
 

 
 

 

MASTERARBEIT / MASTER’S THESIS 

Titel der Masterarbeit / Title of the Master‘s Thesis 

Design of Human-Chatbot Interaction 

 in Stressful Scenarios 

 

verfasst von / submitted by 

Veronika Vishnevskaia 
 

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of 

Master of Science (MSc) 

Wien, 2022 / Vienna 2022  

Studienkennzahl lt. Studienblatt / 
degree programme code as it appears on 
the student record sheet: 

UA 066 013 

Studienrichtung  lt. Studienblatt / 
degree programme as it appears on 
the student record sheet: 

Masterstudium Joint Degree Programme  
MEi:CogSci Cognitive Science 

Betreut von / Supervisor: 
 
Mitbetreut von / Co-Supervisor: 
 

Dr. Marcin Skowron  

  
 
 



Abstract  
 
This thesis explores the topic of Human-Chatbot interaction from the interdisciplinary 

perspective of cognitive science, empirical psychology, computer science, and 

neuroscience. In the scope of the thesis, an interaction framework was developed based 

on the reviewed HAI guidelines. The framework was tested empirically in a full-factorial, 

between-subject experiment with 33 participants. During the experiment, physiological 

measures of electrodermal activity were used to obtain objective signals from sympathetic 

nervous systems. Additionally, a subjective questionnaire was conducted to the measure 

self-reported of stress and perceived usefulness, easiness, learnability, and satisfaction 

from the interaction. The results show statistical significance of the effect that Interaction 

design has on the user experience. The main contributions of the thesis include i) 

grounding of the Human-Chatbot interaction approaches in a comprehensive theoretical 

basis; ii)  development of an original experimental design; iii) empirical testing of the HAI 

guidelines by collecting objective physiological data; iv) development of original data 

analysis pipeline for electrodermal data applied in a full-factorial design; v) empirical 

contributions to the discussion about subjective and objective methods of usability 

research; vi) suggestions for future research in the area of empirical studying the Human-

Chatbot interaction.   

Keywords: Human-AI Interaction, HAI Design guidelines, Human-Chatbot Interaction, 

Human-centered design, conversational AI, physiological measurements of user 

experience  

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 



Acknowledgements  
 

If I set myself the goal of mentioning all the people who, in one way or another, had 

a hand in my successful completion of the master's program, this list would take half the 

work. Therefore, I will have to limit myself to only a tiny part, remaining infinitely grateful to 

all involved.  

First of all, I would like to thank my supervisor, Dr. Marcin Skowron, for his 

dedication, thoughtful comments, support, and delicate guidance. He was always there for 

me, showing some new perspective and providing valuable advice each time we 

discussed the thesis.  

 Secondly, my deepest gratitude goes to professors, coordinators, the program 

committee, and everyone working on the MEi-CogSci program. Thank you for giving me 

the chance to make this fantastic journey that changed my life and professional 

development. You are doing an outstanding job building this exceptional community. I am 

delighted and proud to be a part of it.  

I want to thank colleagues from the Competence Team for implanted devices, 

Center for Medical Physics and Biomedical Engineering of the Medical University of 

Vienna, namely Dr. Manfred Bijak and his students Clara Schmidtmann, Ahmed Ahmed, 

and Pia Hisberger. They showed me unlimited support in learning the topic of 

electrodermal activity measurement and shared their experience and best practices. 

Thank you, colleagues!  

Next, I want to thank my team from AI Lab (Raiffeisen Bank International). My 

colleagues managed to upskill me in programming, cloud infrastructure, and chatbots 

development quickly and easily during our daily work. Without these skills, I would not 

bring this research to life.  

Last but not least and most important, I want to thank my family, especially my 

parents, son, and husband. I was supported and accepted during my whole life, finding 

energy and determination for new adventures inside my family circle. Everything I am and 

everything I achieve comes from my family. Thank you for all the unconditional love you 

always surround me with. 

 

 

 

 

 
 
 
 
 



Table of Contents  
 
1. Theoretical Grounds 
1.1. Introduction, 1 
1.2. Theoretical Concepts Related to Present Work, 3 

1.2.1. Postcognitivism in Cognitive Science: Activity Theory & 4E-approaches, 3 
1.2.2. Conceptual/Mental Model, 5 
1.2.3. Human-Centered Design and Technology Acceptance Model, 6 

 1.2.4. Affective Interaction Design, 7 
1.3. Human-AI Interaction, 9 

1.3.1. Human-Computer Interaction as a Root, 10 
1.3.2. Human-AI Interaction: Main Challenges, 11 
1.3.3. Human-AI Interaction: Design Guidelines, 13 
1.3.4. Human-Chatbot Interaction, 14 

1.4. Interaction Framework Development, 15 
1.4.1. Guidelines for Human-AI Interaction, Amershi et al. 2019, 17 
1.4.2. A Survey on Social Characteristics in Human-Chatbot Interaction Design, 
Chaves&Gerosa 2020, 18 

 1.4.3. Interaction Framework Formulated, 20 
1.5. Sympathetic Arousal (Stress) Measurements, 20  
 1.5.1. Objective and Subjective Methods of Usability Testing, 21  
 1.5.2. Electrodermal Activity Measurements, 22 	
 
2. Conversational Model Development 
2.1. Quiz Sataset, 25  
2.2. Conversational Model, 25  
 2.2.1. RASA Open Source, 25  
 2.2.2. Model Architecture and Environment, 29  
 2.2.3. Implementation of the Interaction Framework, 30 
 2.2.4. Model Development, 31  
2.3. Web Application, 35 
 
3. Method 
3.1. Participants, 36  
3.2. Experimental Design, 36  
 3.2.1. Factors Levels, the Dependent Variable, and Experimental Groups, 36  
 3.2.2. Source of Variation, 37  
 3.2.3. Exclusion Criteria, 37  
3.3. Experimental Procedure, 38  
3.4. Post-test Questionnaire, 39  
3.5. Experimental Setup and Data Acquisition, 39 
 
4. Results 
4.1. Data Pre-processing, 41  
 4.1.1. Motion Artifacts Removal and Data Smoothing, 41 
4.2. Obtaining Sample and Dataset Statistics, 43 
4.3. Full-factorial Analysis, 45  
4.4. Hypotheses Testing and Statistical Significance, 45  
4.5. Analysis of the Post-test Questionnaire Likert Scale Data, 47 
 
5. Discussion  
5.1. Implications of the Results, 49  
5.2. Novelty and Further Research, 50 
5.3. Limitations, 51   
5.4. Conclusion, 51  



List of figures  
 
Fig.1 Russel’s Two-dimensional Emotional Space, 8 

Fig.2. Guidelines Set for Interaction Framework, 19 

Fig.3. Raw EDA Data from Sensors and Splitted SCR and SCL Signals, 23 

Fig.4: RASA Open Source Modules, 26 

Fig.5. RASA NLU Module, 27 

Fig.6. Conversational Model Architecture, 30 

Fig.7. Session Logs in MongoDB Database, 33 

Fig.8. Web Application Homepage with an Active Chat Window, 33 

Fig.9. Experimental Setup, 39 

Fig.10. Experimental Setup in the Lab, 40 

Fig.11. Raw, Unfiltered Data of the Sample, 41 

Fig.12. The Sample, Cleaned up with Hampel Filter, 42 

Fig.13. Median Filter Applied to the Sample, 43 

Fig.14. SCR Peaks Mean Amplitude Delta per Experimental Group, 44 

Fig.15. Residual plot, 46 

Fig.16. Q-q pPot of the Dependent Variable Distribution, 46  
 
 
List of Tables  
 

Table 1. Utterances for Default and Improved Interaction Model, 32 
 
List of Boxes  
 

Box 1. Main Principles of Interaction by D.Norman, 5 

Box 2. Nine Affects by S.Tomkin, 9 
 

 
 



 1 

1. Theoretical Grounds 

1.1. Introduction  

“The future of customer conversation: More than words, more than AI” report by 

Accenture (Accenture, 2021) highlights that chatbots are falling behind customer 

expectations. Less than half of customers (48%) that used online-chat with the 

conversational AI assistant confirmed that they would like to use it again. At the same 

time, many industries such as customer support, financial services, tourism, and others 

are planning to expand the utilization of chatbots even more. The same report states: by 

2022, 70% of the customers will interact with the chatbots, compared to 15% in 2018. If 

chatbots are the technology to become a common one in upcoming years, how can we 

improve it?  

The report assumes that the root cause of the customers’ disappointment is the 

current approach to the conversation design, which is human-like and technology-

centered instead of human-centered. In the comprehensive overview based on more than 

890 Human-AI Interaction Design papers, Xu et al. (2021) state that the current pain-

points of conversational AI are “teething problems” similar to those of general computer 

systems and interfaces they had in the 1980-1990s. Back then, in the 1980s, it caused the 

emergency of the Human-Computer Interaction field; the necessity to solve problems of AI 

technology led to the fast growth of the Human-AI Interaction domain.  

In 2016, Luger & Sellen published a paper where users compare the experience of 

dealing with the chatbot with a “really bad panic attack”. The main downside reported by 

AI assistants’ users was that they didn’t understand what the chatbot could do and had to 

figure it out by themselves. Users complained that they “felt let down and lost”, as they 

didn’t receive proper feedback from the assistant. Meanwhile, the clear explanation of the 

possibilities that the system provides and timely given feedback is one of the main 

principles of human-centered design (see subsection “Human-centered design for more 

details). These findings confirm that the technological maturity of natural language 

processing (NLP), which chatbot developers often focus on, does not cover all the users’ 

needs. A more systematic approach to the interaction design is required.  

“Big players” with strong R&D departments, such as Microsoft and Google, have 

published guidelines for Human-AI interaction already in 2019 (see Amerschi et al., 2019; 

Google PAIR, 20191). These guidelines summarize the industry experience and academic 

research and provide concrete recommendations on how to develop AI that will be taking 

into account human thinking and behavior. Yet still, they are not fully applied in the 

practice, as can be judged based on the analytical reports.  

                                                
1 Google PAIR. People + AI Guidebook. Published May 8, 2019. pair.withgoogle.com/guidebook    
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Human-AI interaction design proved its effectiveness in chatbot-related empirical 

studies, published during the latest years. Adam, Wessel, and Benlian (2021) measured 

the user compliance and satisfaction for banking FAQ chatbot; Tsai, Liu, and Chuan 

(2021) evaluated the interaction satisfaction, user engagement, and brand likeability 

depending on the chatbots social presence (social validity as “real” companion). Weber 

and Ludwig (2020) interviewed users to clarify what affects the perception of voice 

assistants; Skjuve et al. (2019) examined how the chatbot transparency influenced the 

user evaluation; De Cicco, Silva, and Alparone (2020) tested how the interaction style of 

the chatbot will improve the attitude toward it in millennials.  

The above empirical studies are only examples of the rapidly growing Human-AI 

Interaction (HAI) field. Still, most of the existing works in the area of HAI are based on 

interviews, questionnaires, and conversation logs (Chaves & Gerosa, 2020) – primarily 

self-reported subjective data.  Significantly fewer studies use physiological measurements 

as a source of more objective quantitative data (for example, see Ciechanowski et al., 

2019). The present work aims to contribute to this domain, using electrodermal activity 

data (EDA) to measure the participants’ physiological response to the interaction with 

chatbot models.  

Another critical point is that often the users interact with the chatbots in a state of 

stress. Many scenarios where chatbots are widely applied – customer support, banking 

services, technical support, traveling, dealing with authorities – are associated with the 

negative arousal. Such scenarios place higher demands on the system design, as a more 

“stressed” focused brain is especially sensitive to the user experience (Norman, 2004). 

This work strives to prove that the Human-AI Interaction Design approach can mitigate the 

negative effects of stressful scenarios for the participants.  

The research question of the current work is “To what extent an improved 

Interaction Design can reduce the levels of the participants’ sympathetic arousal 

that they experience during the interaction with the chatbot when a mild stress 

factor is introduced?”  

The main objectives of this master thesis are: a) based on existing studies and 

guidelines, to develop conversational AI models with the default and improved interaction 

design as V1; b) with open-source packages and cloud infrastructure, to implement web-

application versions with and without the added stress factor as V2; c) to recruit 

participants and to test the experimental hypothesis in four groups, based on 2x2 full-

factorial between-subject design; d) to measure the participants’ levels of electrodermal 

activity to obtain objective physiological data as the dependent variable; e) to conduct the 

data pre-processing, statistical analysis and hypothesis testing; f) to summarize and 

comment on the results.  
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The master thesis has the following structure: Section 1, “Theoretical Grounds,” 

provides a comprehensive introduction into related concepts of cognitive science, 

Psychology, and Computer Science. Theoretical frameworks in Human-Computer 

Interaction (HCI), Human-AI Interaction, and Human-AI Interaction Design serve as a 

foundation for the “Conversational Model Development”, described in Section 2. The 

experimental design, procedure, and data acquisition are covered in Section 3, “Method”. 

Section 4, “Results,” describes the data pre-processing, analysis, and statistical 

significance testing. The obtained results are commented on in Section 5, “Discussion”.  

 

1.2. Theoretical Concepts Related to Present Work  

The present work is developed inside the interdisciplinary frame of cognitive 

science, also employing concepts from psychology and computer science. In this section, 

the main theories used for grounding the study are shortly summarized: postcognitivistic 

approaches to the consciousness, conceptual models, human-centered design, 

technology acceptance model, and affective interaction design. The main goal of the 

section is not to provide a detailed description of the theories (which would be just an 

excessive quotation) but rather to focus on the central ideas used.  

All the concepts described are interconnected and were deduced from one another 

through the 1970-the 2010s. Together they create a comprehensive understanding of 

human cognition, emotions, and behavior in their interaction with the environment and 

artifacts, such as computer systems and AI agents.  

 

1.2.1. Postcognitivism in Cognitive Science: Activity Theory & 4E-approaches  

Postcognitivistic theories question the “classical” Cognitivism understanding of 

cognition, formed by Noam Chomsky, George A. Miller, and other leaders of the Cognitive 

revolution. For the 1950s, this view was revolutionary; cognition was seen as a biological 

analog of the computer, independent from the body and the environment in forming its 

inner representation. By the 1970s, this perspective was revised in various studies aiming 

to understand the relationship between cognition, body, and the external world. The 

Autopoiesis theory developed by Humberto Maturana and Francisco Varela (Maturana & 

Varela, 1972) proposed a new understanding of the living systems. It shows that these 

systems can interact with the environment to support their existence even without any 

cognition, for example, as each separate living cell or protozoa does. This innovative 

vision gave a root for the whole list of new theories, considering interaction as the main 

starting point for cognition development.  
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For the Human-Computer Interaction domain, the primary input made the Activity 

theory and so-called “4E-Cognition approaches”: Embodied, Embedded, Extended, and 

Enacted cognition.  

Activity theory emerged in the works of the Soviet school of developmental 

psychology throughout the 1930s-1950s, particularly in the papers of Alexei Leont’ev & 

Lev Vygotsky. Later found in the western cognitive science and psychology field, it heavily 

affected the Information systems theory and Human-computer Interaction area. Activity 

theory considers the development of each individual as impossible in isolation and taking 

place due to the interaction with the social environment and community, following the 

existing rules, and using available tools for problem-solving.  

Bonnie Nardi and Kari Kuutti (Bannon & Kuutti, 1993; Kuutti, 1991, 1996; Nardi, 

1996) applied the activity theory to Information systems and Human-Computer Interaction. 

Activity theory is used to understand the work activities implemented through various 

information systems and interfaces as tools. Cognition is considered as distributed, 

embodied, and realized in the external devices phenomenon, emerging from daily human 

activity.   

The concepts used in the activity theory – activity, mediating artifacts (tools), 

community – became the core ideas of the 4E-approaches that emerged two decades 

later, this time directly under the cognitive science domain. In studies by J. Gibson (1979), 

E.Hutchins (1995), M.Wilson (2002),  E. Di Paolo (2014), and other authors, first notions 

of embodied, embedded, enactive and extended cognition were given, later united by R. 

Menary (2010) and M. Rowlands (2010) in 4E framework.    

Embodied cognition theory states that cognition is body-based and inherent to body 

reactions, chemicals, and signals. Embedded or situated cognition highlights that it heavily 

depends on the perception of the external world and interaction with it in specific 

situations and scenarios. Enacted cognition approach inherits the ideas of the Active 

theory directly. It points out that the environment is a part of our cognitive system, and 

studying the mind apart from its environment and dynamics makes no sense. Finally, 

extended cognition declares that human	 information processing abilities are limited; 

therefore, we extend our cognition into the environment and create means (artifacts) that 

help us to reduce our cognitive workload.  

Overall, 4E-approaches introduce a perfect scene for explaining how the 

development of computer systems, which humanity becomes more dependent on, affects 

our cognition and behavior. These theories were central for the further growth of the 

human-computer interaction and human-centered design domains.  
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“Good conceptual models are the key to understandable, enjoyable products: good 

communication is the key to the good conceptual model.” 

 

1.2.2. Conceptual/Mental Model 

In 1983 Johnson-Laird introduced the notion of the mental model as “structural 

analogs of the world.” The author considered the mental models as a mapping between 

the real world and internal mental representations.  

Shortly after publication, this theory was applied to the Human-Computer Interaction 

domain by Don Norman. In his “The Design of Everyday Things” (Norman, 1989; 2013 - 

the revised version), the author uses the term “mental” or “conceptual model” to describe 

a cognitive construct that the user creates during interaction with the system. For users, it 

is a simplified, high-level explanation of how things work. Norman states that the 

perceived device structure, including its main interactive components – signifiers, 

affordances, constraints, and mappings (see box 1), – can form the conceptual models 

natively. 

When the system does not provide a visible structure, the user can rely only on its 

interaction experience and information provided (manuals, online information, marketing 

description). These inputs create a system image, which serves as a source of users’ 

mental model. The system image, in its turn, is a derivative of the designer’s mental model 

of the product.  

To help users develop a good conceptual model, it is crucial to overcome the 

creator’s bias. The system will not be self-explanatory because it seems so to the 

designer; proper communication is the key, especially when something does not work.  

 

Don Norman’s Main Principles of Interaction 

● Affordances - based on James J. Gibson theory (Gibson, 1966) - the possible actions 

offered by the item  

● Signifiers - indicators that communicate to the user how and where the actions can take 

place  

● Constraints - communication of existing physical, cultural, semantic, and logical limitations  

● Mappings - relation between the controls used and the systems controlled  

● Feedback - communication of the system work on the provided request and the results of it 

Box 1. Main Principles of Interaction by D.Norman 

 

How much explanation is enough for a proper mental model, and which kind of 

information is essential? Kulesza et al. (2013) answer this question in a study on a music-
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recommending intelligence agent. Participants received musical recommendations and 

explanations about how and why the system made its choice during the experiment. 

Researchers used soundness (validity and credibility) and completeness (if all required 

information is provided) as two variables describing the explanation quality. Based on the 

values of these variables, they evaluated the resulting mental models of the users. 

Experimental results showed that the completeness of the explanation is more critical for 

comprehensive mental models than soundness. At the same time, oversimplified 

explanations lead to less trust and attention paid to them.  

For the present work, the conceptual model is an outcome of the interaction design 

framework used. Therefore, the chatbot with the improved interaction framework should 

provide enough explanations and feedback about the system so that users will have a 

clear conceptual model of it. The default interaction design, on the contrary, 

communicates insufficiently and creates a poor conceptual model.   

 

1.2.3. Human-Centered Design and Technology Acceptance Model  

Don Norman is considered a “godfather” of User experience (UX) and Human-

centered design approaches. In “User-centered system design: New perspectives on 

human-computer interaction” (1986), he calls for the creation of a “science of user-

centered design,” an approach where the needs of the user will define the implementation 

and interaction will drive the technology. Computer systems should be built based on 

human psychology and cognitive processes, stages of actions, and ways of interaction.  

Communication is again highlighted as the main requirement for good design: the 

machine should always indicate what actions are possible, what is happening right now, 

and what will happen. Communication becomes especially crucial when things go wrong; 

“designing for an error” – one of the substantial parts of the overall design process. Error, 

as Norman emphasizes, is the point that may bring the most satisfaction from the 

interaction. When the machine indicates what is going wrong and the problem, the user 

understands the issue clearly and can act to solve it.  

Norman’s approach can be considered as primarily focused on user experience and 

interaction. However, a quarter of a century later, “human-centered design” is no longer 

monolith.  Auernhammer (2020) highlights eight various design approaches, all of which 

have their implications to the AI: human-centered system studies the impact on social 

systems of such organizations; social design considers an interplay of the technologies 

with socio-economic structures and ideologies; the participatory design includes different 

social groups and their ethical perspectives; inclusive design tries to prevent the 

discrimination of specific groups of people in the design means; interaction design focuses 

on the usability of the systems and their influence on people behavior and experience; 
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persuasive technology approach reveals the hidden patterns of technologies that nudge 

users toward some intended choices; human-centered computing studies how to remove 

constraints in people capabilities by the technologies; and need-design response 

investigates how to develop the systems based on the human needs, but not to exploit 

them.   

During the past 20 years, interaction design (IxD) has been studied in detail in the 

general Human-computer interaction field. It got a lot of attention in the IT industry as one 

of the product characteristics that increase its profitability. Usability and interaction 

experience also have a central place in the technology acceptance theory (Davis, 1989; 

Lee, Kozar & Larsen, 2003). The theory describes the stages in which an individual 

accepts the new technology. In the “classical” version of the idea, the technology is 

evaluated by two variables: Perceived Usefulness (PU) and Perceived Easiness of Use 

(PEOU), predicting target variables Behavioral Intention (BI) and Behavior (B). Segars 

and Grover (1993) introduced the third independent variable, not correlating with two 

others – Effectiveness [in solving the problem], but the descending studies did not support 

this proposal.  

The present study focuses mainly on interaction design as the factor of chatbot 

technology acceptance. In this case, following the interdisciplinary approach of Cognitive 

Science, the perceived usability evaluation is completed by objective data from the 

peripheral nervous system.  

 

1.2.4. Affective Interaction Design  

Affect is a subjective emotional experience; contrary to emotions, which are often 

considered a reflected and conscious process, affect is regarded as a “feeling that you 

might experience without knowing why” (Norman, 2004). Affect theory was first developed 

by Silvan Tomkins (Tomkins, 1962), who distinguished positive, negative, and neutral 

affects (see box 2). Affects are often evaluated on a two-dimensional scale based on 

Russel’s “Circumplex model of affect” (Russel, 1980). Two-dimensional space contains 

arousal measurement on one of the axes and valence on another. Four resulting 

quadrants correspond to happy (high arousal, positive valence), sad (low arousal, 

negative valence), angry (high arousal, negative valence), and calm (low arousal, positive 

valence) emotional states (see fig.1)  
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Fig.1 Russel’s Two-dimensional Emotional Space 

 

Affective design is a design approach in which the user’s emotional experience is 

considered and planned during the product development. As a result, the product can 

create positive and eliminate negative emotions of the user during the interaction.  

Don Norman described the emotional design in his book “Emotional Design: Why 

we love (or hate) everyday things” (Norman, 2004). Based on the architecture of the 

human nervous system, he introduced three levels of the design: visceral design - the 

lowest, intuitive level, primarily associated with the product appearance; behavioral design 

- middle level, responsible for the pleasure and effectiveness of use; reflective design - the 

highest level related to the self-image of the user, his satisfaction and memories. When 

the designer accounts on these levels during product development, he can create a 

product that the users will highly evaluate and demand.  

Another important aspect is how our nervous system processes the information 

while in different emotional states. Norman argues that during the negative affect 

neurotransmitters, focus the brain processing on solving the emerging problem (and 

staying alive). On the other hand, when in a positive affect, the brain processing is 

broadened - we are relaxed, curious, and ready to learn how to use new opportunities.  

If the product is developed for stressful situations, it is essential to count on the 

emotional state. For example, suppose we know that the user will most probably 

experience a negative affect. In that case, we should adjust to the focused brain, provide 
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only the required information and timely feedback, and make the system more transparent 

and unambiguous.  

 

Silvan Tomkins’s Nine Affects  

Positive  

● Enjoyment/Joy - reaction to success/impulse to share 

● Interest/Excitement - reaction to new situation/impulse to attend 

Neutral  

● Surprise - reaction to sudden change/reset impulses. 

Negative  

● Anger - reaction to threat/impulse to attack 

● Disgust - reaction to bad taste/impulse to discard 

● Dissmell - reaction to bad smell/impulse to avoid  

● Distress - reaction to loss/impulse to mourn 

● Fear - reaction to danger/impulse to run or hide 

● Shame - reaction to failure/impulse to review behavior 

Box 2. Nine Affects by S.Tomkin 
 

The conceptual framework used in the present work thus can be summarized as 

follows. Person’s interaction with the environment and artifacts, based on the 

physiological properties of the embodied brain, is seen in Postcognitivism as the main 

driving force of cognitive development. The rapid growth of Cognitive Science led to the 

emergence of Human-centered design and Human-Computer Interaction. These domains 

help adjust the artificial systems to the human cognitive models, improving the perceived 

usability and ease of use. The two factors are crucial for the users’ acceptance of new 

technologies. Affects can also influence this process, so the interaction and experience 

should be designed to take into account the possible emotional states of the users.  

The implementation of these concepts in Human-Computer Interaction and Human-

Interaction domains is examined in more detail in the next section.  

 

1.3. Human-AI Interaction  

This section aims to provide an understanding of the main topics in the Human-AI 

Interaction domain, its interconnection with the general Human-Computer Interaction field, 

and examine existing guidelines in the HAI area.  
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1.3.1. Human-Computer Interaction as a Root  

As was already mentioned in the Introduction, many problems that Human-AI 

interaction is facing nowadays were valid for HCI back in the 1980-90s. In 1973, James 

Martin wrote in “Design of Man-Computer Dialogues” that the computer industry “will be 

forced” to focus on people and usage rather than on hardware. Though until the middle of 

1980s the computers were primarily used in business tasks, the comfort of the operators 

was still a concern for managers, as the employees could avoid using the new systems. 

The technology acceptance model introduced in 1989 by Fred Davis aimed to help 

companies increase the adoption rate.  

Starting from 1980, when IBM and later Macintosh developed a home computer for 

individual users, cognitive psychologists became the core of the fields’ research groups 

(Grudin, 2005). At the first HCI conference in 1983, IBM researchers led by John Gould 

presented a paper focused on user-centered, iterative design based on prototyping (Gould 

and Lewis, 1983). This less scientifically strict and faster approach to empirical studies 

became the framework of modern UX research.  

Macintosh’s success with home computers and graphical user interface (GUI) 

started a new era in HCI. The spreading of the Internet in the late 1990s emphasized a 

focus on interface development and visual design even more. As Don Norman pointed out 

in his “Emotional design”, the product should have been not only helpful and learnable but 

enjoyable, as users were sensitive to the visceral design level as well.  

Cognitive science supported the HCI domain in these times, providing theoretical 

grounds, methods, and tools - from the foundations of human psychology and physiology 

to the 4E approaches, comprehensively describing the interaction of users with modern 

computer systems. At the same time, though developed alongside the cognitive 

revolution, the field of AI had a strong focus on mathematics and engineering.  

In his essay “Shifting viewpoints: Artificial intelligence and human-computer 

interaction” (Winograd, 2006), Terry Winograd distinguishes two main approaches to the 

development of computer systems: “rationalistic” and “design” approach. Rationalistic 

approach is based more on the understanding of people as “cognitive machines” that can 

be easily modeled and predicted, and the design approach is focused on the interaction 

between the person and the environment. HCI, embracing the design approach, 

considered human behavior too complex for modeling. New interfaces and applications 

were developed through iterative prototype testing and improving, where embodied 

human thinking was recognized and accounted for in the interaction.   

As Grudin highlights in his comparison review (Grudin, 2009), the rapid growth of 

HCI was caused by the margin interest of the companies selling mass-market computers. 

AI for decades stayed a long-term investment at a governmental level. The cloud 
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infrastructure development in the 2000-the 2010s reduced the cost of data storage, 

processing, and access to the networks. Further, the spread of smartphones and “big 

data” made it possible to apply AI to more widely available systems, platforms and in 

different application scenarios. Successful AI-powered applications in turn required better 

interfaces and increased the demand  for an improved usability and more optimal 

interaction design.  

 

1.3.2. Human-AI interaction: Main Challenges 

John Launchbury (2017) introduced DARPA perspective on three waves of AI, 

divided by the “AI winters”:  

1. Handcrafted Knowledge – inspired by symbolism and connectionism, the first 

wave focused on expert systems and technological exploration. Engineers defined the 

rules and structured the knowledge; independent learning for the machine was 

impossible, and handling uncertainty was poor.  

2. Statistical learning – the second wave focused on technological enhancement, 

where statistical models in NLP, pattern recognition, and artificial neural networks 

developed. Machines obtained classification and prediction capabilities; the reasoning 

was minimal. The challenges of the second wave were individual unreliability, strong 

dependence on the training data, and vulnerability.  

3. Contextual adaptation – currently arising the third wave emphasizes ethical 

design, usability, interaction, and human in AI systems. The Third wave brings contextual 

explanatory models, where machines obtain abstracting and reasoning capabilities.  

 

Xu et al. (2021) highlight that the industry fully considers users’ needs only in the 

latest wave. It is explained by the fact that mass-market applications powered by AI, in 

which systems adaptation and popularity largely depend on their usability, have finally 

brought enough attention to the topic of human-centered design.  

As usual, there was a time lag between industry and academia in adopting the new 

topics and domains. First attempts to focus more on the human in the human-AI 

interaction were made in the 1990s when the HAI domain was not yet separated from the 

general HCI.  Billings (1991) and Frischer (1995) explored collaboration between human 

operators and  automated systems, defining the right balance between the automation 

and augmentation of human intelligence. Such principles as the necessity to involve and 

inform the operator, control the automated system, and make it more predictable are 

highlighted in these works.  

Dan Norman (1994) discussed the exploration of intelligent agents by software 

manufacturers and foreseen main challenges that would emerge, being rather social than 
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technical. The author pointed out that for a smooth acceptance of the new technology, 

such pain points as feeling in control, managing expectations, safety and privacy of the 

data, and transparency about the underlying operations will have to be covered.  

In his formatting and influential paper about principles of mixed-initiative user 

interfaces, Horvitz  (1999) defined the main approaches on how to improve the interaction 

between people and automated systems: consider uncertainty about user’s goals; 

consider the status of user’s attention; allow efficient direct invocation; provide 

mechanisms to refine results; maintain the memory of recent interactions; continue to 

learn by observing.  

When principles discussed in the papers above are compared with the latest 

guidelines for Human-AI interaction (see Section 1.3.3), it becomes clear that they were 

very fundamental and provided the basis for further development of the HAI domain.  

Two succeeding decades solidified the idea of AI adjusting to human needs. The 

industry finally adopted the topic of Human-AI interaction, bringing significant attention to 

its challenges. 

The main challenges for the HAI, as Xu et al (2021). conclude, are:  

●  Explainability of machine output – typically explained in the general HCI approach, 

it is often overlooked in AI systems, so the user may not know how and why the AI 

system makes decisions.  

●  User-friendliness of interfaces – AI applications require interaction standards 

specifically developed for them.  

 

To address these challenges, the authors propose a comprehensive Human-

Centered AI (HCAI) approach covering three main aspects  –  human, technology, and 

ethics. Usable & Explainable AI is one of the focus areas for this framework. 

Auernhammer (2020) uses Terry Winograd’s distinction between “rationalistic” and 

“design” perspectives to examine various approaches to solve these central challenges. In 

the rationalistic perspective, the problem of explainable and trustworthy AI is addressed 

by governmental and research regulations. The author points out that regulations and 

laws do not reflect the real-world complexity and do not keep up with the development of 

technologies and new use cases in AI-based applications. In addition, they may not be 

universal enough to address ethical issues and provide explainability across various 

cultures. The proposed solution is the “design” human-centered approach that should 

clarify these issues through the fast prototyping, experiments, and empirical data 

collection. It is also highlighted that the Interaction design method can help to improve the 

explainability of the application through interface usability testing, thus connecting the two 

main challenges.  
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Lieberman (2009) examines the topic of user interfaces in AI systems. The author 

claims that the poor interface design of the applications is caused by teams more 

interested in learning algorithms under the hood than in the design itself. It leads to worse 

results of user testing and rejecting the usefulness of AI systems in general. He also 

advises to adjust the available HCI design methodologies considering the specifics of 

these algorithms. For example, AI requires more transparency and explanations about 

how it works to develop trust in users, i.e.: it is helpful to create more thorough tutorials 

and introduce the available features.  

Yung et al. (2020) follow Lieberman’s findings of the necessity of adjusting general 

HCI approaches when applied to AI. Researchers summarize a corpus of papers devoted 

to human-centered AI and define HCI practitioners’ specific challenges in AI applications. 

One of the crucial - difficulties in applying iterative prototyping and usability testing.  Two 

proposed approaches to address this challenge are: 

●  The “Wizard of Oz” method – testing approach where the human developer 

imitates AI during the interaction with a user 

●  Early-stage deployment of AI systems for real users.  

 

The “Wizard of Oz” method helps to check users’ behavior and scenarios, but it 

cannot predict or simulate AI-specific errors and failures. Early-stage deployment reveals 

both intended and unintended AI behavior and interactions with the end-users. Still, it is 

time- and effort-consuming and loses the benefits of “cheap” and rapid prototyping.  

One of the solutions proposed is applying more “universal'' Human-AI Interaction 

guidelines, which can be considered a checklist for the developing teams. These 

guidelines cover the already revealed in many academic and industry studies pain points 

of interaction, which should be addressed during the AI system development.  

 

1.3.3. Human-AI Interaction: Design Guidelines  

Jeniffer Sukis (2019) from IBM made a comprehensive overview of Human-AI 

Interaction design guidelines available as of 20192. All the big players on the AI stage – 

Amazon, Facebook, Google, IBM, Microsoft, – developed and published detailed 

guidelines for various AI cases in open access, including text and voice chatbots. The 

main focus in all works proposed is user experience, explainability, and trustworthiness of 

the AI systems, emphasizing ethics and a human-centered approach. 

It is not a goal of the present work to deeply examine all the available guidelines. 

For testing during the experiments, the interaction framework should be developed and 

                                                
2 https://medium.com/design-ibm/ ai-design-guidelines-e06f7e92d864 - accessed on 19.12.2021 
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implemented in a conversational AI model. To this end, the overlapping recommendations 

relevant to the current study were compiled based on two complementary and detailed 

guidelines. The first one, Microsoft’s “Guidelines for Human-AI Interaction'' (Amershi et al., 

2019) provides a more industry-inspired perspective for the general HAI domain. The 

second one, is a comprehensive academic review of chatbot-specific guidelines, “How 

should my chatbot interact? A survey on social characteristics in human-chatbot 

interaction design” (Chaves&Gerosa, 2020). Both papers were reviewed, and guidelines 

for the interaction framework were chosen based on how well they matched the specific 

use case foreseen for tests in the experiment. Here, the following two aspects were 

considered: 

●  The experimental AI system is a text based chatbot that supports the user during 

a quiz game. 

●  The task is highly time-limited (7 minutes for the whole interaction with the 

chatbot) and takes place only once.  Correspondingly, the long-term or repetitive 

interactions design principles are not applicable.  

The chosen guidelines from both papers were compared, and overlapping 

recommendations were used as an interaction framework for the conversational AI model 

development. See the details in Section 1.4.  

 

1.3.4. Human-Chatbot Interaction 

Following Chaves&Gerosa (2020) definition, a chatbot is a “disembodied 

conversational agent that holds a natural language conversation via text-based 

environment to engage the user in either a general-purpose or task-oriented 

conversation.”  This definition highlights several key points about the interaction between 

people and chatbots:  

1. The interaction is held via natural for humans interface – language. 

2. The primary format of the interaction is text, and the agent is disembodied, so no 

additional communication channel (like mimics, body language or voice) is used. 

3. In most cases, the interaction is oriented toward some goal or task.  

 

As the authors point out, the users have high expectations regarding the chatbot’s 

understanding of the context and the goal of the conversation. They await from the 

assistant that it will provide meaningful answers and handle the complexity of the task - in 

simple words, to be a handful when playing on the human language field.  

In general, expectation management is highlighted (see Lugar and Sellen, 2016;  

Zamora, 2017; Kocielnik, Amershi & Bennett, 2019) as a crucial point affecting the users’ 

satisfaction. If the expectations are not properly set and are too high, the user will be 
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disappointed even with the planned system behavior. On the contrary, if the user clearly 

understands what can be achieved by using the system, the evaluation and acceptance 

rate will be higher (Lubbe and Ngoma, 2021).  

In the study by Zamora (2017), Google Search was used as a baseline for 

evaluating the chatbot interaction. The authors stress that users’ evaluation of chatbot 

performance will depend on the standards implied by the prior experience of using 

alternative services. Considering that Search is based on two state-of-the-art 

technologies, complex Transformer neural networks and Google Knowledge Graph3, and 

used widely, it can be a considerable challenge for all chatbot developers. Users 

perceiving Google Search as an everyday basic application may have higher standards 

for conversational AI.  

However, if the standards are so high, should one try to imitate human conversation 

at all? Clark et al. (2019) point out that the promise to provide a “human-like” 

conversational experience can be a wrong one from the very beginning. Instead, chatbots 

developers, HCI, and HAI practitioners could focus on what people indeed value in the 

assisting agents. During the interviews with participants, researchers clarified what 

differentiates the conversation with a chatbot from a conversation with a human and which 

conversation attributes are the most valuable. The results show that people tend to 

perceive the interaction with AI more as a transactional conversation, aiming to solve 

some problem; chatbot itself a tool rather than a partner; and on the scale of social 

interaction – a stranger than a friend.  

If the chatbot is just a tool, it makes sense to develop it as highly valuable; not just a 

FAQ chatbot that stands as a detour on the way to a human agent, but a convenient 

access to many personalized and secured services. Precisely these attributes participants 

highlight as desirable in the conversation with a chatbot – personalization, trustworthiness 

in terms of security, data privacy and transparency, and clear understanding of goals.  

Nevertheless, both studies – by Clark et al. and by Zamora – mention one more 

highly human-like service that users could consider valuable for interaction with a 

conversational AI. This service is “chatbot as a confidant” – fulfilling social needs and 

getting emotional support. A perfectly personalized, actively listening agent could be an 

ideal companion when people need to relieve the emotional arousal, disclose sensitive or 

embarrassing issues, or “think out loud”. Lucas et al. (2014) found out that patients’ 

willingness to disclose their problems during a mental health screening is higher when 

they believe they speak with a fully automated virtual assistant, and not a real person. The 

participants explained that they have “no fear of being judged” in this case.  

                                                
3 https://www.blog.google/products/search/introducing-MUM/ - accessed on 08.01.2022  
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Chatbots are already on the market, addressing anxiety, mood disorders or guiding 

the users through cognitive-based therapy (CBT), such as Wysa4 and Woebot5. The latter 

was tested in a randomized controlled study with 70 participants (Fitzpatrick, Darcy, & 

Vierhile, 2017), aiming to reveal how effective this chatbot-infused guidance through CBT 

would be. The study showed that subjects in the Woebot-group significantly reduced the 

severity of depression symptoms after two weeks compared with the control group. 

Among the features of the chatbot favored at most participants named: 

●  “Checking in” (chatbot often asked about emotions and feelings) 

●  Empathy (chatbot showed concern) 

●  Learning (chatbot provided valuable insights about emotions that people tend to 

feel and ways of thinking) 

●  Comfortable conversation (humor and sympathy incorporated in the chatbot’s 

answers, though limited)  

●  The chatbot provides interactive and diverse content (videos, games, interesting 

suggestions, graphs).  

 

CASA framework (Computers as social actors) assumes that computers can be 

perceived as equal and be attributed with human characteristics, including empathy (Nass 

& Moon, 2000). Liu & Sundar (2018) found out that affective empathy (demonstrating 

emotional sharing of the bad experience) and sympathy from the chatbots are perceived 

in a more positive way than just a cognitive empathy (detached confirmation that the 

experience may be troubling). Authors also point out that the “chatbot skeptics” evaluate 

such emotional expressions even higher than people with a better prior opinion about 

conversational AI. Still, other studies show that people may evaluate the same emotional 

support (following the same script) provided by the chatbot lower than by a human 

companion, if they know that their conversation partner was a bot (Meng & Dai, 2021). 

Prejudice against the chatbots due to the previous unsatisfactory experience is a problem 

to be solved by HAI practitioners.   

 

1.4. Interaction Framework Development  

In this section, the chosen HAI design guidelines are reviewed, aiming at defining a 

set of optimal recommendations and the interaction design framework for the practical 

part of experiments. 

 

 
                                                
4 https://www.wysa.io/ - accessed on 08.01.2022 
5 https://woebothealth.com/ - access on 08.01.2022  
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1.4.1. Guidelines for Human-AI Interaction, Amershi et al. 2019 

Based on the review of more than 150 recommendations from academic and 

industry works, Microsoft researchers developed a set of design principles for HAI, which 

were validated and tested by 49 design practitioners against 20 AI-infused products. As a 

result of the validation, 18 final guidelines were formulated.  

The proposed principles are temporarily organized depending on when they should 

be applied. There are guidelines for the beginning of the interaction, for interaction in 

general, recommendations on how to design for failure, and long-term interaction with 

users. 

As researchers point out, the crucial point for creating transparency is the beginning 

of the interaction. Guideline 1 “Make clear what the system can do” and Guideline 2 

“Make clear how well the system can do what it can” match the main principles of human-

centered design, examined in Section 1.2. The more thorough user onboarding can make 

the UX more successful. Initial messages and hints provided by the system with the first 

interaction/start of the interaction should create a clear understanding of which functions 

are available for the user and what results can be expected. 

Among the further 16 guidelines, not all were relevant for the experimental task of 

the current work, as many of them are aimed for the long-term or repetitive interactions or 

just proposed for other use cases. For example: 

●  G3 “Time services based on actions” – the chatbot assists the user only during 

the test based on the user input, so it should not provide guidance on some specific 

time  

●  G6 “Mitigate social biases” – chatbot does not appeal to a user with any gender-

specific suggestions or content 

●  G12-G18 like “Remember recent interactions”, “Encourage granular feedback,” or 

“Notify users about changes” – as the interaction is only a one-time experience, 

these guidelines do not apply. 

 

Overall guidelines chosen can be summed up in the following points: 

●  Make clear what the system can do 

●  Make clear how well the system can do what it can do, what are limitations of the 

system 

●  Make clear why the system did what it did, provide an explanation in case of 

failure 

●  Interact appropriately (use semi-formal tone for the interaction) 

●  Give the user the control over the decision to use or to ignore the 

recommendations provided by the system. 
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It is important to mention that the last guideline was implemented in the design of 

the whole task itself and not only in the “improved” interaction model. Users should had 

the possibility to reject the chatbot assistant’s suggestions and make their own choice with 

both models to create a more real-life experience of seeking help.  

 

1.4.2. A Survey on Social Characteristics in Human-Chatbot Interaction 

Design, Chaves&Gerosa 2020. 

This study focuses on chatbots specifics, as interaction based on a natural language 

is framed with some initial expectations from the users. As a foundation for the research, 

56 chatbot-related works in different domains were reviewed and summarized in 11 social 

characteristics that chatbots should possess to provide a better user experience. 

The social characteristics revealed are united in three groups – Conversational 

Intelligence, Social Intelligence, and Personification, – with the following structure: 

1. Conversational Intelligence 

 a. Proactivity – provide additional information, inspire users, recover from a failure, 

leverage the conversational context 

 b. Conscientiousness – demonstrate understanding, provide confirmation 

messages, support conversational flow 

 c. Communicability – explain the functionality and manage users’ expectations 

2. Social Intelligence 

 a. Damage Control – deal with the unfriendly users and appropriately respond to 

harassment, deal with lack of knowledge 

 b. Thoroughness – increase human likeness and believability 

 c. Manners – engage in small talks, start and end conversations gracefully 

 d. Moral agency – avoid stereotyping and alienation 

 e. Emotional intelligence – use emotional utterances to demonstrate empathy and 

understanding and to improve human-chatbot relationships (Li et al., 2017)  

 f. Personalization – learn about the user, provide unique services 

3. Personification 

 a. Identity – design and elaborate on a chatbot persona 

 b. Personality – use appropriate language and possess a sense of humor. 

 

Some social characteristics are again tailored for long-term and repetitive 

interactions, such as “Personalization”. “Damage Control” also did not match the current 

research goals and the used interaction setup (experimental task conducted in the lab 

settings), as the likelihood that the participants will try to harass the chatbot was low. 
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It is also important to note that in the RASA conversational AI model used (see 

Section 2.2 for more details), some of the social characteristics described are 

implemented by design – like “Proactivity” and “Conscientiousness”. Those were not 

considered a part of the Interaction framework, as these features would be implemented 

by default in both conversational models. 

Consequently, the following guidelines were selected and used: 

●  Explain functionality 

●  Manage users’ expectations 

●  Keep user aware of the chatbot context, explain the decisions  

●  Increase human likeness, use appropriate language and manners 

●  Use emotional utterances to demonstrate emotional intelligence, empathy and 

understanding   

 

When matching both sets of the guidelines chosen, it became apparent that most of 

them (four out of five) are similar and represent the same guidelines with slightly different 

phrasing. Besides these four, the two additional recommendations were “Give the control 

to the user” (by Amershi et al. 2019), which, as was already discussed, should be 

implemented for both of the models, and “Use emotional utterances” (by Chaves&Gerosa, 

2020) – see fig.2.  

 
Fig. 2. Guidelines Set for Interaction Framework.  
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1.4.3. Interaction Framework Formulated  

Based on the guidelines reviewed, the interaction framework was formed as follows:  

●  At the beginning of the interaction (ideally in the greeting message) – provide a 

clear explanation of functionality and manage the user’s expectations: 

○  Explain what the chatbot can do (it can help with the quiz, it has only one 

purpose)  

○  Explain how the chatbot “understands” the meaning of the question (the question 

is recognized based on the training data learned) 

○  Explain how to use it efficiently (it is better to use more straightforward phrases 

with the most meaningful words to improve the input recognition) 

○  Explain the limits of the system (if the chatbot cannot answer the question several 

times, it makes sense to move forward to the next question) 

●  During the interaction – Communicate in an appropriate tone and increase 

human-likeness:  

○  Use semi-formal language – avoid being too “robotic” and formal, but do not try to 

use slang; it will be unconvincing  

○  Use a gender-neutral personal name  

○  Use emoticons  

●  During the interaction – use emotional utterances:  

○  Use affective utterances to demonstrate empathy and understanding and to 

improve the contact with the user  

●  “When wrong” (when system provides a wrong answer or fails to provide one) – 

explain why the system did what it did and keep aware of the chatbot context:  

○  Explain that the chatbot cannot recognize the question and ask to rephrase it.   

 

Implementation of the framework through conversational AI is explored in detail in 

Section 2, “Conversational Model Development”.  

 

1.5.  Sympathetic Arousal (Stress) Measurements  

In this section, subjective and objective methods of UX research are reviewed, and 

physiological measures applied to usability testing are described. The section also 

includes a short description of the method chosen for the current research (see more 

details in Section 3 “Method” and Section 4 “Results”).  
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1.5.1. Objective and Subjective Methods of Usability Testing  

Previous sections highlighted that UX research takes a central role in the HCI and 

HAI domains. It is a common approach in the modern development of new products and 

services. Traditional methods and metrics of user experience and usability research 

include6: 

●  Quantitative: A/B testing, web-analytics, time on task, error/success rate, surveys, 

and questionnaires,  

●  Qualitative: interview, questionnaires (open questions), heuristic evaluation, and 

observation.  

 

These methods allow to evaluate users’ response to a prototype/changes in a 

product or service quickly and understand the user journey and needs. The downside is 

that many of the approaches mentioned above, such as questionnaires, interviews, and 

observation, are subjective and, therefore, can be considered as less reliable (Yao et al., 

2014; Zaki&Islam, 2021). Also, they do not provide direct data about the psycho-

physiological state of the user, including affective states and emotions that emerged from 

the interaction. Still, as explored in Section 1.1, emotional aspects and user’s affects are 

crucial for the design process, especially “designing for an error”.  

A field of NeuroIS emerged in 2007, aiming to apply neuroscience and 

neurophysiological tools to the research of information and communication systems 

(Riedl&Leger, 2016). This approach provides a quantitative objective understanding of 

how IT systems affect users’ behavior, adding a biological level of analysis to the studies. 

During the empirical NeuroIS research, such neurophysiological methods as functional 

magnetic resonance imaging (fMRI), electroencephalography (EEG), hormone 

assessments, skin conductance, heart rate measurement, eye-tracking, and facial 

electromyography (EMG) are used.  

The HCI community and UX research followed NeuroIS by applying objective 

methods of evaluation of user involvement. Zaki&Islam, 2021 provided a comprehensive 

overview of the related studies published between 2003 and 2019, showing that the 

adoption of these methods is growing in the HCI community. Among measurements 

examined in the review are: 

●  EEG, 

●  electrocardiogram (ECG), 

●  EMG, 

●  facial expression tracking, 
                                                
6 User research methods - a comprehensive guide https://www.userzoom.com/ux-library/ux-
research-methods-a-comprehensive-guide/ Acessed on 04.01.2022  
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●  eye-tracking, 

●  EDA, 

●  heart rate variability.  

 

Examples of industries and products tested with the physiological measurements 

include: gaming, advertising, social media, e-commerce, web applications, biometric 

identification systems, call center environment. Still, conversational AI was not covered in 

this review.  

Concerning the physiological measurements used for testing chatbots, a few 

studies can be found. In the research by Ciechanowski et al. (2019), a chatbot was tested 

with EEG, EMG, and EDA. The study examined the physiological measures, and applied 

traditional questionnaires to assess if the chatbot with a human-like visual avatar causes  

the “uncanny valley” effect on the participants. The questionnaires showed that the avatar-

based chatbot is perceived more negatively than the text-based one. The EDA and ECG 

data showed higher levels of emotional arousal and heart rate, providing more details 

about users’ reactions to specific chatbot answers and interaction points.  

Another example is a recent study by Yen&Chiang (2021), where the purchase 

activity of the customers speaking with the chatbot was controlled by EEG data. 30 

participants took part in the research, which also included a traditional self-assessment.  

Finally, the NeuroIS Society supported this trend with a pilot study by Carmichael et 

al. (2021), in which 14 participants were interacting with a chatbot online while an 

automated framework analyzed their facial expressions.  

These few examples highlight untapped opportunities for further work in this area, 

which can enrich the research of Human-Chatbot interaction with objective physiological 

data.  

 

1.5.2. Electrodermal Activity Measurements   

EDA is a method of defining the levels of skin conductance by measuring the current 

flow between two skin points, between which an electrical potential was applied 

(Braithwaite & Watson, 2015). The EDA data includes background tonic (skin conductance 

level, SCL) and phasic (skin conductance response, SCR) components. These signals 

reflect the activity of the sympathetic nervous system, associated with  emotional arousal 

in the following way: sweat glands, especially the ones located on the palms, are sensitive 

to noradrenaline. Psychological and emotional affects cause the activation of the 

sympathetic nervous systems by noradrenaline transmission; sweat glands answer to the 

increased noradrenaline levels and, in turn, increase skin conductance levels due to the 

produced sweat.  
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Colleagues from the “Competence Team for implanted devices” of the Medical 

University of Vienna ran several studies (Bijak et al., 2019; Deubner, 2019) proving that 

EDA can be used as a reliable method of stress (sympathetic arousal) monitoring. The 

number and amplitude of the SCR peaks can be associated with the levels of the 

experienced psychological arousal. Event-related SCR peaks also define the response to 

a specific stimulus presented. Data preprocessing is required for splitting the one signal 

obtained from the sensors into two components (see fig.3: red is phasic SCR component 

with the peaks, blue is tonic SCL component).  

 
Fig.3. Raw EDA Data from Sensors and Splitted SCR and SCL Signals. 

 

Different biometric devices to measure EDA are available on the market; in most 

cases, they combine several various methods of physiological measures (EDA, heart rate, 

ECG, EMG, others). For the present research, a medical certified Neuromaster® device 

was used (SOFT®med system, Insight Instruments7). The device measured the 

sympathetic nervous system activity during the experimental sessions. The obtained 

signal was pre-processed and split into SCL and SCR components. SCR amplitudes 

provided valuable objective data about the difference in the participants’ experience of 

dealing with the default and the improved interaction design models.  

 

 

 
                                                
7 https://biofeedback.co.at/international/ 
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Summary  

This section presented a foundation of the master thesis, explaining the main 

concepts such as Postcognitivism, Human-Centered Design, Affective States, Human-

Computer and Human-AI Interaction, and physiological methods of measuring user 

experience, which created theoretical and methodological framework of the research. In 

the following sections, the empirical part of the study is described, including 

implementation of the interaction framework in the Conversational AI model, experimental 

setup, experiments, and their results.   
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2. Conversational Model Development  

This section provides details about the conversational AI model development – how 

the dataset for the experiment was compiled, which natural language processing (NLP) 

open source framework was used as a foundation for the model, how the infrastructure 

and architecture of the model were built. It also describes how the interaction design 

formulated in Section 1.4 was implemented in the chatbot behavior, and which specific 

steps were fulfilled to achieve the required performance of the model. The section also 

presents the insights on the development of the web application used for running the 

experiment.  

 

2.1. Quiz Dataset  

To provide a task for the participants to solve during the experiment, a dataset 

consisting of 30 questions chosen from the "Jeopardy!" dataset1 was compiled. The 

questions were marked as "easy," "medium," and "hard" based on the assessment of their 

difficulty level for participants. The assessed complexity level was validated in a 

preliminary survey that involved 20 participants. Six questions used for the validation were 

removed from a set, yielding the final set, consisting of 24 questions, was used in the 

experiments presented below. 

During the experiments, the web application randomly retrieved ten questions from 

the entire database, half of which were from the "easy" group and a half from 

"medium"/"hard." This approach was introduced to ensure that, on the one hand, 

participants would not be able to answer all of the questions without the support of a 

chatbot. On the other hand, a participant could still answer at least some of the questions 

based on her prior knowledge –  a more realistic setting of seeking external assistance.  

 

2.2 Conversational Model  

2.2.1 RASA Open Source  

RASA Open Source is a Python-based learning framework for conversational AI 

models development and implementation (Bocklisch et al., 2017). Complete 

documentation can be found on https://rasa.com/docs/rasa/  

RASA Open Source consists of several main modules (see Fig. 4):  

●  RASA NLU (Natural Language Understanding) contains an NLU pipeline, 

which supports intent classification and entity extraction. Intent is the main topic of 

the message like “hello” or “help me”; entity is a predefined language category, 

e.g., “DATE,” “PERSON,” etc. 

                                                
1 https://data.world/sya/200000-jeopardy-questions, last accessed 28.11.2021 
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●  RASA Core containing Dialog Policies – set of scripts defining the chatbot 

behavior depending on the intents and entities recognized 

●  RASA SDK supporting Action Server – server for running Python scripts 

implementing chatbot behavior (returning the coded answers, calling API, etc.) 

 
Fig. 4: RASA Open Source Modules. Source: Justina Petraitytė 

 

RASA NLU. User inputs are passed through the NLU pipeline containing various 

components – pre-trained language models (see Fig.5):  

● Tokenizers – split messages into tokens, natural language units, required for 

further processing 

● Featurizers (vectorizers) – convert language tokens into vectors in a feature space 

of the model 

● Intent classifiers – define similarity between the vectorized input and the provided 

in the training data examples of different intents, predicting which intent was 

provided by the user (e.g., “request_weather”) 

● Entity extractors – extract defined language categories from the text (e.g., 

“DATE”). 

 

The pipeline is defined in the Config file of the model and can contain various 

combinations of the components described above. As various tokenizers, featurizers and 

classifiers can perform differently on each specific dataset, the pipeline sequences can be 

compared during model evaluation and tuned (see the part Model evaluation below).  
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Fig.5. RASA NLU Module. Source: Justina Petraitytė 

 

Before the training, the modeler should provide the training data. The YAML format 

is used for the training data as a more “user-friendly” structured alternative to the 

markdown. The training data in RASA framework consist of the following types, usually 

separated between several YAML files:  

● NLU data – contains examples of possible user inputs marked as different 

intents/entities. For example, intent “greet” can be provided with examples such as 

“Hey”, “Hi”, “Hey there”, “Hello”, “Good afternoon”, “Good morning”, all of which will 

mean the greeting. During the training, the model learns the features of the intents 

described in the training data and how to distinguish them in the vector space.  

● Stories – structured examples of the conversations between the user and AI 

assistant, containing a sequence of user intents and chatbot actions that should be 

returned. The actions can either contain a text response (utterance) or trigger 

some script (custom action) that will be processed inside the Action Server. Stories 

represent rather a recommendation and guidance for the chatbot than a strict 

algorithm. For implementing a strictly defined question-answer/action pair, Rules 

should be used.  

● Rules - contrary to Stories, it is a fixed sequence of inputs and chatbot response 

actions. It is recommended to use Rules only for short and very specific 

conversation patterns, as they cannot generalize on unseen interaction examples, 

like Stories.  
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● Domain – a specific YAML file containing the whole “universe” of the chatbot, 

including all intents, entities, actions, and responses. Responses are also called 

utterances and are usually marked as “utter_greet” or “utter_goodbye”.  

 

After the training is finished, the trained model is saved into the directory models 

and can be evaluated and re-used later.  

 

RASA Core. Dialogue management and Policies define how the chatbot behaves in 

reply to the recognized intent/entities. Policies are machine learning (ML) or rule-based 

models that predict the next chatbot’s action that should be implemented. The examples 

of ML policies are TED (The Transformer Embedding Dialogue), a multilayer neural 

network of transformer encoders used for both action prediction and entity recognition 

(Vlasov, Mosig, Nichol, 2019); MemoizationPolicy – a model that remembers Stories from 

the training data and tries to match the provided intent to the memorized stories. If 

successfully, the model triggers the next chatbot action specified in the Story. It is possible 

to configure the number of interactions for which the model should check if the story 

matches.  

RulePolicy is an example of rule-based policies; it tries to predict the next action 

based on the Rules provided in the training data. If the model confidence that it “knows” 

the right next action is higher than a configured threshold, the predicted action will be 

executed; if it is lower than the threshold, the model will trigger a fallback action. Fallback 

is specified by the modeler set of actions “designed for the error”. An example of such a 

fallback - chatbot, asking to rephrase the previous question or proposing to hand over the 

user to a human agent.  

During each user-chatbot interaction turn, all policies specified in the model Config 

provide a certain level of confidence for the action predicted. The policy with the highest 

confidence level will be chosen. If two policies have the same confidence level, the action 

is chosen based on the priority; by default, RulePolicy has the highest priority, followed by 

MemoizationPolicy and finally TEDPolicy. This ensures that Rules as more strict 

conversation patterns will be followed in the first place. 

 

RASA Action Server. Action Server is required for executing the actions specified in 

the training data. When an action is triggered, the model sends a request to the server, 

and receives defined events and responses. Some actions are in-built in RASA by default: 

action_session_start (start the session and reset the conversation tracker), action_listen 

(await the next input from the user), action_default_fallback (triggered by low prediction 

confidence, sends the defined by modeler fallback response), etc. Custom actions are 
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scripts that run any code required: they can send API calls to the external systems, 

retrieve information from the database and so on. For Action Server, a default server 

provided by RASA Open Source can be used (written in Python) or any custom server 

(that can be written in any language).  

 

Model evaluation. There are two main levels of evaluating the model performance: 

evaluation of NLU model and NLU pipeline.  

To evaluate the NLU model, a classical approach with splitting data into train and 

test sets as 80/20 can be used. It is also possible to implement a cross-validation testing, 

where data will be multiple times reshuffled and splitted into training-test sets. In-built in 

RASA rasa test method is used.  

As an output, the test script returns an intent classifier report (containing evaluation 

metrics as precision, recall and f-1 score for each of the intents), confusion matrix 

(showing which intents are confused with other) and confidence histogram (illustrating the 

confidence level of the Dialogue management Policies for each of the intents).  

Intent classifier report shows how good the model performs in predicting different 

intents, and if it is too strict and has not enough confidence (the confidence threshold is 

too high), too loose and overconfident (the confident level is too low), or just right.  

It is also possible to compare different NLU pipelines. If several pipelines are 

configured, multiple configuration files can be passed as arguments to the rasa test 

method. It will split the data into train and test, train each of the configurations separately 

on a subset of the training data, and then validate it on the test dataset.  The provided f-1 

score graph will show the change in the performance between different NLU pipelines. 

 

2.2.2. Model Architecture and Environment 

Conversational models for the experiment were built on the RASA open-source 

model. To get enough computational resources and provide easy integration with external 

systems (such as a chatting window and a database), the infrastructure was developed as 

fully cloud-based. The infrastructure included the EC2 instance based on the Frankfurt 

AWS data center, Ubuntu OS, Ubuntu Desktop, and TightVNC installed on the virtual 

machine. Such a set allowed using a fully remote environment from the macOS laptop 

used in the experiments via VNC Viewer.  

The conversational model was developed and tested locally on the virtual machine 

using RASA Command Line capabilities, and later tunneled via https://ngrok.com/ (a 

solution for secure tunneling localhost addresses to the web) to establish a public 

endpoint. Through the websocket channel, a connection with an open-source chat widget 

for RASA https://github.com/scalableminds/chatroom was created. The last required 
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integration was to connect an external database for Tracker Store, a RASA component 

that stores all chatbot logs. For the Tracker Store, a MongoDB Atlas database was used. 

The whole architecture and environment of the model are reflected in Fig. 6. 

Fig. 6. Conversational Model Architecture 

  

2.2.3. Implementation of the Interaction Framework 

The model was developed taking into account the following main conditions:  

● The NLU component of both models should operate the same way whether default 

or improved interaction design is used so that the user experience will be 

distinguished by the interaction design and not by NLU performance   

● The difference between the default and improved interaction design should be 

based on how transparent and understandable the model is for the user. A 

variable that should be manipulated here is the chatbot responses (utterances), 

including the greeting message at the beginning of the interaction.  

● Situations, where it does not matter if the user understands how the system works 

(based on the information provided by the model) or not because it consistently 

performs ideally, should be avoided. It will not allow distinguishing the user 

experience between the default and improved model.   

● According to the previous condition, it should not be possible to receive a correct 

expected answer from the chatbot just by copy-pasting the quiz question from the 

system. 

● Still, the model should provide a correct answer for each of the questions in the 

dataset.  

 

To summarize the conditions above, the goal was to create a “not perfect” system 

that operates with the same level of performance for both models. In the case of the 
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improved interaction design, the model provides more information about how it works and 

why helping users interact with it more effectively.  

2.2.4. Model Development  

For this research, a demo RASA model “Financial Services Example Bot” was used 

and updated (https://github.com/RasaHQ/financial-demo). The pre-built demo model 

contains all the required components – project structure, training data examples, rules, 

stories, actions, NLU pipeline, and config file examples.  

The development process looked as follows:  

1. Remove all the financial-related data and actions 

2. Provide new training data examples based on the actual dataset 

3. Create new rules, stories, and utterances for the chatbot adhering to foreseen 

interaction scenarios and the experimental settings. 

4. Integrate with external database and chat window  

5. Train the model and evaluate the performance  

6. Optimize the performance  

7. Create two instances of the model with default and improved interaction design  

 

Cleaning the data. To speed up the cleaning process, the demo model was tested 

against questions from the quiz dataset. The triggered financial-related intents, stories, 

entities, and actions were removed from the file system.  

Provide new training data examples. For each of the questions, at least 2-3 different 

examples of phrasing the same question were provided, e.g.:  

● Original question: “The strawberry is not a member of the berry family but is, in 

fact, a member of this garden flower family.” 

● Provided training examples:  

○ To which garden flower family does strawberry belong?  

○ If strawberry is not a berry, then what is it?  

○ Strawberry is a member of which flower family? 

The overall approach was to train the model based on the most meaningful words 

from the question. “Jeopardy!” questions are originally phrased in a tricky way. It pushes 

the user to interact with the chatbot following its instructions and not just copy-paste 

questions as they are.  

Create new rules, stories, and utterances for the chatbot. Responses to intents 

related to the quiz game questions were specified as Rules, as the chatbot must provide 

an exact answer to each recognized question. For some general and chit-chat responses 

as greetings, answering the questions like “Are you a bot or a human?”, “What can you 

do?”, Stories were applied. This allowed to provide a more natural conversation 
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experience and generalize on unseen conversation examples, as each user can ask such 

questions differently.  

Utterances were the primary means of interaction design implementation. See the 

comparison of variants of utterances in the “Default” and “Improved Design” models in 

Table 1.  

 

Utterance Default design model Improved design model 

utter_greet Hello! I am your virtual 

assistant. 

Hello! My name is Alex. I am 

your virtual assistant 

utter_help I can help you with the quiz I can help you with the quiz. 

I predict the intent of your 

message based on the data 

I learned. Please, try to use 

simple phrases with the 

most meaningful words for 

the questions. If I can’t 

understand you, I will ask to 

rephrase the question. If I 

cannot answer it several 

times, maybe it is better to 

move forward. But I will do 

my best :) 

utter_fail Sorry, I didn’t get  I didn't get that. Can you 

please try to rephrase it? 

Table 1. Utterances for Default and Improved Interaction Model 

  

Integrate with external database and chat window. The model can be developed and 

tested entirely locally via the command line. Nevertheless, the external Tracker Store 

allows to keep and observe all the model logs conveniently. For tracking, a MongoDB 

Atlas database was chosen. RASA architecture provides fast and easy integration 

possibilities based on the database public endpoint and login-password pair.  
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Fig.7. Session Logs in MongoDB Database. 

 

Streamed logs (see Fig.7) contain information about all the messages exchanged 

between the chatbot and the users. During the development, logs containing confidence 

levels for different predicted intents were especially significant. This tracking allows seeing 

when intents are mixed up and understanding the training process better.  

Integration with the chat window was done via websockets and ngrok tunneling: 

ngrok allows the creation of a publicly available endpoint for the localhost address. This 

endpoint was saved in the chat window code snippet and inserted into the HTML header 

of the web application. As a result, the chat window connected with the required model 

was available on the web application homepage (see Fig. 8).  

Fig. 8. Web Application Homepage with an Active Chat Window 
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Train the model, evaluate and optimize the performance. Initial training revealed two 

problems. Firstly, for some questions, the model could not provide a correct answer on 

both plain copy-pasting or rephrasing - these questions failed in general. Secondly, for 

others it always responded correctly even with the whole copy-pasted question. Both 

cases were against the design framework implementation conditions described in section 

2.2.3, so it was essential to eliminate such undesirable behavior.  

NLU model evaluation showed that in general the model performs well: for most of 

the intents, the precision, recall and f-1 score were close to 1.0. Only one quiz-related 

intent was misclassified in the NLU model, a question about Lewis Caroll: “As well as kids' 

books, this 19th century author wrote "Examples in Arithmetic" & other math textbooks”. At 

the same time, the confidence level for prediction of some intents was low: several intents 

were classified with confidence 0.63, 0.51 and even 0.49, all below the threshold.   

To optimize the performance, the following improvements were made:  

● nlu_fallback confidence threshold was lowered from 0.7, which is too high for a not 

production-ready but research chatbot model, to 0.5. This change provided a 

better performance for the “non-answerable” questions. 

● For some questions, additional training examples helped to solve the problem and 

make all the questions answerable. 

● To reduce the number of questions that were successfully answered even with the 

copy-pasting, duplicate “false” intents with similar words were created. In this case, 

the user had to rephrase the question and choose meaningful words from the 

“right” intents, which nudged users to interact with the chatbot more to get 

feedback from the model.  

The final model had the maximum precision, recall and f1-score for all the intents, 

and all of them were predicted correctly. At the same time, for 30% of the dataset 

questions it was possible to get the proper answer from the chatbot only by rephrasing the 

original question into the short version.  

 

Create two instances of the model with default and improved interaction design.  For 

the improved interaction design model, only the chatbot responses were changed; as 

utterances are not included into the training data YAML files, but rather into the domain 

file, it didn’t require the re-training of the NLU model. Two different model versions were 

separated and stored in two git branches. Depending on the experimental group the 

participant was assigned, the corresponding git branch was activated and default or 

improved model was uploaded to the local server.  
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2.3. Web Application  

The web application used for the quiz phase of the experiment was built using React 

and NextJS frontend development frameworks and run locally. Quiz questions were 

stored as a Javascript objects array, where questions and answers were implemented as 

keys as a JS.file in the project directory. By using the randomizing function, ten question-

answer pairs were retrieved from the array and sorted. The whole application was styled 

with CSS using the Tailwind CSS library.  

On the starting screen, the user was presented with a welcome message and the 

button "Start the quiz" (Fig.8). A chat window to interact with the virtual assistant was also 

available. The participant needed to start a conversation with the chatbot before starting 

the quiz to receive the model's instructions in the greeting message. The Chat window 

was implemented as a simple HTML iFrame pointing to the chatbot endpoint.  

Two web application routes, "/timer" and "/no-timer,” provided two React 

components. The route was chosen depending on the experimental group to which the 

participant was assigned. "/timer" route included a counter that started after pushing the 

"Start the quiz" button. Initially, the counter time was equal to five minutes, but participants 

reported that it was impossible to answer all ten questions during the given period during 

the pilot study. Therefore, the time was extended to seven minutes. 

Quiz questions were displayed in a multi-step "Wizard" form implemented with the 

React Final Form library. The user received the questions one by one and could not return 

to the previous one answered. The results were shown as "correct"/" incorrect" tabs below 

the Wizard and were updated after each answer submission. If the user successfully 

answered all the ten questions, an animation with fireworks was congratulated.  

The history of the conversation with the chatbot was kept during the whole quiz 

phase and was reset together with the quiz progress only when the page was refreshed. 

The user answers were stored in the PostgreSQL database.  

 

The next section “Method” describes how the model developed was applied in the 

experiment and used for collecting physiological measurements.  
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3. Method 

This section describes the design and implementation of the experiment: the sample 

statistics, experimental design, main variables and covariates, exclusion criteria. The 

experimental procedure, laboratory setup and questionnaires are also presented.   

 

3.1. Participants  

For the experiments, 33 participants have been recruited: 17 females and 16 males. 

Age distribution: 48% of the participants were 25-34 years old, 33% – 35-44, 18% – 18-

24. 94% (31 participants) had a C1/B2 level of English proficiency, and two persons (6%) 

were native speakers. In terms of IT expertise, 36% described themselves as 

professionals, 36% reported advanced users, 21% – confident users, and 3% (one 

person) – beginner level. Professional chatbot experience was one of the exclusion 

criteria, so all the related participants were excluded from the experiment. Among others, 

64% reported that they interact with the chatbots as users from time to time, 30% said that 

they interact often. Two persons (6%) never interacted with the chatbots before the 

research.  

The self-reported stress level was “moderately stressed” for 64% of the participants 

and “mildly stressed” for 33%. 3% (one person) specified “highly stressed.” No 

participants were excluded based on the simplified stress evaluation (see section 3.2.3 

Exclusion criteria).  

 

3.2. Experimental Design  

For the experimental design of this study, a 2x2 between-subject, full-factorial 

design was chosen, taking into account the following considerations:  

●  It is necessary to define the extent to which each of the two factors – improved 

interaction design of the chatbot and added stress – influence the levels of sympathetic 

arousal of the participants (target variable) and each other (two-way interaction). Using 

the full-factorial experimental design and a two-way ANOVA data analysis, it is possible to 

define these effects. 

●  Full-factorial experimental design allows defining the effects even on moderate 

samples, providing at least one observation for each of the combinations of factors (Dean 

et al., 2017) 

 

3.2.1. Factors Levels, the Dependent Variable, and Experimental Groups  

Interaction design model: default (-1) and improved (1) 

Stress factor (timer): no added stress (-1) and added stress (1)  

Skin conductance response – dependent variable  
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Overall there are four experimental groups: “No Stress-Default model” (control 

group); “No stress-Improved model”; “Stress-Default model,” and “Stress-Improved 

model.” 

The subjects were assigned randomly to the experimental groups based on an 

equal distribution of participants.  

Possible sources of variation, which should be considered during the data analysis 

or used as an exclusion factor for the study, were accounted for as described below. 

 

3.2.2. Source of Variation 

Individual differences in the skin conductance levels: due to such factors as activity 

of the sympathetic nervous system, number and activity of the sweat glands, and similar 

physiological factors, the absolute levels of the participants’ SCR can be different 

(Brettlecker, 2019; Deubner, 2019). To count on this covariate, it is necessary to: 

1) standardize the data between subjects and  

2) include baseline SCR measurements into the experiment through the block 

design (baseline – stress phase – baseline).  

 

3.2.3. Exclusion Criteria 

To avoid distortion of the results due to participants’ background and general 

nervous system conditions, the following exclusion criteria were defined:  

● exposure to chronic stress;   

● professional experience with the chatbots;  

● age above 44 years old;  

● English proficiency below B2;  

● anxiety-associated disorders and heart diseases.  

 

Exposure to chronic stress: subjects exposed to chronic stress may react 

abnormally to the used stress factor. The current study did not aim to fulfill a thorough 

stress assessment but rather a rough estimation of significant stress conditions. 

Therefore, a simplified evaluation of severe and moderate stressing events based on the 

Holmes and Rahe (Holmes & Rahe, 1967) stress scale was included in the pre-test 

questionnaire. 

Professional experience with chatbots. People working on the chatbots will 

understand how the system works and why it works much better, despite the interaction 

design approach applied. This factor may affect the subjects' SCR and should be an 

exclusion factor in the pre-test questionnaire.   
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English language proficiency below B2 – the participants should understand the 

questions from the “Jeopardy!” dataset, which are intentionally formulated in a tricky way. 

Therefore only people with enough language proficiency should take part in the research.  

From the ethical considerations, anxiety-associated disorders and heart diseases 

were also chosen as exclusion criteria: the subjects could experience mild stress during 

the experiment, so it was essential to ensure that the test would not trigger severe 

conditions.  

 

3.3. Experimental Procedure  

1. First, participants signed the informed consent. Then the Neuromaster SCR 

sensor was attached to the point (preferably) finger of the participant’s non-dominant 

hand. The measurements started with a non-recorded acclimatization phase of 1-minute 

length, during which it was required to check the SC signal levels and make sure that the 

signal was appropriate. During the acclimatization phase, participants were able to find a 

comfortable position that would ensure a minimum possible amount of movement during 

the experiment. 

2. The overall procedure was shortly described, then recording started, and the 

subject was watching the first 2-minute baseline video excerpted a  footage containing 

natural landscapes filming and neutral instrumental music1.  

3. After the first baseline, participants became familiar with the web application and 

received additional instructions for the quiz phase. Participants could either answer 

questions themselves or ask the chatbot for help, and they were was not allowed to 

google the answer. To create the same conditions for all the participants, they were asked 

to use mouse buttons for the copy-pasting instead of the keyboard hotkeys. It was also 

possible to type the questions and answers. If the participant had no further questions, 

she was allowed to start a conversation with the chatbot assistant, read its instructions, 

and then start the quiz.  

4. Depending on the experimental group (Stress / No stress), the participant had a 

visible countdown timer for 7 minutes or was asked not to bother about the time. In the 

second case, after 8 minutes, the researcher notified the participant that the time was over 

if the game was not finished.  

5. After the “stress” phase, the second 2-minute baseline video was presented. At 

the end of this phase, the SC measurement was stopped, and the sensor was removed.  

6. As the last step, the participants filled the short post-test questionnaire, after 

which they could ask any questions about the experiment.  

                                                
1 https://youtu.be/2OEL4P1Rz04, last accessed: 28.11.2021 
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3.4. Post-test Questionnaire  

The post-test questionnaire was based on The Usefulness, Satisfaction, and Ease 

of Use Questionnaire (USE, Lund, 2001). Two questions were allocated to each 

dimension to check the consistency and have more data, keeping the questionnaire short. 

Additionally, a question about the self-evaluated levels of stress during the experiment 

was introduced. Post-test questionnaires were printed and provided to the participants 

during the experiment.  

 

3.5. Experimental Setup and Data Acquisition 

For running the experiment, two laptops were used. On the MacBook Pro 2011, a 

virtual machine with a running conversational model was connected, and baseline videos 

were played. On the Windows-based laptop with a mouse controller, the Neuromaster 

software and web application for participants were installed. The Neuromaster device with 

the attached SCR sensor was as well connected with the Windows-based laptop. The 

overall setup is reflected on the Fig. 9 and 10. 

 

 
Fig. 9. Experimental Setup 
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Fig. 10. Experimental Setup in the Lab 

 

The data from the SCR sensor was sampled with a frequency of 20ms (50Hz). Raw 

data is recorded to text file containing timestamps in milliseconds, skin conductance signal 

level in microsiemens, and label of the channel (SCR/heart rate). The session data (text 

input from the participant and chatbot’s responses) was saved in the external database.  

 

The data analysis of the samples obtained and testing the research hypothesis are 

presented in the next Section 4. “Results”.  
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4. Results  

 

4.1. Data Pre-processing  

The data pre-processing was conducted in Jupyter Notebook, using pandas and 

numpy packages. The overall dataset was filtered for the SCR channel. Finally, SC values 

were scaled to microsiemens, while timestamps were adjusted from milliseconds to 

minutes.  

 

4.1.1. Motion Artifacts Removal and Data Smoothing 

SC data obtained from the wearable sensor is sensitive to even slight 

disturbances, such as  motion artifacts (see Fig.11), that have to be removed/filtered to 

avoid distortion of the results (Braithwaite&Watson et al., 2015).  

 

 
Fig. 11. Raw, Unfiltered Data of the Sample 

 

For cleaning EDA data, different approaches are typically used. For example, the 

Hampel filter (Pearson et al., 2016; Wheeler, 2019) is an algorithm that checks if the data 

point lies more than the specified threshold from the dataset median and replaces it with 

the sliding window median value. This method shows good results for cleaning moving 

artifacts from SC data (Deubner, 2019). The most recent approach is applying ML-based 

algorithms that predict outliers and smoothes the curve (for example, see Taylor et al., 

2015, who used Discrete Haar Wavelet Transform and Support Vector Machines 
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algorithm for artifact detection). However, the existing ML-based approaches are 

developed considering a specific data model of popular EDA-processing software, which 

wasn’t available for the present study, so more common and straightforward filtering 

methods were used instead.  

For this research, a median filter implemented in SciPy package was chosen as an 

artifact removal and smoothing solution. The median filter uses a very similar to the 

Hampel filter approach: the sliding window calculates the averaged value of the 

neighboring points to correct the median inside the window. The window size can be 

defined empirically, though it is recommended to use a range starting from one second 

and find the appropriate span (see Biopac, 2021). For the research dataset, a window size 

equal to three seconds was mainly used. During the investigation of two algorithms, it was 

revealed that the median filter provides comparable results (in some cases, it eliminates 

major artifacts even better) – the Fig.12 and Fig.13 represent the filtered data. At the 

same time, the Hampel filter is less computationally efficient (while the median filter 

processes the data instantly, with the Hampel filter, it took up to 14 seconds for each file).  

 

 
Fig. 12. The Sample, Cleaned up with Hampel Filter 
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Fig. 13. Median Filter Applied to the Sample 

 

During pre-processing, each sample was also visually examined. If the sample had 

problems with data acquisition (signal loss) or rough artifacts not removed even by a 

median filter with larger window size, it was dropped out from the further analysis. From 

33 participants, 29 initial samples were obtained; 9 were dropped after the pre-processing 

phase.  

 

4.2. Obtaining Sample and Dataset Statistics         

After data was cleaned from the artifacts and noise, it could be split into tonic 

(SCL) and phasic (SCR) components. SCR data is associated with sympathetic arousal; it 

is possible to define the delta between the baseline and task-related levels by analyzing it. 

To process the data, an open-source Neurokit2 library was used (Makowski et al., 2021). 

Dealing with the dependencies required for Neurokit2 installation, it is important to make 

sure that SciPy version is 1.2.0 or higher.  

Neurokit2 package is based on the cvxEDA algorithm (Greco et al., 2015; Bijak et 

al., 2019). cvxEDA takes z-score values of the cleaned-up SC signal as an input. This 

approach fulfills another critical requirement to the EDA between-subject analysis – 

normalization of the data. As absolute values of the sympathetic nervous system activity 

can differ from one participant to another, it is crucial to normalize the whole dataset on 

one scale (Braithwaite & Watson et al., 2015).  
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As an output, Neurokit2 provides a data frame containing the SCR peaks data, 

including the mean amplitude of the peaks. Based on the timestamps assigned to the 

specific sample, dividing the whole data frame into two baselines (baseline 1, baseline 2) 

and the stress (task) phase is possible. As a result, the number of peaks per minute and 

the mean amplitude of each phase was obtained. The target variable – the delta between 

the stress phase and the averaged baselines’ values – was also calculated.  

To optimize and speed up the data analysis, all the pre-processing steps were 

compiled into one script. The script took the file path to raw data and timestamps of the 

experiment phases as an input.  A number of peaks per minute, the mean amplitude of 

each phase, and the delta between the stress phase and the averaged baselines’ values 

were provided as an output.  

All the outputs for 20 samples kept for further analysis were combined into one 

final dataset. The data frame contained codes of the samples, assigned test group, all the 

demographic data, and covariates from the pre-test questionnaire. In addition, SCR 

statistics (peak number and mean amplitude), the delta between the stress phase and the 

baseline, and Likert scale scores from the post-test questionnaire were also included.  

The target variable of the experiment was the delta of SCR peaks mean amplitude 

between the stress phase and the baseline. The data analysis showed the following 

results, illustrated on the Fig.14:  

● For the control group (No stress, Default model), the delta = 1.2087 

● Test group Stress, Default model delta = 1.5414 

● Test group Stress, Improved model = 0.9921 

● Test group No stress, Improved model = 0.9899 

 

 
Fig.14. SCR Peaks Mean Amplitude Delta per Experimental Group 
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4.3. Full-factorial Analysis  

For the-full factorial analysis, Python and R software was used, including such 

packages as  pandas, numpy and SciPy (for Python). 

First, the main effects of the independent variables on the target variable were 

checked. The resulting values were: 

● Stress factor: 0.0242  

● Model factor: -0.5307       

It means that the stress factor has a weak positive correlation with the target 

variable, as expected (see section 5.2 Limitation for the detailed discussion of why the 

applied stress factor may not be a valid substitute for real-life stress). At the same time, 

the improved or default model factor is significantly negatively associated with the level of 

the target variable - the improved model reduces the values up to 53%.  

Two-way interaction of the full-factorial analysis value = -0.1653. It shows that the 

additional stress factor weakens the effect of the improved model, though not significantly. 

As well it means that it still affects the target variable via indirect correlation.  

The obtained coefficients for the mathematical model are: 

ŷ = 1.002 + 0.012 x1 -0.265 x2 

Overall results explain the minimal difference between the levels of target variable 

in “Stress-Improved” and “No Stress-Improved” groups, considering that the difference 

between “Stress-Default” and “No Stress-Default” groups is much higher. The improved 

model on this sample size compensates for the weak stress factor, while with the default 

model, this compensatory effect does not occur, and the SCR peaks levels are much 

higher.  

  

4.4. Hypotheses Testing and Statistical Significance  

The null hypothesis H0 and alternative hypothesis are defined as: 

H0: x1 = x2 

H1: x1 ≠ x2,  

Where x1 and x2 is the mean value of the Delta in the experimental groups with two 

improved interaction design factor levels -1 and 1 correspondingly. In other words, the null 

hypothesis assumes that there is no statistically significant effect of the improved 

interaction design model.   

To check the statistical significance of the defined improved interaction effect, the 

ANOVA analysis in RStudio was conducted using the car package1. Before running the 

ANOVA analysis, it is essential to make sure that:  

                                                
1 https://cran.r-project.org/web/packages/car/index.html, last accessed: 28.11.2021 
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a) observations are random and independently taken from the population,  

b) variance of the independent variables is equally distributed, and  

c) the dependent variable is normally distributed (or close to normal).  

The participants were assigned randomly to the experimental groups and took the 

experiment only once and independently, so the assumption a) is met. For the point b), 

the residual plot can be used to check the variety across the independent variables (see 

Fig.15) 

 
Fig.15. Residual Plot  

 

There is a noticeable pattern in the residual plot, so the assumption is met as well.  

For point c), a q-q plot can be used to check if the dependent variable is normally 

distributed (Fig. 16).  

Fig. 16. Q-q pPot of the Dependent Variable Distribution. 
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All the values fit inside the normal distribution, so this assumption is also met.  

After the dropping of the distorted samples, the distribution of the participants 

between the experimental groups became not equal. As non-balanced full-factorial design 

can affect the results, it was essential to take it into account. Therefore, ANOVA Type II 

squares sum was used, as recommended in the literature (Langsrud, 2003).  

The ANOVA analysis was performed in the car R package. The F-value for the 

Model effect = 1.8699, p-value for the Model effect = 0.1904. To decide if the null 

hypothesis can be rejected, it is also important to consider a proper α value. Though the 

most common threshold for α value is usually set to 0.05 or 0.01, with the small sample 

size, it can affect the test power and make it weak. In literature (for example, see Kim, 

2015), it is advised to choose a balanced α value that will increase the test power based 

on the sample size. With the fixed α value = 0.05, for the sample size n=20, the test power 

will be around 0.29. With the decreasing α value (for this sample size, the recommended 

value = 0.31), the test power will already be 0.69.  

Based on these considerations, the obtained p-value of the Model effect by the 

ANOVA test = 0.1904 is lower than F-value and the chosen α value = 0.31. Therefore the 

null hypothesis can be rejected. Thus, the improved interaction design model has a 

statistically significant effect on the participants’ stress levels.  

For the Stress factor, the F-value = 0.0142, p-value = 0.9066, so the factor has no 

statistically significant effect on the target variable.  

 

4.5. Analysis of the Post-test Questionnaire Likert Scale Data 

The post-test questionnaires provide Likert-scale data for the self-reported level of 

the perceived Usefulness, Easiness of use, Learnability, and overall Satisfaction from the 

interaction. The additional variable introduced is the self-reported level of stress 

experienced during the experiment. The goal of the analysis was to define if there would 

be a significant difference between the reported values depending on the experimental 

group. In other words, the analysis should determine if the improved interaction design 

and the additional stress factor affected the evaluation of the participants.  

For the analysis, RStudio and likert package was used2. The package supports 

building an ordinal regression model – one of the most common approaches to the Likert-

scale data analysis (Schweinberger, 2020; Golicher, 2017). 

The regression uses the factor levels and the target variable values to build the 

model. As an output, the factor coefficient, t-value, and p-value are provided.  

                                                
2 https://cran.r-project.org/web/packages/likert/, last accessed 28.11.2021 
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The Stress factor positively correlates with the self-reported level of stress (the 

coefficient value = 1.0647). The t-value = 1.2662, p-value = 0.2054, which is statistically 

significant for the thresholds chosen. For the Model factor, the effect on the self-reported 

levels of stress is not significant: t-value = 0.4492, p-value = 0.6533.  

Another positive and statistically significant correlation is between the Stress factor 

and the perceived level of Usefulness: for the experimental groups with the added stress, 

the t-value = 1.5790, p-value = 0.1143. But again, no statistically significant correlation 

between the improved Model factor and the evaluated Usefulness can be reported. The 

same relation can be observed for the Satisfaction variable and Stress factor with t-value 

= 1.2675, p-value = 0.2050.  

The interpretation of the results is presented in Section 5. “Discussion”.  
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5. Discussion  

 

5.1. Implications of the Results  

The present research examined to which extent the improved Human-Chatbot 

interaction design can decrease the level of sympathetic arousal in the users. The 

experimental data showed that the SCR peaks amplitude levels were 22% lower for the 

groups without the additional stress factor and 55% lower for those with the timer. This 

effect was also tested as statistically significant.  

The analysis revealed that the stress factor itself did not significantly affect the target 

variable (stress levels). It can be explained by a mild severity of the factor (a timer in a 

quiz game), which cannot be compared with a real-life stress situation (banking account 

fraud or a credit card loss, problems with a traveling reservation, and similar). Still, it 

negatively affected the conversational model in the two-way interaction analysis. These 

findings confirm the importance of the human-centered design approach “designing for an 

error” – even mild stress could decrease the facilitating effect of the improved interaction, 

though not eliminate it.  

The results of SCR data analysis prove that implementation of the HAI guidelines 

indeed improves the interaction between humans and chatbots, increasing the 

quality of user experience. As mentioned in Section 1.5, just a few studies evaluate 

human-chatbot interaction with objective data from physiological measures, so these 

findings are important empirical evidence in favor of HAI methods.  

Another interesting point is the results of questionnaires Likert scale analysis. First, 

the statistically significant correlation was found only between the Stress factor and self-

evaluated stress level and between the Stress factor and perceived Usefulness and 

Satisfaction dimensions. Secondly, there was no significant correlation between the 

conversational model and subjective evaluation of the chatbot/stress level. Finally, there 

was no clear trend in the questionnaire data: in all four dimensions (perceived Usefulness, 

Easiness, Learnability and Satisfaction) median score of evaluation provided does not 

change consistently depending on the experimental group. The explanation could be that 

participants subjectively considered themselves more stressed in the presence of the 

timer. Because of this, they evaluated the chatbot as more useful and satisfactory in case 

of successfully passing a quiz.  

The absence of a clear trend in the questionnaire data could be explained by two 

assumptions:  

1) the final sample size (20 participants), was insufficient for the Likert scale 

analysis, and the trend could be more visible with a larger sample,  
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2) As discussed in Section 1.5, there is a general problem with the reliability of 

subjectively reported data and self-assessments used in UX research, more pronounced 

in smaller samples.  

The discussion of self-report validity for measuring emotions has been held in 

literature for more than decade (Picard& Daily, 2005; Boehner et al., 2007). In this 

perspective, self-report incorporates such problems as forgetting, normalization, and 

willful misinterpretation of the affective experience by the participants. Riedl and Leger 

investigated this approach in “Foundations of NeuroIS” (Riedl&Leger, 2016) and pointed 

out that data provided in self-report questionnaires is limited with conscious perception 

and thoughts and can be affected by memory distortion.  Therefore, basic unconscious 

processes such as pleasure and stress cannot be reflected accurately. The authors 

assumed that application of physiological methods, such as EEG, ECG, EDA, EMG, eye-

tracking, and other measures, may positively affect the reliability of UX research data.  

The results of the current research with validated EDA data and unclear 

questionnaire trend can be considered as an additional proof that it is not sufficient to use 

only surveys, observations, and self-assessment for usability research, especially when it 

is impossible to get a large enough sample, as these methods are highly subjective.  

 

5.2. Novelty and Further Research  

The research was fulfilled in a highly interdisciplinary framework, aiming to 

empirically test the Human-Chatbot Interaction Design's effect with objective physiological 

data. As presented above, there are just a few similar studies in both HAI and NeuroIS 

domains, so this master thesis can be considered as possessing a pronounced novelty.  

In a recent paper by Følstad et al. (2021), authors make a comprehensive overview 

of the current research in the area of Human-Chatbot Interaction and propose the key 

directions for further interdisciplinary studies. Measuring and assessing of UX with 

chatbots and empirical evaluation of the design models and approaches are highlighted 

as one of the main challenges. Considering that EDA data provides a reliable evaluation 

of users’ emotional experience, the current research contributes to the most actual 

problems in this area.  

Original experimental procedure, approach to implementation of conversational AI 

models and data analysis pipeline for examination of EDA data in full-factorial design are 

another contribution of this research.  

The study creates a basis for various themes that can be examined in subsequent 

studies. First, it can be valuable to run A/B testing of similar conversational models in a 

real-life setup and compare obtained survey and interview results with the physiological 
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laboratory data. This could provide insights about the capability of the interaction 

framework applied to cope with stress in daily scenarios. 

Secondly, it is possible to vary the sets of the design guidelines to test which have 

the main effect on the arousal levels. Considering the number of the overall guidelines 

proposed by the HAI community, which could be hard to implement, it would be beneficial 

to define the critical ones that can drastically improve UX and increase the chatbots 

acceptance rate.  

Next, in the current study it was not a goal to include all existing covariates (age, IT-

proficiency level, and so on) into the data analysis to examine how they correlate with the 

target variable. However, it could be possible to do so with a larger sample in further 

research. Such findings could help practitioners adjust how chatbots interact with the 

needs of a specific audience.  

Finally, in the scope of this thesis, only the EDA sensor was used as one of the 

simplest ways to obtain physiological data; the subsequent research could include more 

objective data sources such as heart rate variability, electrocardiogram, 

electromyography, and others. Cross-analysis of the several channels could help better 

understand the physiological response toward the improved interaction design.  

 

5.3. Limitations  

As discussed above, the Stress factor showed a weak effect on the target variable. 

The arousal induced during the experiment cannot be compared with facing problems with 

bank accounts, technical issues, or traveling bookings, which was one of the study's 

limitations. This limitation, while grounded in the ethically adherent experimental design 

used, should still be noted. Nevertheless, as the research question was aimed not on 

absolute but rather on relative levels of SCR during the test phase, the study is enabled to 

address the central research question, and provide evidence on the effectiveness of 

improved interaction model.  

The sample size was acceptable for the full-factorial analysis, as was discussed in 

Section 4. Considering the experimental groups with the smallest number of samples, at 

least three test runs for each combination were available. Still, the larger sample could 1) 

make the trend in questionnaire Likert data more pronounced and, 2) increase the power 

of the test for statistical significance. 

 

5.4. Conclusion  

The current research contributes to the Human-AI Interaction domain using an 

interdisciplinary toolkit of cognitive science, empirical psychology, computer science, and 

neuroscience. The research is based on a comprehensive theoretical basis of Post-
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Cognitivist theories, HCI, HAI, human-centered design, affective design, and technology 

acceptance. The interaction framework derived from the examined HAI guidelines was 

implemented in two conversational AI models in a cloud infrastructure. The framework 

was experimentally tested with physiological measures to obtain objective signals from 

sympathetic nervous systems besides subjective questionnaires. The results show 

statistical significance of the effect that Interaction design guidelines bring and provide 

proof of how they can improve the user experience.  

Applying these recommendations to a daily practice of chatbots development can 

help to increase their acceptance among the users and bring the technology closer to their 

needs. The research also draws a perspective of further studies in the field.  
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Appendix 1: Abstrakt  

 

Diese Masterarbeit untersucht das Thema der Mensch-Chatbot-Interaktion aus der 

interdisziplinären Perspektive der Kognitionswissenschaft, der empirischen Psychologie, der 

Informatik und der Neurowissenschaften. Im Rahmen der Masterarbeit wurde ein 

Interaktionsframework auf Basis der überprüften HAI-Guidelines entwickelt. Das Framework 

wurde empirisch in einem vollfaktoriellen interindividuellen Experiment mit 33 Teilnehmern 

getestet. Während des Experiments wurden physiologische Messungen der elektrodermalen 

Aktivität verwendet, um objektive Signale von sympathischen Nervensystemen zu erhalten. 

Zusätzlich wurde ein subjektiver Fragebogen durchgeführt, um die Selbstberichterstattung 

über Stress und wahrgenommene Nützlichkeit, Leichtigkeit, Lernfähigkeit und Zufriedenheit 

aus der Interaktion zu messen. Die Ergebnisse zeigen die statistische Signifikanz des 

Effekts, den Interaktionsdesign auf die Benutzererfahrung hat. Die Hauptbeiträge der Arbeit 

bilden i) Erdung der Mensch-Chatbot-Interaktionsansätze in einer umfassenden 

theoretischen Grundlage; ii) Entwicklung eines originellen Versuchplans; iii) empirische 

Prüfung der HAI- Guidelines durch Erhebung objektiver physiologischer Daten; iv) 

Entwicklung einer neuartigen Datenanalyse-Pipeline für elektrodermale Daten in einem 

vollfaktoriellen Versuchplan; v) empirische Beiträge zur Diskussion über subjektive und 

objektive Methoden der Usability-Forschung; vi) Vorschläge für die zukünftige Forschung im 

Bereich der empirischen Untersuchung der Mensch-Chatbot-Interaktion. 

 


