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1 Introduction

In recent years, deep neural language models have made strong progress in various
natural language processing tasks. Whether these advances are based on more
human-like aspects in the models, will be explored in the course of this master’s
thesis. The focus thereby lies on a relatively primitive cognitive mechanism for which
there is a lot of evidence from various psycholinguistic experiments with infants. The
“computation of abstract sameness relations”, as this mechanism will be referred to, is
assumed to play a major role in human language acquisition and processing, especially
in learning complex grammar rules. In order to investigate this, an attempt is made
to transfer the experiment designs from already conducted experiments with infants
to deep learning language models. Therefore, all experiments are implemented as
computer programs that generate results to explore the behavior of relevant language
models with regard to this cognitive mechanism.

This thesis divides into the following chapters: Chapter 1 Introduction, where the
theoretical background for this work is outlined, including relevant basics of human
and machine language learning and processing, as well as the most important facts
about state-of-the-art deep neural language models. In chapter 2 Related Work, an
overview on research relevant for this thesis is given: from psycholinguistics to deep
learning approaches in computational linguistics. Chapter 3 Abstract Sameness Relations
in Deep Learning NLP Models clarifies the motivation and relevance of investigating this
cognitive mechanism in neural language models. In chapter 4 Experiments, all details
on the experimental setups are presented. The behavior of the investigated models is
described in chapter 5 Results. And finally, in chapter 6 Discussion, the implications
of these results for the research interest of this master’s thesis and future research are
discussed.
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1 Introduction 5

1.1 Language Learning and Processing in Humans and
Machines

This sub chapter briefly introduces all concepts relevant for this thesis – starting from
theories of human language acquisition to statistical processing of natural language
data in computer models.

1.1.1 Language Acquisition

In the debate around human language acquisition (“nature vs. nurture”) one finds
many positions and discussions until today (e.g. Harley, 2016, p. 106). The two poles,
between which all positions may be placed, represent:

– The Module Stance: The faculty of language is an innate domain-specific cogni-
tive module that grows within the first approx. ten years of childhood.

– The Data-Driven Stance: A particular language is learned based on domain-
general cognitive mechanisms through speech input in the environment.

Especially in Generative Grammar theories, the growth of the language (acquisition)
module is usually compared to the pre-determined development of organs or extrem-
ities (e.g. Fodor, 1998, pp. 129–130). The environment, i.e. the speech input, plays
only a minor role: if it is missing, the environment is hostile and an organic growth is
not possible – comparable to complications in the mother’s womb which result in an
embryo not developing properly (e.g. Chomsky, 2017). Therefore learning is seen as a
rather subordinate factor in language acquisition. It is assumed that an innate universal
grammar (UG) provides a set of hypotheses that constraints the perception of the
language input (e.g. Chomsky, 1986). “Learning” a particular language is considered as
setting a limited number of binary parameters (e.g. Chomsky, 1981), for example the
head (position) parameter that determines whether a phrase head precedes (e.g. English)
or follows (e.g Korean) a complement (Chomsky, 1981). Thus there is already an
innate hypothesis about these two options and the particular language input in the
environment just verifies one of the two possible options (based on positive evidence)
(Chomsky, 1981).

This is not only coincidentally reminiscent of rationalistic philosophical positions –
accordingly, at the opposite pole, one finds the empiricist-inspired idea that language
– as well as any other knowledge – is based exclusively on experience (e.g. Harley,
2016, pp. 105–106). Therefore, in data-driven theories a newborn is seen as tabula
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rasa and learning (from experiences with speech input) is essential (e.g. Harley, 2016,
p. 106). The origins of deep learning are rather positioned at this pole, based on the
idea that general-purpose learning mechanisms and enough input is all that is required
to learn a language (e.g. Goodfellow et al., 2016, p. 15) – or at least to create computer
models that show complex language processing behavior (e.g. Harley, 2016, p. 117).
Apart from artificial neural net modeling work (see further below), there are numerous
experiments with humans suggesting that extraction of (syntactic) structures can be
based on statistical principles alone (e.g. Harley, 2016, p. 117). Generally, in data-driven
theories no innate set of hypotheses specifically for language acquisition is assumed,
but primarily (statistical) learning and several other (e.g. social) cognitive abilities that
enable humans to systematically analyze and model language from the speech input1

(e.g. Harley, 2016).
Discussing all arguments in the nature-nurture debate is well beyond the scope of

this thesis, however, what Pinker (1997) has named “combinatorial explosion” will be
important later on. In a nutshell, it is assumed that without any constraining hypothesis
set, an infinite number of regularities could be derived from pure language data, which
would eventually lead to an explosion in terms of an overload in human cognition
(Pinker, 1997, p. 119) – and keeping this thought in mind may also be interesting in
the context of deep learning, because there is definitely no classical UG that constrains
language input based on concrete hypotheses. For humans, it seems plausible to
assume some hypotheses or specialized cognitive mechanisms that limit the analysis of
the input data in some way – e.g. to separate language from other sounds or noise (e.g.
Karmiloff-Smith, 1996, p. 5). However, in assuming an innate UG, for example, one
would have to suppose that infants implicitly have an idea of what a pronoun is, that
verbs agree with pronouns, and that – based only on positive evidence in the input – it
may be dropped in their native language (pro-drop parameter = 1) (e.g. Chomsky, 1981,
p. 37). Or in other words: An UG implies that people are born with very extensive
(implicit) metalinguistic knowledge. This raises the question, whether more primitive
hypotheses may also be sufficient to avoid something like a combinatorial explosion.
What the nature of these primitives in humans and deep learning models may be, will
be discussed in the following.

1 Since it is of low relevance for this master’s thesis, the difference between early (first language) and
later (foreign) language acquisition will not be discussed.
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1.1.2 Statistical-Symbolic Language Learning Approaches

Overall, there are strong arguments on both poles and the truth most likely lies
somewhere in between – accordingly, more modern psycholinguistic approaches in
language acquisition research are located in between. However, as mentioned above,
the proponents of the extremes argue until today. A famous scholar rather close to
the module stance is Noam Chomsky. Already in the 1950s he criticized statistical
approaches to natural language processing (NLP) using the famous example “colorless
green ideas sleep furiously” (Chomsky, 1957, p. 15). Chomsky claims that every
native speaker of English can judge that it is a grammatical sentence, although it is
nonsensical from a semantic point of view – and what is even more important in the
argument, native speakers can do so although this very sentence was most probably
not part of the input during language acquisition (Chomsky, 1957, pp. 15–17). Thus,
it is “unseen” data that still can be judged by a native speaker, as there is a linguistic
competence with respect to the aspect of grammar that can be isolated from the whole,
in terms of a concrete example of language data. Moreover, Chomsky sees grammar or
syntax as purely categorical (grammatical/ungrammatical) phenomenon. Interestingly,
even in Generative Grammar, which Chomsky founded, there is not only a formal
symbol to mark ungrammatical sentences (“*”) but there are also options to grade
grammaticality: * (ungrammatical) > ?* > ?? > ? (questionable)) (e.g. Manning &
Schütze, 1999, p. 9). Apart from Generative Grammar, there is a lot of evidence that
non-categorical, statistical and probabilistic phenomena can be found on all hierarchical
levels of natural languages (e.g. Jurafsky, 2003).

Regarding statistical NLP, Norvig (2012) attributes Chomsky to assume a very simple
model that cannot make any generalizations beyond the word level and thus must
always assign a probability of zero to unseen sentences. However, it has been shown
that even a simple bi-gram model trained on word classes assigns Chomsky’s famous
example sentence a 200,000 times higher probability compared to the ungrammatical
version presented in the same work (“furiously sleep ideas green colorless”) (Norvig,
2012). Thus, if grammar is generally not regarded as a categorical phenomenon – which
seems plausible based on the evidence – relatively primitive “add-ons” (e.g. word
class awareness) to very simple statistical models are sufficient to obtain significant
differences in ratings with respect to the probabilities of unseen sentences. Thus,
it appears that leaving behind the strict separation between symbolic (categorical-
algebraic) and statistical approaches leads to promising progress.

Erik Thiessen appears to pursue such kind of statistical-symbolic approach to lan-
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guage learning. A central aspect of his acquisition theory is processing distributional
statistics which reflect the central tendency and variability of a group of events in
speech data (Thiessen & Erickson, 2015). Even very young infants show the ability
to have a sense of central tendencies, as evidenced, for example, in the formation of
the phoneme system in the native language: “At birth, infants distinguish between
phonemic contrasts not found in their native language. After their first birthday, infants
are primarily sensitive to those sounds that are phonemic – indicate a difference in
meaning – in their native language” (Thiessen & Erickson, 2015, p. 41). According
to Thiessen and Erickson (2015), infants perceive pure physical audio input at the
beginning and the respective distributional regularities in this physical input lead to
the emergence of the symbolic phoneme system of the mother tongue; after learning
these central tendencies (phoneme categories), the physical input is assigned to these
categories based on the similarities with the respective prototypes. Variabilities thereby
highlight the invariant, structural elements in the input: “For example, when learning
to identify meaning in speech, listeners must learn that some changes in the acoustic
signal indicate a difference in meaning (as in big vs pig). Other changes in the acoustic
signal, such as changes in speaker identity (two different speakers saying pig), do not
signal a difference in meaning” (Thiessen & Erickson, 2015, p. 42). Once the phoneme
system is acquired, it is assumed that these distributional statistic mechanisms are
applied at higher symbolic hierarchy levels: phonemes form syllables (which are gov-
erned by the phonotactic rules of a particular language) and syllables form morphemes
or words and these phrases or sentences.

1.1.3 Primitive Rule Learning

Drawing upon what has been said so far, it is not unreasonable to assume that a
cognitive mechanism computing distributional statistics represents one important
element in language acquisition. And there is evidence that further mechanisms are
involved, especially in the context of grammatical rule learning: One of these and
“the most prominent assay for studying rule learning” (Endress, 2020) in humans may
be the detection of (abstract2) sameness relations. A meta-analysis on “abstract rule
learning” included solely reports investigating this phenomenon (Rabagliati et al., 2019,
p. 3), suggesting that rule learning and computing abstract sameness relations (ASRs)
is sometimes considered as the same phenomenon (Endress, 2020, p. 436). Furthermore,
the meta-analysis shows that there is already a large number of pycholinguistic studies

2 What this “abstract” means, is explained a bit further below.
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which collectively exhibit “significant evidence for the phenomenon that infants can
learn abstract repetition rules” (Rabagliati et al., 2019, p. 6).

In these artificial grammar learning experiments, usually syllable tri-grams are used,
initially in a familiarization phase in which sequences of a certain tri-gram syllable
pattern are played to infants as an acoustic signal. For example, of the following tri-gram
patterns with sameness relations3, AAB, ABA and ABB4, the ABA structure sequence
is played to infants, in order to prime them with the structure: To be more specific,
if ga and li were A syllables, and ti and na were B syllables, the ABA familiarization
sentences5 would be ga ti ga and ga na ga, as well as li ti li and li na li. In a later test or
probing phase, new syllable material, that was not used while priming, is presented
to infants, for example wo and de as A and fe and ko as B syllables. Some kind of
measuring (preferential looking paradigm, electroencephalography, brain imaging, etc.)
is used to check whether structures consistent with the familiarization phase (ABA in
this example) are perceived differently from the inconsistent ones (AAB or ABB).

The researchers conducting these rule learning experiments are always eager to avoid
any statistical cues, so that statistical cognitive mechanism alone cannot explain the
recognition of ASRs, but the following two interdependent faculties must be present:

– Abstraction: Infants must be able to derive, for example, from ga ti ga a repre-
sentation that is activated by wo fe wo as well (through generalizing from specific
examples to some kind of variable form, such as ABA).

– Detection of Sameness Relation: Consistent ABA test tri-grams would have
to elicit a different response than, for example, the inconsistent AAB tri-gram,
since the sameness relation is between first and second position in AAB and not
between first and third in ABA.

An experiment important for this master’s thesis was performed by Marcus et al.
(1999): 16 7-month-old infants were the subjects in a preferential looking paradigm
setting. The infants were categorized in two groups, one primed with ABA, the
other with ABB sentences. Four A and four B familiarization syllables were selected
(per experiment) from which 16 unique sentences were formed (resulting from the

3 Sometimes also referred to as “repetition rules” or “identity relations” – in this thesis, the term
“sameness relation” will be used from now on.

4 In these patterns, A and B are variables that are replaced with specific “language data”, such as
syllables.

5 In this regard, “pattern”, “structure”, and “sentence” are synonyms in this (and previous) work.
All denote one of the just introduced tri-grams with sameness relations: AAB, ABA, or ABB – or
sometimes also tri-grams without sameness relation: ABC.
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combinatorics of the two elements A and B: A1B1, A1B2, ..., A1B4, .., A2B1, ..A4B4 = 44

combinations – one A or B is repeated in any of the relevant patterns.). As every unique
tri-gram occurred three times in the priming speech sample, it consisted of 48 sentences
in total. To avoid statistical cues:

– the speech samples were computer generated and synthesized so that they did
not include any prosody.

– they controled for phonetic features, e.g. number of voiced consonants in syllables.

– the order of the sentences was randomized and a 250 millisecond pause was
included between syllables and a one second pause between sentences.

– all sentences were build from three elements (tri-grams) – therefore the syllable
count and even the length of the speech samples per sentence was exactly the
same in priming and probing.

In the probing phase, two consistent and two inconsistent sentences were randomly
ordered and each unique tri-gram was presented three times. Therefore twelve test
sentences were played to the infants, of which 50% were consistent with the prime
tri-gram structures. In the results of Marcus et al. (1999), 15/16 infants showed a signif-
icant preference for the inconsistent sentences. In the preferential looking experimental
setting this translates to the situation that infants mainly looked in the direction of the
speaker that played the inconsistent probes, as humans focus on surprising percepts
rather than expected ones. Therefore the infants rated the perception of structures
with the primed sameness relation higher than the inconsistent one. There are several
studies based on neuro-scientific methods, such as electroencephalography (EEG)
(e.g. Kabdebon & Dehaene-Lambertz, 2019) or optical brain imaging (e.g. Gervain
et al., 2008), which underpin the results from these behavioral experiments. The
experiments also revealed that structures with sameness relations are computed
differently compared to those without repeating syllables (ABC) (e.g. Gervain et al.,
2008). So all these studies suggest an innate mechanism that detects ASRs in speech
input.

Compared to the comprehensive hypotheses the concept of a Universal Grammar
presupposes, a innate cognitive faculty for computing ASRs may appear primitive, but
one should keep in mind that in the Minimalist Program, Chomsky views recursion
as (the only) faculty of language in the narrow sense (e.g. Hauser et al., 2002). So in this
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state-of-the-art (Generative) grammar theory, recursion is a “uniquely human” cognitive
faculty – other mechanisms involved in language acquisition and processing are not
uniquely human and therefore only part of the faculty of language in the broad sense. This
implies that the faculty of language is based on an interplay of (more or less) primitive
cognitive mechanisms and therefore seemingly even Chomsky no longer assumes
a classical Universal Grammar and Parameter Setting while language acquisition.
The mechanisms described so far, distributional statistics and computation of ASRs,
together with recursion in interaction may already provide a comprehensive toolset
that potentially allows for very complex language (learning) behavior – especially
since all these mechanisms can be applied (recursively) at all kinds of symbolic (and
non-symbolic) levels.

1.1.4 Language Models

The notion of what a language model is, differs in the various disciplines relevant to
this thesis. Models in psycholinguistics, for instance, serve to explain existing data6 and
to make new, robust predictions (e.g. Harley, 2016, p. 16). In contrast, explainability
in NLP models initially seems to play a minor role in deep learning research, which
is also a consequence of the distributional nature of representations in neural models
(e.g. McClelland et al., 2020), since they are hard to interpret for humans. Another
important difference is that psycholinguistic models have not always been implemented
as computer models, traditionally – in more modern approaches, however, this is
often the case, so computer models can be found for both mechanisms discussed so
far: Processing of distributional statistics (Thiessen, 2017) and computation of ASRs
(Endress, 2020).

What is interesting about the explanatory approach of Thiessen (2017) is that the
apparent computations of distributions can be traced back to elementary memory
processes (activation, decay, interference, and prototype formation), as the results of the
models suggest. The PARSER computer model, for example, divides an arbitrary
input sequence into random chunks and stores them. Over time, the activation of
these chunks decreases (decay), unless it happens that an identical chunk gets into
memory. In this case the activation increases (activation). If a partial element of a stored
chunk occurs in a new chunk, the already stored chunk loses activation (interference).

6 This does not necessarily have to be language data – the psycholinguistic models presented in this
chapter are based, for example, on neuroimaging studies showing that the hippocampus is active in
statistical language experiments (Thiessen, 2017) or on the results already presented, e.g., by Marcus
et al. (1999).
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Using a natural language as input to this model leads to the emergence of statistically
coherent elements (e.g. words; prototype formation) without the need to explicitly or
implicitly compute transitional probabilities (Thiessen, 2017). This exemplifies how
certain complex appearing rules (phonotactics, word formation, etc.) can be derived
from relatively simple (memory) processes.

Endress (2020) modeled a biologically plausible neural circuit that is able to compute
ASRs as known from experiments with infants and thus this very neural circuit may
be a core part of the language faculty. The respective model is presented in detail in
chapter 2 Related Work.

Although statistical and probabilistic language processing is considered essential in
several modern psycholinguistic theories, the corresponding state-of-the-art research
has relatively little influence on computational linguistics, as the principle of statistical
language modeling in computer science is in general of a different nature (e.g. Russell
& Norvig, 2010, pp. 860–861). Here, natural languages are often compared with formal
languages, such as programming languages. These are precisely defined with a set of
rules, the grammar, and unambiguous semantics. In contrast, the grammar of natural
languages is considered to be a non-categorical phenomenon and thus it is modeled
“as a probability distribution over sentences rather than with a definitive set” (Russell &
Norvig, 2010, p. 861). As the semantics of natural languages are ambiguous, a sentence
is not considered to have a single meaning, but rather a probability distribution over
possible meanings. So far, this seems relatively compliant with modern linguistic
approaches. However, what may be an essential difference is that computer scientists
view language models as “at best, an approximation” (Russell & Norvig, 2010, p. 861),
also due to the fact that natural languages are constantly changing. This makes clear
that it is not about modeling the underlying computations of the (human) language
faculty, but rather to approximate a specific NLP model to successful behavior in a
specific NLP task.

So, starting from these basic assumptions, there are different foundations in computa-
tional linguistics on which such language models are build, some of them very simple.
One of the simplest statistical language model is represented by the already mentioned
N-gram model, which is in general based on the Markov assumption according to
which the probability of the occurrence of the “i-th word in a sequence is indepen-
dent of any previous context word” except, for example, the last two in a tri-gram
(sometimes also denoted as 3-gram) model: P(wi|w1...wi−1) ≈ P(wi|wi−2, wi−1) (e.g.
Kunte & Attar, 2020). Since N-gram models cannot capture (e.g. grammatical) long
distance dependencies, it is in a sense obvious that it does not provide an explanatory
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model of natural languages, however especially tri-gram models are still very common
and successful in many NLP applications, such as language identification, spelling
correction or genre classification (Russell & Norvig, 2010, p. 882).

On the other hand, there are also structured probabilistic models that are based
on context free grammars (CFGs) (e.g. Kunte & Attar, 2020). They are trained on
grammatically annotated training corpora and probabilities are assigned to the therein
identified phrases and structures. Based on such models, the probability of new
structures can be determined and thus it can be assessed, how likely it has been
generated by the same underlying grammar. However, there are some problems
associated with CFG models, such as enormous manual effort, structural ambiguities
and, due to computational complexity, very poor performance (e.g. compared to N-
gram models). Especially problematic from the perspective of this master’s thesis is the
fact that these models are based on a highly symbolic and debated theory.7

For about 20 years, there have also been language models based on artificial neural
networks (e.g. Kunte & Attar, 2020). These are particularly relevant for this work, since
the language modeling allows more complexity, which is also shown in improvements
compared to N-gram models (Kunte & Attar, 2020). Moreover, for the most part, these
models do not rely on symbolic linguistic theories and therefore all representations
are unbiased in this regard. Technological developments in recent years have enabled
model training based on big (language) data as well as deeper models in terms of more
neural layers (hidden units), which can encode higher order features from the input (e.g.
Goodfellow et al., 2016, pp. 18–21). As the modeling work of Thiessen (2017) suggests,
language data provides valuable information on its own that can be used by relatively
simple mechanisms (memory processes), thereby extracting apparently complex rules.
Therefore it is assumed in this thesis that modern neural language models are in
principle capable of acquiring the presumed primitive basic computations (or circuits)
that form the human faculty of language and that the big language data available in
training provides all the information necessary for modeling natural languages similar
as humans do.

1.2 State-of-the-Art Deep Neural Language Models

In this sub chapter, the main developments in deep learning NLP research, which are
widely seen as being responsible for the substantial performance improvements, are

7 Namely the Chomsky Normal Form (e.g. Russell & Norvig, 2010, p. 893).
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briefly outlined. A detailed introduction into the complex research field around deep
learning NLP models would massively exceed the scope of this thesis, so the reader is
referred to the freely available work of Goodfellow et al. (2016).

1.2.1 (Self-)Attention

One of the biggest advances in recent years was made with the introduction of attention
mechanisms. Recurrent language models, which were previously considered state-of-
the-art, and their inherently sequential operations were especially limited with respect
to parallelization, which resulted in long-distance dependencies not being represented
(e.g. Vaswani et al., 2017). In the first development step, the encoders and decoders
of recurrent models were connected through attention mechanisms (Vaswani et al.,
2017). Vaswani et al. (2017) then presented the Transformer, “a model architecture
eschewing recurrence and instead relying entirely on an attention mechanism to draw
global dependencies between input and output” (Vaswani et al., 2017, p. 2). Essential to
the Transformer, however, was also the concept of self-attention or intra-attention. This
kind of attention mechanism relates different positions of the input sequence in order
to compute sentence representations that are task-independent (Vaswani et al., 2017).

In general, an attention function maps “a query and a set of key-value pairs to an
output” (Vaswani et al., 2017, p. 3). Transformer models, however, are not only based
on one attention function, but so-called multi-head attention, which “allows the model
to jointly attend to information from different representation subspaces at different
positions” (Vaswani et al., 2017, p. 5). So all in all, three kinds of multi-head attention
are involved in Transformers modeling natural languages:

– Encoder-decoder attention: “the queries come from the previous decoder layer,
and the memory keys and values come from the output of the encoder. This
allows every position in the decoder to attend over all positions in the input
sequence.” (Vaswani et al., 2017, p. 5)

– Encoder self-attention: “all of the keys, values and queries come from the same
place, in this case, the output of the previous layer in the encoder. Each position
in the encoder can attend to all positions in the previous layer of the encoder.”
(Vaswani et al., 2017, p. 5)

– Decoder self-attention: “self-attention layers in the decoder allow each position
in the decoder to attend to all positions in the decoder up to and including that
position.” (Vaswani et al., 2017, p. 5)
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As detailed model analyses showed, individual attention heads seem to specialize
in different NLP aspects, for example, showing behavior reminiscent of syntactic and
semantic processing in humans (e.g. Vaswani et al., 2017).

1.2.2 Pre-Trained Language Representations

Another important advance in deep learning NLP research concerns mainly the princi-
ple models are trained. One of the studies that introduced a “pre-training fine-tuning”
approach was the Generative Pre-Trained Transformer (OpenAI GPT) by Radford et al.
(2018). In this kind of approach, the training method aims to learn general language
representations during the pre-training phase, so that – based on these representations
– specific language tasks can be learned by simply fine-tunig the pre-trained parameters
(e.g. Devlin et al., 2019). However, there is one major limitation for Transformer models:
The representations are learned unidirectional which leads to restrictions when it is
important to incorporate context from before and after, such as in question answering
tasks (e.g. Devlin et al., 2019).

Therefore Devlin et al. (2019) introduced BERT: Bidirectional Encoder Representations
from Transformers. The pre-training objective is inspired by the Cloze task (Taylor,
1953), in terms of randomly masking words (or tokens8) in the model input (i.e. an
input token is replaced by the token [MASK] - tokens in general correspond to a index
in the model vocabulary) “and the objective is to predict the original vocabulary ID of
the masked word based only on its context” (Devlin et al., 2019, pp. 4171–4172). Beside
this “masked language model” (MLM) also the “next sentence prediction” task is part
of the BERT pre-training (Devlin et al., 2019, p. 4172). On many sentence-level tasks,
OpenAI GPT achieved state-of-the-art results already, however, BERT also outperformed
many task-specific models – and on token-level tasks as well (Devlin et al., 2019).

The greatest advantage of BERT is that no labeled data is required for pre-training
and therefore to learn general language representations that enable the model to be fine-
tuned to a wide range of specific language tasks at relatively low computational cost (a
few hours on GPUs, at most one hour on a single Cloud TPU) (Devlin et al., 2019). From
a cognitive perspective, deep learning NLP models building on the BERT architecture
suggest that basic generalizations can be learned from big (unlabeled) language data
and the fact that these enable the models to adopt to any specific NLP task very

8 Tokens can also be subwords, punctuation marks, etc. At this point, a simplified wording is used as it
will be further clarified in the course of this work.
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easily may imply that Bidirectional Encoder Representations from Transformers are not
entirely different from human language representations.

1.2.3 Further Developments

One criticism of BERT concerns the mismatch between pre-training and fine-tuning,
as the [MASK] token from the MLM does not appear during the latter. Devlin et al.
(2019) already tried to address this issue and did not always use the [MASK] token
to replace the masked word, but in 20 percent of the cases another random word or
the original one itself is used in the MLM (Devlin et al., 2019). However, as Yang
et al. (2020) noticed, this does not solve the whole problem, as BERT has to assume
that “the predicted tokens are independent of each other given the unmasked tokens,
which is oversimplified as high-order, long-range dependency is prevalent in natural
language”(Yang et al., 2020, p. 2). As a consequence, they introduced XLNet, an
autoregressive language model9 – as opposed to the autoencoding based pre-training
approach of BERT. XLNet attempts to overcome the traditional problem of unidirec-
tionality in autoregressive models through permutations: Usually, in autoregressive
language models the likelihood of a text sequence is factorized into a forward or
backward product (Yang et al., 2020, p. 1). However, “XLNet maximizes the expected
log likelihood of a sequence w.r.t. all possible permutations of the factorization order”
(Yang et al., 2020, p. 2), whereas the objective permutes only the factorization order,
and not the sequence order itself, since the natural order during fine-tuning would
represent another pre-train-fine-tune discrepancy. New York is a city, for which the two
tokens New and York would be the prediction targets, exemplifies the main difference
between the objectives of XLNet and BERT: Since BERT would simply replace both
tokens with [MASK] the dependency between the original tokens cannot be captured,
whereas XLNet is able to learn this dependency (Yang et al., 2020). Their experiments
show that the pre-training objective of XLNet achieves improved performance on
various tasks compared to BERT (Yang et al., 2020).

Radford et al. (2019) and Brown et al. (2020) take a slightly different direction. These
two Open AI GPT projects focus on the fact that state-of-the-art NLP models seem
to know quite a lot about natural language (tasks) already after pre-training, so they

9 Autoregressive language models are feed-forward sequence models that are in theory less expressive
than recurrent neural nets (RNNs), since they cannot consider such a large amount of context.
However, in practice the “infinite memory” of RNNs does not seem to be necessary for language
modeling (e.g. Bai et al., 2018; Sharan et al., 2018).



1 Introduction 17

attempt to develop models that do not need any fine-tuning and thus do not need any
supervision (or labeled data) (Radford et al., 2019). From a human language learning
perspective it is particularly appealing that they aim to build “language processing
systems which learn to perform tasks from their naturally occurring demonstrations”
(Yang et al., 2020, p. 2), as humans do during language acquisition. Open AI’s giant
(175 billion parameter) GPT-3 model matches on many NLP tasks and benchmarks
nearly the performances of fine-tuned models, for example based on BERT (Brown et al.,
2020) and the authors conclude that “these results suggest that very large language
models may be an important ingredient in the development of adaptable, general
language systems” (Brown et al., 2020, p. 41). All GPT models are limited by the before
mentioned unidirectionality of autoregressive models, Brown et al. (2020) however
mention that the attempt to make bidirectional models based on their approach is a
promising direction for future deep learning NLP research.

1.3 Research Questions

As already mentioned, the so far introduced research fields exist quite independently
from each other: While deep learning NLP has its origins in computational cognitive
science and “connectionism” that emerged from it, very little inspiration from state-
of-the-art psycholinguistics can be found in these approaches today (e.g. Goodfellow
et al., 2016, p. 15). It can be stated that there is a large overlap between statistical
approaches to language processing in humans and the basic principles in deep learning
NLP models, most evident in computing distributions in speech data. However, when
it comes to abstract rule learning, and thus to a potentially symbolic view on language
processing in NLP models, controversies arise that can hardly be settled (e.g. Norvig,
2012). One problem of the controversies could be that the symbolic level on which
the discussions are taking place is perhaps already a very high one, as, for example,
even within linguistics there is not only one approach to grammar theory. In other
words, if there is no undebated “gold standard” of linguistic structures, it is very
hard for computational linguists to analyze deep learning NLP models (e.g. Rogers
et al., 2020), since one has to commit to a theory first, which may be implausible in
the end (e.g. from a cognitive neuroscience perspective). Therefore, in this thesis an
approach is pursued that starts at a more primitive level of language relevant cognitive
computations, for which there is substantial evidence from various psycholinguistic
studies and which is probably even compatible with Chomsky’s Minimalist Program.
Consequently, the following research questions arise: How can experiments targeted at
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the computation of sameness relations in humans be transferred into the domain of
deep learning NLP research? Drawing on the results from these experiments, how is
the model behavior to be interpreted? As the results of the first experiments suggested
a rather non-human-like behavior, further questions emerged: How to facilitate the
conditions in the experiments so that potentially simpler forms of the mechanisms are
elicited? What adaptations to existing deep learning NLP models would be required so
that computations of sameness relations become (more) human-like? And what is the
impact of these adaptations on the overall NLP performance of deep neural language
models?



2 Related Work

The basic framework of this master’s thesis has now been laid out and the research
questions are defined. Now follows a brief overview of relevant research efforts in this
area.

This work contributes to efforts evaluating and improving deep learning NLP models
based on what is known from human cognition. Since cognition is a giant subject,
and according to several linguistic theories, many aspects of it may be relevant for
human language (e.g. Evans et al., 2007; Hauser et al., 2002), these works can be viewed
as focusing on different levels. McClelland et al. (2020) start from a rather holistic
perspective and attribute artificial neural networks utilizing query-based attention to
rely on the same principles as the human mind: “connection-based learning, distributed
representation, and context-sensitive, mutual constraint satisfaction-based processing”.
In their paper they argue that future neural models of understanding should build
equally on cognitive neuroscience and artificial intelligence, which is also the basic
approach in this thesis. There are many efforts in computational linguistics that address
compositional generalization or the importance of structure in general which can
also be categorized as rather higher level approaches to natural language processing
(Akyürek et al., 2021; Andreas, 2020; Collobert et al., 2011; Conklin et al., 2021; Gordon
et al., 2020; Herzig & Berant, 2021; Kim & Linzen, 2020; Lake & Baroni, 2018; Li et al.,
2020; Li et al., 2019; Poon & Domingos, 2009; Punyakanok et al., 2008; Russin et al.,
2019; Shaw et al., 2021). Conklin et al. (2021) stand out by also considering the limits
of human cognition – based on insights from human intelligence research (Griffiths,
2020). Thus, as in this thesis, elementary concepts of human cognition – in Conklin
et al. (2021) the limitations of working memory – are used as a source of information to
improve NLP performance, which ultimately leads to more robust generalizations in
their work.

There is also a lot of relevant work around abstract sameness relations, the elementary
cognitive concept in this thesis. First and foremost there is Marcus et al. (1999) and
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the behavioral experiments with infants presented in sub chapter 1.1.3 Primitive Rule
Learning. Furthermore, Gervain et al. (2008) and Kabdebon and Dehaene-Lambertz
(2019) are to be mentioned as the most important follow-up studies that influenced
the experiment design in this thesis. In total, there are around 60 experiments on the
computation of ASRs to date (with over 1,300 infants involved) which were all evaluated
in a meta-analysis from Rabagliati et al. (2019). Drawing upon these efforts, there are
several works that model cognitive mechanisms around sameness relation detection
(Arena et al., 2013; Carpenter & Grossberg, 1987; Cope et al., 2018; Endress, 2020;
Engel & Wang, 2011; Grill-Spector et al., 2006; Hasselmo & Wyble, 1997; Johnson et al.,
2009; Kumaran & Maguire, 2007; Ludueña & Gros, 2013; Wen et al., 2008). Endress
(2020) is to be emphasized here. In his approach, biologically plausible mechanisms
are introduced based on recent evidence from cognitive neuroscience (disinhibitory
neural net circuits) and implemented as R computer models. The author points out
that his approach is the first so far in which generalization to unseen stimuli does not
require any kind of learning (and thus no negative evidence). Therefore the presented
computer models appear very plausible with regard to the human behavior known
from experiments. Figure 2.1 shows the mechanisms in full detail in order to illustrate
that they are relatively simple from a computational point of view. Accordingly, this
fundamental research is especially important for this thesis, as a central assumption of
it is that state-of-the-art deep neural language models are in principle able to learn and
represent the required elementary mechanisms Endress (2020).

Another line of relevant studies focuses on a “pure” (rather than a holistic or high
level) linguistic evaluation of deep learning NLP models. A significant share of work
deals with the syntactic capabilities of models, all starting from grammar theory: In
the subject area of understanding hierarchical structures in general (Kuncoro et al.,
2018; Linzen & Leonard, 2018; Tang et al., 2018), syntactic representations/embeddings
(Kim & Linzen, 2020; Lin et al., 2019; Liu et al., 2019; Tenney et al., 2019), syntax
knowledge above the word level (Goldberg, 2019; Hewitt & Manning, 2019; Lin et al.,
2019); as well as how models deal with specific syntactic phenomena, such as negative
polarity items (Warstadt et al., 2019). A meta-analysis from Rogers et al. (2020) gives a
detailed overview for all efforts in the field of “BERTology”, i.e. in which mainly BERT
models were investigated. The experiments in this thesis are not based on a natural
language, therefore it follows Bowman et al. (2015), Wang and Eisner (2017), Ravfogel
et al. (2019), and White and Cotterell (2021) who all generated artificial languages to
study deep neural language models. Certainly, the most relevant works from this line
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Figure 2.1: “A disinhibition-based sameness detector for (A) sequentially and (B) si-
multaneously presented identical items. The geometric shapes (squares and triangles)
stand for populations of neurons that encode features of the items (e.g., frequency,
shape); filled shapes are currently active, whereas empty shapes are currently in-
active. (A) Units in the “source layer” (bottom gray box) receive (sensory or other)
input. Units in the “copy layer” (top gray box) receive one-to-one excitatory input
from the source layer. Critically, units from the “inhibition layer” (right gray box)
exert tonic inhibition on the copy layer. (A, left) Upon initial presentation of a fea-
ture (represented here as a square), all units in the inhibition layer are active. As
a result, excitatory input from the source layer is not propagated to the copy layer.
(A, top right) Feature-specific inhibition from the source layer to the corresponding
units in the inhibition layer shuts down the inhibitory input to the copy layer. If the
same item is presented again during the time window of reduced inhibition, input
from the source layer is propagated to the copy layer. (A, bottom right) If a new,
nonidentical item is presented, the source layer cannot drive the copy layer because
the corresponding units in the inhibition layer have not been inhibited. Sameness
detection thus proceeds by reading out the copy layer, as only repeated items are
propagated to the copy layer. (B) Sameness detection in simultaneously presented,
spatially arranged items. The source layer consists of populations of neurons cod-
ing for features (arranged in the y direction), but these units encode space as well
(arranged in the x direction). Tonically active inhibitory (inter)neurons (small gray
box on the right) prevent activation in the copy layer (top gray box). Critically, they
receive inhibitory input from those units in the source layer that code for the same
feature and excitatory input from units coding for other features. For example, units
representing squares in the input layer inhibit all units representing squares in the in-
hibition layer, and excite all other units. (B, left) If the stimuli consist of two identical
items (squares), the combined inhibitory input from the identical items in the source
layer shuts down the corresponding units in the inhibition layer, which lets identical
items “pass through” to the copy layer. (B, right) In contrast, when the stimuli consist
of two different items, these singleton features are insufficient to drive the copy popu-
lation due to inhibition from the inhibition layer.”
(Endress, 2020, p. 437)
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are those that also start from psycholinguistic experiments or methods, which do exist,
but in remarkable smaller numbers. Futrell et al. (2019) investigated the maintenance
of syntactic state in several deep neural language models, drawing for example on
Levy (2011) who researched this phenomenon in humans. From a methodological
point of view, the approach of Ettinger (2020), who also draws upon human language
experiments and aims to introduce a suite of psycholinguistic diagnostics for NLP
models, is very similar to the one in this thesis: by analyzing output predictions in
a controlled context (input), the language models do not need to be fine-tuned for a
specific NLP task. Further evaluations that build upon psycholinguistic tests are Linzen
et al. (2016), Chowdhury and Zamparelli (2018) Gulordava et al. (2018), Marvin and
Linzen (2018), and Wilcox et al. (2018) – and all these analyses draw their conclusions
based on the output probabilities of the language models, too.

This thesis complements the introduced efforts in starting from a very primitive
level of language processing, at which there is less controversy in the fundamental
(linguistic) theories than in the approaches cited, which – without exception – refer
to rather higher-level linguistics. The computation of ASRs is a phenomenon that can
build on a strong evidence base, as well as on detailed modeling work from cognitive
science that is even biologically plausible (Endress, 2020) – and at the same time
compatible with the internal mechanisms of modern deep neural language models (as
the in Figure 2.1 illustrated circuits could potentially be learned by these models).



3 Abstract Sameness Relations in Deep
Learning NLP Models

As discussed in the previous chapter, such an effort does not yet exist, so in this chapter,
it will be further clarified why the research questions are relevant at all in the context
of deep learning NLP and which approach is taken to find answers.

The argumentative framework of this thesis builds in general on the theories of
statistical and probabilistic approaches to linguistics (e.g. Bod et al., 2003) and in
particular on the insights from the artificial grammar learning paradigm (e.g. Harley,
2016, p. 118). As already stated, the focus will be laid on the ability to compute abstract
sameness relations. For humans this is based on a theoretical domain very prominent
in the research of Ansgar Endress (e.g. Endress, 2020; Endress et al., 2009) in which it is
assumed that phylogenetically pre-existing “perceptual or memory primitives” act as
basic cognitive “feature detectors for elementary grammatical rules” (Endress, 2020,
p. 435). Finding explanations for NLP behavior by analyzing language data based on
these basic cognitive feature detectors connects very well with Braitenberg’s “law of
uphill analysis and downhill synthesis”, which reads:

“It is much more difficult to start from the outside and try to guess internal
structure just from the observation of the data [...] analysis is more difficult than
invention in the sense in which, generally, induction takes more time to perform
than deduction: in induction one has to search for the way, whereas in deduction
one follows a straightforward path. A psychological consequence of this is the
following: when we analyze a mechanism, we tend to overestimate its complexity.”
(Braitenberg, 1984, p. 20)

There are already efforts from Dawson (2004), in which the law of Uphill Analysis and
Downhill Snythesis is applied in the context of artificial neural net research. The original
connectionist1 wave had a very strong focus on cognitive science (or psychology), in

1 Dawson (2004) is categorized as part of the connectionsim wave, following Goodfellow et al. (2016),
who dates the “rebranding” of artificial neural net research into “deep learning” around 2006.
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contrast, modern deep learning approaches tend to move away from human cognition
and exist in parallel with the corresponding research – however, the challenges can still
be seen as relatively similar, as the following quote on BERT models may exemplify:
“While it is clear that BERT works remarkably well, it is less clear why, which limits
further hypothesis-driven improvement of the architecture” (Rogers et al., 2020, p. 1).
So, just as it is not entirely clear how the “architecture” (i.e. the linguistic network in
the brain) relates to human language behavior, deep learning NLP research now faces
a similar challenge. It appears that the majority of approaches start from rather high
symbolic levels of language processing (e.g. syntax) and therefore follow an inductive
principle starting from the complex behavior that NLP models show.

Based on the theories presented, it seems reasonable that this thesis proceeds deduc-
tively, starting from the assumption that computing ASRs is a basic principle of the
human faculty of language. As large amounts of language data – more than a person
will face in a lifetime (McClelland et al., 2020, pp. 25966–25967) – are processed during
pre-training, it is hypothesized that state-of-the-art deep learning NLP models2 acquire
– among other basic principles – also the computation of ASRs. In other words, the
hypothesis is that the principle of task-independent pre-training leads to the effect
that NLP models learn the basic cognitive mechanisms of natural language processing
known from humans. Further it is assumed that these mechanisms enable NLP models
to process language data more human-like at inference time, which explains the su-
perior performance of state-of-the-art models. So, if it turns out that the investigated
language models behave as known from human subjects in psycholinguistic experi-
ments examining the computation of sameness relations, this would be, based on this
line of reasoning, a first indication that (phylogenetically pre-existing) basic cognitive
mechanisms are the key to success in deep learning NLP research.

The focus on a primitive cognitive mechanism, for which there is a substantial amount
of evidence from experiments, makes this thesis relatively independent from high-level
grammar theories that are by themselves not uncontroversial. Therefore, clear results
that the computation of ASRs in the investigated models is highly human-like would
lay a good foundation to further investigate basic cognitive mechanisms in natural
language processing – and beyond deep learning NLP research, such an approach
could also represent a source for new insights from modeling work in formal linguistics.
If the experiments in this thesis do not show clear results or even negative results, it
could still be a fruitful starting point for future research, as targeted efforts can be

2 For simplification from now on the technical term “NLP model” denotes deep learning NLP models,
unless it is explicitly stated that a denoted model is not a deep learning model.
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undertaken to ensure that language models learn various basic cognitive mechanisms
and consequently process natural languages in a more human-like manner – and based
on these efforts it could be verified whether these basic computations actually bring
about improved NLP performance.



4 Experiments

The most important experiments with human infants have already been referred to
and it has been clarified why a transfer of these experiments into the domain of NLP
research is relevant. In chapter 2 Related Work, it was pointed out that there is not yet
any published effort with deep learning NLP models on the level of primitive cognitive
mechanisms – even though these are considered essential for language processing. To
fill this gap, and based on the research questions presented, the experiments were
performed as described in this chapter. Since these were very extensive, they are
presented in greater detail step by step: In sub chapter 4.1 Foundations a rough overview
about fundamental principles is given. Sub chapter 4.2 Calculus features the calculations
all results are based on. Afterwards, under 4.3 Data, the data base of the experiments is
presented in full detail. 4.4 Subjects introduces the NLP models that were investigated –
and their peculiarities. And in sub chapter 4.5 Experimental Settings all details about the
experimental conditions are presented. Especially in the beginning, the chosen structure
leads to slight simplifications, which are supplemented with more information in the
course of the chapter.

All experiments were implemented as Python programs building hugely on the
Huggingface Transformers library (Wolf et al., 2020). The source code and related
files, as well as the results are available in the following GitHub repository: https:
//github.com/lmthoma/MA_thesis.

4.1 Foundations

The experiment design is in many respects inspired by Marcus et al. (1999) introduced
in sub chapter 1.1.3 Primitive Rule Learning: Subjects are familiarized with meaningless
tri-grams of a simple artificial language and afterwards it is evaluated whether the
consistent structure (containing sameness relations) is detected in tri-grams build
from unfamiliar elements. Since the subjects are deep learning NLP models and not
human infants, appropriate adaptations were necessary (Figure 1.1.3 shows a simplified
representation of the two experiments side by side for comparison):
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Figure 4.1: Experiments to investigate the computation of abstract sameness relations
in humans and machines, side-by-side. A) shows a preferential looking paradigm
setting with infants performed by, for example, Marcus et al. (1999): At time one,
syllable tri-grams with an ABA sameness relation are presented as audio signal.
Later, at time two, the consistent ABA is played on the left speaker, the inconsistent
ABB on the right speaker – all probe tri-grams are build from syllables that did not
occur in the earlier familiarization phase. As humans tend to focus on surprising
percepts, looking into the direction of the speaker that plays the inconsistent stim-
uli indicates that the primed sameness relation (presented at time one) is detected
and abstracted to the consistent tri-gram that is build from unknown syllables. B)
illustrates the basic experiment design in this work: A priming input sequence is pre-
sented at inference time for which a deep learning NLP model ouputs a logits vector
– i.e. a probability distribution over the whole model vocabulary. From this vector,
the probabilities for multiple tokens (=indices of logits vector) can be calculated in
order to determine the probabilities given a certain input P(Probe|Primes) – for a
consistent P(Probe ABA|Primes ABA), as well as for the corresponding inconsistent
P(Probe AAB|Primes ABA) and P(Probe ABB|Primes ABA) conditions. A softmax
function is computed so that all values of the logits vector add up to 1 and therefore
represent a probability.
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– Instead of syllables, the tokens of the respective model vocabulary are used.
This ensures that a tri-gram sequence for any model consists of exactly three
elements, as the tri-grams for infants also consisted of exactly three syllables. For
illustration, some random tokens from conducted experiments are used in the
following examples – for a better readability these tokens are presented in plain
text; in the NLP models the words and subwords in the examples correspond to
indices in their vocabulary, e.g. ’river’ corresponds to token [2314] in BERT.

– Familiarization and test phase had a clear chronological order in the experiments
with humans, however this is harder to separate for deep learning models, as
everything happens at the same inference time. So, there has to be a certain
input in order to get the required output from the models. Consequently, the
“familiarization phase” is integrated as priming sequence in the model input
upon which the model predictions are based.
Example for {’’river’, ’shrill’} as prime A tokens and {’hue’} as prime B token:

– in the AAB priming condition ’river river hue. shrill shrill hue.’ and

– in the ABA priming condition ’river hue river. shrill hue shrill.’ would be
possible priming sequences in the model input.

In these examples, as in the real experiments, there is always the same separation
character between token tri-gram, the punctuation sign period (’.’). This corre-
sponds to the (always same) pause of one second between syllable tri-grams in
the experiments with infants.

– Since every input token affects the models’ prediction, three different inference
times had to be generated with slightly different inputs: First, the priming
sequence only, to determine the probability of the first probe token, then the
priming sequence followed by the first probe token to determine probability of
the second probe token, and last the priming sequence followed by the first and
second probe token to determine the probability of the third probe token.
Example for {’hey’} as probe A and {’sit’} as probe B token

– in the AAB priming condition ’river river hue. shrill shrill hue. [placeholder]’
would be a model input for inference time one. For the position of the
[placeholder], the probability the model would assign to ’hey’ (probe A
token) can be determined. As all examined sameness relations start with
prime A tokens, inference time two can also be generated with only one
model input for all probe structures: ’river river hue. shrill shrill hue. hey
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[placeholder]’. However, which probabilities are determined depends on the
respective probing condition:

* In AAB probing conditions the probability of ’hey’ (probe A token) for
the placeholder position would be determined.

* In ABB and ABA probing conditions, the probability of ’sit’ (probe B
token) for the placeholder position would be determined.

The model inputs for inference time three depend on the sameness relation
that is currently probed, as after the A at tri-gram position one either another
A (for AAB) or a B (for ABB and ABA) has to be inserted:

* In AAB probing conditions the input would be ’river river hue. shrill shrill
hue. hey hey [placeholder]’ and the probability of ’sit’ (probe B token) for
the placeholder position would be determined.

* In ABB and ABA probing conditions, the input would be ’river river hue.
shrill shrill hue. hey sit [placeholder]’. However, as the third tri-gram
position is different, in ABB probing conditions the probability of ’sit’
(probe B token) and in ABA probing conditions the probability of ’hey’
(probe A token) for the placeholder position would be determined.

Equation (4.1) shows this example in a formalized way for the AAB priming, AAB
probing condition:

Punnormalized(
′hey hey sit′|′river river hue. shrill shrill hue.′)

= Punnormalized(Probe AAB|Primes AAB)

= P(Probe AABtoken 1|Primes AAB)

∗ P(Probe AABtoken 2|Primes AAB, Probe AABtoken 1)

∗ P(Probe AABtoken 3|Primes AAB, Probe AABtoken 1, Probe AABtoken 2)

(4.1)

Probe AAB denotes the tri-gram for which the probability is evaluated given the
priming input sequence Primes AAB1. Further, Probe AAB consists of three tokens:
probe AABtoken 1 (’hey’), probe AABtoken 2 (’hey’), and probe AABtoken 3 (’sit’)2. Every
factor in Equation (4.1) corresponds to the probability of a inference time:

1 In this thesis, Probe and Primes, as in P(Probe|Primes), is used to denote the respective general form,
in case a statement applies for all priming and/or probing conditions.

2 As there is always one sameness relation, two of the three tri-gram tokens are the same, e.g. for the
AAB priming condition: probe AABtoken 1 = probe AABtoken 2.
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– At inference time one,
P(Probe AABtoken 1|Primes AAB)
can be retrieved from the model prediction.

– At inference time two,
P(Probe AABtoken 2|Primes AAB, Probe AABtoken 1)

can be retrieved from the model prediction.

– At inference time three,
P(Probe AABtoken 3|Primes AAB, Probe AABtoken 1, Probe AABtoken 2)

can be retrieved from the model prediction.

The multiplication of these terms (for this example) results in Punnormalized(Probe AAB|
Primes AAB) and therefore in the probability of a AAB probe tri-gram (’hey hey sit’)
– which elements were not present in the priming sequence – after a consistent AAB
priming condition (’river river hue. shrill shrill hue.’).

4.2 Calculus

The tokens to generate priming and probing tri-grams are randomly selected from
the whole model vocabulary. It is therefore evident that there is a significant variance
regarding the frequency of tokens in the pre-training datasets of the models: Both,
’the’ and ’shrill’, for example, may have been selected as probe tokens in a experiment,
whereas the former is significantly more frequent than the latter, which would have
consequences for the probabilities the models predicts. However, as the actually selected
tokens (i.e. the elements for the tri-grams with sameness relations) are not relevant
for the research interest in this thesis, the calculation of the probabilities is normalized
through dividing by the unprimed probabilities of the probe tokens. Equation (4.2)
shows the adapted calculation:
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P(Probe|Primes)

=
Punnormalized(Probe|Primes)

P(Probe)

=
P(Probetoken 1|Primes)

P(Probetoken 1)

∗ P(Probetoken 2|Primes, Probetoken 1)

P(Probetoken 2|Probetoken 1)

∗ P(Probetoken 3|Primes, Probetoken 1, Probetoken 2)

P(Probetoken 3|Probetoken 1, Probetoken 2)

(4.2)

In Equation (4.2) Probe and Primes refer to probe tri-grams and priming sequences
in general, independent of the specific priming and probing condition. For simplic-
ity, the normalized term, which is mainly addressed in this thesis, is denoted by
P(Probe|Primes) and the unnormalized term by Punnormalized(Probe|Primes).

Furthermore, the first fraction in Equation (4.2) has no expressiveness with regard
to the research interest in this work, since it entails no structural information. This
term only informs about the probability of a randomly selected token after the priming
sequence (divided by its unprimed probability) and therefore potentially only adds
unwanted noise. Consequently, this term is removed from the calculation and all results
presented in this thesis are based on Equation (4.3):

P(Probe|Primes)

=
P(Probetoken 2|Primes, Probetoken 1)

P(Probetoken 2|Probetoken 1)

∗ P(Probetoken 3|Primes, Probetoken 1, Probetoken 2)

P(Probetoken 3|Probetoken 1, Probetoken 2)

(4.3)

The surprise of infants, as measured in Marcus et al. (1999) based on the preferential
looking paradigm, is directly related to the values calculated in the presented way: Low
results of P(Probe|Primes) correspond to a large surprise and, accordingly, it could be
expected that – should NLP models compute abstract sameness relations as humans –
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the overall values would be ordered as follows:

P(Probe AAB|Primes AAB) > P(Probe ABA|Primes AAB)

P(Probe AAB|Primes AAB) > P(Probe ABB|Primes AAB)

P(Probe AAB|Primes AAB) > P(Probe ABC|Primes AAB)

−−−

P(Probe ABA|Primes ABA) > P(Probe AAB|Primes ABA)

P(Probe ABA|Primes ABA) > P(Probe ABB|Primes ABA)

P(Probe ABA|Primes ABA) > P(Probe ABC|Primes ABA)

−−−

P(Probe ABB|Primes ABB) > P(Probe AAB|Primes ABB)

P(Probe ABB|Primes ABB) > P(Probe ABA|Primes ABB)

P(Probe ABB|Primes ABB) > P(Probe ABC|Primes ABB)

(4.4)

4.3 Data

As already mentioned, priming and probing tri-grams were generated based on a
random token selection: Two A and two B prime tokens were randomly chosen; already
assigned tokens were excluded from further selection3. Afterwards four unique priming
tri-grams are generated from the selection, as shown in the following example based
on {’river’, ’shrill’} prime A and {’hue’, ’rt’} prime B tokens:

# AAB Primes ABA Primes ABB Primes
1 ’river river hue’ ’river hue river’ ’river hue hue’
2 ’river river rt’ ’river rt river’ ’river rt rt’
3 ’shrill shrill hue’ ’shrill hue shrill’ ’shrill hue hue’
4 ’shrill shrill rt’ ’shrill rt shrill’ ’shrill rt rt’

The data generation in the experiments of this work further follows those with infants,
in that each unique tri-gram occurs several times in the priming sequence. Therefore
the priming sequence always comprises 16 (4 x 4 unique) tri-grams. The order of the
resulting 16 tri-grams was randomized. So for an AAB priming condition, the following
could have been an input sequence for inference time one:

3 First the prime A, then the prime B tokens are assigned. Due to the small number of tokens in the
selection relative to the total vocabulary of the models (>30,000 tokens), the probability of assigning
any token as prime A or as prime B, respectively, can be considered to be approx. equal – for the
same reason, the sameness relations BBA, BAB, and BAA are not considered in the experiments.
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– for the AAB priming condition river river rt. shrill shrill hue. shrill shrill hue. shrill
shrill hue. shrill shrill rt. river river hue. river river rt. shrill shrill rt. river river rt.
river river hue. shrill shrill rt. river river hue. river river rt. shrill shrill hue. river river
hue. shrill shrill rt. hey [placeholder]

Analogously, four probe A and probe B tokens were selected from the model vocabu-
lary and from these 16 unique tri-grams per structure were formed:

# AAB Probes ABA Probes ABB Probes
1 A1A1B1 A1B1A1 A1B1B1

2 A1A1B2 A1B2A1 A1B2B2

... ... ... ...
4 A1A1B4 A1B4A1 A1B4B4

5 A2A2B1 A2B1A2 A2B1B1

... ... ... ...
16 A4A4B4 A4B4A4 A4B4B4

Therefore at inference time two, the following four inputs for the AAB priming example
from above were required (all As and Bs below correspond to probe tokens):

– river river rt. shrill shrill hue. shrill shrill hue. shrill shrill hue. shrill shrill rt. river river
hue. river river rt. shrill shrill rt. river river rt. river river hue. shrill shrill rt. river river
hue. river river rt. shrill shrill hue. river river hue. shrill shrill rt. [A1]. [placeholder]

– river river rt. shrill shrill hue. shrill shrill hue. shrill shrill hue. shrill shrill rt. river river
hue. river river rt. shrill shrill rt. river river rt. river river hue. shrill shrill rt. river river
hue. river river rt. shrill shrill hue. river river hue. shrill shrill rt. [A2]. [placeholder]

– river river rt. shrill shrill hue. shrill shrill hue. shrill shrill hue. shrill shrill rt. river river
hue. river river rt. shrill shrill rt. river river rt. river river hue. shrill shrill rt. river river
hue. river river rt. shrill shrill hue. river river hue. shrill shrill rt. [A3]. [placeholder]

– river river rt. shrill shrill hue. shrill shrill hue. shrill shrill hue. shrill shrill rt. river river
hue. river river rt. shrill shrill rt. river river rt. river river hue. shrill shrill rt. river river
hue. river river rt. shrill shrill hue. river river hue. shrill shrill rt. [A4]. [placeholder]

For the AAB probing condition, at inference time three, the four model inputs were

– priming sequence... [A1]. [A1]. [placeholder]
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– priming sequence... [A2]. [A2]. [placeholder]

– priming sequence... [A3]. [A3]. [placeholder]

– priming sequence... [A4]. [A4]. [placeholder]

And for the ABA and ABB probing condition, 16 model inputs were required per
priming sequence:

– priming sequence... [A1][B1]. [placeholder]

– ...

– priming sequence...[A1][B4]. [placeholder]

– priming sequence... [A2][B1]. [placeholder]

– ...

– priming sequence... [A4][B4]. [placeholder]

Overall, this experiment design, which is based on randomness, large numbers, and
normalization to minimize the influence of specific tokens (=noise), corresponds very
closely to experiments with infants, in which also a great effort was made to ensure
that the properties of the syllables used do not influence the results.

However, because these experiments revealed that the task was not as easy for NLP
models as it was for infants, a number of facilitations were implemented as well. In these
experimental settings, the database to determine primes and probes was a different
one. As all models are pre-trained on huge text corpora, they have already processed
big (language) data that also contained token tri-grams with sameness relations. In
order to identify these, parts of the respective pre-training datasets were tokenized (in
accordance with the model under investigation). Afterwards, starting from the first
token position pos1, a three token window were shifted over the whole corpus: The
first window therefore included pos1, pos2, and pos3, the last window posn−2, posn−1,
posn

4. For each token window, it was determined whether relevant sameness relations
are present:

4 This is a simplified description of the process, since there are also non-relevant tokens and the dataset
is split into “sentences”, which do not correspond to linguistic sentences, but are for the most part
significantly longer. For more details on how exactly the program worked, the source code is provided
on GitHub: https://github.com/lmthoma/MA_thesis.

https://github.com/lmthoma/MA_thesis
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– AAB: token at pos1 = token at pos2

– ABA: token at pos1 = token at pos3

– ABB: token at pos2 = token at pos3.

At the end of this first step, there were three lists with tri-grams assigned to the
respective sameness relation: AAB, ABA or ABB. The occurrences of unique tri-grams
in theses lists were determined and only those occurring at least 20 times in the text
corpus were kept. For all resulting tri-grams, the Pointwise Mutual Information (PMI)
(e.g. Manning & Schütze, 1999, pp. 166–175) was calculated:

pmi = log2(N2 ∗ C(Trigram)

(C(Token1) ∗ C(Token2) ∗ C(Token3)
) (4.5)

N in Equation (4.5) corresponds to the total number of tokens in the analyzed pre-
training data subset, C(Trigram) corresponds to the number of a respective tri-gram in
the analyzed corpus, and C(Token1), C(Token2), and C(Token3) correspond to the count
of the respective tri-gram token in the corpus at tri-gram position 1, 2, and 3, respectively.
From the pmi results, a ranking of the top 32 (unique) tri-grams was created. How
these “seen data” tri-grams were integrated into the experiments, is described in more
detail under 4.5 Experimental Settings. In general, the model inputs widely correspond
to what was said about randomly selected tokens, the most important differences are:

– Seen data is already in tri-gram form, so these do not have to be generated from
tokens – conversely the seen data tri-grams can be split into tokens. Therefore
the required set of Probe A and Probe B tokens is available to determine the
probabilities in the way described before.

– Compared to the randomly selected tokens, there are 16 unique seen data tri-
grams (vs. four unique random prime token tri-grams occurring four times
each). This was established deliberately, based on the idea that the model is more
likely to recognize the sameness relation given several different instances of seen
tri-grams with this one commonality (the identical sameness relation) – compared
to the situation in which a same tri-gram occurs multiple times in the prime
input (as it has a lower information value overall). For random token priming
sequences, the opposite is true, as more unknown (token or syllable) material
contributes to more potential noise rather than helping to detect the underlying
sameness relation – thus also the experiments with humans were designed this
way. The factor known vs. unknown data is assumed to invert this effect.
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4.4 Subjects

As outlined under 1.2 State-of-the-Art Deep Neural Language Models, there have been some
promising developments in recent years which could have resulted in deep learning
models processing natural language more human-like. The very fact that in pre-training-
fine-tuning approaches general, task-independent linguistic representations are learned
already points in this direction. Furthermore, it seems plausible that a query in the
attention mechanism learns to ask for sameness relations in the input. Therefore, three
famous representatives of NLP models were chosen that exhibit some of the innovations
presented in chapter 1.2 State-of-the-Art Deep Neural Language Models: BERT, XLNet, and
Open AI GPT-25. Also interesting in the context of human language processing is what
McClelland et al. (2020, p. 25968) attribute to these 3 models6:

[GPT-3 proceeds, LT] sequentially, predicting each word using QBA [=query based
attention, LT] over prior context, while BERT operates in parallel, using mutual
QBA simultaneously on all of the words in an input text block. Humans appear
to exploit past context and a limited window of subsequent context [reference to
Warren (1970), LT], suggesting a hybrid strategy. Some machine models [=XLNet,
LT] adopt this approach [...]

Thus, all these models show intriguing characteristics and, moreover, also significant
differences, so that this subject selection provides many relevant facets for the research
interest in this thesis. In the following, the integration of the individual models into the
experiments will be discussed more thoroughly.

4.4.1 BERT

The BERT model used in the experiments is BertForMaskedLM based on the pre-trained
bert-large-uncased – in Python BertForMaskedLM.from_pretrained(bert-large-uncased), im-
ported from the transformers library (Wolf et al., 2020), see https://huggingface.co/
transformers/model_doc/bert.html#bertformaskedlm for details. This model uses
WordPiece embeddings (Wu et al., 2016) with a vocabulary of approx. 30,000 tokens
in total (Devlin et al., 2019, p. 4174). For BERT, every sequence has to start with a
special classification token [CLS] and for BertForMaskedLM the end of a model input is
denoted with [SEP]. The third special token in the model input is [MASK] that is used

5 GPT-3 would have been the model of choice, if it were openly available. The provided API does not
output the complete logits vector that is required for the experiment design in this thesis.

6 Open AI GPT-3 can be equated with GPT-2 in this respect.

https://huggingface.co/transformers/model_doc/bert.html#bertformaskedlm
https://huggingface.co/transformers/model_doc/bert.html#bertformaskedlm
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as placeholder for the token position of interest; i.e. [MASK] is placed at the position
for which the probability of the respective probe token is determined.

– Example input BERT – plain text, AAB priming condition:
[CLS] river river rt. shrill shrill hue. shrill shrill hue. shrill shrill hue. shrill shrill rt.
river river hue. river river rt. shrill shrill rt. river river rt. river river hue. shrill shrill
rt. river river hue. river river rt. shrill shrill hue. river river hue. shrill shrill rt. hey
[MASK] [SEP]

As mentioned before, in order to guarantee that every tri-gram consists of exactly tree
tokens, the input generation is based directly on token IDs (rather than plain text); the
special tokens (including the pause) translate to the following model vocabulary IDs:
[CLS] –> 101, “.” –> 1012, [MASK] –> 103, [SEP] –> 102. Therefore the model input for
the example above is the following sequence of token IDs:

– Example input BERT – token IDs, AAB priming condition:
101 2314 2314 19387 1012 28349 28349 20639 1012 28349 28349 20639 1012 28349

28349 20639 1012 28349 28349 19387 1012 2314 2314 20639 1012 2314 2314 19387

1012 28349 28349 19387 1012 2314 2314 19387 1012 2314 2314 20639 1012 28349

28349 19387 1012 2314 2314 20639 1012 2314 2314 19387 1012 28349 28349 20639

1012 2314 2314 20639 1012 28349 28349 19387 1012 4931 103 102

In this example input, the probe token right before the placeholder [MASK] is hey (ID
4931). Thus, if this were an input for an AAB probing condition, the probability of
hey (at the position of [MASK]) can be calculated: The softmax function transforms all
values into probabilities (between 0 and 1), so the required value can be retrieved from
index 4931 of the softmax vector.

The pre-training dataset for bert-large-uncased consists of the BooksCorpus (800

Million words) (Zhu et al., 2015) and of English Wikipedia (2,500 Million words)
(Devlin et al., 2019, p. 4175). The BooksCorpus dataset is freely available (cf. e.g.
https://huggingface.co/datasets/bookcorpus) and was used to create the PMI ranking
for BERT. Therefore the tri-gram ranking used in the respective experiments is based
on a lot of data BERT has seen in pre-training.

4.4.2 XLNet

In order to use a XLNet model as subject in the experiments of this thesis, XLNetLM-
HeadModel based on the pre-trained xlnet-large-cased had to be chosen. This model

https://huggingface.co/datasets/bookcorpus
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outputs to a “language modeling head”, a linear layer on top with weights connected
to the input embeddings (for details cf. e.g. https://huggingface.co/transformers/
model_doc/xlnet.html#xlnetlmheadmodel). XLNet uses SentencePiece embeddings
(Kudo & Richardson, 2018) and the model has a vocabulary size of 32,000 (Yang et al.,
2020, p. 6). Sequence inputs for the XLNetLMHeadModel start with Unicode character
U+2581 (ID: 17, "_" in plain text examples below) and the end of a sequence is denoted
with the [SEP] (ID: 4) and [CLS] (ID: 3) tokens. Although XLNet is not pre-trained
based on token masking, the vocabulary also provides a [MASK] token (ID: 6) that is
used as placeholder in the experiments; the index of the pause “.” is 9.

– Example input XLNet – plain text7, AAB priming condition:
_ shan shan _dollars. cephal cephal _interpretation. shan shan _interpretation. shan
shan _interpretation. shan shan _interpretation. shan shan _dollars. shan shan _dollars.
shan shan _interpretation. cephal cephal _interpretation. cephal cephal _dollars. cephal
cephal _dollars. cephal cephal _dollars. cephal cephal _interpretation. cephal cephal
_interpretation. shan shan _dollars. cephal cephal _dollars. _Rou [MASK] [SEP] [CLS]

– Example input XLNet – token IDs, AAB priming condition:
17 7613 7613 517 9 21039 21039 6603 9 7613 7613 6603 9 7613 7613 6603 9 7613

7613 6603 9 7613 7613 517 9 7613 7613 517 9 7613 7613 6603 9 21039 21039 6603 9

21039 21039 517 9 21039 21039 517 9 21039 21039 517 9 21039 21039 6603 9 21039

21039 6603 9 7613 7613 517 9 21039 21039 517 9 11559 6 4 3

The calculation is done exactly as described under 4.4.1 BERT; XLNet also uses the
BooksCorpus in pre-training, therefore the PMI tri-gram ranking for the seen data
experimental settings was again based on this dataset.

4.4.3 OpenAI GPT-2

As for XLNet, in the experiments with GPT-2 as subject the GPT2LMHeadModel based
on the pre-trained gpt2 model was used in the program (for details cf. e.g. https:
//huggingface.co/transformers/model_doc/gpt2.html#tfgpt2lmheadmodel). Apart
from that, OpenAI GPT-2 is different from the other models in several regards: The
language modeling is based on a middle ground between word level and character
level (Radford et al., 2019, p. 4) as the Byte Pair Encoding tokenization approach is
utilized (Sennrich et al., 2016). In the context of this thesis this could be especially

7 Tokens starting with "_" are subwords in XLNet

https://huggingface.co/transformers/model_doc/xlnet.html#xlnetlmheadmodel
https://huggingface.co/transformers/model_doc/xlnet.html#xlnetlmheadmodel
https://huggingface.co/transformers/model_doc/gpt2.html#tfgpt2lmheadmodel
https://huggingface.co/transformers/model_doc/gpt2.html#tfgpt2lmheadmodel
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relevant since the vocabulary size of the GPT-2 model is with 50,256 significantly larger
than for the other models and thus potentially more sensitive at subword level (at
which sameness relation may be more salient than at higher levels, given the English
language data input). Furthermore, in order to pass an input sequence to the model,
only one special token is required: [|endoftext|] (ID: 50,256) which denotes the end
of the input. As the language modeling in OpenAI GPT-2 is based only on the left
context, no placeholder token is required because the probability can be queried for
the sequence position of the [|endoftext|] token. 13 is the token ID of “.” which again
signals the pause between tri-grams.

– Example input OpenAI GPT-2 – plain text8, AAB priming condition:
Ġmogul Ġmogul json. Ġchecking Ġchecking ĠMarvin. Ġchecking Ġchecking json.
Ġchecking Ġchecking json. Ġchecking Ġchecking ĠMarvin. Ġchecking Ġchecking
ĠMarvin.Ġchecking Ġchecking json. Ġmogul Ġmogul ĠMarvin. Ġmogul Ġmogul
ĠMarvin. Ġmogul Ġmogul json. Ġmogul Ġmogul json. Ġmogul Ġmogul ĠMarvin.
Ġchecking Ġchecking ĠMarvin. Ġmogul Ġmogul ĠMarvin. Ġchecking Ġchecking json.
Ġmogul Ġmogul json. ĠSOFTWARE [|endoftext|]

– Example input OpenAI GPT-2 – token IDs, AAB priming condition:
37690 37690 17752 13 10627 10627 35105 13 10627 10627 17752 13 10627 10627

17752 13 10627 10627 35105 13 10627 10627 35105 1310627 10627 17752 13 37690

37690 35105 13 37690 37690 35105 13 37690 37690 17752 13 37690 37690 17752

13 37690 37690 35105 13 10627 10627 35105 13 37690 37690 35105 13 10627 10627

17752 13 37690 37690 17752 13 47466 50256

What was described under 4.4.1 BERT also applies for these calculations. The dataset
OpenAI GPT-2 is pre-trained on is not publicly available, however, Gokaslan et al.
(2019) created an "open-source replication of the WebText dataset from OpenAI" (for
details see also https://huggingface.co/datasets/openwebtext). Consequently, a subset
of openwebtext was used to create the seen data PMI tri-gram ranking for the GPT-2
model.

4.5 Experimental Settings

All performed experiments consisted of 16 prime and 16 probe tri-grams per structure
that were either formed by two random A prime and two random B prime tokens or

8 Tokens starting with "Ġ" are subwords in OpenAI GPT-2.

https://huggingface.co/datasets/openwebtext
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were taken from the PMI ranking. In the latter case, 16 out of 32 from the ranking were
randomly assigned to be priming tri-grams, the remaining 16 were taken as probing
tri-grams. So one experiment cycle always comprised the following tri-grams9:

Primes:

– Primes AAB = {AABprime1, AABprime2, ..., AABprime16}

– Primes ABA = {ABAprime1, ABAprime2, ..., ABAprime16}

– Primes ABB = {ABBprime1, ABBprime2, ..., ABBprime16}

Probes:

– Probe Set AAB = {Probe AAB1, Probe AAB2, ..., Probe AAB16}

– Probe Set ABA = {Probe ABA1, Probe ABA2, ..., Probe ABA16}

– Probe Set ABB = {Probe ABB1, Probe ABB2, ..., Probe ABB16}

Based on the model inputs generated from these sets and tri-grams, the following
P(Probe|Primes) values were calculated per experiment cycle:

AAB 1: P(ProbeAAB1|PrimesAAB) P(ProbeAAB1|PrimesABA) P(ProbeAAB1|PrimesABB)
AAB 2: P(ProbeAAB2|PrimesAAB) P(ProbeAAB2|PrimesABA) P(ProbeAAB2|PrimesABB)
... ... ... ...
AAB 16: P(ProbeAAB16|PrimesAAB) P(ProbeAAB16|PrimesABA) P(ProbeAAB16|PrimesABB)
ABA 1: P(ProbeABA1|PrimesAAB) P(ProbeABA1|PrimesABA) P(ProbeABA1|PrimesABB)
... ... ... ...
ABA 16: P(ProbeABA16|PrimesAAB) P(ProbeABA16|PrimesABA) P(ProbeABA16|PrimesABB)
ABB 1: P(ProbeABB1|PrimesAAB) P(ProbeABB1|PrimesABA) P(ProbeABB1|PrimesABB)
... ... ... ...
ABB 16: P(ProbeABB16|PrimesAAB) P(ProbeABB16|PrimesABA) P(ProbeABB16|PrimesABB)

In experimental settings in which the probe tri-grams were generated from randomly
selected tokens, also the values for ABC structures were determined. In those, Ci

corresponded to Ai+1 of the respective token – and the last (=2nd) position in the probe
A set corresponded to the first in the probe C set: probe A = {A1, A2}, probe C =
{A2, A1}. So there was the following additional set in the random probe experimental
settings:

9 In order to better highlight the difference between primes and probes a different form of representation
for the sets and tri-grams was chosen
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– Probe Set ABC = {Probe ABC1, Probe ABC2, ..., Probe ABC16}

Consequently, in these experimental settings the following additional values were
calculated:

ABC 1: P(ProbeABC1|PrimesAAB) P(ProbeABC1|PrimesABA) P(ProbeABC1|PrimesABB)
ABC 2: P(ProbeABC2|PrimesAAB) P(ProbeABC2|PrimesABA) P(ProbeABC2|PrimesABB)
... ... ...
ABC 16: P(ProbeABC16|PrimesAAB) P(ProbeABC16|PrimesABA) P(ProbeABC16|PrimesABB)

A so designed experiment cycle contains only one priming set per structure:
Primes AAB, Primes ABA, and Primes ABB. In order to generate results for different
priming sets, one experiment run consisted of 256 cycles. And as every experiment was
run three times, all results in this work are based on 12,288 values per priming-probing
condition.

Several pilot experiments restricted to real language data on the word-level (i.e. word
tokens only; no subwords, numbers, symbols, etc.) did not result in the models being
able to cope with the task more easily. Thus there were no restrictions at all in the final
experiments: In random token experimental settings any token of a model’s vocabulary
could be randomly chosen (with the exception of the respective special tokens required
in the model input mentioned before: [MASK], [CLS], ".", etc.).

4.5.1 Random Primes, Random Probes

This is the original experimental setting for which – since it is very unlikely that the
generated tri-grams were present in the pre-training data sets – it is assumed that a
model is confronted with unseen prime and probe tri-grams. Therefore the computation
of ASRs has to be exactly the same as in humans: It is necessary to detect the sameness
relation in the (unknown) prime tri-grams and generalize it to the (unknown) probe
tri-gram in order to evaluate the consistent priming-probing condition more likely than
the inconsistent ones; e.g. P(Probe AAB|Primes AAB) > (P(Probe ABA|Primes AAB) &
P(Probe ABB|Primes AAB) & P(Probe ABC|Primes AAB)). To better illustrate the setting,
the AAB prime –> AAB probe model input for a calculation with the tokens from a
performed experiment cycle for the model BERT is given here (Table 4.1 shows a subset
of results for this example):
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1. Tokens – all randomly chosen from the model’s vocabulary
Prime A: {relevance, drank} –> IDs: {21923, 10749}
Prime B: {convict, ##bian}10 –> IDs: {20462, 15599}
Probe A: {jewelry, gregg, 1683, ##gled} –> IDs: {11912, 18281, 27414, 11533}
Probe B: {jacobs, mines, gore, lexington} –> IDs: {12988, 7134, 3638, 14521}

2. Tri-grams – generated from selected tokens
Primes AABunique = {{21923, 21923, 20462}, {21923, 21923, 15599},
{10749, 10749, 20462}, {10749, 10749, 15599}}
Probe AAB1 = {11912, 11912, 12988}

3. Model input for P(Probe A|Probe A) – required for normalization
101 11912 103 102

4. Model input for P(Probe B|Probe A, Probe A) – required for normalization
101 11912 11912 103 102

5. Model input for P(Probe A|Primes, Probe A) – every element of
Primes AABunique occurs four times; the order of the resulting tri-gram set
Primes AAB is randomized
101 21923 21923 20462 1012 10749 10749 15599 1012 21923 21923 15599 1012 10749

10749 20462 1012 10749 10749 20462 1012 10749 10749 15599 1012 21923 21923

20462 1012 21923 21923 15599 1012 10749 10749 20462 1012 21923 21923 15599

1012 10749 10749 15599 1012 10749 10749 15599 1012 21923 21923 20462 1012

21923 21923 20462 1012 10749 10749 20462 1012 21923 21923 15599 1012 11912 103

102

6. Model input for P(Probe B|Primes, Probe A, Probe A): – again, the Primes AAB
set is used (and shortened)
101 21923 21923 20462 1012 ... 21923 21923 15599 1012 11912 11912 103 102

All subsequent experimental settings derive from this original one – as mentioned
earlier, various facilitations were systematically incorporated to investigate what might
be the reason that all examined models did not exhibit human-like behavior in the
Random Primes, Random Probes experimental setting.

10 “##” in BERT tokens indicate that it is a subword.
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4.5.2 Seen Primes, Random Probes

Here the prime sequences are generated based on the PMI ranking introduced in sub
chapter 4.3 Data. By determining the Pointwise Mutual Information, it was ensured that
the identified tri-grams not only occurred in the pre-training datasets of the models, but
that the respective token sequence did not occur by chance. Thus, the models have not
only seen these tri-grams, but maybe also have treated them as special (collocations).
As all of them feature sameness relations, the models may have noticed and represented
these. Using these seen data tri-grams in the priming sequences may therefore facilitate
the detection of a respective sameness relation. The probing task (which requires
abstraction to unseen tri-grams) remains the same as in the original setting.

From the ranking of the 32 top PMI tri-grams per structure, 16 are randomly taken
to form the three priming sets (Primes AAB, Primes ABA, and Primes ABB) of a
experiment cycle. In one conducted experiment cycle, this resulted in the following
priming sequence (Primes AAB):
{{>, >, logo}, {goo, goo, dolls}, {##52, ##52, ##6}, {##iii, ##iii, ##ii}, {##ee, ##ee, ##ase}, {##oo,
##oo, ##oh}, {>, >, <}, {/, /, recordings}, {##kk, ##kk, ##k}, {/, /, www}, {##13, ##13, ##0}, {##8,
##8, ##7}, {̃, ,̃ 0}, {##7, ##7, ##6}, {##aa, ##aa, ##hh}, {smashwords, smashwords, edition}}

A B P(A|A) P(B|A,A) P(A|Primes,A) P(B|Primes,A,A) P(AAB|Primes)

11912 12988 1.53E-15 2.27E-16 3.23E-15 2.05E-17 1.92E-01
11912 7134 1.53E-15 4.50E-17 3.23E-15 8.33E-19 3.92E-02
11912 3638 1.53E-15 2.56E-16 3.23E-15 5.96E-17 4.93E-01
11912 14521 1.53E-15 4.79E-15 3.23E-15 3.02E-17 1.34E-02
... ... ... ... ... ... ...
Table 4.1: Some results for AAB prime –> AAB probe model inputs. Please note that
P(AAB|Primes) is already the normalized version and therefore based on Equation
(4.3).

Also in this experimental setting, the order of the tri-grams in the set is randomized
in the priming sequence. Again, the fact that in this priming sequence every tri-gram is
unique is considered as another facilitation for the model: More seen data examples
that share one feature (the sameness relation) may increase the models ability to detect
the sameness relation and generalize it to the probe tri-grams.
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4.5.3 Random Primes, Seen Probes

In this setting, the priming part functions as described in 4.5.1 Random Primes, Random
Probes, however the probe tri-grams are taken from the PMI ranking. 16 (out of
32) tri-grams per structure are assigned to form the respective three probing sets
(Probe Set AAB, Probe Set ABA, and Probe Set ABB). One example model input for
inference time three would be11:

– Example Probe Tokens: Probe AAB1 = {>, >, logo} = {1028, 1028, 8154}

– Model input for P(Probe B|Primes, Probe A, Probe A)12:
101 21923 21923 20462 1012 10749 10749 15599 1012 21923 21923 15599 1012 10749

10749 20462 1012 10749 10749 20462 1012 10749 10749 15599 1012 21923 21923

20462 1012 21923 21923 15599 1012 10749 10749 20462 1012 21923 21923 15599

1012 10749 10749 15599 1012 10749 10749 15599 1012 21923 21923 20462 1012 21923

21923 20462 1012 10749 10749 20462 1012 21923 21923 15599 1012 1028, 1028, 103

102

This experimental setting is intended to facilitate the detection of the corresponding
sameness relation on the probe-side. Accordingly, this setting can be considered as
facilitation of the task at the same (one-sided) level: The “end-point” (instead of the
“starting point”) of the abstraction is easier to identify. The detection of the sameness
relation in the priming input requires the same faculties as the Random Primes, Random
Probes experimental setting. Accordingly, also in this experimental setting, there is
only one facilitation implemented. The comparison to the Seen Primes, Random Probes
experimental setting, that also features one facilitation but elsewhere (“starting point”
vs. “end-point”), may provide information to localize the problems the models had
with the computation of ASRs.

4.5.4 Seen Primes, Seen Probes

This experimental setting combines the two kinds of task facilitation described just
before: All priming and probing tri-grams are taken from the PMI ranking. Therefore,
the model in general does not have to be able to infer (potentially) represented sameness
relations from unknown material. In sum there are two facilitations in the task,

11 These are the 16 tri-grams that were assigned to Primes AAB in the example above – in this example
they are used as Probe Set AAB.

12 Priming sequence taken from the Random Prime, Random Probe Exerpiment Setting example.
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compared to the original Random Primes, Random Probes experimental setting: At
the prime (“starting point”) and probe (“end-point”) side. Therefore, successful results
only in this experimental setting would imply that the computation of ASRs is not
human-like, but present in a mitigated form. However, it can already be anticipated
that none of the models examined produced clear results in any experimental setting –
the interpretation of the results is thus not straightforward and further investigations
are required to (deductively) explore the models’ behaviors in these tasks, which will
be discussed in more detail later.

4.5.5 Control Settings: Random and Seen Probes = Primes

In these experimental settings, the prime sets of a respective structure are equated with
the corresponding probe set in the experiments:

– Probe Set AAB = Primes AAB

– Probe Set ABA = Primes ABA

– Probe Set ABB = Primes ABB

Consequently, there was the Random Probes = Primes and the Seen Probes = Primes
experimental setting: Accordingly, the former was based on randomly selected prime
tokens and the latter on seen data prime tri-grams from the PMI ranking – in both the
priming tri-grams were assigned to the probe sets.

In each variant, neither an abstraction nor a detection of sameness relations is
required because the exact same sequence of probe tokens also occurs in the priming
sequence. However, there is a difference in the number of occurrences:

– As in all Random Prime experimental settings, the tri-grams are not unique,
therefore the respective probe tri-gram is primed four times in every inference
time. Another consequence is that also the Probe tri-grams are not unique and
therefore, the exact same model input (priming sequence + probe tokens) is given
four times per experiment cycle.

– In the Seen Probes = Primes experimental setting, all trig-rams are unique,
therefore the probe tri-gram in a model input only occurred once in the priming
sequence. Consequently, all model inputs (priming sequence + probe tokens) are
unique in a experiment cycle.
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These experimental settings have little explanatory power with respect to the research
questions, however they were used to check whether the models exhibit a priming
effect at all – and therefore, these settings reveal whether the experiment design works
for a respective model: If there is no priming effect, even when the exact same probe
tri-gram also occurs in the priming sequence, then the design of experimental settings
would not be suitable to investigate the computation of ASRs in a corresponding NLP
model. Furthermore, the normalization implemented in the calculation (cf. Equation
(4.3)) allows for a straightforward interpretation of the resulting numbers, regarding
the priming effect: Values around 1 accordingly indicate that there is no priming effect
at all, since the priming sequence does not increase the probability of a particular
probe tri-gram. Values smaller than or greater than 1 represent a negative or positive
priming effect, respectively. Moreover, the numbers greater than 1 also reveal how
much influence the priming sequence has on the probes (e.g. values around 101 vs.
106).

4.6 Chapter Summary

The general experiment design builds on the idea of a priming effect in deep learning
NLP models inspired by the experiments with infants, in which such a priming
effect is observable: In the priming phase, a certain sameness relation present in
syllable tri-grams is presented and in the subsequent probing phase, different kinds
of sameness relations have to be evaluated by the subjects. In the experiments in
this thesis, the priming sequence corresponds to the priming phase, however, the
same sequence is used multiple times (for multiple inference times) together with
different probe tri-grams (from all sameness relation structures). In the following
example, a (schematic) AAB priming model input is shown for every first probe tri-gram
(Probe AAB1, Probe ABA1, and Probe ABB1) in a respective probe set (Probe Set AAB,
Probe Set ABA, and Probe Set ABB):

1. AAB priming sequence. [Probe Token A1]. [Probe Token A1]. [placeholder]

2. AAB priming sequence. [Probe Token A1]. [Probe Token B1]. [placeholder]

Given this input, a model can be asked for the probability it would assign, for example,
to [Probe Token B1] at the position of the placeholder – in the first example input this
would be the value for a P(B1|Primes AAB, A1, A1) and therefore for a term to calculate
one instance of a consistent probing situation P(Probe AAB1|Primes AAB), whereas in
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the second example input, it would be the value for a P(B1|Primes AAB, A1, B1) that
is required to determine the inconsistent P(Probe ABB1|Primes AAB). These values
relate directly to the surprise in the experiments with infants (which is usually greater
for inconsistent probe tri-grams): High values of P(Probe|Primes) correspond to a low
surprise. Consequently, a model behaves human-like when it assigns higher probability
values to consistent probing situations than to inconsistent ones.

The original experiment was based solely on randomly selected prime and probe
tokens from which the priming and probing tri-grams with sameness relations (AAB,
ABA, ABB) were build. However, as the first results did not show human-like behavior
regarding the computation of ASRs, different kinds of facilitations were implemented.
The basic hypothesis behind these facilitations was that the models may perform better
when tri-grams (with sameness relations) they have already seen and processed during
pre-training are involved in the task. All details about how the selected state-of-the-art
deep neural language models performed in the different experimental settings will
follow in the remainder of this thesis.



5 Results

The previous chapter elaborated in great detail on how the experiments were conducted
and why they were performed in this particular way. As mentioned, the normalized
probability of probing tri-grams after a priming (tri-gram) sequence, P(Probe|Primes),
is directly related to the surprisal measured in the experiments with infants. There-
fore, a model behaves human-like regarding the computation of abstract sameness
relation if the consistent probe tri-gram (e.g. P(ABB|Primes ABB)) is rated higher
than any inconsistent one (e.g. P(AAB|Primes ABB), P(ABA|Primes ABB), and
P(ABC|Primes ABB)). If the findings from the experiments with infants are transferred
to the calculations and presentation form in this thesis, the results would probably
look as shown in Figure 5.1. By assuming state-of-the-art deep learning NLP models
acquiring the mechanism in pre-training, it has been expected that the results for a
particular model look similar to those shown in Figure 5.1 – starting from the Random
Prime, Random Probe experimental setting. However, if this is not the case for this
original experimental setting, the other settings and the corresponding facilitations can
be used to examine where the respective model has difficulties: Is it because of the
unseen tri-grams, on the prime- or probe-side – or both?

In this chapter, the results are presented per model and therefore it divides into
three sub chapters: 5.1 Results for BERT, 5.2 Results for XLNet, and 5.3 Results for OpenAI
GPT-2. Each sub chapter starts with an evaluation whether the experimental design
worked for the respective model – based on the control settings Random Probes =
Primes and Seen Probes = Primes. In all experimental settings for all models the mean
value always aligned with the maximum value, so it was evident that extreme outliers
have a too huge impact on the mean. Therefore, the median is also shown in the charts
and considered in the analyses. The medians and means of a model are calculated
based on the 12,288 P(Probe|Primes) values per priming-probing condition. Since all
results are not as straightforward as expected, an additional form of illustration is
included as well: Tables that show the “relative value change” (rvc) for all priming and
probing conditions. For this P(AAB|Primes), P(ABA|Primes), and P(ABB|Primes) in
the respective priming condition are divided by the average value for all priming

48
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conditions, as shown in Equations (5.1)-(5.4):

Prvc(AAB|AAB Primes) =

P(AAB|AAB Primes)
average(P(AAB|AAB Primes), P(AAB|ABA Primes), P(AAB|ABB Primes))

(5.1)

Prvc(ABA|AAB Primes) =

P(ABA|AAB Primes)
average(P(ABA|AAB Primes), P(ABA|ABA Primes), P(ABA|ABB Primes))

(5.2)

Prvc(ABB|AAB Primes) =

P(ABB|AAB Primes)
average(P(ABB|AAB Primes), P(ABB|ABA Primes), P(ABB|ABB Primes))

(5.3)

Prvc(ABC|AAB Primes) =

P(ABC|AAB Primes)
average(P(ABC|AAB Primes), P(ABC|ABA Primes), P(ABC|ABB Primes))

(5.4)

This ensures – even if there is huge noise – that an existing effect cannot be overlooked.
Consequently, the columns always sum up to 300% in these tables (for means and
medians, respectively). The cells of the consistent priming-probing condition are
highlighted in gray, the actual maxima are in bold type. Further information necessary
for the interpretation of the results is provided directly in the caption texts of the figures
and tables.
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Figure 5.1: Illustration of the insights gathered from abstract sameness relation ex-
periments with infants. This chart shows the results for an ABB priming condition
P(Probe|Primes ABB). The consistent ABB Probe tri-grams trigger the highest prob-
ability which is equivalent to the lowest surprise (here the probability is arbitrar-
ily rated 10 times higher than without preceding priming sequence, therefore the
normalized P(Probe ABB|Primes ABB) = 10). In this theoretical visualization, it
is assumed that the two inconsistent probing conditions with sameness relations
P(Probe AAB|Primes ABB) and P(Probe ABA|Primes ABB) are twice as probable as
the corresponding unprimed tri-grams, since also in the inconsistent case the alleged
sameness detection circuit (Endress, 2020) would have been activated. In contrast,
the ABC tri-grams do not have sameness relations and therefore it is assumed their
probabilities are not higher as if they were in a unprimed model input, consequently,
the mean value equals 1.

5.1 Results for BERT

In a nutshell, the experimental design was assumed to work for BERT, but the
normalized probabilities in all experimental settings indicate that this model does not
behave human-like with respect to the computation of ASRs.

As the results for the control settings in Figure 5.2 and Figure 5.3 suggest, the BERT
model struggles even with these supposedly simple tasks. In the Random Probes =
Primes control setting (Figure 5.2) the median of the ABB priming condition is highest
for the inconsistent P(AAB|Primes ABB). However, as Table 5.1 shows, the relative
value change results exhibit exactly the expected behavior. For the Seen Probes =
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Primes experimental setting, the charts in Figure 5.3 appear rather chaotic regarding
the expected model behavior, but in Table 5.2 there is only one inconsistent median in
relative value changes that stands out: Prvc(Probe AAB|Primes ABB). This indicates
that seen data probably causes more noise and therefore it is harder for the model
to benefit in probing from identical primed inputs. Overall, as noted above, it is still
assumed that the design of the experiment was appropriate for BERT.

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 300.00% 0.00% 0.00%
Median 299.45% 0.07% 0.89%

ABA Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 0.00% 300.00% 0.05%
Median 0.01% 299.76% 228.45%

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 0.00% 0.00% 299.95%
Median 0.54% 0.17% 70.66%

Table 5.1: BERT Random Probes = Primes control setting – relative value change (rvc)
for means and medians as defined in Equations (5.1)-(5.4).

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 299.99% 0.01% 124.54%
Median 241.63% 0.01% 8.95%

ABA Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 0.01% 299.99% 167.60%
Median 58.34% 299.99% 291.04%

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 0.00% 0.00% 7.86%
Median 0.03% 0.00% 0.01%

Table 5.2: BERT Seen Probes = Primes control setting – relative value change (rvc) for
means and medians as defined in Equations (5.1)-(5.4).
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Figure 5.2: BERT Random Probes = Primes control setting – median (left axis) and
means (right logarithmic axis) over all P(Probe|Primes) values. In this experimental
setting, every prime tri-gram is build from randomly selected tokens – the probing is
as well based on these priming tri-gram set (Probe Set = Primes). Please note that the
left axis is dimensioned differently in each chart.



5 Results 53

Figure 5.3: BERT Seen Probes = Primes control setting – median (left axis) and means
(right logarithmic axis) over all P(Probe|Primes) values. In this experimental setting,
the prime tri-grams are taken from the PMI ranking – the probing is as well based
on these priming tri-gram set (Probe Set = Primes). Please note that the left axis is
dimensioned differently in each chart.
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AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes) Prvc(ABC|Primes)

Mean 0.02% 0.59% 161.91% 14.80%
Median 63.54% 46.84% 47.97% 48.43%

ABA Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes) Prvc(ABC|Primes)

Mean 0.00% 0.62% 39.35% 28.83%
Median 165.46% 168.54% 174.59% 173.38%

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes) Prvc(ABC|Primes)

Mean 299.98% 298.79% 98.74% 256.37%
Median 70.99% 84.62% 77.44% 78.19%

Table 5.3: BERT Random Primes, Random Probes experimental setting – relative
value change (rvc) for means and medians as defined in Equations (5.1)-(5.4).

As Figure 5.4 and Table 5.3 show, the expected behavior for the original Random
Primes, Random Probes experimental setting has clearly not occurred. However, it
is striking that the values are distributed very similarly in relation to each other
in all priming conditions, both for the mean (P(ABB|Primes) > P(AAB|Primes) >

P(ABA|Primes) > P(ABC|Primes) – with one exception in the ABB priming condi-
tion) and for the median (P(ABC|Primes) > P(ABB|Primes) > P(AAB|Primes) >

P(ABA|Primes)).
Figure 5.5 and Table 5.4 indicate that using seen prime tri-grams leads to almost the

same results. However, here the primes seem to have a different influence on the values
in general. In Random Primes, Random Probes, all median values in the ABA priming
condition were highest compared to the other priming conditions, whereas for the
mean values the maxima are to be found in the ABB priming condition. In the Seen
Primes, Random Probes experimental setting, the values for the ABB priming condition
were considerably lower for both, mean and median, and quite similar for the AAB
and ABB priming conditions.
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AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes) Prvc(ABC|Primes)

Mean 112.03% 62.66% 143.68% 113.22%
Median 137.81% 126.39% 152.16% 119.98%

ABA Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes) Prvc(ABC|Primes)

Mean 169.19% 226.18% 149.31% 185.01%
Median 158.44% 169.11% 143.12% 175.70%

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes) Prvc(ABC|Primes)

Mean 18.78% 11.16% 7.01% 1.77%
Median 3.75% 4.51% 4.72% 4.32%

Table 5.4: BERT Seen Primes, Random Probes experimental setting – relative value
change (rvc) for means and medians as defined in Equations (5.1)-(5.4).

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 1.28% 76.52% 74.49%
Median 84.39% 78.16% 74.73%

ABA Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 297.96% 132.25% 117.20%
Median 133.62% 138.28% 141.77%

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 0.76% 91.23% 108.31%
Median 82.00% 83.55% 83.50%

Table 5.5: BERT Random Primes, Seen Probes experimental setting – relative value
change (rvc) for means and medians as defined in Equations (5.1)-(5.4).
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Figure 5.4: BERT Random Primes, Random Probes experimental setting – median
(left axis) and means (right logarithmic axis) over all P(Probe|Primes) values. In this
experimental setting, the prime and probe tri-grams are build from randomly se-
lected tokens.
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Figure 5.5: BERT Seen Primes, Random Probes experimental setting – median (left
axis) and means (right logarithmic axis) over all P(Probe|Primes) values. In this ex-
perimental setting, the prime tri-grams are taken from the PMI ranking, the probe
tri-gram are build from randomly selected tokens. Please note that the left axis is
dimensioned differently for the ABB priming condition.
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AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 268.90% 9.89% 45.22%
Median 116.38% 169.45% 228.58%

ABA Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 31.01% 288.50% 254.49%
Median 183.59% 130.51% 71.17%

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 0.09% 1.61% 0.29%
Median 0.02% 0.04% 0.25%

Table 5.6: BERT Seen Primes, Seen Probes experimental setting – relative value
change (rvc) for means and medians as defined in Equations (5.1)-(5.4).

Random primes and seen probes cause a very similar behavior, as Figure 5.6 and
Table 5.5 show. Mean and median values are highest for ABA Primes – although the
mean values are very similar for all conditions (with a few exceptions).

Also in the experimental setting in which both primes and probes are based on seen
data the expected behavior is not observable, as Figure 5.7 and Table 5.6 display. It is
perhaps remarkable that in priming condition ABB the median of the consistent ABB
probes in relation is larger than that for the ABA probes, which is the greatest in all
other priming conditions – in the experimental settings so far the relative distribution
of the median values to each other was constant, in contrast to the mean.

In summary, no facilitation has resulted in BERT’s behavior becoming more human-
like. What can be noted for this model, however, is that there is in general a clear
priming effect, as the normalized probability values are far above 1 (and therefore
Punnormalized(Probe|Primes) >> P(Probe)).
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Figure 5.6: BERT Random Primes, Seen Probes experimental setting – median (left
axis) and means (right logarithmic axis) over all P(Probe|Primes) values. In this ex-
perimental setting, the prime tri-grams are build from randomly selected tokens, the
probe tri-grams are taken from the PMI ranking.
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Figure 5.7: BERT Seen Primes, Seen Probes experimental setting – median (left axis)
and means (right logarithmic axis) over all P(Probe|Primes) values. In this exper-
imental setting, the prime as well as the probe tri-grams are taken from the PMI
ranking. Please note that the left axis is dimensioned differently for the ABB priming
condition.
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AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 262.72% 2.34% 0.16%
Median 292.41% 1.72% 9.75%

ABA Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 19.17% 296.81% 0.04%
Median 2.79% 292.43% 17.58%

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 18.10% 0.85% 299.80%
Median 4.80% 5.85% 272.66%

Table 5.7: XLNet Random Probes = Primes control setting – relative value change
(rvc) for means and medians as defined in Equations (5.1)-(5.4).

5.2 Results for XLNet

In short, the results for XLNet are as follows: Again, it can be assumed that the experi-
ment design worked, and, as for BERT, the behavior is not even close to human-like
– neither in the original Random Primes, Random Probes experimental setting, nor
in any setting that incorporates facilitations based on seen tri-grams with sameness
relations.

Similar to BERT, the results in the control settings (cf. Figure 5.8 and Figure 5.9 as
well as Table 5.7 and Table 5.8) do not show a clear picture, but they suggest that the
experimental design is suitable, too. There are almost the same caveats as for BERT,
thus only looking at the median values shows relatively consistent results – with the
exception of the ABA priming condition in the Seen Probes = Primes experimental
setting in which the difference between P(AAB|Primes) and P(ABA|Primes) is quite
minor, but the consistent probes still score higher (cf. Figure 5.9). The mean, however,
suggests quite an unexpected behavior when only the absolute values are considered –
but once more, from the relative value change results a more consistent picture emerges,
as Table 5.8 indicates – again with one exception (ABA priming condition).

Figure 5.10 and Table 5.9 demonstrate very clearly that XLNet is not behaving as
expected in the original experimental setting. As for the BERT Random Primes, Random
Probes results, it is again striking that the mean and median values are distributed
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Figure 5.8: XLNet Random Probes = Primes control setting – median (left axis) and
means (right logarithmic axis) over all P(Probe|Primes) values. In this experimental
setting, every prime tri-gram is build from randomly selected tokens – the probing is
as well based on these priming tri-gram set (Probe Set = Primes). Please note that the
left axis is dimensioned differently for the ABA priming condition.
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Figure 5.9: XLNet Seen Probes = Primes control setting – median (left axis) and
means (right logarithmic axis) over all P(Probe|Primes) values. In this experimen-
tal setting, the prime tri-grams are taken from the PMI ranking – the probing is as
well based on these priming tri-gram set (Probe Set = Primes). Please note that the
left axis is dimensioned differently in each chart.
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AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 13.58% 0.01% 0.56%
Median 50.50% 2.32% 0.50%

ABA Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 254.93% 128.98% 19.33%
Median 236.54% 292.12% 4.07%

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 31.49% 171.01% 280.11%
Median 12.96% 5.56% 295.43%

Table 5.8: XLNet Seen Probes = Primes control setting – relative value change (rvc)
for means and medians as defined in Equations (5.1)-(5.4).

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes) Prvc(ABC|Primes)

Mean 186.78% 25.19% 161.14% 264.43%
Median 109.76% 105.11% 104.34% 101.84%

ABA Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes) Prvc(ABC|Primes)

Mean 93.05% 170.08% 129.16% 10.47%
Median 95.65% 92.96% 97.81% 96.09%

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes) Prvc(ABC|Primes)

Mean 20.18% 104.73% 9.70% 25.10%
Median 94.60% 101.93% 97.85% 102.07%

Table 5.9: XLNet Random Primes, Random Probes experimental setting – relative
value change (rvc) for means and medians as defined in Equations (5.1)-(5.4).

very similarly in relation to each other – and once more the means of the ABB priming
condition are the only exception in this regard.

Also for the Seen Primes, Random Probes experimental settings, both Figure 5.11 and
Table 5.10 give no indication that XLNet behaves human-like. The value distributions
relative to each other are quite different for the median, however the same for the
mean – for BERT it was the other way around. In general, the values for all probes of
the different priming conditions are ordered as follows (for both mean and median):
P(Probe|ABA Primes) < P(Probe|ABB Primes) < P(Probe|AAB Primes) (with one
exception for the mean of ABC probes: P(ABC|AAB Primes) > P(ABC|ABA Primes);
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Figure 5.10: XLNet Random Primes, Random Probes experimental setting – median
(left axis) and means (right logarithmic axis) over all P(Probe|Primes) values. In this
experimental setting, the prime and probe tri-grams are build from randomly se-
lected tokens.
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AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes) Prvc(ABC|Primes)

Mean 225.00% 250.60% 252.11% 24.29%
Median 168.76% 174.14% 188.18% 148.75%

ABA Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes) Prvc(ABC|Primes)

Mean 40.35% 17.15% 0.18% 10.80%
Median 46.47% 26.90% 28.57% 19.12%

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes) Prvc(ABC|Primes)

Mean 34.65% 32.25% 47.71% 264.92%
Median 84.78% 98.96% 83.25% 132.14%

Table 5.10: XLNet Seen Primes, Random Probes experimental setting – relative value
change (rvc) for means and medians as defined in Equations (5.1)-(5.4).

for BERT the relationship was: P(Probe|ABB Primes) < P(Probe|AAB Primes) ≈
P(Probe|ABA Primes).

What is remarkable about the Random Primes, Seen Probes experimental setting, in
which no consistent priming effect can be detected either (see Table 5.11), is that the
results of the three priming conditions differ only minimally (see Figure 5.12) – with
respect to the values, as well as with respect to the distributions of the values relative
to each other (for mean and median).
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Figure 5.11: XLNet Seen Primes, Random Probes experimental setting – median
(left axis) and means (right logarithmic axis) over all P(Probe|Primes) values. In this
experimental setting, the prime tri-grams are taken from the PMI ranking, the probe
tri-grams are build from randomly selected tokens.
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Figure 5.12: XLNet Random Primes, Seen Probes experimental setting – median
(left axis) and means (right logarithmic axis) over all P(Probe|Primes) values. In this
experimental setting, the prime tri-grams are build from randomly selected tokens,
the probe tri-grams are taken from the PMI ranking.
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AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 126.07% 85.58% 83.28%
Median 96.03% 96.23% 93.62%

ABA Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 92.77% 81.00% 108.07%
Median 113.38% 101.05% 100.96%

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 81.16% 133.42% 108.65%
Median 90.59% 102.72% 105.42%

Table 5.11: XLNet Random Primes, Seen Probes experimental setting – relative value
change (rvc) for means and medians as defined in Equations (5.1)-(5.4).

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 115.54% 0.45% 53.71%
Median 202.19% 7.34% 4.76%

ABA Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 157.25% 4.43% 36.13%
Median 84.77% 85.59% 269.01%

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 27.21% 295.11% 210.16%
Median 13.04% 207.06% 26.23%

Table 5.12: XLNet Seen Primes, Seen Probes experimental setting – relative value
change (rvc) for means and medians as defined in Equations (5.1)-(5.4).

This is particularly interesting considering the next experimental setting, Seen
Primes, Seen Probes, (cf. Figure 5.13 and Table 5.12), since a completely different picture
emerges here. So it seems that in the XLNet model, there is a significant difference
between whether the primes are based on seen data or not – the desired behavior,
however, is not given in this experimental setting either.

Therefore, also XLNet could not benefit from any seen data facilitation compared to
the original random only experimental setting. In general, for the XLNet model, too,
there is a considerable effect of primes on the probes, as the normalized mean and
median values are significantly above 1.
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Figure 5.13: XLNet Seen Primes, Seen Probes experimental setting – median (left
axis) and means (right logarithmic axis) over all P(Probe|Primes) values. In this ex-
perimental setting, the prime as well as the probe tri-grams are taken from the PMI
ranking.
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AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 99.87% 101.07% 98.19%
Median 101.84% 101.63% 97.17%

ABA Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 97.67% 98.21% 94.28%
Median 97.95% 98.38% 95.87%

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 102.47% 100.72% 107.53%
Median 100.21% 99.99% 106.97%

Table 5.13: GPT-2 Random Probes = Primes control setting – relative value change
(rvc) for means and medians as defined in Equations (5.1)-(5.4).

5.3 Results for OpenAI GPT-2

With respect to the computation of ASRs, GPT-2 behaves in all experimental settings
anything but human-like, however, there are indications that the experiment design
was not appropriate for this model.

As Figure 5.14 and Figure 5.15 illustrate, the different priming conditions only have a
very low impact on the values – consequently the relative change values in Table 5.13
and Table 5.14 are all around 100 percent. These tables show a similar maxima pattern
as those for BERT and XLNet, however, the deviation between the relative value change
values is considerably lower. Consequently, it cannot be assumed that the results for
the OpenAI GPT-2 experimental settings are robust – nevertheless, they will serve as a
tentative basis for further discussion later on.

In the original Random Primes, Random Probes experimental setting the results from
the different priming conditions hardly differ from each other (see Figure 5.16). This
fact is also mirrored in the relative value changes, as all values in Table 5.15 are very
close to 100 percent. Unlike the control settings, the maxima here are not distributed as
one would expect, assuming human-like behavior.

The facilitation of seen data primes leads to a higher normalized probability in the
ABB priming condition – in fact for all probing conditions, as Figure 5.17 illustrates. In
addition, Table 5.16 shows that the increase for the consistent P(ABB|Primes ABB) is
not significantly higher, so this behavior is not straightforward to explain as well.
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Figure 5.14: GPT-2 Random Probes = Primes control setting – median and means
over all P(Probe|Primes) values. In this experimental setting, every prime tri-gram is
build from randomly selected tokens – the probing is as well based on these priming
tri-gram set (Probe Set = Primes).
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Figure 5.15: GPT-2 Seen Probes = Primes control setting – median and means over all
P(Probe|Primes) values. In this experimental setting, the prime tri-grams are taken
from the PMI ranking – the probing is as well based on these priming tri-gram set
(Probe Set = Primes).
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AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 116.27% 86.51% 89.79%
Median 109.52% 97.66% 94.04%

ABA Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 96.97% 120.81% 110.33%
Median 86.99% 116.36% 120.95%

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 86.77% 92.68% 99.89%
Median 103.50% 85.98% 85.01%

Table 5.14: GPT-2 Seen Probes = Primes control setting – relative value change (rvc)
for means and medians as defined in Equations (5.1)-(5.4).

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes) Prvc(ABC|Primes)

Mean 102.64% 102.63% 102.89% 102.42%
Median 102.50% 102.16% 102.35% 101.97%

ABA Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes) Prvc(ABC|Primes)

Mean 96.89% 96.94% 96.52% 97.08%
Median 96.91% 96.78% 97.25% 97.30%

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes) Prvc(ABC|Primes)

Mean 100.47% 100.43% 100.59% 100.50%
Median 100.58% 101.06% 100.40% 100.73%

Table 5.15: GPT-2 Random Primes, Random Probes experimental setting – relative
value change (rvc) for means and medians as defined in Equations (5.1)-(5.4).

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes) Prvc(ABC|Primes)

Mean 74.97% 76.11% 72.11% 73.52%
Median 77.83% 78.78% 75.15% 76.38%

ABA Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes) Prvc(ABC|Primes)

Mean 62.85% 63.50% 58.81% 64.22%
Median 68.30% 68.19% 65.13% 69.45%

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes) Prvc(ABC|Primes)

Mean 162.19% 160.39% 169.08% 162.26%
Median 153.87% 153.02% 159.72% 154.17%

Table 5.16: GPT-2 Seen Primes, Random Probes experimental setting – relative value
change (rvc) for means and medians as defined in Equations (5.1)-(5.4).
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Figure 5.16: GPT-2 Random Primes, Random Probes experimental setting – median
and means over all P(Probe|Primes) values. In this experimental setting, the prime
and probe tri-grams are build from randomly selected tokens.
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Figure 5.17: GPT-2 Seen Primes, Random Probes experimental setting – median and
means over all P(Probe|Primes) values. In this experimental setting, the prime tri-
grams are taken from the PMI ranking, the probe tri-grams are build from randomly
selected tokens.
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AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 101.17% 101.72% 101.35%
Median 100.58% 101.28% 100.83%

ABA Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 97.18% 97.25% 97.16%
Median 97.67% 98.10% 98.54%

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 101.66% 101.04% 101.49%
Median 101.75% 100.62% 100.63%

Table 5.17: GPT-2 Random Primes, Seen Probes experimental setting – relative value
change (rvc) for means and medians as defined in Equations (5.1)-(5.4).

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 88.65% 81.45% 77.85%
Median 87.89% 81.74% 94.08%

ABA Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 51.35% 56.82% 48.90%
Median 63.59% 57.18% 59.96%

AAB Primes Prvc(AAB|Primes) Prvc(ABA|Primes) Prvc(ABB|Primes)

Mean 159.99% 161.73% 173.25%
Median 148.52% 161.07% 145.97%

Table 5.18: GPT-2 Seen Primes, Seen Probes experimental setting – relative value
change (rvc) for means and medians as defined in Equations (5.1)-(5.4).

As the Random Prime, Seen Probe (Figure 5.18) and Seen Prime, Seen Probe (Figure
5.19) experimental settings suggest, the effect of increased values seems to be caused
by seen primes, as the charts of the former setting looks similar to the original Random
Prime, Random Probe, and the latter similar to the Seen Prime, Random Probe. The
relative value changes in the respective tables confirm this similarities (Table 5.17 and
Table 5.18). Here, further research on the peculiarity of seen ABB tri-grams could
presumably shed light, but this would go beyond the questions raised in this thesis.
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Figure 5.18: GPT-2 Random Primes, Seen Probes experimental setting – median and
means over all P(Probe|Primes) values. In this experimental setting, the prime tri-
grams are build from randomly selected tokens, the probe tri-grams are taken from
the PMI ranking.



5 Results 79

Figure 5.19: GPT-2 Seen Primes, Seen Probes experimental setting – median and
means over all P(Probe|Primes) values. In this experimental setting, the prime as well
as the probe tri-grams are taken from the PMI ranking.
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Overall it remains to be said that OpenAI GPT-2 behaves special in many ways,
compared to BERT and XLNet:

– the priming effect in general is considerably lower than for the previous models
(at most approx. only 10 times higher compared to the unprimed probes),

– the distributions of values relative to each other are the same across experimental
settings and priming conditions (for mean and median),

– and values within an experimental setting differ only minimally given the different
priming conditions.

Based on the results from the conducted experiments, OpenAI GPT-2 exhibits the
least expected behavior of all investigated state-of-the-art deep learning NLP models.



6 Discussion

As stated in the previous chapter, human-like behavior regarding the computation
of abstract sameness relations would have lead to results similar to those presented
in Figure 5.1 and consequently, the expected behavior was clearly defined. However,
none of the investigated NLP models came close to this – even when only the relative
value change results (Prvc(Probe|Primes), see Equations (5.1)-(5.4)) were considered that
further reduce noise on top of the normalization (which was used in the calculation
already, see Equation (4.3)). Consequently, with regard to the research interest in this
work, an unexpected, complex (appearing) model behavior emerged, the interpretation
of which is far from being straightforward. In this context, Braitenberg’s law of uphill
analysis and downhill synthesis (cf. chapter 3 Abstract Sameness Relations in Deep
Learning NLP Models) should be recalled. It implies in this regard that the assumed
mechanism (alone) cannot explain the observed model behaviors, accordingly, two
options can be derived:

1. Following a deductive approach, further factors have to be identified in order
to explain the behavior – consequently, several follow-up experiments would be
required (such as analysis of self-attention mechanisms at inference time).

2. An inductive approach could be pursued based the exhibited behavior – at the
risk of overestimating its complexity.

The option from bullet one would go beyond the scope of a master’s thesis, but
suggestions for future research will be given later in the sub chapter 6.2 Outlook. The
second point contradicts the general deductive approach of this work – however, since
there are comprehensive studies in the field of BERTology already (Rogers et al., 2020),
a brief evaluation of the results is attempted in the following sub chapter.
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6.1 Evaluation of Results

As the name suggests, BERTology is mainly focused on BERT model architectures.
However, drawing upon explanations for BERT, the behavior of the other models is
discussed as well.

Based on experiments suggesting that word order does not affect model predictions
(Ettinger, 2020), the BERT results for AAB and ABA probes would be expected to
be identical, since the only difference between these two conditions is the tri-gram
structure, in terms of the position of the sameness relation and therefore the order of
the tokens. However, there are clear differences between the two probing conditions in
all experimental settings for BERT (see Figures 5.4-5.7 and Tables 5.3-5.6), indicating that
an appropriate representation is available in the model that is involved at a structural
processing level for the investigated model inputs. A possible explanation could be that
not tri-grams but shorter (bi-gram) or longer (>tri-gram) collocations are considered.
The results of the other models also indicate that structure is represented in some way,
since the results are not influenced by token selection alone, but also – as for BERT – by
their sequence order (see Figures 5.10-5.13, 5.16-5.19 and Tables 5.9-5.12, 5.15-5.18).

Furthermore, there are studies reporting that BERT does not always utilize all the
knowledge that it is demonstrated to have (e.g. Glavaš & Vulić, 2021; Rogers et al., 2020).
Assuming that this applies for all models, it could explain why they fail to succeed in
the task, even though all models exhibit behavior indicating that relevant structural
information is considered at inference time. It is conceivable that this knowledge is
only partially or insufficiently used, as other information related to concrete tokens has
more influence on the results – i.e. the “noise” is dominant in the task and suppresses
the representations that would be required to succeed (even though they are there).
But also in case the models fully use these representations, the unexpected behavior
could be explained by the fact that they incorporate much more knowledge into the
task than necessary, as this may interfere the actual task. Without further exploratory
experiments it is very hard to derive what really happens at inference time.

Lastly, it should be mentioned that BERT is in general attributed to have the ability
to generalize, as addressed in Rogers et al. (2020) – especially at the level of (syntactic)
structures. However, the pre-training of BERT is not necessarily beneficial as far as
generalizations are concerned (Conklin et al., 2021), nor as far as learning cognitive
primitives are concerned. In addition to this, for the computation of ASRs it may also
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be relevant that the training language English is one of the few languages in which
sameness relations play a subordinate role, especially at the word (≈token) level (e.g.
Endress, 2020)). From an architecture perspective, building complex grammar rules
based on more primitive computations would most likely be possible, since attention
mechanisms are hierarchically organized and specific attention heads are theoretically
able of learning a corresponding query that asks for sameness relations. Therefore,
following Conklin et al. (2021), the presented results may provide further evidence
that the language processing the models acquired during pre-training is not broken
down to more primitive computations, as it is assumed in human language acquisition.
This could be explained by the fact that Pinker’s concept of combinatorial explosion
has different implications for humans and machines: Too much information in the
input is indeed a big problem for human cognition and consequently assuming some
kind of innate hypotheses or mechanisms is inevitable – moreover, memory capacity is
relatively limited as well. Whereas the advances in deep learning can – not only but
also – be attributed to the increased computational power of the training machines (e.g.
Goodfellow et al., 2016, pp. 17–26). It is certain that acquiring the faculty of language
(processing) is significantly different in nature for humans and for NLP models, as for
the latter a combinatorial explosion maybe is not an issue at all: Machines with gigantic
computing power may detect even “combinations” in the language input that would
overwhelm a human mind.

6.2 Outlook

The starting point of this thesis was the hypothesis that the greatly improved NLP
performance of deep learning models in recent years is due to the fact that certain
developments in research have made some aspects of the models more human-like.
Yet, what has been ignored is the fact that many other aspects are still diametrically
opposite to human-like, such as the language acquisitions process (=pre-training): If a
human language learner would face a situation with a mostly overwhelming amount
of language input, the environment could be seen as rather “hostile” with regard to
language acquisition. Another important difference between human and machine
language modeling is that the computation of ASRs is most likely innate in humans.
For NLP models only the statistical computations – which to some degree can be
assumed in human cognition as well – can be considered as “innate”. Consequently, the
detection and abstraction of sameness relations needs to be learned during pre-training.

To overcome these non-human-like aspects, one approach would be to introduce
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some kind of pre-pre-training prior to the actual pre-training, which is designed to
specifically learn the computation of ASRs. Such could provide evidence that NLP
models are actually (not only theoretically) capable of learning the mechanism modeled
by Endress (2020) – which would be the case if a language model exhibits exactly
the expected behavior (= generate results as illustrated in Figure 5.1) in the Random
Prime, Random Probe experimental setting after this pre-pre-training. In this context,
an exploratory approach regarding the languages used in the pre-training would also
be interesting. For example, there are languages, such as Arabic (Endress et al., 2009,
e.g.), in which sameness relations have an important function on higher symbolic levels
(morpho-syntax) as well – and thus they are not only a primitive building block within
a more complex grammar, as in English. However, it could also turn out that adapting
the training is in general not enough to succeed in computing ASRs human-like, and
that the mechanism modeled by Endress (2020) needs to be implemented manually in
the NLP model architecture – i.e. it could be engineered to be “innate”.

All in all, the prerequisite of advanced experiments is an NLP model, in which the
computation of ASRs is human-like. Given such a model, it could be determined
whether and how this mechanism affects the general NLP performance. Does a more
human-like language processing truly yield improved performance, or is this only the
case for certain NLP tasks? If it is not the case at all, such models could yet be explored
with respect to their language modeling economy. For example, they might be the archi-
tectures of choice to model languages lacking a big data basis, such as extinct languages.

At the end of this master’s thesis some questions remain open, however, overall
important insights have been provided upon which future research can build.



7 Conclusion

In this thesis, it was investigated whether the progress in NLP research can be traced
back to a mechanism for the computation of abstract sameness relations. Such a mecha-
nism is innate in human cognition as the corresponding behavior can be observed a few
days after birth already. It is also assumed to play an essential role in the acquisition of
complex grammar rules – in interaction with statistical learning mechanisms, among
others.

For the original Random Primes, Random Probes experimental setting, the ex-
periment design from Marcus et al. (1999) was transferred as closely as possible to
the deep neural model subjects. The respective control settings, Random Primes
= Probes and Seen Primes = Probes, indicated for BERT and XLNet that the ex-
perimental design was appropriate in principle. For OpenAI GPT-2, the results of
the control settings were less robust, however, since all results are based on very
large numbers it seems relatively unlikely that anything come about by chance: All
means and medians were calculated from 12,288 values per priming-probing condition:
16 P(Probe|Primes) ∗ 256 cycles ∗ 3 experiment runs.

Despite the large numbers, there was a considerable deviation between mean and
median for BERT and XLNet. This implies a very huge impact of specific (randomly)
selected tokens on the results. For GPT-2 the priming effect was in general substantially
lower, so the outliers are not as extreme as in the other models and consequently the
mean is closer to the median. What is striking about GPT-2 is the influence of seen data
tri-grams: a different behavior is apparent, though not one that makes the computation
of ASRs more human-like. The results of the other two models also suggest that the
intended facilitations in the seen data experimental settings did not make the task
easier for the models.

It appears that seen data tri-grams added informative aspects that potentially (further)
distracted from the actual task. This could in general be a tentative explanation for the
unexpected results: Even if sameness relations are represented and recognized in the
model input, there may be many other aspects of artificial NLP that seem to interfere,
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generating a behavior that is far from human-like with regard to the computation of
abstract sameness relations.
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A Abstract

In recent years, deep learning language models have made remarkable progress in
many natural language processing (NLP) tasks. Among other things, this is due to
a pre-training-fine-tuning approach, in which the neural models first have to acquire
general linguistic knowledge before they are optimized for a specific task. Accordingly,
the language modeling approximates in certain aspects human language learning and
processing, as has, for example, already been demonstrated in the field of syntax. As a
result, the corresponding computational linguistic research now encounters challenges
already known from grammar theory or psycholinguistics.

In this master’s thesis, methods from psycholinguistic research are transferred to
the domain of deep learning NLP to investigate to what extent the performance
improvements can be explained by a more human-like language processing in neural
models. It is focused on an elementary cognitive mechanism that is considered central
to rule-based grammar learning in psycholinguistics: The computation of abstract
sameness relations.

The results of the conducted experiments suggest that this mechanism plays – in
the best case – a very minor role in state-of-the-art deep learning language models.
Accordingly, these results provide unexpected but nevertheless interesting insights into
the behavior of the investigated neural NLP models.
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B Kurzzusammenfassung

Im Bereich Deep Learning Sprachmodelle ließen sich in den vergangenen Jahren
beachtliche Leistungsverbesserungen bei vielen Natural Language Processing (NLP)
Aufgaben beobachten. Zum Teil sind diese auf einen Pre-Training-Fine-Tuning Ansatz
zurückzuführen, in welchem die neuronalen Modelle zuerst generelles linguistisches
Wissen erwerben müssen, bevor sie auf spezifische Aufgaben optimiert werden. Die
Sprachmodellierung wird dadurch in gewissen Aspekten ähnlicher dem menschlichen
Lern- und Verarbeitungsprozessen, was beispielsweise im Bereich Syntax bereits gezeigt
werden konnte. In der entsprechenden computerlinguistischen Forschung steht man
somit heute vor Herausforderungen, die in der Grammatiktheorie bzw. der Psycholin-
guistik schon länger bekannt sind.

In dieser Masterarbeit werden Methoden aus der psycholinguistischen Forschung in
die Deep Learning NLP Domäne transferiert, um zu untersuchen, inwieweit die Leis-
tungsverbesserungen darauf zurückzuführen sind, dass neuronale Modelle hinsichtlich
der Sprachverarbeitung menschenähnlicher geworden sind. Der Fokus fällt dabei auf
einen elementaren kognitiven Mechanismus, der in der Psycholinguistik als zentral
für regelbasiertes Lernen von Grammatiken angesehen wird: Der Verarbeitung von
abstrakten Äquivalenzrelationen.

Die Ergebnisse der hierzu durchgeführten Experimente lassen den Schluss zu, dass
dieser Mechanismus in modernen Deep Learning Sprachmodellen – im besten Falle –
eine sehr untergeordnete Rolle spielt. Demnach liefern die Resultate einen unerwarteten,
aber dennoch interessanten Einblick in das Verhalten der untersuchten neuronalen NLP
Modelle.
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