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Abstract

In this dissertation, we reconsider some of the common assumptions used in causal inference
methods, ranging from foundational ideas, such as the notion of a data set as being sampled
from a single causal model instead of being from a complex causal system, to more method-
specific assumptions, such as linearity of causal relationships or (non)Gaussianity of causal
variables. In doing so, we make several contributions to the field of causal inference: we
define a new class of causal model; we derive new causal inference methods using these
models; and we explore both the aspects of these models that are captured by other existing
models as well as the ways in which these models and their equivalence classes subsume
other existing models. The mathematical thread connecting our different contributions is
the use of undirected graphs, which facilitates novel graph theoretic, algebraic, geometric,
and statistical perspectives on causal methods. Though our main focus is theoretical,
we also provide a causal inference software package and demonstrate our methods with
various real-world applications.
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Kurzfassung

In dieser Dissertation überdenken wir einige der gängigen Annahmen, die in Methoden der
kausalen Inferenz verwendet werden. Dies reicht von grundlegenden Ideen, wie z.B. der
Vorstellung, dass ein Datensatz aus einem einzelnen Kausalmodell statt aus einem kom-
plexen Kausalsystem entnommen wird, bis hin zu eher methodenspezifischen Annahmen,
wie z.B. der Linearität von Kausalbeziehungen oder der (Nicht-)Gauß’schen Verteilung
von kausalen Variablen. Dabei leisten wir mehrere Beiträge zum Gebiet der kausalen
Inferenz: wir definieren eine neue Klasse von Kausalmodellen; wir leiten neue kausale
Inferenzmethoden unter Verwendung dieser Modelle ab und wir untersuchen sowohl die
Aspekte dieser Modelle, die von anderen existierenden Modellen erfasst werden, als auch die
Art und Weise, in der diese Modelle und ihre Äquivalenzklassen andere existierende Modelle
subsumieren. Der mathematische Faden, der unsere verschiedenen Beiträge verbindet,
ist die Verwendung ungerichteter Graphen, die neue graphentheoretische, algebraische,
geometrische und statistische Perspektiven auf kausale Methoden ermöglicht. Obwohl unser
Hauptaugenmerk auf der Theorie liegt, stellen wir auch ein Softwarepaket zur kausalen
Inferenz zur Verfügung und demonstrieren unsere Methoden mit verschiedenen realen
Anwendungen.
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1. Preamble

Most generally, the aim of this dissertation is to develop new causal inference methods that
complement existing methods. Thus, we hope to contribute to the robustness and variety
of available causal inference methods, facilitating different applied scientists having more
flexibility in choosing methods that are better suited for their respective applications.

We do this by critically revisiting the foundations and some common assumptions of
causal inference. In particular we consider the three-part research question:

Q.1 To what extent can we learn a model of a causal system while observing only some
parts of that system,

Q.2 especially when the population from which the model is being learned is the result of
not one but multiple causal systems,

Q.3 and without assuming a particular distribution, such as a Gaussian one.

Answering these questions and providing algorithms for causal inference in these sce-
narios will be helpful for applications in a variety of fields, such as genetics and cognitive
science. For example, Q.1 can arise from a typical brain-computer interface experiment:
these result in behavioral (e.g., hand movement) and neuroimaging (e.g., electroencephalog-
raphy, measuring electrical activity of the brain) data that, due to physical constraints
of measurement devices compared to the complexity of the brain and nervous system,
leaves parts of the cognitive and behavioral system unobserved (Tan and Nijholt, 2010).
Q.2 can also arise in such a setting, because though different brains share general the
same general organization, they are nevertheless highly individualized (Naselaris et al.,
2021). Furthermore, it is hypothesized that neuronal populations can encode a multitude
of different probability distributions (Ma et al., 2006), hence Q.3. However, instead of
focusing on particular applications like the preceding example, this dissertation focuses on
the theoretical and computational aspects of these questions.

Before addressing these questions in more detail, some review is helpful. The rest of
this chapter is organized as follows: Section 1.1 is devoted to summarizing the back-
ground knowledge needed to properly contextualize and understand the preceding research
questions—we do this by briefly tracing the history and development of the scientific
understanding of causality in Section 1.1, arriving at the precise mathematical account
that is currently so popular.This allows us to revisit our research questions in more detail
in Section 1.2, discussing them in the context of existing work. Chapter 2 consists of
three papers that form the basis of this cumulative dissertation. Each of these papers
(one per section) addresses a concrete part of the preceding research questions and makes
a novel theoretical or practical contribution to the field of causal inference: Section 2.1
introduces a new class of latent causal models (i.e., models partially observed systems) and
an algorithm for learning their causal structure without assuming any specific distribution;
Section 2.2 presents a software package implementing these as well as other causal inference
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1. Preamble

algorithms and demonstrates how to use the package; and Section 2.3 derives a kernel that
can be used as a statistically consistent test of whether samples come from different causal
structures and that connects our new class of causal models to more general machine
learning research in clustering and kernel methods.

In Chapter 3, we summarize the main contributions of the preceding papers, before
providing a superordinate analysis of them in Section 3.2, detailing precisely how they are
linked and how they work together to address the preceding research questions: namely,
they are connected mathematically by their novel use of undirected graphs for causal
inference. Finally, we conclude in Section 3.3 with some intuitions about promising
directions for future work, most notably by exploring connections to recent work in the
field of algebraic statistics.

1.1. Causality Background

Beyond the history itself being presented, the main point of this section is that the notion
of causality used today in the field of causal inference (and in the rest of this dissertation)
has a precise mathematical definition along with the corresponding limitations that this
entails. Though this definition has been developed to capture some common intuitions
and shortcomings of other definitions, it nevertheless does not entirely subsume all other
understandings of causality and should not be seen as the panacea for all problems
encountered in the study of artificial intelligence or science more generally.

1.1.1. Ancient causality

The concept of causality has an uncapturably vast scholarly history, featuring prominently
in some of the oldest surviving texts of ancient philosophical and scientific thought. Its
history can be traced1 back to Aristotle, e.g., in Book II Part 3 of Physics, dating back to
the 4th century BCE. Aristotle’s account of causality is noteworthy for being one of the
earliest and most comprehensive, and it was likely known to, if not a direct influence on,
many of the (western) philosophers and scientists who have since studied causality. To
summarize very briefly, Aristotle posited four kinds of cause: the efficient cause is most
similar to the notion used today in causal inference (and natural language) and referred to
the agent or object responsible for the effect, while the material, formal, and final causes
were broader and included notions ranging from physical composition of objects to the
intentions or goals of actions. While the details of Aristotle’s theory of causation, lacking
modern mathematical formalism, bear little resemblance to theories of causation used in
machine learning today, his writings nevertheless set the precedent of equating scientific
explanations with causal explanations, providing an authoritative source for later scholars
emphasizing the importance of causal thinking in scientific inquiry.

Though often neglected in discussions about the history of causality and philosophy
of science, ancient Indian philosophy contains many interesting developments. Causality
was one of the central topics both in the more religious works of the Vedic Period (as far
back as the 8th century BCE) as well as the natural philosophy of the Cārvāka, Āj̄ıvika,
and subsequent schools, dating back to the 6th century BCE. These are noteworthy

1For example, see Pearl (2009, Chapter 5), Pearl and Mackenzie (2018, Chapter 1), and especially Hulswit
(2004).
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1.1. Causality Background

for being earlier than Aristotle and having an analogous influence on later scholars in
Eastern philosophy more generally. Despite their age, some of the ideas are surprisingly
contemporary, for example: whereas Aristotle’s understanding of causality (like that of
some Vedic philosophers) placed special importance on agents and intention, philosophers in
the Cārvāka school thought of the world as fundamentally material and therefore thought of
causality as one of the ways material objects interact through their own inherent properties
without any need of agents or intentions—see Sarvepalli Radhakrishnan (1957, Chapter
VII) and Kalupahana and Deutsch (1975, Chapter II) for more details and examples.

For the purposes of this dissertation, these ancient accounts of causality serve to illustrate
that though there are common threads connecting causal inference today with ideas about
causality from over two millennia ago, there are nevertheless different possible notions of
causality that should not be conflated and that are not necessarily captured by current
definitions.

1.1.2. Granger causality

One notion of causality used today, especially in time series analysis in fields like econo-
metrics, is that introduced by Granger (1969). Granger causality has two defining aspects:
(i) predictiveness and (ii) temporal precedence (Granger, 1980). Informally, this means we
say A causes B if (i) knowing A allows us to better predict B and (ii) A happens before B.
This definition has a significant drawback, in that it does not rule out spurious correlations,
making it weaker than what is often meant when discussing a causal relationship. For
example, analyzing a data set consisting of yearly doctorate degrees awarded in computer
science (D), precipitation in Kansas (K), and precipitation in Mississippi (M), all between
the years 1996 and 2009, shows that D is better predicted using both K and M rather
than only using M (Vigen, a,b). However, barring some contrived chain of events, rainfall
in Kansas while I write this dissertation is clearly not going to cause my (or anyone else’s)
defense to be successful. Nevertheless, Granger causality is computationally easy to test
for, which has led to many applications and extensions. See Eichler (2012) for a discussion
of these extensions as well as a comparison to other definitions of causality.

1.1.3. Rubin causal model framework

Another notion of causality used today is the Rubin causal model (Rubin, 1974, 2005),
built upon the potential outcomes framework (Neyman, 1923), and thus also sometimes
called the Neyman-Rubin framework. Establishing causation in the RCM requires finding
a measurable effect of some intervention, according to the maxim "no causation without
manipulation". Thus, it is important that, when asking the question "Does A cause B?",
A must be something that (at least in principle) can be manipulated or intervened on.

In the ideal case, one sets up an experiment, with a clear distinction between the
treatment variables (those that will be intervened on) and the outcome variables (those
that will be measured). Units (these could be subjects in a clinical drug trial, plots of land
in testing a new fertilizer, etc.) are then randomly assigned to one of two groups, and the
intervention is carried out for one group but not the other. Measuring the outcomes for
the non-intervention group establishes a sort of baseline, which can then be compared to
the outcomes of the intervention group. The resulting difference between the outcomes of
the two groups is termed the causal effect of the intervention. Importantly, this random
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1. Preamble

assignment of units into either the intervention or non-intervention groups helps ensure
that the units in the different groups are distinguished only by the intervention itself, as
opposed to other distinctions that could lead to a difference in the outcomes of the two
groups; this in turn ensures that any measured causal effect is actually causal and not
merely a spurious correlation.

For example, imagine we want to test whether a certain kind of fertilizer increases crop
yields. Thus, we have treatment variable F for whether or not a plot of land receives
fertilizer and the outcome variable Y for the weight of the harvested fruit divided by the
area of the plot. By randomly assigning plots to either receive fertilizer or not, we ensure
that the growing conditions (such as sunlight, available water, etc.) vary in similar ways
between the two different groups, as opposed to plots in one group having generally better
conditions, which could invalidate any conclusions about the causal effect of fertilizer.

However, even if possible in principle, intervention is often practically infeasible. In
these cases, when data is purely observational and not experimental, causal inference is
still possible, but it becomes more complicated. As in the experimental case, there is a
clear distinction between treatment and outcome variables. However, because there is no
intervention, units cannot be randomly divided into two groups with their treatment variable
values assigned accordingly—instead there is some non-random assignment mechanism.
Thus, instead of simply taking the difference between the outcomes of the two treatment
groups to calculate the causal effect, a procedure must be employed to control for the non-
random assignment mechanism and its effects, which can introduce a spurious correlation or
hide a causal relationship between the treatment and outcome variables. Such a procedure
is called matching and involves relying on other observed variables to pick a subset of
the units that fulfill certain properties one would expect if the assignment mechanism
had been random, thus resulting in the ignorablility of the assignment mechanism (Rubin,
1973; Rosenbaum and Rubin, 1983; Dehejia and Wahba, 1999).

Returning to the fertilizer example, imagine instead of setting up an experiment we
are given a bunch of observational data containing the variables F and Y . Using our
domain knowledge that plants take in nutrients (some of which are provided by fertilizer)
and convert them into plant matter (some of which is fruit), as well as the fact that F is
directly manipulable while Y is not, we can say F is the treatment variable and Y is the
outcome variable. Importantly, notice that the direction of the causal relation (if a relation
exists) from F to Y is determined by domain knowledge and the manipulability of the
cause, as opposed to some purely mathematical procedure. This aspect of the RCM has
its advantages but also its drawbacks: on the one hand, it helps ensure that our results are
causally plausible (unlike the rainfall in Kansas causing a successful dissertation defense
example found using Granger causality (Section 1.1.2)); on the other hand, it makes it
difficult to use the RCM in non-experimental cases where such domain knowledge is lacking
or where both causal directions seem plausible, and furthermore, it thus relies on the
accuracy of our domain knowledge. With the treatment and outcome variables established,
we now must make up for the fact that the data is non-experimental by controlling for
any other possible distinctions between those plots of land that received fertilizer and
those that did not. Again this is only possible with domain knowledge: we must come up
with other possible causes of Y , such as soil quality, sun light, water availability, etc., and
acquire data for these variables and use it to perform matching. Without this matching, or
if we do not control for all the right variables, any detected causal relation between F and
Y may merely be spurious or even result in the wrong causal conclusion. For example, if
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1.1. Causality Background

fertilizer was only used to help make up for otherwise very poor growing conditions, and we
naively examine F and Y , it may look like using fertilizer results in worse crop yields, when
in reality it improved crop yields in those poor conditions but was not enough to surpass
the good growing conditions in which fertilizer was deemed unnecessary. This erroneous
conclusion could be avoided by employing matching and therefore only comparing units
with similar soil conditions.

A key idea of the RCM in both of the above cases is that the causal effect is with
respect to groups or populations, as opposed to individual units, making it possible to
circumvent what Holland et al. (1985) calls the fundamental problem of causal inference:
no single unit can be both intervened on and not intervened on at the same time, making
it impossible to see the unit-level causal effect of an intervention. Nevertheless, the causal
effect for a population of units can be learned, because the population can be split into
subpopulations, so that one subpopulation is intervened on while the other is not. Thus, an
important assumption here is structural homogeneity, i.e., that despite being composed of
unique units, the population nevertheless shares a common causal (and therefore statistical)
structure—this is motivated by "population" as opposed to "typological" thinking (Xie,
2013).

See Holland et al. (1985) for a more formal overview of the RCM as well as a discussion
of its history and relation to other ideas about causality. The RCM framework is mathe-
matically subsumed by the graphical causal models discussed in the next section (Pearl,
2009, Ch. 7.4.4) (cf. Gelman, 2009), however they emphasize different aspects of causality:
the RCM focuses on quantifying the causal effect of interventions, while causal graphs can
additionally be used more abstractly, allowing one focus on the broader causal structure.
We will revisit this comparison between Rubin and graphical causal models in sections 1.2
and 3.2, and this comparison provides important context for understanding our research
questions and the overarching themes connecting our different publications.

1.1.4. Causal graphical models

Current definitions of causality tend to focus on probabilistic graphical models, with the
earliest example being the path diagrams introduced by Wright (1921). These diagrams
contain nodes connected by arrows, building upon previous work on the product-moment
correlation coefficient and its associated partial correlation coefficient (Pearson, 1895;
Galton, 1889; Isserlis, 1914)2, allowing for a systematic graphical representation of the

2Though a digression, it is important to note that these methods were developed as part of eugenics
research. For example, Karl Pearson (after whom Pearson correlation is named), in his retirement
speech (Filon et al., 1934), reflected on his career at University College London and as editor of the
journal Biometrika:

“The climax culminated in Galton’s [Pearson’s mentor] preaching of Eugenics, and his
foundation of the Eugenics Professorship. Did I say ‘culmination’? No, that lies rather in
the future, perhaps with Reichskanzler Hitler and his proposals to regenerate the German
people. In Germany a vast experiment is in hand, and some of you may live to see its
results. If it fails it will not be for want of enthusiasm, but rather because the Germans
are only just starting the study of mathematical statistics in the modern sense!”

Here, as always, it is worth emphasizing that no amount of mathematical sophistication can ever justify
racism or genocide. See Horkheimer (1972); Sim (2004) for an introduction to the field of critical
theory, which analyzes and critiques the positivism and scientism underlying Pearson’s ideas; and see
Crenshaw et al. (1995) for an introduction to critical race theory, which argues that social problems
result from the structure and organization of society (as opposed to resulting from the maladapted
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1. Preamble

structures underlying correlation coefficients between variables. In these diagrams, the
correlation coefficient between two variables is taken to be the result of all paths connecting
them, leading Wright to define the path coefficient to measure the direct influence along
each individual path—and, with appropriate domain knowledge, this influence can be
interpreted as a causal relation. Thus, unlike other statisticians of the time, Wright
responded to the warning "correlation does not imply causation" not by ignoring questions
of causation but instead by using correlation to come up with new mathematical definitions
that (along with domain knowledge) do allow one to reason about causes by using estimated
correlation coefficients (Wright, 1934, 1923) (cf. Niles, 1922, 1923).

Wright’s path diagrams eventually gave rise to the structural equation models (SEMs)
and their representation as directed acyclic graphs (DAGs), as well as various techniques
for path analysis that are now ubiquitous in the social sciences (Westland, 2015), but
his diagrams are the first example of some important ideas used for structure learning in
today’s causal graphical models. Namely, he provided a rudimentary framework facilitating
the use of patterns of correlations to reason about causal structure, by translating between
the language of probability theory (in which random variables are related to each other by
correlation coefficients) and the language of graphs (in which nodes are related by arrows).

Two main developments were responsible for refining Wright’s rudimentary framework:
(i) the introduction of the do-calculus (Pearl, 1995), extending the language of probability
theory to better capture causal relations, making it possible to have genuinely causal
formal probabilistic models, and (ii) the introduction of d-separation (Verma and Pearl,
1988), which not only ensures the causal interpretation of these formal models but also
makes it possible to abstract away from the probabilistic details of these models and focus
on the causal structure more generally.

Functional causal models

The do-calculus (Pearl, 2012), consisting of the do(·) operator for representing an inter-
vention or manipulation of a random variable along with inference rules for computing
the causal effects of interventions (cf. Spirtes et al., 2000, Manipulation Theorem and
Theorem 7.1), extends the language of probability theory so that it can describe causal
instead of merely associative relationships. These inference rules lead to the same results
that can be found using the RCM in both the experimental (interventional) setting and,
using the back-door criterion (compare to Rosenbaum and Rubin (1983)’s conditions for
ignorability), the observational setting. However, the added formalism facilitates extending
SEMs (which, recall, are linear and Gaussian) to fully nonparametric functional causal
models (FCMs). Thus, the do-calculus provides the key semantic component for extending
Wright’s framework so that it has a justifiably causal interpretation.

Pearl (2009, Ch. 1.4) offers a more detailed and formal introduction to FCMs. For
the purposes of the current discussion, the most interesting aspect of FCMs is not the
functional model itself or its use estimating causal effects but rather its corresponding
DAG and more abstract representation of causal structure.

genes of “lesser races”, like Pearson and his associates thought).
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1.1. Causality Background

Causal structure learning

The rules of the do-calculus are stated in terms of how interventions affect the structure of
probabilistic independence among random variables. Thus, the ability of DAGs to capture
causal structure is due to the correspondence between d-separation (d for direction), which
is a property of variables (nodes) in a directed graph, and probabilistic independence.

Definition 1 (d-separation) Nodes A and B are d-separated given a (possibly empty)
set of nodes Z if there is no active path between them. A path between A and B, a
sequence of nodes connected by arrows, is active iff

1. for every collider Q on the path, Q or one of its descendants is in Z (e.g., in the path
A→ Q← B, Q is a collider, and in Q→ . . .→ D, D is a descendant of Q)

2. and every non-collider on the path is not in Z.

(See (Neapolitan et al., 2004, Ch. 2.1) for a formal presentation and examples.)

This is the key syntactical component needed to refine Wright’s rudimentary framework.
Like independence, d-separation is symmetric, but its definition in terms of paths of
directed arrows make it amenable to representing the asymmetric nature of causation.
Thus, d-separation facilitates the implicit encoding of probabilistic dependence between
variables in the form of a DAG, so that causal relationships can be represented explicitly
and intuitively.

An important assumption underlying the causal interpretation of Wright’s path diagrams
is that correlations (insofar as they reflect probabilistic dependence) are ultimately due to
causal relations. Though not in the context of path diagrams, Reichenbach (1956) articu-
lated and argued for this assumption, using it to give a formal probabilistic characterization
of causality:

Common cause assumption (Reichenbach, 1956, p. 157) If random variables A and B are
probabilistically dependent, then either

1. A is a cause of B,

2. B is a cause of A, or

3. there exists a C that is a cause of them both.

Compared to path analysis in Wright’s framework using linear correlation coefficients,
the common cause assumption (CCA) focuses more generally on probabilistic dependence,
as well as explicitly assuming causal relations as the explanation for these dependencies.
The CCA is a basic assumption for many methods of learning a FCM from a data set,
especially when combined with the assumption of causal sufficiency, i.e., the assumption
that, for a given data set, for all variables A and B that are dependent but do not satisfy
1. or 2. of the CCA, there is a variable C satisfying 3. also included in the data set (Pearl,
2009, p. 30). These two assumptions together are known as the causal Markov assumption,
which guarantees that the causal relationships (and therefore probabilistic dependencies)
between all the variables can be represented as a DAG. Using d-separation, it can (as in
(Pearl, 2009, Theorem 1.2.4)) be stated as:

7



1. Preamble

Causal Markov assumption: Given a set of random variables V whose causal structure
is represented as the DAG G, if Vi, Vj ∈ V are d-separated in G (with conditioning set
C ⊂ V), then Vi and Vj are probabilistically independent given C, i.e., then Vi ⊥⊥ Vj | C.

The converse of the CMA, which often accompanies it, can be stated similarly:

Causal faithfulness assumption (CFA): Given a set of random variables V whose causal
structure can be represented as a DAG G, if Vi ⊥⊥ Vj | C, then all Vi and Vj are d-separated
in G (conditioned on C).

Under these assumption, the task of learning the causal structure among a set of variables
becomes a matter of using statistical methods to estimate which random variables are
probabilistically dependent (and thus not d-separated in the DAG) and then figuring out
which of the three possible causal relationships in the CCA is responsible for each pair of
dependent variables (i.e., figuring out how to direct the edges along the paths).

One way of figuring this out is by doing interventions, reminiscent of the RCM framework.
The graphical implications of the do-calculus, by comparing d-separations in the graph
before and after performing an intervention, make it possible to learn the directions of all
arrows in the DAG.

More interestingly, it can be done (to an extent) from purely observational data. Even
without comparing before and after interventions, the definition d-separation makes it
possible to orient some edges in the DAG, namely those that form colliders and subsequently
those whose direction is required to ensure acyclicity in the DAG. Two classic algorithms
for this are the PC and IC algorithms (Spirtes and Glymour, 1991; Verma and Pearl,
1990).

The do-calculus and d-separation thus provide the mathematical tools needed, so that
given the CMA and CFA, causal structure learning (even from purely observational data!)
in the form of a DAG is possible. Readers familiar with the field of mathematical logic
may find a helpful analogy here: just as Gödel’s completeness theorem establishes a
correspondence between syntax and semantics in first-order logic, the causal Markov and
faithfulness assumptions establish a correspondence between the graphical syntax of DAGs
and the causal semantics of FCMs (understood formally, as an extension of the language of
probability theory, and excluding unmeasured confounders as well as selection variables).
A similar correspondence (though based on different assumptions) also exists for the more
general case of ancestral graphs, which can represent unmeasured confounders and selection
bias.

Generalized causal structure learning

Unlike DAGs, which contain only directed edges (like →), ancestral graphs (AGs) contain
three edge types. These edge types, along with the extension of d-separation to m-
separation and correspondingly modified causal Markov and faithfulness assumptions allow
for much more expressive causal graphs than is possible with DAGs.

Because DAGs assume causal sufficiency, they are not able to represent causal relation-
ships among sets of variables in violation of this assumption, i.e, learning a DAG for a set
of such variables will result in incorrect causal conclusions. In contrast, AGs do not assume
causal sufficiency, instead using their added expressiveness to represent the presence of
latent variables with edge types not found in DAGs. AGs are thus able to represent causal
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1.2. Research questions revisited

models over arbitrary sets of variables, ensuring correct causal conclusions in cases where
DAGs would fail.

See (Richardson and Spirtes, 2002) for a detailed formal definition of AGs, (Richardson
and Spirtes, 2003) for a thorough discussion of how to interpret the different edge types,
(Ali et al., 2009) for a definition of Markov equivalence in AGs, and (Spirtes et al., 1999)
for a learning algorithm.

Finally, it is important to emphasize that, the preceding historical overview aside,
this dissertation uses ‘cause’ and related words as technical terms, with narrow, formal
definitions based on the do-calculus, d-separation, the CMA, and the CFA. Though such
a technical term attempts to capture some important aspects of causality, it of course
also ignores some other important aspects of causality as understood in more general
philosophical or natural language contexts as well as other technical contexts with different
formal definitions.

1.2. Research questions revisited

With the foundations of causal inference laid out, we can now more explicitly describe our
research questions.

Q.1, having to do with learning a causal model while only observing parts of the system
can be reframed in terms of causal inference under a modification of the CMA. We
address this question in Section 2.1, replacing the assumption of causal sufficiency with the
assumption of strong causal insufficiency, i.e., the assumption that none of the observed
variables cause one another and thus that their dependence is induced by unobserved latent
variables. In doing so, we find undirected graphs, as opposed to DAGs, to be especially
helpful, and we provide a novel causal semantics for them. This should not be seen as a
weaker or stronger assumption than that of causal sufficiency but rather just a different
assumption suited for different tasks—there are some causal relations representable in
our model that are not representable with DAGs and vice versa, though the relations
in both are representable with AGs. For example, in applications such as psychiatric
diagnostic questionnaires, the data consists of measurements of symptoms but not the
causes themselves, making strong causal insufficiency more reasonable than sufficiency.
Furthermore, this hints at another connection, namely, to the a priori distinction in the
RCM between variables that are possible causes and those that are effects.

Q.2, having to do with learning these models from populations resulting from not
one but multiple causal systems, can be stated more clearly in terms of the structural
homogeneity assumption. We address this in Section 2.3 by introducing a measure of
structural (graphical) similarity, making it possible to determine if the assumption is
violated for a given data set, and if so, to split the data set into clusters which individually
do satisfy the assumption.

Q.3, concerning learning these models without assuming any particular distribution, is
addressed in each section of Chapter 2 by focusing on the generality of FCMs and their
corresponding graphical representation of probabilistic independence as opposed to the
Gaussianity assumption of SEMs.

Notice that in each of these cases, we address questions that draw from the RCM
framework but by making use of and extending the graphical framework facilitated by
the FCM. Thus, though the FCM mathematically subsumes the RCM, the less abstract

9



1. Preamble

conception of causality in the RCM leads to the emphasis of (1) the importance of
distinguishing between possible causal mechanisms and measurements of their effects, as
well as (2) the population as opposed to the typological perspective and the importance of
considering homogeneity in causal learning tasks. At the same time, the more abstract
graphical conception of causality in the FCM framework makes it possible to (1) discover
causal relations, even when lacking the a priori knowledge needed to hypothesize different
causes and effects, as well as (2) characterize the relevant population homogeneity in
explicit terms of causal structure.
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2. Publications

This chapter consists of the three conference papers that form the basis for this cumulative
dissertation. Each paper is thus somewhat self-contained but still assumes familiarity with
certain topics, as is appropriate for the respective conference communities. The synopses
additionally contain the current publication/review status and complete bibliographic
information of the paper as well as an explicit statement of my contributions (as opposed
to those of my co-authors).
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2. Publications

2.1. MeDIL Causal Models

2.1.1. Synopsis

We introduce a new class of causal model (called MCMs) for scenarios in which a scientist
only has access to the observed effects of unobserved causes. These MCMs provide a
causal semantics for the graph theoretic edge clique cover (ECC) problem, which facilitates
learning a minimal MCM from measurement data by representing its pairwise probabilistic
independence relations as an undirected graph and then finding the minimal ECC over that
graph. We demonstrate learning and interpreting a minMCM for a real-world psychometric
data set.

Complete bibliographic information

Markham, A. and Grosse-Wentrup, M. (2020). Measurement dependence inducing latent
causal models. In Peters, J. and Sontag, D., editors, Proceedings of the 36th Conference
on Uncertainty in Artificial Intelligence (UAI), volume 124 of Proceedings of Machine
Learning Research, pages 590–599. PMLR

My contribution

• connected the causal inference problem to the graph theoretic problem

• derived the theoretical results

• implemented the algorithm, applied it to data, and produced all plots

• wrote the paper (with help, especially in Section 5.2)
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Abstract

We consider the task of causal structure learn-
ing over measurement dependence inducing la-
tent (MeDIL) causal models. We show that this
task can be framed in terms of the graph the-
oretic problem of finding edge clique covers,
resulting in an algorithm for returning minimal
MeDIL causal models (minMCMs). This algo-
rithm is non-parametric, requiring no assump-
tions about linearity or Gaussianity. Further-
more, despite rather weak assumptions about
the class of MeDIL causal models, we show that
minimality in minMCMs implies some rather
specific and interesting properties. By establish-
ing MeDIL causal models as a semantics for
edge clique covers, we also provide a starting
point for future work further connecting causal
structure learning to developments in graph the-
ory and network science.

1 INTRODUCTION

Despite the many theoretical and practical difficulties,
establishing and understanding causal relationships re-
mains one of the fundamental goals of scientific research.
Consequently, many different approaches have been de-
veloped, with applications spanning a diverse range of
fields, e.g., from epidemiology to psychometrics to neu-
roimaging (Parascandola, 2001; Hoover, 2006; Seth et al.,
2015). Some of the most well-known approaches include
Granger causality (Granger, 1969) for time-series data,
the Rubin causal model and potential outcomes frame-
work (Holland, 1986) for randomized controlled trials,
and functional causal models and the representation of
their causal structure as directed acyclic graphs (Pearl,
2000; Spirtes et al., 2000). The last of these, the directed
acyclic graph (DAG), provides the context for our ap-
proach to causal structure learning.

Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI), PMLR volume 124, 2020.

Roughly speaking, causal structure learning (CSL) typi-
cally focuses on identifying which variables are directly
causally related and how these direct causal relations
form a structure over which indirect causal relations exist.
One way of characterizing CSL algorithms is according
to which of the three following assumptions they rely on:
(i) the causal Markov assumption, which says the random
variables are (conditionally) independent (denoted by ⊥⊥)
if the corresponding vertices in the DAG are d-separated
(denoted by ⊥); (ii) the causal faithfulness assumption,
which says the vertices in the DAG are d-separated if
the corresponding random variables are (conditionally)
independent; and (iii) the causal sufficiency of the set
of variables, i.e. that there are no unobserved or latent
common causes. The basic approach to CSL—namely the
original constraint-based IC and PC algorithms (Verma
and Pearl, 1990; Spirtes and Glymour, 1991)—rely on
all three, while many of the algorithms developed in the
30 years since (as we will see in Section 1.1) relax these
assumptions.

Considering applications of CSL to, for example, psy-
chometrics and neuroimaging, the assumption of causal
sufficiency seems implausible. For a data set consisting
solely of answers to a depression diagnostic question-
naire or of voxel intensities in calcium imaging recordings
(with random variables corresponding respectively to the
questions or voxels), we think it is relatively uncontrover-
sial to claim that not only are the random variables not
causally sufficient, but indeed every dependence relation
among them is induced by unobserved latent variables
(respectively either cognitive processes related to, e.g.,
depression, or calcium signaling in cellular tissue, plus
other confounders). In fields and applications such as
these—where interventions are often difficult or unfea-
sible, and where the goal is to reason about underlying
causes based on their measurable effects—a more tailored
causal modeling framework may prove insightful. Thus,
the main difference between the traditional approach out-
lined above and the one we present in this paper is that

2.1. MeDIL Causal Models
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we assume a strong causal insufficiency of the random
variables being modeled and therefore are able to repre-
sent a different (but not entirely disjoint) class of causal
structures than is possible with DAGs in the traditional
approach.

The rest of the paper is organized as follows: We begin by
reviewing related work, emphasizing points of departure.
In Section 2 we define measurement dependence induc-
ing latent (MeDIL) causal models to be the class of latent
measurement models in which measurement variables can
only be effects (and not causes—contrary to the definition
of measurement models explored by others), making no
further assumptions about linearity or parametrizations
of the distributions. We then introduce the notions of
observational consistency and minimality, allowing us
to, for a given (estimated) distribution of measurement
variables, construct a minimal MeDIL causal model (min-
MCM). Then, in Section 3, by framing minMCMs as
edge clique covers (ECCs) of the undirected dependency
graph over measurement variables, we note how two no-
tions of minimality emerge. Subsequently, despite our
nonrestrictive assumptions and notion of minimality in
minMCMs, we are able to prove (i) that a minMCM lower
bounds the number of latent variables or the number of
functional causal relations (depending on which notion
of minimality is used), (ii) that the latent variables of
the minMCM are all pairwise independent, and (iii) that
(somewhat surprisingly) the minMCM can have more
latent causes than measured variables. In Section 4 we
describe an algorithm for learning minMCMs from only
unconditional (in)dependencies. Finally, we demonstrate
our approach with an application to a psychometric data
set in Section 5, before concluding with a discussion of
promising directions for future work.

1.1 RELATED WORK

Elaborating on the basic approach mentioned above, CSL
without latents amounts to finding an essential graph (An-
dersson et al., 1997), a mixed graph with directed and
undirected edges, which represents the Markov equiva-
lence containing the true DAG. The essential graph is typ-
ically found by using either a score- or constraint-based
approach. Score-based methods find an essential graph by
directly optimizing a score of how well it fits the data sam-
ples (Chickering, 2002).Constraint-based methods take a
set of conditional independence relations as input (which
must be estimated or acquired somehow before applying
the algorithm), and these relations constitute a set of con-
straints on the possible d-separations, which the output
essential graph satisfies (Verma and Pearl, 1990; Spirtes
and Glymour, 1991). Our approach in this paper is more
closely related to constraint-based methods, especially

their extensions to latent variable models.

Extensions of CSL to causal models including latent vari-
ables (i.e., relaxing the causal sufficiency assumption),
such as the FCI algorithm and its variants (Spirtes et al.,
1999), correspondingly extend the search space from es-
sential graphs to partial ancestral graphs (PAGs), which
have an additional three edge types (so five total), allow-
ing them to represent the extended Markov equivalence
class containing dependencies induced by latent variables.

In these terms, our latent CSL algorithm is not searching
for a PAG. As we explain in sections 2 and 3, by making
use of the strong causal insufficiency in this application
space, we can directly represent the conditional indepen-
dence constraints that form the input for our algorithm
as an undirected dependence graph (UDG). This UDG
is essentially a PAG with only bidirected edges. Or, put
another way, it is a modified Markov random field (Kin-
dermann and Snell, 1980) where the conditional indepen-
dence relations are determined from the undirected edges
by using strong causal insufficiency (see Proposition 6) in-
stead of the Markov property, thereby allowing the UDG
to represent latent induced dependence (which Markov
random fields are usually incapable of representing).

With the conditional independence constraints input in
the form of a UDG over measurement variables, our algo-
rithm essentially adds the latent causes and directed edges
necessary to construct the minimally causally sufficient
DAG containing latent and measurement variables. Thus,
instead of doing CSL in the presence of latent variables as
is the case with FCI and similar algorithms, we use CSL
to reason about latent variables.

Our approach is more related in this respect to other work
on measurement models (Silva and Scheines, 2005; Silva
et al., 2006; Kummerfeld et al., 2014; Kummerfeld and
Ramsey, 2016). However, these other approaches utilize
properties of the covariance matrix of the measurement
variables, such as vanishing tetrad constraints, while we
utilize graph theoretic properties of the UDG representa-
tion of conditional independencies. This results in connec-
tions between our approach and causal feature learning
(Chalupka et al., 2016) and causal consistency and abstrac-
tion (Rubenstein et al., 2017; Beckers and Halpern, 2019),
which will be discussed more with respect to future work
in Section 6.2. Another closely related approach is factor
analysis, especially when framed in terms of using the
topology of a Bayesian network of observed variables to
reason about hidden factors (Martin and VanLehn, 1994),
with the main difference being our goal of a minimally
causally sufficient DAG as opposed to a statistically con-
venient (but not necessarily as causally relevant) factor
model.

2. Publications
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Overall, our approach has several points of overlap in
terms of motivations and formal methods in existing
CSL, measurement model, and factor analysis approaches.
However, we address the problem from a different per-
spective, utilizing the causal insufficiency property of our
application space and graph theoretic edge clique cover
methods to produce a novel algorithm.

2 MINIMAL MEDIL CAUSAL MODELS

We begin with a formal definition of measurement de-
pendence inducing latent (MeDIL) causal models, before
discussing the notion of observational consistency and its
implications about minimality in such models.

We use functional causal models (FCMs) to describe
causal relations in complex systems.

Definition 1 (Functional Causal Model). A functional
causal model is a tripleM = 〈V,F, ε〉, where

• V is the set of (endogenous) random variables,

• F is a set of functions defining each endogenous
variable as a function of its direct causes (i.e., parents
or pa()) and its corresponding exogenous random
variable, so that for each Vi ∈ V, we have Vi :=
fi(pa(Vi), εi). Furthermore, F is constrained such
that no Vi is a direct cause of itself or any of its
causes, removing the possibility of causal cycles.

• ε defines a joint probability distribution over the ex-
ogenous (or noise) variables, with a corresponding
εi ∈ ε for each Vi ∈ V, and with εi being indepen-
dent with εj for each εi, εj ∈ ε

In particular, we are interested in latent CSL over
measurement variables, so it is advantageous to move
from the general FCM definition to a specifically struc-
tural/graphical definition that conceptually differentiates
the set of endogenous variables into causally effective
latent variables and their observed measurements, leading
to the idea of MeDIL causal models:

Definition 2 (Measurement Dependence Inducing Latent
Causal Model (MCM)). A graphical MCM is a DAG,
given by the triple G = 〈L,M,E〉. L and M are disjoint
sets of vertices, while E is a set of directed edges between
these vertices, subject to the following constraints:

1. all vertices in M have in-degree of at least 1 and
out-degree of 0

2. all vertices in L have out-degree of at least 1

3. E contains no cycles

There are no further constraints as to the variety of dis-
tributions and functional causal relations that MCMs can
represent, i.e., they are non-parametric and their arrows
can represent arbitrary functional relations between vari-
ables. The formal constraints 1. and 2. in Definition 2 are
to ensure that MCMs are applicable to settings in which
we can explicitly separate into disjoint sets the measured
effect variables M whose probabilistic dependencies must
therefore be mediated by latent causes L.

However, the explicit separation of cause and effect and
the corresponding latent structure in MCMs introduces
its own difficulties for inference. Namely, many latent
models are consistent with a given probability distribution
over observed effects, making the task of inferring a single
latent model ill-posed. In order to help explain this consis-
tency of different latent models and illustrate our strategy
for restricting the problem so that inference is well-posed,
consider the following definition and example.
Definition 3 (Observational Consistency). A MCM is
observationally consistent with a probability distribution
over measurement variables if it is capable of inducing the
pairwise dependencies (which can estimated from sam-
ples) of that distribution. This can be seen as a weakening
of the notion of observational equivalence corresponding
to our extension from DAGs containing only observed
variables to the notion of MCMs.1

Example 4 (Observational Consistency). Suppose we
have data consisting of peoples’ answers to a question-
naire with four questions designed to measure depression
and stress. We assume that the answer to one question
cannot cause the answer to another and therefore that
the observed answers as well as any observed associ-
ation between answers are the result of latent causes,
such as depression or stress. Define random variables
M = {M1,M2,M3,M4} corresponding to answers to
the four questions, and let them have only the following
two pairwise independencies:

M1 ⊥⊥M4 and M2 ⊥⊥M4

The pairwise dependency structure between variables in
M is shown in Figure 1(a), and three observationally
consistent MCMs are shown in 1(b), 1(c), 1(d). As this
example demonstrates, multiple latent models can give
rise to the same set of observed dependencies.

1observational or Markov equivalence (Pearl, 2000, pp. 16–20)
means two DAGs have the same skeletons and colliders, while obser-
vational consistency means that two MCMs have the same undirected
dependency graphs over measurement variables (e.g., Figure 1)

2.1. MeDIL Causal Models
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M1

M2 M3 M4

(a)

M1 M2 M3 M4

L1 L2

(b)

M1 M2 M3 M4

L1 L2 L3

(c)

M1 M2 M3 M4

L1 L2

(d)

Figure 1: (a) undirected dependency graph over M—
notice two missing edges corresponding to independen-
cies; (b) minimal MCM over M; (c) non-minimal MCM
observationally consistent with M; (d) MCM correspond-
ing to ICA or FA

We address this problem by employing Ockham’s razor
to pick a minimal MCM (minMCM) (e.g., Figure 1(b)).

Definition 5 (Minimal MeDIL causal model (minMCM)).
A minMCM for a set of measurement variables M is any
least expressive (i.e., minimal) MCM that is observation-
ally consistent with M. As Pearl and Verma (1995) note,
a latent causal model’s expressive power can be measured
by the (in)dependencies it induces over the measured vari-
ables, with more dependencies corresponding to more
expressive power. In our case, criteria can be given for
minimality in modified terms of the causal faithfulness
and causal Markov assumptions:

1. in addition to being observationally consistent with
its set of measurements, a minMCM must graph-
ically induce the measurements without violating
faithfulness; the notion of faithfulness used here
is concerned with conditional independencies only
over measurements and not all variables in the MCM,
so we call it measurement-faithfulness; note that Fig-
ure 1(b) is faithful to the conditional independencies
in Example 4 while Figure 1(d) is not—the MCM in
Figure 1(b) is minimal while that in 1(d) is not

2. considering arbitrary subsets of the latents, Z ⊆
L, there are as few d-separations of the form
Mi 6⊥ Mj | Z as (faithfully) possible, i.e., such
d-separations only exist in an minMCM if implied
by the (in)dependencies and causal insufficiency of
the distribution only over measurement variables;
we call this measurement-Markov since it says the
only d-separations in the minMCM are those implied
by measurement-faithfulness2; note that Figure 1(c)
does not satisfy this

2just as is the case with the usual causal faithfulness and Markov
conditions

Learning a minMCM for a data set only requires consid-
ering the unconditional independence relations among its
variables, unlike the other methods mentioned in Section
1.1. This follows from Proposition 6.

Proposition 6. In a MCM, the set of unconditional
(in)dependencies over measurement variables fully deter-
mines the set of conditional (in)dependencies over mea-
surement variables.

Proof. The Causal Markov and Causal Faithfulness as-
sumptions (CMA and CFA, respectively) imply that two
variables are probabilistically independent if and only if
they are d-separated (allowing us to use independence/d-
separation and ⊥⊥ / ⊥ interchangeably). Recall from
Definition 2 that all dependence relations (and therefore,
by the CMA and CFA, d-connections) between measure-
ment variables are mediated by latent variables. Hence,
all measurement variables have out-degree 0, and so any
measurement variable in a path between two other mea-
surement variables must be a collider and any depen-
dent measurement variables must share at least one la-
tent parent. This means that the set of unconditional
(in)dependencies over measurement variables fully deter-
mines the set of conditional (in)dependencies as follows:
for all Mi,Mj ,Mk ∈M,

• Mi 6⊥⊥Mj =⇒ Mi 6⊥⊥Mj |Mk

• Mi ⊥⊥Mj =⇒{
Mi ⊥⊥Mj |Mk, if Mi ⊥⊥Mk or Mj ⊥⊥Mk

Mi 6⊥⊥Mj |Mk, otherwise

As we will see in Section 4, even though estimating con-
ditional independencies is not required for our method,
doing so nevertheless can help determine whether any of
the assumptions have been violated.

3 MINIMAL MEDIL CAUSAL MODELS
AS EDGE CLIQUE COVERINGS

We can now present our main insight:

Proposition 7. The problem of finding a minMCM for a
set of measurement variables can be framed as the graph
theoretical problem of finding a minimum edge clique
covering (ECC)3 (Erdős et al., 1966; Gramm et al., 2009;
Ennis et al., 2012) over the corresponding undirected
dependency graph of the measurement variables.

3A minimum ECC over an undirected graph is a collection of
cliques that exactly covers its edges, where an edge E = (Vi, Vj)
is covered by clique C iff Vi, Vj ∈ C.
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M1 M2 M3 M4 M5 M6 M7 M8

C1 C3 C4 C5 C7C2 C6

(a)

M1

M2

M3

M4

M5

M6

M7

M8

(b)

M1 M2 M3 M4 M5 M6 M7 M8

C1 C3 C4 C5 C6

(c)

M1 M2 M3 M4 M5 M6 M7 M8

C1 C2 C3 C4 C5 C7

(d)

Figure 2: (a) MCM, where each Ci corresponds to a maximal clique in D(M)—dashed red edges/vertices are redundant
for vertex-minimality while blue dotted edges/vertices are redundant for edge-minimality; (b) D(M)—undirected
dependency graph of M = {M1, . . . ,M8}; (c) vertex-minimal minMCM of D(M); (d) edge-minimal minMCM of
D(M)

Proof. For a given set of measurement variables M, de-
note the undirected dependency graph as D(M), e.g.,
Figure 1(a), where an edge represents dependence and the
lack of an edge represents independence. Proposition 6
tells us that D(M), though it only encodes unconditional
(in)dependencies, contains all necessary information for
characterizing observationally consistent MCMs. Con-
sider the MCM G = 〈L,M,E〉 constructed from a set of
cliques C comprising a minimum ECC over D(M) using
the following procedure: (i) posit a latent LC ∈ L iff
C ∈ C and (ii) posit a directed edge E ∈ E from the
latent LC to the measurement variable M iff M ∈ C.
In other words, G is a MCM with measurement vari-
ables M, one latent for each clique in the minimum ECC
over D(M), and an edge from each latent to exactly the
measurement variables in the corresponding clique.

Note that G is not only observationally consistent with
D(M) but also captures its independencies and is thus
faithful, satisfying criterion 1. of Definition 5. Further-
more, the construction of G from a minimum ECC en-
sures that latents are only posited when necessitated by
the dependencies between measurements, satisfying cri-
terion 2. of Definition 5. Thus, G is an minMCM for
D(M).

A minimum ECC can be minimal in two related but dis-
tinct ways: the original and more well-studied approach

seeks the smallest number of cliques needed to cover all
edges (this is equivalent to the intersection number (Erdős
et al., 1966)), while another justifiable approach is to seek
an ECC requiring the fewest assignments of vertices to
cliques. The corresponding interpretation for minMCMs
is vertex-minimal (fewer cliques imply fewer latents im-
ply fewer total vertices) and edge-minimal (fewer assign-
ments of measurement vertices to cliques implies fewer
directed edges from latent to measurement vertices), re-
sulting in Proposition 8. There are some undirected de-
pendency graphs for which the vertex-minimal and edge-
minimal minMCMs are identical, such as figures 1 and
3, but this identity does not hold generally (Ennis et al.,
2012) (see Figure 2). In either approach to minimality,
the resulting minMCM induces the same set of dependen-
cies over measurement variables and thus has the same
expressive power (w.r.t. the measurement variables). We
thus see no straightforwardly principled way of picking
one approach over the other, and so we present both in
hopes that practitioners will use whichever one (or both)
they judge most sensible/interesting for their particular
application.

Regardless of which notion of minimality is used, minM-
CMs have some interesting properties. First, they lower
bound (i) the number of causal concepts or (ii) the number
of functional causal relations that are required to model
measurements of a complex system at any level of gran-
ularity (Proposition 8). Second, minMCMs contain no

2.1. MeDIL Causal Models
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(b)

Figure 3: (a) example D(M) for which the minMCM (b)
has 6 measurement variables and 7 latent variables

causal links between the latent variables (Proposition 9).
Finally, in contrast to factor analysis, a minMCM may
require more latent than measurement variables (Proposi-
tion 10).

Proposition 8. For a given set of unconditional pair-
wise dependencies among measurement variables M, a
minMCM gives a lower bound on the number of latent
variables or edges (depending on the measure of minimal-
ity is used) required in any (faithful and observationally
consistent) MCM.

Proof. This is a direct consequence of the construc-
tion of minMCMs from either the clique-minimum or
assignment-minimum ECC of D(M), as described in
Proposition 7.

Proposition 9. In a minMCM, each latent variable is
d-separated from every other latent variable.

Proof. Intuitively, this is a result of the definition of a
minMCM being minimal in the sense of least expressive
(and thus having as few latents or edges): if two latent
variables are d-connected, then the dependencies among
measurement variables that they induce could also instead
be induced by a single latent variable (which also results
in fewer edges). A minMCM has no redundant latent
variables or edges and therefore no d-connected latent
variables. For example, note in that the MCMs in fig-
ures 1(b) and 1(c) induce the same d-separations over the
measurement variables, but that 1(b) with its d-separated
latents has the fewer latents and fewer total edges. More
formally, this follows directly from procedure for con-
structing an minMCM in Proposition 7 and Algorithm
1.

Proposition 10. There exist minMCMs containing more
latent than measurement variables.

Proof. This follows from the graph theoretical character-
ization of minMCMs: there are at least as many latent
variables as the intersection number of D(M), which in a
graph with n vertices is (non-trivially) upper bounded by
n2

4 (Erdős et al., 1966). A simple example can be found
when D(M) is as in Figure 3, resulting in n = 6 nodes
and an intersection number of i = 7.

4 A minMCM-FINDING ALGORITHM
AND ITS COMPLEXITY

The procedure in the proof of Proposition 7 for construct-
ing a minMCM from an undirected dependency graph
leads directly to Algorithm 1.

Algorithm 1: constructing a minimal MeDIL
causal model (minMCM)
Input : undirected dependency graph, D(M), over

the measurement variables M
Output : vertex-minimal or assignment-minimal

MCM G over M

1 initialize edgeless graph with a vertex for each
M ∈M;

2 find a clique-minimum or assignment-minimum
edge clique cover of D(M), using the algorithm
in Fig. 3 of (Gramm et al., 2009) or the
algorithm FIND-AM of (Ennis et al., 2012),
respectively;

3 for each clique C in the cover do
4 add vertex L with edges directed to each

M ∈ C;
5 end

Notice that Line 2 in Algorithm 1 is to find a minimum
ECC of D(M). Nearly all of the computational com-
plexity of Algorithm 1 comes from this step, which is
known to be an NP-hard problem, and so the choice of
an efficient ECC-finding algorithm and implementation
is especially important.

In case a clique-minimum ECC (and therefore vertex-
minimum minMCM) is preferred, (Gramm et al., 2009)
provides an exact algorithm. The exact algorithm finds an
ECC in O(f(2k) + n4) time, where k is the number of
cliques in the ECC and n is the number of vertices in the
undirected graph, and is thus fixed-parameter tractable.
Furthermore, (Cygan et al., 2016) gives a lower bound on
the complexity of the clique-minimum ECC problem and
argues that the algorithm is probably optimal. Gramm
et al. (2009) also provide a free/libre implementation
of their algorithm, though it has not been maintained
for some time and does not easily run on most modern
machines.
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In case an assignment-minimum ECC (and therefore edge-
minimum minMCM) is preferred, (Ennis et al., 2012)
provides an exact algorithm. Though they do not offer an
analyses of its complexity, it is essentially a backtracking
algorithm based on (Bron and Kerbosch, 1973)’s maxi-
mal clique finding algorithm, which has time complexity
ofO(3n/3), and so this assignment-minimum ECC find-
ing algorithm has an even larger complexity.

As far as we are aware, no other implementations of
the clique-minimum or assignment-minimum ECC find-
ing algorithms exist. To remedy this, we have im-
plemented and released these and a few other related
causal inference tools as a free/libre Python package at
https://medil.causal.dev. Already Gramm et al. (2009)
and Ennis et al. (2012) showed that their algorithms per-
form in a reasonable amount of time on moderately sized
graphs, e.g., returning a solution containing 100 cliques in
a matter of minutes. Unsurprisingly, given the hardware
advancements of the past decade, our implementation per-
forms even better, e.g. finding the 614 clique solution to
the 61 node graph presented in the next section in only 39
seconds using an Intel Core i7-8700K CPU.

5 APPLICATION

In this section we demonstrate the necessary steps to get
from a raw data set to a minMCM output from our algo-
rithm. We then hint at how this output can be analyzed
and suggest some conclusions that can be drawn from it.
Note that our contribution in this paper is theoretical, and
the point of the following application is to make some of
our theoretical claims and the potential use cases more
concrete.

5.1 THE DATA AND PREVIOUS ANALYSES

The Stress, Religious Coping, and Depression data set4

was collected by Bongjae Lee from the University of Pitts-
burgh in 2003. There were 127 participants answering a
total of 61 questions: 21 designed to measure stress, 20 for
religious coping, and 20 for depression—see (Silva and
Scheines, 2005) for the full questionnaire. This data has
been analyzed by several other measurement model meth-
ods (Silva and Scheines, 2005; Silva et al., 2006; Kum-
merfeld et al., 2014; Kummerfeld and Ramsey, 2016),
and their findings (which largely agree with each other)
can be briefly summarized as follows: (i) in contrast to the
design goal, most of the measurement variables are “im-
pure” in that they are caused by multiple latent variables;
(ii) they are able to find some subsets (ranging in num-
ber from three to nine) of “pure” measurement variables

4We would like to thank David Danks and especially Joseph Ram-
sey at Carnegie Mellon University for providing us with a copy.

that passed their significance tests and some of which
suggest a model similar to what Lee hypothesized con-
taining three latent variables—the first of which causes
only measurement variables of stress, the second only
depression, and the third only coping; (iii) most of their
models scoring the highest significance are more complex
models than Lee’s model (the most complex containing
eight latents (Silva and Scheines, 2005)).

5.2 ANALYSIS USING minMCMS

Notice that the input to Algorithm 1 is an undirected
dependency graph, while in practice one does not have
direct knowledge of the (in)dependencies themselves but
only samples of the measurement variables. It is therefore
necessary to first estimate the independencies before ap-
plying this algorithm. Because the algorithm is agnostic
to the test statistic, it is not constrained to linear methods
such as Pearson correlation (for which “X ⊥⊥ Y =⇒
corr(X,Y ) = 0” but not the converse) but can leverage
the power of nonlinear independence tests (Gretton et al.,
2005; Székely et al., 2007). We used the distance corre-
lation (Székely et al., 2007) as our test statistic (with the
property “X ⊥⊥ Y ⇐⇒ dCorr(X,Y ) = 0”) and per-
formed 1000 random permutations of the measurement
variables to sample from the null-distribution (Dwass,
1957). The p-value for each pair was then calculated as
the proportion of the permutation tests in which the ab-
solute distance correlation of the pair of variables with
permuted samples exceeded that of the original pair. Fi-
nally, independence between two variables was concluded
if the distance correlation between them was less than 0.1
and the corresponding p-value was greater than 0.1.5

The binary-valued 61 × 61 matrix corresponding to the
estimated independencies, with a 0 for independence and
1 for dependence thus forms the adjacency matrix for the
UDG that is input for Algorithm 1. We decided to find
a latent-minimal minMCM, and the result has 614 latent
variables. It is thus too complex to be legibly displayed
here, so we instead present figures 4 and 5 to facilitate
analysis of the results.

Looking at the histogram in Figure 4(a), we find a median
indegree (i.e., number of latent causes) of the measure-
ment variables of 27, but with one in particular, M30,
having 425. The item in the questionnaire correspond-
ing to M30 was the ninth in the set designed to measure
depression, and it asked participants how frequently the
event “I thought my life had been a failure” occurred in
the preceding week. Semantically, it makes sense that
this item would have many more latent causes than the

5As one would expect, using a nonlinear measure of dependence
allows us to detect more dependencies: we found almost 31% of the
over 1500 estimated nonlinear pairwise dependencies (i.e., edges in the
UDG) to be undetectable using the linear Pearson correlation.
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Figure 4: histograms showing (a) indegree of the mea-
surement variables and (b) the outdegree of the latent
variables

other items, because its scope is much larger, requiring
reflection on the participants’ entire life up to that point
instead of just during the week in question, as is the case
for other depression items, such as “I enjoyed life” (M37,
24 latent causes) and “I felt sad” (M39, 25 latent causes).
Furthermore, looking at Figure 5(a), showing the number
of latents each pair of measurement variables share, we
see that M30 shares a relatively high amount of latent
causes with the other measurement variables (median of
21), while for M37 and M39 the median of shared latent
causes is one. Our analysis thus agrees with the previous
analyses described in Section 5.1 insofar as we also find
many “impure” measurement variables, but extends their
insights by differentiating between measurement variables
that are best considered a general or mixed measurement
(M30) and those that, even though they are also impure,
span different subsets of the latent space (M37 and M39).

Looking at the outdegree (i.e., the number of measure-
ment variables a latent causes) in Figure 4(b) we find a
median of four and a range from 2 to 20. The number
of measurements shared by each pair of latent variables
reveals further structure (Figure 5(b)). In particular, the in-
cidence matrix representation of the latents corresponding
to the block structure between approximately L105–L145

reveals seven measurement variables that these latents
mostly have in common, corresponding to four stress and
three depression items. On the other side, 41% (roughly
74k) pairs of variables do not share any measurement
variables. Such insights may be used to simplify models,
e.g. by removing measurement variables that induce mul-
tiple latents, or to build subsets of “pure” measurement
variables, in the sense that the resulting measurement

Figure 5: heatmaps showing (a) the number of latent
variables each pair of the 61 measurement variables have
in common and (b) the number of measurement variables
each pair of the 614 latent variables have in common

subsets are caused by disjoint sets of latents6.

Finally, we note that there is more structure to be explored
in the minMCM and figures 4 and 5 , but that is beyond
our present scope. Note that the type of structure analyzed
here emerges only when considering an ECC (i.e. patterns
in the UDG, which is an abstraction of the correlation ma-
trix) and not from the correlation matrix itself—analogous
to higher-moment statistics or higher-order logic.

Our findings are not inconsistent with previous analyses
of this data set, as can be seen by their agreement with
points (i) and (iii) in Section 5.1, and should rather be
seen as complementary. More generally our algorithm and
corresponding analyses do not subsume existing methods
but rather provide a novel perspective that allows us to
focus on otherwise unutilized structure in measurement
data, which in addition to helping to model the data also
aids in, e.g., assessing and revising questionnaires and
instruments.

6 DISCUSSION

Having in the preceding sections presented our minMCM
finding algorithm, its supporting theory, and a demon-
stration application, we now conclude with two main
directions for future work: the first direction is primarily
concerned with applications of Algorithm 1 in its current
state or requiring only minor modifications, while the sec-
ond is primarily concerned with significantly extending

6Note that this is a bit different from the notion of ”pure” used in
the other measurement literature
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Algorithm 1 and with developing new methods based on
insights gleaned during its development.

6.1 FUTURE APPLICATIONS AND MINOR
MODIFICATIONS

Being constraint-based, the Algorithm 4 relies on esti-
mated independencies. Thus, errors in the inference of
minMCMs come not from Algorithm 1 itself but rather
from the estimation of independencies that it (along with
many other causal inference methods) requires as input.
In this regard, a single incorrectly estimated independence
can in the (unlikely) worst case7result in incorrectly dou-
bling or halving the number of estimated latents or edges.
In any case, as mentioned at the end of Section 2, further
estimates of conditional independencies can help corrobo-
rate or refute the estimated unconditional independencies.
More detailed examination is needed to make this more
theoretically precise as well as to determine how much of
a problem this is likely to pose for real data.

One final caveat for interpreting minMCMs is that, for
complex graphs, there can be multiple minimum ECCs
(for both types of minimality), each with the same min-
imum number of cliques or assignments. Thus, while
using a minMCM to reason about the minimum number
of edges or latents is always valid, stronger conclusions
may require that the graph D(M) admits only one min-
MCM (which is simple enough to test) or that further
assumptions or background knowledge are used to justify
one minMCM over other observationally consistent ones.
To this end, the (non-minimal) MCM corresponding to
maximal cliques (e.g., Figure 2(a)) may be especially
interesting, because it contains all observationally consis-
tent MCMs (including the minMCMs in 2(c) and 2(d)).

Another promising aspect of our approach for future work
is its extensibility, which results from establishing MeDIL
causal models as a causal semantics for edge clique cov-
ers. Though we have so far focused on minimal ECCs,
a MCM corresponding to any ECC for a given UDG is
guaranteed to be measurement-faithful and causally suffi-
cient (though not minimal or measurement-Markov) for
the corresponding distribution of measurement variables.
Using a different class of ECCs simply requires a differ-
ent algorithm to be used in Line 2 of Algorithm 1. Just as
we expressed simplicity of the causal model in terms of
the number of latents (or edges) in the MCM and there-
fore the number of cliques (or assignments) in the ECC,
any property of a causal model that can be expressed in

7This is when the inclusion/exclusion of a single edge in an n ≥ 3
vertex undirected dependency graph makes the difference between the
graph having 2(n − 2) maximal cliques that are all edges and n −
2 maximal cliques that are all triangles. Fortunately, such precarious
structures are easy to detect and can be removed by picking different
sets of measurements.

terms of properties of an ECC can be used to repurpose
an ECC-finding algorithm for the desired CSL task. For
example, developments in network science (Conte et al.,
2019) make it possible for ECC-based causal analysis
of very large graphs, even containing up to millions of
nodes.

6.2 EXTENSIONS AND FURTHER
DEVELOPMENTS

Because Algorithm 1 returns a causally sufficient DAG, it
should be possible to actually learn a corresponding fully
specified functional causal model using, e.g., some ver-
sion of nonlinear ICA or variational autoencoders (Khe-
makhem et al., 2019) that has been modified to take into
account the conditional independence structure. This
could potentially lead to the development of a causal,
non-parametric generalization of factor analysis (Martin
and VanLehn, 1994) which would still be interestingly
different from similar existing work (Hoyer et al., 2008;
Kummerfeld and Ramsey, 2016). Furthermore, since
learning such a FCM would require the data set and not
just its CI relations, it would be straight-forward to make
a score-based adaptation of Algorithm 1 inspired by (Eli-
dan et al., 2001), where cliques are picked according to
maximizing a scoring criterion instead of (possibly mis-
estimated) CI relations. This would help overcome the
potential pitfall mentioned in Section 6.1.

Additionally, notice that formally, (though not semanti-
cally) every DAG is a MCM: any given DAG G can be
partitioned into sink nodes S and non-sink nodes N, in
which case it is observationally consistent with respect to
S to any other DAG H whose (sub)set of sink nodes S′

has the same UDG as S. This allows for some of the the-
ory developed in sections 2 and 3 to be easily repurposed
to characterizing subset-Markov equivalence classes for
DAGs with different sets of variables, as long as they have
some subset of sink nodes S = S′ in common. This may
help connect causal coarsening (Chalupka et al., 2016)
with causally consistent transformations between micro-
and macro-models (Rubenstein et al., 2017) and causal
abstraction (Beckers and Halpern, 2019).
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2.2. The MeDIL Python Package

2.2.1. Synopsis

We present the MeDIL Python package, summarizing the three main steps to go from a
raw data set to a MeDIL functional causal model: (1) independence testing, (2) structure
learning, and (3) function learning. We describe the three different submodules for carrying
out each of these steps (including using one of them to generate simulated data sets), as well
as a fourth submodule for producing various plots, all with accompanying example code.
Complete documentation and source code can be found at https://medil.causal.dev.

Complete bibliographic information

Markham, A., Chivukula, A., and Grosse-Wentrup, M. (2020). MeDIL: A python package
for causal modelling. In Jaeger, M. and Nielsen, T. D., editors, Proceedings of the 10th
International Conference on Probabilistic Graphical Models, volume 138 of Proceedings of
Machine Learning Research, pages 621–624. PMLR

My contribution

• writing the software package (with help on the functional_MCM submodule)

• writing the paper
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Abstract
We present the MeDIL Python package for causal modelling. Its current features focus on (i) non-
linear unconditional pairwise independence testing, (ii) constraint-based causal structure learning,
and (iii) learning the corresponding functional causal models (FCMs), all for the class of measure-
ment dependence inducing latent (MeDIL) causal models. MeDIL causal models and therefore the
MeDIL software package are especially suited for analyzing data from fields such as psychometric,
epidemiology, etc. that rely on questionnaire or survey data.
Keywords: causal modelling; Python; structure learning; latent variable model; nonlinear inde-
pendence; edge clique cover; generative adversarial network.

1. Introduction

Markham and Grosse-Wentrup (2020) introduce measurement dependence inducing latent (MeDIL)
causal models. These models have disjoint sets of (unobserved) latent variables and (observed) mea-
surement variables. In order for a set of random variables to be considered measurement variables,
it must satisfy the assumption of strong causal insufficiency, i.e., none of the measurement variables
may (even indirectly) cause one another—thus, any probabilistic dependence between them must
be mediated by latent causes. The assumption of strong causal insufficiency is especially applica-
ble in settings such as psychometric instrument questionnaires, and MeDIL causal models can, for
example, be thought of as a causally interpretable factor analysis.

Graphically, MeDIL causal models (MCMs) are represented as directed acyclic graphs with
disjoint sets of vertices representing the latent and measurement variables, where the measurement
variables are represented as sink vertices (i.e., have no outgoing edges). These MCMs can be
inferred by sampling a set of measurement variables as follows:

1. perform (nonlinear) independence tests on samples to generate undirected dependency graph
(UDG) over measurement variables

2. perform causal structure learning by applying an edge clique cover finding algorithm to the
UDG, resulting in a graphical MCM

3. use generative adversarial networks to learn a functional MCM (i.e., learn the functional
relations corresponding to edges in the to the graphical MCM)

See (Markham and Grosse-Wentrup, 2020) for more details, supporting theory, and related work for
steps 1 and 2, and see (Chivukula et al., 2020) for those of step 3.

1
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2. Features

MeDIL is a free/libre software package written in Python (Van Rossum and Drake, 2009) and makes
extensive use of NumPy (Oliphant, 2006), which is required for all three submodules. For installa-
tion instructions, documentation, and examples, visit https://medil.causal.dev

We begin with all the necessary import statements and generating the sample data set:

1 # for making sample data
2 import numpy as np
3 from medil.examples import triangle_MCM
4 from medil.functional_MCM import gaussian_mixture_sampler
5 from medil.functional_MCM import MeDILCausalModel # also used in

step 3↪→

6

7 # for step 1
8 from medil.independence_testing import hypothesis_test,

dependencies, distance↪→

9

10 # for step 2
11 from medil.ecc_algorithms import find_clique_min_cover as find_cm
12

13 # for step 3
14 from pytorch_lightning import Trainer
15 from medil.functional_MCM import uniform_sampler, GAN
16

17 # for visualization
18 import medil.visualize as vis
19 from medil.independence_testing import distance
20

21

22 # make sample data
23 num_latent, num_observed = triangle_MCM.shape
24

25 decoder = MeDILCausalModel(biadj_mat=triangle_MCM)
26 sampler = gaussian_mixture_sampler(num_latent)
27

28 input_sample, output_sample = decoder.sample(sampler,
num_samples=10000)↪→

29 np.save("measurement_data", output_sample)

2.1 Independence Testing

The independence testing submodule performs permutation-based hypothesis testing using
nonlinear distance correlation from the dcor package Carreño (2020).

30 # step 1: estimate UDG
31 p_vals, null_corr = hypothesis_test(output_sample.T,

num_resamples=100)↪→

2
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32 dep_graph = dependencies(null_corr, 0.1, p_vals, 0.1)
33 # dep_graph is adjacency matrix of the estimated UDG

However, any other preferred way of acquiring the (unconditional) pairwise dependencies can
be used, and the resulting UDG can be plugged directly into step 2.

2.2 Causal Structure Learning

The ecc algorithms submodule provides an implementation of an algorithm for finding a
clique-minimal edge clique cover of a given UDG. The result is an biadjacency matrix that provides
the minimal number of latent variables and their connections to measurement variables. It only uses
NumPy, though part of the implementation contains code adapted from NetworkX (Hagberg et al.,
2008) for finding maximal cliques.

34 # step 2: learn graphical MCM
35 learned_biadj_mat = find_cm(dep_graph)

2.3 FCM Learning

Given a set of measurement samples and the causal structure learned in step 2, the functional MCM
submodule uses generative adversarial networks (GANs) with the maximum mean discrepancy
(MMD) loss to learn a nonlinear functional causal model. It defaults to using a uniform distri-
bution for latent variables and a normal distribution for the exogenous variables, but any prior can
be specified. The GANs are built using PyTorch Lightning (Falcon, 2019).

36 # step 3: learn functional MCM
37 num_latent, num_observed = learned_biadj_mat.shape
38

39 decoder = MeDILCausalModel(biadj_mat=learned_biadj_mat)
40 sampler = uniform_sampler(num_latent)
41

42 minMCM = GAN("measurement_data.npy", decoder,
latent_sampler=sampler, batch_size=100)↪→

43 trainer = Trainer(min_epochs=1000)
44 trainer.fit(minMCM)

2.4 Visualizing and Evaluating Results

The visualize submodule uses Matplotlib (Hunter, 2007).

45 # confirm given and learned causal structures match
46 vis.show_dag(triangle_MCM)
47 vis.show_dag(learned_biadj_mat)
48

49 # compare plots of distance correlation values for given and learned
MCMs↪→
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50 generated_sample = decoder.sample(sampler, 1000)[1].detach().numpy()
51 generated_dcor_mat = distance(generated_sample.T)
52

53 vis.show_obs_dcor_mat(null_corr, print_val=True)
54 vis.show_obs_dcor_mat(generated_dcor_mat, print_val=True)
55

56 # get params for learned functional MCM; replace '0' with any 'i' in
{0, ..., 5} to get params for any corresponding M_i↪→

57 print(decoder.observed["0"].causal_function)

3. Future Development

Immediate further development will consist of (1) integrating other measures of independence, such
as the Hilbert-Schmidt Independence Criterion, and (2) implementing/integrating other exact and
heuristic edge clique cover finding algorithms, e.g., for minimizing the number of functions in
the MCM instead of the number of latents, or other partial or heuristic solutions for use on very
large networks. Future development will depend on the direction of our theoretical causality work,
but is likely to include clustering samples coming from mixtures of MCMs, and learning causally
consistent transformations between micro- and macro-models.
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2.3. Causal Clustering

2.3.1. Synopsis

We consider the problem of clustering within structurally heterogeneous populations,
i.e., those in which different samples are generated by different causal structures. We
derive the dependence contribution kernel and prove the corresponding kernel space is
isometric to a space of causal graphical models, meaning the kernel allows us to measure the
similarity/distance between the generating causal structures of different samples without
first having to explicitly learn their causal structures. This kernel can be used in a wide
variety of existing clustering algorithms, facilitating a flexible and extensible solution to
the clustering problem in structurally heterogeneous populations. We demonstrate the
dependence contribution kernel on a real-world data set by clustering genes according
to their latent transcription factor networks. A Python implementation of the kernel as
well as the full source code for the real-world application can be found respectively at
https://causal.dev/code/dep_con_kernel.py and https://causal.dev/code/fibr
oblast_clustering.py or in Sections A.1 and A.2 of the Appendix.

Complete bibliographic information

Markham, A. and Grosse-Wentrup, M. (2021). A Distance Covariance-based Kernel for
Nonlinear Causal Clustering in Heterogeneous Populations. In under review but available
as arXiv e-print, page arXiv:2106.03480
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• connected the covariance-based clustering problem to kernel methods and graph
embeddings

• derived the theoretical results

• implemented the kernel and clustering algorithm, applied it to the data, and produced
all plots

• wrote the paper (with help, especially in the introduction)
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Abstract

We consider the problem of causal structure learning in the setting of heterogeneous
populations, i.e., populations in which a single causal structure does not adequately
represent all population members, as is common in biological and social sciences.
To this end, we introduce a distance covariance-based kernel designed specifically
to measure the similarity between the underlying nonlinear causal structures of
different samples. This kernel enables us to perform clustering to identify the
homogeneous subpopulations. Indeed, we prove the corresponding feature map is
a statistically consistent estimator of nonlinear independence structure, rendering
the kernel itself a statistical test for the hypothesis that sets of samples come from
different generating causal structures. We can then use existing methods to learn
a causal structure for each of these subpopulations. We demonstrate using our
kernel for causal clustering with an application in genetics, allowing us to reason
about the latent transcription factor networks regulating measured gene expression
levels.

1 Introduction

Learning causal relationships from observational and experimental data is one of the fundamental
goals of scientific research, and causal inference methods are thus used in a wide variety of fields. The
resulting variety of applications nevertheless share some common difficulties, such as causal inference
from complex time-series data (Eichler, 2012) or the underlying causal structure being obscured
by unmeasured confounders (Greenland et al., 1999). Another common difficulty, especially for
applications in the biological and social sciences, is causal inference from heterogeneous populations
(Xie, 2013; Brand and Thomas, 2013)—addressing this difficulty is our main motivation.

In general terms, we understand a heterogeneous population to be one whose members are not
adequately described by a single model but rather better described by a collection of models. Within
our context of causal structure learning, this means a population is heterogeneous if some samples
are generated by different causal structures—we call this structural heterogeneity. We note that there
are other kinds of heterogeneity, such as that in samples generated by different joint distributions
over the same causal structure, which are not the scope of this work.

A specific example of structural heterogeneity can be found in genetics: causal methods are used to
learn the structure of gene regulatory networks (Emmert-Streib et al., 2012), and gene expression data
from a single recording or experiment may include thousands of genes, many of which are involved
in entirely different networks (Liu, 2015); thus, attempting to learn a single causal structure for all of
the genes will obscure the fact that different sets of them have different structures.
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The bulk of our work in this paper, and our main contribution, is to introduce the dependence
contribution kernel, which facilitates a flexible and easily extensible approach to causal clustering:
first perform clustering to identify structurally homogeneous subsets of samples, and then proceed
with the actual learning task on each cluster. We prove that our kernel is a statistically consistent
estimator of the similarity of the causal structures underlying different samples and can thus be used
to find clusters that minimize structural heterogeneity for causal structure learning tasks. Furthermore,
the kernel is derived from the distance covariance (Székely et al., 2007), imbuing it with the ability
to detect nonlinear dependence. It can easily be used in a wide array of clustering algorithms, such
as k-means, DBSCAN, spectral clustering, or any other method that analogously makes use of a
similarity (or distance) measure between samples (Filippone et al., 2008).

The rest of the paper is organized as follows: We finish this section by discussing some of the most
relevant related work from the causal inference and statistics literature. All of Section 2 is devoted to
the theory underlying our dependence contribution kernel, including a comparison of the familiar
product-moment covariance with the distance covariance (Section 2.1), defining an equivalence
class of causal models with a convenient representation in the kernel space (Section 2.2), and the
actual definition of our kernel and proofs of its relevant properties (Section 2.3). Next, in Section
3, we demonstrate causal clustering with the kernel on a heterogeneous gene expression data set,
finding structurally homogeneous clusters for which we then learn latent causal measurement models,
allowing us to reason about the different transcription factor networks responsible for regulating the
measured gene expression levels. Finally, we conclude in Section 4 mentioning possible future work.

1.1 Related Work

Causal inference in heterogeneous populations sometimes refers to data-fusion (Bareinboim and
Pearl, 2016), i.e., combining known homogeneous subpopulations and performing causal inference
on the resulting heterogeneous population, or similarly, it can refer to meta-learning using known
subpopulations (Sharma et al., 2019). Other times, it refers to estimating heterogeneous treatment
effects (Xie et al., 2012; Athey and Imbens, 2015). However, in our case, the subpopulations are not
known and we rather consider the problem of learning which samples come from which subpopulation,
and these are differentiated according to structure instead of treatment effect.

Previous work on causal clustering has focused more on the causal modeling aspect, using stronger
assumptions about the underlying structures to learn more detailed models. For example, Kummerfeld
et al. (2014); Kummerfeld and Ramsey (2016) focus on causal clustering in measurement models,
with the goal of clustering different features together to study their latent causal structure, based on
tetrad constraints within the linear product-moment covariance matrix. Huang and Zhang (2019)
define a class of causal models facilitating mechanism-based clustering, learning causal models both
for clusters of samples as well as a shared one for all samples, assuming the underlying structures
are linear non-Gaussian. Saeed et al. (2020) characterize distributions arising from mixtures of
directed acyclic graph (DAG) causal models (i.e., causal models without latent or selection variables),
trying to learn both the component DAGs and a representation of how they are mixed. All of these
approaches, like most causal inference methods, make specific (and for some applications, restrictive)
assumptions about the underlying distributions or causal structures.

In contrast, our method is not tied to specific distributional assumptions such as linearity or
(non)Gaussianity—we assume there are enough samples for statistical inference, as well as the
usual causal Markov and faithfulness assumptions. For the first step, we cluster samples together if
they (implicitly, in the kernel space) have similar nonlinear independence structures. For the second
step, causal structure learning, any existing method (along with its corresponding assumptions) can in
principle be used. In our gene expression data application (Section 3), the measurement dependence
inducing latent (MeDIL) causal model framework (Markham and Grosse-Wentrup, 2020), which
assumes the data consists of measurement variables that are causally connected only through latent
variables, seems appropriate, however other applications can easily use other methods. For example,
component and mixture DAGs (Saeed et al., 2020) can be better learned when one first knows which
samples come from which component—clustering with our kernel ensures samples in different
clusters come from different DAGs, and so using their method instead of the MeDIL framework
would be a natural choice for applications in which a DAG (without any latents) is more appropriate.

Finally, there is some work from the statistics literature that sounds superficially similar to our
distance covariance-based kernel but is conceptually quite different. Namely, another well-known
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measure of nonlinear independence, the Hilbert-Schmidt Independence Criterion (Gretton et al., 2005,
2008), is part of a class of reproducing kernel Hilbert space- (RKHS-) based dependence measures
that Sejdinovic et al. (2013) show is equivalent to distance-based measures such as the distance
covariance. Our dependence contribution kernel, unlike these, is not a dependence measure between
features—it rather uses the distance covariance to measure the similarity of samples based on patterns
in the dependence structure of their features, and is rather more like a graph embedding (Cai et al.,
2018).

2 Theory

2.1 Product-moment Covariance, Distance Covariance, and Dependence Contribution

Though there is more to causal relationships than probabilistic dependence, causal inference methods
based on graphical models ultimately rely on at least implicitly learning conditional independence
(CI) relations. CI relations can be estimated in many ways, with different dependence measures
and tests each having their own theoretical guarantees and being better suited for distributions of
various different kinds of data (e.g., categorical, discrete, or continuous) and with various kinds
of relationships (e.g., linear, monotonic nonlinear, arbitrary nonlinear) and with different testing
assumptions (see Tjøstheim et al., 2018, for a comprehensive overview).

A widely used measure of dependence is the product-moment covariance, often just called covariance,
which is defined for two zero-mean random variables X1 and X2 as the scalar value cov(X1, X2) =
E[X1X2]. This can be extended from a pair of random variables to every pair of variables in a
random vector, thus returning a matrix instead of a scalar. The covariance matrix for a vector of
zero-mean random variables X = (X1, . . . , Xm) can be estimated from a set S ∈ Rn,m of n samples
as Σ̂X = 1

nS
>S, and the j, j′-th value of Σ̂X is thus the estimate ˆcov(Xj , X

′
j).

Two random variables being probabilistically independent (denoted ⊥⊥) implies that their product-
moment covariance is zero, i.e., Xj ⊥⊥ Xj′ =⇒ cov(Xj , Xj′) = 0 (importantly, the inverse of this
does not hold). Thus, the estimated product-moment covariance can be used in statistical hypothesis
testing for probabilistic independence (Wasserman, 2013, Ch. 10): Xj and Xj′ are assumed to
be independent if and only if ˆcov(Xj , Xj′) is sufficiently close to 0. However, this method has
an important problem: the product-moment covariance is only a valid test statistic against linear
dependence.

Székely et al. (2007) introduce the distance covariance to remedy this problem: random variables are
probabilistically independent if and only if their distance covariance is zero, i.e., Xj ⊥⊥ Xj′ ⇐⇒
dCov(Xj , Xj′) = 0, resulting in the estimated distance covariance being a valid test statistic against
all types of dependence. The distance covariance is related to the product-moment covariance by
dCov2(Xj , Xj′) = cov(|Xj −X ′j |, |Xj′ −X ′j′ |)− 2cov(|Xj −X ′j |, |Xj′ −X ′′j′ |), where (X ′j , X

′
j′)

and (X ′′j , X
′′
j′) are independent and identically distributed (iid) copies of (Xj , Xj′) (Székely and

Rizzo, 2014). The key intuition here is that the distances (e.g., |Xj −X ′j |) constitute a nonlinear
projection, so that using the linear product-moment covariance in this projected space allows for the
detection of nonlinear dependence in the original space.

Note that dCov is typically defined to be a scalar value when taken between two arbitrary-dimensional
random vectors, but our restricted presentation of it above in terms of random variables is to make
it more obviously analogous to the product-moment covariance between random variables. Thus,
corresponding to Σ̂X for random vectors, we define the following:
Definition 1 Let S ∈ Rn,m be a set of n samples from the vector of random variables X =
(X1, . . . , Xm). For each j ∈ {1, . . . ,m} and i, i′ ∈ {1, . . . , n}, define the pairwise distance matrix
Dj , with values given by Dj

i,i′ := |Si,j − Si′,j |. Now define the corresponding doubly-centered
matrices Cji,i′ := Dj

i,i′ − D̄j
i,· − D̄j ·,i′ + D̄j ·,·, where putting a bar over the matrix and replacing

an index i or i′ with · denotes taking the mean over that index. Define the matrix L ∈ Rn2,m so
that each column is a flattened doubly-centered distance matrix, L := (vec(C1), . . . , vec(Cm)),
where vec(Cj) denotes “flattening” matrix Cj into a column vector. Finally, the estimated distance
covariance matrix over sample S is defined as

∆̂X :=
1

n2
L>L.

3
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Analogous to Σ̂X, the j, j′-th entry of ∆̂X corresponds to ˆdCov
2
(Xj , Xj′)—indeed it is mathemati-

cally equivalent to computing each pairwise distance covariance value and then manually filling in
the matrix. The novelty of our Definition 1 is in finding a matrix of pairwise values instead of a single
value for the distance covariance between random vectors, which helps provide an intuition for our
next definition:
Definition 2 Let S ∈ Rn,m be a set of n samples from the vector of random variables X =
(X1, . . . , Xm); note that we consistently use indices i, i′ ∈ {1, . . . , n} and j, j′ ∈ {1, . . . ,m}.
Let D ∈ Rn,n,m denote the 3-dimensional array of stacked pairwise distance matrices defined by
Di,i′,j := |Si,j − Si′,j |, and use C ∈ Rn,n,m to denote these same distance matrices after being
doubly-centered, i.e., Ci,i′,j := Di,i′,j−D̄i,·,j−D̄·,i′,j+D̄·,·,j , where replacing an index i or i′ with
· denotes the entire (lower-dimensional) subarray over that index, and writing a bar, D̄, denotes taking
the mean over that subarray. Then standardize the doubly-centered distances to get Zi,i′,j :=

Ci,i′,j
D̄·,·,j

.
Finally, the dependence contribution map, ϕ : Rm → Rm,m, is defined as

ϕ(Si,·) := Z>i,·,·Zi,·,· − T (α),

where T (α) ∈ Rm,m is a matrix of scaled critical values corresponding to a given significance level

α with zeros along the diagonal, i.e., T (α)j,j′ =

{
0, if j = j′
1
nχ

2
1−α(1), otherwise

, with χ2
1−α(1) being the

1− α quantile of the chi-square distribution with 1 degree of freedom.

Notice the similarity between Definitions 2 and 1: if we set T (α) to be a matrix of 0s and forgo
standardization (i.e., use C instead of Z), then 1

n2

∑n
i=1 ϕ(Si,·) = ∆̂X. Now, the differences: ∆̂X is

a single matrix computed over an entire set of samples, whereas ϕ is a map that projects each given
sample to a new feature space; each entry of ∆̂X is simply a distance covariance value, whereas each
entry of the sum of ϕ(Si,·) over i, by using standardization (using Z instead of C) and subtracting a
critical value, corresponds to the result of using a distance covariance value in a statistical hypothesis
test for independence—indeed:
Lemma 3 Let S ∈ Rn,m be a set of n iid samples from random variables X1, . . . , Xm with finite
first moments. For a given significance level α, under the null hypothesis of Xj ⊥⊥ Xj′ , the test

reject h∅ if
( n∑

i=1

ϕ(Si,·)
)
j,j′

> 0

is statistically consistent against all types of dependence.

Proof. This follows from (Székely and Rizzo, 2009, Theorem 5 and Corollary 2) and how ϕ is
defined to correspond to the difference between distance covariance and critical values. �

These differences between ∆̂X and ϕ serve two important purposes: first, they ensure ϕ maps to a
Hilbert space so that our Definition 9 is a corresponding kernel function (Schölkopf et al., 2001); and
second, as the name “dependence contribution map” suggests, they ensure ϕ(Si,·) is informative not
just about distance covariance but about nonlinear dependence and about how the inclusion of sample
Si,· in a set of samples S contributes to the dependence patterns estimated from S— this is the key
intuition behind how our kernel function is used to learn structurally homogeneous sample subsets,
as explicated in the following sections.

2.2 Causal Graphs in Kernel Space

In general, a full causal structure can only be learned with sufficient data about the effects of
interventions, and thus causal structure learning from purely observational data is usually possible
only up to an equivalence class of causal graphs (Spirtes et al., 2000; Pearl, 2009). For example, the
classic PC and IC algorithms, under the assumptions of no selection bias and no confounding by
latent variables, do not necessarily return a fully-specified DAG but instead return a mixed graph,
containing possibly directed and undirected edges, representing the Markov equivalence class (Spirtes
and Glymour, 1991; Pearl and Verma, 1995).

We now define a set of equivalence classes for ancestral graphs (AGs), which—unlike causal DAGs—
do not assume the absence of selection bias and latent confounders (Richardson et al., 2002):
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Definition 4 Consider an arbitrary ancestral graph A with the set of vertices V A and edge function
EA, and denote the set of unconditional m-connection statements entailed by their corresponding
unique maximal ancestral graph as MA = {(j, j′) : j /⊥m j′ | ∅} ⊆ V A × V A. For any ancestral
graph A′ such that V A

′
= V A, define the unconditional equivalence relation denoted by ‘∼U’ as

A ∼U A′ if and only if MA = MA
′
.

Lemma 5 This lemma has two parts: (i) the relation ∼U is an equivalence relation over the set of
ancestral graphs A; (ii) for an arbitrary ancestral graphA ∈ A, the bidirected graph UA = (V A, EU ),
where EU maps all pairs (j, j′) ∈MA to the bidirected edge symbol ‘↔’, is a unique representative
of the equivalence class [A].

Proof. For (i), recall that an equivalence relation is any relation satisfying reflexivity, symmetry,
and transitivity (Devlin, 2003), all of which are satisfied by ∼U because of its correspondence to
the relation ‘=’ between sets. Thus, to prove (ii), it suffices to show that the map s : A/∼U →
A, [A] 7→ UA is injective (i.e, that it is a section) and that [s([A])] = [A] (Mac Lane, 2013). The
key to the proof is the observation that UA, because it contains only bidirected edges, is maximal
and therefore entails exactly the unconditional m-separation statements MA, thus by (i) we have
UA ∼U A or equivalently UA ∈ [A] or equivalently [UA] = [A]. Let A,A′ be arbitrary AGs, and
assume s([A]) = s([A′]). Then by definition of s we have UA = UA′ , and by the observation above,
UA ∈ [A′] and thus [A] = [A′], making s injective. And finally, by the definition of s and also by
the observation above, [s([A])] = [UA] = [A], completing the proof. �

This equivalence relation and its representatives has some important but perhaps subtle properties.
First, it is different from Markov equivalence over AGs (which is characterized by partial ancestral
graphs, PAGs) (Zhang, 2007)—it uses only unconditional m-separation while PAGs are learned from
conditional m-separation statements. Second, because all DAGs are AGs, ∼U is also an equivalence
relation over DAGs. Third, being a representative means that every equivalence class includes exactly
one fully bidirected graph (along with other equivalent AGs). Fourth, because each representative
is formed by considering m-connected paths, UA is not equivalent to what would be generated
by some “edge-wise” procedure, such as simply replacing every edge in a PAG/AG/DAG/Markov
random field/moralized DAG with bidirected edges—note that Markham and Grosse-Wentrup (2020)
also explore fully bidirected ancestral graphs, however they explore these graphs not as equivalence
classes of AGs but rather as specific measurement models. Finally, its most important property is that
it facilitates Theorem 8, for which we first need a few more definitions.
Definition 6 Given arbitrary ancestral graphs A,A′ ∈ A over the same set of vertices, define the
Hamming similarity product, denoted ‘•’ as

• : A× A→ A and A • A′ 7→ H,
whereH = (V A, EH) and the function EH(j, j′) = ‘↔’ if and only if EA(j, j′) = EA

′
(j, j′).

In words, the Hamming similarity product between two ancestral graphs returns a fully bidirected
graph, with edges only where the two graphs have the same edge type. Now, shifting from ancestral
graphs to real-valued square matrices:
Definition 7 Let ‘∼O’ denote the orthant equivalence relation (‘orthant’ is the generalization of
‘quadrant’ from R2 to arbitrarily higher dimensions) in square real matrices, i.e., for matrices

Y, Y ′ ∈ Rm,m and with the element-wise function sign(Y )j,j′ =

{
1, if Yj,j′ > 0 or j = j′

−1, otherwise
,

Y ∼O Y
′ if and only if sign(Y )j,j′ = sign(Y ′)j,j′ for all j, j′.

Theorem 8 Let a be the map from the set of unconditional equivalence classes over ancestral graphs
with m vertices, Am/∼U = Um, to the set of orthant equivalence classes over the image of ϕ,
i.e., m×m symmetric real matrices with positive diagonal entries, ϕ(Rm)/∼O = Om, defined by

a : U 7→ O, where Oj,j′ =

{
1, if EU (j, j′) = ‘↔’ or j = j′

−1, otherwise
. Then a is a group isomorphism

between (Um, •) and (Om,�), where ‘�’ denotes the element-wise product.

Proof. First, note that (Um, •) is indeed a group, satisfying the three group axioms (Artin, 2011):
the representative of its identity element is the fully connected bidirected graph over m vertices, U1;

5
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each element is its own inverse; and • is associative. Likewise, (Om,�) is a group with identity
element [1m,m], each element its own inverse, and the associative element-wise product operator.

Now, to show the two groups are isomorphic, it suffices to show (i) that a is bijective and (ii) that
for arbitrary U ,U ′ ∈ Um, a(U)� a(U ′) = a(U • U ′). For (i) notice that if U 6= U ′, then there must
be at least one pair of vertices j, j′ such that EU (j, j′) 6= EU

′
(j, j′) and thus clearly Oj,j′ 6= O′j,j′ ,

so a in injective. Furthermore, notice that every distinct O ∈ Om is the image of some graph U ,
so a is also surjective. For (ii), for every j, j′ ∈ {1, . . . ,m}, the definitions of a, �, and • ensure
a(U)j,j′ � a(U ′)j,j′ = 1 ⇐⇒ EU (j, j′) = EU

′
(j, j′) ⇐⇒ 1 = a(U • U ′), completing the

proof. �

In abstract less formal terms, [but still referring back to specific formal ideas]: there are two different
spaces, [that of ancestral graphs and that of real square matrices]; we propose a way of transforming
each space, [taking the quotient by its respective equivalence class]; then we describe a way of
comparing members within each space, [using the respective products]; this induces a specific
structure within each space, [that defined by each respective group]; and finally we show these
structures are the same, [i.e., there is a group isomorphism between them].

For causal inference, which (often, but not necessarily) amounts to taking several samples in real
space and inferring a single corresponding member in the space of ancestral graphs (or, more often,
its quotient set by some equivalence relation), Theorem 8 means we can compare the different graphs
of different sample sets without having to first move to the ancestral graph space.

Finally, notice the space of real square matrices is not a typical sample space but rather precisely (a
superspace of) the space that our dependence contribution map ϕ (Definition 2) maps samples to—this
means that mapping samples with ϕ allows us to make use of the group isomorphism. Though this
already provides an intuition for why using ϕ would help with causal clustering, explicitly mapping
each sample with it would be unnecessarily computationally expensive, and we are ultimately
interested in morphisms between metric spaces (not just groups) of samples and graphs. To address
this, we thus now move on to defining a kernel for ϕ.

2.3 The Dependence Contribution Kernel

Definition 9 Let S,Z, T , and ϕ be as in Definition 2. We define the dependence contribution kernel
using the Frobenius (denoted by the subscript F) inner product and norm:

κ(Si,·, Si′,·) =
〈ϕ(Si,·), ϕ(Si′,·)〉F
‖ϕ(Si,·)‖F ‖ϕ(Si′,·)‖F

A more convenient expression for applying the kernel to a data set is obtained by first defining a
helper kernel, γ along with vec from Definition 1:

γ(Si,·, Si′,·) = 〈ϕ(Si,·), ϕ(Si′,·)〉F
=
(
(vec(Zi,·)

>vec(Zi′,·)
)2 − Zi,·T Z>i,· − Zi′,·T Z>i′,· + ‖T ‖22

This allows us to write

κ(s, s′) =
γ(Si,·, Si′,·)

γ(Si,·, Si,·)
1
2 γ(Si′,·, Si′,·)

1
2

Finally, note that κ can be readily implemented on an entire set of samples, returning an entire
Gram (kernel) matrix instead of a scalar value, by replacing the matrix operations above with tensor
operations and specifying the correct axes along which summation occurs—an open source Python
implementation can be found at https://causal.dev/code/dep_con_kernel.py.

A proper distance metric can also be obtained from this kernel through function composition:
arccos ◦κ. The key idea behind the kernel is that it is the cosine similarity in the space that ϕ maps
to, meaning for arbitrary sample points x, x′ it evaluates to cos(θ), where θ is the angle between
ϕ(x) and ϕ(x′). In this space, θ represents the dissimilarity of the dependence patterns underlying
x and x′, without being biased by the possibly different magnitudes of ϕ(x) and ϕ(x′) due to
differing variances. Indeed, it can be used as a statistical test of whether samples come from different
dependence structures and therefore causal models:
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Theorem 10 Let S ∈ Rn,m, S′ ∈ Rn′,m be sets of n, n′ iid samples drawn respectively from the
random variables X = (X1, . . . , Xm) and X ′ = (X ′1, . . . , X

′
m) with finite first moments. Then,

n∑

i=1

n′∑

i′=1

κ(Si,·, S
′
i′,·) < 0 =⇒ ∃j, j′ ∈ {1, . . . ,m} such that I(Xj , Xj′ , ∅) 6= I(X ′j , X

′
j′ , ∅).

Proof. Through Slutsky’s Theorem (see Takeshi, 1985, Theorem 3.2.7) and the continuous mapping
theorem (see Van der Vaart, 2000, Theorem 2.3), the consistency of ϕ (Lemma 3) guarantees the
consistency of κ. Because the numerator of κ is a Frobenius inner product of ϕ,

n∑

i=1

n′∑

i′=1

κ(Si,·, S
′
i′,·) ∝

n∑

i=1

n′∑

i′=1

m∑

j=1

m∑

j′=1

ϕ(Si,·)j,j′ϕ(S′i′,·)j,j′ .

Thus, in order for
∑
i,i′ κ(Si,·, S′i′,·) < 0, there must be a j and j′ for which ϕ(Si,·)j,j′ > 0 but

ϕ(S′i′,·)j,j′ < 0 (or vice versa), and thus the hypothesis test in Lemma 3 would reject the null
hypothesis that Xj ⊥⊥ Xj′ but fail to reject that X ′j ⊥⊥ X ′j′ . �
Corollary 11 Due to the relationship between independence structure and causal structure, an
immediate of result of Theorem 10 is that

∑
i,i κ(Si,·, S′i′,·) < 0 implies X and X ′ have different

causal structures.

Theorem 12 Let d be the distance measure between unconditional equivalence classes of ancestral
graphs overm vertices, d(U ,U ′) = m2−|{(j, j′) : EU •U

′
(j, j′) = ‘↔’}|−m. For given sample sets

S, S′ (i.e., real n×mmatrices), use ϕ̄(S) to denote the mean of the sample in kernel space,
∑
i ϕ(Si,.),

and say S ∼K S′ if and only if ϕ̄(S) ∼O ϕ̄(S′); denote the corresponding quotient set by this
equivalence class as Rn,m/ ∼K= Kn,m and a representative from each equivalence class as Q ∈ [S].
Let δ be the distance between sets of samples in K defined as δ(Q,Q′) = m2− 1

2n2

∑
i,i′ γ(Qi,·, Q′i,·).

Let b : Um → Kn,m, b : U 7→ Ω, where Ω is the unique element in K such that sign(ϕ̄(Ω)) = a(U).
Then b is a distance-preserving map (i.e., an isometry) from the metric space (Um, d) to (Kn,m, δ).

Proof. Notice that (Um, d) is indeed a metric space (Choudhary, 1993, Ch. 2): d(U ,U ′) = 0 iff
U−1 •U ′ is the empty graph, which happens iff U = U ′; the symmetry of d follows from the symmetry
•; and for subadditivity of d, observe that for vertices j, j′ in arbitrary 2-vertex graphs U ,U ′,U” we
have either d(U ,U”) = 2, in which case d(U ,U ′) + d(U ′,U”) = 4, or we have d(U ,U”) = 0, in
which case d(U ,U ′) + d(U ′,U”) is either 0 or 4—in both cases d(U ,U”) ≤ d(U ,U ′) + d(U ′,U”);
this easily extends to graphs of arbitrary numbers of vertices. Likewise, (Kn,m, δ) is a metric space:
δ(Q,Q′) = 0 ⇐⇒ 1

2n2

∑
i,i′ γ(Qi,·, Q′i,·) = m2 ⇐⇒ ϕ̄(Q)j,j′ = ϕ̄(Q)j,j′ , for all j, j′, so iff

Q = Q′; symmetry and subadditivity of δ follow from the symmetry and subadditivity of γ.

Finally, to show b is an isometry, we must show (i) that it is bijective and (ii) that for all U ,U ′ ∈ Um,
d(U ,U ′) = δ(b(U), b(U ′)). For (i), observe that by the group isomorphism a and definition of b, we
have U 6= U ′ =⇒ a(U) 6= a(U ′) =⇒ Q 6= Q′ =⇒ b(U) 6= b(U ′) and so b is injective. Also
observe that because K is exactly the set of representatives of orthant equivalence classes of sample
sets in kernel space, then for every Q ∈ K, there exists a U such that b(U) = Q, and so b is surjective.

For (ii), isomorphism a and the relation between element-wise product and Frobenius inner product
allow us to write d(U ,U ′) = m2 −∑j,j′(O�O′)j,j′ = m2 − 〈O, O′〉F. Substituting O,O′ with
their corresponding Ω,Ω′, and because the Frobenius inner product is a sesquilinear form, we can
write d(U ,U ′) = m2 − 1

n2

∑
i,i′〈ϕ(Ωi,·), ϕ(Ω′i,·)〉F, which by Definition 10 finally gives us that

d(U ,U ′) = δ(Ω,Ω′), completing the proof. �

In less formal terms, Theorem 12 shows how the space of unconditional equivalence classes of
ancestral graph corresponds to the space of real matrices, which is a common space for samples to lie
in. More specifically, it shows how the structure defined by distances between graphs is the same as
the structure defined by distances between sets of samples and how this sample distance is related to
our kernel κ. Note that this is much stronger than Theorem 10: not only can κ tell us that two sets of
samples come from different causal models, it gives a measure of just how different the causal models
are, in terms of their differing unconditional nonlinear independencies/m-separation statements.

To summarize, we began by defining ϕ (Definition 2), which maps a given data set into a new
higher-dimensional feature space. This feature space corresponds to a space of causal graphical
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models, such that samples which are similar in the new feature space must come from similar causal
models (Theorem 8). Our main contribution then is to propose the dependence contribution kernel
κ (Definition 9).This kernel κ is guaranteed not only to tell us that two sets of samples come from
different causal models (Theorem 10 and Corollary 11) but furthermore exactly how different the
causal models are (Theorem 12), all without the computational expense of explicitly projecting
samples or learning causal models. Thus, κ is well-suited for addressing the causal clustering
problem and ensures that resulting clusters will be structurally homogeneous so that subsequent
causal structure learning will be more informative.

3 Application

We use kernel k-means with our dependence contribution kernel to cluster a gene expression data
set and then use the measurement dependence inducing latent (MeDIL) causal model framework for
structure learning within each cluster (Markham and Grosse-Wentrup, 2020). The goal of causal
clustering here is to reason about the different latent transcription factor (TF) networks governing
gene expression (see Verny et al., 2017; Hackett et al., 2020, for other latent causal model approaches
to learning TF networks). The original data set comes from Iyer (1999) and can be found at
genome-www.stanford.edu/serum/data/fig2clusterdata.txt, with subsequent analysis by
Dhillon et al. (2003, 2004). All of the Python code for our analysis is open source and available at
https://causal.dev/code/fibroblast_clustering.py.

The data consists of the measured gene expression levels of 517 different genes from human fibroblast
cells in response to serum exposure, measured at 11 different time points, i.e., there are 517 samples
and 11 different features. In genetics applications, it is not unusual to consider genes to be samples
and expression (over time) to be features—indeed the three previous analyses of this data all have
this approach—and the intuition is simply that we wish to cluster genes based on patterns in their
expression levels over time, in order to identify subsets of genes that are controlled by the same gene
regulatory network. Also notice that such data exemplifies the structurally heterogeneous populations
discussed in Section 1: different genes can of course be regulated by different TFs, and so we can
better represent the data by first clustering it into subpopulations that are more homogeneous and
then performing causal structure learning on each subpopulation.

For clustering, we used k = 6, which we found by looking at both the Variance Ratio Criterion
(Caliński and Harabasz, 1974) and the Silhouette Coefficients (Rousseeuw, 1987), computed with the
scikit-learn machine learning toolbox (Pedregosa et al., 2011). We implemented (unweighted) kernel
k-means ourselves, using the pseudocode given by Dhillon et al. (2004), with initial mean points
drawn uniformly at random from the sample set, and with significance level α = 0.1 for the kernel
parameter T (α). We then used the MeDIL (Markham et al., 2020) package to learn the dependence
structure and latent causal models for each cluster.

Figure 1 shows an example of our results for three of the six gene clusters: Figure 1a shows their
distance covariance heatmaps and estimated nonlinear dependence structure with significance level
α = 0.1 (so the axes are the 11 different features, i.e. the time, in hours, at which gene expression
level was measured), while Figure 1b shows their corresponding causal structures, with measurement
variables M0–M10 for each of the features and learned latent variables L for different posited TFs.

The results show a clear difference in causal structure for the different clusters and allow us to reason
about the latent TFs regulating genes in different clusters: notice that the latents in cluster K1 each
cause only two or three measurement variables that tend to be close together—e.g., L1 causes M1

and M2, indicating the TF corresponding to L1 is “short-acting”, only affecting gene expression
from 30 minutes (M1) to 1 hour (M2) after serum exposure; in contrast, the latents in cluster K3
each cause between two and seven measurement variables that tend to be more spread out—e.g.,
L1 causes M1 and M7, indicating the corresponding TF is more complicated, “long-acting” but not
continuously so, affecting gene expression 30 minutes (M1) and 12 hours (M7) after serum exposure,
but independently of gene expression in the time between.

Our results are especially noteworthy compared what happens if one ignores the heterogeneity of
the data and learns a causal structure for the entire data set without first clustering with our kernel
into structurally homogeneous subpopulations: in that case, all of the measurement variables are
dependent, with a single latent causing all of them, and no meaningful conclusions can be drawn
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(a) Dependence structures.

(b) Latent causal models.

Figure 1: Results of dependence contribution kernel clustering with significance level α = 0.1.

about how unmeasured transcription factors regulate measured gene expression, i.e., the heterogeneity
obscures the underlying causal structures.

In summary, our causal clustering analysis reveals which subpopulations (clusters) of genes have
similar latent TF networks as well as how the TF networks differ between clusters—information that
is obscured when analyzing the structurally heterogeneous data set as a whole.

4 Discussion

We address the problem of causal clustering—that is, finding the different causal structures underlying
a structurally heterogeneous data set. Our main contribution is to develop the dependence contribution
kernel and prove its suitability for the causal clustering task. This allows us to first use the kernel
with existing clustering methods, such as kernel k-means or DBSCAN, to identify homogeneous
subpopulations. Then we use existing causal structure learning methods on each subpopulation.
The kernel guarantees that each subpopulation is more structurally homogeneous and therefore the
resulting causal structures better capture the causal structures within the data than if a single model
were learned for the entire heterogeneous population.

Furthermore, we prove several interesting theoretical properties of our kernel, including (i) that
it can be used as a statistical test for the hypothesis that two sets of samples come from different
causal structures, as well as (ii) how it induces a metric space that is isometric to the one defined
by Hamming distance between ancestral graphs, i.e., comparing sets of samples with our kernel is
equivalent to first estimating the causal graphs of the different sets and then comparing those graphs.
Beyond the practical applications of our kernel, as shown by our application in reasoning about latent
transcription factor networks that regulate gene expression, this work also draws from and suggests
further fruitful connections between a variety of fields, including causal inference, kernel methods,
and algebraic statistics.
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Caliński, T. and Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in
Statistics, 3(1):1–27.

Choudhary, B. (1993). The Elements of Complex Analysis. New Age International.

Devlin, K. (2003). Sets, functions, and logic: An introduction to abstract mathematics. CRC Press.

Dhillon, I. S., Guan, Y., and Kulis, B. (2004). Kernel k-means, spectral clustering and normalized
cuts. Proceedings of the 2004 ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining - KDD ’04.

Dhillon, I. S., Marcotte, E. M., and Roshan, U. (2003). Diametrical clustering for identifying
anti-correlated gene clusters. Bioinformatics, 19(13):1612–1619.

Eichler, M. (2012). Causal inference in time series analysis. Wiley Series in Probability and Statistics,
page 327–354.

Emmert-Streib, F., Glazko, G., Gökmen, A., and De Matos Simoes, R. (2012). Statistical inference
and reverse engineering of gene regulatory networks from observational expression data. Frontiers
in Genetics, 3:8.

Filippone, M., Camastra, F., Masulli, F., and Rovetta, S. (2008). A survey of kernel and spectral
methods for clustering. Pattern recognition, 41(1):176–190.

Greenland, S., Pearl, J., and Robins, J. M. (1999). Confounding and collapsibility in causal inference.
Statistical Science, 14(1).

Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B. (2005). Measuring statistical dependence
with hilbert-schmidt norms. Algorithmic Learning Theory, pages 63–77.

Gretton, A., Fukumizu, K., Teo, C., Song, L., Schölkopf, B., and Smola, A. (2008). A kernel statistical
test for independence. In Platt, J., Koller, D., Singer, Y., and Roweis, S., editors, Advances in
Neural Information Processing Systems 20, pages 585–592. MIT Press.

Hackett, S. R., Baltz, E. A., Coram, M., Wranik, B. J., Kim, G., Baker, A., Fan, M., Hendrick-
son, D. G., Berndl, M., and McIsaac, R. S. (2020). Learning causal networks using inducible
transcription factors and transcriptome-wide time series. Molecular Systems Biology, 16(3):e9174.

Huang, B. and Zhang, K. (2019). Specific and shared causal relation modeling and mechanism-based
clustering. Advances in Neural Information Processing Systems (NeurIPS).

Iyer, V. R. (1999). The transcriptional program in the response of human fibroblasts to serum. Science,
283(5398):83–87.

10

2. Publications

38



Kummerfeld, E. and Ramsey, J. (2016). Causal clustering for 1-factor measurement models. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1655–1664. ACM.

Kummerfeld, E., Ramsey, J., Yang, R., Spirtes, P., and Scheines, R. (2014). Causal clustering for
2-factor measurement models. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 34–49. Springer.

Liu, Z.-P. (2015). Reverse engineering of genome-wide gene regulatory networks from gene expres-
sion data. Current Genomics, 16(1):3–22.

Mac Lane, S. (2013). Categories for the working mathematician, volume 5. Springer Science &
Business Media.

Markham, A., Chivukula, A., and Grosse-Wentrup, M. (2020). MeDIL: A Python package for causal
modelling. In Proceedings of the 10th International Conference on Probabilistic Graphical Models
(PGM). PMLR.

Markham, A. and Grosse-Wentrup, M. (2020). Measurement dependence inducing latent causal
models. In Conference on Uncertainty in Artificial Intelligence (UAI), pages 590–599. PMLR.

Pearl, J. (2009). Causality. Cambridge University Press.

Pearl, J. and Verma, T. (1995). A theory of inferred causation. In Studies in Logic and the Foundations
of Mathematics, volume 134, pages 789–811. Elsevier.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830.

Richardson, T., Spirtes, P., et al. (2002). Ancestral graph markov models. The Annals of Statistics,
30(4):962–1030.

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis. Journal of Computational and Applied Mathematics, 20:53–65.

Saeed, B., Panigrahi, S., and Uhler, C. (2020). Causal structure discovery from distributions arising
from mixtures of dags. In International Conference on Machine Learning, pages 8336–8345.
PMLR.

Schölkopf, B., Herbrich, R., and Smola, A. J. (2001). A generalized representer theorem. In
International Conference on Computational Learning Theory, pages 416–426. Springer.

Sejdinovic, D., Sriperumbudur, B., Gretton, A., and Fukumizu, K. (2013). Equivalence of distance-
based and RKHS-based statistics in hypothesis testing. The Annals of Statistics, pages 2263–2291.

Sharma, A., Gupta, G., Prasad, R., Chatterjee, A., Vig, L., and Shroff, G. (2019). MetaCI: Meta-
learning for causal inference in a heterogeneous population. CoRR, abs/1912.03960.

Spirtes, P. and Glymour, C. (1991). An algorithm for fast recovery of sparse causal graphs. Social
Science Computer Review, 9(1):62–72.

Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation, Prediction, and Search. MIT Press.

Székely, G. J., Rizzo, M. L., and Bakirov, N. K. (2007). Measuring and testing dependence by
correlation of distances. The Annals of Statistics, 35(6):2769–2794.

Székely, G. J. and Rizzo, M. L. (2009). Brownian distance covariance. The Annals of Applied
Statistics, 3(4):1236–1265.

Székely, G. J. and Rizzo, M. L. (2014). Partial distance correlation with methods for dissimilarities.
The Annals of Statistics, 42(6):2382–2412.

Takeshi, A. (1985). Advanced econometrics, volume 1. Harvard university press.

11

2.3. Causal Clustering

39



Tjøstheim, D., Otneim, H., and Støve, B. (2018). Statistical dependence: Beyond pearson’s ρ. arXiv
preprint arXiv:1809.10455.

Van der Vaart, A. W. (2000). Asymptotic statistics, volume 3. Cambridge university press.

Verny, L., Sella, N., Affeldt, S., Singh, P. P., and Isambert, H. (2017). Learning causal networks
with latent variables from multivariate information in genomic data. PLoS computational biology,
13(10):e1005662.

Wasserman, L. (2013). All of statistics: a concise course in statistical inference. Springer Science &
Business Media.

Xie, Y. (2013). Population heterogeneity and causal inference. Proceedings of the National Academy
of Sciences, 110(16):6262–6268.

Xie, Y., Brand, J. E., and Jann, B. (2012). Estimating heterogeneous treatment effects with observa-
tional data. Sociological Methodology, 42(1):314–347.

Zhang, J. (2007). A characterization of markov equivalence classes for directed acyclic graphs with
latent variables. In Conference on Uncertainty in Artificial Intelligence (UAI).

12

2. Publications

40



3. Discussion

The three publications having been presented and their individual contributions made
clear, we now discuss how they form integral parts of a coherent research program. We
begin in Section 3.1 by returning once again to our research questions to see explicitly
how they are answered by the publications, the limitations of these answers, and what
new questions these answers spawn. Then, in Section 3.2, we discuss the ways in which
the different publications are (perhaps non-obviously) linked, focusing in particular on
their mathematical connections via undirected graphs as well as their shared conception of
causality, motivated by specific aspects of the Neyman-Rubin framework along with the
generality and expressiveness of the causal graphical model framework. Next, we present a
number of promising but partially formed ideas for future research in 3.3, before finally
concluding in Section 3.4.

3.1. Research questions answered

Q.1: To what extent can we learn causal models under strong causal insufficiency?

Ultimately, under the assumption of strong causal insufficiency, a causal model can be
learned for a given data set up to observational consistency (Section 2.1, Definition 3).
This is in line with the usual results of constraint-based causal structure learning being
possible only up to the Markov equivalence class (MEC). Whereas in the case of causal
sufficiency (or weak insufficiency), when the true causal model over observed variables is a
DAG (or AG) and the MEC can be represented by a mixed graph (or PAG), in our strongly
insufficient case, the true causal model over only observed variables can be described as
an undirected graph (UG) with each edge representing dependence induced by a latent
variable, and no two different UGs are Markov equivalent. However, we are interested
not only in a causal model over the observed variables, which in the strongly insufficiency
case are only effects, but also in their latent causes. Thus, we are interested not only in
learning a UG but in learning a MCM with its explicit representation of latent variables
and their causal relations to the observed effects.

Though every UG is its own MEC (over measurement variables), each UG represents
an infinite equivalence class of observationally consistent MCMs, corresponding to all
the possible ways of adding and connecting new latent variables without changing the
dependencies they induce among the measurement variables. Thus, further constraints are
needed to pick a specific MCM from the infinite class of MCMs observationally consistent
with a given data set—for this, we turn to minimality (Section 2.1, Definition 5). In
doing so, there are at least two reasonable notions of minimality, vertex-minimal and
edge-minimal, respectively minimizing the number latent variables or edges from latents
to measurements.

Whichever notion is chosen, the additional minimality assumption facilitates learning
an ECC over the UG and thus a minMCM, a graphical causal model. This model can be
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further refined into a FCM, learning specific distributions for the latents and functions
describing their causal relations to the effects—code for this was developed and presented
in Section 2.2, subsection 2.3), using generative adversarial networks as described in
(Chivukula et al., 2020), a master’s thesis extending Section 2.1.

In this way, UGs, minMCMs, and their corresponding FCMs provide an answer to Q.1.
One limitation to this approach is the computational complexity of finding a minimal
ECC required to specify a minMCM, which is known to be NP-complete. However, this
does not seem to pose a practical problem even for graphs containing up to hundreds of
measurement variables, which already surpasses the scale of human understanding and is
thus more than adequate for the sorts of applications this method is best suited for. More
specifically, we envision our approach being most useful to practitioners wanting to reason
about the possible latent causes of their observed variables, possibly also refining their
set of measurement variables, for example consisting of questions forming a diagnostic
instrument, similarly to how factor analysis1 is used (Thompson, 2004).

Unlike factor analysis, a purely statistical method for finding a number of factors
capable of capturing the variation of a (usually larger) number of observed variables,
a functional minMCM provides a minimal set of latent variables capable of causally
inducing the dependencies among the observed effects. Whereas factor analysis is purely
statistical (though often presented in covertly causal terms, such as "finding underlying
factors to explain the observed variables"), MCMs explicitly represent causal structure
and thereby facilitate causal reasoning. Interestingly, while the number of latent factors
in a factor analysis is always less than or equal to the number of observed variables,
dependence patterns among measurement variables in the minMCM case may require
a greater number of latent causes. This renders minMCMs capable of detecting highly
confounded questionnaires, i.e., using minMCMs as opposed to factor analysis makes it
explicit when the number of latent causes must be greater than the number of observed
effects, helping practitioners to identify when questionnaires capture too broad a range of
latent causes as opposed to only the few specific causes of interest.

Unlike many other causal inference methods, such as using the PC algorithms to find a
DAG, MCMs do not facilitate discovering new, direct causal relations among observed
variables. Rather, the focus of the MCM is on identifying effects that share common
causes. Thus, an interesting further question remains as to how MCMs could be used in
an experimental (i.e., with interventions) setting to actually identify latents—we discuss
some possibilities for this in Section 3.3.1.

1It is important to note that factor analysis, like the early statistical methods mentioned in Section 1.1.4,
also has its roots in eugenics and racism. Factor analysis was introduced by Charles Spearman, who
developed it while trying to measure human intelligence (Spearman, 1904). Spearman was involved in
the eugenics movement (Wintroub, 2020) and stated himself in (Spearman, 1927, p. 8) that

"an accurate measurement of everyone’s intelligence would seem to herald the feasibility
of selecting the better endowed persons for admission into citizenship—and even for the
right of having offspring."

This sentiment, the use of intelligence tests, and the subsequent use of race as a proxy for intelligence
(Stubblefield, 2007) led to the widespread forced sterilizations of people perceived as having mental
disabilities, indigenous populations, and ethnic minorities throughout the United States, Canada, the
United Kingdom, Australia, Sweden, Germany, and other countries (Pegoraro, 2015; Tydén, 2010;
Garton, 2010; Black, 2012).
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Q.2: . . . from heterogeneous populations?

Our approach to learning causal models from a heterogeneous population is to first
partition it into homogeneous subpopulations and then proceed as usual with causal
inference. We do this by defining a measure of causal structural homogeneity in the
form of the dependence contribution kernel. This kernel works by implicitly projecting
samples into a high-dimensional space in which (nonlinear) causal ancestral graphs have
been embedded, so that distance between points in this space is isometric to the distance
between their generating causal ancestral graphs. Thus, using this kernel to compute
similarity or distance in standard existing clustering methods allows them to find clusters
of samples generated by the same causal structure.

One limitation to this approach is that, by first partitioning the samples and then
independently learning a model for each individual partition, the sample size and therefore
statistical power of the learned models is less than what could otherwise be attained by,
for each individual causal relation, using all samples sharing it (even if some samples
sharing that causal relation differ in other causal relations, i.e., the generating graphs of
the different partitions have some but not all edges in common).

Another possible limitation of this approach is that distance in the kernel space is
isometric to distance between unconditional equivalence classes of AGs as opposed to fully-
specified AGs that encode conditional independencies. However, interestingly, preliminary
results from our simulation study shows that kernel k-means clustering with the dependence
contribution kernel is indeed able to distinguish between individual AGs, even those
belonging to the same UEC, though this is perhaps not too surprising considering samples
generated by two random AGs in the same UEC are still likely to have detectably different
distance correlation matrices (see Section 3.3.2 and Figure 3.1).

Q.3: . . . without assuming any particular distribution?

The methods developed to address Q.1 and Q.2 do so without assuming any particular
distribution for the random variables in the causal models and without constraints (e.g.,
linearity) on the functions used to represent the causal relations. This is possible primarily
because of (i) our focus on causal graphical models, which characterize probability distri-
butions only in terms of patterns of conditional probabilistic independence, as opposed to
more specific constraints or parameters, and thus (ii) our use of distance correlation, a
general (nonlinear) measure of probabilistic dependence.

On the one hand, the generality of our approach makes it broadly applicable and
less likely to lead to faulty causal reasoning as the result of unsatisfied distributional
assumptions. On the other hand, distance covariance is more costly to compute than
the more common product-moment covariance and our models are less detailed than is
possible with parametric methods whose narrower assumptions are met.

3.2. Linking MeDIL causal models and the dep-con kernel

Though three separate manuscripts, the ideas underlying the three publications in Chapter
2 are connected in a variety of ways, some more obvious than others.

Their most obvious connection is demonstrated by the application in Section 2.3, where
we use the kernel developed there to find clusters in a data set (presumably) satisfying the
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assumption of strong causal insufficiency but which is structurally heterogeneous. The
homogeneous clusters found thus admit an interpretation using minMCMs (Section 2.1),
which we learn using the MeDIL software package (Section 2.2). Recall that (i) minMCMs
are determined purely by their unconditional independence relations over the measurement
variables and (ii) the dep-con kernel is defined with respect to unconditional equivalence
classes over AGs. Under strong insufficiency and minimality assumptions, each equivalence
class over AGs can be reduced to a single minMCM, i.e., all other AGs besides the minMCM
in each class either contain variables that cause others (violating strong insufficiency) or
they are more expressive in that they can induce a wider array of probability distributions
(violating minimality). Thus, in this and similar applications, the dep-con kernel allows
for even stronger interpretations as Corollary 11 (Section 2.3) becomes an "if and only if"
instead of merely "if" in the DAG or more general AG case.

Their less obvious connections can be roughly divided into those that are mathematical
and those that are conceptual, which we address respectively below.

3.2.1. Mathematically, in terms of undirected graphs

Whereas other causal methods typically use directed or mixed graphs, we primarily use
undirected graphs. To better understand how we use UGs and how this relates to other
methods, it is helpful to first review some properties of DAGs, AGs, their equivalence
classes, and other undirected graphs. For more formal presentation of these topics and
other graphical models, see (Koller and Friedman, 2009; Sadeghi and Lauritzen, 2014).

DAGs

Directed acyclic graphs of course contain only directed edges, but the essential graph
corresponding to Markov equivalence classes of DAGs is a mixed graph possibly containing
both directed and undirected edges. Undirected edges in essential graphs should be seen
as a directed edge whose direction is unknown, i.e., they represent an immediate causal
relation between two variables but where more information (such as by doing interventions)
is needed to determine which is the cause and which is the effect in the relationship.

Another context in which undirected edges can arise when considering DAGs is in the
process2 for transforming a DAG representation of a probability distribution to an UG
representation. In this case, the structure of the UG represents a more general class
of probability distributions than that entailed by the structure of the DAG, including
those that lead to causal conclusions in violation of the causal faithfulness and Markov
assumptions. Hence, the edges of the UG lack a consistent causal interpretation and
this process is used not as part of causal inference but merely as a way of rewriting the
factorization of a known probability distribution.

AGs

Ancestral graphs are a kind of mixed graph capable of representing causal relations even in
the presence of selection bias and confounding, and correspondingly have three edge types:
directed, undirected, and bi-directed. Undirected edges in AGs thus represent the presence

2unfortunately known as "moralization", because it involves "marrying" (adding an edge between) two
nodes if they share a child (both have directed edges to a common third node)
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of selection bias obscuring the independence between the variables, i.e., they implicitly
represent a third variable that is a collider between the two and that is being conditioned
on as part of the data selection process to render the connected nodes dependent, so there
is in actuality no causal relation between the two and no shared common cause.

Markov random fields

Whereas the previous two subsections dealt with interpreting undirected edges in mixed
graphs, we now consider the most common fully undirected graph, known as a Markov
random field (MRF) (Kindermann and Snell, 1980). Analogous to how d-separation in
DAGs corresponds to probabilistic independence (through the CMA), separation statements
in a MRF can encode conditional independence statements (through the Markov properties).
However, no causal assumptions are used and there is no consistent causal interpretation of
the edges, e.g., as to whether the encoded in/dependencies are the result of an immediate
causal relationship (of perhaps unknown direction, as in the essential graph case) or a
common confounding cause.

UDGs and UECs

In contrast to undirected edges in these other cases, undirected edges in the UDGs
(undirected dependency graphs) of Section 2.1 and in the UECs (unconditional equivalence
classes) of Section 2.3 always correspond to unconditional independence.

In the case of UDGs, the further assumptions of strong insufficiency and minimality
lead to the full characterization of conditional independencies and the consistent causal
interpretation of undirected edges as corresponding to a latent cause (Propositions 6 and
7, Section 2.1). This facilitates a causal interpretation of edge clique covers defined over
UDGs and allows for the explicit representation of latents in the corresponding minMCM.
Note that this interpretation of undirected edges in UDGs is similar to the interpretation
of bidirected edges in AGs.

Indeed, relaxing the strong insufficiency and minimality assumptions and replacing
undirected edges of the UDG with bidirected edges results in the UEC. This representation
using undirected edges allows for a convenient embedding of the UEC into the kernel
space: there being only one edge type, absence or presence of an edge can respectively be
made to correspond to negative or nonnegative real numbers, leading to the isomorphism
between Hamming similarity in graphs and element-wise product in real matrices and
hence the isometry between the space of ancestral graphs and the space of real-valued
samples (Theorems 8 and 12, Section 2.3).

Thus, in both the UDG and UEC, undirected graphs are given a novel uses and inter-
pretations for causal inference through their representation of unconditional dependence.
Their undirected edges differ in interpretation from those in DAG essential graphs, AGs,
and MRFs, and they facilitate the use of edge clique covers and graph embeddings for
causal inference.

3.2.2. Conceptually, in terms of foundational issues in causality

Both MCMs and the dep-con kernel address questions that can be traced back to the RCM
(Rubin causal model) framework but by making use of and extending the graphical frame-
work associated with FCMs (functional causal models). Though the FCM mathematically
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subsumes the RCM, the less abstract conception of causality in the RCM leads to the
emphasis of (1) the importance of distinguishing between possible causal mechanisms and
measurements of their effects, as well as (2) the population as opposed to the typological
perspective and the importance of considering homogeneity in causal learning tasks. At
the same time, the more abstract graphical conception of causality in the FCM framework
makes it possible (1) to discover causal relations, even when lacking the a priori knowledge
needed to hypothesize different causes and effects, as well as (2) to characterize the relevant
population homogeneity in explicit terms of causal structure.

In this way, the abstraction afforded by graphical methods facilitate the intuitive
representation of causal relationships and a broader range of causal inference methods
than is possible with the RCM, however this abstraction perhaps also makes it easier to
overlook the assumptions that are critical for the sound use of such methods. It is thus
important not only to be aware of these assumptions but also to make a variety of methods
for different possible assumptions and applications, and it is in this light that we present
(i) MCMs and the (ii) dep-con kernel: (i) compared to the (weak) causal insufficiency
permitted in ancestral graphs, our insufficiency assumption is mathematically stronger (i.e.,
ancestral graphs are capable of representing all of the independencies among measurement
variables in a UDG or MCM) but should rather be seen as just a different assumption
suited for a different task (e.g., questionnaire data and similar measurement models in
which causes are not directly observed) and with correspondingly different abilities (e.g.,
the explicit representation of latent causes over cliques of observed variables); (ii) by first
using the dep-con kernel in clustering, other existing causal inference methods can then be
used to learn more accurate models whose assumptions of structural homogeneity is thus
satisfied.

3.3. Future Work

Though the MeDIL causal models and dependence contribution kernel of Sections 2.1
and 2.3 are more theoretical and focus on foundational issues, they hint at a number of
interesting applications, extensions, and further developments, most interestingly with
connections to recent work on causal consistency and algebraic statistics, which we speculate
about in the following sections.

3.3.1. Extensions and applications of MCMs

MCMs for other kinds of ECCs

One of the main contributions of MCMs is in establishing a causal semantics for ECCs
(edge clique covers) of undirected dependency graphs. In Section 2.1 we introduce a
minimality constraint, making it possible to learn a minimal MCM from the infinite
class of observationally consistent MCMs. However, the semantics holds for cliques in
UDGs generally, not just minimal ECCs, hence there are other ways of selecting from
this infinite class, namely by using a constraint other than minimality. For example,
the exact ECC solution is NP-complete, scaling poorly to large numbers of nodes and
cliques in the minECC solution, however much faster heuristic solutions exist, allowing for
approximately minimal MCMs to be efficiently found for large scale real-world networks
containing hundreds of thousands of nodes and edges Conte et al. (2020); Abdullah et al.
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(2020). Another possibility is not to look for full ECCs but rather only partial ECCs
(Agarwal and Mazumdar, 2016), e.g., connecting certain variables of interest, or looking
for the maximal clique in the graph, representing the latent cause responsible for the most
effects (for example Ding et al. (2008) give an algorithm for efficiently finding the maximal
clique in large graphs).

MCMs with interventions

MCMs can be seen as the result of taking the RCM’s cause/effect distinction seriously in
the context of causal structure learning from observational data. Recall (Section 1.1.3)
that learning a RCM from observational data has two important steps: (1) posit which
variables are hypothesized to be causes and which are to be effects, and (2) collect or
use other variables to perform matching to control for possible confounders. Analogously,
learning a MCM involves: (1) identify measurement variables thought to be the effects of
some latent causes (e.g., a psychiatric diagnostic instrument for depression) (2) use MCM
to learn (e.g., minimal) causal structure connecting measurement variables, which helps
guide the search for relevant intervention targets and latent identification.

Searching for intervention targets could take the form of, for example, prescribing a drug
suspected to result in symptoms detectable among the measurement variables. Latent
identification could take the form of an iterative process: For example, comparing the
UDGs before and after an intervention, different independence patterns would indicate
some latent structure interventionally consistent with both UDGs. Furthermore, by looking
for changes in the actual post-intervention distributions, it is possible to associate latents
in the minMCM with the performed intervention thus helping to identify the latent. This
could be repeated until understanding of the (identified) latent structure is achieved or
until the available interventions are exhausted.

MCMs for causal consistency

Chalupka et al. (2014) proves the causal coarsening theorem and provide an algorithm for
constructing causal macro variables from (noncausal) observed micro-variables. This can
be seen as finding a new representation for low-level, detailed data in terms of observed
data, transforming it into a higher-level causal representation in terms of variables related
to each other causally. Rubenstein et al. (2017) builds upon this, providing a definition
and algorithm for causally-consistent transformations between micro- and macro-level
SEMs (structural equation models, linear Gaussian FCMs). Beckers et al. (2020) builds
upon this further, providing definitions, algorithms, and use-cases for various related kinds
of causal abstraction (i.e., micro- to macro-level transformations between causal models).

All of these approaches focus on transformations with respect to a specific distributions
(e.g., a fully specified SEM) and could perhaps benefit from a more graphical perspective.
The key insight into how MCMs help provide this perspective is hinted at in the last
paragraph of Section 2.1: mathematically, (but not semantically) every DAG is a MCM—
any given DAG G can be partitioned into sink nodes S and non-sink nodes N, in which
case it is observationally consistent with respect to S to any other DAG H whose (sub)set
of sink nodes S′ has the same UDG as S. This allows for much of the theory underlying
MCMs to be easily repurposed to characterizing subset-Markov equivalence classes for
DAGs with different sets of variables, as long as they have some subset of sink nodes S = S′
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in common. Thus, our idea of graphical causal consistency is that two different causal
models are causally consistent with respect to some shared measurement variables/effects
when they are part of the same equivalence class of MCMs and causal consistency is a type
of equivalence relation over graphs of different sizes. For example, given an arbitrary DAG,
one can construct a UDG over the sink nodes (effects) of interest. Finding a minMCM
over these nodes results in a new, most macro-level DAG capable of inducing probability
distributions that are observationally consistent with those of the original DAG. Further
investigation of this could focus on (i) extending this to the interventional setting (which
is an important part of what makes the causal consistency of the above mentioned papers
actually causal,) (ii) specifically describing how the distributions of the non-sink nodes
in the original graph are related to those in the macro-model, and (iii) considering cases
when the nodes of interest are not only sink nodes.

3.3.2. Extensions and applications of the dep-con kernel

Before considering various extensions and applications of the dep-con kernel κ, it is helpful
to develop a better intuition for the kernel space and its properties, which we conceptually
split into four parts: (1) the unnormalized kernel space, i.e., the space that φ maps to,
the kernel space for γ before it is normalized into κ; (2) the role of the α parameter and
correspondingly T (α); (3) the kernel space of κ, the normalized γ; and finally (4) the one
dimensional space that κ maps to

(1) The image of φ is related to the pairwise distance covariance matrix between features
(say we have n of them), so it is symmetric, and we are interested in the covariances (so
not the variances along the diagonal) and what they tell us about dependencies, thus it
suffices to build an intuition for the

(︁
n
2

)︁
subspace of the upper (or lower) triangular matrix

without the diagonal. Importantly, notice that there are 2(
n
2) orthants of this space, the

same as the number of possible undirected graphs over n vertices.
(2) The α parameter corresponds to a statistical significance level in a distance covariance

test for independence, and T (α) is the corresponding critical value, i.e., the point in the
space of distance covariances that the probability specified it α gets mapped to. By
subtracting T (α) from the distance covariance computed by φ, we thus shift points lying in
its image so that their mean in each dimension corresponds to whether the pair of features
corresponding to that dimension would fail an independence test—i.e., the mean is greater
than or equal to 0 if and only if the the null hypothesis of independence would be rejected.
Not only does this allow the kernel space to encode unconditional independence—i.e., the
0 in each dimension is a threshold or sort of decision boundary between those points that
contribute to a test result of independence and those contributing to dependence—but by
encoding it as the sign of each dimension, the product of different points is also meaningful:
the product of two points is positive if and only if they have the same result for the
independence test.

(3) Normalizing this space to produce κ can be thought of as projecting all points in
the space to the surface of the unit hypersphere. In doing so, we ignore the scaling of the
critical-value-shifted-covariance values3, so that they points in the space better correspond
to dependence rather that shifted covariance. Also not that, being on the surface of

3though perhaps in a biased way—it may be better to instead base the kernel on distance correlation,
dividing each feature by its distance variance, but doing so would add significantly to mathematical
and computational complexity of the kernel
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a hypersphere, distance between points should also be calculated along this surface, or
equivalently, in terms of the angle between the points.

(4) Finally, the actual kernel value for two samples, lying in the one-dimensional space
that κ maps to, provides a summed measure of similarity of the samples in each dimension.
That is, for each dimension, we take the product of the two samples, thus increasing the
summed measure when the samples have the same dependence and decreasing it when
they differ (this is a result of the last clause of paragraph (2) above).

Error rates

Because κ is so explicitly related to statistical hypothesis testing, it should be possible to
compute error rates, e.g., on the statement given in Theorem 10, Section 2.3, especially
for thresholds other than 0. For example, consider the element-wise product of two points
in the kernel space (note that summing the resulting matrix would lead to the actual
κ value): the probability of the sign (measuring the similarity of the two points in that
dependence dimension) being wrong is 2α(1− α) + 2β(1− β), corresponding to two times
(because there are two samples) the probability of a type I error in the test for one sample
but not the other plus two times the probability of a type II error for one sample but not
the other. Next, one must figure out how this error rate for one element of the matrix
combines with the other elements (the kernel sums these elements) along with the actual
values of the element (the whole matrix is normed), and the result should be the error
rate for Theorem 10. Similarly, it should be possible to compute error rates for other
applications of the dep-con kernel.

In the case of clustering, simulation results4 give us a hint of its performance compared
to other kernels in clustering, with an error rate of around 0.17, as shown in Figure 3.1.

Other causal kernels

The theory and intuitions underlying the dep-con kernel rely on algebraic (e.g., the group
isomorphisms used to establish the isometry of Theorem 12) and geometric (e.g., distance
between points in the kernel space being arc length) insights. Thus, it may be of interest to
and could benefit from the field of algebraic statistics, which uses methods from algebraic
geometry to address questions in statistics (Sullivant, 2018). For example, for discrete
random variables, conditional independence constraints can be encoded as vanishing
constraints on quadratic polynomial equations in the joint probability distribution. This
could be of particular interest for finding analogous constraints in the dep-con kernel space,
extending it to incorporate conditional independencies instead of only unconditional ones.

Another potential way of extending the dep-con kernel to encode conditional independen-
cies is through the use of non-redundant clustering methods5 (Mautz et al., 2018; Niu et al.,
2010), for example using spectral clustering and kernel k-means, both of which are can easily
be used with our kernel. These methods find multiple different non-redundant clusterings
of a given data set by defining some measure of redundancy and then simultaneously
learning several subspaces that minimize the redundancy and then learning a clustering
within each subspace. These subspaces can also be described in terms of conditioning on

4Special thanks to Richeek Das, our enthusiastic and talented undergraduate research intern for helping
to run these simulations and produce the plots for Figures 3.1 and 3.2!

5Thanks to Lukas Miklautz for this idea.
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Figure 3.1.: Six random DAGs containing ten nodes each were randomly generated and
parameterized as linear, Gaussian SEMs from which samples where drawn.
Clustering was then performed using k-means, with the dep-con kernel, the
radial basis function kernel, the degree-2 polynomial kernel (on normed data,
thus computing the product-moment correlation), and finally with no kernel.
Scores were averaged over 60 different repetitions of the above procedure, with
error bars showing the standard deviation. On the left is the unsupervised
score (e.g., what we used to pick k and other parameters for each clustering
method on each data set) and on the right is the supervised score, showing
how accurate the methods were in clustering samples from the same SEM
together.

sets of features. Thus, it should be possible to use these subspaces along with the dep-con
kernel to identify conditional as opposed to only unconditional independencies.

As opposed to extending the dep-con kernel, another option would be to use it as
inspiration for other causally-interpretable kernels. The dep-con kernel works by implicitly
embedding samples onto the surface of a hypersphere in a way that encodes independence
relations. There may be other embeddings that also lend themselves to causal interpreta-
tions. For example, Studenỳ et al. (2010) introduces the characteristic imset, an algebraic
representation of Markov equivalence classes of DAGs as binary vectors (note that the
dep-con kernel space essentially dose this for unconditional equivalence classes), as well as
the characteristic imset polytope, whose vertices correspond to different MECs. A kernel
capable of implicitly embedding samples into such a polytope would provide a measure of
similarity between Markov equivalence classes of DAGs in the same way that the dep-con
kernel measures similarity between unconditional equivalence classes over AGs.

Use in other kernel methods

Though we have so far discussed the dep-con kernel for use in clustering, it can also be
used in other kernel methods or as a general measure of causal structural similarity of
samples. For example, it can be used in kernel PCA to provide a better (in terms of causal
structure) low-dimensional representation of data than usual PCA, as shown in Figure 3.2.

Another use for the kernel is in unsupervised clustering validation, similar to the
Calinski-Harabasz or Davies-Bouldin indices Caliński and Harabasz (1974); Halkidi et al.
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Figure 3.2.: A single data set was generated as described in Figure 3.1. On the left are
the first two principal components resulting from the dep-con kernel PCA,
and on the right are the first two for usual PCA. The dep-con kernel leads
to clearer separation of samples from different DAGs in the low-dimensional
representation.

(2001). For clusters C1, C2, clusterings minimizing κ(C1, C2) while maximizing κ(C1, C1)
and κ(C2, C2) would lead to heterogeneity between-clusters and structural homogeneity
within-clusters, so using results in a causally-interpretable evaluation of clusterings.

Finally, the kernel could also be used in classification tasks for brain-computer interfaces—
for example Xu et al. (2021) shows how the distance covariance matrix (essentially our
kernel space) can be used as a drop-in replacement for existing methods using the product-
moment covariance, and the dep-con kernel can be used to preform classification tasks
more efficiently than explicit projection to the kernel space.

3.4. Conclusion

We began this dissertation with the three-part question: (Q.1) To what extent can we
learn a model of a causal system while observing only some parts of that system, (Q.2)
especially when the population from which the model is being learned is the result of not
one but multiple causal systems, and (Q.3) without assuming a particular distribution, such
as a Gaussian one.

In answer to this question: (Q.1) we have shown that causal inference of partially-
observed systems, and more specifically under the assumption of strong causal insufficiency,
is in general possible up to observational equivalence over the observed variables; we have
shown that additionally assuming vertex- or edge-minimality allows learning a minMCM,
which gives a lower bound respectively on either the number of latent variables or causal
relations present in any observationally consistent MCM and thus a minimal causal
structure; we have provided a software package capable of, in addition to learning these
causal structures, using GANs to learn FCMs corresponding to these structures; (Q.2) we
have shown that the distance between generating causal structures can be measured directly
from their generated samples, so that samples close together in this sense are guaranteed to
come from the same causal structure, thus facilitating the application of existing inference
methods separating the samples and then learning each generating structure; and finally,
(Q.3) we have done this all without assuming any particular distribution or parametrization,
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making use of only general independence measures, thus placing no constraints (such as
linearity) on the functional form of the causal relations.

We have thus contributed to the field of causal inference by (i) defining a new class of
causal model for measurement variables with latent confounders, methods for learning these
models, (ii) defining a kernel, provably capable of measuring distance between samples
based on how different their generating causal models are (and recall, this applies more
generally to ancestral graph causal models, not just our newly defined MeDIL causal
models), which can be applied in a wide variety of causal inference tasks, from clustering,
to statistical hypothesis testing, to structure learning, to feature visualization, etc., as well
as (iii) providing a free and open source software package making these methods widely
available for other researchers to apply, study, and modify. We have demonstrated our
methods on psychometric data and gene expression data, making clear what assumptions
(such as strong causal insufficiency, or structural heterogeneity) data must satisfy in order
for our methods to be applicable. These contributions lay the foundation for a variety of
different applications and extensions of statistical and causal inference methods, both in
applied fields, such as brain-computer interfaces, as well as theoretical fields like algebraic
statistics.

In making these contributions, we focused mathematically on undirected graphs, explor-
ing various ways in which they can represent equivalence classes of causal models, how
some of their existing known properties (such as edge clique covers) can be given a novel
causal semantics, and how the structure defined by distances between these graphs can be
embedded into a real-valued vector space so that we can use samples to implicitly and
efficiently reason about their generating graphs.

Causally, we drew inspiration from the Neyman-Rubin framework, making use of (i) its
clear distinction between variables that are possible causes and those that are their effects
and (ii) its foundation in population as opposed to typological thinking, as well as from
the graphical causal model framework developed by Spirtes, Pearl, and others, including
its focus on graphs and the way it allows reasoning about causal models more abstractly
in terms of their causal structure based on patterns of probabilistic independence, even
in the absence of interventional data. Furthermore, and most of all, we hope our work
here hints at possibilities for a new, richer understanding of causality, contributing to a
shift beyond the heavily assumption-laden (e.g., linear, Gaussian, sufficient FCMs) effort
to find a single "true" causal model for a data set and rather toward a broader, more
intricate understanding in which a given data set is seen as but one limited perspective of
a more complex causal system, invariably admitting many different causal models that
are not only interesting in themselves but also in their relation to each other and for the
more complete picture their combined consideration can provide of the underlying causal
system and of causality more generally, i.e., of how we fundamentally interact with and
understand the world of which we are a part.
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A. Appendix

A.1. Dependence Contribution Kernel Implementation in
Python

1 ## Copyleft 2021, Alex Markham, see https://medil.causal.dev/license.html
2 # Tested with versions:
3 # python: 3.9.5
4 # numpy: 1.20.3
5 # scipy: 1.6.3
6 import numpy as np
7 from numpy import linalg as LA
8 from scipy.spatial.distance import pdist, squareform
9 from scipy.stats import chi2

10

11

12 def dep_contrib_kernel(X, alpha=None):
13 num_samps, num_feats = X.shape
14 thresh = np.eye(num_feats)
15 if alpha is not None:
16 thresh[thresh == 0] = (
17 chi2(1).ppf(1 - alpha) / num_samps
18 ) # critical value corresponding to alpha
19 thresh[thresh == 1] = 0
20 Z = np.zeros((num_feats, num_samps, num_samps))
21 for j in range(num_feats):
22 n = num_samps
23 t = np.tile
24 D = squareform(pdist(X[:, j].reshape(-1, 1), "cityblock"))
25 D_bar = d.mean()
26 D -= (
27 t(d.mean(0), (n, 1)) + t(d.mean(1), (n, 1)).T - t(D_bar, (n,

n))↪→

28 ) # doubly centered
29 Z[j] = D / (D_bar) # standardized
30 F = Z.reshape(num_feats * num_samps, num_samps)
31 left = np.tensordot(Z, thresh, axes=([0], [0]))
32 left_right = np.tensordot(left, Z, axes=([2, 1], [0, 1]))
33 gamma = (F.T @ F) ** 2 - 2 * (left_right) + LA.norm(thresh) # helper

kernel↪→

34

35 diag = np.diag(gamma)
36 kappa = gamma / np.sqrt(np.outer(diag, diag)) # cosine similarity
37 kappa[kappa > 1] = 1 # correct numerical errors
38 return kappa
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A.2. Dependence Contribution Kernel Application

1 ## Copyleft 2021, Alex Markham, see https://medil.causal.dev/license.html
2 # Tested with versions:
3 # python: 3.9.5
4 # requests: 2.25.1
5 # numpy: 1.20.3
6 # scipy: 1.6.3
7 # medil: 0.6.0
8 # matplotlib: 3.4.2
9 # networkx: 2.5

10 import requests, os
11 import numpy as np
12 from numpy import linalg as LA
13 from scipy.spatial.distance import pdist, squareform
14 from scipy.stats import chi2
15 from medil.ecc_algorithms import find_clique_min_cover as find_cm
16 import matplotlib.pyplot as plt
17 import networkx as nx
18

19

20 ## Load data into Python, and download first if necessary
21

22 path = "/home/alex/projects/clustering/temp/" # "./" # change if desired
23 if not os.path.exists(path + "data.txt"):
24 url = "http://genome-www.stanford.edu/serum/data/fig2clusterdata.txt"
25 r = requests.get(url)
26 with open(path + "data.txt", "w") as f:
27 f.write(r.text)
28 cols = np.arange(5, 16)
29 data = np.loadtxt(
30 path + "data.txt",
31 skiprows=2,
32 usecols=cols,
33 delimiter="\t",
34 )
35

36

37 ## Perform clustering
38

39

40 def dep_contrib_kernel(X, alpha=0.1):
41 num_samps, num_feats = X.shape
42 thresh = np.eye(num_feats)
43 if alpha is not None:
44 thresh[thresh == 0] = (
45 chi2(1).ppf(1 - alpha) / num_samps
46 ) # critical value corresponding to alpha
47 thresh[thresh == 1] = 0
48 Z = np.zeros((num_feats, num_samps, num_samps))
49 for j in range(num_feats):
50 n = num_samps
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51 t = np.tile
52 D = squareform(pdist(X[:, j].reshape(-1, 1), "cityblock"))
53 D_bar = D.mean()
54 D -= (
55 t(D.mean(0), (n, 1)) + t(D.mean(1), (n, 1)).T - t(D_bar, (n,

n))↪→

56 ) # doubly centered
57 Z[j] = D / (D_bar) # standardized
58 F = Z.reshape(num_feats * num_samps, num_samps)
59 left = np.tensordot(Z, thresh, axes=([0], [0]))
60 left_right = np.tensordot(left, Z, axes=([2, 1], [0, 1]))
61 gamma = (F.T @ F) ** 2 - 2 * (left_right) + LA.norm(thresh) # helper

kernel↪→

62

63 diag = np.diag(gamma)
64 kappa = gamma / np.sqrt(np.outer(diag, diag)) # cosine similarity
65 kappa[kappa > 1] = 1 # correct numerical errors
66 return kappa, gamma
67

68

69 def kernel_k_means(data, num_clus=6, kernel=dep_contrib_kernel,
max_iters=100):↪→

70 num_samps, num_feats = data.shape
71 rng = np.random.default_rng(1312)
72 init = rng.choice(
73 num_samps, num_clus, replace=False
74 ) # choose initial clusters using Forgy method
75 inner_prods, _ = kernel(data)
76 left = np.tile(np.diag(inner_prods)[:, np.newaxis], (1, num_clus))
77 distances = (
78 left
79 - 2 * inner_prods[:, init]
80 + np.tile(inner_prods[init, init], (num_samps, 1))
81 )
82 # use law of cosines to get angle instead of Euc dist
83 # clip corrects for numerical error, e.g. 1.0000004 instead of 1.0
84 arc_distances = np.arccos(np.clip((1 - (distances ** 2 / 2)), -1, 1))
85 labels = np.argmin(arc_distances, axis=1)
86 for itr in range(max_iters):
87 # compute kernel distance using ||x - mu|| = k(x,x) -

2k(x,mu).mean() + k(mu,mu).mean() = left - 2*middle + right↪→

88 ip_clus = np.tile(inner_prods, (num_clus, 1, 1))
89

90 m_idx = np.fromiter(
91 (j for c in range(num_clus) for i in labels for j in labels ==

c),↪→

92 bool,
93 num_clus * num_samps ** 2,
94 )
95 m_idx = m_idx.reshape(num_clus, num_samps, num_samps)
96 counts = np.fromiter(
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97 ((labels == label).sum() for label in range(num_clus)), int,
num_clus↪→

98 )
99 # counts = m_idx[:, 0, :].sum(1)

100 ip_clus[~m_idx] = 0
101 middle = ip_clus.sum(2).T / counts # sum/ counts, because 0s

through off mean↪→

102

103 r_idx = np.fromiter(
104 (
105 (i and j)
106 for c in range(num_clus)
107 for i in labels == c
108 for j in labels == c
109 ),
110 bool,
111 num_clus * num_samps ** 2,
112 )
113 r_idx = r_idx.reshape(num_clus, num_samps, num_samps)
114 ip_clus[~r_idx] = 0
115 right = ip_clus.sum((1, 2)) / (counts ** 2)
116

117 distances = left - 2 * middle + right
118 # law of cosines
119 arc_distances = np.arccos(np.clip((1 - (distances ** 2 / 2)), -1,

1))↪→

120 new_labels = np.argmin(arc_distances, axis=1)
121 if (labels == new_labels).all():
122 print("converged")
123 break
124 print("iteration {} with cluster sizes {}".format(itr, counts))
125 labels = new_labels
126 return labels
127

128

129 cluster_labels = kernel_k_means(data)
130

131

132 ## Generate plots
133

134

135 def make_heatmaps_and_dags(path, data, labels):
136 with open(path + "data.txt") as f:
137 first_line = f.readline()
138 x = first_line.split("\t")[5:16]
139 x[0:2] = ["0.25", "0.5"]
140 x[2:] = [time[:-2] for time in x[2:]]
141

142 ## Dcov
143 def compute_d_cov(X):
144 num_samps, num_feats = X.shape
145 dists = np.zeros((num_feats, num_samps ** 2))
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146 d_bars = np.zeros(num_feats)
147 # compute doubly centered distance matrix for every feature:
148 for feat_idx in range(num_feats):
149 n = num_samps
150 t = np.tile
151 # raw distance matrix:
152 d = squareform(pdist(X[:, feat_idx].reshape(-1, 1),

"cityblock"))↪→

153 # doubly centered:
154 d_bar = d.mean()
155 d -= t(d.mean(0), (n, 1)) + t(d.mean(1), (n, 1)).T - t(d_bar,

(n, n))↪→

156 dd = d.flatten()
157 dists[feat_idx] = dd / n
158 d_bars[feat_idx] = d_bar
159 return dists @ dists.T, d_bars
160

161 plt.rcParams.update(
162 {
163 "text.usetex": True,
164 "font.family": "sans-serif",
165 "font.sans-serif": ["Helvetica"],
166 }
167 )
168

169 fig, axs = plt.subplots(
170 4, 2, figsize=(4, 9.5), sharex=True, sharey=True,

constrained_layout=True↪→

171 )
172 alpha = 0.1
173 crit = chi2(1).ppf(1 - alpha)
174 counts = np.append(517, np.bincount(cluster_labels))
175 ims = dict()
176 deps = dict()
177 covs = dict()
178 tests = dict()
179 for r in range(2):
180 for c in range(4):
181 if c == 0:
182 cov, d_bars = compute_d_cov(data)
183 if c > 0:
184 c += 2
185 cov, d_bars = compute_d_cov(data[cluster_labels == c - 1])
186 covs[c] = cov
187 if r == 1:
188 dep = np.zeros_like(cov)
189 test = counts[c] * cov / np.outer(d_bars, d_bars)
190 dep[test > crit] = 1
191 deps[c] = dep
192 tests[c] = test
193 c -= 2 if c > 0 else 0
194 ax = axs[c, r]
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195 cmap = "YlOrBr_r" if r == 0 else "binary"
196 im = cov if r == 0 else -dep
197 ims[(r + 1) * (c + 1)] = ax.imshow(im, cmap=cmap)
198 ax.set_yticks(np.arange(len(x)))
199 ax.set_yticklabels(x)
200 ax.set_xticks(np.arange(len(x)))
201 ax.set_xticklabels(x, rotation=80)
202 # fig.text(0.53, -0.03, "Time (hours)", ha="center", va="center")
203 # fig.text(-0.03, 0.5, "Time (hours)", ha="center", va="center",

rotation="vertical")↪→

204 box = dict(facecolor="none", edgecolor="black", boxstyle="round")
205 fig.text(0.54, 0.99, "Unclustered data", ha="center", va="center",

bbox=box)↪→

206 fig.text(0.54, 0.765, "Cluster K1", ha="center", va="center", bbox=box)
207 fig.text(0.54, 0.54, "Cluster K2", ha="center", va="center", bbox=box)
208 fig.text(0.54, 0.295, "Cluster K3", ha="center", va="center", bbox=box)
209 # fig.text(
210 # 0.49,
211 # 0.50,
212 # r"Same custers as above, but with values thresholded to 0 or 1,

using $\alpha=0.1$",↪→

213 # ha="center",
214 # va="center",
215 # bbox=box,
216 # )
217 cbar = fig.colorbar(
218 ims[1],
219 ax=axs[3, 0],
220 location="bottom",
221 shrink=0.6,
222 label="distance covariance",
223 ticks=[0.005, 0.8],
224 )
225 cbar.ax.set_xticklabels(["0", "0.8"])
226

227 cbar2 = fig.colorbar(
228 ims[4],
229 ax=axs[3, 1],
230 location="bottom",
231 shrink=0.6,
232 label=r"dependent", # , $\alpha = 0.1$",
233 ticks=[-0.75, -0.25],
234 # boundaries=[0, 0.5, 1],
235 values=[-1, 0],
236 )
237 cbar2.ax.set_xticklabels(["true", "false"])
238 # fig.text(0.95, 0.3, "Fail to reject", ha="center", va="center",

bbox=box, rotation=-90)↪→

239 # plt.tight_layout()
240 # fig.text(0.935, 0.247, "0", ha="center", va="center")
241 plt.savefig(path + "heatmaps.png", dpi=200, bbox_inches="tight")
242 fig.clf()
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243

244 def plot_dag(biadj_mat, ax):
245 num_latent, num_obs = biadj_mat.shape
246 pos_dict = {}
247 latent_pos_dict = {
248 idx: (val, 1) for idx, val in enumerate(np.linspace(0, 1,

num_latent))↪→

249 }
250 obs_pos_dict = {
251 idx + num_latent: (val, 0)
252 for idx, val in enumerate(np.linspace(0, 1, num_obs))
253 }
254

255 pos_dict.update(latent_pos_dict)
256 pos_dict.update(obs_pos_dict)
257 # print(pos_dict)
258

259 node_color = []
260 node_color.extend(num_latent * [0])
261 node_color.extend(num_obs * [1])
262

263 full_adj_mat = get_dag_from_biadj(biadj_mat)
264

265 G = nx.DiGraph(full_adj_mat)
266

267 nx.draw_networkx(G, pos=pos_dict, with_labels=False, ax=ax,
node_size=500)↪→

268 nx.draw_networkx_labels(
269 G,
270 pos=latent_pos_dict,
271 labels={idx: "$L_{{{}}}$".format(idx + 1) for idx in

range(num_latent)},↪→

272 font_color="w",
273 ax=ax,
274 )
275 nx.draw_networkx_labels(
276 G,
277 pos=obs_pos_dict,
278 labels={
279 idx + num_latent: "$M_{{{}}}$".format(idx) for idx in

range(num_obs)↪→

280 },
281 font_color="w",
282 ax=ax,
283 )
284 nx.draw_networkx_nodes(
285 G, pos=pos_dict, node_color=node_color, ax=ax, node_size=0
286 )
287 # nx.draw_networkx(G, pos=pos_dict, arrows=True, with_labels=False)
288 ax.set_xlim(-0.1, 1.1)
289 ax.set_ylim(-0.5, 1.85)
290
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291 def get_dag_from_biadj(biadj_mat):
292 num_latent, num_obs = biadj_mat.shape
293 dag_adj_mat = np.zeros((num_latent + num_obs, num_latent +

num_obs))↪→

294 dag_adj_mat[:num_latent, num_latent:] = biadj_mat
295 return dag_adj_mat
296

297 biadj_mats = dict()
298 for key in deps.keys():
299 dep = deps[key]
300 biadj_mats[key] = find_cm(deps[key])
301

302 fig, axs = plt.subplots(4, 1, figsize=(5, 5.5),
constrained_layout=True)↪→

303 for idx, key in enumerate((0, 3, 4, 5)):
304 ax = axs[idx]
305 b_mat = biadj_mats[key]
306 plot_dag(b_mat[np.lexsort(b_mat.T)], ax)
307

308 box = dict(facecolor="none", edgecolor="black", boxstyle="round")
309 fig.text(0.5, 0.96, "Unclustered data", ha="center", va="center",

bbox=box)↪→

310 fig.text(0.5, 0.71, "Cluster K1", ha="center", va="center",
bbox=box)↪→

311 fig.text(0.5, 0.46, "Cluster K2", ha="center", va="center",
bbox=box)↪→

312 fig.text(0.5, 0.21, "Cluster K3", ha="center", va="center",
bbox=box)↪→

313 plt.savefig(path + "dags.png", dpi=200, bbox_inches="tight")
314

315

316 make_heatmaps_and_dags(path, data, cluster_labels)
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