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1. Introduction

The United Nations predict that in 2100 the earth will be the home of around 11 billion
people. In 2021 the world population is roughly 8 billion. In less than 100 years, the
population will increase by one third [Pub19]. Economic growth and the associated
increase in household income are contributing to the rising demand for high-quality food.
Feeding all people is a big challenge. Feeding all people without harming our planet is
even more challenging. Besides the rapid growth of the demand for agricultural products
we have to őght climate change and reduce greenhouse gas emissions. The current state of
how we produce our food with high performance agriculture pollutes the environment and
destroys biodiversity [Nig21]. The World Bank forecasts that the demand for food will
increase more than 50% in 2050 compared to 2020 [FM17]. Technologies and innovation
will be necessary to őll all tables around the world with good, nutritious and sustainable
food.
Innovations can be made, for example, in the areas of biotechnology or digitalization.
Biotechnology can help breed more robust, highly nutritious plants with high yields.
Digitalization provides the farmer with more detailed information about the needs of
plants or animals which then helps to act targeted. Accurate actions such as sensor-guided
fertilizing, early disease detection in livestock, or data-based disease control reduce the
amount of medicine used in livestock or pesticides and fertilizers applied to őelds [Nig21].
Plants need sunlight, nutrients and water to grow. They are in competition for these
resources with the plants growing in the surrounding area. In order to provide the planted
crops with the maximum resources, weeds must be controlled.
Herbicides are widely used to kill weeds in őelds by applying chemicals on the surface.
Lately, concerns about the negative impact of herbicides on wildlife and the health of
humans spurred the search for alternatives. In the Farm-to-Fork strategy paper, the
European Union announced the goal to reduce the use and risk of chemicals in agriculture
until 2030 by 50% [BIN].
Technology can help reduce the use of chemicals by applying them directly on top of
weeds instead of spraying the whole őeld with herbicides [LB20]. Another way is to
kill the weeds manually. But weeding done by humans is too expensive for most crops.
Robots can automate the weeding process and reduce the cost of manual weeding. Both
the targeted spraying system or autonomous weeding robots need computer vision systems
which can localize and classify plants.
This thesis is about detecting weeds and crops in an image taken from a farm őeld.
Semantic Segmentation assigns class labels to every pixel of an image. The goal of the
weed detection algorithm trained in this research project is to assign the labels "weed",
"background" and "crop" to every pixel of the image fed to the algorithm. The output
of the weed detection algorithm is an image where every pixel is colored according the
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1. Introduction

corresponding label. To train and quantify the accuracy of the segmentation algorithm,
the ground truth has to be known. The ground truth is often created by human annotators.
The annotators have to do the same thing as the algorithm, namely assigning labels to
every pixel. There are tools available to assist the annotator in his or her work, but the
task is still monotonous and time-consuming. According to the Robotics for Microfarmers
(ROMI) project annotating one image with weeds, crops and background takes about 20
minutes [Col18]. Figure 1.1 shows an example image containing three classes (weeds,
crops and ground) and the ground truth segmentation. In this research project, an

Figure 1.1.: Example of an Image and the Corresponding Annotation Mask of the Crop/-
Weed Field Image Dataset [HO15]. Classes: Ground - Black, Weeds - Red,
Crops(Carrot) - Green

approach is presented to reduce the need for large annotated datasets. The system
consists of two parts. The őrst part extracts individual plants from already annotated
images or collects and annotates new images with a newly designed data collection process
performed by farmers on smartphones in the őeld. The second part is an algorithm that
combines the individual plant images with blank ground images into new realistic looking
őelds. The resulting collection of created images is named "Digital Field Twin" and is
used to train deep learning algorithms.

1.1. Contribution

This research project shows that it is possible with the help of a worker assistance system
to build up a training set based on data recorded and annotated with a smartphone in
the őeld. The artifacts implemented in the scope of this research project are published on
GitHub [Hoe22]. It is shown on the example of crop/weed segmentation that it is feasible
to train a semantic segmentation model on a synthetic dataset composed of cropped real
world plant and background images. Farmers can collect and annotate training data
in their őelds without having to manually annotate it afterwards. This approach saves
time and offers the possibility to train the algorithm on data that are very similar to
the target data in terms of spatial and temporal dimensions. The appearance of the
plant is dependent on environmental parameters such as nutrients, moisture or sunlight,
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1.2. Research Questions

but above all, the appearance of the plant changes with time and the different stages of
growth.

1.2. Research Questions

Human tasks in a process are in general more expensive than automated tasks. Automat-
ing these tasks often reduces the time and costs for the process execution. This thesis
presents a new approach how to gather new training data in the őeld with a smartphone.
The presented method of data collection is compared to the standard way of taking images
and manually labeling data afterwards. The focus of the evaluation lies on the quality of
the recorded data to train a semantic segmentation model and less on the time saving in
the data collection. Good data is a prerequisite for a good machine learning model and
training success.
The őrst research question is:
How does the performance of a semantic segmentation model trained on a
Digital Field Twin compare to manually annotated training data?

Well annotated training images are expensive to gather and therefore valuable. For
this reason it would be great when a given dataset could be expanded in such a way that
a model can better learn the important features which distinguish the classes.
How do weed/crop segmentation models differ in terms of the similarity to
the ground truth when trained on original data or generated data?

The accuracy of a machine learning algorithm is largely determined by the training
data. The chances of success are greater if the training data has a high similarity to
the data of the target domain. Deep neural networks work best in a stable environment.
Optimal results can be easily reached in a lab environment, where the camera, the back-
ground, the objects and the lightning conditions are the same while training and testing
the model. The proposed data collection workŕow enables farmers to collect training
data on their őelds and therefore brings the training data very close to the target domain.
The third research question shows the inŕuence of the age of a plant on weed detection.
How is the semantic segmentation accuracy influenced by the age of the
plants?

1.3. Methodology - Design Science

Design science is used as the scientiőc method in this research project. Design Science is
focusing on the iterative development and evaluation of design artifacts. The research
paradigm is mainly found in engineering and computer science research. The designed
artifact within the research project has to be innovative, novel and has to solve a yet
unsolved problem or improve a existing solution. The design process must produce a
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1. Introduction

feasible artifact like a construct, a model, a method or an instantiation, that solves a
real-world problem. The six steps of design science research are [PTRC07]:

1. Problem Deőnition and Motivation: The development of technology-based solutions
for signiőcant business problems of interest is the goal of design science research.
The problem statement should clarify why the problem is worth to be solved.

2. Objective Deőnition of a Solution: A statement about the achievement of a goal
can only be made on the basis of a well-deőned goal.

3. Design and Development: Artifacts that contribute to the solution have to be
designed and implemented.

4. Demonstration: Show how the created artifacts solve the problem.

5. Evaluation: Evaluation methods are used to show the value, quality and power of
the design artifact.

6. Communication: Research őndings should be accessible to many. Research only
succeeds through teamwork.

1.4. Structure of the Thesis

At the start of this thesis a motivation is provided, the introduction states the problem of
growing demand for agricultural goods in the world and the need for a more sustainable
agriculture. Technologies might help the agriculture to produce high quantities of high
quality food and do little harm to the environment during the production process. One
paragraph summarizes the contribution to the őeld machine learning in the domain of
weed/crop detection. Further the introduction includes the research question and the
methodology used to answer them.
In the related work and fundamentals section the most important technologies used like
Convolutional Neural Networks are explained. The related projects section is about
similar projects and research regarding targeted weed control. Short descriptions of the
projects and the relation to this research project are part of this section.
The forth chapter, Solution Design, dives into the plan how to solve the stated problem
of weed/crop segmentation. The Implementation chapter is about the design and imple-
mentation of the training data generation and the training of the weed/crop segmentation
models. The developed artifacts (trained models, data collection workŕow, Digital Field
Twin Generator) are tested. The Evaluation section outlines the data used to test the
models, describes the testing procedure and presents the evaluation results.
Finally, the most important őndings are summarized and possible further developments
are outlined.
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2. Related Work and Fundamentals

2.1. Convolutional Neural Network

In the era of digitization more and more data gets collected day by day. Millions of
smartphones and any other smart device connected to the internet leaves a data trail.
Companies specialized in analyzing this huge amounts of data are among the most valuable
companies in the world. In the last decades data availability and cheap computation power
increased a lot. This lead to a boost of the őeld of Machine Learning. Machine Learning
is about solving problems like predicting the next move of a player in a game, forecasting
what product a costumer likes to buy, which őlm the user will like best or recognising the
face looking into the smartphone camera. These predictions or classiőcations are based
on statistical models whose parameters are learned by minimizing an error function on
historical data [ibm21].
In this project a Convolutional Neural Network (CNN), a tool from the machine learning
toolbox, is used for image segmentation. CNNs turn inputs (feature maps) like images
into useful information by applying multiple őlters. CNNs are made up of layers, which in
turn are made up of neurons. The input of a layer is a feature map which is transformed
by a convolution őlter into another feature map which contain more useful information
for the speciőc task. Neurons are rather simple statistical models that output one number.
Neurons of one layer are connected to the neurons of the next layer. CNNs are not fully
connected which means that the neurons of the next layer do not take into account all
outputs of the neurons of the previous layer. This reduces the number of parameters,
called weights, that have to be determined while learning, for each neuron. The input
signals of a neuron are weighted and aggregated. The wights are tuned while training the
network [nvi21]. Figure 2.1 shows a convolutional neural network transforming a traffic
sign into a number. Two convolutional őlter layers each combined with a sub sampling
layer transform the input image (32x32) into feature maps (5x5). The őnal layer combines
all feature maps to classify the number painted on the sign [CNN18].

Field of View The term neural network comes from the similarity of the statistical
model and the biological model of the brain. There is another similarity of the human
perception system and the őeld of view of a neural network. The intuition is that it is
easier for us to identify a car as such when we see the whole car then when we only look at
the headlights of a car. Figure 2.2 shows a street scene with pedestrians, cars, buildings
and a pedestrian crossing. In the right image, each pixel is colored with the color of the
corresponding class. A pixel (right image) in the center of the red car (left image) has
been assigned the class car with the color purple. For this purpose, the environment of
the pixel of different size can be included in the decision, the so-called őeld of view. The
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2. Related Work and Fundamentals

Figure 2.1.: Model of a CNN Transforming a Traffic Sign Into a Number

Figure 2.2.: Field of View Example

green and red rectangles in the left image show two different sized őelds of view. On
the one hand a larger Field of View results in better segmentation, on the other hand it
requires more computation power and memory [nvi21].
Atrus Convolution, used in Deeplab, increases the őeld of view while maintaining the
same computational complexity.

André Araujo et. al. showed that it is the same with CNNs, a larger őeld-of-view
results in a better classiőcation accuracy [ANS19]. The drawback of a larger őeld-of-view
is that the parameters per neuron in the CNN, which have to be adjusted to minimize the
error function, increase with a larger őeld-of-view and with it the amount of computation
and memory needed for training. The size of the őeld-of-view can be inŕuenced by the
number of layers or the size of the convolution matrix.

6



2.1. Convolutional Neural Network

2.1.1. Atrous Spatial Pyramid Pooling (ASPP)

Standard convolution is often used in image processing to apply őlters like Gaussian őlters
to blur an image or median őlter to reduce the noise of an image. A 3x3 őlter matrix of a
box őlter, also called mean őlter, has a value of 1/9 in each cell. The őlter is shifted pixel
by pixel over the image. For each position the őlter is element-wise multiplied by the
corresponding pixels in the image. In the example case of a 3x3 box őlter one pixel of the
image and all the neighboring pixels are multiplied by 1/9 and added up. The average of
one pixel and their direct neighbors is calculated. This leads to a blurrier image after the
box őlter is applied [Gon18].
The same concept of convolution is used with Deep Convolutional Neural Network (DCNN)
to connect layers and create feature maps. DeepLab uses a special version of convolution
to widen the őeld of view without increasing the amount of computation. The idea of
Atrous Convolution is to create a sparse őlter matrix. The parameter rate deőnes how
many zeros should be inserted into the őlter matrix between the non-zero values. In the
example of the standard convolution only the neighboring pixels were used (which makes
sense to blur the image). If the area of view should be increased, the őlter matrix has to
be increased as well, for example to 5x5. Instead of 9 values (3x3) the new őlter has 25
values (5x5). These values are weights in the case of a DCNN and have to be adjusted and
calculated while training. Increasing the amount of these values also increases the amount
of computation and memory which is necessary for learning. Atrus Convolution can "see"
similar to a 5x5 convolution but still has 9 parameters to calculate by instantiate the new
cells introduced from 3x3 to 5x5 with zeros and skip the calculation of this values. This
leads to a good accuracy/efficiency trade-off according to [CZP+18].

Deeplabv3 uses as base for the feature encoder, called backbone, different networks like
the RESNET 101 and adds a Atrous Spatial Pyramid Pooling on top of it. The idea of
this is to have different sized őeld of views calculated in parallel for the same feature map.
This makes the semantic segmentation model less dependent of different scaled images or
objects.
Figure 5.3 shows the Deeplab v3 Model. Block1, 2 and 3 encode the features of the image
while shrinking the image. The feature maps get smaller by traversing the network up
to Block 4. Atrus Convolution encodes features at different scales. The outputs of the
Atrous Spatial Pyramid Pooling are concatenated and aggregated by a 1x1 convolution.

2.1.2. Transfer Learning

Transfer learning is about reusing parameters learned in one setting to understand a new
setting faster. Starting with a pre-trained neural network helps reducing the time and data
necessary to achieve satisfying results. In object detection the transferred information
used as a starting point can be seen as the basic understanding of visual scenes. The
following rule is an example of information which is important in order to understand
visual scenes: Pixels close to each other are more likely parts of the same object than
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Figure 2.3.: Deeplab v3 Model [CZP+18]

pixels far apart. These rules are encoded implicitly in the trained parameters [Goo16].
Transfer learning is applied in this work to reduce data volume and training time.

2.1.3. Dataset Augmentation

Deep learning algorithms need a large amount of labeled data to learn and generalize
well. The algorithm generalizes well, if it has good performance on data which was not
processed by the algorithm, thus not contained in the training set. There are several
variables which inŕuence the performance of the algorithm: layers, training epochs, neural
network architecture or training data. Collecting more data is often the key to a better
generalization and thus a better performance of the algorithm. But annotated data
samples are expensive. Collecting new data is often not possible. The idea of dataset
augmentation is to apply transformations like rescaling, rotation, random translation or
random perturbation of the colors. The transformed data is then added to the training
set. Data augmentation extends the size of the training data set without collecting new
real data and enhances the classiőcation accuracy of the algorithm [Goo16].
In this work data augmentation is applied to every single plant image in order to achieve
better results with the same amount of annotated data.

2.1.4. Class Imbalance

Class Imbalance is given in a lot of real world data sets where the occurrence of objects
in the images differ a lot or, in the case of semantic segmentation, the size of the objects
is very different. Algorithms can reach good average performance without taking into
account the least occurring class on an imbalanced data set.
Example: A dataset contains class A and B. The algorithm is trained to classify the
objects as A or B. The training set includes 1000 objects of class A and 10 objects of class
B. Obviously the dataset is very unbalanced, 100 times more class A objects than class B
objects are part of the dataset. When classifying all objects as class A, the algorithm is
right in 1000 cases and wrong in only 10 cases.
In the case of autonomous driving a class a small area and low occurrence are pedestrians.
Therefore, misclassiőcation of pedestrians, respectively the pixels showing the pedestrian,
has not a big inŕuence on the over all error of the semantic segmentation because of
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2.1. Convolutional Neural Network

the little number of pixels showing pedestrians. [CRH+19] showed that class imbalance
in street scenes, used to train a autonomous driving algorithm, are a reason for bad
performance on objects with little frequency in the data set. One solution is to use
weighted loss functions where the classes are weight by the inverse of the frequency of the
class in the data set.
Another approach to reduce the error due to class imbalance is the adaption of the data
itself. A balanced data set can be constructed by splitting and recombining the classes.
This approach is used with the digital őeld twin to get a class balanced data set with
similar area showing crops and weeds.
Crop plants take up signiőcantly more space in őelds than weeds, because weeds are
controlled by the farmer. For this reason, a dataset containing weeds and useful plants is
usually class imbalanced.
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3. Related Projects

This section lists and describes research projects that are related to weed/crop detection.

3.1. Selective Spraying

Herbicides are traditionally applied to the entire őeld to rid it of weeds. The crop plants
are resistant to the chemical, so they remain largely unharmed. The targeted application
of herbicides only to partial areas on which weeds are growing has ecological and economic
advantages. Liu and Bruch used weed detection in a Romain Lettuce őeld to demonstrate
a state-of-the-art workŕow that includes őeld image labeling, training, and evaluation
of a deep learning model for weed detection. 3000 labeled examples were used to train
and test the model. The őrst 500 images were manually labeled by hand. The remaining
2500 images were prelabeled by an algorithm trained on the őrst 500 labeled images. The
resulting model can detect Romain Lettuce with an mean average precision of 92% in
unseen images from the training examples. This means that 92% of the predictions that
a certain part of the image shows a Romain Lettuce are true. Factors like environmental
lightning, microclimate, occluded plant leaves, or spectral properties at different growth
stages of plants are stated as challenges for developing crop/weed detection algorithms.
Herewith was shown that deep learning models can reach high accuracy in weed/crop
detection [LB20].
The data collection workŕow proposed in this work could be executed in the őeld, right
before the autonomous weeding process starts. The small temporal difference between
data collection, training on the collected data and autonomous weeding could help master
the challenges stated by Liu and Bruch.

3.2. Inter Row Hoeing

A common way of manual weed control with computer support is inter-row hoeing. Crops
such as beets, corn or soybeans are grown in rows. Inter-row hoeing kills the weeds by
tilling the ground between the rows. The row spacing varies depending on the crops.
Crops such as corn have up to 80cm of space between the rows. Small row distance
requires precise operation of the hoe to minimize the tilling and the damage of crops.
Computer programs help detecting rows and guide the driver or even autosteer the tractor
to precisely drive and till in between the rows [AHIS]. The problem with the described
approach is that weeds that grow very closely to the crops or between the crops in the
row are not killed [Me].
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3.3. EU Projects: ROMI and IWMPRAISE

The projects ROMI and IWMPRAISE, funded by the European Union, are working on
the development of automatic weeding systems [Col18, iwm21]. Both have in common
that computer vision and deep learning is used to determine the position of weeds. The
weeding systems kill the weeds manually.
In this work images are also labeled pixel by pixel by a deep learning algorithm.

3.4. Semantic Segmentation

Semantic Segmentation classiőes the image pixel by pixel. Every pixel in the image gets a
class label. The following list shows some examples where semantic segmentation is used:

• Background - Foreground Separation: Images, particularly portraits, look better
when the background is blurred and the object in the foreground stays sharp. The
background of the image has to be determined on pixel level so that only the
background pixels are blurred [goo21].

• Organ Segmentation: The segmentation of medical full body scans and the coloring
of different body parts instead of gray tones, helps simplify and speed up the
diagnosis [SPC+20].

• Hair Color Augmentation: Trying on different hair colors via smartphone requires
fast and accurate hair segmentation [hai21].

• Self-driving cars/Cityscapes: Cars have to understand the surroundings in street
scenes to react accordingly. Cityscapes is a large dataset containing more then 5000
pixel-wise labeled images of street scenes with 30 classes (e.g. sky, road, people,
bridge) [COR+16].

3.5. Sugarbeet Bonn 2016

The Sugar Beets 2016 dataset provided by the University of Bonn is collected by an
autonomous őeld robot. Lidar sensors, GPS receivers and different camera systems
mounted on the robot gather data about the plants in the őeld. The robot started to
collect data in the őeld when the őrst plants emerged and stopped when accessing the
őeld was no longer possible without damage to the crops. In a period of 3 months in
spring 2016, the őeld was surveyed three times a week on average. The dataset also
contains an annotation mask in which the plants are labeled pixel by pixel [CLS+].

3.6. Image Database of Plant Seedlings

Mosgaard Giselsson et. al published a database containing over 500 images of plants of 12
species. The database contains 12 common weed and crop plants from danish agriculture.
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3.7. Generative Adversarial Networks

Figure 3.1.: Sample Image from Seedlings Database by Mosgaard Giselsson et. al [GJJ+17]

The seedlings are grown in trays containing one species and marked with a bar code.
Every two to three days over a period of 20 days the trays were placed into a device which
took images of the plants. The images were then segmented into foreground (plants) and
background by a Naive Bayes model [GJJ+17]. The segmented and cropped images of
plants are used in this research project to build a Digital Field Twin.

3.7. Generative Adversarial Networks

Fawakherji et al. have used a GAN to generate realistic agricultural scenes [FPP+].
Generative Adversarial Networks (GANs) are a generative modeling approach to produce
samples similar to or even indistinguishable from a given training dataset. Generated
samples and samples drawn from the training dataset are randomly given to a discriminator
network. The discriminator network classiőes the samples as fake or real. The generator
network learns to generate more realistic samples and tries to fool the discriminator
network. The network converges towards a state in which, for the discriminator, the fake
samples are indistinguishable from the real samples [Goo16].
The extension of the training set with the generated scenes resulted in a better semantic
segmentation accuracy. In this work, the goal is to recombine real images to realistic
agricultural scenes with a simple insertion algorithm.

3.8. Automatic Model based Dataset Generation

Cicco et. al used a 3D plant model and texture from real world images to build synthetic
training data for weed/crop detection models. The realistic agricultural scenes are based
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on parameterized plant models and terrain generation (ground image). The parameters
of the plant model are randomized so that different agricultural scenes can be generated.
An artiőcial camera captures images of the 3D agricultural scene model, which are used
to train a semantic segmentation algorithm. The described method could signiőcantly
reduce the effort required for manual annotation of data by humans while maintaining
the accuracy of the classiőcation [CPGP].
New weeds or crops require a new parameterized plant model. The approach proposed in
this work is based on a simple algorithm without knowledge about the plants. Adapting
the algorithm is not necessary for new plants or weeds.

14



4. Solution Design

Design Science is used as the scientiőc method for this research project. Feasible artifacts
are developed and evaluated to solve a problem identiőed in a speciőc domain [PTRC07].
This section contains a clear problem description, the deőned goals of this research project,
the out-coming artifacts and the plan of how the implemented artifacts are evaluated.

4.1. Problem

Weeds compete with crops in terms of sunlight, water, and nutrients. To ensure optimal
growing conditions of the őeld, weed control is essential. Common ways of weed control are
based on chemicals applied on crops and weeds or manual weeding, often done by humans.
The drawbacks of these methods are that chemicals are sometimes not working due to
herbicide-resistant plants and are suspected to have a negative environmental impact.
Manual weeding is labor-intensive and therefore expensive for the farmer. Furthermore
manual weeding is hard work and could harm the workers health. Autonomous weeding
robots could be a solution for this problem. Weeding robots have to distinguish between
weeds, crops and ground. Camera systems and artiőcial intelligence can be used to build
visual weed detection systems. Training a weed detection algorithm requires thousands of
images. Collecting and labeling the images takes a lot of time and is therefore expensive.

4.2. Goals

Convolutional Neural Networks (CNNs) are suitable for building fast and accurate
weed/crop detection systems. A downside of CNNs is that a large amount of expensive
labeled training data is necessary for training. CNNs work best in a stable envrionment,
where training and target domain are similar and do not change rapidly. The goal of this
work is to develop a method to expand labeled training data and ease the collection of
new labeled plant images. The following artifacts are implemented and evaluated:

• Workŕow to collect labeled images of crops and weeds via smartphone.

• Process to create a digital őeld twin.

4.2.1. Data Collection Workflow

The Data Collection Workŕow should ease the process of collecting images of plants and
labeling them in the őeld. The collection workŕow could be executed right before the
weeding robot starts to control weeds in the őeld. The beneőt of this approach is that
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farmers can collect and label data themselves and the collected plant images are very
similar to the plants which should be detected by a weeding robot. Training data drawn
from the same distribution as the data which should be labeled in the end improves the
accuracy of the algorithm.
The plants are collected one by one. The őrst step is that the user prepares the background
so that extracting the plant in the image computationally becomes easy. The ground is
covered by black paper as shown in Figure 4.1. As a second task, the user takes an image
of the plant on a smartphone. The background is then removed by thresholding. Now
the plant is cropped and shown to the user. After the user conőrms that the background
removal worked well, attributes about the plants are inputted by the user. The attributes
are: class (weed, crop or plant species), diameter, and age of the plant. The attributes
are used to create realistic őeld scenes from the collected plants. The data is stored in a
database for easy and structured access.
Sometimes weeds grow very close to a crop and is hardly possible to put the black
paper under the crop and weed separately. In this case the weed can be ripped out and
photographed by clamping the roots in a clip.

Figure 4.1.: Left: Background Preparation with Back Paper; Upper Right: Photo Taken
on a Smartphone; Lower Right: Cropped Plant Image

Due to the fact that the ground is removed to get cropped images of plants, the ground
has to be collected separately. Ground images are collected in the time span between
seeding and the őrst sign of plants on the surface with a smartphone. This ensures that
only soil and no other classes are included in the image. In addition, other ground surfaces
without vegetation were photographed to obtain different backgrounds, e.g. őeld paths.
The Data Collection Workŕow will be implemented with the Cloud Process Execution
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Figure 4.2.: Left: Carrot Dataset Annotation and Real Image [HO15]; Middle: Separated
Weeds with Red Border, Separated Crops with Green Border; Right: Synthetic
Image Generated from the Depicted Separated Plants in the Middle and a
Ground Image

Engine [cpe21].
The workŕow engine has the advantage that the process is explicitly modeled and easy
to adapt. New services, like further instructions how to use the tool or a new storage
service, can be added with few changes in the process model. No őddling around in a
code fragment is needed for changes. Furthermore it is easy to change to control ŕow. A
logger tracks the process execution. The logs can be investigated to gain insights what
make a process execution result in good or bad training data. This analysis of the process
is not part of this thesis.

4.2.2. Digital Field Twin

The Digital Field Twin combines the collected data (weeds, crops and grounds) to realistic
agricultural scenes. A digital őeld twin is a collection of syntactic images that show a
őeld of crops and weeds with certain attributes (age, species). The digital őeld twin is
used to train a semantic segmentation algorithm.
Aside from the data collection via smartphone the cropped plant images can also be
generated from annotated datasets. Annotation masks color code pixels according to
their class. The annotation masks are split up into the three classes: crops, weeds and
ground. Then the weed and crop class masks are separated into single cropped plant
masks. The separated crop and weed masks are used to crop the original image into single
plant images.
Two different approaches are implemented to separate the crop and weed annotation masks
depending on the available information. The őrst possibility is that the data contains őles
with the polygons drawn by the annotator to edge the plants. These polygons are used
to separate the plants. If the polygon information is not part of the dataset, a density
based clustering (DBSCAN) is performed on the annotation mask. Each cluster in the
DBSCAN result corresponds to one plant instance.
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4.3. Evaluation Design

The DeeplabV3 with a ResNet-101 backbone implemented with pytorch pre-trained on a
subset of COCO train2017 is used to evaluate the proposed method [CZP+18, pyt21b,
coc20, Min19].

4.3.1. Dataset Separation

The őrst evaluation is related to the separation algorithm. The two methods for separating
annotated datasets, DBSCAN and Polygon, are compared by splitting a dataset once with
each algorithm. The separated datasets are used to create DFTs and train a semantic
segmentation model. The models are used to predict new unseen images from the original
dataset. The carrot dataset is used for this experiment, because the images were taken
sequentially in a row in groups a few meters apart. The last group is not included in the
training data and is used as a test set [HO15].

4.3.2. Digital Field Twin

The goal of this experiment is to compare the accuracy of models trained using original
data or DFT as training data. Sugar beet datasets from BOKU and the University of
Bonn are used for this purpose [HO15]. The BOKU datasets are from 2020 and 2021.
The models are trained with the data from the Uni Bonn and the BOKU 2020 data. A
subset of the BOKU data from 2021 will be used to test the segmentation accuracy of
the trained models. This will test how well the models can segment unseen images from
other őelds, that means how well the models can generalize the learned knowledge.

4.3.3. Digital Collection Workflow

This test is intended to show whether the collection of single plants with the Data
Collection Workŕow is suitable for training a semantic segmentation model. On a soybean
őeld in Kallham, Upper Austria, the Data Collection Workŕow is executed on two different
days to collect soybean plants. The plants are combined with weeds from the Plant
Seedlings dataset to form a DFT [GJJ+17]. 10 test images are taken at different locations
in the őeld where no single plants were collected. The models are also being tested on
images of BOKU soybean őelds to determine how well the models work on other őelds.

4.3.4. Metric

The chosen performance metric is the Jaccard Index, also called Intersection over
Union(IOU). This metric is widely used in the area of semantic segmentation and is there-
fore suitable for comparison with similar projects working on weed detection algorithms
[AHIS]. The IoU score measures the similarity of the predicted segmentation and the
ground truth area. The metric can be calculated efficiently, is easy to understand, and
summarizes the algorithm’s performance in a single number.

18



4.3. Evaluation Design
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Figure 4.3.: Illustration of the Intersection over Union Score for one Class

A single number metric can ease the comparison of different models and the decision on
which one is best [Ng18].
The IoU is calculated per class and is then aggregated by the mean of the three classes:
weed, crop and ground. The average Intersection over Union score is:

IoU =
1

N

N∑︂

i=1

(
TPi

TPi + FPi + FNi
) (4.1)

where i is the class and TP, FN, FP are the number of true positive, false negative and
false positive pixels. Semantic Segmentation assigns a class to every pixel in an image.
In the example shown in Figure 4.3 the task is to segment an image showing a square
hut on a őeld. The classes are hut and background. The score is calculated for the class
hut. The left őgure shows the correct segmentation, with the pixels of the hut marked
in green. A possible segmentation output of an algorithm is shown in the middle, with
the pixels of the hut marked in red. The IOU is calculated based on the left and middle
őgure. The intersection of the red and green area is True Positive (TP). TP means the
segmentation of the algorithm is correct for this area. False Negative (FN) are pixels that
are classiőed as background but are part of the hut. False Postive (FP) is the opposite of
FN, so pixels are classiőed as hut but are part of the background. The TP area is divided
by the area of FN + TP + FP. The IOU score is 0.2. (See 4.3 for an illustration of the
IoU score for one class)
The average IoU is used to compare different models. The per class IoU shows the
difference in the segmentation accuracy over different classes.
Interpretation: The Jaccard Index measures the similarity of two sets. In the case of
semantic segmentation the two sets are the annotation mask, determined by the semantic
segmentation algorithm, and the ground truth mask. A IoU score of 1 or near 1 means
that the prediction of the classes is the same or very similar to the ground truth.
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5.1. Technologies

In this chapter the most important technologies used to implement the artifacts in this
project are presented.

5.1.1. Deep Lab

DeepLab was presented in 2015 by Chen et. al. and was iteratively improved in
the following years [CZP+18]. The DeepLab system addresses the task of semantic
segmentation. DeepLab3+, the latest release of the DeepLab system, is listed as őfth
best semantic segmentation algorithm on the dataset used at the PASCAL Visual Object
Challange 2012 [EVGW+, pas21]. DeepLab is open source and available on Github
[ten22]. The original implementation uses the deep learning framework developed by
Google named Tensorfow. In this research project a pytorch implementation of DeepLabv3
was used [pyt21a]. The implementation of the network itself was not changed in this
project but őne tuned on new data.

5.1.2. PyTorch

PyTorch is a open source framework for machine learning developed by researchers at
Facebook [pyt21b]. A big community is implementing and training models which are
publicly available. Due to the wide distribution there are many resources like tutorials
or error reports which are helpful in using the framework. The framework is used to
load the images, determine the segmentation output, calculate the error compared to
the ground truth and minimize the error. The trained models with a parameter setting
can be stored and reloaded later to compare different training steps and datasets. The
framework provides functions to calculate the performance of models by loading a model,
predicting a segmentation and determining the difference to the ground truth annotation
masks.

5.1.3. Optimization Strategy Adaptive Momemt Estimation

The goal of semantic segmentation or in general classiőcation is to predict the class of a
pixel, image, text, music or any other data. In the case of supervised learning the ground
truth is necessary for learning. The ground truth class of an image showing a cat is the
string "cat". Figure 1.1 shows an example of a ground truth, the annotation mask, for a
semantic segmentation of weed/crop image. The model is trained by showing the model
the ground truth and the original image. In this work, the original image is an image of a
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őeld that contains ground, weeds and crops. The ground truth is an images where each
pixel is colored green (crop), red (weed) or black (ground) (see Figure 1.1). The semantic
segmentation model predicts the classes of every pixel and compares the prediction with
the ground truth. This comparison is done by a mathematical equation which gives an
error. Calculating the gradient of the error function is a complex calculation and need a
lot of computation power. The gradient is necessary to know which parameters have to
be tuned to minimize the error. The calculation of the error and the optimization step is
implemented within the PyTorch framework. In this project a type of stochastic gradient
with adaptive learning rates is used, namely Adaptive Momemt Estimation [KB14].

5.1.4. Tensor Board

TensorBoard is a logger with a web interface designed to track trainings of machinelearing
models [ten21]. Charts show the error over time on training and test set. The interface
gives a good overview on the training progress. Different training runs can be shown in
the same őgure to compare different settings like parameters or datasets. Tensor Board
provides a convenient way of keeping track of the different training iterations. During
this project over 100 different training runs were executed. In this case it is important to
have a tool which summarizes the training runs in a compact interface.

5.1.5. Conda

Conda is a environment and package management system. Different environments can be
created without any interference on the same machine [con21]. This is especially helpful
in the machine learning context, since large computing capacities are needed and these
are often available on a shared server. Further conda manages packages and dependencies.

5.1.6. CPEE Workflow Engine – Worker Assistance System

The Cloud Process Execution Engine (CPEE) is a open-source, modular and lightweight
workŕow execution engine supporting multiple protocols for service interaction [cpe21].
In this research project it is used to orchestrate the services that takes part in the Data
Collection Workŕow and guides the user through the workŕow. The CPEE has a logging
infrastructure that could be customised and help to gain information about the process.
The logging tool has not been used in this project but could be used to learn from the
execution logs how the process is executed by the user and what parameters lead to good
training data or what are promising ways to improve the collection process.

5.2. Components

This section describes all components that were implemented for this project. The
components are implemented as independent, lightweight programs that take care of one
task, so called micro services. The code is published on GitHub [Hoe22].
Figure 5.1 shows all components which take part in the collection of data and the Digital
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Figure 5.1.: Architecture and Developed Components (red)

Field Twin generation. The collection of new data is coordinated by the Data Collection
Workŕow executed by the CPEE. The workŕow instructs a person via the Userinterface
how to collect the crop data, sends information about the collected data to the DB Server
and handles the communication to the Image Server. Annotated data can be split up via
the Split Dataset component and thus become part of a DFT. The Digital Field Twin
Generator gets the location and metadata of the desired weeds, crops and ground images
from the Database Service. The images are loaded from the File System and combined to
a DFT.

5.2.1. Digital Field Twin Generator

The purpose of the Digital Field Twin Generator is to create a agricultural scene composed
of crop, weed and ground images. The goal is to generate a large and diverse dataset
with thousands of images based on tens to hundreds of single plant/ground images. The
resulting dataset can be used to train a weed detection deep learning model.

The Digital Field Twin (DFT) is generated by randomly inserting images of a plant
with transparent background in a ground image. The plant images are transformed in
different ways to increase the variety in the DFT. The generator takes a list of crops
and weeds that should be combined to the DFT. The second parameter is the number of
generated images building the resulting DFT. The algorithm is shown in the following
pseudo code:
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input :A crop species crop, one or multiple weed species Lweed and the number
of images that should be generated Nim

output :Digital Field Twin

for 0 to Nim do
gim← GetRandGroundIm();
for igim← 0 to number_of_ground_segments do

cropped_ground_image← CropGroundIm (ground_image, igim);
cropped_ground_image←ChangeLighness(cropped_ground_image);
cropped_ground_image←Flip(cropped_ground_image);
classbalance← {ground : 1, weed : 0, crop : 0};
while classbalance[ground] < 0.95 do

if classbalance[weed] < classbalance[crop] then
pim← GetRandPlantIm(Lweed)

else
pim← GetRandPlantIm(crop)

end
normalize plant_image size;
ajust the color of the plant image plant_image to the background
cropped_plant_image;
plant_image←ChangeColor(plant_image);
plant_image←Rotate(plant_image);
plant_image←Flip(plant_image);
cropped_ground_image← insert plant_image in
cropped_plant_image at random position;
classbalance←CalculateClassBalance (cropped_plant_image)

end
store cropped_ground_image;
igim++;

end

end
Algorithm 1: Pseudo Code Digital Field Twin Generator

Details

Transform Images

The semantic segmentation algorithm learns parameters to predict whether a pixel belongs
to the ground, a crop or a weed. When the training images come from a distribution
which is different than the target domain, this can lead to low performance on images
from the target domain. When the training images are taken on a cloudy day and the
prediction should be made on images taken on a sunny day, the distributions, where the
images come from, are different. Adding synthetic images, where the brightness or color is
slightly changed, makes the training images distribution more similar to the input images
distribution.
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Name GetRandGroundIm

Input String with a note string that the DB records have to match
with.

Output Ground image with information about the width of the image
in cm.

Description The function queries a random entry with the given note
string from the database. The database returns the width
and the őlename of the image. The loaded image and the
width information is returned.

Name CropGroundIm

Input Ground image with original size.
Output Part of the image with the dimensions 513px x 513px.
Description Crop a square part of the image with a length of a side of

513px.

Name ChangeLightness

Input Cropped ground image.
Output Image where the lightness of the image (L channel in LAB

color representation) is randomly changed in the range [0.5,
1.5].

Description Multiply the L channel of an image in the LAB representation
to make it brighter or darker randomly in the range [0.5, 1.5].

Name Flip

Input Image.
Output Flipped image.
Description The image is ŕipped horizontal or vertical with a probability

of 0.3.

Name GetRandPlantIm

Input Parameter hash with the obligate key species and the optional
keys: note, min_age, max_age and timestr.

Output A list with the location of an image with the properties
deőned by the passed parameters and the properties of the
plant image (e.g. age, width in cm, notes).

Description The request is translated to an SQL statement and send
to the database. If no plant image in the database őts the
deőned properties the returned list is empty.
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Name Normalize Plant Image

Input Image of the plant, width of the ground image and the width
of the plant image

Output The plant image is resized to őt the width of the ground
image.

Description The resolution of the plant image and the ground image are
different in most cases. A cm in the ground image doesn’t
equal an cm in the plant image. The plant has to be resized to
őt the proportions of the ground image and look realistically
after insertion. Some randomness is introduced in the scaling
by multiplying the resize factor with a number from the range
[0.8, 1.2].

Name Align Plant Color to the Background

Input Image of the plant and ground
Output The lightness of the plant image is adapted to the ground

image.
Description The lightness of the plant and ground image could be very

different, this leads to very unrealistic scenes (e.g. the ground
is black and the plant very bright). Both images are trans-
formed into the LAB color representation. The mean value
of the L channel are calculated. There by it is important to
ignore the pixels in the plant image where the alpha channel
indicates transparency. The L channel of the plant image
is multiplied by mean_Lground/mean_Lplant ∗ [0.5, 1.35]. A
certain fuzziness is given by a multiplicative factor from the
range [0.5, 1.35].

Name Change Color

Input Image of the plant
Output The image of the plant with slight color changes.
Description The color channels (A,B channel) are multiplied by a random

factor in the range of [0.85, 1.15]. All pixels in one channel
are multiplied by the same number. A and B channel can
have different numbers to alter the color.

Name Calculate Class Balance

Input Annotation mask of the scene (ground with plants)
Output A list with three entries, the portion of pixels of the class.

The őrst entry is the portion of pixels which are red and
therefore belong to a weed. Pixels of crops are the second
value. The last value represents ground pixels.

Description The resulting dataset should show a similar amount of crop
and weed pixels. The class balance toggles whether the next
plant to be inserted is a weed or a crop. The insertion loop
stops when the amount of ground pixels are less then 95% of
all pixels in the image.
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The position of the plants should have no inŕuence on the prediction of the algorithm. But
if all or most of the crops in the training dataset are in the right upper corner and most
weeds are in the lower left corner of the image the algorithm could minimize the error by
using the position of the plant to predict the class (weed, crop). Flipping, rotation and
translation alters the images such that position and orientation are randomized and thus
not useful to make good predictions on the test dataset. Transforming the images creates
new images with slightly different lightning, colors and orientation. This helps the CNN
to generalize better and learn the right parameter to distinguish between ground, weed
and crop. The class predictions should be invariant of orientation, position or lightning.
Further, small errors in the image like blur or noise should have minimal impact at the
accuracy of the algorithm.

Flipping and Rotation Flipping and rotating images of plants taken from bird’s eye
view is easy. There are no wrong rotations or ŕips. The plants are rotated randomly
between 0 and 360° and ŕipped horizontally and vertically by a probability of 30%. This
transformation adds "new" plants to the dataset which then looks different for the network
and thus helps the model to generalize well. Orientation and rotation should have no
inŕuence on the prediction of the algorithm.

LAB color representation The natural lightning of the sun changes over the day and
depends on the season. Clouds and dust in the air also inŕuence the lightning conditions
of a scene. Since crops are planted outdoors and the single plant images are collected
outdoors with a smartphone it is important that the variability of exposure and color
values in the real world is also reŕected in the training data. Data collected on a cloudy
day can be modiőed in such a way that it looks more like a photo that was taken on a
sunny day. Therefore the images are transformed into to LAB color spectrum where L is
lightness and A,B deőnes the color of the pixel. The canvas of the Digital Field Twin is a
ground image where plant images are placed on top of it. The lightness, thus the L channel,
is multiplied by a random number between 0.5 and 1.5. The numbers are chosen in a
way that the variation is large but the images still look realistically. The lightness of the
plant images is randomly altered with consideration of the brightness of the background
to avoid very bright plants on dark grounds. The following equation is applied to change
the lightness of plant images: L = LPLANT ∗ (MEAN(LGROUND)/MEAN(LPLANT )) ∗
RANDOM(0.5, 1.35) The color values A and B of the plant images are slightly modiőed
in the range [0.85, 1.15].

Blur and Add Noise Training datasets are often collected in a well designed setting.
The camera is stable and the objects do not move so that there are no artifacts like blur or
noise in the image. In nature, images like the ones taken on a smartphone are sometimes
not captured with optimal parameters. Maybe the photographer has shaking hands so the
camera moves. This could lead to a blurry image. Another error in the image could be
caused by some dirt on the camera lens. Since these distortions are not part of a training
set, which was collected under controlled circumstances, the neural network has a bad
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performance on images with errors. To close the gap between the image statistics of the
natural dataset and the controlled dataset some errors are added artiőcially [VCS16].

5.2.2. Database

The images are identiőed by an UUID and stored in the őle system. A SQLite database
contains all information about the plant which is necessary to build a DFT with the
plants. Each entry for a plant image has a unique UUID, a diameter in centimeter, an
age in days and a species. The UUID is the őle name to store the image. There is also a
table for background images that stores basic information like the width in centimeter of
the ground image and a note string.
A server provides an interface to the database so that the collected data from the
smartphone can be send and stored to the datastore.

5.2.3. Separate Dataset

The DFT is build of images, showing a single plant, inserted in ground images. Annotation
masks denote the class of each pixel by color. Normally the three classes ground, weeds
and crops are color coded in black, red and green. The color coded annotation mask can
be used to separate a annotated dataset into single plant images. Two different algorithms
were implemented for dataset separation. Depending on the available information of the
annotation step one of the algorithms works best. If additional information about the
polygon, drawn by the annotator to border a plant, is included in the dataset, this can
be facilitated for separation. The carrot dataset published by S. Haug and J. Ostermann
is an example for a dataset with polygon information [HO15]. Otherwise a DBSCAN
algorithm is used to separate and cluster the plants in the annotation mask.

Components The date set separation is structured as a pipe őlter application. The
separation step is either a DBSCAN followed by a separation of the detected clusters or
information about the polygon drawn for annotating the image can be used to crop the
plant instances. The cropped plant images are stored to the őle system with information
encoded in the őlename. The ratio between the width of the original image and the
cropped image, the age of the plant, the őlename of the original image, the species and a
sequential number per original image are part of the őlename of the cropped plant images.
The DB Connector stores the information about the cropped plant images to the DB and
copies the images to a directory, where all plant images are stored, so that the image
server can őnd and load them.

Polygon People classify the images by drawing a polygon that edges an area containing
only one plant. Background segmentation is sometimes used to support the annotator
by removing the background area from the marked area. This eases the annotation step,
because őne details of plants can be ignored. The marked area is then colored accordingly.
Some datasets (carrot) include the data about the points that form the polygon and the
class of the plant in this area. The example images 5.1 show an annotation mask and the
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DBSCAN CROP CLUSTERS

CROP PLANT WITH 

POLYGON INFORMATION

DB CONNECTOR

ANNOTATION MASK

ORIGINAL IMAGE

LABELMAP

CROPPED PLANTS

+ METADATA

+ POLYGON POINTS

Figure 5.2.: Pipeline to Transform a Annotated Dataset Into a Well Structured Data
Collection of Single Plant Images.

corresponding polygon. The example polygon has 14 edges therefore 14 calculation steps.
In the lower right corner the annotation mask with the corresponding weed is shown. The
algorithm constructs the black and white polygon image with values 0 and 1 from the
list of points given with the dataset. Multiplying the polygon image (last b-w image)
with the annotation mask cuts out the weed. The resulting image only contains one plant
and is used to crop the plant in the original image. The őrst image in Table 5.2 shows
the cropped original image. The black area is made transparent in the original image.
The image returned by the algorithm shows only one class with transparent background.
The most interesting part of this algorithm is how the polygon image is build from a list
of points. The problem is named point in a polygon and is well described in literature
[poi18]. The idea of this algorithm is to do ray tracing in X-direction of the image starting
from each point and counting how often the ray crosses an edge of the polygon. If the
crossing number is odd then the point is outside of the polygon, otherwise the point is
inside. The implemented algorithm is based on the PNPOLY - Point Inclusion in Polygon
Test from W. Randolph Franklin [poi18].

DBSCAN The DBSCAN is utilized to separate the plants, if no polygon information
is present. The clustering method őnds clusters of pixels with the same color and little
special distance in the annotation mask. Nearby pixels of the same class, denoted as
color, build up a cluster that correspond to a plant. Plants of the same class which are
overlapping result in one cluster. Each cluster found by the DBSCAN is cropped in
the original image and stored with transparent background. The image shown with the
polygon example results in a different outcome when the DBSCAN is applied. On the
upper side of the image a second weed is very close to the example weed so that the
DBSCAN results in one cluster instead of two separate weeds. Clusters of the same plant
are still very well suited to build a Digital Field Twin. Single parts of a plant like a single
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func Polygon(p1, p2, summask):
im1← color the area between p1 and p2 white (upward_crossing,
downward_crossing);
im2← color the area normal to the line deőned by the points p1 and p2 in the
direction of +x white;
mask ← combine im1 and im2 by a boolean AND operation;
summask ← XOR mask with the summask

return summask

summask ← black image;
for Point of Array P with index i up to i < size− 1 do

summask ← Polygon(py(i), py(i+ 1), summask);
end
// close the polygon by adding the last segment between the last and

the first point

summask ← Polygon(py.last, py.first, summask);
Algorithm 2: Point in a Polygon

Table 5.1.: Point in a Polygon Example

leaf leads to less realistic generated őeld images. For this reason the parameters for the
DBSCAN were chosen in a way that parts of plants which are not connected to the plants
(e.g. because the stem is not annotated or covered by soil) are clustered together with
the main plant. (see Figure 5.2)

Both algorithms output an image showing a single plant or few plants of one class with
transparent background. These images can then be used to build up a Digital Field Twin.

5.2.4. Data Collection Workflow

The Data Collection Workŕow enables farmers to collect new images and annotate them
in the őeld. The process is designed in a way so that it can be executed in a web browser
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Table 5.2.: Comparison of Dataset Separation DBSCAN and Polygon; Image Sources:
1,2: [HO15],3: [CLS+]

on a smartphone. The process is implemented in the process execution engine CPEE.
The workŕow engine orchestrates the teamwork of computers running the automatic tasks
and humans doing the manual tasks. The following table lists the tasks which are part of
the Data Collection Workŕow with information about the executor and a description.

The services have a REST interface which is used to coordinate the services and transfer
data between the services.

Name Description Task Type

Show Instructions The őrst step is to instruct the user what to
do. The scene has to be prepared in a manner
that only one plant is in the image and the
background is black. The ground and other
plants are covered with black paper.

Human

Take Image The second task is to take an image showing
the black background and the plant.

Human

Crop Image Trigger the cropping algorithm and wait till it
has őnished.

Automatic

Show Cropped Image Show the cropped image to the user. The user
gives feedback about the cropped image. If
the cropped image of the plant is bad (e.g. a
lot of background pixels are present) the user
can start at Take Image again.

Human

Input Plant Attributes Additional information about the plant is col-
lected: age of plant, species, width in cm and
notes.

Human

Store to Database The ID of the collected plant image and the
information about the plant is send to the
database service.

Automatic

Table 5.3.: Data Collection Workŕow Tasks
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Figure 5.3.: CPEE Process Model of the Data Collection Workŕow [cpe21]

Background Removal

The main part of the data collection workŕow is the cropping algorithm, also called
background removal algorithm. The goal is to extract the pixels showing parts of the
plant and make all the background pixels transparent. In order to collect only single
plants and make the background as homogeneous as possible a black paper is placed

Show Instructions Take Image Show Cropped Image Input Plant Attributes

Table 5.4.: User Interface Data Collection Workŕow
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under the plant. A few images were taken in which the background is made black with a
black paper. All pixels of the plant were colored white and background were colored black,
manually. GIMP was used to border the plant and color the background and plant in the
corresponding color [gim21]. The manually annotated images were then used to őnd out
which color spaces are best to determine a boundary to separate background pixels from
plant pixels by color value. The background removal algorithm does not utilize location
information of the pixels. Visual inspection on a scatter plot matrix of the color spaces
HSV, RGB and LAB was done. Further, color indices for vegetation segmentation like
CIVE, EXG, EXR and EXGR were investigated. These indices are used to őnd out the
area of plants covering the ground in a satellite image or to follow the growing process in
a őeld by taking images with drones and calculating the leave area over time [HLES18].
The manually classiőed images were used to create histograms for each color space. The
class (fore- and background) was encoded in color. A Support Vector Machine was trained
to őnd a linear plane which separates the two classes plant and background best. As a
starting point visual investigation of the scatter plot matrix was used. The LAB color
representation resulted in the best separating hyperplane. The beneőt of a linear plane is
that it can be easily be expressed as a linear equation, which in turn can be implemented
efficiently with parallel image processing libraries. The separating hyper plane is:

w = [−0.015931472997181118,−0.3315611013490525, 0.24868342258628218]

b = −4.992750111484608

imL >= (imB ∗
w2

w0

+ imA ∗
w1

w0

+
b

w0

)

(5.1)

where im is the image of a plant with black background in LAB color representation, w
and b deőne the position and orientation of the separating hyperplane.

White paper was also investigated to make the background white, but it turned out
that it is easier to őnd a boundary between background color and plant color when the
background is black.

5.2.5. Class Imbalance

This script calculates how imbalanced the different classes weed, crop and ground are
within one dataset. The annotation mask where each pixel is colored according to the
class is the input for this algorithm. Basically, the program counts the pixels which are
red (weed), green (crop) and black (ground) and divides the number of pixels per class by
the overall pixels of the image. The three percentages of pixels per class in an image are
then added up over one dataset and divided by the number of images to get the average
percentage per class of one dataset.
The DFT is created such that the classes weeds and crops are balanced over the dataset.

5.3. Model Training

The training process has the following activities: determine the plant and background
images that will be used to generate the Digital Field Twin, create the DFT, copy the
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DFT to the training infrastructure, create a conőguration őle and monitor the training
via the webinterface, namely Tensorboard. Subsequently, the activities involved in model
training are described.

5.3.1. Plants and Background

Good predictions in machine learning can only be based on good data. Good means
that the characteristics, for example the parameters that determine whether a part of an
image is soil or plant, are the same in the training data as in the target data. This means
that the data, especially the images of the plants, must be similar to the crops that are
to be detected.
The database stores metadata such as age, size, species and additional notes of the single
plants. The metadata is used to őnd the plants which are most similar to the target őeld.
The corps and weeds in the training data, the age and size should be matched to the
target őeld.
If the data originates from the same őeld, the similarity is most likely great and the
quality of the training data good.

5.3.2. Generate Digital Field Twin

Based on the parameters from the previous step thousands of images are created with
different combinations of ground, weed and crop. Additionally, transformations are applied
on the images. The details about the Digital Field Generator is described in section
Digital Field Generator 5.2.1.

5.3.3. Copy to Infrastructure

Due to the large number of parameters that have to be determined to minimize the error
of the neural network many computational operations must be performed. Graphics
processing unit are much better suited for the training of neural networks than conventional
CPUs. For this reason, the training is carried out on a computer with a graphical processing
unit from Nvidia: GeForce RTX 2070 SUPER.

5.3.4. Configuration File

A lot of trial and error runs are necessary to learn what parameters, training data or
number of training data works best, because for every domain and use case this might
differ. There is no recipe for a well performing model. There are guides about what to try
and how to interpret the outcome. It is important in a trail and error scenario to have
enough information about a training process so that it can be reconstructed, compared to
others and most importantly, the results can be used to learn why one training session
performed better than another. Important questions about the training process are: what
kind of data was used to train this model, how long was the training or what was the
starting model?
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Name Description

Name This name is used to store the output of a training, the model,
and log entries are entered under this name.

description Short description what data is used and what is different to the
the other runs.

data_directory Path to the training data directory counting an image and
annotation folder.

validation_directory Path to a directory holding data that should be used for valid-
ating each epoch. If this parameter is empty 20% of the data
in data_directory is used as validation data.

exp_directory Path to the directory which holds the resulting models.

epochs Number of epochs the training lasts.

batch_size Number of images that could be processed on the GPU in
parallel. This is limited by the memory of the GPU.

model Path to a model that is used as a starting point for training. If
empty, the Deeplabv3 resnet101 pretrained on COCO train2017
is used [CZP+18, pyt21b, coc20, Min19].

Table 5.5.: Model Training Activities

The conőguration őle holds all the information that is altered over different training
sessions. The conőg őle is a YAML őle.

name: carrot_digfield_small_subset_10

description: no model loaded; train on carrot_digfield_small_0-10_polygon

digital field twin created on 0-10 original carrot images; 2250 images;

validated on same dataset;

tested on the remaining 10 images from the dataset 51-60

data_directory: testdata/carrot_digfield_small/0-10_subset_polygon

validation_directory:

exp_directory: outdata

epochs: 100

batch_size: 2

model:

5.3.5. Predict and Calculate Performance

The performance of the trained models on test data is determined by a script. The
script takes either a single image or a directory with images and optionally the ground
truth annotation masks. Images that are larger then 513 x 513 are cropped at a random
position to the correct size. A parameter controls how often the image is cropped. If the
ground truth is not given the script runs the semantic segmentation on the image or parts
of the image, but does not determine its performance. The main performance metric is
Intersection over Union as described in 4.3.4. Further, the overall pixel wise accuracy
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Figure 5.4.: Images Created During Semantic Segmentation

is calculated. The performance metric is stored in a CSV őle. Each line in the result
corresponds to one image with the columns: global pixel accuracy, IoU weed, IoU crop,
IoU ground and the mean IoU. Moreover, a couple of images are stored while calculating
the performance of the semantic segmentation. The ground truth annotation mask, the
original image, the predicted annotation mask and a combination of the original image
with the predicted annotation mask are stored to the result directory. The őnal class per
pixel is determined by using the class with the highest activation, thus the brightest pixel.
A black and white image encodes the activation intensity by the shade of gray of each
pixel. The b-w images are stacked together. The upper most part shows the crop class,
the middle part shows the weed class and the lowest part of the image gives the ground
class. The b-w image gives an intuition about how sure the model was about the decision
to assign a class to a pixel (see Figure 5.4).
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Figure 5.5.: Segmented Drone Image of a Soybean Field

5.3.6. Predict Large Images

Images taken by a smartphone, autonomous machine or drone are larger than the
513x513px, which are the input size for the semantic segmentation model. Therefore a
program is implemented to split up the larger image into several smaller ones, predict
the small images and then recombine the images again. Plants that are cropped into
the half by splitting up the large image into smaller ones are harder to segment for the
model. The splitting is done two times with different offset to avoid that plants are cut
off. Squares with a length of the edge of 513px are cut out. The őrst cropping starts
at the top left corner at position 0,0, the square is shifted by 513 px in horizontal and
vertical direction until the end of the image is reached or the remaining part is smaller
than 513px in one direction. The second cropping starts with an offset of 256px in each
direction, so at the position 256x256. The square is shifted x-1 and y-1 times by 513px in
each direction where x and y are the number of shifts in x and y direction in the őrst
cropping iteration.
The cropped images are segmented independently of each other and recombined by adding
up the per class activation for each pixel, identiőed by the position in the original image.
See Figure 5.5 for an example of an image taken by a drone on a soy őeld. The image
was taken by a DJI Mavic 2 Pro on a soy őeld in Kallham on 01.06.2021. The model is
trained on images collected by smartphone with the Data Collection Workŕow on the
same day at the same őeld.
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This section includes the results of different training runs and the corresponding tests to
evaluate the performance of the semantic segmentation model. Different techniques to
collect and annotate data are compared to each other to őnd out how well the proposed
Digital Field Twin performed compared to the state-of-the-art way.

6.1. Datasets

Neural networks learn from data. The data used for training and testing is described in
the following paragraphs.

6.1.1. Carrot

The Carrot dataset1 is publicly available and is interned as a reference dataset to compare
different crop/weed segmentation algorithms. The images are taken by a őeld robot. In
total the dataset contains 60 images and shows 162 crops and 332 weeds. The weeds and
crops are close together and do overlap sometimes.
All images are taken in the same row of plants. At the beginning of the row 20 images
were taken. The remaining 40 images were taken in junks of 10 images approximately 12
meters apart.
This setup is well suited to test the use case described with the data collection workŕow
of collecting single plants on one end of the őeld, train a model on this data and run
weed/crop detection on the rest of the őeld.

6.1.2. Plant Seedlings Dataset

This dataset2 contains about 960 different images of plants belonging to 12 species
(Black-grass, Charlock, Cleavers, Common Chickweed, Common wheat, Fat Hen, Loose
Silky-bent, Maize, Scentless Mayweed, Shepherd’s Purse, Small-ŕowered Cranesbill, Sugar
Beet) in different growth stages [GJJ+17]. The images are annotated, classiőed and
are used to create a digital őeld twin. The weeds are particularly interesting since a
traditional őeld consists of a variety of weeds in different growth stages and one crop
sowed to grow and be harvested. Weeds are normally rare in a traditional őeld, since
the goal of the farmer is to reduce the weeds so that the crops have a maximum of the
light, nutrition and water that is available at the őeld. Therefore its good to have a big
collection of weed images to build a DFT.

1https://github.com/cwfid/dataset
2https://vision.eng.au.dk/plant-seedlings-dataset/
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Date Location Species Number of Images

31.05.2021 Kallham Soy 25
31.05.2021 Kallham Weed 10
11.06.2021 Kallham Soy 48
11.06.2021 Kallham Weed 0
20.05.2021 Türkenschanzpark, Vienna Weed 10

Table 6.1.: Data Collected with the Data Collection Workŕow

6.1.3. University of Applied Life Science Vienna (BOKU)

The BOKU3 in Vienna operates őeld trials at the Experimental Farm in Groß-Enzersdorf
next to Vienna, Austria. The crops sugar beet and soy are sown and photographed in
regular intervals with a self build machine. The device has wheels and can be pushed
across the őeld by the operator. Two stereo cameras take pictures at a constant height.
The images are manually annotated with the CVAT tool [ope22].

6.1.4. Self Collected

The data collection workŕow is used to take photos4 in the őeld and annotate the images.
For the experiment a soy őeld is used and photographed at two different growth stages.
A Huwai P20 was used to take the photos. Table 6.1 lists the date when the workŕow
was executed, the location, the species of the plant and the number of images.

6.2. Separate and Recombine Carrot Dataset

The cropped and separated plants can be extracted from already annotated data. The
carrot dataset contains images, annotation step and information about the annotation
step. The polygons to outline the plants are stored in a yaml őle for each image. This
allows the separation of the plants based on the polygons.
The experiment described in the following investigates how the digital őeld twin construc-
ted from separated plants performs compared to the original data.
The carrot dataset is composed of 60 images. The last 10 images, which are taken at the
end of the őeld, are used to test and compare the performance of trained models in the
end. Different portions of the remaining 50 training images are used for training. For
each portion of the carrot dataset one digital őeld twin is generated and a training set of
the original images is used for training. In the őrst setting shown in table 6.4 a digital
őeld twin is build based on the plants extracted from the őrst 10 images of the carrot
dataset. The separation of the őrst ten images resulted in 10 carrots and 25 weeds. The
1-10 DFT is build of 35 separated plant and 18 ground images.

3Dataset provided by the Institute of Agricultural Engineering https://boku.ac.at/en/nas/ilt
4https://github.com/hoellermathias/DigitalFieldTwin
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Dataset Images #Carrots #Weeds #Grounds

1 - 10 Subset Carrot 10 25 72 18
1 - 20 Subset Carrot 20 54 109 28
1 - 30 Subset Carrot 30 77 158 28
1 - 40 Subset Carrot 40 107 225 30
1 - 50 Subset Carrot 50 132 254 28

Table 6.2.: Training Subsets of Carrot Crop/Weed Dataset

The training images have the dimension of 513x513px. 2250 images are generated for
the digital őeld twin. The model is trained on 1800 images of the training data and
validated on the remaining 450 images for 100 epochs. The model with the best mean
intersection over union score on the validation dataset is selected and used for determining
the performance on the test set. The test results, meaning the performance on the last
10 images (51-60), showed that the recombination of plants with different backgrounds
and a couple of transformations lead to good training data. The test showed that there
is a signiőcant increase in the Intersection over Union score (IoU) from the 1-10 subset
(0.6) to the 1-20 subset (0.71), but that there is hardly an increase by adding more plant
images to the 1-20 subset. The subsets 20, 30, 40 and 50 all showed a performance (>
0.70) slightly higher than the score reached with a Random Forest classiőer in the paper
which presented the dataset ( 0.67).
This experiment showed that it is possible to reach good semantic segmentation results
with a Digital Field Twin build on single, separated plant images inserted into ground
images.
Table 6.5 shows the intersection over union score of the models trained on Digital Field
Twins build of different subsets of the carrot dataset. The diagram in the őrst row on the
right displays the cross entropy loss of the 1-20 Subset DFT. The diagrams in the rows
2,3 and 4 show the IoU score of the training set on the left side and the validation set on
the right side.
Training time of the runs shown in table 6.4 is more or less 24 hours, because the number
of epochs is őxed to 100. The charts of the training error and the charts showing the
IoU per class (weed, crop, ground) ŕatten after around 20-30 epochs of training. This
indicates that the parameters of the network are hardly changing and thus learns little.
Stopping the training in an earlier epoch could drastically reduce the training time. The
data indicates that the time could be reduces to 1/3 - 1/5 of the current total training
time of nearly 24 hours. The model trained for 4,5 hours on the 1 - 20 subset results in
an mean IoU on the last 10 images of 0.69. This performance is 4% lower than the mean
IoU of the model trained for 24 hours.

6.2.1. Carrot Dataset with DBSCAN

Datasets do not always contain the information about the polygon drawn by the annotator
to outline a plant. A clustering algorithm can be used to group the pixels belonging to one
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plant together. The carrot dataset is separated with both methods: separation using the
polygon data or the DBSCAN algorithm. To compare the performance of the DBSCAN
algorithm to the polygon annotation the same data in both setups was separated and
recombined. The 1-20 subset, the őrst 20 images of the dataset, were separated and
resulted in 48 crops and 79 weeds. Compared to the separation based on the polygon
annotation the number of single plants is lower by 22%. This is due to plants which are
very close to each other or even overlapping. This plants are clustered as one plant and
leads to a weaker separation of the individual plants. The parameters for the DBSCAN
algorithm are tuned such that the outputted plants are complete. Complete means that
leafs which are not connected to the center of the plant, because the stamp is classiőed as
background, are part of the same cluster thus the same plant.

The model trained on a Digital Field Twin generated on the plants extracted with the
DBSCAN from the 0-20 subset of the carrot dataset performed only slightly worse then
the polygon separated data. The mIoU score of the model trained on the DBSCAN data
tested on the last 10 images (51-60) reached 67%, which is circa the performance of the
reference algorithm presented by S. Haug and J. Ostermann [HO15].
The clustering algorithm is a good alternative to separate an annotated dataset, if there
is no polygon information given with the dataset.

6.3. Data Collection Workflow

Collecting data in the őeld and testing the trained model on images taken on the same
őeld, just a couple of meters apart from the data collection spot, is close to a real world
use case. The beneőts are that the training data and the target domain, so the rest of the
őeld, are close and look similar. The plants are in a similar growth state and typically
the same sort of seeds were sown. Train neural networks is more promising if the training
domain is close to the target domain. This experiment shows that a CNN trained on
synthetic images generated with data collected by the data collection workŕow shows
good results.
The data is collected on the same soy őeld on different days thus different growing stages.
The data was taken on the 31.05.2021 and on the 11.06.2021 on a soy őeld. Three
Digital Field Twins are build with weeds from the plant database published by Mosgaard
Giselsson et. al and different self collected soy plants [GJJ+17]:

• 25 soy crop images taken on the 31.05.2021

• 25 soy crop images taken on the 11.06.2021

• 50 soy plants, 25 plants form the 11.06.2021 and the 31.05.2021 each

6.3.1. Advantages over State of the Art Approach

Ground Truth images with little errors in the training data are a prerequisite for a model
doing good predictions. Poor data leads to a poor prediction. If the image of őelds are
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poorly annotated and an algorithm is trained on this data a good segmentation of crops,
weeds and ground is impossible. Therefore, the annotation step is crucial for the success
of machine learning projects. In the traditional setup, where the images are annotated by
hand, it is often hard, especially when plants overlap, to őnd the border between a crop
and a weed. The method proposed in this paper only collects single plants without the
need of drawing a border between two plants.
Annotating images showing a őeld with plants is considered as boring and time consuming.

6.3.2. Self Collected Soy Dataset 31.05.2021

The performance (IoU score) of the model trained on the DFT 31.05.2021 tested on
11.06.2021 test data is 0.54.
The test data images of the őeld are collected on the same őeld but at another spot,
so that the plants are similar but not identical to the training data. Figure 6.7 shows
some example images. The őrst row shows the input image. The second row shows the
manually annotated ground truth masks. The third row shows the prediction of the model
trained on a Digital Field Twin of 25 soy plants and hundreds of weeds. The IoU score
is given in the last row for the comparison of the ground truth and the prediction. The
average IoU score of the őve predictions is 0.81.
The average IoU score over all classes of the test data collected on the 31.05.2021, thus
on the same day as the training data, is 0.71. The per class IoU scores for weed, crop
and ground are 0.4, 0.73 and 0.99. Nearly all of the pixels showing ground are labeled
correctly. The soy plants are labeled with high precision in most of the cases but some of
the images have low IoU scores. 11 of 19 test images have a IoU score for crop class over
0.9. Two images show only weeds and thus have a default IoU score of 0 for the missing
class. If the average IoU of the crop class is corrected by the two images without the class
crop the performance is even higher at 0.83. Three other images have a low IoU score of
class crop (0.23, 0.32, 0.44). These images have in common that either parts of the plants
are eaten by vermin or are covered by soil or two plants are overlapping. This signiőcantly
alters the appearance of a soybean plant and makes it difficult to assign the correct label
to the crop pixels. The class weed has the worst IoU score with 0.4. A reason for this
low value is that some image do not contain weeds, thus have 0 IoU score for the weed
class. The corrected value is only slightly higher with 0.47. Ground pixels are very well
classiőed. The weeds in the test set are small and hard to detect. Misclassiőcation of the
classes weed and crop are mostly misclassiőed among each other. Soy plants which are
not detected as such are then misclassiőed as weed. The low IoU score of the weed class
shows that the labeling is not accurate, so the annotation mask and the ground truth
mask have less then 50% in common in term of the pixels labeled as weed. After manual
determination of the weeds detected, it was found that a large proportion of the weeds
had been identiőed but the marked area does not congruent. Only 2 out of 42 were not
detected at all. Weeds that were partially marked as such were counted as detected.
This experiment shows that the temporal difference (same day or 12 days later) makes a
huge difference to the prediction performance.
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6.3.3. Self Collected Soy Dataset 11.06.2021

A DFT is generated based on the weeds from the Seedlings dataset and the soy plants
collected with the collection workŕow on 11.06.2021 at a private őeld in upper Austria.
The digital őeld twin is build of 48 unique soy plants and 2632 different weed images
resulting in 2250 images with a size of 513x513px. 1800 images are used as training set.
The remaining 450 images build up the validation set. The performance is tested on
seven hand annotated images showing soy and weeds collected on the same őeld where
the single plants were collected but on a different spot in the őeld. The IoU score of the
model trained for 20 epochs and around 4 hours is 0.7. The performance increased to
0.73 after 100 epochs and 24 hours of training.
Figure 6.8 shows őve test images with the corresponding original image, segmentation
mask superimposed over original image, ground truth and predicted segmentation mask.
The number under every column shows the intersection over union score per image.

6.3.4. Kallham Combined

The results of the Kallham Soy DFTs showed that the proposed data collection workŕow
combined with the Digital Field Twin generator works well when the target domain is
very similar to the training domain. The Kallham Combined DFT was build with soy
plants from 11.06.2021 and 31.05.21. This should show how the performance changes if
the training and target domain get larger and more diverse. In this case the dimension
age of the crop plant is increased by one in the train and target domain. The soy plants
in the training data and the test data are collected on different days on the same őeld.
The model was trained for 100 epochs on a DFT containing 2250 images including 50
different soy plant images, 25 taken on 11.06.21 and 25 taken on 31.05.21. 32 different
ground images and 2887 images of weed plants are used in the generation process.
The performance was tested on the test data from the experiments described above
(11.06.2021 Self Collected and 31.05.2021 Self Collected).
The IoU score on the 31.05.21 test set is 0.63 and on the 11.06.21 test set it is 0.66. Both
are worse than the models trained only on the soy plants of one day.

6.3.5. Generalization of DFT

To examine the generalization of the models, trained on a DFT build with data collected
by the Data Collection Workŕow, to other unseen soy őelds, the models were tested on
images of soy plants from the University of Natural Resources and Life Sciences, Vienna.
The results showed that the models do not generalize well and reach little IoU score on
other őelds. The IoU score for the crop and weed class calculated on 10 images of the
BOKU soy dataset is 0 for both models (310521 and 110621).
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6.4. BOKU Dataset

6.4.1. BOKU Soy Tested on Kallham Soy

A model trained on manually annotated images of soy plants and weeds, collected by
the University of Natural Resources and Applied Life Sciences in Vienna (BOKU), is
compared to a model trained on a DFT build with the same plants extracted of the same
dataset. The original data is separated by the DBSCAN Data Seperation script. The
cropped plant images (weeds and soy) and meta data are stored to the database.
The soy dataset contains 88 images taken 16, 20, 27, 34 and 43 days after sowing. The
number of images per day is: 40, 10, 22, 13 and 3. Both training sets, the original dataset
and the DFT, consist of 2250 images with a resolution of 513x513px contain 77 soy plants,
99 Avena fatua plants and 34 unknown weeds.
The original training data is created by cropping the original annotation mask and images
to the size of 513x513px. The length of the edges of the square cropping window is
randomly selected from the range of [0.5, 1.5] * 513px and resized to 513x513px in the
end. The cropped images are ŕipped horizontally and vertically with a probability of
30%.
Images showing only ground are not suited to train the model to distinguish between the
classes crop, weed and ground. Therefore the cropped image is only stored and added
to the training set if more than one class is visible in the part of the image. The areas
occupied by the classes differ greatly. The percentage of the area showing weeds, crops
and ground are 0.006%, 0.4%, 99.6%. The training set created by cropping the original
dataset is slightly better class balanced with the portion of data per class weed, crop and
ground: 0.32%, 2.2%, 97.47%. The generation of a DFT is described in detail in section
5.3.2. The resulting DFT has a class ratio of 1.9%, 4.2%, 93.9%.
A third model is trained on a combination of the original cropped data and the generated
DFT. The combined training set contains 50% of the images of the other training sets. The
class balance is 1.13% weed, 3.18% crop and 95.69% ground. All models are trained for 50
epochs. The models are tested on the 310521 and 110621 test dataset which was collected
via smartphone camera on a őeld in Kallham. Table 6.9 shows the results on the test set
after 50 epochs of training. The bar chart 6.1 shows that on both soy testsets the DFT
performs better than the origianl data. The best accuracy on both test sets was reached by
the model trained on a combination of original data and the DFT. The low score in weed
segmentation of all variants may be due to the differences between the weeds in the training
set and the test set. Only weeds from the BOKU dataset were used for the DFT generation.

This experiment showed that the model trained only on the cropped original data
performs far worse (0.4 original - 0.7 DFT, 0.3 original - 0.5 DFT) than the DFT or the
model trained on the combined dataset when it is used to predict images from a another
őeld (Kallham 110621 and 310521). The accuracy of the model trained on the DFT build
on the BOKU soy data is similar to the model trained on the data collected via the Data
Collection Workŕow in Kallham.
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Figure 6.1.: Test results of the Models Trained on the BOKU Soy Dataset Tested on the
Kallham Soy Datasets.

6.4.2. BOKU Sugar Beet

Models are trained on the sugar beet 2020 dataset, collected and annotated by the
University of Natural Resources and Applied Life Sciences in Vienna (BOKU). One model
is trained on a DFT build on the plants cropped from the original dataset. The second
model is trained on 2250 images cropped to the size 513x513px from the original data.
The performances of the trained models are compared by using the same test sets to
determine the IoU score on different images for each model.
The main difference of the datasets are the backgrounds. The DFT generator algorithm
inserts plant images into images of ground without plants. The background images are
collected on different days and in different places. All background images stored in the
database are used for the generation of the DFT. In total 44 different ground images are
used in the DFT. A lot of different background images should enable the model to learn
a general understanding of ground. The model should be more robust to shades, different
lightning conditions, stones or straw lying on the surface.
The original sugar beet dataset collected in 2020 contains 267 images with a resolution
of 1936px X 1216px. The images were collected in a sugar beet őeld 16, 20, 27, 34 and
43 days after sowing. 19, 62, 80, 81 and 25 images are included in the dataset for the
corresponding day of collection. The separation of the dataset results in 1419 cropped
plant images where 292 are sugar beet plants. Both models are trained for 50 epochs.
The model are tested on 30 sugarbeet images taken on the experimental farm of BOKU.
Table ?? shows the results on the sugarbeet images taken on 20.05.2021. Pixel wise
accuracy over all classes and Intersection over Union score for each class and averaged
over all classes are shown in the diagram. Models tested on data from BOKU taken on
20.05.2021 in a sugarbeet őeld and sugar beet images from the University of Bonn. The

46



6.4. BOKU Dataset

Figure 6.2.: Results of Semantic Segmentation of a Model Trained with BOKU 2020
Sugarbeet Data DFT and Original

DFT trained models perform better compared to the original counterparts but all models
cannot accurately segment the images. The model trained with the DFT can assign all
classes better than the model trained with the original images. With the mean IoU score
of 0.51 DFT and 0.45 original, both models have a large error and cannot reliably segment
the images.
The test on the sugar beet data from the University of Bonn showed a similar picture
as the BOKU data. The DFT model is slightly better but still not able to segment the
image with high accuracy (mIoU of 0.5). It is noticeable that the ground is recognized
much better by the models trained with DFT. The inŕuences of different soils on the
performance of the model can be reduced using a DFT, but there are still some errors
related to soil misclassiőcation.
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Table 6.3.: Training with the Carrot Dataset
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Dataset Best Epoch Total Training Time mean IoU
1 - 10 Subset 72 23:25:13 0.59
1 - 20 Subset 66 23:33:41 0.71
1 - 30 Subset 98 23:34:26 0.73
1 - 40 Subset 97 23:30:59 0.72
1 - 50 Subset 99 23:14:21 0.72

Table 6.4.: Results of Models Trained with DFTs Generated with Different Subsets of the
Carrot Dataset

Table 6.5.: Images of 1-20 Carrot DFT

Table 6.6.: Example Images of the Digital Field Twin Build of Soy Plant Images Taken
31.05.21 and Weeds from the Seedling Database [GJJ+17]
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0.85 0.95 0.94 0.65 0.67

Table 6.7.: Example Images of the Test Dataset of Soy images taken on the 31.05.2021
on a Farm in Kallham, Upper Austria.
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0.72 0.64 0.90 0.76 0.57

Table 6.8.: Test Set Predictions with the Model Trained with Self Collected Soy Dataset
11.06.2021

Name Test Data Accuracy mIoU Weed mIoU Crop mIoU Ground mIoU all Classes

DFT 310521 0.986 0.311 0.822 0.987 0.707
Original 310521 0.934 0 0.287 0.93 0.405

Combined 310521 0.984 0.335 0.836 0.984 0.718
DFT 110621 0.867 0.009 0.628 0.909 0.515

Original 110621 0.569 0 0.345 0.564 0.303
Combined 110621 0.875 0.160 0.592 0.932 0.561

Table 6.9.: Test Results of the Models Trained on the BOKU Soy Sataset Tested on the
Kallham soy datasets.
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Neural networks perform best in stable environments. This is the reason why autonomous
driving still encounters great difficulties. The machine learning model has to segment
the scene in order to decide for example if the car should break because of an obstacle.
However, there are lot of different and currently changing parameters in a street scene
like different types of cars, trucks, busses, pedestrians, buildings or bicycles.
A team from the Max Planck Institute for Intelligent Systems has shown that even small
changes in the image can cause the failure of the algorithm. The team designed a sticker
that confuses a neural network trained to segment street scenes such that the model is
more or less out of order. Designing robust, fail safe deep learning algorithms is very
difficult. A small sticker on the T-shirt of a pedestrian does not disturb the human
perception system, while an autonomous car can be very negatively affected [GK21].
An algorithm that distinguishes weeds from crops has signiőcantly lower requirements
for robustness or accuracy compared to a system for autonomous cars. Missing a weed
or misclassifying a crop plant as a weed is of little consequence, at worst it will reduce
the yield of a őeld. In the context of autonomous cars, misinterpreting a situation such
as overlooking a pedestrian or classifying a plastic bag as a solid obstacle can lead to
serious accidents. For this reason, agriculture offers a good environment to apply machine
learning safely and with added value.
A őeld is a very inert system that does not change abruptly over time. Plants usually do
not look noticeably different in one day. Only environmental inŕuences such as sunlight or
rain can change the appearance of the scene and might make it more difficult for neuronal
networks to assign the classes correctly.
However, data augmentation can help to simulate the effects of different inŕuences on the
őelds, e.g. solar radiation. The system presented in this project to create the Digital Field
Twin changes the size, the colors and the brightness of the images (ground and plants)
to adapt the training data so that the trained model can better cope with differences
regarding the ground or the lighting.

7.1. Research Question 1

How do weed/crop segmentation models differ in terms of the similarity to
the ground truth when trained on original data or generated data?

Research projects showed that synthetic data and data augmentation improve the
performance of weed/crop detection models [CPGP, FPP+]. The algorithms to create
synthetic őelds are based on a mathematical model of a plant or Generative Adversarial
Networks. Both techniques are able to extend a training dataset so that it performs

53



7. Discussion

better on unseen test data. However, the algorithms are complex. Adding new plants
requires the design of a new mathematical model of a plant. In contrast, the approach
presented in this work is a simple image manipulation algorithm. Creating a Digital Field
Twin with new crops or add new weeds is possible without adapting the algorithm. The
experiment with the carrot dataset and the model trained on the soy data from BOKU
tested on an image taken on another soy őeld showed that the model trained on the DFT
performs signiőcantly better than the model trained with the original data.

7.2. Research Question 2

How does the performance of a semantic segmentation model trained on a
Digital Field Twin compare to manually annotated training data?
Andrew Ng suggests to choose validation and test set from the same distribution repres-
enting the target domain best [Ng18]. Similarity of training and target domain makes it
easier to train a model with high accuracy. As mentioned above, őelds are stable and are
therefore a good environment for machine learning. Fields with the same crop, the same
sowing time and similar weather conditions have a high degree of similarity. A őeld is
quite homogeneous in these parameters like temperature, precipitation or sunshine hours.
As shown in the experiment with the carrots dataset, it is easily possible to train a model
with images taken on one side of a őeld, which can segment the images of the plants on
the other end of the őeld with high accuracy (> 0.70 mIoU score).
The Digital Field Twin is built from single plants that are loaded from a database con-
sidering particular metadata (e.g. age of the plant). Training data can be generated in
a way so that it is similar to the current state of the őeld. It can be adjusted, which
weeds occur, how old the crops are or where the plant images were taken. An individual
model can be trained for this őeld and does not have to work for all ages of a crop. This
simpliőes training and increases accuracy.
In order to further increase the similarity of the training data with the target data, new
data can be recorded and annotated directly at the őeld. The average duration to annotate
an image of a őeld is between 5 and 30 minutes according to [CPGP]. Annotating őelds
of weeds and crops requires trained annotators and a computer with appropriate software.
The workŕow presented in this work is executed on a smartphone and needs about 1
minute to collect and annotate one new plant. The data collection workŕow results in well
annotated, őnely bordered plants, which remain complete. In contrary, extracting images
from annotated datasets has the disadvantage that sometimes the plants are cut off at
the edges of the image or are not perfectly separated due to clustering of the annotation
mask.
The model trained on 25 images of a soybean plants in Kallham collected via smartphone,
in combination with weed images from a dataset collected in Denmark, achieved high
accuracy (>0.7 mIoU) in semantic segmentation of images of the same soybean őeld in
Kallham.
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7.3. Research Question 3

How is the semantic segmentation accuracy influenced by the age of the
plants?
The digital őeld twin created with 25 images of soybean plants collected at Kallham
performed well with images taken in the same őeld and on the same day. Performance
dropped from 0.71 mIoU to 0.54 mIoU when the model was tested with images taken 11
days later in the same őeld. This shows that the age of the plants has a large effect on
prediction accuracy.
For targeted weed control, it is necessary to decide where exactly a weed grows. As can be
seen in some example pictures in Table 6.8, some parts of a plant are classiőed partly as
a crop, partly as a weed. This problem must be solved so that the algorithm can be used
as a basis for targeted weed control. The environmental impact is reduced with the DFT
by using a variety of data augmentation techniques, but remains a challenge. Unstable
solar radiance or unknown ground can lead to signiőcant losses in classiőcation accuracy.
Furthermore, the economic beneőt is only given if the savings exceed the additional costs
for the technical effort. Vision-based weed detection systems require cameras, processing
units, and an actuator (e.g., hoe or individually controllable valves). These high-tech
machines are much more complex and therefore more error-prone than systems currently
in use, which process the entire őeld uniformly.
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Agriculture is caught between the increasing demand for agricultural products and the
desire to make production methods more environmental and climate friendly. Machine
learning has the potential to make the production of our food greener.Targeted actions
with effect on single plants instead of broadcast treatment of an entire őeld would save
resources like pesticides and fertilizer. Proper actions in the őeld require decisions like: is
a plant sick, what nutrients are missing or is it a weed?
In this context, data to train a neural network in good quality and sufficient quantity is
needed. The separation of őeld images into single plants and the recombination of the
cropped plant images can increase the power of a training dataset for weed/crop detection.
The Digital Field Twin uses data augmentation techniques and different ground images
to diversify the dataset. The model trained on a Digital Field Twin is even better in
semantic segmentation of unseen őeld images as a model trained only on the original
data.
The proposed Data Collection Workŕow simpliőes the collection and annotation of new
plant images. The workŕow can be executed for collecting plants on a part of the őeld via
smartphone by a farmer. The cropped images can be recombined to a DFT and used to
train semantic segmentation model for crop/weed detection. An experiment on a soy őeld
showed that the model performs well on other parts of the same őeld. The advantage of
this approach is that the model is trained for a speciőc őeld at a certain point in time
and is therefore simpler to train. The tests also showed that the model only provide good
results on the same őeld but other őelds are only very poorly segmented. Further research
would be needed to őnd a good combination of similar plant images from a database and
newly collected plants. A community could use there smartphones to populate a database
with images of there őelds and annotate them right away. This database could help other
farmers to make the generation of a Digital Field Twin even easier and more accurate.
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A. Appendix

A.1. Zusammenfassung

Kamerabasierte Systeme in der Landwirtschaft können die Menge an benötigten Unkraut-
bekämpfungsmitteln reduzieren. Die Systeme müssen dabei beurteilen können, ob es sich
bei einer Pŕanze um Unkraut oder eine Nutzpŕanze handelt. Die Grundlage hierfür sind
Neuronale Netze, die sich ihr źWissenł auf Basis von Daten aneignen. Diese Daten müssen
zunächst gesammelt und anschließend aufbereitet werden. Die Aufbereitung dieser Daten
ist in der Regel sehr zeitintenstiv und benötigt in vielen Fällen speziősches Fachwissen.
Die gegenständliche Masterarbeit beschäftigt sich mit dem Einsatz von Neuronalen Netzen
für die Erkennung von Unkraut auf Fotos eines Ackers. Es wird aufgezeigt, dass Datensets
erweitert werden können, indem die Pŕanzen (Unkräuter und Nutzpŕanzen) aus den
Bildern ausgeschnitten, in einer Datenbank gespeichert und in anderer Form wieder
zusammengesetzt werden. Diese neu generierten Datensets werden źDigital Field Twinł
genannt und erzielen genauere Ergebnisse bei der Segmentierung von neuem Bildmaterial
der selben Nutzpŕanze. Diese Bilder können einer bestehenden Datenbank entnommen
werden oder von Landwirten am Feld mittels Smartphone aufgenommen werden. Für
Letzteres wurde ein eigener Arbeitsablauf erstellt und implementiert, welcher den An-
wender am Smartphone durch den Prozess des Fotograőerens und Beschriften einer neuen
Pŕanze führt. Das Sammeln neuer Daten bedarf keiner händischen Kennzeichnung der
Pŕanzen im Bild. Am Beispiel eines echten Sojafeldes wird in der Arbeit aufgezeigt, dass
mit den Daten, die mit einem Smartphone in einem Teilstück des Feldes aufgenommen
wurden, ein Model trainiert werden kann, welches Bilder von anderen Teilstücken des
Feldes mit hoher Genauigkeit segmentieren kann.
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