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Abstract

In this work, I develop and utilize an efficient method to calculate the vertical structures of
the atmospheres of terrestrial planets using modern machine learning regression methods.
The aim is to explore how such methods could allow us to calculate very large numbers
of atmospheric profiles in a reasonable amount of time while keeping the advantages in
accuracy and reliability of more detailed numerical models. This would allow us to use
our most sophisticated atmospheric models to study atmospheric processes in the large
number of known or soon to be known exoplanets and it would allow us to run long term
evolutionary calculations for atmospheric escape.

To achieve this I use a simplified version of The Kompot Code, which is provided to
me by Colin Johnstone. This state-of-the-art physical model can be used to model the
Earth’s mesosphere and thermosphere. I tune this model so that it can reproduce the
basic shape of the temperature profile of the Earth’s upper atmosphere. Afterwards,
I use this model to calculate over 1000 atmospheric profiles in regimes similar to the
modern Earth. The varying parameters are the planet’s size, the CO2 abundance in the
atmosphere and the stellar XUV flux. Their exact values are chosen randomly for each
simulation between well-defined lower and upper limits. I use these profiles to train and
test neural networks in order to find out, which set of network parameters delivers the
best results. The parameters of the neural networks are the number of hidden layers,
the number of nodes per layer and the number of training epochs. To find the best
combination of these parameters, I examine the ability of each network to reproduce the
already known profiles.

Once this is done, I show the utility of a neural network with the best performing set
of parameters according to the previous step. To do this Colin Johnstone provided me
further atmospheric profiles he calculated using the full Kompot Code. They give the
vertical temperature structure of the Earth’s upper atmosphere during the Archean for
different assumptions regarding the activity of the young Sun and the mixing ratio of
CO2 in the atmosphere. As soon as this model is trained, I am able to calculate the
evolution of Earth’s upper atmosphere for past eras with the input solar XUV flux and
the CO2 abundance being the only needed parameters.

In the end, I use the stellar evolution code MORS to calculate the temporal evolution
of the emitted radiation of stars with different masses and initial rotation rates. Then I
can calculate the evolution of the upper atmospheric temperature profile of a planet inside
the habitable zone of these stars during its evolution using the NNs I trained before.

The result of this work is a combination of neural network parameters together with
the evidence that this special arrangement is able to calculate atmospheric temperature
profiles very accurately. Moreover these calculations are done very fast and can be used
for planets with a wide range of properties.
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Kurzfassung

Das Ziel dieser Arbeit ist es, zu zeigen, dass neurale Netzwerke sehr gut dazu in der
Lage sind, vertikale Temperaturprofile der oberen Atmosphärenschichten von Planeten zu
berechnen. Ein solches neurales Netzwerk kann diese Berechnungen um Größenordnungen
schneller durchführen als moderne hochpräzise physikalische Modelle jeglicher Art, ohne
dass dabei Genauigkeit oder Verlässlichkeit verloren gehen.

Zunächst verwende ich eine vereinfachte Version des Kompot Codes von Colin John-
stone. Dabei handelt es sich um ein 1D hydrodynamisches Modell für die Meso- und
Thermosphäre von Planeten. Bei dieser Version müssen zunächst 2 der Eingangsvariablen,
nämlich die molekulare Gasmasse sowie der Anteil des molekularen Sauerstoffs in der
Atmosphäre, so definiert werden, dass das resultierende Temperaturprofil dem tatsäch-
lichen so ähnlich wie möglich ist. Sobald das erledigt ist, definiere ich für drei weitere
der Eingangsvariablen des Modells, nämlich Planetengröße, CO2-Anteil und einfallende
stellare Strahlung, Unter- und Obergrenzen. Danach berechne ich über 1000 Temperatur-
profile mit immer unterschiedlichen zufälligen Werten für jede der drei Variablen zwischen
den definierten Grenzen. Diesen Datensatz teile ich dann auf in einen Trainings- und einen
Testdatensatz. Mit ersterem kalibriere ich neurale Netzwerke auf einem breiten Gitter an
Eigenschaften, wobei diese Eigenschaften die Anzahl der Schichten des Netzwerkes, die
Anzahl der Neuronen in jeder Schicht sowie die Anzahl der Trainingsepochen sind. Den
Testdatensatz verwende ich, um die Ergebnisse der trainierten Netzwerke zu validieren.
MSE und RMSE dienen dabei als Maßzahlen für die Performance der Netzwerke.

Im nächsten Schritt verwende ich dieses Modell gemeinsam mit einem Satz an Tem-
peraturprofilen berechnet von Colin Johnstone mit der Vollversion des Kompot Codes.
Diese Profile wurden unter der Annahme Strahlungsinputs der jungen Sonne zur Zeit
des Archaikums auf der Erde, also zu einer Zeit zwischen 4.0 und 2.5 Mrd. Jahren in
der Vergangenheit, berechnet. Außerdem wurde ein breiter Bereich an Werten für den
CO2-Anteil in der Atmosphäre angenommen. Diesen Datensatz teile ich ebenfalls in
Trainings- und Testprofile ein. Diesmal allerdings vertraue ich auf die Ergebnisse von
zuvor und verwende nur noch das oben abgeleitete Modell.

Zuletzt verwende ich noch ein Modell zur Berechnung von Sternentwicklungen namens
MORS, um Strahlungsprofile für Sterne unterschiedlicher Rotationsgeschwindigkeiten und
Massen zu erhalten. Die Ergebnisse verwende ich dann als Input für das zuvor trainierte
neurale Netzwerk, um Temperaturprofile der oberen Atmosphärenschichten eines Planeten
in der habitablen Zone dieser Sterne zu berechnen.

Am Ende dieser Arbeit soll also ein Aufbau eines neuralen Netzwerkes stehen, der
äußerst schnell, aber dennoch genau und zuverlässig, die Temperatur in den oberen
Schichten der Atmosphäre von Planeten unterschiedlichster Eigenschaften berechnen
kann.
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1 Introduction

While mankind needed thousands of years until the eight planets of the Solar System were
found, the process of discovering new planets outside of the solar neighbourhood, so-called
exoplanets, and determining their properties is a lot faster now. The first exoplanet
was detected almost 30 years ago. Since then, more than 4700 further ones have been
discovered (exoplanet TEAM, 2021). Their properties exceed by far what was previously
known from the Solar System. Their masses range from less than that of the Earth to
more than ten times the mass of Jupiter and they orbit different types of stars with
orbital periods ranging from days to decades.

To illustrate the wide range of parameters for discovered exoplanets, I show in Fig. 1.1
the orbital distances against planetary mass for more than 4500 confirmed exoplanets,
with the green cross showing the Earth for comparison. Marker colors show the effective
temperatures of the host stars, with black indicating that the temperature of the star
is not known. The data I used is available online at the NASA exoplanet archive 1.
Currently the orbital distances of the confirmed exoplanets range from approximately
0.004 AU to more than 7500 AU, while the already known planetary masses cover a
range from 0.02 MC up to the theoretical mass limit of a planet. This limit is set to
approximately 13 MJup « 4134 MC (Chabrier and Baraffe, 2000). Bodies with higher
masses already burn deuterium in their core and are called Brown Dwarfs. Fig. 1.1 also
shows that the majority of currently known exoplanets is located much closer to their host
star than the Earth’s separation from the Sun. Moreover most of them also have much
higher masses. High-mass planets located very close to their host stars are called Hot
Jupiters. The strong representation of Hot Jupiters in our sample of detected exoplanets
is most likely due to observational biases because high mass planets with small orbital
distances can be found much easier with today’s methods than small planets or those
with larger orbital distances.

While the planetary and atmospheric parameters of known exoplanets themselves span
a large range, the situation is even more complex because the basic properties of the
stars that they orbit are also highly diverse. The effective temperatures of planetary host
stars range from only 575 K to 57,000 K and the vast majority of values are between
approximately 4000 K and 8000 K. Stars also differ significantly in their emission of
X-ray and extreme ultraviolet (EUV) radiation, and in their winds and these parameters
evolve in complex ways. This leads to an innumerable amount of possible parameter
combinations and each individual combination leads to a planet with unique properties.
One can guess that not only is it hard to derive the properties of one single planet but it
is much more elaborate to get the properties of all of them. Though in most cases it is

1https://exoplanetarchive.ipac.caltech.edu/
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Figure 1.1: Semi-major axis in AU against mass in Earth masses of more than 4500
currently confirmed exoplanets. The marker color represents the temperature
of the host star. Black dots indicate stars with currently unknown effective
temperatures. Note the wide range of possible values for each of the parameters.
Today‘s Earth is represented by the green cross.

possible to measure the basic parameters like size and orbital distance of those planets, it
is much harder to learn anything about their atmospheres.

More than a decade ago, the Hubble and Spitzer Space Telescopes enabled scientists
to take a look into atmospheres of Hot Jupiters and it was even possible to reveal the
existence of several different chemical species inside these envelopes (Eggenberger and
Udry, 2010). Only a few years later, Tsiaras et al. (2016) detected the first atmosphere of
the super-Earth 55 Cancri e. This exoplanet has a mass of approximately 8 MC and its
atmosphere consists mainly of hydrogen and helium and no evidence of water vapor was
found (Tsiaras et al., 2016). It did not last very long until water vapour was also found
in an atmosphere of another super-Earth K2-18 b (Tsiaras et al., 2019). In both cases,
a chemical model was used additionally to derive the abundances of several chemical
species, or at least their possible border values, in the observed atmospheres.

Possibly the most interesting chemical species to look for in the atmospheres of exoplan-
ets are molecular hydrogen (H2), nitrogen (N2) and oxygen (O2) as well as water vapour
(H2O) and carbon dioxide (CO2). Their exact abundances can make the difference if a
planet is habitable or not. Of course, this is only valid if the planet is inside the habitable
zone (HZ) of its parent star and has already lost its primordial H/He atmosphere. This
is the atmosphere a planet gathers right after its formation from the circumstellar disk
that orbits the planet’s host star. Stökl et al. (2015) stated that a planet that grows to a
mass of > 0.1 MC before the circumstellar disk of the system dissipates can accumulate a
protoatmosphere dominated by hydrogen and helium. The mass of the core influences
the amount of gas that is collected as well as the timescale on which it is lost again with
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higher core masses capturing more gas and also keeping it for a longer time. Lammer et al.
(2014) derived that bodies with masses above about 1 MC can keep their envelopes for
their entire lives though this depends on the details of the host star’s activity evolution
(Johnstone et al., 2015).

Traditionally, the HZ of a star is "defined as the circumstellar region in which a
terrestrial-mass planet with a CO2-H2O-N2 atmosphere can sustain liquid water on its
surface" (Kopparapu et al., 2013). Owen and Mohanty (2016) stated that even if a
terrestrial planet is inside the HZ of an M dwarf or a solar-type star, there is no chance
of habitability if it has an H/He atmosphere with a mass fraction of the order of a few
percent of the planet’s mass. This is because hydrogen is a very powerful greenhouse gas,
which would lead to pressure and temperature conditions at the planet’s surface that do
not allow water to be liquid (de Wit et al., 2018).

Nakazawa et al. (1985) simulated the conditions on Earth during its evolution when
the primordial atmosphere was still present. They derived that the temperature at the
bottom of the primordial atmosphere was at least two times higher than the hypothetical
surface temperature of the early Earth if there would have been no H/He envelope. This
effect is called thermal blanketing. Temperatures at the bottom of the atmosphere were
probably higher than 2000 K, depending on the grain opacity factor, the effective accretion
time and the density of the solar nebula, i.e. the gaseous cloud around the Sun, which
was present during the formation of the Solar System. This would lead to the fact that
Earth’s surface material was almost completely molten at that time. The pressures at the
bottom of the envelope were calculated to be as high as 1000 times the surface pressure
of the modern Earth, again dependent on the three previously mentioned parameters.
According to Wolfgang and Lopez (2015), a rocky Earth-like core is very likely to have a
primordial H/He atmosphere of about 1% of the planets mass. Therefore, for a planet to
be habitable it is very important that it loses this primordial envelope during its evolution
to build a secondary atmosphere by the release of various volatile species from different
planetary reservoirs like the mantle and the ocean. This can happen due to a number of
processes; for example an impact during the growth phase or tectonic related activity
(Noack et al., 2014).

These secondary atmospheres can be mixtures of various molecules. For example the
atmosphere of Venus consists mainly of CO2 (ca. 96.5%) and N2 (ca. 3.5%). Further
components are noble gases and many other components with mixing ratios in the range
of several parts per million (Basilevsky and Head, 2003). In comparison, the atmosphere
of modern Earth consists mainly of N2 (ca. 78%) and O2 (ca. 21%) and a lot of further
components with rather small abundances. Although Earth and Venus may be very
similar in terms of radius, mass and insolation (the solar radiation intensity Venus receives
is only a factor of 1.9 higher than what Earth receives), the conditions on the surface are
very different. Basilevsky and Head (2003) state that, on average, the surface temperature
on Venus is about 740 K, compared to approximately 288 K on Earth’s surface. Moreover
the surface pressure is more than 90 times higher on Venus than it is on Earth. These huge
differences between the early Earth, Venus and modern Earth show that the composition
of the atmosphere is very important for the conditions at the planet’s surface. In addition
to the composition, also the amount of atmosphere is very important. For example Mars
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and Venus have very similar atmospheric compositions, but the mass and density of the
Venus atmosphere is much higher, which leads to way higher temperatures on Venus (in
addition to the fact that the orbital distance of Mars is a lot bigger) 2.

Most atmospheric loss processes occur in the upper layers of the atmosphere and are
mainly caused by the parent star’s high-energy radiation and winds (Johnstone, 2021).
They can be split up into thermal and non-thermal processes. An example of a thermal
process is Jeans escape, which takes place at and above the exobase where the gas
density becomes low enough that the gas is non-collisional. Particle speeds at the exobase
approximately follow a Maxwellian distribution and some particles in the tail of this
distribution have upward speeds that exceed the escape velocity meaning they can leave
the planet (Catling and Zahnle, 2009). It is mostly important for low mass particles
like hydrogen but has to be considered for higher mass particles in hot atmospheres too.
An example of a non-thermal escape process is the removal of atmospheric particles in
the exosphere by the host star’s wind (Kislyakova et al., 2014). Another non-thermal
process, among many others, is the loss of hot particles created in photochemical reactions
(Amerstorfer et al., 2017); this process is also driven by stellar high-energy radiation
which is responsible for driving the chemistry that leads to such reactions. Either ways,
the host star’s X-ray and ultraviolet radiation is very important for investigations of loss
processes and thus the evolution of the star and the atmosphere of the planet are closely
linked (Johnstone et al., 2019). In general, hotter atmospheres show higher loss rates due
to either several enhanced loss processes like Jeans escape or a more expanded envelope,
which is thus more exposed to the stellar wind.

The chemical structure also plays a major role when it comes to loss processes since, as
I already mentioned, lower mass particles can escape more easily than heavier ones. This
can be shown considering the pressure scale height kT {mg. In this term k represents the
Boltzmann constant, T is the temperature, m the molecular mass of the gas and g is the
gravitational acceleration (Johnstone, 2021). In a hydrostatic atmosphere, the pressure
scale height denotes the distance at which the pressure decreases by a factor of 1/e. If a
gas is made of heavier particles, i.e. has a higher m, the pressure scale height is lower so
the atmosphere is less expanded. A lighter gas means a more expanded atmosphere and
therefore more rapid losses. Another important factor is the planet’s intrinsic magnetic
field. Although the magnetosphere prevents particles from being ionized and swept away
by the stellar wind, it also transports energy from the wind into the lower atmosphere,
where it accelerates particles and thus drives another escape process. Gunell et al. (2018)
found out that in fact the mass escape rate from today’s Earth is even higher than it is
from an unmagnetised Earth-like planet.

I already mentioned a broad range of external processes that influence the structure
and composition of a planet’s atmosphere. Of course, there are also further factors that
are very important for its properties. In addition to the stellar radiation input, also the
planet’s mass and the chemical composition of the atmosphere are crucially important for
the structure of the upper atmosphere. Using Earth as an example, the upper atmosphere
starts above the stratopause, at an altitude of approximately 50 km above the surface,

2https://nssdc.gsfc.nasa.gov/planetary/factsheet/

4
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Figure 1.2: Temperature profiles of the thermosphere considering different values of the
solar extreme UV input normalized to an approximated value of modern Sun
of 5.1 erg s´1 cm´2 (Fig. 6 of Tian et al. (2008)).

and can be split into several different layers. The layer up to an altitude of about
100 km is called mesosphere and is characterized by a negative temperature gradient,
i.e. temperature is decreasing with increasing altitude, due to cooling by CO2 molecules,
which emit infrared radiation to space. Above the mesosphere, the temperature gradient
becomes positive again, which is where the thermosphere starts. There the temperature
increases with height since particles like O and O2 absorb the Sun’s X-ray, extreme and
far UV radiation. At the top of the thermosphere, at an altitude of a few hundred km and
where the gas is approximately non-collisional, there is the exobase. The exact height of
the exobase and the temperature throughout the thermosphere are mostly defined by the
Sun’s activity. Tian et al. (2008) calculated temperature profiles of the upper atmosphere
up to the exobase dependent on the stellar extreme UV input. Fig. 1.2 shows Fig. 6 of
Tian et al. (2008) where each curve represents a level of extreme UV input normalized to
a present day solar value of approximately 5.1 erg s´1 cm´2. Both the exobase height
and temperature increase with higher radiation input until about 5 times the present
value. Beyond this point, the exobase altitude still increases but the exobase temperature
decreases again because adiabatic cooling becomes more and more significant (Tian et al.,
2008). This is because of the expansion of the atmosphere due to the efficient escape of
major atmospheric components (Tian, 2013).

The chemical structure of the atmosphere can be divided into two important layers:
the homosphere and the heterosphere. The homosphere is where the mixing-ratios of long-
lived molecules like N2, O2 and CO2 are almost constant with height, which is between the
Earth’s surface and an altitude of approximately 120 km. In the overlying heterosphere the
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species are separated by their masses because of molecular diffusion causing the mixing
ratios of heavier molecules to decrease with increasing altitude. Moreover, the solar
radiation dissociates the molecules, so that atomic O and N dominate the thermosphere.
The mesosphere and the thermosphere also coincide with another layer of the atmosphere
called the ionosphere, where the ionization of particles due to X-ray and EUV radiation
leads to there being a significant population of ions and electrons (Johnstone, 2021).

During its evolution, a stars radiation spectrum changes a lot and these changes depend
sensitively on the star’s basic parameters like mass and (initial) rotation rate. Figs. 1.3a
and 1.3b show the differences of the X-ray luminosity evolution between a solar mass star
and one with M˚ = 0.5 M@ up to an age of 5 Gyr. In both diagrams, the blue, green and
red lines represent fast, medium and slow initial rotators, respectively. Faster rotation
rates go together with higher X-ray emission rates. One can also see that the higher mass
star emits more X-ray luminosity at the same age. However, because the HZ of lower
mass stars is at smaller orbital distances, a planet inside the HZ of a 0.5 M@ star receives
a lot more X-ray radiation during its lifetime than a planet inside the HZ of a solar mass
star. Fig. 1.3c shows the mass evolution of the hydrogen dominated atmosphere of a
0.5 MC planet, which orbits a solar mass star at a distance of 1 AU. The initial mass
of the atmosphere is assumed to be 5 ˆ 10´3 MC. The line colors represent the initial
rotation rates of the planet’s host star and are defined as before. It can be seen that a
planet loses its entire atmosphere after 100 Myr if it orbits a fast rotating star, while it is
able to keep about 45% of its envelope until an age of 5 Gyr if the parent star is a slow
rotator. The same correlation is also shown in Johnstone et al. (2015) and Kubyshkina
et al. (2019). Although these calculations may be simplified a lot, they still show that the
stellar mass and initial rotation rate are very crucial for the evolution of an atmosphere
of a planet around this star.

Since observations of atmospheres of exoplanets are biased due to observational con-
straints and therefore not accessible in most cases, modelling atmospheres plays a major
role in research. But models are not only important for exoplanets, they are also widely
used to find out more about both the history and the future of the atmospheres of planets
within the Solar System. However, one large drawback of very sophisticated models is
that they need a lot of computational effort and quite a long time for a single simulation.
Reconsidering the number of already confirmed planets (and also the number of those
that will be detected in the future) together with the wide range of possible parameters,
like mass and orbital distance, and also the different properties of the host stars, it
is impossible to simulate every single atmosphere in detail. Faster and more efficient
methods are needed to gather information about planetary atmospheres.

On the other hand, neural networks are known to deliver very good results in a variety
of scientific applications like cancer diagnosis (Bottaci et al., 1997) or face recognition.
Peek et al. (2020) show a small overview of current application fields of neural networks
in astronomy and they also mention the main advantage of neural networks, which is the
fact that they are significantly faster than full models while showing comparable results
in terms of accuracy if enough training data is available.

The aim of my work is to show the ability of modern machine learning regression
methods to reproduce vertical temperature profiles for upper atmospheres given only the

6
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(c)

Figure 1.3: (a) & (b) Evolution of stellar X-ray luminosity for fast, medium and slow
rotators (blue, green and red lines, respectively) assuming different masses
of the star (from Fig. 11 of Johnstone et al. (2020)). (c) Mass reduction of
a hydrogen dominated atmosphere with an initial mass of 5 ˆ 10´3 MC of a
0.5 MC planet around a solar mass star at an orbital distance of 1 AU. The
line colors are the same as in (a) & (b). Vertical dashed lines represent the
saturation times of the star (Fig. 4 of Tu et al. (2015)).
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1 Introduction

values of a few input parameters. To achieve this, at first I have to tune a simplified
version of The Kompot Code so that it is able to calculate Earth’s upper atmospheric
temperature profile properly. Afterwards I have to generate a training and a test data set
and find a proper setup for my neural network. I also test the performance of this specific
setup by comparing its output to vertical temperature structures calculated by Johnstone
et al. (2021) using the full Kompot Code for the atmosphere of the Earth during the
Archean. In the end, I use the model I derived and trained previously to investigate the
evolution of the temperature profile in the meso- and thermosphere of a planet in the HZ
of stars with different masses and initial rotation rates.

8



2 A demonstration of neural networks

In this chapter I am going to show how I proceed from generating vertical temperature
profiles with a state-of-the-art hydrodynamic model for upper atmospheres to using them
to train a neural network. I will also show that the results of a simplified and thus also
much faster version of the code are accurate enough to use them as training profiles.
Since a lot of profiles are needed for the training process I define a grid of three input
parameters, i.e. the planet size, the CO2 mixing ratio and the stellar XUV input 1. On
this parameter grid I run more than 1000 simulations with the simplified code to create
the temperature profiles for both training and testing of the neural network. At the end
of this chapter I will describe how I find the best setup of hyper-parameters for my neural
network.

2.1 Atmospheric model

Johnstone et al. (2018) presented a possibility to simulate upper atmospheres of arbitrary
planets: The Kompot Code. This is a first principles 1D hydrodynamic model using
only a few basic planetary and stellar variables as input. It covers physical processes
like radiation transfer through the atmosphere and infrared cooling as well as energy
exchange between the neutral, ion, and electron gases. It also includes 63 chemical species
(vertical profiles of some of them are shown in Fig. 2.1) with 503 chemical reactions
and physical processes like heat conduction, diffusion, the expansion or contraction of
the atmosphere due to temperature or composition changes and many more. Because
of this wide range of covered processes, The Kompot Code takes quite a long time for
one simulation. Sometimes, it needs several days until the simulated atmosphere reaches
a steady state. Fig. 2.2 shows the molecular mass of the gas and the total XUV flux
used in the full Kompot Code as well as the output profiles of temperature and density
throughout the simulation grid for the case of modern Earth.

In order to reduce the time per simulation while keeping as much accuracy as possible,
the main author of Johnstone et al. (2018) simplified The Kompot Code and created The
Kompot Code v2. This simplified version covers way less chemical processes and assumes
that the atmosphere is hydrostatic. Moreover, the XUV radiation transport is simplified
a lot by assuming that all photons have the same energy and that all chemical species
have a single absorption cross-section. Concerning the heating process this model assumes
that a fixed fraction of the energy in the XUV field is absorbed instead of calculating
the full set of physical processes. On the other hand, only cooling by CO2 molecules
is possible and only atomic oxygen can excite these CO2 molecules because this is also

1XUV is short for X-ray, extreme UV and far UV radiation, i.e. a wavelength range from 1–400 nm.
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2 A demonstration of neural networks

Figure 2.1: Vertical profiles of the most abundant chemical species from a simulation of
the modern Earth using the full Kompot Code.
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Figure 2.2: Vertical profiles of four basic quantities from the full Kompot Code for the
case of modern Earth. The upper panels show the output of temperature and
density at the end of the simulation. The lower panels show the input profiles
of the solar XUV radiation and the molecular mass of the gas.
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2.1 Atmospheric model

the main process in the Earth’s atmosphere. Thermal conduction is implemented quite
similar to the full version of the Kompot Code. The only difference is that the code does
not calculate the conductivity from the chemical composition because of the simplified
chemistry.

Just as the full Kompot Code the simplified version needs some planetary and stellar
variables as input. Firstly, the mass and radius of the planet. It also needs the density
and the temperature of the gas at the base of the simulation domain and the XUV flux
coming from the host star on top of the atmosphere. The altitude of the base and the
top of the simulation domain and the number of grid cells in between as well as the
mixing ratio of CO2 are also needed as input parameters. Furthermore, there are a few
free parameters to vary in order to improve the performance of the model. Two of these
free parameters are the molecular mass of the gas mgas and the atomic oxygen mixing
ratio fO. So at the very beginning I need to tune these two parameters in a way that the
simplified Kompot Code can reproduce the basic shape of the temperature profile of the
Earth’s upper atmosphere.

2.1.1 Fitting mgas and fO

As I already mentioned before, I have to define the two parameters mgas and fO such
that I can reproduce the "real" temperature profile, which was calculated using the full
Kompot Code, as good as possible. Of course, there will be deviations between the
recreated and the original profile because of all the simplifications. One of them applies
to the chemistry which leads to the fact that both quantities mgas and fO are now set as
constants throughout the whole simulation grid. As Fig. 2.2 shows in the full Kompot
Code mgas decreases towards higher altitudes from almost 29 Mproton at the base of the
simulation grid, where gas is molecular, to about 16.5 Mproton, corresponding to atomic
gas, at the top. Fig. 2.1 shows the vertical profiles of the mixing ratio of 8 chemical
species used in the full Kompot Code. The mixing ratio of oxygen varies from about 10´7

at the bottom to close to 1 at the top of the domain. From these two figures I can get a
good first guess on the most probable value ranges for both quantities.

As I already mentioned there are several planetary and stellar parameters, which I need
as input for the simplified Kompot Code. For a simulation of modern Earth I simply
set mass and radius of the planet to 1 MC and 1 RC, respectively. The exact altitude
of the lower and upper border of the simulation domain is arbitrary to some extent,
but I choose them to be 50 km and 500 km above the planet’s surface. These altitudes
include the Earth’s mesosphere and thermosphere and the top of the simulation domain is
approximately located at the Earth’s exobase. Above this level the atmosphere becomes
nearly isothermal. The domain is split up into 100 grid cells. For temperature and density
of the gas, T = 267 K and N = 2.441 ˆ 1016 cm´3 show good results. I estimated the
solar XUV flux to be about 3.95 erg s ´1 cm´2, according to Ribas et al. (2005). For the
mixing ratio of CO2 I assume a typical value of 4 ˆ 10´4, so 0.04% of the gas. All input
parameters and their chosen values are summarized in Tab. 2.1.

To find proper values for mgas and fO I define a grid for each parameter. Therefore, I
expand the value ranges mentioned above a little bit leading to the following ranges:
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2 A demonstration of neural networks

Table 2.1: Input parameters of the model and their specific values for simulating Earth’s
atmosphere.

Name Value Description
Mpl 1.0 MC mass of the planet
Rpl 1.0 RC radius of the planet
Tbase 267.0 K temperature of gas at base of simulation domain
Nbase 2.441 ˆ 1016 cm´3 density of gas at base of simulation domain
Fxuv,in 3.95 erg s´1 cm´2 stellar XUV flux at top of simulation domain
zmin 50 km altitude of base of simulation domain
zmax 500 km altitude of top of simulation domain
fCO2 4 ˆ 10´4 mixing ratio of CO2

mgas to be fitted molecular mass of gas
fO to be fitted mixing ratio of O

• 10 Mproton ď mgas ď 35 Mproton

• 1 ˆ 10´11 ď fO ď 1 ˆ 10´1

Starting with these border values I make my grid smaller and smaller until I find the
best fitting values for both parameters. In order to restrict the size of the grid I compare
every temperature profile calculated using the simplified Kompot Code with the standard
profile shown in the upper left panel of Fig. 2.2 and look for combinations of mgas and fO
where the sum of squared temperature differences has a minimum. Since the two models
run on different grids, I calculate the difference between their respective outputs at 17
altitudes throughout the whole grid.

The contour plot in Fig. 2.3 shows the sum of squared temperature differences for one of
the grids. The area with the darkest blue shading shows the parameter combinations which
lead to the smallest deviations. It corresponds to values for mgas between approximately
21.5 Mproton and 22 Mproton and for fO ă 1ˆ 10´7. Fig. 2.3 also shows that there seem
to be no changes in the goodness of the fits for fO ă 1 ˆ 10´9. In fact, the temperature
and density profiles do not change anymore for such small oxygen abundances compared
to fO “ 1 ˆ 10´9. Therefore I cut off the grid at this point. To restrict the remaining
parameter pairs even more I calculate the relative temperature difference ∆Trel at the
exobase between every model and the standard profile.

∆Trel “
Tmod ´ Tstandard

Tstandard
(2.1)

where Tmod and Tstandard are the exobase temperatures of the profiles calculated with
the simplified and the full Kompot Code, respectively. Each model with ∆Trel ă 0.5% is
marked with a cross in Fig. 2.3. Concerning these conditions, I can find a best fitting
pair of values for mgas and fO. Within the regions corresponding to the smallest sums
of squared deviations only four grid points show sufficiently small values for ∆Trel. The
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2.1 Atmospheric model

Figure 2.3: Sum of squared temperature differences between simulations and standard
profile as contours. Crosses show models with ∆Trel ă 0.5% at the exobase.

minimum of these four values is ∆Trel « 0.17% and belongs to the same model run as the
second smallest of all sums of squared temperature differences. The pair of parameters

mgas,best “ 21.7 Mproton

fO,best “ 1 ˆ 10´9

belonging to this specific simulation should lead to a temperature profile as close as
possible to the standard profile, which was calculated using the full Kompot Code.

Running a simulation with the simplified Kompot Code using the input parameters
from Tab. 2.1 together with the two parameters I just derived, yields the density and
temperature profiles shown in Fig. 2.4 (orange curves in both diagrams). Both are
not a perfect fit of the standard profiles but taking into account all the simplifications
which were made, together with the fact that the calculation only needed less than two
minutes (compared to several days for the full model), at least the reproduction of the
temperature profile is sufficient. The main feature which I was not able to reproduce
with the simplified code is the temperature minimum at an altitude of approximately
100 km. The models which show this temperature minimum more accurately have a
vertical offset and thus also show large errors. Additionally, if I try to improve the fit
of the density profile, the fit of the temperature profile gets worse. It seems that the
vertically constant values of many input parameters as well as the simplified chemistry
lead to the fact that the density profile cannot be reproduced much better. Or at least
that the temperature profile is useless in simulations leading to more accurate density
profiles. But since I am only using temperature profiles to train neural networks in my
work I neglect the resulting errors in the density profiles and focused on finding the
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Figure 2.4: Density and Temperature profiles using the best fitting values for mgas =
21.7 Mproton and fO “ 1 ˆ 10´9 (orange) compared to the reference profiles
calculated with the full Kompot Code (blue).

most accurate temperature structure. Fig. 2.4 shows that although there are quite a lot
of simplifications in the second version of The Kompot Code, it is still very useful to
calculate the properties of planetary atmospheres. Moreover, it can do it a lot faster with
an accuracy good enough to use the profiles for the training of my neural network.

2.2 Grid of models

In the previous section I showed that the simplified Kompot Code can reproduce the
standard temperature profile of Earth’s upper atmosphere quite well. Thus, now I use this
model to calculate vertical temperature profiles on a grid of the three input parameters I
mentioned in the beginning of this chapter: planet size, CO2 mixing ratio and stellar XUV
radiation input. I choose these three parameters because Johnstone (2021) stated that
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2.2 Grid of models

they are very crucial for many thermal and chemical processes in the upper atmosphere
and therefore also for its structure.

Since I put the focus of my work on terrestrial planets and so far there is no uniform
classification scheme for exoplanets, I define the upper mass limit for my simulations to be
10 MC. According to Tuomi et al. (2019) this is a planet size for which solid surfaces are
at least likely to occur. The lower mass limit is to some extent arbitrary and I choose it
to be 0.4 MC which is in between the masses of Mars and Venus. Of course together with
the mass of the planet also its radius has to change. In my simulations I assume a fixed
density for each planet which equals the density of the modern Earth ρC = 5510 kg m´3.
Then I calculate the radius of the planet using:

Rpl “

ˆ

3Mpl

4πρC

̇
1
3

(2.2)

In the following, I am going to refer to the size of the planet as its mass only, keeping in
mind that the radius of the planet is also changed implicitly.

In 2019 the average CO2 abundance at Earth’s surface was 408.9 ˘ 0.1 ppm (Dunn
et al., 2020) corresponding to 0.04% of the global atmosphere near the surface. And
according to Qian et al. (2017) CO2 is well-mixed up to about 80–90 km, which is where
the CO2 homopause is located and well above the base of my simulation domain. Above
this level its abundance decreases exponentially. Therefore and in order to also consider
atmospheres with higher CO2 mixing ratios, I use values between 1 ˆ 10´4 and 1 ˆ 10´3

in my simulations.
Concerning the stellar XUV radiation the value I used for the Earth case shown in

the previous section was 3.95 erg s´1 cm´2. According to Ribas et al. (2005) the solar
high-energy flux between 0.1 nm and 120 nm of the Sun was up to 6 times the present
value in the last 3.5 Gyr. Therefore to account for younger or more active stars as well as
for smaller distances between the host star and the planet than in the case of modern
Earth, I choose the upper limit of the XUV flux to be 100 erg s´1 cm´2.

In summary, the grid on which I run my simulations has the following limits:

• Planet size: 0.4 MC ď Mpl ď 10.0 MC and Rpl in a way that the planet’s density
equals the terrestrial value of ρC = 5510 kg m´3.

• Carbon dioxide mixing ratio: 1 ˆ 10´4 ď fCO2 ď 1 ˆ 10´3

• Stellar XUV input: 1 erg s´1 cm´2 ď Fxuv,in ď 100 erg s´1 cm´2

For the remaining input parameters I choose the same values as I used in Sect. 2.1.1.
In total, I simulate 512 atmospheres using a set of random values for each quantity within
these given ranges. From each simulation I get a vertical temperature structure to train
my neural network. To test it afterwards, I calculate just as many test profiles in the same
way. Each profile consists of temperature values on 104 vertical levels equally distributed
between 43.25 km and 506.75 km above the surface of the planet.

Although the three input variables span large ranges of possible values the shape of the
temperature structure looks quite similar for most of the simulated atmospheres. It is
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Figure 2.5: Temperature profiles from the test data set showing some of the hottest (upper
left panel) as well of some of the coldest (lower left panel) planet set ups. The
upper right panel shows planets with medium temperatures at the exobase.
The legends give for each profile the mass of the planet, the CO2 abundance
and the stellar XUV input of the respective simulation.

basically the shape of the vertical profile which I calculated using the simplified Kompot
Code (Fig. 2.4). This is at least partially caused by the fixed temperature at the base
of the simulation domain. Fig. 2.5 shows 9 profiles I calculated. The legends show the
values of the three input parameters planet mass, CO2 mixing ratio and stellar XUV
input for each simulation. Although the base temperature of each simulation is fixed
to 267 K the temperature at the exobase, i.e. the top of the simulation domain, varies
between 300 K (lower left panel) and almost 25,000 K (upper left panel). The upper right
panel shows atmospheres with medium exobase temperatures. However, "medium" here
refers to the temperature range I got in my simulations since these "medium" values are
still about 10 times higher than the temperatures of the modern Earth case.

In Fig. 2.6 the temperature at the top of the simulation domain is shown in two
different diagrams dependent on two of the three input variables for each diagram. Red
dots represent the highest and blue dots the lowest temperatures. In the left panel there
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Figure 2.6: Temperatures at the top of the simulation domain for all 512 test profiles.
Higher temperatures at the exobase are shown with red colours, while blue
colours represent lower temperatures.

is clearly a structure visible. If small planets receive large amounts of XUV radiation they
develop the highest exobase temperatures occurring in my data set (upper left corner),
while the top of the atmosphere of a large planet is colder if it receives only a small
stellar XUV input flux (lower right corner). In the right panel there does not seem to be
any correlation between the temperature and the CO2 mixing ratio. Both, red and blue
dots, occur over the whole grid of possible CO2 mixing ratios. The relations between the
exobase temperature and the three input variables are also visible in Fig. 2.5. All three
simulations in the upper left panel have very high XUV radiation inputs and rather small
planet masses, while the lower left plot consists of simulations of large planets receiving
way less radiation. However, the exact shape of the profile seems to be determined by a
combination of all three input parameters.

2.3 Training of the neural network

Although the simplified Kompot Code calculates the vertical temperature structures a
lot faster than the full model with only small inaccuracies, my aim is to run even more
simulations in even less time using modern machine learning regression methods. In my
work I use Keras (Chollet et al., 2015) based upon the open source platform TensorFlow
(Abadi et al., 2015) to create, train and test such a model. This model will be able to
calculate temperature profiles in a reasonable amount of time while keeping the advantages
of accuracy and reliability of more detailed numerical models. The background of such
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Figure 2.7: (a) A simplified scheme of a neural network consisting of an input layer with
three neurons, two hidden layers with six neurons each and one output layer
with five neurons. (b) A sketch of the ReLU activation function, which I use
in my work.

a neural network and how to use it is described in Nielsen (2015). I only give a short
summary here:

A neural network (NN) consists of several layers and each layer itself consists of neurons,
which I also call nodes in my work. In Fig. 2.7a each circle corresponds to one node and
each column of circles represents one layer. The first column with the red circles stands for
the input layer while the last one with the green circles represents the output layer. The
two layers in between are so-called hidden layers. Since this is only a simplified scheme,
the actual number of neurons in each layer is much higher in most real applications. The
connections between all the layers, which are shown as arrows here, are the outputs of the
nodes in one layer used as the input for the nodes in the next one. Each node in every
layer, except for those in the input layer, has its own set of weights wi and a bias b. Here
i represents the index of each node in the previous layer. Given an input xi (which would
be a vector with three entries when transferring from the input layer to the first hidden
layer and a vector with six entries if it was the input of the second hidden layer or the
output layer of the sketch in Fig. 2.7a) of a node the value of this node is given by

z “ b `
ÿ

i

wi ¨ xi (2.3)

However, z is not the output of the node yet. The actual output of the neuron, the
activation value, can be calculated in many different ways. Nielsen (2015) mostly uses the
sigmoid activation function σpzq, which transforms z into a value between 0 and 1. But
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2.3 Training of the neural network

since the Rectified Linear Unit (ReLU) is "the most successful and widely-used activation
function" (Ramachandran et al., 2017) I use it in this work. The ReLU function is shown
in Fig. 2.7b and is defined as

fpzq “ maxp0, zq (2.4)

The activation value fpzq of each node in one layer is then merged into the input xi for
every node in the following layer. All these transfers between the layers are represented
by the arrows in Fig. 2.7a.

In the case of my NN the input layer consists of three nodes, one for each input
parameter, and the output layer consists of 104 nodes, one for each altitude of the
temperature profiles. The number of hidden layers I use and the number of neurons in
each of them is still to determine. How I do this will be shown in the following section.
Before I start the training process all the weights and biases in the whole NN are just
random numbers. But when I start to train my NN, i.e. I assign every neuron in the first
layer with a specific value of my input parameters, the network calculates the activation
values in the first hidden layer in the way I described before. Then it transfers them to
the next hidden layer, again calculates all the activation values and so on for each hidden
layer in the network until it finally reaches the output layer. There the activation value
of every node is compared to the temperature in the respective altitude of the training
profile I use. Of course, the differences between each pair of values should be as small
as possible in the end. Therefore, I have to define a loss function and I simply use the
mean squared error (MSE) here. After it calculated the MSE of one step of the training
process the network tries to adjust the weights and biases in each node of every layer so
that the MSE decreases. This is done by an optimization algorithm. In my work I use
the Adam algorithm, which is "an algorithm for first-order gradient-based optimization
of stochastic objective functions" (Kingma and Ba, 2017). This means it computes the
first-order derivatives of the loss function and tries to change all the variables, in this case
the weights and biases of every single neuron in the whole network (except for the input
layer, since these neurons do not have any weights and biases), in a way that the loss
function becomes as small as possible. Of course, this minimum will not be found after a
few steps. This is why a large number of training epochs and many training profiles are
necessary.

2.3.1 The grid of networks

When it comes to defining the setup of a neural network there are three main parameters:
the number of hidden layers, the number of nodes in each layer and the number of
epochs I train the NN. These parameters are also called hyper-parameters. Since there
is no a priori combination of these values to use I have to find the best setup myself.
Similarly to the fitting process I did in Sect. 2.1.1, I define a parameter grid to set
up many different models and investigate their performances, a process that is called
cross-validation. Although I mentioned before that it takes a lot of training epochs to
find the minimum of the MSE, it is not as easy as "the more training, the better are the
results". Because if the NN is trained for too long with the same data it kind of gets
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Figure 2.8: Upper and middle panel: Mean squared error of all models with 4 hidden
layers as a function of nodes per layer and number of training epochs for the
training and the test process, respectively. Lower panel: Ratio of MSEs of
the test and training processes.
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used to it, i.e. the model learns specific patterns from the training data that cannot be
generalized, which leads to errors when the model needs to reproduce previously unknown
profiles. This is called overfitting. Therefore I try a lot of different numbers of training
epochs and I also have to check the performance of the model on the test data periodically
to see if the model overfits the training data already. This is how I define the parameter
grid:

• Number of layers: 1, 2, 3, 4

• Number of nodes per layer: 50, 100, 150, 200, 250

• Number of training epochs: Up to 200,000 epochs with a checkpoint frequency
of 10,000 epochs

This means that I train 20 different models for up to 200,000 epochs. Every time when
10,000 training epochs are done, I check the smallest MSE of the training process up to
this point as well as the current MSE of the test process. The upper and middle panel in
Fig. 2.8 show these two quantities of all the models with four hidden layers during the
whole process of training. As supposed, the mean squared error of the training process
becomes smaller with more epochs done. On the other hand the MSE of the test data
does not show any similar structure. For example the test MSE of the model with 4
hidden layers and 150 nodes per layer, represented by the green pentagons, shows the
smallest MSE after 30,000 epochs, reaches then quite high values until 70,000 epochs
and afterwards the error again is a lot smaller during the remaining process. Similar
fluctuations are also visible for all the other models with 4 hidden layers. In the lower
panel of Fig. 2.8 the ratio of test and training mean squared errors for each model at
every checkpoint is shown. Very large values in this diagram show where overfitting of
the training data may be an issue. In such cases the training MSE is very low already but
the test MSE stays at higher values or is even increasing. Of course, it is desirable that
the network performs well on the training and the test data but also that both MSEs do
not differ too much.

2.4 Results

To find a proper setup for my NN I have to check all three panels I show in Fig. 2.8 for
every number of hidden layers in the grid. In the following I use only those with 4 hidden
layers as an example for the process of cross-validation:

In the first panel the differences of the errors are less than 3ˆ10´6 K2, which is already
very good. So this does not restrict the value ranges of the hyper-parameters a lot. But
the lower panel shows that the error ratio is small for all models if they were trained for
less than 20,000 epochs. The smallest error ratios occur for the model with 250 nodes
per layer, represented by magenta stars at around 10,000 or 20,000 training epochs. If I
continue to train the same NN for a total of 30,000 epochs, the test MSE increases by a
factor of 2–3. Therefore, I train the same setup again for a maximum of 30,000 epochs
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Figure 2.9: Comparison of the three best models so far showing the RMSE as a histogram
for all test profiles. The dashed lines are the respective mean values. Note:
Model 2 has three root mean square errors >130 K. They are not shown in
this plot.

to look at which point the training MSE has its minimum. This comes out to be after
22,878 epochs.

I do the same process with all networks with 1, 2 and 3 hidden layers. But those with
1 and 2 hidden layer show test errors five or ten times the errors of models with 3 and 4
layers. This is why the other two very good performing models are one with 3 layers, 100
nodes each and trained for 49,064 epochs and another one with 3 layers but 200 nodes
each and only trained for 9789 epochs. The reason why the three setups are quite different
from each other is the complexity of such a NN with thousands of weights and hundreds
of biases. So at a first approach, I have reduced the number of possible setups of my NN
from 20 to the following 3:

• Model 1: 3 hidden layers, 100 nodes, 49,064 training epochs

• Model 2: 3 hidden layers, 200 nodes, 9789 training epochs

• Model 3: 4 hidden layers, 250 nodes, 22,878 training epochs

Now I have to compare these three networks to find the best one. To do this, I reproduce
more than 500 test profiles with every model and calculate the root mean square error
(RMSE) between the output of the NN and each profile calculated with the simplified
Kompot Code. Fig. 2.9 shows the RMSE of each model as a histogram with the vertical
dashed lines as the respective mean values. It shows that model 1 and model 3 are very
close to each other but the latter performs a little bit better. Therefore, the NN I use in
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Figure 2.10: The output of the three NNs I considered to perform the best compared
to the corresponding temperature profiles I calculated using the simplified
Kompot Code (Reference profiles).
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the next step of my work will consist of 4 hidden layers with 250 nodes per layer and it is
trained for 22,878 epochs. The mean RMSE of this model over all test profiles is only ca.
14.7 K, the median is even smaller. I consider this as a very good result since the time per
simulation is a lot smaller than it is when using any of the two Kompot Code versions.

Fig. 2.10 shows a comparison of three different temperature profiles from the test
data set (dashed line) with the respective outputs of models 1–3. All three models were
capable to reproduce many profiles almost perfectly. An example for this case can be
seen in Fig. 2.10a. Fig. 2.10b shows an example where the best model still performs very
good, while the other two show some inaccuracies. But there are also some parameter
combinations where not even the best model can calculate the vertical temperature
structure correctly (see Fig. 2.10c). Although the deviations may look very big in this
case the maximum error of the predicted temperature profile is less than 50 K, which
is not that much after all. Actually it can be a bit misleading, if I only take a look at
the RMSE of a single simulation to evaluate its goodness. For example, model 1 has an
RMSE of about 10.2 K in Fig. 2.10a but only 1.7 K in Fig. 2.10b, although the reference
profile seems to be fitted better in the first one. The higher RMSE in the first panel is
simply the result of the ten times higher exobase temperature. In Fig. 2.10c the RMSE
of model 1 is only about twice as much as in the first diagram although there are quite
large deviations between the reference profile and the NN output. Therefore, I also have
to consider the exobase temperature together with the RMSE.

Fig. 2.11 shows the errors of all available test profiles for two of the three input
parameters in each diagram. The left column shows the RMSE while the right column
shows the RMSE normalized to the temperature at the exobase of the respective simulation.
Since this is the most error-prone part of the profiles calculated with the NNs, I use
the temperature at the top of the reference profile. The marker area represents the
error magnitude and its color the atmospheric temperature at the top of the simulation
domain. The first two diagrams in the left column are very similar to those in Fig. 2.6. In
addition to before, now I show that simulations with higher temperatures at the exobase,
i.e. red dots, also seem to have larger root mean square errors. The lower left plot
confirms this. Although large errors are also possible in simulations with low exobase
temperatures, they occur there less often. However, as the right column shows and as I
already mentioned before, this does not mean that my NN performs better on profiles
with lower temperatures. In fact, the relative RMSE is way higher for atmospheres
with low exobase temperatures. For example, the maximum relative RMSE appears
for the simulation with Mpl « 0.84 MC, fCO2 « 3.76 ˆ 10´4 and Fxuv,in « 1.3 erg s´1

cm´2 (RMSErel « 5.7%). The exobase temperature of this simulation is only about
464 K. On the other hand, the simulation with the smallest relative RMSE has input
values Mpl « 2.12 MC, fCO2 « 4.78 ˆ 10´4 and Fxuv,in « 87.2 erg s´1 cm´2, leading
to a relative RMSE of less than 0.02%. This setup leads to an exobase temperature of
more than 21,400 K. So the RMSE and the relative RMSE show completely contrary
results. Probably because the differences in the RMSE are not as large as the temperature
differences, which leads to this turn when I calculate the relative RMSE. So in fact, it
would be best, if both values together are taken into account.

A feature appearing in several modeled profiles, which is also visible in Figs. 2.10b
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Figure 2.11: Left column: RMSE of the NN output compared to the reference profiles.
Right column: Same as left column but divided by the temperature at the
top of the reference profile.
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and 2.10c are many small wiggles. They appear mostly at the top of the profiles, where
the atmosphere is already in an isotherm regime but sometimes also at the bottom of the
domain. These wiggles appear in profiles throughout the whole data grid, so they do not
seem to be a feature of specific combinations of the input parameters but may simply be
the result of too little training data.

Up to now, I have shown that my NN is able to reproduce the temperature profiles
calculated with the simplified Kompot Code pretty good. The average RMSE is less than
15 K, which is very small concerning the fact that I use a very large range of possible
input values for three different parameters and that the resulting temperature profiles
cover a range between approximately 300 K up to almost 25,000 K. Yet, I still have
to show one final property of my NN, which is in general one of the big advantages
of a neural network: They generate their output a lot faster than any physical model
does. To show this, I measured the time the simplified Kompot Code needs to calculate
512 temperature profiles with arbitrary values of the same input parameters as before.
Afterwards, I measure the time the NN needs to produce the same profiles. The result
is shown in Fig. 2.12. The blue histogram shows the time the simplified Kompot Code
needs to calculate each profile, while the dashed red line shows how long my NN needs
in total to calculate all 512 profiles. In other words, the simplified code needs almost 7
hours for 512 temperature profiles, whereas my NN can calculate them in less than 17
seconds. This means my model is more than 1400 times faster while keeping the accuracy
at a quite high level.

Too small range of CO2 mixing ratio

Throughout this section, I only considered CO2 abundances between 1ˆ10´4 and 1ˆ10´3

and calculated the test and training profiles only for this range of input values. However,
as I already showed in various diagrams, the resulting temperature profiles were mostly
dependent on the size of the planet and the stellar radiation input. The exact value of the
third input variable, the CO2 mixing ratio, does not really make a difference. For example,
the temperature profile of a planet with a CO2 mixing ratio of 1 ˆ 10´4 shows deviations
of less than 2 K from the temperature profile of the same planet with the same radiation
input but a CO2 abundance of 1 ˆ 10´3. To emphasize this, I show two temperature
profiles I calculated with the simplified Kompot Code in Fig. 2.13. I chose these two
profiles because they have very similar planet masses and radiation inputs from the star
but rather different CO2 mixing ratios. Still the temperature profiles show next to no
differences. Though the orange profile shows slightly smaller temperatures, the reason is
rather the smaller XUV input than the higher CO2 abundance in this simulation.

In fact, I should have chosen the range of the CO2 abundances a lot bigger than just
one order of magnitude. This range should have covered several orders of magnitude so
that the influence can be seen properly.
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Figure 2.12: Histogram of the time the simplified Kompot Code needs to calculate one
vertical temperature structure. In total 512 simulations are considered. The
dashed line shows the overall time my NN needs to calculate all 512 profiles.
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3 Historical profiles for the early Earth

As I showed in the previous chapter, machine learning regression methods are very usable
to model atmospheric temperature profiles of terrestrial planets around Sun-like stars
although they are only given a few specific input quantities. In this chapter, I want to
show that my NN can perform similarly good on an even more realistic data set, which is
created using a model with much more physics in it than before. Moreover, this time the
range of input CO2 mixing ratios is much larger. So, I want to test the performance of
the NN on a completely different and previously unknown data set.

Johnstone et al. (2021) used the full version of The Kompot Code to model Earth’s
mesosphere and thermosphere for different solar XUV fluxes and CO2 abundances in the
Earth’s atmosphere during the Archean, a geologic eon of Earth’s history spanning from
approximately 4.0 to 2.5 Gyr ago. A basic assumption in their model was that the lower
atmosphere was composed entirely of CO2 and N2, though other species could be created
in their models by photodissociation and photoionization. They then derived historical
thresholds for those two quantities given the constraints that Earth was neither completely
frozen nor did it lose its entire atmosphere via escape to space. The authors made the
resulting temperature profiles available for me to train and test a model using the setup
of model 3 from Chap. 2.3.1. Using these temperature profiles and the hyper-parameters
of the NN that I constrained in the previous chapter, I train a new neural network to
predict the temperature profiles for the early Earth just from the input solar XUV flux
and the atmospheric CO2 mixing ratio. If my model is again capable of reproducing these
temperature profiles properly, I can be confident about its performance in other similar
applications. Since the full simulations with all of the included physical mechanisms took
typically a few days each to calculate, the main advantage of using NNs is again the
saving of time. After a sufficiently large set of models that covers the desired parameter
space is calculated, NNs can be used to calculate arbitrarily large numbers of models in a
negligible amount of time. Still, I want to keep the accuracy and reliability as high as
possible.

3.1 Data set

For this chapter, I use the grid of models calculated by Johnstone et al. (2021), which
consists of 86 cases that differ in CO2 mixing ratio and solar input XUV spectrum. The
CO2 mixing ratio varies between 0.01% and 99% of the total atmospheric composition,
representing the ability of the upper atmosphere to cool itself. The XUV fluxes vary
between about 2–15 erg s´1 cm´2. Each atmospheric model consists of vertical profiles
for temperature, density, and chemical composition. Johnstone et al. (2021) used the full
XUV spectrum as model input and expressed it in terms of time in the past from today in
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Figure 3.1: Upper left: Four temperature profiles resulting from simulations with the same
atmospheric CO2 mixing ratio of 25% and different XUV flux inputs. Upper
right: Four vertical temperature structures resulting from simulations with the
same XUV radiation input but different CO2 abundances. Lower left: Three
simulations, which lead to very similar temperature profiles, although the
input parameters have quite different values. Lower right: Three simulations
that lead to very high exobase temperatures due to the rather small CO2

abundances.

Gyr, due to certain assumptions made about the solar radiation profile and its evolution
over time. The XUV input decreases with time, which means that the XUV flux was
higher in previous times of the Sun’s evolution. One example for such a transformation
between the age of a star and its radiation output can be found in Table 5 of Ribas
et al. (2005). Johnstone et al. (2021) considered the first two bins of this table, i.e. a
wavelength range between 1–100 nm. Note that Ribas et al. (2005) defined the timescale
to be forwards from the beginning of the Solar System, while Johnstone et al. (2021)
defined it to be backwards from today.

Fig. 3.1 shows several different temperature structures for different combinations of
time in the past and atmospheric CO2 mixing ratio. The upper left diagram shows four
temperature profiles of simulations with different stellar XUV input but the same CO2
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Figure 3.2: Height of the exobase for each simulation shown as marker size. The black
dot in the lower left corner represents an exobase altitude of 1000 km. The
exobase altitudes range from just above 140 km to more than 22,800 km. The
marker color represents the temperature at the top of the simulation domain.

mixing ratio. It can be seen that during earlier states of the Sun’s evolution the planet’s
atmosphere was much warmer if a constant CO2 abundance is assumed. In the upper
right panel I show the influence of the atmospheric CO2 mixing ratio on the temperature
profile. Higher amounts of CO2 in the atmosphere lead to much lower temperatures given
the same stellar insolation.

Similarly to what I mentioned in the previous chapter, a high XUV input together
with a small CO2 abundance leads to higher temperatures within the whole atmosphere
and especially at the exobase because higher CO2 mixing ratios would cool the upper
atmosphere very effectively. Higher temperatures throughout the atmosphere also lead to
more expanded envelopes and thus higher exobase altitudes (Johnstone et al., 2021). The
lower right panel of Fig. 3.1 shows this correlation, since all three profiles result from
simulations with very low CO2 ratios. In fact even much higher exobase temperatures
would be possible if early stages in the Sun’s evolution were combined with very small
CO2 ratios. However, such profiles do not exist in the data set because the atmosphere
would be removed under such circumstances within a rather short time. Therefore, these
cases were not considered by Johnstone et al. (2021). The lower left panel shows examples
of how different combinations of parameter pairs can lead to very similar temperature
profiles. Although the blue and green curves represent simulations with much higher CO2
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abundances, 75% and 50% respectively, the exobase temperature is about the same as for
the simulation with only 10% CO2 (orange profile) because the atmosphere is less heated
in this case. All the panels in Fig. 3.1 also show that the basic shape of all profiles is
more or less the same and that this shape is basically the same as in the previous chapter.
However, it is also evident that some features in the temperature profile can emerge that
were not visible in the previous chapter. For example the temperature profiles in the
lower left diagram show some small bumps at an altitude of about 80 km and are not
as smooth as the profiles I calculated in Chap. 2. This is because of the fact that the
reference profiles were calculated using the full instead of the simplified Kompot Code
this time.
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Figure 3.3: Value ranges for both input quantities and how they were split up into training
and test data. The y-axis shows the number of simulations that belong to
each bin.
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It is important to note the ranges of the y-axis in all the panels of Fig. 3.1. The two
diagrams in the top row extend over the maximal altitude range any of the profiles in the
data set covers. The lower left one, which shows simulations with cooler atmospheres,
extends to less than 300 km, while the simulations in the lower right one cover altitudes
up to 12,000 km. Fig. 3.2 confirms the already mentioned correlation between exobase
temperature and altitude since larger points (representing higher exobase altitudes) are
always colored redder, which indicates higher temperatures at the top of the simulation
domain.

The provided profiles span a time range corresponding approximately to the whole
Archean as mentioned before, exactly a time range between 4.1 Gyr and 2.6 Gyr in
the past. Fig. 3.3 shows a bar chart of all available profiles, the values of their input
quantities and if they belong to the training or test data set. Since I need enough data
for both calibration and validation of my NN, I decide to use 71 profiles for training and
the remaining 15 for testing. I did the division which profile belongs to which subset
randomly. Thus, not every age bin is represented in the test data set but I can still do
the verification of the model performance sufficiently enough.

One drawback of the data is that the upper boundary of the exosphere is not fixed to
500 km as before because of the previously mentioned highly variable exobase altitude
(see again Figs. 3.1 and 3.2). But in order to train the model properly, all the input data
has to be on the same grid. Therefore, I expand the domain of every simulation up to
the maximum exobase altitude appearing in any of the simulations. Above the exobase
of each simulation I assume an isotherm atmosphere and add equally spaced grid points
with constant temperature values.

So in fact I have a data set consisting of 86 vertical temperature structures each one
ranging from 50 km above the planet’s surface up to an altitude of almost 23,000 km. 71
of them belong to the training and the other 15 to the test data set. So, this time I have
much less profiles available to train and test my NN than before but according to the
very good results in the previous chapter, I still expect a rather good performance now.

3.2 Neural Network

To test the performance of the NN setup derived in Chap. 2, I use a model consisting
of four hidden layers with 250 nodes each and train it for a maximum of 25,000 epochs.
Again I save the best model, i.e. the one with the smallest MSE, rather than the one
after the last training epoch. The minimum MSE is about 1.9 ˆ 10´5 K2 after 22,956
training epochs, which is approximately 10 times more than in the training process in
Chap. 2 (see Fig. 2.8). However, the number of training epochs is almost the same as
before although the number of training epochs was allowed to vary in a quite large range.
The reason for the larger MSE is most probable the much smaller amount of available
data together with the more complex shape of the profiles. After the calibration process,
I validate the model performance using the 15 profiles in the test data set.
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Figure 3.4: The best (a) and worst (b) performance of my NN compared to their respective
reference profile together with six further diagrams comparing the NN output
to the reference profiles.
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3.3 Results

Fig. 3.4 shows several examples of the model output compared to the reference profiles
(dashed lines). The top row shows the best and worst performance of my NN on the test
data set. In the middle and bottom row I show six more diagrams, which show that a
broad range of fit qualities is possible. It can be seen that for the sake of representation
I cut off the profiles in the region where I assume the exobase before showing them.
Otherwise no structure at all would be visible in most of the cases. I estimated the
exobase altitude to be where the reference profile becomes isothermal. As before, the NN
is often able to perfectly reproduce the reference profile (see Fig. 3.4a). However, the
upper right panel (Fig. 3.4b) shows that also deviations between the exobase temperatures
of up to 28% are possible, which could be significant in certain cases if the NN is used to
predict the temperature profiles.

Although several panels in Fig. 3.4 show a big deviation between both profiles, the
mean relative error of all test profiles is only about 5%. Fig. 3.5 shows the RMSE for every
simulation in the test data set. As in the previous chapter, the area of each point shows
the error size and its color represents the temperature at the exobase. As in Fig. 2.11 the
left panel of Fig. 3.5 shows the absolute RMSE and the right one the relative RMSE, i.e.
the absolute RMSE divided by the temperature at the exobase of each simulation. The
biggest errors occur for simulations with high exobase temperatures. The mean relative
errors of simulations with CO2 ratios ď 1% range between 6.5% and almost 18% while
only one of the others exceeds a mean relative error of 5.4%. Without these four profiles
the mean relative error reduces to only about 3%. The reason for such high errors is, at
least partially, again based on the high exobase temperature found in profiles with such
small CO2 abundances. It can be seen in the right panel of Fig. 3.5 that 3 of the four
biggest relative RMSEs occur in simulations with CO2 ratios ď 1%.

Although the errors can look large in a few cases, most of the relative RMSEs are only
a few percent of the respective exobase temperature, which is insignificant and much less
than other uncertainties present in the models. The maximum occurs for the simulation
with a CO2 abundance of 1% at 3.0 Gyr (« 15.6%), which shows an exobase temperature
of more than 8200 K. The simulation with the smallest relative RMSE (« 0.2%) is the
one with 10% CO2, 2.8 Gyr in the past and an exobase temperature of just above 1000 K.
This behaviour is quite contrary to the one I obtained in the previous section. There,
simulations with high exobase temperatures also had higher absolute RMSEs but smaller
relative RMSEs. This time, the high temperature simulations have both high absolute and
high relative RMSE values. What Fig. 3.5 also shows is that the region with the second
highest errors (both absolute and relative RMSE) is represented by profiles corresponding
to earlier evolution stages, i.e. 3.5–3.9 Gyr in the past. Yet they are much smaller than
for profiles with ď 1% CO2 abundance. Another factor contributing to those large errors
in both groups is probably the fact that there are only a few training profiles available in
the corresponding value ranges. For CO2 mixing ratios of 10% and more I have at least
11 profiles per bin available but below this threshold there is only a total of 14 profiles
in 4 bins of which only 10 are in the training data set. Similarly, there are only 2 to 4
training profiles in most of the age bins from 3.5–4.1 Gyr but up to 7 in each of the other
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Figure 3.5: Left panel: Absolute RMSE of the 15 test profiles of the data set with historical
Earth setups as size of the markers. Right panel: Relative RMSE, i.e. absolute
RMSE divided by the exobase temperature. The exobase temperature is
represented by the marker color in both panels.

age bins (see Figs. 3.2 and 3.3). On the other hand, the smallest absolute and relative
RMSEs are located in the upper right corner of Fig. 3.5, since I have enough training
data available in the corresponding value ranges and the exobase temperatures are also
not that high. There was no such behaviour visible in Chap. 2 because I had enough
training data available over the whole range of possible input values.

Another factor contributing to higher errors in this section is that the training and test
data is much more complex, which can again be seen in Fig. 3.4. Not only that there
are more small features like bumps in the temperature profiles, they also extend to much
higher altitudes than before. Together with the smaller amount of profiles, this surely is
a reason for the higher RMSEs.

In summary, this chapter showed that my NN is able to reproduce the vertical temper-
ature profiles produced by a more realistic physical model, and is able to do this with
a modest number of training profiles. A more detailed look at how many profiles are
needed to get various levels of accuracy would be a useful point for future studies.
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4 Evolution of thermospheric
temperature for different stellar
masses and initial rotation rates

In the previous two chapters, I showed that neural networks are capable of calculating
temperature structures of upper atmospheres even for a quite wide range of input
parameters. One requirement is a sufficient amount of training data. Since this requirement
is fulfilled for the model I trained in Chap. 2, I am now going to show one possible
application of this NN. I want to calculate temperature profiles of a planet similar to
modern Earth for different evolutionary steps of its parent star. For my NN, I need
three input parameters: these are the mass of the planet, the CO2 mixing ratio in the
atmosphere and the stellar input XUV flux. For the first two parameters, I use the values
for modern Earth, i.e. Mpl “ 1.0 MC and fCO2 “ 4 ˆ 10´4, and to get the stellar XUV
input flux, I use the stellar evolution model MORS.

4.1 Model for Rotation of Stars (MORS)

MORS is a physical model by Johnstone et al. (2020) calculating the full stellar rotation
and XUV evolution of stars with masses in a range between 0.1 and 1.2 M@, and ages
from 1 Myr until the end of the main-sequence. The model calculates the evolution of
a star’s rotation rate taking to account changes in its internal structure and angular
momentum losses. For the former, the stellar evolution models of Spada et al. (2013) are
used. For the latter, the main angular momentum loss process is from magnetized stellar
winds, with a simple parameterization of angular momentum exchanges being used in
the first few Myr. Additionally, the redistribution of angular momentum within the star
is considered. The rotation model is constrained by a large number of stellar rotation
measurements in 12 young clusters. The XUV emission is calculated from the rotation
tracks using empirical rotation–X-ray and X-ray–EUV relations. The model is able to
calculate evolutionary tracks for stellar rotation as well as many other parameters given
only its mass and initial (1 Myr) rotation rate because these are the two main parameters
that determine its XUV evolution (Johnstone et al., 2020). The parameters that are
important for me are the X-ray, extreme UV, and Lyman-α emission of the star in its
habitable zone (HZ). Here the X-ray and extreme UV bands cover a wavelength range
from 0.517–92 nm and the Ly-α emission line is located at 121.5 nm. Taken together, this
fits the wavelength range between 0.1–120 nm, in which I considered the input XUV flux,
very well. The orbital distances of the HZ at all ages are calculated as functions of stellar
mass and age using the formulae of Kopparapu et al. (2013) and the stellar models of
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Figure 4.1: Temporal evolution of Fxuv,HZ for six stellar models with different stellar
masses and initial (1 Myr) rotation rates. The dashed line shows the upper
boundary of input values for the NN I trained in Chap. 2.

Spada et al. (2013) because the bolometric luminosity is, together with the star’s effective
temperature, the main factor determining these borders (Kasting et al., 1993). However,
I have to mention that I do not take into account the stellar variability in my work. For
example, Stern et al. (1995) found from comparisons of Einstein and ROSAT data that
the X-Ray luminosity of main-sequence Hyades K and M stars varies up to a factor of 2.
Schmitt et al. (1995) confirmed this result for the solar neighborhood. The evolutionary
tracks calculated with MORS just show the average luminosity of a star at a given age,
the true value can vary by quite a lot, mostly because of flares or cycles.

It is also important to note that the MORS model overestimates the modern Sun’s
XUV emission. Partly this is likely because the Sun appears to be less active than stars
with similar masses, ages, and rotation rates (Reinhold et al., 2020), and partly this could
be due to uncertainties in the slope of the relation between rotation and X-ray emission
for unsaturated stars (e.g. Reiners et al., 2014).

Using MORS, I simulate six different stars which I assume then to be the host stars of
the planet I described previously. I use three different stellar masses, 0.5 M@, 0.75 M@

and 1.0 M@ and two different rotation rates each, which are simply called slow and fast
rotation. They are defined as the 5th and 95th percentiles of the rotation distribution
given by several observed clusters (Irwin et al., 2007, 2009; Meibom et al., 2009; Hartman
et al., 2010; Rebull et al., 2016) with ages of approximately 150 Myr. The slow rotation
rate of the star at 1 Myr is approximately 1.52 times the rotation rate of the modern Sun,
which was set to Ω@ “ 2.67 ˆ 10´6 rad s´1 by the authors of the code. The fast rotation
rate results in ca. 24.98 Ω@.

For each of these six stars, I calculate the rotational evolution and the resulting total
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4.1 Model for Rotation of Stars (MORS)
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Figure 4.2: Temperature profiles of a planet with 1 Earth mass and a CO2 abundance
of 4 ˆ10´4 around six different stars at 5 different times during the star’s
evolution. The star’s mass is 1 M@, 0.75 M@ and 0.5 M@ in the first, second
and third row, respectively. The left column shows initially (1 Myr) slow and
the right column initially fast rotating stars.
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4 Evolution of thermospheric temperature for different stellar masses and initial rotation rates

X-ray, EUV, and Ly-alpha emission in their respective HZs. I call this quantity Fxuv,HZ

hereafter and its evolution is shown in Fig. 4.1 for the six stars. Since I trained my NN
only with stellar fluxes between 1 and 100 erg s´1 cm´2, I can only use input values of
Fxuv,HZ within this specific value range. The upper boundary of possible input values
is shown as dashed line in Fig. 4.1. Because of this restriction, I can consider every
star only after a certain age, and this threshold age is dependent on its mass and initial
rotation rate and varies a lot between the individual stars. For example, an initially slow
rotating star with a mass of 1 M@ crosses this line already after about 25 Myr, while an
initially fast rotating star with a mass of 0.5 M@ crosses it only after 3 Gyr. One reason
for this behaviour is that lower mass stars evolve slower than those with higher masses,
both in internal structure and in rotation, and consequently remain active longer, and
the other reason is that those stars that are initially fast rotators remain active longer
and therefore also emit more XUV radiation than initially slow rotating stars (Johnstone
et al., 2020). This is also visible in the tracks shown in Fig. 4.1. All the initially slow
rotating stars show a persistent decay of the emitted XUV radiation. Those that rotate
faster when they are born also show a decay, but afterwards even a short epoch of rising
XUV emission (at least the more massive ones), a small plateau and then a decay again.
Although higher mass stars are more XUV luminous than lower mass stars, the orbital
distances of their habitable zones are also larger leading to planets orbiting low mass M
dwarfs receiving X-ray fluxes that are two orders of magnitude higher than those received
by planets orbiting G dwarfs at 5 Gyr (Johnstone et al., 2020).

4.2 Results

4.2.1 Evolution of an Earth-like atmosphere on an Earth-mass planet

In this section, I consider the evolution of the atmospheric temperature profile for an
Earth-mass planet with a CO2 mixing ratio of 4 ˆ 10´4, which is similar to that of the
modern Earth, and assume that the planet is in the center of the habitable zone of its host
star. I study this case for all six stellar evolution scenarios discussed above. To do this, I
take the XUV flux of the star in its HZ Fxuv,HZ at five different points in its evolution
and use it as input for my NN trained in Chap. 2 together with the planet’s size and the
atmosphere’s CO2 abundance. Three of these ages are from the past, one is at an age of
4.6 Gyr, referred to as Today, and one is approximately 1 Gyr in the future. In Fig. 4.2 I
show the results for the six stars I described previously. The first, second and third row
show stars with a mass of 1 M@, 0.75 M@ and 0.5 M@, respectively. The left column
shows initially (1 Myr) slow and the right one initially fast rotating stars. It can be seen
that a lower mass host star leads to higher temperatures throughout the atmosphere of
an orbiting planet. Moreover, higher temperatures are also reached, especially at the
exobase, if the star is an initially fast rotator. Note that the individual ages for which I
show the temperature structures are different every time since each star’s XUV emission
in its habitable zone decays below 100 erg s´1 cm´2 at a different age (see Fig. 4.1).

The upper atmospheric temperature profiles of a planet around a slow rotating solar
mass star at five different ages are shown in the upper left diagram in Fig. 4.2. After the
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results in Fig. 4.1 it is not surprising that the planet’s atmosphere reaches the highest
temperatures during early evolutionary stages of the star with an exobase temperature of
more than 20,000 K. However, after 2.5 Gyr the temperatures are already much smaller
with an exobase temperature of almost 8500 K, and as the star evolves the temperature
continues to decrease. Even at an age of 5.6 Gyr, the stellar Fxuv,HZ was more then
16 erg s´1 cm´2, which is approximately 4 times the amount of radiation I assumed for
the Earth case at the beginning of this work and the exobase temperature of the planet is
still as high as 6300 K.

The right diagram in the second row of Fig. 4.2 shows the evolution of the upper
atmospheric temperature profile of the same planet around an initially fast rotating
star with M˚ = 0.75 M@. Given how the XUV emission of the stars evolves differently
for different masses and initial rotation rates, it is not surprising that the temperature
profiles around this star with a lower mass but a faster rotation rate show much higher
temperatures. This becomes evident if one compares the planetary temperature profiles
at ages of 2.5, 4.6 and 5.6 Gyr of the upper left and the middle right panel of Fig. 4.2.
The atmospheric temperatures at high altitudes for planets orbiting lower mass stars are
approximately twice as high as around the solar mass star. Concerning a host star with a
mass of 0.5 M@, one can see that the exobase temperature is even in the future very high,
with values up to 19,000 K.

As we have already seen, the planet’s exobase temperature changes a lot during the
evolution of its parent star. In Fig. 4.3, I show the temporal evolution of the temperature
at the top of the atmosphere of three test planets with different masses located inside the
HZ of the six stars I modeled. The upper, middle and lower panel show a planet with a
mass of 5.0 MC, 1.0 MC and 0.5 MC, respectively. Each of them has an atmospheric CO2

abundance of 4ˆ 10´4, which is very similar to today’s Earth. As before, the evolutionary
periods that I consider start when the stellar XUV emission drops below 100 erg s´1 cm´2.
I set the upper boundary for the age of the star to approximately 1 Gyr in the future,
according to the timescale I used in the previous plots. As shown in the XUV emission
curves in Fig. 4.1, the exobase temperature decays faster around planets with higher
masses. The temporal evolution curves of the exobase temperature demonstrate that
the lower the mass of the star, the higher the amount of XUV radiation received by HZ
planets and thus also the higher the exobase temperature. In fact, the temperature at the
exobase of a planet around a star with M˚ = 0.5 M@ at an age of 4.6 Gyr is approximately
three times as high as the exobase temperature of the same planet around a solar mass
star of the same age. The difference is even larger for a higher mass planet. As I already
showed in the previous chapters, in general the temperature at the exobase of lower mass
planets reaches higher values than the exobase of a more massive planet under the same
circumstances. However, there is not much difference between the exobase temperatures
of the Earth mass planet and the one with a mass of 0.5 MC (middle and lower panel of
Fig. 4.3, respectively). It is also evident that the upper atmosphere of a planet is slightly
hotter if its parent star is a rapid rotator rather than a slow one. I have to note that the
small wiggles in the profiles of the solar mass stars do not come from my NN. They can
already be seen in the radiation profiles I get from MORS, so maybe they come originally
from the stellar models of Spada et al. (2013).

41



4 Evolution of thermospheric temperature for different stellar masses and initial rotation rates

0 1000 2000 3000 4000 5000 6000

5000

10000

15000

20000

25000

Te
m

pe
ra

tu
re

 a
t 

ex
ob

as
e 

(K
)

0 1000 2000 3000 4000 5000 6000

5000

10000

15000

20000

25000

Te
m

pe
ra

tu
re

 a
t 

ex
ob

as
e 

(K
)

1M , slow
1M , fast
0.75M , slow
0.75M , fast
0.5M , slow
0.5M , fast

0 1000 2000 3000 4000 5000 6000
Age (Myr)

5000

10000

15000

20000

25000

Te
m

pe
ra

tu
re

 a
t 

ex
ob

as
e 

(K
)

Figure 4.3: Temporal evolution of the temperature at the exobase of a planet with Mpl =
5.0 MC, 1.0 MC, and 0.5 MC (upper, middle and lower panel, respectively)
and a CO2 abundance of 4 ˆ10´4 in the HZ of each star I modeled.
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Figure 4.4: The upper atmospheric temperature profiles of an Earth mass planet within
the HZ of an initially slow rotating solar mass star, receiving an XUV radiation
flux of approximately 16.3 erg s´1 cm´2 and assuming four different CO2

mixing ratios in the atmosphere of this planet.

4.2.2 Higher CO2 abundances in the atmosphere of an Earth-mass planet

As I already mentioned at the end of Chap. 2, the range of input CO2 abundances I
defined for my NN was too small to show the effect of CO2 on the vertical structure of
the atmospheric temperature. But still I want to investigate its influence on the upper
atmospheric temperature profiles. Therefore, I use the NN trained in Chap. 3 to calculate
another set of temperature structures but with slightly different input variables than in
the previous section. This time, the planet’s mass is fixed to 1 MC due to the data set I
used to train the model. In this model also the possible range of XUV radiation input
values was much tighter than before. I mentioned in Chap. 3 that Johnstone et al. (2021)
only used XUV input spectra between 2–15 erg s´1 cm´2. Reconsidering the fluxes inside
the HZ of each modeled star in Fig. 4.1 it can be seen that none of them decays below
this upper border of 15 erg s´1 cm´2 until an age of 5 Gyr. However, if I extend the
age range up to 10 Gyr the two simulations of the solar mass stars, which showed the
smallest XUV fluxes, come at least very close to this threshold. In fact, the smallest value
of Fxuv,HZ I obtained in any of the six simulations is approximately 16.3 erg s´1 cm´2

when considering an initially slow rotating solar mass star at an age of about 7.3 Gyr.
This value is close enough to the threshold to be still usable in my NN. To use it as input,
I have to transform it into an age bin using the transformation relation from Ribas et al.
(2005) I already mentioned. Finally, I can choose almost arbitrary values for the other
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4 Evolution of thermospheric temperature for different stellar masses and initial rotation rates

input parameter of my model, which is the CO2 mixing ratio. Although the training data
only used discrete CO2 abundance bins, it is no problem, if any other value is used as an
input.

Fig. 4.4 shows the upper atmospheric temperature profiles of an Earth mass planet
within the HZ of an initially slow rotating solar mass star, receiving an XUV radiation
flux of approximately 16.3 erg s´1 cm´2 and assuming four different CO2 mixing ratios
in the atmosphere of this planet. It is very interesting that the two simulations with the
highest assumed CO2 mixing ratios show the highest and lowest exobase temperatures
and the two with smaller CO2 abundances can be found in between. Moreover, the
shapes of these two profiles with a mixing ratio of 10% and 25% are very different than
the others. They both show a temperature peak at an altitude of about 1500 km and
decreasing temperatures towards higher altitudes. If the shape of the profiles with CO2

abundances of 10% and 25% would be the same as for the other two simulations the
exobase temperatures would be a lot higher. Maybe these lower CO2 abundances even
warm the lower atmospheric layers and only cool the upper ones, while high mixing ratios
cool all layers similarly.

Another possibility is that my NN cannot handle these low CO2 abundances together
with a relatively high XUV input. Reconsidering Fig. 3.2, one can see that at ages where
such high input fluxes are used, the available CO2 mixing ratios in the data set are 50%
or higher. Another hint for this problem can be seen in Fig. 4.4 where the profile of
the simulation with fCO2 “ 10% shows way more wiggles than the others, representing
possible uncertainties of the model. However, I also compared these profiles to some of
the training data set with a very similar input and this showed that my NN delivers very
good results. At least the profiles with CO2 abundances of 25%, 50% and 75% are very
reliable. And again, the NN saves a lot of time compared to one simulation of the full
Kompot Code.
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5 Conclusions

The aim of my work was to show the ability of modern machine learning regression
methods to calculate vertical temperature profiles for upper atmospheres given only a
few input parameters, and to demonstrate how such methods can be used in studies
of atmospheric evolution. One main advantage of this method is the large amount of
time which is saved when a NN is used compared to the hours or even days one full
simulation needs to calculate such a profile. While NNs cannot substitute for detailed
physical models, they can be trained on the results of such models, allowing arbitrarily
large numbers of atmospheric profiles to be generated in negligible time with similar
accuracies to the physical models.

The basis of my work is The Kompot Code, a first-principles physical model for
planetary atmospheres. I used both the results of the full version of this code and a
simplified and thus more efficient version in this project. With the latter, I created more
than 1000 vertical temperature profiles for altitudes between 50 km and 500 km above the
planets surface. To create them I defined a grid of simulations where I assigned random
values between well-defined borders to three input parameters, namely the size of the
planet (mass and radius), the CO2 abundance in the atmosphere and the stellar XUV
flux input. I fit to this set of models a grid of neural networks, varying the number of
hidden layers, the number of neurons per hidden layer, and the number of steps in the
training algorithm. Then I used the temperature profiles I calculated to train and test
every NN in the grid in the same way to find out which setup of these hyper-parameters
shows the best performance. I made the decision based on the mean squared error of both
the training and the test process. The NN which delivered the best results consists of 4
hidden layers with 250 nodes per layer and is trained for 22,878 epochs. At the end of the
training process the MSE of this model was < 2 ˆ10´6 K2. The average RMSE over all
test profiles was less than 15 K and although some profiles could not be reproduced very
accurately most of them actually could. Although the largest root mean square errors
occurred in simulations with very high temperatures at the exobase the RMSE normalized
to this temperature is the smallest for this kind of simulations. In addition, the average
simulation with my NN lasts less than a tenth of a second, while it can take up to several
days to run one single simulation with the physical model. Over the whole grid, my NN
showed very good results concerning accuracy, calculation time and reliability.

I also verified the good performance of my NN using another data set from Johnstone
et al. (2021). This data consists of vertical temperature profiles calculated with the full
Kompot Code assuming conditions under which the Earth evolved between 4.1 Gyr and
2.6 Gyr in the past. I used the previously described NN setup again, trained and tested
it with this historical data to see if it can perform similarly well. Although the results
were not as good as before (MSE of the training process « 1.9 ˆ 10´5 K2, RMSE of all
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test profiles « 203 K), I am still very satisfied because I only had 71 temperature profiles
available to train the NN compared to over 500 I had before. Still, in the value ranges
where I had a sufficient amount of training data the RMSE is only 26 K which is a very
good result under these circumstances. So my NN also performed very well on this new
data set.

To demonstrate the potential of these methods, I used the NN trained on the larger
dataset from Chap. 2 to derive the evolution of the thermospheric temperature profile
of an Earth-mass planet under different circumstances. For this purpose, I used the
MORS model by Johnstone et al. (2020) to calculate stellar evolutionary tracks for 6
stars with different masses (0.5 M@, 0.75 M@ and 1.0 M@) and initial rotation rates (slow
corresponding to approximately 1.52 Ω@ and fast corresponding to about 24.98 Ω@).
The quantity I look at is the XUV flux in the HZ of each star Fxuv,HZ. Then I used
the NN of Chap. 2 and calculated the temperature profiles of a planet very similar to
today‘s Earth at five different ages during the evolution of each modeled star. The only
changing input parameter is Fxuv,HZ, which constantly changes during the star’s evolution.
I also considered the evolution of the exobase temperature of three planets with masses
of 5.0 MC, 1.0 MC and 0.5 MC around these stars. I showed that the temperature at
the top of the atmosphere of such a planet is more than 20,000 K if its host star is an
initially fast rotating star with M˚ “ 0.5 M@ at an age of 4.6 Gyr compared to less than
7000 K if it orbits an initially slow rotating solar mass star of the same age. Moreover,
the results showed that the temperature in the upper atmosphere of this planet changes
through the evolution of its parent star by several 103 K.

In order to consider the effect of the amount of CO2 in the planet’s atmosphere too, I
also used the NN from Chap. 3. Since the XUV radiation in the training data set only
covered a very narrow range, I could only use the initially slow rotating solar mass star
at an age of about 7.3 Gyr as host star for my hypothetical planet. Then I calculated the
planet’s upper atmospheric temperature profiles considering 4 different CO2 abundances.
These profiles were shaped rather differently for cases with small and high mixing ratios.
Moreover, a higher CO2 abundance does not automatically mean that the temperatures in
the atmosphere have to be smaller. In fact, the models with fCO2 “ 10% and fCO2 “ 25%
showed a temperature maximum at an altitude of approximately 1500 km and a decay
above. This maximum could not be found in the other two simulations. A possible
explanation could be that CO2 does not cool the entire atmosphere but can also heat
the lower layers and only cool the upper ones. Although I had not much training data
available for this model, I am still very confident about the resulting temperature profiles.

In summary, in my work I showed that modern machine learning regression methods
are a very reliable way to calculate vertical temperature profiles of upper atmospheres
under a very broad range of input parameters. If the NN setup is chosen properly and
enough training data is available, its performance is very accurate and most important it
is also a lot faster than sophisticated hydrodynamic models are.

Since I used a much too small range of CO2 input values in this work, it would be
very interesting to investigate the effect of this parameter on the temperature profile in
future studies. Future work may also cover the amount of training data that is needed
for NNs in order to reach a certain accuracy for a given number of input parameters
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since more input parameters lead to a more complex training process. In addition to
this, also profiles of quantities other than the temperature could be fitted using modern
machine learning regression methods. Examples may be the atmosphere’s density or the
abundances of main chemical species throughout the atmosphere.
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