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Abstract

This thesis studies the resummation of logarithmic corrections in differential cross sections in the
presence of QCD jets with massive quarks, using effective field theory methods based on factorization
and renormalization group running, and parton shower algorithms. The main focus is on how the
mass of a heavy quark affects the resummation properties and how on the other hand the resummation
using parton shower algorithms affects the quark mass measurements in collider experiments. The
thesis consists of two parts.

The first part presents two different ways of systematically including quark mass effects in the re-
summation of differential distributions in the jet limit in hadronic collisions, where large logarithmic
contributions of ratios of different energy scales spoil the fixed-order perturbative expansion and need
to be resummed to all orders. We call these two frameworks, that are based on slightly different
approaches but are shown to give consistent results, the universal factorization (UF) scheme and
the mass mode factorization (MMF') scheme. We study the Drell-Yan process, where we focus on
the transverse momentum of the produced lepton pair and beam thrust as two observables that ex-
hibit different resummation properties, and deep-inelastic scattering in the endpoint region. Within
the UF and the MMF frameworks, factorization theorems based on Soft-Collinear Effective Theory
(SCET) are constructed that provide variable flavor number schemes that are capable of correctly
resumming all mass related logarithms for any given hierarchy of the quark mass with respect to
the other physical scales in the process. The contributions from massive flavors to the beam and
soft functions required for NNLL' resummation (combining evolution with next-to-next-to-leading
logarithmic accuracy (NNLL) with next-to-next-to-leading order (NNLO) boundary conditions) are
calculated and the effects of the quark mass on the resummation concerning renormalization group
(RG) evolution in both virtuality and rapidity are discussed.

The second part studies the interpretation of the top quark mass parameter in an angular order
parton shower based on the coherent branching formalism. Parton showers as part of multipurpose
Monte Carlo (MC) event generators are an essential tool in modern collider physics. The most precise
measurements of the top quark mass, based on direct reconstruction, rely on the comparison of MC
predictions to the experimental data. However, as of today the exact relation of the mass parameter
in the MC event generator, generically called the “Monte Carlo mass”, to a well defined mass scheme
is still unclear. This results in uncertainties on how to interpret the top quark mass extracted in these
measurements that are of the same order as current experimental uncertainties, which are about 0.5
GeV. We study the effect of the parton shower cutoff on the mass parameter for the angular ordered
parton shower as implemented in the Herwig 7 MC event generator. For this we compare analytic
calculations for the 2-jettiness distribution in the peak region in eTe™ collisions in the coherent
branching formalism with a transverse momentum cutoff, with results from the QCD factorization
theorem based on SCET and boosted Heavy Quark Effective theory (b HQET). We show that in the
presence of a shower cutoff the quark mass parameter cannot be interpreted as the pole mass. The
main result of this work is to establish instead a cutoff dependent coherent branching mass as the
mass scheme that is effectively implemented in the parton shower. All findings are directly compared
to the Herwig 7 event generator, where a very good agreement with our predictions is found.
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Zusammenfassung

Diese Dissertation behandelt die Resummierung logarithmischer Korrekturen zu differentiellen Wir-
kungsquerschnitten fiir Prozesse in denen QCD Jets mit massiven Quarks auftreten. Dazu werden Me-
thoden der effektiven Feldtheorien sowie Parton Shower Algorithmen benutzt. Der Fokus liegt dabei
einerseits darauf zu untersuchen wie die Masse eines schweren Quarks die Eigenschaften der Resum-
mierung der logarithmischen Korrekturen dndert, und andererseits wie die Resummierung mithilfe von
Parton Shower Algorithmen die Messungen der Quarkmasse an Teilchenbeschleunigern beeinflusst.
Diese Dissertation besteht aus zwei Teilen.

Im ersten Teil werden zwei Methoden vorgestellt, wie man auf eine systematische Art und Weise
die Masseneffekte eines schweren Quarks in die Resummierung differentieller Wirkungsquerschnitte
in hadronischen Kollisionen inkludieren kann. Dabei beschranken wir uns auf den Fall von Jets im
Endzustand. In diesem Fall treten groie Logarithmen von Verhéltnissen der verschiedenen Energies-
kalen in dem Prozess auf, welche zu allen Ordnungen der Stérungstheorie resummiert werden miissen.
Wir nennen diese beiden Methoden, welche auf leicht unterschiedlichen Prinzipien beruhen allerdings
konsistente Resultate geben, das universal factorization (UF) Schema und das mass mode factoriza-
tion (MMF) Schema. Wir erkléren diese Methoden am Beispiel des Drell-Yan Prozesses, wobei als
Observablen der Transversalimpuls des produzierten Leptonpaares sowie Beamthrust gewahlt werden,
da diese beiden Observablen unterschiedliche Eigenschaften beziiglich der Resummierung aufweisen.
Als ein weiteres Beispiel wird tief-inelastische Streuung in der Endpunkt Region besprochen. Mit
dem UF und dem MMF Schema koénnen im Rahmen der Soft-Collinear Effective Theory (SCET)
Faktorisierungstheoreme mit variabler Anzahl der aktiven Quarkflavors (variable flavor number sche-
me) konstruiert werden, welche es erlauben, alle Logarithmen, welche von der Quarkmasse abhéngen,
zu resummieren, und zwar fiir jedes beliebige Verhéltnis der Quarkmasse zu den anderen Energies-
kalen in dem Prozess. Die Beitridge eines massiven Quarkflavors zu den Soft- und Beamfunctions,
welche fiir eine NNLL' Resummierung (d.h. Evolution mit “next-to-next-to-leading” logarithmischer
(NNLL) Genauigkeit und Anfangsbedingungen bis zur “next-to-next-to-leading” Ordnung (NNLO))
notig sind, werden berechnet. Auflerdem wird der Einfluss der Quarkmasse auf die Evolution der
Renormierungsgruppe sowohl in Virtualitdt als auch in Rapiditét untersucht.

Der zweite Teil der Dissertation beschéiftigt sich mit der Interpretation des Parameters der Top-Quark
Masse in einem winkelgeordneten Parton Shower, welcher auf dem coherent branching Formalismus
beruht. Parton Shower sind Teil von Monte Carlo (MC) Event Generatoren und damit wichtige
Werkzeuge fiir die Beschreibung der Physik an Teilchenbeschleunigern. Die genauesten Messungen
der Top-Quark Masse aus der Rekonstruktion der Zerfallsprodukte des Top-Quarks basieren auf
dem Vergleich von experimentellen Daten mit Vorhersagen, die mit einem MC Event Generator
gemacht wurden. Allerdings ist bis heute das exakte Verhéltnis des Massenparameters von MC Event
Generatoren - oft generisch als “Monte Carlo Masse” bezeichnet - zu feldtheoretisch wohldefinierten,
renormierten Massendefinitionen unklar. Dies fiithrt zu zusétzlichen Unsicherheiten in den Messungen
der Top-Quark Masse, welche von der selben Groflenordnung wie die derzeitigen experimentellen
Messunsicherheiten sind, welche ungefihr 0.5 GeV betragen. In dieser Arbeit wird der Effekt eines
Parton Shower Cutoffs auf den Massenparameter in einem winekelgeordneten Parton Shower, wie er
im Herwig 7 MC Event Generator implementiert ist, untersucht. Dazu berechnen wir analytisch die 2-
Jettiness Verteilung in der Peak-Region fiir e™e~-Kollisionen im coherent branching Formalismus mit
einem Cutoff, der auf den Transversalimpuls wirkt. Die Ergebnisse werden verglichen mit analogen
Berechnungen im Rahmen von SCET und boosted Heavy Quark Effective Theory (bHQET). Es wird
gezeigt, dass im Falle eines endlichen Shower Cutoffs der Massenparameter des Quarks nicht als die
Pol-Masse interpretiert werden kann. Das wichtigste Resultat dieser Arbeit ist die Identifizierung
einer Cutoff-abhéingigen coherent branching Masse als jenes Massenschema, das durch den Parton
Shower effektiv implementiert wird. Alle Resultate werden direkt mit dem Herwig 7 Event Generator
verglichen, wobei wir eine sehr gute Ubereinstimmung mit unseren Vorhersagen finden.
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Preface and Outline

In the era of precision measurements at hadron colliders a precise understanding of strong interactions
in a collider environment is crucial for the measurement of fundamental parameters of the Standard
Model from experimental data. Many different theoretical tools are used with the aim to provide
theoretical predictions at the same level of accuracy as the experimental results, that are nowadays
often at the percent level or below. This can be a challenging task. In regions of phase space where
initial or final state particles are collimated into jets, large logarithmic corrections to the cross sections
frequently spoil the perturbative expansion and thus need to be resummed to all orders in perturbation
theory. This requires to disentangle the physics at the very different energy scales that are involved
in a typical process at a hadron collider like the Large Hadron Collider (LHC), a task that can be
tackled through the use of effective field theory (EFT) methods. Factorized cross sections, where
each term depends only on a single energy scale, can then be resummed by using renormalization
group running between them. Another widely used tool, essential for a wide range of studies at the
LHC, are multipurpose Monte Carlo (MC) event generators, that are used to simulate the physics
from the hard partonic interactions to the hadronization of the observable final state particles. An
essential part of these MC event generators are parton showers, simulating the perturbative radiation
of collinear and soft particles from a boosted progenitor, from the hard scale down to an infrared
shower cutoff where the emissions would become non-pertrurbative. At this stage the parton shower
terminates and the particles produced up to this point are handed over to a hadronization model.
Both these methods, resummation based on EFT methods on the one side, and parton showers on
the other, will be extensively used and studied in this thesis.

While these methods are often well understood for a variety of different observables involving mass-
less quarks, the systematic generalization to also account for massive quark effects for computing
resummed cross sections is usually not as clear. Not only are results for fixed-order calculations in
the massive case usually only available at lower orders in perturbation theory compared to the mass-
less case, because the calculations become much harder, but also the factorization and resummation
setup can become more complex with the mass providing an additional energy scale in the problem,
which can lead to new structures in the factorization theorems. Correctly including the effects of
massive quarks in the resummed cross sections and on the other hand understanding effects that
might affect the measurements of the quark masses themselves, especially when using tools like par-
ton showers that are not so easily accessible analytically, is becoming increasingly important to keep
up with better statistics and more precise measurements by the experimental collaborations. This
thesis consists of two parts that both deal with massive quarks in QCD jets, but focus on different
questions.

Part [I] is called Variable Flavor Number Schemes for Jet Processes at Hadron Colliders. This part
deals with massive quark effects for initial and final state radiation in differential cross sections for
Drell-Yan and deep-inelastic scattering in the regime where the hadronic final state is collimated into
jets. It deals with both “primary” mass effects, where the heavy flavor is directly entering the hard
interaction, and “secondary” mass effects, where light quarks enter the hard interaction and heavy
quarks appear via virtual or real radiation from gluon splitting. Our analyses are based on Soft-
Collinear Effective Theory and provide variable flavor number schemes, i.e. factorization theorems



involving flavor number dependent matching functions and matrix elements and also flavor number
dependent RG evolution, for all possible hierarchies of the quark mass with respect to the other
scales. Also the previously unknown massive quark corrections necessary for resummation up to
NNLL' accuracy for the observables studied here are calculated. Part of the content presented in this
part of the thesis is published in Refs. |1] and [2].

Part [T has the the title On the Cutoff Dependence of the Quark Mass Parameter in Angular Ordered
Parton Showers. It studies the effects of an infrared transverse momentum cutoff in the coherent
branching formalism, that is the basis of the angular ordered parton shower as implemented in the
Herwig 7 event generator, and the QCD factorization theorem based on Soft-Collinear Effective
Theory, on the thrust distribution in eTe™ collisions for boosted stable top quarks. In this analysis it
is shown that by introducing the infrared cutoff, the mass scheme that is effectively implemented by
the parton shower is not the pole mass scheme, but instead a cutoff dependent short-distance mass
scheme, called the “coherent branching mass”. This is an important step for a better understanding of
the so-called “Monte Carlo mass” that is measured in the most precise top quark mass measurements
at the LHC, based on direct reconstruction of the top decay products. This part of the thesis is also
published in Ref. [3].

Several appendices are provided that contain a collection of known results that were used in the
body of the thesis, new results obtained for massive quark corrections and corrections arising from
introducing a transverse momentum cutoff and details of some of the calculations.
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Chapter 1

Introduction

For many high-precision studies at the LHC a thorough understanding of quark mass effects is nec-
essary to achieve an accuracy in the theoretical predictions that matches experimental uncertainties.
Often predictions for processes involving heavy flavors are known to lower precision than the corre-
sponding predictions for massless quarks. Besides driving the calculations to higher orders in fixed-
order perturbation theory and in the logarithmic counting for resummed predictions, it is therefore
also necessary to provide results for massive quark effects to sufficiently high order and to understand
how to correctly include them when resumming logarithmic terms to all orders in perturbation theory.
Mass effects from charm and bottom quarks have been discussed extensively for inclusive heavy quark
induced cross sections, leading to the development of several variable flavor number schemes (VENS)
(see e.g. Refs. [4-10]). On the other hand, heavy quark mass effects have received less attention
so far in the context of resummed exclusive (differential) cross sections, i.e. where the measurement
of additional observables restricts the QCD radiation into the soft-collinear regime, requiring the
resummation of the associated logarithms.

When the mass of the heavy flavor is well below any physical dynamical scale pux, i.e. m < pux,
that is associated with the measurement of the differential observable at hadron collisions, which can
be for example the transverse momentum of the electroweak boson px ~ ¢r in the Drell-Yan (DY)
process or the invariant mass of the hadronic final state ux ~ @Q+/1 — z for deep-inelastic scattering
(DIS), the mass effects in the distributions are simply encoded by the matching between the parton
distribution functions (PDF) across a flavor threshold (e.g. matching four-flavor PDF's onto five-flavor
PDFs including a b-quark PDF at the scale my, for my < px). In the partonic cross section (which
only involves dynamical scales much larger than the quark mass) the heavy quark can then be treated
as an additional massless flavor. But this description it not suitable for ux ~ m or ux < m, because
the expansion in m?/ ,u%o that is performed when treating the heavy flavor as a massless degree of
freedom in the partonic cross section, is breaking down. In this case the mass effects have to be
included in the resummed partonic cross section in a way that keeps the relevant (power) corrections
associated with the mass, but also allows for resummation of massive quark contributions in the limits
where the mass is widely separated from other relevant dynamical scales.

In general, one can distinguish two types of mass effects, illustrated in Fig. which have different
characteristics: Contributions where the heavy quark enters the hard interaction process, see Fig.
are called primary mass effects. Contributions from a gluon splitting into a massive quark-antiquark
pair with light quarks entering the hard interaction, see Fig. are called secondary. The systematic
description of secondary mass corrections for differential spectra in the various relevant hierarchies
between the mass and other physical scales has been established for final state jets in the context
of event shapes in eTe™ collisions in Refs. [11,12]. Here we will extend this approach to differential
distributions in hadron collisions for jets from initial and final state radiation. We will focus on the
DY process, a typical benchmark process for measurements at hadron-hadron colliders, and DIS at
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Figure 1.1: Primary (a) and secondary (b) heavy-quark mass effects for Z-boson production. Dia-
grams for mass effects in gluon-initiated processes are not shown.

hadron-electron colliders. Both processes are studied in the exclusive region where the measured
observable is constrained in such a way that the hadronic final state is restricted to soft and collinear
particle kinematic, i.e. the final state involves the formation of jets. For DY we will consider two
different observables to restrict the final state to the exclusive region, the transverse momentum of the
produced lepton pair g7 and beam thrust 7 [13]. The variable flavor number schemes presented here
are based on factorization theorems in Soft-Collinear Effective Theory (SCET) [14-17] and include
both secondary and primary massive quark corrections for initial state radiation, and only secondary
massive quark correction to final state jets. Primary mass effects in final state jets will not be discussed
in this work. In DIS in the endpoint region one would encounter this scenario only when considering
intrinsic (non-perturbative) heavy flavors in the proton, because flavor mixing in the evolution of
the PDFs is suppressed in this kinematic region. In ee™ — jets, primary mass effects can play
a role and one may encounter a region that requires also boosted Heavy Quark Effective Theory
(bHQET) [18,/19], but this is beyond the scope of the work presented in this part.

We will provide two different frameworks for constructing variable flavor number schemes for re-
summed differential cross sections for different observables for an arbitrary scaling of the quark mass
with respect to the other scales (always assuming that the quark mass can be treated as a pertur-
bative scale). The universal factorization (UF) scheme was first described in Refs. [11,/12] and is
discussed in detail also in Ref. [20]. The basic idea is that by applying appropriate renormalization
conditions for the contributions from a heavy flavor, which means including it as an active degree
of freedom in the renormalization group running above the mass scale and excluding it below, the
mass related logarithms can be resummed while at the same time it is ensured that all functions in
the factorization theorem have the correct massless and decoupling limits. Because the heavy flavor
is never literally integrated out from the theory and all mass corrections are kept in the calculations,
this results in a smooth transition between the different hierarchies that can arise between the mass
and the other physical scales.

Another way of setting up the factorization theorems for the VFNS is what we will refer to as the
mass mode factorizatoin (MMF') scheme. It strictly follows the EFT philosophy to always impose an
expansion whenever there is a large scale hierarchy. In this way one can separate and identify all the
relevant EFT modes that appear for a given scaling of the mass of the heavy flavor with respect to
the other scales in the process. In regimes where the mass is parametrically smaller than the other
typical scales involved in a collinear or soft sector of the theory, the heavy quark is strictly treated
like an additional massless flavor. When crossing the flavor threshold the heavy flavor is integrated
out from the theory. In this way one can identify certain building blocks in the factorization theorems
that arise from integrating out the heavy flavor in the different collinear and soft sectors, that provide
a systematic way of resumming rapidity logarithms related to secondary massive quark effects, that



can be shown to be universal for the different observables and processes studied here.

One of the results of this work is to explain how these two approach are related to each other, showing
that they give equivalent results for the resummation of logarithms associated with massive quark
corrections. The work presented here provides results that can be used in phenomenological studies
at the LHC that rely on a precise understanding of differential distributions in the endpoint, where
resummation of large logarithmic corrections and including charm and bottom mass effects can both
be of importance.

The outline of this part of the thesis is as follows. In chapter [2] we will discuss the factorization
and resummation for massive quark effects in exclusive Drell-Yan. We discuss in detail the effective
field theory setup for the different parametric regimes in the MMF approach for the case of ¢p in
Sec. Here, we elaborate on the relevant mode setup in SCET, the resulting factorization formulae,
and all-order consistency relations between the factorization ingredients in the different regimes. In
Sec. we discuss the consequences of the secondary mass effects on the rapidity evolution for the
qr distribution in the regime g7 ~ my. As an outlook we provide in Sec. an estimate of the
potential size of the bottom quark effects for low-gp Drell-Yan measurements. We proceed in Sec.
by discussing the mode setup, the factorization theorems and resummation properties in all possible
different regimes for massive quark effects in DY for beam thrust 7, using again the MMF approach.
In chapter [3] we discuss the factorization and resummation of secondary massive quark effects DIS
in the endpoint region in a similar manner as for the case of DY. The UF scheme is reviewed and
discussed in chapter [d] A short summary of the UF scheme and how it is implemented for the various
functions in the factorization theorems is given in Sec. and in Sec. we compare the universal
factorization and the mass mode factorization approach for the example of DIS in the endpoint region.
In chapter [f] we conclude this part of the thesis. In appendix [A] we give a brief summary of how the
factorization theorems in the different hierarchies based on the mass mode factorization theorem look
like for thrust in ete™ — 2 jets. In appendices [B| and [C| we give a collection of all massless and
massive results relevant for including mass effects at NNLL’ order for the various functions in the
factorization theorems. Further details on all calculations are provided in appendix [D] In appendix [E]
we also give the analytic fixed-order results for the massive quark effects for DY in the gr and T
distributions in the singular limit g7, T < Q at O(a?).






Chapter 2

Variable Flavor Number Scheme for
Exclusive Drell-Yan

Differential cross sections for the production of color-singlet states (e.g. electroweak vector bosons
or the Higgs boson) in pp collisions represent benchmark observables at the LHC. For the Drell-
Yan process, the measurements of the transverse momentum (gr) spectrum of the vector boson
have reached uncertainties below the percent level [21-26], allowing for stringent tests of theoretical
predictions from both analytic resummed calculations and parton-shower Monte-Carlo programs. An
accurate description of the ¢r spectrum is also a key ingredient for a precise measurement of the
W-boson mass at the LHC, which requires a thorough understanding of the W-boson and Z-boson
spectra and in particular their ratio [27-30]. The associated uncertainties are one of the dominant
theoretical uncertainties in the recent my, determination by the ATLAS collaboration [31].

This chapter deals with the treatment of primary and secondary massive quark effects in the resummed
cross sections for Drell-Yan in the exclusive region where the hadronic final state is restricted into two
beam jets plus additional soft radiation, using the scheme for including massive quark effects that
we refer to as the mass mode factorization (MMF) approach. We will consider two different types
of observables that resolve the QCD radiation and are used to constrain the process to the exclusive
region, namely the transverse momentum g7 of the gauge boson and beam thrust 7 [13]. Constraining
the process to the exclusive region as mentioned above corresponds to the limits qr, TelYl <« Q,
where ) and Y are the invariant mass and rapidity of the color-singlet state. These two observables
restrict the allowed QCD radiation into the collinear and soft regime in different ways, leading to
different effective-theory setups with distinct factorization and resummation properties in the small
gr and T limits, which are well-known in the massless limit up to high orders in the logarithmic
counting (see e.g. Refs. [32-42] and Refs. [13,43,/44]). These two cases provide simple prototypical
examples, which cover the essential features of the factorization with massive quarks that will also be
relevant for including massive quark effects for other more complicated jet resolution variables whose
factorization is known in the massless limit. Throughout this chapter we always consider the limit
Aqep < gr, T allowing for a perturbative description of the physics at these kinematic scales. For
the g spectrum, earlier treatments of the heavy-quark initiated primary contributions for m < gr
have been given in Refs. [45-47], essentially combining the ACOT scheme [4,5] with the standard CSS
qr resummation [34]. Here we give the complete treatment for primary and secondary massive quarks
contributions over the whole range of possible hierarchies between the heavy-quark mass m and the
kinematic scales, both for ¢gr and T, using the framework of SCET and the mass mode factorization
approach for including the massive quark effects in the factorization theorems.

We give results for all required ingredients for incorporating my, effects at NNLL' order, which combines
NNLL evolution with the full NNLO singular boundary conditions (hard, beam, and soft functions).
For Z-boson production at NNLL', primary effects contribute via O(as) X O(as) (i.e. one real radi-



Figure 2.1: Schematic picture of the Drell-Yan process.

ation at O(as) in each incoming beam) heavy-quark initiated contributions, illustrated in Fig.
Secondary effects contribute as O(a?2) corrections to light-quark initiated hard interactions, illustrated
in Fig. Due to the strong CKM suppression primary mp-effects do not play any significant role
for W-production, which represents a key difference to Z-boson production. Primary m.-effects enter
W-production in the cs-channel, where they start already at NLL' via O(a;) x O(1) corrections (i.e.
one real radiation of a charm quark in one beam, and a non-perturbative (intrinsic) strange quark
from the proton in the other beam). For this case, our explicit results for the regime g7 ~ m. allows
for up to NNLL resummation. (Here, the resummation at NNLL/ would require the O(a?) primary
massive contributions.)

Large parts of this chapter of the thesis and corresponding appendices were taken from Ref. [1]. Some
remarks for further clarifications on the role of the csoft matrix elements and their relation to zero-bin
subtractions have been added following the discussion after Eq. , and section was added
to discuss the implications of large rapidities for the massive factorization theorems for beam thrust.
Smaller changes have been made throughout the rest of the text, clarifying some smaller issues and
relating to other chapters of the thesis.

Before we set up the variable flavor number schemes for gy and 7 in Secs. and , we will
first briefly discuss the kinematics of the Drell-Yan process and set up the notation for the kinematic
variables. The Drell-Yan process is sketched in Fig. where two incoming protons with momenta
P, and P, collide, and in a hard collision-process between two partons a color-singlet state is formed
that will then decay into two leptons. We denote the momenta of the partons when they couple to
the color-singlet as p, and py, such that the momentum of the color-singlet is ¢ = p, +pp. Throughout
this chapter we will use the decomposition of a four-momentum p* into its light-cone components and
transverse momentum components with respect to the beam axis as

nt nh _
P =nap gt e o+l = (naepmeepipr) = (07,07, p1)), (2.1)
where n, and n; are light-like four vectors along the beam axis

ng = (1,0,0. — 1), ny = (1,0,0,1). (2.2)

and n, - p; = np - pL = 0, such that the momenta of the incoming protons in the lab frame can be
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written as (using the approximation of a massless proton)

nh ny
Pl = Eon=- Pl = Em?” : (2.3)

The four-momentum of the color-singlet state that is produced, which we will denote as g*, is the
sum of the momenta of the colliding partons

nh nt
q“zpﬁ%—pfzwa?a +wb?”+q‘i. (2.4)

The invariant mass () of the color-singlet and its rapidity Y can be written as

Q =V = \/wowr — ¢, (2.5)

1 : 1
Y:fln(nb q) :fln<&>, (2.6)
2 Ng * q 2 W
with q% = —qf_ > 0. If the transverse momentum is much smaller than the invariant mass, i.e.

gr < @, we can perform the expansion
2
Q ~ /waiy % (1+0(Q%)) (2.7)
such that we can define the kinematic variables as

Y -Y Wa,b
we R Qe wyrRQe, xgp= Ea . (2.8)
cm

This is the approximation that we will use in the rest of the chapter. The expansion in ¢r/Q will
always be justified when restricting the final state to exclusive region according to the two different
observables transverse momentum qr and beam thrust 7. This is clear in the case of g, where the
exclusive region is just defined by the condition that ¢r < @, and also holds the case of beam thrust

T, where the exclusive region is defined by 7 < Qe 1Yl as will be explained in the beginning of
Sec. 2.2.11

In the case where (1 — z,;) < 1 one would encounter large logarithms of the form ~ In(1 — z,3). In
this chapter we will not deal with the resummation of these logarithms, so to ensure that (1—z43) ~ 1
we restrict ourselves to the kinematic region Q@ < Eeme Y], in addition to any restrictions coming
from constraining the final state to the exclusive region defined by the observables ¢r and 7.

2.1 Variable flavor number scheme for the ¢r spectrum in Drell-Yan

The first observable we consider for the Drell-Yan process is the transverse momentum ¢r of the
gauge boson

(2.9)

qr = |qr| = [Pre + Pril = ‘Zﬁﬂ :
:

Here p; are all hadronic final-state momenta (i.e. excluding the color-singlet final state). Due to
transverse momentum conservation gr measures the total transverse momentum of the final state
hadronic radiation. The exclusive regime we are interested in corresponds to gr < (), where () = \/q>2
is the dilepton invariant mass that sets the hard scale of the process. We always assume Aqcp < qr
allowing for a perturbative description of the physics at this kinematic scale. The factorization and
resummation properties of this observable are well known in the massless case up to high orders in
the logarithmic counting, see e.g. Refs [32-42].
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2.1.1 Factorization for massless quarks
Before discussing the massive quark corrections, we first briefly summarize the EFT setup and fac-

torization for massless quarks. The relevant modes for the measurement of gr in the limit gr < @
are ng-collinear, ny-collinear, and soft modes with the scalingﬂ

2
ng-collinear:  ph ~ (ql,Q7QT> ;

Q
e
np-collinear: pﬁb ~ (Q, aT,QT> ;
soft:  pt ~ (g7, q7,9r) ; (2.10)

which we have written in terms of light-cone coordinates along the beam axis as in Eqs and .
Besides these perturbative modes there are also nonperturbative collinear modes with the scaling
(AéCD/Q,Q,AQCD) and (Q,AéCD/Q,AQCD), which describe the initial-state protons at the scale
i ~ Aqcp, and which are unrelated to the specific jet resolution measurement. The typical invariant
mass of the soft modes is parametrically the same as for the collinear modes, p%a ~ pib ~p?~ q%,
which is the characteristic feature of a SCETy; theory. The soft and collinear modes are only sepa-
rated in rapidity leading to the emergence of rapidity divergences and associated rapidity logarithms.
The traditional approach for their resummation in QCD relies on the work by Collins, Soper, and
Sterman [32-34]. In SCET the factorization and resummation were devised in Refs. [39-42].

Here we will use the rapidity renormalization approach of Refs. [40,/41], where the rapidity divergences
are regularized by a symmetric regulator and are renormalized by appropriate counterterms (by a MS-
type subtraction). We will refer to this regulator as the symmetric n-regulator, and it will be used
throughout the whole part of this thesis. It acts on the Wilson lines as

—g —g V2
Sy = Z exp[ﬁn-As} — Z exp[wwn-fls , (2.11)
perms perms
where P3 denotes the third component of the momentum operator and the light-like vector n can
stand for either vector n, or n,. In Eq. it is shown for the example of a soft Wilson line .S,
as it appears in the soft function, but the replacement is analogous for the collinear Wilson lines,
where one can further make the expansion [2P3] = |n, - P + np - P| — |np - P| for the collinear
scaling ny, - P > ng - P in the ng-direction (and analogous for the collinear scaling in the n; direction
with @ <> b). The dimension-1 “rapidity” scale v takes a similar role as the dimension-1 scale p in
dimensional regularization. The rapidity logarithms are then resummed by solving the associated
rapidity renormalization group equations in v. Within this framework the factorized differential cross
section with ny massless quarks readﬂ

do n - - -
2 dQrdy > Hz(j Q. ) /dsza &Ppry &prs 6(g7 — [Pra + P + rs”) (2.12)
T i.j€{e¢.q}
n - v n - v ne)/= q
X BZ( f) (pTaux(Lqu;) B]( f)(pr,CCb,/,L, Jb) S( f)(stvua V) |:1+O(6T>j| )

where w,, and x4y are defined as in Eq. (2.8) and are functions of @), Y and the fixed E,,. Here
the RG evolution factors for the various functions to run them from their respective natural scale

'If the color-singlet state has a large boost along the beam axis, i.e. for example wy ~ Qe™Y K Q <€ wa ~ Qe
also these modes would be boosted with rapidity Y. But since the transverse momentum q¢r is invariant under boosts
along the beam axis, we can always boost back to the partonic center of mass frame, where the modes exhibit the
symmetric scaling shown in Eq. . This means that the factorization theorem based on the scaling of the modes as
in Eq. can be used also for larger rapidities Y % 0, as long as we are not in the region where (1 — zq) < 1.

2In principle there is also a corresponding contribution for a gluon initiated hard interaction. However, these contri-
butions vanish for real Z-boson production gg — Z due to the Landau-Yang theorem [48,49|, and are also subleading
for off-shell Z-bosons in gg — Z* — 04, as discussed in App.
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to the common renormalization scale p are not shown explicitly for simplicity, but always implied.
The same for the evolution factors in rapidity. Note that the particular form of the factorization
theorem in Eq. , where the beam functions B; and B; for the two incoming beam jets take the
same form, only arises when a rapidity regulator that is symmetric under p* <+ p~ is applied. Other
choices of regulating the rapidity divergences that arise in the beam and soft functions can lead to
two beam functions that do not take the same form in the a- and b-direction (and also change the
results for the soft function). The full convolution of both beam and the soft function is, however,
always independent of the rapidity regulator.

The superscript (nf) on all functions indicates that the associated EFT operators and the strong
coupling constant in these functions are renormalized with n; active quark flavors. H;; denotes the
process-dependent (but measurement-independent) hard function. It encodes the tree-level result
and hard virtual corrections of the partonic process ij — Z/W/v* at the scale p ~ @ and can be
calculated as the square of the Wilson coefficent of the matching of the full QCD to the SCET current.
The transverse-momentum dependent (TMD) beam functions B; [39,50-53] can be written as proton
matrix elements of SCET operators

Bi(Fr.a = =1, =) = (pa(P7)IO@)O:Fr, 0, 1, ) |pa(P7)) (2.13)

where the light-like vector n is either n, or ng, depending on whether we deal with the ng- or ng-
collinear beam function, and 7 is then the respective other light-like vector. The state |p,(P~) > is
the incoming proton state with momentum PH = P*% and O; a renormalized operator of collinear
SCET jet fields

0P (pr, w) = X (0)3) (pr = P1) 5 [8(w — - P)x () (0)] (2.14)
with the momentum operator P acting always to the right. The renormalized TMD beam functions
B; can be matched onto PDFs as

. A2
B )(pT,ZE 1, ) fokf (Pr, 2, pt, — )®x £ @, ) [1+O<‘?‘2D)] (2.15)

where the Mellin-type convolution denoted by ®, is defined as

1
o) s hw) = [ Fg(2)nte). (216)
e 2 \Z
We will use this notation throughout the rest of this work. The perturbative matching coefficients
T, describe the collinear initial-state radiation at the invariant mass scale p ~ g7 and rapidity scale
v ~ w, and the nonperturbative parton distribution functions (PDFs) are denoted by fi. Finally, the
soft function S (see Eq. for the definiton in terms of a vacuum matrix element of soft Wilson
lines) describes the wide-angle soft radiation at the invariant mass and rapidity scale p ~ v ~ qr.
The matching coefficients Z;; and the soft function are process-independent and have been computed
to O(a?) in Refs. [54-57], and togehter with the three-loop noncusp anomalous dimension [58-60)
allow for a full N3LL analysis of Drell-Yan for massless quarks [61/64]. The results for the massless
hard, beam and soft functions at order O(a;) and O(a?CpTr) are collected in appendix [Bf for the
convenience of the reader. These are the only terms relevant for NNLL’ that will depend on the mass
of the heavy flavor once we go to the massive quark case, while all other color structures at O(a?)
are contributions from diagrams with only massless quarks (remember that primary massive quark
effects enter only via two separate O(ay) real radiation contributions in the beam functions in the
two beams as O(as) x O(as), while the secondary massive quark corrections from the splitting of a
radiated gluon contribute to the O(a2CrTr) terms in the hard, beam and soft function).
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In Eq. (2.12), the logarithms of ¢r/Q are resummed by evaluating all functions at their characteristic
renormalization scales and evolving them to common final scales u and v by solving the set of coupled
evolution equations

udi Qo) =75 (@) BV (Qu ).

d /. v n v ne) [ v

M@Bz( s) (pTuxnu’v ;) = fy(B s) (,U,, ;) BZ( ? (pT’$’/'L’ ;) )
d o ne) o
M@S( Npr, 1, )—7(5 (1) 80 (i, i, v)
i ”f) nf)
Md,u i Z’yfzk T, 1) O fk (z, 1) s

d _np) (- 2 (ng) ( ng) (7 v

VEBZ (pT,%/la ;) /d kT’Y (pT k;T7 ) (kT,ﬁ,,U/, ;) )

d -

vy S ro) = [ el Gr - Fro) SO o). (27)
v

The massless results for the anomalous dimension at order O(as) and O(a?CpTFr), that will be

relevant when discussing the massive quark case at NNLL’ (all other color structures at that order

are left unchanged with respect to the purely massless case), are given in appendix Only the

evolution of the PDF leads to flavor mixing. Consistency of RG running implies that

f)(Q,u)ﬂngf)(M,w%) +7§"f)(u,wib)+vé Mp,v) =0,

( (n f)(

2%%)(13%#) +,.4 (P, ) =0,

d d . n "
pgd @) = v g s ) 00 r) = ~ATGElos(] 6P @) . (2.18)

Note that in practice, the evolution is usually performed in Fourier space after performing a two-
dimensional Fourier transform defined as

) = / A2pp BT g (7 (2.19)

for a generic function g(pr), such that one actually resums the conjugate logarithms In(bu) where
b= \5T| ~ 1/qr is the Fourier-conjugate variable to gr. The ¢p spectrum is then obtained as the
inverse Fourier transform of the resummed b-spectrum. The exact solution and evolution in gr space,
which directly resums the (distributional) logarithms in g7, has been recently discussed in [65] (see
also Ref. [66]).

In the following subsections, we discuss how the mode and factorization setup changes when massive
quark flavors are involved, using the mass mode factorization approach. Including massive quarks
leads to the appearance of additional modes related to fluctuations around the mass shell of the
heavy flavor as discussed extensively in Refs. [11,{12]. For the different hierarchies between the mass
scale m and the scales @ and gr the relevant modes are illustrated in Fig. In the first case,
qr < m ~ @, the massive flavor is integrated out at the hard scale. This leads to the case with n,
massless flavors in the beam and soft functions and mass corrections only in the hard function, as
discussed in Sec. The second case, gr € m < @, where the quark mass is larger than the
jet resolution variable but smaller than the hard scale @), is analogous to the corresponding case for
thrust in ete™ — dijets in Refs. [11,/12] and DIS in the z — 1 limit [2]. We refer to these papers for
details and only summarize briefly the main features for this regime in Sec. Our main focus is
on the hierarchies gr ~ m <« @ and m < gr < ), which are important for bottom and charm quark
mass effects at the LHC, and which are discussed in Secs. 2.1.4] and 2.1.5]
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Figure 2.2: Effective theory modes for the ¢p spectrum with massive quarks for ¢r < @ and m >
AQCD-

2.1.2 Quark mass effects for m ~ @)

If the quark mass represents a large scale ~ @) (which concerns the top quark at the LHC), this quark
flavor does not play a dynamic role in the low-energy effective theory and is integrated out at the
hard scale in the matching from QCD to SCET. The relevant modes are shown in Fig. The
massive quark only contributes via mass-dependent contributions to the hard function. This yields
the factorization theorem

do _ 2 2 2 2 - . S 2
W = .Z, Hi(Q,m, ) /d pra d°pry d°p1s (07 — |Pra + D1 + D1s|”) (2.20)
i,7€{4,q}
n o v n = 14 = 2
X BZ( 2 (pTaaxaa,U’a w_> B]( 2 (praxbnua W_b) S(nl)(pT&)U’v V) |:1+0(%7%):| )

which is essentially equivalent to the massless case in the previous subsection with n; massless flavors.
The hard function H;;(Q,m, p) can be evaluated either in the (ny = n;) or the (ny = n; + 1) flavor
scheme for ag, where n; is the number of light (massless) quark flavors. The contributions from
the heavy flavor at O(a?CrTr) are given in Sec. In general both primary and secondary
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massive quark corrections contribute for initial (massless) quarks, shown in the virtual diagrams in
Fig. and Fig. repsectivley, at O(a?). Using the (n;) flavor scheme for oy these vanish as
O(Q?/m?) in the decoupling limit m > @ for the conserved vector current. For the axial-vector
current, contributing to Z-boson production, there are in addition also anomaly corrections starting
at O(a?) from the massive quark triangle in Fig. that do not decouple |67769]E| Since the massive
quark does not appear as a dynamic flavor in the EFT below the hard scale ), the entire RG evolution
to sum the logarithms of ¢ is performed with n; massless flavors as in Eq. .

2.1.3 Quark mass effects for g < m < Q)

Next, we consider the hierarchies where the quark mass is parametrically smaller than the hard scale,
m < (). These require a different factorization setup than m ~ @ since fluctuations around the mass-
shell are now parametrically separated from hard fluctuations, which would lead to large unresummed
logarithms inside the hard function H;;(Q,m, ;). In this subsection, we start with the case where
the transverse momentum is much smaller than the mass, ¢r < m < @, while g ~ m < @ and
m < gr < @ are considered in the following subsections.

In a first step the QCD current is matched onto the SCET current with n; + 1 dynamic quark flavors
at the scale p ~ Q. Since m < @ this matching can be performed (at leading order in the expansion
parameter m/Q)) only with massless quarks (i.e. treating the heavy flavor as an additional massless

quark), leading to the hard function with n; + 1 massless flavors, H (Jn D e in Eq. (2.12) with

1
ny = n; + 1, where also the strong coupling is renormalized with n; + 1 flavors.

At this point SCET contains not only the n; massless collinear and soft modes, but also n,-collinear,
np-collinear, and soft mass modes (that could be treated like massless modes in the matching of QCD
onto SCET at the scale u ~ @ > m) with the scaling

2

ng-collinear MM:  pf, |~ (%, Q, m) )
m2
ng-collinear MM: pﬁl,nb ~ (Q, 5, m) )
soft MM:  pk,  ~ (m,m,m), (2.21)

as illustrated in Fig. These mass-shell fluctuations arise here purely from secondary virtual
contributions.

In a second step at the scale p ~ m, the mass modes are integrated out and SCET with n; massless
and one massive flavor is matched onto SCET with n; massless flavors with the usual scaling as in
the massless case in Eq. . Since the soft and collinear mass modes have the same invariant
mass set by the quark mass and are only separated in rapidity, there are rapidity divergences in their
(unrenormalized) collinear and soft contributions. Their renormalization and the resummation of the
associated logarithms can be again handled using the rapidity RG approach in Refs. [40,/41], which
has been explicitly carried out in Ref. |7()]E| In addition, all renormalized parameters like the strong
coupling constant are matched at the mass scale from n; + 1 to n; flavors taking into account that
the massive flavor is removed as a dynamic degree of freedom.

After these steps, the factorization at the low scale ~ g proceeds as in the massless case with all

3Instead, for m > Q the heavy quark can be integrated out around its mass scale and the axial current can be
evolved between m and @ to resum the associated logarithms In(m/Q).

4The matching in Ref. [70] was performed with massive primary quarks yielding the matching functions denoted as
Hpny Hm,n and H,, s there. However, this does not affect the structure of the rapidity logarithms arising from the
secondary mass effects, which are independent of the primary quarks being massive or massless.
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operator matrix elements depending on the n; massless flavors, which yields the factorization theorem

do (ny+1) v v
dgagray ~ 2 M@ He (o, =) He (., 2 ) Hm 1.0)
1, €194

— — — — 14
X /d2pTa d2pr d2st 5((1% - ‘pTa + Py + PTs‘Q) Bz(nl) (pTav La, MU, U.T)
a

ar g m?

G @ﬂ . (2.22)

X Bj(nl) (ﬁTby Lo, My 5[)) S(nl)(ﬁT& H, V) [1 + O(
Here H. and H, denote the mass mode matching functions that arise from the matching at the mass
scale 4 ~ m. Their exact form depends on the choice of the rapidity regulator, only the product
of all three of them is independent of the choice of the regulator. The form given here, with the
matching function for the two different collinear directions being identical and denoted here as H.,
arises when using the symmetric n-regulator. In this case their natural rapidity scales are v ~ wqy,
for the collinear contributions and v ~ m for the soft ones. They can be evaluated in either the (n;)
or (n; + 1) scheme for as. We will give their expressions at O(a?) in Sec. The resummation
of all logarithms of ratios of ¢r, m, and @ is achieved by performing the evolution in y and v of all
functions appearing in Eq. from their natural scales.

In principle, the u evolution can be performed by evolving all functions with their respective number
of quark flavors without switching the flavor scheme, i.e. with n; + 1 flavors for H, n; flavors for B
and S and an additional evolution for the collinear and soft matching functions H, and H,. The
consistency of RG running for the factorization theorems in Egs. and , and Eq.
with n; massless flavors, implies that the u-dependence of the product of the mass mode matching
functions H. and Hj is precisely given by the difference between n; and n; + 1 active quark flavors in
the evolution of the hard function H;;,

v v n n
YH,. (m7 H, ;) + YH,. (m7 H, Jb) + YH, (m7 H, V) = f}/}(‘Il)(Qa ,U,) - 7§{l+1) (Qa /’L) ) (223)

a

where ’ygf ) is defined in Eq. , and vy, and g, are defined analogously. At two loops this
relation can be checked explicitly using the results in Eqs. , and . As a result, the
u evolution for the hard, beam and soft functions can be conveniently implemented as illustrated in
Fig. by carrying out the u evolution with n; active quark flavors below the matching scale t,, ~ m
and with n; + 1 flavors above p,,, providing in this sense a “variable-flavor number scheme” [2}12].
(This effectively corresponds to using operator running for the hard scattering current, which is
renormalized with n; + 1 flavors above the mass scale and with n; flavors below the mass scale.) If,
for example, the global renormalization scale figlobal, to Which all functions are evolved to, is chosen
to be at g7 < fglobal < ™, as in Fig. the hard function is evolved from pg ~ Q to p, ~ m
with n; +1 active flavors, and from i, down to pigiohal With n; active flavors, while the beam and soft
functions are both evolved with n; active flavors from pp ~ g up to pgiopal. In addition there is also
a rapidity evolution (vertical), which is carried out at p,, ~ m, i.e. at the border between the (n;+ 1)
and (n;)-flavor theories (see Ref. |70]), which is governed by the mass-dependent rapidity anomalous
dimensions for Hg and H.,,

Yo, (M, 1) = =273, 1, (M, 1) = In Hy(m, p,v). (2.24)

dlnv

2.1.4 Quark mass effects for g ~ m < @)

If the ¢ scale is of the order of the quark mass, gy ~ m, the massive quark becomes a dynamic
degree of freedom, which contributes to the gy spectrum via real radiation effects. The mass modes
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Figure 2.3: Hlustration of the renormalization group evolution for gr of the hard, beam, soft, and
parton distribution functions in virtuality p (vertical) and rapidity v (horizontal). The anomalous
dimensions for each evolution step involve the displayed number of active quark flavors. The label m
indicates that the corresponding evolution is mass dependent. Here the global renormalization scale
Hglobal, to which all functions are evolved, was chosen to be between the scales @ and gr. Any other
choice of figlohal is possible and does not lead to different results, due to consistency of RG running
of the various functions.

in Eq. now coincide with the usual massless SCET1; modes for the gr measurement in Eq. ,
since they have the same parametrically scaling for ¢y ~ m, as illustrated in Fig. In this case,
there is only a single matching at the hard scale p ~ @ from QCD onto SCET with these common soft
and collinear modes. This hard matching gives again rise to the (mass-independent) hard function

Hi(’.”ﬂ) for n; + 1 massless flavors. The SCET operator matrix elements at the scale u ~ gr, i.e. the
beam and soft functions, now encode the effects of the massive quark. They are now renormalized
with n;+1 quark flavors and contain an explicit dependence on the quark mass. When integrating out
the modes with the virtuality g also the massive quark is integrated out and the collinear matching
functions Z;; between the beam functions and the PDFs thus also contain the effect from changing

from n; + 1 to n; flavors, i.e.

A2 A2
Bi(nl—i_l) (ﬁT,m7$,M, K) = Z Iik(ﬁT,m,.’L',ﬂ, z) ®I f]inl)(xhu’) |:1 +O< QCQDa QQCD>:| .
w / w m a7
ke{q.q,9}
(2.25)
Written out explicitly, the factorization theorem reads
do (n+1) / 2 2 2 2 - - S 2
—_— = H:" d“pred d*prs 6 — |pra s
@Ay~ Z - (Q, p) pra d°pre d°prs (a7 — |Pra + Pro + Prs|”)
1,7€{9,3,Q,Q}
A m v (1)
X |: Z Izk(FTaama Lay Uy w@) ®Z‘ fk; ($a,,u):|
ke{q.q,9}
= v ()
X |: Z I_]k <pr,m,$b,/,L, Wb> ®Z‘ fk (xbau):|
ke{q.q,9}
2 A2 A2
St 14 o2, m Aacn Aacn 2.26
X (pT7m>,u’V) + Q)QQ? m2 ) q% ) ) ( )

where 4,j = @Q,Q denotes the massive quark flavor in the sum over flavors. We stress that the
renormalization of the bare soft and beam function with n; massless and one massive flavor is carried
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out in the n; + 1 flavor scheme for ag, while the strong coupling in the PDFs (which are defined in the
lower theory with n; massless flavors) is renormalized with n; flavors. The renormalized soft function
and beam function coefficients Z;; can then be expressed in terms of either the (n; + 1) or the (n;)
flavor scheme for a; without introducing large logarithms.

In this hierarchy quark mass effects enter in Eq. at O(a?) in two ways: There are secondary
radiation effects appearing in the two-loop soft function S® and the flavor-diagonal beam function
matching coefficients I(%) . In addition, there are primary mass effects arising from a massive-quark
initiated hard process. For Z/v* production, this requires the production of the massive quarks via
gluon splitting in both collinear sectors, which manifests itself in two one-loop collinear matching
coefficients I( ) % I(l) For W-boson production, primary charm quark effects enter already at O(a)

( )

from a single IQ g Wlth @ = c. We have for the first time calculated these previoulsy unkown contri-
butions from massive quarks to the TMD beam and soft functions, some details on the calculations
can be found in appendix E The primary massive quark beam function matching coefficient Zg, at
O(as) and the secondary massive quark corrections to Z,, at O(a2CrTr) are given in Sec. the
secondary massive quark corrections to S in Sec.

The resummation of logarithms In(gr/Q) and In(m/Q) is again obtained by performing the RG
evolution for Eq. , which is illustrated in Fig. While the evolution of the PDF's proceeds
in n; flavors, the u-evolution for the hard, beam, and soft functions above the scale m is now carried
out purely with n; + 1 flavors, and with n; flavors below the scale m. If the global renormalization
scale is chosen to be above the mass scale as in Fig. the beam, soft and hard functions are
always evolved with n; 4+ 1 active flavors. Consistency of RG running for Eq. implies that the
matching coefficients Z;;, satisfy the RG equality

d N v 1 . v N v
”@Izk (pT> m, z, [, ;) |:’Ygll+ ) X Izk:| (pT7 m,z, W, ;) - Z |:IZ_] &z 7}7;[1} (pT7 m, z, W, a) .
J€9,9,9
(2.27)

(m+1) (1)

Here v and V.jk are the massless p-anomalous dimensions of the beam function and the PDF
as in Eq -, with n; + 1 and n; massless flavors, respectively.

Since the renormalization of the beam functions does not involve parton mixing, the one-loop primary
mass contributions to IS g) cannot give rise to rapidity divergences and associated logarithms. On the
other hand, the secondary mass effects change the rapidity evolution. In particular, the beam and

soft v-anomalous dimensions become mass dependent’}

i (ny+1) v 2 (ny+1) (ny+1) v
v B (pT,m s ) Ak, (Br — kr,m, p) B} (k‘T,m u,w),

d n I
v ST ([, m ) = / Pl E B = From, ) SO (Rpompv) . (2:28)

The mass dependent v-anomalous dimensions at O(a2CrTr) are given in Egs. and (C.31) .
We discuss the implications of the mass dependence for the rapidity evolution in Sec

2.1.5 Quark mass effects for m < gr < ()

If gr is much larger than the mass, the fluctuations around the mass-shell take place at a much
lower scale than the jet resolution measurement. There are no relevant soft fluctuations scaling like
Phns ~ (m, m,m), since the measurement of gz is IR safe and is thus insensitive to the scale m < gr.
This means that the heavy flavor contributes in the soft sector just like another massless flavor, i.e.

5The fact that quark masses can affect the evolution was already pointed out in Ref. 134].
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the soft modes are described by a soft function with n; + 1 massless flavors at the scale p ~ gr.
Due to the collinear sensitivity of the initial-state radiation there are still relevant collinear mass
modes scaling like ph, n, ~ (m?/Q,Q, m) and ph, n, ~ (Q,m?/Q,m), as illustrated in Fig. Thus
there are collinear modes in SCET at different invariant mass scales, which can be disentangled by
a multistage matching. First, the beam functions are matched onto the PDFs with n; + 1 massless
flavors, i.e. the heavy flavor treated as massless at tha scale up ~ qr > m. This gives just the
matching coefficients Z;; for n; + 1 massless flavors,

B e )= 5 a5 o aman 0]
(2.29)

In a second step, at the mass scale u,, ~ m, the PDFs including the massive quark effects are matched
onto PDF's with n; massless quarks, and with a; in the (n;) flavor scheme,

A2
FP @ mp) = S Male,mp) @ £ (2, )[1 +0o( QOD)] - (2.30)

m2
ke{q,3,9}

The PDF matching functions M, can be expressed in either the (n;) or the (n; + 1) flavor scheme
for a, the results for Mz at O(a,) and O(a2CpTr) are given in Sec.

In total, the factorization theorem reads

do

—_— = it /dz - A2pgy A2prs 6(02 — e + B 7|2
42407 dY Z g (@) pra A°pre d°p1s 6(97 — |Pra + Pro + Prs|”)

i,7€{9,0,Q,Q}
(mi+1 v )
X Z Z I (pTa,l“a,Ma Qg Mkl(l‘a,m, /«L) Qg fl (a:a,,u)

ke{q,3,Q,Q.9} 1€{a,q,9}

X [ Z Z Inl +1) <pr,be>M7w ) Rz My (xp, m, 1) @ fl (wb,u)]

ke{q,4,Q,Q.9} 1€{a:0.9}

2 A2
x ST (g, p, )[1+O(g,?2, SSD)} (2.31)
T

Asin Sec. massive quark corrections can arise at O(a?) either via primary mass effects involving
the product Of two one-loop PDF matching corrections Mé?; (for Z/~*) generating a massive quark-
antiquark pair that initiates the hard interaction, or via secondary mass effects involving one two-loop
contribution ./\/1(2) Note that also the running of the light quark and gluon PDF's above u,, generates
an effective massive quark PDF via flavor mixing, i.e. in the evolution factors U](c lH)(,u B, lm), which
for large hierarchies m < gp can give O(1) contributions.

The evolution of the hard, beam, and soft functions can be performed purely with n; + 1 massless
flavors as long as the renormalization scale is above m, while the PDF's are evolved with n; flavor
below t,;, ~ m and with n; + 1 flavors above p,, ~ m, see Fig. as usual in any variable-flavor
number scheme. The p,, dependence is canceled order-by-order by the matching factors M;;, which
satisfy the consistency relation

di Mzk(ma 2y /Lm) = Z |: J(tnll]—H) &z M]k:| (m, 2y ,“m) - Z |:Mz] Xz 750?12 (ma Zy Nm) .
7€{9,3.Q.Q.9} i€{a.a.9}
(2.32)

The absence of soft mass modes in this regime implies there is no rapidity evolution at the mass
scale (and no associated rapidity divergences), while the rapidity evolution between beam and soft
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functions is the same as for n; + 1 massless flavors. In this regime, the mass dependence is thus fully
contained in the collinear sectors and is treated as in standard variable-flavor number schemes for
PDFs [4-10].

2.1.6 Relations between hierarchies

After having discussed all hierarchies separately, we now show how the ingredients in each of the
associated factorization theorems are related to each other. These relation may be used to combine
mass-dependent power corrections that are kept in one hierarchy but are dropped in another with
the resummation of logarithms to obtain a systematic inclusion of the mass effects smoothly over the
whole ¢p spectrum. A straightforward way of doing that is presented in Sec. for the example
of DIS in the endpoint region (see also chapter , but it can be done for the factorization theorems
for exclusive Drell-Yan in an analogous way. An alternative approach of constructing variable flavor
number schemes, where these corrections are never dropped but included directly in all the structures
in the factorization theorems, based on the “universal factorization” approach [2/12,[71] where different
renormalization schemes for the massive quark contributions to the EFT operators above and below
the mass scale are applied, will be presented in chapter[d, We stress that different specific ways of how
to incorporate the various power corrections are formally equivalent as long as the correct fixed-order
expansion and the correct resummation is reproduced in each limit. Any differences then amount to
resummation effects at the power-suppressed level and are thus beyond the formal (leading-power)
resummation accuracy. A particular scheme (called “S-ACOT”) to merge the m < ¢qr and gpr ~ m
regimes was discussed in Ref. [45] for the primary massive quark corrections. In practice, for the
numerical study of b-quark mass effects at low ¢ < my < @ the effective b-quark PDF at the scale
qr is still quite small, so that one may effectively count f,(up) ~ O(as), where pp is the scale where
the matching between the PDFs and the beam functions takes place. In particular, this counting
facilitates the seamless combination with the nonsingular corrections for m ~ ¢pr encoded in the
beam function matching coefficients in Eq. (2.26). This was discussed in Ref. [10] in the context of
the inclusive bbH production cross section, and the analogous discussion applies here as well.

In this section we will discuss the massive power corrections, that arise in the MMF approach of
deriving the variable flavor number schemes when completely integrating out the heavy flavor from
the theory at its mass scale, and their numerical impact. The relations between the modes and their
contributions between the different regimes are summarized in Fig.

We will first set up the notation for the coeflicients in the perturbation series that we will use for the
rest of this part of the thesis. For any generic function F' we define the coefficients F(™) at a given
order in perturbation theory as

o (ng) n
F— <as(,u)> Jal) (2.33)
=0

where aﬁ”f ) is the strong coupling renormalized with n; active flavors. When F' does not receive

mass dependent contributions, i.e. there is no heavy flavor contributing (when the heavy flavor is
decoupled for p < m) or the heavy flavor is treated as massless (when m < p), this is equal to the
total number of active flavors contributing in that function, i.e. ny = n; for y < m and ny =n; +1
for m < p. For a matching function at the scale y ~ m, when the full mass dependence is kept in
F(m), the expansion in Eq can in principle be done in either the (n;) or the (n; + 1) flavor
scheme for a. For definiteness we will use the convention that for such a case we will always use the
(n; + 1) flavor scheme when giving explicit results at a given order in perturbation theory, such that

(n+1) gﬂl)

ng=mn;+1in Eq (2.33)), i.e. doing an expansion in o . The expansion in terms of as ~’ can be
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Figure 2.4: Relevant modes for the gr spectrum with gr < @ for different hierarchies between the
quark mass m and the scales ¢y and Q. The directions of the arrows indicate how a particular mode
contribution is separated when the expansion of another hierarchy is used.

easily obtained from this by using the matching relation for o

P 4) = )1+ o™ )T S(ra(E5) =) o)

A 3 m? €
U (1) Te 4
= o™ (u) [1 - % 3 Lm +0(e}) + (9(6)] , (2.34)

where here and in the following we abbreviate
Ly =In—. 2.35
( )

We write the O(a?) coefficients F(?) as

F® = TpmF3H 4+
FO(m) = Tpm F®D + TeFCM (m) + .., (2.36)

for the case where all quarks are treated as massless and the case with mass dependent corrections,
respectively, such that F(2") contains all mass dependent two-loop corrections and F(2! the associ-
ated contributions from massless flavors. The ellipsis stands for all other color structures, which we
omit here because they do not get contributions from massive quarks. We are considering primary
massive quark effects only to O(«;), which means that all mass dependent corrections at two-loop are
from secondary massive quarks, which are of the form O(a?TrCr). These superscripts introduced
above should not be confused with the superscripts of the form F(+1) or F(™) which indicate how
many flavors contribute to F. That means that for example F(3) stands only for a coefficient in the
expansion of F' in the strong coupling, in this case the coefficient at order O(a?Tx), while F () jg
the full function, the superscript (n;) only telling us that it depends on n; massless flavors.

The mass mode matching functions H, and Hg appearing in the hierarchy ¢r < m < @ in Eq. (2.22))
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in Sec. are related to the hard function for ¢ < m ~ @) in Sec. as followsﬁ

Qo) "= B Q) He (e ) e L) oo 1+ 0() | (2

In the product of functions on the right-hand side, which appear in Eq. , the logarithms In(m/Q)
can be resummed to all orders. One can construct a smooth description of the cross section for
gr < m that resums these logarithms and also includes the associated mass-dependent O(m?/Q?)
power corrections by simply adding the power corrections to the hard function H (”l+1)(Q, w) at the

scale p ~ Q.
The fixed-order contributions to the operator matrix elements appearing in the hierarchy gr < m
in are already encoded in the ones for ¢r ~ m in Sec. The mass-dependent beam function

matching coefficients for gr ~ m are related to those for ¢gr < m and the collinear mass-mode
function H. by

2

%’;ﬂ . (2.38)

Similarly, the mass-dependent soft function for gy ~ m is related to the one for ¢y < m and the soft
mass-mode function Hg by

v 1%
Ilk (pTax m, fhy, — ) pT<<m HC<m7 Ky ;) Iz(:l) (ﬁT, T, [, a) |:1 =+ O(

2

H,(m, 1, v) S (5, 1, v) [1 + O(ZE)] . (2.39)

S(nl+1) (pT,m [,V )pT§<m

In the products on the right-hand side, which appear in Eq. , logarithms In(gp/m) can be
resummed to all orders in the limit gr < m. One can include the associated O(g%/m?) power
corrections that are important for gy ~ m, by obtaining them from the fixed-order expansions of
Egs. and and adding them to the (n;)-flavor beam function coefficients and soft function
at the scale u ~ qr.

Finally, the fixed-order contributions for the operator matrix elements appearing in the hierarchy
m < qr are also encoded already in the corresponding ones for gy ~ m. Hence, the mass-dependent
beam function matching coefficients are related to those for m < ¢r and the PDF matching functions
by

m2
T (pT,m oY ) m<pr 2 : Im-‘rl (pT,:c 7 ) Qg M (m, z, 1) [1 + O(pzﬂ . (2.40)
T
J=a,4,9

Similarly, the mass-dependent and massless soft function are related by

2
ST (5r o,y v) TET S (5, )[1 + O(%)} ’ (2.41)
Pr

since there are no relevant soft IR fluctuations below the mass scale. In the functions on the right-
hand sides, which appear in Eq. , logarithms In(m/qr) can be resummed to all orders in the
limit m < g7. This can be combined with the associated O(m?/q2.) power corrections relevant for
qr ~ m, by obtaining them from the fixed-order expansions of Egs. and and adding
them to the (n; + 1)-flavor beam function matching coefficients and soft function at the scale p ~ gr.

In the following we will verify the relations between the different hierarchies discussed above for the
beam and soft functions up to O(a?). We also scrutinize the numerical impact of the power corrections

5Here and in the following it is implied that at a specific fixed order the functions on both sides have to be expanded
in the same renormalization scheme for a,. Since HZ(]” ) g generically written with n; + 1 (massless) flavors, the

(n1 4 1)-flavor scheme is most convenient here and also to extract the O(m?/Q?) power corrections on the right-hand
side of Eq. (2.37) from its fixed-order expansion.
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Figure 2.5: Massive b-quark beam function (left panel) and its cumulant (right panel) together with
its m — 0 limit. The input parameters are described in the text.

for these functions. We focus in particular on the O(m?/ q%) corrections for the gr spectrum for b
quarks, which are contained in the factorization theorem Eq. for gr ~ m but not in the massless
limit for m < ¢r in Eq. , as these are phenomenologically important hierarchies for b-quark
mass effects at the LHC.

For the numerical results we use the MMHT2014 NNLO PDFs [72] and evaluate the contributions
for p = my = 4.8 GeV, w = my, and E.,, = 13 TeV. The main qualitative features of the results do
not depend on these specific input parameters. We also do not explicitly specify the renormalization
scheme for the quark mass, since all differences are beyond the order we are working here.

We first consider the primary mass effects at one loop, which are encoded in the TMD beam function

matching coefficient IS ; in Eq. (C.13). In the limit pr < m the primary massive quarks decouple,

which is manifest in the result,
2
1 <m p
To) (Fr,m, ) "= O(#) : (2.42)

On the other hand, in the opposite limit m < pr it becomes
1), 5
Ié; (pT7 m, Z)

" T 01— 20(2) {2Py(2) o, 1) + 62 (5r) [ 2Py () Lo + 4’2(1‘4*0(7;;)}

1) (7 @) (e g (D) m?
=14y (01, 2, ) + 67 (Fr) Mg, (m, 2, 1) + O(pT> , (2.43)

confirming that the relation in Eq. (| is satisfied at O(as). The massless one loop matching

coefficient ng) can be found in Eq and the PDF matching coefficient /\/l in Eq. (C.24).
To account for the correct dlstrlbutlve structure in pp that emerges in the massless limit, one can
integrate the expressions with massive quarks and identify the distributions at the cumulant level.

In Fig. we show the result for the massive quark beam function B(l) = I(l) ®z fq at O(ay) as

function of pr using the full massive matching coefficient 7! ; (solid orange) and its small mass limit
in Eq. - dashed blue). In the right panel we show the corresponding results for the cumulant

Bo(pf',m) = d*pr Bg(pr,m), (2.44)
|pT|<pcut

which also includes the §(2) (fr) constant contribution. We can see that in both cases the small mass

limit is correctly approached for p(TCUt) > my, while for pgim) < my the primary mass effects decouple
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Figure 2.6: Convolution of two massive b-quark beam functions together with the result in the m — 0
limit differential in the total pr = |pr| (left panel) and the corresponding cumulant (right panel).
This is proportional to the primary massive quark correction to the Z-boson spectrum at O(a?2).

with the result going to zero. The corrections to the small mass limit become sizeable for pp ~ my
and vanish quite fast for larger pr.

In Fig. we show the result for the convolution between two massive quark beam functions,
1 D, . 1),
(B9 @ BY)Grom) = [ B o — 5m) B . m). (2.45)

which enters the result for Z-boson production at O(a?T2) and NNLL/. The analytic expression for
the convolution between the two one-loop mass-dependent coefficients is given in Eq. . We see
that now the corrections to the small-mass limit remain nonnegligible even for larger values of pp.
This is due to the fact that the pp-convolution generates a logarithmic dependence in the spectrum,
such that the power corrections of O(m? /p2) become enhanced by logarithms In(p3./m?). This can
be seen directly by convoluting two one-loop primary massive beam function matching coefficients

Ig g) given in Eq. (C.13), and expanding for p% > m?.

Next, we consider the secondary massive quark corrections at O(a?CrTr). The result for the sec-
ondary massive quark contributions to the massless quark TMD beam function coefficient Ig’h) (pr,m, 2)
is given in Eq. . In the decoupling limit pr < m all its terms without distributions in pr give
(’)(pQT /m?) power-suppressed contributions. Combining its remaining distributional terms with the
contributions arising from changing the a; scheme from n;+1 (which is our default scheme for writing

Iég’h)) to n; flavors yields

TFI(2 h) <pT,m 2, 1, V) - ngLmI,gé) (pT,z Ly — ) prsm 8 (pr)6(1 — 2) HP <m,u, g) + (9<p%;>7

confirming the relation in Eq. (2.38) at this order. The massless one-loop coefficient I(g;) and the

collinear mass-mode function HC(Q) can be found in Egs. (B.5)) and (C.10)), respectively. On the other
hand, in the limit m < pr we get

2
m o m

TFI(2 oh) (pT,m 2, [y ) <pr Tr I(Q 2 <pTaZ s ) +5(2)(pT) Mg)(m,z,,u) + O(pT) , (247)
T

consistent with the fact that all infrared mass dependence is given by the PDF matching, as required
by the relation in Eq - The results for the massless coefficient and the PDF matching coefficient

are given in egs. and ( , respectively.
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Figure 2.7: Secondary massive quark corrections to Compton-type gluon initiated Drell-Yan.

There are also secondary massive quark corrections at O(agT]%) to the Compton-type gluon initiated
process shown in Fig. encoded in the coefficient I(gg,h) (pr,m,z). Since they arise only from
virtual corrections to an external gluon line, the limiting behavior for this coefficient is trivial, since
it vanishes identically in the (n;)-flavor scheme for ag, and in the (n; + 1)-flavor scheme for s it is
exactly

Tp ZM (Fr,m, 2, 1) = IS (Fr, 2, 1) @2 M) (m, 2, ). (2.48)

The contribution from secondary massive quarks to the TMD soft function is given in Eq. . In
the limit py < m all terms without distributions in r become O(p%/m?) power suppressed, just as
for the beam function. Combining its remaining distributional terms with the contributions arising
from changing the scheme of the strong coupling from n; + 1 to n; flavors yields

4 2
TFS(th) (ﬁT7 m, W, V) - gTFLmS(l) (ﬁT7 M, V) pTSm 5(2) (ﬁT) H§2) (ma , l/) +0 (%) ) (249)
confirming the relation in Eq. (2.39)). The massless one-loop TMD soft function S (M and the softmass-

mode function H? are given in Egs. (B.13)) and (C.8]), respectively. Since the soft function is free of
IR singularities, the limit m < pr just yields the massless soft function in Eq. (B.14]),

2

. m -, m
S (5 m, pu,v) T S@D (5, v + 0(;2) : (2.50)

T

We now discuss the numerical impact of the O(m?/p2) terms from secondary mass effects. Since the

individual results for the beam and soft functions depend on the specific regularization scheme, we
consider the combinationl’]

L N . v _)
Bq(pTa m,w, ‘T?/J’) = /d2p’/T Bq (pT - pjlﬂa m,x, u, ;) S(p’}ama My 1/) ) (251)

which is independent of v. Here the root is defined as

/d2p’T \/S(ﬁT — Dy, 1, V) \/S(ﬁj’w, m, p,v) = S(Pr,m, 1, v). (2.52)

The O(a?2CrTr) corrections explicitly depend on p and the flavor-number scheme, but the difference
between the full result and the small mass limits given in Eqgs. (2.47)) and (2.50) do not. In Fig.

"This combination is sometimes used as definition of a TMD PDF. Bq contains large rapidity logarithms, which are
resummed once the soft and beam functions are evaluated at their natural rapidity scales and evolved to a common
scale v. For demonstrating the size of the power corrections here, we evaluate it at fixed order.
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Figure 2.8: Secondary massive bottom quark corrections to the u-quark beam function (left panel)
and its cumulant (right panel) at O(a?CrTr) (including the square-root of the soft function here)
for u = my as a function of gr.

we show the result for the O(a2CrTr) corrections (with o = agmﬂ)) to the u-quark beam function,

both differential in py and the corresponding cumulant. We see that the full mass dependent results
correctly reproduce the small and large mass limits. The difference between the full mass dependent
results and the massless case is much larger for secondary massive quarks in Fig. than for the
primary massive effects in Fig. In particular, they are still of O(100%) for pr_,fut) ~ 10 GeV.
This clearly indicates that for secondary radiation involving two massive quarks in the final state the
corrections are rather of O(4m?/p3.), as one might expect.

2.1.7 Rapidity evolution

Here, we discuss the solutions of the rapidity RGEs in Eq. , or equivalently Eqs. (2.92) and
, and in particular the rapidity evolution for the mass-dependent soft function in Eq.
for gr ~ m, where the massive quark corrections give rise to a different running than for massless
flavors. Our primary aim here is to highlight the different features with respect to the massless case,
while leaving the practical implementation for future work.

The rapidity evolution for the mass-mode matching functions Hs and H. according to Eq. (2.24])
has been discussed in Ref. [70]. The evolution for the beam thrust beam function and collinear-soft

function that will be discussed in Sec is completely analogous (see Eqs. (2.92)) and (2.100))). For
example, the v-evolved soft matching function H, is given by

Hs(m, p,v) =V (m,p,v,v0) Hs(m, p,1p), (2.53)

14
V(ma%% VO) = €xXp ’YV,Hs(mau) ln;O )

where v, g, (m, i) is the v-anomalous dimension of H defined in Eq. and is given at O(a?)
in Eq. . To satisfy path independence in the u-v-space, potentially large logarithms of p need
to be resummed in the anomalous dimension ~, g, (m, p), which can be done by solving its RGE in
virtuality [41]

d n n n n
/’L@ Yv,Hs (mv M) =—4 (Fguls—gl)[ag v+l) (/.L)] - Fgulsza[ag l)(:u)]) ) (254)

which leads to the resummed form

Yot (s 1) = 407 (o (m), ) — 4 (o (m), 1) + v, 11, (s pro(m)) (2.55)
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where the evolution function nr is defined by
n H dﬂl n n
e (o, ) = / " T a8 (). (2.56)
Ho

With the canonical scale choice
po(m) = m, (2.57)
all logarithmic terms in ~, g, (m, po(m)) are minimized.

The solution of the rapidity RGE for the soft function is more involved due to its two-dimensional con-
volution structure on pr. The formal solution of the rapidity RGE for massless quarks in Eq. is
most conveniently found in Fourier space using the two-dimensional Fourier transform as in Eq. (2.19)),
where the rapidity RGE becomes multiplicative

d ; N -
v S0 (b r,v) = 3,8 (b, 1) S (b, i) (2.58)
where the impact parameter b = \5T| is Fourier conjugate variable of the transverse momentum.

The consistency (path independence) between p and v evolution requires the rapidity anomalous
dimension in Fourier space to satisfy the RGE in virtuality

d ~n n n
. 508 (b,p) = —4TGR ) (). (2.59)
Its solution is given by
509 0, ) = — a0 o (), 1) + 302 (b o (1)) (2.60)

This equation can be used to chose an appropriate scale po(b) where there are no large logarithms
in the second term on the RHS, and evolve the rapidity anomalous dimension to the scale p where
the rapidity resummation is carried out. The canonical scale choice to eliminate the logarithms of
In(ps b€’ /2) in the second term on the RHS of Eq. is

1 267’YE
' (6) = = — . (2.61)

The superscript (1) should indicate that this is the scale choice for light (massless) quarks. Then the
v evolution of the soft function in Fourier space at any given scale u is given by

50 1) = S0y xp 30 0.0 2. (2.62)
As is well known, the rapidity evolution kernel becomes intrinsically nonperturbative at 1/b <
Aqcp [32(34]. This nonperturbative sensitivity appears through the resummed rapidity anoma-
lous dimension, which with the canonical scale choice in Eq. gets evaluated at ag(1/b). It is
important to note that this is not an artefact of performing the evolution in Fourier space. Rather
this is a physical effect, which also happens when the v evolution is consistently performed in mo-
mentum space. As shown in Ref. [65], in this case the appropriate resummed result for v, s(pr, 1)
explicitly depends on a,(pr), which means it becomes nonperturbative for pr < Aqcp, introducing
nonperturbative effects in the convolution between the soft function an the rapidity evolution kernel
even when gr > Aqcp.

For the v anomalous dimension including secondary massive quark corrections in the regime gy ~ m
the p dependence of the full rapidity anomalous dimension is the same as for n; + 1 massless quarks,

i.e. Eq. (2.59)) with ny = n; 4 1. This implies that

780, m, ) = 4 (o (b, m), ) — 4D (o (0, m), ) + 3% (b, m, 1o (b,m)), (2.63)
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where 775}2 denotes only the contributions from the massive flavor to the full anomalous dimension.

The explicit mass dependence here arises in the boundary contribution, which depends on both b and
m. From the relations in Egs. (2.41) and (2.39)) we can directly infer the limiting behavior to the
anomalous dimension,

Fus(bym, ) = 305D (b, 1) + O(m2?),

" _ &) 1
Yu,5(b,ms ) =7, (b 1) + ,m, (M, ) + O (W> : (2.64)

This means that the massive quark corrections :ylshg are the same as for a massless flavor in the limit
m < 1/b and are the same as the rapidity anomalous dimension of the soft mass mode matching
function Hy in the limit 1/b < m, provided one uses the (n; + 1) and (n;)-flavor scheme for as,
respectively. To eliminate the logarithms inside ’ygg, the canonical scale choice pg(b, m) should
behave like the massless case for m < 1/b and like the choice for the mass-mode matching functions

for m > 1/b,

2¢E
g (b, m) ~ i (6) = = for 1/b— oo,
1S (b, m) ~m for 1/b—0. (2.65)

Since ,u(()h)(b, m) freezes out naturally at the perturbative mass scale for 1/b — 0, the nonperturbative

sensitivity in the v evolution gets regulated by the quark mass for the massive quark contributions.

We first illustrate this behavior in a simple one-loop toy example: We consider the radiation of
a massive gluon (with mass M) having the same couplings as a (massless) gluon in QCD, which
exhibits the main features of the full results for secondary massive quarks. The associated corrections
are obtained in the calculations of Sec. as intermediate results for the O(a?CrTr) massive
contributions. In b-space the one-loop rapidity anomalous dimensions for massless and massive gluons
are given by

:Yl(,,l;(b,/i) =—Cp8Ly,
5000, M, ) = Cr [SLM + 16K0(bM)] , (2.66)

where K denotes the modified Bessel function of the second kind and

b2ﬂ2e2ny M2
n——

T Lu=hoo. (2.67)

Ly,
2

The mass-dependent result has the limiting behavior

5020, M, 1) = —Cp 8Ly + O(M??)

736, M, 1) = Cp 8Ly + O(ﬁ) , (2.68)
in close analogy to Eq. . A natural choice to eliminate any large terms in Eq. in both

limits is
M(()h)(b, M) = M Ko(®M) (2.69)

for which ’yﬁ%(b, M, ,u(()h) (b, M)) just vanishes. The behavior of this choice as a function of b compared
to the massless result is shown in Fig.
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Figure 2.9: The canonical scales ,uéh) (b, M) for the massive case (red, solid) and ugl) (b) = po(b, M =0)

for the massless case (blue, dashed) with M =5 GeV.

For the secondary massive quark corrections at O(a?) the Fourier transform of Eq. (C.31) reads
(expanded in terms of ol as in Eq. (2.33)

SR g —cpd 32 16, 160, 448
’YMS (7mau) F{ 3 bLm 3 m 9 m o7
8
N \?{% [2 Gig(o,%,o ‘ m2b2> t Gﬁ’g(oé,l ‘ m2b2)] } (2.70)

where G denotes a Meijer G function. This result has the limiting behavior

5 16 160 448
'715,2:73}1) (b7 m, /-L) =CFf <3Lg + 7Lb + 27) + O(m2b2) ’

52 (b, m, 1) — %Lmﬁ};(b, 1) = C <—136L72n - %Lm - 4;;) + o(ﬁ) , (2.71)
in the small and large mass limit, respectively. Hence, the correct massless limit is recovered (Fourier
transform of the last line of Eq. ), while in the large-mass limit one obtains the v-anomalous
dimension of H in Eq. . Note that in Eq. one needs to perform a change for the strong
coupling between the n; + 1 and n; flavor schemes to obtain both limits correctly. To minimize the
logarithms for any regime one should thus adopt a canonical scale choice that satisfies Eq. , as

for example in Eq. (2.69)).

2.1.8 Outlook: Phenomenological impact for Drell-Yan

Our results can be applied to properly take into account bottom quark mass effects for the Drell-Yan
qr spectrum at NNLL'. While a full resummation analysis is beyond the scope of this work, we can
estimate the potential size of the quark-mass effects by looking at the fixed-order gy spectrum. The
full results for the mass dependent singular contributions to the g spectrum at fixed order at (’)(ag)
for secondary massive quarks and O(as) x O(as) for primary massive quarks, that can be inferred
from our calculations of the mass effects to the beam and soft functions, are given in Sec.

In Fig. we show separately the contributions from primary and secondary massive quarks to
the singular cross section at O(a?2), normalized to the O(ay) spectrum do() including all flavors
(treating the charm as a massless flavor). We utilize the MMHT2014 NNLO PDF's [72] and evaluate
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Figure 2.10: Primary (left panel) and secondary (right panel) massive bottom quark contributions
for the Z-boson qr spectrum at fixed O(a?T2) and O(a2CpTr), respectively. The results are given
relative to the full O(a;) result including all flavors.

the contributions for = mp = 4.8 GeV, Q@ = myz, Y =0, and E., = 13 TeV. As can be seen, the
relative contribution of the (primary) bb-initiated channel in the left panel of Fig. m grows with
larger gr, while the impact of the secondary contributions in the right panel including the full mass
dependence is at the sub-percent level throughout the spectrum. As expected, the difference between
the full mass dependent results and the massless limit (called mass-nonsingular in the plot) are very
small for my < qr, but can reach the order of percent for gr ~ my, which roughly corresponds to the
peak region of the distribution where the cross section is largest.

The same can also be seen in Fig. [2.11] where we show the mass-nonsingular corrections at fixed
order (as difference between full mass dependence and massless limit) for primary and secondary
contributions as well as their sum. They are shown for ;1 = my in the left panel and for y = gp in the
right panel. Comparing the two plots we see that these corrections are indeed only weakly dependent
on the choice of p (for gr 2 2 GeV). At gr ~ 5 GeV, where the peak of the Z-boson gp-spectrum is
located, the bottom quark mass can have a relevant effect for high precision prediction at the order
of percent. Below the peak of the distribution the fixed-order result is of course not expected to
give a reliable quantitative result, and furthermore nonperturbative effects become important in this
regime. Nevertheless, we expect the qualitative features like the sign and order of magnitude of the
mass effects to provide an indication for the behavior of the full resummed result.

For W production sizable corrections from bottom quark effects arise only through secondary con-
tributions (due to the strong CKM suppression of the primary contributions), which have a similar
impact as for Z-production. On the other hand, charm-initiated production plays an important role
and enters already at O(«). Estimating the nonsingular mass corrections for g7 ~ m. is more subtle,
since higher-order corrections in the strong coupling and nonperturbative effects are likely to domi-
nate the effect from the known beam function at O(a;) at these low scales. Thus, we do not attempt
to determine their characteristic size here and leave this to future work. An analysis based on the
leading-order matrix element and its potential impact on the determination of my, can be found in
Ref. [46].
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Figure 2.11: Different types of mass nonsingular corrections for Z-boson production at p = my (left
panel) and p = g7 (right panel).

2.2 Variable flavor number scheme for beam thrust in Drell-Yan

As a second observable that restricts the final state in a different way and therefore leads to different
structures of the resulting factorization theorems, we consider beam thrustﬁ [13], using the definition
in the hadronic center of mass frame as in Ref. [44]

T= Zmin{na-pi,nb-pi} = Ze"y”\/ |PLil? + mf ) (2.72)
(A (A

Here, p; are all hadronic final-state momenta (i.e. excluding the color-singlet final state), nib =(1,%£2)
are lightlike vectors along the beam axes, p’| ; and y; the transverse momentum with respect to the
beam axis and the rapidity of the hadronic final state particles, and m; their masses. This definition
of beam thrust, with all momenta and rapidities defined in the hadronic center of mass frame, is
often referred to as “hadronic beam thrust”. We will also briefly discuss the factorization theorems
for “partonic beam thrust” in Sec. [2.2.6]

The exclusive regime we are interested in corresponds to 7 < Qe ¥l where Q = \/qu is the invariant
mass and Y the rapidity of the color-singlet state produced in th hard interaction. We always assume
Aqcp < T allowing for a perturbative description of the physics at this kinematic scale. The
factorization and resummation properties of this observable are well known in the massless case, see

e.g. Refs [13}43]44].

2.2.1 Factorization for massless quarks

For the measurement of beam thrust with 7 < Qe Yl the relevant EFT modes are ng-collinear,
np—collinear and usoft modes with the scaling

ng-collinear:  ph ~ (T, wq, VwdT),
np-collinear:  ph, ~ (wp, T, v/ wpT),
usoft: ph, ~(T,T,T), (2.73)

with w,p = Qe™ as in Eq. (2.8). The scaling of the larger of the transverse momentum components
of the collinear modes sets the scaling of the transverse momentum of the dilepton pair

g7 ~ QT (2.74)

8Sometimes beam thrust is defined with an additional factor of 1/Q, i.e. 75 = T/Q.
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which implies that the condition 7 < Qe Y| ensures that all contributions that are leading in the
SCET power counting also respect the scaling gr < @, that was assumed to perform the expansion

in Eq. (27).

The usoft and collinear modes are now separated in invariant mass, p2, < pia . which is the character-
istic feature of a SCET] theory. In this case, there are no rapidity logarithms and the renormalization
and evolution is solely in invariant mass. The resulting factorization formula for massless quarks
reads [13]

Z H(nj )/dtadthi(nf)(ta,{L'a“U,) B‘§nf)(tbaxb7:u’)
i.7€{a,q}

X s(nf)(T_ ta _ B ) [1 +0(Telyl)] , (2.75)

dQ? dY a7~

Wq wb Q

with wgp and z,p as in Eq. and Y the rapidity of color-singlet state. This as well as the
expressions including mass effects in the subsequent subsections are valid for the primary hard scat-
tering, and do not account for spectator forward (multiparton) scattering effects, since the Glauber
Lagrangian of Ref. |73] has been neglected. (There are also corrections from perturbative Glauber
effects starting at O(a?) [74}/75], which are well beyond the order we are interested in, but can be
calculated and included using the Glauber operator framework of Ref. [73].) This is sufficient for
our purposes for discussing the mass effects in a prototypical SCET scenario. Our results are also
directly relevant to include massive quark effects in the Geneva Monte-Carlo program [76/77], which
employs 7T as the jet resolution variable for the primary interaction and where multiparton effects are
included [78] via the combination with Pythia8 and its MPI model [79-81].

In contrast to the factorization theorems for the ¢r spectrum discussed in Sec. 2.1} where there
was always only one beam scale up ~ gr independent of the rapidity of the color-singlet state,
the factorization theorem in Eq. introduces two separate beam scales up,, = \/wep T, that
coincide only in the case w, ~ wp ~ Q, i.e. when €¥ ~ 1. It is valid as long as both beam scales
are clearly separated from the hard scale, i.e. pp,, < (. This implies that TelY!l « Q. This means
that in the case of a large rapidity of the color-singlet state, i.e. when the leptonic center of mass
frame is strongly boosted with respect to the hadronic center of mass frame, power corrections to the
factorization theorem are increasing. The resulting separation of the two beam scales when e/¥'! > 1
does not change the structure and the resummation properties of the factorization theorem in the
massless case, as long as both are still much smaller than the hard scale, but can lead to different
scalings of the mass of a heavy flavor with respect to the left and the right beam in the massive case.
To avoid these kind of complications, we will for the moment constrain ourselves to more central
rapidities and consider only the case w, ~ wp ~ @ in the following sections, such that there is only
one global beam scale ug = +/QT. We will discuss the implications of a large hierarchy between the
two beam scales and the differences with respect of using the definition of beam thrust in the partonic
instead of the hadronic center of mass frame, where these asymmetries do not arise, in Sec

The hard function H;; in Eq. is measurement independent and the same as in Eq. (2.12)).
The beam and soft functions depend on the measurement and are different from those in Eq. (2.12]).
The soft function at the scale u ~ 7T is equivalent to the thrust soft function [82], which is known
to O(a?) [83,[84]. The virtuality-dependent beam functions B; can be factorized into perturbative
matching coefficients Z;;, at the scale p ~ t ~ /QT and the standard nonperturbative PDFs [13,|85]

A2
B ) = ST ) 00 1 wl+o(%e)]. (2.76)

The symbol ®, denotes the Mellin-type convolution defined in Eq. (2.16)). The matching coefficients
T;x. have been calculated to O(a?) [86}87]. The noncusp anomalous dimensions required at N3LL are
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available from existing results [85]. The results for the massless beam and soft functions at order
O(as) and O(a2CrTr) are collected in appendix In Eq. (2.76) the beam function B is understood
to be defined with zero-bin subtractions [88] to eliminate any overlap with regions of lower virtuality.

We will now discuss the meaning of the zero-bin subtraction and compare it to an alternative approach
where this overlap is eliminated by a matching on so-called collinear-soft matrix elements, as shown
below. We denote with # the unsubtracted collinear matrix element

w _ _
2o it) = (pa(PT)IO@)Oi(t, 0, wlp(P7)) (2.77)

t@z(tax: P_::u

where the light-like vector n is either n, or ny, depending on whether we deal with the ng,- or ng-
collinear beam function, and 7 is then the respective other light-like vector. The state |p,(P~) > is
the incoming proton state with momentum P = P‘% and O; a renormalized operator of collinear
SCET jet fields
bare + 1 =(7) + % 5 (7)
O (Jwlb™, w) = =X (0)6(b" —n - P) 5 [3(w —n-P)xz (0)] (2.78)
with momentum operator P acting always to the right (see Ref. [85] for details of the derivation and

notation). Then the beam function in Eq. (2.76) is defined as

Bi(nf)(t, T, u) = f%’gnf)(t, x, j1) — zero-bin . (2.79)
These zero-bins are all scaleless in the massless case (i.e. zero in dimensional regularization), but are
conceptually necessary to render the full beam function matching coefficient IR finite, by exchanging
IR for UV divergences through the scaleless integrals. The matching of the beam function onto the
PDF in Eq. cancels any IR divergences coming from collinear regions of lower virtuality, but
the zero-bin subtractions are still necessary to take care of the remaining IR divergences coming from
soft regions, such that the matching coefficient Z;;(t, z, 1) is IR finite.

An alternative way, that makes these cancellations of IR divergences in the soft region more explicit,
is to match the unsubtracted collinear matrix elements % on a theory with all the hard-collinear
modes integrated out. In this effective theory below the matching scale we do not only have the
collinear modes at a lower virtuality, i.e. the PDFs as in Eq. , but also “collinear-soft” (csoft)
modes, that encode contributions from fluctuations from virtualities between the collinear and the
usoft scale. The scaling of the momenta of the collinear-soft modes is

Ng-csoft: Pl ~ (T, k)T, \/k>2>,
ny-csoft: Phy ~ (k:Q/’T, T, \/1?2), (2.80)

where k? is some virtuality between the collinear and the usoft scale, i.e. T2 < k%2 < QT. We refer to
these intermediate modes as collinear-soft, because they are boosted but are softer than the standard
collinear modes, thus coupling to the latter via Wilson lines and leading to a SCET . theory [89]. This
type of intermediate SCET; modes have appeared in various contexts [89-92]. Note that also the
scaling of the PDFs is collinear with a lower virtuality than the hard-collinear modes, with momenta
Pt~ (Q, A?QCD/Q’ Aqcp), but with the large light-cone component having the same scaling as the one
of the beam function ~ @, while the collinear-soft modes are less boosted. Their momentum scaling
in Eq. is defined such that they can in principle contribute to the beam thrust measurement
via their smaller light-cone component that is of order ~ 7. The matching relation between the two
theories when integrating out the hard-collinear modes at the beam scale is

%f f)(t,a;,u) :Z/dﬁli(kf)(t—wﬁ,x,u) Oz f,g f)(x,u)yc( f)(f,u) [1—1—(9( QtCD)] . (2.81)
k
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The csoft matrix elements .. are defined as
1 _
Follop) = 5 tr <ojT (X5 (0)V,(0)]6(£ — n - PYT [V (0) X, (0)] ‘o> , (2.82)

with the csoft Wilson lines given by (see e.g. Refs. [89,90])

B g V2 _ g iz
Xn= ) XP[WW"A] Vo= exp[mW”'Aw o (283)

perms perms

where the light-like vector n can again stand for either n, or n; for the n, and ny-collinear-soft
matrix element, respectively, and 7 for the respective other light-like vector. The gluon fields A.s in
the Wilson lines are collinear-soft fields with the momentum scaling defined in Eq. . Here we
have used again the 7 regulator on the Wilson lines to regulate rapidity divergences, and have already
performed an expansion according to the collinear-soft scaling 7 - P > n - P. The rapidity regulator
is not necessary in the purely massless theory, where in fact all contributions to the csoft matrix
elements beyond tree-level are scaleless, but we already introduced it here since it will be important
once dealing with massive quark effects in the csoft matrix elements. Note that for the symmetric
1 regulator the csoft matrix elements are symmetric under changing the directions n, <> np, which
will in general not be the case for a different choice for the rapidity regulator. The collinear matrix
elements %; are the same as in Eq. and f; are the standard PDFs. The beam function matching
coefficient Z;;, is a Wilson coefficient of a matching of two effective theories and is therefore always
IR finite because the IR divergences are the same in both theories.

For massless quarks the csoft matrix elements only lead to scaleless integrals beyond tree-level and
thereby convert exactly the same IR to UV divergences as the zero-bins of the collinear matrix
element. Because they appear on the right-hand side of the matching equation Eq. , they are
also subtracted from the partonic beam function matrix element % when calculating the matching
coefficient Z, and therefore lead to the same results as using the beam function defined with zero-
bin subtractions. The massless csoft modes do not manifest themselves in any non-trivial matching
function between the beam and the soft scale, since there is no perturbative scale that would give
rise to non-scaleless integrals. Therefore these modes eventually contribute only to the soft-function
when their virtuality reaches k? ~ 72, where they become identical to the soft modes. This is also the
reason why they need to be subtracted from the collinear matrix elements in order to avoid double
counting. The beam functions B; how they appear in the factorization theorem are then defined
via the collinear matrix elements after subtracting the overlap with the soft region (given by the
collinear-soft matrix elements)

BM(t, 2, 1) = /dé%E”f)(t —wt ) (0 ()

= 3 70w m) 0 £ (2, (2.84)
ke{q,q.9}

Since the scaleless collinear-soft matrix elements cancel the same IR divergences as the zero-bin
subtraction in 4, the definitions of the beam function B in Eq. and in Eq. are equivalent
in the massless case. In the factorization theorem we are then left only with the soft function S, that
already contains the massless csoft modes, and the beam function as in Eq. .

The definition of the beam function in Eq. provides an alternative way of defining the subtrac-
tion of the soft region from collinear matrix elements, compared to the definition with zero-bins in
Eq. , as a subtraction of collinear-soft matrix elements. The idea to associate the subtractions
of soft regions from collinear functions like the beam function to collinear-soft matrix elements was
already discussed in different contexts in Refs. [93,94]. It was used in Ref. [1] to define infrared
finite matching coefficients for virtuality-dependent beam functions and recently also discussed in
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more detail in the context of the SCET quark jet function in Ref. [71]. This way of defining the
subtractions from regions of lower virtuality in the beam function as a csoft matrix element will be of
particular importance when dealing with massive quark effects in Sec. where the virtuality of
the csoft modes related to the heavy flavor is fixed to k> ~ m? and the corresponding massive csoft
matrix element gives non-trivial contributions at two-loops, leading to a so called csoft function as
an additional structure in the factorization theorem when integrating out the massive flavor.

The resummation of logarithms In(7/Q) is performed by evaluating all functions at their characteristic
scales and evolving them to a common final scale ;1 using the solutions of the RGEs

B ) = [t a0~ ) B ),

dp
uis("”(&u) :/‘M S~ 1) ST p) . (2.85)

In contrast to Eq. (2.12)), there is no rapidity evolution in SCET} for massless quarks. Consistency
of the RG evolution implies that

war I (wal, 1) + iy 5 (@l ) + 45 (€ 1) = 45 (Q, ) 8(0) . (2.86)

Here and in the following, when we talk about RG evolution of the beam function, it will always be
that of the subtracted beam function B, as it appears in the factorization theorem as B; = %;,®.7. 1 =
> 1 Lik ¢ fr as in Eq. (2.84). The anomalous dimension governing this evolution is given by

n ]- n
V(8 1) = A5 (8, 1) — av;f)(t/w, 1), (2.87)

where by 74 and v, we denote the anomalous dimensions of the collinear operator in Eq. and
the csoft matrix elements in Eq. , respectively. We do not provide the individual results for
v# and .o, as they are not infrared finite, in contrast to yp where the infrared divergences cancel
between the collinear and the csoft anomalous dimension. The massless contributions at O(a;) and
O(a2CrTr) to vp and g are given in App. [Bl In general when we use the term “beam function” we
will refer to the subtracted beam function B; = %; ® Yc_l, not to be confused with the unsubtracted
matrix element %;.

For beam thrust the number of possible scale hierarchies with a massive quark is larger due to the
fact that the (massless) collinear and soft modes have different invariant mass scales. The discussion
for the hierarchies with /Q7 < m where the massive quark cannot be produced via real emissions,
is completely identical to gr < m, since the quark mass effects in these cases are independent of the
low-energy measurement. For m ~ (), all mass effects are encoded by using the mass-dependent hard
function from Sec. in Eq. together with setting ny = n; in the rest of the factorization
theorem. Similarly, the case QT < m < @ is described by using Eq. with ny = n;, and
replacing the hard function by the product of massless (n; + 1)-flavor hard function and the soft and
collinear mass-mode functions Hg and H,, as for the case gr < m < @ in Sec. ie.

do - (ni+1) v 1
dQ2 deT - Z H (Q /’L) (m L, w(l)HC(m? , wb)Hs(mhu‘? Z/)
i,j€{q,q}
(m0) (m1) () ta b T 7”7 QT
[ atadty Bt 0 Bt s (7= 22 ) i o (T )

2.88)

We therefore proceed directly to the hierarchies m < +/QT, where the massive quark can be produced
in collinear and/or soft real radiation. The four possible hierarchies and the relevant EFT modes in
the pTp~-plane are illustrated in Fig. and are discussed in the following subsections.
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Figure 2.12: Effective theory modes for the beam thrust spectrum with massive quarks for m?/Q <
T < Q and m > AQCD-

2.2.2 Quark mass effects for /QT ~m < Q

For QT ~ m < @ massive quarks can be produced via collinear initial-state radiation, but not
via soft real radiation. After the hard matching, carried out with n; + 1 massless quark flavors as
discussed in Sec. the degrees of freedom in the EFT are collinear and soft modes with the

scaling

2
ng-collinear + MM:  ph ~ (T,Q,/QT) ~ (%, Q7m> )

2

np-collinear + MM:  ph ~ (Q, T,/ QT) ~ <Q, %,m) ,

soft MM: pt ~ (m,m,m),
usoft: phe ~ (T,7,7T), (2.89)

as illustrated in Fig. 2.12a] While the usual usoft modes live at a lower virtuality scale than the
collinear modes, the soft mass-modes are separated from the collinear modes only in rapidity, leading
to a mix of SCET and SCETYy; features. In particular, there will be mass-related rapidity divergences.
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At the scale p ~ /QT ~ m this theory with n; + 1 dynamical quark flavors is matched onto a theory
with n; flavors, integrating out at the same time the massive flavor and also fluctuations related
to initial-state collinear radiation of massless particles, which corresponds to standard matching of
the (massless) beam functions onto the PDFs. The matching in the collinear sectors leads to mass-
dependent beam function coefficients Z;,

%5n1+1) (t, m, &, i, g) — Z dl Z;; (t —wl,m,x, i, g) Ry énz)(x,ﬂ)
ke{a.q.9}

A2, A2
x ST (0, 1) [1+o( Qe QCD)}, (2.90)

m? t

Note that both the PDF and the csoft matrix elements are evaluated with only n; massless quarks.
This leads to only scaleless integrals in the csoft matrix elements, which corresponds to subtracting
the zero-bins for the massless quarks.

The beam function that then appears in the factorization theorem is given by

B (t, — g) _ /dﬁ%f””” (t —wlm, i, g) (yc(nz)mu))_

AZ . A2
v n
- ¥ Iik<t,m,:r,,u, ;) @5 F" (2, 1) [1 +(9< %CQD, QtCDﬂ . (2.91)
ke{q,q.9}

where Z (t,m, x, 1, 2) is defined by the matching relation in Eq. . Note that here the subtraction
of collinear-soft modes (as well as that of the PDFs) is performed with only n; massless flavors, while
the full collinear matrix element % is calculated with n; + 1 flavors. This still leads to an IR finite
matching coefficient because the contributions of a massive quark to % do not introduce additional
IR divergences because for m ~ /QT the mass is kept finite. We have for the first time calculated
the previoulsy unkown contributions from massive quarks to the virtuality dependent beam functions,
some details on the calculations can be found in appendix @ The results at O(as) and O(a2CrTr)
for the mass dependent Z;; are given in Sec. Since the massive flavor is integrated out at
this scale it is absent in the lower energy effective theory and does therefore not contribute to the
subtractions. In principle it would also be possible to not fully integrate out the heavy flavor and
include it also in the subtractions, which corresponds to the definition of the beam function in the
UF scheme. This approach and its relation to the MMF scheme presented in this chapter, where
the heavy flavor is always completely integrated out at its respective mass scale, will be discussed in
chapter [4

The dependence on the rapidity scale v here arises due to virtual secondary massive quark corrections
and is the same as for the collinear mass-mode matching function H. already given in Eq. (2.22)), i.e.,

V(%Bi(mﬂ) (t, m, T, i, g) =Y, H, (M, 1) Bi(m—i_l) (t, m,x, i, g) . (2.92)
In the soft sector the soft mass modes are integrated out, leaving only the usoft modes. This gives
exactly the soft mass-mode matching function H, already given in Eq. , which encodes the
effects of virtual secondary massive quark radiation. As usual, also the strong coupling constant has
to be matched from n; + 1 to n; flavors. The remaining contributions at the lower scales, the soft
function and the PDF's, are given in terms of n; massless flavors and in the (n;)-scheme for a;;. The
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resulting factorized cross section reads

do _ (ni+1) /
dQrdvdT ~ Z Mg @) Holms v [ dtad
1,j€{49,3,Q,Q}
X |: Z Ilk<t(z7m ﬁUmM,w )®x fk (xa,,u)}
ke{q,q.9}
X |: Z Ijk (tbam Loy by —— ) Bz fk ($b,ﬂ):|
ke{q,q.9}
ta  ty T m?2 T2 A
() _ e QCD
xS (T o ){1+O<Q o QT)]. (2.93)

The resummation of logarithms in Eq. is obtained by evolving all functions from their natural
scales, as illustrated in Fig. The mass-dependent v evolution, which resums the rapidity
logarithms In(Q/m), is identical to the one for the hard functions H, and H, in Sec. 2.1.3] The
1 evolution can be conveniently carried out by evolving the hard, beam, and soft functions with
n; + 1 active flavors above the mass scale and with n; active flavors below the mass scale, which
automatically takes into account the p dependence of Hs. To see this, the consistency of RG running
for Eq. together with the consistency relation for n; + 1 massless quarks in Eq. implies

(m+1) (n z+ ) (n1)
WaVB m (waf My ) + wyyp, (w £m, p, o ) + 5 (1) + 7w, u (M p,v) 5(€)
= warg " (wal, 1) + oy g (@l ) + 5V ), (2.94)
where ’y( ), Vg”ﬂ), 'yg”ﬂ) are the anomalous dimensions for the soft and beam functions with n; and

n; + 1 massless flavors as defined in Eq. -, and 'y(m+ )(t, m, p, v/w) is the anomalous dimension
of the mass-dependent beam function,

d n n n
ud*Bf e (t,m,x,u, 5) /dt 'y( et (t—t’,m,u, K) B (t’,m,w,u,z) (2.95)
m w w w

The consistency relation in Eq. (2.94)) can be confirmed explicitly at two loops with the expressions in

egs. (B.11)), (B.18), (C.9), and (C.23|). Note that this relation does not imply that ’y(nl+l)(t, m, p,v/w)
(nl+1)(

and y t,u) are the same, which is indeed not the case for the massive quark corrections as is
shown explicitly in Sec. The reason is that the presence of the quark mass leads to a SCET-type
theory, in which the required rapidity regularization redistributes the ¢ anomalous dimension between
soft and collinear corrections with individually regularization scheme dependent pieces. Only their
sum, as given on the left-hand side of Eq. , is independent of the regularization scheme and
yields the combined running for beam and soft functions with n; + 1 massless flavors above p,, ~ m,
as given on the right-hand side of Eq. .

2.2.3 Quark mass effects for 7T < m < QT

When the beam scale becomes larger than the mass scale, but the soft scale is still smaller than the
mass, which happens for m?/Q < T < m, the beam function matching coefficients Z;;, encode only
fluctuations related to initial-state collinear radiation with n; + 1 massless quarks, i.e. the heavy
flavor is treated as an additional massless quark in that matching. The EFT below /Q7 contains
the usual collinear and soft mass modes scaling as phn, ~ (M?/Q,Q,m), Phn, ~ (Q,m?/Q,m)
and ph,s ~ (m,m,m) that can not contribute to the beam thrust measurement in this hierarchy.
Integrating out these modes leads to the PDF matching coefficients M;; and the soft mass mode
matching function Hg, respectively.
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Figure 2.13: Illustration of the renormalization group evolution for beam thrust of the hard, beam,
soft, and parton distribution function in virtuality p (vertical) and rapidity v (horizontal). The
anomalous dimensions for each evolution step involve the displayed number of active quark flavors.
The label m indicates that the corresponding evolution is mass dependent.

However, besides these there are also the collinear-soft modes as described in Eq. . They were
defined as collinear modes at an invariant mass scale k? smaller than the beam scale and the scaling
of their momentum components determined by the condition that they can have a dynamic impact
on the T spectrum, as illustrated also in Fig. For massive modes their invariant mass is set by
the on-shell constraint k% ~ m?, yielding the scaling for the collinear-soft mass modes

2

ng-csoft MM:  ply |, -~ (T, m?,m) )
m2
np-csoft MM:  pf |~ <?,7', m) . (2.96)

The matching in the collinear sector can be performed in two steps as in Eqgs. (2.29) and (2.30]). After
integrating out all of the mass modes, the PDF and the soft function are still given in a (n;)-flavor
theory. Thus the factorization formula reads

do

dQ?dy dT = Z H;; ety (Q, ) Hy(m, p1, v )/dka dky Se(ka, m, p, v) Sc(ky, m, p1,v)

i,7€{¢,3,Q,Q}

X /dta [ Z Z I nl+1 taaxaaﬂ) Bz Mkl($aama/$) Rz fl(nl)(xmlu’):|

ke{q,3,Q,Q.9} 1€{a,q,9}

X /dtb |: Z Z I(nl_'_l) tbambvu) Rz Mkl(xb,m,/.l/) Rz fl(m)(xba M)]

k€{4,3,Q.Q.9} l€{a,a,9}
t t T m? A?
(n) _tfa g i QCD
xS (T Wa  Wh ba kb’“) [1+O<Q’Q7’m2’ m2 )] : (2.97)

The beam function matching coefficient Z("+1) (¢, z, 1) arises from integrating out hard-collinear
modes in the (n; + 1)-flavor theory at the scale u ~ QT > m. Since the matching scale is
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much larger than the mass scale, all quarks can be considered massless

-1
Bi(nl—‘rl)(t?xwu’) _/dg‘@i(nﬁ_l)(t_w&x’u)(yc(nl+1)(£ﬂu’))

A2
= Y I (e @ £, (@) [1 + O(QfD)] . (2.98)
ke{q,3,Q.Q.9}
Since all quarks are treated as massless, all contributions in 5’6(7”“) are in fact again scaleless and

only render the matching coefficient IR finite by converting IR to UV divergences through the scaleless
integrals.

The functions S, in Eq. are the csoft matching functions encoding the interactions of the
collinear-soft radiation at the invariant mass scale u ~ m and the rapidity scale v ~ m?/T. They
arise from integrating out collinear-soft fluctuations of the heavy flavor at the mass scale and are
defined as the matching coefficient of the collinear-soft matrix elements between the theories with
and without the heavy flavor

LD (0, ) = / A S (0 — 0 m, p, v) LD ) (2.99)

At the matching scale p ~ m the full mass dependence is kept in the (n; + 1)-flavor theory, such
that the collinear-soft matrix elements including the heavy flavor YC(T”H) now give non-vanishing

contributions, in contrast to Eq. (2.98|) where all quarks were treated as massless. The previously
unknown csoft function S, at O(a?) is calculated in Sec. the results are summarized in Sec.

The M;; correspond to the well-known PDF matching correction incorporating the effect of the
collinear mass modes, as in Eq. (2.31]), with the results at O(a;) and O(a2CrTF) given in Sec.
The virtual soft massive quark corrections are still described by the function Hy at the rapidity scale
v ~m as in the factorization theorem for m ~ /QT in Eq. (2.93).

The RG evolution for Eq. (2.97)) is illustrated in Fig. 2.13b, The csoft function satisfies the same
rapidity RGE as the collinear mass-mode functions H. appearing in the factorization theorem for

VOT < m < Q in Eq. (2.88) and the massive beam functions for m ~ QT in Eq. (2.92), i.e.,

V%SCUﬂ, m, b, V) = Yy i, (m, p) Se(k,m, p,v). (2.100)
The only difference with respect to the rapidity evolution in the factorization theorem for m ~ /QT
in Eq. is that it now happens between Hg with v ~ m and S. with vs, ~ m?/T rather than
between Hg and the beam functions with vp ~ @, such that now the rapidity logarithms In(m/T)
are resummed. The p evolution can be performed with n; 4 1 flavors for the hard function H;j, the
beam and soft function above the mass scale and with n; flavors below. This automatically accounts
for the u dependence of S, and Hg above u,,, ~ m, which precisely gives the difference between the
evolution of the soft function with n; + 1 and n; flavors, as implied by the consistency of RG running

for Eq. (2.97) and the relation in Eq. (2.86]) with n; + 1 massless quarks,

7§ (6 1) + 295, (€, v) + 500 v, (s 1y v) = 4§V (6 ) (2.101)
where
udiSc(k,m,u, v)= /dk’ vs, (k — K m, p,v) Se(k,m, p, v). (2.102)
1

At two loops, the consistency relation Eq. (2.101]) can be confirmed with the explicit expressions given

in Eqs. (B.18), (C33), and (C9).
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2.2.4 Quark mass effects for 7 ~m and m < T

For T ~ m the csoft and soft mass modes in the previous section merge with the usual usoft modes,

m2

T
In this hierarchy massive quarks can be also produced in soft real radiation leading to a soft function
at the scale u ~ 7 that depends on the quark mass. In addition, there are the massless collinear
modes as well as the collinear mass modes, as illustrated in Fig. Since we still have m < /QT,

the matching in the collinear sectors is the same as for the case 7 <« m < /7T discussed in the
previous subsection. The factorization formula reads

do .
o - 2 Hrew / dt, dty
Z7J€{qu»Q7Q}

X |: Z Z I(m—i_l) tllv La, M) g Mkl(xaa m, /.L) Rz fl(nl)($a> :u):|

ke{q,4,Q,Q.9} 1€{a,9,9}

X |: Z Z I(nl+1) tb? Tp, N) Qg Mkl (xba m, /’L) R f[(nl) (wba M):|
k€{9,0,Q,Q.9} l€{a.q.9}

< 50 (7 Z‘; = Zfb ) [1 + (’)(g g; ASED)} . (2.104)

Now all rapidity divergences cancel within the soft function and do not leave behind any potentially
large rapidity logarithms. The RG evolution for this case is illustrated in Fig. The massive
quark corrections at O(a?CrTr) to the soft function S(7,m, u) are given in Sec.

usoft: ph ~ (T,7,7T) ~ (7', ,m) ~ (m,m,m). (2.103)

Finally for m < 7T, if expressed in terms of the n; + 1-flavor scheme for g, the massless limit can
be taken in the soft funciton S+ (T, m, u) without encountering any IR singularities. Otherwise,
Eq. remains unchanged, such that now the only dependence on the mass scale arises in the
PDF matching corrections M;;. The hard, beam, and soft functions can now be always evolved with
n;+ 1 massless flavors and only the evolution of the PDF changes, when crossing the flavor threshold.

2.2.5 Relations between hierarchies

We now discuss how the functions appearing in the different factorization formulae are related to
each other. The relations between the modes and their contributions are illustrated in Fig. for
the different possible hierarchies. As in Sec. these relations show how one can combine the
resummation of logarithms relevant in one regime with the power-suppressed fixed-order content that
becomes important in the neighboring regimes, enabling a systematic inclusion of mass corrections
across the entire 7 spectrum. For a specific way of implementing these power corrections, discussed
for the example of DIS in the endpoint region, we refer to Sec. Here and in the following we
will use the notation of Eqs. and when giving explicit results at one and two-loops.

Similar to Eq. (2.38) for the TMD beam functions, the mass-dependent beam function coefficients
appearing for /QT ~ m (incorporating massive quark fluctuation as discussed in Sec. are
related to those for v/Q7T < m with n; massless quarks and the collinear mass-mode function H. by

Lik (t m, T, i, ) bem? H. (m iy, — )I(nl)(t,x,u) [1 + (’)(#)] ) (2.105)

At the same time, the mass-dependent beam function also encodes information about the fixed-order
content for T <« m < /Q7T. Comparing Eqs. (2.93) and (2.97)), they are related to those with n; + 1
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Figure 2.14: Relevant modes for the beam thrust spectrum with 7 <« @ for different hierarchies
between the quark mass m and the scales T, /Q7 and (). The directions of the arrows indicate how
a particular mode contribution is separated when the expansion of another hierarchy is used.

massless flavors, the PDF matching functions, and the csoft function S, by

Tip(tm,a,m =) "= S0 /dﬂ:f(’”“) — QU x, j1) @ Myp(@,m, 1) e, m, 1, v)

i={2,3,Q,Q.9}
m2

x [14—0(7

The mass-dependent soft function for 7 ~ m in Eq. (2.104]) contains massive quark fluctuations that
for T < m get split into the massless soft function with n; flavors, the soft mass mode function Hg,
and the csoft function S, in Eq. (2.97) as

)} . (2.106)

2
SO (0, m, ) “E" Hy(m, p,v) / A0 SO~ 1) Soll' s, i) |1+ O(i ) (2.107)

Finally, as already mentioned below Eq. (2.104]), the soft function approaches its massless limit for
m<LT,

2
S(nl-i-l) (g, m, M) m§<€ S(nl'l-l)(g’ IU/) |:1 + O( 52 >:| (2108)

In the following we will verify the relations betweent the different hiearchies discussed above for
the beam and soft functions up to O(a?). We also scrutinize the numerical impact of the power
corrections for these functions. We focus in particular on the O(m?/QT) corrections the T spectrum
for b quarks, which are contained in the factorization theorem Eq. for QT ~ m but not in
the small mass limit for m < +/QT in Eqgs. (2.97) and (2.104).

For the numerical results we use the MMHT2014 NNLO PDFs and evaluate the contributions
for p = mp = 4.8 GeV, w = myz, and F.y, = 13 TeV. The main qualitative features of the results do
not depend on these specific input parameters.




The virtuality-dependent massive quark beam function coefficient at one loop is given in Eq. (C.19).
In the limit ¢ < m? the primary massive quarks correctly decouple,

m? t
78) (8, m,2) " 0 (W) . (2.109)

In the opposite limit m? < t we get

79)(t,m, 2) " (1 — z)e(z){zpqg(z) :Qﬁo(/;) +6(t) [2qu(z) <_Lm bin ; z)

v b o ()
2

m
=T (t, 2, 1) +5(t)M8;(m7z,u) +0<7) : (2.110)

as required by the relation (2.106)). The massless one-loop matching coefficient I,g;) and the PDF
matching coefficient MS; are given in Egs. and ((C.24]), respectively.

The secondary massive quark corrections to the virtuality-dependent quark beam function Iq(g’h) (t,m, z)
are given in Eq. ((C.20)). In the decoupling limit ¢ << m? all its nondistributional terms become O(t/m?)
power suppressed. Combining the remaining distributional terms in ¢ with the contributions arising
from changing the scheme of the strong coupling from n; + 1 to n; flavors according to Eq. (2.34)),
yields”]

h v 4 tgm?2 v t
in agreement with Eq. (2.105]). The massless result for Iq(;) and the collinear mass-mode function

HgQ) are given in Eqs. (B.9) and (C.10)), respectively. In the limit m? < t we get

TFIé(th) (t7 m,z, [, 5)

m 1 t 2
=TT ED (L 2, ) + 5(8) MDD (m, 2, 1) + 6(1 — 2) — S (;, m, g, 1/) + o(mT) . (2.112)

aq w

All infrared mass dependence is contained in the PDF matching coefficient and the csoft function, as

required by Eq. (2.106). The functions on the right-hand side are given in egs. (B.10)), , and
(C.32)), respectively.

There are also secondary massive quark corrections at (’)(agT}%) to the Compton-type gluon initiated
process shown in Fig. encoded in the coeflicient I(g’h) (t,m, z). Since they arise only from virtual
corrections to an external gluon line, the limiting behavior for this coefficient is trivial, since it vanishes
identically in the (n;)-flavor scheme for ag, and in the (n; + 1)-flavor scheme for ay it is exactly

Tr I3 (8 m, 2, 1) = T (¢, 2, 1) @2 M) (m, 2, ) . (2.113)
The mass-dependent O(a?) corrections to the (beam) thrust soft function are given in Eq. (C.34]).
In the limit £ < m all its nondistributional /-dependent terms become O(£?/m?) power suppressed.

Combining the remaining distributional terms with the contributions arising from changing the scheme
of the strong coupling from n; + 1 to n; flavors yields

4 m 2
TSN (¢, m, 1) = STeLinS (6 1) < 5(€)H§2)(m,u,1/)+S§2)(€,m,u,l/)+0<%), (2.114)

9We remind the reader that this scheme change of a; to the n; flavor scheme is necessary to recover the decoupling
limit, while for the massless limit we need «s in the n; + 1 flavor scheme.
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Figure 2.15: Massive b-quark beam function (left panel) and the convolution between two of these
(right panel) together with the m — 0 limit as a function of v/t ~ QT .
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Figure 2.16: Secondary massive b-quark corrections to the u-quark beam function for Y = 0 (left
panel) and the soft function (right panel) at O(a2CrTF) for = my, as functions of vt ~ /QT and
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Figure 2.17: EFT modes for the massless factorization theorem for hadronic beam thrust for
wg ~ wp ~ Q (left) and wy € Q K w, (right).

in agreement with Eq. (2.107). The massless one-loop thrust soft function S, the soft mass-mode
function H 5(2), and the csoft function 80(2) can be found in egs. (B.16)), (C.8]), and (C.32)), respectively.

For m < £ the correct massless result is recovered,

2

SCM (0, m, 1) "= S@D (0, 1) + @(%> : (2.115)

which was already checked in Ref. [95].

In Fig. we show the numerical results for the one-loop massive beam function and the con-
volution between two of these (which is the leading order correction from primary massive quarks
for the Z-boson production) as a function of v/t ~ /QT. The mass effects become relevant for
Vt ~my ~ 5 GeV (corresponding to 7 < 1 GeV for Q@ = myz). In Fig. we show the result for
the secondary O(a2CrTr) corrections to the beam and soft function. The corrections to the massless
limit for the beam function remain sizable even for v/t > 2m;,. For the soft function, the mass effects
are important for 7 ~ £ ~ my and become small for ¢ > 10 GeV ~ 2my,.

2.2.6 Factorization theorems for large rapidities and partonic beam thrust

In the previous subsections we always assumed the scaling w, ~ wp ~ @, such that one needs to
consider only one beam scale up = up, = pp, ~ vVQT. The form of the massive factorization
theorems for beam thrust in the previous sections are therefore only valid for the case of not too large
rapidities of the color-singlet state, i.e. € ~ 1. But the massless factorization theorem in Eq.
is in principle valid also for e/¥'! > 1, as long as the condition Tel¥| « @Q is fulfilled. In the following
we will extend the massive factorization theorems to the more general case of rapidities in the range
1<V« @ / We will also explain that the issue of large rapidities does not show up when using
a different definition of beam thrust. These issues when dealing with larger rapidities in the massive
case were not discussed in Ref. [1] where ¥ ~ 1 was always assumed implicitly. The content of the

10 A5 before we will always assume that eVl < Ecm/Q in order to avoid large threshold logarithms.
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following section of this thesis is new and provides a framework capable of dealing with situations
where Y is not small.

The scaling of the light-cone components of the momenta of the relevant collinear and ultra-soft modes
of SCET and the hard fluctuations that are integrated out is determined by the momentum entering
the hard interaction, which sets the larger light-cone components of the collinear modes to w, and
wp, and the beam thrust measurement that fixes the small light-cone components to 7. Combining
these conditions with the typical collinear and ultra-soft scaling of the SCET modes gives

hards gl ~ (st /)
ng-collinear:  ph ~ (T, wq, VwdT),
np-collinear:  ph ~ (wp, T, VanT),
usoft:  ph, ~ (T,7,T), (2.116)

as shown in Fig. This implies that in principle one effectively introduces two separate beam
scales in the factorization theorems

1B, ~ Vw,T ~pup e¥/?, 1B, ~ VwpT ~ up e Y/2 (2.117)

For the rest of this section we will always assume that Y > 0, such that up, < pp,. In the case of a
rapidity Y < 0 one can just swap the two beam directions a <> b. Only in the case of not too large
rapidities the two beam scales are of the same order and can be replaced by one global beam scale
pup. If Y is becoming larger, a large hierarchy is introduced between the two beam scales, up, < up,,
see Fig. While this does not affect the structure of the massless factorization theorem, as long
as both of them are still clearly separated from the hard scale @), this can be different in the massive
case, where the scaling of the mass of the heavy flavor with respect to the other kinematic scales is
of importance.

In the cases of m < v/QTe Y/2 or m > \/QTeY/?, i.e. the mass being much smaller than the smaller
beam scale or much greater than the larger beam scale, the structure of the factorization theorems
is unaffected. For m < /QTe Y/2 the mass effects are encoded in the csoft or the soft function,
and both beam functions (as well as the hard function) are the ones for n; + 1 massless flavors.
For m > /QTe"/? the mass effects are contained in the hard or the current mass mode matching
functions, and both beam functions (as well as the soft function) are the ones for n; massless flavors.

But if the mass is in the range VQTe Y/2 < m < /QTe¥/2, it has a different scaling with respect
to one beam scale than with respect to the other one, leading to asymmetric factorization theorems,
for which we need to consider three different possible hierarchies. Since the mass in these three
hierarchies is always much smaller than the hard scale and much greater than the soft scale, we can
always write the hard function with n; + 1 massless flavors and the soft function with n; massless
flavors. Additionally there is the soft current mass mode matching function H, from integrating
out the heavy flavor in the soft sector. But in the collinear sector the structure of the factorization
theorems varies for the three different possible hierarchies.

Factorization theorem for \/QT7e Y/2 < m ~ /QTe¥/?

In this hierarchy the mass is of order of the large beam scale and therefore - because here we are
always assuming up, < ppg, - much larger than the second beam scale, up, < pp, ~ m. This means
that when integrating out the heavy flavor at the mass scale, it happens at the same scale where hard
collinear radiation is integrated out when matching the beam function for beam a on the PDF, which
results in a mass dependent matching coefficient Z;;. On the other hand, in beam b the mass scale is
still much greater than the beam scale, which means that the heavy flavor is integrated out in the full
SCET current, leading to a collinear current mass mode matching function H.. The beam function
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for beam b is then the same as in the massless case with n; massless flavors. The full factorization
theorem for this hierarchy reads

do

n;+1 v
Q2 dy dT = Z Hi(j a )<Q7M) Hy(m, p,v)H, (m'),u'a ;) /dta dty,

i€{0.2.Q.0} b
j€{a,q}

X [ Z Ly (taam7$a7,ua WL) Rz f;gm)@?a,/l)]

ke{q,q,9} “

X |: Z I;Zl)(tb,xb,ﬂ) R f]gnl)(wb7p'):|
ke{a,q,9}

Yl .2 —IYl A2 el
ta U Te'! m* QTe Qcp® )] (2.118)

Xs(m)(T‘%‘wb’“>[”O( Q@ w0 QT

The logarithms of ratios of the involved scales can be resummed in RG evolution of the different
functions starting from their respective natural scale to a common renormalization scale. Again it
can be most conveniently carried out by only evolving the hard, beam and soft functions with n;
massless flavors below and with n; 4+ 1 massless flavors above the mass scale. The rapidity logarithms
can be resummed in rapidity evolution of the current matching functions H. and Hg and the mass-
dependent beam function matching coefficient.

In neutral current Drell-Yan, mass effects of the heavy flavor are relevant in the factorization theorem
only for secondary radiation, as in Fig. In the beam function with up, ~ QT eY/2 ~ m, primary
massive quark effects can in principle be relevant, leading to heavy quark matching coefficients of the
form Igg) at O(ay). But in the second beam function, at the scale up, ~ QT e Y/? < m, effects of
heavy flavor production are suppressed as N2Bb /m? and the heavy flavor is therefore already integrated
out as an active degree of freedom above the beam scale pp,. In this beam the mass effects of the
heavy flavor are contributing at leading order in the power counting only via virtual effects in the
current matching function H.. Therefore there is no corresponding real heavy (anti-)quark as an
active degree of freedom in that beam to enter the hard interaction, such that there are no primary
massive quark effects as in Fig. in the case of neutral current Drell-Yan in this hierarchy. In
charged current Drell-Yan, however, primary m.-effects start to contribute already at order O(ay),
because the light strange quark can be generated non-perturbatively in the proton, which allows for
primary massive quark effects also in this hierarchy, with the heavy flavor (in this case a charm quark)
produced only in one of the beams. We emphasize again that in the case of charged current Drell-Yan
our results currently only allow for NNLL resummation, as compared to NNLL’ resummation in the
case of neutral current Drell-Yan, because of unknown O(a?) primary massive contributions.

Factorization theorem for \/QTe Y/2 <« m <« /QTeY/?

In this hierarchy the mass lies between the two beam scales, such that it is parametrically separated
from both, up, < m < pp,. In beam b, the beam scale is much smaller than the mass scale. Here,
when the heavy flavor is integrated out at the mass scale, this still happens in the SCET current,
leading to a collinear current matching function H.. Since the heavy flavor is then already integrated
out at the beam scale, the beam function is just the same as in the massless case with n; massless
flavors. In beam a the mass is much smaller than the beam scale. This means that when matching the
beam function on the PDF in this beam, the heavy flavor can still be treated as massless, leading to
a massless beam function matching coefficient with n; + 1 flavors. The heavy flavor is then integrated
out at a lower scale, leading to a PDF matching coefficient M and csoft function S.. The factorization
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theorem for this hierarchy reads

do — (ng+1) v
G- 2 HTQuwHm )Hc(m,u,wb)/dkasc(ka,m,u,v)
i€{q,3,Q,Q}
i€{a,a}

X /dta [ z Z I(nl+1 taal‘aa )®z Mkl(xmm U) ®fl (:L‘aaﬂ):|

ke{q,3,Q,Q.9} 1€{49.q,9}

x/dtb[ Z tb,wb; ) g f,ﬁ”l)(:cb,u)]

ke{q,3,9}

te t TelYl m2e-IYl QTe V1 Acpel’

The logarithms of ratios of the involved scales can be resummed in RG evolution of the different
functions starting from their respective natural scale to a common renormalization scale. Again it
can be most conveniently carried out by only evolving the hard, beam and soft functions with n;
massless flavors below and with n; 4+ 1 massless flavors above the mass scale. The rapidity logarithms
can be resummed in rapidity evolution of the current matching functions H. and Hg and the csoft
function S..

Also in this hierarchy primary massive quark effects are included only for charged current Drell-Yan,
because the heavy flavor is already integrated out as an active degree of freedom in one of the beam
functions.

Factorization theorem for m ~ /QT7e Y/2 < /QTeY/?

In this hierarchy the mass is of order of the smaller beam scale (beam b) and therefore much smaller
than the scale of beam a, i.e. m ~ up, < pp,. In beam b, where the beam scale is of order of the
mass scale, the heavy flavor is integrated out at the same scale where the beam function is matched
on the PDF, giving a mass dependent beam function matching coefficient Z;;. In beam a, the heavy
flavor can still be treated massless when performing the matching on the PDF, giving a beam function
matching coefficient with n; + 1 massless flavors. Integrating out the heavy flavor at a lower scale
leads to a PDF matching coefficient M and a csoft function S.. The factorization theorem for this
hierarchy reads

do n
T 2 HS@ Hampo) [ ke Sk i)
,7€{¢,3,Q,Q}

X /dta [ Z Z Ii(:ﬁl)(taa Tay 1) @z Mig(Tq,m, 1) @4 fz(nl)(xaaﬂ)]

ke{q,4,Q,Q.9} 1€{a.q,9}

X/dtb[ Z I]k(tbym T, s )®x fk (%7#)]

ke{q,q.9}
t t T6|Y| mQG_‘Y‘ 7-Q A2 e|Y| A2
() (- _2a _ % 4 _ 77 QCp QCD
<5 (T Wa  Wh ka kb"u) [1+O( Q' QT 'm? QT = m? )}

(2.120)

The logarithms of ratios of the involved scales can be resummed in RG evolution of the different
functions starting from their respective natural scale to a common renormalization scale. Again it
can be most conveniently carried out by only evolving the hard, beam and soft functions with
massless flavors below and with n; + 1 massless flavors above the mass scale. The rapidity logarithms
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can be resummed in rapidity evolution of the current matching functions Hg, the mass-dependent
beam function matching coefficient and the csoft function S..

In this hierarchy primary heavy quarks can be produced at leading order in the power counting in
both beams, so there are primary massive contributions also to neutral current Drell-Yan.

Factorization theorems for partonic beam thrust

So far we have always considered the definition of beam thrust in the hadronic center of mass frame as
given in Eq. . It is the sum of the projections of the momenta of all hadronic final-state particles
on one of the two light-like vectors n, and ny, depending on which hemisphere the particle is in. The
hemispheres are defined as perpendicular to the beam axis in the lab frame (the hadronic center of
mass frame), such that particles with rapidity y > 0 are assigned to hemisphere a and particles with
rapidity y < 0 to hemisphere b. The above definition uses the momenta of the final-state particles
and the hemispheres perpendicular to the beam axis in the hadronic center of mass frame. Therefore
this observable is referred to as hadronic beam thrust 7.

A similar definition of beam thrust, that is in fact the original definition in Ref. [13], is in the partonic
center of mass frame. Here partonic center of mass frame refers to the frame that is related to the
hadronic center of mass frame by a boost along the beam axis such that the rapidity of the color
singlet state becomes zero, i.e. it is not the exact partonic center of mass frame because the color
singlet state could still have transverse momentum. Then all momenta of the hadronic final-state
particles in the partonic center of mass frame are projected on the two light-like vectors n, and ny,
with the two hemispheres being perpendicular to the beam axis in the partonic center of mass frame.
That observable is called partonic beam thrust T

? %

where p; and 7; are now the momenta of the hadronic final-state particles and their rapidities in the
partonic center of mass frame. Boosting back to the hadronic center of mass frame, the definition of
partonic beam thrust becomes

7= minfe"napi e mpepi} = e TN pLP - m? (2.122)
g 7

where Y is again the rapidity of the color-singlet state, that defines the boost between the partonic
and the hadronic center of mass frames. This means that the momenta of particles in hemisphere a/b
are weighted by an additional factor of e*Y, but also that the definition of the hemispheres in the lab
frame is changed. Particles are now assigned to the hemispheres according to the condition y > Y for
hemisphere a and y < Y or hemisphere b. This means that for Y # 0 the hemispheres are no longer
symmetric with respect to the beam axis. Using the definition of partonic beam thrust provides an
observable that is invariant under boost along the beam axis, and always ensures a symmetry between
the two beam scales in the factorization theorem as we will see below.

To derive the massless factorization theorem for partonic beam thrust in the lab frame, we first start

with its counter part for hadronic beam thrust in Eq. (2.75)). It can be written in the form

(”f + 11— png) (ny)
m Z H )/dtadtbdka dkb Bi (taaxanu) Bj (tba$ba:u)

i,j€{q,q}
(ny) — — ta T
X Sheh ek 10) (T = i~k — o w—b) [1 + O(QeYlﬂ . (2.123)

Here Shemi(k; ,k, ,1|Y) is the hemisphere soft function. It measures the light-cone components
kf =mng -k, and k, = nyp - ky of momenta of the soft radiation in the hemispheres a and b, defined
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such that particles with rapidity y > ) belong to hemisphere a and particles with rapidity y < ) to
hemisphere b. The hemisphere soft function Syem; is related to the thrust soft function S used before
by

Sthop) = [ Aty om0 10) 806~ 1~ ;). (2.124)

To change the observable from T to 7’, one can now start from the factorization theorem in Eq.
and, according to the differences between partonic and hadronic beam thrust, change the definition
of the hemispheres in the hemisphere soft function (the beam functions are independent of the hemi-
sphere definition), and weight all momenta in hemisphere a by a factor e¥
hemisphere b by e™Y
thrust observable

and all momenta in
in the measurement d-function that relates the measured momenta to the beam

do (nf / 4 — p(ny) (ng)
e dty dty dk dk; B (te, 0, 1) B (ty, 23,
dQQdeT Z (Q 'u) b b ( :u) j (b b:u)
i,5€{q,q}
(nf) 1.+ - Y4+ -V - eVt, eVt T
Y (o S 1) WS
= 3 = Qu /dta dty dk; dky B (ta, 2a, 1) B (ty, 23, 1)
i,j€{q,7}
n ~ _ ta t T
X Sy ek ek, w V) 8 (T ki — i PG @") {1+O<g)}, (2.125)

Using the property of the transformation of the hemisphere soft function under a boost along the
beam axis

Shemi(e™ kg, ¥k w|Y) = Shemi(kd, Ky, 1210), (2.126)

and Eq. (2.124)) to express everything again in terms of the thrust soft function, we arrive at

do (ny) / (ny) (ny)
— = H: ' (Q, dte dty B, (ta, za, ) B (ty, zp,
i av af E i Q) b B 7 ) B; 7 (o, xp, 1)
1,5€{q,q}
Lt t T
(ng) _a U 2
x S (T 0 Q’“) [1 +O<Q>} ) (2.127)

This is the massless factorization theorem for partonic beam thrust also derived in Ref. [13]. It is
very similar to the one for hadronic beam thrust, but with the difference that it is symmetric in the

two beam directions, giving only one global beam scale up = 4/ Q7A“, independent of the rapidity Y.

Exactly the same steps to derive the factorization theorems of partonic beam thrust from those
of hadronic beam thrust also apply in the massive case, with the only complication arising in the
hierarchy 7 < m < /QT in Eq. , which is the hierarchy where the csoft functions S, appear as
an additional structure in the factorization theorem. Like the beam functions also the csoft functions
are independent of the definition of the hemispheres, but they are not invariant under a boost along
the beam axis, but have the rescaling property

ety S (e jFykraib,m, ,v) = Sc(k:aib,m,u, ue:FY) ) (2.128)
Here the rescaling of the rapidity scale as v — veTY for the csoft function in the a/b direction only

holds in case of using the symmetric Wilson line regulator n as rapidity regulator. For other choices
of regulators this can in general be different. This rescaling of the rapidity scale v by a factor e*Y in
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fact cancels between the two csoft functions for the two different hemispheres. This can be checked
by solving the rapidity RGE of the csoft function in Eq. (2.100]), to get the evolution equation

v
Sc(k,m, p,v1) = exp [’yy,gc(m, 0] In(y—;ﬂ Sc(k,m, p, 1) . (2.129)

In the special case of 1y = v and v; = vetY the evolution equation simply becomes
S.(k,m, p, Veiy) = exp|[£Y 5. (m, )] Se(k, m, p,v), (2.130)

and it is easy to see from Eq. (2.130)) that this implies a cancellation of the Y-dependent terms in the
case of two csoft functions in different hemispheres

Se(kaym, p,ve™ ) S, (ko, m, p, ve’) = Se(ka, m, g1, v)Sc(ky, m, p,v) . (2.131)

The same also holds for the virtuality-dependent beam functions with secondary massive quark cor-
rections and the mass mode matching functions H., since they all follow the same rapidity evolution
equation as the csoft function in Eq. (2.129), such that

14 14 14 14
B; (tCH m, Ta, [, E)Bj (tlh m, Ty, W, C&Tb) =B; (ta; m,Teg, W, a)BJ (tb, m, Ty, U, é) , (2132)
14 14 v v
H( ’ 77)H< ) 77):H< ) 7*)H< s ,*)- 2.133
ety - ) He(mo s e{mo i g JHelmo 1t 5 ( )

With this we can give a simple “recipe” for translating all the factorization theorems for hadronic beam
thrust 7 in Secs. ?2._?|7 to partonic beam thrust T, by simply replacing w,, — @ everywhere in
the factorization theorem. Note that this only applies for the factorization theorems for 7 assuming
We ~ wp ~ Q as in Secs. 2.2.1] - 2:2.4] but not for the asymmetric factorization theorems presented
in the beginning of this section in Eqs. (2.118) — (2.120), since the factorization theorems in 7 are
by construction always symmetric in the two beam scales. There are no corresponding factorization
theorems in 7 to the ones in Egs. (2.118) — ([2.120]), because the situation of a different scaling of
the mass with respect to the two beam scales is not possible for partonic beam thrust. With this
recipe one can construct variable flavor number schemes for partonic beam thrust in Drell-Yan for
any scaling of the mass of the heavy flavor with respect to the other scales, where the structure of
the factorization theorems is unaffected by large rapidities of the lepton pair.
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Chapter 3

Variable Flavor Number Scheme for
DIS in the Endpoint Region

Deep inelastic scattering (DIS), the high energetic scattering of a lepton on a hadron, is a benchmark
process for the extraction of PDFs. For this reason a precise understanding of quark mass effects is
of importance in order to provide a theoretical framework suitable for PDF fits with better control
over theoretical uncertainties.

In this chapter we will investigate effects of secondary massive quarks on the factorization and resum-
mation properties in DIS in the kinematic endpoint (1 —x) < 1. In this region the hadronic final state
is collimated in one high energetic jet with additional soft radiation. This leads to a large separation
of the kinematic scales, namely the partonic center of mass energy, that sets the hard scattering scale
of the process, and the invariant mass of the final state jet, which makes the resummation of loga-
rithms of ratios of these scales necessary. We will again use the framework of soft-collinear effective
theory to factorize and resum the cross section in this region, which has been done for the process of
DIS in the endpoint region in the massless case already several times [96-H101].

The QCD current relevant for DIS is related to DY by crossing symmetry, by going from time-like to
space-like momentum transfer of the virtual gauge boson and changing an incoming for an outgoing
quark. Therefore many features of the factorization theorems are similar, especially those related to
the hard function (that is just the square of the Wilson coefficient of the current matching from QCD
to SCET) and the inclusion of mass effects in the evolution of the current. But since one incoming jet
is now replaced by an outgoing jet, new features arise like the appearance of a jet function describing
the dynamics of the final state jet instead of a beam function that covered the physics of the initial
state radiation. Additionally the restriction of the phase space to the region (1 — z) < 1 also has
effects on the evolution of the PDFs and also leads to large rapidity logarithms ~ In(1 — z) in the
PDF threshold matching coefficients when including heavy flavors that need to be resummed.

Including mass effects of heavy quarks introduces a new scale, that leads to additional logarithms
of the ratio of the quark mass and the other scales of the process. To resum also these quark mass
related logarithms, including also the additional rapidity logarithms that arise due to secondary
massive quark effects, a VFNS scheme can be constructed that correctly includes the relevant number
of active flavors in the RG evolution of the different structures in the factorization theorem. Different
schemes have been developed to achieve this in the OPE region (1 —z) ~ O(1), see e.g. Ref. |[102] for
an overview.

In this chapter we will set up a VFNS valid in the endpoint region (1 — x) < 1 that is capable of
resumming all secondary quark mass related logarithms and is valid for any hierarchy of the quark
mass with respect to the kinematic scales, using the MMF approach discussed in the previous chapter
for DY. The MMF approach for factorization and resummation of massive quark effects in DIS in the
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endpoint was not discussed Ref. [1] and is done here for the first time in this thesis. In Refs. |2}20]
a VFNS for secondary massive quarks for DIS in the endpoint based on the UF approach introduced
in Refs. [11,|12] was constructed. This framework allows for resummation logarithms including all
massive power corrections, by using different renormalization schemes for the functions appearing in
the factorization theorem below and above the mass scale, introducing so-called threshold corrections
when switching between the renormalization schemes. Because of the universality of the threshold
corrections and consistency relations between them, this allowed for the extraction of the O(a3)
coefficient of a single rapidity logarithm for all threshold corrections in the factorization theorem from
known results. But since a VFNS for secondary massive quarks for DIS in the endpoint based on the
MMEF approach, analogous to the massive factorization setup for Drell-Yan presented in chapter
has never been discussed in literature, we consider it worthwhile to first set up the VFNS based on
the MMF approach for the various hierarchies of the mass with respect to the other scales in this
chapter, and postpone the discussion of the universal factorization approach to chapter 4] where we
will also analyze the relation of the two factorization approaches for massive quarks for the example
of DIS in the endpoint region.

We will only deal with secondary massive quark effects for DIS in this chapter, because effects of
primary massive quarks are suppressed for x — 1 because all flavor mixing terms in the DGLAP
evolution of the PDFs are suppressed in this limit. Many of the mass mode matching coefficients
arising from integrating out the heavy flavor will be identical to those encountered in DY, demon-
strating the universality of these functions. With the results presented in this thesis one can achieve
a resummation of logarithms related to quark mass effects up NNLL/ in the logarithmic counting, i.e.
NNLL resummation with NNLO order boundary conditions.

3.1 Factorization for massless quarks

Before discussing quark mass effects we briefly describe the kinematic setup and the factorization
theorem for DIS in the endpoint region 1 — 2 < 1 for massless quarks. Here we display the mode
setup, highlight the relevant steps for its derivation specifically for the hierarchy 1 —z > Aqcp/Q
and show that it can be readily combined with the commonly considered scaling 1 — z ~ Aqcp/Q.
This section of the thesis is partly taken from Sec. II of Ref. [2].

In the following we consider the scattering of an electron off a proton via photon exchange. We
denote the proton momentum by P*, the momentum of the incoming (outgoing) electron by k*
(k'*), the incoming momentum of the virtual photon by ¢* = k* — k'* with spacelike invariant mass

¢> = —Q? < 0 and the momentum of the outgoing hadronic final state X by P{. The Lorentz
invariant Bjorken scaling variable x is defined by
2 2
. ¢ (3.1)
2P-q 2P-q

with the kinematic constraint 0 < x < 1. We will work in the Breit frame, where ¢* does not have an
energy component and the initial state proton is n-collinear. Neglecting the proton mass the relevant
momenta in the Breit frame in terms of lightcone coordinates read

Q Q _ Q _
o X Xan  ph_
¢ =3 m" 2
1_
Pl = %n“ + Q(me)n“. (3.2)

In the endpoint region the hadronic final state is an n-collinear jet with an invariant mass P)z( R

Q*(1 —2) < Q.
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The differential cross section for DIS can be decomposed in terms of a leptonic and a hadronic tensor.
The latter is defined by

W (P, q) = Qilm {z / d'z 69 (P TL7M (2).07 (0)] [P (3.3)

T
with [P) denoting the initial proton state and the current J¥(z) = e2. iv*qi(z) summed over
all quark flavors ¢; with corresponding electric charges e,,. We will just deal with unpolarized DIS,

so that a spin average is always implied. Using current conservation, which implies ¢*W,, = 0, one

can decompose the hadronic tensor for the parity conserving vector current into the two structure
functions F(x, Q%) and Fy(x, Q?),

f gV 1 I v
WMV(Paq) = - (g,u,l/_qqg> Fl(va)_'_Piq (Pu—i_gg;) <PV—|—3J;> FQ('va)
— ey (55 ) (545 ) e (3.4

with ¢/ = g" — 1/2(n*n” 4 n#n”). Here the longitudinal structure function Fr,(z, Q) reads

Fr(z,Q) = Fy(z,Q) — 2zFi (2, Q), (3.5)

in terms of Fy(z,Q) and Fs(x,Q). These structure functions contain physics at different invariant
mass scales and thus require to be factorized to resum the corresponding large logarithms.

In this section we briefly discuss the factorization theorem for inclusive DIS for massless quarks in
the endpoint region 1 — x < 1 in the framework of SCET. The factorization can be performed in a
multi-step matching procedure and has been carried out already a number of times [96101]. The
only relevant scales in the process are the scale of the hard interaction @), the invariant mass of the
final state jet Qv/1 —x and the non-perturbative scale Aqcp. In the massive case the mass m of
the heavy flavor will give an additional scale in the process. Note that there is no physics related to
the scale Q(1 — x), which means that the scaling of Q(1 — x) with respect to Aqcp or the mass of
a heavy flavor has no relevance. This already implies that the factorization theorems are the same
for all the possible hierarchies that these scales can have with respect to Q(1 — x), especially that
they adopt the same form in the two cases Aqcp ~ Q(1 — z) and Aqep < Q(1 — z), a statement
that has already been made e.g. in Refs. [97,|103]. However, Ref. [97] uses a different mode setup
including non-perturbative modes at a scale Aqcpyv/'1 — z < Aqep, while Ref. [103] never explicitly
displays the scaling of the modes, such that we think it is worthwhile to sketch the derivation of the
factorization theorem using our mode setup with collinear-soft modes of virtuality Aqcp in the case
where Aqep < Q(1 — x).

The relevant modes are
n-collinear: ph ~ (Q(l - ),Q, Qﬂ) ,
ni-collinear:  p ~ (QvAéCD/Qa AQCD) ;
n-collinear-soft:  pk; ~ <Q(1 — ), Ayop/ (Q(1 - :U)),AQCD> , (3.6)
where we have used the decomposition
pr~(n-pn-pp1). (3.7)

These modes are also displayed in Fig. 3.} The non-perturbative fi-collinear modes describing the
initial state proton in the Breit frame have always the same scaling ph = (n - pg, 7 - pﬁ,p%) ~
(Q, AéCD /Q,Aqcp). The final state is strongly collimated for  — 1 with a large momentum ¢ and an
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Figure 3.1: Relevant modes for inclusive DIS in the endpoint region z — 1 with 1 — 2z > Aqep/@Q in
the ptp~-plane, with p™ =n-pand p~ =7 -p.

invariant mass Q/1 — z and is thus described by n-collinear modes scaling as pi, ~ Q(1—z,1,v/1 — z).
The kinematics in the Breit frame prohibits the appearance of a final n-collinear state, as can be
seen from Eq. . This has the important consequence that the n-collinear sector just enters the
factorization theorem via a component which is local both in label space as well as in the residual
coordinate, as has been also pointed out in Ref. [101]. The remaining relevant low-energy modes
contribute to the measurement of = or equivalently to the squared invariant mass ~ Q?(1 — ) via
a component n - p ~ Q(1 — x) (i.e. they have to lie on the vertical line below the n-coll. modes in
Fig. . In fact all such modes give vanishing contributions in perturbation theory in the massless
case, since no physical scale is associated with the other momentum components which results in
scaleless integrals. This holds in particular also for ultrasoft modes scaling as Q(1 — z,1 — z,1 — x)
as stated e.g. in Refs. [96,97,/103]. Thus any additional relevant modes can only be nonperturbative
and scale like phs ~ (Q(1 — x),AéCD/Q(l — x),Aqcp). These modes are also boosted in the Breit
frame if Aqcp < Q(1 — ), and therefore referred to as collinear-soft modes. The momenta of theses
modes have a collinear scaling but with a softer virtuality than the n-coll. modes. Compared to the
non-perturbative n-coll. modes they have the same virtuality but are less boosted by a factor (1 —x).
In the special case where Q(1 — z) ~ Aqcp the csoft modes become soft modes with the momentum
scaling Aqcp(1,1,1).

To derive the factorization theorem we employ a multistep matching procedure. First the QCD
current is matched to the SCET current in the standard way at the scale Q2. The Wilson coefficient
of this matching is related to the one in DY encountered in the previous chapter because of crossing
symmetry by analytic continuation Q? — —@Q?—i0. The square of the Wilson coefficient gives the hard
function H, describing the physics of the hard scattering process at the scale ug ~ (). The virtuality
of the collinear and soft modes in SCET can then be lowered without any non-trivial matching to
the scale uy ~ Q+/1 — z. This is the scale at which the final state jet, with invariant mass Q+v/1 — x,
is started to be resolved and the corresponding n-collinear modes need to be integrated out. The
vacuum correlator of the collinear SCET fields is

T@rt ) = 5 |i [ @ =0 {Ruo @5 f10)] (5.
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with momenta of the collinear SCET fields y,, exhibiting the scaling
n-coll.: ph o~ Q(l —x,1,V/1— a:) . (3.9)

All color and spin indices are traced implicitly. This is matched onto a theory where the collinear
modes with virtuality Q(1 — z) in the n-direction are integrated out and only n-collinear-soft modes
are remaining

TN s ) = [ A T(s = Qe A ). (3.10)
The superscript ny indicates the number of flavors. Here .J is the matching coefficient, the jet function

as it will appear in the factorization theorem, and .7, are the matrix elements of collinear-soft (csoft)
Wilson lines

1 _
Feltop) = 5 tr (O T[XO)Va(0)] 8¢ = - p)T[V(0) X, (0)][0) (3.11)
where the collinear-soft Wilson lines are
_ g v _ g v
Xn— Z eXp[—WWTL‘ACS] 5 Vn— Z exp[—mwn-zﬁlcs y (312)

perms

and P is the momentum operator. Here the n-regulator [40,41] has been expanded using the n-
collinear-soft scaling - P > n - P. These are the same collinear-soft matrix elements and Wilson
lines already discussed for the case of beam thrust in DY[T]in Sec. written down here another time
for the convenience of the reader.

The matching coefficient J(s, 1) is the jet function that appears in the final factorization theorem. It is
infrared finite since all IR divergences cancel between the hard collinear and the collinear-soft matrix
elements on both sides of the matching equation, and it describes the dynamics of the outgoing jet with
invariant mass uy ~ Qv 1 — x. The collinear-soft matrix elements only give scaleless contributions in
the massless case, i.e. their only effect is to cancel the corresponding IR divergences in the collinear
matrix element, but give rise to non-trivial contributions once effects of secondary massive quarks
are included. This definition of the jet function as a matching coefficient gives equivalent results as
defining the jet function only as the hard collinear vacuum correlator in Eq. , but defined with the
necessary zero-bin subtraction to avoid double counting with the soft region, see also the discussion

after Eq. (2.76]).

The modes of lower virtuality than the jet scale, that remain after integrating out the n-collinear
modes, encode fluctuations that contribute to the measurement of the invariant mass of the final
state ~ Q+/1 — x but arise from lower virtualities than the collinear scale. Thus the scaling of their
momenta is

. B K 2
n-csoft:  pk. (Q(l — ), Q=) \/l?) , (3.13)
where k? is some virtuality below the jet scale, i.e. k%2 < Q?(1 — ). In the discussion about the
n-collinear-soft matrix element above we implicitly assumed k2 >> (Q(l — x))Q, which led to these
modes being boosted in the n-direction, such that they were still separated from the soft modes.
But this restriction has no physical relevance, since the scale y ~ Q(1 — x) is not a physical scale
of the process. Because there is no other perturbative scale associated with the process below the
jet scale p ~ @Q+/1 — x, the virtuality of the n-collinear-soft, soft and n-collinear modes that are left

! Changing one incoming to an outgoing Wilson line when going from Drell-Yan to DIS does not change the csoft
matrix elements at two-loops, which is the order we are working here. See also Ref. [82] where this was discussed for
hemisphere soft functions.
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after integrating out the n-collinear modes as in Eq. at the scale p ~ Q+/1 — x, can be lowered
further without non-trivial matching. At the scale p ~ Q(1 — ) the collinear-soft and the soft modes
are not separated any more by rapidity and become identical. This results in the n-csoft Wilson lines
X, V,, of csoft gluon fields A.s in Eq. being replaced by Wilson lines S,,,S5 of soft gluon fields
As

B g /2

perms

where and Pg is the third component of the momentum operator. Because the soft modes have the
scaling n - P ~ n - P, this cannot be expanded as in the case of the n-collinear modes, where we used
that n- P> n-P. If Q(1 —x) ~ Aqcp this already corresponds to the lowest scale in the process.
In that case the non-perturbative matrix element of the soft and n-coll. fields with the proton initial
state is the PDF in endpoint region z — 1

bg(ly ) = (P])ZﬁS;LSn%(S(E —n-P)S! SaxnglP) . (3.15)

The PDF in the endpoint can also be factorized as

041 = 2) =@ [ gy (@1 =)~ ) S (Eop), (3.16)
where g,(¢, ) denotes a local collinear matrix element

a(6.11) = (PLa (0 X 0(O)1P) 8(0) (317)

and .¥ is a matrix element of soft Wilson lines

S, ) = ]\1[ tr <0‘T[s;(0)sﬁ(0)]5(e — - p)T[S](0)8,(0)] ‘0> . (3.18)

In the case where Aqcp < Q(1 — x) the virtuality of the soft and f-coll. modes can be lowered
further below the scale Q(1 — x). As doing so, the soft modes become boosted in the n-direction,
because their n - p light-cone component is fixed to ~ Q(1 — ) in order to give leading contributions
to the measurementﬂ In this way they become the 7n-collinear-soft modes described in the beginning
of this section. This means that the soft Wilson lines get replaced by Wilson lines X,,,V,, of f-csoft
gluon fields Az

/2 /2

v — 9 v A o L
X, = Zexp[ n‘P(n-P)W/Qn ACS], Vi Zexp[ ﬁ'P(n~P)’7/2n Az . (3.19)

perms perms

Here the n-regulator has been expanded using the n-collinear-soft scaling n-P > n - P. The only
other scale in the process that sets the virtuality of the n-collinear-soft and the n-coll. modes is the
non-perturbative scale Aqcp. In this way we arrive at the mode setup shown in Fig. ﬂ The only
change compared to the case where Q(1 —x) ~ Aqcp is that the soft matrix element .7 in Eq.
gets replaced by the matrix element .#% of Wilson lines of n-csoft gluon fields

Sl 1) = ]\1[ tr <0’T[X:L(0)Vn(0)] 50 =n-p)T VI (0)X,(0)] ‘0> , (3.20)

with the Wilson lines as in Eq. (3.19). Note that also in the case of measuring beam thrust in DY
in Sec. we had two collinear-soft matrix elements, one for collinear-soft modes boosted in the n,

2We do not consider ultrasoft modes modes of virtuality < Aqcp since they do not contribute to the measurement
as stated before.
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and one for collinear-soft modes boosted in the n; direction. But in each of them the measurement
function §(¢ —ngyp - p) was measuring the smaller light-cone component, such that they gave identical
results when using the symmetric n-regulator, which is the reason why we denoted both as .7, not
distinguishing from which collinear-soft sector they were arising. In other words the two collinear-soft
matrix elements were simply related by renaming n, <> np, which does not change any result. The
n-collinear-soft modes contributing to the matrix element in Eq. are boosted in the n-direction
and the measurement function §(¢ — n - p) measures their smaller light-cone component n - p, which
means these matrix elements ., are indeed the same as in the case of beam thrust in DY. But the -
collinear-soft modes in Eq. are boosted in the n-direction (the direction of the incoming proton),
while still the, now larger, light-component n - p is measured. This matrix element of collinear-soft
fields is therefore in principle different from the one encountered above, and therefore denoted as 7.
So while we had two collinear-soft matrix elements from modes being boosted in different directions
in the case of beam thrust in DY that gave identical results and therefore both denoted as .7, we
distinguish the n-collinear-soft and n-collinear-soft matrix elements for DIS, denoting them as .. and
Y%, respectively, depending on whether the smaller or larger light-cone component is measured. But
in fact the difference between them arises only by the special choice of the rapidity regulator 7, as
discussed below.

The different soft, n-collinear-soft and 7-collinear-soft Wilson lines in Eqs. (3.14]), (3.12)) and (3.19)
have the same structure apart of the different expansion of the rapidity regulator. In the massless
case, where all the soft, n-csoft and n-csoft matrix elements give in fact only scaleless contributions
in pure dimensional regularization, the rapidity regulator does not matter and can as well be set to
zero. Without this additional rapidity regulator that breaks the boost invariance, all these matrix
elements, that are related only by a simple boost of the gluon fields A.s — As — Az, are in fact
equivalent. This is the reason why the factorization theorem takes the same form in the two cases
Aqcep ~ Q(1 — z) and Agep < Q(1 — z), because the simple replacement of the soft gluon fields by
n-collinear-soft gluons fields does not change the structure of the massless (c)soft matrix elements.

The full massless factorization theorem reads (to all orders in o, and at leading order in 1 — z)

Fi(#,Q) = 5 Pae.@ = 5 3 B @) [ ds 10 (s 6" (1—x— C;,u> NEEN

qu

where the superscript (ny) indicates the number of active quark flavors relevant for the RG evolution
of all renormalized structures including in particular also the strong coupling constant. Note that the
hadronic tensor becomes transverse in the limit z — 1, such that Fr(z, Q) = 0 and the Callan-Gross
relation Fh(z,Q) = 2zFi(x,Q) is satisfied to all orders in «s. The massless fixed-order hard and
jet functions, H"™)(Q, pugr) and J™) (s, ), are known up to O(a?) and O(a?), respectively, the
anomalous dimensions up to O(a2). Results can be found e.g. in Ref. [97], the contributions at O(a)
and O(a2CpTr) are given in Egs (B.2) and (B.19).

The factorization theorem of Eq. is written with all its components at the common renormal-
ization scale p, which can be chosen independently from the respective characteristic scales ppg ~ Q
for the hard function, pu; ~ Qv/1 —x for the jet function and us ~ Aqep for the PDF. Since the
choice of pu necessarily differs widely from at least two of the characteristic scales, it is mandatory to
sum large logarithmic terms. The corresponding RG equations are

d ~m n
S Q) =14 (Quw) B Q)

d sy (ny) / (ng) (o
M@J (s,1) = [ ds'v; 7 (s = &', ) T (s, )
d n n n
u@@( 1=z pm) = /dZ’vé D=z =2 )" (). (3:22)

The anomalous dimensions v at O(a;) and O(a2CpTF) are given in Egs. (B.3), (B.20) and (B.12).
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Note that the convolutional structure of the RG equation for the PDF in the limit z — 1 (denoted
as ¢;(1 — x,p)) in the third line of Eq. is different from the DGLAP equation for the full
PDF (denoted as f;(x,p)) in Eq. (2.17). To see how the standard DGLAP evolution for the PDF
fi(z, p) in Eq. (2.17), involving a Mellin-type convolution as in the first line of Eq. below, can
be expanded in the endpoint region £ — 1 to become the evolution equation shown in the third line
of Eq. (3.22), valid for the PDF in the endpoint, we first write out the RG evolution equation for the
full PDF

“W = Z/; %Vfij(gaﬂ)fj(zvﬂ)
_2/1 T dy 7f’”(l—l(iz x) )f]( o)
1-x
= Z/O dzpij (2 + 2, 0) f3(1 = 2, p) X [1+0(1 —:c)], (3.23)

where in the last line we expanded simultaneously in (1 — z) ~ z < 1. Defining the PDF and its
anomalous dimension in the endpoint as an expansion in x — 1 of the full PDF and anomalous
dimension, keeping only the leading order terms

Gl =) = fila.p) x [1+0(1 - 2)],
Yoas (L= 2. 0) = g ) x [1+ 00 =2)] (3.24)

this can be written as
d¢z 1—x
> | e —a =z, (325)

We can further use the fact that all off-diagonal anomalous dimensions, i.e. 744, and vy 44, are
suppressed by O(1 — ) with respect to the diagonal terms 74 4 and 74 g4, such that to leading order
in 1 — x no flavor mixing takes place in the evolution of the PDFs. Due to Furry’s theorem gluon
initiated processes do not contribute to the hard function for the electromagnetic vector current,
and are therefore not included. This means we only need the quark PDFs in the endpoint, and by
replacing vy, = 0i;74, Where 74 is an abbreviation for the quark-quark anomalous dimension 74 4¢.
this reduces to the evolution equation for the quark PDFs in the endpoint without flavor mixing

shown in Eq. (3.22).

3.2 Variable flavor number scheme for secondary massive quarks

In the following sections we will set up a variable flavor number scheme for secondary massive quark
effects in DIS in the endpoint region, using the mass mode factorization approach. Since the massless
factorization theorem has a SCET] type structure where the soft and the collinear scale are different,
this will involve similar structures as in the case of beam thrust in DY. The only new structure
compared to DY is the jet function, that replaces the beam functions in the collinear sector. We
will always assume m > Aqcp such that the mass can always be treated as a perturbative scale.
This discussion of secondary massive quark effects for DIS in the endpoint region following the MMF
approach as presented in this section of the thesis is new and has not been published before, because
Ref. |1] was only studying the DY process and Ref. [2] was using the UF approach for DIS.
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Figure 3.2: Exemplary diagrams for secondary massive quark contributions in DIS at O(a?CrTr).

An important feature of the factorization theorem in Eq. is that there are no flavor mixing
terms between quarks and gluons in any of the EFT contributions in the hard current matching,
the jet function, the PDF and their evolution factors, due to the power suppression of off-diagonal
terms in the PDF evolution in the limit (1 — ) <« 1. This means that at leading order in (1 — x)
the parton extracted out of the PDF at the low scale ~ Aqcp is also the one interacting with
the hard photon and entering the final state jet. Since we assume m > Aqcp, so that the heavy
quarks are not produced nonperturbatively out of the proton, this has the consequence that massive
quarks enter the EFT components of the factorization theorem only via secondary corrections, i.e. via
contributions which are initiated by massless quarks and where massive quarks are produced through
the radiation of virtual gluons that split into a massive quark-antiquark pair, see Fig.[3.2] In the case
were Qv/1 —x < m, i.e. when the heavy quark cannot be produced via real emission, the changes in
the factorization theorem are identical to the case of Drell-Yan in that hierarchy.

For m ~ @ the mass effects are completely encoded in the massive hard function H as in Sec.
and the massless jet function and PDFs with n; flavors are used

201 _
Fi(z,m, Q) :% ) ﬁi(Q,m#)/dsJ(n” (5, 1) 3™ <1—fv— 52;0 [1+0<1—x, W)}

1=¢,q

(3.26)

Note that the mass corrections to the hard function H for DIS differ from the ones to the hard
function H for DY because of the analytic continuation @Q? — —Q? — i0 in the current. The results

for DIS are given in Eq. (C.6).

The case Qv1 —x € m < @ is described by using the massless n; + 1 flavor hard function, the
massless n; flavor jet function and PDF's and additionally the mass mode current matching functions

H. and H as in Sec.

Fy(z,m,Q) = % > A" (Q, ) He(m, . %)H(mu %)Hs(m,u,w
i=q,q

X /ds Jm) (s, 1) ¢§nl) (1 —z— C;"u> [1 + (’)<1 -, gz, 622(;2_3:))} )
(3.27)

As already mentioned when discussing massive quark effects in DY in chapter 2 the two collinear
mass mode matching functions H, in the n and n sector are identical only when using a symmetric
Wilson-line rapidity regulator as we always do here, but can in general be different from each other
when using other rapidity regulators. The results for our choice of the symmetric 7-regulator at O(a?)

are given in Sec. [C1.3
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Figure 3.3: Effective theory modes with massive quarks for Aqcp < m S QV1 — 2 < Q.

3.2.1 Quark mass effects for Qv1—z~m <K< Q

If the quark mass is of the order of the jet scale, i.e. @Qv/1 —x ~ m, the heavy flavor becomes a
dynamical degree of freedom in the theory. Since the mass modes as well as the other modes in SCET
have a scaling parametrically much smaller than the hard scale p ~ @, the matching from QCD to
SCET at the hard scale happens for all the modes simultaneously and leads to the massless hard
function n; 4+ 1 flavors. In the soft and n-collinear (i.e. collinear to the incoming proton) sector the
mass modes are widely separated from the other (non-perturbative) modes in these sectors because
we always assume Aqgcp < Qv/1 — z. This means that integrating out the soft and fi-collinear mass
modes at the mass scale leads to the same matching coefficients Hs and H, as in the hierarchy

Qv1 —x < m, given in Egs. (C.8]) and (C.10|), respectively.

The n-collinear mass modes now have the same virtuality as the other n-collinear modes in SCET, as
illustrated in Fig[3.3a] Integrating out all these collinear fluctuations leads to a matching of a theory
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with n; + 1 hard collinear modes onto a theory with n; collinear-soft modes only.

j(nl—H) (8 m, M’ /df,] —Ql,m, p, )y(nl)(g 1) . (3.28)

Q

Here 7™+ are the collinear matrix elements of light quark fields as in Eq. , with corrections
from the heavy flavor via real and virtual secondary massive quark effects, and Yc(m) the collinear-
soft matrix elements as in Eq. with n; massless flavors. The matching coefficient J is the now
explicitly mass-dependent jet function (called mass mode jet function, to distinguish from the mass
dependent jet function as it will appear in the UF approach in chapter [4). The contributions from
secondary massive quarks at O(a2CrTr) are given in Eq. . We remind the reader that due to
the suppression of flavor mixing in the DGLAP evolution of the PDFs in the endpoint region x — 1
we do not need to consider primary massive quarks (for the primary massive quark jet function see
Ref. [19]). Note that in Eq. the subtraction of collinear-soft modes is performed with only
n; massless flavors, while the full collinear matrix element J is calculated with n; + 1 flavors. This
still leads to an IR finite matching coefficient because the contributions of a massive quark to J do
not introduce additional IR divergences as long as the mass is kept finite. Since the massive flavor
is integrated out at this scale it is absent in the lower energy effective theory and does therefore not
contribute to the subtractions. In principle it would also be possible not to fully integrate out the
heavy flavor and include it also in the subtractions, which corresponds to the definition of the jet
function in the universal factorization scheme [71]. This approach and its relation to the mass mode
factorization scheme presented in this chapter, where the heavy flavor is always completely integrated
out at its respective mass scale, will be discussed in chapter

The mass mode jet function’s anomalous dimension for evolution in the energy scale p is the same as
for the virtuality-dependent beam function in Sec. [2.2.2]

d v , , v , v
,LL*J(S,m,,U,, 7) = /dS VI, <8 —Ss,m, W, 7)‘](8 , T, [ 7) ) 3.29
du Q m Q Q ( )
with the contributions of the massive flavor at O(a?CrTr) given in Eq. (C.29). We emphasize once
again that these contributions are not the same as for an additional massless flavor.

The dependence of the mass mode jet function on the rapidity scale v is the same as for the collinear
mass-mode matching function H. and the virtuality-dependent beam function
d v v
u$J<s, m, i, §> = v, m1.(m, u)J(s, m, i, @) , (3.30)
with the rapidity anomalous dimension given in Eq. (C.11)).

In the soft and the 7-collinear sector no measurement takes place at this scale, such that the soft
and 7-collinear mass modes are integrated out in the current which leads to the same mass mode
matching functions Hg and H, as before. The full factorization theorem for this hierarchy reads

Fi(z,m, Q) = Z an+1 (Q, ) H. <m M7g)HS(m’“’V)/d3J<S’m’“’g)>

zG{qq}
(m1) s m? Adop

The p evolution can be carried out by evolving the hard and jet functions and the PDF with their
massless anomalous dimensions with n; active flavors below the mass scale and n; + 1 active flavors
above the mass scale, as indicated by the vertical arrows in Fig. which automatically takes into
account the y dependence of the mass mode matching functions H, and H., because of the relation

Qo (@31 = 2)mops )+ (0 = 2010) 60 = 2y, (m i) + 00 = 2, (s . )
= Q@ - 2), )+ - 2 ). (3.32)

Q
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Figure 3.4: Hlustration of the renormalization group evolution of the hard and jet functions and the
parton distribution function in the limit x — 1 in virtuality p (vertical) and rapidity v (horizontal).
The anomalous dimensions for each evolution step involve the displayed number of active quark
flavors. The label m indicates that the corresponding evolution is mass dependent.

This can be checked explicitly at two-loops with the results given in Eqgs (B.20)), (B.12)), (C.9), (C.11))
and . The rapidity evolution is carried out between the massive jet function and the current
matching function H,. at the rapidity scale v ~ ) and the soft current matching function H, at the
rapidity scale v ~ m, as indicated by the horizontal arrows in Fig. It is identical to the one
involving only the hard functions Hs and H, in Sec[2.1.3]

3.2.2 Quark mass effects for m < Qv1— =z

If the jet scale becomes much larger than the mass scale, i.e m < Q+/1 — x, the heavy flavor can
be considered massless up to power corrections of order ~ m?/ (Q2(1 — x)) when integrating out the
n-collinear modes at the jet scale, leading to the standard n; + 1 flavor massless jet function. The
analogous statement also holds for the hard function. Integrating out the mass modes at the mass
scale, that is now much smaller than the jet scale (but still much larger than the non-perturbative
scale Aqcp), leads to a larger number of matching functions compared to Eq. above.

After integrating out the n-collinear modes as in Eq. with ny = n; + 1, where all flavors are
treated as massless, such that it gives the massless n; + 1 flavor jet function as a matching coefficient,
we are left with a theory with n; + 1 n-collinear-soft, soft and n-collinear modes. The virtuality of
these modes can be lowered down to the mass scale, where the heavy flavor is integrated out. The
matching at the mass scale can involve different mass modes (n-collinear-soft, soft, n-collinear-soft),
depending on how the mass m scales with respect to Q(1 — x), because this is the scale where the
collinear-soft modes become soft (compare Fig. and . This matching procedure, however,
always leads to identical results for the combination of all relevant matching coefficients. This is
clear from the fact that the only physical scales in the process besides the mass are the hard scale
@, the jet scale Qv/1 —x and the non-perturbative scale Aqcp, so that it is obvious that only the
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relative scaling of the mass with respect to these scales can have an effect, but not the scaling with
respect to the non-dynamical scale Q(1 — x). So whether one does the matching of the n; + 1 to
the n; flavor theory when integrating out the heavy flavor in the scenario where m < Q+/1 — x with
(a) n-collinear-soft mass modes (corresponding to the case where m > Q(1 — x)), or (b) soft mass
modes (corresponding to the case m ~ Q(1 — x)), or (c) f-collinear-soft mass modes (corresponding
to the case m < Q(1 — x)), is just a technicality changing some details of the calculations and the
mode-setup, depending on the choice of the rapidity regulator, but is not changing any of the final
analytical results when combing all matching coefficients that arise, as will be discussed below.

If m > Q(1 — x), the mass modes have the momentum scaling

m2
n-coll. MM: pk ~ (Q, a,m) ,
soft MM: pt ~ (m,m,m),

m? )
77 m )
QL —x)
as also indicated in Fig. When integrating out the heavy flavor, this leads to separate matching
coefficients in each of the three sectors. In the n-coll. and the soft sector, the mass modes can not

contribute to the measurement and are therefore integrated out in the SCET current, leading to the
mass mode matching functions Hy and H, as before, with the result at two-loops given in Egs. (C.8)

and ((C.10).

The momentum scaling of the n-collinear-soft mass modes in Eq. is determined by the on-
shell condition and that the component n - p coincides with the respective dynamical momentum
component of the collinear modes, i.e. n-p ~ Q(1 — z). In this way the collinear-soft mass modes
can contribute the measurement of the invariant mass of the final state P% ~ Q*(1 — z). Integrating
out the heavy flavor in the n-collinear-soft sector therefore leads to the matching relation between
non-local collinear-soft matrix elements in the n; + 1 and n; flavor theories

n-csoft MM: pk, ~ <Q(1 —x), (3.33)

yc(nl+1) (E; m, [, V) - /dfl SC(E - 6/7 m, W, V) <Sﬂc(nl)(gl7 Hy V) ’ (334)

with the collinear-soft matrix elements .7, defined in Eq. . This gives the matching coefficient
S., the csoft function, with the contributions up to O(a?) given in Eq. (C.32)). The csoft function is
the same that also appeared in the factorization theorem for beam thrust in Drell-Yan in Sec. 2.2:3]
The virtuality of the remaining n; massless modes can then be lowered without any further matching
down to the non-perturbative scale, where they contribute to the PDF as in the massless case in

Ba. (E19)

The factorization theorem, consisting of the n;+ 1 flavor massless hard and jet functions, the n; flavor
PDF and the mass mode matching functions Hg, H. and S, reads

1 - (n v n
Fi(e,m,Q) =5 > B0(Q ) He(m.p 5)H3<m,u,u> / ds d0 T (5, 1)S,(¢,m, p, v)
ic{q,q}
2

" ‘ e
X gbg )(1—56— % — é7u> [1—%0(1—33, Q2(T—x)’ SSD)] : (3.35)

The p evolution can be carried out by evolving the hard and jet functions and the PDF with their
massless anomalous dimensions with n; active flavors below the mass scale and n; + 1 active fla-
vors above the mass scale, as indicated in Fig. [3.4b| which automatically takes into account the p
dependence of the mass mode matching functions Hg, H. and S., because of the relation

v

Q) +’7§5nl)(1 - Zwu)

=" (1 -2 ) (3.36)

QWSC (Q(l - Z)a m, W, V) + 5(1 - Z)’YHS (m> M, V) + 5(1 - Z)WHC (m7 Hy
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This can be checked explicitly at two-loops with the results given in Eqgs (B.12)), (C.9), (C.11)
and (C:33).

The rapidity evolution is carried out between the collinear-soft function at the rapidity scale v ~
m?/(Q(1 — z)) and the collinear current matching function H. at the rapidity scale v ~ @ and
the soft current matching function H, at the rapidity scale v ~ m, as indicated in Fig. [3.4b] The
anomalous dimensions and the structure of the solutions of the rapidity RGE are the same as for the
case involving only the hard functions Hy and H. in Sec[2.1.3|

The factorization theorem in Eq. was derived assuming the scaling Q(1—z) < m < Qv/1 — z,
such that the n-collinear-soft and soft mass modes in Eq. are clearly separated. This led to the
two matching coefficients S, and Hy in the csoft and the soft sector, respectively. If the mass is of
order m ~ Q(1 —x), the momentum scaling of the n-collinear-soft mass modes in Eq. coincides
with that of the soft mass modes. In that situation, when integrating out the mass modes at the
mass scale, there is only a 7-collinear and a soft sector, see Fig. In the n-collinear sector nothing
has changed compared to the situation where Q(1 — z) < m, i.e. the heavy flavor is integrated
out in the collinear SCET current, giving the same mass mode matching coefficient H. as before.
But now the soft mass modes can contribute to the measurement via their momentum component
n-p~m~ Q( —x). While in the situation where Q(1 — x) < m they could contribute only
via virtual effects and integrating out the heavy flavor in the soft SCET current only gave a local
matching coefficient Hg, in the situation where m ~ Q(1 — x) the matching takes place between soft
matrix elements with a non-local measurement function

D (m, pv) = / A0St m, pv) S ) (3.37)

where the soft matrix elements . are defined in Eq. . This matching relation has the same
form as the one in the csoft case in Eq. , but with the csoft matrix elements replaced by soft
matrix elements, and the matching coefficient is therefore the new soft function S. In this way when
going from the scenario Qv1 —x > m > Q(1 —x) to m ~ Q(1 —z), the matching coefficients arising
from integrating out the heavy flavor in the factorization theorem in Eq. , are changed from
H.x Hy x S. to H. x §. As we will discuss below the two expressions are in fact identical.

In the case where m < Q(1 — x) (but still as always assumed here much larger than Aqcp), the
virtuality of the soft modes gets lowered even further, such that they become 7-collinear-soft when
they reach the mass scale where the heavy flavor is integrated out. Their momentum scaling is

2

i (Q(l — 1), #_x)m) , (3.38)

which implies that they are boosted in the 7fi-direction because m < @Q(1 — z), in contrast to the
n-collinear-soft modes in Eq. for m > Q(1 — x). This implies that the soft matrix elements
in Eq. get replaced by n-collinear-soft matrix elements, leading to a matching relation for
integrating out the heavy flavor of the form

S m, p,v) = / Al Sa(0 =0 m pv) (i, v) (3:39)

with the n-collinear-soft matrix elements .7 defined in Eq. . Nothing is changed in the n-
collinear sector compared to the case m ~ Q(1 — x), i.e. integrating out the heavy flavor in the
collinear SCET current leads to same the mass mode matching function H,., such that the only
change in the factorization theorem when the mass becomes much smaller than Q(1 — x) is the
replacement of the soft function & by the n-collinear-soft function Sz, that is defined by the matching

relation in Eq. (3.39).

Since we know that the only physical scales in the process besides the mass m of the heavy flavor
are the hard scale ), the invariant mass of the hadronic final state (J4/1 — x and the hadronic scale
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Aqcp, the factorization theorem cannot depend on the scaling of the mass with respect to the non-
dynamical scale Q(1 —x). This implies that all results for the matching coefficients for the three cases
m> Q1 —xz), m~ Q(1l —z) and m < Q(1 — x) have to agree, leading to the relation

Hy(m, p,v)Sc(b,m, p,v) = SE,m,pu,v) = Sz(4,m, p, v) (3.40)

between the various mass mode matching coefficients in the n-collinear-soft, soft and n-collinear-
soft sectors. These relations are independent of the choice of the rapidity regulator, though the
results for the individual functions depend on which rapidity regulator is employed. In this thesis
all contributions are always calculated with the symmetric 7 Wilson-line regulator [40], the results
for Hy and S, at O(a?) are given in Egs. and (C.32). The soft and n-collinear-soft matching
functions § and S; with the n-regulator have been calculated in Sec. V of Ref. [2]. With these results
Eq. can be checked to two-loop order. We remark that the distinction between S., S and
Sz is only introduced by the choice of a rapidity regulator (here the n-regulator with its action on

n-collinear-soft, soft and 7i-collinear-soft Wilson lines given in Eqs. (3.12), (3.14) and (3.19))) that

distinguishes between different boosts of the gluon momenta, and is for example absent when using
instead the regulator k% — k% (%)a for the gluon loop momentum suggested in Ref. [104]. This
regulator does not distinguish between different boosts of the gluon momentum, such that the matrix
elements .7, . and /% are identical already at the integrand leve]ﬂ All corrections beyond tree
level to the local soft current mass mode matching function H, are scaleless when using this regulator
and therefore vanish, such that Eq. trivially holds. We emphasize again that when using this
regulator the results for the collinear current mass mode matching functions H. are not anymore

identical for the n- and the n-direction.

In the following we will adopt the form of the factorization theorem in Eq. with the current
matching function Hs and the n-collinear-soft function S, as for Q(1 — z) < m, regardless of the
relation of m and Q(1 — x). This may seem an unnecessary complication compared to writing it
with only § or Sz because instead of having just one mass mode matching function it is split into
two separate functions, but it will turn out to be more convenient when comparing with the other
factorization theorems for beam thrust in Drell-Yan discussed in Sec. and thrust in ete™ — jets
discussed in appendix [A] and also when incorporating the mass related power corrections in Sec.
In this way the matching functions are completely universal, such that in the factorization theorems
for all three processes discussed here - beam thrust in DY, DIS in the endpoint and thrust in ete™ —
jets - the mass mode matching functions are always the same H,, H. and S;. This also implies that the
rapidity evolution related to secondary massive quark effects is universal for all three observables, an
important result that was not directly clear from Refs. [1,2L|12], where the resummation of secondary
massive quark effects in DY, DIS and eTe™ — jets were discussed separately.

3.2.3 Relations between hierarchies

We will now discuss how the ingredients in the different factorization theorems for the different hier-
archies presented in the previous sections are related with each other, in analogy to the presentation
in Secs. 2.1.6] and [2.2.5] for the case of DY. Here we only give a collection of the various relations
existing between the mass dependent hard and jet functions and their massless counterparts in the
n; and n; + 1 flavor schemes and provide the equations to check them with our results up to O(a?2),
without discussing them further. But in Sec. theses relations between the various functions in
the massless and the decoupling limit form the basis of the UF approach which is a variable flavor
number scheme where the mass dependent power corrections that are omitted in the MMF approach
are included for any scale hierarchy, so that it is applicable for an arbitrary scaling of the mass relative

3When using the n-regulator the soft function S and the f-collinear-soft function Sz are still identical, but the
individual virtual and real radiation diagrams are not. Only the sum of all diagrams is identical, see Sec. V of Ref. |2]
for details of the calculation.
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to the other scales. The relations between the modes for DIS in the endpoint in the different regimes
are summarized in Fig.

The massless results at O(a;) and O(agCFTp) are collected in appendix [B] the contributions from
secondary massive quarks at O(a?) in appendix The relations between the hard and the jet
functions in the different hierarchies given here can be checked explicitly up to O(a?) with the results
there.

The hard functions of DIS in the hierarchies m ~ @ and m < @) have the same relation as the hard
functions for Drell-Yan shown in Eq. (2.37))
2

H(Q,m, 1) "= A (Q, ) He (m, . g)Hc(m,u,g)Hs<m,u, v) + 0(%) . (3.41)

The mass dependent hard function used for m ~ @) also shows the correct decoupling behavior in the
limit Q < m, i.e.

. m 2
A(Qm, ) OE" H(Q,0) + 0(Ly). (3.42)

The mass mode jet function in the hierarchy m ~ Q+/1 — x is related to the massless jet function
with n; flavors and the collinear mass mode matching function H,. by

J(s m, i, Q) s Hc(m,,u, %)J(”l)(s,u) X (1 + (’)(%)) , (3.43)

which is the same relation that also holds in the same limit for the mass dependent beam func-
tion matching coefficients, both the ¢r and the virtuality dependent ones, expressed in Eqgs.
and , respectively. In the small mass limit the mass mode jet function is related to the massless
jet function with n; + 1 flavors and the csoft function by

J(s,m,u, %) mis /dﬁ J(”ZH)(S — QU p)Sc(l,m, p,v) X (1 + (9(7’12)) . (3.44)

S

With our results we can check these relations at O(a2). We will use the notation of Eqgs. ([2.33)
and ([2.36]) and remind the reader once again that to get the correct limiting behavior the appropriate
flavor scheme for the strong coupling has to be used, i.e. the n; 4+ 1 flavor scheme for the small mass

limit and the n; flavor scheme for the heavy mass limit. The small mass limit of the mass dependent
hard function expressed in Eq. (3.41) can be checked with the results in Egs. (C.6]), (B.2), (C.8])

and (C.10)

2
7(2,h) mLQ 2.0 (2) (2) (2) m-
TrHZM(Q,m, 1) TrH®D(Q, p) + H{ (m ,an) + H; (m M,Q> + H® (m, p, v )+O( 2).
(3.45)
The decoupling limit at O(as) in Eq. can be seen from Eq. -
2
7(2.h) A g Qm (7
HEM(Q,m, 1) 3LmH Q) Y= 0(5). (3.46)

The heavy mass limit of the mass mode jet function in Eq. (3.43) at O(a2) can be checked with the

result in Eqgs. (C.27)), (B.19)) and (C.10J)
4 sK<m
T @ (s,m, p, %) = ST L (s, ) “< 1P (m %)6(5) +0(-=5), (3.47)
and the small mass limit of the mass mode jet function in Eq. (3.44) with Eqs. (C.27), (B.19)
and (C232)

2

TFJ(Zh)<s m, [, Q> " <<ST T2 (s, 1) + QS( )<Q m, [, v )—l—(’)(%) (3.48)
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Figure 3.5: Relevant modes DIS in the endpoint (1 — z) < 1 for different hierarchies between the
quark mass m and the scales ()+/1 — 2 and (). The directions of the arrows indicate how a particular
mode contribution is separated when the expansion of another hierarchy is used.
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Chapter 4

An Alternative Way of Constructing
the Variable Flavor Number Schemes

In this section we will present an alternative approach on how to construct a VFNS called universal
factorization (UF) approach, and compare it to the MMF approach that was used in the previous
sections. The resulting factorization theorems have an equivalent content to the ones in the MMF
approach for all possible hierarchies (see Sec. . The UF approach provides a different setup on
how to include the mass effects, leading to factorization theorems for the different hierarchies that
correctly resum all logarithms but in addition also show a smooth transition from one to the other
when the scaling of the mass relative to the other scales is changed, i.e. no strict separation of the
scales needs to be assumed and all mass related power correction are automatically included.

The idea of the UF approach is to have the same structures that appear in the massless factorization
theorems, e.g. the jet function, the soft function etc., as the universal building blocks. The goal is to
have a definition of these functions containing all contributions from massive quarks that allows for

a) a smooth transition between all different hierarchies that the mass can have with respect to the
other kinematic scales, i.e. a description that does not specifically rely on a large separation of the
mass scale from other scales and does not contain any expansions in the mass,

b) resummation of all rapidity logarithms within those functions themselves, such that each function
can be defined as an already resummed building block that can then be inserted in any factorization
theorem for a practical implementation.

In this way this approach differs from the MMF approach, where always a fixed scaling of the mass with
respect to other scales was assumed and all subleading contributions were always strictly expanded
away, leading to a framework where the resulting structures in the factorization theorems are in general
valid only in one strict hierarchy, and rapidity logarithms are always resummed in an evolution in
rapidity between the different functions in the factorization theorems.

The UF framework was first developed in Refs. |[11,[12] for thrust in the peak region in e™e™-collisions
(see also appendix [A]for the corresponding setup in the mass mode factorization approach), and then
applied to DIS in the endpoint region in Ref. [2]. It is also discussed in great detail in Ref. [20], and
we will therefore only give a short summary on how the UF scheme is implemented for the various
functions in the factorization schemes in Sec. In Sec. we will compare the UF and the MMF
approach for secondary massive quarks, show how they are equivalent and discuss where they differ.
A similar comparison for the primary massive quark jet functions in the MMF and the UF approach
was given in Ref. |71].
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4.1 The universal factorization scheme

The basic idea to get functions in the factorization theorems that keep the full mass dependence and
are therefore applicable over the full range of possible hierarchies, is to not integrate out the heavy
flavor at its mass scale, but use different renormalization schemes for the massive contributions,
depending on whether the mass is above or below the natural kinematic scale of the function. This
idea follows and extends the treatment of mass corrections in inclusive heavy flavor production (e.g.
in the calculation of quark mass effects in the hadronic R-ratio), where an appropriate choice of the
renormalization scheme of the coupling, either in a scheme with n; active flavors in the RG evolution
(when contributions from the heavy flavor are renormalized with a low-momentum subtraction) when
the scale is below the quark threshold or in a scheme with n; + 1 active flavors (when contributions
from the heavy flavor are renormalized in the MS scheme) when the scale is above the quark threshold,
leads to the correct massless and decoupling limits for the heavy flavor [105-107].

This concept can be extended to factorized differential cross sections, involving different gauge invari-
ant functions that describe the physics at the various energy scales involved in the process [11,12].
To achieve a setup that allows for resummation of logarithms that contain the quark mass as a
scale, while keeping the full mass dependence in all functions in the factorization theorem with the
correct massless and decoupling limit, the strategy of changing between the mass independent MS
renormalization scheme and a low-momentum subtraction scheme has to be applied not only to the
renormalization of the coupling, but to the renormalization of each of the UV divergent structures in
the factorization theorem. Since all of the SCET matrix elements involved in the matching relations
defining the hard, jet, beam and (c)soft functions in the previous chapters are UV divergent, they
require an additional renormalization (beyond that associated to the strong coupling) where the UV
divergences are absorbed into a counterterm. As always there is the freedom of which finite terms
are additionally absorbed into the counterterm, leading to different renormalization schemes. One
scheme that will be used in the construction of the different functions in the factorization theorems
in the UF approach is the standard MS scheme, where only the %—divergences are absorbed into the
counterterm. The other renormalization scheme that will be used corresponds to a low-momentum
subtraction scheme, where all contributions from the heavy flavor that do not automatically decouple
in the limit m — oo are absorbed into the counterterm. Those are typically the mass-dependent
distributional terms appearing in the functions, while contributions related to real production of the
heavy quarks will have the correct decoupling limit due to kinematic thresholds and are therefore not
absorbed into the counterterm. Motivated by the on-shell renormalization scheme we will refer to this
low-momentum subtractions with respect to the massive quark also as “on-shell” (OS) subtractions.

We will discuss the UF scheme for a generic function F(y, ), where F' can stand for any hard, beam,
jet or soft function or PDF as they appear in the factorization schemes discussed in the previous
chapters. The variable y stands for the kinematic variable that this function depends on, like e.g. the
center of mass energy () in the case of the hard function or the virtuality ¢ in case of the virtuality
dependent beam function. We denote the natural kinematic scale, i.e. the scale that minimizes the
logarithms in F'(y, ) in the massless case, as pup (e.g. for the hard function pup ~ @), and the mass
scale as py, ~ m.

Then the rule to get the mass-dependent function F'(y,m,p) as it is implemented in the universal
factorization scheme is as follows: If urp < pm,, the massive quark corrections to F' are renormalized
in the OS scheme that was described above. Also the contributions from the massive flavor to the
strong coupling are renormalized with the OS subtraction, such that a scheme of n; active flavors
for the strong coupling is implemented. In this way the heavy flavor does not contribute to the
RG evolution of F' and automatically decouples in the heavy quark limit m — oo. If p, < pup
the massive quark corrections in F' are renormalized the MS scheme, and the same is also done for
massive quark contributions to the running of «y, i.e. a n; 4+ 1 flavor scheme is used for the strong
coupling. In this way the massive quark constitutes an additional active flavor in the RG evolution.
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In this renormalization scheme the function F' reduces to the correct massless function with one extra
massless flavor in the limit m — 0. Contributions from massless quarks are always renormalized in
the MS scheme. The distinction between MS and OS subtractions is thus only to be made for effects
of the massive flavor, including its contributions to the running of the coupling. We will denote
the function F renormalized with the MS and OS subtractions by FMS and FOS, respectively, and
emphasize again that this does not only refer to the renormalization with respect to the massive
quark of F' itself, but also to the renormalization scheme used with respect to the massive quark in
the strong couplingﬂ

Written out explicitly this means that when the contributions from the massive flavor are renormalized
with the MS subtraction, they contribute to the running of the MS renormalized F' as an active flavor
the same way as the massless quarks do

d

_ . _
gy P ) = 2 ) © FYS (o) (4.1)
where ’y}?lﬂ) is the anomalous dimension of F' for n; + 1 massless flavors. Here the symbol ® should

be understood as either a simple product or as a convolution in y, depending on whether the evolution
of the function F' is local or not. When the contributions from the massive flavor are renormalized in
the OS scheme, they do not contribute to the running of the OS renormalized F

d n
i FOS(y,m, ) =+ (y, ) @ FOS(y,m, ) , (4.2)

where ’yg”) is the anomalous dimension of F' for n; massless flavors.

With the MS subtraction the massive contributions reduce to those of an extra massless flavor in the
limit m — 0

2

FMS(y,m, ) = FOHD (y, 1) % (1 + 0(%)) (4.3)

But the MS scheme does not exhibit a decoupling behavior in the heavy quark limit.

With the OS subtraction all effects of massive quarks that do not decouple in the heavy quark limit are
absorbed into the counter term for F, which means that F©OS automatically has the correct decoupling
limit

FOS(y, m, 1) = F™) (y, 1) x (1 n o(%)) . (4.4)

On the other hand those terms that are absorbed in the counter term are now missing to cancel other
terms that are divergent in the limit m — 0, such that the massless limit is not feasible with the OS
subtraction. Therefore it is import to always keep the contributions of the massive flavor renormalized
in the OS scheme when the mass scale is above the natural scale of F' and in the MS scheme when
the mass is below the natural scale, such that both limits can be reached smoothly and correctly.

It is important to note again that in the definition of F' no expansion in the mass with respect to any
other scale is made, which means that F' contains the full mass dependence and does not only exhibit
the correct limiting behavior in the small and large mass limit as indicated in Egs. and ,
but is also correct when m? ~ y. This is one of the differences of how the various functions in the
factorization theorems are defined in the UF approach compared to the MMF approach. In the latter
these functions are always valid only in a certain scaling of the mass with respect to the kinematic

!This notation with the superscripts MS and OS differs from the notation used in Refs. [2,/12], where instead the
superscripts (n; + 1) and (n;) where used to indicate when a function is renormalized with MS subtractions (i.e. with
n; + 1 active flavors in the RG running) or with OS subtractions (i.e. with n; active flavors in the RG running).
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scale that is assumed in defining them, and the missing power corrections of O(y/m?) and O(m?/y)
have to be implemented by a dedicated additional procedure, as discussed in Sec. [£.2.1]

Since we want to have F' to be renormalized with the OS subtraction when its dynamical scale is
below and with the MS subtraction when it is above the mass scale, the renormalization scheme needs
to be changed when the mass scale is crossed in the evolution of F'. This is done by the insertion of so
called threshold corrections, that are analogous to the matching conditions that arise when relating
the strong coupling in the n; + 1 and the n; flavor scheme. The threshold corrections Mf are just
the ratio of ' with the OS and the MS subtractions

— -1
M;(yv m, Mm) = FMS(Z/? m, Nm) ® (FOS(y’ m, Mm)) )
—_ -1
Ml?(yu m, Mm) = FOS(y7 m, :u’m) ® (FMS(y’ m, /Jﬂn)) ’ (45)

and therefore take F' from one scheme to the other. M} is used when the mass scale is crossed from
below in the evolution (which means that the heavy flavor is added as an active flavor in the RG
evolution), and M. when the mass scale is crossed from above (when the heavy flavor is removed
from the RG evolution as an active flavor). To avoid large logarithms in the threshold corrections the
matching has to be done at the mass scale u,, ~ m. In this way the u-dependence of the threshold
correction is by construction exactly the difference of the running of F' in the (n; + 1) and the (ny)
flavor scheme

d n n
o ME(y,m,p) = £ [vfu Dy, 1) — 7 (y, )| © MiE(y,m, ), (4.6)

such that the renormalized F is effectively always evolved with n; flavors below the mass scale (where
FOS must be used) and with n; + 1 flavors above the mass scale (where FMS must be used).

To resum logarithms in F' in the massless case, the function is first evaluated at its natural scale up
where all logarithms are small, and then evolved in a RG evolution to the common renormalization
scale p of the factorizaton theorem. This is done in a convolution with an evolution kernel Ug, such
that

F(y, o pir) = UT (y, 1, pp) @ F(y, ) - (4.7)

The superscript (ns) indicates that the evolution is carried out for ny massless flavors. It is these
resummed functions F'(y, u, pr) that then finally appear in the factorization theorems, when they are
not evaluated at fixed order but are used to resum large logarithms.

In the massive case there are in total four different possibilities how the function F' is implemented in
the factorization theorem, depending on how the global renormalization scale u, the mass scale i,
and the natural scale of the function up lie with respect to each other.

pE < fpm < p:

n;+1 n
F(y,m, 1y s o) = US D (1, ) @ My, m, i) @ US (y, pin, i) @ FOS(y,m, ) . (4.8)

Here F is evaluated with the OS subtraction for the massive quark contributions at its natural scale
ur, then evolved with n; active flavors to the mass scale p,,, where the scheme switch from the OS
to the MS subtractions is done. From there it is evolved with n; + 1 active flavors to the global
renormalization scale .

< pm < pp
_ 1 MS
F(y,m, 1y s 1) = USD (Y, 1, i) @ M (5,0, i) @ US D (y, i, 1) @ FNS(y,m, pp) . (4.9)

Here F is evaluated with the MS subtraction for the massive quark contributions at its natural scale
wr, then evolved with n; + 1 active flavors to the mass scale u,,, where the scheme switch from the
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MS to the OS subtractions is done. From there it is evolved with n; active flavors to the global
renormalization scale .

) _
[ < s JLF F(y,m, o iy i) = U0 (g, 1, up) @ FMS(y,m, pp) (4.10)

Here F is evaluated with the MS subtraction for the massive quark contributions and then evolved
to the global renormalization scale p with n; + 1 active flavors. The mass scale is never crossed.

o o < flm F(y,m, by s 1) = US™ (y, 1, i) © FOS (y, m, i) (4.11)

Here F' is evaluated with with the OS subtraction for the massive quark contributions and then
evolved to the global renormalization scale u with n; active flavors. The mass scale is never crossed.

The factorization theorems for the various processes including the full mass dependence in the resum-
mation then take the same form as in the massless case, but each hard, jet, beam and soft function
that had the form F'(y, p, ur) as in Eq. (4.7)) in the massless case, being replaced by its massive form

F(y,m, p, pn; o) as in Egs. (4.8)-(4.11).

In general all rapidity logarithms that can become large if the scales g and u,, are widely separated
and therefore need to be resummed are contained the threshold corrections Mp. In Refs. [11,|12]
it was shown that these logarithms can be resummed by factorizing the threshold corrections into
contributions arising from different modes or from radiation into different hemispheres, as we will
discuss below.

In the following sections we will briefly sketch how the UF scheme is implemented for treatment of
massive quark effects in the jet, beam, soft and hard functions and the PDF in the endpoint. Except
for the beam functions this is discussed in more detail in Refs. |2,|11}/12,20]. We will not write down
the explicit results for the various functions in the different renormalization schemes and the threshold
corrections here, but show how they can be constructed from the ingredients of the MMF approach
in Sec.

4.1.1 Jet function

We will first discuss how the UF scheme is implemented for the hemisphere jet function. We will again
consider only secondary massive quark effects here, a similar discussion also for the primary massive
quark jet function in the UF and the MMF approach can be found in Ref. [71]. As explained above,
the massive flavor is never integrated out, such that the massive jet function is always a matching
coeflicient between a theory with n; + 1 hard-collinear modes and a theory with n; + 1 collinear-soft
modes that remain after the hard-collinear modes have been integrated out from the theory. This
differs from its definition in the previous sections in the MMF scheme, where we either had only
massless flavors in the matching or, in the case where the mass was of order of the jet scale, the
matching was between n; + 1 hard-collinear and only n; collinear-soft modes, since the heavy quark
got integrated out completely at that scale. In the UF approach the relative scaling of the mass scale
to the jet scale only changes the renormalization scheme, such that we have two different definitions
of the renormalized jet function, either with OS or MS subtractions for the massiv quark

T8 (s,m, ) = / a0.75 (s — QO m, 1) 7O (6, m, 1)

T (s, ) = [ @ TS5 = Qe ) S E ). (1.12)

Here J and .7, are the collinear and collinear-soft matrix elements defined in Eqgs. (3.8) and (3.11)),
respectively, with n; massless and one massive flavor, and the matching coefficient J is the jet function
that appears in the factorization theorem. Again the superscripts OS and MS only indicate which
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subtraction scheme is used for the contributions from the massive quark, and contributions from
massless quarks are always renormalized with MS subtractions. Since the massive contributions
to the collinear-soft matrix element .7, are purely distributional and do not exhibit any kinematic
threshold and therefore do not decouple in the heavy quark limit, they are completely absorbed into
the on-shell counterterm, such that the OS renormalized csoft matrix element is equal to the csoft
matrix element with only n; massless flavors, i.e. .ZO5(¢,m, u) = Yc(n’)(ﬂ, ). In this way the UF jet
function in the MS scheme has the correct massless limit, while the UF jet function in the OS scheme
exhibits the correct decoupling limit. Note that even though the matrix elements in the MS scheme
have a dependence on the rapidity scale v, the resulting jet function is independent of v since the v
dependence completely cancels between the collinear and the collinear-soft matrix elements. The jet
function defined in this way does also not contain any large rapidity logarithms.

The threshold correction M ; for the jet function, defined as in Eq. (4.5]), contains rapidity logarithms
of the form In(s/m?), that can be resummed by factorizing the threshold correction into contributions
coming from the collinear matrix element 7 and the csoft matrix element .7,

+ vy 1 aMS( . v 0S/ -1
/\/lj(s,m,,um, Q> —/ds J (s s’ my i, Q)(j (s ,m,,um)> , (4.13)
— -1
M}C(ﬁ, M, fhm,, V) :/dﬁl IMS— 0 m, o, v) (YCOS(E/,m,,umD (4.14)
such that
v -1
Mf(s, My fhn) = /df M;(s — Ql,m, fm, §> (M;C(f, m, fhm, 1/)) . (4.15)

The result for M ; in terms of the mass mode matching functions of the MMF approach is given in
Eq. (4.52).

Each of the separate threshold corrections M s and M » now has a dependence on the rapidity
renormalization scale v, which can be used to resum the logarithms by evaluating them both at their
respective natural rapidity scale that minimizes the logarithms and then run them to a common
rapidity renormalization scale in a rapidity RG evolution. How this is related to the resummation of
rapidity logarithms in the MMF scheme is discussed in Sec. [£.2.2] To further avoid large logarithms
in virtuality the threshold correction should be evaluated at a scale p, ~ m.

In Refs. [2,|11,/12] the jet function was not defined as a matching coefficient onto a theory containing
collinear-soft modes only, but only as the collinear matrix element with the relevant subtractions
from lower virtualities made as a zero-bin subtraction, see also the discussion after Eq. and
Eq. . We will now briefly discuss how the jet function in the UF approach can be defined
also in that way. To avoid double counting and make sure that the massive jet function has the
correct massless limit in the MS scheme, any non-vanishing regions in the integrals contributing to
the jet function from virtualities lower than the jet scale must be subtracted. In the MMF scheme
the massive quark was integrated out at the jet scale when its mass was of the order of the jet scale,
such that it did not contribute to the soft function that then contained only purely massless quarks.
Therefore also the zero-bin subtractions in the jet function, that should remove any double counting
with the soft function, had to be done only for the n; massless quarks in the jet function. But in
the UF scheme also the massive flavor contributes to the soft function because it is never integrated
out, such that in this case the subtractions in the jet function must also account for the contributions
from the massive quark.

The collinear matrix element is evaluated with the normal collinear scaling

kT~ s/Q, k™ ~Q, k2 ~ETET ~s, (4.16)
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and the only region with lower virtuality that does not lead to scaleless or power suppressed integrals

i?]
kT ~s/Q, k- <Q, ko~ kTR < s (4.17)

Because we want to keep the full mass dependence, regardless of the scaling of the mass with respect
to the other scales, we never do an expansion in the mass m in the integrands, i.e. in the calculation
we always treat the mass as if it had the scaling m? ~ k2, even if we are in a scenario where m? > s or
m? < s, such that no expansion in m is done. While expanding the integrands in the loop momenta
using the scaling in Eq. leads only to scaleless integrals in the massless case, which corresponds
to the standard zero-bin subtractions, in the massive case this is no longer true and and we get
non-trivial contributions that need to be subtracted to get a jet function that correctly includes the
full mass dependence. When doing this with the massive quark contributions renormalized either in
the MS or OS scheme, this leads to the same jet functions as the definition in Eq. , because
the subtraction terms arising when expanding for the scaling in Eq. in the massive case are
identical to the collinear-soft matrix element.

In order to resum rapidity logarithms in the threshold correction M, it needs to be factorized into
two separate parts that get contributions from different regions in rapidity. In the definition of the
jet function as in Eq. those were coming from the collinear and collinear-soft matrix elements
in Eqgs. and , leading to the factorized form of M ; as in Eq. . These are each by
themselves matrix elements of gauge invariant operators, that get renormalized separately and can
then be evolved in a RG running. In the case where the jet function is defined as the collinear matrix
element with the subtractions from lower momentum regions as a zero-bin subtraction as discussed
above, the threshold corrections can be factorized into contributions coming from the naive collinear
matrix element and contributions coming from the subtractions. In order to do so both contributions
must be renormalized separately, with the rapidity divergences, that cancel only in combination of
contributions from the massive flavor, absorbed into two separate counterterms. One counterterm for
the contributions coming from the pure collinear matrix element in Eq. without subtractions,
and one counterterm for the contributions coming from the subtraction when using the scaling in
Eq. . In this way one does not renormalize two separate gauge-invariant operators, but rather
assigns an individual counterterm to the contributions coming from a specific region in an integral.
In this way one can define rapidity anomalous dimensions for the unsubtracted matrix element and
the zero-bin subtractions and the rapidity logarithms can be resummed in a rapidity RG evolution,
analogous to the definition with the collinear-soft matrix elements in Eq. . Because the results
of the zero-bin subtractions for massive quarks are the same as for the csoft matrix elements for
massive quarks, this results in the same form of the resummed threshold correction M ;.

4.1.2 Virtuality-dependent beam function

The discussion of the virtuality-dependent beam function is similar to that of the jet function in the
previous section. The difference in the definition of the beam function matching coefficient Z with
massive quarks compared to the MMF case in Eq. (2.90]) is again that the massive flavor is never

2In Ref. [11] the subtraction was made using the scaling
kT ~m, k™ ~m, K2~ kTR ~m?,

what was called a soft mass mode bin subtraction, with the additional change in the scaling of the invariant mass of the
jet to s ~ m@Q. This leads to exactly the same integrals after doing the expansion and therefore also the same result for
the jet function, but conceptually is not the correct region to subtract. This should instead be the collinear-soft region
at a lower virtuality as in Eq. , Indeed, without the somewhat artificial change of the scaling of the jet invariant
mass s, the soft mass mode bin subtraction does not give non-vanishing contributions and is therefore considered not
relevant in the light of our discussion here.
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integrated out, i.e. also the csoft matrix elements and the PDFs contain the full n; 4+ 1 flavors, and
only the renormalization scheme for the heavy flavor is changed

B8 moa )= S [ AT —wtm, ) @, FO5(0m, p)
ke{q,q,9}
X YCOS(E,m,u),

_ v _ _
‘@%\/[S<t7m7xa,u7;> = Z dEIzl\IgS(t_w&maxnu) Qg flgds('xvva)
ke{q,q.9}

% NS0 m, p,v). (4.18)

The dependence on the rapidity renormalization scale v cancels between the collinear and the collinear-
soft matrix elements such that 7 is independent of v for both the OS and the MS subtraction schemes
for the massive quark. The matching coefficients Z defined in this way have the correct massless limit
when using the MS subtractions and the correct decoupling limit when using the OS subtractions for
the massive flavor. In both cases they are free of rapidity logarithms.

Remember that the csoft modes eventually only manifest themselves as part of the soft function, such
that the RG running in the collinear sector is caused only by the matching coefficients Z and the
PDFs f. The relevant threshold correction, that encodes the change of the renormalization scheme
in the functions that contribute to the running in the collinear sector, that one needs to calculate
is therefore that of the beam function with subtraction from csoft contributions already made, i.e.

= #B® .7 ' =T ®, f, which is also the function that appears in the factorization theorem.
The threshold correction to the light quark beam function Mp contains rapidity logarithms from
secondary massive quarks of the form In(t/m?) that can be resummed in a similar manner as for
the jet function threshold correction by splitting it into contributions coming from only the purely
collinear matrix element and from the csoft matrix element

M%(t, m,x,,um,£> :/dt’%MS< —t' 'm,z ,um,w) (%Os(t m,x um))_l, (4.19)
such that
M%(t,m,x,,um) = /df/\/l%( —wl,m, T, b, )(My (L, m, o, v )>_1, (4.20)

with M o, as in Eq. (4.14)). The result for Mp in terms of the mass mode matching functions of the
MMEF approach is given in Eq. (4.52)). The logarithms are resummed in an rapidity RG evolution of the
threshold corrections Mz and M &, , each from its natural rapidity scale to a common renormalization
scale.

Also for the beam function one can define the matching coefficient Z;; and the threshold corrections
ME with zero-bin subtractions in the spirit of the calculations in Refs. [2[11,12] instead of a matching
on collinear-soft modes, see also the discussion after Eq. . The definition that leads to the
identical matching coefficients Z;; then reads

Blos(t’m)xnu’): Z Iiclzrs(t?maxau) ®x f]?S(x,m,u),
ke{q.q,9}

BYS(tmoa )= Y TSt mya,p) @0 S (2,mo ), (4.21)
ke{q,q.9}

with B defined with subtractions to avoid double counting with the soft region.

The beam function without subtractions with partonic initial states is evaluated with the normal
collinear scaling

tt/w, k™ ~w, k2~ kT ~t, (4.22)
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where we keep again the full mass dependence in the calculation, irregardless of the scaling of the
mass with respect to the loop momentum, i.e. effectively always treating the mass as m? ~ k2.

For primary massive quarks at one-loop, i.e. Bg, the only other region that does not lead to vanishing
or power suppressed contributions is

k< tjw, k™ ~w, k2~ kTR <t (4.23)

This corresponds to the collinear region of lower virtuality that is already covered by the PDF and
must therefore not be subtracted again, because it is already subtracted from the matching coefficient
when matching the full beam function onto the PDF, such that no double counting takes place.

For secondary massive quarks at two-loops, i.e. corrections from the heavy flavor to the light quark
beam function By, one can identify different regions of lower virtuality that lead to non-vanishing and
non-suppressed contributions

k< t/w, k™ ~w, k2~ kTR <t
kT ~t/w, - <w, ko~ kTR <t (4.24)

The first corresponds again to collinear fluctuations covered already by the PDF and does not need to
be subtracted again. The second corresponds to regions that have an overlap with the soft region and
must be subtracted to avoid double counting between the beam and the soft function. Subtracting this
region from the beam function leads to identical beam function matching coefficients Z;;, in Eqs.
and and also to the same threshold corrections ng;_ In the massless case these contributions
are scaleless and correspond to the standard zero-bin subtractions.

The resummation of rapidity logarithms in the threshold correction to the light quark beam function
M p defined with these subtraction can again be achieved by renormalizing and evolving the subtrac-
tions from the soft regions in the integrals separately, as it was the case also for the jet function in
the previous section.

4.1.3 Hard function

The hard function in the UF scheme is always the matching coefficient for a matching between the
QCD and the SCET currents with all n; + 1 flavors, in contrast to the MMF scheme where the
numbers of flavors on the two sides of the matching relation depended on the relative scaling of the
quark mass and the hard scale pg ~ Q. In the UF scheme only the renormalization scheme for the
massive quark is changed between the OS and MS subtractions, depending on whether m > uy or
m < ug

JQCD(Q7m7:U) = COS(Qamvﬂ) X Jé)CSET(Qa mnu) )
JQCD(vamU’) = CMS(Qamvu) X JSNéSiET(Qv m, :u) ) (4'25)

with H(Q,m, u) = |C(Q, m,u)|?>. The full QCD vector current form factor Jocp is UV finite and
does not require an additional counterterm.

Since the SCET current gets correction only from purely virtual contributions that do not vanish in
the heavy quark limit, all contributions from the massive flavor are absorbed into the counterterm
when using the OS subtraction scheme, i.e. Jé)CSET(Q,m, ) = S(g%T(Q,u). We recall that the
contributions from massless flavors are always renormalized in the MS scheme. The two resulting
hard functions HOS(Q,m, i) and HMS(Q, m, i) are then independent of any rapidity renormalization
scale and free of rapidity logarithms and have the correct decoupling and massless limit respectively.
They are related by the threshold correction My, defined as the ratio of the hard function in the
two different renormalization schemes. In fact the QCD current cancels in that ratio, such that the
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threshold correction for the hard function is just the ratio of the SCET current in the OS and the
MS scheme

2
IS (Q.m, pim)
Jév[CSET(Qv m, //Jm)

and as always My = (M})7!. The result for My in terms of the mass mode matching functions
of the MMF approach is given in Eq. . It contains rapidity logarithms of the form In(m?/Q?)
that become large and need to be resummed to all orders when m < (. They can be resummed
by factorizing the threshold correction into three factors by splitting the full SCET current into
contributions coming from the different collinear and soft sectors JsceT = JSCET,n X JSCET,a X JSCET,s,
such that the threshold correction Mﬁ can be written as

M@ i) = M (Qum, s &) % M (Qums s 5 ) % M, (Qumo o), (4.2
where each My, is a current threshold correction as in Eq. , but only with contributions from
one single collinear or soft sectorﬂ Each of these threshold corrections in the different sectors now
has an explicit dependence on the rapidity renormalization scale v that cancels only in the sum of
all three of them, such that the full threshold correction for the hard function is independent of v.
The rapidity logarithms can then be resummed in an rapidity RG evolution of these three separate
threshold corrections.

ME(Q,m, i) = (4.26)

4.1.4 PDF in the endpoint

The PDF is a non-perturbative object that cannot be calculated in perturbation theory, but since
its dependence on the renormalization scale can be determined perturbatively, also its threshold
correction in the endpoint region Mg, that encodes the scheme change from renormalizing the heavy
flavor in the PDF in the limit 2 — 1 with OS and MS subtractions, can be calculated perturbatively
by evaluating the PDF operator in Eq. with partonic initial states. The resulting threshold
correction contains rapidity logarithms of the form In(1 — x) that need to be resummed to all orders
because we are assuming the limit (1 —z) < 1.

The resummation of these logarithms has been achieved in Ref. [2]. The full threshold correction can
be split into two parts that get contributions from different rapidity scales by separating the PDF
into a collinear and a soft matrix element (or likewise a 7n-csoft matrix element, see the discussion
after Eq. ) as in Eq. . The individual threshold corrections for these two functions are
then defined as

M; (ﬁ,m,,um, %) = /dﬁ’ g%(ﬁ — ' m, g, %) (g(?/%(ﬁ', m,um))_l ,

— -1
ML m, i, v) = /dﬁ’ SMS(0— 0 m, V) (Yos(ﬁ',m, ,um)) , (4.28)

with the collinear and the soft matrix elements defined in Egs. and , respectively, such
that

v
Q
The result for My in terms of the mass mode matching functions of the MMF approach is given
in Eq. . The collinear and the soft threshold corrections M, and M can then both be first

evaluated at their natural rapidity scale that minimizes the logarithms and then evolved to a common
rapidity renormalization scale.

MEW = 2 p) = Q [ QLM (QU = 2) = L &) ME (). (429

3We remind the reader the fact that the threshold corrections for n- and the fi-collinear sector take the form only
holds for the case of a symmetric rapidity regulator.
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4.1.5 Thrust soft function

The (beam) thrust soft function with the massive quark corrections renormalized in either the OS or
MS scheme automatically encodes all mass corrections. It has the correct decoupling limit in the OS
scheme and the correct massless limit in the MS scheme, without any further matching because the
soft function is already free of IR divergences. The threshold correction Mg, defined as in Eq. ,
contains rapidity logarithms of the form In(¢/m), that become large and need to be resummed when
the mass scale is much larger then the soft scale. In Ref. [11}|12] this resummation was achieved
by splitting the full soft function into different contributions coming from virtual radiation and real
radiation in the two different hemispheresﬂ Then the threshold corrections of these, defined in the
usual way as the ratio of the OS and MS contributions, can be calculated separately such the threshold
correction for the full soft function can be written as

Mgs(l,m, i) = /dﬁadﬁb Mg, (Laym, i, V)Mgrb (o, My pom, V) Mg, (0 — Lo — Ly, M i, v) . (4.30)

The result for Mg in terms of the mass mode matching functions of the MMF approach is given in
Eq. ({52).

The threshold corrections from the real radiation in the two hemispheres Mg, —(from real radiation
contributions where both heavy quarks are radiated into hemisphere a) and M S, (from real radiation
contributions where both heavy quarks are radiated into hemisphere b) and the threshold correction
coming from the purely virtual contributions Mg, have different natural rapidity scales v, such
that an incomplete cancellation of these logarithms when evaluated at fixed order leads to a rapidity
logarithms of the form In(¢/m) in the full soft function threshold correction Mg. When each threshold
correction is first evaluated at its natural rapidity scale that minimizes the logarithms and then
evolved to a common rapidity renormalization scale, these logarithms are resummed in the rapidity
RG running.

This means that in the UF approach different real and virtual corrections to the soft function need to
be renormalized separately and then evolved with their own anomalous dimension in rapidity. That
is in contrast to the MMF approach where all the mass mode matching functions that are evolved in
rapidity are defined as matching coefficients between matrix elements of well-defined gauge invariant
operators.

4.1.6 TMD beam and soft functions

We will now discuss how the transverse momentum dependent functions, the beam and the soft
function, are implemented in an UF setup. Also for these SCETy type functions the UF scheme
can provide a convenient way for getting the full mass dependence without any additional massive
power corrections by switching between the OS and MS subtractions. Since the TMD functions are
rapidity divergent already in the massless case, the dependence on the rapidity renormalization scale
v is intrinsic to them and not only a feature of the secondary massive quark corrections. Also the
threshold corrections M; for the TMD functions show this explicit v-dependence. It is, however,
possible to construct an object as a combination of both the TMD soft and beam function that is
free of rapidity divergences and for which also the threshold correction is independent of the rapidity
scale, see below. In this way the resummation of rapidity logarithms related only to the secondary
massive quark effects can be performed in the threshold correction, in a similar way as for the SCET
type functions discussed before.

4There are also virtual-real contributions, but they are purely massless at two-loops and therefore cancel in the
threshold correction, because contributions from massless quark are always renormalized in the MS scheme. There are
further contributions from secondary massive quarks where the two quarks go into different hemispheres, but also these
cancel in the threshold correction because these real radiation effects of massive particles automatically decouple in the
heavy quark limit, which means they are equivalent, both when using the OS and MS subtractions.
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For the TMD beam function the definitions of the matching coefficient Z with the different subtraction
schemes for contributions form massive quarks are

~ v o v
B?S(pT,m,w,uv é) = 2. Iioks(pT’m’x’”’é) ®s fi (@ m, 1),
ke{q,q.9}
=/ v MS ([ = v MS
BYS (5, m, @, 1, @) = > BE(rman, @) @0 fi' (@, m, p). (4.31)
ke{q,q,9}

The matching coefficients Z then have the correct massless limit when using the MS subtractions and
the correct decoupling limit when using the OS subtractions.

Since this is a SCETy; setup there is no soft scale of lower virtuality that could inflict some double
counting with the beam function as we found it for the virtuality-dependent beam function. Therefore
no subtractions from these regions need to be made. This is also visible by expanding the integrals
that contribute to the massive beam function. The only momentum region other than the normal
collinear one that gives non-scaleless and non-suppressed integrals is

kT < prjw, k™ ~w, k2 ~ETET < pk, (4.32)

in both the primary and the secondary massive beam function. This corresponds to the collinear
region of lower virtuality that is already covered by the PDF, such that no additional subtraction
needs to be made since no double counting is made in Z.

The threshold correction for the beam function Mp, defined as in Eq. , contains an explicit
dependence on the rapidity renormalization scale v coming from secondary massive quark contri-
butions, because in contrast to the virtuality-dependent beam function (after subtraction of the
collinear-soft contributions) the TMD beam function has an explicit v-dependence that does not ex-
actly cancel between the OS and the MS scheme. This leaves a threshold correction of the form

Mp (ﬁT, m, T, [bm, 5), where the v-dependence cancels only against the threshold correction of the

soft function Mg (pr, m, tim,v). The results for Mp and Mg in terms of the mass mode matching
functions of the MMF approach are given in Eq. (4.52)).

The threshold corrections of the TMD beam and soft functions Mg and Mg have different natural
rapidity scales, which means that the v dependence in the logarithms cancels when the two are
combined but the cancellation of the rapidity logarithms is not complete and leaves logarithms of
the form In(m?/Q?), that need to be resummed when m? < @Q?. These can be resummed by first
evaluating each threshold correction at its natural rapidity scale and then evolving both to a common
rapidity renormalization scale. In this way one gets a resummed threshold correction when combining
them, that is by consistency of RG running just the same as the one for the hard function Mpy. But
because of the explicit v-dependence it is not possible to have a resummed threshold correction for
the individual beam or soft functions, what has been a feature of the UF scheme for the SCET] type
functions so far.

But it is possible to construct what is called the TMDPDFﬂ

-, - - 4 o
fiTMD(pT7maxaw7M) = /d2p7,“ Bi(pT _pé“amaxvf% ;) S(péﬁma 1y V)7 (433)

where the root is defined in the sense that

[ i [S@r = o )5 G m ) = S(Erm ) (4.34)

5In literature sometimes also the collinear matrix element B; is referred to as the TMDPDF and the distinction
between B; and fi' P is not always clearly made. We use the language following e.g. Ref. |[57] and strictly call B; the
TMD beam function and only f™P defined as in Eq. (#.33) the TMDPDF.
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which leads to a single function that is free of rapidity divergences and independent of the rapidity
scale v. The threshold correction of this TMDPDF is then also independent of v, and the rapidity
logarithms it contains can be resummed between the different contributions from the beam and the
soft function. In this way one can achieve to have one universal function that is resummed in rapidity
in the UF scheme, analogous to the SCET] cases.

4.2 Relation between the two approaches

We will now compare the MMF approach in Sec. and the UF approach for DIS in the endpoint
region and discuss where they differ and in which sense they are equivalent. Here we will only discuss
the relation between the two approaches for DIS in the endpoint region as an example, but the
situation is similar for exclusive Drell-Yan (see chapter [2) and thrust in ete™ — 2 jets in the peak

region (see appendix [A]).

4.2.1 Power corrections in the mass mode factorization scheme

So far, in the MMF approach for Drell-Yan in chapter [2] and for DIS in Sec. we only kept the
full mass dependence in the various functions in the factorization theorems in the case that m ~ p;,
where p; is the natural scale of that function, i.e. the scale that minimizes all logarithms. Otherwise
we always neglected power corrections of the form m?/ /%2 whenever we assumed the hierarchy m < p;
and corrections of the form u?/m? for u; < m, by always using the massless hard, beam, jet or soft
function in either the n; + 1 or n; flavor scheme. This approach does not provide a smooth transition
from one hierarchy to another, because each of those factorization theorems is only valid in the strict
hierarchy of the scales it was derived for. This is one of the differences of the MMF approach as
presented above compared to the UF, where we were able to always keep the full mass dependence.

In this section we discuss how to include these massive power corrections in the MMF approach and
thereby keep the full mass dependence and achieve a smooth transition between all hierarchies for
the example of DIS in the endpoint region as discussed in Sec. It is straightforward to do the
same for the factorization theorems for Drell-Yan discussed in Secs. and and the results will
be presented at the end of this section.

For convenience of the reader we write down again the factorization theorems including the secondary
mass effects (remember that we do not deal with primary mass effects for DIS) for the different
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hierarchies for DIS in the endpoint region

Q<Km :
1 (T n ny
Fi(z,m,Q) = 3 Z Hl( )(Q,,u)/dsJ( D(s, 1) qﬁz(- )<1 —x— é,u) , (4.35)
i€{q,q}
m~Q :
1 A n
F1($7m7Q) = 5 Z Hi(vav M) /ds J(nl)(snu) ¢§ )<1 ! %7/") ) (436)
i€{q,q}
QVl—z<m<<Q :
1 o (g
Fi(z,m,Q) = 5 > Ay +1)(Q,M)Hc<m,u, %)E;(m,u, %)Hs(m,u, V)
i€{q,q}
X /ds J(”l)(s,u) gbgm) (1 -z — %,u) , (4.37)
mn~QvV1—x:
1 o (ny
File,m, Q) =5 32 B (Qu ) He (o ) Holmo o)
i€{q,q}
X /ds J(s,mﬂu’ %) d,z(,”l) (1 —r— é,,u) , (4.38)

mLQV1I—x:

1 A (n v
F1($7m7 Q) = 5 Z Hz( l+1)(Q7M)HC<m7 K, G)Hs(mapﬂ V)
ic{q,q}

- /ds A0 T (s, 1) S(C,m, ) (1 -

s l
T — 0 a,,u) . (4.39)
The factorization theorems in Eqs. (4.35]), (4.37) and (4.39)), valid whenever the mass scale is clearly
separated from all the other scales, resum all logarithms between the mass and the other scales that
need to be considered large in these hierarchies with widely separated scales. But they only use the
massless hard and jet functions, either in the n; or the n; + 1 scheme depending on whether the mass
is above or below the hard or jet scale, and therefore do not include power corrections of the form

O(%, Q2mv %_m) when the mass becomes larger than the hard or the jet scale, and terms of the form
2 2

(’)(%, ﬁ) when the mass becomes small. Therefore these factorization theorems can only be
used in the strict hierarchies for which they were derived.

On the other hand as was shown in Sec. the factorization theorems in Egs. and
do include all these terms correctly for the hard function when m ~ @ and the jet function when
m ~ Qv/1 — z, respectively. But they can not resum logarithms of the form log (Q2 / m2) in the case
of Eq. and logarithms of the form log(Q?(1 — z)/m?) in the case of Eq. (4.38), that become
large if the mass scale is widely separated from the hard or the jet scale. Consequently also those
factorization theorems can only be applied in the strict hierarchy for which they were derived.

One can construct factorization theorems that smoothly connect those different hierarchies and are
valid regardless of whether the mass is close to one of the other scales p; — which makes it suitable to
keep the full mass dependence not neglecting terms of the form O(,u? / m2) or (’)(m2 / ,u?) — or whether
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there is a large hierarchy between the mass and the other scale — which makes it necessary to resum
logarithms of the form log (,uf / m2) — that are therefore more in the spirit of the UF approach discussed
in Sec. but still keeping the advantage of the MMF approach, i.e. that all the threshold matching
functions in the factorization theorem are matching coefficients between matrix elements containing
quantum fluctuations at a single scale and (rapidity) logarithms are only resummed between several
of these matching coefficients. To achieve this one simply has to add back the full mass dependence
that is encoded in hard and jet functions appearing in the factorization theorems in Eq. and

(4.38) to the factorization theorems in Egs. (4.35)), (4.37)) and (4.39).

To identify the missing power corrections one can look at the small and large mass limits of the
massive hard and mass mode jet functions (for primary massless quarks), that were already discussed
in Sec. For example from Eq. (3.44]) it can be seen that the mass mode jet function can be

written in the form

v
I (s,m.n, @) = / ds'de JTHD (s — 8" — QU ) S.(6,m, p,v) Py, (s ymyp), (440
where Py stands for the power corrections that vanish in the limit m — 0. In order to write

m<QVI—z
down a factorization theorem that resums all the logarithms and includes all the mass related power

corrections, one can add the appropriate power corrections to the massless functions. We define the
new hard and jet functions including the power corrections from secondary massive quarks as

ﬁm>Q(QamaM) = FI(W)(Q M) X PHm>Q (Qam .LL)
Hyc(Q,m, 1) = H™(Q, ) X P, _o(Q,m, p),

Jm>Qvlfx(S7m7u) = /dS J(nl)(s_s /”L)PJ >Q\/7(S/7m’ M)
Jm<Qm(s,m,u) = /ds J(’”H)(s — s, )Py m<Q¢ﬁ(s',m, @, (4.41)

where the P-functions are defined to contain only the power corrections in the respective limits

Pio@m.) =1+0( ).
2

m<Q(Q7m :“) - 1+O<Q2)

Py s (s 1) = () [14+0( 5 ) |
2
Py, o (5,m, 1) = 8(5) [1 + o(?)} . (4.42)

Using Egs. (3.42), (3.41)), (3.43) and (3.44), where the large and small mass limits are discussed for
the hard and jet functions, one finds the following solutions

ﬁm>Q(Q,m,,U/) = ﬁ(Qam M)
Hye(Q,m, p) = H(Q,m, p)H (m 1, g)Hc_l(m,u, %)Hs_l(m,u,V) :

nsqyi=z(s:m,p) = J(s,m,u, %)Hc_l (m,u, %) ,

v _
Jm<Qm(s,m,u) = /dﬁ J(s —Ql,m, p, é>80 1(€,m,u, v), (4.43)

where the contributions from secondary massive quarks at order O(a?) to the hard and jet functions
H and J that appear on the right-hand sides are given in Eqs. (C.6)) and (C.27) and H,, H, and S, in
Eqgs. (C.8), (C.10) and (C.32). The v dependence of the functions on the right side of the equations
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cancels. The massive hard and jet functions defined in this way have the same anomalous dimensions
as their massless counterparts, with either n; or n; + 1 flavors, depending on whether the function
below or above the mass scale is used

d . . X
N@HWDQ(Q» m, jt) = 75#)(@7 p) Hpsq(Q,m, 1),
d

u@ﬁm@(@ m, 1) = Y5 NQ, 1) Hone(Q,m, 1)

d n
:U’@Jm>Q\/E(S’ m, :u) = /dsl ’Y,(] l)(s - Slv M) Jm>Q\/ﬂ(5,7 m, :U’) )

d n
M@Jm@m(s,m,u) = /dS’ VP (s = 8 1) S curz(s . ). (4.44)

Here vy and v are the anomalous dimensions of the massless hard and the jet functions, with the
contributions at order O(ay) and O(a2CrTr) given in Eqgs (B.3)) and (B.20). All these functions have
the correct limiting behavior in the small and large mass limit

R R 2
Hpq(Qomop) = H™(Q )+ 0(55)

Hyncq(Q,ms ) = H™HD(Q, 1) + O(Z;z) :
Im=oyT=z (8 m, p) = JM (s, 1) % (1 + (9(%)) ,
Tcqyrss.m.) = 10 (s, ) x (1+0(72)) (4.45)

and do not contain any large logarithms when evaluated at their respective natural scale

nr~Q,  pr~QVI-w. (4.46)

In this way we do not need to treat the situations where the mass scale is widely separated from one
of the kinematic scales, like m < u;, separately from the case where the mass becomes of the same
order of that scale m < p;, but only need to distinguish three scenarios:

Scenario I: Q < m:

Fi(z,Q) =+

[\)

Z Hi,m>Q(Q’ m, M) X /dS Jm>Qﬂ(S7 m, :u) ¢§nl) (1 —Z— = ) (447)

i€{q,q}

The functions ﬁm>Q and J,, . o, /7=7 have the same anomalous dimensions as the massless hard and
jet functions for n; dynamical flavors. The same holds for the PDF.

Scenario II: Qv1 —x <m < Q:

Fl (mv Q) == % Z f{i,m<Q(Q7 m, M)HC <m7 M, %)HC <m7 M, %)Hs(m7 My l/)
i€{q,q}

n s
X /ds Wi CRUND) qbg 2 (1 —x— o7 ,u) (4.48)

The functions ﬁm<Q and J,, . o, /7= have the same anomalous dimensions as the massless hard and
jet functions with n; + 1 and n; dynamical flavors, respectively. Again the effects of the p-running of
the mass mode matching functions Hs and H, are most conveniently taken into account by running
only the hard and jet functions and the PDF, but with n; + 1 active flavors above and with n; active
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flavors below the mass scale (see Eq. (2.23)). The rapidity logarithms are resummed in the rapidity
RG running of the matching functions Hg and H..

Scenario III: m < Q1 — x:

1 A v
Fl(qu) = 5 E Hi,m<Q(Q7m>M)HS(m)M7 V)Hc<m),u’7 a)
i€{q,q}
n s 4
X /ds Al J,, o=z (s, m, 1) Sc(lym, pi, v) qbz( 2 <1 —z— o7 @,u) (4.49)

The functions f[m<Q and J,, /7= have the same anomalous dimensions as the massless hard and
jet functions with n; flavors. Again the effects of the p-running of the mass mode matching functions
H,, H. and S, are most conveniently taken into account by running only the hard and jet functions
and the PDF, but with n; + 1 active flavors above and with n; active flavors below the mass scale
(see Eq. ) The rapidity logarithms are resummed in the rapidity RG running of the matching
functions Hy, H. and S,.

Using Eq. (4.45) it is easy to see that the factorization theorems in Eqs. (4.47)-(4.49)) reduce to the
ones in Eqgs. (4.35) - (4.39)) in the hierarchies m ~ @, QvV1—z < m <€ @, m ~ Q1 —x and

m < Q+v/1 — x, for which the original factorization theorems where derived, plus power corrections
that are formally small in these strict hierarchies (but can be non-negligible). In the factorization
theorems in Eqgs. - the same logarithmic terms are resummed since all functions have the
same anomalous dimensions as before, but the massive hard and jet functions H,,<g and ngQ V=%
have a smooth transition between the small and large mass limit and can therefore be used for an
arbitrary scaling of the mass with respect to the other scales. In this way one can formulate the
factorization theorem for the three different scenarios @ < m, Qv1 —x <m < @ and m < Qv/1 —x
with all mass related power corrections in the hard and jet functions included, such that no large
hierarchies between the mass and the kinematic scales needs to be assumed.

In close analogy one can also define the soft and beam functions including the full mass dependence
using the relation between the various function in the different hierarchies given in Sec. and
2.2.9|

Spns7(€ym, 1) = H Y (m, p, v) /dﬂ/dﬁ” S —0 — 0" m,w)S7H m, p, v)STH my p,v),

Sm<T (€ym, p) = S(€,m, ),

Smspr (Pr,m, p,v) = S(r, m, p,v)Hy H(m, p,v),

Sm<pr (P, M, 1y v) = S(Pr,m, p1,v)
Litomsyar(tm, x, ) = Lig (t, m, T, f, %)Hc_l(mvu, %) ;
14
Q
Tikmsgr (Pro o, s ) = Tae (B ) H (s 5)

Lo me vor(t,m,z, p) = /dEIZ-j (t —Qlm,x, p, )S;l(g, m, V) Qp M]fkl (x,m,p),

Q Q
N 1% N v _
Iik,m<p:r (pT,m,l',/L, é) = I’l] (pTvmaxal’La @) ®:U Mjkl(x7m7 /’L) . (450)

4.2.2 Consistency between universal factorization and mass mode factorization

In the previous section we have derived factorization theorems for the various scenarios for DIS in
the endpoint region that used generalizations of the ingredients of the MMF scheme that allow for
a smooth transition between all scenarios, which was one of the key points of the UF approach. We
shall now compare these two schemes directly, as it will turn out that they are in fact equivalent.
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Comparing the results from the previous section with the results in Refs. [2,|12] we directly see that
the hard and jet functions with the OS and the MS subtractions for secondary massive quarks in the
UF approach and the hard and jet functions of the mass mode factorization for secondary massive
quarks including the mass related power corrections derived in Sec. are in fact equivalent, i.e.

Hyz(Q,m, 1) = HO3(Q,m, 1) ,
Hineo(Qm. i) = HN(Q,m. p)
Jm>Qm(s,m,,u) = Jos(s,m, i
e qui=z(s;m, 1) = Jm(s,m, i) - (4.51)

The analogous relations hold also for the beam and soft functions. The remaining functions in
the factorization theorems are the matching functions, the threshold corrections M; in the case of
the universal factorization approach, and H., Hs; and S, for the mass mode factorization approach.
Comparing Egs. , and with the results from Refs. [2,|12] we see that the threshold
matching coefficients M- that appear in the universal factorization approach can be written in terms
of the matching functions from the mass mode factorization asﬂ

Mg (@m, ) = Ho(m, 1, 5 ) B, o ) Holm, 1, 0)

M (s,m,p) = éHc_l (m,,u, %)SC(%,m,,u, 1/) ,

M(J;(1 —&,m, ,LL) = QHc(m,,LL, %)Hs(mvljﬂ V)SC(Q(l - z),m,u,y) )

M:g’_(& m, /’L) - HS (mv Hy V) /dg, SC(K - £/7 m, [, V)SC<€/7 m, [, V) )

_ B 1 v t
MB(tvxama,U’)_(s(l_w);Hc (malu’7;>80<;7maﬂ>y>a
+(5 "N Z 51— 2)6@ (5 r
MB<pT7max>,u7w> 5(1 .1')5 (pT)Hc<m>,U7w> )
M (Fr.m, p,v) = 0@ (Fr) Ho(m. . v) (4.52)

which tells us that all the factorization theorems for all the different scenarios derived in the UF
approach and those in the MMF approach are equivalent, once the latter are supplemented by power
corrections as described in Sec. £.2.11

After simply stating the fact of equivalence of the two approaches once the power corrections are
included by comparing to the results from literature, we will now take a closer look on how the defini-
tions of the different mass dependent structures in the factorization theorems in the two approaches
differ and what their relation is. We will do this for the example of the hemisphere jet function and
will again focus only on the secondary massive quark corrections to the primary massless jet function,
i.e. the case where the quark entering the hard interaction and initiating the jet is massless and
the heavy flavor only contributes via virtual effects or a gluon splitting into a heavy Q@ pair. The
discussion is analogous for all other functions appearing in the factorization theorems. A similar com-
parison between the definitions of the jet function in the MMF and the UF approach, also including
primary massive quark effects, was done in Ref. [71]. One of the results found there was that the
relation between the jet function defined in the UF and the MFF approach is not affected by primary
massive quark effects, which is due to the fact that the csoft matrix elements are independent of the
primary quark’s mass.

5The threshold correction for the virtuality-dependent beam function is the same as for the jet function by consistency
with the hard function and the thrust soft function that are the same in the factorization theorems for thrust in the
peak region in eTe” — jets and beam thrust in DY. The threshold corrections for the TMD beam and soft functions
can be inferred from consistency with the hard function.
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In the following we will use the subscripts “uf” and “mm” to distinguish the jet functions defined
in the UF scheme and in the MMF scheme, respectively. In the universal factorization approach in
Sec. we defined the jet function Jyr for m < Qv/1 — 2 ~ py as the collinear matrix element J
in Eq. renormalized with MS subtractions for all flavors, thereby always including the massive
quark as an active flavor, with a subtraction of the collinear-soft region for all n; + 1 quarks (either
as a zero-bin or a csoft matrix elements defined in Eq )

TS _ ) ( yc(nl+1)7m> - (4.53)

The subtraction of modes of lower virtuality for all n; + 1 flavors ensures that the jet function J}l\ﬁs is
IR finite, because all IR divergences cancel between the collinear and the collinear-soft contributions.
This is true both in the case of only massless quarks and in the case of massive quarks, such that
the jet function defined in that way has the correct, IR finite, massless limit. This is the reason why
the jet function in the UF scheme can be used for any m < p, because the full mass dependence,
relevant for m ~ py is kept, while at the same time the correct massless limit, relevant for m < pj,
can be reached, which is one of the main ideas behind the UF approach.

In the MMF approach the renormalized jet function for m ~ p; is defined as (in the MMF scheme
contributions from all flavors, massless and massive, always get renormalized in the MS scheme)

Jo = FuADNS g ( yc(nz>,ﬁs>‘1 ' (4.54)

Here the csoft matrix elements contain only n; flavors, because in contrast to the UF scheme the
heavy flavor is completely integrated out from the theory at its mass scale. This is the reason why
the MM jet function does not recover the correct massless limit, because the IR subtractions from
the csoft matrix elements are missing for that flavor to cancel those of the collinear matrix element,
such that Jym is not free of IR singularities in the massless limit. The MM jet function also does
not show the correct decoupling limit, because all contributions are renormalized in the MS scheme,
which is a mass-independent renormalization scheme and does not allow for a decoupling behavior of
heavy quarks.

Comparing Eqgs. (4.53) and (4.54)) one can establish the relation
— — —\ -1
S g e M8 g (yc(nl—f—l),MS) = Jom @ ST1, (4.55)

where we have used the definition of the csoft function S, in Eq. (3.34]).

In the case m 2 Qv/1 — x ~ uy the jet function in the UF scheme was defined with all contributions
from the heavy quark renormalized with OS subtractions

JOS = gmt1).08 g (yc(anrl),OS)_l ) (4.56)

Renormalizing with OS subtractions for the massive quark means that all terms that do not vanish
as m — oo are absorbed into the counter terms. This is the reason why the UF jet function with
OS subtractions for the massive flavor can be used for any m 2 p; and gives the correct decoupling
limit. In the collinear matrix element this leaves only contributions from real production of a heavy
quark pair. In the csoft matrix element, that is purely distributional, all contributions from the heavy
flavor are absorbed into the counter term, such that Eq. can be written as

e —\ -1
= I 0 7 6 (54005 s
Comparing with Eq. (4.54)) one finds the relation
— =y —1
P = T @ TGS & (FGFINE) T = i x H (4.58)
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Here we have used the fact that the purely virtual contributions Jy ;¢ in the collinear matrix element
are just the same as for the collinear SCET current, since they are not sensitive to any measurement.

Eqgs. and just express the equivalence of the UF jet function and the MMF jet function
after the inclusion of the power corrections as in Eq. . The UF scheme provides a method of
directly including the full mass dependence over the whole range of possible hierarchies, while the
MMF scheme first strictly separates all hierarchies and then achieves a smooth transition only when
supplementing it with of the massive power corrections. It can be seen as a pure matter of taste
which way is preferred, since both approaches agree exactly with each other.

The two approaches differ in how the resummation of rapidity logarithms is organized. In the MMF
scheme (with the power corrections included) the only basic structures that need to be evolved to
achieve rapidity resummation related to secondary massive quarks are the three matching functions
H,, H. and S.. They appear in different combinations, depending on the process and on the specific
scale hierarchy, but are completely universal in the sense that all corrections resulting from integrating
out the massive quark as an active flavor and therefore also all resummation of rapidity logarithms
related to secondary massive quark effects can be expressed with only these three functions for all
the processes and all the hierarchies discussed here. This also makes the universality of the structure
of the rapidity logarithms from secondary massive quark effects manifest.

In the UF scheme each function (beam, jet, soft, ...) in the factorization theorem requires its own
threshold correction M, of which each then has to be resummed in rapidity. This procedure gives the
same results and resums the same logarithms, but it makes it not explicit that the rapidity evolution
related to secondary massive quarks has in fact always the same structure in all the factorization
theorems for the different processes discussed here and in all the scale hierarchies, always related
to the three mass mode matching functions Hs, H. and S. (see Eq. for the relation of the
threshold corrections M; to the matching function of the MMF scheme).

We will consider the example of DIS in the endpoint to discuss how the rapidity resummation in the
UF scheme can be carried out with the help of the mass mode matching functions defined in the MMF
scheme. When the mass is between the jet and the hard scale, in the UF scheme the three threshold
corrections M, (for an evolution below the mass scale) and M} and Mdf (for an evolution above
the mass scale) are needed. By consistency of RG running they fulfill the relation

_ s
01— 2)My(Q,m, ) = /ds ./\/lj(s,m,,um)./\/l:g (1 —z— @,m, um> . (4.59)
Using the relations given in Eq. (4.52)) this can be rewritten as

0(1—=2)H, (m,,um, Z) x H, (m,,um,

0 5) x Hg(m, fim, V)

Q

M;] (vavﬂm)

= [t St (i 5) (5 r))

N~

M}— (s,m,,um)

X QSC(Q(l —z)— %,m,,um,l/) X Hg(m, pim, V) X Hc<m,,um, %) . (4.60)

M:; (l—z— m,um)

_S_
Q2

On the RHS of Eq. (4.60)) we have inserted a csoft function S, and its inverse S, ! such that

/ds (Sc(g,m,um,l/>>_180(@(l —2z)— %,m,um,y> =4(1—2) (4.61)
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The rapidity evolution factors V;(m, u, v, 1), that evolve one function from one rapidity scale vy to
another scale v, fulfill the consistency relation

1 1
Vi =V =Vy =

c s

vV, (4.62)

with V' given in Eq. (2.53]). The resummed threshold corrections then read

M]_-](QamvﬂmaVQa Vm) = Hc(mnuma %) X He (m M g)
X [V(m P, VQ, Vm) X Hg(m, um,ym)] , (4.63)

1
M}'(S,m, P, VQ,s VS,.) = ch(m,,um, aQ) [V2 (M, pom, vQ, Vs.) X S, (é,m,,um,ysc)] . (4.64)

14
M;;)_(l — 2, M, fm, VQ7V367Vm) QH. (m aQ) X [V(mﬁirmyQa Vm) X Hs(mvﬂmvym)]

(M, fim, V@, vs,) X Se(Q(L = 2),m, fim, vs,)] , (4.65)

l\.’)\»—t

x [V~

where we have chosen the rapidity scale vq of the collinear mass mode current matching function as the
common global rapidity renormalization scale. To make sure that all remaining rapidity logarithms
are small the scaling

Him,
Ql—z)’

is implied. To further minimize also the virtuality logarithms the scaling p,, ~ m is used.

(4.66)

VQNQa Um ~ Um , vs, ~

If the global renormalization scale is chosen below the mass scale, u < m, only the threshold correc-
tions for the hard function M7 in Eq. ([.63)), taking the hard function from the (n; 4+ 1) to the (r;)
flavor scheme, appears in the factorization theorem. In this case the rapidity resummation is carried
out in the same ways as it would have been done in the pure MMF scheme, between the hard matching
functions H. and H,, and therefore between the rapidity scales vy ~ @ and v, ~ m. If the global
renormalization scale is instead chosen to be above the mass scale, u > m, then according to the UF
the threshold corrections ./\/lj and ./\/l;r in Egs. and have to be implemented, taking the
jet function and the PDF from the n; to the n; + 1 flavor scheme. Here the rapidity evolution takes
place between the scales vs, > @ and v, ~ m, i.e. over a wider range. But the evolution between
the scales vg and vs,, that appears in both /\/IJr and /\/l+ exactly cancels between the two threshold
corrections. This is due to including one time the csoft functlon and one time its inverse in Eq. -
In the scenario m < Q+/1 — z there is a similar cancellation of a factor H. between My and M7
when the global renormalization scale is chosen to be below the mass. In this sense the MMF scheme
is more efficient, such that the rapidity evolution when resumming all rapidity logarithms related
to secondary massive quarks is carried out with the minimal set of mass mode matching functions,
without any cancellations between them taking place.

The UF and the MMF approach discussed in the previous chapters were derived in different ways and
led to different definitions of the various structures and combinations of those. The MMF approach
led to an efficient and clear way of performing the rapidity resummation related to secondary massive
quark effects, reducing everything to three universal matching functions and one evolution kernel. In
the UF approach it might be seen as less obvious how to arrange the rapidity resummation, but it has
the advantage that each function in the factorization theorem like the jet function, the soft function
etc. can be defined as one single universal object for which a closed resummed form can be written
down, that then only needs to be inserted in the factorization theorem as a universal building block.
Using the MMF scheme to write down the universal rapidity evolution and using the UF scheme as a
guideline on how to combine the different building blocks in a convenient way as in Egs. —
may be the most practical combination of the advantages of both approaches.
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Chapter 5

Conclusion

In this part of the thesis we have discussed how to set up VFNS, based on the SCET factorization
framework, to systematically incorporate massive quark correction into exclusive differential cross
sections for hadronic collisions. We focused on the Drell-Yan process, where we studied the gy and the
beam thrust spectrum in the limit of two (beam-)jets as prototypical examples for SCETy; and SCET]
factorization theorems, and DIS and the endpoint region x — 1. We have established two different
approaches, the MMF and the UF approach, for how to achieve the resummation of all logarithms
related to the mass of a heavy flavor in the process for any possible (perturbative) hierarchy of the
quark mass with respect to the other kinematic scales, and showed that the two approaches lead to
equivalent results. We showed how the quark mass affects the resummation of rapidity logarithms in
the gr spectrum for DY. We furthermore established the universality of rapidity logarithms associated
with secondary massive quarks for beam thrust in the exclusive region in DY, DIS in the endpoint and
thrust in ete™ — 2 jets, where the resummation of these rapidity logarithms can always be carried
out in a rapidity RG evolution of three universal matching functions (here called H., Hs and S.).

We also calculated all the missing ingredients for NNLL' resummation of massive quark effects in
neutral current DY for small ¢r/7, namely the mass-dependent TMD and virtuality beam function
matching coefficients for primary massive quarks at O (o) and for secondary massive quarks at O(a?),
as well as the TMD soft function and the csoft function with secondary massive quarks at O(a?).
Several of our results are also immediately relevant for other processes at the LHC besides Drell-Yan.
The primary massive quark beam functions are relevant for any heavy-quark initiated process, for
example exclusive bbH-production. The mass-dependent TMD soft function and rapidity anomalous
dimension at O(a?) satisfy Casimir scaling and can be therefore also utilized for the description of
gluon-fusion processes, e.g. the Higgs qr-spectrum. Our results for the beam thrust spectrum also
allow for a systematic inclusion of massive quark effects into the Geneva Monte-Carlo program [76,77]
at NNLL/+NNLO in its underlying jet resolution variable.

This work focused on the conceptual part of how to consistently set up the VNFS for all the different
hierarchies and resum the mass-dependent logarithms in rapidity and virtuality, and on calculat-
ing the mass-dependent one- and two-loop functions relevant for NNLL’ resummation, while full
phenomenological analyses with our results are still missing and postponed to future work. An im-
portant application of our framework will be the precise theoretical description of the Drell-Yan q¢p
spectrum. Especially in the ratio of the W- and Z-boson spectra, which is important for the precision
measurement of the W-boson mass at the LHC, bottom and charm mass effects are expected to be
relevant because they enter at different order in perturbation theory in W- and Z-boson production.
Our results are, however, not limited to this particular application and can be relevant for many
measurements at hadron colliders, where bottom and charm mass effects are often neglected in the
resummation when calculating differential cross sections to high order in the logarithmic counting,
but can be expected to become relevant with increasing precision.
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Part 11

On the Cutoff Dependence of the
Quark Mass Parameter in Angular
Ordered Parton Showers
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Chapter 6

Introduction

Large sections of this part of the thesis and corresponding appendices were taken from Ref. [3]. Some
theoretical discussions of the cutoff dependence of NLO matched showers, that were not directly part
of the work of the author of this thesis, are omitted here. They can be found in Sec. 7.7 of Ref. [3].
Some additional calculations for the unreleased contributions to the soft and jet functions with an
angular cut, not contained in Ref. 3], are provided in appendix

6.1 Prelude and review

A precise determination of the top quark mass m; represents one of the most important measurements
in the context of studies of the Standard Model (SM) as well as of new physics, in particular in the
context of electroweak symmetry breaking. The most precise top mass measurements are obtained
from template and matrix element fits which are based on the idea of accessing m; by directly recon-
structing the kinematic properties of a top quark “particle”. These types of measurements naturally
yield a very high sensitivity to the top quark mass because they involve endpoints, thresholds or
resonant structures in kinematic distributions which substantially reduces the impact of uncertainties
that affect poperties such as their normalization. The most recent reconstruction measurements are
mMC = 172.44(49) GeV (CMS) [108], mMC = 172.69(48) GeV (ATLAS) [109] and m}MC = 174.34(64)
GeV (Tevatron) [110].

The characteristic property of these measurements, however, is that the observables employed for the
reconstruction analyses are too complicated to be calculated in a systematically improvable way and,
in addition, involve sizeable perturbative and non-perturbative corrections due to soft gluon emission
which, in the vicinity of kinematic endpoints or thresholds, are not power-suppressed. The theoretical
computations used for these measurements are therefore based on multi-purpose Monte Carlo (MC)
event generators since they can produce predictions for essentially any conceivable observable. As a
consequence, in these direct mass measurements the top mass parameter mM¢ of the MC generator
employed in the analyses is determined. The experimental collaborations provide estimates of the
theoretical uncertainty in the extracted value of mM® concerning the quality of the modelling of
non-perturbative effects, e.g. by using different tunes or MC generators, or concerning theoretical
uncertainties, e.g. by variations of theory parameters. The improvement of the theoretical basis of
MC event generators and of methods to estimate their uncertainties is an ongoing effort [111-113].

However, the intrinsic, i.e. quantum field theoretic meaning of m%\/[C has up to now not been rigorously
specified. Since this matter goes beyond the task of properly estimating or reducing MC modelling
uncertainties and is also tied to the constructive elements incorporated to the MC’s perturbative and
non-perturbative components, it is much harder to quantify. Issues one has to consider do not only
involve the truncations of perturbative QCD expansions, but also MC specific implementations such
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as the cut on the parton shower (PS) evolution or even modifications that are formally subleading
but play numerically important roles in reaching better agreement with data or are part of the
implementation of the hadronization model. It should also be remembered that the level of theoretical
rigor of MC event generators depends on the observable. Since the theoretical description of thresholds
and endpoints in general involves the resummation of QCD radiation to all orders, the perturbative
aspect of how to interpret m%vlc thus significantly depends on the implementation of the parton
showers that are used in the MC generators and to the extent that NLO fixed-order QCD corrections
have been systematically implemented for the observables that are relevant for the reconstruction
analyses. Apart from that, the interface between the perturbative components and the hadronization
models, which involves the structure of the infrared cut of the shower evolution, Qg ~ 1 GeV, or
the treatment of the top quarks finite width, I'y ~ 1.4 GeV, and other finite lifetime effects can
play essential roles. Finally, it should also be mentioned that m}lﬁ\/IC
perturbative MC modelling effects as a consequence of the tuning process partly compensating for
approximations and model-like features implemented into the MC perturbative components.

may also be affected by non-

So, although mMC is by construction closely related to the concept of a kinematic top quark mass,
the identification to a particular kinematic mass scheme is far from obvious - also because there are
several options for kinematic masses including schemes such the pole mass m?de or short-distance
threshold masses as they are employed for the top pair threshold cross section at a future Linear
Collider [114-116] or in the context of massive quark initiated jets [117,118]. As shown in Ref. [119],
these kinematic mass schemes can differ by more than 1 GeV. Given that the reconstruction analyses
have reached uncertainties at the level of 0.5 GeV it appears evident that systematic and quantitative
examinations on the field theoretic meaning of the MC top mass mMC are compulsory. This scrutiny
may involve examinations of different MC generators, as well as the respective interplay of their

perturbative and non-perturbative components.

So far, only a limited number of theoretical considerations dedicated to this issue exist in the literature.
In Ref. [120], based on the analogy of the MC components to the QCD factorization for boosted
top quark initiated jet masses in the peak region derived in the factorization framework of Soft-
Collinear-Effective Theory (SCET) and boosted Heavy-Quark-Effective-Theory (bHQET) [18}/19],
it was conjectured that the relation between mMC and the pole mass is given by mP® — mMC =
Ry.(as/m), where the scale Ry, should be closely related to the shower cut Qp. The conjecture was
based on general considerations how an infrared cut affects perturbative calculations but did not
provide a precise quantitative relation. It was, however, argued that the uncertainty in the relation
is unlikely to exceed the level of 1 GeV. A similar conclusion was drawn in Ref. [121] where it was
argued that m%wc, due to the effects of the hadronization models, may have properties analogous to
the mass of a top (heavy-light) meson. Based on the concepts of heavy quark symmetry [122,/123] the
relation m}M¢ = mMR(R) + Ay mc(R) was conjectured, where m}MSR is the MSR mass [124}/125], the
term A; v contains perturbative as well as non-perturbative corrections and R = 1 GeV represents
a factorization scale separating perturbative and non-perturbative effects. From a comparison of B
meson and bottom quark masses, and using heavy quark symmetry, it was concluded that A;nc
could in principle be at the level of 1 GeV. We also refer to Ref. [126] for a related discussion.

In Ref. [118] the concrete numerical relation mM® = mMSR(1 GeV) + (0.18 4 0.22) GeV was obtained
from fitting NNLL (next-to-next-to-leading logarithmic) and O(«;) matched factorized hadron level
predictions for the 2-jettiness distribution in the peak region for boosted top production in eTe™
annihilation [18]/19] to corresponding pseudo-data samples obtained by PYTHIA 8.2 [127] with the
default Monash tune [128] correctly accounting for the dominant top quark width effects in the factor-
ized calculation. Here the quoted error is the theoretical uncertainty of the factorized NNLL+O(a)
prediction and also includes an estimate for the intrinsic uncertainty of the PYTHIA 8.2 calculation.
Using the pole mass scheme in the factorized NNLL+O(ay) prediction, the corresponding analysis
yielded mMC = mP' 4 (0.57 4 0.28) GeV. While this analysis provided a concrete numerical result,
it can only be generalized to LHC measurements if one makes the additional assumption that the
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MC top mass has a universal meaning covering in particular also the LHC environment and the
substantially more complicated observables included in the direct mass measurements, for which cur-
rently no first principle calculations exist. In addition, systematic uncertainties in the modelling of
non-perturbative effects at hadron colliders, such as multi parton interactions, or the description of
the pile-up effects are much harder to control. An analogous analysis for the LHC environment was
subsequently carried out in Ref. |[129] using factorized NLL soft-drop groomed [130,/131] hadron level
jet mass distributions showing results that are compatible with, but less precise than those of [118].
We also refer to Ref. [132] for a related analysis.

Aside from the previously mentioned examinations, recently, a number of complementary studies
were conducted focusing on various sources of uncertainties in the perturbative description of top
production and decay and the non-perturbative modelling of final states involved in top mass mea-
surements. While these studies mainly aimed at examining the potential size of uncertainties in top
mass determinations from reconstruction as well as from alternative methods (see Refs. [133H135] and
references therein), some of their findings may also be relevant for addressing the question how m%\/lc
obtained from reconstruction should be interpreted field theoretically.

In Ref. [136] the sensitivity of mM® determinations from exclusive hadronic variables such as the
B-meson energy Ep [137], the B-lepton invariant mass mp, [138] or the transverse mass variables
my, [139-142] to variations of the parameters of the MC hadronization models in PYTHIA 8 and
HERWIG 6 was studied. They found that for top mass determinations based on these distributions
to be competitive with direct reconstruction methods these hadronization parameters would have to
be constrained significantly more precisely than what is possible from usual multi-purpose tuning. In
addition, they made the observation that the top mass dependent endpoints of these distributions are,
compared to the overall shape of the distributions, largely insensitive to variations of the hadronization
parameters, indicating that these kinematic endpoints only depend on global and inclusive properties
of the final state dynamics.

In Ref. [143] top mass determinations from distributions such as the b-jet and lepton invariant mass
mp,e and the variable my, [139] were analyzed within fixed-order perturbation theory comparing the
full NLO QCD result for WTW ~bb production with different approximations in the narrow width
approximation (NWA) concerning NLO QCD corrections in the production and the decay of the top
quarks as well as using the parton shower from SHERPA [144] after top production. Using pseudo-
data fits they found that the extracted top mass can depend significantly (at the level of 1 GeV
or even more) on the approximation used, indicating that incomplete descriptions of finite-lifetime
effects can lead to systematic deviations in the value of the extracted top mass of order I';.

In Ref. [145] the NLO-PS matched POWHEG [146,147] top production generators hvq [148], ttdec [149]
and bb4¢ [150] interfaced to PYTHIA 8.2 [127] and HERWIG 7.1 [151}/152] were studied comparatively
examining the peak position of the particle level b-jet and W' invariant mass my;w, the peak of the
b-jet energy Ep, [137] and moments of various lepton observables [153] in view of an extraction of the
top quark mass. They found that the m; w peak is largely insensitive to variations of the generators
and the shower MC as well as to input quantities such as the strong coupling and the PDF's or the
b-jet definition, and concluded that changes in the top mass due to these variations do not exceed
200 MeV in the absence of experimental resolution effects. They also indicated that the good agree-
ment between the three POWHEG generators may imply that my;w is not sensitive to additional
finite lifetime effects. Once the smearing due to experimental resolution effects is accounted for, how-
ever, they found an increased sensitivity to the differences in the parton showers of PYTHIA 8.2 and
HERWIG 7.1 that correspond to variations in the extracted top mass at the level of 1 GeV or more.
For Ejp; the dependence of the extracted top mass on the shower type and on the b-jet definition is
in general at the level of 1 GeV. For the leptonic observables variations of this size arise from PDF
uncertainties and from changing the shower type.
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6.2 About this work

The aim of this work is to initiate dedicated individual examinations of the different components
of MC event generators with the aim to gain insights concerning the field theoretic meaning and
potential limitations of the MC top mass parameter mM® from first principles. We start with an
examination of the parton shower evolution with respect to the dependence on the infrared shower

cut Q.

Apart from the perturbative hard interaction matrix elements that encode the basic hard process
that can be described by MC generators, the parton shower describes the parton branching for
energies below the hard interaction scale and represents the perturbative component of MC generators
responsible for the low energy dynamics in MC predictions. While common analytic calculations in
perturbative QCD are carried out in the limit of a vanishing infrared regulator, event generators
based on parton showers rely on the existence of an infrared cut in order to prevent infinite parton
multiplicities and to ensure that the parton shower description does not leave the realm of perturbation
theory.

From the field theoretic point of view, () represents a factorization scale that separates the pertur-
bative components of MC event generators and their hadronization models. While it is generally
accepted that a finite value for Qg restricts the amount of real radiation and multiplicity generated
by the shower evolution, it is not per se obvious to which extend it may also affect the meaning of
QCD parameters such as the MC quark mass parameters. Due to the unitarization property of the
shower evolution which is responsible for the coherent summation of real as well as infrared virtual
radiative corrections for scales above g, it is also plausible that the MC top mass parameter m}fvlc
should acquire a dependence on the value of ()¢ unless one makes the additional assumption the Qg
effects are negligible. In this work we examine this dependence and find that is is not negligible.
We emphasize that in the discussions of this work we ignore all issues related to (the shower cut
dependence of) hadronization because the primary aim is to concentrate on the perturbative aspects
of the relation between m)M¢ and field theoretic mass schemes. We are aware that the properties of
the hadronization modelling in MC event generators may have a significant impact on the interpre-
tation of m%VIC, but we believe that examining perturbative and non-perturbative MC components
separately in this respect is essential to gain full conceptual insight.

Because the top quark has color charge its mass is - following the principles of heavy quark symmetry
- linearly affected by the momenta of ultra-collinear gluons [18}|19], which are the gluons that are soft
in the top quark rest frame. The role of these ultra-collinear gluons turns out to be essential for our
conceptual considerations concerning the shower cut dependence of the top quark mass. Compared
to the radiation pattern of massless quarks the additional effects coming from the ultra-collinear
gluons is for example responsible for the dead cone effect [154,|155] which is generally considered as
coming from the top mass regulating the emergence of collinear singularities in the quasi-collinear
limit. The radiation in the dead-cone region, however, is still non-zero and to the extent that it is
unresolved becomes part of the energy (i.e. mass) of the measured top quark state. It is this quantum
mechanical feature that goes beyond the classic picture of an unambiguous top quark “particle” whose
total energy could be determined in the direct mass measurements. Since the parton showers in all
state-of-the-art MC generators account for the dead cone effect [156], it appears obvious that the
meaning of mMC should naturally have a linear dependence on the shower cut Qq restricting the
ultra-collinear radiation — unless there is a mechanism that leads to a power suppressed effect of order
Q2 or higher which we may then safely neglect for the case of the top quark. Therefore, to examine
the intrinsic field theoretical meaning of the MC top quark mass parameter m}MC it is essential to
start with a careful examination of the production of the top quarks and the ultra-collinear gluons.
From this point of view, studies of the top decay and the treatment of the observable final states are
important to quantify to which extent the ultra-collinear gluons are unresolved and how they enter a
particular observable.
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In this work we aim to focus primarily on the production aspect, and we are therefore studying an
observable that is maximally insensitive on details of the final state dynamics and its theoretical
modeling. This observable is the peak (i.e. resonance) position of hemisphere jet masses in ete™
annihilation, explained in more detail in Sec. The basic outcome of our considerations concerning
the field theoretic meaning of mMC, however, should be general and shall be systematically extended to
other types of observables and to the LHC environment in subsequent work. As a further simplification
we consider the narrow width approximation (NWA), i.e. the case of quasi-stable top quarks which
allows to rigorously factorize top production and decay, the case of boosted (i.e. large-pr) top quarks
and the coherent branching formalism which is related to angular ordered showers, see Refs. [157-159)
for massless and Refs. [160] for massive quarks, and also Refs. |[161}/162]. Since the limit of stable
and quasi-collinear heavy quarks is the theoretical basis of all parton shower formulations for top
(and other heavy) quarks, it is natural to investigate the physics in this limit first to avoid that the
conclusions are affected by the additional approximations that need to be made in the attempt to
account for the effects of slow and unstable top quarks. Our current focus on angular ordered showers
is, on the other hand, of purely practical nature: Our considerations here require explicit analytic
solutions of the shower evolution, and angular ordered showers based on the coherent branching
formalism can be more easily tackled by well known analytic methods [163] applicable to global event
shapes. So our current results are directly relevant for the HERwiG MC generator which employs an
angular ordered PS. Generalizations to other MC generators shall be treated elsewhere.

In this context our work is structured around the following three questions:

(A) Can state-of-the-art partons showers in principle describe the single top resonance mass and
related thresholds with NLO precision?

(B) What is the impact of the shower cut Qg on the resonance value of the jet masses?

(C) Does the shower cut imply that the MC top quark mass parameter m}fvlc is a low-scale threshold

short-distance mass, and how can this be proven from first principles at the field theoretic level?

Question A is relevant because, only if parton showers can describe the threshold or resonance mass
with NLO precision, the question of which mass scheme is employed can be addressed systematically
in a meaningful way. In the course of our examination we show that this is indeed the case as long as
NLL order logarithmic terms are resummed, and we also show that the additional NLO corrections
implemented by NLO matched parton showers do not further increase the precision. Question B
concerns the dependence of the resonance value of the jet mass on QQg. We show that the jet mass
at the resonance peak depends linearly on Qg which means that for the field theoretic meaning of
mlltvIC the finite shower cut is essential and cannot be neglected. Finally, question C addresses to
which extent the linear dependence on Qg must be interpreted as a (Jp-dependence of the MC top
quark mass. As we will show, only a par