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A B S T R A C T

The Heisenberg uncertainty principle establishes the frontier to the quantum realm,
where the act of observation plays a critical role. It poses a fundamental limit to
our knowledge about a system: the position of a particle, the spin of an atom or
the energy of a photon can only be known with finite precision. Realizing measure-
ments and building sensors that approach this fundamental limit is a challenging
effort, one that is suited to reveal the quantum properties of seemingly classical
objects. In this thesis I describe how the motion of a levitated glass sphere at room
temperature can be measured and controlled at this quantum limit.

In a first experiment the particle is trapped in the near-field of a photonic crys-
tal demonstrating a measurement efficiency of 9%, two orders of magnitude larger
than previously reported for levitated systems. With a tunable single-photon op-
tomechanical coupling of up to g0/2π = 9 kHz, this represents an exciting interface
for the study of optical fields in super resolution and the measurement of short
range forces. In a second experiment the approach is different: here the particle is
trapped in an optical tweezer in free space. The combination of a Heisenberg lim-
ited confocal measurement and optimal state estimation via Kalman filtering allows
to track the state of the particle in phase space with an uncertainty of 1.3 times the
zero point fluctuation. With optimal feedback the quantum harmonic oscillator is
then stabilized to a mean occupation of n = 0.56± 0.02 quanta, realizing quantum
ground state cooling in a room temperature environment. Finally, the generation of
squeezed light is observed as the result radiation pressure (ponderomotive) forces
driving the oscillating particle, for the first time without a cavity.

These results pave the way for quantum experiments with levitated solid-state
objects, ranging from non-classical states of motion for tests of macroscopic quan-
tum phenomena to the development of new force and impulse sensors for searches
of new physics such as dark matter.

Z U S A M M E N FA S S U N G

Die Heisenbergsche Unschärferelation markiert die Grenze zur Quantenwelt, in wel-
cher der Akt der Beobachtung eine entscheidende Rolle spielt. Sie schränkt unser
mögliches Wissen über ein System wesentlich ein: Die Position eines Teilchens, der
Spin eines Atoms oder die Energie eines Photons können nur mit endlicher Ge-
nauigkeit bestimmt werden. Die Durchführung von Messungen und der Bau von
Sensoren die sich dieser fundamentalen Grenze annähnern, ist eine anspruchsvol-
le Aufgabe und eignet sich auch die Quanteneigenschaften scheinbar klassischer
Objekte aufzudecken. In dieser Arbeit beschreibe ich, wie die Bewegung einer
schwebenden Glaskugel bei Raumtemperatur an dieser Quantengrenze gemessen
und kontrolliert werden kann.

In einem ersten Experiment wird das Teilchen im Nahfeld eines photonischen Kri-
stalls gefangen und zeigt eine Messeffizienz von 9%. Dies entspricht einer Verbesse-
rung um zwei Größenordnungen gegenüber vormals publizierten levitierten Syste-
me. Mit einer verstimmbaren optomechanischen Einzelphotonenkopplung von bis
zu g0/2π = 9 kHz stellt dies eine spannende Schnittstelle für die Untersuchung opti-
scher Felder in Superauflösung und die Messung von Kräften im Nahbereich dar. In
einem zweiten Experiment wurde ein anderer Ansatz gewählt: Hier ist das Teilchen
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vi abstract

in einer optischen Pinzette im freien Raum gefangen. Die Kombination aus einer
Heisenberg-begrenzten konfokalen Messung und einer optimalen Zustandsbestim-
mung mittels Kalman-Filter ermöglichen es, den Zustand des Teilchens im Phasen-
raum mit einer Unsicherheit von 1.3 Nullpunktsfluktuation zu verfolgen. Mit Hilfe
optimaler Rückkopplung wird der harmonische Quantenoszillator dann auf eine
mittlere Besetzung von n = 0.56± 0.02 Quanten stabilisiert. Dies entspricht einer
Kühlung in den Quantengrundzustand in einer Umgebung bei Raumtemperatur.
Schließlich wird gequetschtes Licht erstmals ohne optische Cavity durch Strahlungs-
druck erzeugt, der das oszillierende Teilchen antreibt (ponderomotorische Kräfte).

Diese Ergebnisse ebnen den Weg für Quantenexperimente mit schwebenden Fest-
körpern, deren Anwendung von der Erzeugung nicht-klassischer Bewegungszu-
stände für Tests makroskopischer Quantenphänomene bis hin zur Entwicklung neu-
er Kraft- und Impulssensoren für die Suche nach neuer Physik wie dunkler Materie
reichen.
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L I S T O F S Y M B O L S

Symbol Description Units

kB = 1.3806× 10−23, the Boltzmann constant m2kg
sK

R = 8.314, the universal gas constant J
Kmol

h = 6.626× 10−34, the Plank constant m2kg
s

 h h/(2π), the reduced Plank constant m2kg
s

c ∼ 3× 108, the speed of light m
s

T temperature K

q = x,y, z direction of motion label

ω, Ω angular frequency, mostly Ω is used in low frequency ap-
proximations

rad
s

m mass kg

Ωq mechanical angular frequency rad
s

γ mechanical damping rad
s

n, N quanta of excitation

nth = kBT/ hΩq quanta of excitation associated to the thermal
bath

ṅ, Ṅ rate of quanta, generally photon rate Hz

qzpf =
√

 h/(2mΩq) position zero-point fluctuation m

pzpf =
√

 hmΩq/2 momentum zero-point fluctuation kg m
s

κ cavity total loss rate Hz

G = dω cav/dx cavity optomechanical coupling, frequency
shift per displacement

Hz
m

g0 = Gqzpf cavity single phonon single photon cavity optome-
chanical coupling

Hz

χ single photon measurement strength, phase shift per dis-
placement (for a cavity = 2G/κ)

rad
s m

ηld, χ0, χF = χqzpf, Lamb-Dicke parameter rad
s

ηd information detection efficiency

Γmeas = ηdq
2
zpfχ

2Ṅ, measurement rate rad
s

Γba = q2zpfχ
2Ṅ, backaction decoherence rate rad

s

Γth = γnth, thermal decoherence rate rad
s

√
Γba measurement strength

√
rad

s

Cq = Γba/Γth, measurement quantum cooperativity
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Symbol Description Units

ηe (1+ 1/Cq), information efficiency due to loss to the ther-
mal environment

η = ηdηe, total information efficiency

η∗ photon detection efficiency

SXX Power Spectral Density of variable X [X]2

Hz

S̄XX = 1
2 (SXX(Ω) + SXX(−Ω)) Symmetrized PSD ”

SX = 2S̄XX(Ω > 0) single-sided PSD ”



P R E FA C E

The basic elements of the experiments I will show in this thesis are quite simple:
a glass nanoball is levitated in vacuum, held by light. In this trap it can move, it
oscillates hundreds of thousands of times per second, as an harmonic oscillator, like
a person on a swing. The same light that is trapping the particle also allows us to
see it moving, and as a someone on a swing, if we see them moving we can time our
pulls and pushes to slow them down, eventually stop the swing. But did we really
stop the swing? Or is it still moving so little we cannot really tell? Quantum me-
chanics, specifically the Heisenberg uncertainty principle, poses an ultimate limit
to the sensitivity of a measurement, and therefore the precision with which we can
control a system. First because the energy of a quantum mechanical object is deter-
mined at the very least by its ground state energy, resulting a minimal amount of
uncertainty of the measured quantities. It means that the particle cannot be stopped,
it can be at best slowed down to its lowest ground state energy. Second because any
quantum mechanical measurement apparatus (e.g. a Heisenberg microscope) will
inevitably disturb the object that is being measured [Cav82]. For example, if we
shine light onto an object to measure its position, we are also bombarding it with
the tiny quantum elements of light, photons, modifying its state of motion. A quan-
tum measurement entails a quantum backaction. In the words of Caves: “Quantum
mechanics extracts its due twice” [Cav82]. If we look close enough we realize that
the states of the particle and of light, are no longer distinguishable, separable. They
are now part of a greater quantum system where a continuous dance of quantum
(entangling) interactions takes place. But environmental disturbances tend to crush
this kind or parties, and scramble the features of the quantum motion, burying it
into a chaos of classical noise. The contact with a warm environment makes it very
difficult to observe the quantum effects especially as objects become bigger. Big
objects make huge parties. The challenge in the realization of a quantum measure-
ment is to eliminate all unnecessary (classical) disturbances. This requires an effi-
cient quantum measurement, and a good isolation from the environment [CGS03].
An exclusive quantum party.

Figure 1: Ink on paper by Costanza Loricchio.
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1 I N T R O D U C T I O N

The motion of objects represents one of the most fundamental aspects of our per-
ception of nature. Since ancient astronomy through the scientific revolution, to
modern physics, the study of moving objects has been at the heart of some of the
greatest scientific discoveries. Today, precise measurement of the motion of mas-
sive objects is still a widely used method to address open questions in fundamental
physics. Prominent examples include searches for gravitational waves [Abb+16], as
well as for signatures of physics beyond the current standard model such as dark
matter, dark energy [MRG14; Car+20; MG21; GPK10; Ham+15; Ove+18; Lee+20],
quantum gravity [Pik+12; Baw+15; Bel+16] and even string theory [Ger+08; Lee+20;
Tan+20]. In 1975, observing the rapid advancements in the technology of precision
measurements, and while contributing to the first ideas and prototypes for inter-
ferometric gravitational wave detectors, Braginsky posed a fundamental question:
“Under what conditions in macroscopic experiments will the increase in sensitivity
be limited by the quantum mechanichal properties of the object?” [BV75]. This ques-
tion did not only represent a practical concern, but implied critical epistemological
consequences that addressed fundamental controversies at the core of the theories
of modern physics. In this context, the modern formalism of continuous quantum
measurements was developed [Bel80; BLP83; CM87; Car93], as well as the concept
of the standard quantum limit of a measurement [BV75; Cav80; Cav+80; Yue83;
Cav85; Oza89; CGS03; Cle+10], giving birth to the experimental field of quantum
optomechanics. Realizing the conditions for which the quantum mechanical proper-
ties of a macroscopic object are relevant represents the achievement of the ultimate
precision of a measurement and may provide insights about the action of quantum
mechanics on macroscopic systems. Until recently, quantum measurements and
control of the mechanical motion of macroscopic objects have required combina-
tions of cryogenic and cavity cooling schemes [LaH+04; Teu+11; Cha+11; Ros+18;
Del+20a]. Continuous sensing close to the quantum limit at room temperature has
only been demonstrated in cold atoms experiments [Sch+14].

This thesis is about the experimental realization of quantum measurements and
control of the motion of a macroscopic system at room temperature. Specifically,
the system consists of a glass ball1, the size of a virus, that is trapped in vacuum by
a focussed laser field: an optical tweezer.

Now the concept of macroscopicity is very a relative one and often source of
controversy.2 When referring to a sizeable extension (of objects or states) many will
rightfully argue that a 150 nm glass ball is actually quite microscopic and even more
so is its picometer-sized ground state! But bear with me for a moment. These are
very complex systems: they are glass particles, made of 109 atoms, they are dirty, they
are porous, not really symmetric, they get wet, they are hot... they interact strongly
with the surrounding environment, they behave like very classical macroscopic objects.
In this sense I might convince you, for now, that these particles have been, to me,
very macroscopic! [to be continued...(at the end of the thesis)]

1 more commonly called particle or sphere, I always believed ball was geometrically more appropriate, so
i’ll take my liberties just here!

2 Quantifications of “macroscopicity” in quantum systems typically refer to the number of particles in-
volved (or “size of the cat”) [Leg80; DSC02; Kor+07], the distance between the branches of a superposi-
tion [BM04; Kor+07; Sch+19], the degree of quantum coherence [LJ11; YV16] or the exclusion of theories
that predict the failure of the superposition principle [NH13].
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4 introduction

1.1 why optical levitation?

Historically the motivation driving proposals [RI+10; BS10; Cha+10; RI+11b; RI+11a]
and experiments [Gie+12; Kie+13; Ase+13; Jai+16] with optically levitated nanopar-
itcles has been twofold: one quite technical, the second of fundamental nature. The
technical reason was about bringing a mechanical system in the quantum regime,
which requires “isolation”. As mentioned earlier, this is a fundamental ingredi-
ent that is required if one wishes to to distinguish the quantum from the classical
noise. It appeared that clamped mechanical systems such as micromirrors [Gig+06;
Arc+06; KB06; Pog+07], membranes [Tho+08], and breathing structures [Arm+03;
Sch+06] were doomed by their very nature to be dominated by both clamping and
internal losses, and that levitation would naturally solve the problem. The devel-
opment of phononic acoustic shields and soft clamping methods of outstanding
performance made many of these limitations obsolete, and clamped mechanical
oscillators have in some cases even surpassed [Ros+18; Mac+20] the photon-recoil
limited quality factors that are expected for optically levitated systems, even at room
temperature [Gha+18; GNG19]. The second argument for levitation, the fundamen-
tal one, is about what to do once the mechanical system is in a quantum state. One
of the most intriguing possibilities is matter-wave interferometry [Kal+12], and the
creation of large, massive, superposition states [RI+11a]. Experiments of this kind
require, in the simplest of cases, some time of “free evolution”. Optical levitation
can provide this. The real, fundamental advantage of optically levitated systems
is that light, and only light, defines all of the relevant experimental parameters. It
defines not only the measurement process and quantum decoherence rates, but also
the function of the potential landscape in which the mechanical object lives. The re-
sult is an extremely versatile quantum system, which evolves in time according to a
Hamiltonian that can be dynamically tuned in almost all of its degrees of freedom.

1.2 structure of this thesis

This thesis takes the form of a cumulative thesis and is structured as follows. In
chapter 2 I will present a brief theoretical background on quantum measurement.
Starting from the basic definitions of a von Neumann measurement, its applicability
and limitations, I will introduce the concept of generalized measurements, and their
physical realizability as indirect measurements (Naimark’s theorem). I will extend
the description to continuous sequences of measurements, show how the natural
evolution of the system can be taken into account, leading to the equation of mo-
tion of a continuosly monitored quantum state. I will briefly introduce the concepts
of “quantum trajectory” used to define the state evolution in the Schrödinger pic-
ture, as well as the formalism of “quantum filtering” addressing the problem in the
Heisenberg picture. Finally I will discuss the sensitivity limitations of a quantum
measurement, and the effects of using optical cavities, described in terms of an en-
hanced measurement strength. In chapters 3 and 4 I will present my manuscripts on
near field coupling of a levitated nanparticle to a photonic crystal cavity [Mag+18]
and ground state cooling by confocal detection and optimal control [Mag+21]. Both
are preceded by a short introduction describing the most immediate scientific back-
ground, motivating the methodology of these experiments. As these chapters reflect
the submission or publication format, the theoretical description and experimen-
tal details can be found in their respective supplementary material, also included
here. In chapter 5 I describe the theory and experimental results regarding ongo-
ing research on squeezing of light via optomechanical interaction (ponderomotive
squeezing) at room temperature and in absence of a cavity. As the manuscript for
this work is still in preparation, the structure of this chapter follows a more didactic
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form: theory first. Finally in the conclusive chapter 6 I will summarize the results
in a perspective for future developments.





2 Q U A N T U M M E A S U R E M E N T

In this chapter I give a brief overview of the basic concepts that are involved in
defining the operational formalism of quantum measurements. The goal is give to
draw a connection between some of the fundamental concepts of quantum mechan-
ics and the practical realization of quantum measurements in real experiments.

2.1 the measurement problem
The concept of measurement, the interpretation of its outcomes and effects, or “the
measurement problem” represents a central matter in quantum theory. What con-
stitutes a measurement? What happens to the physical system during the measure-
ment process? What does the collapse of the wave function mean? How does in-
formation about this quantum system permeate to our classical instruments “upon
which we can lay our grubby classical hands on” [Cav82]? On a metaphysical level
the quantum interpretation of a measurement, the quantum to classical transition,
has been, and still is, subject of endless debate for physicists and philosophers. But
dropping any ontological ambition [Mab05], the operational theory is clear, and
for an experimentalist it is also enough! For now. A useful theory of measure- What do we want?

ment in quantum physics must satisfy two minimal requirements: First, it must
relate the state of a quantum system to the physical quantities that are measured.
Second, it must be able to predict the consequences of the measurement on the sys-
tem [Mab05]. In the standard formalism of quantum measurements, as introduced
by von Neumann [Neu32], the act of a measurement is represented by a projection
operation of the state’s wavefunction onto an orthonormal basis of the Hilbert space
defined by a specific observable determined by the measurement apparatus. The
measurement outcome is given by the eigenvalue of the projection, while the state
is left in the corresponding eigenvector, or eigenstate. The physicality of the mea-
surement is ensured by the Born rule, linking the the state’s wavefunction |ψ〉 to
the probability amplitude p(x) of finding the system in a given eigenstate |x〉, and
measuring the corresponding outcome x. Defining the projection operator in bra-
ket notation as Πx = |x〉〈x|, a standard quantum projective measurement is defined
by

a projective, von Neumann
measurement

Πx |ψ〉 = x |x〉 , with p(x) = 〈ψ| |Πx |ψ〉 = |〈x|ψ〉|2 (1)

And this is enough! It represents some statistical property of the system, and also
predicts the state after the measurement. However, for quantum observables with
a continuous spectrum, such as the position of a particle, there is no normalized
basis of eigenstates. As a consequence, in this infinite dimensional Hilbert space,
“an arbitrary precise measurement of position will require an arbitrary large amount
of energy” [CM87], with devastating consequences on the system! Can we define a
more practical and general class of measurements in quantum mechanics? [CM87]
Can we describe the evolution of a system undergoing a measurement process and
predict its post measurement state? A natural candidate for this job may be the
Schrödinger equation. As a matter of fact this equation does define the dynamics
and evolution of quantum systems:

the Schrödinger equation
i h
∂ |ψ〉
∂t

= H |ψ〉 (2)

7



8 quantum measurement

and so it may seem that the problem is only about identifying a suited “measure-
ment Hamiltonian”. But this equation is deterministic and also reversible, while a
measurement is hardly so1! The Schrödinger equation alone is also not enough to
describe a quantum measurement. A generalization of the standard measurement
formalism for any open quantum system [GZ04] is necessary. We will see in the
rest of this chapter how this can be done by opening the state space to a portion of
the surrounding environment, connecting it to a quantum meter (or apparatus, or
ancilla, or probe). A generalized measurement will be then the combination of a
deterministic interaction of the quantum system and the quantum meter, described
by the Schröedinger equation (2), followed by a dramatic (arbitrarily precise) von
Neumann measurement (1) on the meter.

2.2 generalized measurements: effects and op-
erations

As we want to give a formal definition of a most general physical measurement,
it makes sense to do so for the most general physical state. That is a mixture ofMixed states:

ρ =
∑
j pj |ψj〉〈ψj| j pure states |ψj〉 weighted by the probability pj of the system to be found in the

corresponding state. Such a mixed state is conveniently described by a density op-
erator ρ =

∑
j pj |ψj〉〈ψj|. As we said, in order describe any physical and useful

measurement, this must represent the statistical properties of the state being mea-
sured, and provide a means for predicting its post-measurement state. Formally
this requires that any physical measurement must be represented by a set measure-
ment operators Mj, spanning the entire Hilbert space of the system (or complete),
and normalized. Practically this means that we may have to accept a “minimum
width” for the probability densities, a finite measurement precision (and backac-
tion), that depends on the specific measurement apparatus [CM87]. The probability
of measuring the outcome x can be written as

p(x) = tr
[
MxρM

†
x

]
= tr

[
M†xMxρ

]
. (3)

This satisfies the requirement of the measurement being a statistical representation
of the state. In (3) the second identity follows the cyclic property of the trace. APOVM

Measurement associating a positive operator M†xMx with the probability of finding
the system in the state x is commonly known as Positive Operator Valued Measure or
POVM. As for the second requirement, the state after the measurement (conditioned
on the outcome x) must be of the form:The conditional state

ρ→ MxρM
†
x

tr[MxρM
†
x]
≡ ρ̂ (4)

where the ˆ -symbol refers to the conditional (sometimes called “selective” [CM87])
state, in contrast to the unconditional (non-selective) post-measurement state that
we have when disregarding the measurement outcome2:The unconditional state

ρ→
∑
x

MxρM
†
x

tr[MxρM
†
x]

(5)

The measurement operator Mx therefore defines both its “effects” on the measure-
ment apparatus (3) as well as the “operation” by which the initial state is trans-
formed during the interaction with the apparatus itself (4) [Kra+83].. So how canStates, effects and operations

one practically build a measuring apparatus that can satisfy equations (3) and (4)?
A convenient way doing so is through the concept of indirect measurements, as
discussed in the following section.

1 Except if the system is already in an eigenstate of the observable, but then eigenstates can be defined,
and projective measurements would have worked just fine

2 for example in the case of an inefficient measurement
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2.3 indirect measurements
An indirect measurement is a two-step process that involves two, initially distinct,
quantum systems: the object of the measurement and the meter. In the first step
these two systems are brought in “contact”, and correlations are established be-
tween their interacting degrees of freedom. The second step consists of a strong,
projective measurement of a chosen observable of the quantum meter. The outcome
of this measurement allows us to infer the statistical properties of the state of the
quantum object. And the state after the measurement can be derived knowing the
measurement outcome and the nature of the interaction with the probe. This is the
beginning of what is known as a von Neumann chain. But what is the advantage?
Have we not only shifted the quantum/classical cut (or “Heisenberg cut”) to a later
moment? The advantage of such a decomposition lies in the fact that the quantum
object only comes in contact with another known quantum system, and their state
evolution is deterministically defined by the Schrödinger equation. We can deal
with the mechanics of a “direct” projective measurement later. The meter takes it
all! Imagine a photon (meter) probing the position of an electron (object) and then
being smashed onto a highly sensitive photographic plate. Who cares about what
happens to the photon, what is the chemistry involved in this “quantum-to-classical
transition”; the quantum object is safe, and a new quantum meter can be prepared
for a successive measurement. Formally the above considerations are justified by
Naimark’s theorem, stating (broadly speaking) that any generalized measurement
can be described as a von Neumann measurement on a larger Hilbert space and
vice versa [Par12]. In order to highlight the connection between the experimental Naimark’s theorem: Any

generalized measurement can be
viewed as a von Neumann
measurement on a lager Hilbert
space – and vice versa

physical systems and the mathematical description of the measurement process, in
the following I will go through the key steps of the proof of Naimark’s theorem. A
complete statement of the theorem and a rigorous proof can be found in this useful
tutorial on quantum measurement [Par12].

The state of the quantum object (or system, here denoted with the label “s”)
is defined by its density operator ρs =

∑
i |ψi〉〈ψi| on the Hilbert space Hs. For the object is in a mixed state

simplicity we choose the meter (label “m”) to be in a pure quantum state3 ρm =

|Υ〉〈Υ| ∈ {|Υn〉} where {|Υn〉} is an orthonormal basis for Hm. Before the interaction the meter is in a pure state

of the object-meter state ρsρm defined on Hs⊗Hm is a separable state. Considering
the interaction Hamiltonian HI, defined on Hs ⊗Hm, the Schrödinger equation (2)
allows to define the unitary Dyson operator in the interaction picture:

UI = e
−iHIt/ h. (6)

The interaction introduces correlations between the two systems, entangling them,
into an unseparable state ρ defined on the extended Hilbert space Hs ⊗Hm:

ρ = UIρsρmU
†
I . (7)

At this point we perform a standard projective measurement of the meter on the
basis of interest {|x〉} ∈ Hm. Defining the projection operator Πx = |x〉〈x| the proba-
bility of measuring the value x can be derived adapting equation (1) in the density
matrix representation:

p(x) = tr [ρΠx]

= trsm

[
UIρsρmU

†
I |x〉〈x|

]
= trs

[
ρstrm

[
ρmU

†
I |x〉〈x|UI

]]
= trs

[
ρs
∑
n

〈Υn|Υ〉 〈Υ| U†I |x〉〈x|UI |Υn〉

]
= trs

[
ρs 〈Υ| U†I |x〉〈x|UI |Υ〉

]
= trs

[
ρsM

†
xMx

]
,

(8)

3 this is easy to do experimentally using light as a quantum meter
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where we distinguish between the total trace operation tr (or equivalently trsm)
and the partial trace operations trs and trm over the subspaces of the object and
meter, respectively. From (8) we immediately see how a standard measurement on
an extended Hilbert space yields the same statistics as a generalized measurement
on one of the subsystems, with a measurement operator defined on Hs as:

Mx = 〈x|UI |Υ〉 . (9)

In addition we notice that the operator M†xMx is positive ∀x, and that for any pure
state |ψs〉 in Hs:∑

x

〈ψs|M
†
xMx |ψs〉 =

∑
x

〈ψs| 〈Υ| U†I |x〉〈x|UI |Υ〉 |ψs〉

= 〈ψs| 〈Υ| U†IUI |Υ〉 |ψs〉 = 1
(10)

and therefore
∑
x
M
†
xMx = I is a completely positive map, which guarantees the

physicality of the measurement. In order to derive the post measurement state of
the object conditioned on the measurement outcome x, we need to trace the density
operator after the measurement over the meter subsystem. This reduces the density
operator to the subspace Hs

ρ̂s =
1

p(x)
trm

[
UIρsρmU

†
I |x〉〈x|

]
=

1

p(x)

∑
n

〈Υn|UIρs |Υ〉〈Υ|U†I |x〉〈x|Υn〉

=
1

p(x)
〈x|UI |Υ〉 ρs 〈Υ|U†I |x〉 =

1

p(x)
MxρsM

†
x,

(11)

fulfilling requirement (4).

2.4 continuous linear measurements
We have seen how to define the measurement operators given an appropriate choice
of a quantum meter and its interaction with the measured object. The state of the
system post measurement can now be calculated by conditioning upon the mea-
surement outcome. In addition, it can also be measured again shortly after! One
just has to prepare a new quantum probe, let it interact... We can then imagine to
perform a sequence of measurements, that in turn generates a sequence of measure-
ment outcomes and of post-measurement states, i.e. a quantum trajectory! One can
write:a sequence of generalized

measurements

ρs →
1

p(x1)
Mx1 ρs M

†
x1
→ 1

p(x2|x1)
Mx2Mx1 ρs M

†
x1
M†x2 → ... (12)

This trajectory is said to be driven by the measurement process: it only depends on
the random measurement outcome and the effect of the system-meter interaction.
But what if we want to monitor a particular observable in time, and how do we
include the intrinsic dynamics of the system into this? We can consider a sequence
of (instantaneous) measurements, separated by a time τ. Between any 2 measure-
ments, the system will evolve according to its free Hamiltonian H0, by the unitary
transformation

U0 = e−iH0τ/
 h. (13)

The state of the system after the nth measurement is [CM87]a sequence of generalized
measurements, and free

evolutions

ρ̂s(t
+
n) =

1

p({xi})

(
n∏
i=1

MxiU0

)
ρs(0)

(
n∏
i=1

MxiU0

)†
(14)
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where the t+n indicates the time just after the measurement time tn, and with

p({xi}) = tr

( n∏
i=1

MxiU0

)†( n∏
i=1

MxiU0

)
ρs(0)

 . (15)

It is important to keep in mind that the measurement results {xi} are stochastic vari-
ables. For this reason, in the limit of τ→ 0, the sequence (14) can be generalized to a
stochastic differential equation driven by a continuous measurement x(t) [Mab05].

2.4.1 In the Schrödinger picture: the quantum trajectory

This representation of the state evolution in the Schrödinger picture, where the
continuously monitored quantum state evolves in time, driven by the operations
and effects of the measurement process, was first given by Barchielli et al. [BLP82;
BLP83]. In the following I provide a brief description of the main steps and key
approximations required for the simplest derivation of the stochastic master equa-
tion describing the state evolution in the Schrödinger picture. The dynamics of the
system is described by its variation in time, encompassed by the time derivative of
the conditional state:

dρ̂s(t)

dt
= lim
τ→0

ρ̂s(t
+
n) − ρ̂s(t

+
n−1)

τ
(16)

which, using equations (14) and (15), becomes the Stochastic Differential
Equation

dρ̂s(t)

dt
= lim
τ→0

1

τ

MxnU0ρ̂s(t
+
n−1)U

†
0M
†
xn − ρ̂s(t

+
n−1)

p(xn|ρ̂s(t
+
n−1))

. (17)

This differential equation depends on the stochastic processes defined by the mea-
surement process. It is known as the Stochastic Master Equation (SME) of the sys-
tem. The solution of this equation is in general a difficult problem as it is nonlinear the Stochastic Master Equation

in ρ̂ and depends on the statistical properties of the quantum probe. For this reason Gaussian noise
it is convenient to exploit the properties of a probe with Gaussian statistics4:

pΥ(x) = |〈x|Υ〉|2 =
1√
2πτ

e−
(x−〈x〉)2
2τ . (18)

For linear systems, such as an harmonic oscillator, both the unitary evolution and
the unitary measurement operation transform Gaussian states into Gaussian states,
thereby greatly simplifying the problem [CM87]. The next step is usually an ap-
proximation: the measurement operator Mx is defined by plugging a second order
Taylor-expansion of UI, (6), into (9). This can be further simplified by use of (18),
and keeping only the terms up to order τ [JS06; Lam18]. U0 is also approximated
in a Taylor series up to the terms of order τ. Finally with a bit of stochastic calculus
and normalizations [JS06] one can find the conditional stochastic master equation
for Gaussian linear system of the form:

dρ̂(t) = −i [H, ρ̂(t)dt ] +Dρ̂(t)dt +
√
ηHρ̂(t)dW (t) (19)

where the first term represents the free evolution of the system, second term con-
tributes to the diffusion of the system coupled to an external bath (defined by the
measurement apparatus), and the third term accounts for the conditioning upon the
measurement outcome, with η the efficiency of the measurement and dW a zero
mean Gaussian stochastic process of variance dt. If the system couples also (as it
is likely) to the environment through other mechanisms than the measurement pro-
cess, this is modelled in (19) by additional dissipation terms. Equation (19) describes
the quantum trajectory of the system under continuous measurement [Car93]

4 This is an easy assumption to satisfy if using an electro-magnetic field as probe
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2.4.2 In the Heisenberg picture: quantum filtering

The dynamics of the quantum system can equivalently be described in the Heisen-
berg picture. This approach, known as “quantum filtering” was developed by
Belavkin [Bel95], extending the concepts of classical control theory and Kalman
filtering to the quantum domain. While for a quantum physicist the “quantum tra-
jectory” approach may seem the natural way to derive the quantum equation of
motion, the quantum filtering approach allows us to appreciate the connections to
the corresponding classical problem with a few restrictions. The core of this argu-
ment is that it is possible, under certain Markovianity conditions (descending from
the statistical properties of the probe), to define a mapping from the operator-valued
quantum observables to a classical, real-valued stochastic process, which describes
the corresponding measurement signal [BVJ07; BVHJ09; EWP17; HH17].

In the Heisenberg picture, the extended state ρ = ρs ⊗ ρm is independent of time,
and the total Hamiltonian is given by H = Hs +Hm +HI (∈ Hs⊗Hm). The operators
associated to the quantum observables absorb the time dependence defined by the
Schr’́odinger equation: qi(t) = e−iHt/

 hqie
iHt/ h. Their evolution is given by the

Heisenberg equation:

q̇i(t) =
i
 h
[H,qi(t)] (20)

These, together with the statistical properties of the probe, allow derive the so-
called input-output relations for the system dynamics and for the measurement
process, and construct a state-space in perfect analogy with the classical case. The
details of this derivation and the connection to Kalman filtering are fully described
in Section 4.7.5.

2.4.3 "The route to reality"

In the above non-rigorous attempt of describing physical quantum measurements
and their connections to the postulates of quantum mechanics we have rushed
through the non-physical, yet reasonable assumption that the measurement occurs
instantaneously. This cannot be true. It is only a fair approximation if a reasonable
time-scale hierarchy is satisfied[BK95] 5. In fact, “if a measurement is distributed in
time the notion of a system’s quantum state evolving in time has no place” [Cav86].
Measurements distributed in time, require a more rigorous approach, “a route to
reality”, that was introduced by Caves and makes use of a path-integral formulation
and the so called “sum over histories” [Cav86; Cav87; CM87].

2.5 the measurement limits: two simple examples
We have seen how to operationally describe the dynamics of a system undergoing
a continuous weak measurement by letting it interact with a quantum meter and a
following strong measurement of it, resulting in the so-called state reduction. But
with what precision can one measure the state of a system? The fundamental limits
of a quantum measurement originate from the commutation relations of comple-
mentary operators, leading to the Heisenberg uncertainty principle. In this section
we will derive, with some simple arguments, the limitations in accuracy that arise
in the measurement of a quantum system using a quantum probe6. In particular,
we focus on measurements of displacement using an electromagnetic field in the
optical domain. The reasons are the two that ensured the extraordinary success of
quantum optics in the past 40 yeas: first, it is easy to prepare pure quantum states
of light, and second light is easy to measure! From the commutation relations of the

5 The Heisenberg cut is much faster than the system meter interaction which is in turn much faster than
the system dynamics

6 For a rigorous and more general approach see for example Braginsky and Khalili [BK95].



2.5 the measurement limits: two simple examples 13

electric field operator of a pure quantum state at different times, its easy to derive
an uncertainty relation between the number of photons N, optical phase ϕ of the
optical field [Lou00]:

∆N∆ϕ =
1

2
(21)

2.5.1 Measurement of a free particle

What happens if we use this light to measure the position of a particle of mass
m in space? Let’s follow the gedankenexperiment known as the “Heisenberg mi-
croscope”[Hei27] combined with an interferometric measurement. As photons il- The Heisenberg Microscope

luminate the particle, each one of them will disturb it by delivering a momentum
p = 2 hk7 (with k = 2π

λ the magnitute of the wavevector and λ the optical wave-
length). We use an interferometer to measure the phase of the scattered filed. This
quantity is related to the position of the particle x by ϕ = 22πλ x. Using these rela-
tions together with (21) we find that:

∆xmeas∆pperturb =
 h

2
. (22)

This means that, if at time t0 we measure the particle position with an accuracy of
∆x0 we will necessarily perturb it by at least

∆p0 =
 h

2∆x0
, (23)

which will result after a time interval τ into an increased position uncertainty: The Standard Quantum Limit

∆x =

√
∆x20 +

(
∆p0τ

m

)2
. (24)

We can now use the geometric inequality and (23), to finally define the Standard a2+b2 > 2ab

Quantum Limit (SQL) for the measurement of a free particle:

∆x >

√
2∆x0

∆p0τ

m
=

√
 hτ

m
(25)

Performing a second position measurement at time t1 = t0 + τ one can compute
the momentum that was delivered to the particle with the first measurement: p =

m(x1 − x0)/τ. Assuming arbitrary precision for the second measurement (we don’t
care of the consequences), the uncertainty over this estimation is:

∆p >

√
 hm

τ
(26)

The equality in equations (25) and (26) are valid if the initial measurement and
associated perturbation are, respectively, ∆x0 = ∆xSQL =

√
 hτ/(2m), and ∆p0 =

∆pSQL =
√

 hm/(2τ). In this case the uncertainty contributions from the measure-
ment imprecision and its back-action are equal (in equation (24)), and the total
imprecision is minimized [BK95]8. These argument was first made by Bragin-
sky [BV75], initiating a debate on the standard quantum limits, their meaning and
fundamental nature [Cav+80; Yue83; Cav85; Oza89]. Indeed, in this derivation we
have neglected the possibility of a negative correlation term in (24), arising from
particular “contracitve measurements” which could in principle allow sensitivities
beyond the limitations imposed by the SQL [Yue83; Oza89].

7 For simplicity we assume they are all perfectly reflected, the spherical geometry case with dipole-like
emission is described in Section 4.7.2

8 In literature the definitions of the SQL values are often differing by a factor
√
2. This depends on

the definition of uncertainty/imprecision/accuracy of the measurement, and whether this is considered
before or after the second measurement, whether the measurements are averaged or not, whether they
are identical or not. But this is not a particular issue, the point is: there is a quantum limit to the precision
of a measurement.
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2.5.2 Measurement of an harmonic oscillator

The same arguments stand if the particle is not free any more, but bound by a
potential. Partucularly intersting for us is the case of an harmonic potential of
eigenfrequency Ωx. Equation (24) becomes :

∆x =

√
∆x20 +

(
∆p0
mΩ

)2
>

√
 h

mΩx
, (27)

from which the SQL definitions ∆xSQL =
√

 h/(2mΩx) and ∆pSQL =
√

 hmΩx/2. It
is important to notice that the standard quantum limit of a measurement (in its origi-
nal formulation) is the consequence of the Heisenberg uncertainty principle applied
to the measuring apparatus, in our case light. However, if measuring a quantum
system such as an harmonically bound particle, one has to also consider the uncer-
tainty (in position and momentum) that arises from its finite ground-state energy.
This defines the quantum zero-point fluctuations of momentum and position of the
harmonic oscillator:

xzpf =

√
 h

2mΩx
, and pzpf =

√
 hΩxm

2
. (28)

Considering the these quantum fluctuations the minimal displacement or momen-
tum uncertainty, (again assuming no momentum position correlations) are given by
the more stringent Quantum Limits (QL) [Cle+10]:

∆xQL =
√
∆x2SQL + x2zpf =

√
 h

mΩx

∆pQL =
√
∆p2SQL + p2zpf =

√
 hΩxm.

(29)

We have seen how can one derive the sensitivity limits imposed by quantum me-
chanics on a two-measurements sequence for a free particle and of an harmonic
oscillator. Can this be generalized to a continuous measurement monitoring the
the motion of the mechanical system? When performing a phase measurement
of light in a coherent state (displaced vacuum) the phase and photon number un-
certainty is governed by Poissonian statistics: these uncertainties are respectively
∆ϕ = 1/(2

√
N) and ∆N =

√
N, where N is the measured number of photons dur-

ing the time t9. The product of these uncertainties satisfies the relation (21). In the
context of continuous measurements of stationary processes it is useful to reformu-
late these quantities in terms of a noise power spectral densitiy. This is defined, forThe power spectral density of a

variable X: SXX(Ω) =
+∞∫
−∞e−iΩt 〈X(0)X(t)〉 dt

any variable, as the Fourier transform of its autocorrelation. Measuring a continu-
ous flux of photons of average ¯̇N, we can now define Sϕϕ = ∆ϕ2/t = 1/(4 ¯̇N) and
SṄṄ = ∆N2/t = ¯̇N. Again, we have the uncertainty relation:√

SϕϕSṄṄ = 1/2 (30)

Leading to spectral density definitions for the imprecision of a position measure-
ment SI

xx = Sϕϕ/(4k
2) and the random backaction force-noise Sba

FF = 4 h2k2SṄṄ [Cle+10].
The uncertainty relation becomes:√

SI
xxS

ba
FF =  h/2 (31)

The response of a system to external forces is given by its mechanical response
function or susceptibility. For an harmonic oscillator this is: χm(Ω) = [m(Ω2x−Ω

2+

iγΩ)]−1 (m the mass of the particle, Ωx: the mechanical resonance frequency, γ: the
total damping of the system). With this we can write the total displacement noise

9 For N � 1 the Poissonian distribution approaches a Gaussian distribution, for which our choice of
meter is consistent with the Gaussian Noise approximations of the previous section
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that is measured as the sum of the contributions of the measurement imprecision, of
the displacement response to the backaction force noise and of its intrinsic quantum
fluctuations:

Sxx(Ω) = SI
xx + S

ba
FF|χm(Ω)|2 + S

zpf
xx (Ω), (32)

where the ground-state displacement spectrum is given by [Cle+10]:

S
zpf
xx (Ω) = x2zpf

γ/2

(Ω−Ωx)
2 + (γ/2)2

. (33)

The measurement-added noise is given by the sum of imprecision and backaction,
and is minimized at the standard quantum limit:

SSQL
xx (Ω) = min{SI

xx + S
ba
FF|χm(Ω)|2} =  h|χm(Ω)|. (34)

Evidently, because of the frequency dependence of the response function, the op-
timal measurement strength that minimizes the added noise is not the same for
all frequencies. In a real experiment two conditions may increase the measured
displacement noise: inefficient detection and environmental force noise contribu-
tions. Defining the detection efficiency ηd 6 1, the imprecision noise is increased to
S

imp
xx = SI

xx/ηd. On the other hand, an additional environmental force noise will re-
sult in a total force noise of Stot

FF = Sba
FF + S

th
FF = Sba

FF (1+ 1/Cq) where Cq = Sba
FF/S

th
FF

is the measurement quantum cooperativity, defining the strength of the measure-
ment compared to any other disturbance. The total displacement noise is then
given by:

Sxx(Ω) = S
imp
xx + Stot

FF|χm(Ω)|2 + S
zpf
xx (Ω)

=
S

imp
xx

ηd
+ Sba

FF

(
1+

1

Cq

)
|χm(Ω)|2 + S

zpf
xx (Ω).

(35)

It is evident that in order to measure and control a system at its quantum limits,
the measurement must be both efficient (ηd → 1) and strong (Cq → ∞). We now
define the measurement rate and the decoherence rate as the rate at which the mea-
surement allows to resolve a displacement equivalent to the zero point motion of
the oscillator (xzpf), and the decoherence rates due to the measurement backaction
or thermal environment as

Γmeas =
x2zpf

4S
imp
xx

= ηd
x2zpf

4SI
xx

, and Γba,th =
Sba,th
FF

4p2zpf
. (36)

The measurement cooperativity can then be rewritten as Cq = Γba/Γth. Finally,
using these definitions it is easy to see that in order to resolve the motion of
the particle with a resolution that is smaller than the variance of n = 1 phonon
(∆x <

√
2n+ 1xzpf), and at a rate that is faster than the total decoherence rate we

need [Gen+08; Sud+17a]:

ηd

(
1+

1

Cq

)
>
1

9
(37)

2.5.3 The effect of a cavity on a measurement

We have seen how a quantum limited measurement must be both strong and effi-
cient. A cavity can help with both. In particular, a cavity can amplify the coupling
to a particular degree of freedom of the probe that we can detect efficiently. Cavity
optomechanical systems, have been broadly studied in a variety of platforms and
in many different settings [AKM14]. In particular, resonators do not only offer an
enhanced light matter interaction, they allow to also select the type of interaction
that is enhanced [Pal+13; Rie+16], and therefore coherently couple the mechanical
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system to a tailored quantum bath [Cha+11; Teu+11; Wol+15; Del+20a]. Here I will
briefly discuss the specific use of resonators to enhance the measurement strength
for the position of a mechanical oscillator: that is in the condition of resonant drive
in the “bad cavity” regime [MVT98; SN+13; Wil+15].

Using the definitions given above, we can define the measurement backaction as

Γba = χ2x2zpfṄ (38)

where χ is the optical phase shift per displacement of the particle. In free space
χ 6 22πλ , where the equality holds if the mechanical oscillator is a perfectly re-
flecting flat mirror with light coming in parallel to its motion and perpendicular
to its surface. Evidently, one can increase the measurement quantum cooperativity
by having a laser with smaller wavelength or with stronger power. Often times
the environmental force noise is so strong that one would end up needing a not
so practical laser. In such cases an optical cavity helps. Broadly speaking, when
the optomechanical interaction takes place within an optical cavity the photons are
“recicled”, enhancing the interaction of each one by a factor given by the finesse
of the resonator. Two parameters are crucial in defining a cavity that is suited for
optomechanical experiments: the timescale of light being trapped into the cavity,
τ = κ−1, and the coupling of the mechanical displacement on the cavity resonance,
G = dωcav /dx . If the mechanical oscillator is one of the end-mirrors of a Fabry-
Perot cavity whose rest position is x0, this is trivial: the position dependent reso-
nance is ωcav(x) = 2πc/2L(x) ∼ ωcav(x0) + 2πc(x− x0)/2+ ..., where L the is cavity
length, and the coupling is G = πc. Otherwise, if the mechanical oscillator is a
dielectric object placed into the cavity [Tho+08; Kie+13], its non unity refractive
index will determine a delay for the light travelling through, effectively increasing
the cavity length. This delay will depend on the overlap of the cavity mode with
the dielectric volume, which in turn will depend on its position resulting again in
a position dependent resonance frequency. The position of the particle will be im-
printed in the cavity output field. This can be derived knowing its optical response
function, which for a single sided cavity is given by:

χcav(ω) =

√
k

k
2 − i (ω−ωcav(x))

. (39)

Here the real and imaginary parts of χcav(ω) represent the cavity’s phase and am-
plitude responses, respectively. From these relations is easy to see that a change
in resonance frequency, caused for example by the displacement of the mechanical
oscillator, detunes the cavity from the (resonant) input filed, resulting in a phase
delay of the output field:

∆x→ ∆ωcav = G∆x

→ ∆ϕ =
2

κ
∆ωcav =

2G

κ
∆x

(40)

We can therefore define the optomechanical phase shift per displacement, or mea-
surement strength, in presence of a cavity as χ = 2G/κ. Additionally we can write
the rate of photons leaving the cavity (for the detector) as the intracavity photon
number times the cavity loss rate: Ṅ =

√
κNcav. Finally, using equation (38) we

find:

Cq =
Γba
Γth

=
Ṅχ2x2zpf

Γth
=
4g20Ncav

κΓth
(41)

with g0 = Gxzpf the single-photon single-phonon optomechanical coupling [AKM14].
While the first two equalities in equation (41) are true in general for any optome-
chanical system, the third is specific to the use of a cavity.
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2.6 where does this thesis stand

In this thesis I study the motion of silica nano-balls that are trapped in an optical
tweezer in vacuum and at room temperature. In particular I will show two main
results on which I have been working. The first employing a cavity [Mag+18], the
other one not [Mag+21]. At the time I started my PhD, in September 2015, optically
levitated mechanical systems were trailing in the quest for the quantum regime,
while clamped optomechanical systems [Pal+13; Wil+15; SN+13; Rie+16], with the
benefit of cryogenic cooling and high mechanical frequencies, were steadily follow-
ing in the footsteps of the atomic physics community. The “new” levitated particles
had been hard to control and were often lost in UHV even with cavity sideband cool-
ing [Kie+13] untill the introduction of a measurement based parametric feedback
cooling scheme by Gieseler et al. [Gie+12]. This allowed Jain et al. to reduce the
thermal noise introduced by the residual gas and show for the first time the effect
of radiation pressure shot noise on a levitated particle [Jai+16]. However, despite
the strong backaction, the measurement efficiency was limited to about ηd ∼ 10−3,
restricting control to the classical domain.

The idea of the first experiment I present here [Mag+18] was to improve this fig-
ure by strong evanescent coupling of the motion of particle to the optical mode of
a photonic crystal cavity, which could be efficiently read out by coupling the struc-
ture to a tapered single mode fiber. We could show very high and tunable coupling
(due to the small mode volume) and a detection efficiency of ηd = 0.09, two or-
ders of magnitude better than previous results and just an inch from the minimal
required limit of 1/9 for ground state cooling – and with room for improvement.
However due to thermal and mechanical instabilities of the cavity this was only
shown at a gas pressure of 1 mbar, hence limiting the measurement cooperativity
to Cq ∼ 10−9! On the other hand, as an added feature of the new experimental
platform, we demonstrated imaging of the 3-dimensional nanophotonic near field
gradient in super-resolution, and a promising platform for the measurement of
short-range forces [Mon+21].

In the second experiment [Mag+21] we used a microscopy technique, a confo-
cal interferometric detection, instead of a cavity. Measuring the photons that are

Figure 2: Performance of the published experiments with respect to the two main figures of
merit: detection efficiency and quantum measurement cooperativity. The blue shaded area
represents the parameter space where the measurement allows conditioning on to a state of
uncertainty smaller than the extension of the first excited state. In other words where, with
the appropriate feedback, ground state cooling (n < 1) is possible.
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scattered backwards allows to only detect photons that have interacted with the
levitated particle and discard those that do not carry any position information in
the phase and would only contribute to an increased measurement shot noise. Af-
ter all if they have not interacted they also do not contribute to the measurement
backaction. It was also recently shown by Tebbejohanns et al. [TFN19] that the infor-
mation distribution in the scattered optical field is not uniform, favouring (for one
of the particle’s degrees of freedom) the backscattered photons. Even better! The
detection efficiency achieved in this experiment is ηd = 0.36 with a measurement
cooperativity of Cq = 29 at a pressure of 10−8 mbar, allowing us to measure the me-
chanical motion of the trapped particle at room temperature close to the SQL. We
then use the quantum limited measurement in combination with a Kalman filter
and optimal feedback control to track the quantum trajectory of the levitated parti-
cle conditioned on the measurement outcome in real time, and to stabilize it into the
quantum ground state. In the last chapter, the same confocal measurement is used
to observe correlations created by the mechanical motion into perpendicular opti-
cal quadratures and detect radiation-pressure induced optomechanical squeezing
without a cavity and at room temperature.
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3
N E A R - F I E L D C O U P L I N G O F A L E V I TAT E D
N A N O PA R T I C L E TO A P H OTO N I C C R Y S TA L
C AV I T Y

The diffraction limit defines the smallest volume that an electromagnetic field can
be confined to. Beyond that limit, exponentially decaying evanescent (non propa-
gating) components of the field will leak out of the boundaries of the confinement
medium. This effect allows one to build nanophotonic devices that confine light
within an extremely small volume, and still couple strongly to objects in the near-
field. In this chapter I report on my first work in which I have demonstrated cou-
pling an optically levitated dielectric particle to the evanescent field of a photonic
crystal cavity. The results presented were first published as reference [Mag+18], and
are here preceded by a short summary of the scientific context of the manuscript.

Shortly after the first proposals to use optically levitated particles for experi-
ments in the quantum regime [Cha+10; RI+10; BS10], the first experiments appeared
showing both measurement based feedback cooling [Gie+12; GNQ13] and passive
cavity cooling [Kie+13; Ase+13; Kuh+15; Mil+15] of dielectric objects in vacuum.
While cavity based schemes were struggling to operate in high vacuum, measure-
ment based feedback control allowed to stabilize particles in UHV and to observe
the effects of radiation pressure shot noise (or recoil heating) [Jai+16]. However,
even in UHV the measurement efficiencies of far field detection were limited to
around ηd ∼ 10−3 restricting the control of the system to the classical domain.
At the same time, nanophotonic structures had been used to demonstrate near-
field coupling trapped [Vet+10; Tho+13; Tie+14] and flying [Alt+11; Jun+13] atoms,
molecules [Qua+13], and clamped mechanical oscillators [Ane+09; GVK12; Wil+15],
which allowed for strong and efficient measurements of the degrees of freedom of
these systems. Inspired in particular by the results shown by Thompson et al. with
atoms [Tho+13], the idea of this work was to bring the modern tools of nanopho-
tonic devices to the domain levitated solid-state objects.

Why? In the context of a quantum measurement the macroscopic cavities used
in previous experiments had two main problems. The first is a kind of luxury prob-
lem, but still crucial for the argument of pursuing a quantum measurement (as we
introduced in chapter 2): being designed for passive sideband cooling [AKM14],
macroscopic cavities are characterized by extremely low loss rates (κ/2π ∼ 105Hz).
In these conditions the time that light is confined into the cavity is comparable to
the time scales of the mechanical oscillation (κ−1 ∼ Ω−1

q ), invalidating the assump-
tion of instantaneous measurements. The second issue arises form the natural trade
off between low losses κ and high coupling g0. One cannot just have it both ways,
and experiments in levitated cavity-optomechanics operating in the regime of small
linewidth were limited to optomechanical couplings of g0/2π ∼ 10−1Hz [Del+20b].
For this reason we aimed for the opposite extreme: the smallest possible cavity vol-
ume, close to the diffraction limit, resulting in g0/2π ∼ 104Hz together with very
high losses (κ/2π ∼ 109Hz). In this way we have strongly shifted the coupling-
linewidth trade-off in favour of a high coupling, allowing instantaneous measure-
ments (κ−1 � Ω−1

q ), while keeping g0/κ unchanged. The pursuit of enhanced
light matter interaction by miniaturizing the optical cavities has greatly impacted
the field of cavity-QED in the past 20 years. As a result a great variety of opti-
cal resonators is now available to the contemporary experimenter, all with differ-
ent properties, advantages and disadvantages. They range from the most classical
high-Q Fabry-Perot microcavity made of dielectric mirrors [HKY01] (with mode
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volumes of a few µm3), etched silicon wafers [Kuh+17] or micropillars [Ger+96],
over guided nanofiber resonators [Joh+19] and circular whispering gallery modes
in micro -spheres [Kni+95], -toroids [KSV04] and -droplets [Qia+86], to photonic
crystal cavities [Vuč+01] with the smallest demonstrated mode volumes (∼ λ3). It is
a cavity of this last type that we have used in this experiment.

We demonstrate a detection efficiency of ηd = 0.09, which is an improvement
over previous experiments by two orders of magnitude. In addition, precise control
of the position of the particle with respect to the near-field of the photonic crystal
enables tunable optomechanical coupling (up to g0 = 9 kHz), and allows us to
reconstruct the optical near field with a resolution of ∼ 10nm. While this resolution
is currently determined by the step size of our nanopositioner, it is fundamentally
limited only by the extent of its motion. Finally this experiment provides an ideal
platform for the measurement of forces at distances as low as 50nm.

A fast introduction to photonic crystal cavities for who has no idea

Photonic crystals are nanofabricated devices that exploit a modulation of the refrac-
tive index of the material on the order of the optical wavelength [Sak04]. If carefully
engineered, this modulation can lead to constructive or destructive interference of
the light that is scattered by the periodic structures. In analogy with solid-state
semiconductors, where the crystalline arrangement of atoms define their electronic
properties, a periodic modulation of the refractive index in an optical waveguide
can be mapped into a primitive cell in momentum space describing the dispersion
of the propagating optical modes. With this in mind we can take a thin silicon beam,
where light is confined by total internal reflection as in a fiber, and, by etching holes
at fixed distance into it, we will define a modulation of the refractive index result-
ing in high Bragg reflectivity for a specific wavelength with a defined bandwidth: a
bandgap. By simply placing two of these Bragg mirrors one after the other light can
be confined into a finite volume: we finally have a photonic crystal cavity [Vuc+02;
EFV05].
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3.1 abstract
Quantum control of levitated dielectric particles is an emerging subject in quantum
optomechanics. A major challenge is to efficiently measure and manipulate the par-
ticle’s motion at the Heisenberg uncertainty limit. Here we present a nanophotonic
interface suited to address this problem. By optically trapping a 150 nm silica par-
ticle and placing it in the near field of a photonic crystal cavity, we achieve tunable
single-photon optomechanical coupling of up to g0/2π = 9 kHz, three orders of
magnitude larger than previously reported for levitated cavity optomechanical sys-
tems. An efficient collection and guiding of light through the nanophotonic struc-
ture results in a per-photon displacement sensitivity that is increased by two orders
of magnitude compared to conventional far-field detection. The demonstrated per-
formance shows a promising route for room temperature quantum optomechanics.

3.2 introduction
Optical tweezers provide a remarkably simple, yet versatile platform for studying
a plethora of intriguing problems in single molecule biophysics [Wan+97; Jia+17],
thermodynamics [Bow+13; Li+10; Ron+17; Ric+17], sensing [Ran+16; Hem+17] or
fundamental physics [GPK10; MRG14]. Realizing full quantum control of trapped
nanoparticles will enable new insights into quantum-enhanced precision metrol-
ogy as well as into fundamental aspects of quantum physics [RI+10; Kal+12]. The
past few years have witnessed rapid progress towards the quantum regime of op-
tically levitated nanoparticles through cavity- [Kie+13; Ase+13; Mil+15; Kuh+17]
and feedback-assisted control schemes [LKR11; Gie+12; Jai+16; Vov+17]. The pri-
mary limitations lie either in small optomechanical coupling strengths to the cavity
field, or, for the case of optical tweezers, in significant losses in the detection chan-
nel. As every scattered photon induces back-action noise on the particle motion, it
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is crucial not to ’lose’ any information carried by light [CGS03], especially in the
regime where photon recoil is the dominant source of decoherence. Nanophotonic
structures can provide a solution to these problems. Their small mode volumes and
high quality factors result in strong optomechanical coupling [Ane+09; Cha+11].
These nanostructures can also be easily interfaced with a single-mode fiber, hence
allowing for efficient collection and guiding of the light from the cavity [Bur+17].
Previously, optical nanodevices have been used, for example, to show strong cou-
pling and super-radiance of trapped atoms [Tho+13; Gob+15], emission rate control
of solid state quantum emitters [Eng+05; Hau+13], label-free single molecule detec-
tion [Qua+13], or trapping of colloidal particles in liquid [Des+13].

Here we use a nanophotonic cavity to efficiently couple the 3D mechanical mo-
tion of a levitated nanoparticle to a single optical mode. Specifically, by placing the
particle at a distance of ∼ 310 nm from a photonic crystal cavity, and exploiting the
dispersive coupling to the evanescent component of the strongly confined cavity
field, information about the mechanical displacement is encoded into phase fluctua-
tions of the cavity mode [Ane+09]. This signal is efficiently outcoupled and guided
through single mode fibers to the detector, resulting in a real-time measurement of
the particle motion at high bandwidth and high sensitivity. Our approach there-
fore complements previous experiments involving nanophotonic structures and col-
loidal particles, in which the structures are used mainly to trap the particle or to
detect the presence of the particle without monitoring its precise position or mo-
tion [Qua+13; Des+13].

3.3 methods
Our experimental setup consists of an optical tweezer and a silicon nitride (SiN)
photonic crystal cavity (Fig. 3(a)), both of which are situated inside a vacuum cham-
ber. The cavity is impedance matched, with a fundamental resonance wavelength
of λcav = 1538.72 nm and an optical loss rate of κ/2π = 5.0 GHz. The input/output
mirror is adiabatically transitioned into a tapered waveguide that is interfaced with
an open-end tapered fiber [Bur+17], yielding a fiber-to-cavity coupling efficiency of
ηcav = 0.32. Taking into account all other losses in the setup, the total detection
efficiency of photons approaching the cavity is η = 0.09 (see Supplement 1). The
fiber physically supports the nanocavity by van der Waals forces and can be posi-
tioned relative to the optical tweezer using a piezo-actuated three-axis translational
stage. The optical tweezer is formed by tightly focusing the laser beam (wavelength
λtrap = 1064 nm; trap power 150 mW) with a commercial dry objective lens (nu-
merical aperture NA = 0.95) inside the vacuum chamber. The location of the trap
within the focal plane is controlled by steering the angle of incidence of the laser at
the rear lens of the objective.

Ultimately, the particle is trapped in a standing wave potential formed by the
interference of the focused trapping light with its reflection off the surface of the
photonic crystal. To achieve this we first trap a neutral silica nanoparticle (nomi-
nal radius r = 71.5± 2.0 nm) with the optical tweezer at ambient pressure1. After
reducing the pressure to 1.5 mbar, we bring the nanocavity in close proximity to
the particle. During this process, the optical trap potential is transformed adiabat-
ically from the single, nominally Gaussian, potential given by the focal spot of the
tweezer, to the periodic potential induced by the standing wave [Tho+13] (Fig. 3(a)).
The locations and actual shapes of the multiple lattice sites are determined by the
wavelength of the trap beam and the thickness of the cavity (see Supplement 1

and [Tho+13; Die+18]). Our experimental parameters yield the first minimum of the
trapping potential at z0 ∼ 380 nm from the device surface, i.e. a surface-to-surface

1 We note that in our experiment, most particles are generated without residual charges. This contrasts
other experimental reports where tens of positive charges are observed after trapping [Fri+17], and is
subject to further investigation.
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Figure 3: Nanophotonic interface. (a) Sketch of the setup: A dielectric nanoparticle is trapped
inside the high intensity lobe formed by the reflection of the optical tweezer light (λtrap =

1064 nm) from the surface of the nanophotonic cavity, at a distance of about 310 nm. A laser
light resonant with the cavity (λcav = 1538.72 nm) is sent into a variable beam splitter (VBS)
which splits it into a weak (260 nW) beam pumping the cavity, and a strong (1 mW) local
oscillator. The cavity output is redirected by a circulator (CIR) towards a symmetric beam
splitter (BS) at which it interferes with the local oscillator. The light in the two output ports
is measured using a balanced photo-detector (PD). While the low frequency component of
the signal is used to stabilize the interferometer via a fiber stretcher (FS), the high frequency
part is directed to a signal analyzer. (b) The measured frequency power spectral density
exhibits three mechanical peaks at Ωy/2π = 228.3 kHz (blue), Ωx/2π = 280.3 kHz (green)
and Ωz/2π = 444.9 kHz (red). The significantly higher frequency along z, which is the
direction of the tweezer beam propagation, is caused by the standing wave confinement,
and for the radial directions x and y, the degeneracy is broken due to the use of polarized
light together with tight focusing. Nonlinearities in the trap potential as well as in the
optomechanical couplings result in peaks at twice the mechanical frequencies (highlighted
in purple). The mechanical vibration of the cavity/fiber assembly at around the frequency
Ωcav/2π ∼ 600 kHz also induces additional peaks in the spectrum. The inset shows the
cavity resonance measured by monitoring the light reflection from the cavity while scanning
the pump laser wavelength. The slight asymmetry of the response arises form thermo-optic
effects, as we are pumping the cavity at the limit of thermal stability (see Supplement 1).
(c), False-colored scanning electron microscope image of the photonic crystal cavity (blue)
attached to the tapered fiber (green).

separation between nanosphere and photonic crystal cavity of d = z0 − r ∼ 310 nm.
Due to the subwavelength transverse dimensions of the nanophotonic device, the
cavity field exhibits a considerable evanescent component that decays exponentially
with distance. In this region, the displacement of the particle results in a shift of the
cavity resonance by δωcav = Gξδξ, where ξ = x,y, z is the direction of mechanical
motion and Gξ = ∂ξωcav ∝ ∂ξE

∗E the optomechanical coupling (E: evanescent
field amplitude). As Gξ is proportional to the intensity gradient of the cavity field
along the direction of motion, each mechanical mode couples to the cavity field
with different strength. In particular, the small mode volume results in a large
field variation and hence a significantly enlarged coupling when compared to stan-
dard levitated optomechanics configurations based on bulk optics [Kie+13; Ase+13;
Mil+15].
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Figure 4: Optomechanical coupling. (a) Measured (left) and simulated (right) intensity map
of the single-photon optomechanical coupling rates g0 for the three spatial modes.Because
of heating from the tweezer light (see Supplement 1), at every position the cavity is reset on
resonance before recording the interferometric signal. (b) Position scan of the single-photon
optomechanical coupling rates along the y direction and close to the cavity center for the
modes along x (green circles), y (blue crosses) and z (red diamonds). Solid lines are fits
based on our cavity field model (see Supplement 1). As the scan was performed slightly off
the cavity center, the coupling to the z mode is non-vanishing while we can suppress the x
and y couplings.The main contribution to the error bars is given by the uncertainty in the
shot noise level determined by the integration time of ∼ 3 seconds.

3.4 results and discussion
When pumping the cavity on resonance, the position dependent frequency fluctu-
ation is mapped onto the phase quadrature of the output field, which can then
be measured via a shot-noise limited homodyne detection (Fig. 3(a)). We use this
cavity-enhanced measurement to monitor the thermal motion of the trapped parti-
cle: the mechanical oscillations in the three spatial directions are observed as dis-
tinct frequency components in the homodyne signal (Fig. 3(b)). Using thermal noise
of the particle motion and photon shot noise of the cavity light we calibrate both
displacement and optomechanical coupling (see Supplement 1). We note that, by
only injecting 260 nW of optical power into the cavity and at an overall detection ef-
ficiency of 9%, we achieve a displacement sensitivity of (3.3± 0.5)× 10−12 m/

√
Hz,

similar to what is measured in far field detection with 1 mW of detected light. This
amounts to an increase in the position sensitivity per-photon by more than a factor
of 100. At the optimal position we measure coupling rates along the z-direction of
motion, i.e. orthogonal to the cavity surface, of Gz/2π = 3.6± 0.4 MHz/nm. This
is consistent with our finite element method (FEM) simulation (see Supplement 1)
and corresponds to a single-photon optomechanical coupling g0/2π ≡ zzpfGz/2π

of 9.3 ± 0.9 kHz (zzpf = ( h/2mΩz)
1/2: mechanical zero point fluctuation of the

particle motion in the z direction). Another intriguing feature of photonic crys-
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Figure 5: Position locking. (a) Sketch of the nanoparticle (blue dot), trapped in the standing
wave potential (orange) formed by the reflection of the focused tweezer light (red) by the
photonic crystal cavity (blue rectangle). The data is taken by moving the photonic crystal
along the direction of propagation of the tweezer beam (z). While the particle’s distance to
the cavity remains locked, the divergence of the tweezer causes a reduction of the trapping
potential. (b) Position power spectral density for the z mode Szz(Ω) (blue) measured as
cavity-focus increases (in direction of the arrow). The variance of the motion given by the
peak integral (red dots ∝

∫
Szz(Ω)dΩ) changes with the mechanical frequency as stated by

the equipartition theorem (pink solid line ∝ 1/Ω2z). Deviation from the expected Lorentzian
peak is given by the fluctuations during the integration time, which effectively reduce the
peak height. (c) Frequency shift per displacement G plotted as a function of the cavity
distance to the focal plane, for the z mode (red diamonds), y mode (blue crosses) and x

mode (green circles). (d) Mechanical frequencies for the three modes as a function of the
cavity distance to the focal plane.

tal cavities is the strong spatial variation of the cavity field E, which results in a
significant position-dependent optomechanical coupling for all three spatial direc-
tions of motion. By changing the particle position relative to the cavity we can
therefore tune the optomechanical coupling of all mechanical modes [Hry+15]. We
experimentally demonstrate this by scanning the particle position in a plane per-
pendicular to the z axis while simultaneously monitoring the cavity signal. The
observed strong modulations in all three coupling rates are in good agreement with
FEM simulations (Fig. 4). As the motion of the levitated nanoparticle represents a
sub-wavelength probe, this measurement allows us to image the three dimensional
intensity gradient of the nanophotonic cavity mode in super-resolution, i.e. not lim-
ited by diffraction (Fig. 4). Compared to standard near-field scanning techniques,
such as scanning near-field microscopy [RK14], our resolution is defined by the
extent of the particle motion and not by the physical size of the probe. As a conse-
quence, the imaging is fundamentally limited only by the ground state size of the
trapped particle, i.e. to a resolution of some picometers. In spite of this position
drifts and the accuracy of our positioner currently limit the imaging resolution to
some tens of nanometers (Fig. 4(b)) in a field of view of half a micron square.

Our system also enables tunability of the mechanical frequencies without affect-
ing the coupling strength to the cavity field. In other words, we can modify the
trapping potential independent of the trapping distance. To demonstrate this we
move the cavity along the z direction, away from the focus of the trapping beam
(Fig. 5(a)). The optomechanical coupling stays constant (Fig. 5(c)), indicating that
the relative distance between the particle and the cavity remains unchanged. This
behavior can easily be understood when considering the formation of the standing
wave by the cavity reflection. The positions of the anti-nodes are solely determined
by the location of the cavity and its thickness, locking the trap position to the cavity.
At the same time, the mechanical frequency is reduced because the high divergence
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of the tightly focused optical tweezer leads to a sharp decrease of the intensity at
the trap location (Figs. 5(b) and 5(d)).

Figure 6: Loading of the particle into the lattice. (a) The particle is initially trapped in
the closest of the cavity trap sites (I). We steer the tweezer away from the cavity (II) and
subsequently change the cavity position (III). Finally the particle is steered back in front of
the cavity (IV). Depending on the cavity-to-focus distance, the particle will slide into different
sites. (b) Frequency power spectral densities measured in the case of the particle being in
the first trapping site (red, I) or in the second (blue, IV). The small unlabeled peak in the
blue spectrum is an electronic noise peak common to all measurements. (c) Optomechanical
coupling (purple dots) and mechanical frequency (green diamonds) for the z mode as a
function of the initial cavity-to-focus distance.

Finally, we demonstrate reliable, deterministic loading of the nanoparticle into
the different standing wave optical lattice sites. This is achieved by a sequence of
optical tweezer and cavity position control steps (Fig. 6(a)). We first terminate the
standing wave by moving the particle to the side of the photonic crystal cavity. After
displacing the cavity along the z axis, the particle is moved back and the standing
wave is reestablished. When the cavity is sufficiently displaced, the particle will
slide into the next trap location of the re-appearing standing wave. We observe this
behavior when the cavity displacement is greater than λtrap/4 (Fig. 6(c)). At this
second trap location, the optomechanical coupling rate is reduced by two orders of
magnitude, consistent with FEM simulation (see Fig. 6(b) and Supplement 1).

3.5 conclusions
In summary, we have realized a low-loss, and widely tunable hybrid optomechani-
cal system combining optical levitation of a nanoparticle with a nanophotonic cavity
via near-field coupling. The displacement sensitivity per photon of our platform is
more than two orders of magnitude higher than what was shown using far-field
detection [Jai+16]. This opens a direct route for quantum feedback control. Specif-
ically, ground state cooling with feedback requires η > (1+ 1/Cq)/9 with Cq the
quantum cooperativity [Gen+08; Wil+15; Ros+18], yielding a minimally required
value for the detection efficiency of η > 1/9 ≈ 0.11. While far-field detection is cur-
rently limited at η ∼ 10−3 [Jai+16], we here demonstrate η = 0.09, i.e. already close
to the required bound. We anticipate that a more stringent screening process over
multiple cavity transfer trials (see Supplement 1) will yield fiber-cavity assemblies
with coupling efficiency exceeding ηcav = 0.96, as was previously shown by Burek
et al. [Bur+17]. It would result in an overall detection efficiency of η > 0.3.

The other relevant figure of merit for quantum state control is the quantum co-
operativity Cq = (4g20ncav)/(κΓmnth), where ncav (nth) and κ (Γm) are the cavity
photon (mechanical phonon) occupation and loss rate, respectively [AKM14]. Our
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current value (Cq ∼ 10−9) is mainly limited by the fact that, in absence of feed-
back stabilization of the particle, the operating pressure cannot be decreased below
∼ 1 mBar (corresponding to mechanical loss rates Γm/2π of more than 103 Hz).
Implementing stable feedback cooling will allow us to reach ultra-high vacuum
levels (10−8 mbar and below) at which mechanical losses are limited by photon
recoil to Γm/2π ≈ 10−4 Hz. This will result in an immediate improvement of
cooperativity by more than seven orders of magnitude. In the present configura-
tion, the main bottleneck is the mechanical support of the cavity, which causes
alignment drifts and hence limits feedback particle stabilization in ultra high vac-
uum. One workaround will be to use rigidly mounted on-chip (instead of fiber
supported) cavities. This will also improve the thermal anchoring of the cavity and
therefore enable a higher intra-cavity photon number ncav, which is now limited
to ncav ∼ 800 because of thermo-optic heating. With a more careful design and
fabrication, the cavity optical losses κ/2π can be reduced to as low as 20 MHz in sil-
icon [Asa+17] and 1 GHz in SiN [Deb+17]. The cavity thickness directly affects the
boundary condition for the standing wave trap formation such that, with an appro-
priately chosen thickness, the particle can be trapped within 200 nm from the cavity
surface (see Supplement 1 and [Tho+13]). This would result in an increase of the
optomechanical coupling rate by one order of magnitude. Incorporating all these
improvements will allow to achieve Cq > 10 and thus place the system deep into
the strong cooperativity regime. This will enable a new generation of chip-based
levitated quantum sensors operating at room temperature. For example, the high
bandwidth of our system (κ � Ωm) makes it an ideal platform for implementing
measurement-based quantum state preparation using pulsed interactions [Van+11],
which is a complementary approach to quantum control methods based on cavity
sideband driving [AKM14]. The high coupling and relatively low frequencies place
the system in reach of the non-linear optomechanical regime (g0 ≈ Ωm) [Lei+17].
Exploiting the design capabilities for the spatial modes in photonic crystal cavities
our system can also be used for studying effects of self-induced backaction and
non-harmonic dynamics in both the classical and quantum regime [NQC15]. Also,
the expected force noise of 10−20 N/

√
Hz will allow a detailed study of short-range

surface forces at sub-micron distances [GPK10; Ran+16; Hem+17].
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3.6 supplementary information
This document provides supplementary information to “Near-field coupling of a
levitated nanoparticle to a photonic crystal cavity”, https://doi.org/10.1364/OPTICA.5.001597.

3.6.1 Cavity and fiber fabrication

Photonic crystal nanobeam patterns are exposed into a resist layer, on samples con-
sisting of 350 nm films of LPCVD silicon nitride (SiN) deposited on Si substrates,
using electron-beam lithography. We use a CHF3/O2 directional plasma etch to
transfer arrays of nanobeam structures into the SiN film. The surface is thoroughly
cleaned using a (4:1) pirahna solution and the chip then dipped into in diluted hy-
drofluoric acid (HF) to remove oxidation from the exposed silicon surfaces. The SiN
devices are released from the substrate using a SF6 plasma release. This method al-
lows us to produce very clean and smooth surfaces with high yield. The nanobeams
are designed to taper down into a thin bridge connecting it to the substrate (left side
in Fig. 7(a) and (b)). This allows us to break the nanobeams off the substrate using
a tapered fiber. These fibers are made by cleaving and stripping Corning SMF28 op-
tical fibers and pulling them from a container of HF solution at a speed of 0.2 µm/s
for 70 minutes using computer controlled motors. A small amount of o-xylene is
used as a thin protective layer on the surface of the HF in order to prevent HF va-
por from etching (and roughening) other parts of the fiber as it is pulled from the
beaker [Bur+17].

Figure 7: Scanning electron microscope (SEM) images of a device. Shown are top (a) and
side (b) views of the photonic crystal cavity (blue) and the tapered fiber (green) assembly
used in the experiments presented in the main text. The roughness of the tapered fiber is
mitigated by UV glue coating, which improves the contact to the cavity and a stronger van
der Waals adhesion.

3.6.2 Transfer of the photonic crystal cavity to the tapered fiber

We image the tapered fiber clamped to its holder using an optical 50x microscope
objective with a long working distance. The chip with arrays of the photonic crystal
cavities is placed on a translational stage below the fiber. By controlling the chip
position we can now move the fiber tip into contact with the tapered end of the
photonic crystal cavity. Once a cavity with good resonance, coupling and optical
Q is found, we break it off the chip by forcing the fiber against it. In most cases,
the cavity remains on the fiber due to attractive van der Waals force. The violent
cavity lift-off step, however, causes a displacement of the cavity on the fiber such
that the light coupling efficiency between the two is reduced. Readjustment of the
alignment is then carried out with the help of a tungsten tip placed perpendicular
to the fiber on a separate stage. Although the coupling can be partially restored,
we found that the full recovery of the coupling efficiency is extremely challenging
due to yet limited control over the overlap length of the two structures after lift-
off. This results in a relatively low yield in obtaining high efficiency fiber-cavity
assemblies. For this reason, the present work was carried out with a ηcav = 0.32,
while no fundamental issue will prevent us from being more selective in choosing
assemblies with higher efficiencies.

https://doi.org/10.1364/OPTICA.5.001597
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Due to the HF tapering, the fiber surface is quite rough [Bur+17] and in order to
increase the contact surface to the cavity and improve the connection strength, we
dip the tapered fiber into UV glue and cure it before picking up the device. This
results in a strong bond which does not affect the coupling efficiency and greatly
reduces the chances to lose one of the photonic crystal cavities while transferring it
into the vacuum chamber.

3.6.3 Particle loading

We load the nanoparticles into the tweezer trap at room pressure, keeping the cavity
in vacuum in a separate chamber connected to the main chamber through a load
lock valve. Once the particle is trapped and the main chamber is evacuated to
around 1 mbar, we move the cavity positioner onto its holder in proximity to the
trapping objective. Imaging through the trapping objective allows us to precisely
control its position. Using a dichroic mirror, we can separate the trapping laser from
the green (λim = 532 nm) illumination light which is used to image the particle and
the cavity at the same time. In order to obtain a well aligned trapping beam during
the experiment, we tilt the last mirror, thereby moving the particle above the center
of the objective field of view and center the cavity by controlling its nanopositioner
(Fig. 8). Once the cavity is in place, we move the trapped particle in front of the

Figure 8: Position control of the levitated nanoparticle. (a) Position control of the trapped
particle is achieved by tilting of the dicroic mirror (DM) just before the opbjective. As also
shown by Diehl et al. [Die+18], the trapping objective is also used to image the particle and
photonic crystal cavity by collection of scattered λim = 532 nm light coming from the side. (b)
Scattering images of the nanoparticle approaching the photonic crystal cavity as the trapping
beam is tilted. When the particle is in front of the cavity, not perfect extinction of the reflected
trapping light causes the camera to saturate hiding the particle.

cavity by tilting the mirror back into its original position. The cavity output signal
allows us to measure the coupling strength and particle frequency, determining the
particle position inside the lattice: if the particle is measured to be in the second
or third lobe away from the cavity, we tilt the mirror away again, move the cavity
closer into the microscope’s focus and repeat the procedure until we observe large
optomechanical coupling (Fig. 4 in the main text). After the particle is positioned
in the first lobe, we define the lateral positioning in the cavity field, by moving the
cavity itself in steps of ∼ 10 nm.

3.6.4 Detection efficiency and sensitivity

We pump the cavity with 260 nW laser power, and the output field is guided to ho-
modyne detection. The total detection efficiency is η = ηlossηqκin/κ = 0.09, with
κin/κ = 0.5 the ratio of cavity input to total energy decay rate, ηloss = 0.22 the
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transmission of all other optical components, and ηq = 0.85 the detector quantum
efficiency at λ = 1550 nm. In contrast, for far-field detection, the trapping beam
is re-collimated by a secondary objective together with the particle’s scattered light
and directed to a balanced detector where the common laser noise is cancelled. It
is attenuated to typically 1 mW in order to stay in the linear regime of the photode-
tector. In this case the detection efficiency of the particle scattered light is estimated
to be below ηF ∼ 10−3 [Jai+16].

To compare the sensitivities of both detection schemes, we first acquire the power
spectral densities of each methods in the presence (Fig. 9), as well as in the absence
of the particle (not shown). The signal-to-noise ratio (SNR) can then be extracted
by taking the ratio between integrated powers of these two spectra. SNR can be
expressed as

√
SNR ∝

√
ṅdetχ, where ṅdet is the rate of detected photons and χ

is the single-photon measurement strength. This gives us an estimate of the ratio

Figure 9: Measured power spectral densities of a particle’s motion via far-field (blue) and
cavity near-field (red) detection. The optical power detected in the far-field case is of about
1 mW, while in the case of cavity detection, the signal reaching the homodyne detection is of
less than 60 nW. The significant difference in mechanical frequencies is due do the formation
of a standing wave trap in the presence of the cavity device.

of single-photon measurement strengths for the two detection schemes, χ0/χF ∼

102, with χ0 and χF the near- and far-field single-photon measurement strengths
respectively.

χ0 can be independently calculated from χ0 = 2g0/κ = 5.2×10−6. We note that it
is already very close to the maximally allowed far-field single-photon measurement
strength χmaxF = 4πxZPF/λtrap = 2.0× 10−5 [Van+13]. It also shows that the large
χ0/χF ratio in the experiment is a result of the drastic difference between the near-
and far-field detection efficiencies.

The detection efficiency can be further improved by reducing optical losses ηloss =
ηcavηpath, where ηcav is the coupling efficiency between the photonic crystal’s
waveguide and the tapered fiber and ηpath is the total transmission efficiency of
the rest of the optical path. Currently, ηpath includes the loss of many fiber con-
nectors, which can be replaced by almost lossless splices. At the same time, while
all measurements were performed with a device with ηcav = 0.32, we successively
were able to pick up a device maintaining and efficiency of ηcav = 0.97, similarly
to what shown by Burek et al. [Bur+17].

3.6.5 Calibration of the optomechanical coupling

The calibration of the frequency shift per displacement G = dωcav/dx was carried
out by evaluating the measured power spectral densities SW(Ω) compared to the
measured shot-noise level SsnW . Using the known Poissonian statistics governing
the photon shot noise, one can estimate the amount of detected photons and their
contribution to the noise level. This allows is to calibrate the signal in units of
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photons. The position spectral density of the particle is that of a damped harmonic
oscillator subject to a stochastic Langevin force

Sxx(Ω) = 2
〈
x2
〉 ΓΩ2m
(Ω2m −Ω2)2 + Γ2Ω2

, (42)

where the particle is in thermal equilibrium with its bath
〈
x2
〉
= kBT/mΩ

2
m. The

fluctuations of the cavity resonance are related to the particles position through
G = dωcav/dx

Sωω(Ω) = G2Sxx(Ω). (43)

Figure 10: Shot-noise power dependence. Linear dependence of the shot-noise level as a
function of optical power of the local oscillator.

Considering the optical annihilation operator â, it is convenient to make use of the
input-output formalism in order to evaluate the mechanically induced noise [AKM14].
The cavitiy field the reads

â =

√
κinâin +

√
κ0â0

−i∆+ κ
2

, (44)

where κ0 is the intrinsic cavity decay rate, ∆ = ωL −ωcav + δω the detuning
between the laser frequency ωL and the cavity resonance ωcav, δω the mechanical
induced frequency fluctuations, â0 and âin the annihilation operators defining the
environment vacuum and input field amplitudes respectively. The output field âout
is given by

âout = âin −
√
κinâ

= âin −
√
κin (

√
κinâin +

√
κ0â0)

(
κ/2

∆2 +
(
κ
2

)2 + i
∆

∆2 +
(
κ
2

)2
)

∼ −i
2δω

κ
âin − i

2δω

κ
â0 − â0,

(45)

where the approximation arises when considering a resonant laser drive ωL =

ωcav, and mechanical resonance fluctuations that are much smaller than the cav-
ity linewidth ∆ = δω � κ. In addition, critical coupling κ/2 = κin = κ0 is
also assumed to further reduce the parameter space. Using (45), considering a
strong coherent input field âin → âin + αin with αin real valued, the commuta-
tion relation

[
â(t), â†(t+ τ)

]
= δ(τ), and defining the phase quadrature operator as

Ŷ = âout − â
†
out/(

√
2i), the phase quadrature spectral density can be computed:

SYY(Ω) =

+∞∫
−∞

dτ eiΩτ
〈
Ŷ(t+ τ)Ŷ(t)

〉

∼ 2
4ᾱ2in
κ2

+∞∫
−∞

dτ eiΩτ 〈δω(t+ τ)δω(t)〉+ 1

2

+∞∫
−∞

dτ eiΩτδ(τ)

= 2
4ᾱ2in
κ2

Sωω(Ω) +
1

2
= 2ᾱ2inSϕϕ(Ω) +

1

2
.

(46)
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The output signal is then attenuated by optical losses ηloss, and amplified by a
strong local oscillator of amplitude β0 in a homodyne detection scheme. In addi-
tion, we consider the non unity quantum efficiency of the detectors yet as another
attenuation channel ηq, affecting the expectation values of the field operator prod-
ucts (αin →

√
ηloss

√
ηqαin, β0 →

√
ηqβ0) [Pau88]. At each detector the optical

power spectral density is

SPP(Ω) = 4ηlossη
2
qh
2ν2ᾱ2inβ

2
0Sϕϕ(Ω) + SsnPP, (47)

where SsnPP = h2ν2ηqβ
2
0 is the two-sided photon shot-noise level. When a photon

is detected, it is converted into an electron current: i(t) = n(t)e, where n(t) is
the number of detected photons photons and e the electron charge. Non unity
of the quantum efficiency of detectors has been already considered in (47) as an
effective optical loss [Pau88]. Photo-currents from each detector are subtracted and
the DC component as well as classical laser noise are cancelled. The current can then
be amplified and converted into a voltage signal via the transimpedance amplifier
v(t) = gtiAC(t). It is now convenient to define the lossless optical power to voltage
conversion factor as

GRF =
gt e

hν
. (48)

Finally, the measured two-sided power spectral density reads:

SW(Ω) =
G2RF
RL

4SPP(Ω) =

G2RF
RL

4η2qηlossPinPLO
4G2

κ2
Sxx(Ω) + SsnW ,

(49)

where Pin = h2ν2ᾱ2in (PLO = h2ν2β20) is the cavity input (local oscillator) power,
RL is the input impedance of the measuring instrument, and SsnW = G2RFηqPLOhν/RL
is the two-sided shot-noise level in the unit of W/Hz. The conversion factor GRF
can now be written in terms of measured quantities:

GRF =

√
SsnW RL

ηqPLOhν
. (50)

Substituting (50) into (49), we obtain

SW(Ω) =
SsnW ηq

hν
4ηlossPin

4G2

κ2
Sxx(Ω) + SsnW . (51)

The optomechanical coupling can now be derived by integrating the power spectral
density

G =

√√√√∫+∞−∞ SW(Ω)dΩ2π
kBT
mΩ2m

κ2hν

SsnW 8ηlossηqPin
. (52)

In (52) the negative contribution arising from the shot-noise is neglected as it is
orders of magnitude lower due to the large optomechanical coupling rate.

3.6.6 Cavity heating

The cavity resonance strongly depends on heating, arising both from the optical
field of the tweezer and the cavity pump field. Heating effects are particularly
evident in vacuum, where heat dissipation is less efficient. The heating from the
tweezer field results in a static frequency shift of the cavity, where the amount of
the shift varies depending on the position of the cavity relative to the tweezer beam.
We therefore scan the wavelength of the cavity pump laser at each position of the
cavity (Fig. 11(a)) and set the laser on resonance, which is the optimal condition
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for homodyne readout of the motion. Heating arising from the cavity pump field
strongly depends on the wavelength of the pump laser which defines the intra-
cavity photon population, leading to a thermo-optic instability. These effects are
visible when scanning the pump wavelength: the expected Lorentzian response in
the reflected signal shows an asymmetry due to dynamic heating effects when the
power is too high (Fig. 11(b)). We run the experiments with Pin ∼ 260 nW (ncav ∼

800), far below the input powers where a sizable deviation from the lorenzian line
shape can be observed.

Figure 11: Static and dynamic cavity heating. (a) Cavity heating induced by the tweezer
field at different positions: the resonance is shifted by up to 5 GHz, while the shape and the
width of the cavity response function remain unaffected. This map was taken during the scan
in Fig. 2(b) in the main text. (b) Cavity heating induced by the intra-cavity field causes an
asymmetry in the cavity response function. Above a certain threshold, the pump will cause
dynamic instability of the cavity.

3.6.7 Trapping distance simulation

As shown in Thompson et al. [Tho+13], the lattice formation, particularly the trap-
ping locations with respect to the phtonic crystal’s surface are defined by the thick-
ness of the slab L:

zi = −
φ

4π
λtrap + i

λtrap

2
, i = 0, 1, 2, ... (53)

with

φ = tan−1

(
2n cos(nkL)

(1+n2) sin(nkL)

)
, (54)

where k = 2π/λtrap is the optical wavevector and n the refactive index in silicon
nitride. The measured thickness of our photonic crystal cavity is 310 nm, corre-

Figure 12: Optical lattice. FEM simulation of the trap formation from the reflection of the
tweezer light focused from the left on to the photonic crystal cavity (dark shaded area).

sponding to z0 ∼ 380 nm. With a particle size of r ∼ 70 nm, the surface-to-surface
distance is d0 = z0 − r ∼ 310 nm. Fig. 13 shows how, by reducing the cavity
thickness to about 200 nm, the trapping position can be reduced to z0 ∼ 220 nm,
corresponding to a surface-to-surface distance of d0 ∼ 150 nm.

3.6.8 Cavity field simulation

The design of the photonic crystal cavity is based on finite element method (FEM)
simulation. This also allows us to predict the amount of evanescent field and op-
timize the optomechanical coupling. For a qualitative understanding, we use a
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Figure 13: Trap position simulation. (a) FEM simulation of the trapping position z0 as a
function of the cavity thickness. (b) Potential depth simulation as a function of the cavity
thickness. Red solid lines show the theoretical expected value considering a plane incident
wave. Gray shaded areas indicate our experimental conditions: thickness of 310nm, mea-
sured by SEM imaging.

Figure 14: FEM simulation of the cavity field. (a) Depicted is the cavity field as a function of
a distance from the cavity surface moving away from its wide side, in correspondence of a
hole (blue) or of the matter region (orange). The shaded area indicates the cavity extension.
(b) Cavity field simulation as a function of distance from its narrow side in correspondence
of a hole (blue) or matter (orange). (c) Simulation of the evanescent cavity field evaluated at
250 nm distance from the surface, and in front of the cavity (blue), at a corner (green) and at
the side of the cavity (orange). Whenever one moves away from the cavity axis, the contrast
of the oscillation is reduced and the field never vanishes. (d) Heat map of the simulated
cavity field intensity.

simple model of the cavity field as described in the following equation:

E∗E = E20e
− y2

2σy e−
x2

2σx e−β
√
x2+z2 sin2

(
2π

λ
y

)
. (55)

This model considers a standing wave with an intensity oscillation period of λ/2,
Gaussian mode confinement in all directions (parameterized by σx and σy) inside
the material and exponential evanescent field decay (parameterized by β) outside.
We note that it does not account for the details of the photonic structure, only the
dominant mode shape. Polarization and surface scattering are not considered as
well. Close to the cavity axis (y axis), our model agrees well with the simulation
(blue line in Fig. 14(c)). However, as one moves away from the center of the cavity,
surface effects give rise to a more complex x dependence, reducing the the contrast
of the field oscillations as shown in FEM simulation (Fig. 14). Nevertheless, one
can derive single-photon optomechanical couplings for all three spatial mechanical
modes from the model:

gz0(y) ∝ |∂zE
∗E| ∝

∣∣∣∣1− cos
(
2
2π

λ
y

)∣∣∣∣ , (56)
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g
y
0 (y) ∝ |∂yE

∗E| ∝
∣∣∣∣sin

(
2
2π

λ
y

)∣∣∣∣ , (57)

gx0(y) ∝ |∂xE
∗E| ∝

∣∣∣∣1− cos
(
2
2π

λ
y

)∣∣∣∣ . (58)

The deduced equations show qualitative agreements to the measurements shown
in Fig. 2(b) in the main text. For instance, (57) correctly predicts the shape of the
modulation presented in the measured gy0 (y). (56) and (58) also capture the overall
sinusoidal modulations in the measured data although they fail to predict the ex-
istence of non-zero offsets. These non-vanishing couplings are due to the fact that
the particle is placed off from the cavity axis, which already led to the deviation of
the model from the simulation in Fig. 14(c).

3.6.9 Optomechanical coupling simulation

A study of the expected coupling was carried out by FEM simulation in a static
fashion. The expected cavity resonances were evaluated by placing a 75 nm radius
nanopaticle at a given distance from the cavity surface. Simulations have been run
at different distances both on the side and in front of the cavity. The result is fitted
to an exponential decay of the cavity field. Assuming small particle displacements,
the optomechanical coupling can be estimated in the linearized case:

G =
∂ωcav

∂z

∣∣∣
z=d

+O(δω2cav). (59)

At a distance of d = z0 − r ∼ 310 nm, expected optomechanical couplings are 11
MHz/nm and 7 MHz/nm respectively for the case of the particle in front and on
the side of the cavity (Fig. 15). The measured value (3.6 MHz/nm; see Fig. 2(b) in
the main text) are lower than the simulation result, and can be explained by the fact
that measurements were made slightly off the cavity axis as discussed previously.

Figure 15: Optomechanical frequency shift simulation. (a) FEM simulation of the cavity
frequency shift as a function of the particle surface to cavity surface distance. The plot shows
simulation results for the case of the particle in front (red) and on the side (blue) of the cavity.
A gray shaded area indicates our experimental conditions: trapping at z0 ∼ 380 nm results
in surface-to-surface distance of d0 ∼ 310 nm. An exponential decay follows the evanescent
filed amplitude. (b) An estimated frequency shift per displacement as a function of d.
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4
R E A L-T I M E O P T I M A L Q U A N T U M C O N T R O L
O F M E C H A N I C A L M OT I O N AT R O O M
T E M P E R AT U R E

A quantum measurement is a very particular operation. As discussed in chapter 2

this can be represented (in the general case) by a two-step process: a deterministic
interaction of the object with a quantum meter followed by a probabilistic projective
measurement of the meter. A sequence of measurements of this type leads to the
definition of a quantum trajectory of the state of the quantum object that is now
driven by the stochastic quantum properties of the probe. In this chapter I report
on my work on real-time control of the quantum trajectory of a levitated particle
at room temperature. The work was published as reference [Mag+21] and is here
preceded by a brief introduction of the scientific context.

The requirements for a quantum limited measurement are a high detection ef-
ficiency and a strong measurement cooperativity. In the previous chapter high
detection efficiency was achieved by coupling to a photonic crystal cavity. However
thermal and mechanical instabilities had set us back on the second requirement, de-
manding further technological development in the design of stable photonic struc-
tures. In this work we took a different approach to the measurement of a levitated
particle by going back to the fundamentals of microscopy. Far-field measurements
of levitated particles typically rely on the collection of light after the trap [Gie+12;
Gie+14; Jai+16]. This technique is particularly convenient as the “forward scattered
light” by the particle is naturally overlapped with unperturbed tweezer light, which
acts as a phase-stable reference oscillator that provides a linear measurement of the
particle position. Despite its robustness, this method presents two fundamental lim-
its. First because the motion of the particle along the beam propagation is strongly
coupled to the light that is scattered backwards [TFN19; SR20], making forward
detection an intrinsically inefficient measurement. Second because the poor mode
overlap between the forward scattered light and the tweezer light results in a low in-
terferometric visibility. In other words, the detector is almost completely saturated
by light that had not interacted with the particle and therefore only contributes to an
increased of the noise. In microscopy this is a well-known problem, associated with
its simplest technique: bright-field microscopy. For this reason more sophisticated
designs have been developed over the past century (and a half), mostly driven by
biological applications. Prominent examples are the dark-field and phase-contrast
microscopes, which allow to suppress and amplify light scattered by the sample
by using spatially structured optical modes. In this work we implement a confocal
microscope which was patented by Minsky at MIT for the improvement of signal
to noise in neural tissue imaging [Min61]. This technique is particularly suited for
the experiment presented here: first, because it works in reflection, meaning that
the strongly interacting light can be efficiently detected; second, the overlap with
the local oscillator can be optimized, thereby maximizing visibility and reducing
the background contribution; finally, confocal spatial filtering allows strong sup-
pression of stray light at the detector. The resulting total detection efficiency of
ηd = 0.35 allows for a measurement of the position of the particle that is less than a
factor 2 away from the Heisenberg limit.

We also reconstruct and control in real time the conditional quantum state of
the levitated particle: its quantum trajectory. We apply the concepts of quantum
filtering [Bel95; BVJ07] introduced in chapter 1 to our specific experimental condi-
tions by implementing a Kalman filter [Kal60] and an optimal controller [Kal+60].
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Optimal estimation and control algorithms, originally developed for trajectory es-
timation and navigation of aerospace technology during the Cold War and first
used during the Apollo mission to the Moon [GA10], have become ubiquitous in
modern technology [ÅW13]. In the quantum domain, feedback control has been
used for the stabilization of optical [Say+11] and microwave [Vij+12] photonic states,
cold atoms [GSM04] and mechanical oscillators [Ros+18], while Kalman (quantum-
)filtering had only been demonstrated to track and stabilize the phase of a squeezed
optical field [Yon+12]. Here we apply optimal quantum filtering and control to the
motion of a solid state object at room temperature. Combined with measurements
of the system close to the Heisenberg limit allows us to reconstruct the state of the
particle in real time with an uncertainty of 1.3 times its zero point fluctuations. The
employment of Kalman filtering and optimal control algorithms in quantum sys-
tems represents a crucial step in the development of modern quantum technologies
and quantum limited sensors. It also brings the quantum theory of measurement
and its experimental implementation closer together, hopefully encouraging and
easing future dialogue between quantum physicists and control engineers.

Figure 16: Ink on paper by Costanza Loricchio.
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4.1 abstract

The ability to accurately control the dynamics of physical systems by measurement
and feedback is a pillar of modern engineering [ÅW13]. Today, the increasing de-
mand for applied quantum technologies requires to adapt this level of control to
individual quantum systems [Ger+03; Gla+15]. Achieving this in an optimal way
is a challenging task that relies on both quantum-limited measurements and specif-
ically tailored algorithms for state estimation and feedback [WM10]. Successful
implementations thus far include experiments on the level of optical and atomic
systems [Say+11; Yon+12; JM+18]. Here we demonstrate real-time optimal control
of the quantum trajectory [Car93] of an optically trapped nanoparticle. We combine
confocal position sensing close to the Heisenberg limit with optimal state estima-
tion via Kalman filtering to track the particle motion in phase space in real time
with a position uncertainty of 1.3 times the zero point fluctuation. Optimal feed-
back allows us to stabilize the quantum harmonic oscillator to a mean occupation
of n = 0.56± 0.02 quanta, realizing quantum ground state cooling from room tem-
perature. Our work establishes quantum Kalman filtering as a method to achieve
quantum control of mechanical motion, with potential implications for sensing on
all scales. In combination with levitation, this paves the way to full-scale control
over the wavepacket dynamics of solid-state macroscopic quantum objects in linear
and nonlinear systems.
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4.2 introduction

The Kalman filter is an iterative real-time state estimation algorithm that combines
measurement records with a mathematical description of the system dynamics. At
each time step, it provides a state estimate that is conditioned on the knowledge
acquired from earlier observations [Kal60]. This conditional state can then serve as
the basis for feedback control methods that steer the system and stabilize it in a
desired target state [Kal+60]. For Gaussian systems, the Kalman filter is optimal
in a mean-square-error sense. As many physical systems can be approximated by
Gaussian dynamics it is being used in a broad variety of applications ranging from
bio-medical signal processing [SC92] over navigation [BSLK04] to mechanical sens-
ing [Rup+16]. In particular for the last case, high-precision experiments employing
mechanical sensors are now approaching a regime in which quantum effects of the
object itself become relevant [Ros+18; Ros+19]. Any estimation or control approach
therefore has to incorporate a full quantum description [WM10]. In analogy with
the classical case, the dynamics of an open quantum system undergoing continu-
ous measurement can be generally understood as a non-linear quantum filtering
problem, giving rise to the concept of conditional quantum states. It was shown by
Belavkin [Bel95] that for Gaussian systems the quantum filter reduces to the classi-
cal Kalman-filter form. Critically, however, quantum mechanics places restrictions
on the underlying physical model, in particular to reflect the intrusive nature of
the measurement. The challenge in realizing real-time (optimal) quantum control is
then two-fold: First, the measurement process has to be quantum limited, i.e., impre-
cision and backaction of the measurement must saturate the Heisenberg uncertainty
relation. This is achieved only for a high detection efficiency and if the decoherence
of the system is dominated by the quantum backaction of the measurement process.
Second, quantum filtering has to be implemented in real time and connected to
a feedback architecture that allows to stabilize the desired quantum state. For me-
chanical devices, these requirements have thus far only been realized independently
in separate experiments. In a cryogenic environment, ground-state feedback cool-
ing [Ros+18] and offline quantum filtering [Ros+19] were demonstrated for a mi-
cromechanical resonator. In a regime driven by thermal forces, Kalman filtering was
implemented for classical feedback on a gram-scale mirror [Iwa+13], offline state es-
timation of micromechanical motion [Wie+15], and real-time state estimation and
feedback of nanomechanical systems [Set+18; Lia+19]. In a backaction dominated
regime, feedback was used to cool mechanical motion close to the quantum ground
state with suspended nanobeams [Sud+17a] and levitated nanoparticles [Teb+20;
Kam+21]. As of yet, optimal control at the quantum level has not been achieved.
Our work combines all relevant elements in a single experiment, specifically optimal
state estimation based on near-Heisenberg limited measurement sensitivity at room
temperature with optimal control of the quantum trajectory. Consequently, we can
stabilize the unconditional quantum state of a levitated nanoparticle to a position
uncertainty of 1.3 times the ground state extension. This contrasts cavity-based
cooling schemes for levitated nanoparticles [Win+19; Del+19; RSMQ21] that also
achieve ground-state cooling[Del+20a] but without requiring quantum-limited read-
out sensitivity. In comparison, real-time optimal control as presented here avoids
the overhead of cavity stabilization and can tolerate colored environmental noise by
including it directly in the state-space model [Wie+15].

4.3 quantum-limited measurement

We use an optical tweezer (NA = 0.95, λ0 = 1064nm, power ≈300mW, linearly
polarized) to trap a silica nanosphere of 71.5nm radius (≈ 2.8× 10−18kg) in ultra-
high vacuum (Figure 17a). The particle oscillates at frequencies ofΩz/2π = 104 kHz,
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Ωy/2π = 236 kHz and Ωx/2π = 305 kHz, where we use the trapping beam to de-
fine a coordinate system with z along the beam axis and x and y parallel and
perpendicular to its polarization, respectively. The motion in the x- and y-direction
is stabilized by an independent parametric feedback to occupations of about 103,
allowing us to suppress any effect due to thermal nonlinearties or measurement
cross-coupling [GNQ13][SI]. Most trapped particles carry excess charges, which al-
lows us to apply a calibrated force through an external electric field. In our case, we
control the z-motion by a voltage applied to an electrode in front of the grounded
tweezer objective [Fri+17]. The position of the particle is encoded in the optical
phase of the scattered tweezer light, which is collected and measured by optical
homodyning. Note that the position information contained in the scattered light
is not uniformly distributed [TFN19; SR20]. For the z-direction, almost all infor-
mation is carried by the backscattered photons, which is why we restrict ourselves
to backplane detection using a fiber-based confocal microscope [Vam+07]. Here the
collected light is spatially filtered by a single-mode fiber, which suppresses contribu-
tions from stray light by almost a factor 103 while maximizing the overlap between
the spatial modes of the scattering dipole and the fiber (ηm = 0.71) [SI]. Our mea-
surement operates close to the quantum limit. In the ideal case, imprecision and
backaction noise of the measurement saturate the Heisenberg uncertainty relation√
SI
z(Ω)Sba

F (Ω) =  h for all frequencies Ω (Sz,F(Ω): one-sided noise power spec-
tral densities of position (z) and force (F) [SI]). Losses degrade this performance:
experimental losses in the detection channel (ηd) increase the imprecision noise to
S

imp
z = SI

z/ηd, while additional environmental interactions, for example scattering
of gas molecules, increase the total force noise to Stot

F = Sba
F /ηe. This results in√

S
imp
z (Ω)Stot

F (Ω) =  h/
√
η, where η = ηdηe amounts to an effective collection effi-

ciency of the overall phase-space information available from the system. In our case,
the efficient and low-noise confocal detection scheme results in a displacement sen-

sitivity of
√
S

imp
z = 2.0× 10−14 m/

√
Hz, allowing us to resolve displacements of

the size of the zero-point motion of the particle (zzpf =
√

 h/(2mΩz)) at a rate of

Γmeas = z
2
zpf/2S

imp
z = 2π · 6.6 kHz [Cle+10]. By performing re-heating measurements

at different background pressures, we can directly determine the decoherence rates
of the particle due to backaction, Γba = 2π · 18.8 kHz, and due to residual gas
molecules, Γth = 2π · 0.6 kHz at the minimal operating pressure of 9.2× 10−9mbar,
providing us with a quantum cooperativity of Cq = Γba/Γth = 30 [SI]. The resulting
information collection efficiency [Cle+10] η = Γmeas/ (Γba + Γth) = 0.34 is consis-
tent with the value obtained from the independently measured loss contributions
in the experimental setup [SI]. This yields an imprecision–backaction product of
 h/
√
η = 1.7 h, which is less than a factor of 2 from its fundamental limit, and more

than one order of magnitude better than previously shown for mechanical systems
at room temperature [Abb+09; Bus+13; Teb+20; Kam+21]. Note that this also en-
ables measurements close to the standard quantum limit (SQL), where the effects
of imprecision and backaction force noise on the displacement spectrum are equal.
Figure 17b shows the different noise contributions for a measurement performed
at moderate feedback gain, where a sensitivity of 1.76 times the SQL is reached at
frequencies of ∼ 22 kHz above resonance.

4.4 optimal quantum control
The idea of optimal feedback is to find a control input that renders the closed-loop
system stable and optimizes a pre-defined cost function. In our case, the goal is to
minimize the particle’s energy. This task can be broken down into two steps: an
estimation step to provide an optimal estimate of the system’s quantum state in
real time, here in the form of a Kalman filter; and a control step that computes the
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Figure 17: Experimental setup. a, Scheme of the experimental setup. The particle is trapped
in an optical tweezer (laser frequency: ω0), and oscillates in an utra-high vacuum (UHV),
along the z direction, at a frequency of Ωz/2π = 104kHz. The backscattered light is collected
by the tweezer objective lens (f1), separated from the tweezer light by the combination of
a faraday rotator (FR) and polarizing beam-splitter (PBS) and spatially filtered by focusing
(f3) onto a single mode fiber (SMF) in a confocal arrangement. It is then split into two paths:
an in-loop homodyne detection and an out-of-loop heterodyne detection. The homodyne
detection is used for the efficient position measurement (ζ(t)), and is directed to the Red-
Pitaya (RP) board, where the LQG is implemented in real time. Both the state estimate
(ẑ(t)) the and control signal (u(t)) can be recorded. The control signal is applied to the
electrode in the vacuum chamber. The heterodyne detection (local oscillator at a frequency
of ω0 ±Ωhet) employs only 5% of the light and performs an out-of-loop measurement of
the particle’s energy via Raman scattering thermometry by measurement of the ratio of the
Stokes and anti-Stokes scattering rates (ΓS, ΓaS). b, Contributions to the measured position
power spectral density by the measurement imprecision (imp), the measurement backaction
(ba), and the mechanical quantum fluctuations (zpf) in the homodyne detection, at a control
gain of gfb/2π = 2 kHz and occupation 〈n〉 = 8.3 ± 0.09. The dashed line indicates the
frequency (∼ Ωz + 2π · 22 kHz) at which imprecision and backaction contribute equally to
the total added noise. Here the measured noise is only a fator 1.76 above the SQL (red line).
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Figure 18: Kalman filter and verification. a, Time trace of the measurement (gray) and esti-
mation (blue) sequences at gfb/2π = 16 kHz, n = 1.68± 0.09. At around t = 100µs, a (rare,
∼ 10pzpf) disturbance to the particle is highlighted by the filter. b, Power spectral density
of the innovation sequence. Horizontal lines indicate the white noise model (solid) and the
95% confidence region of the expected χ2 distribution (dashed) [Wie+15]. The low frequency
phase noise (< 25 kHz) and the narrow noise peaks due to residual x – and y – modes cou-
pling (> 225 kHz) are not considered in our noise model. c, Experimental probability density
function (PDF) and cumulative density function (CDF) of a 10ms innovation sequence. A
4th order fc = 10 kHz highpass filter is used to reduce the low frequency contributions that
are not considered in our model. The black lines are Gaussian fits to the data.

optimal feedback, here in the form of a linear–quadratic regulator (LQR). Both steps
require an adequate mathematical model of the experimental setup, and together
form the so-called linear–quadratic–Gaussian (LQG) control problem. To this end,
we define a quantum stochastic model that allows us to construct the dynamical
equations for the conditional quantum state ρ̂. We model the levitated particle as
a one-dimensional quantum harmonic oscillator coupling to two environments, the
electromagnetic field in the vacuum state and the residual gas in a thermal state.
Both environments are treated in a Markovian approximation, which means they
effectively act as Gaussian white noise sources. By measuring the electromagnetic
field we realize a (continuous) measurement of the particle position. As under
this model the system state is Gaussian at all times, ρ̂ is fully characterized by the
first two moments of the state vector z = [z,p]T (z and p being the particle’s po-
sition and momentum operators in the z-direction), given by ẑ(t) = tr(zρ̂(t)) and
Σ̂(t) = Re[tr(zzTρ̂(t))] − ẑ(t)ẑ(t)T. Here we follow the notation where the ˆ -symbol
refers to the quantities of the conditional state. The corresponding equations of
motion for ẑ and Σ̂ are then equivalent to the classical Kalman–Bucy filter [Bel95;
DJ99][SI], which takes the noisy measurement signal ζ(t) as an input. The particle’s
motion is controlled by a control input u(t), which defines the feedback force that
is applied to the particle via an external electric field: Ffb = qEfb(t) =  hu(t)/zzpf
(q: the charge of the particle, Efb(t): the electric field.) In order to find the optimal
control input u(t) = −kT(t)ẑ(t) (kT(t) being the feedback vector) that minimizes
the particle’s energy, we solve the (deterministic) LQR problem [Kal+60; DJ99][SI].
The solution depends on the control effort, which can be parametrized by the feed-
back gain gfb. Adjusting this degree of freedom allows us to shape the closed-loop
dynamics and steer the particle into the desired thermal state. The corresponding
closed-loop covariance matrix of z is given by Σ(t) = Σ̂(t) + 〈ẑ(t)ẑ(t)T〉cl, where
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〈·〉cl denotes the expectation value with respect to the classical stochastic process
induced by the measurement. In the long term limit (t � 1/Γmeas), both Σ(t) and
Σ̂(t) converge to a steady state, which we denote by Σss and Σ̂

ss
respectively. Then

Σ̂
ss

can be obtained by solving the stationary Riccati equation. Finally, we combine
the stationary LQR and Kalman filter into a single time-discrete transfer function
that solves the optimal quantum feedback problem in real time. It is implemented
as a digital filter with a sampling time of Ts = 32ns in a Red Pitaya board equipped
with a Xilinx Zynq 7010 FPGA. A key element of optimal estimation and control
is the accurate mathematical description of the experimental setup including exter-
nal noise processes, which relies on a careful calibration of the position readout.
We calibrate our readout using Raman sideband thermometry from an out-of-loop
heterodyne detection, which provides an absolute energy measurement that is com-
pared to the simultaneously recorded homodyne position measurement. To avoid
any possible distortion in the closed-loop position detection that may result in noise
squashing [Pog+07], we perform the calibration at low feedback gains [SI]. This al-
lows us to quantify all relevant noise processes and to calibrate the feedback force
applied via the electrodes [SI]. We ensure the accuracy of the conditional state com-
puted by the Kalman filter by performing a thorough model verification. This is a
crucial aspect, in particular because the dynamical equations for Σ̂ do not depend
on the measurements but only on the model. Verification is done by computing the
innovation sequence ε(t) = ζ(t) − ẑ(t), which describes the difference between the
position predicted by the Kalman filter ẑ(t) and the actual measurement outcome
ζ(t). For an optimally working filter, ε is a Gaussian zero-mean white noise process.
We confirm this to be the case for our experiment, (see Figure 18b-c).

4.5 results

The closed-loop dynamics can be influenced by adjusting the feedback gain gfb.
At each gain setting, we record the measurement sequence ζ(t), the state’s con-
ditional expectation value ẑ(t) and the control input u(t). Figure 19c shows the
quantum trajectory of the particle, which is tracked by the Kalman filter in phase
space with the uncertainties in position and momentum given by the diagonal

values of the steady-state conditional covariance matrix σz =
√
Σ̂ss
zz = 1.30 zzpf,

σp =
√
Σ̂ss
pp = 1.35 pzpf (pzpf =

√
 hmΩz/2: momentum ground-state uncertainty).

To obtain the motional energy of the particle, we evaluate the closed-loop steady-
state covariance matrix Σss. For increasing control gain, the mean particle energy
〈E〉 =  hΩz(〈n〉+ 1/2) =  hΩztr(Σss)/2 (n: motional quanta) decreases and quantum
ground state cooling (〈n〉 < 1) is achieved for gain levels larger than 2π · 40kHz
(Figure 18d). The estimated occupation values 〈n〉 agree well with the analytic
solution of the LQG problem. We independently confirm these results by Raman
sideband thermometry in an out-of-loop heterodyne measurement by mixing the
backscattered light with a local oscillator field that is detuned from the trapping
field by Ωhet = ±2π · 9.2MHz (Figure 17a). This allows us to spectrally resolve
the Stokes and anti-Stokes components originating from inelastic scattering off the
particle. The scattering rates of these two processes (ΓS, ΓaS) correspond to the
powers detected in the sidebands of the heterodyne measurement. They contain a
fundamental asymmetry due to the fact that anti-Stokes scattering, which removes
energy from the system, cannot occur from a motional quantum ground state. This
is captured by a non-zero difference ΓS − ΓaS of the scattering rates that is indepen-
dent of the thermal occupation 〈n〉 [SI] (Figure 19b). On the other hand, their ratio
ΓaS/ΓS = 〈n〉/ (〈n〉+ 1) provides us a direct, calibration-free measure of 〈n〉 [SN+12].
To exclude other sources of asymmetry that may falsify the measurement, we inde-
pendently characterize and subtract all (potentially non-white) noise sources (e.g.,
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Figure 19: Quantum optimal control. a, Heterodyne power spectral density at gfb/2π =

8 kHz (large narrow peaks) and gfb/2π = 110kHz (small broad peaks), where we distinguish
the spectral contributions from Stokes (red) and anti-Stokes (blue) scattering. The asym-
metry of the peaks is a signature of the quantization of the energy levels of the harmonic
oscillator. b, Statistical fluctuations of Stokes (red) and anti-Stokes (blue) scattering rates at
gfb/2π = 10 kHz and gfb/2π = 200kHz. Each point is evaluated by integrating a single PSD
as shown in a, and normalizing by the average value of their difference over all of the mea-
surements (〈∆Γ〉 = 〈ΓS − ΓaS〉). c, Phase space plot of the quantum trajectory of the particle
at the steady state, for gfb/2π = 8 kHz (green), gfb/2π = 110kHz (purple) and the corre-
sponding solutions of the LQG closed-loop system (red dashed). Both traces display about
750µs of evolution. Highlighted is the uncertainty given by the steady-state conditional co-
variance matrix Σ̂

ss
as given by the Kalman filter. For comparison, we show the phase space

volume occupied by the zero-point fluctuations in dark blue. Here the data is filtered with
a high-order bandpass (25 to 225 kHz), attenuating the contributions of the noise sources at
high and low frequencies that are not considered by the model. d, Occupation at different
feedback gains as estimated by the Kalman filter (green dots) and independently measured
by heterodyne asymmetry (yellow circles). The magenta crosses show the four points at
which 60 repeated measurements were performed for reduction of statistical fluctuations as
in b. Error bars represent the standard deviation of the measured value. The solid line is
the analytic closed-loop solution of the LQG, showing the expected occupancy given by our
experimental parameters and their uncertainties. The gray area shows the cooling limit set
by the efficiency of our measurement.
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optical phase noise, detector dark noise) and normalize the data to shot noise,
thereby taking into account also the frequency-dependent detector response [SI].
For consistency, we perform all measurements at both positive and negative het-
erodyne frequencies. For each gain setting, both measurements agree within the
statistical error (Figure 19b-c [SI]). All data points are also in good agreement with
the LQG theory. At maximum gain, we measure a maximal averaged asymmetry
of 0.35, corresponding to an occupation of 〈n〉 = 0.56± 0.02. This establishes quan-
tum ground state cooling of a nanoparticle from room temperature by real-time
optimal quantum control. In the ideal case, the lowest energy can be achieved at
infinite feedback gain and is limited by the steady-state conditional covariance to
〈n〉 = 0.34. In our experiment, the cooling performance is limited by the computa-
tional resources of the Red Pitaya, restricting the trade-off between the complexity
of the model, the accuracy of the fixed-point arithmetic and the sampling frequency
of the implementation. In practice, this generates a significant risk of numerical
overflow when the control output is increased above gfb = 2π · 200kHz.

4.6 discussion and outlook
We have demonstrated real-time optimal quantum control of a levitated nanoparti-
cle. Our experiment combines two features: First, using a near Heisenberg-limited
confocal measurement scheme, we realize – at room temperature – the conditions
for which the quantum-mechanical properties of the particle can no longer be ne-
glected [BV75]. Second, real-time implementation of both a Kalman filter and a
linear quadratic regulator (LQR) provides the required algorithms for optimal state
estimation and control. As a result, we achieve feedback cooling to the motional
quantum ground state (〈n〉 = 0.56± 0.02) in a room temperature environment. An
immediate application is mechanical sensing of weak stationary [Ran+16; Mon+20a;
MG21] or transient [Mon+20b; Car+20; MG21] forces. While neither real-time op-
timal filtering or feedback cooling improves the signal-to-noise ratio [MG21], our
real-time state estimation can discriminate momentum kicks to the particle as small
as ∆p =

√
σ2p + p

2
zpf = 1.2

√
 hmΩz = 1.6× 10−23 kg m/s (29 keV/c), only a factor 1.2

away from the fundamental quantum limit for continuous sensing [Car+20]. This
is comparable to the momentum imparted by the inelastic collision with a hydro-
gen molecule travelling at about 800 m/s, and smaller than the momentum (in a
single dimension) of almost 10% of the gas molecules at room temperature. Inter-
estingly, this sensitivity is only a factor of 60 above the latest bounds in the search
for gravitationally interacting particle-like candidates for dark matter [Mon+20b].
In other words, extending our method to particle sizes beyond 1µm would enable
the search for these exotic particles in new parameter regimes. From a more general
perspective, the ability to drive seemingly classical room temperature objects into
genuine quantum states of motion simply by measurement and feedback offers
unique possibilities to study quantum phenomena in hitherto unexplored macro-
scopic parameter regimes [Leg02; Che13]. Extending our current scheme to a more
complex system dynamics may enable the preparation of genuinely non-classical
states including squeezed [Gen+15] or, in combination with non-linear filtering and
anharmonic potential landscapes [Ral+18; RF19], even non-Gaussian states of mo-
tion.

acknowledgements
We thank José Manuel Leitão for his introduction to optimal control, and Paolo
Vezio, Hans Hepach and Tobias Westphal for discussions and their help in the
lab. L. M. thanks Arno Rauschenbeutel for the discussion inspiring the confocal



4.6 discussion and outlook 53

detection scheme. This project was supported by the European Research Council
(ERC CoG QLev4G), by the ERA-NET programme QuantERA, QuaSeRT (Project
No. 11299191; via the EC, the Austrian ministries mathbfDW and mathbfBWF and
research promotion agency FFG), and by the Austrian Science Fund (FWF, Project
TheLO, AY0095221, START). L. M. is supported by the Vienna Doctoral School of
Physics (VDS-P) and by the FWF under project W1210 (CoQuS).

author contributions
L. M. designed and built the experiment, P. R. designed and programmed the filter
and controller. L. M. and C. B. performed the measurements. L. M., P. R. and C. B.
analyzed the data and all authors contributed to writing and editing of the paper.

references
These are the references cited in the author’s version of the manuscript

[Abb+09] B. Abbott et al. “Observation of a kilogram-scale oscillator near its
quantum ground state”. In: New Journal of Physics 11 (2009), pp. 0–13.
issn: 13672630. doi: 10.1088/1367- 2630/11/7/073032. url: http:
//iopscience.iop.org/1367-2630/11/7/073032 (cit. on pp. 47, 62).

[ÅW13] Karl J Åström and Björn Wittenmark. Computer-controlled systems: the-
ory and design. Courier Corporation, 2013 (cit. on pp. 44, 45, 76).

[Bel95] VP Belavkin. “Quantum filtering of Markov signals with white quan-
tum noise”. In: Quantum communications and measurement. Springer,
1995, pp. 381–391 (cit. on pp. 12, 43, 46, 49, 76).

[BSLK04] Yaakov Bar-Shalom, X Rong Li, and Thiagalingam Kirubarajan. Esti-
mation with applications to tracking and navigation: theory algorithms and
software. John Wiley & Sons, 2004 (cit. on p. 46).

[Bus+13] P. Bushev et al. “Shot-Noise-Limited Monitoring and Phase Locking
of the Motion of a Single Trapped Ion”. In: Phys. Rev. Lett. 110 (13

2013), p. 133602. doi: 10.1103/PhysRevLett.110.133602. url: https:
//link.aps.org/doi/10.1103/PhysRevLett.110.133602 (cit. on
pp. 47, 62).

[BV75] Vladimir B Braginskiı̆ and Yurii I Vorontsov. “Quantum-mechanical
limitations in macroscopic experiments and modern experimental tech-
nique”. In: Soviet Physics Uspekhi 17.5 (1975), pp. 644–650. doi: 10 .

1070/pu1975v017n05abeh004362. url: https://doi.org/10.1070\
%2Fpu1975v017n05abeh004362 (cit. on pp. 3, 13, 52).

[Car+20] Daniel Carney et al. “Mechanical quantum sensing in the search for
dark matter”. In: Quantum Science and Technology (2020). url: http:
//iopscience.iop.org/article/10.1088/2058-9565/abcfcd (cit. on
pp. 3, 52, 101).

[Car93] Howard Carmichael. An open systems approach to quantum optics: lectures
presented at the Université Libre de Bruxelles, October 28 to November 4,
1991. Vol. 18. Springer Science & Business Media, 1993 (cit. on pp. 3,
11, 45, 76).

https://doi.org/10.1088/1367-2630/11/7/073032
http://iopscience.iop.org/1367-2630/11/7/073032
http://iopscience.iop.org/1367-2630/11/7/073032
https://doi.org/10.1103/PhysRevLett.110.133602
https://link.aps.org/doi/10.1103/PhysRevLett.110.133602
https://link.aps.org/doi/10.1103/PhysRevLett.110.133602
https://doi.org/10.1070/pu1975v017n05abeh004362
https://doi.org/10.1070/pu1975v017n05abeh004362
https://doi.org/10.1070\%2Fpu1975v017n05abeh004362
https://doi.org/10.1070\%2Fpu1975v017n05abeh004362
http://iopscience.iop.org/article/10.1088/2058-9565/abcfcd
http://iopscience.iop.org/article/10.1088/2058-9565/abcfcd


54 real-time optimal quantum control of mechanical motion at room temperature

[Che13] Yanbei Chen. “Macroscopic quantum mechanics: theory and experi-
mental concepts of optomechanics”. In: Journal of Physics B: Atomic,
Molecular and Optical Physics 46.10 (2013), p. 104001. issn: 0953-4075.
doi: 10.1088/0953-4075/46/10/104001. arXiv: arXiv:1302.1924v1.
url: http://stacks.iop.org/0953-4075/46/i=10/a=104001?key=
crossref.f6fb280b25ca177dd9c80e4daf9cd4e0 (cit. on p. 52).

[Cle+10] A. A. Clerk et al. “Introduction to quantum noise, measurement, and
amplification”. In: Rev. Mod. Phys. 82 (2 2010), pp. 1155–1208. doi: 10.
1103/RevModPhys.82.1155. url: https://link.aps.org/doi/10.
1103/RevModPhys.82.1155 (cit. on pp. 3, 14, 15, 47, 58, 59, 62, 85).
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4.7 supplementary information

This document provides supplementary information to “Real-time optimal quan-
tum control of mechanical motion at room temperature”, https://doi.org/10.1038/s41586-
021-03602-3.

4.7.1 The complete experimental setup

We include the complete experimental details of the experiment. The core of the
experiment is the optical tweezer: a microscope objective of NA = 0.95 to tightly
focusing ∼ 300mW of light at λ = 1064nm (ω0 = c2π/λ: optical frequency) in ultra-
high vacuum. Before reaching the optical trap, part of the light is diverted to a
couple of acousto-optic modulators (AOMs) oriented to scatter in positive and neg-
ative first order. In order to avoid slow intensity drifts due to interference between
the parametric feedback and the optical tweezer, the parametric feedback cooling is
implemented with light at optical frequencies of ωpfb = ω0 + 2π · 205MHz while
the light shifted by the second AOM at a frequency of ωhet = ω0 ± 2π · 9.2MHz
is used as local oscillator for the heterodyne measurement. The polarization in the
tweezer is controlled by a half and a quarter waveplate (HWP,QWP). This allows
us to excite the rotational degree of freedom and its precession about the z-axis
in ultra-high vacuum to frequencies above 100 MHz by briefly applying an optical
torque to the levitated particle, avoiding disturbance at the frequencies of interest.
The back scattered light is selected by a Faraday rotator (FR) and a polarizing beam-
splitter (PBS) and routed to the confocal fiber filtering. Here a lens (f3) focuses light
into a single-mode fiber (green). A variable ratio coupler (VRC) is used to split the
light between homodyne and heterodyne detection. The use of these tunable VRCs,
also in the actual interferometric measurement, allows us to balance the splitting
ratio with a precision below 0.5%. The slow phase drift of the homodyne signal is
stabilized by use of a low-pass filter (LP) and PID controller driving a fiber stretcher
constituted of a bare fiber wrapped around a cylindrical piezo. The signal is then
directed to the Red-Pitaya (RP) board which calculates the state estimates and a
calibrated control signal. The control signal is applied to the holder of a collection
lens which serves as electrode and is placed in front of the tweezer objective which
is grounded [Fri+17]. The homodyne and heterodyne measurement sequences as
well as the state estimates and control signals are recorded simultaneously. After
the tweezer, light is collected by a lens and used for 3D forward split-detection (BS:
beam splitter). This low quality measurement serves to implement the parametric
feedback of all 3 modes: a phase lock loop (PLL) allows to track the phase of each
mode and stabilize its motion by modulating the optical spring at twice the mechan-
ical frequency via an electro-optic modulator (EOM) and overlayed with the tweezer
light by a PBS. During the experiment, the parametric feedback for the z-mode is
switched off. A green laser is shined from the side onto the particle for imaging of
the dipole scattering through a dichroic mirror (DM) onto a CCD sensor.

4.7.2 Imprecision and backaction noise in an optical tweezer

We describe the effects of quantum noise in a measurement process following the
description by Clerk et al. [Cle+10] for a flat mirror moving in one dimension. We
then extend this to the geometry of an optically levitated particle, along the lines of
the analysis showed by Seberson and Robischeaux [SR20]. A full quantum descrip-
tion of the open quantum system in terms of the quantum Langevin equations and
input-output formalism will be derived in Section 4.7.5.

When performing a phase measurement of light in a coherent state (displaced vac-
uum) the phase and photon number uncertainty is governed by Poissonian statistics:
these uncertainties are respectively ∆ϕ = 1/(2

√
N) and ∆N =

√
N, where N is the

https://doi.org/10.1038/s41586-021-03602-3
https://doi.org/10.1038/s41586-021-03602-3
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Figure 20: The experimental setup. a, The complete experimental setup as described in
section 4.7.1. b, The scattering geometry: we define the scattering angle θ as the angle
between the z axis and the scattering direction.

measured number of photons during the time t. The product of these uncertainties
satisfies the relation ∆N∆ϕ = 1/2 [Lou00]. In the context of continuous measure-
ments of stationary processes it is useful to reformulate these quantities in terms
of a noise power spectral densitiy. This is defined, for a variable X, as the Fourier
transform of its autocorrelation:

SXX(Ω) =

+∞∫
−∞

e−iΩt 〈X(0)X(t)〉 dt (60)

Measuring a continuous flux of photons of average ¯̇N, we can now define Sϕϕ =

(∆ϕ)2/t = 1/(4 ¯̇N) and SṄṄ = (∆N)2/t = ¯̇N. Again, we have the uncertainty
relation: √

SϕϕSṄṄ = 1/2 (61)

Measuring the displacement of a flat mirror

As a first example of optical measurement, we study the one dimensional case of
a photon bouncing off a mirror, measuring its displacement x. The phase shift
gained by each photon is two times the phase shift acquired in x distance: ϕ = 2kx.
The momentum transferred to the mirror by elastic scattering is twice the photon
momentum p = 2 hk. These lead to spectral density definitions for imprecision of
position measurement and random backaction force-noise: SI

xx = Sϕϕ/(4k
2) and

Sba
FF = 4 h2k2SṄṄ [Cle+10]. The uncertainty relation becomes:√

SI
xxS

ba
FF =  h/2 (62)
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The case of a levitated particle

The case of a levitated particle is qualitatively equivalent. The main difference to
consider is that the direction of incoming and scattered photons is not necessarily
parallel to the direction of the particle’s motion that we are interested in measur-
ing. The total optomechanical interaction is distributed to the different degrees of
freedom (x, y, z), reducing the average coupling to each mode. We follow the same
steps and notation as described by Seberson and Robicheaux [SR20] to derive the
imprecision noise and measurement backaction for our system. A photon of initial
wave-vector ~ki = kk̂i = (kix,kiy, kiz) = k(k̂ix, k̂iy, k̂iz) scatters elastically off a par-
ticle at position ~r, initial velocity ~vi and mass m. The phase shift acquired by the
photon and the final velocity of the particle are given by:

ϕ = ~ki~r−~kf~r and ~vf = ~vi +
 h

m

(
~ki −~kf

)
, (63)

where ~kf is the final wave-vector. The squared phase shift resulting from a displace-
ment along the direction j = (x,y, x) is:

ϕ2j =
(
kijrj − kfjrj

)2
= k2r2j

(
k̂ij − k̂fj

)2
, (64)

and similarly the square momentum exchanged with the particle’s mode j is:

p2j =
(
mvfj −mvij

)2
=  h2k2

(
k̂ij − k̂fj

)2
, (65)

where we have used the fact that 〈vj〉 = 0 for harmonic motion. As the phase and

Figure 21: Scattering angle. We define the scattering angle θ as the angle between the z axis
and the scattering direction.

momentum depend on the incidence and scattering directions, in order to compute
second moments of momentum and phase fluctuations we have to consider the
scattering probability distribution defined for a dipole emitter. The probability of a
photon emitted by a dipole being scattered in direction k̂f is [SR20; TFN19]:

P(k̂f) =
3

8π
(cos2 θ cos2φ+ sin2φ), (66)

where the spherical coordinate system is defined such that the scattered photon has
the direction k̂f = (sin θ cosφ, sin θ sinφ, cos θ). Note that

∫
4π

P(k̂f)dΩ = 1. For

each direction of motion, the sqaure optical phase shift and momentum exchange,
averaged over the scattering probability distribution is then given by:

〈ϕ2j 〉 =
∫
4π

P(k̂f)ϕ
2
j dΩ and 〈p2j 〉 =

∫
4π

P(k̂f)p
2
j dΩ. (67)

We consider the case for j = z, which is the direction of interest of this paper. The
other directions follow trivially and are discussed in [SR20; TFN19]. If considering
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an incident plane wave, the incidence and scattering wave vectors are defined as
k̂iz = 1 and k̂fz = cos θ, respectively. As we are dealing with a tightly focused beam
we have to modify the value of the initial wave vector to be k̂iz = A 6 1, where
A is a geometrical factor arising from the Gouy phase shift in the focal field which
depends on the trapping NA and can be computed following [TFN19]. In our case
A = 0.71. Inserting (64) and (65) into (67), and projecting on z,

〈ϕ2z〉 = k2z2
∫
4π

P(k̂f)(A− cos θ)2dΩ and 〈p2z〉 =  h2k2
∫
4π

P(k̂f)(A− cos θ)2dΩ

(68)
The mean square phase shift and square momentum exchange along z become:

〈ϕ2z〉 =
(
A2 +

2

5

)
k2z2 and 〈p2z〉 =

(
A2 +

2

5

)
 h2k2 (69)

As for the one dimensional case we can now express the interaction in terms of
spectral densities for position imprecision and force noise, extending the averaging
to the time domain:

SI
zz =

Sϕϕ(
A2 + 2

5

)
k2

and Sba
FF =

(
A2 +

2

5

)
 h2k2SṄṄ (70)

and in terms of optical scattered power, Pscatt =  hω ¯̇N =  hck ¯̇N:

SI
zz =

 hc(
A2 + 2

5

)
4kPscatt

and Sba
FF =

(
A2 +

2

5

)
 hkPscatt

c
, (71)

which also fulfills the Heisenberg uncertainty relation (62).
As we measure real signals, it is useful to consider the one-sided power spectral

density, defined for a real signal X, at positive frequencies as:

SX(Ω > 0) = (SXX(Ω) + SXX(−Ω)) (72)

where the variance of the signal X is:

〈
X2
〉
=
1

2π

+∞∫
−∞

SXX(Ω)dΩ =
1

2π

+∞∫
0

SX(Ω)dΩ (73)

which for a real white process simply reduces to SX = 2SXX. In terms of single-
sided power spectral densities, the uncertainty relation becomes:√

SI
zS

ba
F =  h (74)

In real experiments the backaction-imprecision product is degraded by losses. On
the one hand, there are losses of information in the detection channel ηd. They
increase the imprecision noise while leaving the backaction force noise unaltered;
The detected imprecision noise becomes Simp

z = SI
z/ηd. On the other hand, there are

losses of information by interactions with the environment ηe. Environmental force
noise contributions include scattering of gas molecules, feedback noise, black-body
radiation; All having the effect of exchanging momentum with the system, without
contributing to the measurement. The total force noise becomes Stot

F =
∑
i S
i
F =

Sba
F /ηe and the imprecision-backaction product can be written as:√

S
imp
z Stot

F =
 h
√
η
>  h (75)

where η = ηdηe considers information losses in the detection and into the environ-
ment. In the following sections (4.7.3, 4.7.4), we will analyze losses in the detection
channel and discuss additional force noise contributions to the backaction term.
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The standard quantum limit for the harmonic oscillator

The response of a system to external forces is given by its mechanical susceptibility,
defined, for a harmonic oscillator, as: χm(Ω) = [m(Ω2z −Ω

2 + iγΩ)]−1 (m the mass
of the particle, Ωz: the mechanical resonance frequency, γ: the total damping of the
system). The relation between imprecision and backaction (equation (74)) defines
a minimal added noise to the measured displacement spectrum that is known as
the standard quantum limit. This limit is achieved, at a given frequency, when the
strength of measurement is such that the contributions of imprecision and response
to backaction are equal [Mas+19]:

SSQL
z (Ω) = min{SI

z + S
ba
F |χm(Ω)|2} = 2 h|χm(Ω)| (76)

In a real measurement one has to consider not only losses in the detection and
environmental force noise contributions, but also the oscillator’s quantum fluctu-
ations of position zzpf =

√
 h/(2mΩz), resulting in a ground state displacement

spectrum [Cle+10]:
S

zpf
z (Ω) = z2zpf

γ

(Ω−Ωz)
2 + (γ/2)2

. (77)

The particle motional spectrum is:

Sz(Ω) = Stot
F |χm(Ω)|2 + S

zpf
z (Ω) (78)

and the total measured displacement noise then becomes:

Sζ(Ω) = S
imp
z + Stot

F |χm(Ω)|2 + S
zpf
z (Ω) (79)

where ζ = z+ ν is the sum of the actual motion of the particle together the posi-
tion equivalent measurement noise. It is evident that, in the case of weak damping,
backaction and quantum fluctuations have a large contribution to the total noise on
resonance, and the added noise is much larger than the SQL (Supplementary Figure
22a, 22c). Off resonance however it is possible to find frequencies where the noise
is closest to the SQL (Supplementary Figure 22b). Up to a certain degree it is also
possible to suppress the backaction contribution on resonance, and redistribute the
quantum zero point fluctuation noise contribution to a larger frequency band. This
is done by feedback cooling which increases damping and modifies the mechanical
susceptibility (Supplementary Figure 22c, 22d and Section 4.7.4). In our system,
with an information efficiency of η = 0.34, we distinguish 2 regimes: the weakly
cooled regime where we achieve (off resonance) a displacement noise of 1.76 times
the SQL, and a strongly cooled regime, where by strongly suppressing backaction
we are able to achieve (on resonance) a displacement noise that is 2.7 times the SQL
(Supplementary Figure 23). Note that for the resonant case, even at zero temper-
ature the contribution of the zero point fluctuations limits the displacement noise
to 2 times the SQL. These results show an improvement of more than one order of
magnitude for a mechanical system at room temperature [Abb+09; Bus+13; Sch+16;
Teb+20; Kam+21].

Measurement and decoherence rates

The resolution of a noisy measurement increases with measurement time. A quan-
tum limited measurement however necessarily disturbs the system, limiting the
time for which one can measure a quantum state before it is completely destroyed
by the measurement itself [CGS03]. We introduce rates of measurement and deco-
herence to quantify these processes. We define the measurement rate as the rate
at which our measurement is able to resolve a displacement equivalent to the zero
point motion of the particle (zzpf):

Γmeas =
z2zpf

4S
imp
zz

=
z2zpf

2S
imp
z

= ηd
z2zpf

2SI
z

(80)



4.7 supplementary information 63

Figure 22: The standard quantum limit. a, Contribution to the measured power spectral
density of imprecision (imp), backaction (ba), and zero point fluctuation (zpf), compared to
the SQL as a function of frequency, in a regime of weak cooling (Γfb = Γba/5). b, Contribution
to the total noise, evaluated at Ωz ±∆ (verical dotted line in a), as a function of the scattered
power (measurement strength). In the case of weak cooling, the contributions of backaction
and zero point fluctuation are concentrated on resonance, allowing perfect balancing of im-
precision and backaction when ∆ ≈ 2π× 22 kHz, and resulting in a total added noise that is
only a factor 1.76 from the SQL. c, Contributions to the measured power spectral density in
a regime of strong cooling (Γfb = 2Γba). In this case, the contributions of backaction and the
zero point fluctuations are broadened in frequency, allowing on resonance (vertical dotted
line), a suppression of the added noise to a factor of 2.7 from SQL (in d as a function of the
scattered power). Note that in the case of optical tweezers, b and d do not represent a com-
plete set of experimentally available conditions, and are only valid at a fixed scattered power
(vertical dotted lines). A variation of this would necessarily come along with a change in
the mechanical frequency, and a redefinition of the system parameters. This representation
is however useful to understand the operating conditions of the system with respect to the
SQL.

Similarly, the decoherence rate, defined as the rate of energy quanta delivered to
the oscillator by the measurement process, is

Γba =
Sba
FF

4p2zpf
=

Sba
F

8p2zpf
(81)

where pzpf =
√

 hmΩz/2 momentum ground-state uncertainty. With the help
of equation (74), we can compute the ratio of measurement rate and backaction-
induced decoherence rate:

Γmeas

Γba
= ηd 6 1. (82)

Decoherence in the system, however, does not only originate from the measurement
process, but also from other environmental interactions. We define the rate of de-
coherence induced by the environment (commonly thermal) as Γth. The strength of
a measurement with respect to other environmental interactions is known as the
measurement quantum cooperativity: Cq = Γba/Γth. Finally, using equation (82) it
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Figure 23: The measured noise. Measured displacement power spectral density (black)
showing the contributions by imprecision (imp, gray), backaction (ba, green), and the zero
point fluctuations (zpf, blue), compared to the SQL (red). a, A feedback gain of gfb/2π =

2 kHz results in an occupation of n = 8.3± 0.09. The almost perfect balancing of imprecision
and backaction at 22 kHz above resonance (vertical dashed line) results in a measurement that
is only a factor 1.76 from the ideal SQL. b, In the case of strong cooling (gfb/2π = 110kHz),
and occupation of n = 0.71± 0.09, we achieve a total added noise on resonance that is a
factor 2.7 higher than the SQL.

is possible to define the measurement information efficiency, which summarizes the
quality of a measurement process:

η =
Γmeas

Γba + Γth
= ηd

Γba
Γba + Γth

= ηd

(
1+

1

Cq

)−1

= ηdηe (83)

Noise equivalent occupation

When monitoring the position of a harmonic oscillator, often the quantities of im-
precision and force noise are considered in units of energy quanta. We can assign an
apparent thermal occupation to the imprecision noise [Wil+15; Sud+17a; Ros+18]:

nimp =
S

imp
z

2S
zpf
z (Ωz)

= S
imp
z

γ

8z2zpf
(84)

On the other hand we can assign an occupancy to the bath associated with the force
noise driving the oscillator. Assuming energy equipartition this is:

ntot =
1

2π

∞∫
0

Stot
F |χm(Ω)|2

2z2zpf
dΩ =

Stot
F

8p2zpfγ
(85)

where the last identity in equation (85) is only valid in the case of a white force
noise. The effect of backaction associated to any quantum measurement process
seemingly would prohibit any kind of quantum control. However, the effects of
this noise are directly captured by the measurement, and can be counteracted by
feedback control schemes. We can then write the minimal achievable occupancy in
presence of an ideal feedback as [Wil+15]:

nmin = 2
√
nimpntot −

1

2
(86)

Note that equation (86) is an asymptotic value, requiring an experimentally imprac-
tical infinite bandwidth feedback (see also Section 4.7.6). Given the parameters in
our system we estimate nmin = 0.34.
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4.7.3 Losses of information and photons

As we have seen in the previous section 4.7.2 information is not uniformly dis-
tributed across the dipole scattered light. Whenever there are spatially dependent
losses, there are mismatches between the loss of photons and the actual loss of in-
formation. In other words, there are losses and the are losses. We will refer to
efficiency that is complementary to information loss with η and efficiency that is
complementary to photon loss with η∗.

Microscope collection

The collection efficiency by the microscope objective of dipole scattered photons is:

η∗d,c =

∫
Ωcoll

P(k̂f)dΩ∫
4π

P(k̂f)dΩ
, (87)

which results in a photon collection efficiency of η∗d,c = 0.375. On the other hand,
the information collection efficiency by the microscope objective is the ratio of the
imprecision noise calculated for a limited collection angle Ωcoll over the ideal im-
precision noise defined in equation (68)

ηd,c =

∫
Ωcoll

P(k̂f)(A− cos θ)2dΩ∫
4π

P(k̂f)(A− cos θ)2dΩ
. (88)

With an NA of 0.95 this leads to an information collection efficiency of ηd,c = 0.84.

Confocal mode-matching

After being collected by the microscope objective, light needs to be matched to the
local oscillator. We implement a fiber based confocal dipole detection [Vam+07].
This has two advantages: first it allows easy and efficient mode matching of the
dipole scattered light to the local oscillator, second, confocal filtering by the fiber
allows to suppress stray reflections in the trapping-detection path. Following the
description by Vamivakas et al. [Vam+07] we compute the mode overlap between the
electric dipole far field Edip imaged at the fiber boundary and the fiber mode profile
Efm in cylindrical coordinates as a function of magnification M = f3/f1. Here f1
and f3 are the focal lengths of the objective lens and the imaging lens respectively.
The mode overlap efficiency is defined as:

η∗d,m(M) =
|
∫
~E∗dip( ~r3)

~Exfm(~r3)dA3|
2∫

|~Exdip( ~r3)|
2dA3

∫
|~~Exfm(~r3)|2dA3

, (89)

where the dipole is oriented along x̂ with its origin in the focal point of a 0.95

NA microscope objective and the fiber mode superscript x indicates the x polarized
solution. We integrate the overlap of dipole image and fiber mode over the fiber
tip surface dA3 at the focal position. A maximal collection efficiency of 0.76 can
be achieved with a magnification of f3/f1 ≈ 7.7. In our case a magnification of
M = 8.5 leads to a mode matching efficiency of η∗d,m = 0.75. We manage to couple
up to η∗d,m = 0.71.

For comparison, we also calculate the overlap integral for the dipole image in
paraxial approximation, where the collection angle θ → 0. The x component of the
dipole image becomes:

Exdip(ρ3,M) = θ1
M

k3ρ3
J1(k3ρ3θ1/M), (90)
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where ρ3 is the distance from the fiber axis, J1 is the first order Bessel function of
the first kind, θ1 = arcsin NA/n1, with n1 = 1 the refractive index before the micro-
scope objective and k3 = n12π/λ. All other contibutions vanish. We insert equation
(90) into equation (89) and integrate numerically at different magnifications. The re-
sult can be found in Supplementary Figure 24b. Approximating the dipole image as
a Bessel function (without any azimuthal dependence) increases the maximal cou-
pling efficiency and shifts it to higher magnification. While qualitative behaviour
remains similar, it is evident that in our configuration the approximate solution is
no longer valid. As the dipole scatterer is treated as a point source, once the light
is collected by the microscope objective and imaged onto the fiber, information is
distributed uniformly over the mode. For this reason the information collection
efficiency will, from this point on, coincide with the photon collection efficiency.
Even though a higher NA leads to an increased information collection by the mi-
croscope, it also causes a reduced overlap of the collected light with a Gaussian
single mode. Therefore it is the efficiency of the combined system that has to be
considered and maximized (Supplementary Figure 24c). Still, computing the prod-
uct of the maximal information collection efficiency ηc for each NA we notice that
the overall information collection efficiency is still maximized at the highest NA.

Figure 24: Fiber-dipole mode overlap. a, Numerical calculation of the dipole mode (orange)
at a fixed angle imaged at the fiber interface by our confocal microscope system, fiber mode
(blue), and their overlap (green) as a function of the distance to the center of the fiber. The
gray shaded area represents the fiber core. b, Overlap efficiency as a function of magnifi-
cation of the optical system. The gray vertical line shows our operating point, not far from
the optimal value. c, Information collection efficiency by the microscope objective (orange
dots), maximum fiber mode matching (blue dots) and the product of the two (green dots) as
a function of the objective NA. The gray line is our operating point.

Objective transmission

We measure the transmission efficiency of the microscope objective to be η∗d,obj =

ηd,obj = 0.84, assuming uniform loss, which is in good agreement with the produc-
ers specified value at this wavelength.

Heterodyne splitting

After mode-matching to the fiber we split 5% by use of a variable ratio coupler of
the signal to contribute to the out-of-loop heterodyne measurement (Supplementary
Figure 20). We have η∗d,het = ηd,het = 0.95.

Homodyne balancing

As the interferometric measurement is performed in fiber, the visibility is degraded
by the imperfect splitting ratios of the variable ratio couplers. These tunable beam-
splitters can be adjusted to a mismatch of about 0.1%, with thermal fluctuations of
less than 0.5%. This results in an efficiency η∗d,hom = ηd,hom = 0.99.
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Detector efficiency

Together with the microscope transmissivity this is the second largest loss. We use a
commercial balanced detector, where the current difference between the 2 diodes is
amplified by a transimpedance gain. We calibrate the detector responsivity defined
as R(ν) = η∗d,qe/hν with e the electron charge, by measuring the dc voltage at each
diode monitor port and extrapolate the efficiency of η∗d,q = ηd,q = 0.85 for both
diodes.

Detector dark noise

The last detection noise source is the detector dark noise. We measure the dark
noise at the relevant frequencies to be 11 dB below the shot noise level, resulting in
ηd,dn = 0.924.

Digital noise

After detection there are further noise sources to be considered which reduce the
collected information: The Red-Pitaya board has 14-bit analog to digital and digital
to analog converters. This results in a limitation of the dynamic range of operation.
In our settings this results in an effective information loss of 2% (ηd,rp = 0.98).

Environmental information loss

We here consider the information loss to interactions with gas molecules. This
contributes the dominant environmental loss in ηe. As already discussed in Section
4.7.2, a gas molecule colliding with the particle performs a measurement which
information we cannot read. The associated efficiency is:

ηe =
Sba
F

Stot
F

= 0.97 (91)

Values for the force noise contributions are calculated in Section 4.7.4. As discussed
in Section 4.7.4 we can define the cooperativity Cq = Sba

F /S
th
F = Γba/Γth:

ηe =

(
1+

1

Cq

)−1

(92)

The total loss budget

We finally derive a total photon detection efficiency of η∗ = 0.178 while the total
information detection efficiency is as high as η = 0.347 (Supplementary Table 1).
This estimation of the total information collection efficiency is in excellent agree-
ment (less than 1% unaccounted for) with the value of η = 0.342 directly calculated
from the ratio of measurement to decoherence rates.

4.7.4 Contributions to the total force noise

We here estimate the expected force noise contributions given the parameters of
our system. Actual values are measured in Section 4.7.7. While the backaction and
thermal force noise contributions are defined and fixed by the physical system, the
contribution from the feedback strongly depend on the chosen control algorithm.

Backaction force noise

The backaction force noise, resulting from photons scattering off the particle was
derived in Section 4.7.2. In order to estimate its contribution, we must consider
the experimental details of the optical tweezer. The power scattered by the particle
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Loss source η∗ η

Microscope collection (d) 0.375 0.84

Microcope transimissivity (d) 0.84 0.84

Confocal mode-matching (d) 0.71 0.71

Heterodyne split (d) 0.95 0.95

Homodyne balancing (d) 0.99 0.99

Detector efficiency (d) 0.85 0.85

Detector dark-noise (d) - 0.92

Kalman digital noise (d) - 0.98

Environmental information loss (e) - 0.96

Total 0.178 0.347

Table 1: Measurement efficiency. The total efficiency budget for photon and information loss.
All loss sources are considered in both the detection and electronic line (d), and information
loss to the environment (e).

is Pscatt = I0σ, where I0 is the tweezer intensity and σ = 8π
3 ( αk

2

4πε0
)2 the scattering

cross section (α: polarizability of the particle ε0: vacuum permittivity). The tweezer
intensity I0 = 2P/πw depends on the trapping power P and on the effective beam
waist w calculated for a tightly focused beam at the particle position, taking into
account the displacement due to the scattering force contribution [NH06]. We calcu-
late a scattered power by the dipole of Pscatt = 22.4µW. The expected single-sided
backaction force noise therefore is:

Sba
F = 2

(
A2 +

2

5

)
 hkPscatt

c
= 8.4 · 10−41N2/Hz, (93)

In the absence of feedback center of mass motion of the particle would thermalize to
a temperature defined by competing effects of photon recoil heating and radiation
damping [Nov17]: Topt =  hω0/(4kB) (ω0: the optical laser frequency). This is
equivalent to nba = 6.8 · 108 quanta of occupation of the harmonic oscillator. We
cannot directly observe this in the experiment as it would lead to the particle loss
due to the finite optical trap depth.

Thermal force noise

The thermal force noise is the noise contribution arising from interaction with the
surrounding gas. At a temperature T of 292 K and pressure of 10−8 mbar, we
calculate:

Sth
F = 4kBTγthm = 3.9 · 10−42N2/Hz (94)

where kB is the Boltzmann constant and γth is the damping due to residual gas
molecules (for definition see also Section 4.7.7). This force noise contributes to an
occupancy of nth = 6.0 · 107.

Feedback force noise

Measurement-based feedback control relies on a typically noisy measurement to
control the dynamics of the system. The measurement noise is therefore fed back
to the controller whose output drives the system, adding a new contribution to the
force noise term, and setting a lower bound to the accuracy of the control. The force
noise arising from feedback imprecision noise is:

Sfb
F (Ω) = |hfb(Ω)|2S

imp
z , (95)
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where hfb(Ω) is the controller transfer function in the feedback path. Closing the
feedback loop the susceptibility of the system becomes:

χeff(Ω) =
χm(Ω)

1+ χm(Ω)hfb(Ω)
, (96)

which allows us to write the closed-loop spectral density of the position (z) and
measurement outcome (ζ):

Sz(Ω) = |χeff(Ω)|2
(
Stot
F + |hfb(Ω)|2S

imp
z

)
(97a)

Sζ(Ω) = |χeff(Ω)|2
(
Stot
F + |χm(Ω)|−2S

imp
z

)
(97b)

From (95),(96) and (97a), we see how the controller transfer function hfb(Ω) in-
fluences the closed-loop power spectral densities (PSDs). The controller should
minimize the PSD by respecting the constraints of the control input and render the
closed-loop stable. For linear Gaussian systems such as the one considered in this
paper, the linear-quadratic Gaussian (LQG) controller fulfills these demands in an
optimal way, as will be discussed in detail in the next sections. We here discuss
the simple example of a differentiation filter, as it is the most common form of feed-
back cooling applied in most optomechanical experiments. The feedback transfer
function for the differentiation filter is:

hdfb(Ω) = imΩγgfb (98)

where γ is the natural damping of the system associated to the bath (of temperature
T ) it is coupled to, and gfb the feedback gain. Evaluating the total energy as a
function of the gain gfb makes it evident that at some point the imprecision noise
will start to be fed back into the system, heating the motion of the particle:

〈
z2
〉
=
1

2π

∫∞
0
Sz(Ω)dΩ =

1

1+ gfb

kBT

mΩ2z
+

g2fb
1+ gfb

γ

2

S
imp
z

2
. (99)

This effect appears in the measured spectral density Sζ(Ω) in the form of noise
squashing, as the particle motion is driven to minimize the total noise in the mea-
surement outcome [Pog+07; Ros+18; Wil+15]. It is important to notice that, in prac-
tical applications, the controller transfer function defined in (98) is not realistic as
exact differentiation would require infinite bandwidth and knowledge of the future,
producing unbounded control signals. When limiting the bandwidth of the differ-
entiation filter, the qualitative behaviour of (99) is preserved, albeit with a reduced
performance (see Supplementary Figure 25b).

Coupling of the transverse degrees of freedom

The finite temperature of the transverse modes may in principle affect the cooling
performance in the z-direction in two ways:

• Coupling of the transverse degrees of freedom through the measurement. In
this case, displacements along the transverse directions are transduced into
the backscattered signal. This effect would reduce the information efficiency
of the z-measurement, just as any other noise source, in turn reducing the
cooling performance. For a specific measurement geometry, the noise power
contributed by each mode i = (x,y, z) can be written as Pi ∝ Γmeas

i (〈2ni〉+ 1),
where Γmeas

i are the measurement rates for each mode, and 〈ni〉 the average oc-
cupation of each mode. Concretely, for our setup, we find Γmeas

x,y /Γmeas
z ∼ 10−5,

which means that the residual coupling of the transverse modes is about 5

orders of magnitude weaker than for the z-mode. Using parametric feed-
back via an independent forward detection scheme (Figure S1), the transverse
modes are cooled to occupations of 〈nx,y〉 ∼ 103. This yields a relative noise
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Figure 25: Derivative feedback performance. a, Noise squashing in the closed-loop mea-
surement PSD resulting from leakage of measurement noise inthe colsed-loop system. b,
Occupation measured in heterodyne detection as a function of the feedback gain of a deriva-
tive feedback. The different colours cossepond to the PSDs in a. A qualitative approximation
of this behaviour can be obtained by tuning the Kalman gains (defined in Section 4.7.6) of
our controller to a value that is a factor 105 larger than the optimal one, and reducing the
controller transfer function to be white over a large frequency band. In this setting the filter
ignores the model and bases its feedback solely on the measurement. It is important to notice
that the ideal differentiation filter would reach occupations as low as those determined by
the measurement uncertainty as defined in (86). However this is not a practical solution, as
it would require an infinite bandwidth controller.

power contribution of the two transverse modes, when 〈nz〉 ∼ 1, of about
Px,y/Pz ∼ 10

−2 , which is a negligible contribution. In addition, since the feed-
back signal for cooling is confined to the spectral region around Ωz, the spec-
tral separation between transverse motion and z-motion further suppresses
the unwanted cross-coupling effect.

• Coupling between the modes through the nonlinearity of the potential. The
optical tweezer presents a duffing nonlinearity of the order ξi = −2/w2i with
i = (x,y, z) and wi the beam characteristic length scale (i.e. the waist for the
transverse directions (x,y) and the Rayleigh length for the z-direction). As a
consequence, the force along each direction of motion becomes coupled to the
position in the other directions [GNQ13]:

Fi = −kixi

1+ ∑
j=x,y,z

ξjx
2
j

 . (100)

For small displacements, |x|� |ξi|
−1/2, this coupling becomes negligible and

the modes decouple. Specifically, in this experiment, we have |ξi|
−1/2 >

4 × 10−7m and the root mean square displacement along each direction is
given by xrms

i = x
zpf
i

√
2ni + 1. While the z-motion is cooled to 〈nz〉 ∼ 0.5, the

motion along the other modes is parametrically cooled to 〈nx,y〉 ∼ 103. This is
enough to have xrmsx,y ∼ 10−10m. It is evident that even with limited cooling
on the transverse modes the expected energy contribution to the z-mode due
to nonlinear coupling is negligible.

4.7.5 Quantum equations of motion

In this section we derive the quantum Langevin equations for the nanosphere, de-
scribing its motion in the harmonic trap formed by the tweezer field, together with
the corresponding input–output relations. These equations form the basis for the
state-space model used for the Kalman filter.
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Hamiltonian

The effective Hamiltonian for the center-of-mass motion of the nanosphere in the
tweezer field and the coupling to the electromagnetic field can be derived follow-
ing [GB+19] (which treats a more general system), assuming a linear, isotropic di-
electric medium and the validity of the long-wavelength assumption. (That is, the
typical extension of the mechanical state is much smaller than the tweezer wave-
length λ0).

We describe the center-of-mass motion of the nanosphere in direction j ∈ {x,y, z}
by annihilation and creation operators bj and b†j with commutation relations [bi,b

†
j ] =

δij. The light field is expanded into a continuum of plane-wave modes labeled by
the wavevector k ∈ R3 and an index λ that determines the mode’s polarisation.
The corresponding annihilation and creation operators are denoted by aλ(k) and
a
†
λ(k), respectively. Their commutation relations are given by [aλ(k),a

†
λ ′(k

′)] =

δλλ ′δ(k− k
′), where δ(·) is the Dirac δ-function and δλλ ′ is the Kronecker δ. For

the system discussed here we find the Hamiltonian

H =  h
∑

j=x,y,z

Ωjb
†
jbj+

 h
∑
λ

∫
d3k∆ka

†
λ(k)aλ(k)+

 h
∑

j=x,y,z

∑
λ

∫
d3k

[
gjλ(k)a

†
λ(k)(bj + b

†
j ) + H.c.

]
,

(101)
where Ωj is the mechanical frequency in direction j, ∆k = ωk−ω0, and ωk = ‖k‖c.
The coupling constants gjλ(k) are given by

gjλ(k) = i
Gλ0(k)

2
(kj − k0δjz)r0j, (102)

Gλ0(k) = αE0

√
ωk

2 hε0(2π)3
ex · eλ(k), (103)

where r0j is the mechanical ground-state extension in direction j, α is the nanosphere’s
polarisability, and E0 is the electric field strength of the tweezer. Symbols ex and
eλ(k) denote unit vectors in x-direction and the direction of (linear) polarization for
the (k, λ) field mode respectively, and ex · eλ denotes their scalar product in R3.

Quantum Langevin Equations

Starting from the Hamiltonian above we now derive the quantum-optical Langevin
equations for the mechanical system following the procedure introduced in [GC85].
Here we neglect relativistic effects [Nov17] and, for now, also mechanical damping
effects due to residual gas which will be added later. We first find the Heisenberg
equations for bj and aλ(k), yielding

ȧλ(k, t) = −i∆kaλ(k, t) − i
∑
j

gjλ(k)(bj + b
†
j ), (104a)

ḃj(t) = −iΩjbj(t) − i
∑
λ

∫
d3k [gjλ(k)a

†
λ(k, t) + H.c.]. (104b)

We formally solve (104a), which gives

aλ(k, t) = e−i∆ktaλ(k, 0) − i
∑

j=x,y,z

gjλ(k)

∫t
0

ds e−i∆k(t−s)[bj(s) + b
†
j (s)], (105)

and plug it into (104b). We find

ḃj(t) = −iΩjbj(t) − i
∑
λ

∫
d3k [gjλ(k)ei∆kta

†
λ(k, 0) + H.c.]

+
∑

l=x,y,z

∫t
0

ds [bj(s) + b
†
j (s)]

∫
d3k

∑
λ

[gjλ(k)g
∗
lλ(k)e

i∆k(t−s) − H.c.]. (106)
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We now make the (typical) assumptions [ZG97] that (i) the interaction with the field
is restricted to a frequency interval [ω0 − θ,ω0 + θ], where θ is a cutoff frequency
that fulfills ω0 � θ � Ωj, and (ii) the coupling constants gjλ are approximately
constant across this interval. These assumptions will allow us to employ a Markov
approximation (taking the limit θ → ∞), making the resulting equation local in
time, and considerably simplify equation (106).

We first take a look at the second term in (106), which describes the interaction of
the mechanical system with (unnormalized) light modes

∫
d3kg∗jλ(k)e

−i∆ktaλ(k, 0),
where t should be interpreted as the time at which the incoming light-field interacts
with the nanosphere. For our purposes it is convenient to decompose this mode
into two orthogonal modes, one of which is monitored in the experiment. The
corresponding mode function, denoted by h, is determined by the measurement
setup. We write

∫
d3kg∗lλ(k)e

−i∆ktaλ(k, 0) =
√
2πKλll

{√
ηlλcλ(t) +

√
1− ηlλc

⊥
lλ(t)

}
,

where we defined the light modes

cλ(t) = (2πI)−
1
2

∫
d3kh∗(k)e−i∆ktaλ(k, 0), (107a)

c⊥lλ(t) = [2πKλll(1− ηlλ)]
− 1
2

∫
d3k [g∗lλ(k) − (J∗lλ/I)h

∗(k)]e−i∆ktaλ(k, 0), (107b)

and the constants

I =

∫
dΩk

ω20
c3

∣∣∣h(ω0
c

ek
)∣∣∣2 , (108)

Jlλ =

∫
dΩk

ω20
c3
h∗
(ω0
c

ek
)
glλ

(ω0
c

ek
)

, (109)

Kλjl =

∫
dΩk

ω20
c3
gjλ

(ω0
c

ek
)
g∗lλ

(ω0
c

ek
)

. (110)

Here dΩk denotes the integration with respect to the angular degrees of freedom of
k and ek is a unit vector in the direction of k. The parameter ηlλ = |Jlλ|

2/KλllI ∈ [0, 1]
determines the overlap between the measured mode function h and the scattering
profile glλ at the tweezer frequency ω0 and takes the role of a measurement effi-
ciency. Note that for h = glλ we have ηlλ = 1. The parameter Kλll on the other
hand effectively describes the coupling strength between the nanosphere’s motion
in direction l and the mode light mode defined by glλ. Plugging the expressions
for glλ into the definition of Kλjl one can show that Kλjl = K

λ
llδjl.

Assuming that h is (similarly to g) restricted to a frequency interval around ω0
and roughly flat and taking the Markovian limit (θ → ∞) we can show that cλ, c⊥λ
describe zero-mean white-noise fields that obey

[cλ(t), c
†
λ ′(s)] = [c⊥lλ(t), (c

⊥
lλ ′)
†(s)] = δλλ ′δ(t− s), (111a)

[cλ(t), (c⊥lλ ′)
†(s)] = 0, (111b)

and, assuming the electromagnetic field is initially in the vacuum state, the correla-
tion functions

〈cλ(t)c†λ ′(s)〉 = 〈c
⊥
lλ(t)(c

⊥
lλ ′)
†(s)〉 = δλλ ′δ(t− s), (112a)

〈cλ(t)(c⊥lλ ′)
†(s)〉 = 0, (112b)
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where 〈·〉 refers to the expectation value with respect to system plus environment.
In deriving relations (111) and (112) we find integrals of the following form, which
can be approximated using the assumptions (i) and (ii) from above:

∫
d3kgjλ(k)g∗lλ(k)e

i∆k(t−s)
(i),(ii)
≈

∫ω0+θ
ω0−θ

dω ei(ω−ω0)(t−s)

∫
dΩk

ω20
c3
gjλ

(ω0
c

ek
)
g∗lλ

(ω0
c

ek
)

(113)

−→
θ→∞ 2πKλjlδ(t− s)

Plugging this back into equation (106) we see that, under this approximation, the
second line vanishes identically as Kλlj ∈ R. Using this, the quantum Langevin
equations for the motion of the nanosphere (in a Markov approximation) take the
form

ḃl(t) = −iΩlbl(t)− i
∑
λ

√
2πKλll

{√
ηlλ[cλ(t) + c

†
λ(t)] +

√
1− ηlλ[c

⊥
λ (t) + (c⊥λ (t))

†]
}

.

(114)
Alternatively we can rewrite (114) in terms of position rj = (bj + b

†
j )/
√
2 and mo-

mentum pj = (bj − b
†
j )/
√
2i

ṙl(t) = Ωlpl(t), (115a)

ṗl(t) = −Ωlrl(t) −
∑
λ

√
4πKλll

{√
ηlλxλ(t) +

√
1− ηlλx

⊥
lλ(t)

}
, (115b)

where we introduced the amplitude quadratures xλ = cλ + c
†
λ.

Up to now we have neglected two important points in our treatment: the nanosphere’s
interaction with residual gas, which constitutes an additional thermal environment,
and the feedback force. The former we model as Brownian motion damping [GZ04],
but treat it in a Markov approximation. We thus introduce an additional Gaussian
noise operator fl that obeys

〈fl(t)〉 = 0, (116a)

〈fl(t)fl(t ′) + fl(t ′)fl(t)〉 = (2n̄l + 1)δ(t− t
′), (116b)

where n̄l =  hΩl/kBT . The corresponding damping rate we denote by γ. The
additional energy contribution by the feedback we write as Hfb = −qEfb(t)r0zrz =

− hu(t)rz, where q is the charge of the particle and Efb(t) is the time-dependent
electric field that is used to apply the feedback signal (also see Section 4.7.7). Putting
this all together the modified Langevin equations take the form

ṙl(t) = Ωlpl(t), (117a)

ṗl(t) = −Ωlrl(t) − γpl(t) + u(t) +
√
2γfl(t) −

∑
λ

√
4πKλll

{√
ηlλxλ(t) +

√
1− ηlλx

⊥
lλ(t)

}
.

(117b)

A relativistic treatment of the optomechanical interaction would as well show a
radiation-damping contribution to the particle dynamics [Nov17]. Together with
the radiation-pressure shot noise (described by the last term in (117b)) this defines,
similarly to the thermal environment, a fluctuation–dissipation balance and a ther-
malization temperature associated with the optical bath. In our experiment both
damping mechanisms (residual gas and radiation damping) are negligible in the
presence of feedback. The experimental decoherence rates for the thermal and opti-
cal interactions are characterized in Section 4.7.7.
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Input–Output relations

To compute the scattered field after the interaction with the nanosphere (that is
what we measure) we go back to equation (105) which, in a first step, we multiply
by h∗(k) and integrate over k, leading to∫

d3kh∗(k)aλ(k, t) =
√
2πIcλ(t) − i

∑
l=x,y,z

∫
d3kh∗(k)glλ(k)

∫t
0

ds e−i∆k(t−s)[bl(s) + b
†
l(s)]

≈
√
2πIcλ(t) − 2iπ

∑
l=x,y,z

Jlλ

∫t
0

ds δ(t− s)[bl(s) + b
†
l(s)]

=
√
2πIcλ(t) − iπ

∑
l=x,y,z

Jlλ[bl(t) + b
†
l(t)] (118)

Note again that cλ(t) refers to the light field before the interaction. To connect this to
its state after the interaction, we again formally integrate (104a), this time specifying
a(k, T) at some (distant) final time T > t:

aλ(k, t) = ei∆k(T−t)aλ(k, T) + i
∑

j=x,y,z

gjλ(k)

∫T
t

ds e−i∆k(t−s)[bj(s) + b
†
j (s)]. (119)

Applying the same procedure as before we find∫
d3kh∗(k)aλ(k, t) =

√
2πIcout

λ (t) + iπ
∑

l=x,y,z

Jlλ[bl(t) + b
†
l(t)], (120)

where we interpret cout
λ (t) =

∫
d3kh∗(k)ei∆k(T−t)aλ(k, T)/

√
2πI as the field (at the

time T ) after the interaction. We can combine equations (120) and (118) to obtain
the usual input–output relation (with ϕlλ = arg Jlλ)

cout
λ (t) = cλ(t) − i

∑
l=x,y,z

√
2πηlλK

λ
lle

iϕlλ [bl(t) + b
†
l(t)]. (121)

Note that the choice of h and thus the value of ηlλ determines which direction of
the nanosphere’s motion can be monitored by measuring the scattered light. In the
experiment we use homodyne detection to monitor (amplitude and phase) quadra-
tures (xout

jλ and yout
jλ ) of the scattered field. The corresponding input–output relations

are given by

xout
λ (t) = [cout

λ (t) + (cout
λ (t))†] = xλ(t) +

∑
l=x,y,z

sinϕlλ
√
16πηlλK

λ
llrl(t), (122a)

yout
λ (t) = −i[cout

λ (t) − (cout
λ (t))†] = yλ(t) −

∑
l=x,y,z

cosϕlλ
√
16πηlλK

λ
llrl(t). (122b)

As in our experiment ϕzλ ≈ 0 the amplitude quadrature xout
λ only carries noise,

while the phase quadrature yout
λ contains information about the nanosphere’s po-

sition. We thus only monitor the phase quadrature. Also, (122b) shows that, de-
pending on the value of ηlλ and thus on the definition of the measured mode h,
yout
λ contains contributions from the particle displacement along all directions. In

the experiment h is such that the contributions from the x and y directions are
heavily suppressed (i.e., ηxλ,ηy,λ � ηz,λ). Additional imperfections in the experi-
mental setup will determine the effective measurement efficiency, which will result
in effective values for ηlλ (see Section 4.7.3).

Quantum Langevin equations in vector form

In analogy to the state-space models commonly used in classical control theory, we
can rewrite the quantum Langevin equations (117) and the input–output relations



4.7 supplementary information 75

(122) in vector form. These definitions will enable us to compactly write the Kalman
filter equations in the next section.

We start by defining z(t) = [rz(t) pz(t)]
T. Here and in the following sections, we

assume that we measure the phase quadrature yout
λ0

(t) for a single polarisation λ0.
We can then write

ż(t) = Az(t) + bu(t) + w(t), (123a)

yout
λ0

(t) = cTz(t) + yλ0(t), (123b)

with

A =

[
0 Ωz

−Ωz −γ

]
, b =

[
0 1

]T , cT =

√
16πηzλ0K

λ0
zz

[
1 0

]
. (124)

and w(t) = gw(t) = [0 1]T w(t),

w(t) =

{√
2γfz(t) −

∑
λ

√
4πKλzz

[√
ηzλxλ(t) +

√
1− ηzλx

⊥
zλ(t)

]}
. (125)

As the light field is assumed to be in the vacuum state both w and yλ0 are zero-
mean Gaussian processes. Their symmetrized (cross-)correlation matrices are

〈yλ0(t)yλ0(t
′)〉 = δ(t− t ′), (126a)

Re〈w(t)yλ0(t
′)〉 = Mδ(t− t ′) = 0, (126b)

Re〈w(t)wT (t ′)〉 = Nδ(t− t ′) = diag
(
0,γ(2n̄z + 1) + 4π

∑
λ

Kλzz

)
δ(t− t ′), (126c)

which follows from (112) and (116).

Connection to the stochastic master equation and Kalman filtering

Equations (117) and (122) define a quantum stochastic model of the experimental
setup. This model also allows us to construct the dynamical equations for the so-
called conditional quantum state ρ̂, which describes the nanosphere’s motional state
in z-direction conditioned on the classical output of the measurement of yout

λ0
. The

time evolution of ρ̂ is (approximately) given by the Ito stochastic master equation
(see, e.g., [WM10] for an introduction to the formalism). Assuming ϕzλ0 = 0:

dρ̂(t) =− i[Ωzb†zbz − u(t)rz, ρ̂(t)]dt

+ γ(n̄+ 1)D[bz]ρ̂(t)dt + γn̄D[b†z]ρ̂(t)dt

+
∑
λ

D[szλ]ρ̂(t)dt +
√
ηzλ0H[szλ0 ]ρ̂(t)dW(t) , (127a)

D[s]ρ̂ = sρ̂s† −
1

2
(s†sρ̂+ ρ̂s†s), (127b)

H[s]ρ̂ = [s− tr(sρ̂)]ρ̂+ ρ̂[s− tr(sρ̂)]†, (127c)

where szλ = −i
√
2πKλzz(bz + b

†
z). The second and third term in (127a) describe

damping and decoherence effects due to the residual gas, while the fourth term
describes diffusion due to the coupling to the electromagnetic field. The last term
effects conditioning on the homodyne measurement, where W is a classical Wiener
process corresponding to the innovation process denoted as ε in the main text. We
can (formally) write for the Wiener increments dW (t) = ε(t)dt .

In deriving this equation, we assumed that the measured mode h couples only
weakly to the particle motion in x- and y-direction and thus neglected measurement
terms scaling with √ηxλ0 and √ηyλ0 (which show up as sharp resonances in the
measured spectrum, see Figure 1b in main text). Also note that this formulation of
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mechanical damping due to residual gas does not strictly correspond to Brownian
motion damping as used above. The two formulations are connected by a rotating-
wave approximation (see [GZ04]), which is a good approximation for oscillators
with a high quality factor.

For Gaussian systems, such as ours, it was shown [Bel95; EB05] that the evolution
of the conditional quantum state ρ̂ can be mapped to the well-known Kalman–Bucy
filter from classical estimation theory. In this case, ρ̂ is completely determined by
the first and second moment of z = [rz,pz] (an operator in the Schrödinger picture),
which we denote as

ẑ(t) = tr[ρ̂(t)z], (128a)

Σ̂(t) = Re
{

tr[ρ̂(t)zzT ]
}
− ẑ(t)ẑT (t). (128b)

Using the definitions from Section 4.7.5 the dynamical equations determining the
evolution of ẑ(t) and Σ̂(t) can be written as the classical Kalman–Bucy filter [Bel95;
Bel98; DJ99; EB05]

˙̂z(t) = Aẑ(t) + bu(t) + k̂(t)[ζ(t) − cT ẑ(t)], (129a)
˙̂Σ(t) = AΣ̂(t) + Σ̂(t)AT + N − [Σ̂(t)c + M][Σ̂(t)c + M]T , (129b)

k̂(t) = Σ̂(t)c + M, (129c)

where ζ(t) ∈ R denotes the measurement signal resulting from a measurement of
yout
λ0

(t). These equations are correct for general Gaussian systems that can be de-
scribed by quantum Langevin equations of the form (123), in particular also for sys-
tems where M 6= 0. Note that although these equations are derived from a quantum
description of the experiment, they are classical (stochastic) differential equations
that involve classical quantities (the moments of z under ρ̂, the measurement signal
ζ) only and can thus be readily implemented on a classical signal processor.

The results presented above show that the quantum filtering problem for Gaus-
sian systems described by a quantum Langevin equation (123a) (together with the
output equation (123b)) is formally equivalent to the classical filtering problem for
the corresponding classical Langevin equation when using the correct noise proper-
ties (126) that arise from a quantum description. For the details of the derivation in
the framework of quantum filtering see [HH17].

Additional to the approach taken in quantum filtering theory [BVJ07], comple-
mentary approaches exist to describe the dynamics of a (Gaussian) quantum sys-
tem under continuous measurement. These include a fully Gaussian treatment in a
phase-space description [GLS16] and the well-known quantum trajectories formal-
ism [Car93] which describes the stochastic evolution of the wave function.

4.7.6 Optimal feedback cooling

Online (optimal) estimation [Kal60] and automatic control [Kal+60; Ste94] tech-
niques have become ubiquitous in modern technology [DFT13; ÅW13; MP09]. Due
to the required level of control they are also becoming an increasingly important
tool in quantum research and quantum technologies.

Here we design an optimal feedback controller in order to cool the particle’s
motion into the quantum ground state. For linear (quantum) systems driven by
Gaussian white noise, an optimal output feedback law can be obtained by solving
the linear quadratic gaussian regulator (LQG) problem. Its solution consists of the
combination of a Kalman filter and a linear quadratic regulator, which can be de-
signed independently of each other, as stated by the separation principle [BH08],
breaking the design of the LQG down into an estimation step and a control step.
The regulator computes the optimal feedback for a given state by solving an opti-
mization problem in order to minimize the energy of the system. Since the system
state is in general not completely measurable, a Kalman filter is designed to provide
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optimal state estimates based on noisy measurements. The basis of the design pro-
cess of the LQG is the mathematical description of the experimental setup detailed
in the sections above. The experimental characterization of the involved quantities
is described in detail in Section 4.7.7.

Discretized time evolution

While physical systems are usually considered in continuous time, estimation and
control algorithms are necessarily implemented in a time-discrete manner. The
resulting effects of the discretization process can be considered for linear dynamical
systems by deriving a time-discrete formulation of the state-space model, evaluating
it at times tk = kTs. To this end, we integrate (123) over a sampling time Ts =

tk+1 − tk (which we assume is short on all system time scales), defining zk=z(tk),
uk=u(tk), and the fundamental solution Φ(t) = exp(At). We find

z(tk+1) =Φ(Ts)z(tk) +
∫tk+1
tk

dτΦ(tk+1 − τ)[bu(τ) + w(τ)]

= Adz(tk) + bdu(tk) + w̄k,
(130)

where we assumed that u(t) is piecewise constant over the sampling time, i.e.,
u(t) = uk for t ∈ [tk, tk+1] (zero-order hold used as a model for the digital-
to-analog converter) and we introduced the matrices Ad = exp (ATs) and bd =∫Ts
0 exp (Aτ)bdτ. The discretized noise process w̄k is given by w̄k =

∫tk+1
tk

dτΦ(tk+1−

τ)w(τ).
To describe the measurement, we define the time-averaged operator ȳout

λ0,k:=
1
Ts

∫tk+1
tk

ds yout
λ0

(s)

together with a corresponding expression for ȳλ0,k. Assuming that z(t) likewise is
approximately constant over the sampling time Ts we find the discretized quantum
state-space model

zk+1 = Adzk + bduk + w̄k, (131a)

ȳout
λ0,k = cTzk + ȳλ0,k. (131b)

In analogy to (126) the (cross-) correlations for the noise processes w̄k and ȳλ0,k are
given by

〈ȳλ0,kȳλ0,k ′〉 = R̄δkk ′ = (1/Ts)δkk ′ , (132a)

Re〈w̄kȳλ0,k ′〉 = M̄δkk ′ = 0, (132b)

Re〈w̄kw̄Tk ′〉 = N̄δkk ′ ≈ NTsδkk ′ , (132c)

where the relation N̄ ≈ NTs is true only if the sampling time is much shorter than
all system time scales.

Discrete-time Kalman Filter

The Kalman filter for the state-space system (131) is given by [EB03]

ẑk+1 = Adẑk + bduk + k̂
(
ζk − cTẑk

)
, (133)

where ζk is the discretized measurement signal corresponding to ȳout
λ0,k and the

observer gain k̂ of the Kalman filter results from

k̂ =
(

AdΣ̂
ss
d c + M̄

)(
cTΣ̂

ss
d c + R̄

)−1
. (134)

The (time-discrete) steady state error covariance matrix Σ̂
ss
d is computed by solving

the discrete algebraic Riccati equation

Σ̂
ss
d = AdΣ̂

ss
d AT

d + N̄ −
(

AdΣ̂
ss
d c + M̄

)(
cTΣ̂

ss
d c + R̄

)−1 (
AdΣ̂

ss
d c + M̄

)T
. (135)
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Note that the Kalman filter (133) with the observer gain (134) and the discrete al-
gebraic Riccati equation (135) is the time-discrete description of the Kalman–Bucy
filter (129) and therefore describes the motional quantum state of the nanosphere
conditioned on the measurement, as shown in Section 4.7.5. In the limit of Ts → 0

we recover the Kalman–Bucy equations (129) and Σ̂
ss
d → Σ̂

ss
. As written, the Kalman

filter is also valid for general systems with M̄ 6= 0.

Linear Quadratic Gaussian Regulator

The concept of optimal feedback control consists of finding the optimal control
inputs such that the system is stably operated at minimum cost. The optimal control
input uk is obtained by minimizing the expected cost

J (uk) = lim
N→∞

〈
1

N

N−1∑
k=0

(
zT
kQzk + ru2k

)〉
(136)

with respect to (131), where 〈·〉 refers to the quantum expectation value with re-
spect to the initial state of the system and environment. Here, the first term with

weighting matrix Q = diag
(
Ωz
2 , Ωz2

)
represents the total energy of the particle

while the second term penalizes the required control effort scaled by r = Ωz/g
2
fb,

with the feedback gain gfb in units of rad s−1. The control law that minimizes the
cost function (136) is given by [EB03]

uk = −kTẑk . (137)

The feedback vector kT is calculated by

kT =
(
r+ bT

dΩ
ssbd

)−1
bTΩssAd (138)

where ˙ss is determined by the discrete algebraic Riccati equation

Ωss = Q + AT
dΩ

ssAd − AT
dΩ

ssbd

(
r+ bT

dΩ
ssbd

)−1
bT

d˙ssAd . (139)

The solution of the quantum LQG problem is thus formally identical to the one of
the classical LQG problem for a classical state-space model of the form (131) and
cost function of the form (136) (when interpreting 〈·〉 as an appropriate classical
expectation value). In general, the observer gain k̂ and the feedback vector kT are
time variant and they are calculated by solving the discrete Riccati equation for Σ̂k
forwards in time and for ˙k backwards in time for a finite time horizon. If the time
goes to infinity, the stationary solution Σ̂k+1 = Σ̂k = Σ̂

ss
d and Ωk+1 = Ωk = Ωss

of the corresponding discrete algebraic Riccati equation has to be calculated (see
(139)) and (135)). Thus, the LQG becomes time invariant. The transfer function of
the time invariant LQG, combining (137) and the Kalman filter (133), is given by

G(z) =
uz(z)

ζz(z)
= −kT

(
zI −

(
Ad − bdkT − k̂cT

))−1
k̂ (140)

where uz(z) and ζz(z) are the Z-transform of the control input and measurement
signal, uz(z) = Z {(uk)} and ζz(z) = Z {(ζk)}, respectively, and I is the identity
matrix. The time discrete transfer function (140) is implemented as a digital filter
with a sampling time of Ts = 32ns on the Red Pitaya board which is equipped
with a Xilinx Zynq 7010 FPGA. The effects of the low frequency 1/f phase noise
and the intrinsic delay of the controller of about 300ns are negligible in a fairly
large frequency band around resonance, and at most of the feedback gains we are
operating at. For this reason we do not include these effects into the model, in
favour of a larger dynamic range for the output. We observe, however, a drift in
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the oscillation frequency for increasing feedback gains which is caused presumably
by nonlinear effects not captured by the mathematical model. This error leads
to the appearance of color in the innovation sequence and a decreasing cooling
performance (Supplementary Figure 26c).The calibration of the measurement signal
and feedback force, as well as the characterization of the noise processes ȳλ0,k and
w̄k are presented in the following section.

Figure 26: LQG performance. Comparison of the analytic solution of the occupation for
optimal (LQG) and non-optimal (velocity) control and estimation methods. Despite the use of
an optimal state estimator the closed-loop solution of the velocity feedback (red) is diverging
for high feedback gains, contrary to the LQG (blue). This shows the importance of using
the complete state vector in the feedback in order to minimize the energy of the system. b -
c, Power spectral densities of the measurement (gray), Kalman estimation (blue), innovation
(red) and the analytic solution of the mathematical description (black line) at gfb/2π = 16 kHz

and gfb/2π = 180 kHz. The black lines in the innovation plot indicate the white noise model
(solid) and the 95% confidence region of the expected χ2 distribution (dashed) [Wie+15].

Colored Noise Model

Although the effects of low frequency noise are negligible compared to the white
noise level, we have seen that this model mismatch is amplified by the controller,
and would eventually be limiting the closed-loop performance at feedback gains
larger than 200kHz. For this reason, we also extend the state-space model (123) by
an appropriate colored noise model. The Kalman filter is designed on the basis of
an extended state-space model given by:

˙̃z(t) = Ãz̃(t) + b̃u(t) + G̃w̃(t) , x̃(0) = x̃0 (141a)

yout
λ0

(t) = c̃Tz̃(t) + yλ0(t) (141b)

with the extended state vector z̃(t) =
[
z(t)T ξ(t)T]T, and the process noise input

vector w̃(t) =
[
w(t) µ(t)

]T, where µ(t) is white Gaussian noise, which drives the
chosen noise model. The extended system matrix Ã, the extended input vector
of the control input b̃, the extended input matrix of the process noise G̃ and the
extended output vector c̃T are defined as

Ã =

[
A 0
0 An

]
, b̃ =

[
b
0

]
, G̃ =

[
g 0
0 gn

]
, c̃T =

[
cT cT

n

]
,

with the dynamic matrix of the noise model An, the input vector of the noise model
gn and the output vector of the noise model cT

n. As proposed in [Wie+15], Brow-
nian noise is a good approximation for the non-white amplitude and phase noise
of a laser, which is modeled by the state-space system (141) with An = 0 and
gn = cT

n = 1. This model (green line in Supplementary Figure 27a) provides a good
approximation of the low frequency noise that we observe. Nevertheless, it has
a limited hardware feasibility as the magnitude of the noise becomes large in the
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lower frequency range and the slow dynamics lead to numerical issues in the fixed-
point implementation, resulting in drift and overflows, and can even destabilize the
closed-loop system. For a practical hardware implementation we model the noise
as a low-pass filter driven by white noise µ(t). Thereby, An, gn and cT

n are obtained
from the state-space representation of the low-pass filter Glp (s) = 1/ (1+ s/ωc),
with the cutoff frequency ωc = 3.5 kHz. In Supplementary Figure 27b, we show the
power spectral densities of the measurement (gray), the Kalman estimation (blue),
the innovation (orange) in good agreement with the analytic solution of the math-
ematical description (black line) of the LQG based on the proposed low-pass noise
model for gfb/2π = 40 kHz. Nevertheless, for high gain feedback gfb/2π = 150 kHz

(Supplementary Figure 27c)) the performance decreases significantly due to the re-
duced dynamic range of the hardware implementation to fit the more complex
filter on the FPGA. The use of a more powerful hardware would overcome such
implementation issues of the Kalman filter using colored noise models and has the
potential to further increase the performance.

Figure 27: Colored noise model. a, Comparison of the power spectral densities of the Brow-
nian noise model (green) and the low-pass noise model (blue) the power spectral densities
of the innovation (gray). b - c, Power spectral densities of the measurement (gray), Kalman
estimation (blue), innovation (red) and the analytic solution of the mathematical description
(black line) at gfb/2π = 40 kHz and gfb/2π = 150 kHz. The extension with an appropriate
noise model brings along more accurate estimates of the state. The black lines in the inno-
vation plot indicate the colored noise model (solid) and the 95% confidence region of the
expected χ2 distribution (dashed) [Wie+15].

FPGA implementation

The designed LQG is implemented on a Red Pitaya board equipped with a Xil-
inx Zynq 7010 FPGA. The base design of the Vivado Design Suite project of the
Red Pitaya is based on the tutorial provided by Anton Potočnik [Pot16], modi-
fied to suit our purposes. The time-invariant transfer function of the LQG (140)
is implemented in Matlab/Simulink as digital filter with the Xilinx System Gen-
erator for DSP. Thereby, hardware-in-the-loop simulations can be performed in
Matlab/Simulink, capturing the exact behavior of the real implementation on the
FPGA of the Red Pitaya. This provides the possibility to quickly identify and fix
issues with the fixed-point arithmetic and quantization. The Xilinx System Gener-
ator for DSP allows automatic code generation of the designed filter, considering
the ressource limitations and timing constraints of the FPGA. The obtained VHDL
code (IP Core) is inserted in the base design of the FPGA in the Vivado Design Suite
and the bitstream file of the FPGA is generated. Parameters can be changed online
via communication with the AXI-bus. The low frequency output noise of the Red
Pitaya has been improved by removing the 2 resistors and disconnecting the noisy
output offset [Lne16].
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4.7.7 Identification of the model parameters

The identification of the system parameters is crucial for a properly tuned model
based Kalman filter and linear quadratic regulator (LQR) design. Direct measure-
ment of most of the system parameters depends on a proper calibration of the
measurements.

Calibration of the measurement transduction coefficient

In this section, we measure the calibration factor (CmV [m/V]) for our homodyne
detection. One possibility is thermometry in an environment in which the nanopar-
ticle thermalizes to a room-temperature gas [Heb+18]. Given the high resolution
of our position measurement, the limited dynamic range of our detector and data
acquisition board this method cannot be implemented directly, but would require
multiple steps of amplification. In addition, the accuracy of this approach was
verified only up to a factor of 2 [Teb+20]. To reconstruct the relation between the
displacement of the particle in meters and the homodyne time traces in volts we
take advantage of the simultaneous out-of-loop measurement of the particle’s en-
ergy via Raman thermometry (see Section 4.7.8) at different feedback gains. To
minimize the effects of noise squashing [Pog+07] due to imprecision noise driving
the motion of the particle via the feedback, we restrict calibration to low values of
the feedback gain. We perform the calibration in an iterative way, where we alter-
nate evaluation of the calibration factor and update of the controller setting. The
variance of the particles motion can be estimated from a measurement of energy
in units of motional quanta 〈n〉 by

〈
z2
〉
= z2zpf(2 〈n〉+ 1). We compare this value

with the variance of the signal V(t) obtained from the homodyne noisy position
measurement: 〈

V2
〉
= C−2

mV

(〈
z2
〉
+
〈
ν2
〉)

=

∫+∞
0

Sζ(Ω)
dΩ

2π
. (142)

Where ν(t) is the measurement noise and CmV the calibration factor converting the
measured voltage into the corresponding displacement in meters. We fit a linear
function (Supplementary Figure 28b), where the offset indicates the measurement
noise and the slope determines the calibration factor:

CmV = (8.0± 0.3)× 10−9m/V (143)

We also verify the consistency of the measured calibration factor by considering
all transduction coefficients composing the measurement. The phase-shift induced
by the particle’s displacement on to the fraction of collected light defines the mea-
surement strength of our detection (what in cavity-optomechanics you would call
2G/κ [AKM14]):

χ =
∂ϕ

∂z
=

√
ηd,c

η∗d,c

√(
A2 +

2

5

)
k [rad/m] (144)

In a homodyne detection the signal light beam is interfered with a strong local oscil-
lator, and phase shifts are transduced to a power variation byGHOM = 2

√
PSPLO [W/rad],

where PS = Pscattη
∗/η∗d,q is the signal light just before the detector, PLO is the local

oscillator power, η∗d the photon detection efficiency and η∗d,q the detector quantum
efficiency as defined in Section 4.7.3. Optical power is converted into an electron cur-
rent at the photodiodes via the detector responsivity is Rdet = −eηd,q/ hω0 [A/W],
and finally the transimpedance gain gt = 250× 103 [V/A] converts this current to a
voltage. Impedance matching to the detector’s 50Ω output attenuates the signal by
3 dB. We can now convert measured voltage to meters by:

CmV =
 hω0

(−e)ηd,qgt
√
PSPLOχ

= 7.8× 10−9m/V (145)

which is in good agreement with the measured value.
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Figure 28: Position calibration. a, Measurement of the displacement power spectral den-
sities at different feedback gains and labelled by the occupation measured independently
by Raman thermometry. b, Integrated voltage variance from the homodyne measurement
plotted as a function of position variance extimated from the heterodyne measurement. Red
crosses and blue dots represent the position variance estimated by the Stokes and anti-Stokes
sidebands respectively. A linear fit provides the calibration factor for the homodyne mea-
surement.

Evaluation of the measurement noise

From the calibrated PSD, we can measure the measurement noise level at the rele-
vant frequencies. While the detector bandwidth is about 75 MHz, the Red Pitaya
has a measurement bandwidth of 31.25 MHz. We include an anti-aliasing analog
low pass filter with cut off at 11 MHz, below the sampling Nyquist frequency. This
allows to minimize the aliasing of high frequency noise at the relevant frequencies.
We measure the imprecision noise Simp

z dominated by photon shot noise of the local
oscillator by covering the signal beam. This results in a variance of measurement
noise (assuming a white noise model) of

σ2z = S
imp
z

fs

2
= (5.4± 0.2)× 10−21m2 (146)

where fs = 1/Ts = 31.25 MHz is Red-Pitaya sampling frequency. The measure-
ment noise can likewise be estimated by evaluating the signal variance from inde-
pendently characterized experimental parameters. This includes contributions of
photon shot noise and detector dark noise:

〈
V2
〉
=


gt

2
e

√
PLOηq
 hω0

2 + (gt

2
NEC

)2 fs (147)

where the factor 2 below gt arises from the coupling of the detector to 50Ω load
and NEC is the noise equivalent current. The noise equivalent position variance is
therefore:

σ2z = C2mV

〈
V2
〉
= 5.3× 10−21m2 (148)

in good agreement with the measured value.

Calibration of the applied force

With the position calibration at hand, we can further map the applied voltage to the
control electrode on the force acting on the charged nanoball. We drive the particle
by applying a sinusoidal signal of known amplitude and frequency. In the case of
strong off-resonant drive force Fd(t), with spectral density Sd

F, if at a particular drive
frequency Ωd, having Sd

F(Ωd)� Stot
F (Ωd), the driven motion is related to the drive

by:
Sz(Ωd) = S

v
F(Ωd)|m(Ωd)|

2 + S
imp
z (149)
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which in the simple case of Fd(t) = Fd0 sin (Ωdt), and Ωd/γ� 1 results in:

〈
z2d

〉
=
1

2π

∫Ωd+ε
Ωd−ε

(
Sz(Ω) − S

imp
z

)
dΩ =

〈
F2d
〉

(m(Ω2z −Ω
2
d))
2
=

F2d0/2

(m(Ω2z −Ω
2
d))
2

.

(150)
The variance of the displacement is again obtained by integrating over the sym-
metrized spectral density around the driving frequency subtracting the background
imprecision noise. As the driving force is proportional to the applied voltage
Fd(t) = CNVV(t), we can use the relation (150) to calibrate this to the applied
force in newton and identify the transduction coefficient CNV. We perform the
measurement at different values of drive frequency and amplitude, and plot the

standard deviation of the calibrated force
√〈
F2v
〉

= m
√〈
z2
〉
(Ω2z −Ω

2
d) versus

the standard deviation of the applied signal. The slope gives a factor of CNV =

(1.98± 0.06)× 10−15N/V. The measurements at the two different frequencies re-
sult in perfectly overlapping values (Supplementary Figure 29).

Figure 29: Force calibration. To map the applied voltage [V] to a force [N], we drive the
particle with a series of sinusoidal signals of different amplitude and frequency and measure
the particles response in the calibrated position PSD.

Measurement of the thermal and backaction decoherence rates

We define the decoherence rates originating from thermal force noise and mea-
surement backaction as the average rate of phonons delivered to the particle. To
determine the decoherence rate induced by measurement backaction and interac-
tions with the thermal environment, we perform a set of re-heating measurements
of the particle’s energy. We do so by switching off the feedback, observing the re-
laxation trace. Ensemble averaging over many cycles allows to extract the average
heating rates [Gie+14; Jai+16] (Supplementary Figure 30a). To distinguish contribu-
tions from photon recoil (backaction) and gas collisions (thermal force), this is done
at various pressures (Supplementary Figure 30b). When switching the feedback off,
the energy E, or level of excitation of the oscillator n = E/ hΩz increases on average
as:

n(t) = n0+nth(1−e
−γtht)+nba(1−e

−γbat)
t� 1

γth,ba
≈ n0+nthγtht+nbaγbat = n0+(Γth + Γba)t,

(151)
where n0 is the initial occupation and nth and nba are the occupations associated
to the thermal and optical baths respectively, γth is the gas damping and γba the
radiation damping that results from relativistic effects [Nov17]. The decoherence
rates are now written as:

Γth = γthnth and Γba = γbanba, (152)
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The thermal heating rate is derived by considering a thermal bath of energy Eth =

kBT and temperature of 292K and a damping rate given by [BCF90]:

γth =
6πηvr

m

(
Kn

0.619+Kn

)(
1+

0.310Kn
Kn2 + 1.152Kn+ 0.785

)
, (153)

where ηv is the dilute gas shear viscosity, Kn = λgas(P)/L the Knudsen number,
λgas(P) the pressure dependent molecule mean free path, L = V/A = 4r/3 the
particle’s characteristic length, V its volume and A its cross section. In the low
pressure limit, Kn� 1, eq. (153) can be approximated by:

γth =
64

3

r2P

mv̄gas
, (154)

where v̄gas =
√
8RT/(πmgas) is the mean gas velocity, r and m the particle ra-

dius and mass respectively, P the pressure (expressed in Pascal, SI), R = kBNA =

8, 3144 J/(mol K) the universal gas constant, and mgas the molar mass of the gas.
Up to 1mbar, this approximation exhibits a deviation of less than 10−2 from the
real value for the particles we are considering. Following the treatment by Seberson
and Robicheaux [SR20], we can also derive the the contribution of photon recoil to
the heating reate:

Γba,z =

(
A2 +

2

5

)
ω0Pscatt

2Ωzmc2
(155)

At a pressure of 1.6× 10−8mbar we directly measure a minimal total heating rate

Figure 30: Heating rate. The backaction and thermal contribution to the force noise are di-
rectly measured by performing re-heating measurements. We restrict the measurement to
short (150ms) re-heating periods. Longer ring up measurements may lead to the loss of the
particle when mainly coupled to the high temperature photon bath. a, At each pressure we
release the feedback and observe the heating dynamics of the particle 1000 times. The en-
semble average of the variance of these traces represents the average energy increase rate. b,
Pressure dependence of the heating rate. At pressures below 1× 10−8mbar the contribution
to the total force noise is dominated by the photon recoil, or measurement backaction. Hori-
zontal error bars are given by the 50% accuracy specified by the pressure gauge producer.

of:
Γtot = Γth + Γba = 2π · (19.7± 1.5) kHz (156)

With a linear fit to the pressure dependent data (Supplementary Figure 30b) we
can extrapolate the contributions of thermal noise and measurement backaction at
all pressures, finding them in excellent agreement with the values estimated using
equations 154 and 155 in our experimental settings (Supplementary Figure 30b). At
the minimal operating pressure 9.2× 10−9mbar, we find the process noise to be
(for the Kalman filter)

σ2F =
〈
F2tot

〉
= Stot

F

fs

2
= 4 hΩzmΓtot

fs

2
= (1.5± 0.1)× 10−33N2 (157)
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4.7.8 Raman scattering thermometry

The optomechanical interaction exhibits both energy and momentum exchange be-
tween the oscillating particle and the elecromagnetic filed. While elastic scattering
(Rayleigh) leave the energy of the scattered photons unaltered, the side-bands of nth

order in the absorption and fluorescence spectra due to inelastic scattering (Raman)
are interpreted as transitions between the quantized energy levels of the harmonic
oscillator [JD96]. The elastic and inelastic scattering rates can be calculated using
Fermi’s golden rule:

Γn→n+∆n =
2π
 h
Mn,n+∆nρ(n+∆n) (158)

where ρ(n+∆n) the population density of occupation n+∆n state of the particle
motion and Mn,n+∆n the transition matrix element given by the cross term in the
dipole-field interaction [RI+11b; SS20]:

Mn,n+∆n = |〈n+∆n| ĤI |n〉|2 ∝ |〈n+∆n| (χzzpf(b+ b
†))∆n |n〉|2 = (χzzpf)

2∆n .
(159)

Here ĤI ∝ âe−iχẑ + H.c. with ẑ = zzpf(b̂+ b̂
†), and χ the mean momentum trans-

ferred to the particle by a photon scattered into the detection mode [JD96]. As
the transition matrix element is symmetric, the asymmetry of the scattering rates
into the Stokes and anti-Stokes sideband arises from population differences be-
tween the vibrational states. Moreover, considering a thermal steady state, the
ratio between first order (∆n = 1) transition rates is given by the detailed balance
ΓSρ(n) = ΓaSρ(n+ 1) [Cle+10]:

ΓaS

ΓS
=
Γn+1→n
Γn→n+1

=
ρ(n)

ρ(n+ 1)
= e

 hΩz
kBT = R . (160)

From this ratio one can extract the average occupation for a thermal state defined
as:

〈n〉 = 1

e
 hΩz
kBT − 1

=
R

R− 1
(161)

In absence of a cavity, the motion of the mechanical oscillator interacts with a white
continuum vacuum state, and the mechanical power spectral density is linearly
transduced to the output optical state. The measured heterodyne optical power
spectral density describes the ability of the optical field to absorb (yield) energy
from (to) the mechanical oscillator [Wei+14]. The first order power spectral density
for the quantum harmonic oscillator is [Cle+10; HMD15]:

Szz(Ω) = z2zpfγ

[
n+ 1

(ω+Ωz)2 + (γ/2)2
+

n

(ω−Ωz)2 + (γ/2)2

]
. (162)

The scattering rates of the two competing processes (ΓS, ΓaS) correspond to the pow-
ers detected in the sidebands of the heterodyne measurement (Supplementary Fig-
ure 32), allowing from such a measurement, direct evaluation of the motional energy
of the thermal harmonic oscillator.

Heterodyne noise analysis

By identification of all noise sources in our heterodyne measurement, we are able
to isolate the signal component originating from the optomechanical interaction.
From that we can evaluate the asymmetry of the Stokes and anti-Stokes peaks. The
heterodyne local oscillator is generated by a sequence of two acousto-optical mod-
ulators (AOMs) driven by two locked signal generators at 205MHz and 195.8 (or
214.2) MHz, aligned to order -1 and +1 respectively, in order to produce a local
oscillator shifted by −9.2 (or +9.2) MHz. The noise contributions in the heterodyne
spectra are determined by: the spectrum analyzer dark noise (DNsa), the detector
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dark noise (DNdet), the optical shot noise (SN) (Supplementary Figure 31a), the
heterodyne signal generator phase noise (PNsg) and finally the particle’s motional
signal (SIG). In addition one has to also consider the detector transfer function
fdet(Ω), arising from the 75 MHz cut off frequency. The total noise is

Sraw = DNsa +DNdet + fdet(Ω)(SN+ PNsg + SIG) (163)

Switching on the noise contributions one by one, we are able to directly measure
their progressive sum, and evaluate the contribution of each component (Supple-
mentary Figure 31c). As the optical shot noise is white by definition, we can eval-
uate the detector transfer function (linear in a band of 1 MHz around the hetero-
dyne frequency) by measuring the detector’s response to this white noise. Next we
want to characterize the PNsg, which only appears in the heterodyne measurement
together with the motioal sidebands. We thus evaluate this noise source (PNsg) di-
rectly, by mixing the signals driving the AOMs and rescaling the carrier peak to that
measured in the optical heterodyne measurement (see Supplementary Figure 31b).
This contribution is then transformed by fdet(Ω) and added to the total noise (green
component in Supplementary Figure 31c-d ). The sum of separately evaluated noise
contributions fits very well to the raw measured data.

Figure 31: Noise components in the heterodyne spectra. a, Linear dependence of the shot-
noise power as a function of optical power in the heterodyne local oscillator. The red point
shows our operating condition, almost a factor 10 above dark noise. b, Phase noise of the
heterodyne signal generators, directly measured after a mixer, and renormalized to the opti-
cal carrier amplitude. The lighter background shows comparison with the raw optical signal.
Even though at the relevant frequencies this is almost a factor 100 smaller than the measured
signal, its contribution is fundamental (green area in c and d) given low scattering rates in
the ground state. c-d, Detail of all of the noises contributing to the heterodyne spectrum.

We can now isolate the signal of interest. We note that the signal generator phase
noise is not the only source of phase noise into our heterodyne. After subtraction
of all independently characterized noise contributions, and normalization to shot
noise, we notice a residual noise contribution falling off as 1/f. This noise is com-
patible to what we expected from the laser phase noise in our unbalanced (∼ 1m)
interferometer. We fit to the clean spectra the sum of a double lorentian (162), and
a symmetric 1/f noise component, with a fixed offset of 1. For each fit we evaluate
the quality of the model by checking the Gaussianity of the residuals (Supplemen-
tary Figure 32a-b). In addition we verify quantum consistency by noting that, while
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the ratio (asymmetry) of blue to red side-band changes as cooling improves, their
difference, remains constant (Supplementary Figure 32c). In order to acquire higher
statistical significance, we perform repeated measurements for a subset of points,
and extract the asymmetry and occupation from the mean value of red and blue
side-band powers (Figure 1b in the main text) [Sud+17a]. In order to exclude any
other source of uncorrelated noise that may be altering the observed asymmetry we
perform our measurements at both Ωhet = ±9.2MHz. Except from the swapping
of the Stokes and anti-Stokes sidebands in the spectra, we observe no difference
in the ratio or in the absolute difference of the scattering rates, confirming correct
identification of all of the significant noise sources.

Figure 32: Side-band asymmetry fit. a-b, Heterodyne spectra after noise subtraction, appli-
cation of the inverse detector transfer function f−1det (ω) (whitening). The fit (black line) is a
4 parameter fit of a double lorentian plus a 1/f symmetric noise (shown also separately as
purple line and gray area). The Gaussian distribution of the residuals shows good agreement
of the measured spectra to the noise model. c, Power of the red and blue sideband normal-
ized by their average difference, as a function of the LQG feedback gain for both positive
and negative heterodyne frequencies (2 points per colour per gain). The constant difference
in the power of the 2 side-bands represents a sanity check of the noise analysis.





5 R O O M T E M P E R AT U R E P O N D E R O M OT I V E
S Q U E E Z I N G W I T H O U T A C AV I T Y

Quantum mechanical radiation pressure fluctuations disturb the motion of a mechanical os-
cillator [Cav80]1. In chapter 2 we have seen how the quantum nature of light (in
general of a measurement device) sets a bound to the precision that a measurement
involving such device can achieve. But lets continue the argument: Quantum me-
chanical radiation pressure fluctuations disturb the motion of a mechanical oscillator, which
in turn defines the phase fluctuations of the scattered radiation. This logic is what defines
ponderomotive squeezing. Specifically, random quantum fluctuations in the pho-
ton number (amplitude) of the optical field define a fluctuating force noise driving
the motion of the oscillator. While the interaction leaves the optical amplitude un-
changed, position fluctuations of the oscillator are transduced to the optical phase.
Since the force noise scales with the amplitude of the incoming field, the optome-
chanical interaction results correlations between the outgoing amplitude and phase
quadratures. If the input noise fluctuations are limited by vaccum noise, as it is the
case for pure optical states, these correlations will result, for some linear combina-
tion of amplitude and phase, in a reduction of the total noise of the field quadrature
below the shot noise level: a squeezed state of light. The term ponderomotive refers
to the fact that the radiation pressure force that is relevant for this effect is only
amplified by the mechanical response on time scales much slower than the optical
oscillations.

Ponderomotive squeezing of light was derived by Fabre et al. [Fab+94] and by
Mancini and Tombesi [MT94]. They showed the formal equivalence of optome-
chanical squeezing with squeezing achieved in a Kerr medium, where correlations
between amplitude and phase arise from the intensity dependent index of refrac-
tion of a χ(3) nonlinearity. These results, shortly followed by more advanced stud-
ies on the generation of macroscopic optical [MMT97] and mechanical quantum
states [BJK97], defined the formalism of modern quantum optomechanics. Pon-
deromotive squeezing was later also proposed as a source for noise reduction in
gravitational wave detectors [Cor+06]. The first experimental observation of corre-
lations betweeen radiation-pressure force noise and the position of a mechanical
resonator was achieved by Marino et al. [Mar+10] and Verlot et al. [Ver+10] using
an input field with an increased amplitude noise with respect to the vacuum state
in order to amplify the correlation term. Observation of quantum noise reduction
by ponderomotive squeezing was achieved two years later by Brooks et al. using
ultracold atoms in an optical cavity [Bro+12], and shortly after demonstrated in
solid state optomechanical systems in a cryogenic environment [SN+13; Pur+13;
Sud+17a; OK+18; Mas+19]. At room temperature, noise reduction due to the ra-
diation pressure-position correlation was observed [Pur+17; Sud+17b], even on kg-
scale objects [Yu+20], however the high thermal noise contribution did not allow to
obtain squeezed light. Recently the first demonstration of optomechanical pondero-
motive squeezing was achieved at room temperature by Aggarwal et al. [Agg+20],
with a movable mirror inside an optical cavity.

Thermal noise of the mechanical system and optical losses in the measurement
degrade the squeezing of light. To minimize optical losses and enhance the mea-
surement strength, all ponderomotive squeezing experiments to date make use of
an optical cavity. In addition, most of them are carried out in a cryogenic environ-

1 Here we are paraphrasing the words of Caves, who in this work [Cav80] actually demonstrated that
radiation pressure fluctuations disturb the measurement of the position of kg masses in gravitational
wave detectors.
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ment to minimize thermal noise. Here I show ponderomotive squeezing at room
temperature and without an optical cavity. Even though the qualitative results are
similar, the details of the derivation in of this effect in free space do have some
differences. For this reason, in the first section of this chapter I will derive the basic
theory leading to ponderomotive squeezing in the absence of a cavity. In the sec-
ond section I will show preliminary measurement data, that demonstrates quantum
noise squeezing of light resulting from correlations between the optical force and
the mechanical displacement noises.

5.1 theory
We want to derive the time dependent output optical field after the interaction
with a mechanical oscillator. This is conveniently done in the Heisenberg picture,
with the quantum operators evolving in time, according to the Heisenberg equation
(20). In this section I will start by (re-)deriving the quantum langevin equations of
motion of the optical and mechanical creation-and annihilation operators. This is
equivalent to the derivation showed in section 4.7.5, however, for the sake of sim-
plicity I will neglect spatial mode considerations. The effects of imperfect overlap
of the output modes and the detection modes are being absorbed into an overall
measurement efficiency. This is justified by the final results of 4.7.5 and allows
me to follow with more detail the mathematical steps, without loosing sight of the
physical meaning, hopefully giving the more inexperienced reader a tool to inde-
pendently begin addressing problems of this kind. The time dependent equations
of motion of the mechanical oscillator and the output optical quadratures are then
analysed in frequency space, where the main approximations are considered and
the effects of ponderomotive squeezing can be easily recognized.

5.1.1 The quantum langevin equations

We start by defining the Hamiltonian of the optomechanical system: a mechanical
oscillator (described by the operators a, a†) that is dissipatively coupled to an exter-
nal thermal environment or bath (described by the operators b, b†), and dispersively
coupled to a measurement apparatus, in our case an optical field (described by the
operators c, c†):Notation: the frequency mode

label of the creation and
annihilation operators is omitted.

H =

system︷ ︸︸ ︷
 hΩqa

†a+

bath︷ ︸︸ ︷
 h

∫
dωωb†b+

meter︷ ︸︸ ︷
 h

∫
dωωc†c

+ i h
√
γ

2π

∫
dω

(
b†a+ ba†

)
︸ ︷︷ ︸

thermal coupling

+  hg

∫
dω

(
a† + a

)(
c† + c

)
︸ ︷︷ ︸

measurement interaction

(164)

where the optomechanical coupling g and damping γ rates are assumed to be real
and independent of frequency. We can now write the the Heisenberg equations ofMath reminder:

[a†a,a] = a†aa−aa†a =
[a†,a]a+aa†a−aa†a =

[a†,a]a = −a

motion (20) for a, b and c:

ȧ(t) =
i
 h
[H,a] = −

A1︷ ︸︸ ︷
iΩqa(t)−

B1︷ ︸︸ ︷√
γ

2π

∫
dωb(t)+

C1︷ ︸︸ ︷
ig
∫

dω
(
c†(t) + c(t)

)
(165a)

ḃ(t) =
i
 h
[H,b] = −iωb(t) +

√
γ

2π
a (165b)

ċ(t) =
i
 h
[H, c] = −iωc(t) − ig

(
a† + a

)
(165c)
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5.1.2 The system evolution

At this point the strategy is as follows: we formally solve the linear differential
equations (165b) and (165c) by integrating them up to the interaction time t. These
solutions can then be used into the terms B and C in equation (165a). Here it is
convenient to identify (and define) the input modes for the thermal and optical
interaction, which allow us to simplify the notation. Equations (165b) and (165c)
are a couple of linear, first order differential equations. Their solution is: Math reminder:

ẋ(t) = λx(t)+ f(t),
substitution: y(t) = xe−λt,
derivative: ẏ(t) =
(x(t)−λ)e−λt = f(t)e−λt

solution: y(t) =

y(0)+
t∫
0

dt′ e−λt
′
f(t′)

substitute back: x(t) =

x(0)eλt+
t∫
0

dt eλ(t−t
′)f(t′)

b(t) = b(0)e−iωt +

√
γ

2π

t∫
0

dt′ e−iω(t−t′)a(t′) (166a)

c(t) = c(0)e−iωt − ig

t∫
0

dt′ e−iω(t−t′)
(
a†(t′) + a(t′)

)
(166b)

We can now plug equation (166a) into the B1 term of equation (165a):

Math reminder:
b∫
a

dxδ(x−b)f(x) = 1
2f(b)

B1 =

√
γ

2π

∫
dωb(t)

=

√
γ

2π

∫
dω

b(0)e−iωt +√ γ

2π

t∫
0

dt′ e−iω(t−t′)a(t′)


=
√
γ

√
1

2π

∫
dωb(0)e−iωt

︸ ︷︷ ︸
−bin(t)

+
γ

2π

t∫
0

dt′ a(t′)
∫

dω e−iω(t−t′)

︸ ︷︷ ︸
2πδ(t−t′)

= −
√
γbin(t) +

γ

2
a(t)

(167)

where we have defined the input mode of the thermal bath : Properties [GC85]
〈bin(t)bin(0)〉 = 0
〈b†in(t)b

†
in(0)〉 = 0

〈b†in(t)bin(0)〉 = nthδ(t)

〈bin(t)b
†
in(0)〉 =

(nth + 1)δ(t)

bin(t) = −

√
1

2π

∫
dωb(0)e−iωt . (168)

We proceed similarly with the optical field: we use (166b) into the C1 term of
equation (165a):

C1 = ig
∫

dω
(
c†(t) + c(t)

)
= ig

∫
dω

c†(0)eiωt + ig

t∫
0

dt′ eiω(t−t′)
(
a†(t′) + a(t′)

)+ H.c.


= ig

( ∫
dωc†(0)eiωt

︸ ︷︷ ︸
√
2πc

†
in(t)

+

∫
dωc(0)e−iωt

︸ ︷︷ ︸√
2πcin(t)

)

− g2
t∫
0

dt′
(
a†(t′) + a(t′)

) ∫
dω eiω(t−t′) − e−iω(t−t′)

︸ ︷︷ ︸
2πδ(t−t′)−2πδ(t−t′)=0

= i
√
2πg

(
c
†
in(t) + cin(t)

)

(169)

where we have defined the input mode of the optical field, up to the interaction Properties [Lou00]:
〈cin(t)cin(0)〉 = 0
〈c†in(t)c

†
in(0)〉 = 0

〈c†in(t)cin(0)〉 = 0
〈cin(t)c

†
in(0)〉 = δ(t)

time t as:

cin(t) =

√
1

2π

∫
dωc(0)e−iωt . (170)



92 room temperature ponderomotive squeezing without a cavity

We can finally write the evolution of the a operator inserting the results for B1 (167)
and C1 (169) into equation (165a):

ȧ(t) = −
(

iΩq +
γ

2

)
a(t) +

√
γbin(t) + i

√
Γba

(
c
†
in(t) + cin(t)

)
(171)

where Γba = 2πg2 is the backaction-induced decoherence rate. The solution of this
linear differential equation is conveniently solved in the Fourier domain. This isMath reminder:

F[a(t)] = a(ω) =√
1
2π

∫
dt e−iωta(t)

F−1[a(ω)] = a(t) =√
1
2π

∫
dt eiωta(ω)

ȧ(ω) = −iωa(ω)
(a(ω))† = a†(−ω)

done by writing the operators in terms of their Fourier components, allowing one
to apply the time derivative to the exponential term only. This yields:

a(ω) =

√
γbin(ω) + i

√
Γba

(
c
†
in(ω) + cin(ω)

)
i (Ωq −ω) + γ

2

(172a)

a†(ω) =

√
γb
†
in(ω) − i

√
Γba

(
c
†
in(ω) + cin(ω)

)
−i (Ωq +ω) + γ

2

, (172b)

and the correlators of the bath and input field in Fourier space become [HMD15]:

〈bin(ω)bin(ω
′)〉 = 〈b†in(ω)b†in(ω

′)〉 = 0

〈b†in(ω)bin(ω
′)〉 = nthδ(ω+ω′)

〈bin(ω)b†in(ω
′)〉 = (nth + 1) δ(ω+ω′)

(173a)

〈cin(ω)cin(ω
′)〉 = 〈c†in(ω)c†in(ω

′)〉 = 〈c†in(ω)cin(ω
′)〉 = 0

〈cin(ω)c†in(ω
′)〉 = δ(ω+ω′).

(173b)

5.1.3 The output field

We can now turn our attention to the output mode of the optical field. It is in
the end the only quantity we experimentally have access to! We can define the
output optical field as a function of the field operators at the moment of interaction,
similarly to what was done for the input optical field in equation (166b). This time,
rather than defining an earlier time 0 and integrating up to the interaction time
t, we define a late time T , and integrate backwards in time, back to the onset of
interaction. The field operator c(t) at interaction time t, defined in equation (166b)
can equivalently be written as:

c(t) = c(T)e−iω(t−T) − ig

t∫
T

dt′ e−iω(t−t′)
(
a†(t′) + a(t′)

)
(174)

We can now integrate c(t) over all frequencies. Using definition (166b) or (174) we
obtain respectively:∫

c(t)dω =

∫
dωc(0)e−iωt − ig

t∫
0

dt′
(
a†(t′) + a(t′)

) ∫
dω e−iω(t−t′)

= −
√
2πcin(t) − iπg

(
a†(t) + a(t)

)
(175a)∫

c(t)dω =

∫
dωc(T)e−iω(t−T)

︸ ︷︷ ︸√
2πcout

−ig

t∫
T

dt′
(
a†(t′) + a(t′)

) ∫
dω e−iω(t−t′)

=
√
2πcout(t) + iπg

(
a†(t) + a(t)

)
(175b)

where we have defined the input mode of the optical field, after the interaction as:

cout(t) =

√
1

2π

∫
dωc(0)e−iωt (176)
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Imposing continuity at the time of interaction (175a must be equal to 175b) we fi-
nally get the output mode as a function of the input optical mode and the interaction
with the mechanical system:

cout(t) = cin(t) − i
√
Γba

(
a†(t) + a(t)

)
(177)

In real experiments we likely will not be able to detect the output field with unity ef-
ficiency. Losses due to imperfect mode matching between the optical output mode
and the mode we detect, or due to non unity conversion efficiency of the photo-
detectors can me modelled by a single beam splitter with transmissivity ηd. Unitar-
ity of the detected mode function is ensured by considering a fraction (1− ηd) of
the optical vacuum coupling in via the orthogonal port. We therefore redefine the
detected optical mode as: Properties:

cvaccvac = c†vaccvac =
c
†
vacc

†
vac = 0

cvacc
†
vac = 1

cvaccin = c†vaccin =
c
†
vacc

†
in = cvacc

†
in = 0

cdet(t) =
√
1− ηdcvac(t) +

√
ηdcout(t)

=
√
1− ηdcvac(t) +

√
ηdcin(t) − i

√
Γmeas

(
a†(t) + a(t)

) (178)

where Γmeas = ηdΓba = ηd2πg
2. Equation (176) (and (178)) define the output (de-

tected) optical field after the interaction with the mechanical oscillator. It depends
on the input field and on the dynamics of the mechanical oscillator. As introduced
earlier in this chapter, ponderomotive squeezing is a phenomenon that appears on
timescales defined by the mechanical motion, and therefore much slower than the
optical frequency. For this reason it is convenient to work in a low-frequency limit,
close to mechanical resonance, and ignore the rest. The natural way of operating
such a frequency cut-off is analysing the fields in their spectral domain. In the next
section we will therefore first study the motional spectrum of the position of the har-
monic oscillator, deriving it from equations (172) in the high-Q and low frequency
limit. We will then use this result to write the spectrum of the quadratures of the
output (or detected) field.

5.1.4 The motional spectrum of the quantum harmonic oscillator

The position and momentum operators for the quantum mechanical oscillator can
be written in terms of the a and a† operators as

q =

√
 h

2mΩq︸ ︷︷ ︸
qzpf

(
a† + a

)
, and p = i

√
 hmΩq
2︸ ︷︷ ︸

pzpf

(
a† − a

)
. (179)

These definitions, together with equations (172), allow us to write the motional spec-
trum of the harmonic oscillator. The computation is greatly simplified by observ-
ing that owing to the correlators (173) most terms vanish. The motional spectrum
is[HMD15]: Definition:

SXX(ω) =∫
dω′ 〈X†(ω)X(ω′)〉
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Sqq(ω) =

∫
dω′ 〈q(ω)q(ω′)〉

= q2zpf

∫ [
γ〈bin(ω)b†in(ω

′)〉(
i (Ωq −ω) + γ

2

) (
−i (Ωq +ω′) + γ

2

) + γ〈b†in(ω)bin(ω
′)〉(

−i (Ωq +ω) + γ
2

) (
i (Ωq −ω′) + γ

2

)
+

Γba〈c(ω)c†(ω′)〉(
i (Ωq −ω) + γ

2

) (
−i (Ωq +ω′) + γ

2

) + Γba〈c(ω)c†(ω′)〉(
−i (Ωq +ω) + γ

2

) (
i (Ωq −ω′) + γ

2

)
−

Γba〈c(ω)c†(ω′)〉(
i (Ωq −ω) + γ

2

) (
i (Ωq −ω′) + γ

2

) − Γba〈c(ω)c†(ω′)〉(
−i (Ωq +ω) + γ

2

) (
−i (Ωq +ω′) + γ

2

)]dω′

= q2zpf

[
γ (nth + 1)

(Ωq −ω)2 +
(γ
2

)2 +
γnth

(Ωq +ω)2 +
(γ
2

)2 +
Γba

(Ωq −ω)2 +
(γ
2

)2 +
Γba

(Ωq +ω)2 +
(γ
2

)2
−

Γba

Ω2q −ω2 +
(γ
2

)2
− iΩqγ

−
Γba

Ω2q −ω2 +
(γ
2

)2
+ iΩqγ

]

≈ q2zpf
γnth4Ω

2
q(

Ω2q −ω2
)2

+ω2γ2
+ q2zpf

Γba4Ω
2
q(

Ω2q −ω2
)2

+ω2γ2

=
(
q2zpfγnth4Ω

2
q + q2zpfΓba4Ω

2
q

)
m2|χm(ω)|2

=
(
2kBTγm+ 4Γbapzpf

)
|χm(ω)|2

=
(
Sth
FF + S

ba
FF

)
|χm(ω)|2

(180)

Later in this chapter, when using these approximate results, we will use Ω to in-

Approximations:
nth � 1
Ωq� γ
ω ≈Ωq

Definition:
χm(ω) = 1

m(Ω2q−ω2+iγω)

dicate frequencies in order to remind us that derivations are valid in a limited
frequency range close to the mechanical resonance.

5.1.5 The spectrum of the output quadratures

At this point we can finally analyse the properties of the quadratures of the output
field, which one can detect experimentally by homodyne or heterodyne detection.
In the following steps we will discuss for simplicity the properties of the output
field, defined by (176). The derivation for the spectrum of the quadratures of the
detected mode (178) follows exactly the same steps, so I will only write the final
result. The generalized quadrature of angle θ of the optical field is defined as:

X
j
θ = cje−iθ + c†j e−iθ (181)

Using equation (176) we can write the generalized quadrature of the output mode
as:

Xout
θ (t) = coute−iθ + c†oute

−iθ

= cine−iθ + c†ine−iθ + i
√
Γba

(
a†(t) + a(t)

)(
eiθ − e−iθ

)
= Xin

θ (t) − 2

√
Γba
qzpf

q(t) sin(θ)

(182)

and its autocorrelation function:

Math reminder:
eiθ−e−iθ

2i = sin(θ)

〈Xout
θ (t)∗Xout

θ (0)〉 =

A2︷ ︸︸ ︷
〈Xin
θ (t)

†Xin
θ (0)〉+

B2︷ ︸︸ ︷
4Γba

q2zpf
sin2(θ)〈q(t)†q(0)〉

+
2
√
Γba

qzpf
sin(θ)

[
〈Xin
θ (t)

†q(0)〉+ 〈q(t)†Xin
θ (0)〉

]
︸ ︷︷ ︸

C2

.
(183)
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This allows us, together with the Wiener-Khinchin theorem, to compute the power Wiener-Khinchin theorem:∫
dt 〈x(t)†x(0)〉e−iωt =
Sxx(ω)

spectral density of the output quadrature. We compute the spectral contributions
for the separate terms. The term A2 results in the trivial white spectrum:

SA2 = SinXX =

∫
dt e−iωt〈Xin

θ (t)
†Xin
θ (0)〉 =

∫
dτ eiωτδ(t) = 1. (184)

The term B2 represents the autocorrelation of the position of the mechanical oscil-
lator imprinted on the output field. Its spectrum is:

SB2 = Sout
qq(ω, θ) =

4Γba

q2zpf
sin2(θ)

∫
dt e−iωt〈q(t)†q(0)〉 = 4Γba

q2zpf
sin2(θ)Sqq(ω),

(185)
where the motional spectral density Sqq(ω) is derived in equation (180). The last

term (C2) in equation (183) is the one showing the correlations between the ampli-
tude fluctuations of the input field and the motion of the oscillator: the squeezing
term. To derive its power spectrum it is convenient to write the input field as linear
combination cos(θ) and sin(θ):

X
j
θ = cjeiθ + c†j e−iθ = X

j
0 cos(θ) +Xj

π
2

sin(θ) (186)

where the coefficients Xj
0 = c†j + cj and Xj

π
2
= i(c†j − cj) represent the amplitude and

phase quadrature of the field respectively. This decomposition allows us to imme-
diately identify the Hermitian and anti-Hermitian components of the quadrature.
Because the q operator is also Hermitian, one immediately sees in that all terms
proportional to Xj

π
2

vanish in equation (183), leaving only: Math reminder:
2 sin(θ) cos(θ) = sin(2θ)

C2 =
2
√
Γba

qzpf
sin(2θ)〈Xin

0 (t)q(0)〉 =
2
 h

sin(2θ)〈Fba(t),q(0)〉. (187)

To help the physical interpretation we have defined the radiation pressure (or pon-
deromotive) force determined by the optical amplitude fluctuations on to the me-
chanical oscillator as [SN+13]

Fba(t) =
 h
√
Γba

qzpf
Xin
0 (t). (188)

From equation (187) we see that the C2 term in (183) represents the correlations
between the input optical amplitude and the position of the oscillator. Using (172)
and (173), the spectrum of C2 can be calculated (via the convolution theorem): cincin = c†incin = c†inc

†
in = 0

cinc
†
in = 1

a†c†in =

√
Γbacinc

†
in

(Ωq+ω)+iγ2

a†cin = 0

ac
†
in =

√
Γbacinc

†
in

(Ωq−ω)−iγ2

acin = 0

SC2 = Sout
qX(ω, θ) =

2
√
Γba

qzpf
sin(2θ)

∫
dt e−iωt〈Xin

0 (t)q(0)〉

=
2
√
Γba

qzpf
sin(2θ)Xin

0 (ω)q(ω)

=
2
√
Γba

qzpf
sin(2θ)(c†in + cin)qzpf(a

† + a)

= 2Γba sin(2θ)

(
cinc
†
in

(Ωq +ω) + iγ2
+

cinc
†
in

(Ωq −ω) − iγ2

)
≈ 4Γba sin(2θ)Ωqmχ∗m(ω)

=
4Γba

q2zpf

 h

2
χ∗m(ω) sin(2θ)

(189)

where again we have used the high-Q approximation in the vicinity of resonance.
Putting together (184), (185) and (189), the real part of the total output spectrum of
the output quadrature becomes:

Sdet
XX(Ω, θ) = 1+

4Γba

z2zpf

[
Sqq(Ω) sin2(θ) +

 h

2
Re {χm(Ω)} sin(2θ)

]
. (190)
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As expected, this is the same result that one gets if one considers a mechanical
oscillator coupled to an optical resonator in the bad cavity limit and driven on
resonance [SN+13]. The spectrum of the detected quadratures in the case of non-
unity detection efficiency can be derived by following the same steps, starting from
the definition of cdet in (178) rather than using cout from (182), and remembering
that the vacuum and the input field are uncorrelated. The result is:

Sdet
XX(Ω, θ) = 1+

4Γmeas

q2zpf

[
Sqq(Ω) sin2(θ) +

 h

2
Re {χm(Ω)} sin(2θ)

]
= 1+

4ηdΓba

q2zpf

[(
1+

1

Cq

)
Sba
FF|χm(Ω)|2 sin2(θ) +

 h

2
Re {χm(Ω)} sin(2θ)

]
(191)

In this definition the measured spectrum is given in units of the detected shot noise
which is the first term of the equation. The second term in (191) represents the
motion of the harmonic oscillator and is certainly positive. The third term is the
result of correlations between the motion of the particle and the input filed which,
for certain frequency and quadrature angles, can become negative. This may lead,
under certain conditions, to a total noise that is below 1, i.e. smaller than the optical
vacuum fluctuations. The optical mode at that frequency is therefore a squeezed
optical state. Lets quickly study the function. Equation (191) is a function of two
variables, defined on the domainΩ ∈ [0,∞) and θ ∈ [−π/2,π/2]. In this domain the
function is maximized in (Ωq,±π/2) and has two local minima at (Ωq +∆sq, θsq)

and (Ωq − ∆sq,−θsq). At (Ωq, 0) is a saddle point. The two minima represent
two frequency modes Ωsq = Ωq ± ∆sq where light is maximally squeezed in its
quadrature defined by the angle ±θsq. In particular in the limit high Q (γ � Ω)

Figure 33: The spectrogram of the output quadrature as a function of the angle of analysis.

and high cooperativity (Cq � 1), assuming perfect detection efficiency ηd = 1

and high occupancy n � 1, the correlation term is strong enough to maximally
suppress both the thermal noise and the shot noise contributions at two specific
frequencies. Equation (191) is sometimes written in the units of the displacement
spectrum. Using the definition of measurement rate given in chapter 2, equation
(36) we can multiply equation (191) with Simp

qq , to obtain the spectrum of the output
quadrature in units of displacement noise [Mas+19]:

Sout
XX(Ω, θ) = Simp

qq + sin2(θ)
[(
Sba
FF + S

th
FF

)
|χm(Ω)|2 − 2Re

{
χm(Ω)Sba

qF(θ)
}]

, (192)

where the force-displacement correlations spectrum is Sba
qF(θ) = −

 h
2 cot(θ).
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5.2 experiment
Up to now we have seen how the optomechanical interaction can, similarly to what
happens in a Kerr medium, establish correlations between perpendicular quadra-
tures of the optical field, leading to squeezed optical states. In this section I will
briefly describe the detection and analysis of squeezed light from the interaction of
a silica particle levitated in an optical tweezer. The detailed technical description of
the setup is the same as the one given in chapter 4. The only difference is that now
all the collected light scattered by the particle is directed to the heterodyne receiver.

5.2.1 Heterodyne demodulation

The quadrature spectrum is extracted by demodulation of the heterodyne time trace:
the output field (oscillating at frequency ωin) is interfered on a 50/50 beam splitter
with a reference field (local oscillator) oscillating at a frequency ωlo = ωin +Ωhet.
The intensity at two outputs is then recorded by two photodiodes, resulting in a
photocurrent: Heterodyne photocurrent

ihet ∝ Xout0 (t) cos(Ωhett+X
out
π
2

(t) +ϕ(t)) (193)

where ϕ(t) is a slowly varying phase (dϕ (t)/dt � Ωz,Ωhet ∀t ) that takes into ac-
count the drifts in the optical path length. In contrast to homodyne detection, where
the phase relation between two fields is fixed, in a heterodyne measurement the
local oscillator is continuously scanning between the amplitude and phase quadra-
tures of the output signal. If the phase scan (or heterodyne frequency) is much faster
than the frequencies of the dynamics of interest (Ωhet � Ωz), a demodulation of the
heterodyne signal by sin(Ωhett) and cos(Ωhett) will result in a simultaneous record-
ing of the in-phase (I) and quadrature (Q) components of the signal. From these Heterodyne demodulation

equation (186) allows us to reconstruct the time evolution of any optical quadra-
ture Xoutθ (t). A complete optical tomography can be equivalently obtained using
2 homodyne recievers with a fixed π/2 phase relation, identical detectors and iden-
tical power in the local oscillators. The advantage of a heterodyne measurement
is that power balancing and active phase stabilization of the interferometer are not
longer required as a single local oscillator is evenly shared between orthogonal
quadratures. It is important to keep in mind, that as the heterodyne measurement
is sharing the local oscillator between two orthogonal quadratures, the detection
efficiency for each one is reduced by a factor 2, just as if we were splitting the signal
between 2 homodyne detectors. The demodulation can easily done with analog

Figure 34: Heterodyne IQ-demodulation

components by use of an IQ mixer and low pass filters or even digitally using a
Hilbert transform signal decomposition.

5.2.2 Detection

As a drawback, a heterodyne measurement that can resolve the quantum fluctua-
tions of the optical field scattered by the particle requires a large dynamic range.
This is because the strong local oscillator that is necessary to amplify the quantum
noise will also amplify the heterodyne carrier which may lead to a saturation the
detector electronics. The required dynamic range can be gauged by the total de- Dynamic range
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tection efficiency ηd
2 over the square of the Lamb-Dicke parameter ηLD = αkzzpf

(α: geometric factor of order 1, k: wavevector, zzpf =
√

 h/(2mΩz): position zero-
point fluctuation) which defines the ratio of the inelastic to elastic scattering rates
for the optomechanical interaction. In order to reduce the required dynamic range
we choose for this experiment a smaller particle size (r = 43nm) and a lower me-
chanical frequency (Ωz/2π ∼ 75 kHz). With α ∼ 1.5 and ηd ∼ 0.3 we have:

ηd/η
2
LD ∼ 2.1 · 107, (194)

which is still small enough for a 16 bit oscilloscope which has a dynamic range of
216

2
= 4.2 · 109.

It is also important to choose the appropriate detector: in order to achieve a
shot noise limited detection one must be able to amplify the scattered light with
a local oscillator that is strong enough that its associated shot noise exceeds the
detector dark noise by one order of magnitude, without damaging the photodiodes
or saturating the transimpedance amplifier:Detector limits: photodiode

damage and electronic
saturation

Plo < min

{
2Pmax ,

∆P2sat
Psig

}
(195)

where Pmax is the single photodiode damage power, ∆Psat is the power difference
between the photodiodes that saturates the detector amplifier, and Psig the power
of the signal that is being heterodyned. Sometimes the saturation power is in terms
of the maximum voltage swing (∆V) at the output of the detector:

∆Psat =
−eηq

hν

∆V

gt
(196)

where gt is the detectors transipedance gain, e is the electron charge, ηq the detector
quantum efficiency, h the Plank constant and ν the optical frequency. In terms of
the induced photocurrent we will have a shot noise and a dark noise level of (in
units of A/

√
Hz):

√
Ssn
i = −e

√
2ηq

Plo
hν

and
√
Sdn
i = NEP

ηqe

hν
, (197)

with NEP the noise equivalent power of the detector. The ratio of optical shot noise
to dark noise is the figure of merit that has to be maximized in the choice of a
detector. Putting together definitions (195), (196) and (197) we find:

Ssn
i

Sdn
i

=
2hνPlo

ηqNEP2
< min

{
4hν

ηq

Pmax

NEP2
,
2h3ν3

e2η2q

∆V2

g2t NEP2Psig

}
. (198)

We use a Thorlabs PDB 471 balanced detector, with a maximum NEP of 8pW/
√

Hz
a maximum voltage swing of ∆V ± 3.6V, a transimpedance gain of gt = 104 and
a maximum power per diode of Pmax = 5mW. With a signal power of only
Psig ∼ 100nW we are limited by the power threshold of the diodes to a maximum
shot noise level of about 15 dB above dark noise. In practice, operating well below
threshold and considering digitization noise, the total technical noise is still 11 dB
below the shot noise level.

5.2.3 Results

With a heterodyne frequency of Ωhet/2π = 6MHz we record traces of the hetero-
dyne interference, optical shot noise and detector dark noise. For each measure-
ment we record a 500 s long trace at a sampling frequency of fs = 62.5MHz. A

2 here we consider the total detection efficiency of the heterodyne measurement
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low-pass filter at flp = 15MHz is used to prevent aliasing of high-frequency noise
onto our signal. After digital demodulation of the recorded trace we reconstruct
the quadrature spectrum at all angles, and observe a maximum squeezing of about
10%, slightly less than what is expected in our experimental conditions at a pressure
of 1.5 · 10−8mbar. This is because, at the optimal quadrature angle, the strongest
squeezing is expected in a very narrow band very close to resonance. Here, the
small frequency fluctuations due to mechanical drifts in our setup are enough to
wash out this narrow feature at the optimal angle. At larger angles the squeezing is
distributed over a broader band, and further away from resonance.

Figure 35: Spectrum of the output light. The spectrum of the optical quadrature (blue) at
angle θ = 10deg. The red points indicate the shot noise level independently measured by
covering the signal path in the interferometric detection. The noise reduction below the shot
noise level is evident close to resonance.

Figure 36: Spectrogram of the measured output quadratures as a function of the analyser
angle where the warm and cold colours represent noise above and below the shot noise
level, respectively. a Starting from the the bottom, the first dark red line is defined by the
low frequency phase noise (minimized at θ = 0). The second dark red horizontal line is
the main resonance Ωz/2π = 77 kHz. Close to θ = 0, also this noise is reduced and the
negative contribution of the squeezed light becomes relevant taking the spectrum below the
shot noise level (blue shades). The third and fourth dark line are the noise contributions
from the transverse motion at Ωx and Ωy. b Detail of the spectrogram close to Ωz. The
inset shows the theoretical plot expected in out experimental conditions, confirming both the
quantitative and qualitative agreement of theory and experiment.

As mentioned before, the heterodyne detection and its demodulation allow us,
with a single measurement, to simultaneously record and reconstruct the output
quadratures at all angles θ, and plot an experimental spectrogram and to appreciate
the excellent qualitative and quantitative agreement of our measurement with the
predicted model (Figure 33). One last interesting representation is the phase space
plot of a squeezed mode oscillating at frequency Ωsq: a horizontal section in Figure
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36. In polar representation we can easily recognize the non-gaussian phase space
distribution of a two-mode squeezed state [And+16].

Figure 37: a, Noise variance as a function of the quadrature angle for the optical mode at
Ωsq/2π = 80 kHz.b, Quadrature noise (standard deviation) in polar representation and with
dark noise subtracted.

In summary I have here shown the first preliminary evidence of radiation-pressure
squeezing of light without a cavity and with a room temperature oscillator. The
agreement between experiment and theory is excellent, with a residual discrepancy
of about 0.5%. We expect to further reduce this discrepancy with a careful mod-
elling of technical phase noise and of transverse mode contributions. Observation
of ponderomotive squeezing via a full heterodyne based optical tomography repre-
sents a promising step towards the observation of entanglement between light and
a room temperature mechanical oscillator [Gut+20].



6 C O N C L U S I O N S A N D O U T LO O K

In this thesis I presented three optomechanical experiments involving a levitated
system at room temperature. In chapter 3 (reference [Mag+18]) we coupled the mo-
tion of a levitated nanoparticle to the evanescent field of a photonic crystal cavity,
showing high coupling strength and high detection efficiency. Although the system
is far from operating in the quantum regime our levitated probe allows us to image
the three dimensional electric field intensity gradient of the nanophotonic structure
in super-resolution. As also recently discussed by Montoya et al. [Mon+21], surface
scanning, together with the high force sensitivity provided by levitated particles,
will allow the developments of short range force sensors, possibly surpassing the
current performance of atomic force microscopes. In chapter 4 (reference [Mag+21])
we bring a levitated particle into the quantum regime. In contrast to the first demon-
stration of ground-state cooling of a levitated particle by Delić et al., where a cavity
is used to coherently control the particle motion, we do so by measurement and
feedback. While the cavity approach ultimately will yield higher state purity, the
advantage of our feedback scheme is its extreme robustness and versatility. More-
over quantum filtering and optimal control allows us to condition the quantum state
on the measurement outcome, and control the quantum trajectory of the particle in
real time. Implementation of optimal control algorithms in quantum mechanical
experiments represents a milestone in the development of quantum technologies,
for both sensing and fundamental purposes. A natural follow up experiment is
the preparation of squeezed mechanical states. This would allow faster evolution
of the wavepacket in free space or nonlinear potentials as well as an enhanced
force sensitivity. Another intriguing possibility is given by the extremely high im-
pulse sensitivity of our system [Car+20]. The advantage of quantum filtering is
that it allows conditioning of a very pure quantum state and maintain a quantum
limited sensitivity even with moderate cooling. The demonstrated sensitivity is al-
ready enough to study the energetic statistics of single molecule impulses, possibly
allowing to shed light on the poorly understood mechanisms that govern decoher-
ence processes by gas scattering. In addition, extending the techniques developed
here to larger masses would greatly benefit the current seraches for gravitationally
interacting dark matter particles [Mon+20b]. Finally in chapter 5 (manuscript in
preparation), I demonstrate room temperature ponderomotive squeezing without a
cavity. Although the squeezing is moderate, this result is particluary intersting as it
is the fist time that this is done without an optical resonator. Besides, our measure-
ment scheme is based on the demodulation of a single heterodyne detection. This
allows us to recover, at all times, a full optical state tomography and potentially to
reconstruct the optomechanical density matrix in search of evidences of quantum
correlations (or entanglement) between light and mechanics [Gut+20].

[...continues (from the introduction)] In the introduction of this thesis I tried to
convince the reader about the macroscopicity of the glass particles I have dedicated
my doctorate to. Yet looking at them now, and back at the work I describe in this
thesis, my arguments have become weaker, their “macrcoscopic” behaviour almost
negligible, and I might have convinced myself of the opposite: they can now go into
to the basket of the microscopic! so who’s next?
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S O M E M O R E F I G U R E S

I include some figures here, taken during the years in the lab. Some may be useful
to understand details of the experiments, some because I find them pretty.
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104 some more figures

Picture of the inside of the vacuum chamber. Nitrogen plasma for charge control
is ignited by applying about 2 kV at 0.1 mbar resulting in the typical purple glow.
At the center on can see the microscope objective and collimating lens. Below the
holder for the stage controlling the photonic crystal cavity. On the left the tube
delivering the particles to the trap.





106 some more figures

CAD drawing of the photonic crystal cavities. As the device number grows, the
distance between holes is increased. Together with other parameter sweeps, this
helps to find a device with ideal optical properties. The small squares (1 —m edge)
serve to facilitate the etching process.

Scanning electron microscope (SEM) picture of the first batches of photonic crystal
cavities. The small cubes designed to facilitate the etching process were not removed
properly, and often attached to the structures, making them unusable.
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108 some more figures

Optical picture of the same chip. Even here the etching leftovers are evident. Only
the rightmost pert appears to be clean

Attept to pick up a photonic crystal: etching leftovers are everywhere! On the right
the tungsten tip used to break the connection of the cavities to the chip.
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110 some more figures

The etched cubes sticking to the photonic crystal.

Detail of the connection holding keeping the photonic ctystals connected to the chip.
This was broken by pressing with a tungsten tip, while the other side (with taper)
was kept in contact with the fiber.
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112 some more figures

SEM image of a clean chip.

Optical microscope image of a clean chip. No etching leftovers are visible.
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114 some more figures

SEM image of a tapered fiber after it was dipped in UV glue to increase the contact
surface with the photonic crystal. The droplets of glue evident on the fiber far from
the tip are not cause of increased losses.

Optical microscope image of the tapered fiber as it is pushed into a droplet of UV
glue. Its important to choose the glue with a low viscosity in order not to break the
tip of the tapered fiber.
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116 some more figures

After being dipped into UV glue, the surface of the fiber is smoothened, and the con-
tact surface is increased. This greatly enhances the bonding between the photonic
crystal and the fiber. Note that the glue is cured before contact with the cavity.

SEM image of the contract point between fiber and cavity.
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118 some more figures

SEM image of the photonic crystal cavity on the tapered fiber.

Optical image of the photonic crystal cavity as it was placed and aligne on to the
tapered fiber with the help of a tungsten tip (right).
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120 some more figures

SEM image of the photonic crystal cavity after being used in an experiment. It
seems that a particle got stuck to the cavity after it was lost! The image looks very
bad as the sample was not gold coated before imaging causing it to charge up,
deflecting electrons.

A gold coated (cracks on the surface) sample can be imaged very well.
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122 some more figures

Drawing of the cavities for future experiments. This kind of device was designed
to remain on chip, for better thermalization and mechanical stability. Cavities were
also designe in pairs for the study of self induced backaction dinamics (SIBA) as
proposed by Neumeyer et al. [NQC15].

The CAD version of the new devices.
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