predict future
semesters. The metric can also be used to visually monitor
current trends and the general state of a faculty by clustering
study paths, thus making them easier to explore and evaluate.

Other application domains that seem applicable for our
metric are the analysis of online purchases and incident man-
agement data. In online purchases, every individual purchase
could act as time interval, the bought items as objects in those
intervals, and then use the similarity to other customers’ pur-
chases for suggestions or targeted advertisements. Using the
similarity of incidents in a similar fashion could automatically
assign an incident to a group that is more likely to solve it, or
prioritize incidents early that show signs of being unresolved
for an extended period.

Finally, the medical domain, specifically the patient man-
agement and individual patient’s treatment procedure in hos-
pitals and other treatment facilities, looks to be a promising
field. Treatments happen chronologically, and various events,
such as administering medication, are happening during each
treatment. The notion of concurrency can be set individually,
for example, from different events happening during a single
surgery, up to all treatments in a day, or even a week. In
this case, the knowledge of previous events — as described in
the Limitations subsection (VI-D) — would be the influence a
previous medication or treatment has on the next ones. We are
currently looking to find hospitals willing to cooperate with
us.

VII. CONCLUSION

In this work, we presented a novel distance metric to
calculate the difference between sets of events. Further, we
proved that the mathematical conditions of metrics held for our
approach and showed its application by using it for clustering
and predicting a real-world data set. A user study further
solidifies the validity of our approach by showing that the
metric results represent the expectations of the users.

We provide a python implementation of the metric
in the supplementary GitHub archive https://github.com/
VDA-univie/set-of-events-distance-metric. It includes the data
conversion code we used to build study paths from the exam
corpus, an example workflow and the generator code we used
to create the data for the robustness test. Since we cannot
make the exam corpus publicly available, due to privacy
protection policies, we provide the full exam corpus in an
anonymized fashion using the string-representation of study
paths. To further test the metric, the archive also includes
a transformation script that can generate sets of events from
string inputs based on the notation introduced in section III-A.
The appendix of this work can also be found in the GitHub
archive.
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APPENDIX A
PROPERTIES OF THE METRIC

TABLE IV
OVERVIEW OF THE SYMBOLS USED TO DESCRIBE THE DIFFERENT PARTS

OF OUR METRIC

S set of events
e event — combination of an object and

an identifier
o object (e.g. a course)
i identifier which can be ordered

(e.g. semester, can be ordered in time)
SO set of objects from set of events
dist(SA, SB) metric distance function
δ positional relation (before, concurrent,

after)
MS matrix of positional relations in set S
w contribution factor
pos dist(S∗

AB , S
∗
BA) distance between the sets of identical

events of the input

Given a set of objects O and an ordered set of identifiers
I , we define an event e as e ∈ O× I and a set of events S as

S = {e : e ∈ O × I}, (3)

as well as its projection onto just the object space SO as

SO = {o : ∃e = (o, i) ∈ S}, (4)

A set of events S is the basic representation of data used
in our metric, its projection onto the object space is used to
determine all objects that appear in both compared sets.

Given two sets SA and SB , the contribution factor w is the
number of objects that occur in both SA and SB divided by
the total number of objects in both sets.

w =
|SO

A |+ |SO
B | − (|SO

A \ SO
B |+ |SO

B \ SO
A |)

|SO
A |+ |SO

B |
(5)

Each object contributes equally, therefore the overlap of the
two sets |SA ∩ SB | is counted twice, because each object
appears twice in the overlap.

w =
2(|SO

A ∩ SO
B |)

|SO
A |+ |SO

B |
(6)

The distance function of our metric consists of two parts,
w×pos dist(S∗

A, S
∗
B) is the positional distance, which is used

for the part of the sets, where the objects are identical. (1 −
w)×1 describes the contribution of objects that only occur in
one of the two sets, since the maximum distance possible in
our function is one, these objects each contribute one to the
distance.

dist(SA, SB) = w × pos dist(S∗
AB , S

∗
BA) + (1− w)× 1 (7)

S∗
AB and S∗

BA are the subsets of SA and SB , where the
objects are identical.

S∗
AB = {s = (o, i) ∈ SA and ∃iB , s. t. (o, iB) ∈ SB} (8)

We define the matrix MS as the positional relations δ
between all events in S. This matrix is computed for each
set of events individually.

MS = ( δ(ei, ej) ) : ∀ei, ej ∈ S (9)

The positional relation δ(e1, e2) indicates the relation of
event e1 to event e2 using the order of the identifiers I . The
function returns -1 if e1 happens before e2, 0 if both are
concurrent and 1 if e1 happens after e2. It is defined as

δ(e1, e2) :=





−1 i1 < i2

0 i1 = i2

1 i1 > i2

(10)

where i1 and i2 are the positions given by the identifiers of
the events e1 and e2 respectively.

Since the relation between two identical events is always
zero, the diagonal entries of the matrix MS are zero. Further-
more MS is skew symmetric (mi,j = −mj,i), because if e1
happens before e2, symmetry implies that e2 happens after e1
and vice versa.

The positional distance function sums up the differences in
the matrices of positional relation of the subsets with identical
objects of both input sets SA and SB .

Let MA and MB be the matrices of positional relations of
the sets of events S∗

AB and S∗
BA, and n = |S∗

AB | = |S∗
BA|

be the number of events with common objects in one of the
two sets, then the metric distance between S∗

AB and S∗
BA is

defined by

pos dist(S∗
AB , S

∗
BA) =

1

n(n− 1)

n∑

i=1

n∑

j=1

sgn( |ai,j − bi,j | )

(11)
where ai,j ∈MA and bi,j ∈MB .
The sum of differences is averaged over all non-diagonal

entries — of which there are n(n− 1) many — to ensure the
result is between one and zero.

The signum function ensures that all differences contribute
equally to the sum of differences. Further, this distance metric
only makes sense if the position i of event ei containing object
o is identical in both matrices A and B.

A. Metric Properties

This subsection proves that our distance measure satisfies
all metric properties.

Lemma 1. Our distance measure dist(SA, SB) is non-
negative.

Proof: |a− b| ≥ 0 for any values of a and b, the number
of rows/columns n in the matrix MS is also always positive,
and therefore the positional distance function is always greater
or equal to zero.

1

n(n− 1)

n∑

i=1

n∑

j=1

sgn( |ai,j − bi,j | ) ≥ 0. (12)
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w × pos dist(S∗
AB , S

∗
BA) + (1− w)× 1 ≥ 0 (13)

The contribution factor w (see eq. 6) describes a percentage
of the input, thus it can only be between 0 and 1, therefore
our metric is always greater or equal than zero.

Lemma 2. If two sets of events are indiscernible, the result
of our distance measure is zero.

Proof: Two sets of events X and Y are indiscernible,
if they contain the same objects, and those are in the same
order. If this is the case their matrices of positional relations
are identical (MX =MY ) and the sum of differences between
two identical matrices is zero.

A distance of zero is only the case if X and Y are identical,
if they differ in only one event the sum of differences is not
zero anymore, which thus concludes that if dist(X,Y ) = 0,
then X = Y .

Lemma 3. Our distance measure is symmetric.

Proof: The positional distance function (equation 11) is
the sum of differences between the positional relations of the
events. One is added to the sum if the positional relations are
different, zero otherwise. Changing the order is equivalent to
changing sgn( |xi,j − yi,j | ) to sgn( |yi,j − xi,j | ). Since the
sum is formed on the absolute value of differences, the sign
is cancelled and the signum function guarantees that no other
values than one and zero can be added. Therefore one is added
to the sum whenever xi,j and yi,j are different independent of
their order, which concludes dist(X,Y ) = dist(Y,X).

Lemma 4. Our distance measure fulfills the triangle inequal-
ity, which means
dist(X,Z) ≤ dist(X,Y ) + dist(Y, Z) for all X,Y and Z.

Proof: We are proving this inequality component-wise.
The distance dist(X,Z) is calculated by summing up the
differences between all positional relations (entries) in MX

and MZ . sgn( |xi,j − zi,j | ) can either take the value zero if
xi,j and zi,j have the same positional relation, or one if their
positional relation is different.

• Case 1: sgn( |xi,j − zi,j | ) = 0
Zero is the lowest value that can appear, therefore 0 ≤
sgn( |xi,j − yi,j | ) + sgn( |yi,j − zi,j | ).

• Case 2: sgn( |xi,j − zi,j | ) = 1
Our proof is by contradiction. Let us assume that
sgn( |xi,j − yi,j | ) + sgn( |yi,j − zi,j | ) = 0. The only
case where this happens is, if xi,j and yi,j , as well as
yi,j and zi,j , are concurrent events. Hence, by transi-
tivity, xi,j and zi,j are concurrent as well. This means
sgn( |xi,j − zi,j | ) = 0 which is a contradiction.

By proving that the difference between individual entries of
the positional relations fulfill the triangle inequality and since
our distance measure is the sum of all individual differences,
all of which are non-negative, it follows that it fulfills the
triangle inequality.

APPENDIX B
INSTRUCTIONS FOR EXPERIMENT REPLICATION

All data, code as well as the instructions and answers to our
user study can be found here: https://github.com/VDA-univie/
set-of-events-distance-metric. The instructions are written for
the bash shell, since it is available on all operating systems.
To run the experiments described in this work, the following
steps need to be done first to set up the environment.

1) download the ’code’ directory to your machine
2) navigate to the ’code’ directory in a terminal
3) create a virtual environment using python3

python3 -m venv env
4) activate the virtual environment

source env/bin/activate
5) install all required packages

pip install -r pip-requirements

Once completed the experiments can be run with the com-
mands shown in table V.

TABLE V
COMMANDS USED TO REPLICATE THE DIFFERENT EXPERIMENTS FROM

SECTION IV.

Clustering generated paths
python path_clustering_generic.py

Clustering of real paths
python path_clustering.py

Predicting path lengths
python path_predict.py

All parameters are set such that the results shown in this
work are replicated. The parameters can be changed by editing
the source code, where each parameter is named accordingly.

APPENDIX C
DETAILED CLUSTERING RESULTS

Tables VI, VII and VIII show more detailed results from
clustering the generated study paths. The probabilities used
for generating the paths have been varied, all other parameters
stayed the same. DBSCAN was run with epsilon of 0.8 and
the minimum number of points was 5.
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TABLE VI
DETAILED RESULTS FROM CLUSTERING 100 GENERATED STUDY PATHS, USING A CHANGE PROBABILITY OF 70-20-10

homogeneity completeness v measure adjusted rand adjusted mutual normalized mutual silhouette
metric clustering score score score score info score info score score clusters noise

our metric kMeans 1 1 1 1 1 1 0.740380813 4 0
Energy kMeans 0.75 0.892601039 0.815110624 0.652883569 0.740611948 0.818199718 0.694392994 4 0
EM kMeans 0.75 0.892601039 0.815110624 0.652883569 0.740611948 0.818199718 0.66375268 4 0
Dlev kMeans 1 1 1 1 1 1 0.470027398 4 0

our metric DBSCAN 1 1 1 1 1 1 0.740380813 4 0
Energy DBSCAN 0.792802453 0.679549349 0.731820194 0.601756278 0.658452905 0.733994817 0.633068367 6 1
EM DBSCAN 0.77935697 0.575018842 0.661773399 0.520272708 0.535539742 0.669436287 0.457225376 9 4
DLev DBSCAN 0.498300818 0.431093361 0.462267097 0.18400579 0.360822106 0.463480501 -0.142133249 10 53

TABLE VII
DETAILED RESULTS FROM CLUSTERING 100 GENERATED STUDY PATHS, USING A CHANGE PROBABILITY OF 50-30-20

homogeneity completeness v measure adjusted rand adjusted mutual normalized mutual silhouette
metric clustering score score score score info score info score score clusters noise

our metric kMeans 1 1 1 1 1 1 0.66528544 4 0
Energy kMeans 0.75 0.869013399 0.805132372 0.632383295 0.740779426 0.807316573 0.619289976 4 0
EM kMeans 0.75 0.869013399 0.805132372 0.632383295 0.740779426 0.807316573 0.572138792 4 0
Dlev kMeans 1 1 1 1 1 1 0.213137912 4 0

our metric DBSCAN 1 1 1 1 1 1 0.66528544 4 0
Energy DBSCAN 0.806200476 0.649006172 0.719113104 0.609812209 0.623622465 0.723345758 0.593211605 7 1
EM DBSCAN 0.731543477 0.441038545 0.550304993 0.349707838 0.374413587 0.568013091 0.197628526 14 14
DLev DBSCAN 0.020447872 0.289137359 0.038194612 0.000830441 0.007903456 0.076891117 0.092768369 1 98

TABLE VIII
DETAILED RESULTS FROM CLUSTERING 100 GENERATED STUDY PATHS, USING A CHANGE PROBABILITY OF 30-40-30

homogeneity completeness v measure adjusted rand adjusted mutual normalized mutual silhouette
metric clustering score score score score info score info score score clusters noise

our metric kMeans 1 1 1 1 1 1 0.613383675 4 0
Energy kMeans 0.75 0.858419754 0.800555718 0.621994795 0.740884491 0.802380717 0.563085631 4 0
EM kMeans 0.809563453 0.825070928 0.817243632 0.753666841 0.802826335 0.817280411 0.459402372 4 0
Dlev kMeans 1 1 1 1 1 1 0.109391893 4 0

our metric DBSCAN 1 1 1 1 1 1 0.613383675 4 0
Energy DBSCAN 0.764070217 0.64863478 0.701636248 0.563013699 0.629685354 0.703990424 0.490243353 5 3
EM DBSCAN 0.714315308 0.406440431 0.518090805 0.247930083 0.338350653 0.538819656 0.148717497 14 19
DLev DBSCAN 3.20E-16 1 6.41E-16 0 9.61E-16 4.44E-06 0 0 100
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3 Histogram binning revisited with a
focus on human perception (accepted)

Synopsis
The following chapter contains the contents of Raphael SAHANN, Torsten MÖLLER,
and Johanna SCHMIDT "Histogram binning revisited with a focus on human perception".
The version below was submitted to the IEEE VIS 2021 conference on March 31, 2021.

Most of the data creation, data analysis, and creation of the respective figures were done
by Raphael Sahann. Johanna Schmidt and Raphael Sahann collaborated on everything
else. Torsten Möller helped define the hypotheses, phrasing the user study questions, and
gave feedback on the final text.

Note from the final edit of this thesis: A revised and shortened version of the paper in
this chapter has been accepted to the IEEE VIS 2021 Short Paper track. It was decided
to leave the previously submitted version of the full paper in the thesis, since its core
contribution did not change, and it presents more information on the topic.
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Histogram binning revisited with a focus on human perception

Submission ID 1682

Fig. 1. Selection of histogram datasets used in our study. We evaluated how well human viewers can detect the underlying data
distribution in a histogram when different sample sizes and bins are used. For this, we created datasets with a different number of
samples (first row: few, last row: many) and a different number of bins (left column: 2, right column: 100). A bimodal distribution was
used to create the datasets in this illustration.

Abstract—Many different approaches for selecting the right number of bins in a histogram have already been proposed. These models
consider the underlying distribution of the data and the number of samples in the dataset. However, the number of bins suggested by
mathematical approaches has not been evaluated with a focus on human perception yet. This paper presents a quantitative user study
to evaluate how well users can visually perceive the underlying data distribution from a histogram representation. We used histograms
with different sample and bin sizes and four different distributions (uniform, normal, bimodal, and gamma). The study results confirm
that, in general, more bins correlate with fewer errors by the viewers. However, upon a certain number of bins, the error rate cannot
be improved by adding more bins. By comparing our study results with the outcomes of existing mathematical models for histogram
binning (e.g., Sturges’ formula, Scott’s normal reference rule, the Rice Rule, or Freedman–Diaconis’ choice), we can see that most
of them overestimate the number of bins necessary to make the distribution visible to a human viewer. Our paper summarizes and
discusses all outcomes and concludes with a suggestion for future work.

Index Terms—empirical studies in visualization; histogram binning; distributions; human-centered computing

1 INTRODUCTION

Having already been used in the 19th century [31], histograms can be
denoted as one of the earliest types of data visualization techniques.
Histograms are a well-known and prevalent visualization technique
representing the distribution of univariate data by visualizing the tabu-
lated frequency at certain intervals, represented as bars or bins. Bins
are usually drawn as rectangles – several bins next to each other help
human viewers to build a mental model of the data distribution. In
this sense, histograms help estimate where values are concentrated and
if outliers can be found in the data. The most important parameter
visualization designers have to set when creating a histogram is the
number of bins, sometimes called the bin width. (The greater the num-
ber of bins, the smaller the bin width.) With too few bins, the data
cannot be accurately represented, and features might be obscured. With
too many bins, random artifacts might be created in the visualization,
which hinders the analysis of the underlying data’s true distribution.

The number of bins significantly influences how well we humans can
interpret a histogram. Statisticians have developed several thumb rules
to help researchers estimate the right number of bins when creating
a histogram. For example, Sturge’s formula [42] defines how to split

Manuscript received 31 Mar. 2021; accepted xx. Date of Publication xx; date
of current version xx. For information on obtaining reprints of this article,
please send e-mail to: reprints@ieee.org. Digital Object Identifier:
xx.xxxx/TVCG.201x.xxxxxxx

the data into k bins based on the number of samples being available.
Many other mathematical models try to match the information gener-
ated by binning with the data’s underlying distribution and to minimize
the error between the two representations. Scott’s normal reference
rule [37] measures the discrepancy between the bin representation and
the data distribution by employing mean integrated squared error. The
Freedman–Diaconis choice [16] is based on minimizing the difference
between the area under the data distribution and the area under the prob-
ability distribution defined by the binning. The mathematical models,
on the forefront being Sturge’s formula, Scott’s normal reference rule,
the Rice Rule [43], and the Freedman–Diaconis choice, are nowadays
in use in many visualization applications and libraries.

These mathematical rules use the number of samples as the main
input for calculating the number of necessary bins in a histogram. They
are fast and convenient binning estimations, but they also have draw-
backs. There is an indication that the thumb rules’ strong assumptions
about the data make them sub-optimal for non-normally distributed data.
As an alternative, Knuth’s rule [25] or Bayesian Blocks [35] use fitness
functions computed on the actual underlying distribution to choose
an optimal binning, which is computationally more expensive but pro-
duces more accurate results for more complicated distributions. There
is a lively discussion about which mathematical models describe the
data best, and new models are continuously developed (see Section 2).

However, interestingly, the models and their suggested binnings
have not been evaluated in perceptual user studies yet. The models in
use today were statistically and mathematically evaluated. However, it
is unclear how well the suggested numbers of bins match the human
visual perception when analyzing a histogram.
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In this paper, we therefore address the following research questions:

? Is it possible to define an optimal number for the number of
bins for human viewers to be able to detect the data’s underlying
distribution in a histogram?

? What is the difference between the binnings suggested from per-
ceptual experiments to the values suggested by mathematical
models? Does the perception of a distribution in a histogram
depend only on the binning, or also on the sample size of the data
(as it is suggested by the mathematical models)?

To answer these research questions, we need to understand how well
users can detect the underlying distribution of data in histograms. In
general, this is in line with the current need in research to understand
how viewers can construct and interpret data visualizations [7]. Labo-
ratory and user studies are a legitimate approach to evaluating users’
performance when interacting with data visualizations.

This paper presents a user study where we tested the viewers’ abili-
ties to detect the data’s underlying distributions in histograms. We used
datasets with four different distributions (uniform, normal, gamma, and
bimodal), different sample sizes, and numbers of bins (see Figure 1)
and asked participants to state which distributions they see in the dif-
ferent representations. We then compared the results of the user study
to existing models for binning suggestions in histograms. The paper
presents the following contributions:

! Perceptually optimal number of bins. The user study results
indicate that a perceptually optimal number of bins can be set
independently of the data’s sample size. This is under the assump-
tion that enough samples are available to represent the underlying
distribution properly.

! Comparison with mathematical models. In comparison with
the mathematical models, it can be seen that most of the models
overestimate the number of bins that is necessary to represent the
data’s distribution for human viewers.

The paper is organized as follows: In Section 2 we discuss related
work on histogram binning, perception studies, and evaluation in visu-
alization. In Section 3, the user study setting is described. In Section 4
the results of the user study are described. In Section 5 we present our
new suggestion for an optimal histogram binning and compare it with
mathematical models. The paper is concluded in Section 6.

2 RELATED WORK

Our research is rooted in histogram binning, but methodologically
draws on perception studies on histograms, and evaluation of visualiza-
tions in general.

2.1 Histogram binning
The number of bins significantly influences how well we can visually
interpret a histogram. Many approaches have already been developed
that assess the optimal number of bins for a given distribution. One
of the earliest reported methods for constructing histograms was pro-
posed by Sturges [42], who suggested to calculate the binning based on
the data range. Although quite simple and easy to calculate, Sturges’
formula does not ideally represent the underlying distribution if the
sample size of the data is large, and if the samples are not normally
distributed [38]. Alternatively, the so-called Rice’s rule [43], or the
approach by Doane [12] can be used, which also work for non-normal
distributed data. Scott [37] proposed to use an error measure between
the probability density represented by the histogram and the actual prob-
ability density of the underlying data. Freedman–Diaconis’ choice [16]
adapted Scott’s normal to make it less sensitive against outliers. Also
similar to Scott’s normal, Shimazaki and Shinomoto [39] proposed
a method based on minimizing an estimated cost function. These
approaches are still quite popular and are often used in current visual-
ization systems (e.g., Python, Matlab).

Some other methods have been, for example, proposed by Stone [40],
who used a loss function minimization approach, or Rudemo [34], who

employ risk functions and cross–validation techniques. Wand [47]
presented an extension to Scott’s normal to have good large sample
consistency properties. Hall [18] investigated the use of a different
information criterion and, very recently, Knuth [25] proposed a method
based on maximizing the posterior probability for a certain number of
bins. Heinrich [21] researched how a selection of bins can best model
the intuitive decision whether a histogram is uniform or not. Lolla
and Hoberock [28] proposed to use Cumulative Distribution Functions
(CDF) to assess the optimal number of bins. Birge and Rozenholc [2]
proposed a statistical approach based on a penalty function which
works especially for small sample sizes. He and Meeden [20] based
their approach for selecting the number of bins on a loss function,
reflecting the idea that smooth distributions need fewer bins than rough
distributions.

All the solutions mentioned here depend on statistical models, mathe-
matical approaches and optimization criteria. In this paper we compare
the model-based binning approaches with the results we obtained in a
quantitative user study.

2.2 Perception studies (histograms)
Visualizations are interpreted by using our human visual system, and
several researchers already tried to better understand this process by
conducting perception studies. When it comes to summary statistics,
Lem et al. [27] and Kaplan et al. [24] noticed a general problem for
students when trying to read and interpret aggregated information in
histograms and box plots. Many of these misinterpretations are related
to data mapping (e.g., how many variables are depicted in the graph).
Dabos [11] concluded that students often have problems interpreting the
variability of a variable in a histogram. Zubiaga and Mac Namee [48]
assessed the data literacy of participants when interpreting a distribution
of values with different charts, and could report more positive results on
the literacy of histograms. Correll et al. [10] highlighted the importance
of selecting the right number of bins for detecting missing values
and outliers in a histogram. They also pointed out that more liberal
rules of thumbs for selecting the number of bins (e.g., Freedman-
Diaconis choice) should be preferred over the common Sturges’ formula
– especially when creating sanity checking histograms.

In general, it can be denoted that, although statistical and mathemat-
ical models for computing the optimal binning exist, the literacy of
humans interpreting these visualizations seems to be decoupled from
the statistical interpretation. According to Boels et al. [4], information
reduction still seems to be an understudied topic in data visualization.

In this paper we present a quantitative evaluation of histogram
literacy with different number of bins and sample sizes.

2.3 Evaluation of visualizations
User studies [26] offer a scientifically sound method to measure how
people read visualizations [22], and to better understand a visualiza-
tion’s readability. In visualization research, however, evaluation ap-
proaches are often focused on evaluating the performance of a newly
designed visualization in comparison to existing techniques [23], in
many cases by collecting qualitative feedback [13]. This is in contrast
to user studies where the purpose is to understand human perceptual
or cognitive characteristics [45]. User study for understanding percep-
tual characteristics are targeted towards learning something new about
human perception or cognition, which later on can be used to make
informed decision for visualization design.

In this paper we decided to run a user study to understand human
perception, also sometimes called user evaluation study [15]. We col-
lected quantitative data (i.e., accuracy, confidence, and time it took to
complete the task) to gain a basic understanding of the visual percep-
tion of data distribution in histograms.

This narrow task definition allowed us to evaluate the design
idea [46] of the effect of varying binnings in a histogram. This setting
is best described as a judgement study, where the study’s purpose is to
gather a person’s response to a set of stimuli [9]. The setting is made
irrelevant in judgement studies. According to the literature, judgement
studies are a commonly used approach for perceptual studies and can
provide considerable precision.

3.2 Related Work
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3 QUANTITATIVE USER STUDY

We conducted a user study to test how well users can detect the un-
derlying distribution of a sample in a histogram. Histograms with
different distributions, number of samples, and different number of
bins have been used (see Section 3.1). We established a data gener-
ation mechanisms to create histograms with different binnings (see
Section 3.2). The study was carried out as a web-based questionnaire
(see Section 3.3). We also evaluated the study setting in a test run (see
Section 3.4).

3.1 Hypotheses generation

Task definition: One of the first decisions we made when designing
the study was to concentrate on one specific task users perform when
analyzing histograms. Histograms as summary statistics provide the
possibility to perform several tasks related to distribution analysis (e.g.,
identifying the mean and the median or comparing quartiles). One
task related to distribution analysis is to identify the data’s underlying
distribution, which has been classified as the task to ”describe and
identify the shape and type of one distribution” by Blumenschein et
al. [3]. The identification of the underlying distribution is the task we
evaluated in our study.

Distributions: Histograms are not restricted to special types of
data distributions. In mathematics and statistics, hundreds of different
density distributions can be found. To conduct a study on the shape
and type of distributions, we decided that we have to reduce this high
number of possible choices to a reasonable number that can be tested
in a study. To get an overview of the distributions currently used in
practice, we looked into literature targeted towards data scientists to
learn more about the use of data distributions. Some examples are:
Doing Data Science [36] lists 17 density functions that data scientists
should be familiar with. The Data Scientist’s Crib Sheet [32] describes
15 density functions that are important and highlights their relationships.
In the KDnuggets tutorials [41] five density functions are explained that
data scientists should be aware of. Based on this literature research and
based on our own experience when working with data, we decided to
classify the available density distributions based on their main shape
characteristics. We defined four main classes (see also Figure 2):

• uniform: uniform distributions

• unimodal: distributions with one peak, similar to a Gaussian
kernel

• bimodal: distributions with two peaks

• skewed: distributions with one peak which are skewed to one side
of the distribution

Fig. 2. Classification of density distributions. We decided to categorize
distributions based on their main shapes (uniform, unimodal, bimodal,
and skewed) and test these classifications in our study. This figure
illustrates how the 17 density distributions described in Doing Data Sci-
ence [36] fit into these classifications. No bimodal distribution was listed
in this reference. Small images taken from [36].

This classification is also confirmed by Walker [29], who describes
the most common shapes of distributions as bell shaped, left skewed,
right skewed, bimodal, and uniform. In our study, we did not differ-
entiate between left and right skewness but rather only considered
distributions which are skewed to the left. After deciding on the four
classes, we identified one mathematical density function representing
each class best:

• For the class uniform, a uniform distribution fits best.

• For the class unimodal, we selected the normal density function
to represent this class.

• For the class bimodal we joined two normal density functions to
form a bimodal distribution with two peaks.

• For the class skewed we selected the gamma density function to
represent this class.

Number of samples and bins: After selecting the distributions, we
had to define the ranges for the number of samples and the number of
bins. We applied a mathematical approach to calculate the four mo-
ments (mean, variance, skew, and kurtosis) for each of the distributions
used to represent a class (uniform, normal, bimodal, and gamma). The
combination of these four moments can uniquely identify a distribu-
tion’s shape.

For five different sample sizes (100,1,000,10,000,100,000, and
1,000,000) we drew 1,000 times from the four distributions specified
above and recorded the actual moments from each draw. We then
created evenly spaced binnings in steps of 1 from 2 up to 100 bins
for each draw. Using the bins’ centers as the outline of a new shape,
we calculated its moments and compared them to the actual moments.
Figure 3 shows the average error in percent across all draws up to 50
bins. The charts show that the error is large for small numbers of bins
for all moments but reaches an almost constant rate above 10 bins.
Adding more bins does not affect the error rate anymore.

Fig. 3. Error made by binning. The charts show the average error
in percent between the actual moments the moments of the different
binning options. The x-axis shows the number of bins in all charts, the
y-axis shows the error in percent. Please note that the y-axes of skew
and kurtosis are logarithmic.
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We, therefore, decided that the range up to 10 bins would be of
the greatest interest for our study. Since some moments (especially
kurtosis) take a little longer to settle completely, we chose to include
some values between 10 and 40 as well. We also included 100 bins
as an upper boundary since it is equal to our study’s smallest sample
size. Concluding from this investigation we decided on testing ten
different bin counts (within the range [2–100]) and four sample sizes
(within the range [100–1,000,000]). The sample size 100,000 was left
out to reduce the overall number of combinations for the study–and
also because the errors with 100,000 samples were almost identical to
10,000 and 1,000,000.

Hypotheses generation: The aim of the study was to test the ef-
fect of binning on the recognition of distributions in a histogram. To
summarize, we decided to test

• four distributions (uniform, normal, bimodal, and gamma), with
• ten different bin counts (2,3,4,5,7,10,15,20,40, and 100), and
• four sample sizes (100,1,000,10,000, and 1,000,000).

This data collection and setting allows us to study the effect of
binning under different sample sizes and with different distributions.
We agreed upon testing the following hypotheses:

• Hypothesis H1: The number of bins influences how well humans
can perceive the underlying data distribution in a histogram.

• Hypothesis H2: Upon a certain number of bins, adding new bins
does not improve the perception of underlying data distributions
in a histogram.

3.2 Data generation
Given the four distributions, ten bin counts, and four sample sizes, our
complete test data consisted of 160 different parameter combinations.
The data for the four different types of distributions was generated in
the following way:

• Uniform: For generating datasets with a uniform distribution, we
generated random integers between 0 and 10,000.

• Normal: For creating datasets with a normal distribution, we used
a location-parameter of 0 and a scale of 1.

• Bimodal: For generating datasets with a bimodal distribution,
we used two normal distributions. The first normal distribution
was identical to the one mentioned previously, and the second
normal distribution varied in scale between 0.5 and 1. We ran-
domly placed the centers within 1.5 and 2 standard deviations
(both distributions combined) apart. This placement ensured that
the centers did not overlap and that the distributions also never en-
tirely separated. Finally, we chose a random proportion between
0.3 and 0.7 to combine both distributions’ data points.

• Gamma: The shape and scale parameters for generating datasets
with a gamma distribution were 2.

It has to be noted that we did not store and visualize the raw samples
but computed the binning beforehand. We used Python NumPy [19]
to generate the distributions. We picked random samples and split the
data into bins for the histograms. To ensure reproducibility, we seeded
each dataset individually. The final datasets containing the binning
information were stored as JSON files.

3.3 Study design
We used the approach of a web-based questionnaire to be able to reach
a large group of participants [33]. Participants could start the survey
by accessing a website on one of our servers and then clicking a button
to start the survey. Through the website, participants could inform
themselves about the data protection regulations and could see contact
details in case they wanted to ask further questions. A Cross-Site
Request Forgery (CSRF) token was generated whenever a participant
decided to start the survey. Since we then used only this token to
identify the participant, the study was fully anonymized without any
possibility to track the results back to the participants.

The study was implemented in Angular [17] version 10, and we
used D3.js [8] to render the histograms. Since the bin information was
stored instead of the raw data (see Section 3.2), it was not necessary to
compute the binning online, which allowed us to render the histograms
quickly. Participants did not encounter any delay when loading the
questions. The Bootstrap [6] library was used for stylizing the buttons
and control elements. With the built-in Typescript functionalities, we
measured task completion time. The study results were sent via a POST
command to the server and stored as a JSON file.

The study consisted of four parts:

1. Explanation
In the beginning, we gave a short explanation that the study will
be about histograms, that different versions of histograms with
a different number of bins will be shown, and that we ask the
participants to judge the underlying data distribution.

2. Participant data
Afterwards, we collected statistical data about the participants,
namely age group, residence, education, profession, and experi-
ence with visualizations.

3. Sanity check
As a next step, we integrated a sanity check to filter out careless
participants [30]. On the next two pages, we showed a histogram
to the participants where we also stated the sample size n. More
specifically, a sample size of n = 100,000 was shown in the his-
togram visualization. On the first page we showed the histogram
image and asked the participants

“What does n stand for in the above image?“.

Participants could select one out of five answers:
• Sample size

• Number of bars

• Maximum number shown

• Statistical significance

• I don’t know.

On the second page we showed the same histogram again and
asked the question

“What is the sample size (= number of shown data points) in the
above image?“

Again, participants could select one out of five answers:
• 1,000

• 10,000

• 100,000

• 1,000,000

• I don’t know.

Participants could only proceed with the questionnaire when they
answered both questions of the sanity check.

4. Questionnaire
In the next step, we showed 20 histograms to every participant,
one after the other. The histograms were randomly selected from
the pool of datasets (see Section 3.2). The histogram plots had
two axes with ticks, but we did not show any numbers or scales.
Participants were asked to answer the question

“1. Choose the distribution which resembles the image above most
closely“

by clicking on one of the icons below the histogram showing
different possible distributions. Participants were also asked to
state

“2. How confident are you about your answer?“

3.3 Quantitative User Study
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on a four-point Likert scale. Participants could only proceed with
the next histogram if they answered both questions. An exam-
ple of how the web-based implementation of such a histogram
question looked like is shown in Figure 4.

5. Results
After judging 20 histograms, the answers of every participant
were stored as a JSON file on the server. As a reward, participants
had the chance to review their own performance during the study,
where we showed them all 20 histograms again and depicted
whether their answer was correct or not.

3.4 Pilot study
Before starting the larger user study, we started with a pilot study
with 10 participants to evaluate our system. Several steps of the final
study design (see Section 3.3) have been adapted after we received the
comments and feedback from the pilot study. The main suggestions of
the pilot participants, and our own suggestions for improvement were:

• To add an initial explanation at the beginning about the scope of
the study,

• To revise the answers for profession,

• To add an I don’t know option to both sanity check questions,

• To make options clickable as labels so that participants do not
have to search for the radio button boxes,

• To not vertically align distribution icons and confidence boxes,
since this caused misunderstanding through the alignment, and

• To add the possibility for the participants to review their own
results.

The pilot study participants did not encounter difficulties in under-
standing the experiment nor the questions. They also did not experience
any technical difficulties. There were no delays in loading and ren-
dering the histograms. They also found that judging 20 histograms is
within a acceptable time frame.

Fig. 4. Study question. Participants were shown a histogram depicting
the data’s underlying distribution and asked to click the appropriate icon.
Participants were also asked to state how confident they are about their
answers. In this example normal and confident have been selected.

4 RESULTS

After the pilot phase, we distributed the user study to a larger group of
possible participants. In total, 82 participants finished the user study
within a 14 day time frame. We only counted complete submissions and
did not record the dropouts. Based on the sanity check questions at the
beginning (see Section 3.3), we had to exclude 10 data records from the
evaluation, which led to a final number of 72 valid submissions. It took
participants 44 minutes, on average, to complete the study. Participants
could only proceed if they answered all questions, and only completed
surveys were stored on the server, so we received 20 complete answers
from all 72 participant.

4.1 Study participants
At the beginning of the study we collected statistical information about
the participants, which is summarized in Figure 5. The majority of
our participants were between 20 and 49 years old. One-third of the
participants (33%) were bachelor’s, master’s, or PhD students. The
other participants were working part-time (14%), full-time (23%), or,
more specifically, in research and education (26%). Since we used our
established networks to broadcast the study, most of our participants
were inhabitants of the region A (name removed for review). The
majority of our participants already had prior experience with data
visualization. 27% of the participants had some experience in reading
charts and plots in the media. 27% classified themselves as being
experienced in reading data visualizations, and 41% stated that they
are also creating data visualizations themselves. Only four participants
stated that they do not have any experience with data visualization.
Therefore, the focus of our study was on the literacy of histograms for
people who already have experience with visual data representations.

4.2 Study results
In analyzing the results, we could identify significant differences in
recognizing the underlying data distribution when comparing the results
for different sample sizes and number of bins. The experience of
participants with visualization did not have much impact, but influenced
the confidence of the participants when answering the questions. More
specifically, the evaluation of the quantitative results led to the following
results:

Insight 1: Small sample sizes generally make it harder to de-
tect the underlying data distribution, which can only slightly be
mitigated by using a higher number of bins.

We could identify significant differences in recognizing the underly-
ing data distribution when comparing the results for different sample
sizes (see Figure 6, left). For datasets with 100 samples, 35.4% of
the answers were wrong. With 1,000, 10,000, and 1,000,000 sam-
ples being available, the detection error rate could be halved to 16.1%,
18.3%, and 18.8%. A Mann–Whitney U test [14] resulted in p-values
p < 0.001 when comparing the results for all sample sizes, which con-
firms the statistical significance of the results. Participants stated to
be less confident when judging the distribution with a sample size of
100 (see Figure 6, right). A Mann–Whitney U test results in p-values
p < 0.001 when comparing datasets with sample sizes of 100 with the
results for other sample sizes. The amount of participants being very
confident about their answers constantly increases with a rate of about
10% for larger samples sizes (100: 12.4%, 1,000: 22.6%, 10,000:
33.1%, and 1,000,000: 43.5%). It is, therefore, confirmed, that with a
small number of samples, participants have troubles recognizing the
underlying data distribution.

Insight 2: Beyond a certain number of bins the error rate stays
constant and is not improved by adding more bins.

Due to the random selection of datasets for all participants, we could
ensure that we received approximately the same number of answers
for all possible parameters (bins: percentage of answers – 2: 9.02%,
3: 9.63%, 4: 10.79%, 5: 8.72%, 7: 10.49%, 10: 9.94%, 15: 9.57%,
20: 9.33%, 40: 11.89%, 100: 10.61%). Like the sample size, the
number of bins affected participants’ ability to recognize the underlying
distribution correctly. More bins result in fewer errors being made by
the participants (see Figure 7, left). This effect is different, depending
on how many samples are available.
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Fig. 5. Study participants. The participants were mainly in the age range from 20 to 49. The participants consisted of bachelor’s, master’s, PhD
students, and people working part- and full-time, some of them in research and education. The majority of the participants were inhabitants of the
region A (removed for review). Participants were, in general, experienced in using and reading visualizations.

Fig. 6. Correct (blue) and wrong (orange) answers and confidence based
on sample size. The percentage of wrong answers is especially high
(35.4%) for a small number of samples (100). For a sample size of 100,
participants were also rather unconfident in their answers.

The results in Figure 7 (right) show that in the case of 100 samples,
the error rate stays rather high, also in cases where a higher number of
bins was used. For other sample sizes, the error rate decreases in case a
larger number of bins is used. For larger sample sizes, it can be seen that
more bins do not improve the visual perception of the underlying data
distribution. While the error rate is significantly better when comparing
the bin size 2 to other parameters (p < 0.001), the difference between
a larger number of bins is not significant any more (bins/bins: p-value –
15/20: p = 0.072, 20/40: p = 0.442, 40/100: p = 0.121).

Insight 3: For bimodal distributions the number of bins is more
important to recognize them correctly.

The recognition of distributions under a different number of bins was
not the same for all types of distributions. When looking more closely
at the percentages of correct and wrong answers for every distribution
in Figure 8, we can see that it is generally easier to detect gamma
and uniform distributions. For normal distributions, only 2 bins are
not enough to perceptually resemble the underlying distribution, but
the detection was also quite successful with more bins. The detection
of bimodal distributions is very strongly affected by the number of

Fig. 7. Correct (blue) and wrong (orange) answers based on the number
of bins and sample size. With only 100 samples, the data distribution
recognition is generally challenging. For larger sample sizes, a larger
number of bins increases the recognition of the correct distribution. How-
ever, beyond 20 bins, the detection rate does not increase significantly
anymore.

bins. The bimodal distribution was the distribution that was most likely
confused with another distribution by the participants. With a low
number of bins, participants tended to confuse bimodal distributions
with gamma or normal distributions (see Figure 9). The detection was
easier the more bins were used. In the case of normal distributions,
apart from 2 bins, the detection worked quite well. We can, therefore,
conclude, that some distribution types are easier to detect than others.

Insight 4: Experience in reading data visualization had no im-
pact on the error rate. More experience led to higher confidence
when answering the questions.

Only minor, non-significant differences could be detected when
analyzing the percentage of correct and wrong answers than the par-
ticipants’ stated experience with visualizations. We, however, have
to note that the total count of participants without prior knowledge in
our study was relatively small (4 out of 72). Significant differences
between the participants’ confidence when answering the questions
and their stated experience could be identified. Participants with no or
mediocre experience were generally less confident when answering the

3.4 Results
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Fig. 8. Correct (blue) and wrong (orange) answers based on the number of bins and distribution. For the participants, it was generally easier to
detect gamma and uniform distribution. The detection of normal distributions does not work in case only 2 bins are used. For the detection of bimodal
distributions, a larger number of bins was needed.

Fig. 9. Distribution confusions. Gamma and uniform distributions could be successfully detected for all numbers of bins. If 2 bins were used, normal
distributions were confused with gamma or uniform distributions. Bimodal distributions were the most challenging ones to detect and were mostly
confused with gamma and normal distributions for low bin counts.

questions than those who had extensive data visualization knowledge.
Timings affected the error rate. If participants answered the questions
very quickly, the answers were wrong in many cases. The timings for
different bins and sample sizes were almost equal, but participants were
a little bit faster in recognizing gamma and normal distributions.

4.3 Hypotheses testing
In Section 3.1 we defined two hypotheses to be tested in the study. We
can summarize the results in the following way:

• Hypothesis H1: We can partially confirm that the visual percep-
tion of the underlying data distribution depends on the number of
bins. At least with larger sample sizes (enough samples to resem-
ble the underlying distribution), the recognition becomes better
when using more bins. However, It seems that around 20 bins are
enough for humans to detect the underlying data distribution.

• Hypothesis H2: We can confirm that upon a certain number of
bins, adding new bins does not improve the perception of the
underlying data distribution. After 20 bins, the error rate cannot
be decreased significantly by adding additional bins.

5 IMPACT AND DISCUSSION

This paper described a web-based user study to evaluate how well users
can detect underlying data distributions in a histogram. The main focus
of the user study was on ”describing and identifying the shape and type
of one distribution” [3]. In this Section we will discuss the results and
their impact on visualization design.

5.1 Binning with a focus on human perception
The study results confirm that adding additional bins beyond a certain
number of bins does not further decrease the error rate for a human
viewer. This means that the error rate is not fully correlated linearly
with the number of bins. The difference of the error rate between 100
and 10 bins is still significant (p < 0.001), also when comparing 100
and 15 bins (p = 0.007), but not any more when comparing 100 and

Table 1. Mathematical models. In this table the number of bins as sug-
gested by the mathematical models are listed, according to the number
of samples in the dataset.

samples Sturge’s
formula

Rice
Rule

Scott’s
normal

Freedman-
Diaconis

100 8 9 14 18
1,000 11 20 29 38
10,000 15 43 62 80
1,000,000 21 200 287 371

20 bins (p = 0.163). This tells us that from 20 bins on, the detection
rate for distributions in a histogram reaches a stable state, even when
more bins are added.

Therefore, we propose a new perception-based strategy for histogram
binnings. A minimum of around 20 bins are needed for human viewers
to detect the underlying data distribution. More bins can be added,
but this does not improve the visual perception for human readers (as
long as we have more samples than bins). It has to be noted that this
binning suggestion works without considering the sample size of the
data–we, however, have to assume that the number of samples in the
data is enough to represent the underlying data distribution. We showed
that binning does not improve visual perception for too small sample
sizes.

To evaluate our rule of 20 bins, we compare it with other binning
suggestions presented in the literature. We chose Sturges’ formula,
the Rice Rule, Scott’s normal reference rule, and Freedman-Diaconis’
choice since these rules are primarily used in many visualization appli-
cations and libraries. The results are displayed in Table 1.

Sturge’s formula is closest to what has been identified as a minimum
number of bins needed for humans to correctly interpret a histogram–
although the number of bins for small sample sizes is lower. All other
models overestimate the number of bins that are needed for sample
sizes above 10,000. However, as stated above, adding more bins does
not increase the error rate for human viewers. The information of a
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possible minimum of around 20 bins can, nevertheless, be considered
an important guideline for visualizations. On devices with limited
display capacities (e.g., smartphones or tablets), where displaying more
than 200 bins (as suggested by the Rice Rule, Scott’s normal and
Freedman-Diaconis choice) might be problematic.

5.2 Sampling theory

After reviewing the study results and comparing them to the mathemat-
ical models, we also asked ourselves how this might be related to a
sampling problem and how the results can probably also be explained
by sampling theory. Binning can also be seen as a way to sample the
original distribution. As known from sampling theory, it is impossible
to reconstruct the original function with too few samples. We, therefore,
wanted to evaluate our binning suggestions derived from the user study
under this respect.

We transferred the four density distributions we used (uniform, nor-
mal, bimodal, and gamma) into the frequency domain. None of these
is band-limited, hence, there is no concrete Nyquist frequency. As a
baseline we, therefore, used a representation of each density distribu-
tion with 1,000,000 uniform samples. We then compared this baseline
to representations of the same density distribution with less samples
(5,10,15,20,40, and 100) – the samples in this case represent binnings.
For a comparison we measured the deviation (i.e., error) between the
baseline and the binned representation in the frequency domain.

The results can be seen in Figure 10. The charts show the frequency
from 0 to π on the x-axis and the error (difference to the baseline) on
the y-axis. In all graphs, the line with only five samples (i.e., bins)
stands out to have the most significant error. From ten samples (i.e.,
bins) on, the error starts to converge to zero. 100 samples (i.e., bins)
already ensure an error to the original representation very close to zero.
It is important to note that the difference between five and ten samples
(i.e., bins) is much more significant than the difference between 40
and 100. From a sampling theory perspective, adding more bins to a
representation with only five bins reduces the error much faster than
adding bins to a representation with, for example, 40 bins.

The comparison of the representations in the frequency domain is
very similar to the results we got in our user study. Here, we also
concluded that adding more bins from a threshold of about 20 bins does
not further improve the user’s perception of the histogram’s underlying
data distribution. It can also be seen that a number of bins of around 20
results in a small enough error also in the frequency domain.

Fig. 10. Errors due to binning in the frequency domain. The charts
show the errors between a baseline representation of the distribution
with 1,000,000 samples and binned representations. The x-axis shows
the frequency [0–π] in all charts, and the y-axis shows the difference
error to the baseline. If one representation for one frequency is below
the original frequency, the error becomes negative.

5.3 Discussion
We made the following observations upon reflecting our results.

• Minimum of 20-40 Our new, perception-based, binning rule fo-
cuses on the range of 20−40 bins, since this is the number we
tested in our study. Hence, the optimal number of bins, may be
located within this interval. For a further study we would like to
test different bin sizes within this interval, to get more detailed
information on the error rate. Literature suggests that there exists
a right answer to all questions [1], and we would, therefore, like
to find out the right answer to histogram binnings in the future.

• Outliers We did not specifically include outliers in our datasets.
The reason for not considering outliers was to keep the set of pa-
rameters to be tested in the study within a reasonable complexity,
as this was the first study on the depiction of data distributions
in histograms for various bin sizes. It has to be noted, though,
that the presence of outliers in the data should affect the choice
of binning, as outliers may lead to binning artifacts [44].

• Parameters Our study tested four different distributions: uni-
form, normal, bimodal, and gamma. These distributions were
chosen since these are among the most commonly used distri-
butions in data science [36], and since these four best represent
the possible distribution shapes [29] that can be depicted in a
histogram.We think it would be challenging to differentiate, for
example, a normal distribution from a Student’s t distribution or a
Chi-squared distribution from a gamma distribution, especially
if only very few samples are available. We tested the number of
bins between 2 and 100, as we wanted to see if positive results
can be achieved with a low number of bins. Our datasets had
sample sizes between 100 and 1,000,000, since we think that
a histogram representation might be a useful visualization tech-
nique for distributions. For sample sizes smaller than 100, other
visualization techniques (e.g., 1D scatter plots) might be more
useful. We do not expect to get different results for sample sizes
greater than 1,000,000.

• Experience The majority of our study participants had mediocre
to advanced knowledge in data visualization (54%), and the other
major group considered themselves experts (41%). It was in-
tended to study participants with prior knowledge in visualization
and statistics to ensure that participants have basic knowledge
about data analysis and data distributions. In terms of correctness
of the answers, we did not find significant differences between the
participants with mediocre to advanced knowledge and experts
(p = 0.079), and not between the participants with and without
any experience (p = 0.198). There was, however, a significant
difference between participants with no experience and others in
terms of confidence in their answers (p < 0.001). The group of
participants with no experience in our study, however, was very
small. Prior studies indicate that when looking at the general
public, people have problems interpreting histograms and under-
standing data aggregation [4], which primarily comes from a lack
of knowledge in data analysis and statistics. Therefore, we think
that more studies on the literacy and interpretation of aggregated
data would be important in the future (see also Börner et al. [7]),
for a more general understanding of histogram literacy.

• Web-based setting Through the web-based setting of our study,
we were able to distribute the study to a larger group of partici-
pants. It is, though, not possible to enforce a controlled environ-
ment in a web-based study. Since a very neutral and easy-to-read
representation of the histograms was chosen, we do not consider
different monitor settings and lighting conditions as important pa-
rameters that might influence the results. The website was imple-
mented in a responsive way; however, we encouraged participants
to use a larger screen like a computer monitor. Distractions were
always possible, and we also did not motivate the participants to
finish the questions as fast as possible. This is also reflected by the
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task completion times, ranging between 5s and 9m for answering
one histogram question. We recorded these timings, but we have
not given it so much importance due to the web-based setting.

• Salient features Since the study was web-based and, therefore,
done in an uncontrolled setting, we did not collect any information
on salient features in a histogram (e.g., via eye-tracking). This
information would be beneficial to understand better how humans
read and interpret histogram information. First attempts into
this direction revealed that users mostly look at the axes and the
average values in the plot, but not so much at the peaks [5], which
is definitely of relevance when trying to depict a distribution.
We also do not have evidence whether the participants used the
sample size information n we gave for every plot.

6 CONCLUSION

In this paper, we presented a quantitative evaluation of different his-
togram binnings. We conducted a web-based user study with 82 (72
valid) participants, where we asked every participant to judge the un-
derlying data distribution in 20 histograms. The study results show
that participants had difficulties recognizing the distribution if only a
few samples were available. These problems can also not be mitigated
by using a higher number of bins. In case more samples are available,
the recognition rate is increased by using more bins. However, with
around 20 bins, the error rate becomes stable and does not improve
by adding more bins. We conclude from this study that around 20
bins are sufficient for human viewers to detect the underlying data
distribution, in case enough samples are provided to resemble the un-
derlying distribution properly. 20 bins are less than what is suggested
by the commonly used mathematical models for histogram binning.
The mathematical models (e.g., Scott’s normal reference rule, the Rice
Rule, Freedman-Diaconis’ choice) mostly overestimate the number of
bins necessary for a correct perception for human viewers.

For future work, we would like to study the number of bins between
20 and 40 in more detail. We also consider including outliers in the
data as the next step towards a new study. Repeating the experiment
with more variations (e.g., scaled distributions) would also be very
insightful. More participants with only minor experience in data visual-
ization would be beneficial. In general, we consider further studies on
histogram literacy a very valuable direction for future work.
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4 Selective Angular Brushing of Parallel
Coordinate Plots

Synopsis
The following chapter contains the contents of Raphael SAHANN, Ivana GAJIC, Torsten
MÖLLER, and Johanna SCHMIDT "Selective Angular Brushing of Parallel Coordinate
Plots", presented at EuroVis (Short Papers) 2021 [SGMS21].

Ivana Gajic coded and evaluated the pilot study as part of her Bachelor’s thesis.
Johanna Schmidt and Raphael Sahann collaborated on the further evaluation and the
coding of the released open-source version of the brushing method, including the range
selection as an extension to large data sets. They also wrote all text and created all
figures collaboratively. Torsten Möller helped with critical questions and feedback to the
final text.
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Selective Angular Brushing of Parallel Coordinate Plots

R. Sahann1 , I. Gajic1, T. Möller1,2 , J. Schmidt3

1University of Vienna, Faculty of Computer Science, Austria
2Data Science @ Uni Vienna, Austria

3VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH, Austria

Abstract
Parallel coordinates are an established technique to visualize multivariate data. Since these graphs are generally hard to read,
we need interaction techniques to judge them accurately. Adding to the existing brushing techniques used in parallel coordinate
plots, we present a triangular selection that highlights lines with a single click-and-drag mouse motion. Our selection starts by
clicking on an axis and dragging the mouse away to select different ranges of lines. The position of the mouse determines the
angle and the scope of the selection. We refined the interaction by running and adapting our method in two small user studies
and present the most intuitive version to use.

CCS Concepts
• Human-centered computing → Visualization; Interaction techniques;

1. Motivation

The visualization of multivariate data brings several challenges in
terms of screen space and interaction. Parallel coordinates [Ins09]
have become a well-known and increasingly used visualization
technique for the visualization of multivariate data [JF16]. When
using parallel coordinates in data analysis, interaction plays an im-
portant role [FL03] in enhancing analysis. Besides interacting with
the axes (e.g., sorting), brushing is considered one of the most im-
portant interaction concepts in parallel coordinates plots. Brushing
enables the users to select individual or multiple lines (i.e., data
items) in a parallel coordinates plot. This is done by setting a brush
(e.g., rectangle or lasso) and computing its intersection with the
underlying data lines.

Multiple brushes [HW13] can be combined with logical oper-
ations (AND and OR) to further filter the data. For example, one
could imagine defining two brushes–one for a specific range on
axis x1 and another for a specific range on axis x2. By combining
them with a logical AND, the user will see all data defined within
both ranges (i.e., all lines that ”go through” both brushes). The defi-
nition of filter operations over multiple domains (i.e., axes) usually
requires a sequence of different mouse interactions. In the previ-
ous example, users will have to define two brushes on two different
axes, which require the same operation (click and drag) twice.

We present a novel method for selecting a subset of lines in a
parallel coordinates plot. Our method allows users to specify the
subset based on two axes but only one mouse operation. While a
lasso selects all lines within the selected region, our techniques only
selects lines in a particular region with a particular direction.

2. Related Work

Parallel coordinates are a well-studied technique [HW13], yet
they are difficult to comprehend. Hence, several improvements
have been suggested. For example, researchers proposed to ap-
ply illustrative representations [MM08] and focus+context tech-
niques [NH06] to parallel coordinates to enhance perception.
Density-based representations [HW09] and edge-bundling tech-
niques [PBO∗14] are proposed to deal with overplotting for large
datasets. Effective interaction techniques, like selections, are cru-
cial for users to deal with dense representations [Sii00].

In this paper, we specifically concentrate on brushing in parallel
coordinates. Classical approaches include

• selecting values on an axis,
• range selection on axes, and
• brushing (e.g., using a line or lasso) in between axes.

In multi-dimensional settings, brushes can also be com-
bined [MW95] to allow higher-order selections [War94, War97].
Multi-dimensional and higher-order brushing is an active research
area. Here, researchers include additional guidance [RLS∗19] to
deal with high-density parallel coordinates [REB∗16]. Another
brushing technique is described by angular selection [HLD02]
where users can define line subsets based on an angle at a spe-
cific point in the plot. Previous work suggests that interaction with
parallel coordinates is intuitive and combining different methods
for brushing can lead to increased performance for users [SR06].
In line with these findings, our new selection method can be seen
as a combination of angular selection [HLD02] and multi-range se-
lection [War97].

© 2021 The Author(s)
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Figure 1: Selective Angular Brushing (basic concept). The selection method is shown in four steps–the red outlines have been added for
clarity and are not part of the implementation. I) The interaction starts with a click on the axis, where all lines going through that point are
highlighted. II) By dragging the mouse away from the axis, the circle selection changes to a triangle that highlights only lines beneath the
triangle. III) Dragging the mouse even further narrows the region and in this way selects fewer lines. IV) Changing the angle is still possible
anytime and also changes the selection.

Figure 2: Basic concept. Starting from a value v1 an imaginary
line a can be drawn to the current mouse position pm. Based on the
angle between a and the axis, the lines b and c can be drawn. The
endpoints of these lines define the line s, which is perpendicular to
a and is located at the current mouse position.

3. Selection Design

Our novel method Selective Angular Brushing is based on two main
concepts:

• Allow line selection based on the angle between two axes (simi-
lar to Hauser et al. [HLD02]).
• Enable users to do the selection with one single mouse operation.

The idea evolved out of working with data on student grades
where the axes defined grades for specific lectures. In our case,
users wanted to quickly verify whether students improved or de-
teriorated from one lecture to another. Basically, they wanted to
verify ”which lines move up from one specific point”, ”which lines
are parallel”, and ”which lines go downwards”. Using the classical
concept of multi-range selections, it was necessary to operate with

two ranges on two axes, which was tedious. Therefore, we came up
with a new solution to answer these questions more quickly.

3.1. Basic Concept

Selective Angular Brushing is based on the mouse operation click-
and-drag. The different steps of the selection process are outlined
in Figure 1. Selective Angular Brushing starts with the user click-
ing on one axis in a parallel coordinates plot (step I). This initially
selects all lines going through this point, shown by a circle centered
on the current value. By dragging the mouse away in a certain di-
rection, only the lines matching the current angle are selected (step
II). The mouse marker, which was originally a circle, changes its
shape to a triangle. Moving the mouse further away from the ini-
tial click shortens the triangle’s base, narrowing the selection (step
III). An isosceles triangle with the apex at the initial click position
and the center of the base at the mouse position shows the high-
lighted section. The mouse position can be changed at any time,
which changes the angle to the original point and the triangle shape
and, therefore, the selection (step IV). By now, releasing the mouse
button applies the current selection, although other operations (e.g.,
filtering) may also be possible.

The main parameters for defining the selection are the distance
and the angle between the axis and the current mouse position. Fig-
ure 2 shows the geometric concept. All data lines crossing the line s
closest to the mouse position will be selected. In other words, it can
be said that the triangle side s which is closest to the mouse pointer
defines the selection interval. The whole selection area (consisting
of the lines b, c, and s) is shown as an indicator. It should be noted,
however, that the selection is not made by selecting all lines that
somehow touch this area (compare step III in Figure 1).

The selection area is narrowed (i.e., the line s is shortened) the
further the user moves the mouse away from the original click
(compare step II and IV in Figure 1). When staying close to the

© 2021 The Author(s)
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Figure 3: The three test datasets we used in the second evaluation,
which were also used the first evaluation. A was previously called
(viii) wide, B (ii) twelve axes, and C was referred to as (iv) 36 lines
in the first evaluation. The focus of this evaluation was comparing
the selection method with and without the triangular guide.

original click position, all lines going through this position are se-
lected. When moving further away, only lines crossing the selection
area stay selected. This means that more coarse selections are pos-
sible close to the original point, and more fine-grained selections
are possible when moving further away. The change in the size of
the selection area is up to the configuration done by the visualiza-
tion designer and developer.

While this concept is easy to implement, we also wanted to eval-
uate whether Selective Angular Brushing is at the same time intu-
itive for users when interacting with parallel coordinates. We, there-
fore, conducted a user study on this (see Section 3.2). The results
were promising and indicated that the concept is understandable
even if the mouse markers (circle and triangle) are not shown.

3.2. Evaluation

Our evaluation of the intuitiveness of Selective Angular Brushing
consisted of two steps. In our first evaluation we conducted ten in-
terviews of users with at least some experience using parallel co-
ordinate plots. Important to note, in this first iteration we did not
include a visualization of the selection area, but rather just let the
users use the click-and-drag mouse operation to highlight lines di-
rectly. We used nine different parallel coordinate plots with i. two
axes, ii. twelve axes, iii. five lines, iv. 36 lines, a plot with three
axes and 15 lines that was v. large, vi. small, vii. tight but high,
viii. wide, and ix. a plot with actual student course data.

In individual digital interviews, which lasted approximately half
an hour each, we tested whether selecting lines based on click-
and-drag operations is intuitive to use. Participants were asked to
share their screen. They received an initial explanation of the vi-

sualization and selection, and then interacted with the plots inde-
pendently. No explicit tasks were given, so the testers were free to
explore the interface and different data sets for up to 15 minutes.
Afterward, we asked the users to rate the intuitiveness of using this
technique in various parallel coordinate plots on a five-point Lik-
ert scale and if the plot’s shape influenced their experience. Finally,
we ended the interview with questions from the standard usability
scale (SUS) [Bro13] test.

Our participants found the selection method generally intuitive
to use, independent of size, shape, or number of lines (average 4.3
out of 5 points), but also reported, to some extent, that they would
need the support of a technical person to be able to use the system
(2.1 out of 5). Some users suggested that it would be more intuitive
to use the system if some visual guidance would show the current
selection. As a result, we adapted our implementation to include
the triangular-shaped visual representation of selection area.

For the second evaluation, we recruited four participants, two of
which already took part in the first round. Since the plots’ size did
not make a difference previously, we reduced the number of differ-
ent charts to three, shown in Figure 3. Apart from the changes in
charts the study setup remained identical to the first one. We also
had the users compare the original version without visual guidance
versus the selection area highlighting (see Figure 1). This evalu-
ation scored slightly higher marks for usability when the sample
included the visualization of the selection area. Interestingly, some
users suggested that they liked using the visualization without the
selection area being highlighted better–but only after they had a
few minutes to use it with the visual guide to understanding how
the mouse position is linked to the selected range.

We, therefore, conclude that Selective Angular Brushing is most
intuitively used when the selection area is shown. In cases where
the additional overlay might clutter the visualization, a short tu-
torial to familiarize the users with the selection method might be
sufficient to use the selection without guidance.

3.3. Extension to axes range selections

When working with dense datasets, a lot of lines are shown in the
plot, and then a simple click on an axis may not be enough for
users to select the desired range of values. We, therefore, decided
to extend Selective Angular Brushing to also work with range se-
lectors [War97].

In this case, the selection with Selective Angular Brushing starts
with a click on a previously set range selector placed on one of
the plot axes. Again, a selection area is drawn when dragging the
mouse away from the axes, and all lines following the same angle
as the current selection are selected. Since we now start from a
range selector, the selection area now is not a triangle any more,
but rather a trapezoid. The area close to the mouse pointer becomes
more narrow when moving away from the axis, so that more fine-
grained selections are possible.

4. Implementation

We implemented two prototypes in web-based frameworks. To
demonstrate the basic concept (as described in Section 3.1) we

© 2021 The Author(s)
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Figure 4: Selective Angular Brushing (range selectors). In case of dense data to be shown, range selection might be used instead of a single
click on the axis. We could show that also in case of large datasets (A: 406 lines, B: 1,458 lines, C: 19,735 lines), Selective Angular Brushing
provides an intuitive way to interact with the data.

used Vue.js [You21] and D3 [Bos21] version 6. This prototype was
also used for the user evaluation (described in Section 3.2). We
then implemented a second prototype to demonstrate the extension
for range selections (described in Section 3.3) with D3 [Bos21]
version 6 (for the interactive elements), WebGL [Khr21] (for the
line rendering) and Angular [Goo21] version 11. The source code
is available at https://github.com/johanna-schmidt/
selective-angular-brushing.

5. Results

We tested Selective Angular Brushing with different datasets. The
results can be seen in Figure 4. We used three different datasets
to test our approach. In A a very small range selector is used, and
therefore the selection is very similar to our initial point-based ba-
sic approach. The dataset used here contains specifications of cars
from the 70s and 80s [Eva21] and consists of 406 lines. In B the
range selector covers a larger area on the axis, which also affects the
shape of the selection area. Even in a very dense data area, the data
points with a specific angle can be nicely selected. In this case, we
used data of the human freedom index [Kag21] which consisted of
1,458 lines. In C a large range selector is used, and again, with Se-
lective Angular Brushing it is possible to extract the data items with
specific characteristics based on the angle. Here we used a dataset
consisting of different parameters for energy prediction [Kag18],
which consisted of 19,735 lines. The results indicate that Selective
Angular Brushing is a useful selection mechanism for both sparse
and dense datasets.

Because of the simplicity of the interaction, there are a number
of ideas on how Selective Angular Brushing can be extended and
further evaluated:

• Line rendering mechanisms We would like to note that for
our technique to work it is important that every polyline in the
parallel coordinates plot touches its exact value at every axis.
However, in other representations where, for example, smoothed
curves [GK03] are used, it cannot be guaranteed that the curves
touch the exact values. The initial click (basic concept) or a range
selector might then not reach all intended lines.

• Combinations Selective Angular Brushing always starts at an
axis, and could therefore easily be combined with a lasso brush–
which can be applied whenever the click-and-drag begins in the
space between two axes.
• Scalability We tested our approach with dense datasets (as seen

in Figure 4). In case of many lines being drawn in the parallel
coordinates plot, the performance of the technique depends on
how fast the intersection of the selector and the lines can be cal-
culated. In case of 19,735 lines, the calculation was still smooth
in a JavaScript setting. In case larger datasets are used (e.g., more
than 50,000 lines), parallel threads to compute the intersection,
and faster drawing mechanisms (e.g., WebGL instead of SVG)
are beneficial. The number of axes does not influence the per-
formance, since only two axes are considered for calculating the
selection.
• Mobile devices In the future we would like to explore the appli-

cability of our approach on mobile devices with touch-and-drag
functionalities.
• Further evaluation The user study we conducted was based on

rather small and sparse datasets. In the future we would like
to conduct further studies to evaluate the usefulness of our ap-
proach for the analysis of large datasets.
• Other applications Selective Angular Brushing works on line-

based visualizations and could potentially also be useful for
node-link diagrams and line charts.

6. Conclusion

This paper presents Selective Angular Brushing, a novel selection
mechanisms for parallel coordinates based on a single click-and-
drag mouse operation. Starting from a point or range on an axis, our
technique allows to select all lines that follow a certain angle. This
makes it possible to select all lines that ”go up” or ”go downwards”
with one single operation, where previously multiple clicks (e.g.,
setting two ranges on two axes) were necessary. We conducted a
user study to evaluate the intuitiveness of our approach. In the fu-
ture, we would like to further study the applicability for mobile de-
vices, and further evaluate the combination with other interaction
and rendering techniques.

© 2021 The Author(s)
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This paper reflects on a four-year design process of the creation of a semester planning tool available for more than ten thousand
students. The project started as a simple research project based on findings of a behavioral sciences study but was transformed into a
real-world implementation project after two years. First, we highlight design decisions and present the final design of the semester
planning tool. Our qualitative and quantitative evaluations show users’ acceptance of the tool in addition to positively affecting
the course registration numbers. We compare the work in a classical research environment to collaborating with a SCRUM team of
programmers and using methods from the SCRUM framework. Finally, we show how both research and SCRUM methods contributed
to our work and give a recommendation on how combining both approaches might be beneficial for other research projects.
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1 INTRODUCTION

A standard bachelor’s degree at our university takes six semesters — three years — to complete. At least, that is how it
is supposed to be. Data, however, show that only very few students finish their bachelor’s degrees within six semesters.

There are no tuition fees in our country, so students do not have any immediate financial pressure to finish their
studies in a timely fashion. Furthermore, there is no upper limit on the number of semesters to graduate, so students
often work part-time while only studying part-time. Apart from a few mandatory prerequisites, students can freely
choose which courses they want to take each semester. However, considerable freedom of choice while studying
comes with the need for self-discipline and organizational skills. Providing an academic environment that minimizes
completion time while maximizing completion rates is one of the key objectives of any higher education institution. A
preceding study at our university looked into ways to enhance such an academic environment by testing various soft
measures to promote study success in selected faculties. Internal documents of this yet-unpublished behavioral sciences
study show that lack of guidance and experience in the semester planning process was an issue many students were
experiencing. Based on these findings, we design and implement its most promising solution, a semester planning tool.
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Such a semester planner aggregates all information, opportunities, and constraints to enable students to plan their next
semester.

In this work, we focus on three main research questions:

(1) Can an online tool enhance the semester planning process?
(2) Does such a planning tool affect student registration numbers?
(3) Do the recommendations of the Design Study Methodology [30] and the Multi-dimensional in-depth long-term

case studies [31] hold up to implementing production-ready tools using the SCRUM Framework [28]?

Thanks to the successful evaluation results of our initial research prototype, we were allowed to collaborate with
a software development team, implement our prototype, and release it to the entire student body of the university.
This enables us to reflect on the whole process from the conceptualization of the tool until its full release and gather
experiences from several tens-of-thousands of interactions.

Finally, we found some notable differences between the suggested research process as shown in the literature and
the actual SCRUM implementation process. We will elaborate on those differences at the end of this paper and share a
selection of methods that benefited our work.

2 RELATEDWORK

Planning and scheduling are organizational methods that have been around for centuries, are of ever-growing importance
since the industrial revolution, and will continue to be relevant into the foreseeable future [4, 17]. Computer-aided
planning tools are a logical consequence of the increasing amounts of data used while scheduling. Tory et al., [33], for
example, use their tool to compare construction schedules, while Kokkalis et al. [15] show an automated approach that
combines crowd wisdom and natural language processing to suggest plans that help users tackle high-level tasks. By
using visual analysis approaches, Schneider and Aigner [27] integrate collaborative automated planning into existing
business scenarios.

Likewise, some tools exist that help students in their university, career, and course planning efforts. For example,
Tomy and Pardede [32] show a tool that helps students to choose the right subject based on their skills, while Li et
al. use visualization alongside gamification elements to diversify linear curricula and therefore motivate students to
learn more different skills. With EventAction, Du et al. [6] present a tool that analyzes past events from each student
individually and acts as a recommender system for educational planning. Another option would be to automate the
planning process, but Pass et al. [24] found that students do not like automatic assignments. Instead of choosing solely
optimal courses based on their curriculum, they favor courses by their personal preferences, teachers they already
know, and classes that their friends attend. The tools above have in common that they focus on the Anglo-Saxon system.
While similar in large parts, the lack of majors and minors in our university system that make them less usable or not
effective at all. Also, they do not focus on planning a specific semester – which is the main goal for our tool.

While designing our tool, we used standard practices that we commonly use for research projects. We accounted for
the pitfalls highlighted by Sedlmair et al. [30] to guide our design study. For engaging and active user participation, we
borrowed some techniques that Kerzner et al. [13] and Knoll et al. [14] describe in their work about running creative
visualization-opportunities workshops.

In the second half of our project, we collaborated with a team of programmers from an external software company.
This part of the project was structured based on the SCRUM framework [28]. Human-Centered Design methods are
an integral component of the SCRUM design process and have already been shown to enhance the outcomes [2]. In

2
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addition, low- and high-fidelity prototyping and usability evaluation are highly regarded and often used in SCRUM
teams [11]. On the other hand, there are approaches to adapt the SCRUM framework for research projects. For example,
Ota [23] shows the general applicability for managing research projects with SCRUM. Furthermore, an adaptation of the
SCRUM framework for agile project management in distributed research projects is shown by Hidalgo [8], and Lima et
al. [25] report using SCRUM in at least seven different research projects at their lab. When comparing research projects
and SCRUM projects with a focus on user interfaces, it is clear that both follow the user-centered design cycle [16] and
the idea of creating mental models to capture the user’s perspective [20] as closely as possible. One slight difference
between the two approaches is apparent in the way they tend to handle evaluation.

Research evaluations tend to be well thought out and structured. Extensive work on the topic exists characterizing
domains and research methods [21], the types of evaluation and when to use them [1], and different scenarios con-
sidering evaluation goals [9, 18]. In their work on multi-dimensional in-depth long-term case studies, Shneiderman
and Plaisant [31] describe methods to cope with long-running projects, and Ivory and Hearst [10] show methods for
automating the usability evaluation of user interfaces.

While classical research projects need this rigor because they seek to report quantifiable data, SCRUM projects are
often tied to a tighter budget and need to optimize their evaluation process. Larusdottir et al. [19] report that feedback
from small groups in short cycles is often more effective than large-scale evaluations for most SCRUM projects.

Sedlmair et al. [29] encountered some resistance when trying to apply scientific evaluation methods in a company
setting and conclude that some methods need to be adapted. While extensive evaluations might lead to the best insights,
it could be helpful to combine both approaches to get the most out of an agile research project, especially if it is
constraint by funding or seeks to be relevant in a real-world scenario.

3 METHODOLOGY

Fig. 1. A semester-based timeline of the whole four-year project with color-coding to differentiate the different parts of the project.
It shows the duration of the different design, implementation and testing phases, and uses dashed lines to show the evaluations
(bottom) and important events (top).

Fig. 1 shows a timeline of the full process, including all separate stages and milestones.
Our colleagues from the behavioral sciences ran a study that systematically tested the effect of various soft measures

to promote study success. It included the measures of individual information, study groups with and without mentors,
self-commitment, and a simple semester planning tool using LimeSurvey [7]. Eight faculties participated in that study,
and even though the initial results showed no measurable effects with any treatment, a survey revealed that students
who used the planning tool reported higher satisfaction with the university’s support than all others. The planning

3
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tool let the students select possible courses and showed the number of credits already selected, contrasted with the
recommended credits for one semester. Due to a lack of integration into university services, in order to use this tool,
students needed to enter their status quo in terms of course credits manually. We, therefore, decided to build a much
more user-friendly, integrated tool.

To maximize user acceptance and understand the planning process, we conducted a pilot study with three students
from different faculties (three participants, one female, and two males; henceforth abbreviated with f=1, m=2). First,
in a think-aloud session [5, 12], we observed how the students planned their semester. Then, combining the pilot’s
findings with our own planning experience, we abstracted this process’ underlying tasks. Using these tasks, we designed
low-fidelity prototypes of a tool that facilitated planning for the next semester. We evaluated the prototypes in guided
interviews with seven students (f=3, m=4). The results helped us converge to one design, which we implemented as a
high-fidelity prototype. Meanwhile, a workshop investigating use cases for student data in a separate project further
solidified the need for a planning tool by independently coming up with an almost identical idea. In the first evaluation
session of the high-fidelity prototype (f=1, m=3), which also used guided interviews, we found that our users could not
identify with the mock student data provided in the prototype. Therefore, we conducted a second evaluation (f=1, m=2)
for which we manually added accurate student data of the test users first.

After presenting our high-fidelity prototype to the president’s office of our university, they decided to integrate the
semester planning tool into the university website, initially as an extended test scenario, but ultimately for all students.
Working with a SCRUM [28] team of three developers and one product owner, we designed and implemented our tool
to be compatible with the university’s homepage. While designing the production tool, we had to adapt the interface to
fit the available data, adding a layer of structural dependencies that we were unaware of when designing our initial
prototypes. Additionally, we had to work with a limited budget, such that some features did not make it into the final
version of the tool. We gathered user feedback in two test cafés during the design and implementation process (f=5,
m=3, and f=4, m=2). After releasing the planning tool on the university website, students from select faculties could use
it for two semesters, and an online survey (f=105, m=55) concluded this test phase. The tool is still maintained, gets new
features, and will successively become available for more students. At the time of writing the monitoring software
counted 79,833 unique visits of the tool. We reflect on lessons learned from this process in sections 5 and 6.

All prototypes, interview guides, surveys, study designs, high-resolution images, and anonymized results are available
in the supplemental materials.

4 PLANNING TOOL

The planning tool’s general idea is to help students choose which courses to take in the following semester. The
curriculum has a seemingly overwhelming amount of courses to offer, but not all are available for everyone. By reducing
options to only feasible choices, the decision process is more straightforward and manageable. This section highlights
the design process, elaborates on the planning process’s abstract tasks, reflects on generating agency, and presents
some crucial changes to the interface that happened during the project.

4.1 Task Abstraction

All collaborators on this work had their own experiences with how they planned their semesters during their studies,
but we wanted to find out how current students — potential users of our tool — tackle this task. Thus we started the
design process by inviting three students from different faculties (m=2, f=1) and asked them to plan their next semester
while telling us about their thought process.

4
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Fig. 2. The semester plan is a suggested course distribution, released by the faculty, where each row is one semester — in this case,
for the bachelor’s degree in data science. On the left: the semester plan as released by the faculty, on the right: our high-fidelity
prototype.

One student’s solution used a paper organizer, where a hand-drawn table of the faculty’s semester plan (see fig. 2)
was present. The student crossed out all courses that she already completed to evaluate which courses to take next.
She then looked up those courses on the course directory website and copied all possible courses to a blank calendar
page. Finally, she crossed out overlapping courses until the resulting schedule was overlap-free. Another student had
a print-out of the semester plan and copied the courses he wanted to attend into his Google calendar, and the last
participant used Microsoft Excel, where he also had a self-made version of the semester plan with different colored cells
and used a separate sheet to find overlaps in courses he wanted to attend.

The semester plan shows courses structured into modules – groups of courses dealing with a similar topic. Therefore,
students may need to complete multiple courses before finishing a module. Study participants used strategies like
shading or glyphs to tackle partially finished modules.

Adding our own experience, we condensed the planning process into the following steps:

(1) Get an overview of the current state by looking at available, as well as already completed courses
(2) Choose courses that are interesting, useful, and possible to take in the following semester
(3) Schedule the chosen courses as efficiently as possible, without overlaps
(4) Create a timetable for the semester

By abstracting further, we can boil these tasks down to their core purposes: Overview first, reflected choice, manage

and adjust, summarize. After some research, we found that many decision processes are structured that way [22, 33]. As
an illustrative example, we apply it to travel planning:

• Overview first: Find applicable travel routes, e.g., bus, train, plane, and car
• Reflected choice: Comparing prices, and with the requirement to work on a laptop, choose traveling by train
• Manage and adjust: Select the optimal train by date, departure and arrival times, and intermediate stops
• Summarize: Print ticket and travel details

4.2 Design

We created the tool’s interface in a multi-stage, user-centered design process (shown as Research/Design in fig. 1). With
the abstract tasks as guidance, we structured the interface accordingly:

5
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Fig. 3. The main view of our interface in its standard filtering shows all modules that are available to the current user. The three
line-connected dots at the top show the current step of the planning process. A progress bar gives an overview of the already
completed, currently planned, and open credits. Below is a filter and search bar to manually change the shown modules. Each blue
rectangle represents one module, which can contain several courses. The status of these courses shown by individual progress bars in
each module. Clicking on a module shows the contained courses. By selecting a course it gets added to the planning selection. The
sidebar on the right shows a preview of the calendar view and a list of planned courses.

Overview first. The first view in our interfaces is an overview of the current possibilities the user has. Fig. 3 shows
the overview page of our tool. In its initial state, it shows all available courses for the next semester. By modifying the
filters, the user can also display unavailable and already completed courses.

Reflected choice. Clicking on a course shows its details, such as instructors, groups, times, and dates. From there, the
user can add any number of courses to their planned courses on the right side of the interface and the calendar.

Manage and adjust. The calendar view (see fig. 4) highlights time overlaps of courses, making it easy to schedule
them and detect time conflicts. We further enhanced this by including a semester overview at the bottom of this view
that shows if an overlap exists for the whole semester.

Summarize. The last step in the interface summarizes all chosen courses, displays them with their registration links,
and provides a download option for the resulting calendar file.

6
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Fig. 4. We use a calendar to show occupied timeslots from planned courses. A red highlighting shows overlaps of different course
times. Below the primary calendar are previews of all weeks in the semester, making it easy to distinguish between recurring and
single overlaps. A calendar export button and the list of all planned courses is located on the right side.

A small preview of the calendar is also visible in the top right corner of the overview (see fig. 3). It is set to show
the current week during the semester and the next whole week of the semester during the holidays. While it does not
show detailed information, it gives a good overview of the already planned courses, and the red highlight allows users
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to detect overlaps without switching to the calendar view. Our low- and high-fidelity prototypes featured a similar
preview of selected courses for the calendar view based on the semester plan, but it was replaced with a simple list of
selected courses in the final version. This list looks similar to a shopping cart in an online shop, which is more familiar
to users, and was more cost-efficient to implement.

4.3 Trust and Agency

We aimed at creating an approachable and enjoyable interface for students, which has more benefits for the users than a
simple scheduling tool. A crucial part of creating agency in our interface — while focusing on the main task of planning
— was to provide the option for our users to look back at what they had already done. By seeing the bigger picture
and context, they could identify and confirm the integrity of the data they saw, thus making an informed choice. The
semester plan (see fig. 2) provided an ideal way of showing the current status in our prototypes. We got very positive
feedback about it in the low-, and high-fidelity prototype evaluations. The final version of the tool eventually did not
include a semester plan because it turned out that only about half of all faculties in our university provide one. We just
happened to test our prototypes with students of those faculties. We still included the overview of seeing the detailed
study progress by adding an option to the main view to show already completed courses.

Another highly appreciated feature in decision-making was the inclusion of a semester overview at the bottom of the
calendar view (see fig. 4). This feature allows our users to see if an overlap happens only once or repeatedly during the
semester. If a single appointment is conflicting, a student might choose to ignore the collision and still schedule both
courses, allowing decision-making based on the complete available information. Students seemed positively surprised
that we included such a feature in the planning tool because they expected that planning to skip single courses would
not be appreciated by the university.

5 EVALUATION RESULTS

This section discusses the results for each of the evaluations shown at the bottom of fig. 1. For our first evaluation,
we created two different interfaces as clickable low-fidelity prototypes using Balsamiq [3]. Then, we invited students,
including some of our pilot study participants, to individual guided interviews (f=3, m=4). First, participants had
to complete a few simple tasks, after which we questioned them about their preferences, the ease of use, and their
recommendations on how to improve. One of our designs used the layout of the semester plan (see fig. 2) to show
all available data, but the users noted that most of the shown modules were irrelevant for planning. In the second
design, we categorized the modules and only showed the selection relevant for planning, which allowed users to focus
on planning. The progress bar from the first design occupies a central spot in the final design because it was the
most requested feature from the first evaluation. Unfortunately, some of our testers got confused with the low-fidelity
prototypes because they could only click on specific elements and the rest was not interactive.

Using this feedback, we implemented a high-fidelity prototype that combined the most-liked features and recommen-
dations. The high-fidelity prototype also mitigated the previous confusion since all elements were clickable. To evaluate
the resulting prototype, we invited more students, alongside some initial testers, to our lab again, where we conducted
a similarly structured guided interview as in the previous evaluation. We noticed that the users (f=1, m=3) could not
identify with the interface’s data during the first day of interviews. They stated that they were unfamiliar with the
shown student data from a random computer science student. Therefore, we postponed the second day of interviews
and manually integrated our participants’ actual study data into the interface. On the second day of interviews, the
students (f=1, m=2) used the interface more intuitively since they recognized their curricular choices. Both days resulted
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in positive feedback by our testers, and the usability rating from both days was similarly good. Notably, the answers to
what the users would change about the tool varied between the days. Users from the first session mainly talked about a
few general changes to the interface, while the users from the second session had a lot more ideas for features, which
were primarily additions to the tool. We find this distinct difference in answers interesting since it could intentionally
steer an evaluation in a general direction. The users pay closer attention to aesthetics when looking at mock data while
they focus on the tool’s functionality when working with their actual data.

When designing the tool’s release version, we took advantage of the monthly scheduled test cafés hosted by our
collaborators. These took place in a coffee shop on campus where students could walk in and participate without
invitation. Usability experts guide them to perform usability tasks on prototypes and document their feedback. Partic-
ipating students received a ten euro voucher of their choice as compensation. Due to the nature of the incremental
implementation process and quick feedback cycles, we did not evaluate the whole tool but instead evaluated different
parts of our tool individually. Also, the two test cafés mainly focused on usability. As one of the results, we added a
progress indicator that indicates the user’s current step of the planning phase to the tool.

Fig. 5. These charts show the results from the online survey (n=160) we ran after our tool was released to students of five faculties.
The left chart shows the rating how helpful our users found the tool, the right chart shows the features our users requested the most.
Multiple answers were allowed for the second question.

We counted more than 11,000 unique users in around 35,000 unique sessions in the first two semesters after releasing
the tool for our students. At this point, we conducted an online survey about the user’s experience. This survey (f=105,
m=55) showed that 123 participants found the tool helpful or very helpful and the most valued features were the
calendar view and the overview of available modules. However, analyzing the comment field of that survey, we found
that the tool had a database issue for law students that resulted in incorrect courses being displayed, which we promptly
fixed. Finally, we asked what feature the students would value most as the next addition to the tool. The most requested
feature was to use the planning tool for scheduling exams as well, which we already added at the time of writing.
Making the interface mobile-friendly ranked second, followed by planning multiple studies side-by-side, registering
for courses directly from the planning interface, and lastly importing private calendars to see overlaps with personal
events (see fig. 5).

Besides these direct user evaluations, we also evaluated the semester planner quantitatively using an experimental
between-subjects design. The Faculty of History agreed to an A/B test scheme, where we randomly selected 50% of their
561 Bachelor’s students to gain access to the tool during the first semester after its release, while the other 50% needed to
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plan without our tool. Data shows that 400 of the 561 students were active during the semester. We investigated whether
students completed more credits than without our semester planner and found a statistically significant improvement.
In particular, we found a causal treatment effect of the semester planner for history students of 1.45 credits, i.e., History
students who had access to the semester planner completed 13% more credits on average than those who had not. This
effect is particularly strong when contrasted with the results obtained from our colleagues in the behavioral sciences.
When they evaluated the simple semester planner implemented in LimeSurvey, they found a 4% increase for tool-using
students of the Faculty of History. The fact that the performance increase caused by the more sophisticated semester
planner is more than three times as high as compared to the simple planner prominently demonstrates how vital a
proper user-centered design, evaluation, and development process can be.

6 DISCUSSION

A benefit of working on a research project is near limitless room for exploration. At the start of the project, after
narrowing down the task, we applied the Five Design-Sheet Methodology [26] that created three very different designs
for the planning interface. Combining two options, we then designed two different versions of the interface for our
first evaluation. We did not start to realize a high-fidelity prototype until this evaluation was concluded, and we knew
on which parts to focus. Later, when we concluded the first day of our high-fidelity prototype evaluation, we had the
flexibility to postpone the second day to include actual student data. These steps caused a delay in the process, which
might be hard to justify in a business context and translate to additional costs.

A significant benefit of working in a budget-tied environment was prioritizing each part of our design. It challenged
us to question every little aspect and focus on the primary task our tool wants to achieve. We gathered many ideas from
the previous prototype evaluations, which were welcome additions to the functionality of our tool. When stripping
down every aspect to focus on the planning process, we labeled a lot of added features as nice-to-have. That label implies
that a feature can be added later but is unnecessary for the tool’s initial version. This concept of aMinimal Viable Product

(MVP) is crucial in the SCRUM framework. It ensures that the resulting product from the iterative implementation
process can complete the required task and stays within the given budget. A practical but unexpected consequence
for the user evaluation stems from the iterative implementation process. The SCRUM process creates increments in
short cycles. An increment is a concisely defined part of the whole interface, which provides a concrete function and
is already usable on its own. The nature of these increments makes it possible to evaluate individual pieces of the
interface out of context to see if they also function independently. Evaluating single pieces allows for detailed feedback
on their usability and whether they are intuitively usable. This evaluation is easily set up, provides quick results and
short feedback cycles.

Both approaches can enhance each other since they generally aim at a similar target – creating user-friendly interfaces.
The abstract task of Overview first, reflected choice, manage and adjust, summarize was extensively used when we decided
which parts of the prototypes need to be prioritized for the MVP. These four steps could be achieved by displaying
everything that has already been completed, aggregating all relevant information on available courses, a calendar that
shows overlaps, and an export option. In the end, even the semester plan, which we deemed crucial for this tool up to
this point, could be left out by simply adjusting the filters to show completed courses as well. On the other hand, the
SCRUM team members stated that they wished MVP conceptions would always be this straightforward because finding
and defining the core task is often an essential part of the MVP definition process. Therefore, both processes have their
advantages and disadvantages but can be combined for even better results in either case.

We can, therefore, answer our research questions as follows:
10
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(1) Can an online tool enhance the semester planning process?
The evaluation of our prototypes and the online survey clearly show that our online tool simplifies and enhances
the planning process.

(2) Does such a planning tool affect student registration numbers?
A/B testing reveals that it affects registration numbers and even course completion numbers by up to 13%.
However, we consciously omit to show the registration numbers because they can be erroneous due to early
course drop-outs or students who discontinued their studies.

(3) Do the recommendations of the Design Study Methodology [30] and the Multi-dimensional in-depth long-term

case studies [31] hold up to implementing production-ready tools using the SCRUM Framework [28]?
Some parts of the real-world implementation process are well supported and documented in the literature.
Additionally, both works cited above help maintain scientific rigor and prioritize proper evaluation, which is not
the main focus from the business perspective. They are a welcome addition to the SCRUM framework in that
regard. One thing they both lack is the focus on the core task. Both methods give valuable input on properly
evaluating any task that could come up in different situations but do not guide the reader towards creating an
MVP.

Breaking down our design into all its components showed us how few of them are necessary for the tool to be
functional. Consequently, we encourage prioritizing and separating features between MVP relevant and nice-to-have for
scientific projects as well. It challenges researchers to question the design, facilitates task abstraction, and considerably
improves production feasibility. Even though we think that including the semester plan would, nevertheless, be a
worthwhile addition, the simplified interface we implemented brings us closer to a joking remark from one participant
of our pilot study. When asked how he imagined a planning tool, he initially said “Just one button: plan now. I press it,

everything gets sorted out automatically, and I only have to show up on time.”

6.1 Future Work

The most requested feature of planning exams with our tool has already been added to the tool, and we are currently
discussing an additional budget for a mobile-first version with the president’s office of our university. Meanwhile, the
current version of the tool is continuously rolled out to more faculties, which we will continue to evaluate and use to
compare to an eventually available mobile-first version of the tool.

In future projects, we want to test if our assumption that using actual user data vs. generic data in evaluations
continues to produce differences in focus between aesthetics and functionality. A review of other planning tools would
reveal insight into the general applicability of our new mantra of Overview first, reflected choice, manage and adjust,

summarize.. Finally, we want to explicitly compare and contrast research and SCRUM methods to understand better
how they complement each other.

7 CONCLUSION

In this work, we summarized a four-year-long research project that resulted in a tool that helps students plan their
semesters. We analyzed the semester planning process and abstracted it into a broadened version that can be applied
to a plethora of general planning tasks, from construction work to travel planning – Overview first, reflected choice,

manage and adjust, summarize.. This abstraction can help future designers of planning support tools to identify crucial
tasks and focus on the core purpose of planning.
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Using this abstraction, we created a semester planning tool using an iterative, user-centered design approach. We
evaluated the tool during multiple stages of development and reported the findings of each evaluation. In the second
stage of our development, we collaborated with an external SCRUM team and implemented the final version for
real-world use. In order to stay within our budget, we had to focus on the essential parts of our tool to create a minimal
viable product that was still capable of achieving all four main tasks. This prioritization process presented a different
view on the research project, which finally resulted in a released tool with 79,833 unique visits thus far. It also enabled a
streamlined and focused user evaluation, and a measurable increase of 13% completed credits from students using our
tool compared to a control group.

Another remarkable result from our evaluations was the difference in the feedback we got when evaluating the
high-fidelity prototype with and without actual user data. Our users commented on the usability in both cases, but the
feedback from showing mock data revolved around the tool’s aesthetics, while the focus was mainly on functionality
when showing actual user data. Studying this effect in more detail could show whether this is a generalizable aspect for
evaluation designs or just a coincidence in our evaluation.

Finally, we want to encourage other research projects to prioritize all aspects of their design, already starting at an
early stage. Focusing on the main tasks and examining each part whether it is necessary to achieve that task can later
help to evaluate a project and increase its chances of adoption in a real-world scenario. In addition, the SCRUM practice
of evaluating parts of the design out of context, solely based on their usability, helps generate additional insights in the
process.
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6 Discussion

This chapter discusses how each of the four presented publication manuscripts contributes
to the three main research questions. Further, it summarizes the methodology used to
come to these results and closes with open questions for future research.

RQ1: How do data representations have to differ in order to efficiently accomplish
different tasks from different stakeholders?

Both works on the distance metric and the semester planner deal with the identical
problem that the data on course completions in its full extent is too much to grasp in its
entirety. While they address perspectives and tasks from different stakeholders, they both
present ways to augment the data that make it easier to understand and work with it.

The representation of a study path in our distance metric is a linear representation
of courses along a timeline. This visual abstraction into concretely stepped timelines
that allows concurrencies of events is a close representation of the mental model the
interviewed stakeholders use in their daily work. To take advantage of this structure, we
stripped all unnecessary details from the data, and our metric allows our users to sort,
filter, cluster, and browse all study paths.

For our semester planner, instead of reducing the data to the minimal amount of needed
features, we enrich it with meta-information that is relevant for planning. Therefore,
we gather additional data about courses from the curricula texts, the available course
dates and times, information about prerequisites, and registration deadlines. This data
aggregation for each course combines all the information that the interviewed students
reported using for their planning. Proper structure in the user interface and pre-filtering
to only show planning-relevant objects help not overwhelm our tool’s users.

The main component of both representations is that it fits with the mental model of the
stakeholders. In the case of the distance metric, we tried to represent the data as timelines
first. We encountered the problem that timelines do not have an easy way to contain
concurrent events, and the length of semesters is not equal. In Austria, the summer break
is longer than the winter break, which results in differences when calculating distances
between timelines. Therefore, we created the representation we call sets of events that
deals with both of these problems. To summarize, a suitable data representation needs to
capture the mental model of the stakeholders entirely to help them understand their data.
It is, therefore, crucial to fully understand the task, requirements, and environment of
the stakeholder to create an adequate representation of their mental model.

RQ2: How can perception and interaction be used to make data visualizations more
comprehensible and easier to use?
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Shape recognition and shape abstraction are well suited for human perception since human
vision can quickly recognize and differentiate a variety of shapes [MKO+02]. Interestingly,
the commonly used methods for estimating the number of bins in a histogram did not
consider human perception. They solely looked at the characteristics of the underlying
data, resulting in a massive number of bins for large data sets. Therefore we reverse the
approach and primarily focus on perception in our work on histogram binning. Comparing
the results from our study to the recommended amount of bins, we conclude that shape
recognition does not benefit from showing more bins.

A similar observation can be reported with our work on brushing of parallel coordinate
plots. Parallel coordinate plots are a powerful multi-dimensional data visualization method,
but they are inherently difficult to understand even for expert users. Interaction, in the
realm of this work the highlighting of lines, makes understanding the depicted results
easier. To further facilitate the process, we reduce the number of mouse interactions
needed to a single click-and-drag gesture that is intuitive to use. While this does not
reduce the overall difficulty of these plots, it reduces mental load and motivates users to
explore the depicted data.

Data visualizations are a generally powerful tool for making data accessible to human
viewers. Not considering the users’ perception limits the value of visualizations, making
users reluctant to deal with them. Therefore, human perception should be considered
when designing visualizations, especially for non-expert users. Throughout many inter-
views conducted in this thesis, the users remarked that they felt less overwhelmed by a
visualization if less information was visible at once. For example, showing fewer, already
filtered courses in the planning interface or showing fewer bars in a histogram made the
users more likely to continue using a visualization. This tradeoff of losing expressiveness
through simplification to not overwhelm the user can make the visualization more useful.
This confirms the conventional wisdom that the hard part of any user interface design is
to figure out what to leave out.

RQ3: How does the process of creating a research prototype differ from the process
of creating a ready-to-use-tool?
Dealing with a large data set in a user interface often translates to reducing the amount of
data shown. In our work on designing a semester planner, we explored different strategies
that both reduce the amount of data shown not to overwhelm the user while providing
additional information whenever necessary. We found three principles that helped provide
trust and agency for our users when using the planning tool.

1. Do not artificially limit options for interaction.
A well-received user interface contains the option to interact with the available data
freely. Even if they help achieve the underlying task, obvious restrictions overrule
the user’s choice, thus making the user experience feel forced and unnatural.

2. Make deductions and calculations transparent.
If the user experience is guided or even limited by algorithmic decisions, e.g.,
calculating a threshold, try to show how this calculation was done. Also, show ways
the user can influence the algorithm, if possible.
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3. Show all related data and its context.
Large amounts of data can quickly become overwhelming when no context is present.
Showing the data’s origin, historical data, or other defining factors make it easier
for the user to grasp its meaning. While it is generally considered good practice to
hide such data to reduce possible information overflow, it is equally well-received if
the data can become available through an additional interaction when needed.

The overall methodical approach of this thesis to make large data sets accessible for
multiple stakeholders is entirely focused on being user-centered. All presented works use
this paradigm as a foundation for significant decisions in their processes. Evaluation plays
an almost equally significant role in the used methodology. User-centered design and
evaluation are intertwined to ensure good results. Initial analysis of the current situation
allows us to understand the situation and the state-of-the-art of how tasks or problems
are currently solved. Workshops, pilot studies, and, in the case of the highlighting of lines
in parallel coordinate plots, our personal experience led us to real-world problems when
tackling the work with large data sets. Building on these problems, we abstracted the
core task behind them and formulated hypotheses and research questions on its basis.
This abstraction process ensures that a problem is not solely domain-specific such that
our findings that base on it can also be applied to other domains.

After the abstract task is defined, an appropriate methodology gets chosen. In both
Chapter 4: Selective Angular Brushing of Parallel Coordinate Plots and Chapter 5:
Designing a Semester Planner for Students, we applied an iterative design process which
consisted of low-fidelity prototyping, evaluating the low-fidelity prototypes, high-fidelity
prototyping, and finally evaluating the high-fidelity prototypes. We went one step
further for the semester planner by fully implementing and releasing it for students
of the University of Vienna. In Chapter 2: A Distance Metric for Sets of Events we
take the abstracted concept of the study path, define it mathematically, and create a
distance metric based on this mathematical representation. We evaluate the metric by
mathematically proving the metric properties and additionally test if the results from our
metric match students’ expectations when applied to study paths. This added evaluation
step ensures that our stakeholders understand and confirm our results. Finally, in Chapter
3: Histogram binning revisited with a focus on human perception we formulate hypotheses
based on the abstract task that can be answered in an interactive online survey. We use
these hypotheses to tailor data, charts, and questions accordingly.

The differences above show that no one-fits-all solution is possible when designing
systems that allow multiple stakeholders to access a large data set. Even when looking at
only data and stakeholders from the University of Vienna, the tasks are too varied, and
the expertise of stakeholders and their problems differ vastly.

Therefore, the findings of this thesis can be summarized to a general workflow to ensure
accessibility for relevant parties when working on large data sets:

1. Investigate actual situation
Do not treat problems as given just because they were presented as such. Take
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some time to investigate and personally understand the current situation, the roles
different stakeholders play, and record tasks as they happen.

2. Find the abstract task
After defining the concrete problem or task, try to abstract it, reduce it to its core
parts. Using this abstraction, make sure it still fits previous observations and then
apply it to other domains. Some tasks might already be solved in domains that do
not seem obvious at first glance.

3. Choose the appropriate method(s)
Can the problem be solved by data abstraction and data structure, perception and
interaction, a user interface, or a combination of the three concepts?

4. User-centered design
The two key components while designing/implementing are to keep the users in the
loop and always keep the abstract task in mind. When adding functionality, make
sure it is necessary to achieve the core task and that the users can use it.

5. Constant feedback
Designing prototypes and quick feedback cycles ensure that eventual errors get
spotted immediately and have no great impact on the project. Each cycle should
take between two and four weeks and produce a result that users can test. Sometimes
it is better to focus on a single element that can be tested instead of creating a full
view that does not sufficiently work.

6. Evaluate the abstract task
Evaluate if the final product fulfills all requirements of the abstract task. Also, make
sure that it fits into the user workflow, can be used intuitively, does not obstruct
but rather enhances the workflow, and does not increase the overall amount of work.
These conditions increase the chance of adoption.

This workflow was independently derived by summarizing findings from the presented
work. However, it fully concurs with the Nested Model presented by Tamara Munzner
[Mun09]. Therefore, this thesis gives concrete recommendations on implementing user-
centered data accessibility and validates the applicability of the Nested Model.

Limitations
All research conducted for this thesis took place in Austria, most of it at the University
of Vienna. This locality introduces a noteworthy bias. While the author assumes general
applicability of the presented results, they might differ for different university settings or
cultures.

For example, the concept of a study path might not be transferrable to other universities
or other university systems. The distance metric for sets of events, on the other hand, is
generally applicable.

A locality bias also affects our work on the brushing of lines in parallel coordinate plots.
Almost all participants in our study were from Austria, and a substantial amount were
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6.1 Future Work

either students or from academia. A broader study setting could eliminate that bias and
also focus on the measurable benefits of that method.

Our work on the perception of data distributions in histograms focuses only on the
perceptual consequences for detecting general shapes in distributions. Other aspects like
outlier detection or the judgment of minima, maxima, or other concrete values were not
tested.

The interface for the semester planning process possibly contains a bias towards students
using a desktop computer for planning since no mobile interface for the tool exists. Users
may have an increased focus on planning and longer attention when using a desktop
machine compared to a mobile device. Also, the reported evaluations from the SCRUM
context in this work were all done with the same team. Even though this team follows
the SCRUM guidelines closely, the individual interpretation of such guidelines always
plays a role in their implementation. Additionally, the SCRUM framework is constantly
evolving, which might influence the evaluations as well.

6.1 Future Work

Using the presented framework in more projects, on other data sets with diverse stake-
holders, preferably in different locations or countries, will help verify and extend its
recommendations. In addition, a literature study that tries to code findings from related
projects could further extend this framework’s scope and yield additional suggestions.

Currently, the field of highest interest to the author regards the perception of visualiz-
ations. While working on the perception of histograms, additional questions that need
more research emerged. For instance, if other tasks that judge distributions in histograms,
e.g., outlier detection, finding minima or maxima, work with the same amount of bins we
recommend for shape detection or need different bin counts. The position and amount of
labels in histograms can also play a role in their perception, especially for determining
bin ranges. Similar perceptual studies could also enhance other visualizations apart from
histograms.

6.2 Conclusion

This thesis summarizes several concrete concepts for dealing with the accessibility of
large data sets for multiple stakeholders. It presented four different publications and
manuscripts that contribute guidelines for

1. data representation and structure,

2. perception and interaction, and

3. user interface and user experience.

Many different evaluation methods were used throughout all presented works, and their
results further contribute to solidifying the proposed guidelines. This thesis aims to help
future projects with a similar scope by combining all concepts and recommendations into
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6 Discussion

a simple six-step checklist. Following this workflow should ensure a solid foundation for
multi-user accessibility of large data sets.
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