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2. Summary 

2.1. Abstract 

Large scale activity recordings in various organisms, ranging from leeches to monkeys, 
revealed low dimensional neuronal population dynamics, i.e. individual neurons strongly 
coordinate their activity among each other to generate network wide correlated 
population states.  Neuronal population dynamics are crucial for neuronal computations 
and the generation of behavior, however, the mechanisms generating such dynamics 
remain unknown. I propose that the anatomical connectome must provide the crucial 
architecture supporting coordinated network dynamics. But how does the anatomical 
wiring relate to the functional interactions between the neurons? 

Using C. elegans, I addressed this question with a unique experimental paradigm 
combining three powerful tools: whole-brain imaging of identifiable neurons, genetic 
neuronal inhibition tools and knowledge of the connectome of the entire nervous system 
with synaptic resolution. First, I systematically analyzed local interactions and general 
features of the network to test whether they can predict neuronal correlations. Next, I 
performed systematic network perturbations by interrogation of neurons via transgenic 
neuronal inhibition tools. Finally, various computational methods were used to assess the 
impact of these perturbations on neuronal population dynamics and relate the outcome 
to the C. elegans connectome. 

Systematically comparing graph features in the C. elegans connectome with correlations 
in nervous system wide neuronal dynamics, I found that local connectivity motifs and 
input similarities can predict functional relationships between neurons. Informed by 
graph theory, I inhibited selected sets of rich-club neurons (i.e. network hubs) leading to 
destruction of critical features in network architecture. Using whole-brain imaging in 
these animals I found that global correlation structure is largely reduced but individual 
neurons and smaller modules remain active, however in an uncoordinated way. Thus, 
when disconnecting network hubs, structure in neuronal population activity is 
specifically destroyed. Based on my data, I propose that both rich-club architecture in 
neuronal wiring and the dynamical properties of neurons are required for normal 
neuronal population dynamics. In my model, strong synaptic coupling between neurons 
across the connectome via network hubs and higher order connectivity features binds 
intrinsically active neurons to global population states providing a mechanistic model 
relevant for larger neural systems where neuronal population dynamics can be observed. 
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2.2. Zusammenfassung 

Groß angelegte Aktivitätsaufzeichnungen in verschiedenen Organismen, vom Blutegel 

bis zum Affen, zeigten eine niedrigdimensionale neuronale Populationsdynamik, d. h. 

einzelne Neuronen koordinieren ihre Aktivität stark untereinander, um netzwerkweit 

korrelierte Populationszustände zu erzeugen.  Die neuronale Populationsdynamik ist 

entscheidend für neuronale Berechnungen und die Entstehung von Verhalten, aber die 

Mechanismen, die diese Dynamik erzeugen, sind noch unbekannt. Wir gehen davon aus, 

dass das anatomische Konnektom die entscheidende Architektur für die koordinierte 

Netzwerkdynamik darstellt. Aber wie hängt die anatomische Verdrahtung mit den 

funktionellen Interaktionen zwischen den Neuronen zusammen? 

 

Mit Hilfe von C. elegans bin ich dieser Frage mit einem einzigartigen experimentellen 

Paradigma nachgegangen, das drei leistungsstarke Werkzeuge kombiniert: Ganzhirn-

Bildgebung identifizierbarer Neuronen, genetische neuronale Hemmungswerkzeuge und 

Kenntnis des Konnektoms des gesamten Nervensystems mit synaptischer Auflösung. 

Zunächst analysierte ich systematisch lokale Interaktionen und allgemeine Merkmale des 

Netzwerks, um zu prüfen, ob sie neuronale Korrelationen vorhersagen können. Als 

Nächstes führte ich systematische Netzwerkstörungen durch, indem ich Neuronen mit 

Hilfe von transgenen neuronalen Hemmungsinstrumenten befragte. Schließlich wurden 

verschiedene Berechnungsmethoden eingesetzt, um die Auswirkungen dieser Störungen 

auf die neuronale Populationsdynamik zu bewerten und die Ergebnisse mit dem 

Konnektom von C. elegans zu vergleichen. 

 

Durch den systematischen Vergleich von Graphenmerkmalen im Konnektom von C. 

elegans mit Korrelationen in der neuronalen Dynamik des gesamten Nervensystems fand 

ich heraus, dass lokale Konnektivitätsmotive und Ähnlichkeiten im Input funktionelle 

Beziehungen zwischen Neuronen vorhersagen können. Auf der Grundlage der 

Graphentheorie hemmte ich ausgewählte Gruppen von Neuronen mit vielen 

Verbindungen (d. h. Netzwerkknotenpunkte), was zur Zerstörung kritischer Merkmale 

der Netzwerkarchitektur führte. Mit Hilfe der Ganzhirnbildgebung bei diesen Tieren 

konnte ich feststellen, dass die globale Korrelationsstruktur weitgehend reduziert ist, 

einzelne Neuronen und kleinere Module jedoch aktiv bleiben, wenn auch in 

unkoordinierter Weise. Wenn also die Knotenpunkte des Netzwerks abgeschaltet 
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werden, wird die Struktur der neuronalen Populationsaktivität gezielt zerstört. Auf der 

Grundlage unserer Daten schlage ich vor, dass sowohl die Rich-Club-Architektur in der 

neuronalen Verdrahtung als auch die dynamischen Eigenschaften der Neuronen für eine 

normale neuronale Populationsdynamik erforderlich sind. In meinem Modell bindet eine 

starke synaptische Kopplung zwischen Neuronen im gesamten Konnektom über 

Netzwerkknotenpunkte und Konnektivitätsmerkmale höherer Ordnung intrinsisch aktive 

Neuronen an globale Populationszustände und liefert damit ein mechanistisches Modell, 

das für größere neuronale Systeme relevant ist, in denen neuronale Populationsdynamik 

beobachtet werden kann. 
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3. Introduction 

3.1. Anatomy and function of the C. elegans nervous system 

The nervous system of C. elegans hermaphrodite consists of 302 neurons with 118 

different neuronal classes (White et al., 1986). The nervous system is divided into two 

parts as the pharyngeal and somatic nervous system and almost totally separated from 

each other (White et al., 1986). The pharyngeal nervous system is responsible for the 

rhythmic contractions of the pharynx that allows the animal to eat. The somatic nervous 

system consists sensory, inter- and motorneurons, in total 279 neurons, which generates 

and maintains the brain dynamics and behaviour of the animal. Thus, all the analyses 

throughout this thesis solely focuses on the somatic nervous system and considering it as 

the whole nervous system of the animal in anatomical analysis of the wiring map (see 

Chapter 3.3.2). To this day, the anatomical map of the entire nervous system with 

synaptic resolution is only available for C. elegans which provides a powerful tool for 

neuroscience studies. 

 

The C. elegans somatic nervous system is further organized in various ganglia. Head 

ganglion consists of majority of interneurons which are densely packed and anatomically 

grouped into anterior, dorsal, ventral, lateral and retrovesicular ganglion. Retrovesicular 

ganglion is followed by the ventral nerve cord where majority of motor neurons reside 

throughout the anterior-posterior axis of the animal. These motor neurons innervate the 

body wall muscles on both ventral and dorsal side of the animal to implement undulatory 

movement along the body. The ventral nerve cord transitions into tail ganglion at the 

very posterior end of the nervous system. Tail ganglion is also divided into three 

anatomical groups: pre-anal, dorso-rectal and lumbar ganglion. Neural processes 

originating from neurons both in head and tail ganglia form nerve bundles along the 

entire body of the animal which connects both regions (Fig.3.1) (White et al., 1986).  

 

The body plan of C. elegans is bilaterally symmetric and two thirds of the neurons are 

present as bilaterally symmetric left and right (L-R) pairs of the same neuron class 

(Hobert et al., 2002). This symmetry includes similarity in morphology, function and 

connectivity of neurons. There are few exceptions of functional asymmetries between 

the L-R pairs, and they are restricted to sensory neurons (e.g. salt-sensing ASE neurons 

(Cochella and Hobert, 2012)). 
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All classic neurotransmitters are conserved and used in the nervous system of C. elegans 

such as glutamate, acetylcholine and γ-aminobutyric acid (GABA). Monoaminergic 

transmitters such as dopamine, serotonin, octopamine (invertebrate counterpart of 

epinephrine) and tyramine (invertebrate counterpart of norepinephrine) are also used 

(Chase and Koelle, 2007). A neurotransmitter atlas containing almost all neurons is 

previously mapped (Bentley et al., 2016; Gendrel et al., 2016; Pereira et al., 2015; 

Serrano-Saiz et al., 2013). C. elegans neurons also use around 250 neuropeptides (Li and 

Kim, 2008); these molecules can be co-released with neurotransmitters (Burnstock, 

Figure 3.1. Head and tail ganglia of the C. elegans nervous system. 
Schematic illustration of the nervous system in C. elegans. Ganglia illustrations are adapted and 
modified from White et al., 1986. 
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2004; Chalasani et al., 2010) or can initiate modifications in other cells extrasynaptically. 

Thus, neurons in the nervous system have another layer of communication on top of the 

already available synapses and connections (see Chapter 3.3.2). 

 

Many neurons in the nervous system of C. elegans also form gap junctions (electrical 

synapses). They are formed by innexin proteins instead of connexin proteins in 

vertebrates. The innexin proteins do not contain specific sequence homologies with 

connexins but they function to from intercellular membrane channels similar in both 

structure and function compared to their counterparts in vertebrate tissues (Hall, 2017). 

Furthermore, number and organization of the innexin genes in C. elegans is similar to 

the connexin family in vertebrates. The C. elegans genome contains 25 innexin genes 

and at least one member of this family is expressed in almost every cell type in the 

animal; moreover, many cells express multiple different innexin genes (Altun et al., 

2009). This complex expression pattern of innexins gives rise to formation of heterotypic 

and heteromeric gap junctions (Liu et al., 2013; Starich et al., 2014). In the nervous 

system of C. elegans the innexin expression pattern is very diverse: 20 out of 25 innexin 

genes were shown to be expressed in at least one neuron (Altun et al., 2009). There are 

few innexins that are expressed in a very confined set of neurons: INX-14 only in 

GABAergic motor neuron classes, INX-2 only in AVK, INX-1 only in AIB (Altun et al., 

2009). On the other hand, many innexin genes are expressed in 15-30 neuron classes 

(Altun et al., 2009; Bhattacharya et al., 2019); moreover, few neuron classes express up 

to 12 innexin genes (Altun et al., 2009). Since many neurons are connected to each other 

with the aforementioned diversity of innexin gene expression as their repertoire, the 

heteromeric and heterotypic channels exist in the nervous system. Results of the mutant 

screens in innexin genes showed that single mutations of different innexin genes ended 

up with mild or almost no obvious phenotypes (Starich et al., 1996) suggesting that there 

are redundancies in the function of these genes. Although the exact amount of gap 

junctions is identified and quantified in the connectome of C. elegans, the exact mixture 

and identity of innexins within these junctions are not fully delineated.  

 

Voltage-gated sodium channels are not present in the C. elegans genome (Bargmann, 

1998); thus, it was thought for long that the C. elegans nervous system is made up of 

only graded neurons and lack classical action potentials. Recently, regenerative all-or-
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none action potentials were discovered in AWA sensory neurons (Liu et al., 2018) which 

suggests that the C. elegans nervous system uses a hybrid system for encoding 

information. Additionally, two more enteric motor neurons that are implicated in 

defecation motor program were proposed to exhibit action potentials (Jiang et al., 2021) 

suggesting that AWA neurons are not the sole exceptions. However, the synaptic 

transmission mainly depends on voltage-dependent calcium and potassium currents, 

thus; the neurons exhibit graded potentials (Bargmann, 1998; Goodman et al., 1998; 

Lindsay et al., 2011; Narayan et al., 2011). Graded signaling is not as efficient as action 

potentials over long distances; but they allow parallel computations to occur in different 

compartments of a neuron. Additionally, bistable plateau potentials in some neurons exist 

(Mellem et al., 2008) which also depends on sodium and calcium currents. In these 

events, the release of synaptic vesicles occurs in a calcium-dependent manner. Thus, 

intracellular calcium concentrations increase with membrane depolarization. This 

provides an opportunity for using genetically encoded calcium indicators (GECI) as 

proxy for neuronal activity and make C. elegans a suitable model organism to track 

activity of neurons. The most common GECI variant, which is also used in this study, is 

GCaMP. It is a variant of circularly permutated variant of enhanced green fluorescent 

protein (cpEGFP). This indicator also contains a calcium-binding calmodulin and M13 

sequence fragment of myosin light chain kinase (Akerboom et al., 2012; Chen et al., 

2013; Nakai et al., 2001; Tian et al., 2009). Calcium binding results in conformational 

changes in the indicator that increases the brightness of the fluorophore which can be 

detected and measured (Nakai et al., 2001). Throughout this thesis, GCaMP is expressed 

in the worms using a pan-neuronal promoter with a nuclear localization tag to visualize 

the entire nervous system with single-cell resolution and recorded with high temporal 

resolution to reveal nervous system wide activity patterns (see Methods).  

3.2. Neuronal population dynamics 

Neural activity in groups of neurons was studied in various organisms including 

primates, zebra finches, leeches, and mice across different brain regions such as the 

olfactory bulb, the nerve cord ganglia or the motor cortex (Briggman et al., 2005; 

Churchland et al., 2012; Stopfer et al., 2003). Recently large-scale recordings of brain 

networks are also available with the advances in technology in large nervous systems 

(Ahrens et al., 2012; Bruno et al., 2017; Shine et al., 2019). These large-scale recordings 
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also revealed that the population activity is highly complex. All of these studies 

commonly reported that individual neurons do not display isolated activities, rather, they 

are involved in a network activity which is coordinated and patterned. Common features 

of these network states are (1) low dimensionality, i.e. information can be compressed to 

far less variables than the number of participating neurons; and (2) transient dynamics, 

i.e. network states continuously evolve in time (Briggman et al., 2005; Churchland et al., 

2012; Stopfer et al., 2003).  Low dimensional signals of population activity are shown to 

be available in neural circuits for sensory encoding (Bartho et al., 2009), decision-making 

(Briggman et al., 2005; Mante et al., 2013) or movement (Ahrens et al., 2012; Nguyen et 

al., 2016; Venkatachalam et al., 2016). Importantly, these studies found out that 

population activity might be complex and heterogenous in essence; but originally derived 

from a low dimensional system.  

3.2.1. Neuronal population dynamics in C. elegans 

In 2015, Kato et al. have delineated the general properties of the global population 

dynamics using whole-brain imaging in immobilized C. elegans (Kato et al., 2015). 

Since an important part of this thesis is based on the whole-brain imaging method in C. 

elegans (with the modification of extending it to contain both head and tail ganglia of the 

worm) and the activity patterns analyzed in this thesis are thoroughly characterized in 

this earlier work, I will briefly summarize these important findings in this section.  

 

The behavioural repertoire of C. elegans consists forward and backward movement and 

ventral or dorsal turning behaviour; all of these individual events form an action sequence 

and thereby the coherent behaviour of the animal. However, the frequency of these events 

or the relative time spent in these events can be altered according to the external and 

internal factors. Kato et al. showed that majority of the neurons within the head ganglia 

of immobilized and unstimulated worms are active and they participate in coordinated 

global activity patterns. Furthermore, many of the participating neurons that show strong 

activity signals were shown to be correlated with the execution of motor commands in 

freely moving worms. These motor command related activity patterns of aforementioned 

neurons were also observed in immobilized worms where the worms are restricted by a 

chip and a chemical drug. Thus, in the absence of any movement, these neuronal activity 

patterns constituted a high-level representation of motor commands that is decoupled 
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from the motor output. Interestingly, it was also shown that these motor states are not 

only represented by a single neuron but rather a group of neurons, thus, the observed 

activity patterns are considered as distributed across the nervous system. Principal 

component analysis (PCA) was used to analyze and characterize the global brain 

dynamics. The first three PCs on average explained ~60% of the total variance and they 

received highest contributions from neurons that exhibit activity corresponding to the 

motor command sequence. PC1 captured the activity of neurons that are active either in 

forward and backward movement (with positive or negative signs, respectively). PC2 

and PC3 have contributions from head motor neurons that are active during the turning 

events. Plotting the dominant PCs versus each other revealed a cyclical trajectory of the 

brain dynamics where the time-evolution of the global brain states are clearly visible. In 

this cyclical manifold, each distinct motor state was confined to a branch of this 

manifold; thus, the brain-state of the animal which follows the motor command sequence 

could be traced throughout the span of the whole-brain recordings. 

 

Importantly, the neuronal activity correlations analyzed in this thesis can be robustly 

observed across different conditions like in well-fed adults without food (Kaplan et al., 

2020; Kato et al., 2015), during larval development and in the presence of food (Nichols 

et al., 2017) and after short-term and long-term starvation (Skora et al., 2018). This 

suggests that the action sequence which is represented by the observed brain dynamics 

is robust to many conditions.  

3.3. Mapping the nervous system 

3.3.1. Connectome reconstruction 

In order to map the entire nervous system including all connections from and to a neuron 

and its neighbouring neurons, dense mapping methods are needed. All synaptic inputs 

and outputs of a neuron can only be visualized with methods that have better resolution 

than the diffraction limit of light. Electron microscopy (EM) is the first method that 

allowed reliable synaptic identification (De Robertis, 1959) and still used as an essential 

method, especially in the characterization of densely packed ganglia (Lichtman and 

Denk, 2011). The pre- and post- synaptic partners can be identified via EM sections with 

~100 nm thickness by presynaptic swellings containing vesicles and post-synaptic 

densities, respectively. Since many sections are needed for the reliable identification of 
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these synapses and since EM is a method that has very low throughput, serial-section 

EM (ssEM) methods were developed. Although the first applications of ssEM is 

dependent on manual sectioning, imaging, and tracing (White et al., 1976); automated 

methods were developed to provide high-throughput imaging as well as better Z-

resolution (Briggman and Bock, 2012). 

3.3.2. The C. elegans connectome 

The first complete map of the entire nervous system (the connectome) was generated by 

ssEM using C. elegans (White et al., 1986). The selection of this organism was based on 

having a small nervous system with 302 neurons that exhibits stereotypic development. 

To generate this map, overlapping reconstructions of three different worms were used in 

the original study (White et al., 1986). Later, additional efforts were made to improve 

and revise the C. elegans connectome. These efforts include imaging additional EM 

sections from the original samples (Varshney et al., 2011) and re-annotations of the 

original EM micrographs (Cook et al., 2019; Jarrell et al., 2012).  The newest effort by 

Cook et al. also provided additional connections with extrapolation and educated guesses 

(Cook et al., 2019); thus, the number of connections is significantly increased in this 

version of reconstruction. Same study also reconstructed the connectome of male worms 

which has substantially more neurons and connections compared to the hermaphrodite 

(Cook et al., 2019). Apart from the number of connections between two connectome 

reconstructions (Varshney et al., 2011 and Cook et al., 2019) which are not similar; the 

quantification of the weights of the connections are also different. Cook et al. estimated 

the weight of a connection by counting the number of EM sections traversed through the 

synaptic structure (Cook et al., 2019). On the other hand, Varshney et al. determined the 

synaptic value of the neurons by taking the values from White et al. which only counts 

the number of synapses between two neurons with one modification: they divide it 

between the left and right neurons proportionally to the values in electron micrographs 

(Varshney et al., 2011).  

 

Importantly, the currently available C. elegans connectome does not include any 

information about the sign of the connections since it is not possible to determine the 

polarity of a synapse (inhibitory or excitatory) from electron micrographs of C. elegans 

(Varshney et al., 2011). There are few assumptions that could be made: in the C. elegans 
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nervous system GABAergic neurons were shown to make inhibitory synapses while 

cholinergic and glutamatergic neurons make excitatory synapses (Brownlee and 

Fairweather, 1999). Nevertheless, there are exceptions to these approximations such as 

inhibition of AIZ neurons via cholinergic AIY neurons (Li et al., 2014) and inhibition of 

AIB neurons through glutamatergic AWC neurons (Chalasani et al., 2007). There might 

be other examples of such exceptions across the network but since electrophysiology 

experiments are difficult to perform for every possible synaptic couple, the current 

knowledge is still not complete. Having said that, new techniques like optogenetic 

methods and calcium imaging, will increase the speed of acquiring knowledge about 

signs of all connections and eventually generate a signed connectome.  

 

Throughout this thesis the reconstruction from Varshney et al. is used as the C. elegans 

connectome. This connectome consists of 279 neurons instead of 302 neurons because 

20 neurons that belong to the pharyngeal nervous system and 3 neuron classes (CANL/R 

and VC06) which do not make synapses with other neurons are excluded (Varshney et 

al., 2011). In total this connectome consists of 6393 chemical synapses, 890 gap junctions 

(Varshney et al., 2011). 

 

Although the overall pattern of connections between electrical and chemical synapses 

are similar, there are some notable differences. First, there are certain layers within 

sensory processing where gap junctions are more dominant (Hall, 2017). The interneuron 

class RMG is suggested to form a ‘hub-and-spoke’ pattern where multiple head sensors 

converge via gap junctions to it (Macosko et al., 2009). Furthermore, gap junctions 

connect bilateral left and right pairs of the same neuron classes. Other network properties 

of the connectome will be referred in more detail in the following sections (see Chapters 

3.3.2 and 3.4 ). The C. elegans connectome is still the only complete map of the nervous 

system and provides a powerful tool and guide in neuroscience (see Chapter 3.3.4). 

 

Recently another study increased the number of connectomes for C. elegans using many 

animals from different developmental stages (Witvliet et al., 2020). These stages include 

four L1, one L2, one L3 and two adult animals (Witvliet et al., 2020). In higher organisms 

the macroscale connectivity patterns are better conserved between individuals whereas 

microscale connectivity exhibits structural variability between individuals (Sporns et al., 
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2005). In invertebrates such as C. elegans, the small nervous system is thought to be 

under higher pressure for precise and optimal wiring (Chklovskii et al., 2002); thus, the 

connectome itself is thought to be more stereotypic and have less inter-individual 

variability. However, one cannot exclude that there is variability between the connection 

strength of two neurons or even between synaptic partners of neurons from animal to 

animal. Throughout this thesis adult hermaphrodite worms are used for the experiments 

and consecutive analyses. Witvliet et al. reported that variable and stable connections 

each represent ~43 percent of the total connections in adult worms while ~14% of the 

connections are classified as developmentally dynamic (Witvliet et al., 2020). 

Furthermore, connections that are classified as stable constitute more synapses and form 

~72% of all observed synapses (Witvliet et al., 2020). 

3.3.3. Other efforts of connectomes 

With the development of methods in EM in the recent years other efforts to assemble 

partial reconstructions of the nervous system is carried out for other invertebrates. These 

studies include Pristionchus pacificus (Hong et al., 2019) and Ciona intestinalis (Ryan 

et al., 2016) which consists of similar sized nervous systems in terms of cell number 

compared to C. elegans. Furthermore, for larger nervous systems of invertebrates such 

as the larval Drosophila melanogaster (Schneider-Mizell et al., 2016) and Platynereis 

dumerilii (Randel et al., 2015) brain-wide ssEM sections were acquired. Recently, a 

dense reconstruction of a portion of the fly brain was assembled (Scheffer et al., 2020). 

Because of the size and numerical complexity of brains of larger animals and vertebrates, 

full connectomes are still not feasible to map: synapse-resolution mapping is restricted 

to only sparse labeling (Bock et al., 2011; Motta et al., 2019), subregions of brains 

(Eichler et al., 2017; Helmstaedter et al., 2013; Takemura et al., 2017; Takemura et al., 

2013) or partial reconstructions based on community efforts for completion (Hildebrand 

et al., 2017; Zheng et al., 2018). Reconstruction of a complete mouse connectome will 

be a major effort that needs the collaboration of many research groups and years of work 

(Abbott et al., 2020). 

3.3.4. Comparative connectomics 

With the availability of functional and structural connectomes from many species across 

many scales, the study of comparative connectomics emerged in the recent years. 
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Although many connectomes were mapped using different techniques, the data is still 

comparable in terms of networks using graph theoretical methods (van den Heuvel et al., 

2016). Here, the goal is to compare the network organization of these nervous systems 

by quantifying the topological features with many network measures that is specialized 

to characterize different aspects of the network. The common conclusion from these 

studies and analyses is the presence of similar topological features across many scales in 

different organisms which suggest the importance of such features since they are 

conserved in many species and in many scales, ranging from worms (microscale) to fruit 

flies (mesoscale) and to macaques and humans (macroscale) (van den Heuvel et al., 

2016). In the following sections these network measures will be generally defined for 

brain networks and then specifically for the C. elegans connectome where available.  

3.4. Network measures in general and in the C. elegans connectome  

Nervous systems can be represented as networks where neurons are nodes and 

connections between them are edges. Many network measures from graph theoretical 

approaches were adopted in neuroscience to characterize different aspects of global or 

local connectivities in the brain (Rubinov and Sporns, 2010). In this study many network 

measures that focus on integration, segregation or resilience of the network were used. 

Fig.3.2 illustrates some basic concepts in these network measures which will be defined 

both for general brain networks and the C. elegans connectome in the following sections. 

Figure 3.2. Illustration of basic concepts regarding network measures. 
Figure illustrates left to right: depiction of nodes and edges, the metric of degree, a shortest path 
between two nodes, the metric of clustering, rich club organization and hub nodes, modules that are 
densely interconnected within the network. Illustrations are adapted and modified from van den Heuvel 
et al., 2016. 
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3.4.1. Measures of functional segregation 

Functional segregation represents the ability of brain to perform specialized functions in 

subgroups of neurons which are highly interconnected to each other compared to the 

average of the whole network (Rubinov and Sporns, 2010). Different studies using 

various brain networks with different scales have reported that these specialized units 

(modules) are present in anatomical and functional maps and proposed to be responsible 

for different functions (Ferrarini et al., 2009; Honey et al., 2007; Sporns and Kötter, 

2004). 

3.4.1.1. Modules and modularity  

One essential measure of segregation focuses on the search and quantification of the 

presence of modules within the network. This search could be done on anatomical or 

functional networks and will have different outcomes accordingly. The presence of 

modules in an anatomical network suggests that these networks are functionally 

segregated (Rubinov and Sporns, 2010). For instance, a local module is responsible for 

a specific behaviour such as visual region in cortex. On the other hand, the presence of 

modules in functional networks suggests there is organizational layers within the network 

and the segregation is available on neuronal processing level (Rubinov and Sporns, 

2010).  

 

Whether analyzed on anatomical or functional layers, these modules can be found in 

networks using complex algorithms. These algorithms reveal the modular structure of a 

network by finding the exact size and composition of these individual modules by an 

iterative approach that gradually divides the network into subgroups with the goal of 

having maximum possible intra-connections (within the modules) and minimal possible 

inter-connections (between modules) (Girvan and Newman, 2002). To which extent a 

network can be divided into defined non-overlapping modules is then quantified by the 

modularity score Q (Newman, 2004). This metric is quantified as the ratio of 

interconnections within the modules divided by the average connections within the 

network (Newman, 2004). Importantly, unlike the other network measures that is defined 

in this section, the calculated modular structure for a given network is an estimation of 

optimization algorithms instead of being exactly calculated. Various algorithms are 

generated to suit the complexity and size of the network as well as required 
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computational power (Rubinov and Sporns, 2010). In this study, modularity is calculated 

as the Q of the whole network using an algorithm that searches for non-overlapping 

modules and which is generalized for weighted and directed networks (Leicht and 

Newman, 2008). 

 

In the C. elegans connectome, two previous studies did similar analyses and 

characterized the modules within the connectome. Pan et al. and Sohn et al. found 6 and 

5 modules within the connectome, respectively (Pan et al., 2010; Sohn et al., 2011). The 

members of communities in two different studies are generally similar with the exception 

that one module in (Sohn et al., 2011) is further divided into two distinct modules in (Pan 

et al., 2010). Since the overall module identifications are more interpretable in the study 

by Sohn et al., the study which elaborated the composition and possible function of these 

modules, this list of modules is used throughout this thesis for the analysis of the C. 

elegans connectome. Although there are modules that predominantly consist of a single 

neuron type such as sensory- or motorneurons, all of the modules contain interneurons 

and many modules have a broad range of neuronal compositions in terms of neuron types 

(Sohn et al., 2011). The characterized modules correspond to chemosensory and 1st layer 

interneurons, 2nd layer interneurons, mechanosensory neurons and command 

interneurons. Importantly, motor neurons from both backward and forward circuits are 

dispersed into two modules (Sohn et al., 2011).   

3.4.1.2. Clustering coefficient and transitivity  

These measures of segregation are based on the available triangles within the network 

(see also Chapter 3.4.6). The fraction of triangles around an individual node is equivalent 

to the clustering coefficient of that specific node (Watts and Strogatz, 1998). In other 

words, this measure looks whether the neighbors of a node are also neighbors of each 

other. For instance, network hubs that are highly interconnected with each other (see 

Chapter 3.5) will have high clustering coefficient. The mean clustering coefficient of the 

network is used as a measure which represents the pervasiveness of clustered 

connectivity around nodes (Rubinov and Sporns, 2010). The mean clustering coefficient 

is normalized individually for each node and is sensitive to the influence of low degree 

neurons. 
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In the C. elegans connectome the mean clustering coefficient is C=0.22 and C=0.21 for 

chemical synapses and gap-junction network, respectively (Varshney et al., 2011). 

Importantly. both networks are strongly clustered relative to random networks. 

  

Transitivity is a variation of clustering coefficient which is not defined on individual 

nodes and while being calculated for the whole network the normalization step is 

performed collectively (Newman, 2003).  Thus, it is less sensitive to impacts of low 

degree nodes within the network.  

3.4.2. Measures of functional integration 

Functional integration represents the ability of brain to combine information from 

distinct subgroups (such as modules) (Rubinov and Sporns, 2010). Thus, measures of 

functional integration focus on paths within the network which is the common routes 

between the nodes or modules of a network. The characterization of these paths in the 

network reveals how fast or easily information can flow between nodes or modules: 

shorter paths suggest stronger potential of integration. Functional integration measures 

are often applied to anatomical networks because the functional networks already have 

information about the information flow, hence, the interpretability of these measures 

solely on the functional network without the guidance of underlying anatomical 

architecture is rather difficult (Rubinov and Sporns, 2010).  

3.4.2.1. Characteristic path length 

The main network measure of integration is called characteristic path length and it is 

calculated as the average shortest path length of the whole network (Watts and Strogatz, 

1998). It is a commonly used indicator to assess the integration level of the network, the 

lower characteristic path length indicates a more integrated network where information 

can be transmitted from any neuron to another in the network within only few steps. The 

characteristic path length of the C. elegans network is 2.65 and is comparable to random 

networks (2.25) rendering the connectome a highly integrated network (Watts and 

Strogatz, 1998).  

3.4.3. Measures of centrality 

As described in the previous sections, networks are integrated, and the functional 

integration of the network is often carried out by network hubs which can be brain 
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regions or individual neurons. The importance of these hubs in terms of the information 

flow is analyzed by measures of centrality. Although motifs and other main network 

measures such as degree can be used to detect these central regions within the network, 

there are other measures specifically focus on characterizing the influence of a node to 

the network (Rubinov and Sporns, 2010). 

 

3.4.3.1. Betweenness centrality and eigenvector centrality 

The shortest paths in the network (see Chapter 3.4.2.1) are crucial for measures of 

centrality: to control the flow of information these paths must cross through the central 

nodes within the network (Freeman, 1978). Betweenness centrality is a measure that 

captures this feature. It is defined as the fraction of all shortest paths in the network that 

crosses a node. For instance, network hubs that bridge modules have high betweenness 

centrality. Eigenvector centrality on the other hand, first ranks all the nodes that have 

high connections, but with the difference that a high scored node is also connected to 

nodes which also have high scores (Rubinov and Sporns, 2010). For instance, by 

definition rich club neurons have both high betweenness and eigenvector centrality 

values (see Chapter 3.5).  

3.4.4. Measures of resilience 

Network measures of resilience focuses on vulnerability of a network to perturbations. 

The extent of functional deterioration after a perturbation relies on which brain regions 

or connections are affected. For instance, enduring degenerative change in Alzheimer’s 

disease or deterioration of brain functions due to a stroke is dependent on the location of 

the perturbation and connectivity of that region (Rubinov and Sporns, 2010). Degree 

distribution itself is proposed to indicate resilience of the network (see Chapter 3.4.4.1) 

(Barabasi and Albert, 1999). For example, a network with power-law degree distribution 

is considered resilient to random perturbations but vulnerable to targeted high-degree 

node perturbations.  

3.4.4.1. Degree 

Degree is a basic but an important measure in the network and degree of a node (neuron) 

is equal to the number of links connected to that node. In other words, it quantifies the 

number of synaptic partners or neighbours within the network. Thus, individual values 
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of degrees will represent the importance of the neuron in that network: highest degree 

neurons within the network constitute the network hubs. Importantly, the degrees of all 

neurons make up the degree distribution of the network which is an important indicator 

of resilience of a network. Since it represents the resilience of networks, the degree 

distribution is often preserved as an important factor of the network when control 

experiments are performed with randomization of the connections within a network. If 

the degree distribution is uniform, it indicates a network where the neurons are 

distributed homogenously, whereas a skewed degree distribution suggests there are 

important hubs in the network and also peripheral neurons with only few connections. 

These peripheries could be at the sensory level or at the output motor layer. This kind of 

degree distributions are also a prerequisite for the formation of rich-club organization 

(Colizza et al., 2006) (see Chapter 3.5).  

 

The connectome of C. elegans has a skewed degree distribution where many interneurons 

(especially command interneurons) have high degrees which is accompanied by low 

degree neurons distributed within many layers of the network (as sensory-, inter- and 

motorneurons). 

3.4.4.2. Assortativity coefficient 

An important measure of resilience is assortativity coefficient which is defined as the 

correlation coefficient between the degrees of all nodes on opposite ends of a link 

(Newman, 2002). In this context a positive assortativity coefficient indicates a resilient 

organization of interconnected network hubs (such as a core of the network) whereas a 

negative assortativity coefficient suggests a distributed hubs that are not highly 

interconnected and hence vulnerable to perturbation (Rubinov and Sporns, 2010).  

3.4.5. Small-world property 

Anatomical architecture of the nervous systems must meet opposing demands at the same 

time: functional integration and segregation (Tononi et al., 1994). Consequently, 

networks must include specialized subgroups with various functions (segregation, see 

Measures of Functional Segregation) which are at the same time linked with inter-

modular connections (integration, see Measures of Functional Integration) to form 

coherent behaviour or to carry out complex computations. The ability to meet both of 
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these opposing demands in the organization of networks is termed as the small-world 

property and found in many anatomical and functional networks (Bassett and Bullmore, 

2006). In general definition, small-world networks are significantly more clustered than 

random networks while keeping the characteristic path length of the network low: equal 

or less than random networks (Watts and Strogatz, 1998). Network Small-world-ness, a 

recent measure focuses on this aspect of the networks, takes into account both of these 

properties and calculated as a single metric (Humphries and Gurney, 2008).  

 

With a characteristic path length of 2.65 (compared to 2.25 of random networks) and a 

clustering coefficient of 0.28 (compared to 0.05 of random networks), the C. elegans 

connectome is characterized to exhibit small-world property (Watts and Strogatz, 1998) 

3.4.6. Connectivity motifs 

Motifs are specific configurations of how different nodes in a network (e.g. neurons in 

the nervous system) are connected to each other. They can be seen as the building blocks 

that form the complex connectomes. Motifs are well studied in both biological networks 

with different scales (Perin et al., 2011; Song et al., 2005; Varshney et al., 2011), as well 

as in artificial networks (Milo et al., 2002). Motifs are classified according to the number 

of nodes they consist of and further separated according to the number and pattern of the 

connections within these nodes (e.g. a triplet motif with 2 connections is available in 

Fig.3.3 A as ID#1). Since the increased number of combinations within the motifs 

increases drastically with the number of nodes and also with variations such as different 

connection types and cell types, the analyses of motifs are usually restricted to small 

motifs (n=2,3,4) (Gal et al., 2017; Haeusler et al., 2009; Perin et al., 2011; Rieubland et 

al., 2014; Song et al., 2005; Varshney et al., 2011). There are two main definitions of 

motifs as “structural motifs” and “functional motifs” (Sporns and Kötter, 2004). 

Although both definitions are based on the anatomical structure of the network, in other 

words they look for the anatomical substrates of the network, one of them is called 

structural, because it only considers how a certain group of nodes are exactly connected. 
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The other is called functional because it also considers the activation of a subgroup of 

interconnections within a motif (Fig.3.3 B).  

Thus, the functional motifs are contained within the structural motifs. In other words, 

only a portion of the anatomical circuit can be used by the network at a given time, hence, 

many possible subsets of connectivity patterns can exist embedded within the anatomical 

motif. Throughout this thesis, structural motif approach is implemented; thus, 

connectivity motifs were searched for the exact connectivity pattern within neurons (see 

Methods). Counting the same circuit repeatedly which might result in highly inflated 

motif statistics is avoided with this approach.  

In a network, the number of nodes (neurons) and edges (connections) affects the number 

of observed motifs. However, even these two parameters are held constant, different 

connection patterns will lead to different repertoires of motifs in terms of diversity (how 

many types of motif classes are present) and number (how frequent a certain motif class 

is observed) (Sporns and Kötter, 2004). It is hypothesized that a large functional 

repertoire is essential for dynamic and flexible processing, on the other hand, a small 

structural repertoire is needed for efficient encoding (Sporns and Kötter, 2004). When 

compared to random networks, biological systems were shown to exhibit higher 

functional motif repertoire by maximizing the number and diversity of motifs while 

Figure 3.3. Definition of structural and functional motifs. 
(A) For the motif size n = 3, there are 13 structural motif classes. Numbers refer to motif ID. Structural 
motifs reflect the exact connection pattern between nodes. 
(B) A single instance of a structural motif contains many functional motifs. A structural motif (ID#13) 
can contain two instances of functional motif ID#9, one motif ID#2 and one motif ID#7. Many other 
distinct instances of functional motifs are also present but not shown.  
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maintaining relatively low structural motif number and diversity (Sporns and Kötter, 

2004). 

 

In the C. elegans connectome certain dyad and triplet motif classes are over-represented 

(Cook et al., 2019; Qian et al., 2011; Reigl et al., 2004; Varshney et al., 2011) suggesting 

the network architecture is highly non-random and the over-represented motifs might 

have a role in the function of neurons. 

3.4.7. Symmetry in the networks 

Synchronies in networks is a well-studied concept in many complex systems including 

neuronal networks. Cluster synchronization is a sub-element of this concept where partial 

synchronization emerges as confined in clusters instead of expanding to the whole 

network. It has been shown that intrinsic network symmetries are crucial in the 

generation and maintenance of these synchronizations (Pecora et al., 2014).  

 

In the C. elegans connectome it is previously shown that symmetries exist in connectivity 

patterns of different neuron types. For instance, majority of sensory and interneurons 

contain bilaterally symmetric L-R neurons, and their connectivity patterns are also 

symmetric (Varshney et al., 2011). Moreover, the body motor neurons that reside along 

the anterior-posterior axis of the ventral cord of the animal exist in repeating groups and 

head motor neurons exhibit four and six-fold symmetry (Varshney et al., 2011). 

Furthermore, pseudo-symmetries are characterized in the C. elegans connectome 

(Morone and Makse, 2019) that are crucial for the two main locomotory circuits of the 

animal which are responsible for backward and forward motion. The symmetric 

structures found throughout the connectome could have important functional relevance 

for generating synchronous and coordinated activity patterns. 

3.5. Rich club neurons in brain networks and in the C. elegans connectome 

Rich-club organization is an important feature of networks described first for internet 

(Zhou and Mondragon, 2004), for various complex networks (Colizza et al., 2006), for 

the human connectome (van den Heuvel and Sporns, 2011) as well as the C. elegans 

connectome (Towlson et al., 2013). The prerequisite is having a heavy-tailed distribution 

of degrees within the network that suggests the existence of highly connected regions 
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which is in fact the case for human brain (Hagmann et al., 2008) or small nervous systems 

(Varshney et al., 2011). In order to be defined as a rich-club, the nodes with the highest 

number of links (hubs) must interconnect amongst themselves instead of low-degree 

nodes to form subgraphs (clubs) (Colizza et al., 2006). It is defined by calculating the 

rich club coefficient of the network and generating a curve with the gradual removal of 

nodes by an increasing degree threshold. This curve is then compared to randomized 

versions of the same network to identify the presence of a rich-club and if available 

followed by the characterization of the members of this club (see Methods).  

 

Rich club neurons were found in many brain networks in across many scales including 

worms (Towlson et al., 2013), fruit flies (Shih et al., 2015), mice (Rubinov et al., 2015), 

cats (de Reus and van den Heuvel, 2013), macaques (Goulas et al., 2014; Harriger et al., 

2012) and humans (Goulas et al., 2014; van den Heuvel and Sporns, 2011). Rich club 

neurons play a key role at the information flow and communication within the network 

by being embedded in the network topology (de Reus and van den Heuvel, 2014). These 

neurons are considered as the connective core of the network (Shanahan, 2012) that binds 

different segregated circuits and thus crucial for the integration of the network (see 

Chapter 3.4.2). This topological integration -bridging distributed domains together via 

rich club neurons and their high interconnection rate amongst each other- has a high 

wiring cost for the networks (van den Heuvel et al., 2016). For instance, in Drosophila 

rich club regions are located across all modules of the nervous system with remote 

placement in terms of exact location of the regions (Shih et al., 2015) that significantly 

increases the wiring cost of the network. Similarly, mouse connectome also exhibits a 

modular structure that are connected to each other by rich club neurons via costly long-

distance connections (Rubinov et al., 2015).  

Rich club neurons within the C. elegans connectome are also distributed along the two 

main ganglia of the nervous system (Towlson et al., 2013) and provide the long 

connections across the body axis of the animal which increases the total wiring cost of 

the whole network. However, the observation of similar structures in many networks 

across many scales that have evolved independently suggests a functional role for this 

organization. Furthermore, in C. elegans, rich club neurons are the first neurons to be 

generated within the nervous system (Towlson et al., 2013), corroborating the functional 

role and importance of this architecture in the development of nervous systems.  
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In parallel, hubs within the network have been shown to play important roles in shaping 

neural dynamics. A subset of high-degree neurons is shown to be responsible for network 

synchronization in hippocampus (Bonifazi et al., 2009) and entorhinal cortex (Mòdol et 

al., 2017) and for the transfer of information in local cortical networks (Nigam et al., 

2016). These studies support the idea that rich club neurons play a key role in networks 

which compensates their high wiring cost through long-distance synaptic connections at 

network integration. 

The rich club neurons in the C. elegans chemical synapse network were previously 

characterized and consist of 14 neurons: AVAL/R, AVBL/R, AVDL/R, AVEL/R, 

PVCL/R, DVA, AIBR, RIBL and RIAR (Towlson et al., 2013). These neurons have high 

degrees, participation coefficients and betweenness centrality ranks in the network 

(Towlson et al., 2013) (see Chapter 3.4). These neurons are distributed to two different 

ganglia of the animal, thus have a significantly high average connection distance 

(Towlson et al., 2013). 48% of the total wiring cost of the whole network belongs to the 

connections to rich club neurons while these neurons constitute only 4% of the neurons 

(Towlson et al., 2013). Consequently, they were proposed to play a central role in the 

integration of the whole network.  

3.6. Functional activity measures 

Throughout this thesis calcium signals are used as a proxy for neuronal activity (see 

Chapter 3.1) and functional interactions between neurons are examined using various 

methods. These methods include linear methods such as correlation, its variant cross-

correlation and covariance. Additionally, since nonlinearities in neuronal interactions 

such as oscillations, state transitions, attractor dynamics and conditional dependencies 

exist (Bassett and Sporns, 2017; Curto and Morrison, 2019); nonlinear methods are also 

included in the analyses. 

3.6.1. Linear measures 

In statistics, covariance is a measure which quantifies the joint variability of two random 

variables (Rice, 2006). It measures whether the variables tend to show similar trends. For 

instance, if greater values in a variable corresponds to greater values of the other variable, 

covariance is positive. The sign of covariance shows the tendency of the linear 
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relationship between them (Rice, 2006). The absolute value of covariance is not 

straightforward to interpret. Correlation coefficient on the other hand, is the ratio between 

the covariance of two variables and the product of their standard deviations. Hence, it 

can be regarded as the normalized version of covariance which will generate a value 

between -1 and 1. Thus, the absolute value of correlation coefficient reflects the strength 

of the linear relationship. Cross-correlation is quantification of the correlation coefficient 

between the variables by introducing a systematic time lag which produces a series of 

coefficients. Maximum values of these coefficients (or minimum in case of anti-

correlations) will then be searched to reflect the best linear relationship between two 

variables and the corresponding time lag will represent their temporal relation. All three 

these measures can only represent a linear correlation and ignores other types of 

relationships within the datasets.  

3.6.2. Non-linear measures 

In information theory, if the knowledge about the state of a variable reduces the 

uncertainty about the state of another variable, the first variable is regarded as containing 

information about the second variable (Cover and Thomas, 2006). Mutual information 

(MI) is the measure that quantifies this statistical dependence between two variables 

(Cover and Thomas, 2006; Shannon, 1948). It is also widely used in neuroscience to 

study neural activity and their relations to one another (Ince et al., 2017). It is based on 

the quantification of uncertainty (entropy) to quantify the reduction in uncertainty on the 

second variable which provides information. The unit of MI is bits which is a measure 

of entropy. Importantly, MI can detect non-linear interactions but the resulting values of 

MI do not describe a model for the underlying relationship between variables (Timme 

and Lapish, 2018). 

Another non-linear measure used in this study is based on covariograms which is a 

variant of cross-correlation analysis. This method is based on peri-event time histograms 

followed by a shuffle-correction procedure (Brody, 1999; Kaplan et al., 2020). 

Covariograms report the frequency of a target neuron’s peak at different time delays 

relative to a reference neuron’s peak; hence, it depends on the discretization of the data 

and is therefore insensitive to the shape of calcium signals (Brody, 1999; Kaplan et al., 

2020). Importantly, covariogram-analysis represents a directed (asymmetric) measure of 

functional interactions. 
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3.7. Systematic interrogation of neurons 

An important part of this study is to test and validate the structure-function relationships 

found in wild-type animals with the perturbation of the brain via systematic inhibition of 

neurons. The main method of neuronal inhibition throughout this thesis is the delivery of 

transgenic histamine gated chloride (HisCl) channels which leads to rapid inhibition of 

neural activity. These channels were characterized in Drosophila (Gisselmann et al., 

2002) and validated to be working in C. elegans by various studies including our lab 

(Kato et al., 2015; Pokala et al., 2014). It is based on the expression of transgenic 

channels that leads to rapid inhibition of the targeted neuron upon histamine uptake by 

the animals. Histamine is not synthesized or used as an endogenous neurotransmitter by 

C. elegans, the effect of HisCl channels is restricted to only to neurons that transgenically 

express these channels without any collateral effects to other neurons (Kato et al., 2015; 

Pokala et al., 2014). The main advantage of the approach is its simplicity while still 

providing the temporal control of the inhibition which bypasses the possible 

developmental defects. Unlike other perturbations such as optogenetics, HisCl method 

does not provide an acute inhibition. Thus, the exact dynamics of the transition from 

unperturbed to perturbed brain states cannot be observed. Instead, the targeted neurons 

are inhibited beforehand in an incubation phase (see Methods) and the experiments are 

carried out with animals that already exhibit perturbed brain dynamics. In the following 

sections I briefly summarized the known function of the targeted neuron classes in this 

study and the known effects of their perturbation (ablation, inhibition and activation) in 

previous studies.  

3.7.1. AIB neurons  

AIB interneurons have recurrent connections with command interneurons AVA and 

AVE in the backward movement circuit (White et al., 1986) and functional studies 

reported that it is important for motor state transitions (Gray et al., 2005). In whole-brain 

imaging experiments AIB neurons exhibit activity during backward motion (Kato et al., 

2015), and laser ablation of AIB resulted in lower frequency of reversals (Gray et al., 

2005). Furthermore, optogenetic activation of AIB was reported to trigger reversals 

(Kocabas et al., 2012; Wang et al., 2020) and optogenetic inhibition resulted in lower 

reversal frequencies (Kocabas et al., 2012). These results corroborate that AIB is an 

important interneuron for the backward movement circuit. On the other hand, 
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optogenetic inhibition of AIB led to abolished omega turns (Wang et al., 2020) indicating 

that these neurons are also important for reversal to turn transition.  

3.7.2. AVA neurons  

AVA neurons are the highest degree neurons in the C. elegans connectome (Varshney et 

al., 2011) and the command interneurons responsible for the initiation of backward 

movement. When AVA neurons are optogenetically activated the animals exhibit 

backward movement (Schmitt et al., 2012); on the other hand, when AVA neurons are 

inhibited or ablated the backward movement rates of the animals drastically decrease 

(Chalfie et al., 1985; Gordus et al., 2015; Liu et al., 2017; Pokala et al., 2014). Acute 

inhibition of AVA causes long pauses of animals which are then followed by turn events 

which suggests that AVA neurons are essential for the execution of backward movement 

(Kato et al., 2015; Pokala et al., 2014). Whole-brain imaging experiments in AVA-

inhibited animals showed that cyclical global brain dynamics are retained, suggesting 

that AVA is important for the initiation of the backward movement as a behaviour but 

not essential for the generation of brain state responsible for backward movement (Kato 

et al., 2015). This finding is in parallel with AVA neurons forming a bottleneck between 

the head ganglia and body motor neurons in the backward movement circuit (White et 

al., 1986). Furthermore, the A-class ventral cord motor neurons that are the main output 

of AVA neurons were silenced; however, other interneurons that are participating at the 

coordinated activity within backward movement brain state, AVE, RIM and AIB, 

retained their activity patterns (Kato et al., 2015). This result suggests that the long 

pauses observed in AVA silenced freely-moving animals were going through the 

backward-movement phase similar to wild-type animals only with the lack of ability of 

executing them because of AVA inhibition. 

3.7.3. AVB neurons  

AVB neurons, the command interneurons in the forward movement circuit, are the 

second highest degree neurons in the C. elegans connectome (White et al., 1986) which 

are thought to control forward motion (Chalfie et al., 1985). As the equivalent of AVA 

neurons in the forward circuit, these neurons output heavily to B-class motor neurons 

(White et al., 1986) and form a bottleneck between head ganglia and body motor neurons. 

Ablation of AVB neurons were shown to increase reversal frequency of the animals 
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(Rakowski et al., 2013). Furthermore, ablation of AVB neurons reduced forward motion 

but failed to completely abolish it (Rakowski et al., 2013) suggesting that they are 

essential for forward motion, but execution of forward movement does not solely depend 

on their activity. Additionally, optogenetic manipulation of AVB (together with AIY) 

resulted in promotion of high speed and suppression of reversals at high oxygen 

concentrations (Laurent et al., 2015). In whole-brain imaging experiments AVB neurons 

were shown to be strongly active in forward movement brain states (Kato et al., 2015). 

3.7.4. AVE neurons  

AVE interneurons are one of the command interneurons implicated in backward 

movement circuit (Chalfie et al., 1985; White et al., 1986). AVE neurons were previously 

shown to exhibit strong activity in backward motion (Kawano et al., 2011) and backward 

movement brain states in whole-brain imaging experiments (Kato et al., 2015). 

Optogenetic activation of AVE resulted in the initiation of backward movements and 

ablation of AVE resulted in greatly reduced reversal rates (Li et al., 2020). Inhibition of 

AVE neurons were reported to result in ectopic pausing (Katz et al., 2018) suggesting 

that they have a function in locomotion quiescence. Unlike AVA command interneurons 

within the backward circuit, AVE neurons were shown to be dispensable for gentle touch 

responses in ablation experiments (Li et al., 2011). 

3.7.5. RIB neurons  

RIB interneurons are located within the forward movement circuit (White et al., 1986) 

and were shown to be active in forward movement state (Gray et al., 2005; Kato et al., 

2015; Li et al., 2014). Optogenetic inhibition of RIB neurons during forward movement 

resulted in a pause state (Wang et al., 2020); in parallel to these results, RIB neurons 

were reported to code for the forward speed of the animal (Kato et al., 2015).  

Consequently, RIB neurons are important for modulation of forward motion (e.g. speed) 

rather than the execution of forward movement. On the other hand, optogenetic activation 

of RIB neurons during backward motion resulted in transitions to an omega turn or 

forward movement (Wang et al., 2020). Furthermore, optogenetic activation of RIB 

neurons during forward motion initiated omega turns (Wang et al., 2020); thus, these 

neurons were also reported to be a part of turning module as the modulator of transition 

between reversal and turning and not only function in the forward movement circuit. 
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3.7.6. RIM neurons  

RIM neurons are motor/interneurons that are part of the backward movement circuit. 

RIM neurons are one of the few neuron classes that uses tyramine as a neurotransmitter 

and they were previously shown to prolong backward movement duration via inhibiting 

AVB, command interneurons responsible for forward movement (Alkema et al., 2005). 

Moreover, RIM neurons were shown to suppress head oscillations via silencing head 

muscles (Pirri et al., 2009). Both effects were shown to be executed through tyramine-

gated chloride channel LGC-55 (Alkema et al., 2005; Pirri et al., 2009). In behaviour 

experiments using freely-moving worms, optogenetic activation of RIM neurons 

initiated backward movement (Gordus et al., 2015); however, inhibition and ablation of 

these neurons were also reported to increase reversal rate of the animals (Gray et al., 

2005; Li et al., 2011). Importantly, RIM neurons were shown to be crucial at generation 

of variable behavioural responses to external stimuli (Gordus et al., 2015).  

In whole-brain imaging experiments, RIM neurons were reported to be active during 

backward movement brain state and strength of their activity was shown to be correlated 

with reversal speed (Kato et al., 2015). 

3.7.7. PVC neurons  

PVC neurons are command interneurons for the forward movement circuit (Chalfie et 

al., 1985) and are one of the highest degree neurons within the C. elegans connectome 

(White et al., 1986). PVC neurons were reported to mediate gentle touch response 

(Chalfie et al., 1985). Laser ablation of PVC led to abolishment of forward movement 

upon posterior harsh touch (Li et al., 2011); however, these animals can still perform 

forward movement to different stimuli such as anus touch responses although with a 

lower rate (Li et al., 2011). Thus, PVC neurons are only required for the execution of 

forward movement within specific touch responses and not in general, unlike AVB 

neurons. PVC neurons were shown to exhibit calcium activity only as a response upon 

posterior touch stimuli (Li et al., 2011). Optogenetic activation of PVC neurons triggered 

forward motion and resulted in acceleration of animals during forward movement 

(Husson et al., 2012). 
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4. Results 
 

4.1. Coordinated population dynamics in nervous system wide imaging 
experiments 

Recent studies have shown that using C. elegans it is possible to perform large-scale 

calcium imaging with single-cell resolution (Nguyen et al., 2016; Schrödel et al., 2013; 

Venkatachalam et al., 2016). Calcium imaging experiments revealed coordinated 

neuronal population dynamics across the nervous system of the worms (Kaplan et al., 

2020; Kato et al., 2015; Nichols et al., 2017). A large fraction (~40%) of all neurons 

participate in these dynamics which correspond to the animals’ major motor commands: 

forward movement, backward movement and turning (see Chapter 3.2.1). Importantly, 

these dynamics occur in unstimulated and immobilized conditions (Kaplan et al., 2020; 

Kato et al., 2015; Schrödel et al., 2013). Thus, they do not depend on movement or acute 

sensory stimulation which suggests that they are driven intrinsically. Consequently, this 

experimental approach is ideal to study which structural features of the connectome can 

best predict and support globally correlated brain dynamics.  First, to generate a 

functional connectome which will then be used to delineate structure-function 

relationships, I extended the previous work of whole-brain imaging experiments in 

immobilized worms that covered only head ganglia (Kato et al., 2015; Nichols et al., 

2017; Schrödel et al., 2013; Skora et al., 2018) with a new chip device which enables the 

simultaneous imaging of the head and tail ganglia and a subset of neurons located on the 

ventral cord of the animal. This experimental setup enables the recording of almost all 

sensory- and interneurons of the animal and many motorneurons (Fig. 4.1 A).  

Using this approach, I generated six wild-type (WT) datasets from different well-fed 

adult worms, capturing the GCaMP signals of ~150 neurons per recording (Fig. 4.1 B).  

Then, in order to compare their activity with their connectivity patterns, I identified the 

vast majority of active neurons (n=50-71) by taking into account their anatomical 

positions, relation to surrounding neurons as well as their characteristic activity patterns 

based on previous work (Kato et al., 2015; Nichols et al., 2017; Skora et al., 2018) (see 

Methods). Furthermore, I identified all active neurons in the tail ganglia, which have not 

been identified previously, and confirmed all of the previous identities from earlier works 

using the new NeuroPAL method (Yemini et al., 2021) (Fig. 4.1 C). In total, the 

extension of the whole-brain imaging method to the tail ganglia and posterior part of the 
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ventral cord allowed an increase in number of recorded neurons by 33 ± 3.8 and in 

number of identified neurons by 16 ± 4.6. These WT datasets also recapitulated the brain 

dynamics across the neuronal population that was reported and characterized previously 

using principal components (PC) analysis (Kato et al., 2015): A 3-D visualization of the 

first 3 PCs on the time derivatives of neuronal activity traces (see Methods) revealed a 

cyclical manifold where the time evolution of brain states can be observed, and the 

branches of this manifold represent different command states of the animal (Fig.4.1. D). 

The majority of newly identified neurons within the tail ganglia and the posterior part of 

the ventral cord mainly contributed to the PC1 which have contributions from neurons 

implicated in forward and backward movement. To further investigate how population 

Figure 4.1 Experimental setup for whole-brain head and tail imaging. 
(A) Top: Phase-contrast image of an immobilized worm inside the microfluidic device. Bottom: Maximum 
intensity projection of a representative sample recorded under constant conditions. 
(B) A representative 18-min-long whole-brain imaging recording from WT worms, shown as heat map of 
fluorescence (DF/F0) time series of all detected neurons (154 segmented neurons, one neuron per row, 
sorted by neuronal activity levels). 
(C)  Maximum intensity projection of a representative NeuroPAL line (Yemini et al., 2021) sample used 
for the confirmation of neuronal cell class identities. 
(D) Phase plots of first 3 integrated principal components (PCs) of the recording shown in panel B colored 
by seven-state brain cycle (Kato et al., 2015). Colors indicated by color key. 
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activity is structured within WT datasets, I calculated the shared dimensionality (Gurnani 

and Silver, 2021; Owen and Perry, 2009; Stringer et al., 2019) (see Methods) and 

effective dimensionality (Abbott et al., 2011) (see Methods) and found that the data 

exhibits a lower bound of 3-5 dimensions (effective dimensionality: 3.34 ± 0.43, shared 

dimensionality: 8.17 ± 1.33, Fig.4.2).  

 

Next, I generated a functional interaction map of the nervous system by calculating the 

average (n= 2-6) pairwise correlations between the activity time-series of 66 identified 

active neurons across all WT datasets (Fig.4.3 A). Hereafter I use the term ‘functional 

interaction’ to refer to such pairwise measures which potentially capture dynamical 

relationships between pairs of neurons and which may result from both direct synaptic 

signaling or indirect coupling via the network. I used agglomerative clustering to reveal 

correlated structures within the dataset that contribute to the previously characterized 

global population dynamics (Kato et al., 2015) (see Chapter 3.2.1): reversal neurons were 

clustered together to form a highly correlated structure and they are strongly anti-

correlated with the forward neurons. Plus, head motor neurons that are responsible for 

dorsal and ventral turns clustered independently. Finally, sensory neurons which exhibit 

either spontaneous fluctuations or low activity in general and other neurons that does not 

show a distinct activity pattern of activity were grouped together which generate low or 

almost no correlation values with the previously indicated clusters (Fig.4.3 A). 

Importantly there are sub-structures observed in high correlation corners in Fig.4.3 A 

which supports the effective and shared dimensionality values calculated earlier in 

Fig.4.2. The histogram of the correlation values in the average correlation matrix shows 

Figure 4.2 Dimensionality analysis of WT 
datasets.  
Left: Relationship between cross validated 
explained variance (CVEV) and number of 
population modes. Black curves indicate 
individual recordings, red circles indicate the 
changepoint in the curve’s slope, corresponding 
to shared dimensionality for the populations.  
Right: Dimensionality of WT datasets 
calculated as shared and effective. Bars and 
error bars indicate mean and standard deviation 
across 6 datasets. 
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the distribution of correlation values within the datasets and shows that the datasets 

consist of highly correlated and anti-correlated pairs (Fig 4.3. B). 

Importantly, pairwise correlations were consistent between individual WT datasets 

(Fig.4.4 A) and have low variation in general when re-analyzed with a leave-one-out 

procedure (Fig.4.4 B). Pairwise correlations were also similar when compared to 

previous studies that include only head ganglia recordings (Fig.4.5). These studies 

Figure 4.3 Functional interaction map of WT datasets. 
(A) Pearson correlation matrix of identified neurons averaged across datasets (n=6 independent recordings 
of different worms). Correlation coefficients indicated by color key. Neurons are grouped according to 
hierarchical clustering. Black cells indicate pairs that were never observed simultaneously. 
(B) Frequency distribution of average pairwise correlations for WT datasets. 
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include a different developmental stage (L4), a different genetic background (npr-1 

animals) that partly mimic wild isolates of C. elegans (De Bono and Bargmann, 1998; 

McGrath et al., 2009) and animals that were mildly or severely starved (Skora et al., 

2018) (Fig.4.5). Taken together, these results show that the global correlations under 

study are robust to different conditions, in parallel with the robustness of the actions they 

encode (Kato et al., 2015; Nichols et al., 2017; Skora et al., 2018). 

Figure 4.4 Correlation coefficients are robust among different recordings. 
(A) Scatter dot plot of correlation values of same neuronal pairs across 6 WT datasets (n=7930 pairs). rs, 
Spearman’s rank correlation coefficient. 
(B) Scatter dot plot of correlation values of neuronal pairs across 6 WT datasets and their deviation from 
the mean after a leave-one-out procedure.  
(C) Frequency histogram of the deviation from the mean for each correlation value after a leave-one-out 
procedure. 
 

Figure 4.5 Pairwise 
correlation coefficients 
are comparable with 
previous studies. 
 
Scatter dot plot of average 
correlation values of same 
neuronal pairs in this study 
vs. different conditions 
from indicated previous 
studies {Nichols,2017; 
Skora,2018}. rs, 
Spearman’s rank 
correlation coefficient. 
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4.2. Local connectivity patterns predict functional interactions  

My first observation between the connectivity of neurons and their activity patterns was 

a correlation between the degree of a neuron (see Chapter 3.4.4) and its overall activity 

level (Fig.4.6). This result suggests that neuronal activity levels are influenced by 

network interactions.  

Thus, I further examined the exact connection patterns between neurons to characterize 

their possible influence on the pairwise correlations. I first classified neuronal pairs by 

the connection patterns between only two neurons (see Methods) and tested whether this 

classification enriches functional interactions. The comparison of different connection 

patterns between neuronal pairs as well as the non-connected pairs revealed that 

connected neurons are significantly more correlated (Fig.4.7 A).  

Figure 4.6 Neurons with high in-degrees exhibit 
stronger neuronal activity levels.  
Correlation analysis between in-degrees of neurons (sum 
of total number of chemical synapses and gap junctions) 
and neuronal activity levels (RMS). rs, Spearman’s rank 
correlation coefficient. Permutation test p value estimates 
the probability that rs value was obtained by chance in 
shuffled neuron label trials.  
 

Figure 4.7 Neurons that form gap junctions are highly correlated.  
(A) Pairwise correlation grouped by dyad connection pattern. Dots show correlations of individual 
neuronal pairs, red bars indicate median with interquartile range. Asterisks indicate significance levels 
after a custom shuffle test. First column: pairs with only gap junctions. Second column: pairs with only 
unidirectional chemical synapses. Third column: non-connected pairs. 
(B) Frequency distribution of correlation values for pairs with gap junctions versus all neuron pairs. 
Permutation p value estimate the probability that absolute distance between the mean of two distributions 
was obtained by chance. 
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Furthermore, I found out that pairs connected exclusively via gap junctions significantly 

enriched high correlations compared to those connected by only chemical synapses 

(Fig.4.7 A). However, examining distributions revealed many counterexamples: non-

connected neurons with high correlations and connected neurons with low correlations 

(Fig.4.7 A). Importantly, I found that neuronal pairs with gap junctions exhibit almost 

exclusively positive correlations (Fig.4.7 B). Next, I tested whether connection strength 

(number of synapses and gap junctions) can predict the strength of pairwise correlations. 

Surprisingly I found only a very weak relationship with functional interaction; however, 

it was statistically significant when compared to random networks (see Methods) 

(Fig.4.8). Moreover, when I repeated the same analysis on a binarized connectome where 

the weights of the connections were taken out, I obtained a similar weak relationship 

with functional interaction (Spearman’s rs = 0.18 in both cases) suggesting that including 

all known information about synaptic strength does not improve when compared to a 

binarized connectome and resulted in a weak relationship with functional interaction.  

Since a fraction of neurons that does not have a direct connection exhibit high pairwise 

correlations (Fig.4.7 A) and connectivity between pairs of neurons (whether with or 

without synaptic weights) provide weak predictive power (Fig.4.8), I hypothesized that 

higher order connectivity features might play a key role at supporting neuronal 

interactions. To examine their influence, I extended the connectivity analysis to triplet 

motifs. Neuronal pairs can be connected with gap junctions and chemical synapses via 

259 configurations with a third motif member out of 98 possible triplet motif classes (see 

Methods). 247 of these configurations are observed in the C. elegans connectome 

whereas in my WT datasets I recorded the activity of all three members at least once for 

195 of them. These motifs cover 16% of all motifs within the connectome. I shortlisted 

Figure 4.8 Sum of connections is a weak 
predictor of correlations. 
Correlation analysis between pairwise correlations 
and sum of chemical synapses and gap junctions. rs, 
Spearman’s rank correlation coefficient. 
Permutation test p value estimates probability that rs 
value was obtained by chance from degree preserved 
randomized networks. 
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25 triplet motifs that significantly enriched pairwise correlations compared to matched 

controls: pairs that shared the same connectivity but were not part of the triplet motif 

(Fig.4.9 A; see Methods). I henceforth refer to these motifs as ‘significant motifs’ 

(Fig.4.9 A). A typical feature I found across these significant motifs was the presence of 

a common input to the pair (22/25 motifs, p=0.002 expected chance level, Fig.4.9 A, red 

shade). Pooling all motifs that contain a common input significantly enriched pairwise 

correlations (Fig.4.9 B), suggesting that this common feature was more relevant than any 

specific motif configuration. Therefore, I further shortlisted 10 motifs that significantly 

enrich pairwise correlations compared to the pooled set of all common-input-motifs 

(Fig.4.9 A, black box).  

Next, I checked the occurrences of the triplet motifs in the C. elegans connectome 

compared to random networks (Fig.4.10 A) and I found that many significant motifs 

were also over-represented in the connectome (13/25, p=0.052, Fig.4.9 A, blue asterisks, 

see Methods). Moreover, I analyzed the general set of over-represented and under-

Figure 4.9 A shortlist of triplet motifs and common input predict neuronal interactions. 
(A) Left, top: example significant triplet motif. Black arrow indicates chemical synapse (directed), red line 
indicates gap junctions (undirected). Left, bottom: pairwise correlations in all pairs A-C with above motif 
vs matched control. Dots show correlations of individual neuronal pairs, red bars indicate median with 
interquartile range. Significance was tested with Mann-Whitney test. Right: list of all significant triplet 
motifs. Red shades indicate motifs where B is a common input to A-C. Black box indicates the motifs that 
predict significantly higher correlations than the combined set of all common input motifs. Blue asterisks 
indicate motifs that are over-represented in the connectome compared to random networks. 
(B) Top: schematic showing a source of common input within the triplet motifs. Bottom: Pairwise 
correlations within triplet motifs grouped by motifs with (n=103) and without (n=156) common input (CI). 
Dots show correlations of individual neuronal pairs, red bars indicate median with interquartile range. 
Asterisks indicate significance level after a custom shuffle test. 
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represented set of motifs within the connectome to find out that over-represented motifs 

have significantly higher correlation values (Fig.4.10 B) which further suggests a 

Figure 4.10 Over-represented triplet connectivity motifs have a functional role in the network. 
(A) The ratio of the triplet connectivity motifs compared to the mean of a random network ensemble 
(n=105). Blue squares indicate the occurrence of motifs in the C. elegans connectome and red crosses 
indicate occurrences in randomized networks. Black and green asterisks indicate over-represented and 
under-represented motifs after single-step min p procedure for multiple hypothesis correction, 
respectively. * p < 0.05. 
(B) Pairwise correlation grouped by motif membership. Dots show correlations of individual neuronal 
pairs, red bars indicate median with interquartile range. Asterisks indicate significance levels after a 
custom shuffle test. ****, p < 0.0001; * p < 0.05, ns, not significant. Numbers in parentheses indicate 
number of individual neuron pairs in scatter plots. 
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potential functional role in the network.  

Taken together, these analyses suggest a shortlist of triplet motifs and common input, as 

important structural elements that support pairwise correlations between neurons by 

recruiting them to global activity patterns that are observed in whole-brain imaging 

datasets. Importantly, both could account for functional interactions between 

unconnected pairs.  

4.3. Neuronal identity and input similarities predict neuronal interactions 

The nervous system of C. elegans is bilaterally symmetric and majority of the neuron 

classes are present as symmetric left and right (L-R) pairs (Hobert et al., 2002) (Fig.4.11 

A). I found that within my datasets these L-R pairs are highly correlated (Fig.4.11 B) and 

exhibit solely positive correlations (Fig.4.11 C). Critically, L-R pairs constitute less than 

1% of all connected neuronal pairs in my datasets (n=20 vs. n=2050), suggesting that 

neuronal cell class identity alone cannot explain all strong correlations. Therefore, I set 

out to characterize the connectivity features that are hallmarks of L-R pairs to investigate 

whether such features might predict strong functional interactions in general. L-R pairs 

are more likely to form a gap junction (43% compared to the rest of the network 1%, 

p<10-5 expected chance level) and as shown in the previous section, gap junctions were 

among the best direct connectivity features in predicting functional interaction (Fig.4.7).  

 

Figure 4.11 Pairs of the same class ID are amongst the most correlated neurons. 
(A) Schematic showing left-right pair of the same neuron class.  
(B) Pairwise correlations grouped by left-right pairs versus all remaining pairs in the network. Dots show 
correlations of individual neuronal pairs, red bars indicate median with interquartile range. Significance was 
tested with a custom shuffle test.  
(C) Frequency distribution of correlation values for left-right pairs versus remaining pairs. Permutation p 
value estimate the probability that absolute distance between the mean of two distributions was obtained by 
chance. For all tests in this Figure: ****, p < 0.0001; ***, p < 0.001; ** p < 0.01. Numbers in parentheses 
indicate number of individual neuron pairs in scatter plots. 
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Besides by position and morphology, cell class identities were previously defined by 

sharing synaptic partners (Hobert et al., 2002; White et al., 1986), which can be 

quantified with primary (1°) input similarity, a measure which captures the fraction of 

shared inputs between neuronal pairs by calculating the similarity between the sets of 

presynaptic neurons (Fig.4.12 A). I found out that 1° input similarity is high among L-R 

pairs; however, all remaining pairs exhibited a skewed distribution (Fig.4.12 B) 

indicating that a subset of all pairwise neuronal combinations also shares similar input 

connectivities. Enrichment of input similarities in L-R pairs and the presence of a 

common input in the significant motifs both point to the influence of shared inputs as an 

important source of pairwise correlations. Consistent with this view, I found that 1° input 

similarity across all pairs was a better predictor of functional interaction in comparison 

to direct connectivity (Fig.4.12 C versus Fig.4.8). Next, I extended the input similarity 

analysis to the secondary (2°) input layer, which measures how similar the two larger 

network neighborhoods are upstream of each neuronal pair (Fig.4.12 D). Large fractions 

of both L-R pairs as well as all neuronal pairs exhibited high 2° input similarities 

(Fig.4.12 E). Importantly, a common 2° input does not necessarily require the presence 

of a 1° common input (Fig.4.12 D). Strikingly, I found out that 2° input similarity forms 

the best predictor of functional interaction in this study (Fig.4.12 F).  

Figure 4.12 . Higher order connectivity measures and input similarities predict neuronal interactions. 
(A,D) Diagrams depicting higher order connectivity features used for structure function predictions.  
(B,E) Frequency histograms of connectivity exhibited by left-right and all pairs.  
(C,F) Correlation analysis between pairwise correlations and indicated connectivity feature. rs, Spearman’s 
rank correlation coefficient. Permutation test p values indicate probability that rs is found in degree preserved 
randomized networks. 
(A-C) 1° input similarity (cosine distance between 1° input vectors). (D-F) 2° input similarity (cosine distance 
between 2° input vectors). 
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In order to find out whether input similarity measures selectively enrich neuron pairs 

with similar activity patterns, I repeated the analyses by restricting it to only one neuron 

and all its combinations within the datasets (e.g. AVAL vs all neurons). I found out that 

the predictability of 1° and 2° input similarities do not form high and low PC weight 

clusters (i.e the contribution of a neuron to the global population dynamics) but found 

distributed across a wide range (Fig.4.13).  

Moreover, this predictability was also at comparable levels when only the residual 

activity of neurons was used which lack the dominant first few PC modes (Fig.4.14) 

indicating that these results do not depend on the activity pattern which is captured by 

the first PC but valid for all the activity patterns captured in my recordings.  

Figure 4.13 Structure-function relationships are comparable across different subsets of neurons. 
Scatter dot plot of structure-function relationships calculated when using a single neuron and only it’s 
corresponding pairs (e.g. AVAL means only AVAL and 65 more neurons -all it’s combinations within 
Fig.4.3.A- are used to calculate that Rs value) versus that neurons summed absolute PC1 and PC2 weight. 
Neuron names are indicated by text. rs, Spearman’s rank correlation coefficient. Left: 1° input similarity 
is used as the anatomical measure. Right: 2° input similarity is used as the anatomical measure. 

 

Figure 4.14 Prediction of input similarities does not depend on the first PC mode. 
Structure-function relationship calculated from residual activity of neurons versus number of removed PC 
modes for residual activity calculation. Red lines indicate the Rs values in Fig.3C,F. Left: 1° input similarity 
is used as the anatomical measure. Right: 2° input similarity is used as the anatomical measure. 



Results  
 

  

45 

Finally, I set out to investigate input similarities across the connectome. When the 

connection matrix is transformed into pairwise 1° and 2° input similarity matrices it 

produced increasingly dense representations of connectivity (Figs.4.15). I also found a 

similar effect in random networks (Fig. 4.16 C,D). However, in the C. elegans 

connectome, both 1° and 2° input similarities are under-represented among sensory 

neurons (Fig.4.16 A,B) and over-represented not only among L-R pairs (Fig.4.12 B,E) 

but also among interneurons and most strongly among motorneurons (Fig. 4.16 A,B).  

All of these results suggest that both 1° and 2° input similarities might promote neuronal 

functions specific to neuronal cell types and might be evolved under selective pressure.  

 
Figure 4.15 Input similarity matrices produced dense representations of connectivity. 
Connectivity and correlation matrices. Top, left: Direct connectivity. Top, right:  1° input similarity. Bottom, 
left: 2° input similarity. Bottom, right: Absolute average correlation matrix. All Matrices have the same 
neuron order, and neurons are sorted like in Fig.4.3 A. Values indicated by color key. 
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4.4. Systematic search for structure-function relationships 

In the previous section, I found connectivity measures - generalized from L-R pairs- that 

can predict pairwise correlations in the connectome. Next, I extended this approach and 

systematically searched for structure-function relationships across a parameter space 

with the use of other measures both for pairwise activity relationships and for 

connectivity features. Apart from the correlation which was the main method of 

measuring functional interactions between neurons throughout this study, I also 

examined i) covariance to include information from signal amplitudes; ii) peak cross 

correlation to account for possible time lags between neurons, iii) mutual information to 

test the contribution of nonlinear interactions and iv) covariogram analysis to have an 

asymmetric measure of functional interactions which discretizes the data and is therefore 

insensitive to the shape of calcium signals (Brody, 1999; Kaplan et al., 2020). To capture 

interactions on fast and longer timescales I used either time-derivatives or original 

neuronal activity traces as inputs to these measures, respectively. Importantly, time-

derivatives were previously shown to be more informative on decoding behavioural 

metrics (Kato et al., 2015). I examined features of connectivities that ranged from direct 

connectivity measures to higher-order connectivity patterns (sum of inverse shortest 

paths, 1° and 2° input similarities) with the combination of using weighted and 

unweighted matrices as inputs to these transformations (Fig.4.17). Recently, the C. 

elegans connectome was suggested to contain a significant portion of variable 

Figure 4.16 Exploration of input similarities across the connectome and random-networks.  
(A-B) Frequency histograms for 1° and 2° input similarities (cosine distance) in the C. elegans 
connectome. First column: all pairs in the network, n = 38781. Second column: pairs between sensory 
neurons, n = 3655. Third column: pairs between interneurons, n = 2556. Fourth column: pairs between 
motorneurons, n = 7021.   
(C-D) Frequency histograms for 1° and 2° input similarities of all pairs in randomized networks. 
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connections (Witvliet et al., 2020). In order to account for this, I included additional 

control networks with partially randomized connections (see Methods).  

Figure 4.17 Systematic survey of structure-function relationships. 
(A) Columns: connectivity metrics. Normalized and absolute means cosine distance and vector dot product 
of vector inputs, respectively. Rows: functional interaction metrics (ΔF, change in fluorescence; dΔF / dt; 
time derivative of change in fluorescence). rs indicates Spearman’s rank correlation coefficients also 
indicated by color key. Permutation test p values (Bonferroni adjusted) indicating probability that ≥ rs 
value was found in degree preserved randomized networks. Raw p values for various random networks 
are shown in Fig.S4. Percentages indicate the maximum range of variability in the connectome that is 
tolerated to obtain a result not significantly different (see Methods). 
(B) Columns: connectivity metrics. Rows functional interaction metrics (ΔF, change in fluorescence; dΔF 
/ dt; time derivative of change in fluorescence). 4 entries in each cell show raw p values for permutation 
test indicating probability that ≥ rs value in panel A of the corresponding cell was found in 4 different 
randomized networks. Top, left: totally randomized networks. Top, right: degree preserved randomized 
networks (also used in panel A). Bottom, left: degree, reciprocal connections and gap junction likelihood 
preserved randomized networks. Bottom, right: rich-club curve preserved networks. +, p < 10-5. 
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All of the structure-function analyses generated highly significant results which cannot 

be recapitulated in various versions of random-networks that preserve certain features of 

the connectome (Fig.4.17). Degree distribution is a key feature of the connectome that 

accounts for the resilience of the network, reciprocal connectivity ratio and gap junction 

likelihood of the connectome must be accounted while combining the gap junction and 

chemical synapse networks to test the effect of higher-order connectivity features in the 

combined network and preservation of rich-club organization ensures the high 

interconnectivity of the network hubs; thus, these different random networks which have 

various features serve as stringent controls (see Methods). Importantly, the results were 

highly robust to randomization carrying ≥10%, most of them even ≥20% shuffled 

synapses (Fig.4.17). These two observations support the notion that the C. elegans 

connectome is a highly non-random network (Varshney et al., 2011), and show that my 

results are robust to annotation errors and possible inter-individual differences (Witvliet 

et al., 2020). 

 

Across all measurements I did not find a pair of measures that particularly stands out in 

making the best structure-function prediction, but most informative and key to this study 

were the general trends I discovered: I found that neuron activity traces and their time-

derivatives generated similar results, suggesting the predictive power of the connectome 

applies to both longer-term interactions and fast fluctuations. Non-linear methods yielded 

similar results to linear methods and importantly, covariogram analysis, the only 

approach that contain a directional interaction map, did not outperform. Furthermore, 

covariance generally outperformed correlation, suggesting that signal magnitudes are 

also important. On the structural side, using weighted or unweighted connectivity 

matrices generated similar results. Moreover, normalized input similarities (cosine 

similarity) yielded similar results compared to the total count of common inputs. These 

results were surprising and point out the importance of network topology and its 

sufficiency at making structure-function predictions. Quantities such as connection 

strength and gross amount of common input surprisingly do not add information to these 

predictions. Finally, higher-order connectivity measures generally outperformed lower-

order or direct connectivity measures, indicating that indirect coupling via the network 

has a strong contribution to functional interactions.  
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4.5.  In silico perturbations suggest determinant network hubs  

In the previous sections I delineated structure-function relationships using the WT 

datasets and in the next sections I sought to experimentally test these by using genetic 

neuronal inhibition tools. First, I performed a systematic in silico perturbation screen in 

order to narrow down the best targets for this approach. I systematically removed 1 to 4 

neuron classes from the network and then calculated the effects of these perturbations 

(see Methods for details). Importantly, these perturbations do not affect direct 

connectivity between the remaining pairs of neurons and therefore selectively target only 

higher order connectivity features. I observed that the removal of single or up to 4 classes 

of neurons, in the vast majority of instances, did not reveal any substantial effect on path-

lengths, 1°- or 2° input similarity (Fig.4.18) which indicates robustness of network 

structure. However, upon removal of network hubs, the effects on network structure 

strikingly increased, particularly with the combinatorial removal of 4 hub classes 

(Fig.4.18).  

In these analyses hub neurons were identified by rich-club membership (Towlson et al., 

2013) which is calculated from the combined network of chemical and gap junction 

connections (Fig.4.19).  

 

Figure 4.18 In silico perturbations reveal that network hubs are critical for the network. 
Effect of in silico perturbations on mean 1° input similarity, 2° input similarity and sum of inverse 
shortest path. Violin plots indicate distributions of effects from all single neuron class removals (n=187); 
all hub class removals (n=14); random quadruple removals of any neuron classes (n=6x106); and 
removals of all quadruple combination of hub classes (n=1001). Red dots indicate median, vertical grey 
lines within the violin plots indicate interquartile ranges. Vertical dashed lines show values for intact 
connectome and individual perturbations as indicated. 
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Next, I extended the perturbation screen to a larger set of connectivity measures (Rubinov 

and Sporns, 2010) (see Chapter 3.4) (Fig.4.20) and the effects of these perturbations were 

analyzed by PCA. PCA revealed that a large amount of variance of the effect on 

connectivity measures (67%) could be explained by the first PC, followed by only 10% 

and 7% contributed from PC2-3 (Fig.4.20).  

Interestingly, PC1 exhibited a flat spectrum of eigenvalues (Fig.4.20) which suggests 

that connectivity features are all affected by neuronal perturbations to a similar extent 

and in a correlated fashion. In other words, it is not possible to selectively disrupt specific 

features such as path-lengths or input similarities in the network while leaving other 

features intact. Nevertheless, strong perturbations on network measures were largely due 

to the removal of multiple hub neurons (Fig.4.21) corroborating their key-role. 

Therefore, I investigated the contribution of hub neurons to the higher order connectivity 

motifs that were found to make strong structure-function predictions. Hub neurons 

constitute only 9% of the neurons within the connectome, but they form 56% and 55% 

of the gap junctions and chemical synapses, respectively. Importantly, I found that hub 

neurons were over-represented in significant triplet motifs (Fig.4.22). Furthermore, hub 

neurons were enriched sources of common 1°- or 2° input, and, as was previously shown 

(Towlson et al., 2013), contribute to short path lengths (Fig.4.23).  

Figure 4.19 Rich club organization of the 
connectome using the combined network. 
The blue line indicates the rich-club coefficient (RCC) 
of the C. elegans network (gap junctions + chemical 
synapses). Red line and shade indicate the mean RCC 
and standard deviation (SD) for 103 random graphs, 
respectively. The green line and shade indicate 
normalized RCC and SD, respectively. The vertical 
dashed line indicates the change point in the normalized 
RCC. Neurons above the threshold: AVAL/R, 
AVBL/R, PVCL/R, AVDL/R, DVA, AVEL/R, 
AIBL/R, RIAL/R, RIBL, HSNR, RIH, RIMR, AVJL, 
AVKL. 

 

Figure 4.20 Many network 
features are interdependent.  
PC weights of z-scored 
differences of 12 graph 
theoretical measures in 
perturbed networks vs. intact 
connectome. The variance 
explained by the PCs are 
indicated in the x axes. 
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Figure 4.20 Rich-club neurons are enriched in significant triplet motifs. 
Top: An example triplet motif. Black arrow indicates chemical synapse (directed), red line indicates gap 
junctions (undirected).  
Bottom: Quantification of the rich club ratio (RCR) for neuron B (third neuron) of corresponding motif 
groups. Permutation test p value estimates probability that RCR was obtained by chance in motif ID 
shuffled 105 trials.  
 

Figure 4.19 In silico perturbations suggest important network hubs that are critical for many 
network features. 
Left: heat scatter plot of all in silico perturbations containing single, double, triple and quadruple neuron 
class removals in PC1 vs PC2 space (top) and in PC1 vs PC3 space (bottom). Black dots indicate the value 
of intact connectome. Right: Red dots indicate quadruple neuron class removals of rich-club neurons. 
Black dots indicate quadruple neuron class removals of non-rich club neurons. Green dot indicates 
AVB+RIB+AIB perturbation. Magenta dot indicates AVA+AVE+RIM+PVC perturbation. 
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It was previously shown that hub neurons interconnect the modular and segregated 

communities of the network (Pan et al., 2010; Sohn et al., 2011; Towlson et al., 2013). 

To this end, I tested whether module membership (see Chapter 3.4.1) could make 

structure-function predictions and found out that pairwise correlations did not differ 

within versus across modules (Fig.4.24). This result is in parallel with the notion that 

correlated brain dynamics in my experimental conditions incorporate primary sensory 

interneurons, command interneurons and motor neurons (Kato et al., 2015) which should 

span all the modules found in refs. (Pan et al., 2010; Sohn et al., 2011). In conclusion, 

these analyses show that network hubs are crucial for the abundance of triplet motifs, 

higher order connectivity features as well as for the overall topology of the C. elegans 

connectome.  

Figure 4.21 Network hubs are the top contributors of input similarities. 
Top: Top 50 neurons’ occurrences as the source neurons for 1° (top) and 2° (middle) input. Rich club 
neurons are indicated by red bars. Bottom: Betweenness centrality values for the top 50 neurons in the 
network. Rich club neurons are indicated by red bars. 
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4.6. Disrupting network hubs decreases global correlations  

The results from the previous sections showed that individual connectivity features 

included in my analyses are largely interdependent and thus cannot be manipulated in a 

selective manner. On the other hand, the same results led to a prediction: I showed 

previously that hub architecture of the neuronal network supports many of connectivity 

features that make significant structure-function predictions. Therefore, the hub 

architecture is likely to be required for globally synchronized neuronal dynamics. To test 

this prediction, I sought to inhibit multiple hub neurons experimentally using histamine 

gated chloride (HisCl) channels suitable for selective and transient inhibition (Pokala et 

al., 2014) (see Chapter 3.7).  

 

After surveying available genetic driver combinations, I decided on two non-overlapping 

sets of hub neurons to target that have different organizational features. First combination 

contains AVA-AVE-RIM-PVC neurons. Here, three neurons are active during backward 

movement motor commands (AVA, AVE, RIM) and one neuron is the command 

interneuron of the forward movement circuit (PVC) (Chalfie et al., 1985; Gordus et al., 

2015; Gray et al., 2005; Kato et al., 2015; Li et al., 2014) (see Chapter 3.7). Second 

Figure 4.22 Community structure cannot predict correlations in the network. 
Left: Unweighted connectivity matrix of the C. elegans connectome sorted by identified communities.  
Middle: Pearson correlation matrix of identified neurons averaged across datasets re-sorted by identified 
communities in (Sohn et al., 2011) annotated by different colors (n=6 independent recordings of different 
worms). Correlation coefficients indicated by color key. Black boxes indicate pairs that are never observed 
simultaneously.  
Right: Pairwise correlation grouped as within-communities and between-communities. L-R pairs are 
excluded from the analysis. Dots show correlations of individual neuronal pairs, red bars indicate median 
with interquartile range. Comparison was made with a custom shuffle test (Methods). ns, not significant. 
Numbers in parentheses indicate number of individual neuron pairs in scatter plots. 
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combination encompasses AVB-RIB-AIB neurons involved in forward movement motor 

command (AVB), forward movement and forward-to-turn transition (RIB) and backward 

movement and backward-to-turn transition (AIB) (Chalfie et al., 1985; Gordus et al., 

2015; Gray et al., 2005; Kato et al., 2015; Li et al., 2014) (see Chapter 3.7). These two 

combinations all contain network hubs and mainly target one of the two main modules 

within the network: backward and forward movement circuit, respectively. Importantly, 

in silico removal of both combinations exhibited drastic decrease of higher-order 

similarity measures and short path-lengths in the network in my systematic perturbation 

screen (Fig.4.18). Furthermore, these two combinations generated high values when 

projected onto PC1 which pools the effect on many measures (Fig.4.21) providing a 

severe perturbation on various network measures.   

 

First, I observed that upon histamine application targeted neurons in both lines were 

inhibited effectively (Fig.4.25). Moreover, animals showed expected selective effects in 

behavioural experiment assays: AVA-AVE-RIM-PVC inhibition led to a complete 

abolishment of backward movement in worms while speed of AVB-RIB-AIB inhibited 

worms drastically decreased (Fig.4.26).  

Figure 4.23 Neuronal activity levels of the multiple hub inhibition lines. 
(A-B) Left: Neuronal activity levels (RMS) of identified neurons in WT vs. inhibition datasets. Neurons 
are sorted by WT values in descending order. Error bars indicate SEM. Comparisons were made by t-test. 
*p < 0.05, **p < 0.01, ***p < 0.001. Right: Representative examples of 18-min-long whole-brain 
imaging recordings from indicated inhibition lines, shown as heat maps of fluorescence (DF/F0) time 
series of all detected neurons (one neuron per row, sorted by neuronal activity levels). 
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These results were consistent with the targeting of backward or forward movement 

circuit and roles of the targeted neurons in these circuits. However, the results of the 

behaviour experiments might have two different origins. First, the command 

interneurons AVA and AVB which form a bottleneck between the head ganglia and the 

body motor neurons were inhibited in two different combinations; thus, the backward or 

the forward motor command could not be relayed to the motor neurons. In other words, 

the backward or forward motor command could be generated in the nervous system but 

because of the inability to relay it to the motor neurons it could not be executed (Chalfie 

et al., 1985; Kawano et al., 2011; Wen et al., 2012). On the other hand, the backward or 

forward movement circuit might have been severely perturbed via the disruption of 

network hubs; thus, the backward or forward network activity could not be properly 

established due to the inability of recruitment of neurons or the maintenance of 

coordination between them.  

 

In order to reveal the origin of this effect, I performed whole-brain imaging experiments 

with these inhibition lines. In nervous system wide imaging experiments, I observed a 

drastic decrease in the global pairwise correlations in both multiple hub inhibition lines 

(Fig.4.27 A,B) confirming that the results of behavioural experiments were not only an 

execution defect but a reflection of a severe loss of coordination within the network 

dynamics. These results were in parallel with the results of the in silico perturbation 

screen where I observed a severe perturbation effect (reflected as high values on PC1) in 

both combinations (Fig.4.21). Next, I checked the global neuronal activity levels of the 

multi-hub inhibition lines to further understand the reason of the loss of global 

Figure 4.24 Behavioural analysis of the multiple hub inhibition lines. 
(A-B) Quantification of population behavioural assays of the indicated inhibition line without (Ctrl) or 
with (+His) histamine treatment. Left: forward speed. Right: reversal events per second. Each data point 
represents a single assay, n = 20–25 worms per assay. Horizontal lines and error bars show mean and 
SD, respectively. Asterisks indicate significance levels after Mann-Whitney test. 
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coordination. I found out that global activity levels in AVA-AVE-RIM-PVC inhibition 

were similar to WT datasets whereas AVB-RIB-AIB targeted animals exhibited a 

significant reduction (Fig.4.27 C,D).  

Retainment of global activity levels in AVA-AVE-RIM-PVC targeted animals was 

striking: while neurons remained vigorously active, most neurons became asynchronous 

with each other. Likewise, brain dynamics in AVB-RIB-AIB targeted animals did not 

became quiescent but exhibited frequent yet uncoordinated fluctuations among active 

neurons (Fig.4.27 D, right, Fig.4.25 B, right).  

 

An important control for the results of multiple hub inhibition lines was figuring out the 

contribution of the single neuron classes within these combinations. In order to test this, 

I generated different inhibition lines targeting the single neuron classes within the multi-

Figure 4.25 Disruption of multiple hub neurons affects network architecture and neuronal 
population dynamics. 
(A-B) Average correlation matrices from network hub inhibition lines, n=5 independent recordings for 
each inhibition line. Correlation coefficients indicated by color key. Neurons are sorted like in Fig.4.3. 
See also Fig.4.3 A. 
(C-D,) Left panels: Frequency distribution of average pairwise correlations for WT and indicated 
inhibition lines. Permutation test p values estimate the probability that KS distance between two 
distributions was obtained by chance. Right panels: Cumulative frequency distributions of neuronal 
activity levels (RMS) for WT and indicated inhibition lines. Permutation p values estimate the probability 
that KS distance between two distributions was obtained by chance. n, numbers of independent recordings 
from different worms. Vertical dashed lines indicate the average RMS value of all inhibited neurons in 
this study providing a guideline for non-active neurons. 
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hub combinations and performed the same experiments and analyses. In all single cell 

inhibition lines, I observed the expected selective effects in behavioural experiment 

assays (Fig.4.28 A-G). Moreover, all of the targeted neurons were inhibited effectively 

(Fig.4.29 and Fig.4.30). The only neuron class that did not exhibit calcium transients in 

my unstimulated experimental setup was PVC which was consistent with the previous 

studies (Li et al., 2011). Therefore, I performed an additional type of behaviour assay 

with the PVC inhibition line and indirectly confirmed the inhibitory effect of HisCl in 

these neurons with the loss of posterior touch responses (Fig.4.28 H).  
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Figure 4.26 Behavioural analysis of the single hub inhibition lines. 
(A-G) Quantification of population behavioural assays of the indicated inhibition line without (Ctrl) or with 
(+His) histamine treatment. Left: forward speed. Right: reversal events per second. Each data point represents 
a single assay, n = 20–25 worms per assay. Horizontal lines and error bars show mean and SD, respectively. 
Asterisks indicate significance levels after Mann-Whitney test. 
(H) Response of WT worms and indicated inhibition lines without (Ctrl) and with (+His) histamine treatment 
in posterior harsh touch assays. Each data point represents a single assay, n = 5 worms per assay. Horizontal 
lines and error bars show mean and SD, respectively. Asterisks indicate significance levels after Kruskal-Wallis 
test with Dunn’s multiple-comparisons test. For all tests in this Figure: ****, p < 0.0001; ***, p < 0.001; ** p 
< 0.01, ns, not significant. 

Figure 4.29 Neuronal activity levels of single hub inhibition lines within the AVA-AVE-RIM-PVC 
combination. 
(A-D) Left: Neuronal activity levels (RMS) of identified neurons in WT vs. inhibition datasets. Neurons 
are sorted by WT values in descending order. Error bars indicate SEM. Comparisons were made by t-
test. *p < 0.05, **p < 0.01, ***p < 0.001. Right: Representative examples of 18-min-long whole-brain 
imaging recordings from indicated inhibition lines, shown as heat maps of fluorescence (DF/F0) time 
series of all detected neurons (one neuron per row, sorted by neuronal activity levels). 
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In nervous system wide imaging experiments, single-hub-neuron targeted animals 

exhibited normal global pair-wise correlations, not significantly different from WT 

animals (Fig.4.31 A-D and Fig.4.32 A-C). Importantly, global neuronal activity levels 

were not significantly affected in all single hub neuron inhibition lines (Fig.4.31 E-H 

and Fig.4.32 D-F). These results demonstrated that brain dynamics can only be globally 

disrupted with multiple hub neuron perturbations, as opposed to single cell manipulations 

where I observed the effect of perturbation confined on the correlation matrices and 

localized to a single cluster (Fig.4.31 A-D and Fig.4.32 A-C, quantified in Fig.4.31 E-

H, Fig.4.32 D-F and Fig.4.33), suggesting that hub architecture supports the 

synchronization of global network dynamics. Moreover, the retainment of uncoordinated 

activity fluctuations in both multi-hub targeted animals precludes the possibility that I 

targeted specific drivers or pace-makers of the network and suggests that the detrimental 

effect on pairwise correlations was rather due to the loss of indirect couplings via the 

network. 

Figure 4.27 Neuronal activity levels of single hub inhibition lines within the AVB-RIB-AIB 
combination. 
(A-C) Left: Neuronal activity levels (RMS) of identified neurons in WT vs. inhibition datasets. Neurons 
are sorted by WT values in descending order. Error bars indicate SEM. Comparisons were made by t-test. 
*p < 0.05, **p < 0.01, ***p < 0.001. Right: Representative examples of 18-min-long whole-brain imaging 
recordings from indicated inhibition lines, shown as heat maps of fluorescence (DF/F0) time series of all 
detected neurons (one neuron per row, sorted by neuronal activity levels). 
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Figure 4.28 Global neuronal population dynamics are robust to single hub control perturbations 
within AVA-AVE-RIM-PVC combination. 
(A-D) Average correlation matrices from single hub inhibition control lines, n=5 independent recordings 
for each line except AVE inhibition line (n=4). Correlation coefficients indicated by color key. Neurons 
are sorted like in Fig.4.3 A. See also Fig.4.3 A. 
(E-H) Left panels: Frequency distribution of average pairwise correlations for WT and indicated inhibition 
lines. Permutation test p values estimate the probability that KS distance between two distributions was 
obtained by chance. Right panels: Cumulative frequency distributions of neuronal activity levels (RMS) 
for WT and indicated inhibition lines. Permutation p values estimate the probability that KS distance 
between two distributions was obtained by chance. n, numbers of independent recordings from different 
worms. Vertical dashed lines indicate the average RMS value of all inhibited neurons in this study 
providing a guideline for non-active neurons. 



Results  
 

  

61 

Figure 4.29 Global neuronal population dynamics are robust to single hub control perturbations 
within AVB-RIB-AIB combination. 
(A-C) Average correlation matrices from single hub inhibition control lines, n=5 independent recordings 
for each line except AVB inhibition line(n=4). Correlation coefficients indicated by color key. Neurons 
are sorted like in Fig.4.3 A. See also Fig.4.3 A. 
(D-F) Left panels: Frequency distribution of average pairwise correlations for WT and indicated 
inhibition lines. Permutation test p values estimate the probability that KS distance between two 
distributions was obtained by chance. Right panels: Cumulative frequency distributions of neuronal 
activity levels (RMS) for WT and indicated inhibition lines. Permutation p values estimate the 
probability that KS distance between two distributions was obtained by chance. n, numbers of 
independent recordings from different worms. Vertical dashed lines indicate the average RMS value of 
all inhibited neurons in this study providing a guideline for non-active neurons. 
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Finally, in single hub inhibition experiments, I observed an interesting specific effect in 

the RIM-only targeted animals where two other hub neurons AVA and AVE but not AIB 

neurons occasionally became de-coupled from network dynamics. In WT animals the 

reversal interneurons AIB, RIM, AVA and AVE are always active in synchrony and 

antagonistically to the forward interneurons (Kato et al., 2015) (see Chapter 3.7). 

However, in RIM-inhibited animals I observed that only AIB became active in nearly 

half of all switches from the forward state (Fig.4.34 A-C). This is consistent with a di-

synaptic pathway from AIB to AVA/AVE via RIM neurons (Gordus et al., 2015) 

(Fig.4.34 D), and suggests that RIM establishes coupling between AIB and the other 

interneurons within the backward movement circuit. Another observation about single 

Figure 4.30 Differential effects of the inhibition lines on backward and forward clusters. 
(A-J) Frequency distribution of average pairwise correlations for WT and indicated inhibition lines. Left, 
correlations within backward cluster; middle, correlations within forward cluster; right, correlations 
between the clusters (for cluster identification, see Methods). Permutation test p values estimate the 
probability that KS distance between two distributions was obtained by chance.  
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cell inhibition experiments were about the comparison of secondary layer interneurons 

and command interneurons.  

Figure 4.31 Effect of RIM inhibition on the backward-movement interneurons. 
(A) Number of state transitions in whole-brain recordings of WT and RIM-inhibition line (n=6 and n=5, 
respectively). Dots show individual recordings, black lines indicate means and error bars indicate SD. 
Asterisks indicate significance level after Mann-Whitney test.  ** p < 0.01. 
(B) Traces of reversal neurons and RIB (representing the forward neurons). Neuron names are indicated 
in the legend. Top: a representative WT recording. Bottom: 5 different recordings from different worms 
of RIM-inhibition line. Black arrows indicate events where AIB is active but the rest of the reversals 
neurons are not active.       

(legend continued on next page) 
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Interestingly, although both are non-significant globally, the effects of second-layer 

interneurons (RIM and RIB) were comparable (or even stronger in some cases) than the 

effects of high degree pre-motor interneurons (AVA, AVE, PVC, AVB) (Fig.4. 31) 

which have more synaptic partners and connections in the connectome, indicating that 

the removal of key connections has a more substantial effect on synchronizations than 

the removal many connections.  

4.7. Disrupting connectivity features decreases pairwise neuronal correlations 

If the contribution of hub neurons to connectivity features identified in the previous 

sections of study is indeed crucial for establishing globally synchronized brain dynamics, 

the effect of hub neuron perturbations on connectivity measures is expected to correlate 

with the effect on functional interactions. I first tested this prediction with respect to 

significant motifs. I classified the neuron pairs in the inhibition lines which are members 

of significant motifs into two groups: the ones where the third neuron in the triplet motif 

is targeted and the ones where the third neuron is unaffected (Fig.4.35 A). I observed 

that the members of intact significant motifs exhibit higher correlation values compared 

to the control pairs (neuron pairs that are not a member of any motif, see Methods) and 

strikingly, this enrichment was lost in the disrupted motifs (Fig.4.35 B,D). This result 

was observed in both inhibition lines where different sets of motifs are targeted (Fig.4.35 

B,D) supporting that the effect does not depend on the targeted neurons but rather on the 

underlying triplet motifs. Critically, intact motifs within the inhibition lines exhibited 

significantly lower pairwise correlations compared to their WT counterparts (Fig.4.35 

C,E). In summary, partial retainment of correlations within intact motifs of hub 

inhibition datasets where global population dynamics is absent or largely disrupted 

indicate that connectivity triplet motifs are -although partial- responsible for the pairwise 

correlations and their disruption cannot entirely account for the decline in global network 

synchronies upon hub-neuron inhibition. As expected, other higher order connectivity 

features -also delineated in the previous sections- must have a contribution. 

 

(C) Colored bar plot of different percentages of reversal states. Black indicates reversals where AVA 
and AIB neurons are both active. Grey indicates brain states where AVA and rest of the reversal 
neurons are not active but AIB is active.  
(D) Neuronal circuit of AIB-RIM-AVA-AVE neuron classes. Black arrow indicates chemical synapse 
(directed), red line indicates gap junctions (undirected). The width of the lines indicates strength of the 
connection: the number of synapses / gap junctions are indicated next to the connection. 
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Therefore, I analyzed to what extent the reduction of path lengths and input similarities 

in the perturbation lines can explain the global decrease in functional interactions. First, 

I calculated how strong path lengths, 1° and 2° input similarities were changed in both 

perturbation lines compared to WT and classified neuron pairs into two groups: perturbed 

versus unaffected (Fig.4.36 A-C). I found that neuronal pairs perturbed in these measures 

exhibited decreased pairwise correlations, while unaffected pairs retained WT 

correlation values (Fig.4.37). Although 2° input similarity is a better predictor, the 

perturbation of both input similarity measures showed a similar effect on correlations. 

Importantly, a significant decrease is observed in both metrics indicating that the 

predictive power of 1° and 2° input similarities is retained in datasets with disrupted 

global patterned activity which further supports their role in structure-function 

relationships within the nervous system. In order to test whether these results were robust 

Figure 4.32 Significant triplet motifs partially explain the decrease in global correlation levels.  
(A) Schematic illustrating comparisons made in panels below using a single example motif. Black box: 
control group with the neuron pairs that do not belong to any triplet motif; red box: neuron pairs that 
belong to significant motifs and the third neuron (depicted with B) targeted in inhibition line; or blue box: 
left intact.  
(B,D) Pairwise correlations grouped by control, targeted motifs and intact motifs. Dots show correlations 
of individual neuronal pairs, red bars indicate median with interquartile range. Significance was tested 
with a custom shuffle test.  
(C,E) Pairwise correlations of intact motifs in WT vs. inhibition lines. Dots show correlations of 
individual neuronal pairs, red bars indicate median with interquartile range. Significance was tested with 
a custom shuffle test. Numbers in parentheses indicate number of individual neuron pairs in scatter plots. 
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to the arbitrary cutoff I had to make in order to classify perturbed versus unperturbed 

pairs, I repeated the analysis with different cutoffs and all of them yielded similar results 

(Fig.4.36 A-C). Since genetic drivers cover typically both the left and the right member 

of each cell-class, my experimental perturbations were symmetric: both members of each 

class were inhibited. Thus, these perturbations did not change the direct connections and 

input similarities between L-R pairs (Fig.4.36 D-F). This feature of my experimental 

perturbation strategy therefore served as another internal control. Consistently, I 

observed that L-R pairs retained high pairwise correlation values in multi-hub targeted 

animals (Fig.4.38). 

 

In summary, loss of connectivity motifs as well as disrupting short path lengths and input 

similarities upon inhibiting multiple hub neurons likely account for the global breakdown 

in global correlations. 

Figure 4.33 Different pairs are selectively perturbed in the network in inhibition lines. 
(A-C) Top: frequency histograms of the percent change (WT vs. inhibition line) for indicated connectivity 
measure. Red lines indicate complementary cumulative distribution. Bottom: Permutation p values 
estimate the probability that KS distance between two distributions in Fig.4.35 was obtained in degree 
preserved randomized networks for indicated cutoff defining perturbed vs control pairs. (A) Sum of 
inverse shortest paths. (B) 1° input similarity (C) 2° input similarity. 
(D-F) Frequency histograms of the percent change (WT vs inhibition line) for connectivity exhibited by 
left-right and all pairs. Red lines indicate cumulative distribution. (D) Sum of inverse shortest paths. (E) 
1° input similarity (F) 2° input similarity. 
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Figure 4.37 Disruptions of connectivity features correlate with impact on pairwise correlations. 
Frequency distributions of absolute pairwise correlations from WT (blue) vs. pooled multiple hub 
inhibition lines (orange). Data were divided into neuronal pairs with the indicated connectivity feature 
perturbed by more than 10% (top panels, perturbed pairs) versus remainder (bottom panels, unaffected 
pairs). Permutation p values estimate the probability that KS distance between two distributions was 
obtained in degree preserved randomized networks. The effect was robust to the cutoff defining perturbed 
vs. unaffected pairs, shown in Fig.4.36. For all tests in this Figure: ****, p < 0.0001; ***, p < 0.001; **, p 
< 0.01; *, p < 0.05; ns, not significant. Data from n = 5 independent recordings from each inhibition line. 
 

Figure 4.38 L-R pairs retained correlation values in multiple hub inhibition lines. 
(A-B) Pairwise correlations grouped by left-right pairs vs all remaining pairs in the network for 
indicated inhibition lines. Dots show correlations of individual neuronal pairs, red bars indicate median 
with interquartile range. Asterisks indicate significance level after a custom shuffle test. ****, p < 
0.0001. Numbers in parentheses indicate number of individual neuron pairs in scatter plots. 
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5. Discussion 

5.1. Probing the network will increase the number of observed brain states 

This thesis provides a framework for network-wide analysis of structure-activity 

relationships and the activity side of this relationship is based on the observed global 

brain dynamics in the C. elegans nervous system which were previously characterized 

(Kaplan et al., 2020; Kato et al., 2015; Schrödel et al., 2013). It is important to stress that 

these dynamics occur in sensory deprived and paralyzing experimental conditions which 

do not require movement or acute sensory stimulation. This means that they are likely 

driven intrinsically and importantly, they occur spontaneously. Thus, only a subset of all 

possible neuronal interactions in the worm brain were measured and therefore examined. 

In future studies, systematically probing the network under different functional contexts 

using many different sensory stimuli will extend observable neuronal interactions to 

cover sensory circuits. Importantly, these experiments would also enable testing the 

importance of other sensory-to-motor network motifs identified previously, but not 

covered in my activity recordings. These motifs include the “colored motifs” that 

incorporate the information of neuronal cell types and the connectivity at the same time 

(Qian et al., 2011), anatomically homogenous motifs that consist of common neighbours 

(Azulay et al., 2016) and network control principles characterized in locomotor 

behaviour of the worm (Yan et al., 2017). Furthermore, these experiments would allow 

the examination of extensive sensory feed-forward network in the C. elegans male tail 

(Jarrell et al., 2012) where community membership makes a better prediction on sensory 

evoked activity (Susoy et al., 2021). 

 

A previous study from our lab showed that interneuron activity patterns are more 

stereotypic in paralyzing conditions compared to the ones observed in freely moving 

worms (Kato et al., 2015). Furthermore, oscillation frequencies of motor-neuron 

activities were also shown to exhibit a nearly ten-fold increase in freely moving worms 

(Kaplan et al., 2020). Therefore, it is likely that in unrestrained worms a more diverse set 

of pairwise interactions could be measured, as a recent study also suggests (Hallinen et 

al., 2021). Extending my analyses to these experimental setups will be important to 

expand the structure-function relationships to the whole network and brain states in a 

similar fashion described above. 
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A recent concept in neuroscience which is termed as “dynamics on network” explores 

how a fixed structural network can give rise to various activity patterns (Bassett and 

Sporns, 2017). This is in parallel with the view of functional motifs (Sporns and Kötter, 

2004), where a single anatomical motif class that is dense in terms of connections (e.g. a 

fully connected triplet motif) can be used by the network with many different versions 

of its’ subsets in different contexts. This phenomenon is depicted in Fig.3.3. Although I 

employed a structural motif approach throughout this study to eliminate inflated motif 

statistics (see Chapter 3.4.6) and focused on the exact pattern of the network between 

neuron groups, the idea of probing the network with delivery of different sensory stimuli 

would also give an opportunity to test the “functional motif” concept (Sporns and Kötter, 

2004). 

 

On the other hand, changes in function can drive changes in structure, termed as 

“dynamics of network” (Bassett and Sporns, 2017). This term stems from the concept 

that many physical and biological systems exhibit different patterns of connections that 

transforms through time, in different situations or response to external stimuli (Bassett 

and Sporns, 2017). Here I treated the connectome as invariant between individuals; 

however, it is recently shown that a significant fraction of connections in adult worms 

are variable between individuals (Witvliet et al., 2020). The delivery of sensory stimuli 

to drive the network into different brain states would not make changes in the structure 

of the network in short time scales. However, employing different experimental 

paradigms to the worms such as entrainment to a certain stimulus for long time scales 

prior to the whole-brain recordings may provide a means to measure to which extent 

“dynamics of network” is present in the worms.  

 

Finally, there are recent efforts to bring together both concepts of “dynamics on network” 

and “dynamics of network” through examining the subsets of networks and their 

expression pattern. Similar to the structural vs. functional motif concepts of (Sporns and 

Kötter, 2004), here subsets of the network (subgraphs) are treated as entities that can be 

present overlapping in space and time but their expression pattern has temporal dynamics 

(Chai et al., 2017). This is in parallel with the recently proposed framework called “the 

dynome”, which incorporates brain connectivity, brain dynamics and biological details 

about connectivity related to its’ function (Kopell et al., 2014). Importantly, this is more 
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likely to be applicable to longer time scale changes such as the ones existing throughout 

development and cannot be captured with the current time-limit of the whole-brain 

imaging paradigm in the worms which can only span minutes to hours.  

5.2. Signed and multi-layered connectome might reveal new structure-function 
relationships 

The currently available C. elegans connectome does not include any information about 

the sign of the connections because it is not possible to determine the polarity of a 

synapse (inhibitory or excitatory) from electron micrographs of C. elegans (Varshney et 

al., 2011)and it is difficult to perform electrophysiology experiments for every possible 

synaptic couple. However, an improvement could be made by making some 

approximations. It is known in the C. elegans nervous system GABAergic neurons make 

inhibitory synapses while cholinergic and glutamatergic neurons make excitatory 

synapses (Brownlee and Fairweather, 1999) (see Chapter 3.1). Critically, there are 

exceptions to these approximations such as inhibition of AIZ neurons via cholinergic 

AIY neurons (Li et al., 2014) and inhibition of AIB neurons through glutamatergic AWC 

neurons (Chalasani et al., 2007). With the current knowledge which depends on rough 

assumptions and specific exceptions of neuronal pairs where studies are far from 

exhaustive in terms of exploring all synaptic pairs, I decided to use nonnegative values 

for the chemical synapse network throughout this thesis. However, with the new 

methodologies like optogenetic techniques and calcium imaging, the determination of 

the polarity of a synapse does not solely depend on electrophysiological methods which 

will increase the speed of acquiring knowledge about signs of all connections in the 

network. Once the complete repertoire of C. elegans neurotransmitter- and 

neuromodulator- receptors (Hobert, 2013) is characterized and mapped, it might be 

possible to extend my analyses to a signed connectome. Recently, a study took the 

advantage of available gene expression data and predicted the polarity for more than two-

thirds of the available connections with the incorporation of information about 

neurotransmitters expressed in the presynaptic neurons and receptors expressed in the 

postsynaptic neurons as well as their connectivities (Fenyves et al., 2020). Such efforts 

(and possibly similar future studies) will greatly help and accelerate the generation of a 

signed connectome. 
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On the other hand, considering the gap junction network, I treated all the connections as 

symmetric within the network. However, there are examples of rectifying gap junctions 

-connections that pass current preferentially in one direction (Marder, 2009)- such as the 

gap junctions between AVA and the A-motor neurons which only allow antidromic 

current and shown to amplify excitatory chemical transmission (Liu et al., 2017). The 

expansion of the repertoire of such studies in the future, will also transform the gap 

junction network to a more complete and not totally symmetric (undirected) network. 

With the current knowledge where only a handful examples are thoroughly examined, I 

decided to make no assumptions and treated all connections same and symmetric. 

 

Furthermore, C. elegans neurons use around 250 neuropeptides (Li and Kim, 2008) and 

these molecules can be co-released with neurotransmitters (Burnstock, 2004; Chalasani 

et al., 2010) or can initiate modifications in other cells extrasynaptically. Thus, neurons 

in the nervous system have another layer of communication on top of the already 

available synapses. Importantly, I did not take into consideration these possible 

interactions in this study; however, my analyses could be extended to the extra-synaptic 

communication networks of neuromodulators (Bentley et al., 2016). 

 

As mentioned above, both chemical synapse and gap junction networks could be 

modified, and extra-synaptic connections could also be added to the repertoire of 

networks. The analyses in this study could be applied to the ensemble of all these 

networks. However, it will also bring challenges. Here I used the combined network of 

the C. elegans connectome which incorporates the information from the gap junction and 

chemical synapse networks. This step alone expanded the number of dyad motifs from 2 

to 6 and triplet motifs from 13 to 259. Thus, the motif analyses throughout this thesis are 

restricted to include motif classes n = 2 and n = 3 (dyads and triplets). The addition of 

signs will also increase the number of motif configurations, thus providing new 

challenges. Having said that, it will also reveal whether inhibitory or excitatory motifs 

are in abundance within the connectome. Furthermore, it will reveal the possible 

enrichment locations of these signed motifs such as transitions from sensory-to-

interneurons or from inter-to-motorneurons. Recently, the C. elegans connectome was 

predicted to have excitatory-inhibitory ratio close to 4:1 (Fenyves et al., 2020) which is 

similar to other parts of brain networks such as rat hippocampus (Gulyás et al., 1999) or 
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cerebral cortex (Marom and Shahaf, 2002). It would be interesting to see how the 

distribution of signed motifs correspond to these ratios and find out the contribution of 

signed connections to signed motifs. 

5.3. Improvement of structure-function predictions via input similarities and 
symmetries  

Throughout my analyses about structure-function predictions, direct connectivity did not 

show a strong relationship with functional interaction (Fig.4.8), which is contrary to 

structure-function studies using human and rodent mesoscale projectomes (Hagmann et 

al., 2008; Huang et al., 2020). Hagmann et al. revealed a structural core within posterior 

medial and parietal cerebral cortex and found that functional interactions between the 

regions of cortex were significantly correlated to the structural connectivity patterns 

(Hagmann et al., 2008). Using mouse as a model organism Huang et al. developed a 

recent method that can combine brain-wide activity recording, connectivity mapping and 

gene expression acquisition in single animals in a high-throughput fashion (Huang et al., 

2020). This study also revealed that there is a significant correlation between connection 

strength and activity correlation values (Huang et al., 2020). Furthermore, Cossell et al. 

showed functionally the existence of rare strong synapses, embedded within many weak 

synapses, and their importance for pairwise correlations in primary visual cortex (Cossell 

et al., 2015). 

In general, weighted vs. unweighted connectivity measures performed equally well in 

predicting functional interactions.  Including all known information of synaptic strength 

did not significantly improve the rs values when compared to a binarized connectivity 

measure. This indicates that the here reported structure-function predictions can be made 

based on the network’s topology alone. Here, network topology refers to the scaffold of 

connections which is embodied by the adjacency matrix and similarities in input patterns 

which ignores connection strengths (number of synapses) and the count of common 

inputs to each pair of neurons.  

 

Surprisingly, in my analyses higher order connectivity measures such as input similarity 

showed a better performance at structure-function predictions. There might be few 

explanations for this outcome. First of all, it is possible that the number of synapses is a 

poor proxy for total synaptic strength in C. elegans (see Chapter 3.3.2). Alternatively, 
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the neurons participating in brain-wide population dynamics might be driven by higher 

order network couplings. This is consistent with my finding that similarities in network 

neighborhoods and higher-order features to be the best structure-function predictors 

(Fig.4.12).  

In densely connected networks, or in subregions of brain networks of many scales that 

contain densely interconnected regions (van den Heuvel and Sporns, 2011) every neuron 

receives multiple important inputs. Therefore, direct connections could only represent a 

subset of each neuron’s causal inputs. However, considering the higher-order 

connections, such as 1° and 2° inputs, increase the fraction of all potential inputs and 

drivers within the network. This has implications for connectome reconstructions from 

small sub-volumes in the brain, potentially omitting higher order connectivity features 

such as 2° inputs that originate in distant brain region not reconstructed. In other words, 

this result suggests that complete connectomes will be way more informative than local 

volumes because complete connectomes will provide supra-linearly more information 

than connectomes of its sub-regions. This conclusion supports the current efforts for fully 

reconstructing entire brains and nervous systems. 

On the other hand, the finding that 1˚ and 2˚ input similarities make the best structure-

function predictions support the idea that symmetric structure found in the connectome 

is of high functional relevance in enabling synchronous network states (Morone and 

Makse, 2019). The substantial improvement of 2˚ connections is supported by the two 

main populations of the connectome responsible for the forward- and backward-

movements which also show high symmetry levels (Morone and Makse, 2019). 

Interestingly, I observed an improvement of structure-function predictions when I 

extended the input similarity analysis from first 1˚ inputs to 2˚ inputs. The consideration 

of secondary layer inputs measures how similar the two network neighbourhoods are 

upstream of each neuronal pair; thus, it is consistent with the importance of symmetries 

within the network. This extension step was only done to secondary layer which already 

generated dense representation of connectivity within the network (Fig.4.15) which 

renders searching for higher orders such as third layers non-feasible for the C. elegans 

network. Having said that, it could be applied to other brain networks with larger nervous 

systems which will provide an opportunity to test the results of this study.  



Discussion  
 

  

74 

Importantly, network hubs have an important contribution to 1˚ and 2˚ input similarities. 

This raises a possibility that the improvement in the prediction of structure-function 

relationships with input similarities stems from the activity patterns of network hubs and 

their correlated partner neurons. However, the rs values in Fig.4.12 and Fig.4.17 are 

comparable across all the neuronal pairs and did not correlate with the weight of a neuron 

in the first two PCs. In other words, pairs that include high PC1/2 weight neurons were 

scattered throughout the plots in Fig.4.12 C,F and did not cluster in the upper right 

corners. This is quantified in (Fig.4.13) to rule out a possible scenario where input 

similarity metrics enrich neurons only with the same type of linear activity (which should 

be captured by the first two PC modes). Furthermore, in chapter 4.7, I experimentally 

tested and validated these results with the perturbation of multiple network hub 

inhibitons targeting a complete different set of neurons. The predictive power of 1st and 

2nd degree neurons is retained in multiple network hub inhibition datasets, where global 

correlations collapsed (Fig.4.37), hence this structure-function relationship is partially 

evident in a nervous system with global population activity lacking dominant PC modes.  

In the perturbation experiments, it is important to note that the effect on correlations of 

2° input similarity pairs is less than the effect on correlations of 1° input similarity pairs 

(Fig.4.37, top-middle and top-right histograms). Although perturbing a similar fraction 

cumulatively (red curves in Fig.4.36 A-C) the distributions of perturbations were 

different between input similarities, this in turn might account for their differential effects 

on correlations.  

5.4. Relationship between genetic identity and connectivity  

In this study I found strikingly high correlation values between L-R pairs of the same 

neuron class (Fig.4.11) indicating that genetic programs have a strong influence in 

establishing gap junction connections and symmetric structures in network 

neighborhoods. This result is consistent with the previous work in worms and mice that 

establishes strong links between genetic identity and connectivity (Barabási and 

Barabási, 2020; Huang et al., 2020). In chapter 4.7, I validated the structure-function 

relationships found in WT datasets using multiple hub inhibition lines (Fig.4.35 and 

Fig.4.37). Here, I had the opportunity to use the aforementioned highly correlated L-R 

neurons as an internal control in these multiple hub inhibition experiments because the 

genetic drivers used to transgenically express the inhibition tools (HisCl channels) cover 
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both the left and the right member of each cell-class. In other words, the delivered 

perturbations to the network were symmetric. This was quantified in Fig.4.36 D-F where 

I showed that these perturbations did not change the direct connections and input 

similarities between L-R pairs. Consistently, I observed that L-R pairs retained high 

pairwise correlation values in multiple hub inhibition lines (Fig.4.38 A-B). However, 

one can test the structure-function relationships that involve the L-R pairs via asymmetric 

perturbations. Since genetic drivers cannot be used for this reason (only exceptions 

involve sensory neurons AWC and ASE (Cochella and Hobert, 2012; Wes and 

Bargmann, 2001)), the delivery of asymmetric perturbation is only possible with non-

genetic tools such as laser ablation. Laser ablation experiments will provide a means to 

target only a single neuron within the neuron class which could be only one pair of the 

L-R pairs or only a single neuron within the motor neuron classes which have many 

members (e.g. VA neuron class consists of neurons VA1 to VA12). Symmetries and 

pseudo-symmetries were shown to be important for the formation of the circuit in the C. 

elegans connectome and especially enriched in forward and backward movement circuit 

among the motor neurons (Morone and Makse, 2019). With the laser ablation technique 

these symmetries within the network could be broken down and my studies can be 

extended to test the contribution of symmetries to the generation of synchronous activity 

patterns between the neurons. 

5.5. Temporal dynamics of neuronal inhibition methods 

Another important aspect of the genetic inhibition tools used in this study is its temporal 

control. HisCl channels allow the temporal control of the genetic inhibition to be 

triggered by the incubation of animals with histamine (Pokala et al., 2014). As a result, I 

was able to circumvent any possible defects during the development of the nervous 

system. All the animals were developed similar to the WT strains up until the point of 

histamine incubation which is only ~30 minutes prior to the whole-brain imaging 

recordings (see Methods). This was an advantage of the HisCl method. However, this 

inhibition is not acute and rely on the incubation of animals for a rather long-time 

window (~30 minutes); thus, I can only image a nervous system where the targeted 

neuron is already inhibited and a network exhibiting an already perturbed brain dynamics 

within my recordings. Therefore, the possibility of observing the very moment of 

disruption does not exist. On the other hand, other methods such as optogenetics which 
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depends on activation/inhibition through light can act in much more faster timescales 

(milliseconds to seconds instead of minutes) that would allow the inspection of the brain 

dynamics while it is being perturbed. Previously the experimental setup of whole-brain 

imaging is successfully coupled to the delivery of a chemosensory stimulus (Kato et al., 

2015), the same time window is sufficient to test the outcomes of acute perturbations 

using optogenetic tools. The global brain dynamics that were under study throughout this 

thesis were previously characterized (Kato et al., 2015) and I extended this method to 

also cover the tail ganglia of the worms (Fig.4.1 A-B). I then proceeded with the 

confirmation of recapitulating these results (Fig.4.1 D). Although I delivered many 

perturbations using single or multiple network hub inhibition lines, further 

characterization of the brain dynamics of WT datasets were outside of the scope of this 

study. Therefore, I examined the anatomical substrates that support the brain dynamics 

and delineated structure-function relationships and next, compared the perturbed 

networks to WT datasets in the light of these structure-function relationships. However, 

with the delivery of acute perturbation via optogenetics, my studies can be extended to 

cover further characterization of the dynamics such as revealing more information about 

the robustness or attractor properties of network activity. Within my WT datasets the 

neuronal recruitment rules are extremely reliable, i.e. individual neurons are reproducibly 

and exclusively activated and inactivated during specific network states (this study, 

(Kato et al., 2015)). Acute perturbation through optogenetic interrogation of individual 

neurons or subgroups of neurons will force the network to form artificial states; thus, the 

stability of the network dynamics will be tested. For instance, if the brain dynamics 

exhibit attractor properties, the forced unnatural network state is expected to dissolve 

rapidly and brain state is expected to return back to previously identified stable network 

patterns which was previously shown to be the case in other nervous systems (Bruno et 

al., 2017). 

5.6. Role of neurotransmitter pathways in neuronal population dynamics 

The molecular mechanisms that neurons use to form and maintain global brain dynamics 

form another important aspect. In order to identify these molecular mechanisms and 

understand their contribution to the coordinated patterns within the network, the involved 

neurotransmitter pathways could be examined. Most major neurotransmitter pathways 

(glutamate, GABA, acetylcholine, serotonin, dopamine and neuropeptides) are 
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conserved in C. elegans (Hobert, 2013); importantly mutant strains lacking functional 

genes in the biosynthesis of these neurotransmitters are viable. Testing these strains 

might give new insights about the role of an individual pathway in patterned network 

activity. Furthermore, transgenic rescue experiments might reveal the crucial neurons 

releasing the neurotransmitter. A similar approach could be applied to neurotransmitter 

receptor genes, revealing the crucial target neurons. These experiments could be 

performed via transgenic expression of WT genes under the control of cell specific 

promoters. These experiments will also provide support for one of the two hypotheses: 

i) if pacemaker neurons dictate a signal to the whole network, locally expressed 

neurotransmitters or gap junctions must be crucial for the generation of the network 

states; ii) if every single neuron has its own intrinsic activity and then their 

synchronization generates the patterns in the network, multiple neurotransmitter 

pathways will be involved and have partial roles in the generation of the network state. 

By targeting neurotransmitter pathways and assessing their impact to the brain dynamics, 

their role in the formation of brain dynamics as well as their important cellular sources 

could be identified. Although not complete (see Chapter 3.3.2), we know the 

neurotransmitter identity of most of the connections within the network; thus, the in silico 

perturbation equivalent of such neurotransmitter mutants could be generated and added 

to perturbation screen in chapter 4.5 (Fig.4.18 and Fig.4.21). This will provide an 

opportunity to test and validate the results of this study.  

5.7. Contribution of the dominant PC modes to structure-function relationships 

As previously characterized and further confirmed in this study whole-brain imaging 

datasets exhibit dominant modes. These PC modes (specifically PC1 and PC2) receive 

contributions from interneurons, pre-motor interneurons, head-motor neurons (Kato et 

al., 2015) and also from motor neurons throughout the ventral nerve cord (Kaplan et al., 

2020). On the other hand, these datasets are not simply one-dimensional and contain 

multiple correlation clusters with sub-structures (Fig4.3 A). To put this aspect of the 

datasets on a quantitative ground, I calculated the ‘shared dimensionality’ (Owen and 

Perry, 2009; Stringer et al., 2019) and ‘effective dimensionality’ (Abbott et al., 2011)) to 

reveal that my datasets exhibit a lower bound of 3-5 dimensions (effective 

dimensionality: 3.34 ± 0.43, shared dimensionality: 8.17 ± 1.33, Fig.4.2). Having said 

that, these dominant PC modes must have a contribution to the triplet motifs found in 
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Fig.4.9. A major conclusion of this study is that hub interneurons are crucial in recruiting 

neurons to global population dynamics via rich club topology, motifs and symmetries. 

These hubs and their connections constitute 52% of all connections in the connectome 

and they are heavily embedded to their neighboring neurons via triplet motifs (Fig.4.22). 

As a result, many correlations in the triplet motifs arise indeed from these hub neurons 

and their partners. Thus, it must be stated that triplet motifs consist of many correlations 

that are not local and independent of the global system, but these motifs provide the 

structural elements that support pairwise correlations by recruiting neurons to global 

population dynamics.  

In order to support this statement, I performed few controls. First, I employed a rule 

where we removed the duplicates of a given pair from the functional map when analyzing 

motifs (see Methods). This prevents the artifact of having very skewed distributions 

stemming from a single neuronal pair (for instance a high pairwise correlation between 

two hub neurons), embedded in the same motif many times. This rule prevents the triplet 

motif analysis to be heavily influenced by only a specific circuit or a set of neurons. Thus, 

the members of these motifs are scattered throughout the neurons that we study and do 

not exclusively localize to high PC1 weighted neurons. 

Second, statistics were performed rigorously by comparing to matched controls, i.e. pairs 

with the same direct connectivity motif, which are not members of the particular triplet 

motif. These control pairs are drawn from the same set of neurons and can also contain 

high correlations (see tail of distribution in Fig4.9 A), and they also contain hub neurons. 

Therefore, I conclude that triplet motifs likely recruit neurons to the global population 

activity by strengthening pairwise correlations, more so than direct connectivity motifs. 

However, the correlations within motifs are not entirely local correlations fully 

independent of the global population dynamics. Fig.4.35 C and E also suggest that 

motifs are not the sole source of correlations but rather one of the important contributors. 

Third, as discussed in chapters 4.7 and 5.9, my results suggest that neuronal population 

dynamics are not driven by a single or a few pacemaker neurons but arise as an emergent 

property. This conclusion is strongly supported by the experimental result of AVA-AVE-

RIM-PVC inhibition (Fig.4.27). Global population dynamics collapse in these worms, 

but most neurons retain vigorous activity. In the absence of this global patterned activity, 
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the remaining correlations between the neurons were partially retained when they are 

supported by the motifs left intact (Fig.4.35 B). This result suggests that significant triplet 

motifs are -although partial- responsible for the correlation of neurons throughout the 

nervous system. 

5.8. The role of rich club organization within the network 

Many connectomics studies revealed different circuit architectures that are suited for 

specific functions in various brain networks such as visual motion detection 

(Helmstaedter et al., 2013; Takemura et al., 2013), odorant representation (Dasgupta et 

al., 2017; Wanner and Friedrich, 2020), ring-attractor dynamics (Takemura et al., 2013; 

Turner-Evans et al., 2020) and learning (Eichler et al., 2017; Eschbach et al., 2020). Rich 

club architectures in larger brains, including humans, were described both on a global 

scale (van den Heuvel and Sporns, 2011) as well as on the level of in silico reconstructed 

rodent neocortical microcircuits (Gal et al., 2017). It was discussed that rich club 

architecture serve efficient global communication (de Reus and van den Heuvel, 2014); 

thus, it is crucial for network integration and plays a role as the connective core of the 

network (Shanahan, 2012). 

 

In C. elegans, information about the ongoing behavioral state is widely shared among 

motor and sensory circuits (Kato et al., 2015). This feature is not specific to worms but 

also were shown other animals such as flies (Aimon et al., 2019) and mice (Musall et al., 

2019; Salkoff et al., 2020; Stringer et al., 2019). My study suggests that rich club 

architecture plays a key role in synchronizing these different circuit elements to generate 

a global representation of behavior. Consistent with this view, hubs within the network 

have been shown to play important roles in shaping neural dynamics in other studies too. 

A subset of high-degree neurons is shown to be responsible for network synchronization 

in hippocampus (Bonifazi et al., 2009) and entorhinal cortex (Mòdol et al., 2017) and for 

the transfer of information in local cortical networks (Nigam et al., 2016). These studies 

support the idea that rich club neurons play a key role in networks which compensates 

their high wiring cost through long-distance synaptic connections at network integration. 

My results are in parallel with these studies where network hubs are the ones that shows 

strongest activity patterns (Fig.4.6) with strong participation to the global brain dynamics 

and providing the network features (Fig.4.22 and Fig.4.23) to support and recruit other 
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neurons to these dynamics. Upon their disruption with multiple hub inhibition lines the 

WT brain dynamics were perturbed and unable to generate similar coordination levels 

and correlated structures (Fig.4.27). 

 

Importantly, the neuronal activity correlations analyzed in this study can be robustly 

observed across various conditions like in well-fed adults off food (this study, (Kaplan 

et al., 2020; Kato et al., 2015; Schrödel et al., 2013)), during larval development and in 

the presence of food (Nichols et al., 2017) as well as after short-term and long-term 

starvation (Skora et al., 2018). This is consistent with the robustness of the action 

sequence, which is represented by these brain dynamics; but also suggests that the 

network’s topology persists across these conditions. My analyses, however, suggest that 

a substantial amount of variation in synaptic weights can be tolerated (Fig.4.17) and is 

not expected to affect global activity correlations. Consistently, during the course of C. 

elegans development network hubs are the earliest born neurons (Towlson et al., 2013), 

and connections between high-degree network-hubs are the least variable ones, both 

across development and across individuals (Witvliet et al., 2020). This results further 

corroborate the importance of the network hubs for the generation and maintenance of 

the global population dynamics within the C. elegans neuronal network. 

5.9. Neuronal population dynamics as an emergent property 

In this study, I focused on the neuronal population dynamics observed in my WT datasets 

to delineate the structure-function relationships and validated these relationships through 

genetic inhibition of network hubs. This experimental paradigm also gave me the 

opportunity to provide insights on the origin of the observed global brain dynamics. 

Many previous studies commonly reported that groups of neurons are involved in a 

network activity which is coordinated and patterned (Ahrens et al., 2012; Briggman et 

al., 2005; Bruno et al., 2017; Churchland et al., 2012; Shine et al., 2019; Stopfer et al., 

2003) (see Chapter 3.2). However, how such network activity is generated in the first 

place and how population structure is achieved is not known yet for any organism. 

Network activity patterns could be emergent; arising from synaptic coupling of many 

neurons that have unique intrinsic activities. Or alternatively, they could be instructed by 

crucial pacemaker neurons.  
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If there are pacemaker neurons within the network, it is more likely that they are high 

degree network hubs which belongs to the rich club architecture of the network (see 

Chapter 3.5). Because the generation of a global signal that dictates a certain activity 

pattern to many neurons will require a high degree that allows reaching to many synaptic 

partners and possibly with high connection strength. Throughout this study I have 

targeted seven single neuron classes which are all network hubs (Fig4.23). This list 

contains neurons with very high degrees as well as neurons with known essential 

functions in the core command sequence that corresponds to the behaviour of the animals 

(Fig.4.1 D). These essential functions include being the command interneurons (AVA, 

AVB, AVE and PVC) or being involved in the transition of forward-to-turn (RIB) or 

backward-to-turn movements (AIB, RIM) (see also Chapter 3.7). Importantly in neither 

of these single cell inhibition lines I did not observe a drastic global correlation change. 

All of these inhibition lines retained the global cycles where I observed the transitions 

between important clusters of forward and backward neurons (Fig 4.31 and Fig.4.32) 

albeit with different frequencies (Fig.4.29 and Fig.4.30). The retainment of these 

transitions suggests that there are no important key neurons responsible for these 

switches, rather these observed states are network states which involves the recruitment 

of many neurons. Thus, these states are generated in a distributed manner throughout the 

brain and robust to the perturbation of single neuron classes.  

 

Importantly, I did not observe any change in remaining neuronal activity levels after 

single neuron inhibitions rendering the possibility of having pacemaker for certain brain 

states less likely. For instance, AVA and AVB are bottlenecks in the connectome linking 

the other hub neurons to the A- and B-class motor neuron pools in the ventral nerve cord, 

which are required for execution of reverse and forward crawling respectively (Chalfie 

et al., 1985; Kawano et al., 2011; Wen et al., 2012). While AVA and AVB targeted 

animals cannot execute these behaviours (Fig.4.28), and fail to activate A- and B-class 

motor neuron pools (Fig.4.29 A, Fig.4.30 A), brain wide forward and backward motor 

commands persisted; corroborating a previous conclusion and prediction that AVA and 

AVB should not be seen as the sole command interneurons, but rather as outputs of a 

robust command network (Kaplan et al., 2018; Kato et al., 2015). 
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Furthermore, within the single cell inhibition experiments, although both are non-

significant globally, the effects of second-layer interneurons (RIM and RIB) were 

comparable (or even stronger in some cases) than the effects of command interneurons 

(AVA, AVE, PVC, AVB) which have more synaptic partners and connections in the 

connectome, indicating that the removal of key connections has a more substantial effect 

on synchronizations than the removal of many connections. Having said that, these 

effects were only confined to a single cluster within the correlated structures of the 

network (Fig.4.33). Usually, this cluster is the where the targeted neuron is implemented 

within the circuit: correlation within the forward cluster decreased significantly with the 

inhibition of AVB and RIB (Fig.4.33 D,F). The only exception for this was the inhibition 

of RIM neurons where I also observe a significant loss in the forward cluster (Fig.4.33 

I), although RIM interneurons are implicated in backward movement and found active 

in backward movement brain states (this study, (Kato et al., 2015)). This effect is partially 

due to the reduction in number of brain cycles within the recordings (Fig4.34 A). This 

decrease translates as long forward movement brain state stretches (traces can be seen in 

Fig.4.34 B) where the neurons belonging to this cluster exhibits more dynamic activity 

patterns and thus the correlation calculation that takes into account the whole recording 

fail to produce WT level coefficients. However, even this perturbation failed to generate 

a difference in global correlation levels. 

  

Critically, the disruption of global correlation levels can only be achieved with the 

multiple inhibition of network hubs. The observation that nearly all neurons remained 

vigorously active, though uncoordinated, in AVA-AVE-RIM-PVC animals, countervails 

the notion that neuronal population dynamics are driven by a single or few pacemaker 

neurons, but rather arise as an emergent property, further corroborating the importance 

of network architecture in generating coherent brain states and subsequent behaviors. 
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6. Materials and Methods 

6.1. Worm culture and strains 

All C. elegans strains were maintained on nematode growth medium (NGM) at 20°C, 

and hermaphrodites were used for all experiments. Strain genotypes are listed in Table 

6.1.  
Table 6.1: Detailed list of strains used in this study 

 

Strain 
name 

Experiment Genotype Construct (plasmid no.) and injection 
concentrations 

Promoter 
expression 
references 

ZIM1428 Whole-brain 
imaging 

MzmIs52;  
lite-1 
(ce314) 

Punc-31::NLSGCaMP6f (pTS100) 
2.5ng/ul; 
 

(Schrödel et al., 
2013) 
 

ZIM805 Whole-brain 
imaging, 
AIB-
Inhibition 

mzmEx199; 
mzmEx459; 
lite-1 (xu7)  
 

Punc-31::NLSGCaMP5K (pTS36) 
30ng/μL;  
Pinx-1::HisCl::SL2::mCherry 50 
ng/μL;  
 

Pinx-1 (Altun et 
al., 2009);  
 

ZIM756 Whole-brain 
imaging, 
AVA-
Inhibition 

mzmEx199; 
kyEx4863; 
lite-1 (xu7)  
 

Punc-31::NLSGCaMP5K (pTS36) 
30ng/μL;  
Punc-122::gfp 15ng/μL;  
Prig-3::HisCl1::SL2::mCherry 
(pNP471) 50 ng/μL  
 

 Prig-3 (Pokala 
et al., 2014) 
 

ZIM1860 Whole-brain 
imaging, 
AVB-
Inhibition 

MzmIs52;  
lite-1 
(ce314); 
mzmEx578 

Punc-31::NLSGCaMP6f (pTS100) 
2.5ng/ul; 
Psra-11::HisCl::SL2::mCherry 
(pRL123) 50 ng/μL;  
Pflp-17::mCherry  1.5ng/uL  
 

Psra-11 
(Troemel et al., 
1995)  
 

ZIM2020 Whole-brain 
imaging, 
AVE-
Inhibition 

MzmIs52;  
lite-1 
(ce314); 
mzmEx1223; 

Punc-31::NLSGCaMP6f (pTS100) 
2.5ng/ul; 
Popt-3::HisCl::SL2::mCherry 
(pKU33) 30ng/uL; 
 

Popt-3 (Fei et 
al., 2000) 

ZIM755 Whole-brain 
imaging, 
RIB-
Inhibition 

mzmEx199; 
mzmEx457; 
lite-1 (xu7)  
 

Punc-31::NLSGCaMP5K (pTS36) 
30ng/μL;  
Psto-3::HisCl::SL2::mCherry 
(pHK170) 20 ng/μL;  
 

Psto-3 (Kato et 
al., 2015) 

ZIM1720 Whole-brain 
imaging, 
RIM-
Inhibition 

MzmIs52;  
lite-1 
(ce314); 
mzmEx973; 
mzmEx976 

Punc-31::NLSGCaMP6f (pTS100) 
2.5ng/ul; 
Punc-122::dsRed 19ng/μL;  
Pcex-1::CreVDH (pKU26) 15ng/μL; 
Ptdc-1::DIO-(HisCl::SL2::mCherry) 
(pKU28) 12.5ng/uL; 
Pelt-2::NLSGFP  5ng/uL 

Ptdc-1 (Alkema 
et al., 2005) 
CreVDH 
(Ruijtenberg 
and van den 
Heuvel, 2015); 
DIO (Sohal et 
al., 2009)  
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6.2. Whole-Brain calcium imaging of C. elegans head and tail ganglia neurons 

Whole-brain calcium imaging experiments were performed as described previously 

(Kato et al., 2015) using transgenic adult C. elegans (1 day after larval L4 stage, 5-10 

eggs) expressing pan-neuronal genetically-encoded calcium indicator NLS-GCaMP6f 

(Chen et al., 2013) and bearing a mutation in the lite-1 gene (ce314 allele) which 

decreases responsiveness to UV and blue-light (Edwards et al., 2008; Gong et al., 2016; 

Strain 
name 

Experiment Genotype Construct (plasmid no.) and injection 
concentrations 

Promoter 
expression 
references 

ZIM1810 Whole-brain 
imaging, 
PVC-
Inhibition 

MzmIs52; 
lite-1 
(ce314); 
mzmEx973; 
mzmEx974 

Punc-31::NLSGCaMP6f (pTS100) 
2.5ng/ul; 
Punc-122::dsRed 19ng/μL;  
Pcex-1::CreVDH (pKU26) 15ng/μL; 
Pdes-2::DIO-(HisCl::SL2::mCherry) 
(pKU23) 25ng/uL; 
Pelt-2::NLSdsRed  5ng/uL 

Pdes-2 (Treinin 
et al., 1998);  
CreVDH 
(Ruijtenberg 
and van den 
Heuvel, 2015); 
DIO (Sohal et 
al., 2009) 

ZIM2312 Whole-brain 
imaging, 
RIM+PVC 
Inhibition 

MzmIs52; 
lite-1 
(ce314); 
mzmEx973; 
mzmEx974; 
mzmEx976 

Punc-31::NLSGCaMP6f (pTS100) 
2.5ng/ul; 
Punc-122::dsRed 19ng/μL;  
Pcex-1::CreVDH (pKU26) 15ng/μL; 
Pdes-2::DIO-(HisCl::SL2::mCherry) 
(pKU23) 25ng/uL; 
Pelt-2::NLSdsRed  5ng/uL 
Ptdc-1::DIO-(HisCl::SL2::mCherry) 
(pKU28) 12.5ng/uL; 
Pelt-2::NLSGFP  5ng/uL 

 

ZIM1807 Whole-brain 
imaging, 
AVA+AVE+ 
RIM+PVC 
Inhibition 

MzmIs52; 
lite-1 
(ce314); 
mzmEx462 

Punc-31::NLSGCaMP6f (pTS100) 
2.5ng/ul; 
Pcex-1::HisCl::SL2::mCherry 
(pRL122) 50 ng/μL;  
Pflp-17::mCherry  1.5ng/uL  
 
Pcex-1 was previously reported to 
drive expression only in RIM. I 
confirmed that it drives strong 
expression in RIM and PVC also 
weak expression in AVA and AVE 
that are sufficient to successfully 
inhibit all 4 neuron classes (Fig.4.25 
A) in ZIM1807 (injected 50 ng/μL). 

 

ZIM1935 Whole-brain 
imaging, 
AVB+RIB+ 
AIB 
Inhibition 

MzmIs52;  
lite-1 
(ce314); 
mzmEx463; 
mzmEx578; 
mzmEx1114 

Punc-31::NLSGCaMP6f (pTS100) 
2.5ng/ul; 
Psto-3::HisCl::SL2::mCherry 
(pHK170) 5 ng/μL;  
Punc-122::dsRed 19ng/μL;  
Psra-11::HisCl::SL2::mCherry 
(pRL123) 50 ng/μL;  
Pflp-17::mCherry  1.5ng/uL;  
Pinx-1::HisCl::SL2::mCherry 
(pKU31) 50 ng/μL;  
Pelt-2::NLSdsRed  5ng/uL  

Pinx-1 (Altun et 
al., 2009);  
Psra-11 
(Troemel et al., 
1995);   
Psto-3 (Kato et 
al., 2015) 
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Liu et al., 2010). Animals were imaged in two-layer PDMS microfluidic devices to 

control O2 environment (Zimmer et al., 2009) and with curved worm channels to 

immobilize and laterally align animals (Cáceres et al., 2012; Kato et al., 2015; Schrödel 

et al., 2013). This curve was designed to reduce the necessary imaging area by aligning 

the animal’s head and tail. With this design, all neurons in the head and tail ganglia of 

the worm, the retro vesicular ganglion as well as multiple motor neurons along the ventral 

cord can be imaged simultaneously (Fig.4.1 A). The worm channel of the microfluidic 

device was connected to a syringe which contains NGM buffer with 1 mM tetramisole. 

All components were connected using Tygon tubing (0.02 in ID, 0.06 in OD; Norton) 

using 23G Luer-stub adapters (Intramedic).  Constant gas flow of 21% O2 and 79% N2 

(50ml/min) was delivered using a gas mixer connected to mass flow controllers 

(Vögtling Instruments) using LabView software. Adult worms (5-10 eggs) were picked 

on food-free NGM agar plates in a drop of NGM with 1mM tetramisole and aspirated 

into the worm channel. The fluorescence values were recorded 10 min after loading; the 

illumination and piezo stage were switched on 2 min before acquisition start. Animals 

were imaged at 21% O2 for 18 min. High-resolution data of neuronal activity in the head 

and tail ganglia was acquired with an inverted spinning disk confocal microscope (Zeiss 

Axio Observer.Z1 with attached Yokogawa CSU-X1) using an EMCCD camera 

(Photometrics Evolve 512) and a 40x 1.2 LD LCI Plan- Apochromat water-immersion 

objective (Zeiss) with VisiView software (Visitron Systems GmbH Exposure time was 

10ms, with 2μm steps between Z-planes operated by a Piezo stage (P-736 PInano, Physik 

Instrumente GmbH). These settings allowed an imaging rate of 3.06–5.04 volumes per 

second with 14-15 planes. In inhibition experiments, worms from HisCl expressing lines 

were incubated for 30-45 min on OP50 seeded NGM agar plates including 20 mM 

histamine (histamine dihydrochloride, Sigma-Aldrich) before loading them into the 

worm channel filled with NGM containing 20 mM histamine.  

6.3. Neural time series extraction  

As described before (Kato et al., 2015), neuronal activity traces were obtained by 

tracking the intensity maxima in each volume over time and calculating the single-cell 

fluorescence intensities (F). F0 was calculated as the mean fluorescence intensity across 

the trial. After background subtraction, DF/ F0 was calculated for each neuron, following 

bleach correction by linear detrending and exponential fitting. 
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6.4. Identification of head and tail ganglia neurons  

In each recording, we detected 133–154 neurons, covering 58%-67% of expected 

neurons in the imaging area. We only identified neurons that were active in the datasets 

(66 neurons on average in WT datasets, Fig.4.3 A). The remaining neurons were either 

recorded but not active or not captured in our recordings due to very low fluorescent 

levels. Also, we cannot exclude that the fluorescent label is not expressed in a small 

fraction of neurons. Neurons were identified as previously described (Kato et al., 2015) 

by taking into account their anatomical positions, relation to surrounding neurons 

(http://www.wormatlas.org), their characteristic activity patterns and our experience with 

red fluorophore expression in specific marker lines reported in previous studies (Kaplan 

et al., 2020; Kato et al., 2015; Nichols et al., 2017; Skora et al., 2018). In the present 

study, we additionally confirmed all of these previous identities using the new NeuroPAL 

method (Yemini et al., 2021). Neurons in the tail, which have not been identified 

previously (PHA, ALN, VD13, VA12, DA09, AS10, DA07, DB07, VB11), have been 

identified here using the NeuroPAL method (Yemini et al., 2021). Only a single 

researcher identified all datasets in the study.  

Average correlation matrices were generated by calculating the mean (n=2-6) pairwise 

correlations between the activity time-series of identified active neurons. The identified 

active neuron numbers for WT (Fig.4.3 A) and inhibition lines (Fig.4.27 A-B; Fig.4.31 

A-D; Fig.4.32 A-C) are as follows: WT, 66 neurons; AVA-AVE-RIM-PVC inhibition, 

64 neurons; AVB-RIB-AIB inhibition, 63 neurons; RIM-PVC inhibition, 57 neurons; 

RIM inhibition, 60 neurons; PVC inhibition, 64 neurons; AVE inhibition, 60 neurons; 

AVA inhibition, 45 neurons; AVB inhibition, 63 neurons; RIB inhibition 44 neurons; 

AIB inhibition 48 neurons. AIB, RIB and AVA inhibition datasets include only head 

ganglia recordings with 120-140 neurons. AVA inhibition datasets are from ref (Kato et 

al., 2015) and several neuron IDs from these datasets were corrected (SMBs to SMDs; 

SIBs to SIAs; OLQs to URYs). 

6.5. Leave-one-out procedure to test the robustness of correlation values 

To check for possible deviations from the average correlation value of a single neuronal 

pair within individual recordings, we performed a leave-one-out procedure. Here a new 

average correlation for every neuronal pair is re-calculated with the absence of a single 

recording, then the deviations of these values from the original average correlation 
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coefficient (absolute difference) were calculated. Deviations from the mean across the 

individual datasets are available in Fig.4.4 B. 

6.6. Derivatives on neural time series data  

Total-variation regularization (Chartrand, 2011) was used to compute de-noised time 

derivatives. 

6.7. Effective dimensionality 

We calculated effective dimensionality (Deff) which represents the eigenvalue 

distribution along different modes (Abbott et al., 2011; Gurnani and Silver, 2021). Where 

M is the number of modes, if the variance is equally distributed along the modes, then 

Deff = M. On the other hand, if one mode dominantly captures most of the variance Deff 

will be close to 1.  

 

 

li is an eigenvalue of the covariance matrix. 

6.8. Shared dimensionality 

As an alternative dimensionality measure, we used shared dimensionality with the code 

provided by (Gurnani and Silver, 2021). It is based on the calculation of cross-validated 

explained variance (CVEV) to identify shared population modes (Owen and Perry, 2009; 

Stringer et al., 2019). The data is divided into training (70%) and test (30%) sets, and the 

training data decomposed to find the loadings (U). we then trained the top K modes, and 

the corresponding loadings (UK, first columns of U) to quantify the explained variance 

by this K-dimensional reconstruction of the population activity. Data was further split 

into second partition of training neurons (X1, 80% of the population) and test neurons 

(X2, 20% of the population).  

Then, to estimate the reliable population modes the mean CVEV curves of 200 iterations 

for each dataset were calculated. In the original method (Gurnani and Silver, 2021) the 

peak of the relationship between explained variance and nuber of modes (K) was chosen 

as the number of relaiable population modes (shared dimensionality). Instead of the peak 

of the CVEV curve, we picked the changepoint in the slope as the shared dimensionality 

which results in a lower bound for dimensionality.  
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6.9. Calculating the residual activity of neurons 

Residual activity of neurons was calculated by projecting out the top modes (Fig.4.14). 

The population activity is decomposed using SVD and then reconstructed using all the 

modes except the indicated number of modes (Fig.4.14).  

6.10. Brain state transition quantification 

For Fig.4.34 A, reverse and forward command states were inferred from the activity of 

interneuron AVA, as previously described (Kato et al., 2015). In summary, time points 

of falling Ca2+ transients and low intensity Ca2+ signals were defined as forward 

command states. Time points of rising Ca2+ transients and high intensity Ca2+ signals 

were defined as reversal command states. 

6.11. Identification of backward and forward clusters 

The participation of neurons to backward and forward clusters in Fig.4.33 were 

calculated by sorting them according to their mean weight on PC1 in WT datasets. A 

threshold of +0.4 and -0.4 was used to identify backward and forward cluster neurons, 

respectively. Backward neurons were AVAL, AVAR, RIML, RIMR, AIBL, AIBR, 

AVEL, AVER, AS10, VA11, DA07, SABD, DA01, VA01 and forward neurons were 

AVBL, AVBR, RIBL, RIBR, DVA, DB07, VB11, SIADL, SIADR, SIAVL, SIAVR, 

DB02 RMEV, RMED, VB01.  

6.12. Population behavioural assays 

Behaviour assays in Fig.4.26 and Fig.4.28 A-G were performed as described previously 

(Kato et al., 2015). 20-25 worms (young adults, 1 row of eggs) grown on OP50 seeded 

food plates were picked on NGM agar plate without food. The 25 mm x 25 mm assay 

arena was confined by Whatman paper soaked with 20 mM CuCl2 to repel and prevent 

worms from leaving the arena. Constant gas flow of 21% O2 and 79% N2 (25 ml/min) for 

6 min was delivered through a transparent plexiglas device with a flow arena of 39 mm 

x 39 mm x 0.7 mm placed on top of the assay arena. Gas flow was controlled using a 

static gas mixer connected to mass flow controllers (Vögtling Instruments) using 

LabView software. Gas mixtures were balanced using N2 to maintain constant gas flow. 

Arenas were illuminated with red LEDs and movies were recorded at 10 fps using a 4 

megapixel CCD (Jai) camera and Streampix software. Movie analysis and reversal 
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detection was performed using Matlab-based tracking software as described before 

(Chalasani et al., 2007; Ramot et al., 2008; Zimmer et al., 2009). Worms were pre-

incubated at constant 21% O2 on the assay arena for 5 min before recordings were started 

to accustom them to the gas flow. Prior to picking onto the assay plates, worms were 

incubated for 30-45min on plates with NGM agar including either 20mM histamine 

(+His; histamine dihydrochloride, Sigma-Aldrich) or an equal volume of water (Ctrl) and 

seeded with OP50 across the entire agar surface to enhance histamine uptake. Recordings 

were performed on +His and Ctrl assay plates. 

6.13. Posterior harsh touch assays 

For touch assays (Fig.4.28 H) I followed the protocol in ref (Li et al., 2011), posterior 

harsh touch was applied with a platinum wire pick in a top-down manner. Worms were 

incubated for 30-45min on +His or Ctrl plates seeded with OP50 across the entire agar 

surface to enhance histamine uptake. Harsh touch assays were performed on the same 

plates after incubation. Each worm was tested for 5 trials with 2 min intervals between 

trials and their responses were scored. Posterior touch was delivered to non-moving 

animals.  

6.14. Activity measures 

6.14.1. Correlation coefficient 

Pearson’s correlation coefficient was calculated in a pairwise manner between all 

identified neurons’ traces in whole-brain imaging datasets.  

6.14.2. Cross correlation coefficient 

Maximum cross correlation values (Pearson’s correlation coefficient) were calculated 

between neuronal pairs. Maximal lag of 10 seconds was imposed, and the absolute 

maximum of the values was selected.  

6.14.3. Mutual information 

Mutual information (MI) was computed between neuronal pairs using the toolbox 

provided in ref (Ince et al., 2017). The method first transforms each univariate marginal 

to be a standard normal via a Gaussian parametric MI estimate (thereby called Gaussian-
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copula Mutual Information); thus, obtains a lower bound estimate of the MI (Ince et al., 

2017). 

6.14.4. Covariogram analysis 

Covariograms were calculated as described previously (Kaplan et al., 2020). Shortly, 

Ca2+-events were detected by selecting peaks in the time-derivatives using a method that 

reduces the number of arbitrary parameter choices (Kaplan et al., 2020). Covariograms 

report the frequency of a target neuron’s peak at different time delays relative to a 

reference neuron’s peak. This calculation contains several steps. First, for each neuron 

pair raw cross-correlograms were computed in 5s bins. Raw cross-correlograms were 

then converted into frequencies by dividing by the number of available data in each bin. 

Next, 100 resampled raw cross-correlograms were computed by random selection of 

same number of spikes which act as the shuffle predictor (Brody, 1999). Covariograms 

were finally computed by subtracting the shuffle predictor from the raw cross-

correlograms. For each neuronal pair two different covariogram values were calculated 

because the order of target and reference neurons were swapped. Thus, covariogram-

analysis represents a directed (asymmetric) measure of functional interactions used in 

the systematic structure-function relationship survey. 

6.15. Randomized networks 

6.15.1. Totally randomized networks 

For the calculation of input similarities in Fig.4.16  and the p value calculation in 

Fig.4.17, we calculated the sum of chemical synapse and gap junction networks of the 

intact connectome and shuffled the connections to generate totally random networks. 

These matrices preserve the total connection number within the network. 

6.15.2. Degree-preserved randomized networks 

For the p value calculation in Fig.4.7, Fig.4.12 C,F, Fig.4.17 A-B degree-preserved 

random matrices were used. We generated these matrices with the randmio_dir 

function from the Brain Connectivity Toolbox (BCT) (Rubinov and Sporns, 2010) 

using the sum of chemical synapse and gap junction network. In summary, this 

function generates a matrix where every neuron preserves the in- and out- degrees but 

change their connection partners.  
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6.15.3. Degree-, reciprocal connections and gap junction-chemical synapse 
likelihood preserved randomized networks 

For the over-representation analysis of the motifs (Fig.4.9 A, Fig.4.10 A) and p value 

calculation in Fig.4.17 B, we generated random matrices that preserve i) degree 

distribution, ii) reciprocal chemical synapse number and iii) gap junction-chemical 

synapse likelihood. As previously shown reciprocal chemical synapses are enriched in 

the C. elegans connectome compared to the random networks (Reigl et al., 2004; 

Varshney et al., 2011). Many triplet motifs contain reciprocal chemical synapses and in 

order to make a fair comparison while searching for the over-represented triplet motifs 

in the connectome, we decided to preserve the number of reciprocal chemical synapses 

in the randomized networks. Additionally, the analysis of connectivity motifs in this 

study incorporates the information from gap junction and chemical synapse networks 

independently (see Methods). Thus, we also preserved the likelihood of gap junctions 

and chemical synapses (Varshney et al., 2011) to a similar ratio as the intact connectome 

in the randomized matrices.  

 

The algorithm starts with an empty matrix and randomly selects a neuron. Then 4 steps 

are taken for each neuron. First, it distributes the neuron’s outgoing unidirectional 

connections according to its out-degree to randomly selected neurons as long as their in-

degree is not exceeded compared to the intact connectome. Second, it reconnects the 

neuron’s all incoming unidirectional connections now from randomly selected neurons 

as long as their out-degree is not exceeded compared to the intact connectome. Third, it 

reconnects all reciprocal connections of that neuron with random neurons that have 

available unconnected reciprocal connections. Finally, it distributes gap junctions to 

these newly connected neuron pairs’ uni-directionally and reciprocally connected 

partners according to the corresponding gap junction – chemical synapse likelihood of 

the intact connectome. If available, the remaining gap junctions for that specific neuron 

are distributed to random neurons with available degrees.  

6.15.4. Rich-club curve preserved randomized networks 

For the p value calculation of Fig.4.17 B, random matrices that preserve the rich-club 

curve was used. These random networks preserve all 4 features: degree, reciprocal 

connection number and gap junction – chemical synapse likelihoods. Further, they also 
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contain a “synthetic” rich-club organization. This is achieved by using the randomization 

algorithm described above for two networks separately: rich-club neurons and the rest of 

the network. Then, these two separately randomized networks are combined together 

which results in the preservation of inter-connections between the rich-club neurons; 

thus, the rich-club curve of these randomized networks are similar to the intact 

connectome.  

6.15.5. Partial randomization analysis 

For calculating the robustness of the results against variability in the connectome 

(Fig.4.17 A) we generated networks that are partially randomized. For this, we started 

with the intact connectome and labeled all synapses with different IDs. Next, according 

to the range of partial randomization, a subpopulation of synapses (e.g. 95%) were 

preserved. Then, the remaining synapses were randomly distributed across the network. 

We performed partial randomizations in 1% increments from 1% to 10% and in 5% 

increments from 10% to 50%.  

 

Next, for every structure-function relationship, rs values were calculated for all possible 

partially random networks for 105 trials. Then, we calculated the probability where the 

partially random networks can produce an rs value greater or equal to the original 

structure-function relationship (the rs values shown in Fig.4.17 A). The partial 

randomization range where these p values are below the significance threshold (corrected 

p values for Bonferroni’s multiple hypothesis test) was annotated as the maximum 

variability level where the corresponding structure-function relationship holds.  

6.16. Connectivity measures 

6.16.1. Input similarities 

Input similarities were calculated based on the combined network: the sum of chemical 

synapse and gap junction networks (on unweighted matrices if not stated otherwise). For 

every pairwise comparison (e.g. neuron A & B) input similarity was calculated as the 

cosine similarity between the input vectors of A and B (dot product of input vectors 

divided by their norms) in primary or secondary layer. Input similarity values range 

between 0 (all available inputs to the neurons are private) and 1 (all available inputs to 
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the neurons are common). For instance, secondary input similarity for the example pair 

A-B in Fig.4.12 D is 0.7071 whereas the total count of common inputs is 1. 

6.16.2. Sum of inverse shortest path calculation 

Sum of inverse shortest path was calculated as a directed measure. The shortest path was 

calculated from both directions and then summed. For instance, for neuronal pairs A&B: 

1 / shortest path (A®B) + 1 / shortest path (B®A).  

6.17. In silico perturbation screen 

6.17.1. Generating perturbed networks 

In perturbed networks, the removal of a neuron was done by removing the connections 

(converting to zero) of the targeted neuron from the matrix. In this way, the total number 

of neurons within the matrix stays the same. To make it more comparable for the 

subsequent analyses and neuronal inhibition experiments, the neuron classes were 

removed as a L-R pair when possible in the perturbation (e.g. AVAL & AVAR are both 

removed in AVA-perturbation). In silico perturbations were performed starting from 

single neuron class removals and systematically increased up to quadruple neuron class 

removals. Single and double neuron removals contain all possible combinations of 

neurons: n=187 (187 instead of 279 because L-R pairs are grouped) and n=1.74x104, 

respectively. In order to reduce the number of combinations and computation time, motor 

neurons that belong to DA, DB, AS, DD, VA, VB, VD or VC class are not included in 

triple and quadruple neuron removals. Triple and quadruple neuron class removals 

contain all possible combinations of the remaining neurons (113 neurons instead of 187; 

n=2.34x105 for triple neuron removal combinations; n=6.43x106 for quadruple neuron 

removal combinations). 

6.17.2. Graph theoretical measures on perturbed networks 

Several graph theoretical measures targeting different network features were calculated 

on the perturbed networks. These include 3 different measures in Fig.4.18 with 9 

additional ones in Fig.4.20. All measures were calculated using the combined connection 

matrix: sum of the chemical synapse and gap junction networks. Betweenness centrality, 

eigenvector centrality, characteristic path length, maximum modularity score, clustering 

coefficient, assortativity coefficient, transitivity and path transitivity were calculated 
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with the scripts from BCT (Rubinov and Sporns, 2010). Total degree stands for the sum 

of in- and out-degree of the neurons. Triplet motif count is the sum of all possible 98 

motifs occurrences detected by a custom MATLAB script (see Motifs). 

 

In perturbed networks (Fig.4.18 and Fig.4.20) input similarities were calculated in a 

pairwise manner for all possible pairs in the network (n=38781 pairs for 279 non-

pharyngeal neurons) and the mean of the network represents the overall distribution for 

each perturbation; hence, the neuron classes that have the greatest effect on the measure 

(e.g. 2° input similarity) will have the lowest mean value after its removal (Fig.4.18). 

6.17.3. Principal component analysis (PCA) on measures of perturbed networks 

The impact of the neuron’s removal was calculated by comparing the intact and the 

perturbed networks. In total we used 12 different graph theoretical measures. For the 

measures where a single value represents the whole network, we calculated the difference 

between intact connectome’s and perturbed network’s value (max modularity score, 

characteristic path length, triplet motif count, assortativity coefficient, transitivity). For 

the measures which are neuron specific (degree, betweenness centrality, eigenvector 

centrality, clustering coefficient) or neuron pair specific (primary and secondary input 

similarities, path transitivity) the Kolmogorov-Smirnov (KS) distance between the intact 

connectome and perturbed network’s distributions were calculated (the distribution of 

279 values or 38781 values represent the network for node-specific and pair-specific 

measures, respectively). Next, these differences for all perturbed networks (n=6.69x106) 

were z-scored individually for each measure to be able to compare differences between 

different measures. Finally, PCA was performed on the z-scored differences. 

6.18. Rich club analysis 

Rich club coefficient (RCC) curve was calculated as previously described (Towlson et 

al., 2013) with following modifications. The degree of the neurons was calculated as the 

sum of chemical synapse degree and gap junction degree. In the normalized RCC curve, 

the change point (depicted by vertical dashed line in Fig.4.19) was chosen as the 

threshold where a sudden increase is observed. According to this threshold following 

neurons were classified as the network hubs in this study (sorted by their total degree): 

AVAR, AVAL, AVBL, AVBR, PVCR, PVCL, AVDR, DVA, AVEL, AVER, AVDL, 
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AIBR, RIAR, RIBL, AIBL, HSNR, RIAL, RIH, RIMR, AVJL and AVKL. The 

remaining L or R counterparts of 5 neuron classes: RIBR, RIML, AVJR, HSNL and 

AVKR were also classified as network hubs in the in silico perturbation screen due to 

neuron classes being removed from the network as L-R pairs in this analysis (see 

Methods).  

6.19. Connectivity motifs 

In both dyad and triplet motif detections, we targeted “structural motifs” (Sporns and 

Kötter, 2004) and searched for the exact connectivity pattern within triplets where every 

unique neuron triplet can have a single motif ID. For instance, if neuron A,B,C is 

connected with motif ID#3, and neuron D,E,F is connected with motif ID#4, and motif 

ID#3 is a subset of motif ID#4 (Fig.4.10), we counted the occurrence of motif ID#3 and 

#4 both as 1 (as opposed to counting motif ID#3 for twice and motif ID#4 for once). This 

approach was implemented to avoid counting the same circuit over and over again which 

might result in highly inflated motif statistics. 

6.19.1. Dyad connectivity motifs 

Dyad connectivity motifs were detected within the connectome by incorporating the 

information in both chemical synapse and gap junction networks. 

6.19.2. Triplet connectivity motifs 

6.19.2.1. Detection of motifs  

Triplet connectivity motifs were detected within the connectome using a custom 

MATLAB code. The algorithm treats chemical synapse and gap junction networks 

separately but unlike previous studies (Cook et al., 2019; Reigl et al., 2004; Varshney et 

al., 2011), it incorporates the two information between triplets of neurons. With this 

approach the total permutation of triplet motifs increased to 98 (it was 2 permutations for 

gap junctions and 13 permutations for chemical synapses if the networks are considered 

alone). The full list of 98 motifs is visible in Fig.4.10. Furthermore, within the triplet 

motifs there can be several neuronal pair configurations (1, 2 or 3 per motif according to 

the symmetry level) and in 98 triplet motifs the total number of neuronal pair 

configuration is 259; thus, we refer to these 259 as different motifs when considering 
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pairwise correlations (e.g. in Fig.4.9 A,  A-C is a neuronal pair configuration within the 

motif, A-B and B-C configurations also exist within the same motif). 

6.19.2.2. Classifying significant motifs 

We tested the ability of triplet motifs to influence functional interactions of neurons by 

comparing it to a control group. For each configuration of neuronal pairs within the triplet 

motifs (259 in total, see Detection of motifs) a control group was assigned. This matched 

control group contains pairs of neurons with the same dyad connectivity pattern except 

the members of the analyzed triplet motif. Most neuronal pairs in the functional map are 

members of multiple motifs and they are also connected via the same motif multiple 

times. While comparing the motifs versus its control, if the same neuronal pair is present 

multiple times, these duplicates were removed so that the values taken from the 

functional map were included only for once for each individual pair. This prevents the 

artifact of having very skewed distributions stemming from a single neuronal pair, 

embedded in the same motif many times. The members of the motif and the control group 

were then compared with a custom shuffle test. The motifs that show significantly high 

pairwise correlations (p value threshold: 0.05) were classified as “significant motifs”.  

 

An example of a significant motif and its comparison against control group is available 

in Fig.4.9 A. In this example the motif ID#3 from Fig.4.10 is available together with its 

matched control group which is non-connected neuron pairs. 12 motifs are not 

implemented in the C. elegans connectome. For the remaining of 247 motifs, 25/247 

motifs (10%) were classified as significant (Fig.4.9 A) and 136/247 motifs (55%) were 

classified as non-significant. For 86/247 (35%) motifs our method cannot deduce the 

motifs ability to influence correlations due to low number of n (<=2) either in members 

of the motif or its control group.  

6.19.2.3. Enrichment versus common input 

In total, 22 out of 25 triplet motifs that were classified as significant contain a common 

input to the pair. In order to generalize this feature, we pooled all the motifs that contain 

a common input. Next, individual motifs were tested against this pooled group of all 

common input containing motifs (except the motif under analysis) with a custom shuffle 
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test. 10 different motifs that show significantly high correlation values (p value threshold 

0.05) are grouped within the black box in Fig.4.9 A. 

6.19.2.4. Over-representation of motifs 

Here we tested the occurrence of 98 triplet motifs in the C. elegans connectome 

compared to randomized networks. Randomized networks used in this analysis preserve 

three features: i) degree distribution, ii) reciprocal chemical synapse number and iii) gap 

junction-chemical synapse likelihood (see Methods). In 105 different randomized 

networks, the occurrences of the motifs were counted. Similar to previous studies (Reigl 

et al., 2004; Varshney et al., 2011), single-step min-P based multiple-hypothesis 

correction was performed and 0.05 threshold for corrected p values was used for the final 

classification. Motifs that are over-represented (38/98) and under-represented (10/98) in 

the connectome are available in Fig.4.10 as black and green asterisks, respectively.  

6.19.2.5. Determining intact, targeted and control groups  

In order to exclude the impact of correlation decrease simply due to the inhibition of a 

neuron, we excluded all pairwise correlation values that belong to the inhibited neuron 

(or neurons) in the inhibition line datasets.  

 

In the inhibition datasets, we divided the members of significant motifs into two groups 

according to the condition of the third neuron in that specific configuration of the motif. 

If this neuron is inhibited via neuronal inhibition tools in that experiment, the members 

of this motif was added to the “targeted motifs” group. For instance, AIBL-AVBL is a 

member of a significant motif and AVAL is the third neuron; in this case this pair was 

added into “targeted motifs” group in AVA-AVE-RIM-PVC inhibition. On the other 

hand, if the third neuron is not targeted, these neuronal pairs was added to “intact motifs” 

group. Since neuronal pairs can be members of many motifs, a single pair can be present 

in both targeted and intact motif groups at the same time. In those special cases, we 

counted the fraction of instances where it is targeted, if the majority of these cases 

(≥50%) were targeted, then the pair was added to the “targeted motifs” group. If the 

fraction was <50%, the pair was excluded from the analysis. Finally, we used a “control 

group” which only consists neuronal pairs that do not belong to any triplet motif within 

the connectome.  
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6.20. Classification of perturbed and control neuronal pairs 

In order to assess whether the perturbation of connectivity measures have an impact on 

the correlation values, we classified neuronal pairs within our inhibition experiments as 

“perturbed” and “unaffected” (control). Here, the same neuronal pairs’ connectivity 

measure (e.g. 2° input similarity) was calculated in both intact connectome and perturbed 

network. Then, the percent change in the perturbed network compared to the intact 

connectome was calculated. This percent change was calculated for all neuronal pairs 

within the network (n=38781 pairs) and the distributions were provided for 3 different 

measures in Fig.4.36 A-C. According to these distributions we decided to choose the 

threshold of 10% for a neuronal pair to be classified as “perturbed” and the rest of the 

neurons were treated as control pairs or “unaffected”. With the selection of this threshold, 

25-45% of neuronal pairs were classified as perturbed for different measures (Fig.4.36 

A-C, red curves).  

 

According to these classifications, we then grouped the correlation values from the WT 

and multiple hub inhibition experiments (AVA-AVE-RIM-PVC and AVB-RIB-AIB 

inhibitions). For the statistical test, the KS distance between WT and inhibition values 

were measured. Next, we calculated the probability of the same KS distance value to be 

reached or exceeded in 105 trials of degree preserved randomized networks. The p values 

in Fig.4.37 were calculated with the 10% threshold. Additionally, we provide the p 

values calculated with same method but with two different percent change thresholds 

(20% and 50%) in Fig.4.36 A-C, showing that the results are not dependent on this 

parameter choice. 

6.21. Permutation test for global correlation and activity change in WT vs. HisCl 
datasets 

A permutation test was performed to assess the statistical significance of the change in 

global correlation values and global activity levels between WT and inhibition 

experiments. First step in this test was to remove the values that belong to the inhibited 

neuron (or neurons) in both WT and inhibition experiments. For instance, RMS values 

or all pairwise correlation values of AVAL and AVAR were removed from the WT and 

HisCl cumulative distributions for the statistical tests of AVA-inhibition experiments. 

This was done to exclude the impact of activity or correlation decrease simply due to the 
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inhibition of a neuron. Next, the whole brain imaging datasets (n=6 for WT and n=5 for 

HisCl datasets) were shuffled and re-grouped into two groups containing 6 vs. 5 datasets 

and the means of these new groups were calculated. Then, the KS distance of Group#1 

and #2 was computed for all permutations of shuffling. Finally, the probability of these 

KS distances reaching the original WT vs. HisCl KS distance was computed and 

provided next to the plots in Fig.4.27 C-D, Fig.4.31 E-H and Fig.4.32 D-F. 

6.22. Custom shuffle test for comparing correlation values 

Since the correlation values in our data cannot be assumed to be independent datapoints, 

which is assumed by standard statistical tests, we applied a custom resampling procedure 

which is model-free with respect to the underlying data distributions. In this custom 

shuffle test, the correlation values from both groups were pooled, randomly sampled 

without repetition with the same number of observations as in the original groups and 

the difference between the means of these new shuffled groups were calculated in n=104 

trials. Finally, the probability of the distances between means of the shuffled groups 

reaching the original difference between means was computed and provided next to the 

plots. 
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