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2 Introduction 

Over the past decades, concerns about the environment have constantly increased (Min and 

Kim 2012). As a result of the ongoing man-made environmental destruction, climate change 

and global warming, many third-party logistics service providers and other companies have 

made tackling environmental sustainability issues their top priority (Evangelista et al. 2017). 

Notwithstanding, the increased environmental awareness at company level is above all a direct 

response to changing customer preferences. For instance, a survey conducted by the German 

Federal Environment Ministry on eco-consciousness in Germany in 2018 has shown that 64% 

of the German population attach considerable importance to environmental protection and 

climate change mitigation (BMU 2019). A majority (53%) of these respondents further support 

the claim that environmental concerns should be given more attention, especially in the area of 

transport policy (BMU 2019). Particularly the aim to mitigate pollution as much as possible 

was perceived as the most essential factor in the development of the transport sector (BMU 

2019). To address the environmental concerns related to the transport industry, the objective of 

a 60% reduction of greenhouse gas emissions from transport by 2050 compared to 1990 levels 

was formulated in the EC White Paper on Transport (EC 2011). However, much remains to be 

done, as transport emissions, which are to the largest extent caused by road transport, are 

expected to still be around 10% above 1990 levels in 2030 (EEA 2021). Logistics service 

providers are therefore under high pressure to improve the sustainability of their transport 

activities by including the environmental impact in their cost evaluation, whilst maintaining a 

high level of operational efficiency in order to remain profitable (Dekker et al. 2012; Manerba 

et al. 2018).  

Especially against the background of the remarkable growth of the e-commerce economy, 

carefully considering how to approach this challenge has become more important than ever. 

The surging demand in the area of online retail is mainly a result of the ongoing COVID-19 

pandemic (Unnikrishnan and Figliozzi 2021). As a response to the numerous lockdowns and 

the associated safety concerns within the society, many customers have turned toward the online 

sales channel (Agatz et al. 2021). In this context, especially the e-grocery business has 

experienced enormous growth rates, as it is time-saving for customers to have groceries 
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delivered directly to their homes and enables them to maintain social distance in times of the 

pandemic (Morganosky and Cude 2000). These trends not only created increased sales 

opportunities, but also massive logistical challenges (Agatz et al. 2021). In the pursuit of 

tackling these challenges, the success of e-commerce businesses mainly hinges upon their 

ability to handle the home delivery logistics of online shopping, referred to as last-mile delivery 

(Xu et al. 2008). Being the primary reason for failures of pioneering online retailers and 

substantial societal costs such as air pollution, traffic congestion and high levels of CO2 

emissions, logistics service providers have a strong incentive to optimize this highly inefficient 

and expensive, but crucial mode of transportation (Gevaers et al. 2011; Xu et al. 2008). In the 

realm of last-mile operations, especially attended home deliveries, which require the presence 

of the customer during delivery, bear the risk that delivery vehicles have to visit a similar 

location several times a day to serve customers within different delivery time windows (Agatz 

et al. 2021). Such challenges related to attended home deliveries on the one hand significantly 

jeopardize a company’s operational efficiency through high expenses in lost productivity and 

fuel waste, and on the other hand strongly impede the achievement of environmental 

sustainability objectives (Agatz et al. 2021; INRIX 2018).  

This demonstrates the importance of efficient time window management for attended home 

deliveries, which means offering the customers a set of feasible, profitable and suitable time 

windows to increase the likelihood of a successful delivery (Köhler et al. 2020). Although 

logistics service providers are increasingly responding to these issues by optimizing their 

supply-side processes, the potential that can be unlocked from influencing demand as means to 

improve system performance has long been overlooked (Agatz et al. 2021). In this context, 

especially the possibility of using non-financial incentives to motivate customers to choose 

delivery time windows that allow for both efficient and environmentally friendly route plans 

has been insufficiently studied.  

This paper aims to close this gap. To scrutinize the impact of slot choice behavior on operational 

efficiency and environmental sustainability in the context of attended home delivery, a last-

mile vehicle routing problem is simulated. Because transportation still relies nearly entirely on 

mineral oil products, carbon dioxide emissions are a direct reflection of fossil energy 

consumption and are thus used to assess the sustainability dimension of last-mile delivery 

operations (Borken 2003). The efficiency dimension of transport activities is usually measured 
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by indicators such as vehicle miles and total costs, including both costs for the service provider 

and environmental costs (Agatz et al. 2021). Since, as shown later in this paper, these factors 

are closely linked, a reduction in CO2 emissions is assumed to come along with an increase in 

efficiency. 

As e-groceries typically require the presence of the customer upon delivery, this paper uses the 

time-window based delivery of groceries as an example for attended home delivery. For this 

purpose, three different scenarios are considered. In the first scenario, route plans for 20 

customers with known locations and time window preferences are created. In doing so, the aim 

is to investigate how the operational efficiency and the expected level of CO2 emissions of 

delivery routes change with increased time window length. In the second scenario, a closer look 

is taken at the impact of an individual customer’s time window choice on the operational 

efficiency and environmental sustainability of the last-mile delivery route. Finally, a fully 

dynamic vehicle routing problem is imitated in the last part of the simulation. Thereby, the time 

window leading to minimum additional CO2 emissions is determined incrementally and marked 

as environmentally friendly to each customer within a given route plan. Based on the results of 

the simulation, the previously identified, environmentally friendly time windows are 

incentivized in an experimental study via different non-financial approaches. Using a survey, 

the aim is to determine to what extent customers, under the presence of such incentives, are 

willing to choose more sustainable time windows. 

The remainder of this paper is structured as follows. Chapter 2 covers the theoretical 

foundations for this work by illustrating the characteristics of attended home delivery and by 

providing an introduction into time window management, the Vehicle Routing Problem and 

Green Logistics. Furthermore, Chapter 2 reviews different types of financial and non-financial 

incentives. In Chapter 3, the research objective and the research questions of this work are 

formulated. Chapter 4 is dedicated to the simulation study and presents the results of the three 

scenarios. The experimental design, the participants and the outcomes of the online survey are 

featured in Chapter 5. Finally, Chapter 6 summarizes the main findings of this paper and 

Chapter 7 discusses some limitations of this work and provides an outlook. 
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3 Theory and Literature Review 

3.1 Attended Home Delivery 

A main reason why efficient time window management has become relevant in the first place 

is the rise of the e-commerce industry. Traditional brick-and-mortar stores have been facing 

increasing competition from online retailers in the past decades (Vojvodić 2019). This can be 

explained by rapidly changing consumer preferences of the millennial and post-millennial 

generation, who show a stronger demand for online retail when compared to the shopping 

behavior of Baby Boomers (Dhanapal et al. 2015). Since the demand for e-commerce 

experiences has even further increased throughout the COVID-19 pandemic, businesses and 

traditional retail stores have quickly realized the necessity to move to online channels (LaBerge 

et al. 2020).  

The trend of customers turning to the online sales market to purchase goods easily and 

conveniently from home is reflected in the number of online sales in Austria. Statistics show 

that e-commerce sales have amounted to over 4 billion euros in 2020. When compared to 2006 

levels, in which e-commerce sales in Austria accounted for only 700 million euros, this 

represents a six-fold increase. In terms of the number of consumers using the online channel to 

buy products, approximately 55% of Austrians aged 16 to 74 stated in an online poll conducted 

in 2021 that they had used the Internet for online shopping within the last three months before 

the time of the survey (Turulski 2022).  

In the online retail environment, especially the e-grocery business has undergone a significant 

transformation (Agatz et al. 2021). Although traditional brick-and-mortar concepts are still 

prevailing in the grocery market, e-grocery sales have experienced a sharp increase in the past 

years (Hübner et al. 2016). In Austria, particularly the COVID-19 pandemic led to a boost of 

e-grocery purchases of 26% within a year, resulting in a total of 730.000 Austrian e-grocery 

buyers in 2020 (Austrian Retail Association 2020). At the peak of the pandemic, the sales from 

e-groceries were thus 37.9% higher than in the previous year of 2019 (Statista 2021). This trend 

persisted in the following year, in which the sales growth of e-groceries amounted to 12.3% 

from 2020 to 2021 (Statista 2021). This development is very positively received by customers, 
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as having groceries delivered directly to their homes is convenient, saves time and increases 

overall customer satisfaction (Morganosky and Cude 2000).  

At the same time, the growth of the e-commerce and, in particular, the e-grocery business have 

been the cause of rising concerns about the associated environmental impact when compared 

to offline shopping (Siragusa and Tumino 2021). In fact, e-grocery deliveries are assessed as 

particularly problematic in the context last-mile deliveries (Barnett and Alexander 2004). 

Contrary to other retail sectors, where orders are generally made up of one or a few pieces, the 

typical e-grocery order contains products from multiple single-piece lines (Agatz et al. 2008; 

Gee et al. 2019; Siragusa and Tumino 2021). Examples are dry, frozen and fresh items linked 

to perishability factors and strict health regulations (Siragusa and Tumino 2021). Additionally, 

groceries have relatively low value-to-bulk ratios, which is why delivered groceries are overall 

considered a low-margin business model (Barnett and Alexander 2004). Due to varying storage 

requirements for these different types of products and challenging timetabling, routing, storage, 

picking and packing methods, e-groceries are an extreme and sensitive system (Barnett and 

Alexander 2004). At the same time, e-grocery customers have very high expectations, as they 

typically buy fresh products for their daily needs and thus expect their delivery to arrive on the 

same day within a specified time frame (Barnett and Alexander 2004). This largely explains 

why last-mile fulfillment intricacies are considered as one of the biggest challenges for e-

grocers (Weber-Snyman and Badenhorst-Weiss 2016).  

Given these trends and challenges related to the e-commerce and, in particular, the e-grocery 

business, the success of online retailers largely depends on their ability to efficiently manage 

their online logistics planning processes. In the realm of online retail, the strategic planning 

framework for last-mile order fulfillment and delivery can be structured into back-end 

fulfillment, which is concerned with warehousing and in-store picking, and last-mile 

distribution concepts (Hübner et al. 2016). When executing this final step of the delivery 

process, one of the predominant last-mile solutions is home delivery. This delivery mode can 

be categorized into attended home delivery, which requires the customer to be at home at the 

point of delivery, and unattended home delivery (Hübner et al. 2016). This form of delivery is 

becoming increasingly popular among customers, as it is regarded as convenient, safe and 

secure (Hübner et al. 2016). The fulfillment process for attended home deliveries contains three 

main steps (Campbell and Savelsbergh 2005).  
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The first step of the process, order acceptance, takes place on the retailer’s website. By selecting 

items and placing them in online shopping baskets, customers disclose their address or at least 

their ZIP code. To increase the likelihood of successful delivery, they are simultaneously 

offered a range of delivery time windows and asked to select one, which is then immediately 

confirmed by the retailer. In the second step, the placed order is assembled within the store or 

warehouse. Finally, the route plans are optimized, the main objective usually being on-time 

delivery at minimal cost (Köhler and Haferkamp 2019).  

Unattended home deliveries, on the other hand, imply that the ordered products are delivered 

to the customer regardless of his or her physical presence. While the unattended delivery mode 

does not require the proposition of concrete time windows for a certain delivery date, delivery 

velocity becomes an essential criterion. This means that the retailer typically has to make a 

decision between offering same day delivery, next day delivery, or delivery within two or more 

days. As customer satisfaction and days until delivery after the order placement are negatively 

correlated, particularly in the case of online groceries, this creates a complex trade-off. The 

reason for this is that short delivery times and especially same-day delivery serve customer 

interests, yet pose great logistical challenges (Hübner et al. 2016).  

3.2 Time Window Management 

While attended home delivery accounts for the largest share of last-mile delivery in most 

countries, it also poses the problem that a considerable proportion of attended home deliveries 

fail since many people are not at home during a normal working day (Fernie and McKinnon 

2009). In turn, unsuccessful deliveries have far-reaching consequences for the retailer. Not only 

do they increase costs for transportation, handling and storing of undelivered goods, they also 

confront the retailer with the time-consuming task of setting a new delivery date and carrying 

out an extra tour (Hübner et al. 2016). To reduce the number of failed deliveries, it has become 

common practice to offer the customers a selection of delivery time windows to choose from. 

The supermarket Hofer (Austria), for instance, offers deliveries between 8am and 6pm within 

non-overlapping one-, three- or ten-hour time frames at a delivery cost of € 5.90, € 4.90 and € 

2.90, respectively. The hypermarket operator Interspar (Austria), on the other hand, offers only 

two-hour time windows from 9am to 9pm, which are all subject to fixed delivery fees of € 4,90. 

Overall, online grocery providers essentially differ in the time intervals in which they offer 
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deliveries, the length of the time windows contained therein, the prices they charge for delivery 

within specific time windows as well as the order value from which the delivery costs are 

omitted. Additionally, differences exist in the minimum order values and whether or not 

overlapping time windows are offered. Figure 1 shows the time window offer set of the 

supermarket Hofer in Austria. 

 

Figure 1: Time window offer set of Hofer 

Source: https://www.roksh.at/hofer/anfangsseite (07.11.2021) 

Given the high costs of attended home deliveries in combination with the low profit margin of 

e-grocers, the aim of most retailers is to maximize the number of customers served and the 

overall profit whilst minimizing delivery costs (Köhler et al. 2020). This places very high 

demands on effective and efficient time window management, that is to say, the process of 

offering delivery time windows that ensure a high level of customer satisfaction, while at the 

https://www.roksh.at/hofer/anfangsseite
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same time allowing for planning flexibility and routing efficiency (Köhler et al. 2020). Time 

window management thus describes the complex task of balancing marketing and operational 

considerations (Agatz et al. 2011).  

To this end, a distinction has to be made between tactical and operational time window 

management. While the former is concerned with the tactical decision of which time windows 

to offer in each part of the delivery region, the latter describes the problem of managing the 

availability of the offered time windows. This happens after the tactical decisions have been 

made and the customer has placed the order (Agatz et al. 2011).  

On the tactical level, the offered time windows have to be feasible, suitable and profitable. 

Feasibility refers to ensuring on-time deliveries, while suitability is concerned with meeting 

customers’ window length expectations and time of day preferences. The latter implies that the 

time window offer set must be designed in a way that the customer is willing to accept at least 

one of the offered time windows. The profitability of a time window directly correlates with 

the achieved maximal profit, i.e., the ability to serve as many customers as possible under the 

given logistics capacity. Yet, given the highly competitive nature of online retail, the decision 

on the design and availability of delivery time windows is non-trivial (Köhler et al. 2020).  

Notably, this decision becomes even more complex in the case of dynamic customer acceptance 

mechanisms. The crucial problem here is that customer requests are not known beforehand, as 

they arrive dynamically on the retailer’s website during the booking process (Köhler et al. 

2020). The dynamic approach thus creates tentative route plans based on customer locations 

and subsequently checks the feasibility of each particular time window in real-time (Köhler et 

al. 2020). Static approaches, in contrast, base the maximum number of customers that may be 

accepted per time window on past delivery performance from historical data or from tactical 

time window design (Köhler et al. 2020). Although this method does not consider information 

about customer locations and is therefore an inadequate reflection of complex, real-life 

conditions, it enables the creation of time window schedules that may serve as a good starting 

point for subsequent real-time adjustments (Agatz et al. 2011; Köhler et al. 2020). 

A critical question arising in the context of time window management is related to the decision 

on time window length. Given the strong competition in the e-commerce industry, retailers have 
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started to offer increasingly short time windows to their customers in order to improve customer 

service and strengthen customer loyalty (Köhler et al. 2020). Yet, offering the customer a large 

degree of control in the selection of time windows entails challenges associated with travel time 

uncertainties, fewer deliveries per vehicle, a lower degree of capacity utilization, the risk of 

tardy or failed deliveries and, consequently, high costs (Agatz et al. 2011; Hübner et al. 2016). 

This involves not only the delivery costs for the retailer, but also societal costs such as CO2 

emissions, air pollution and traffic congestions (Agatz et al. 2021). Therefore, offering home 

delivery within short time windows typically creates a number of inconveniences and 

complexities both for the retailer and the customer (Hübner et al. 2016). Most notably, the 

failure of several e-grocers strongly proves the theory that offering attended home delivery 

services with increasingly short time windows for all customers is a risky and unsustainable 

approach in the long-term (Köhler et al. 2020; Punakivi and Saranen 2001).  

For this reason, it has become more and more common to offer customers a mix of both long 

and short time windows that are priced differently. Since increased time window length is often 

positively correlated with higher effectiveness of demand management systems, this can have 

a significant impact in the area of last-mile delivery (Agatz et al. 2021; Campbell and 

Savelsbergh 2005; Solomon 1987). While enlarged time windows of for instance five hours are 

less appealing for customers, as they have to wait at home for their delivery to arrive for a 

longer period of time, they provide the retailer with much more routing flexibility (Agatz et al. 

2011; Köhler et al. 2020). Furthermore, longer time windows are associated with a higher 

number of accepted customers, lower delivery costs for the retailer and higher profits. 

Effectively, previous studies have shown that up to 15% more customers can be accepted when 

offering long instead of short time windows and the delivery costs for the retailer can be nearly 

cut in half (Ehmke and Campbell 2014; Gevaers et al. 2014; Köhler et al. 2020). Additionally, 

simply by extending a time window from 30 minutes to 3 hours, profits can be increased by 

18% (Campbell and Savelsbergh 2005). Overall, incentivizing the choice of longer time 

windows allows for more optimized routes in last-mile delivery operations, which not only 

reduces costs, but also fuel consumption and emission levels (Agatz et al. 2021). 

A factor that highly complicates efficient time window management and routing is that most 

customers tend to prefer after work deliveries, leading to uneven demand and capacity problems 

(Hübner et al. 2016; Köhler et al. 2020). Therefore, it is often necessary for delivery vehicles 
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to visit several different geographical regions over long distances, resulting in unutilized vehicle 

capacities, inefficient routes, long working hours for the distributor and high delivery costs 

(Hübner et al. 2016). Escalating costs are in fact one of the greatest challenges in the area of 

attended home deliveries (Aspray et al. 2013). This applies in particular to e-grocery last-mile 

deliveries, as the arising costs in the fulfillment process for e-groceries are about 13% higher 

than for offline grocery shops in which the customer goes to the shop and performs the picking 

and final delivery him- or herself (Hays et al. 2005). To recoup these additional costs associated 

with picking online orders and tackling the challenges of last-mile deliveries, retailers have 

started to price time windows differently. The aim of this approach is to charge less for time 

windows that allow the retailer to create more efficient and cost effective schedules (Campbell 

and Savelsbergh 2005). Similarly, there is also the possibility to create specific time window 

offer sets for different geographical regions of the delivery area based on forecasted consumer 

demand. The primary objective here is not to assign specific time windows to a ZIP code in 

isolation, but rather simultaneously, considering the time windows that were allocated to 

neighboring customers (Agatz et al. 2011; Köhler et al. 2020). Knowing the estimated demand 

for each region can help create cost-minimal route plans and enhance decisions on the fleet size 

and -mix (Köhler et al. 2020).  

Overall, the rise of the e-commerce industry has increased the need for deliberate time window 

management and has made it especially important for e-grocery retailers to find ways to 

encourage customers to choose delivery time windows that favor efficient and eco-friendly 

routing.  

3.3 Vehicle Routing Problem 

Capacitated Vehicle Routing Problem 

In the past decades, a considerable body of research on the Vehicle Routing Problem (VRP) 

has evolved. The starting point for the formulation of the classical VRP was the introduction of 

The Truck Dispatching Problem (TDP) by Dantzig and Ramser (1959). As a generalization of 

the Traveling Salesman Problem (TSP), it is concerned with finding the shortest routes for a 

fleet of gasoline delivery vehicles between a bulk terminal and a large number of service 

stations (Dantzig and Ramser 1959). Acknowledging the challenge that a rising number of 
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service stations increases the options of routes and thus complicates the task of finding an 

optimal solution significantly, an algorithm approach was developed based on a linear 

programming formulation to generate near optimal solutions (Dantzig and Ramser 1959; Lin et 

al. 2014).  

As each carrier in the truck dispatching problem has a limited capacity, it is a version of the 

Capacitated Vehicle Routing Problem (CVRP). The CVRP is characterized by the assumption 

that a preassigned fleet of delivery vehicles of uniform capacity must serve fixed customer 

demands. It is further assumed that each customer is visited exactly once by one delivery vehicle 

and that the corresponding purchase order quantity must not be split into several deliveries. The 

objective of the CVRP is thus to deliver the orders to the customers while adhering to the 

capacity restrictions (Ralphs et al. 2003). 

Time-dependent Vehicle Routing Problem 

For a better reflection of real-life conditions, the traditional VRP, which draws on Euclidean 

distances for the determination of the optimal route plan, was extended to the Time-dependent 

VRP (TDVRP) (Lin et al. 2014). The work of Cooke and Halsey (1966) is among the first to 

critically question the hitherto existing assumption that the travel time between any two nodes 

is constant. For this purpose, they modified the classical shortest path problem by taking varying 

rather than static internodal time requirements into account (Lin et al. 2014). Yet, their study 

does not consider a mixed fleet of delivery vehicles, which is commonly used for contemporary 

standard deliveries. This shortcoming was addressed by Malandraki and Daskin (1992), who 

differentiate between two different versions of the TDVRP. In the classic case, they assume 

that customers are served by a vehicle fleet of fixed capacities. The basic assumption of the 

CVRP, namely that customers have fixed demands that may not exceed the preassigned 

capacity of the delivery fleet, is maintained. However, the crucial difference to the CVRP is 

that time minimization is included in the objective function. In doing so, the authors take into 

account that both distance traveled and daytime have an effect on the travel time between two 

customers or between a customer and the depot. The special case of the TDVRP, the so-called 

Time-dependent Traveling Salesman Problem (TDTSP), differs from the classic case in that it 

assumes the availability of only one delivery vehicle with unlimited capacity. For both cases, 

mixed integer linear programming formulations are presented, in which the travel time is 
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displayed as a step function conditional upon the time of day (Malandraki and Daskin 1992). 

Overall, the extension of the classical VRP to the TDVRP allows for a more accurate cost 

estimation, as it takes into account that vehicles are moving on a real road network that typically 

does not consist of Euclidean distances and emphasizes cost variability in relation to time (Lin 

et al. 2014; Polimeni and Vitetta 2013). This is especially relevant in urban areas, where 

frequent congestions and varying traffic density have a large impact on the traveling speed (Lin 

et al. 2014). Moreover, the increasing demand for attended home deliveries, which is associated 

with customers expecting punctual deliveries, makes it indispensable to carefully consider 

fluctuating travel times in network optimization problems.  

Vehicle Routing Problem with Time windows 

The efforts to improve the level of customer satisfaction through on-time delivery have put 

forth time window constraints as another VRP variant. Thanks to the impressive evolution in 

information technology, logistics service providers are better positioned to cope with the 

additional complexities arising from time window constraints (Kallehauge et al. 2005). In 

parallel, a growing body of literature has evolved that focuses on managing time window 

constraints in the VRP. The so-called Vehicle Routing Problem with Time Windows (VRPTW) 

is an extension of the classical VRP and, due to its practical relevance and applicability in 

various real-life scenarios concerning routing, is regarded as the most prevalent VRP variant in 

the extant body of literature (Lin et al. 2014). The crucial difference to previous VRP variants 

lies in the assumption that customers are served within a given time window. Such time 

windows can either be soft or hard (Lin et al. 2014). The former is the case when a violation of 

time window restrictions is acceptable at the price of some penalty (Kallehauge 2008). Hard 

time windows, on the other hand, must not be violated. This means that logistics service 

providers are bound to serve customers within their specified time intervals and have to wait 

for the time window to open in case of early arrival (Kallehauge et al. 2005). Overall, soft time 

windows are beneficial for the supplier, as they allow for more executable and better solutions 

in terms of the total distance traveled, the number of vehicles deployed and the resulting 

delivery costs (Figliozzi 2010b; Lin et al. 2014).  

Recent studies of VRPTW clearly indicate a shift away from the one-sided focus on the 

minimization of transportation costs to more broader objectives. Figliozzi (2010a), for instance, 
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introduces a new kind of VRPTW, the Emissions Vehicle Routing Problem (EVRP). In this 

variant, the minimization of emissions and fuel consumption is regarded as the primary or 

secondary objective. For this purpose, Figliozzi (2010a) formulates a heuristic to reduce the 

level of emissions for a set of feasible routes under varying congestion levels and travel times. 

Similar to the VRPTW, the EVRP assumes time-dependent travel times and is subject to hard 

time windows and capacity constraints. However, the focus on reducing emissions clearly sets 

the EVRP apart from earlier VRP variants, in which primary and secondary objective are 

commonly the minimization of the number of vehicles and distance traveled, respectively. By 

comparing and analyzing the results obtained with the proposed EVRP solution approach for 

varying congestion levels, the author highlights the significant CO2 savings potential that arises 

if emissions minimization is incorporated in the objective function of vehicle routing problems.  

Green Vehicle Routing Problem 

Although the body of literature that explicitly incorporates an emission-minimizing objective 

in the VRP is limited, the more general target of optimizing energy consumption in the field of 

vehicle routing has gained growing importance in recent studies (Lin et al. 2014). Commonly 

referred to as Green Vehicle Routing Problem (G-VRP), this rather new variant of the VRP is a 

response to the overuse of energy and the associated fuel costs, air pollution and environmental 

degradation (Lin et al. 2014). The distinctive objective of the G-VRP is to minimize fuel 

consumption by taking into account the effect of factors such as vehicle load, distance traveled 

and travel speed on the total cost of transportation, all the while maximizing transportation 

efficiency (Kara et al. 2007; Xiao et al. 2012). This, in turn, is associated with a positive 

environmental impact, as the maximization of transportation efficiency generally goes hand in 

hand with a reduction of greenhouse gas emissions (Lin et al. 2014; Xiao et al. 2012).  

In the field of the G-VRP, the number of studies reacting to the introduction of alternative-fuel 

powered vehicles (AFV) is still rather limited (Lin et al. 2014). Yet, the use of AFVs is 

becoming increasingly common due to environmental regulations or voluntary actions on the 

side of individuals or companies aiming to reduce pollution caused by road transport (Erdoğan 

and Miller-Hooks 2012). Along with Schneider et al. (2014), who extend the G-VRP with time 

windows, Erdoğan and Miller-Hooks (2012) pioneer the incorporation of additional 

complexities associated with operating a fleet of AFVs in the VRP. In this context, refueling 
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techniques at alternative fueling stations (AFS) are proposed to both lower the risk of running 

out of fuel and to minimize routing costs (Erdoğan and Miller-Hooks 2012).  

Overall, although the main objectives of the G-VRP, namely reducing fuel consumption and 

improving transportation efficiency, indirectly contribute to a decrease of CO2 emissions, the 

associated environmental benefits are not directly measured. Yet, the dangerous impact 

emissions from transport activities have on humans and the entire ecosystem cannot be 

overlooked and call for VRPs that directly reflect societal and environmental costs in terms of 

environmental pollution (Lin et al. 2014). 

The Pollution Routing Problem 

To put a stronger focus on the pollution from carbon emissions and to find ways to reduce these 

in the road transport sector, the Polluting Routing Problem (PRP) was formulated. It is an 

extension of the classical VRP in that it includes broader objectives that reflect the social and 

environmental impact of transportation in the cost function (Lin et al. 2014). Among the authors 

who dedicate their work to the PRP are Sbihi and Eglese (2007), who examine the effect of 

avoiding congested areas in the route plan. They come to the conclusion that although this 

approach in some cases leads to longer travelling distances, it still reduces the overall emission 

levels. Maden et al. (2010) also describe a heuristic algorithm to measure the impact of 

congestion on traveling speed and, consequently, the total travel time. As travel time 

minimization remains their primary objective, the reported CO2 emission savings potential of 

about 7%, which could be achieved by taking time-varying speeds into account, is seen as a 

positive side effect rather than the main target. Furthermore, the research of Palmer (2007) also 

recognizes the importance of finding ways to reduce the emission levels in the transport sector. 

To this end, a computer-based vehicle routing model is developed to measure and minimize the 

level of CO2 emissions under varying congestion scenarios and minimization criteria. The 

results show that the implementation of the proposed vehicle routing heuristics may lead to a 

reduction of CO2 emissions by up to 5%. A similar approach is followed by Ubeda et al. (2011), 

who examine how the incorporation of environmental management principles in the daily 

managerial decision-making process can yield both economic and ecological benefits. The 

novelty of their study lies in the formulation of a green optimization approach and the creation 

of an environmental matrix, which reflects the estimated CO2 emissions between all delivery 
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points and the depot. This method facilitates the design of routes that explicitly consider the 

minimization of CO2 emissions in the objective function, which reinforces the shift away from 

the traditional target of solely minimizing delivery cost, distance or travel time. Another paper 

that includes a broader and more realistic estimation of costs from transportation is by Faulin 

et al. (2011). Apart from traditional logistics costs related to delivery processes, costs associated 

with environmental damage caused by logistic activities, such as pollution, noise, congestion 

and wear and tear on infrastructure are also considered.  

The Pollution-Routing Problem by Bektaş and Laporte (2011) provides some of the most 

relevant findings for this study, as their mathematical model of the PRP with and without time 

windows expands the traditional VRP by not only taking into consideration the costs of the 

travel distance, but also those related to greenhouse gas emissions, fuel and travel time. The 

results show that in the presence of time restrictions, the implementation of a model with an 

energy-minimizing objective function reduces energy consumption rates by up to 10% when 

compared to a model with a traditional distance-minimizing objective. Notably, the savings 

potential is much lower in the case without time windows. However, the significance of the 

effect of energy reduction under time window constraints is eliminated in the case of overly 

tight time windows. The reason for this is that, especially in the case that only a single vehicle 

performs the delivery, over-restrictive time windows leave logistics service providers with a 

very limited margin for maneuver in terms of alternative routing solutions, often nearly 

dictating one sole optimal route (Bektaş and Laporte 2011).  

Overall, the body of research aiming explicitly at reducing the environmental impact of 

transport activities is growing, but still rather limited. Further research work should thus be 

pursued to take full advantage of the potential of the PRP in conjunction with time windows. 

3.4 Green Logistics  

The different variants of the VRP that have evolved within the 50 years since it was first 

introduced show a clear shift from the pursuit of purely economic, cost-minimizing objectives 

to a reexamination of the VRP in the broader context of so-called Green Logistics (Lin et al. 

2014). According to Wittenbrink (2010), Green Logistics is a sustainable and systematic 

process for recording and reducing resource consumption and emissions resulting from 
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transport and logistics processes within and between companies. The relevance of this topic 

becomes clear when taking into account the absolute CO2 emissions attributable to road 

transport. Although the emissions of freight transport per transport volume (measured in tonne 

kilometer) have decreased considerably throughout the past decades, this positive development 

through technological advances has been partly offset by the increase in traffic volume 

(Wittenbrink 2015). Effectively, the absolute CO2 emissions of road freight transport even 

increased by 21% between 1995 and 2019, despite the aforementioned technological 

improvements (UBA 2021). Against this backdrop, the German Advisory Council on the 

Environment classified CO2 emissions from road freight transport as one of the major unsolved 

problems of German climate policy (ACE 2012). In the light of the challenges that have become 

apparent through the Green Logistics debate, transport and logistics companies are under 

increasing pressure to anchor sustainability issues in their strategic planning framework (PwC 

2009).  

The three most relevant measures to reduce emissions are avoidance, shift to alternative modes 

of transport and diminution (Wittenbrink 2015). The first measure, avoidance, is concerned 

with providing incentives to reduce the demand for transport so that traffic can be circumvented 

as far as possible (Wittenbrink 2015). For this, it is necessary that the benefits of alternative 

logistics processes that may contribute to the avoidance of traffic need to be clearly 

communicated to the customer. In doing so, the associated ecological gains must be emphasized 

so that a potentially reduced service level will more likely be accepted. If the customer thinks 

a lower level of service only has benefits for the logistics service provider in terms of cost 

savings, it will be tolerated at most in combination with price reductions (Wittenbrink 2015). 

However, even if a part of the volume of traffic can be avoided or shifted to more sustainable 

modes of transport like rail or ship transport, finding new approaches to reduce the emissions 

for the remaining traffic is vital. Since there is a direct correlation between fuel consumption 

and CO2 emissions, fuel savings are associated with a significant, yet insufficiently exploited 

CO2 savings potential (Wittenbrink 2015). One of the main reasons for this unused potential is 

a general lack of knowledge about the far-reaching advantages a CO2 reduction entails. It is 

often assumed that there is a conflict of objectives between environmental protection and 

economic efficiency, which in reality does not exist (Wittenbrink 2015). On the contrary, 

environmental protection activities can induce not only CO2 emission savings, but also 
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significant cost savings, especially if they are linked to reductions in energy consumption 

(Wittenbrink 2015). 

Therefore, especially those logistics companies that are concerned with making their processes 

more environmentally friendly are moving toward recording their CO2 balance and calculating 

the associated CO2 footprint (Wittenbrink 2015). In this context, a distinction must be made 

between Corporate Carbon Footprint and Product Carbon Footprint (Wittenbrink 2015). 

Corporate Carbon Footprinting describes the process of calculating the level of greenhouse gas 

emissions for an entire company in order to take climate protection measures on this basis 

(Schmied and Knörr 2012). Product Carbon Footprinting, on the other hand, refers to 

calculation of the carbon footprint for individual transports, such as for selected customers 

(Schmied and Knörr 2012). A carbon footprint for time windows in the context of last-mile 

deliveries, on the other hand, has not yet been formulated. In any case, measuring and 

determining carbon footprints remains a challenge. However, a number of fuel consumption 

models exist that provide a solid estimation of network-wide emissions.  

Fuel consumption models 

With regard to fuel consumption models, a distinction must be made between macroscopic and 

microscopic models (Bektaş et al. 2016). While macroscopic models draw on average aggregate 

network parameters to estimate network-wide emissions, microscopic models calculate the 

instantaneous vehicle fuel consumption and emission rates at a given point in time in greater 

detail (Bektaş et al. 2016). Two of the most predominantly applied microscopic models are An 

Instantaneous Fuel Consumption Model by Bowyer et al. (1985) and A Comprehensive Modal 

Emission Model (CMEM) developed and presented by Scora and Barth (2006), Barth et al. 

(2005) and Barth and Boriboonsomsin (2008). The energy-related emissions estimation model 

by Bowyer et al. (1985) uses vehicle characteristics such as mass, energy or efficiency 

parameters to approximate the fuel consumption per second. It delivers best results when 

applied to estimate emissions for short trips at a micro-scale level (Bektaş et al. 2016). CMEM 

is a model for heavy-goods vehicles, which is based on second-by-second tailpipe emissions 

and requires detailed vehicle specific parameters for an accurate estimation (Bektaş et al. 2016). 

In this model, the total fuel consumption is calculated as a function of engine power 

requirement, vehicle speed and fuel rate (Bektaş et al. 2016). 
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Examples for macroscopic models include the Computer Program to calculate Emissions from 

Road Transport (COPERT), the National Atmospheric Emissions Inventory (NAEI) model and 

the Methodology for Calculating Transportation Emissions and Energy Consumption (MEET) 

(Bektaş et al. 2016). COPERT estimates vehicle emissions for all major air pollutants for a 

number of vehicles classified by engine and vehicle type (Bektaş et al. 2016). To assess total 

fuel consumption, COPERT uses several regression functions, which are dependent on vehicle 

weight (Bektaş et al. 2016). Regarding the NAEI model, a distinctive feature is that it was 

developed for various pollutant categories, such as greenhouse gases, air pollutants, particulate 

matter as well as heavy metals and base cations. Additionally, it provides estimations of 

emissions in not only the transport sector, but also sectors like energy, agriculture and industrial 

processes (NAEI 2017). In the case of road transportation, emissions are estimated taking a 

combination of influencing factors into account, such as fleet composition, vehicle weight and 

temperature conditions (NAEI 2021).  

The third listed macroscopic model, MEET, was developed by Hickman et al. (1999) and is 

deployed Europe-wide to calculate transportation emissions and energy consumption. The 

emission factors and functions of MEET refer to standard testing conditions and are typically 

calculated using a speed-dependent regression function. However, adjustments can be made to 

account for effects such as road gradient and vehicle load. To consider differences in the weight 

of different vehicle types, the model allows for an estimation of CO2 emissions for several 

classes of vehicles (Bektaş et al. 2016). 

Clearly, the MEET model has some drawbacks, especially in comparison with models that 

address dynamic or real-time problems. For instance, the fact that it does not take into account 

changing traffic conditions by using average speeds, as well as the assumption that all 

parameters are known with certainty contradict real-life conditions. Additionally, more 

qualitative parameters such as driver behavior are completely neglected. Lastly, since the 

parameters of MEET model were calibrated in 1999, updates would be necessary to take into 

account new engine technologies and aerodynamic vehicle designs (Bektaş et al. 2016). 

However, the aim of this study is not to provide an exact calculation of CO2 emissions for 

different real-life scenarios, but rather a good estimation on the basis of which appropriate 

environmentally friendly and efficiency-enhancing time windows can be identified and 
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incentives formulated for customers. Therefore, the MEET model is well-suited for the purpose 

of this research. 

3.5 Financial and Non-financial Incentives 

In the area of Green Logistics, predominantly logistics service providers and retailers have been 

the stakeholders held accountable for the ecological footprint of their online activities and called 

on to optimize their supply-side processes (Buldeo Rai et al. 2021). Such optimization measures 

include the renewal of their vehicle fleet as well as processes of routing, loading and 

coordinating with other stakeholders (Mangiaracina et al. 2015). The role of consumers in the 

context of sustainable e-commerce deliveries, on the other hand, has been largely neglected. 

Yet, with the increasing number of online purchases, which was tremendously accelerated by 

the latest developments through the COVID-19 pandemic, it is now more important than ever 

to involve all relevant stakeholders in the process of reducing the environmental impact of e-

commerce deliveries. Engaging customers in the decision-making process could make a big 

difference, as today’s consumers are more environmentally conscious than ever (Buldeo Rai et 

al. 2021). Consequently, there is vast potential to be unlocked from both improving operational 

processes and investing in demand-side management to encourage online consumers to opt for 

more sustainable service options. This does not yet seem to have been fully recognized by most 

e-commerce players, who still focus mainly on increased delivery speed to gain a competitive 

edge (Buldeo Rai et al. 2021). Paradoxically, however, they are thereby satisfying customer 

expectations that are more attributable to ignorance than to actual desires. In fact, recent studies 

have shown that many customers are not categorically averse to longer delivery times (Buldeo 

Rai et al. 2019). A representative survey conducted in in 2021 by the market research institute 

GfK on behalf of Digitec Galaxus, in which customers in Switzerland were asked whether they 

were more interested in fast or environmentally friendly delivery when buying products online, 

has shown that for 32.2% of the respondents, both was equally relevant (Digitec Galaxus 

2021a). At 24.3%, almost one fourth of the participants even rated an environmentally friendly 

delivery as more important (Digitec Galaxus 2021a). Yet, since nearly all large players are 

offering increasingly short delivery times, customers think that this is simply the norm (Buldeo 

Rai et al. 2021). That increased delivery speed, however, comes with a considerably higher 

environmental cost is something most customers are completely unaware of.  
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This is indirectly reflected in a survey asking European consumers which sustainable delivery 

options they expect large retail businesses to implement in 2021. At 54%, the largest share of 

respondents demanded sustainable packaging. Second and third most important for the 

respondents were the possibility to offset the delivery CO2 footprint and a conversion of all 

delivery vehicles to electric, expressed by 48% and 47% of the respondents, respectively. 

Moreover, 44% of the participants were willing to accept a higher minimum number of items 

or value to qualify for free delivery and 42% would even like a minimum delivery fee to be 

implemented unconditionally. That the possibility of reducing the speed of delivery for the sake 

of the environment was not mentioned at all suggests a fundamental lack of knowledge on the 

negative correlation between increased delivery speed and sustainability (UPS 2021).  

Therefore, to be able to effectively take advantage of the customers’ intrinsic willingness to 

compromise on delivery time, it is crucial to better inform them about the environmental impact 

of the chosen delivery mode. In concrete terms, this means that online retailers need to find 

tools that facilitate the choice of eco-friendly delivery options and integrate them into the check-

out page of their website (Buldeo Rai et al. 2021). Two basic approaches can be pursued for 

this purpose: The use of financial and non-financial incentives. Financial incentives typically 

take the form of discounts or extra charges on the delivery fee (Agatz et al. 2021). For instance, 

it is common for retailers to charge a higher delivery fee for popular delivery slots in the 

morning and evening rush-hour times in order to distribute demand evenly and avoid traffic 

congestions (Hübner et al. 2016). Additionally, since the location of a customer may have a 

great impact on the route plan and the generated vehicle miles, many retailers charge a location-

based fee. This means that if a customer selects a time window that has already been selected 

by one or more customers from the same neighborhood, delivery fees are reduced for that 

specific time window (Hübner et al. 2016).  

However, the use of financial incentives is problematic for several reasons. First of all, price 

incentives reduce profit margins, which can be particularly detrimental for low-margin business 

sectors like the e-grocery business (Srinivasan et al. 2002). Secondly, there is a risk that 

dynamic pricing strategies are greatly complicated since customers are inclined to postpone 

their order in the hope of receiving further discounts (Zhang et al. 2020). Additionally, 

dynamically assigning delivery fees based on already accepted orders often triggers a sense of 

injustice and may thus even have a deterrent effect on customers (Weisstein et al. 2013; Xia et 
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al. 2004). For this reason, consumers are very price sensitive to delivery fees, leading to an 

overall aversion to bear the costs of delivery (Buldeo Rai et al. 2019; Nguyen et al. 2019). 

Overall, high delivery fees are the main cause for customer churn, which is why it is essential 

to investigate to what extent intrinsic, non-financial incentives are suitable alternatives to steer 

customers toward more environmentally friendly delivery options (Galante et al. 2013).  

In this regard, a recent study by Agatz et al. (2021) provides meaningful insights. The authors 

examine the impact of green labels and price incentives on customers’ time window choices. In 

their study, green labels present themselves as green markings of environmentally friendly time 

windows in combination with an information text indicating the associated environmental 

savings that can be achieved through the choice of these time windows. In this work, too, the 

notion of green labels will serve as an umbrella term for any kind of non-financial incentive 

that highlights certain time windows or time window lengths as environmentally friendly.1 

Agatz et al. (2021) show the effectiveness of green labels versus price incentives or no 

incentives in steering customers toward longer or more sustainable time windows using two 

experiments. Additionally, two simulation studies demonstrate the strong impact of the varied 

effects of green labels on downstream operational system performance (Agatz et al. 2021). 

Apart from the aforementioned study, there is only a small number of further studies that jointly 

address e-commerce delivery, sustainability and consumer behavior. Fu and Saito (2018), for 

example, question whether consumers even want convenient and fast delivery. The authors 

examine how many additional days customers would be willing to wait for their delivery in the 

presence of economic and environmental incentives. Similar to the approach of Agatz et al. 

(2021), the potential of environmental incentives such as a CO2 equivalent to influence 

preferences for home delivery options is investigated. Ignat and Chankov (2020) also pick up 

the idea of providing additional information on the environmental impact of the chosen last-

mile delivery option. They differentiate between same day delivery and delivery within 2-3 

days and display the respective levels of CO2 emissions ranging from 15 to 400 grams. In 

addition, Buldeo Rai et al. (2021) investigate the potential of different types of non-financial 

incentives to drive sustainable e-commerce delivery. Four non-financial incentives are 

considered in total, namely a positively formulated information message, placing the more 

 

1 Thus, the terms (green) label(s) and (non-financial) incentive(s) are used synonymously in this paper. 
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sustainable delivery options first, including a social media sharing option and providing a 

descriptive social norm pointing out the more environmentally friendly delivery option. 

Thereby, a distinction is made between the eco-friendly delivery mode of delivering within the 

next three days and the less sustainable next day delivery. It is concluded that informing 

customers about the ecological footprint of delivery options is the most effective of all non-

financial incentives (Buldeo Rai et al. 2021). 

After a close examination of the existing literature, it becomes clear that the focus lies on using 

monetary and environmental incentives to steer customers to wait a certain number of days 

longer. The role of non-financial incentives to motivate consumers to choose environmentally 

friendly time windows for a predetermined delivery day as well as the impact of slot choice 

behavior on operational efficiency and environmental sustainability is therefore somewhat 

neglected. Likewise, the line of research that directly quantifies and evaluates the carbon 

footprint of time windows in the context of last-mile deliveries is limited. The potential of 

sustainable time window management in combination with the effects of green incentives on 

customers’ time window choices therefore needs to be extended. 

4 Research Objective and Research Questions 

With online retail increasing in its popularity, it has become an imperative for logistics service 

providers to find ways to make e-commerce deliveries more efficient and sustainable. Given 

the massive impact the last-mile has on the total logistics costs and the environment, the 

appropriate operational measures and incentives that can be implemented to steer customers 

toward more efficient and sustainable delivery choices are an interesting field of research. In 

this context, especially the potential that can be unlocked from time window management has 

long been overlooked. In light of changing customer behavioral patterns during COVID-19, in 

which working from home offices seems to be normalizing in many sectors, this topic is 

becoming increasingly relevant (EC 2020). Since more and more customers are at home most 

of the day, they are no longer tied to tight time windows for home deliveries. This may also 

allow them to select those time windows that allow for efficient and environmentally friendly 

route plans.  
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At this point, it is recalled that CO2 emissions are prevalently used as a measure to assess the 

sustainability dimension of transport activities, and total vehicle miles for the efficiency 

dimension (Agatz et al. 2021; Borken 2003). To evaluate the relationship between distance 

travelled and carbon emissions and, consequently, between operational efficiency and 

environmental sustainability, reference is made to Ehmke et al. (2018). The authors demonstrate 

that with a distance minimizing objective, average distance, duration, and fuel consumption 

levels deviate from those in the case of a fuel minimizing objective. However, their results also 

show that in the presence of a distance minimization or fuel minimization objective, more 

similar delivery route plans are created than in the case of a time minimizing objective. As fuel 

consumption is mathematically directly related to CO2 emissions, the findings can be applied 

to the objective function of minimizing the level of CO2 emissions accordingly. The 

consequential assumption that distance and fuel minimizing objective functions generate 

relatively similar route plans is especially reasonable for urban, inner-city instances. The reason 

for this is that there is less distance between customers living in urban areas, which gives 

logistics service providers a more limited scope to use alternative routes that may allow for 

distance or fuel savings and thus create differences in the solutions resulting from a distance or 

fuel minimizing objective (Ehmke et al. 2018). 

Thus, it is in this study argued that CO2 reductions are automatically accompanied by distance 

reductions (or vice versa), which taken together directly affect the efficiency of a delivery route. 

This makes it possible to focus on determining the sustainability dimension of a route plan and 

simultaneously draw conclusions on the associated operational efficiency. 

In the context of time window management, sustainability implies that the choice of certain 

time windows is associated with relative system-wide fuel savings and CO2 emission decreases. 

In other words, from a time window offer set containing several time windows to choose from, 

the selection of environmentally friendly time windows leads to lowermost increase in CO2 

emissions and thus the highest relative CO2 emission savings potential2. That being said, the 

sustainability dimension of time windows has two manifestations. In the case of a mixed time 

 

2 Since even the most environmentally friendly time windows inevitably lead to an increase in CO2 emissions, the 

term CO2 savings (potential) used in the further course of this paper always refers to the relative CO2 savings 

(potential) compared to less environmentally friendly time windows. 
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window offer set, it is conditioned by time window length, i.e., longer time windows are more 

sustainable. When considering a set of time windows of uniform length, on the other hand, the 

environmental impact of a time window is largely dependent on whether a delivery truck is 

already in the vicinity of the customer during the selected time window. In this case, time 

windows that have already been booked by nearby customers, for example, are most 

sustainable. For both longer and the most environmentally friendly time windows from a set of 

time windows of uniform length, the synonym green time windows is used in this work. 

Due to the limited body of literature on sustainable time window management, it is not yet clear 

to what extent green time windows contribute to more environmentally friendly and efficient 

route plans. Consequently, this study aims to fill this gap by focusing on the following research 

questions:  

RQ 1: How high is the relative CO2 savings potential that emanates from green time windows 

in last-mile deliveries? 

Naturally, having determined green time windows has no practical relevance if these time 

windows are not selected by the customers. While the existing body of literature on last-mile 

delivery operations has shown that non-financial incentives generally work well to encourage 

customers to behave in a more environmentally friendly way (e.g., Agatz et al. 2021; Buldeo 

Rai et al. 2021), the full potential of using green incentives to steer customers toward more 

sustainable time window choices has not yet been fully explored. This leads to the following 

second research question: 

RQ 2: How can service providers effectively steer consumers to choose green time windows as 

their preferred last-mile delivery option?  

By better understanding to what extent the indication of the environmental impact of given time 

windows would convince e-commerce participants to choose a potentially longer or less 

convenient, but much more sustainable time window, logistics service providers could gain an 

important competitive advantage. This would enable them to design delivery methods that are 

not only environmentally friendly, but also appealing to customers in the long run (Ignat and 

Chankov 2020). 
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5 Simulation Study 

In this section, a simulation of a vehicle routing problem with time windows is used to 

investigate the environmental implications of customer time window choices and, 

consequently, to answer Research Question 1. The simulation represents the following 

situation: A supermarket offers its customers a home delivery service for groceries. To increase 

the likelihood of successful delivery, all customers are presented with a set of time windows to 

choose from. Since the nature of a simulation does not require interviewing real customers, time 

window choices of fictitious customers are imitated under varying framework conditions and 

assumptions. Based on simulated time window choices in different scenarios, CO2 minimizing 

route plans are created.  

In order to identify green time windows in last-mile deliveries and to determine the associated 

CO2 savings potential, the simulation is divided into three successive steps. In the first step, the 

sustainability dimension of time window choices is examined in view of time window length. 

Thereby, the aim is to identify whether the expected carbon footprint of the delivery route 

decreases significantly when all customers choose long instead of short time windows. The 

starting point for this is a selection of 20 fixed customer locations, as of now referred to as 

baseline customers, who are asked to choose a delivery time window between 10am and 8pm. 

This relatively small customer instance is chosen so that one delivery van is sufficient to serve 

all customers in a single delivery route. This allows for a much more direct assessment of CO2 

emissions resulting from customers’ time window choices3 than if the vehicle routing problem 

were to be expanded to heterogeneous vehicle fleets consisting of more than one delivery 

vehicle. For this customer base, the optimal route plans and the associated CO2 emissions are 

determined in different scenarios taking time windows of varying lengths into consideration. 

The crucial assumption here is that in each scenario, the time window offer set only contains 

time windows of uniform length. After calculating the expected CO2 emissions of the delivery 

route for all scenarios, a comparison of the results is used to determine the influence of time 

window length on the efficiency and sustainability of the delivery route. As all data on customer 

 

3 Clearly, given the nature of the simulation, CO2 is not actually emitted. Hence, the specified CO2 emissions refer 

to the expected CO2 emissions associated with a (tentative) route plan. 
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locations and their time window preferences are assumed to be known at the beginning of the 

planning horizon, the time window allocation and determination of the route plans for the 

baseline customers is of static rather than dynamic nature. For this reason, the first part of the 

simulation is referred to as static setting.  

To take a step toward dynamic time window management, the second part of the simulation is 

to determine how the route plan and the expected CO2 emissions change when a 21st customer 

is inserted into the delivery system. In other words, after examining how the level of anticipated 

CO2 emissions of a delivery route varies if all customers choose long instead of short time 

windows, the approach in the second step is to assess the environmental impact of the time 

window choice of an individual customer. In contrast to the static setting, in which the time 

window offer set in each scenario contains only one set of time windows of uniform length, the 

offer set in this scenario is divided into three subgroups of time windows of different lengths. 

The overall goal is to identify, for the additional customer, green time windows that generate 

the lowermost additional carbon emissions in last-mile deliveries. This is to be done in two 

ways, firstly by comparing the CO2 emissions associated with each time window length, and 

secondly by juxtaposing the time windows within each subgroup to find out how even time 

windows of uniform length may differ in their CO2 footprints. The assumption here is that the 

21st customer is dynamically added to the delivery system only after the time window choices 

of the baseline customers, which are taken as given and known in advance, have already been 

confirmed in a binding manner. Therefore, the second step of the simulation is referred to as 

partially dynamic setting. 

To investigate the potentially positive impact that could result from an identification and 

incentivization of green time windows in a more realistic context, a fully dynamic vehicle 

routing problem is simulated in the third and last step. Thereby, the baseline customers are 

assumed to place their orders dynamically, and the feasible time window leading to minimum 

additional CO2 emissions is incrementally determined and marked as green for each newly 

arriving customer. Based on the simplifying assumption that all customers actually choose the 

incentivized time windows, it is then determined for the 21st customer which time windows can 

be offered to him or her and which can be marked as green. As the time windows are 

incentivized and allocated to all customers dynamically, the third step of the simulation is 

denoted as fully dynamic setting. 
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The existing literature on sustainable e-commerce deliveries has already shown that customers’ 

time window choices impact last-mile delivery operations significantly. However, the focus to 

date has been almost exclusively on the influence of time window length, demonstrating that 

longer time windows are associated with increased planning flexibility, more efficient routing 

and reduced travel distances (Köhler et al. 2020). This study goes one step further by shedding 

light on the differences between both time windows of uniform length and time windows of 

different lengths in terms of their carbon footprint. To the best of the author’s knowledge, this 

is among the first studies to calculate and evaluate the carbon footprint of time windows in the 

context of last-mile deliveries. 

5.1 Simulation Setup 

The delivery area is defined as a road network overlaying the city of Vienna, Austria, as it 

depicts a dense distribution of customers in an urban area. Within this area, 21 nodes are 

randomly selected, which display the 20 baseline customer locations as well as one fixed 

location for the depot. In order to determine how the expected carbon footprint of the delivery 

route carried out by one delivery vehicle changes with increasing time window length (static 

setting), four scenarios are considered for the baseline customers. All scenarios are run five 

times for different customer-time-slot-combinations to be able to calculate a representative 

average value of the respective level of CO2 emissions for each scenario. In the first scenario, 

it is assumed that all 20 customers select no time windows4, i.e., the logistics service provider 

is free to decide at what time which customer should ideally be supplied. The second scenario 

is used to represent the situation in which all customers exclusively choose five-hour time 

windows. Available for selection are the time windows from 10am to 3pm, 12pm to 5pm and 

3pm to 8pm. Similarly, in the next scenario, the route plan is determined and the expected CO2 

footprint is calculated given the assumption that all 20 customers choose a time window from 

a selection of five consecutive, non-overlapping two-hour time windows from 10am to 8pm. 

The same is calculated in the fourth scenario for ten non-overlapping and consecutive one-hour 

time windows in the same period. For the sake of simplicity, the ten-hour, five-hour, two-hour 

 

4 Since choosing no time windows implies that the customer can be served at any time on the delivery day, it is 

equivalent to choosing a ten-hour time window from 10am to 8pm. 
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and one-hour time window scenarios from the static setting are denoted as S10, S5, S2 and S1, 

respectively. In all scenarios, the time windows available for selection are allocated to the 

customers on a random basis, sometimes requiring small manual adjustments to ensure that a 

feasible solution is created with the time window allocation. 

In the partially dynamic setting, in which the carbon footprint associated with an individual 

customer’s time window choice is determined, it is hypothesized that the vehicle deployed to 

deliver the baseline customers can only serve exactly one additional customer. The 21st 

customer thus marks the cut-off time, after which no further orders are accepted and the route 

for the considered delivery vehicle is finalized. It is further assumed that the baseline customers 

had already placed their orders and selected their preferred delivery time window from a range 

of time windows of different lengths. The time window offer set includes the same subgroups 

of one-, two- and five-hour time windows extending over a period from 10am to 8pm as defined 

in the static setting. The condition in which the 20 baseline customers make their slot choices 

from a mixed time window offer set in the partially dynamic setting is referred to as baseline 

scenario (B20). The expected CO2 emissions associated with the optimized tentative route plan 

in B20 represent a benchmark value, with which those of the final route plan after integration of 

the 21st customer are compared. For this customer, too, a location within Vienna is selected 

randomly, and the tentative route plan in B20 is updated and optimized for each of the one-, two- 

and five-hour time windows available for selection. This makes it possible to determine which 

individual time windows or time window lengths generate the lowest additional CO2 emissions 

when compared to the benchmark value and can be labelled as environmentally friendly. The 

condition in which an additional 21st customer is included in the delivery system in the partially 

dynamic setting is referred to as PD21. As to obtain robust and meaningful results that do not 

merely depend on the random location of the new customer, PD21 is run for a total of five 

different, randomly selected customer locations. This results in five distinct variants of PD21, 

denoted as PD21A, PD21B, PD21C, PD21D and PD21E, respectively. In each scenario, the carbon 

emissions associated with each of the ten one-hour, five two-hour and three five-hour time 

windows are calculated. This results in a total of 18 instances for each location, which, together 

with the baseline scenario, yields 91 instances altogether.  

In the fully dynamic setting, the first step is to incrementally examine, for each customer 

separately, which time window from an offer set consisting exclusively of one-hour time 
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windows leads to the lowest additional CO2 emissions. This scenario in the fully dynamic 

setting is denoted as FDA. Subsequently, the same is checked again for a time window offer set 

evolving with the arrival of new customers, temporarily including only five-, two- or one-hour 

time windows. This scenario is denoted as FDB. In both cases, it is assumed that the first 20 

customers all choose the time windows proposed to them, so that the time window that can be 

marked as green for the 21st customer is determined based on the dynamic time window 

allocation for the 20 customers arriving earlier in the booking process.  

For the simulation of the vehicle routing problem and the calculation of the carbon emission 

values, the VRP Spreadsheet Solver is used. The structure of the worksheets is described in the 

following section. 

5.2 VRP Spreadsheet Solver 

The VRP Spreadsheet Solver was developed by Dr. Güneş Erdoğan and is a standard tool with 

which the results of VRPs are stated, solved, and visualized (Erdoğan 2020). The Excel tool is 

well suited for the purpose of this work, as it can solve the most studied basic variants of the 

VRP with up to 200 customers (Erdoğan 2017). Solving a vehicle routing problem with the 

VRP Spreadsheet Solver involves six steps. In the beginning, the Excel workbook only contains 

the worksheet named VRP Solver Console, in which all relevant data needs to be entered. 

Subsequently, the remaining worksheets 1.Locations, 2.Distances, 3.Vehicles, 4.Solution, and 

5.Visualization are generated. Thanks to embedded features to query a GIS web service, the 

distances, driving times, and maps can be easily retrieved (Erdoğan 2017). For the final 

solution, a variant of the Large Neighborhood Search (LNS) algorithm is implemented within 

the Excel tool. In sum, the VRP Spreadsheet Solver stores the data about the components of a 

vehicle routing problem in separate worksheets and adopts an gradual information flow 

(Erdoğan 2020). In the following, each of the five worksheets are described in more detail.  

VRP Solver Console 

The VRP Solver Console contains relevant parameters about the size of the instance being 

solved, including the number of depots and customers. Köhler et al. (2020) show that three 

delivery vehicles operating from one fixed depot are sufficient to serve approximately 75 



 

32 

 

customers per day, which in turn means that each vehicle has the capacity to handle up to 25 

customers daily. For this reason, one depot is selected and the number of customers to be served 

by one delivery vehicle is set to 20 or 21, depending on the scenario, as to allow for a certain 

buffer. For the population of the distances, Bing Maps driving distances (km) are selected. 

Accordingly, the duration computation method is set to Bing Maps driving durations. Since the 

objective of this VRP is to minimize the expected carbon emissions associated with a delivery 

route, which to a large extent depend on the distance traveled, the Shortest option is set for the 

parameter Bing Maps route type. Given that Vienna is a heavily congested city, especially at 

peak times, the average vehicle speed is set to 25 km/h. Moreover, a standard home delivery 

setting is assumed, in which the delivery van is loaded once in the beginning of the working 

day and returns to the depot only after all scheduled deliveries have been completed. As 

attended home deliveries generally do not include any pickups along the way, backhauls are 

not considered in this problem. Tardy deliveries often significantly reduce customer 

satisfaction, especially in the case of attended home deliveries, therefore only hard time 

windows are included. A Central Processing Unit (CPU) time limit of 60 seconds was found to 

be sufficient to for the program to find a good solution. Figure 2 shows a screenshot of the VRP 

Solver Console and the parameters entered in B20. 

 

Figure 2: Parameters entered in the VRP Solver Console (B20) 
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Locations 

In the second step, the customer locations as well as the location of the depot are entered. For 

the depot, an address in the industrial park Inzersdorf in the 23rd district is chosen, as the 

logistics center of large food store chains like REWE group are also situated there. The 20 

randomly selected customer locations for the baseline scenario cover all districts of Vienna 

except for the 6th, 12th, 14th, 15th, 18th and 20th district. After entering the addresses manually, 

the latitude and longitude of each coordinate is populated using the GIS web service and the 

following scatter chart displaying all customer locations as well as the location of the depot 

(represented as a black square in Figure 3) is generated: 

 

Figure 3: Locations of the 20 baseline customers and the depot 
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It is assumed that each customer has to be visited exactly once. The delivery time windows, 

which are entered separately for each customer, are readjusted for each scenario and simulation 

step. The service time is set to 150 seconds, which is for instance the target for the time in which 

a postman or postwoman should deliver a package (Kwasniewski 2016). As capacity should 

not be the limiting factor in this problem, the pickup and delivery amounts are considered to be 

zero. Additionally, as the center of attention lies on the environmental costs related to attended 

home deliveries within specific time windows rather than the financial return, the profit for each 

customer is also set to zero. 

Distances 

Using the coordinates of the customer locations, which are automatically calculated by the VRP 

Spreadsheet Solver, a distance matrix including the associated travel durations is created in the 

next step. However, as the central focus of this study is to compare the total carbon emission 

values associated with each feasible time window, distances between customers have to be 

quantified as the level of emissions generated, not distance travelled. In other words, the vehicle 

routing problem is optimized according to minimum CO2 emissions rather than minimum 

distance. Here, it should be noted that even though the number of electric-powered delivery 

vehicles is increasing, this transition is happening very slowly, which is why the goal of 

minimizing CO2 emissions in last-mile deliveries remains highly relevant. For the calculation 

of transport-related CO2 emissions, the MEET model is used. Depending on the weight class of 

a vehicle, MEET suggests different functions for the estimation of the rate of CO2 emissions 

per kilometer. For a standard grocery home delivery van, which typically weighs less than 3.5 

tons, a speed-dependent regression function of the form  

ⅇ(𝑣) = 0.0617𝑣2 − 7.8227𝑣 + 429.51 

is recommended (Hickman et al. 1999). Furthermore, the model proposes a number of 

correction factors depending on vehicle type and weight to include the effects of road gradient 

and vehicle load on the emissions into the equation. Yet, since these corrections only come 

into effect for vehicles weighing over 3.5 tons, they can be neglected for the purpose of this 

study. This results in a rather simple calculation of the CO2 emission factor (in grams per 

kilometer) for a given speed v of 
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ⅇ(𝑣) = 0.0617 × 252 − 7.8227 × 25 + 429.51 = 272.505 𝑔/𝑘𝑚. 

Subsequently, the total CO2 emissions (in grams) for a given speed v and distance D are 

calculated as 

𝐸(𝑣, 𝐷) = ⅇ(𝑣) × 𝐺𝐶(𝑣) × 𝐿𝐶(𝑣) × 𝐷, 

where GC(v) is the gradient correction factor and LC(v) is the load correction factor (Bektaş et 

al. 2016). Since both factors can be neglected for vehicles weighing less than 3.5 tons, the total 

CO2 emissions per kilometer add up to  

𝐸(𝑣, 𝐷) = 272.505 𝑔/𝑘𝑚 × 𝐷. 

The distances D can be retrieved from the distance matrix generated by the VRP Spreadsheet 

Solver and displayed in the Distances worksheet. By multiplying all values in the distance 

matrix by 272.505, a CO2 matrix is created. Instead of showing the distances between all 

customers as well as the depot and the customers, the emissions emitted on the respective routes 

are specified in the CO2 matrix.  

Due to the linear relation between CO2 emissions and distance travelled suggested in the 

formula of the MEET model, the solver comes to the same route plans when optimizing for 

minimum CO2 emissions as for minimum distance. At this point, it must be noted that a perfect 

linear relationship between distance and CO2 emissions is a simplifying assumption that does 

not exist in reality. Yet, with reference to Ehmke et al. (2018), a simplified linear relationship 

between distance and CO2 emissions can be assumed for the purpose of this study. 

Vehicles 

For the vehicle routing problem at hand, only one vehicle type, a standard food delivery van, is 

considered. The capacity dimension is irrelevant in this case, as it is assumed that the van has 

enough load capacity to execute all deliveries and pickup or delivery quantities are neglected 

in this problem. Additionally, since monetary costs are not of interest in this study, the fixed 

costs are set to zero. The costs per unit distance are the variable costs incurred on each delivery 

route. In the case of a CO2 minimizing objective function, they represent the CO2 emissions per 

kilometer as calculated using the MEET model. However, since these were already factored 

into the CO2 matrix to be able to see the CO2 emissions between all customers as well as the 
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customers and the depot prima facie, the costs per unit distance are set to one. As only one 

vehicle type is considered and since the fact that delivery vans may drive slightly slower than 

normal cars was already taken into account by assuming an average speed of 25 km/h, the 

duration multiplier is not necessary to scale down the vehicle speed and is set to one. The 

distance limit in the Vehicles worksheet denotes the maximum distance a delivery vehicle can 

travel. However, since distances were transformed to carbon emissions, the parameter in this 

study indicates the maximum level of CO2 emissions. It is assumed that the delivery vehicle is 

refueled during the night and that its range is enough to cover a day trip, so the distance travelled 

and the related CO2 emissions are not a binding constraint. For this reason, the maximum CO2 

emissions are randomly set to a very high value of 2000000000 grams. The driver of the 

delivery vehicle is assigned a driving time limit of nine hours as per the European Union rules 

on drivers’ hours and working time (DfT 2015). Since the time windows range from 10am to 

8pm, i.e., a time span of ten hours, the working time is limited to ten hours. For the given 

scenarios with 20 and 21 customers, respectively, one delivery vehicle is deployed.  

Solution 

In this worksheet, the final route for each deployed delivery vehicle is detailed. As only one 

delivery vehicle is considered in this study, the sequence of customers to be served only 

concerns precisely that vehicle. With the help of the information on customer locations, service 

times, as well as the thereby populated distance and duration values, the departure and arrival 

times between customers are computed in the solution worksheet. If applicable, reasons for 

infeasibility are detected and specified. The latter is especially the case if the driver arrives after 

a time window has closed and thus violates the hard time window constraint, or if the maximum 

driving or working time is exceeded. In the third column, the cumulative travel costs are 

indicated. In this study, in which the VRP has a CO2 minimizing objective, the travel costs are 

to be interpreted as cumulative CO2 emissions. In addition, orange-colored cells provide 

warnings. These signals indicate that the delivery vehicle arrives before the start of the time 

window and therefore must wait, resulting in inefficient utilization of the driver’s capacity. 

Since only the environmental costs incurred are of interest for the present research question and 

the profit remains constant at zero, the total profit can be translated into total environmental 

costs and arises from the negative value of the cumulative CO2 emissions (in grams) of the 

respective solution. The values resulting from the generated routes in each simulation run can 
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thus be compared straightforwardly and those leading to particularly unfavorable or favorable 

solutions in terms of their environmental impact can be directly identified.  

Visualization 

The last worksheet contains a scatter chart, which displays the customer locations and the route 

plan on a map of the delivery region retrieved from the GIS web service. While the Solution 

Worksheet allows for a straightforward assessment of the impact of customers’ time window 

choices on the environmental sustainability associated with a delivery route, the Visualization 

worksheet is particularly useful for drawing conclusions on the corresponding operational 

efficiency. For example, long distances between customers, which are in large part a result of 

their respective time window choices, or routes that cross multiple times are clear indicatives 

of inefficient routes.  

Figure 9, Figure 10, Figure 11 and Figure 12 in the Appendix show screenshots of the Distances, 

Vehicles, Solution and Visualization worksheets generated for B20. In each scenario, the routes 

are optimized using the LNS algorithm implemented within the VRP Spreadsheet Solver.  

5.3 Large Neighborhood Search Algorithm 

To date, a large number of solution algorithms to solve different variants of the VRP have been 

developed. As the VRP Spreadsheet Solver by Erdoğan and Miller-Hooks (2012) was designed 

to solve over 64 VRP variants, the authors provide a formulation of the VRP that unifies all the 

variants the VRP Spreadsheet Solver can handle and incorporates their respective constraints 

(Erdoğan 2017). For a detailed formulation of the VRP including all relevant constraints, please 

refer to Erdoğan (2017). 

The algorithm implemented in the VRP Spreadsheet Solver to solve the formulated problem is 

a version of the Adaptive Large Neighborhood Search (ALNS) of Pisinger and Ropke (2007), 

as ALNS can flexibly solve several variants of the VRP (Erdoğan 2017). The ALNS framework 

is a natural extension of the widely used Large Neighborhood Search formulated by Shaw 

(1998), in which an initial solution is gradually relaxed and reconstructed by modifying a 

significant number of variables in each iteration (Ancion and Dardenne 2016; Pisinger and 

Ropke 2007). The distinctive idea of ALNS is that the relaxation and reconstruction procedures 
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are adapted or changed throughout the search (Ancion and Dardenne 2016). The neighborhoods 

are searched by several simple and fast algorithms that compete to change the incumbent 

solution. This means that in each iteration, heuristics are used to partially destroy and then repair 

the solution at hand (Pisinger and Ropke 2007).  

The algorithm implemented in the VRP Spreadsheet Solver works accordingly. The exact steps, 

as specified by Erdoğan (2017), are as follows. An incumbent solution is generated by adding 

customers to the route and selecting, in each iteration, the customer that leads to the minimum 

increase in costs. In the case of this study, this would translate into a minimum increase in CO2 

emissions. Using a number of local search operators, the tentative solution is then improved 

and subsequently recorded as the best-known solution. Among the local search operators is the 

EXCHANGE operator, which searches all feasible customer pairings in an existing solution and 

evaluates whether exchanging them would improve the value of the objective function. The 

second operator, named 1-OPT, tests whether better results can be achieved when every 

customer in a given solution is removed from the existing position and reinserted to an 

alternative position in the delivery sequence. To avoid inefficient crossings within the route, 

the 2-OPT operator is applied, which simultaneously removes arcs between two customer 

pairings from the solution and reorders them in a way in which they do not intersect. The fourth 

operator in the algorithm, VEHICLE-EXCHANGE, does not come into play in the routing 

problem this study is concerned with, as only one delivery vehicle is considered. After 

improving and recording the incumbent solution as the best-known solution, it is once again 

destroyed and repaired by removing and adding vertices on a random basis. The incumbent 

solution is repaired using the greedy insertion and max regret heuristics, whereas for both 

heuristics, the probability of being selected is equal at each iteration. Greedy insertion 

subsequently inserts the customers on a random basis into the position of the route plan that 

minimizes the insertion cost (Hemmelmayr et al. 2012). With the max regret heuristic, the 

customer is chosen for whom the discrepancy between the cost of the cheapest and second 

cheapest insertion position is the greatest. In the next step, the incumbent solution is once again 

improved through the abovementioned local search operators and, in case it yields better results 

than the existing best-known solution, is recorded as the new best-known solution. A solution 

that does not improve the value of the objective function is accepted with a probability p. This 

process is repeated until the CPU time limit is reached. The probability of accepting a non-

improving solution is 10% at the beginning of the runtime and reduces linearly to a probability 
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of 0% as soon as the runtime is larger the CPU time allowed (Erdoğan 2017). For a high-level 

pseudocode implemented within the VRP Spreadsheet Solver, see Figure 15 in the Appendix. 

5.4 Simulation Results 

In each simulation run, all parameter settings remain the same, with the exception of the number 

of customers to be served and the time windows, which are reallocated in each scenario. All 

simulations are run on a Windows 10 Enterprise 64-bit operating system with an Intel Core i5-

8365U processor and 16 GB of RAM.  

5.4.1 Static Setting 

Table 1: Average additional CO2 emissions per time window length 

Scenario Average CO2 emissions (in gm) 

S10 (No time windows) 24176.10 

S5 (Five-hour time windows) 28772.39 

S2 (Two-hour time windows) 37490.58 

S1 (One-hour time windows) 42185.90 

All scenarios in the static setting are repeated multiple times for different customer-time-slot-

combinations to be able to calculate a representative average value of the CO2 emissions 

associated with each time window length. Table 1 shows that in scenario S10, in which none of 

the 20 customers are able to choose a time window and all customers can therefore be supplied 

at any possible time between 10am and 8pm, CO2 amounting to 24.18 kilograms is emitted on 

average. This is about 4.60 kilograms (15.97%) less than in scenario S5, in which all 20 

customers are supplied in five-hour time windows and CO2 emissions on average amount to 
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28.77 kilograms. Although associated with higher average CO2 emissions than in the case in 

which no time windows are offered, S5 leads to significantly lower CO2 emissions on average 

than S2. Effectively, the scenario in which all customers choose two-hour time windows results 

in average CO2 emissions of 37.49 kilograms. This represents an increase of 8.72 kilograms 

(23.25%) in comparison with S5. Compared to S10, the difference elevates to 13.31 kilograms 

(35.51%). The increase in average CO2 emissions is also large if instead of two-hour time 

windows, only one-hour time windows are chosen by all customers. In S1, the average CO2 

emissions increase to 42.19 kilograms, which represents a difference of 4.70 kilograms 

(11.13%) compared to S2. In comparison with S5 and S10, the increase amounts to 13.41 

kilograms (31.80%) and 18.01 kilograms (42.69%), respectively. The fact that shorter time 

windows lead to significantly more inefficient solutions than longer time windows becomes 

evident when looking at the respective sample route plans as shown in Figure 13 and Figure 14 

in the Appendix. For instance, while the scheduled delivery route in S10 only crosses once, it 

does so several times in S5, which is a clear indication of a more inefficient route. 

An overarching comparison of the scenarios shows that average CO2 emissions can almost 

double, depending on whether no time windows or one-hour time windows are selected. But 

even when comparing one-hour and two-hour time windows, which seemingly differ only 

insignificantly in length, major differences in average CO2 emissions emerge. This shows that 

the length of the time windows has a great impact on the expected carbon emissions associated 

with a delivery route and correspondingly the efficiency of the delivery system as a whole. 

Since the choice of the time window length for a group of 20 customers leads to such varying 

levels of average CO2 emissions, the question arises as to what difference the time window 

choice of a single customer can make. In this context, it is of particular interest to see how CO2 

emissions change not only when contrasting different time window lengths, but also when 

comparing the environmental impact resulting from time window choices of uniform length. 

To answer these questions, a simulation assuming a partially dynamic setting is conducted, 

which is described in the following chapter. 

5.4.2 Partially Dynamic Setting 

In this setting, all customer locations from the static setting remain the same, the crucial 

difference lying in their time window choices and the fact that an additional customer is inserted 
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into the tentative route plan. To be able to evaluate the environmental impact of the time 

window choice of the 21st customer, a baseline scenario with 20 customers has to first be 

established to serve as a reference point. The results of the baseline scenario are discussed in 

chapter 5.4.2.1. On this basis, it is possible to examine the effect of the integration of customer 

21A (corresponding to scenario PD21A) into the delivery system, which is covered in chapter 

5.4.2.2. A comparison of the additional CO2 emissions associated with the selection of each of 

the feasible time windows makes it possible to identify those time windows that lead to the 

lowermost increase in the CO2 benchmark value and can be labelled as green for the 21st 

customer. In addition, the results obtained within the different subgroups of time window 

lengths are compared with each other. The aim is to find to what extent the additional CO2 

emissions associated with the 21st customer’s time window choice can be reduced through 

increased the time window length, i.e., when comparing one-hour and two-hour, one-hour and 

five-hour and two-hour and five-hour time windows. Apart from evaluating the environmental 

impact associated with the 21st customer’s time window choice, attention is paid to the extent 

to which the routes become more feasible through increased slot length. In chapter 5.4.2.3, the 

location of the 21st customer is varied, and the results of PD21B, PD21C, PD21D and PD21E are 

evaluated in a more comprehensive manner. 

5.4.2.1 Baseline Scenario 

In the baseline scenario, it is assumed that all 20 customers choose a delivery time window out 

of a time window offer set consisting of three subgroups of one-, two- and five-hour time 

windows. The design of the time window offer set is made in accordance with the study of 

Agatz et al. (2021), however, a few adjustments regarding the length of the available time 

windows were made. Table 2 in shows an overview of the time windows offered, including an 

indication of how many customers they are allocated to. 
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Table 2: Mixed time window offer set in the partially dynamic setting 

SlotID One-hour  Two-hour  Five-hour  

1 10am to 11am  
3x 10am to 12pm 1x 10am to 3pm  

2 11am to 12pm 2x 12pm to 2pm 1x 12pm to 5pm 1x 

3 12pm to 1pm 1x 2pm to 4pm  3pm to 8pm 4x 

4 1pm to 2pm  
 4pm to 6pm  -  

5 2pm to 3pm  
2x 6pm to 8pm 2x -  

6 3pm to 4pm  
1x -  -  

7 4pm to 5pm  
 -  -  

8 5pm to 6pm  
1x -  -  

9 6pm to 7pm  
1x -  -  

10 7pm to 8pm  -  -  

The time windows are assigned to the customers on a random basis, with the majority of 

assigned slots (11) being one-hour time windows. The underlying assumption is that most 

customers prefer short over long time windows. In the baseline scenario, the expected total CO2 

emissions associated with the tentative route plan amount to 40922.08 grams or approximately 

40.92 kilograms. In the given solution, all customers can be served within their chosen time 

windows, therefore leading to a feasible route plan.  

The total CO2 emissions in the baseline scenario serve as a benchmark value in the further 

course of this study, with which all values of PD21 are compared. The time window choices of 

the first 20 customers in the baseline scenario are assumed to be fixed and immutable. In order 

to comply with the hard time window condition, the 21st customer can thus only be offered 

those time windows that lead to a feasible solution, i.e., a route plan in which each customer 

can be supplied within the selected time window. If the simulation shows that the choice of a 

certain time window leads to one or more customers receiving their deliveries late, it is assumed 

to be unavailable for the 21st customer.  
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5.4.2.2 Scenario PD21A 

The location chosen for customer 21A is Bambergergasse 41 in the 22nd district, which is one of 

the outer districts of Vienna. There are no other customers in immediate proximity and the depot 

is also relatively far away. The scatter chart in Figure 4 shows the location of the 21st customer 

highlighted in red. 

 

Figure 4: Location of customer 21A in the partially dynamic setting 

Table 3 depicts the environmental implications associated with each feasible time window that 

can be offered to the 21st customer. Thereby, the minimum and maximum CO2 emissions as 

well as the minimum and maximum CO2 increase compared to the benchmark and the 
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corresponding time windows are specified. Additionally, the CO2 savings potential within each 

of the three subgroups is indicated to demonstrate how much CO2 can be saved at most when 

choosing the most environmentally friendly instead of the most environmentally harmful one-, 

two- or five-hour time window. Moreover, cross-comparisons are made between the different 

time window lengths to calculate the CO2 savings potential from choosing longer instead of 

shorter time windows. In this context, is important to recall that the 21st customer in the partially 

dynamic setting marks the cut-off time, after which no further customers are integrated into the 

delivery schedule. As the route plan is thus finalized with the 21st customer’s order placement, 

it can be determined at which position precisely he or she should be integrated in the delivery 

sequence to minimize the overall level of CO2 emissions, whereby maintaining flexibility for 

the integration of future customers becomes irrelevant. The key difference between the time 

window sets of different lengths thus lies in the maximum rather than the minimum CO2 

emissions resulting from the selection of the time windows contained therein. Therefore, the 

choice of longer time windows makes the greatest difference if the delivery time is irrelevant 

for the customer and he or she has no information on the environmental impact of the available 

time windows. The CO2 savings potential emanating from longer time windows is thus 

calculated through cross-comparisons of the CO2 emissions resulting from the longer time 

window and the maximum CO2 emissions associated with the shorter time windows contained 

within the same time period.  
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Table 3: Results for PD21A
5 

One-hour time windows 

To evaluate the impact of the available one-hour time windows on the route plan’s sustainability 

and efficiency, the first column of Table 3 is used. Because of the long distances that need to 

be covered in addition to be able to deliver the 21st customer, the time windows from 10am to 

 

5 All values on CO2 emissions, increases to B20 and the CO2 savings potential in this table as well as the following 

tables in this chapter are consistently expressed in grams. 

 
One-hour time 

windows 

Two-hour time 

windows 

Five-hour time 

windows 

Min. CO2 emissions 44192.95 44192.95 44192.95 

Time window 4pm to 5pm 4pm to 6pm 
12pm to 5pm; 

3pm to 8pm 

Max. CO2 emissions 48248.92 46277.20 45197.41 

Time window 7pm to 8pm 2pm to 4pm 10am to 3pm 

CO2 savings potential  

(within subgroup) 

4055.96  

(8.41%) 

2034.25 

(4.40%) 

1004.45  

(2.22%) 

Min. increase to B20 

(40922.08 gm) 

3270.88  

(7.40%) 

3270.88  

(7.40%) 

3270.88  

(7.40%) 

Max. increase to B20 

(40922.08 gm) 

7326.84  

(15.19%) 

5305.13  

(11.48%) 

4275.33  

(9.46%) 

CO2 savings potential  

(vs. one-hour time 

windows) 

- 
2357.99  

(4.89%) 

4055.96  

(8.41%) 

CO2 savings potential 

(vs. two-hour time 

windows) 

- - 
2034.25  

(4.40%) 

Infeasible time 

windows 
3 1 0 
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11am, 11am to 12pm and 2pm to 3pm become infeasible and cannot be offered to customer 

21A.  

Depending on the selected feasible one-hour time window, the CO2 emissions generated range 

from 44.19 kilograms to 48.25 kilograms, which is a difference of 4.06 kilograms. In other 

words, up to 8.41% of CO2 emissions can be saved, solely depending on which of the ten one-

hour time windows is chosen by the customer. The highest value is induced when the time 

window from 7pm to 8pm is chosen, as the delivery van must take the longest diversions to 

comply with this time window. The lowest additional CO2 emissions are generated when the 

4pm to 5pm time window is selected. Thus, choosing one of the ten one-hour time windows 

increases the CO2 benchmark value by a minimum of 3.27 kilograms (7.40%) and a maximum 

of 7.33 kilograms (15.19%).  

Two-hour time windows 

The second column in Table 3 shows that amongst the two-hour time windows, only the time 

window from 10am to 12pm is not available for selection, as it would require 21A to be served 

in midst of the already very tightly scheduled morning hours and lead to an infeasible route 

plan. 

Examining the feasible two-hour time windows at hand, the minimum and maximum emissions 

that result from their selection are 44.19 kilograms, as in the one-hour case, and 46.28 

kilograms. Compared to the benchmark value, this results in a minimum and maximum increase 

in CO2 emissions of 3.27 kilograms (7.40%) and 5.31 kilograms (11.48%), respectively. Within 

the two-hour time windows, up to 2.03 kilograms (4.40%) of CO2 emissions can be saved 

depending on which time window is chosen. 

A comparison of the results of the two-hour with the one-hour time windows reveals that the 

two-hour time windows perform better with regard to maximum CO2 emissions. In this 

scenario, for example, supplying the 21st customer between 7pm and 8pm leads to particularly 

high CO2 emissions of 48.25 kilograms. In the neighboring time window from 6pm to 7pm, 

they amount to only 45.89 kilograms. Thus, if a two-hour instead of a one-hour time window 

is chosen, the logistics service provider can schedule the deliveries in such a way that eliminates 
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delivering the 21st customer between 7pm and 8pm and instead allows for suppling him or her 

between 6pm and 7pm. This makes a difference in CO2 emissions of 2.36 kilograms (4.89%).  

Five-hour time windows 

When analyzing the third column in Table 3, it becomes apparent that each of the three five-

hour time windows from 10am to 3pm, 12pm to 5pm and 3pm to 8pm lead to feasible solutions 

and can therefore all be offered to the 21st customer. 

Through the selection of a five-hour time window, it can be ensured that the 21st customer is 

supplied at a feasible time window that furthermore results in relatively low additional CO2 

emissions. The three five-hour time windows available for selection lead to CO2 emissions 

amounting to 45.20 kilograms, 44.19 kilograms and 44.19 kilograms, respectively. This 

represents a minimum increase in CO2 emissions of 3.27 kilograms (7.40%) and a maximum 

increase of 4.28 kilograms (9.46%) compared to the benchmark value. Within the five-hour 

time windows, up to 1.00 kilogram (2.22%) of CO2 emissions can be saved depending on which 

time window is chosen. 

When comparing the five-hour with the one-hour time windows, the highest CO2 savings 

potential results from the selection of the time window from 3pm to 8pm, associated with CO2 

emissions of 44.19 kilograms. During this period, all one-hour time windows are feasible and 

lead to minimum and maximum CO2 emissions of 44.19 kilograms and 48.25 kilograms, 

respectively. Consequently, up to 4.06 kilograms (8.41%) can be saved through the selection of 

the 3pm to 8pm time window. Not only in comparison with the one-hour time windows, but 

also with the two-hour time windows, a considerable amount of CO2 can be saved through the 

selection of five-hour time windows. The highest savings potential results from the choice of 

the time windows from 12pm to 5pm and 3pm to 8pm, as both allow for up to 2.03 kilograms 

(4.40%) of CO2 savings.  

To summarize, the results show that the time window choice of the 21st customer located in 

Bambergergasse 41 in the 22nd district entails direct, far-reaching effects on the sustainability 

and the efficiency of the route plan. Depending on the time window choice, the levels of CO2 

emissions range from 44.19 kilograms to 48.25 kilograms, which is a difference of 4.06 

kilograms and 8.41%, respectively. The increase compared to the benchmark value is thus 
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between 3.27 kilograms (7.40%) and 7.33 kilograms (15.19%). The savings potential resulting 

from the choice of two-hour instead of one-hour time windows is up to 2.36 kilograms (4.89%). 

In contrast to the one-hour scenario, where three different time windows cannot be offered to 

the 21st customer, this is the case for only one time window in the two-hour scenario. When one 

of the five-hour time windows is chosen, the maximum CO2 savings potential in comparison 

with one-hour time windows increases to 4.06 kilograms (8.41%). Compared to two-hour time 

windows, the values change to 2.03 kilograms (4.40%). The five-hour scenario furthermore 

stands out against the other two scenarios in that it is the only one in which none of the time 

windows have to be removed from the time window offer set due to infeasibility. Arguably, 

while the number of five-hour or two-hour time windows offered is much lower compared to 

one-hour time windows, customers may feel less constrained in their decision-making ability if 

they can choose from a more restricted number of longer, but feasible time windows than if 

several shorter time windows have to be eliminated from the time window offer set altogether 

due to infeasibility. 

5.4.2.3 Variation of the Customer Location 

Since the final route plans and the associated CO2 emissions depend significantly on the 

location of the 21st customer, it stands to reason that the previously discussed, pronounced 

results in scenario PD21A are partly due to the customer’s remote location. Therefore, it is 

interesting to see how the findings change as the location of the 21st customer varies. For this 

purpose, four additional locations are randomly selected for the remaining scenarios PD21B, 

PD21C, PD21D and PD21E: 

• PD21B: Wilhelminenstraße 84, 1160 Vienna, Austria 

• PD21C: Alma-Rosé-Gasse 2, 1100 Vienna, Austria 

• PD21D: Neulinggasse 29, 1030 Vienna, Austria 

• PD21E: Andersengasse 9, 1120 Vienna, Austria 

As in the previous chapter, a tabular view is used to highlight the environmental implications 

of each feasible time window that can be offered to the 21st customer across all customer 
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locations. For the sake of completeness, the previously discussed results in scenario PD21A are 

also displayed with a grey background.  

One-hour time windows 

Table 4: Results for the alternative customer locations – One-hour time windows  

 PD21A PD21B PD21C PD21D PD21E 

Min. CO2 emissions 44192.95 40925.89 42436.39 40922.08 41486.97 

Time window 4pm to 5pm 2pm to 3pm 
6pm to 7pm;  

7pm to 8pm 

6pm to 7pm; 

7pm to 8pm 
7pm to 8pm 

Max. CO2 

emissions 
48248.92 42238.28 45898.29 43345.19 44522.14 

Time window 7pm to 8pm 1pm to 2pm 3pm to 4pm 3pm to 4pm 3pm to 4pm 

CO2 savings 

potential  

(within one-hour 

time windows) 

4055.96  

(8.41%) 

1312.38  

(3.11%) 

3461.90  

(7.54%) 

2423.11  

(5.59%) 

3035.16  

(6.82%) 

Min. increase to 

B20 (40922.08 gm) 

3270.88  

(7.40%) 

3.82 

(0.01%) 

1514.31  

(3.57%) 

0.00  

(0.00%) 

564.90 

(1.36%) 

Max. increase to 

B20 (40922.08 gm) 

7326.84  

(15.19%) 

1316.20 

(3.12%) 

4976.21  

(10.84%) 

2423.11  

(5.59%) 

3600.06  

(8.09%) 

Infeasible time 

windows 
3 2 3 2 3 

Comparing the results of the one-hour time windows across the four alternative locations of 

customer 21 presented in Table 4, it stands out that particularly low minimum CO2 emissions 

can be achieved in scenario PD21B and PD21D. In PD21B, it is noticeable that if customer 21 is 

supplied from 2pm to 3pm, almost no additional distances have to be covered and the CO2 

emissions generated in this case are only 40.93 kilograms. It is striking that this value is only 

marginally higher than the benchmark value of 40.92 kilograms. In concrete terms, the 

benchmark value increases by only 3.82 grams (0.01%) when the most environmentally friendly 

time window is chosen. An even more optimal solution in terms of minimum CO2 emissions 

can be achieved if the 21st customer in scenario PD21D is served in the time window from 6pm 
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to 7pm or from 7pm to 8pm. In both cases, CO2 emissions amount to 40.92 kilograms, which 

corresponds exactly to the benchmark value. This is possible since customer 21 is located on a 

direct route between customer 7 and customer 15, who need to receive their groceries in a two-

hour time window from 6pm to 8pm and a one-hour time window from 6pm to 7pm, 

respectively. Hence, if customer 21 also chooses to be supplied within this period of time, no 

additional distances need to be travelled. At this point, it must be mentioned that supplying an 

additional customer could in reality not lead to such a negligible or even zero increase in CO2 

emissions. The search for a parking space alone, for instance, induces longer distances that need 

to be travelled and thus contributes to CO2 emissions that are higher than those calculated by 

the VRP Spreadsheet Solver. However, since neglecting these factors leading to an additional 

increase in CO2 emissions does not distort the basic results of this work, such small deviations 

from real-life conditions can be accepted. 

The highest possible level of CO2 emissions within the one-hour time windows occurs in PD21C 

in the 3pm to 4pm time window. In this scenario, the maximum CO2 emissions amount to 45.90 

kilograms, which depicts a CO2 increase of 4.98 kilograms (10.84%) compared to the 

benchmark value. In turn, the relatively high level of CO2 emissions in this scenario associated 

with the choice of the 3pm to 4pm time window also suggests a high savings potential 

emanating from the selection of alternative one-hour time windows. Since only 42.44 kilograms 

of CO2 are emitted if the greener time windows from 6pm to 7pm or from 7pm to 8pm are 

chosen, which both represent an increase of the benchmark value by 1.51 kilograms (3.57%), 

3.46 kilograms (7.54%) of CO2 can be saved compared to the 3pm to 4pm time window.  

A cross-locational examination of the feasibility of the time windows shows that a minimum of 

two and a maximum of three of the one-hour time windows cannot be offered since they would 

lead to infeasible routes.  
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Two-hour time windows 

Table 5: Results for the alternative customer locations – Two-hour time windows 

 PD21A PD21B PD21C PD21D PD21E 

Min. CO2 emissions 44192.95 40925.89 42436.39 40922.08 41486.98 

Time window 4pm to 6pm 2pm to 4pm 6pm to 8pm 6pm to 8pm 6pm to 8pm 

Max. CO2 

emissions 
46277.20 42225.47 45898.29 41604.97 44522.14 

Time window 2pm to 4pm 12pm to 2pm 2pm to 4pm 2pm to 4pm 2pm to 4pm 

CO2 savings 

potential 

(within two-hour 

time windows) 

2034.25  

(4.40%) 

1299.58  

(3.08%) 

3461.90  

(7.54%) 

682.90  

(1.64%) 

3035.16  

(6.82%) 

CO2 savings 

potential 

(vs. one-hour time 

windows) 

2357.99  

(4.89%) 

354.26  

(0.86%) 

38.70  

(0.09%) 

1740.22  

(4.01%) 

2118.45  

(4.82%) 

Min. increase to 

B20 (40922.08 gm) 

3270.88  

(7.40%) 

3.82 

(0.01%) 

1514.31  

(3.57%) 

0.00  

(0.00%) 

564.90  

(1.36%) 

Max. increase to 

B20 (40922.08 gm) 

5305.13  

(11.48%) 

1303.39  

(3.09%) 

4976.21  

(10.84%) 

682.90  

(1.64%) 

3600.06  

(8.09%) 

Infeasible time 

windows 
1 1 1 1 1 

Table 5 shows that if the 21st customer chooses to be served within one of the feasible two-hour 

time windows, the same minimum and maximum CO2 emissions as in the one-hour case arise 

when comparing the results across the four scenarios. Accordingly, the minimum and maximum 

increase to the benchmark value as well as the minimum and maximum CO2 savings potential 

within the two-hour time windows remain unchanged. The highest CO2 savings potential 

compared to the one-hour time windows is possible in scenario PD21E. Here, up to 2.12 

kilograms (4.82%) of CO2 emissions can be saved when a two-hour instead of a one-hour time 

window is selected by customer 21E.  
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In the scenarios PD21B to PD21E, one of the two-hour time windows each cannot be offered to 

the 21st customer because these time windows would lead to infeasible route plans.  

Five-hour time windows 

Table 6: Results for the alternative customer locations – Five-hour time windows 

 PD21A PD21B PD21C PD21D PD21E 

Min. CO2 emissions 44192.95 40925.89 42436.39 40922.08 41486.98 

Time window 
12pm to 5pm; 

3pm to 8pm 

10am to 3pm; 

12pm to 5pm 
3pm to 8pm 3pm to 8pm 3pm to 8pm 

Max. CO2 

emissions 
45197.41 41280.15 43756.95 41065.69 41861.40 

Time window 10am to 3pm 3pm to 8pm 10am to 3pm 
10am to 3pm; 

12pm to 5pm 

10am to 3pm; 

12pm to 5pm 

CO2 savings 

potential 

(within five-hour 

time windows) 

1004.45 

(2.22%) 

354.26 

(0.86%) 

1320.56 

(3.02%) 

143.61 

(0.35%) 

374.42  

(0.89%) 

CO2 savings 

potential 

(vs. one-hour time 

windows) 

4055.96 

(8.41%) 

1312.38 

(3.11%) 

3461.90 

(7.54%) 

2423.11 

(5.59%) 

3035.16 

(6.82%) 

CO2 savings 

potential 

(vs. two-hour time 

windows) 

2034.25  

(4.40%) 

1299.58 

(3.08%) 

3461.90 

(7.54%) 

539.29 

(1.30%) 

3035.16 

(6.82%) 

Min. increase to 

B20 (40922.08 gm) 

3270.88  

(7.40%) 

3.82 

 (0.01%) 

1514.31 

(3.57%) 

0.00  

(0.00%) 

564.90  

(1.36%) 

Max. increase to 

B20 (40922.08 gm) 

4275.33  

(9.46%) 

358.07 

(0.87%) 

2834.87 

(6.48%) 

143.61 

(0.35%) 

939.32  

(2.24%) 

Infeasible time 

windows 
0 0 0 0 0 

Analyzing the results presented in Table 6, it becomes evident that there is further significant 

potential for a more efficient and environmentally friendly delivery route if a five-hour instead 

of a one- or two-hour time window is chosen by the 21st customer. Because the delivery times 



 

53 

 

leading to routes associated with the highest levels of CO2 emissions can largely be avoided for 

deliveries in a five-hour time frame, the maximum CO2 emissions across all customer locations 

are only 43.76 kilograms and arise if the time window from 10am to 3pm is chosen by customer 

21C. The maximum level of CO2 emissions within the five-hour time windows is thus 2.83 

kilograms (6.48%) above the benchmark value and, accordingly, 2.14 kilograms (4.67%) below 

the maximum value for the one-hour and two-hour time windows. Since the minimum CO2 

emissions among the five-hour time windows in PD21C are 42.44 kilograms, up to 1.32 

kilograms (3.02%) of CO2 can be saved within this time window length, depending on the time 

window choice of customer 21C. A cross-comparison of the results in PD21C with the one- and 

two-hour time windows even shows a CO2 savings potential of up to 3.46 kilograms (7.54%) 

in each case. This saving is made possible if the five-hour time window from 3pm to 8pm is 

selected, making it possible for the logistics service provider to avoid supplying the 21st 

customer in the most unfavorable delivery times between 2pm and 4pm, which lead to CO2 

emissions of 45.90 kilograms. However, one of the most notable benefits associated with the 

five-hour time windows again lies within the minimization of the number of infeasible time 

windows. In all four scenarios, none of the five-hour time windows lead to infeasible solutions. 

Consequently, the logistics service provider can supply all customers within their selected time 

window. 

Overall, the results of the partially dynamic setting show that the time window choice of an 

individual customer has a significant influence on the environmental sustainability and 

consequently the efficiency of a delivery route in the context of last-mile deliveries. However, 

customers cannot know on their own which time window is the most environmentally friendly 

and will place them in a favorable position in the delivery sequence. Detailed information on 

how strongly CO2 emissions can vary depending on the choice even among time windows of 

uniform length is withheld from them. Consequently, customers who want to contribute to an 

environmentally friendly delivery route can, without receiving decision support from logistics 

service providers, only do so by choosing longer time windows. In this chapter, it could be 

shown that long compared to short time windows hold considerable CO2 savings potential. The 

key point in the preceding scenario, however, is that only the time window choice of the 21st 

customer, who is the last customer to be integrated in the delivery sequence, was considered. 

Therefore, longer time windows outperform shorter time windows only in terms of lower 

maximum CO2 emissions. In other words, the minimum CO2 emissions resulting from the most 
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favorable one-, two- or five-hour time windows are the same in all three cases and the CO2 

minimizing one-hour time window is just as green as the CO2 minimizing two- or five-hour 

time window. Yet, the situation may be completely different for customers arriving earlier in 

the order stream, as maintaining flexibility for the integration of future customers becomes 

crucial. Thus, the next step is to check in a dynamic setting how much the expected CO2 

emissions of the delivery route can be reduced if green time windows are marked and 

incentivized dynamically for each customer and to examine how longer time windows perform 

compared to shorter ones under such dynamic framework conditions. 

5.4.3 Fully Dynamic Setting 

In the fully dynamic setting, it is assumed that the first 20 customers place their order in the 

sequence of their numbering in the VRP Spreadsheet Solver. In contrast to static settings, in 

which all customer locations and their time window preferences are known in advance, 

customers in dynamic settings may place their order at any time during the evolution of the 

route plan (Köhler et al. 2020). This means that service providers need to constantly check in 

which position a newly arriving customer should be inserted into the delivery sequence. 

Transferred to the vehicle routing problem this study is concerned with, this requires checking 

for each individual customer incrementally which time window leads to the lowest additional 

CO2 emissions. Those time windows are then allocated to each customer, as the simplified 

assumption is made that all customers are willing to choose green time windows when marked 

accordingly. Since the VRP Spreadsheet Solver can only generate routes starting from five 

customers, a tentative route plan is built for the first five customers. The time windows allocated 

to them on this basis embed the point in time at which they are to be supplied according to the 

tentative route plan. Subsequently, it is checked for the 6th customer which delivery time leads 

to minimal additional CO2 emissions, taking into account the first five customers and their fixed 

time window choices. The corresponding green time window is then allocated to him or her 

accordingly. Following this approach, green time windows are step by step determined for and 

allocated to all 21 customers. Due to the dynamic setting, the time window allocation to each 

individual customer is significantly influenced by the locations and time window choices of 

customers who had placed their order at an earlier point in time. Overall, the aim is to examine 

whether it makes sense to incentivize time windows based on already accepted customer 

requests, even if future customer requests are unknown and it is unclear to what extent the 



 

55 

 

previously incentivized time windows can still be considered as environmentally friendly after 

all customer requests are known.  

In the first step of the fully dynamic setting (FDA), only one-hour time windows are considered.  

The development of the cumulative CO2 emissions in FDA is shown in Figure 5. The tentative 

route plan that emerges after the incremental allocation of incentivized one-hour time windows 

to the first 20 customers results in CO2 emissions of 34.53 kilograms. Due to the route 

inefficiency and the long distances that have to be travelled in some cases, the CO2 value is 

10.35 kilograms (29.98%) higher than in scenario S10, in which all customer locations were 

known beforehand, and a CO2 minimizing route plan could be determined based on complete 

information. Nevertheless, the CO2 emissions resulting from the dynamic allocation of one-

hour time windows are 7.66 kilograms (18.15%) lower than the average CO2 emissions in S1, 

where the one-hour time windows were allocated to customers purely randomly. 

Especially toward the end, the route plan is characterized by increased inefficiency, with more 

and more time windows becoming infeasible. Effectively, only the afternoon and evening time 

windows from 4pm to 5pm, 5pm to 6pm, 6pm to 7pm and 7pm to 8pm can be offered to the 

21st customer, the last three being undesirable because of the long waiting times involved. All 

three time windows lead to an increase in CO2 emissions by 5.60 kilograms (13.97%), i.e., from 

34.53 kilograms to 40.13 kilograms.  

To better reflect reality, in which it rarely occurs that only one-hour time windows are offered, 

a second dynamic route planning scenario with mixed time windows of five hours, two hours 

and one hour (FDB) is considered. The time windows are allocated to customers according to 

the following logic: The first seven customers are offered only five-hour time windows, the 

next seven only two-hour time windows and the last seven, including the 21st customer, only 

one-hour time windows. This approach is based on the findings of Köhler et al. (2020), who 

show that offering long time windows to early arriving customers and shorter time windows to 

customers placing their order later in the booking process can contribute to flexible route plans 

and significantly increase the availability rate of time windows throughout the booking process. 

As noted by Köhler et al. (2020), customers normally expect to receive rewards when booking 

early, which is why this approach of offering early birds longer time windows could cause 

resentment among customers. This could be particularly problematic when customers realize 
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that they would be provided shorter time windows the longer they wait and thus decide to delay 

the order placement for as long as possible. In order to provide customers with an incentive to 

book early even under these circumstances, they could in the beginning of the booking process 

be guaranteed to receive an update on their delivery time upon finalization of the route plan. 

This could be implemented by sending an e-Mail or SMS, in which the guaranteed delivery 

period is reduced to 20 or 30 minutes exclusively for early birds (Köhler et al. 2020). 

The approach of how the green time windows are determined for each customer is the same as 

in FDA. The only difference here is that the CO2 minimizing delivery times are not only 

embedded in one-hour time windows, but also in two- or five-hour time windows. In this case, 

a much more flexible and environmentally friendly route plan is created when compared to 

FDA. Figure 5 demonstrates that the emissions generated amount to 30.29 kilograms, which is 

4.24 kilograms (12.29%) lower than in FDA. Due to the increased flexibility, all baseline 

customers can be served four hours before the maximum working time is reached. Thus, the 

dynamic approach FDB allows for a lot of free capacity to deliver additional customers. When 

integrating the 21st customer, he or she can be supplied in all one-hour time windows except 

those from 10am to 11am, 11am to 12pm and 3pm to 4pm. The time window that leads to the 

lowermost additional CO2 emissions of 30.29 kilograms and can be labeled as environmentally 

friendly is from 2pm to 3pm. Strikingly, the level of CO2 emissions in context with this precise 

time window remains the same as in the case of the delivery of 20 customers, i.e., no additional 

CO2 emissions are generated through the insertion of the 21st customer into the route plan. At 

this point, reference must be made to chapter 5.4.2.3, in which a zero increase in CO2 emissions 

following the integration of an additional customer is critically questioned. Here too, however, 

small deviations from real-life conditions do not distort the basic results of this work and can 

thus be accepted. The highest level of CO2 amounting to 33.74 kilograms is emitted if the one-

hour time window from 4pm to 5pm is chosen. Depending on the slot choice of the 21st 

customer, this results in a CO2 savings potential of up to 3.45 kilograms (10.23%). When 

comparing FDA and FDB, it becomes evident that while the curve progression shown in Figure 

5 is quite similar in the beginning of the route plan, the cumulative CO2 values in FDA are 

significantly higher and lead to much more erratic increases than in FDB especially toward the 

end of the route plan. These results show that, even if customers are given information on the 

carbon footprint of their time window choices, it is a largely unsustainable approach to only 

offer one-hour time windows to customers. Rather, it makes sense to offer early arriving 
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customers long time windows and customers appearing later in the order stream short time 

windows, as this greatly contributes to reduced CO2 emissions and increased operational 

efficiency. 

 

Figure 5: Development of cumulative CO2 emissions (in grams) in FDA and FDB 

5.5 Analysis 

Three main conclusions can be drawn from the simulation. Firstly, it has been shown that the 

level of CO2 emissions can be significantly reduced if all customers choose longer instead of 

shorter time windows. The level of CO2 emitted varied between 24.18 kilograms, 28.77 

kilograms, 37.49 kilograms and 42.19 kilograms on average, depending on whether no time 

windows or five-, two- or one-hour time windows were allocated to the baseline customers, 

respectively. 

Secondly, as it is unlikely that all customers agree to choose long time windows, the next part 

of the simulation showed that even the time window choice of a single customer can make a 

big difference. By simulating a more realistic scenario in which customers could choose from 

different time windows of varying lengths, it was possible to demonstrate that the expected CO2 

emissions for a tentative delivery route remained at the same level in the best case and increased 
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by about 7.33 kilograms or 15.19% in the worst case after integrating the 21st customer. The 

findings of the simulation clearly show how essential it is to inform customers about the 

environmental impact of the chosen time window, both within uniform time window lengths, 

and when comparing time windows of different lengths. Many customers are unaware that, as 

for example in PD21A, up to 4.06 kilograms (8.41%) of CO2 can be saved, solely depending on 

whether a one-hour time window favorable to an efficient and CO2 minimizing delivery route 

is chosen. Furthermore, there is no clear picture of how much CO2 can be saved by extending 

a narrow time window of for instance one hour to two or five hours. This is because most 

customers are not familiar with the complexities associated with route planning and tight time 

windows. Hence, they are unable to assess that simply extending a time window for one 

individual customer from one hour to two hours can, as for instance in PD21A, save up to 2.36 

kilograms or 4.89% of CO2 emissions. That this value can, again as shown in PD21A, be 

increased nearly twofold to up to 4.06 kilograms (8.41%) if a customer gives the logistics 

service provider even more flexibility by choosing a five-hour instead of a one-hour time 

window is equally difficult to estimate for laymen. Notably, the additional savings potential 

that would result when a customer is not the last to arrive in the order stream and maintaining 

flexibility for future requests becomes crucial is not even included these figures. 

To pick up on this aspect, a dynamic route planning scenario was illustrated in the third step. 

When designing delivery routes, it is never certain which customers will place an order further 

down the line. Accordingly, time windows that are the most environmentally friendly for a 

particular customer at a certain point in time and thus labeled as green may no longer be 

favorable at a later stage and consequently lead to higher costs and CO2 emissions. Overall, 

however, the last part of the simulation demonstrated that the CO2 savings resulting from a 

dynamic incentivization of time windows strongly outweigh the CO2 increases that may arise 

in some cases. Even in the case in which only one-hour time windows were considered, the 

level of CO2 emitted was almost eight kilograms lower than in the case in which one-hour time 

windows were allocated randomly. However, since the number of customers that can be served 

if only one-hour time windows are offered is restricted significantly, it is a better approach to 

offer time windows of varying lengths. As shown in FDB, offering early arriving customers 

long time windows and customers arriving later in the order stream short time windows can 

help maintain flexibility and create a more efficient and environmentally friendly route plan. 

This also allows for a much higher number of customers being served than when green time 
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windows are not incentivized. These findings indicate the potential that would result if all 

customers were incentivized to choose green time windows.  

Overall, many customers may be under the impression that they are just a small, insignificant 

link in a complex delivery system and that their time window choice has hardly any influence 

on the sustainability of the delivery route as a whole. But this, as the simulation has highlighted, 

is a fallacy that urgently needs to be addressed. Since even a single customer can make a big 

difference through thoughtful time window choices, the potential is considerable if selecting 

green time windows becomes the norm for more and more customers. This requires, first and 

foremost, that customers are directly informed about the carbon footprint of their time window 

choice. How to appropriately educate customers about the CO2 footprint of time windows and 

how this may contribute to the choice of greener time windows is explored in the next part of 

the paper. 

6 Empirical study – Incentivizing Green Time Windows 

After having shown that an incentivization of green time windows can help reduce last-mile 

emissions significantly, the purpose of the following survey is twofold: On the one hand, the 

aim is to examine the different ways in which green time windows can be incentivized, and on 

the other hand, to determine to what extent customers under the presence of such incentives are 

willing to choose them. Consequently, the objective of the following chapter is to answer the 

second research question: 

RQ 2: How can service providers effectively steer consumers to choose green time windows as 

their preferred last-mile delivery option?  

In the research field of sustainable e-commerce deliveries, there is a fundamental lack of studies 

that examine the potential of online consumers’ decision-making. In this regard, especially the 

environmental implications associated with customer time window choices in the context of 

attended home deliveries have long been overlooked. This is partly due to the fact that attended 

home deliveries are a relatively young phenomenon. Germany’s leading supermarket chain 

REWE, for example, has only started offering an online delivery service for groceries in 2011 

(REWE Group 2011). Accordingly, the approach of offering customers time windows as part 
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of home deliveries is also relatively novel, as is an increased awareness of how this is to be 

assessed in terms of environmental sustainability. Yet, particularly in times of the COVID-19 

pandemic, more and more people have chosen to have their orders delivered directly to their 

homes. This trend suggests that attended home deliveries will continue to play an important 

role in the future, which is why efficient and sustainable time window management will 

ultimately become indispensable (Leyerer et al. 2020).  

As relatively few studies to date have examined how steering demand in last-mile delivery 

impacts the operating system of attended home delivery and thus also the sustainability of the 

delivery system as a whole, conducting further studies in this research area is essential. 

However, some significant foundations have already been laid, including the work of Agatz et 

al. (2021) and Buldeo Rai et al. (2021). Both studies provide strong support for the effectiveness 

of the use of non-financial incentives in steering customers toward choosing more 

environmentally friendly delivery options. Consequently, this study also assumes that providing 

customers with information on the environmental impact of their decisions will help to steer 

them toward more sustainable delivery choices. Since the focus in this work is on attended 

home delivery of groceries, the delivery options at hand present themselves as a set of time 

windows. While the framework conditions are thus similar to those in the study by Agatz et al. 

(2021), the main research contribution of this survey lies in three essential points. First, since 

Agatz et al. (2021) show that green labels are more effective than price incentives in nudging 

customers toward more environmentally friendly time windows, financial incentives are 

neglected in this survey. Second, all environmentally friendly or green time windows in this 

work are consistently determined and incentivized to the participants in the survey based on 

concrete calculations in the simulation. Third, the aim of the survey is to examine customers’ 

time window choices in a context in which they can choose from not only one, but two 

alternative time window lengths in addition to the one-hour time windows. Since one-, two-, 

and five-hour time windows were examined in the simulation, these three time window lengths 

are also considered in the first part of the survey. In doing so, the gradations that exist between 

varying time window lengths in terms of their environmental friendliness are highlighted and 

clearly communicated to the customers. Based on the calculations and the assumptions made in 

the static setting of the simulation, the first step in the survey is to examine to what extent an 

accentuation of longer time windows is suitable to convince customers to select them. This 

leads to the following first hypothesis: 
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H1: If customers are informed about the environmental benefits of longer versus shorter time 

windows, more customers will choose two-hour or five-hour instead of one-hour time windows 

than if they are not given any information on the associated environmental benefits. 

Furthermore, the partially dynamic setting has shown that amid time windows of equal length, 

there are also significant differences in terms of the associated environmental impact. This 

finding suggests that a dynamic incentivization of green time windows may be a desirable 

measure to reduce last-mile CO2 emissions. The second hypothesis is thus as follows: 

H2: Last-mile CO2 emissions will be significantly lower if delivery time windows are labeled 

according to their environmental impact than in the case of no labels. 

To examine alternative ways in which customers can be steered to choose green time windows, 

the survey builds on a study by Demarque et al. (2015). The authors emphasize the potential of 

descriptive norms as effective ways to incentivize sustainable choices in an online grocery 

shopping context. Thereby, they highlight that including reference points such as numerical 

quantifiers in descriptive norms strengthens their effect of encouraging customers to make 

environmentally friendly delivery choices. For this reason, two different versions of green 

labels, which vary in the information content provided for the customer, are examined in this 

study. Thereby, the focus is on investigating whether providing customers with concrete, 

numerical information on the impact of their time window choice has an additional effect on 

their slot choice behavior. This leads to the following, third hypothesis: 

H3: The more numerical reference points customers receive on the environmental impact of 

their time window choices, the lower last-mile CO2 emissions will be. 

6.1 Method and Research Design 

6.1.1 Research Design 

To answer the research question and to test the hypotheses, an experimental, quantitative study 

was conducted using a survey that imitated a shopping basket. The survey was developed in the 

online survey tool Google Forms and a total of 137 participants took part. They were contacted 

via social media and were encouraged to forward the survey to their contacts as well. The 
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respondents were randomly allocated to one of three groups, namely one control group (N = 

49) and two experimental groups (EGA, N = 33 and EGB, N = 43). The general approach was to 

ask participants in the control group to choose their preferred delivery time window from two 

sets of ordinary, unincentivized time windows. Simultaneously, participants from the 

experimental groups were shown the same time window sets, however, their presentation was 

slightly adapted. For both EGA and EGB, the more sustainable time windows or time window 

lengths were visually highlighted, and the associated environmental benefits were explained in 

a short information text. The main difference between the two groups is that all participants in 

EGA received concrete, numerical information on the CO2 footprint of their time window 

choice, whereas those in EGB received the relevant information in a more general manner. The 

data of the study was collected within a period of two weeks (02.02.2022 to 16.02.2022). The 

design and sample of the survey are specified in the next sections. 

6.1.2 Online Survey and Data Collection 

The experiment was conducted using a between-subjects experimental design to avoid 

carryover effects. In doing so, the participants were randomly assigned to one of the three 

groups. To educate participants about the frame conditions of the survey, an introduction 

specifying the research context and guaranteeing participants’ protection of anonymity 

preceded the actual study. Since the results from the simulation were to be used as a baseline 

for the design of the survey, the same framework conditions had to apply here as well. 

Accordingly, it was assumed that in the first part of the survey, each participant embodied one 

of the baseline customers. In the second part of the survey, the participants presented the 21st 

customer, who was assigned the same fictitious location in Bambergergasse 41 in the 22nd 

district in Vienna as already used in the simulation. Respondents were encouraged to truthfully 

state their real preferences, meaning that they were asked to choose only those time windows 

they would also select in a real-life context when ordering groceries online. It was emphasized 

that they would have to be at home during the entire duration of the time window to be able to 

accept their order. At the end of the survey, participants were asked about a set of socio-

demographic characteristics, namely year of birth, gender, country of residence and educational 

background. 
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The three groups were asked about their time window preferences in two consecutive steps. In 

the first step, all participants were shown a mixed time window offer set containing ten one-

hour, five two-hour and three five-hour time windows from 10am to 8pm and asked to choose 

one. Participants in the control group were shown the mixed offer set without any incentives, 

whereas for EGA and EGB, the offer set was visually slightly adapted using two distinct green 

label designs:  

Label 1a: For participants in EGA, the two-hour and five-hour time windows were accompanied 

by a green label in the form of one or two green leaves, respectively. The design was inspired 

by the online shop of the grocery supplier Gurkerl (Austria), which also uses green leaves to 

highlight the most environmentally friendly time windows. Moreover, a note was added 

informing the participants that longer time windows allow for more routing flexibility as well 

as distance and emission savings. The exact wording was as follows (translated from German 

to English):  

"The longer your chosen time window, the more you contribute to higher routing flexibility as 

well as distance and emission savings. Why not choose a longer time window and help save 

the environment?" 

Label 1b: For participants in EGB, longer time windows were also accompanied by one or two 

green leaves, however, the information text was slightly modified. Instead of stating the 

environmental benefits of longer time windows in general terms, the exact CO2 savings 

potential was specified. The values included in the incentive are based on the calculations in 

the static setting of the simulation, which examines the environmental impact of longer versus 

shorter time windows. In particular, the following text was used (translated from German to 

English):  

"The more customers choose longer time windows, the higher the contribution to more routing 

flexibility and distance and emission savings. Why not choose a five-hour time window and 

help save up to 31% of CO2 emissions or a two-hour time window and help save up to 11% of 

CO2 emissions on average?"  

A screenshot of the presentation of the three mixed time window sets can be seen in Figure 16, 

Figure 17 and Figure 18 in the Appendix. 
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The design of the second part of the survey was based on the results of the fully dynamic setting. 

Thereby, it is recalled that scenario FDB validated the theory that dynamically incentivizing 

short time windows only to customers arriving latest in the order stream is highly beneficial for 

the creation of sustainable route plans. Referring to this finding, it was assumed that the 

respondents of the survey, who were to represent the 21st customer, could choose from a time 

window offer set consisting exclusively of one-hour time windows. Based on the calculations 

in FDB, some time windows were no longer available for the 21st customer due to the time 

window choices of the first 20 customers. Participants in the control group were presented with 

the available one-hour time windows without any labels. For participants in the experimental 

groups, the time windows were ranked according to their environmental impact as calculated 

in FDB. The following labels were used for this purpose: 

Label 2a: For participants in EGA, the one-hour time windows were color-coded and presented 

in ascending order of their additional CO2 footprint as computed in FDB. For visual emphasis, 

tones ranging from different shades of green to an orange-red color were used. For clarification, 

an arrow was added next to the time windows to show that the sequence in which the time 

windows are presented corresponds to increasing additional CO2 emissions. Additionally, the 

following information text was added:  

"During the greener time windows, the delivery vehicle will already be in your area. Why not 

choose one to help reduce CO2 emissions and save the environment?" 

Label 2b: For participants assigned to EGB, too, the time windows were color-coded and sorted 

according to their environmental impact and the same note was added as for participants in 

EGA. The only difference to EGA is that a CO2 label was also attached to each time window, 

which indicated the associated additional CO2 emissions as calculated in FDB. The design of 

the time window offer sets presented to each group are shown in Figure 19, Figure 20 and 

Figure 21 in the Appendix. 

By comparing the time window choices and the associated average CO2 increases of all three 

groups, it can be investigated to what extent green labels can help service providers to steer 

customers toward choosing environmentally friendly and efficiency-enhancing time windows. 

Thereby, the aim is to determine whether customers are more responsive to green labels if they 

include numerical reference points. For this purpose, contingency tables are created and Chi-
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square tests as well as Cramer’s V tests are performed in the statistical program R to measure 

both the relationship between the variables and the strength of the relationship. 

Based on the existing literature, three main results are predicted. First, more respondents in the 

control group are expected to choose shorter time windows than in the experimental groups. It 

is also hypothesized that more participants in EGB than in EGA choose longer time windows, 

as they have more concrete information on the environmental benefits emanating from longer 

time windows. Additionally, as respondents do not know the level of CO2 emissions each of 

the one-hour time windows generate unless labeled accordingly, more participants in the control 

group are expected to select less favorable one-hour time windows associated with higher 

additional CO2 emissions on average than in the experimental groups. Because there is a 

gradation of time windows in terms of their environmental impact, respondents in the 

experimental groups have greater scope for choosing an environmentally friendly one-hour time 

window. In concrete terms, this means that even if the greenest time window does not suit the 

participant, he or she still has the option to switch to the second or third most environmentally 

friendly window. Again, it is presumed that more participants in EGB than in EGA choose 

greener time windows. This is because they can make their choice not only based on the colors 

and the order of the available time windows, but also on the basis of the labels specifying the 

precise CO2 footprint associated with each one-hour time window. 

6.2 Participants 

From the 137 participants who took part in the survey, 12 were not taken into consideration 

because they did not select a valid time window. Accordingly, 125 completed surveys could be 

incorporated into the analysis. Among the participants, 63% are female, 36% male and 1% 

diverse. Since the focus of this study is on German-speaking customers, all respondents live in 

Austria or Germany. At this point, it should be noted that female participants from Germany 

are clearly overrepresented, which may bias the results and lead to a limited generalizability. 

Table 7 specifies the average age and the number of female, male and diverse participants in 

the control group and the experimental groups as well as their country of residence. 
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Table 7: Sample composition per group 

Group N 
Avg. 

age 
Female Male Diverse Austria Germany 

Control Group 49 37 33 16 0 10 39 

Experimental 

Group A 
33 40 24 9 0 8 25 

Experimental 

Group B 
43 38 22 20 1 15 28 

6.3 Results 

The aim of the survey is to examine whether the applied green labels work well to steer 

customers toward longer time windows (Hypothesis 1) or more environmentally friendly one-

hour time windows (Hypothesis 2) and to test whether the effectiveness of such incentives is 

increased through the integration of numerical reference points in the information text 

(Hypothesis 3).  

Incentivizing longer time windows 

To examine whether green labels increase the likelihood of longer time windows being chosen, 

the percentage of one-, two- and five-hour time windows selected in the experimental groups 

is directly compared to the time window choices in the control group. The percentage of how 

often each of the three time window lengths were opted for in the control group and the 

experimental groups is shown in Figure 6. 
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Figure 6: Percentage of selected one-, two- and five-hour time windows across groups 

At first sight, it seems that green labels are well suited in steering customers away from one-

hour and toward two-hour and five-hour time windows. In the control group, it is particularly 

noteworthy that at over 57%, the largest proportion of participants opted for one-hour time 

windows. Two-hour time windows were chosen by 34.69% and five-hour time windows by 

only 8.16% of the respondents. In EGA, in which the environmental benefits of the two-hour 

and five-hour time windows were highlighted using Label 1a, a completely different trend can 

be observed. Chosen by less than one fourth of the participants, the percentage of selected one-

hour time windows could be more than halved. In contrast, two-hour time windows were chosen 

by 57,58% of respondents and the percentage of selected five-hour time windows more than 

doubled to over 18%. The analysis of the survey answers shows that the difference in the slot 

choice behavior between the control group and EGA is significant and that the relationship 

between Label 1a and the choice of a longer time window is moderately strong (p = 0.01205; 

Cramer’s V = 0.328). It can thus be concluded that visually highlighting longer time windows 

and including a short information text about the associated environmental benefits can motivate 

consumers to choose longer delivery time windows. 

When comparing the control group and EGB, even greater differences become apparent. Chosen 

by only 16.28% of respondents, the one-hour time windows were particularly unpopular among 

respondents in EGB. The two-hour time windows, on the other hand, were by far the most 
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preferred and therefore selected by 65.12% of the participants. At 18.60%, the percentage of 

five-hour time windows chosen in EGB again more than doubled compared to the control group. 

The statistical analysis of the results reveals significant differences in the slot choice behavior 

between the control group and EGB, showing a moderately strong relationship between Label 

1b and the choice of a longer time window (p = 0.0002887; Cramer’s V = 0.421). It is therefore 

again argued that accentuating longer time windows through visual stimuli such as green leaves 

and adding an information note including straightforward and numerical reference points can 

be a powerful tool to motivate consumers to choose longer delivery time windows. 

When comparing the time window choices of EGA to those of EGB, the differences do not 

appear to be major, which is validated by the results obtained through the statistical analysis. 

Effectively, there are no significant differences in the time window choices between EGA and 

EGB and the relationship between the design of the green label and the choice of a longer time 

window is weak (p = 0.6793; Cramer’s V = 0.101). Based on these results, it is thus concluded 

that there is little added value in including numerical reference points in the information text on 

the environmental benefits of longer time windows. Rather, a more general statement that 

longer time windows are preferable with respect to environmental criteria seems sufficient to 

achieve the desired effect. 

A cross-age and cross-gender analysis provides further meaningful insights. Table 9 in the 

Appendix provides a detailed breakdown of the results of the first part of the survey by gender 

and age group. In both the control group and the two experimental groups, a larger percentage 

of male participants were willing to choose five-hour time windows and the proportion of men 

choosing one-hour time windows was also lower than the corresponding proportion of female 

participants6. In all three groups, there is also a tendency of younger participants being more 

inclined to choose five-hour rather than one-hour or two-hour time windows. Against the 

background of extant literature measuring differences in environmental consciousness across 

socio-demographics, the findings of this study are rather surprising. Hiramatsu et al. (2016), for 

instance, found elderly people to be more ecologically aware than younger people when asked 

about their environmental consciousness in daily activities. This clearly deviates from the 

results of this study, in which younger participants displayed more environmentally friendly 

 

6 Since only one person indicated "diverse" as their gender status, this is not included in the cross-gender analysis. 
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behavior. In addition, the term Eco-Gender Gap commonly used in the existing body of 

literature essentially suggests that women on average show more eco-friendly behavior than 

men (Normandin 2020). Specifically related to differences between men and women in their 

preferences for green delivery options, recent studies have found trends contrary to those 

observed in this work. A study conducted in 2021 by the market research institute GfK on behalf 

of Digitec Galaxus, for instance, shows that 24.38% of men preferred fast over environmentally 

friendly delivery when shopping online. On the contrary, only 14.61% of female participants 

prioritize fast delivery (Digitec Galaxus 2021b). These findings again conflict with the results 

of this study. It therefore seems that although elderly people or women on average behave in a 

more environmentally friendly way than younger people or men, this does not appear to be the 

case in the context of attended home delivery of groceries, where environmentally friendly 

behavior is expressed purely through customers’ time window choices.  

Incentivizing greener one-hour time windows 

To assess whether green incentives work well to steer customers toward more environmentally 

friendly one-hour time windows (Hypothesis 2), the additional CO2 emissions associated with 

each available time window are first translated into ranks to facilitate interpretation. That is to 

say, the time window that leads to the lowest additional CO2 emissions is assigned rank 1, the 

one associated with the second lowest additional CO2 emissions rank 2, and so on. Since the 

three time windows from 10am to 11am, 11am to 12pm and 4pm to 5pm were already marked 

as booked out and could thus not be selected by the 21st customer, seven time windows remain 

to be ranked. Because the 5pm to 6pm, 6pm to 7pm and 7pm to 8pm time windows all result in 

the same additional CO2 emissions, they receive the same ranking with the additions a, b and c 

to be able to distinguish them from one another. An overview of the one-hour time windows 

offered, the associated additional CO2 emissions and the respective ranks is provided in Table 

8. 
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Table 8: Ranking of the available one-hour time windows 

Time window 
Additional CO2  

emissions (in kg) 
Rank 

2pm to 3pm ≈ 07  #1 

12pm to 1pm 2.21 #2 

1pm to 2pm 2.44 #3 

5pm to 6pm 3.44 #4a 

6pm to 7pm 3.44 #4b 

7pm to 8om 3.44 #4c 

4pm to 5pm 3.45 #5 

Based on the ranking of the time windows, the effectiveness of the incentives can be tested by 

comparing the percentage of the higher and lower ranked time windows chosen in each group. 

Figure 7 illustrates the percentage of each ranked time window chosen in the control group and 

the two experimental groups.  

 

7 At this point, it is important to repeat that a zero increase in CO2 emissions, as calculated by the VRP Spreadsheet 

Solver, would not be possible under real-world conditions. However, for the sake of simplicity, this zero value is 

used for the analysis of the survey results. 
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Figure 7: Comparison of the chosen one-hour time windows across groups 

In the control group, in which the respondents were not given any information on the 

environmental impact of their time window choices, the most frequently selected time window 

was the 12pm to 1pm / #2 time window. Similarly popular among participants were the evening 

time windows from 6pm to 7pm / #4b and from 7pm to 8pm / #4c. Possibly as many people are 

not home throughout the day, the 1pm to 2pm / #3, the 4pm to 5pm /#5 and the 5pm to 6pm / 

#4a time windows were relatively unpopular. The former was not selected once by participants 

in the control group and the latter each by only 10.20% of the respondents. The most 

environmentally friendly time window from 2pm to 3pm was selected by only 2.04% of the 

respondents. This is most likely because customers had no information on how the time window 

performs in terms of environmental impact, and without such information preferred to choose 

time windows that are not in the middle of the day, but rather in the evening or during lunch 

break when they are more likely to be at home anyway. 

In EGA, the ratios change substantially. Here, the most environmentally friendly time window 

from 2pm to 3pm was chosen by almost half of the respondents. Yet, the second most popular 

time window was the one from 5pm to 6pm, which only ranks #4a in terms of environmental 

impact. The evening 6pm to 7pm / #4b and 7pm to 8pm / #4c time windows as well as the 12pm 
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to 1pm / #2 time window were each chosen by only 9.09% of the participants. Again, the 4pm 

to 5pm / #5 time window, chosen by 6.06% of the respondents, was relatively unpopular. As in 

the control group, the 1pm to 2pm / #3 time window was selected by none of the customers. 

The statistical analysis of the survey answers of the control group and EGA shows that the 

difference in the slot choice behavior between the control group and EGA is significant and that 

the relationship between label 2a and the choice of a more environmentally friendly time 

window is strong (p = 0.01205; Cramer’s V = 0.569). It is therefore argued that color coding 

each available time window according to the associated environmental impact along with a 

short information text works well to steer customers toward more sustainable time windows. 

In EGB, similar tendencies as in EGA can be observed. Again, the 2pm to 3pm / #1 time window 

was selected by the largest share of respondents. Surprisingly, at 46.51%, it was chosen slightly 

less often than in EGA. In this group, the second most frequently chosen time windows were 

the 12 pm to 1pm / #2 and 6pm to 7pm / #4b time windows, each selected by 16.28% of the 

participants. Contrary to the results in EGA, the 5pm to 6pm / #4a and 7pm to 8pm / #4c time 

windows were each only chosen by approximately 6.98% of the participants. In this group, the 

1pm to 2pm / #3 time window was for the first time chosen by some participants. However, it 

was only selected by 4.65% of the respondents. In this case, the label marking the 4pm to 5pm 

time window as the most harmful to the environment seemed to have had an additional effect 

on respondent’s slot choices, as only 2.33% chose to receive their ordered groceries in this time 

window. A statistical comparison of slot choices of the participants in the control group and 

those in EGB reveals that the difference in the slot choice behavior between the two groups is 

significant and that the relationship between Label 2b and the choice of a more environmentally 

friendly time window is strong (p = 0.0002887; Cramer’s V = 0.571).  

When comparing the results of EGA and EGB, however, the difference between the time window 

choices of participants within the two groups is insignificant and the relationship between label 

design and the choice of a more environmentally friendly time window is weak (p = 0.6793; 

Cramer’s V = 0.204). Looking at the average additional CO2 emissions resulting from the 

participants’ time window choices within the different groups, these findings are confirmed.  
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Figure 8: Average additional CO2 emissions (in kilograms) per group 

Figure 8 shows that the average additional CO2 emissions resulting from the time window 

choices of the participants are significantly lower in the experimental groups than in the control 

group. In concrete terms, they amount to 3.02 kilograms in the control group, whereas in EGA 

and EGB, the average additional CO2 emissions are only 1.66 kilograms and 1.59 kilograms, 

respectively. Thus, the environmental impact expressed as additional CO2 emissions resulting 

from the participant’s time window choices in the experimental groups could be almost halved 

compared to the control group. The difference between the average additional CO2 emissions 

in the experimental groups, on the other hand, is only 67.42 grams. Overall, the findings suggest 

that color-coding and ordering time windows according to their environmental impact can help 

to significantly reduce additional CO2 emissions per customer. However, labels that specify the 

exact amount of additional CO2 emissions resulting from each time window choice do not need 

to be included, as they do not appeal to customers’ environmental concerns in a significantly 

stronger way than if no such numerical labels are added. 

A cross-age and cross-gender analysis once again provides interesting insights. For a detailed 

breakdown of the results by gender and age group, please refer to Table 10 in the Appendix. In 

the control group, the average additional CO2 emissions resulting from the time window choices 
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of the respective group members are nearly the same when comparing the choices of male and 

female participants. In both EGA and EGB, however, male participants’ time window choices 

once again lead to lower additional CO2 emissions than those of female respondents. Observing 

the differences in the time window choices across age groups also yields noteworthy findings. 

In the control group, the average additional CO2 emissions resulting from the time window 

choices of the respective age groups range from 2.21 kilograms to 3.36 kilograms, the lowest 

value occurring in the 35 – 49 age group and the highest in the 50 – 64 age group. In both EGA 

and EGB, the lowest additional CO2 emissions on average resulted from the time window 

choices of participants older than 64 and the second lowest from the 20 – 34 year old 

participants. The greatest negative environmental impact was in both groups caused by the time 

window choices of the 35 – 49 year old respondents. In sum, the youngest and oldest 

participants seemed to be most inclined to choose environmentally friendly time windows, 

while the middle-aged respondents were less likely to do so. This can possibly be explained by 

the fact that among the youngest participants are many students who, due to their flexible 

lifestyles, are able to make more compromises when it comes to time window selection. The 

same applies to participants from the highest age group. Since most people aged 65 and over 

are already retired and thus spend much of their time at home, they are also not bound to a few 

specific time windows. 
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7 Discussion and Conclusion 

In this work, a simulation study and a survey were conducted to estimate and assess the impact 

of customers’ time window choices on the operational efficiency and environmental 

sustainability of delivery operations in the context of attended home delivery of groceries. From 

the simulation, three main conclusions can be drawn. First, it was demonstrated that, if all 

customers within a given delivery route choose longer rather than shorter time windows, CO2 

emissions can be greatly reduced. This could be the case, for example, if one-hour time 

windows were removed from online supermarkets’ time window offer sets altogether. The 

online shop of the globally operating supermarket Spar, for instance, offers its customers a time 

window set consisting exclusively of two-hour time windows, i.e., there is not even the option 

of choosing environmentally harmful one-hour time windows. However, given the large 

number of customers who are only at home at certain times of the day and hence rely on more 

narrow time windows, as well as the fierce competition among retailers, one-hour time windows 

are unlikely to be eliminated across the board at all online supermarkets. In the second step, it 

was thus demonstrated that even a single customer’s time window choice can have a significant 

effect on the efficiency and sustainability of the delivery route. To be able to calculate the exact 

CO2 savings potential resulting from the 21st customer’s time window choice, the customer 

under consideration was assumed to be the last to place an order and join the delivery system 

in an existing order stream. Thereby, it was demonstrated how much CO2 could be saved both 

if the customer chooses a longer time window, or a one-hour time window during which the 

delivery truck is already in the area. Because the route plan is practically complete by the time 

the last customer places his or her order and selects the preferred time window, choosing a 

longer time window in this case only makes sense if no information is available on the most 

environmentally friendly one-hour time window. Effectively, the advantage of choosing longer 

time windows only becomes truly visible when a customer request is followed by unknown 

future requests, i.e., when maintaining flexibility for the route plan becomes essential. To pick 

up on this aspect, the third part of the simulation demonstrated that dynamically arranging 

routes based on an incremental incentivization of green time windows can reduce CO2 

emissions substantially. In this context, the approach of offering customers arriving early in the 

order stream long time windows and those placing their order at a later point in time short time 

windows has proven to be particularly effective. Altogether, the results of the simulation point 
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out the considerable potential that can be realized if more customers select greener time 

windows. For this, however, it is important that customers are supported in their decision-

making to the greatest possible extent. This means that the environmental impact resulting from 

their time window choice must be incentivized and communicated to them directly. Only in this 

way do customers have the opportunity to contribute effectively to greater delivery efficiency 

and reduced CO2 emissions in the context of attended home deliveries.  

Consequently, the second section of this work studied the impact of educating customers about 

the CO2 footprint of their time window choices using an online survey. The results of the survey 

emphasize the potential of using green labels as means to increase customers’ intrinsic 

motivation to select greener delivery time windows in two significant ways. First, when 

presented with a mixed time window offer set containing one-, two- and five-hour time 

windows, a considerably larger number of participants opted for longer time windows when 

one of the green labels was involved. Longer time windows can only be expected to be chosen 

by customers who have some knowledge on the complexity of last-mile delivery processes and 

understand how difficult it is to reconcile meeting short time windows with the design of an 

environmentally friendly delivery route. In reality, however, most customers are not aware of 

how constraining shorter time windows can be for the flexibility of the route plan and how this 

in turn has a highly negative impact on the sustainability of such last-mile operations. In line 

with the findings by Buldeo Rai et al. (2021), this suggests a major consumer awareness gap on 

the impact each individual time window choice has on the sustainability of the entire delivery 

chain. This may to a certain extent explain the results of the survey, which show that there is 

little added value in including numerical reference points in the information text pointing out 

the more sustainable delivery option. When concrete numbers are involved, customers often do 

not know how to interpret them. It is therefore sufficient to visually highlight green time 

windows combined with a brief information text without any numerical reference points. This 

also makes implementation much easier, as service providers are not required to calculate the 

potential environmental impact associated with the time window choice for each customer 

individually.  

Second, when having to decide between time windows of uniform length, customers indeed 

seem to be willing to shift their time window preferences to greener time windows in the 

presence of green labels. Without incentives, customers cannot possibly know how each 
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available one-hour time window performs in terms of environmental friendliness, which is why 

the average additional CO2 emissions resulting from the participants’ time window choices 

were significantly higher in the control group than in the two experimental groups. Again, 

however, the numerical CO2 tags included in the incentive for EGB did not produce significantly 

better results than the green label applied for EGA. This again highlights that customers do not 

have sufficient knowledge on the complexities of last-mile delivery operations to be able to 

effectively interpret quantitative information as provided through the numerical CO2 labels in 

the survey. Hence, it is sufficient if customers are made aware of which time windows perform 

better from an environmental perspective using visual and easily understandable labels 

combined with a brief explanation. 

Overall, the findings of this work contribute to extant literature in several different ways. This 

is, to the best of the author’s knowledge, the first paper to calculate and evaluate the carbon 

footprint of time windows in the context of attended home deliveries. The study thus stands out 

from similar lines of research in that it clearly highlights the extent to which a customer’s time 

window choice at an individual level impacts the operational efficiency and environmental 

sustainability of home delivery operations. Additionally, the two-pronged approach of using a 

survey, in which customers are offered incentivized time windows on the basis of preceding, 

concrete calculations in a simulation, is also novel. This study thereby complements the work 

of Agatz et al. (2021) and confirms the finding that green labels are an effective tool to 

intrinsically motivate customers to choose a more environmentally friendly delivery option. 

Most importantly, this study provides a very practical contribution on how to design and 

manage the offer of time windows in the context of attended home deliveries in the future. 

Especially Label 1a and Label 2a presented in this study are easy to implement and can 

significantly reduce the carbon footprint of even a single customer’s time window choice. 

Extrapolated to the number of customers demanding home deliveries of groceries on a daily 

basis, the approach of encouraging customers to choose longer time windows or the method of 

dynamically incentivizing green time windows could result in massive cumulative CO2 savings 

and associated increases in operational efficiency. Therefore, service providers should take 

advantage of customers’ willingness to choose more environmentally time windows and focus 

on incentivizing green time windows to contribute to more sustainable last-mile delivery 

operations.  
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8 Limitations and Outlook 

When interpreting the study results, the limited scope of this work and the necessary 

compromises made in the simulation and the survey must be taken into account. In the 

simulation, for instance, the maximum number of customers was set to 21. In this respect, it 

would be interesting to investigate alternative scenarios considering a larger number of 

customers, varying pickup and delivery quantities or more delivery vehicles and depots. 

Thereby, it would also be useful to examine how the results change when not only the location 

of a single customer is varied, but the position of all customers in a predetermined delivery area. 

Additionally, some factors influencing the level of CO2 emissions were neglected in the VRP 

Spreadsheet Solver, such as how the negative environmental impact associated with a delivery 

route increases when a delivery vehicle parks, switches off the engine and starts up again. 

Furthermore, the Bing maps route type in the Solver Console of the VRP Spreadsheet Solver 

was set to Shortest, as to allow for a straightforward translation of the travel distances into CO2 

emissions using the MEET model. On the one hand, it should in this context be noted that the 

MEET model itself can lead to inaccurate results, as it categorizes vehicles into weight classes 

and neglects factors such as vehicle load and road gradient up to a certain weight category. On 

the other hand, the parameters set in the VRP Spreadsheet Solver made it impossible to 

investigate how external factors such as real time traffic affect the delivery route and the 

resulting CO2 emissions. It would therefore be intriguing to see how the results obtained 

through the VRP Spreadsheet Solver change through the use of an alternative, more precise 

emission model. Finally, it must be noted that the dynamic incentivization of green time 

windows and the calculation of the associated CO2 emissions in the last part of the simulation 

were based on the assumption that all customers are actually willing to choose these time 

windows. More realistic results could be achieved if each time window was assigned a certain 

probability of being booked or rejected and if the route plan was incrementally designed on that 

basis. 

With regard to the survey, it must be pointed out that at N = 125, the number of participants is 

rather low, which suggests limited representativeness. In addition, the advantages of an online 

survey, which in particular lie in the possibility of testing of causal effects, are offset by possible 

validity problems. For example, there is a risk that participants, even if prompted otherwise, did 
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not reveal their true time window preferences. Regarding the design of the green label, 

investigating alternative forms of incentives might provide further useful insights. For example, 

it could be examined whether an information text is even necessary to motivate customers to 

choose greener time windows, or if visual effects are sufficient. Moreover, the only partially 

representative socio-demographics of the respondents of the survey can potentially be attributed 

to the fact that the study participants were primarily recruited in the author’s own social 

environment and via online channels, leading to the fact that more women and German 

participants took part in the study and that many of the participants have a similar age and 

educational background. In this respect, it would be interesting to test whether the tendency of 

especially men and young participants being prone to choose greener time windows as observed 

in both experimental groups still prevails in a larger and more representative study. 

Overall, this study shows how effective it can be to pay more attention to the CO2 emissions 

associated with customers’ time window choices and highlights the importance of giving 

customers a better understanding of the impact of their decisions on environmental 

sustainability and operational efficiency of last-mile delivery operations. It is to be hoped that 

more scientists will continue this line of research in the coming years and contribute to more 

efficient and sustainable time window management in the context of attended home deliveries. 
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Appendix 

A. Abstract 

Abstract (English) 

This paper investigates the effect of customers’ delivery time window choices on the 

operational efficiency and environmental sustainability of the last-mile delivery system in the 

context of attended home delivery of groceries. Although these two parameters are argued to 

be closely interlinked, especially the sustainability dimension of offering customers delivery 

time windows during the online ordering process has been insufficiently studied so far. Yet, the 

significant increase in home deliveries, particularly during the COVID-19 pandemic, makes it 

essential to rethink the existing concept of time window management. To illustrate and quantify 

the effects of customers’ time window choices on the last-mile delivery system, a simulation of 

a vehicle routing problem is conducted using the VRP Spreadsheet Solver. Subsequently, a 

survey is carried out to examine the propensity of customers to select the thereby defined 

environmentally friendly and efficiency-enhancing time windows when marked as such 

through the use of green labels. The results of the simulation provide strong support for the 

positive effect of longer versus shorter time windows and further highlight the effectiveness of 

dynamically identifying and incentivizing the most environmentally friendly time windows for 

each individual customer in a given route plan. The outcome of the survey suggests that 

significantly more customers choose longer or more environmentally friendly time windows in 

the presence of green labels and that additionally including numerical reference points in the 

incentive has little added influence on customers’ slot choice behavior. Overall, the results of 

the study suggest that each customer’s time window choice has a significant impact on the 

operational efficiency and environmental sustainability of the last-mile delivery route. 

Consequently, providing customers with information on the environmental impact of their time 

window choice is a cost-effective and easy-to-implement way to contribute to more efficient 

and sustainable last-mile operations. 
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Abstract (German) 

In dieser Arbeit wird untersucht, wie sich die Wahl von Lieferzeitfenstern im Rahmen der 

Hauszustellung von Lebensmitteln auf die operationelle Effizienz und die ökologische 

Nachhaltigkeit des Liefersystems auswirkt. Obwohl diese beiden Parameter eng miteinander 

verknüpft sind, wurde insbesondere die Nachhaltigkeitsdimension des Ansatzes, Kunden im 

Rahmen des online Bestellprozesses Lieferzeitfenster anzubieten, bisher unzureichend 

untersucht. Durch den massiven Anstieg an Hauszustellungen, der insbesondere auf die 

COVID-19 Pandemie zurückzuführen ist, ist es jedoch dringend notwendig, das bestehende 

Konzept des Zeitfenstermanagements zu überdenken. Zur Veranschaulichung und 

Quantifizierung der Auswirkungen der Zeitfensterpräferenzen einzelner Kunden auf das 

Liefersystem wird eine Simulation eines Tourenplanungsproblems anhand des VRP 

Spreadsheet Solvers durchgeführt. Anschließend soll eine Umfrage untersuchen, inwiefern 

Kunden im Beisein von grünen Labels verstärkt dazu geneigt sind, die dadurch definierten 

umweltfreundlichen und effizienzsteigernden Zeitfenster auszuwählen. Die Ergebnisse der 

Simulation untermauern die positive Wirkung von längeren gegenüber kürzeren Zeitfenstern. 

Sie zeigen außerdem die Effektivität des Ansatzes, die umweltfreundlichsten Zeitfenster für 

jeden einzelnen Kunden in einer bestimmten Lieferroute dynamisch zu identifizieren und 

Anreize für die Wahl solcher Zeitfenster zu schaffen. Die Ergebnisse der Umfrage lassen darauf 

schließen, dass sich deutlich mehr Kunden für längere oder umweltfreundlichere Zeitfenster 

entscheiden, wenn diese durch grüne Labels hervorgehoben werden, und dass es keinen 

signifikanten Mehrwert bringt, numerische Referenzpunkte in die Labels mit einzubeziehen. 

Insgesamt deuten die Ergebnisse der Studie darauf hin, dass die Zeitfensterpräferenzen von 

Kunden einen erheblichen Einfluss auf die operationelle Effizienz und die ökologische 

Nachhaltigkeit der Lieferroute haben. Folglich stellt die Aufklärung der Kunden über die 

Umweltauswirkungen ihrer Zeitfensterwahl eine kosteneffiziente und einfach umzusetzende 

Möglichkeit dar, zu einem effizienteren und nachhaltigeren Liefersystem beizutragen. 
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B. Spreadsheets in the VRP Spreadsheet Solver 

 

Figure 9: Distances worksheet (B20) 



 

96 

 

 

 

Figure 10: Vehicles worksheet (B20) 

 

Figure 11: Solution worksheet (B20) 
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Figure 12: Visualization worksheet (B20) 
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Figure 13: Visualization of the route plan in S10 
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Figure 14: Visualization of the route plan in S5 
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C. Pseudo-code of the LNS algorithm 

 

Figure 15: Pseudo-code implemented within the VRP Spreadsheet Solver 

Source: Erdoğan (2017)  
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D. Online survey design 

 

Figure 16: Mixed time window offer set shown to the control group 
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Figure 17: Mixed time window offer set shown to experimental group A 
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Figure 18: Mixed time window offer set shown to experimental group B 
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Figure 19: One-hour time window offer set shown to the control group 
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Figure 20: One-hour time window offer set shown to experimental group A 
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Figure 21: One-hour time window offer set shown to experimental group B 
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E. Cross-age and cross-gender analysis 

Table 9: Cross-age and cross-gender analysis of the percentage of time window lengths chosen in each group 

 
One-hour Two-hour Five-hour 

Control Group    

Male 9/16 = 56% 5/16 = 31% 2/16 = 13% 

20 - 34 5/9 = 56% 2/9 = 22% 2/9 = 22% 

50 - 64 4/7 = 57% 3/7 = 43% 0/7 = 0% 

Female 19/33 = 58% 12/33 = 36% 2/33 = 6% 

20 - 34 12/21 = 57% 7/21 = 33% 2/21 = 10% 

35 - 49 2/2 = 100% 0/2 = 0% 0/2 = 0% 

50 - 64 4/8 = 50% 4/8 = 50% 0/8 = 0% 

65 - 79 1/2 = 50% 1/2 = 50% 0/2 = 0% 

Experimental Group A 
 

  

Male 2/9 = 22% 5/9 = 56% 2/9 = 22% 

≥ 80 0/1 = 0% 1/1 = 100% 0/1 = 0% 

20 - 34 1/6 = 17% 4/6 = 67% 1/6 = 17% 

50 - 64 1/2 = 50% 0/2 = 0% 1/2 = 50% 

Female 6/24 = 25% 14/24 = 58% 4/24 = 17% 

20 - 34 2/14 = 14% 8/14 = 57% 4/14 = 29% 

35 - 49 0/2 = 0% 2/2 = 100% 0/2 = 0% 

50 - 64 4/4 = 100% 0/4 = 0% 0/4 = 0% 

65 - 79 0/4 = 0% 4/4 = 100% 0/4 = 0% 

Experimental Group B    

Divers 0/1 = 0% 0/1 = 0% 1/1 = 100% 

50 - 64 0/1 = 0% 0/1 = 0% 1/1 = 100% 

Male 2/20 = 10% 14/20 = 70% 4/20 = 20% 

20 - 34 1/13 = 8% 9/13 = 69% 3/13 = 23% 

50 - 64 1/5 = 20% 3/5 = 60% 1/5 = 20% 

65 - 79 0/2 = 0% 2/2 = 100% 0/2 = 0% 

Female 5/22 = 23% 14/22 = 64% 3/22 = 14% 

20 - 34 3/15 = 20% 9/15 = 60% 3/15 = 20% 

50 - 64 2/5 = 40% 3/5 = 60% 0/5 = 0% 

65 - 79 0/2 = 0% 2/2 = 100% 0/2 = 0% 
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Table 10: Cross-age and cross-gender analysis of the average additional CO2 emissions  

resulting from the one-hour time windows chosen in each group 

 
 

Percentage 
 

Avg. additional CO2 
emissions (in kg) 

  
Control Group   

Male 16/49 = 33% 3,06 

20 - 34 9/16 = 56% 2,76 

50 - 64 7/16 = 44% 3,44 

Female 33/49 = 67% 3,00 

20 - 34 21/33 = 64% 2,98 

35 - 49 2/33 = 6% 2,21 

50 - 64 8/33 = 24% 3,29 

65 - 79 2/33 = 6% 2,83 

Experimental Group A   

Male 9/33 = 27% 1,39 

≥ 80 1/9 = 11% 0,00 

20 - 34 6/9 = 67% 2,09 

50 - 64 2/9 = 22% 0,00 

Female 24/33 = 73% 1,76 

20 - 34 14/24 = 58% 1,55 

35 - 49 2/24 = 8% 3,44 

50 - 64 4/24 = 17% 3,44 

65 - 79 4/24 = 17% 0,00 

Experimental Group B   

Diverse 1/43 = 2% 0,00 

50 - 64 1/1 = 100% 0,00 

Male 20/43 = 47% 1,14 

20 - 34 13/20 = 65% 1,23 

50 - 64 5/20 = 25% 0,88 

65 - 79 2/20 = 10% 1,22 

Female 22/43 = 51% 2,08 

20 - 34 15/22 = 68% 1,98 

50 - 64 5/22 = 23% 2,75 

65 - 79 2/22 = 9% 1,11 

 

 


