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Chapter 2

Abstract

Using the existence of an infinite number k in the non-Archimedean ring of
Robinson-Colombeau, we define the hyperfinite Fourier transform (HFT) by
considering integration extended to [−k, k]n instead of (−∞,∞)n. In order to
realize this idea, the space of generalized functions we consider is that of gen-
eralized smooth functions (GSF), an extension of classical distribution theory
sharing many nonlinear properties with ordinary smooth functions, like the clo-
sure with respect to composition, a good integration theory, and several classical
theorems of calculus. Even though the final transform depends on k, we obtain
a new notion that applies to all GSF, in particular to all Schwartz’s distributions
and to all Colombeau generalized functions, without growth restrictions. We
prove that this FT generalizes several classical properties of the ordinary FT,
and in this way we also overcome the difficulties of FT in Colombeau’s settings.
Differences in some formulas, such as in the transform of derivatives, reveal to
be meaningful since allow to obtain also global unique non-tempered solutions
of differential equations. Before dealing with HFT, we need the correct notion
of a limit to interchange with the integral sign. In fact, it is well-known that
the notion of limit in the sharp topology of sequences of Colombeau generalized
numbers R̃ does not generalize classical results. E.g. the sequence 1

n ̸→ 0 and
a sequence (xn)n∈N converges if and only if xn+1 − xn → 0. This has several
deep consequences, e.g. in the study of series, analytic generalized functions,
or sigma-additivity and classical limit theorems in integration of generalized
functions. The lacking of these results is also connected to the fact that R̃ is
necessarily not a complete ordered set, e.g. the set of all the infinitesimals has
neither supremum nor infimum. We first present a solution of these problems
with the introduction of the notions of hypernatural number, hypersequence,
close supremum and infimum. In this way, we can generalize all the classical
theorems for the hyperlimit of a hypersequence.
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Chapter 3

Kurzfassung

Unter Verwendung der Existenz einer unendlichen Zahl k im nicht-archimedischen
Ring von Robinson-Colombeau definieren wir die hyperfinite Fourier-Transformation
(HFT), indem wir über [−k, k]n anstatt (−∞,∞)

n
integrieren. Um diese Idee

zu realisieren, betrachten wir einen bestimmten Raum verallgemeinerter Funk-
tionen, nämlich den der verallgemeinerten glatten Funktionen (GSF); dies ist
eine Erweiterung der klassischen Distributionstheorie, die mit gewöhnlichen
glatten Funktionen viele nichtlineare Eigenschaften gemeinsam hat, wie z.B.
Abschluss unter Komposition, eine zufriedenstellende Integrationstheorie und
mehrere klassische Theoreme der Infinitesimalrechnung. Obwohl die Transfor-
mation letztendlich von k abhängt, erhalten wir einen neuen Begriff, der auf
alle GSF, insbesondere auf alle Schwartz-Distributionen und alle verallgemein-
erten Funktionen im Sinne von Colombeau, ohne Wachstumsbeschränkungen
angewendet werden kann. Wir beweisen, dass diese FT mehrere klassische
Eigenschaften der gewöhnlichen FT verallgemeinert, und überwinden auf diese
Weise auch die Schwierigkeiten der FT im Colombeau-Setting. Unterschiede
in einigen Formeln, wie zum Beispiel bei der Transformation von Ableitungen,
erweisen sich als sinnvoll, weil dadurch auch globale eindeutige nichttemperierte
Lösungen von Differentialgleichungen erhalten werden können. Bevor wir uns
mit der HFT befassen, benötigen wir einen passenden Begriff des Grenzwertes,
der mit dem Integralzeichen vertauscht werden kann. Tatsächlich ist bekannt,
dass der Begriff des Grenzwertes in der scharfen Topologie von Folgen von
Colombeau-verallgemeinerten Zahlen R̃ ungeeignet ist zur Verallgemeinerung
klassischer Resultate. Z.B. gilt 1

n ̸→ 0, und eine Folge (xn)n∈N konvergiert dann,
und nur dann, wenn xn+1−xn → 0. Dies hat mehrere tiefgreifende Konsequen-
zen, z.B. bei der Untersuchung von Reihen, von analytischen verallgemeinerten
Funktionen, oder von Sigma-Additivität und klassischen Grenzwertsätzen in
der Integration verallgemeinerter Funktionen. Das Nichtvorhandensein dieser
Resultate hängt auch damit zusammen, dass R̃ zwangsläufig keine vollständige
geordnete Menge ist, denn z.B. besitzt die Menge aller infinitesimalen Elemente
weder ein Supremum noch ein Infimum. Wir präsentieren zunächst eine Lösung
für diese Probleme durch die Einführung der Begriffe

”
hypernatürliche Zahl“,
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”
Hyperfolge“,

”
enges Supremum bzw. Infimum“. Auf diese Weise können wir

alle klassischen Sätze auf den Hypergrenzwert einer Hyperfolge verallgemeinern.
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Chapter 4

Introduction

Fourier transform (FT) and generalized functions (GF) are naturally interwo-
ven, since the former naturally leads to suitable spaces of the latter. This
already occurs even in trivial cases, such as transforming a simple sound wave
f(t) = A sin(2πω0t), whose spectrum must be, in some way, concentrated at
the frequencies ±ω0. Even the link between constants and delta-like functions
was already conceived by Fourier (see e.g. [45]). Although different theories of
generalized functions arise for different motivations, from distribution theory of
Sobolev, Schwartz [62, 66] up to Hairer’s regularity structures [38], almost all
these theories are usually augmented with a corresponding calculus of FT, which
can be applied to an appropriate subspace of generalized functions. Since the be-
ginning of distribution theory, it was hence natural to try to extend the domain
of the FT with less or even with no growth restrictions imposed. In fact, e.g., as
a consequence of these restrictions, the only solution of the trivial ODE y′ = y
we can achieve using tempered distributions is the trivial one. We can hence
cite in [25, 26] the definition of the FT as the limit of a sequence of functions
integrated on a finite domain, or [74] for a two-sided Laplace transform defined
on a space larger than that of tempered distributions, and similarly in [6] for
the directional short-time Fourier transform of exponential-type distributions.
In the same direction we can inscribe the works [5, 12, 18, 40, 57, 68, 65, 21, 22]
on ultradistributions, hyperfunctions and thick distributions.

On the other hand, problems originating from physics, such as singularities
and point-source fields, also suggest us to consider alternative modeling, ranging
from non-smooth functions as test functions in the theory of distributions (see
e.g. [72] and references therein) to non-Archimedean analysis (i.e. mathematical
analysis over a ring extending the real field and containing infinitesimal and/or
infinite numbers, see [37, 23]). In general, a key concept of non-Archimedean
analysis is that extending the real field R into a ring containing infinitesimals
and infinite numbers could eventually lead to the solution of non trivial prob-
lems. This is the case, e.g., of Colombeau theory, where nonlinear generalized
functions can be viewed as set-theoretical maps on domains consisting of gen-
eralized points of the non-Archimedean ring R̃. This orientation has become
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increasingly important in recent years and hence it has led to the study of pre-
liminary notions of R̃ (cf., e.g., [54, 4, 2, 55, 3, 7, 71, 35, 49]; see below for a

self-contained introduction to the ring of Colombeau generalized numbers R̃).
In the interplay between mathematics and physics, it is well-known that heuris-
tically manipulating non-linear pointwise equalities such as H2 = H (H being
the Heaviside function) can easily lead to contradictions (see e.g. [11, 37]). This
can make particularly difficult to realize the strategy of [47], where the au-
thors search for a metaplectic representation from symplectic maps to symplec-
tic relations. According to A. Weinstein (personal communication, May 2019),
this would require an algebra of generalized functions extending the usual al-
gebra of smooth functions and a FT acting on them with the usual inversion
formula and transforming the Dirac delta into a constant 1. As we will see
more diffusely in the chapter 6, this is not possible in the classical approach
to Colombeau’s algebra, see [14, 16, 52, 39]. In fact, although the notion of
FT in the Colombeau setting shares several properties with the classical one, it
lacks e.g. the Fourier inversion theorem, which holds only at the level of equal-
ity in the sense of generalized tempered distributions (g.t.d.) [14, 16, 52], see
also (6.7.3). See also [67] for a Paley-Wiener like theorem. In other words,
we only have e.g. Fφ̂(∂

αu) =g.t.d. i
|α|ωαFφ̂(u), i

|α|F∗
φ̂(∂

αu) =g.t.d. x
αF∗

φ̂(u),
Fφ̂F∗

φ̂u =g.t.d. F∗
φ̂Fφ̂u, where Fφ̂(u) denotes the Fourier transform with re-

spect to the damping measure. Moreover ⟨ιR(T̂ ), ψ⟩ ≈ ⟨Fφ̂ιR(T ), ψ⟩ for all
T ∈ S ′(R) and all ψ ∈ S(R), where ιR(T ) is the embedding of Schwartz distribu-
tions as Colombeau generalized functions. The only known possibility to obtain
a strict Fourier inversion theorem in Colombeau’s theory, is the approach used
by [53], where smoothing kernels are used as index set (instead of the simpler
ε ∈ I) and therefore the knowledge of infinite dimensional calculus in conve-
nient vector spaces is needed. Unfortunately, the latter approach is not widely
known, even in the community of CGF, and it can be considered as technically
involved.

To overcome this type of problems, we are going to use the category of gen-
eralized smooth functions (GSF), see [29, 30, 46, 28, 31]. This theory seems
to be a good candidate, since it is an extension of classical distribution the-
ory which allows to model nonlinear singular problems, while at the same time
sharing many nonlinear properties with ordinary smooth functions, like the clo-
sure with respect to composition (thereby, they form an algebra extending the
algebra of smooth functions with pointwise product) and several non trivial
classical theorems of the calculus. One could describe GSF as a methodolog-
ical restoration of Cauchy-Dirac’s original conception of generalized function,
see [19, 44, 41]. In essence, the idea of Cauchy and Dirac (but also of Poisson,
Kirchhoff, Helmholtz, Kelvin and Heaviside) was to view generalized functions
as suitable types of smooth set-theoretical maps obtained from ordinary smooth
maps depending on suitable infinitesimal or infinite parameters. For example,
the density of a Cauchy-Lorentz distribution with an infinitesimal scale pa-
rameter was used by Cauchy to obtain classical properties which nowadays are
attributed to the Dirac delta, cf. [41].
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The basic idea to define a very general FT in this setting is the following:
Since GSF form a non-Archimedean framework, we can consider a positive in-
finite generalized number k (i.e. k > r for all r ∈ R>0) and define the FT with
the usual formula, but integrating over the n-dimensional interval [−k, k]n. Al-
though k is an infinite number (hence, [−k, k]n ⊇ Rn), this interval behaves
like a compact set for GSF, so that, e.g., on these domains we always have
an extreme value theorem and integrals always exist. Clearly, this leads to a
FT, called hyperfinite FT, that depends on the parameter k, but, on the other
hand, where we can transform all the GSF defined on this interval and these
include all tempered Schwartz distributions, all tempered Colombeau GF, but
also a large class of non-tempered GF, such as the exponential functions, or
non-linear examples like δa ◦ δb, δa ◦Hb, a, b ∈ N, etc. Not all the properties of
the classical FT remain unchanged for this more general transform, but the final
formalism still retains the useful properties of the FT in dealing with differential
equations. Even more, the new formula for the transform of derivatives leads
to discover also exponential solutions of the aforementioned ODE y′ = y. Since
[17] proves that ultradistributions and periodic hyperfunctions can be embed-
ded in Colombeau type algebra (and hence as GSF), this give strong hints to
conjecture that the hyperfinite FT is very general, and it justifies the title of
this doctoral thesis.

One of the most important results one aims to achieve in developing a FT
theory is clearly the Fourier inversion theorem. Trying to generalize the classical
proof, a pivotal step is the possibility to interchange limits with integration.
This necessarily leaded us, in chapter 5, to firstly develop the correct notion
of limit (called hyperlimit) for the most useful topology for GSF, i.e. the sharp

topology. In fact, the sharp topology on R̃ (cf., e.g., [27, 60, 61] and below) is the
appropriate notion to deal with continuity of this class of generalized functions
and for a suitable concept of well-posedness. This topology necessarily has to
deal with balls having infinitesimal radius r ∈ R̃, and thus 1

n ̸→ 0 if n → +∞,
n ∈ N, because we never have R>0 ∋ 1

n < r if r is infinitesimal. Another
unusual property related to the sharp topology can be derived from the following
inequalities (where m ∈ N, n ∈ N≤m, r ∈ R̃>0 is an infinitesimal number, and
|xk+1 − xk| ≤ r2)

|xm − xn| ≤ |xm − xm−1|+ . . .+ |xn+1 − xn| ≤ (m− n)r2 < r,

which imply that (xn)n∈N ∈ R̃N is a Cauchy sequence if and only if |xn+1 − xn| →
0 (actually, this is a well-known property of every ultrametric space, cf., e.g.,
[42, 60]). Naturally, this has several counter-intuitive consequences (arising from
differences with the classical theory) when we have to deal with the study of
series, analytic generalized functions, or sigma-additivity and classical limit the-
orems in integration of generalized functions (cf., e.g., [58, 70, 31]). In order
to settle this problem, it is important to generalize the role of the net (ε), as
used in Colombeau theory, into a more general ρ = (ρε) → 0 (which is called a

gauge), and hence to generalize R̃ into some ρ
R̃ (see Def. 1). We then introduce
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the set of hypernatural numbers as

ρ
Ñ :=

{
[nε] ∈ ρ

R̃ | nε ∈ N ∀ε
}
,

so that it is natural to expect that 1
n → 0 in the sharp topology if n→ +∞ with

n ∈ ρ
Ñ, because now n can also take infinite values. The notion of sequence is

therefore substituted with that of hypersequence, as a map (xn)n : σ
Ñ −→ ρ

R̃,
where σ is, generally speaking, another gauge. As we will see, (cf. example 37)

only in this way we are able to prove e.g. that 1
logn → 0 in ρ

R̃ as n ∈ σ
Ñ but

only for a suitable gauge σ (depending on ρ), whereas this limit does not exist
if σ = ρ.

The notions of supremum and infimum are naturally linked to the notion of
limit of a monotonic (hyper)sequence. Being an ordered set, ρ

R̃ already has a
definition of, let us say, supremum as least upper bound. However, as already
preliminary studied and proved by [24], this definition does not fit well with

topological properties of ρ
R̃ because generalized numbers [xε] ∈ ρ

R̃ can actually
jump as ε→ 0+ (see Sec. 5.3.1). It is well known that in R we have m = sup(S)
if and only if m is an upper bound of S and

∀r ∈ R>0 ∃s ∈ S : m− r ≤ s. (4.0.1)

This could be generalized into the notion of close supremum in ρ
R̃, generalizing

[24], that results into better topological properties, see Sec. 5.3. The ideas
presented in this doctoral thesis, can surely be useful to explore similar ideas in
other non-Archimedean settings, such as [10, 9, 64, 56, 42].

Moreover, since our non-Archimedean scalars form a non-totally ordered
ring, also the notion of subpoint revealed to be very useful with its invertibility
on subpoints (see Lem. 10 and its trichotomy (and quadrichotomy!) laws (see
Lem. 11 and Lem. 12).

The structure of the current PhD thesis is as follows. In chapter 5, we
develop the theory of hyperlimits and its natural links with close supremum
and infimum (see [24]) of monotonic hypersequences.

Next, in chapter 6, we start with an introduction into the setting of GSF
and give basic notions concerning GSF and its calculus that are needed for
a first study of the hyperfinite FT (Sec. 6.1). we then define the hyperfinite
FT in Sec. 6.4 and the convolution of compactly supported GSF in Sec. 6.3. In
Sec. 6.5, we show how the elementary properties of FT change for the hyperfinite
FT. In Sec. 6.6 and Sec. 6.1.2, we respectively prove the inversion theorem and
give general condition to guarantee that the embedding of Sobolev-Schwartz
tempered distributions preserves their FT, i.e. that the hyperfinite FT com-
mutes with the embedding of Schwartz functions and tempered distributions.
In this section, we also recall the problems of FT in the Colombeau’s setting
and how we overcome them. Finally, in Sec. 6.8 we give classical examples of
differential and convolution equations which underscore the new possibility to
transform non-tempered generalized functions. We hence prove global existence
and uniqueness results of classical differential equations that includes as special

10



cases the usual tempered solutions, but also comprise non-tempered solutions
and initial conditions.

Finally, in chapter 7, we introduce the concept of a space of rapidly decreas-
ing GSF, as well as the proper notion of FT in this space. We prove that FT in
the space of a rapidly decreasing GSF is a continuous mapping from the space
of a rapidly decreasing GSF into itself. We also prove that every compactly
supported GSF is rapidly decreasing GSF (and vice versa). Finally, we formu-
late the properties of FT in the space of rapidly decreasing GSFs and prove the
corresponding inversion theorem.

Some conclusions we can summarize at the closure of this thesis are the
following:

1. In chapter 5, we showed how to deal with several deficiencies of the ring
of Robinson-Colombeau generalized numbers ρ

R̃: trichotomy law for the
order relations ≤ and <, existence of supremum and infimum and limits of
sequences with a topology generated by infinitesimal radii. In each case,
we obtain a faithful generalization of the classical case of real numbers.
We think that some of the ideas we presented in this article can inspire
similar works in other non-Archimedean settings such as (constructive)
nonstandard analysis, p-adic analysis, the Levi-Civita field, surreal num-
bers, etc (see e.g. [10, 9, 64, 56, 42]). Clearly, the notions introduced here
open the possibility to extend classical proofs in dealing with series, ana-
lytic generalized functions, sigma-additivity in integration of generalized
functions, non-Archimedean functional analysis, just to mention a few.

2. The power of a non-Archimedean language permeates the whole thesis
since the beginning (e.g. by defining GF as set-theoretical maps with in-
finite values derivatives or in the use of sharp continuity). This power
turned out to be important also for the hyperfinite FT: see the heuris-
tic motivation of the FT in Sec. 6.4.1, Example 103 about application of
the uncertainty principle to a delta distribution, or the hyperfinite FT of
exponential functions in Example 96 and in Sec. 6.8.

3. The results presented here are deeply founded on a strong and flexible
theory of multidimensional integration of GSF on functionally compact
sets as developed in [31]: as we mentioned above, the possibility to ex-
change hyperlimits and integration is an important step in the proof of
the Fourier inversion theorem; the possibility to compute ε-wise integrals
on intervals is another feature used in several theorems and a key step in
defining integration of compactly supported GSF.

4. It can also be worth explicitly mentioning that the definition of hyperfi-
nite FT is based on the classical formulas used only for rapidly decreasing
smooth functions and not on duality pairing. In our opinion, this is a
strong simplification that even more underscores the strict analogies be-
tween ordinary smooth functions and GSF. All this in spite of the fact
that the ring of scalars ρ

R̃ is not a field and is not totally ordered.
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5. Important differences with respect to the classical theory result from the
Riemann-Lebesgue Lem. 93 and the differentiation formula (6.5.1). In
the former case, we explained these differences as a general consequence
of integration by part formula, i.e. of the non-linear framework we are
working in, see Thm. 95. For example, the FT 1 := F(δ) of Dirac’s delta
equals 1 at all finite points but it is necessarily compactly supported, as
a consequence of the Riemann-Lebesgue lemma and the integration by
parts formula, i.e. because of the non-linear setting. On the other hand,
the compact support of the hyperfinite FT 1 of Dirac’s delta reveals to
be very important in stating and proving the preservation properties of
hyperfinite FT, see Sec. 6.7. Surprisingly (the classical formula dates
back at least to 1822), in Sec. 6.8 we showed that the new differentiation
formula is very important to get out of the constrained world of tempered
solutions.

6. Finally, Example 103 of application of the uncertainty principle, further
suggests that the space ρGC∞(K) may be a useful framework for quantum
mechanics, so as to have both GF and smooth functions in a space sharing
several properties with the classical L2(Rn) (but which, on the other hand,
is a graded Hilbert space).

12



Chapter 5

Supremum, infimum and
hyperlimits in the
non-Archimedean ring of
Colombeau generalized
numbers

5.1 The Ring of Robinson Colombeau and the
hypernatural numbers

5.1.1 The new ring of scalars

In the sequel, I denotes the interval (0, 1] ⊆ R and we will always use the variable
ε for elements of I; we also denote ε-dependent nets x ∈ RI simply by (xε). By
N we denote the set of natural numbers, including zero.

We start by introducing a new simple non-Archimedean ring of scalars that
extends the real field R. The entire theory is constructive to a high degree,
e.g. neither ultrafilter nor non-standard method are used. For all the proofs of
results in this section, see [28, 29, 31, 30]. As we mentioned above, in order to
accomplish the theory of hyperlimits, it is important to generalize Colombeau
generalized numbers by taking an arbitrary asymptotic scale instead of the usual
ρε = ε:

Definition 1. Let ρ = (ρε) ∈ (0, 1]I be a net such that (ρε) → 0 as ε→ 0+ (in
the following, such a net will be called a gauge), then

1. I(ρ) := {(ρ−a
ε ) | a ∈ R>0} is called the asymptotic gauge generated by ρ.

13



2. If P(ε) is a property of ε ∈ I, we use the notation ∀0ε : P(ε) to denote
∃ε0 ∈ I ∀ε ∈ (0, ε0] : P(ε). We can read ∀0ε as for ε small.

3. We say that a net (xε) ∈ RI is ρ-moderate, and we write (xε) ∈ Rρ if

∃(Jε) ∈ I(ρ) : xε = O(Jε) as ε→ 0+,

i.e., if
∃N ∈ N∀0ε : |xε| ≤ ρ−N

ε .

4. Let (xε), (yε) ∈ RI , then we say that (xε) ∼ρ (yε) if

∀(Jε) ∈ I(ρ) : xε = yε +O(J−1
ε ) as ε→ 0+,

that is if
∀n ∈ N∀0ε : |xε − yε| ≤ ρnε . (5.1.1)

This is a congruence relation on the ring Rρ of moderate nets with respect
to pointwise operations, and we can hence define

ρ
R̃ := Rρ/ ∼ρ,

which we call Robinson-Colombeau ring of generalized numbers. This name
is justified by [59, 13]: Indeed, in [59] A. Robinson introduced the no-
tion of moderate and negligible nets depending on an arbitrary fixed in-
finitesimal ρ (in the framework of nonstandard analysis); independently,
J.F. Colombeau, cf. e.g. [13] and references therein, studied the same con-
cepts without using nonstandard analysis, but considering only the par-
ticular gauge ρε = ε.

We will also use other directed sets instead of I: e.g. J ⊆ I such that 0 is a
closure point of J , or I×N. The reader can easily check that all our constructions
can be repeated in these cases. We can also define an order relation on ρ

R̃ by
saying that [xε] ≤ [yε] if there exists (zε) ∈ RI such that (zε) ∼ρ 0 (we then
say that (zε) is ρ-negligible) and xε ≤ yε + zε for ε small. Equivalently, we
have that x ≤ y if and only if there exist representatives [xε] = x and [yε] = y
such that xε ≤ yε for all ε. Although the order ≤ is not total, we still have
the possibility to define the infimum [xε] ∧ [yε] := [min(xε, yε)], the supremum
[xε]∨ [yε] := [max(xε, yε)] of a finite number of generalized numbers. See [50] for

a complete study of supremum and infimum in ρ
R̃. Henceforth, we will also use

the customary notation ρ
R̃∗ for the set of invertible generalized numbers, and

we write x < y to say that x ≤ y and x − y ∈ ρ
R̃∗. Our notations for intervals

are: [a, b] := {x ∈ ρ
R̃ | a ≤ x ≤ b}, [a, b]R := [a, b] ∩ R, and analogously for

segments [x, y] := {x+ r · (y − x) | r ∈ [0, 1]} ⊆ ρ
R̃n and [x, y]Rn = [x, y] ∩ Rn.

We also set Cρ := Rρ + i · Rρ and ρ
C̃ := ρ

R̃ + i · ρR̃, where i =
√
−1. On the

ρ
R̃-module ρ

R̃n we can consider the natural extension of the Euclidean norm,
i.e. |[xε]| := [|xε|] ∈ ρ

R̃, where [xε] ∈ ρ
R̃n.

As in every non-Archimedean ring, we have the following
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Definition 2. Let x ∈ ρ
R̃n be a generalized number, then

1. x is infinitesimal if |x| ≤ r for all r ∈ R>0. If x = [xε], this is equivalent
to limε→0+ |xε| = 0. We write x ≈ y if x− y is infinitesimal.

2. x is finite if |x| ≤ r for some r ∈ R>0.

3. x is infinite if |x| ≥ r for all r ∈ R>0. If x = [xε], this is equivalent to
limε→0+ |xε| = +∞.

For example, setting dρ := [ρε] ∈ ρ
R̃, we have that dρn ∈ ρ

R̃, n ∈ N>0, is an
invertible infinitesimal, whose reciprocal is dρ−n = [ρ−n

ε ], which is necessarily

a positive infinite number. Of course, in the ring ρ
R̃ there exist generalized

numbers which are not in any of the three classes of Def. 2, like e.g. xε =
1
ε sin

(
1
ε

)
.

Definition 3. We say that x is a strong infinite number if |x| ≥ dρ−r for some
r ∈ R>0, whereas we say that x is a weak infinite number if |x| ≤ dρ−r for
all r ∈ R>0. For example, x = −N log dρ, N ∈ N, is a weak infinite number,
whereas if xε = ρ−1

ε for ε = 1
k , k ∈ N>0, and xε = − log ρε otherwise, then x is

neither a strong nor a weak infinite number.

The following result is useful to deal with positive and invertible generalized
numbers. For its proof, see e.g. [37].

Lemma 4. Let x ∈ ρ
R̃. Then the following are equivalent:

1. x is invertible and x ≥ 0, i.e. x > 0.

2. For each representative (xε) ∈ Rρ of x we have ∀0ε : xε > 0.

3. For each representative (xε) ∈ Rρ of x we have ∃m ∈ N∀0ε : xε > ρmε .

4. There exists a representative (xε) ∈ Rρ of x such that ∃m ∈ N∀0ε : xε >
ρmε .

5.1.2 Topologies on ρ
R̃
n

As we mentioned above, on the ρ
R̃-module ρ

R̃n we defined |[xε]| := [|xε|] ∈ ρ
R̃,

where [xε] ∈ ρ
R̃n. Even if this generalized norm takes values in ρ

R̃, it shares
some essential properties with classical norms:

|x| = x ∨ (−x)
|x| ≥ 0

|x| = 0 ⇒ x = 0

|y · x| = |y| · |x|
|x+ y| ≤ |x|+ |y|
||x| − |y|| ≤ |x− y|.

It is therefore natural to consider on ρ
R̃n a topology generated by balls defined

by this generalized norm and the set of radii ρR̃>0 of positive invertible numbers:
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Definition 5. Let c ∈ ρ
R̃n then:

1. Br(c) :=
{
x ∈ ρ

R̃n | |x− c| < r
}
for each r ∈ ρ

R̃>0.

2. BE
r (c) := {x ∈ Rn | |x − c| < r}, for each r ∈ R>0, denotes an ordinary

Euclidean ball in Rn if c ∈ Rn.

The relation < has better topological properties as compared to the usual strict
order relation a ≤ b and a ̸= b (that we will never use) because the set of

balls
{
Br(c) | r ∈ ρ

R̃>0, c ∈ ρ
R̃n
}

is a base for a topology on ρ
R̃n called sharp

topology. We will call sharply open set any open set in the sharp topology. The
existence of infinitesimal neighborhoods (e.g. r = dρ) implies that the sharp
topology induces the discrete topology on R. This is a necessary result when one
has to deal with continuous generalized functions which have infinite derivatives.
In fact, if f ′(x0) is infinite, we have f(x) ≈ f(x0) only for x ≈ x0 , see [28]. Also

open intervals are defined using the relation<, i.e. (a, b) := {x ∈ ρ
R̃ | a < x < b}.

Lemma 6. Let R be a set of radii and x, y, z ∈ ρ
R̃, then

1. ¬ (x <R x).

2. x <R y and y <R z imply x <R z.

3. ∀r ∈ R : 0 <R r.

The relation <R has better topological properties as compared to the usual
strict order relation x ≤ y and x ̸= y (a relation that we will therefore never
use) because of the following result:

Theorem 7. The set of balls
{
BR

r (x) | r ∈ R, x ∈ ρ
R̃n
}

generated by a set of

radii R is a base for a topology on ρ
R̃n.

Henceforth, we will only consider the sets of radii ρ
R̃∗
≥0 = ρ

R̃>0 and R>0 and

will use the simplified notation Br(x) := BR
r (x) if R = ρ

R̃>0. The topology
generated in the former case is called sharp topology, whereas the latter is called
Fermat topology. We will call sharply open set any open set in the sharp topol-
ogy, and large open set any open set in the Fermat topology; clearly, the latter
is coarser than the former. It is well-known (see e.g. [3, 4, 27, 34, 31] and
references therein) that this is an equivalent way to define the sharp topology
usually considered in the ring of Colombeau generalized numbers. We therefore
recall that the sharp topology on ρ

R̃n is Hausdorff and Cauchy complete, see
e.g. [3, 34].

5.1.3 The language of subpoints

The following simple language allows us to simplify some proofs using steps
that recall the classical real field R, see [50]. We first introduce the notion of
subpoint :
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Definition 8. For subsets J , K ⊆ I we write K ⊆0 J if 0 is an accumulation
point of K and K ⊆ J (we read it as: K is co-final in J). Note that for any
J ⊆0 I, the constructions introduced so far in Def. 1 can be repeated using nets
(xε)ε∈J . We indicate the resulting ring with the symbol ρ

R̃n|J . More generally,
no peculiar property of I = (0, 1] will ever be used in the following, and hence
all the presented results can be easily generalized considering any other directed
set. If K ⊆0 J , x ∈ ρ

R̃n|J and x′ ∈ ρ
R̃n|K , then x′ is called a subpoint of x,

denoted as x′ ⊆ x, if there exist representatives (xε)ε∈J , (x
′
ε)ε∈K of x, x′ such

that x′ε = xε for all ε ∈ K. In this case we write x′ = x|K , dom(x′) := K, and

the restriction (−)|K : ρR̃n −→ ρ
R̃n|K is a well defined operation. In general, for

X ⊆ ρ
R̃n we set X|J := {x|J ∈ ρ

R̃n|J | x ∈ X}.

In the next definition, we introduce binary relations that hold only on sub-
points. Clearly, this idea is inherited from nonstandard analysis, where co-final
subsets are always taken in a fixed ultrafilter.

Definition 9. Let x, y ∈ ρ
R̃, L ⊆0 I, then we say

1. x <L y : ⇐⇒ x|L < y|L (the latter inequality has to be meant in the

ordered ring ρ
R̃|L). We read x <L y as “x is less than y on L”.

2. x <s y : ⇐⇒ ∃L ⊆0 I : x <L y. We read x <s y as “x is less than y on
subpoints”.

Analogously, we can define other relations holding only on subpoints such as
e.g.: =L, ∈L, ∈s, ≤s, =s, ⊆s, etc.

For example, we have

x ≤ y ⇐⇒ ∀L ⊆0 I : x ≤L y

x < y ⇐⇒ ∀L ⊆0 I : x <L y,

the former following from the definition of ≤, whereas the latter following from
Lem. 4. Moreover, if P {xε} is an arbitrary property of xε, then

¬
(
∀0ε : P {xε}

)
⇐⇒ ∃L ⊆0 I ∀ε ∈ L : ¬P {xε} . (5.1.2)

Note explicitly that, generally speaking, relations on subpoints, such as ≤s

or =s, do not inherit the same properties of the corresponding relations for
points. So, e.g., both =s and ≤s are not transitive relations.

The next result clarifies how to equivalently write a negation of an inequality
or of an equality using the language of subpoints.

Lemma 10. Let x, y ∈ ρ
R̃, then

1. x ≰ y ⇐⇒ x >s y

2. x ̸< y ⇐⇒ x ≥s y

3. x ̸= y ⇐⇒ x >s y or x <s y
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Using the language of subpoints, we can write different forms of dichotomy
or trichotomy laws for inequality.

Lemma 11. Let x, y ∈ ρ
R̃, then

1. x ≤ y or x >s y

2. ¬(x >s y and x ≤ y)

3. x = y or x <s y or x >s y

4. x ≤ y ⇒ x <s y or x = y

5. x ≤s y ⇐⇒ x <s y or x =s y.

Proof. 1 and 2 follows directly from Lem. 10. To prove 3, we can consider that
x >s y or x ̸>s y. In the second case, Lem. 10 implies x ≤ y. If y ≤ x then
x = y; otherwise, once again by Lem. 10, we get x <s y. To prove 4, assume that
x ≤ y but x ̸<s y, then x ≥ y by Lem. 10.1 and hence x = y. The implication
⇐ of 5 is trivial. On the other hand, if x ≤s y and x ̸<s y, then y ≤ x from
Lem. 10.1, and hence x =s y.

As usual, we note that these results can also be trivially repeated for the ring
ρ
R̃|L. So, e.g., we have x ̸≤L y if and only if ∃J ⊆0 L : x >J y, which is the

analog of Lem. 10.1 for the ring ρ
R̃|L.

The second form of trichotomy (which for ρ
R̃ can be more correctly named

as quadrichotomy) is stated as follows:

Lemma 12. Let x = [xε], y = [yε] ∈ ρ
R̃, then

1. x ≤ y or x ≥ y or ∃L ⊆0 I : Lc ⊆0 I, x ≥L y and x ≤Lc y

2. If for all L ⊆0 I the following implication holds

x ≤L y, or x ≥L y ⇒ ∀0ε ∈ L : P {xε, yε} , (5.1.3)

then ∀0ε : P {xε, yε}.

3. If for all L ⊆0 I the following implication holds

x <L y, or x >L y or x =L y ⇒ ∀0ε ∈ L : P {xε, yε} , (5.1.4)

then ∀0ε : P {xε, yε}.

Proof. 1: if x ̸≤ y, then x >s y from Lem. 10.1. Let [xε] = x and [yε] = y
be two representatives, and set L := {ε ∈ I | xε ≥ yε}. The relation x >s y
implies that L ⊆0 I. Clearly, x ≥L y (but note that in general we cannot prove
x >L y). If Lc ̸⊆0 I, then (0, εo] ⊆ L for some ε0, i.e. x ≥ y. On the contrary,
if Lc ⊆0 I, then x ≤Lc y.

2: Property 1 states that we have three cases. If xε ≤ yε for all ε ≤ ε0,
then it suffices to set L := (0, ε0] in (5.1.3) to get the claim. Similarly, we can
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proceed if x ≥ y. Finally, if x ≥L y and x ≤Lc y, then we can apply (5.1.3)
both with L and Lc to obtain

∀0ε ∈ L : P {xε, yε}
∀0ε ∈ Lc : P {xε, yε} ,

from which the claim directly follows.
3: By contradiction, assume

∀ε ∈ L : ¬P {xε, yε} , (5.1.5)

for some L ⊆0 I. We apply 1 to the ring ρ
R̃|L to obtain the following three

cases:

x ≤L y or x ≥L y or ∃J ⊆0 L : Jc ⊆0 L, x ≥J y and x ≤Jc y. (5.1.6)

If x ≤L y, by Lem. 11.4 for the ring ρ
R̃|L, this case splits into two sub-cases:

x =L y or ∃K ⊆0 L : x <K y. If the former holds, using (5.1.4) we get
P {xε, yε} ∀0ε ∈ L, which contradicts (5.1.5). If x <K y, then K ⊆0 I and we
can apply (5.1.5) with K to get P {xε, yε} ∀0ε ∈ K, which again contradicts
(5.1.5) because K ⊆0 L. Similarly we can proceed with the other three cases
stated in (5.1.6).

Property Lem. 12.2 represents a typical replacement of the usual dichotomy law
in R: for arbitrary L ⊆0 I, we can assume to have two cases: either x ≤L y or
x ≥L y. If in both cases we are able to prove P{xε, yε} for ε ∈ L small, then
we always get that this property holds for all ε small. Similarly, we can use the
strict trichotomy law stated in 3.

5.1.4 Open, closed and bounded sets generated by nets

A natural way to obtain sharply open, closed and bounded sets in ρ
R̃n is by using

a net (Aε) of subsets Aε ⊆ Rn. We have two ways of extending the membership

relation xε ∈ Aε to generalized points [xε] ∈ ρ
R̃n (cf. [55, 29]).

Definition 13. Let (Aε) be a net of subsets of Rn, then

1. [Aε] :=
{
[xε] ∈ ρ

R̃n | ∀0ε : xε ∈ Aε

}
is called the internal set generated

by the net (Aε).

2. Let (xε) be a net of points of Rn, then we say that xε ∈ε Aε, and we read
it as (xε) strongly belongs to (Aε), if

(a) ∀0ε : xε ∈ Aε.

(b) If (x′ε) ∼ρ (xε), then also x′ε ∈ Aε for ε small.

Moreover, we set ⟨Aε⟩ :=
{
[xε] ∈ ρ

R̃n | xε ∈ε Aε

}
, and we call it the

strongly internal set generated by the net (Aε).
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3. We say that the internal set K = [Aε] is sharply bounded if there exists

M ∈ ρ
R̃>0 such that K ⊆ BM (0).

4. Finally, we say that the (Aε) is a sharply bounded net if there exists N ∈
R>0 such that ∀0ε∀x ∈ Aε : |x| ≤ ρ−N

ε .

Therefore, x ∈ [Aε] if there exists a representative [xε] = x such that xε ∈ Aε for
ε small, whereas this membership is independent from the chosen representative
in case of strongly internal sets. An internal set generated by a constant net
Aε = A ⊆ Rn will simply be denoted by [A].

The following theorem (cf. [55, 29, 31]) shows that internal and strongly
internal sets have dual topological properties:

Theorem 14. For ε ∈ I, let Aε ⊆ Rn and let xε ∈ Rn. Then we have

1. [xε] ∈ [Aε] if and only if ∀q ∈ R>0 ∀0ε : d(xε, Aε) ≤ ρqε. Therefore

[xε] ∈ [Aε] if and only if [d(xε, Aε)] = 0 ∈ ρ
R̃.

2. [xε] ∈ ⟨Aε⟩ if and only if ∃q ∈ R>0 ∀0ε : d(xε, A
c
ε) > ρqε, where Ac

ε :=
Rn \ Aε. Therefore, if (d(xε, A

c
ε)) ∈ Rρ, then [xε] ∈ ⟨Aε⟩ if and only if

[d(xε, A
c
ε)] > 0.

3. [Aε] is sharply closed.

4. ⟨Aε⟩ is sharply open.

5. [Aε] = [cl (Aε)], where cl (S) is the closure of S ⊆ Rn.

6. ⟨Aε⟩ = ⟨int(Aε)⟩, where int (S) is the interior of S ⊆ Rn.

For example, it is not hard to show that the closure in the sharp topology of a
ball of center c = [cε] and radius r = [rε] > 0 is

Br(c) =
{
x ∈ ρ

R̃
d | |x− c| ≤ r

}
=
[
BE

rε(cε)
]
, (5.1.7)

whereas
Br(c) =

{
x ∈ ρ

R̃
d | |x− c| < r

}
= ⟨BE

rε(cε)⟩.

Using internal sets and adopting ideas similar to those used in proving
Lem. 12, we also have the following form of dichotomy law:

Lemma 15. For ε ∈ I, let Aε ⊆ Rn and let x = [xε] ∈ ρ
R̃n. Then we have:

1. x ∈ [Aε] or x ∈ [Ac
ε] or ∃L ⊆0 I : Lc ⊆0 I, x ∈L [Aε], x ∈Lc [Ac

ε]

2. If for all L ⊆0 I the following implication holds

x ∈L [Aε] or x ∈L [Ac
ε] ⇒ ∀0ε ∈ L : P{xε},

then ∀0ε : P{xε}.
Proof. 1: If x /∈ [Ac

ε], then xε ∈ Aε for all ε ∈ K and for some K ⊆0 I. Set
L := {ε ∈ I | xε ∈ Aε}, so that K ⊆ L ⊆0 I. We have x ∈L [Aε]. If Lc ̸⊆0 I,
then (0, ε0] ⊆ L for some ε0, i.e. x ∈ [Aε]. On the contrary, if Lc ⊆0 I, then
x ∈Lc [Ac

ε].
2: We can proceed as in the proof of Lem. 12.2 using 1.
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5.2 Hypernatural numbers

We start by defining the set of hypernatural numbers in ρ
R̃ and the set of ρ-

moderate nets of natural numbers:

Definition 16. We set

1. ρ
Ñ :=

{
[nε] ∈ ρ

R̃ | nε ∈ N ∀ε
}

2. Nρ := {(nε) ∈ Rρ | nε ∈ N ∀ε} .

Therefore, n ∈ ρ
Ñ if and only if there exists (xε) ∈ Rρ such that n = [int(|xε|)].

Clearly, N ⊂ ρ
Ñ. Note that the integer part function int(−) is not well-defined

on ρ
R̃. In fact, if x = 1 =

[
1− ρ

1/ε
ε

]
=
[
1 + ρ

1/ε
ε

]
, then int

(
1− ρ

1/ε
ε

)
= 0

whereas int
(
1 + ρ

1/ε
ε

)
= 1, for ε sufficiently small. Similar counter examples

can be set for floor and ceiling functions. However, the nearest integer function
is well defined on ρ

Ñ, as proved in the following

Lemma 17. Let (nε) ∈ Nρ and (xε) ∈ Rρ be such that [nε] = [xε]. Let rpi :
R −→ N be the function rounding to the nearest integer with tie breaking towards
positive infinity, i.e. rpi(x) = ⌊x+ 1

2⌋. Then rpi(xε) = nε for ε small. The same
result holds using rni : R −→ N, the function rounding half towards −∞.

Proof. We have rpi(x) = ⌊x+ 1
2⌋, where ⌊−⌋ is the floor function. For ε small,

ρε <
1
2 and, since [nε] = [xε], always for ε small, we also have nε − ρε +

1
2 <

xε+
1
2 < nε+ρε+

1
2 . But nε ≤ nε−ρε+ 1

2 and nε+ρε+
1
2 < nε+1. Therefore

⌊xε + 1
2⌋ = nε. An analogous argument can be applied to rni(−).

Actually, this lemma does not allow us to define a nearest integer function
ni : ρ

Ñ −→ Nρ as ni([xε]) := rpi(xε) because if [xε] = [nε], the equality nε =
rpi(xε) holds only for ε small. A simpler approach is to choose a representative

(nε) ∈ Nρ for each x ∈ ρ
Ñ and to define ni(x) := (nε). Clearly, we must consider

the net (ni(x)ε) only for ε small, such as in equalities of the form x = [ni(x)ε].
This is what we do in the following

Definition 18. The nearest integer function ni(−) is defined by:

1. ni : ρÑ :−→ Nρ

2. If [xε] ∈ ρ
Ñ and ni ([xε]) = (nε) then ∀0ε : nε = rpi(xε).

In other words, if x ∈ ρ
Ñ, then x = [ni(x)ε] and ni(x)ε ∈ N for all ε. Another

possibility is to formulate Lem. 17 as

[xε] ∈ ρ
Ñ ⇐⇒ [xε] = [rpi(xε)].

Therefore, without loss of generality we may always suppose that xε ∈ N when-
ever [xε] ∈ ρ

Ñ.
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Remark 19.

1. σ
Ñ, with the order ≤ induced by σ

R̃, is a directed set; it is closed with
respect to sum and product although recursive definitions using σ

Ñ are
not possible.

2. In σ
Ñ we can find several chains (totally ordered subsets) such as: N,

N · [int(ρ−k
ε )] for a fixed k ∈ N, {[int(ρ−k

ε )] | k ∈ N}.

3. Generally speaking, if m, n ∈ ρ
Ñ, mn /∈ ρ

Ñ because the net (mnε
ε ) can

grow faster than any power (ρ−K
ε ). However, if we take two gauges σ, ρ

satisfying σ ≤ ρ, using the net
(
σ−1
ε

)
we can measure infinite nets that

grow faster than (ρ−K
ε ) because σ−1

ε ≥ ρ−1
ε for ε small. Therefore, we

can take m, n ∈ σ
Ñ such that (ni(m)ε), (ni(n)ε) ∈ Rρ; we think at m, n

as σ-hypernatural numbers growing at most polynomially with respect to
ρ. Then, it is not hard to prove that if ρ is an arbitrary gauge, and we

consider the auxiliary gauge σε := ρe
1/ρε

ε . then mn ∈ σ
Ñ.

4. If m ∈ ρ
Ñ, then 1m := [(1 + zε)

mε ], where (zε) is ρ-negligible, is well
defined and 1m = 1. In fact, log(1 + zε)

mε is asymptotically equal
to mεzε → 0, and this shows that ((1 + zε)

mε) is moderate. Finally,
|(1 + zε)

mε − 1| ≤ |zε|mε(1 + zε)
mε−1 by the mean value theorem.

5.3 Supremum and Infimum in ρ
R̃

To solve the problems we explained in the introduction of this article, it is
important to generalize at least two main existence theorems for limits: the
Cauchy criterion and the existence of a limit of a bounded monotone sequence.
The latter is clearly related to the existence of supremum and infimum, which
cannot be always guaranteed in the non-Archimedean ring ρ

R̃. As we will see
more clearly later (see also [24]), to arrive at these existence theorems, the
notion of supremum, i.e. the least upper bound, is not the correct one. More
appropriately, we can associate a notion of close supremum (and close infimum)
to every topology generated by a set of radii (see Def. 5).

Definition 20. Let R be a set of radii and let τ be the topology on ρ
R̃ generated

by R. Let P ⊆ ρ
R̃, then we say that τ separates points of P if

∀p, q ∈ P : p̸=q ⇒ ∃A,B ∈ τ : p ∈ A, q ∈ B, A ∩B = ∅,

i.e. if P with the topology induced by τ is Hausdorff.

Definition 21. Let τ be a topology on ρ
R̃ generated by a set of radii R that

separates points of P ⊆ ρ
R̃ and let S ⊆ ρ

R̃. Then, we say that σ is (τ, P )-
supremum of S if

1. σ ∈ P ;
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2. ∀s ∈ S : s ≤ σ;

3. σ is a point of closure of S in the topology τ , i.e. if ∀A ∈ τ : σ ∈ A ⇒
∃s̄ ∈ S ∩A.

Similarly, we say that ι is (τ, P )-infimum of S if

1. ι ∈ P ;

2. ∀s ∈ S : ι ≤ s;

3. ι is a point of closure of S in the topology τ , i.e. if ∀A ∈ τ : ι ∈ A ⇒
∃s̄ ∈ S ∩A.

In particular, if τ is the sharp topology and P = ρ
R̃, then following [24], we

simply call the (τ, P )-supremum, the close supremum (the adjective close will
be omitted if it will be clear from the context) or the sharp supremum if we want
to underline the dependency on the topology. Analogously, if τ is the Fermat
topology and P = R, then we call the (τ, P )-supremum the Fermat supremum.
Note that 3 implies that if σ is (τ, P )-supremum of S, then necessarily S ̸= ∅.

Remark 22.

1. Let S ⊆ ρ
R̃, then from Def. 5 and Thm. 7 we can prove that σ is the

(τ, P )-supremum of S if and only if

(a) ∀s ∈ S : s ≤ σ;

(b) ∀r ∈ R∃s̄ ∈ S : σ − r ≤ s̄.

In particular, for the sharp supremum, 1b is equivalent to

∀q ∈ N∃s̄ ∈ S : σ − dρq ≤ s̄. (5.3.1)

In the following of this article, we will also mainly consider the sharp
topology and the corresponding notions of sharp supremum and infimum.

2. If there exists the sharp supremum σ of S ⊆ ρ
R̃ and σ /∈ S, then from

(5.3.1) it follows that S is necessarily an infinite set. In fact, applying
(5.3.1) with q1 := 1 we get the existence of s̄1 ∈ S such that σ−dρq1 < s̄1.
We have s̄1 ̸= σ because σ /∈ S. Hence, Lem. 10.3 and Def. 21.2 yield that
s̄1 <s σ. Therefore, σ−s̄1 ≥s dρ

q2 for some q2 > q1. Applying again (5.3.1)
we get σ − dρq2 < s̄2 for some s̄2 ∈ S \ {s̄1}. Recursively, this process
proves that S is infinite. On the other hand, if S = {s1, . . . , sn} and
si = [siε], then sup ([{s1ε, . . . , snε}]) = s1∨ . . .∨sn. In fact, s1∨ . . .∨sn =
[maxi=1,...,n snε] ∈ [{s1ε, . . . , snε}].

3. If ∃ sup(S) = σ, then there also exists the sup(interl(S)) = σ, where (see
[55]) we recall that

interl(S) :=


m∑
j=1

eSj
sj | m ∈ N, Sj ⊆0 I, sj ∈ S ∀j

 , eS := [1S ] ∈ ρ
R̃
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(1S is the characteristic function of S ⊆ I). This follows from S ⊆
interl(S). Vice versa, if ∃ sup(interl(S)) = σ and interl(S) ⊆ S (e.g. if
S is an internal or strongly internal set), then also ∃ sup(S) = σ.

Theorem 23. There is at most one sharp supremum of S, which is denoted by
sup(S).

Proof. Assume that σ1 and σ2 are supremum of S. That is Def. 21.2 and (5.3.1)
hold both for σ1, σ2. Then, for all fixed q ∈ N, there exists s̄2 ∈ S such that
σ2 − dρq ≤ s̄2. Hence s̄2 ≤ σ1 because s̄2 ∈ S. Analogously, we have that
σ1 − dρq ≤ s̄1 ≤ σ2 for some s̄1 ∈ S. Therefore, σ2 − dρq ≤ σ1 ≤ σ2 + dρq, and
this implies σ1 = σ2 since q ∈ N is arbitrary.

In [24], the notation sup(S) is used for the close supremum. On the other
hand, we will never use the notion of supremum as least upper bound. For
these reasons, we prefer to use the simpler notation sup(S). Similarly, we use
the notation inf(S) for the close (or sharp) infimum. From Rem. 22.1a and 1b
it follows that

inf(S) = − sup(−S) (5.3.2)

in the sense that the former exists if and only if the latter exists and in that case
they are equal. For this reason, in the following we only study the supremum.

Example 24.

1. Let K = [Kε] ⋐f
ρ
R̃ be a functionally compact set (see Def. 69), i.e. K ⊆

BM (0) for some M ∈ ρ
R̃>0 and Kε ⋐ R for all ε. We can then define

σε := sup(Kε) ∈ Kε. From K ⊆ BM (0), we get σ := [σε] ∈ K. It is not
hard to prove that σ = sup(K) = max(K). Analogously, we can prove
the existence of the sharp minimum of K.

2. If S = (a, b), where a, b ∈ ρ
R̃ and a ≤ b, then sup(S) = b and inf(S) = a.

3. If S =
{

1
n | n ∈ ρ

Ñ

}
, then inf(S) = 0.

4. Like in several other non-Archimedean rings, both sharp supremum and
infimum of the set D∞ of all infinitesimals do not exist. In fact, by con-
tradiction, if σ were the sharp supremum of D∞, then from (5.3.1) for
q = 1 we would get the existence of h̄ ∈ D∞ such that σ ≤ h̄ + dρ. But
then σ ∈ D∞, so also 2σ ∈ D∞. Therefore, we get 2σ ≤ σ because σ is an
upper bound of D∞, and hence σ = 0 ≥ dρ, a contradiction. Similarly,
one can prove that there does not exist the infimum of this set.

5. Let S = (0, 1)
R
= {x ∈ R | 0 < x < 1}, then clearly σ = 1 is the Fermat

supremum of S whereas there does not exist the sharp supremum of S.
Indeed, if σ = sup(S), then s ≤ σ ≤ s̄ + dρ for all s ∈ S and for some
s̄ ∈ S. Taking any s ∈ (s̄, 1)R ⊆ S we get s ≤ σ ≤ s̄+dρ, which, for ε→ 0,
implies s ≤ s̄ because s, s̄ ∈ R. This contradicts s ∈ (s̄, 1). In particular,
1 is not the sharp supremum. This example shows the importance of
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Def. 21, i.e. that the best notion of supremum in a non-Archimedean
setting depends on a fixed topology.

6. Let S = (0, 1) ∪ {ŝ} where ŝ|L = 2, ŝ|Lc = 1
2 , L ⊆0 I, L

c ⊆0 I, then
∄ sup(S). In fact, if ∃σ := sup(S), then σ|L ≥ ŝ|L = 2 and σ|Lc = 1.
Assume that ∃s̄ ∈ S : σ − dρ ≤ s̄, then 2 − dρ|L ≤ σ|L − dρ|L ≤
s̄|L. Thereby, s̄|L > 3

2 and hence s̄ ̸∈ (0, 1) and s̄ = ŝ. We hence get
σ|Lc − dρ|Lc ≤ ŝ|Lc , i.e. 1 − dρ|Lc ≤ 1

2 , which is impossible. We can
intuitively say that the subpoint ŝ|L creates a “ε-hole” (i.e. a “hole” only
for some ε) on the right of S and hence S is not “an ε-continuum” on this
side. Finally note that the point u|L := 2 and u|Lc := 1 is the least upper
bound of S.

Lemma 25. Let A, B ⊆ ρ
R̃, then

1. ∀λ ∈ ρ
R̃>0 : sup(λA) = λ sup(A), in the sense that one supremum exists

if and only if the other one exists, and in that case they coincide;

2. ∀λ ∈ ρ
R̃<0 : sup(λA) = λ inf(A), in the sense that one supremum/infimum

exists if and only if the other one exists, and in that case they coincide;

Moreover, if ∃ sup(A), sup(B), then:

3. If A ⊆ B, then sup(A) ≤ sup(B);

4. sup(A+B) = sup(A) + sup(B);

5. If A, B ⊆ ρ
R̃≥0, then sup(A ·B) = sup(A) · sup(B).

Proof. 1: If ∃ sup(λA), then we have a ≤ 1
λ sup(λA) for all a ∈ A. For all q ∈ N,

we can find ā ∈ A such that sup(λA) − λā ≤ dρq. Thereby, 1
λ sup(λA) − ā ≤

1
λdρ

q → 0 as q → +∞ because λ is moderate. This proves that ∃ sup(A) =
1
λ sup(λA). Similarly, we can prove the opposite implication.

2: From 1 and (5.3.2) we get: sup(λA) = sup(−λ(−A)) = −λ sup(−A) =
λ inf(A).

3: By contradiction, using Lem. 10.1, if sup(A) >L sup(B) for some L ⊆0 I,

then sup(A) − sup(B) >L dρq for some q ∈ N by Lem. 4 for the ring ρ
R̃|L.

Property (5.3.1) yields sup(A) − dρq ≤ ā for some ā ∈ A, and ā ≤ sup(B)
because A ⊆ B. Thereby, sup(A)− sup(B) ≤ dρq, which implies dρq <L dρq, a
contradiction.

4 and 5 follow easily from Def. 21.2 and (5.3.1).

In the next section, we introduce in the non-Archimedean framework ρ
R̃ how

to approximate sup(S) of S ⊆ ρ
R̃ using points of S and upper bounds, and the

non-Archimedean analogous of the notion of upper bound.
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5.3.1 Approximations of Sup, completeness from above
and Archimedean upper bounds

In the real field, we have the following peculiar properties:

1. The notion of least upper bound coincides with that of close supremum,
i.e. it satisfies property (4.0.1). We can hence question when these two

notions coincide also in ρ
R̃. Example 24.6 shows that the answer is not triv-

ial. A first solution of this problem is already contained in [24, Prop. 1.4],
where it is shown that the close supremum, assuming that it exists, coin-
cides with the least upper bound.

2. The notion of upper bound in R is very useful because it entails the exis-
tence of the supremum. Clearly, since there are infinite upper bounds but
only one supremum, the notion of upper bound results to be really useful
in estimates with inequalities. Moreover, in the ring ρ

R̃, the presence of
infinite numbers (of different magnitudes) allows one to have trivial upper
bounds, such as in the case S = (0, 1) andM = dρ−1, or S = (0,dρ−1) and
M = dρ−2. Therefore, we can also investigate whether we can consider
non trivial upper bounds, i.e. numbers which are, intuitively, of the same
order of magnitude of the elements of S ⊆ ρ

R̃. On the other hand, example
24.6 shows that with respect to any reasonable definition of “same order
of magnitude”, the upper bound m = 3 must be of the same order of any
point in S, although ∄ sup(S). We will solve this problem by introducing
the definition of Archimedean upper bound.

3. If ∅ ≠ S ⊆ R admits an upper bound, then sup(S) can be arbitrarily
approximated using upper bounds and points of S. When is this possible
if ∅ ≠ S ⊆ ρ

R̃?

Example 24.6 shows that these problems cannot be solved in general, and we
are hence searching for a useful sufficient condition on S. As we will see more
clearly below, we could also say that we are searching for a practical notion or
procedure “at the ε-level” (i.e. working on representatives) to determine whether
a set has the supremum or the least upper bound. However, we are actually far
from a real solution of this non trivial problem, and the present section presents
only preliminary steps in this direction.

We first prove the following useful characterization of the existence of sup(S),
which also solves problem 3:

Theorem 26. Let S ⊆ ρ
R̃, and let U ⊆ ρ

R̃ denote the set of upper bounds of S.
Then S has supremum if and only if

∀q ∈ N∃uq ∈ U ∃sq ∈ S : uq − sq ≤ dρq. (5.3.3)

Proof. If σ = sup(S), then (5.3.3) simply follows by setting uq := σ and sq ∈ S
from (5.3.1). Vice versa, if (5.3.3) holds, then

−dρq ≤ sq − uq ≤ uq+1 − uq ≤ uq+1 − sq+1 ≤ dρq+1 ∀q ∈ N.
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Thereby, −(p − q)dρq ≤ up − uq ≤ (p − q)dρp for all p > q, and hence
−dρmin(p,q)−1 ≤ up − uq ≤ dρmin(p,q)−1 for all p, q ∈ N>0. This shows that

(uq)q∈N is a Cauchy sequence which thus converges to some σ ∈ ρ
R̃. Property

(5.3.3) yields that also (sq)q∈N → σ, and this implies condition (5.3.1). Since
each uq is an upper bound, for all s ∈ S we have s ≤ uq, which gives s ≤ σ for
q → +∞.

To solve problem 2, assume that u ∈ ρ
R̃ is an upper bound of a non empty

S ⊆ ρ
R̃. Let [uε] = u, and for all s ∈ S choose a representative [sε(u)] = s such

that
∀ε ∈ I : sε(u) ≤ uε. (5.3.4)

We first note that setting

σε := sup {sε(u) | s ∈ S} ∀ε ∈ I (5.3.5)

does not work to define a representative of the supremum, e.g. if S = (0, 1).
Assume, e.g., that uε = 3 and take any sequence (sn)n∈N of different points of
S: si ̸= sj if i ̸= j. Change representatives of sn = [snε] satisfying (5.3.4) by
setting s̄nε := snε(u) = snε(3) if ε ̸= 1

n and s̄n, 1
n
:= 3. These new representatives

still satisfy (5.3.4), but defining σε with them as in (5.3.5), we would get σ 1
n
≥

sup
{
s̄n, 1

n
| n ∈ N>0

}
= 3, and hence [σε] ̸= 1 = sup(S). We want to refine this

idea by considering suitable representatives [sε(u)] = s satisfying (5.3.4), and
setting

σε(S) := σε := inf {sup {sε(u) | s ∈ S} | u ≥ S} ∀ε ∈ I, (5.3.6)

(σε(S)) ∈ Rρ ⇒ σ(S) := [σε(S)] ∈ ρ
R̃, (5.3.7)

where u ≥ S means that u is an upper bound of S, and where the representatives
are chosen as follows: set R∞ := R ∪ {+∞}, and for all (uε) ∈ RI

∞ and s ∈ S:{
s ≤ [uε] ∈ ρ

R̃ ⇒ ∃ [sε(u)] = s∀ε ∈ I : sε(u) ≤ uε
(uε) /∈ Rρ or s ̸≤ [uε] ⇒ [sε(u)] = s is any representative of s.

(5.3.8)

Note that definition (5.3.6) depends on the chosen representatives (sε(u)) for s ∈
S and (uε) for u ≥ S; trivially, if (σ̄ε(S)) is defined using different representatives
(s̄ε(u)) and (ūε), and both (σ̄ε(S)) and (σε(S)) well-define the supremum sup(S)
(or the least upper bound lub(S)) of S, then [σ̄ε(S)] = [σε(S)]. On the other
hand, if we calculate (σε(S)) using a certain choice of representatives, and we
notice that (σε(S)) is not an upper bound of S, we do not know whether another
choice of representatives can give an upper bound or not. This is one of the
weaknesses of the present solution. To highlight this dependence, we will also
sometimes use the following notations for our choice functions (their existence
depends on the axiom of choice):

e(s, u, ε) := sε(u) ∀s ∈ S ∀u ≥ S

b(u, ε) := uε ∀u ≥ S. (5.3.9)
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We first observe that, for all ε ∈ I:

∄u ≥ S ⇒ σε = +∞
∃u ≥ S ⇒ σε ≤ sup {sε(u) | s ∈ S} ≤ uε (5.3.10)

S = ∅ ⇒ σε = sup {sε(u) | s ∈ S} = −∞.

We therefore have:

Lemma 27. Assume that S ⊆ ρ
R̃, (σε(S)) ∈ Rρ and σ(S) ≥ S. Then the

following properties hold:

1. σ(S) = lub(S).

2. If b(σ(S), ε) = σε(S), then σε(S) = sup {sε(σ(S)) | s ∈ S} = inf {uε | u ≥ S}
for all ε ∈ I.

Proof. If σ := σ(S) ≥ S, inequality (5.3.10) shows that σ is the least upper
bound of S. From (5.3.6) and (5.3.10), we have σε ≤ sup {sε(σ) | s ∈ S} ≤ σε
because σ ≥ S and b(σ, ε) = σε (i.e. the chosen representative (uε) for the
upper bound σ ≥ S is exactly (σε) as defined in (5.3.6)). Finally, the inequality
σε ≤ inf {uε | u ≥ S} follows from (5.3.10). The other inequality follows from
σ = σ(S) ≥ S and from b(σ, ε) = σε.

In general, the net (σε(S)) is not ρ-moderate. In fact, if (un)n∈N is a sequence of

different upper bounds and we set sn, 1
n
(un) = −ρ−1/n

1
n

, this yields σ 1
n
≤ −ρ−1/n

1
n

.

On the other hand, we have:

Lemma 28. Let u ∈ ρ
R̃, S ⊆ ρ

R̃ with S ≤ u. Assume that for some s̄ ∈ S we
have

∀0ε : σε(S) ≥ s̄ε(u). (5.3.11)

Then (σε(S)) ∈ Rρ and s̄ ≤ σ(S) ≤ u.

Proof. From (5.3.10), we get σε ≤ uε. The conclusion thus follows from (5.3.11)

and s̄, u ∈ ρ
R̃.

Since the set of all infinitesimals S = D∞ has no least upper bound, the previous
two results imply that σ(D∞) ̸≥ D∞. Using Lem. 28 with l = −r, u = r ∈ R>0,
we have that σ(D∞) is always an infinitesimal (that actually depends on the
chosen representatives (sε(u)) and (uε)).

The following condition solves problem 2:

Definition 29. Let S ⊆ ρ
R̃ and for simplicity use σε = σε(S), then we say that

S is complete from above if the following conditions hold:

1. ∀s ∈ S ∃[sε] = s∀0ε : sε ≤ σε.
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2. If (se)e∈I is a family of S which satisfies:

∃[uε] ∈ ρ
R̃ ∀e ∈ I ∀0ε : seε(σ) ≤ uε (5.3.12)

then
∃[s̄ε] ∈ S ∀0ε : sεε(σ) ≤ s̄ε, (5.3.13)

where S is the closure of S in the sharp topology.

Moreover, if ∃s ∈ S : s > 0, then we say that M is an Archimedean upper
bound (AUB) of S if

1. M ∈ ρ
R̃ and ∀s ∈ S : s ≤M ;

2. ∃n ∈ N∃s̄ ∈ S : M < ns̄. The minimum n ∈ N that satisfies this property
is called the order of M (clearly, n ≥ 2). Note that this condition, using
an Archimedean-like property, formalizes the idea thatM and s̄ are of the
same order of magnitude.

Dually, we can define the notion of completeness from below by reverting all the
inequalities in 1 and 2. If ∃s ∈ S : s < 0, then N is an Archimedean lower
bound (ALB) of S if it is a lower bound such that ∃n ∈ N∃s̄ ∈ S : s̄n < N .

Note that σ = sup(S) is always an AUB of order 2. In fact, from the existence
of s ∈ S>0, we have s > dρq for some q ∈ N and the existence of s̄ ∈ S with
s̄ ≥ σ − dρq+1. Thereby, s̄ ≥ s − dρq+1 > dρq − dρq+1 > dρq+1 and thus
σ ≤ s̄ + dρq+1 < 2s̄. We also note that S = ρ

R̃ is trivially complete from
above (because σε = +∞ from (5.3.10), and by setting s̄ε = uε) but ∄ sup(ρR̃).
Looking at Lem. 28, in the case of a non empty subset S ⊆ ρ

R̃ bounded from
above, the condition of being complete from above can be intuitively described
as follows:

1. Choose representatives [uε] = u for each u ≥ S and [sε(u)] = s for each
s ∈ S satisfying (5.3.8);

2. Define σε(S) =: σε ∈ R∞ = R ∪ {+∞} as in 5.3.6.

3. Check if the inequality sε(σ) ≤ σε holds (in this case, for the chosen
representatives satisfying (5.3.8), without loss of generality, we can assume
that b(σ, ε) = σε for all ε ∈ I);

4. From any family (se)e∈I of S (which is therefore bounded from above, so
that (5.3.12) always holds) pick the diagonal net (sεε(σ)) from its repre-
sentatives (depending on σ ≥ S) and check if sεε(σ) ≤ s̄ε for some s̄ in the
sharp closure S.

5. If any of the two previous steps do not hold, consider a different set of
representatives in the first step 1.

We therefore have the following simplified case:
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Lemma 30. Assume that ∅ ≠ S ⊆ ρ
R̃ is sharply bounded from above, then S is

complete from above if and only if the following condition holds

1. σ(S) =: σ ≥ S

2. If (se)e∈I is a family of S, then ∃[s̄ε] ∈ S ∀0ε : sεε(σ) ≤ s̄ε.

Note that example 24.6 satisfies the first one of these conditions (so that σ(S)
is its least upper bound) but not the second one because it does not admit
supremum (see the following theorem). Cases which remain excluded from the

previous lemma are e.g. intervals (a,+∞), with −∞ ≤ a ∈ ρ
R̃ which are com-

plete from above even if they do not admit supremum nor least upper bound.
The following results solve the remaining problems 1 and 2 we set at the begin-
ning of this section.

Theorem 31. Assume that ∅ ≠ S ⊆ ρ
R̃, then

1. If S is complete and bounded from above and b(σ(S), ε) = σε(S), then
∃ sup(S) = σ(S);

Let (sq)q∈N and (uq)q∈N be two sequences as in Thm. 26, then

2. If ∃s ∈ S : s > 0, and if there exists C ∈ R>0 such that sq ≥ Cdρq for all
q ∈ N large, then uq is an AUB of S for all q sufficiently large;

3. If ∃s ∈ S : s > 0, then uq is an AUB of S of order 2 for all q sufficiently
large.

Proof. 1: From Lem. 28 we get that σ(S) =: σ is well-defined because σ ≥ S
by definition of completeness from above, i.e. Def. 29.1. Therefore, Lem. 27 and
the assumption b(σ(S), ε) = σε(S), yield that σε = sup {sε(σ) | s ∈ S} for all ε.
For arbitrary q ∈ N and e ∈ I, this yields

σe − ρq+2
e < see(σ) =: see (5.3.14)

for some se ∈ S (that depends on both q and e). By definition of completeness
from above, we get the existence of s̄ = [s̄ε] ∈ S such that sεε ≤ s̄ε for ε
mall. Setting e = ε in (5.3.14), we get σε − ρq+2

ε < sεε ≤ s̄ε for ε small,
i.e. σ − dρq+2 < s̄. Since s̄ ∈ S, there exists s ∈ S ∩ (s̄ − dρq+1, s̄ + dρq+1).
Thereby, σ− dρq +dρq+1 < σ− dρq+2 < s̄, and hence σ− dρq < s̄− dρq+1 < s,
which proves our claim 1.

Now, assume that sq ≥ Cdρq for some C ∈ R>0 and for all q ∈ N sufficiently

large. Then, for these q we have
sq+dρq

sq
≤ 1 + 1

C ≤
⌈
1 + 1

C

⌉
=: n ∈ N. This

yields uq < sq + dρq < nsq, i.e. uq is an AUB of S. Finally, from the existence
of at least one s ∈ S>0, we get the existence of p ∈ N such that s > dρp.
Therefore, also dρp < s ≤ σ. From 1, we hence get that for q ∈ N sufficiently

large dρp < sq ≤ σ, i.e. 1
sq
< dρ−p and

sq+dρq

sq
≤ 1 + dρq−p ≤ 2 for all q > p.

Proceeding as above we can prove the claim.
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Example 24.6 shows the necessity of the assumption of completeness from above
in this theorem.

Directly from Thm. 31.1, we obtain:

Corollary 32. Let ∅ ̸= S ⊆ ρ
R̃. Assume that S is complete from above and

b(σ(S), ε) = σε(S), then ∃ sup(S) if and only if S admits an upper bound.

Now, we can also complete the relationships between close supremum and
least upper bound (see also [24, Prop. 1.4]) and study what happens if we
consider only the upper bounds u lower than a fixed upper bound ū in (5.3.6).

Corollary 33. Let ∅ ≠ S ⊆ ρ
R̃, then the following properties hold:

1. If ∃ sup(S) = σ, then ∃lub(S) = σ.

2. If S is complete and bounded from above, then

∃ sup(S) = σ ⇐⇒ ∃ lub(S) = σ.

3. Assume that ū ≥ S and define σ̄ε(S) := inf {sup {sε(u) | s ∈ S} | ū ≥ u ≥ S}.
Then σ̄(S) := [σ̄ε(S)] is well-defined and σ̄(S) ≥ σ(S). If σ(S) ≥ S, then
σ̄(S) = σ(S). If σ̄(S) ≥ S, then σ̄(S) is the least upper bound of S, thus
σ̄(S) = σ(S) if S is complete from above.

4. Assume that ∃σ(S) ≥ S, b(σ(S), ε) = σε(S) and ∃ sup(S). Then S is
complete from above.

Proof. 1 and 2: Assume that ∃ sup(S) = σ, and let u be an upper bound of S;
by condition (5.3.1) we get σ − dρq ≤ sq ≤ u for all q ∈ N and for some sq ∈ S.
For q → +∞, we get σ ≤ u. Vice versa, if S ̸= ∅ is complete from above and σ
is the least upper bound of S, then the conclusion follows from Cor. 32.

3: If s̄ ∈ S ≤ u, we can prove that (σ̄ε(S)) ∈ Rρ and s̄ ≤ σ̄(S) ≤ u as in the
proof of Lem. 28. We always have that σ(S) ≤ ū because ū ≥ S. Therefore, if
σ(S) ≥ S, then ū ≥ σ(S) ≥ S and hence σ̄(S) ≤ σ(S) ≤ σ̄(S). Finally, if we
assume that σ̄(S) ≥ S and we consider an arbitrary upper bound u ≥ S, then
either u ≥ ū or u <L ū for some L ⊆0 I. Thereby, σ̄(S) ≤ u or σ̄(S) ≤L u, and
hence σ̄(S) ≤ u. Therefore, σ̄(S) is the least upper bound of S, and the final
claim follows from 2.

4: From Lem. 27, we have σ(S) = lub(S) =: σ and hence sup(S) = σ ∈ S
from 1. From b(σ(S), ε) = σε(S) and (5.3.8) we have sε(σ) ≤ σε for all s ∈ S
and all ε ∈ I. In particular, if (se)e∈I is a family of S, we have seε(σ) ≤ σε for
all e ∈ I and all ε ∈ I. Taking e = ε, we get that Def. 29.2 holds.

Example 34.

1. Example 24.6 shows that the assumption of being complete from above
is necessary in Cor. 33. On the other hand, using the notation of this
example, one can prove that σε(S) = 2 if ε ∈ L and σε(S) = 1 if ε ∈
Lc. From Lem. 27 it follows that σ(S) is the least upper bound of S.
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This underscores the differences between the order theoretical definition
of supremum as least upper bound and the topological definition of closed
supremum.

2. Any set having a maximum is trivially complete from above: set [s̄ε] :=
max(S) in (5.3.13) and consider that σ(S) = max(S).

3. S = (0, 1) is complete from above for [s̄ε] = 1 and because σε(S) =:
σε = 1. In fact, σε ≤ 1 from (5.3.10). Now, take any u = [uε] ≥ S,
so that uε ≥ 1 for all ε ≥ ε0. For ε ≥ ε0, by contradiction assume
that 1 > sup {sε(u) | s ∈ S}, and hence 1 > r > sup {sε(u) | s ∈ S} for
some r ∈ (0, 1)R ⊆ S. Take rε = r as representative of r in (5.3.8);
we have two cases: If rε(u) = uε ≥ 1, then 1 > sup {sε(u) | s ∈ S} ≥
rε(u) = uε ≥ 1; if rε(u) = r, then sup {sε(u) | s ∈ S} ≥ rε(u) = r >
sup {sε(u) | s ∈ S}. In any case, we get a contradiction, and this proves
that 1 ≤ sup {sε(u) | s ∈ S} for all ε ≤ ε0, and hence σε ≥ 1.

4. There do not exist neither the supremum nor the least upper bound of
S = 1 + D∞. On the other hand, 2 is an AUB of S and hence S is not
complete from above.

5. D∞ has neither AUB nor ALB; ρ
R̃ has neither AUB nor ALB; {dρr | r ∈

R>0} has no supremum and no AUB and hence it is not complete from
above.

6. Assume that there does not exist and upper bound of S. This means that

∀u ∈ ρ
R̃ ∃s ∈ S : s >s u.

Thereby, there exists a sequence (sq)q∈N of S such that sq >s dρ
−q. Based

on this, we could set sup(S) := +∞.

5.4 The hyperlimit of a hypersequence

5.4.1 Definition and examples

Definition 35. A map x : σÑ −→ ρ
R̃, whose domain is the set of hypernatural

numbers σ
Ñ is called a (σ−) hypersequence (of elements of ρ

R̃). The values

x(n) ∈ ρ
R̃ at n ∈σ

Ñ of the function x are called terms of the hypersequence and,
as usual, denoted using an index as argument: xn = x(n). The hypersequence
itself is denoted by (xn)n∈σÑ

, or simply (xn)n if the gauge on the domain is clear

from the context. Let σ, ρ be two gauges, x : σ
Ñ −→ ρ

R̃ be a hypersequence
and l ∈ ρ

R̃. We say that l is hyperlimit of (xn)n as n→ ∞ and n∈ σ
Ñ, if

∀q ∈ N ∃M ∈ σ
Ñ∀n ∈ σ

Ñ≥M : |xn − l| < dρq.

In the following, if not differently stated, ρ and σ will always denote two gauges
and (xn)n a σ-hypersequence of elements of ρ

R̃. Finally, if σε ≥ ρε, at least for
all ε small, we simply write σ ≥ ρ.

32



Remark 36. In the assumption of Def. 35, let k ∈ ρ
R̃>0, N ∈ N, then the

following are equivalent:

1. l∈ ρ
R̃ is the hyperlimit of (xn)n as n ∈ σ

Ñ.

2. ∀η ∈ ρ
R̃>0 ∃M ∈ σ

Ñ∀n ∈ σ
Ñ≥M : |xn − l| < η.

3. Let U ⊆ ρ
R̃ be a sharply open set, if l ∈ U then ∃M ∈ σ

Ñ∀n ∈ σ
Ñ≥M :

xn ∈ U .

4. ∀q ∈ N∃M ∈ σ
Ñ∀n ∈ σ

Ñ≥M : |xn − l| < k · dρq.

5. ∀q ∈ N∃M ∈ σ
Ñ∀n ∈ σ

Ñ≥M : |xn − l| < dρq−N .

Directly by the inequality |l1 − l2| ≤ |l1 − xn|+ |l2 − xn| ≤ 2dρq+1 < dρq (or by

using that the sharp topology on ρ
R̃ is Hausdorff) it follows that there exists at

most one hyperlimit, so that we can use the notation

ρ lim
n∈σÑ

xn := l.

As usual, a hypersequence (not) having a hyperlimit is said to be (non-)convergent.

We can also similarly say that (xn)n : σÑ −→ ρ
R̃ is divergent to +∞ (−∞) if

∀q ∈ N∃M ∈ σ
Ñ∀n ∈ σ

Ñ≥M : xn > dρ−q (x < −dρ−q).

Example 37.

1. If σ ≤ ρR for some R ∈ R>0, we have ρlimn∈σÑ

1
n = 0. In fact, 1

n < dρq

holds e.g. if n > [int (ρ−q
ε ) + 1] ∈ σ

Ñ because ρ−q
ε ≤ σ

−q/R
ε for ε small.

2. Let ρ be a gauge and set σε := exp

(
− ρ

− 1
ρε

ε

)
, so that σ is also a gauge.

We have
ρ lim
n∈σÑ

1

log n
= 0 ∈ ρ

R̃ whereas ∄ρ lim
n∈ρÑ

1

log n

In fact, if n > 1, we have 0 < 1
logn < dρq if and only if log n > dρ−q, i.e.

n > edρ
−q

(in ρ
R̃). We can thus take M :=

[
int

(
eρ

−q
ε

)
+ 1

]
∈ σ

Ñ because

eρ
−q
ε < exp

(
ρ
− 1

ρε
ε

)
= σ−1

ε for ε small. Vice versa, by contradiction, if

∃ρlimn∈ρÑ

1
logn =: l ∈ ρ

R̃, then by the definition of hyperlimit from ρ
Ñ to

ρ
R̃, we would get the existence of M ∈ ρ

Ñ such that

∀n ∈ ρ
Ñ : n ≥M ⇒ 1

log n
− dρ < l <

1

log n
+ dρ (5.4.1)
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We have to explore two possibilities: if l is not invertible, then lεk = 0 for
some sequence (εk) ↓ 0 and some representative [lε] = l. Therefore from
35, we get

1

logMεk

< lεk + ρεk = ρεk

hence Mεk > e
− 1

ρεk ∀k ∈ N, in contradiction with M ∈ ρ
R̃. If l is invert-

ible, then dρp < |l| for some p ∈ N. Setting q := min{p ∈ N | dρp < |l|}+1,
we get that lε̄k < ρqε̄k for some sequence (ε̄k)k ↓ 0. Therefore

1

logMε̄k

< lε̄k + ρε̄k ≤ |lε̄k |+ ρε̄k < ρqε̄k + ρε̄k

and hence Mε̄k > exp

(
1

ρq
ε̄k

+ρεk

)
for all k ∈ N, which is in contradiction

with M ∈ ρ
R̃ because q ≥ 1.

Analogously, we can prove that ρlimn∈σÑ

1
log(logn) = 0 if σ = [σϵ] =[

e−eρ
− 1

ρϵ
ϵ

]
whereas ∄ ρlimn∈ρÑ

1
log(logn) (and similarly using log(log( k. . . . . . (log n) . . .).

3. Set xn := dρ−n if n ∈ N, and xn := 1
n if n ∈ ρ

Ñ \ N, then {xn | n ∈ ρ
Ñ} is

unbounded in ρ
R̃ even if ρlimn∈ρÑ

xn = 0. Similarly, if xn := dρn if n ∈ N

and xn := sin(n) otherwise, then limn→+∞
n∈N

xn = 0 whereas ∄ ρlimn∈ρÑ
xn.

In general, we can hence only state that convergent hypersequence are
eventually bounded:

∃ ρ lim
n∈σÑ

xn ⇒ ∃M ∈ ρ
R̃ ∃N ∈ σ

Ñ∀n ∈ σ
Ñ≥N : |xn| ≤M.

4. If k <s 1 and k >s 1, then ρlimn∈ρÑ
kn =s 0 and ρlimn∈ρÑ

kn =s +∞,
hence ∄ρlimn∈ρÑ

kn.

5. Since for n ∈ N we have (1 − dρ)n = 1 − ndρ + On(dρ
2), it is not

hard to prove that ((1− dρ)n)n∈N is not a Cauchy sequence. Therefore,
∄ limn∈N(1− dρ)n, whereas ρlimn∈ρÑ

(1− dρ)n = 0.

A sufficient condition to extend an ordinary sequence (an)n∈N : N −→ ρ
R̃ of

ρ-generalized numbers to the whole σ
Ñ is

∀n ∈ σ
Ñ :

(
ani(n)ε

)
∈ Rρ. (5.4.2)

In fact, in this way an :=
[
ani(n)ε

]
∈ ρ
R̃ for all n ∈ σ

Ñ, is well-defined because of
Lem. 17; on the other hand, we have defined an extension of the old sequence
(an)n∈N because if n ∈ N, then ni(n)ε = n for ε small and hence an = [an]. For
example, the sequence of infinities an = 1

n +dρ−1 for all n ∈ N can be extended
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to any σ
Ñ, whereas an = dσ−n can be extended as a : σÑ −→ ρ

R̃ only for some
gauges ρ, e.g. if the gauges satisfy

∃N ∈ N∀n ∈ N∀0ε : σn
ε ≥ ρNε , (5.4.3)

(e.g. σε = ε and ρε = ε1/ε).
The following result allows us to obtain hyperlimits by proceeding ε-wise

Theorem 38. Let (an,ε)n,ε : N× I −→ R. Assume that for all ε

∃ lim
n→+∞

an,ε =: lε, (5.4.4)

and that l := [lε] ∈ ρ
R̃. Then there exists a gauge σ (not necessarily a monotonic

one) such that

1. There exists M ∈ σ
Ñ and a hypersequence (an)n : σ

Ñ −→ ρ
R̃ such that

an = [ani(n)ε,ε] ∈
ρ
R̃ for all n ∈ σ

Ñ≥M ;

2. l = ρlimn∈σÑ
an.

Proof. From (5.4.4), we have

∀ε∀q ∃Mεq ∈ N>0 ∀n ≥Mεq : ρqε − lε < an,ε < ρqε + lε. (5.4.5)

Without loss of generality, we can assume to have recursively chosen Mεq so
that

Mεq ≤Mε,q+1 ∀ε ∀q. (5.4.6)

Set M̄ε :=Mε,⌈ 1
ε ⌉
> 0; since ∀q ∈ N∀0ε : q ≤ ⌈ 1

ε⌉, (5.4.6) implies

∀q ∈ N∀0ε : M̄ε ≥Mεq. (5.4.7)

If the net (M̄ε) is ρ-moderate, set σ := ρ, otherwise set σε := min
(
ρε, M̄

−1
ε

)
∈

(0, 1]. Thereby, the net σε → 0 as ε → 0+ (note that not necessarily σ is non-
decreasing, e.g. if limε→ 1

k
M̄ε = +∞ for all k ∈ N>0 and M̄ε ≥ ρ−1

ε ), i.e. it is a

gauge. Now set M̄ := [M̄ε] ∈ σ
Ñ because our definition of σ yields M̄ε ≤ σ−1

ε ,

Mq := [Mεq] ∈ σ
Ñ because of (5.4.7), and

an :=

{
[ani(n)ε,ε] if n ≥M1 in σ

Ñ

1 otherwise
∀n ∈ σ

Ñ. (5.4.8)

We have to prove that this well-defines a hypersequence (an)n : σÑ −→ ρ
R̃. First

of all, the sequence is well-defined with respect to the equality in σ
Ñ because of

Lem. 17. Moreover, setting q = 1 in (5.4.5), we get ρε − lε < an,ε < ρε + lε for

all ε and for all n ≥ Mε1. If n ≥ M1 in σ
Ñ, then ni(n)ε ≥ Mε1 for ε small, and

hence ρε− lε < ani(n)ε,ε < ρε+ lε. This shows that an ∈ ρ
R̃ because we assumed

that l = [lε] ∈ ρ
R̃. Finally, (5.4.5) and (5.4.6) yield that if n ≥Mq then n ≥M1

and hence |an − l| < dρq.
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From the proof it also follows, more generally, that if (Mεq)ε,q satisfies (5.4.5)
and if

∃(qε) → +∞ : (Mε,qε) ∈ Rρ,

then we can repeat the proof with qε instead of ⌈ 1
ε⌉ and setting σ := ρ.

5.4.2 Operations with hyperlimits and inequalities

Thanks to Def. 5 of sharp topology and our notation for x < y (and of the
consequent Lem. 4), some results about hyperlimits can be proved by trivially
generalizing classical proofs. For example, if (xn)n∈σÑ

and (yn)n∈σÑ
are two

convergent hypersequences then their sum (xn + yn)n∈σÑ
, product (xn · yn)n∈σÑ

and quotient
(

xn

yn

)
n∈σÑ

(the last one being defined only when yn is invertible

for all n∈ σ
Ñ) are convergent hypersequences and the corresponding hyperlimits

are sum, product and quotient of the corresponding hyperlimits.
The following results generalize the classical relations between limits and

inequalities.

Theorem 39. Let x, y, z : σÑ −→ ρ
R̃ be hypersequences, then we have:

1. If ρlimn∈σÑ
xn < ρlimn∈σÑ

yn, then ∃M∈ σ
Ñ such that xn < yn for all

n ≥M , n ∈ σ
Ñ.

2. If xn ≤ yn ≤ zn for all n ∈ σ
Ñ and ρlimn∈σÑ

xn = ρlimn∈σÑ
zn =: l, then

∃ ρlimn∈σÑ
yn = l,

Proof. 1 follows from Lem. 4 and the Def. 35 of hyperlimit. For 2, the proof
is analogous to the classical one. In fact, since ρlimn∈σÑ

xn = ρlimn∈σÑ
zn =: l

given q ∈ N, there exist M ′, M ′′ ∈ σ
Ñ such that l − dρq < xn and zn < l + dρq

for all n > M ′, n > M ′′, n ∈ σ
Ñ, then for n > M := M ′ ∨ M ′′, we have

l − dρq < xn ≤ yn ≤ zn < l + dρq.

Theorem 40. Assume that C is a sharply closed subset of ρR̃, that ∃ ρlimn∈σÑ
xn =:

l and that xn eventually lies in C, i.e. ∃N ∈ σ
Ñ∀n ∈ σ

Ñ≥N : xn ∈ C.
Then also l ∈ C. In particular, if (yn)n is another hypersequence such that

∃ ρlimn∈σÑ
yn =: k, then ∃N ∈ σ

Ñ∀n ∈ σ
Ñ≥N : xn ≥ yn implies l ≥ k.

Proof. A reformulation of the usual proof applies. In fact, let us suppose that
l ∈ ρ

R̃\C. Since ρ
R̃\C is sharply open, there is an η > 0, for which Bη(l)⊆ ρ

R̃\C.
Let n̄ ∈ σ

Ñ≥N be such that |xn− l| < η when n > n̄. Then we have xn ∈ C and

xn ∈ Bη(l) ⊆ ρ
R̃ \ C, a contradiction.

The following result applies to all generalized smooth functions (and hence
to all Colombeau generalized functions, see e.g. [35, 31]; see also [2] for a more
general class of functions) because of their continuity in the sharp topology.
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Theorem 41. Suppose that f : U −→ ρ
R̃. Then f is sharply continuous func-

tion at x = c if and only if it is hyper-sequentially continuous, i.e. for any hy-
persequence (xn)n in U converging to c, the hypersequence (f (xn))n converges
to f (c), i.e. f

(
ρlimn∈σÑ

xn
)
= ρlimn∈σÑ

f(xn).

Proof. We only prove that the hyper-sequential continuity is a sufficient con-
dition, because the other implication is a trivial generalization of the classical
one. By contradiction, assume that for some Q ∈ N

∀n ∈ N∃xn ∈ U : |xn − c| < dρn, |f(xn)− f(c)| >s dρ
Q. (5.4.9)

For n ∈ N set ωn := n and for n ∈ ρ
Ñ\N set ωn := min

{
N ∈ N | n ≤ dρ−N

}
and

xn := xωn . Then for all n ∈ ρ
Ñ, from (5.4.9) we get |xn−c| < dρωn → 0 because

ωn → +∞ as n → +∞ in n ∈ ρ
Ñ. Therefore, (xn)n is an hypersequence of U

that converges to c, which yields f(xn) → f(c), in contradiction with (5.4.9).

Example 42. Let σ ≤ ρR for some R ∈ R>0. The following inequalities hold
for all generalized numbers because they also hold for all real numbers:

ln(x) ≤ x

e
(n
e

)n
≤ n! ≤ en

(n
e

)n
. (5.4.10)

From the first one it follows 0 ≤ ln(n)
n = 2 ln

√
n

n ≤ 2
√
n

n , so that ρlimn∈σÑ

ln(n)
n :=

0 from Thm. 39 and ρlimn∈σÑ
n1/n = 1 from Thm. 41 and hence ρlimn∈σÑ

(n!)1/n =

+∞ by (5.4.10). Similarly, we have ρlimn∈σÑ

(
1 + 1

n

)n
= e because n log

(
1 + 1

n

)
=

1− 1
2n +O

(
1
n2

)
→ 1 and because of Thm. 41.

A little more involved proof concerns L’Hôpital rule for generalized smooth
functions. For the sake of completeness, here we only recall the equivalent
definition:

Definition 43. Let X ⊆ ρ
R̃n and Y ⊆ ρ

R̃d. We say that f : X −→ Y is a
generalized smooth function (GSF) if

1. f : X −→ Y is a set-theoretical function.

2. There exists a net (fε) ∈ C∞(Rn,Rd)(0,1] such that for all [xε] ∈ X:

(a) f(x) = [fε(xε)]

(b) ∀α ∈ Nn : (∂αfε(xε)) is ρ−moderate.

For generalized smooth functions lots of results hold: closure with respect to
composition, embedding of Schwartz’s distributions, differential calculus, one-
dimensional integral calculus using primitives, classical theorems (intermediate
value, mean value, Taylor, extreme value, inverse and implicit function), multi-
dimensional integration, Banach fixed point theorem, a Picard-Lindelöf theorem
for both ODE and PDE, several results of calculus of variations, etc.

In particular, we have the following (see also [27] for the particular case of
Colombeau generalized functions):
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Theorem 44. Let U ⊆ ρ
R̃ be a sharply open set and let f : U −→ ρ

R̃ be a GSF
defined by the net of smooth functions fε ∈ C∞(R,R). Then

1. There exists an open neighbourhood T of U×{0} and a GSF Rf : T → ρ
R̃,

called the generalized incremental ratio of f , such that

f(x+ h) = f(x) + h ·Rf (x, h) ∀(x, h) ∈ T. (5.4.11)

Moreover Rf (x, 0) = [f ′ε(xε)] = f ′(x) is another GSF and we can hence
recursively define f (k)(x).

2. Any two generalized incremental ratios of f coincide on the intersection
of their domains.

3. More generally, for all k ∈ N>0 there exists an open neighbourhood T of
U ×{0} and a GSF Rk

f : T → ρ
R̃, called k-th order Taylor ratio of f , such

that

f(x+ h) =
k−1∑
j=0

f (j)(x)

j!
hj +Rk

f (x, h) · hk ∀(x, h) ∈ T. (5.4.12)

Any two ratios of f of the same order coincide on the intersection of their
domains.

We can now prove the following generalization of one of L’Hôpital rule:

Theorem 45. Let U ⊆ ρ
R̃ be a sharply open set (xn)n, (yn)n : σ

Ñ −→ U be
hypersequences converging to l ∈ U and m ∈ U respectively and such that

ρ lim
n∈σÑ

xn − l

yn −m
=: C ∈ ρ

R̃.

Let k ∈ N>0 and f , g : U −→ ρ
R̃ be GSF such that for all n ∈ σ

Ñ and all
j = 0, . . . , k − 1

g(j)(yn) ∈ ρ
R̃
∗

f (j)(l) = g(j)(m) = 0 (5.4.13)

g(k)(m) ∈ ρ
R̃
∗

Then for all j = 0, . . . , k − 1

∃ ρ lim
n∈σÑ

f (j)(xn)

g(j)(yn)
= Ck · ρ lim

n∈σÑ

f (k)(xn)

g(k)(yn)
.

Proof. Using (5.4.12) and (5.4.13), we can write

f(xn)

g(yn)
=

∑k−1
j=0

f(j)(l)
j! (xn − l)j + (xn − l)kRk

f (l, xn − l)∑k−1
j=0

g(j)(m)
j! (yn −m)j + (yn −m)kRk

g(m, yn −m)
=

=

(
xn − l

yn −m

)k

·
Rk

f (l, xn − l)

Rk
g(m, yn −m)

.
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Since Rk
f and Rk

g are GSF, they are sharply continuous. Therefore, the right

hand side of the previous equality tends to Ck · Rk
f (l,0)

Rk
g(m,0)

= Ck · f(k)(l)
g(k)(m)

. At the

same limit converges the quotient Ck f(k)(xn)
g(k)(yn)

because f (k) and g(k) are also GSF

and hence they are sharply continuous. The claim for j = 1, . . . , k − 1 follows
by applying the conclusion for j = 0 with f (j) and g(j) instead of f and g.

Note that for xn = yn, l = m, we have C = 1 and we get the usual L’Hôpital
rule (formulated using hypersequences). Note that a similar theorem can also be
proved without hypersequences and using the same Taylor expansion argument
as in the previous proof.

5.4.3 Cauchy criterion and monotonic hypersequences.

In this section, we deal with classical criteria implying the existence of a hyper-
limit.

Definition 46. We say that (xn)n∈σÑ
is a Cauchy hypersequence if

∀q ∈ N∃M ∈ σ
Ñ∀n,m ∈ σ

Ñ≥M : |xn − xm| < dρq.

Theorem 47. A hypersequence converges if and only if it is a Cauchy hyper-
sequence

Proof. To prove that the Cauchy criterion is a necessary condition it suffices to
consider the inequalities:

|xn − xm| ≤ |xn − l|+ |xm − l| ≤ dρq+1 + dρq+1 < dρq

Vice versa, assume that

∀q ∈ N∃Mq ∈ σ
Ñ∀n,m ∈ σ

Ñ≥Mq
: |xn − xm| < dρq. (5.4.14)

The idea is to use Cauchy completeness of ρ
R̃. In fact, set h1 := M1 and

hq+1 := Mq+1 ∨ hq. We claim that (xhq
)q∈N is a standard Cauchy sequence

converging to the same limit of (xn)n∈σÑ
. From (5.4.14) it follows that (xhq

)q∈N
is a standard Cauchy sequence (in the sharp topology). Therefore, there exists

x̄ ∈ ρ
R̃ such that limq→+∞ xhq = x̄. Now, fix q ∈ N and pick any m ≥ q + 1

such that
|xhm

− x̄| < dρq+1. (5.4.15)

Then for all N ≥Mq+1 we have:

|xN − x̄| ≤ |xN − xhm
|+ |xhm

− x̄| < 2dρq+1 < dρq

because hm ≥ hq+1 ≥Mq+1 so that we can apply (5.4.14) and (5.4.15).

Theorem 48. A hypersequence converges if and only if

∀q ∈ N∃M ∈ σ
Ñ∀n,m ∈ σ

Ñ≥M : m ≥ n ⇒ |xn − xm| < dρq.
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Proof. It suffices to apply the inequality |xn − xm| ≤ |xn − xn∨m|+|xn∨m − xm|.

The second classical criterion for the existence of a hyperlimit is related to
the notion of monotonic hypersequence. The existence of several chains in σ

Ñ

does not allow to arrive at any M ∈ σ
Ñ starting from any other lower N ∈ σ

Ñ

and using the successor operation only a finite number of times. For this reason,
the following is the most natural notion of monotonic hypersequence:

Definition 49. We say that (xn)N∈σÑ
is a non-decreasing (or increasing) hy-

persequence if
∀n,m ∈ σ

Ñ : n ≥ m ⇒ xn ≥ xm.

Similarly, we can define the notion of non-increasing (decreasing) hypersequence.

Theorem 50. Let (xn)n : σÑ −→ ρ
R̃ be a non-decreasing hypersequence. Then

∃ ρ lim
n∈σÑ

xn ⇐⇒ ∃ sup
{
xn | n ∈ σ

Ñ

}
,

and in that case they are equal. In particular, if
{
xn | n ∈ σ

Ñ

}
is complete from

above for all the upper bounds, then

∃ ρ lim
n∈σÑ

xn ⇐⇒ ∃U ∈ ρ
R̃∀n ∈ σ

Ñ : xn ≤ U.

Proof. Assume that (xn)n∈σÑ
converges to l and set S := {xn | n ∈ σ

Ñ}, we will
show that l = sup(S). Now, using Def. 35, we have that ∀n ∈ σ

Ñ≥N : xn <

l + dρq for some N ∈ σ
Ñ. But from Def. 49 ∀n ∈ σ

Ñ : xn ≤ xn∨N < l + dρq.
Therefore xn ≤ l + dρq for all n ∈ σ

Ñ, and the conclusion xn ≤ l follows since
q ∈ N is arbitrary. Finally, from Def. 35 of hyperlimit, for all q ∈ N we have the
existence of L ∈ σ

Ñ such that l − dρq < xL ∈ S which completes the necessity
part of the proof. Now, assume that ∃ sup(S) =: l. We have to prove that
ρlimn∈σÑ

xn = l. In fact, using Rem. 1, we get

∀q ∈ N∃xN ∈ S : l − dρq < xN ,

and xN ≤ xn ≤ l < l + dρq for all n ∈ σ
Ñ≥N by Def. 49 of monotonicity. That

is, |l − xn| = xn − l < dρq.

Example 51. The hypersequence xn := dρ1/n is non-decreasing. Assume that
(xn)n converges to l and that σ ≤ ρR for some R ∈ R>0. Since xn ≥ dρ, by
Thm. 40, we get l ≥ dρ. Therefore, applying the logarithm and the exponential
functions, from Thm. 41 we obtain that l = 1 because from σ ≤ ρR it follows that
ρlimn∈σÑ

log(dρ)
n = 0. But this is impossible since 1 ≈ 1− dρ ≰ dρ1/n. Thereby,

∄ sup
{
dρ1/n | n ∈ σ

Ñ>0

}
and this set is also not complete from above.
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5.5 Limit superior and inferior

We have two possibilities to define the notions of limit superior and inferior
in a non-Archimedean setting such as ρ

R̃: the first one is to assume that both
αm := sup{xn | n ∈ σ

Ñ≥m} and inf{αm | m ∈ σ
Ñ} exist (the former for

all m ∈ σ
Ñ); the second possibility is to use inequalities to avoid the use of

supremum and infimum. In fact, in the real case we have ι ≤ supn≥m xn ≤ ι+ ε
if and only if

∀n ≥ m : xn ≤ ι+ ε

∀ε∃n̄ ≥ m : ι− ε ≤ xn̄.

Definition 52. Let (xn)n : σ
Ñ −→ ρ

R̃ be an hypersequence, then we say that

ι ∈ ρ
R̃ is the limit superior of (xn)n if

1. ∀q ∈ N∃N ∈ σ
Ñ∀n ≥ N : xn ≤ ι+ dρq;

2. ∀q ∈ N∀N ∈ σ
Ñ∃n̄ ≥ N : ι− dρq ≤ xn̄.

Similarly, we say that σ ∈ ρ
R̃ is the limit inferior of (xn)n if

3. ∀q ∈ N∃N ∈ σ
Ñ∀n ≥ N : xn ≥ σ − dρq;

4. ∀q ∈ N∀N ∈ σ
Ñ∃n̄ ≥ N : σ + dρq ≥ xn̄.

We have the following results (clearly, dual results hold for the limit inferior):

Theorem 53. Let (xn)n, (yn)n : σÑ −→ ρ
R̃ be hypersequences, then

1. There exists at most one limit superior and at most one limit inferior.
They are denoted with ρ lim supn∈σÑ

xn and ρ lim infn∈σÑ
xn.

2. If ∃ sup
{
xn | n ∈ σ

Ñ≥m

}
=: αm for all m ∈ σ

Ñ, then ∃ ρ lim supn∈σÑ
xn if

and only if ∃ inf
{
αm | m ∈ σ

Ñ

}
, and in that case

ρ lim sup
n∈σÑ

xn = ρ lim
m∈σÑ

αm = inf
{
αm | m ∈ σ

Ñ

}
.

3. ρ lim supn∈σÑ
(−xn) = −ρ lim infn∈σÑ

xn in the sense that if one of them
exists, then also the other one exists and in that case they are equal.

4. ∃ρlimn∈σÑ
xn if and only if ∃ρ lim supn∈σÑ

xn = ρ lim infn∈σÑ
xn.

5. If ∃ρ lim supn∈σÑ
xn,

ρ lim supn∈σÑ
yn,

ρ lim supn∈σÑ
(xn + yn), then

ρ lim sup
n∈σÑ

(xn + yn) ≤ ρ lim sup
n∈σÑ

xn + ρ lim sup
n∈σÑ

yn.

In particular, if ∀N ∈ σ
Ñ∀n̄, n̂ ≥ N ∃n ≥ N : xn̄ + yn̂ ≤ xn + yn, then

the existence of the single limit superiors implies the existence of the limit
superior of the sum.
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6. If xn, yn ≥ 0 for all n ∈ σ
Ñ and if ∃ρ lim supn∈σÑ

xn,
ρ lim supn∈σÑ

yn,
ρ lim supn∈σÑ

(xn · yn), then

ρ lim sup
n∈σÑ

(xn · yn) ≤ ρ lim sup
n∈σÑ

xn · ρ lim sup
n∈σÑ

yn.

In particular, if ∀N ∈ σ
Ñ∀n̄, n̂ ≥ N ∃n ≥ N : xn̄ · yn̂ ≤ xn · yn, then

the existence of the single limit superiors implies the existence of the limit
superior of the product.

7. If ∃ ρ lim supn∈σÑ
xn =: ι, then there exists a sequence (n̄q)q∈N of σ

Ñ such
that

(a) n̄q+1 > n̄q for all q ∈ N;

(b) limq→+∞ n̄q = +∞ in σ
R̃;

(c) ∃ limq→+∞ xn̄q
= ι.

8. Assume to have a sequence (n̄q)q∈N satisfying the previous conditions 7a,
7b, 7c and

∀n ∈ σ
Ñ∃p ∈ N : n̄p ≥ n, xn ≤ xn̄p

. (5.5.1)

Then ∃ ρ lim supn∈σÑ
xn =: ι.

Proof. 1: Let ι1, ι2 be both limit superior of (xn)n. Based on Lem. 11.3,
without loss of generality we can assume that ι1 <s ι2. According to Lem. 4,
there exists m ∈ N such that ι1 + dρm <s ι2. Take q1, q2 large enough so that
dρq1 + dρq2 < dρm. Using the last two inequalities, we obtain

ι1 + dρq1 <s ι2 − dρq2 . (5.5.2)

Using Def. 52.1, we can find N1 ∈ σ
Ñ such that

∀n ∈ σ
Ñ≥N1 : xn ≤ ι1 + dρq1 . (5.5.3)

Using Def. 52.2 with q = q1 and N = N1, we get

∃n̄ ∈ σ
Ñ≥N1

: ι2 − dρq2 ≤ xn̄. (5.5.4)

We now use (5.5.2), (5.5.4) and (5.5.3) for n = n̄ and we obtain xn̄ ≤ ι1+dρq1 <s

ι2 − dρq2 ≤ xn̄, which is a contradiction.
2: Lem. 25.3 implies that (αm)m is non-increasing. Therefore, we have

ρlimn∈σÑ
αm = inf

{
αm | m ∈ σ

Ñ

}
if these terms exist from Thm. 50. But

Cor. 33 and Def. 52.1 imply αm ≤ ι + dρq. Finally, Def. 52.2 yields ι − dρq ≤
xn̄ ≤ αm, which proves that ∃ ρlimn∈σÑ

αm = ρ lim supn∈σÑ
xm = ι.

3: Directly from Def. 52.
4: Assume that hyperlimit superior and inferior exist and are equal to l.

From Def. 52.1 and Def. 52.3 we get l− dρq ≤ xn ≤ l+dρq for all n ≥ N . Vice
versa, assume that the hyperlimit exists and equals l, so that l − dρq ≤ xn ≤
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l+dρq for all n ≥ N . Then both Def. 52.1 and Def. 52.3 trivially hold. Finally,
Def. 52.2 and Def. 52.4 hold taking e.g. n̄ = N .

5: Setting

ι := ρ lim sup
n∈σÑ

xn

j := ρ lim sup
n∈σÑ

yn

l := ρ lim sup
n∈σÑ

(xn + yn) ,

from Def. 52 we get l − dρq ≤ xn̄ + yn̄ ≤ ι + j + 2dρq, which implies l ≤ ι + j
for q → +∞. Adding Def. 52.2 we obtain ι + j − 2dρq ≤ xn̄ + yn̂ for some n̄,
n̂ ≥ N ∈ σ

Ñ. Therefore, if xn̄ + yn̂ ≤ xn + yn for some n ≥ N , this yields the
second claim. Similarly, one can prove 6.

7: From Def. 52.1, choose an Nq = N for each q ∈ N, i.e.

∀q ∈ N∃Nq ∈ σ
Ñ∀n ≥ Nq : xn ≤ ι+ dρq. (5.5.5)

Applying Def. 52.2 with q > 0 and N = Nq ∨ (n̄q−1 + 1) ∨ [int(σ−q
ε )] ∈ σ

Ñ, we
get the existence of n̄q ≥ Nq such that both 7a and 7b hold and ι− dρq ≤ xn̄q

.
Thereby, from (5.5.5) we also get 7c.

8: Write 7c as

∀q ∈ N∃Qq ∈ N∀p ∈ N≥Qq
: ι− dρp ≤ xn̄p

≤ ι+ dρp. (5.5.6)

Set N := n̄Qq ∈ σ
Ñ. For n ≥ N , from (5.5.1) we get the existence of p ∈ N such

that n̄p ≥ n and xn ≤ xn̄p . Thereby, n̄p ≥ n̄Qq and hence p ≥ Qq because of
7a and thus xn ≤ xn̄p ≤ ι + dρq. Finally, condition 2 of Def. 52 follows from
(5.5.6) and 7b.

It remains an open problem to show an example that proves as necessary the
assumption of Thm. 53.2, i.e. that that the previous definition of limit superior
and inferior is strictly more general than the simple transposition of the classical
one.

Example 54.

1. Directly from Def. 52, we have that

ρ lim sup
n∈σÑ

(−1)n = 1, ρ lim inf
n∈σÑ

(−1)n = −1

2. Let µ ∈ ρ
R̃ be such that µ|L = 1 and µ|Lc = −1, where L, Lc ⊆0 I.

Then µn ≤ 1 and 1− dρq ≤ µn̄ if ni(n̄)ε is even for all ε small. Therefore
ρ lim supn∈σÑ

µn = 1, supn≥m µn = 1, whereas ∄ ρlimn∈σÑ
µn.

3. From 7 and 8 of Thm. 53 it follows that for an increasing hypersequence
(xn)n, ∃ρ lim supn∈σÑ

xn if and only if ∃ρlimn∈σÑ
xn. Therefore, example

51 implies that ∄ ρ lim supn∈σÑ
dρ1/n.
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5.6 Summary of the chapter 5

To sum up, this chapter can be viewed as ancillary to the following main chapters
of the doctoral dissertation. Above, we formulated how to deal with several defi-
ciencies of the ring of Robinson-Colombeau generalized numbers ρ

R̃: trichotomy
law for the order relations ≤ and <, existence of supremum and infimum and
limits of sequences with a topology generated by infinitesimal radii. In each case,
we obtain a faithful generalization of the classical case of real numbers. We think
that some of the ideas we presented in this chapter can inspire similar works
in other non-Archimedean settings such as (constructive) nonstandard analysis,
p-adic analysis, the Levi-Civita field, surreal numbers, etc. Clearly, the notions
introduced above open the possibility to extend classical proofs in dealing with
series, analytic generalized functions, sigma-additivity in integration of general-
ized functions, non-Archimedean functional analysis, just to mention a few. In
the next chapter, we consider the core results of this doctoral dissertation.
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Chapter 6

A Fourier transform for all
generalized functions

6.1 Basic notions

6.1.1 Generalized smooth functions and their calculus

Using the ring ρ
R̃, it is easy to consider a Gaussian with an infinitesimal standard

deviation. If we denote this probability density by f(x, σ), and if we set σ =

[σε] ∈ ρ
R̃>0, where σ ≈ 0, we obtain the net of smooth functions (f(−, σε))ε∈I .

This is the basic idea we are going to develop in the following

Definition 55. Let (Ωε) be a net of open subsets of Rn. Let X ⊆ ρ
R̃n and

Y ⊆ ρ
R̃d be arbitrary subsets of generalized points. Then we say that

f : X −→ Y is a generalized smooth function

if there exists a net fε ∈ C∞(Ωε,R
d) defining the map f : X −→ Y in the sense

that

1. X ⊆ ⟨Ωε⟩,

2. f([xε]) = [fε(xε)] ∈ Y for all x = [xε] ∈ X,

3. (∂αfε(xε)) ∈ Rd
ρ for all x = [xε] ∈ X and all α ∈ Nn.

The space of generalized smooth functions (GSF) from X to Y is denoted by
ρGC∞(X,Y ).

Let us note explicitly that this definition states minimal logical conditions
to obtain a set-theoretical map from X into Y and defined by a net of smooth
functions of which we can take arbitrary derivatives still remaining in the space
of ρ-moderate nets. In particular, the following Thm. 56 states that the equal-
ity f([xε]) = [fε(xε)] is meaningful, i.e. that we have independence from the

representatives for all derivatives [xε] ∈ X 7→ [∂αfε(xε)] ∈ ρ
R̃d, α ∈ Nn.
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Theorem 56. Let X ⊆ ρ
R̃n and Y ⊆ ρ

R̃d be arbitrary subsets of generalized
points. Let fε ∈ C∞(Ωε,R

d) be a net of smooth functions that defines a gener-
alized smooth map of the type X −→ Y , then

1. ∀α ∈ Nn ∀(xε), (x′ε) ∈ Rn
ρ : [xε] = [x′ε] ∈ X ⇒ (∂αfε(xε)) ∼ρ (∂αfε(x

′
ε)).

2. Each f ∈ ρGC∞(X,Y ) is continuous with respect to the sharp topologies
induced on X, Y .

3. f : X −→ Y is a GSF if and only if there exists a net vε ∈ C∞(Rn,Rd)
defining a generalized smooth map of type X −→ Y such that f = [vε(−)]|X .

4. GSF are closed with respect to composition, i.e. subsets S ⊆ ρ
R̃s with

the trace of the sharp topology, and GSF as arrows form a subcategory of
the category of topological spaces. We will call this category ρGC∞, the
category of GSF. Therefore, with pointwise sum and product, any space
ρGC∞(X, ρR̃) is an algebra.

The differential calculus for GSF can be introduced by showing existence
and uniqueness of another GSF serving as incremental ratio (sometimes this is
called derivative á la Carathéodory, see e.g. [43]).

Theorem 57 (Fermat-Reyes theorem for GSF). Let U ⊆ ρ
R̃n be a sharply open

set, let v = [vε] ∈ ρ
R̃n, and let f ∈ ρGC∞(U, ρR̃) be a GSF generated by the net

of smooth functions fε ∈ C∞(Ωε,R). Then

1. There exists a sharp neighborhood T of U × {0} and a generalized smooth

map r ∈ ρGC∞(T, ρR̃), called the generalized incremental ratio of f along
v, such that

∀(x, h) ∈ T : f(x+ hv) = f(x) + h · r(x, h).

2. Any two generalized incremental ratios coincide on a sharp neighborhood
of U × {0}, so that we can use the notation f [x;h] := r(x, h) if (x, h) are
sufficiently small.

3. We have f [x; 0] =
[
∂fε
∂vε

(xε)
]
for every x ∈ U and we can thus define

Df(x) · v := ∂f
∂v (x) := f [x; 0], so that ∂f

∂v ∈ ρGC∞(U, ρR̃).

Note that this result permits us to consider the partial derivative of f
with respect to an arbitrary generalized vector v ∈ ρ

R̃n which can be, e.g.,
infinitesimal or infinite. Using recursively this result, we can also define sub-
sequent differentials Djf(x) as j−multilinear maps, and we set Djf(x) · hj :=

Djf(x)(h, j. . . . . . , h). The set of all the j−multilinear maps
(
ρ
R̃n
)j

−→ ρ
R̃d over

the ring ρ
R̃ will be denoted by Lj(ρR̃n, ρR̃d). For A = [Aε(−)] ∈ Lj(ρR̃n, ρR̃d),

we set ∥A∥ := [|Aε|], the generalized number defined by the operator norms of
the multilinear maps Aε ∈ Lj(Rn,Rd).

The following result follows from the analogous properties for the nets of
smooth functions defining f and g.
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Theorem 58. Let U ⊆ ρ
R̃n be an open subset in the sharp topology, let v ∈ ρ

R̃n

and f , g : U −→ ρ
R̃ be generalized smooth maps. Then

1. ∂(f+g)
∂v = ∂f

∂v + ∂g
∂v

2. ∂(r·f)
∂v = r · ∂f

∂v ∀r ∈ ρ
R̃

3. ∂(f ·g)
∂v = ∂f

∂v · g + f · ∂g
∂v

4. For each x ∈ U , the map df(x).v := ∂f
∂v (x) ∈

ρ
R̃ is ρ

R̃-linear in v ∈ ρ
R̃n

5. Let U ⊆ ρ
R̃n and V ⊆ ρ

R̃d be open subsets in the sharp topology and
g ∈ ρGC∞(V,U), f ∈ ρGC∞(U, ρR̃) be generalized smooth maps. Then for

all x ∈ V and all v ∈ ρ
R̃d, we have ∂(f◦g)

∂v (x) = df (g(x)) .∂g∂v (x).

One dimensional integral calculus of GSF is based on the following

Theorem 59. Let f ∈ ρGC∞([a, b], ρR̃) be a GSF defined in the interval [a, b] ⊆
ρ
R̃, where a < b. Let c ∈ [a, b]. Then, there exists one and only one GSF

F ∈ ρGC∞([a, b], ρR̃) such that F (c) = 0 and F ′(x) = f(x) for all x ∈ [a, b].
Moreover, if f is defined by the net fε ∈ C∞(R,R) and c = [cε], then F (x) =[� xε

cε
fε(s)ds

]
for all x = [xε] ∈ [a, b].

We can thus define

Definition 60. Under the assumptions of Theorem 59, we denote by
� (−)

c
f :=� (−)

c
f(s) ds ∈ ρGC∞([a, b], ρR̃) the unique GSF such that:

1.
� c

c
f = 0

2.
(� (−)

u
f
)′

(x) = d
dx

� x

u
f(s) ds = f(x) for all x ∈ [a, b].

All the classical rules of integral calculus hold in this setting:

Theorem 61. Let f ∈ ρGC∞(U, ρR̃) and g ∈ ρGC∞(V, ρR̃) be two GSF defined

on sharply open domains in ρ
R̃. Let a, b ∈ ρ

R̃ with a < b and c, d ∈ [a, b] ⊆ U∩V ,
then

1.
� d

c
(f + g) =

� d

c
f +

� d

c
g

2.
� d

c
λf = λ

� d

c
f ∀λ ∈ ρ

R̃

3.
� d

c
f =

� e

c
f +

� d

e
f for all e ∈ [a, b]

4.
� d

c
f = −

� c

d
f

5.
� d

c
f ′ = f(d)− f(c)

6.
� d

c
f ′ · g = [f · g]dc −

� d

c
f · g′
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7. If f(x) ≤ g(x) for all x ∈ [a, b], then
� b

a
f ≤

� b

a
g.

8. Let a, b, c, d ∈ ρ
R̃, with a < b and c < d, and f ∈ ρGC∞([a, b]× [c, d], ρR̃d),

then
d

ds

� b

a

f(τ, s) dτ =

� b

a

∂

∂s
f(τ, s) dτ ∀s ∈ [c, d].

Theorem 62. Let f ∈ ρGC∞(U, ρR̃) and φ ∈ ρGC∞(V,U) be GSF defined on

sharply open domains in ρ
R̃. Let a, b ∈ ρ

R̃, with a < b, such that [a, b] ⊆ V ,
φ(a) < φ(b), [φ(a), φ(b)] ⊆ U . Finally, assume that φ([a, b]) ⊆ [φ(a), φ(b)].
Then � φ(b)

φ(a)

f(t)dt =

� b

a

f [φ(s)] · φ′(s)ds.

We also have a generalization of Taylor formula:

Theorem 63. Let f ∈ ρGC∞(U, ρR̃) be a generalized smooth function defined

in the sharply open set U ⊆ ρ
R̃d. Let a, b ∈ ρ

R̃d such that the line segment
[a, b] ⊆ U , and set h := b− a. Then, for all n ∈ N we have

1. ∃ξ ∈ [a, b] : f(a+ h) =
∑n

j=0
djf(a)

j! · hj + dn+1f(ξ)
(n+1)! · hn+1.

2. f(a+ h) =
∑n

j=0
djf(a)

j! · hj + 1
n! ·

� 1

0
(1− t)n dn+1f(a+ th) · hn+1 dt.

Moreover, there exists some R ∈ ρ
R̃>0 such that

∀k ∈ BR(0)∃ξ ∈ [a, a+k] : f(a+k) =

n∑
j=0

djf(a)

j!
·kj+dn+1f(ξ)

(n+ 1)!
·kn+1 (6.1.1)

dn+1f(ξ)

(n+ 1)!
· kn+1 =

1

n!
·
� 1

0

(1− t)n dn+1f(a+ tk) · kn+1 dt ≈ 0. (6.1.2)

Formulas 1 and 2 correspond to a plain generalization of Taylor’s theorem
for ordinary smooth functions with Lagrange and integral remainder, respec-
tively. Dealing with generalized functions, it is important to note that this
direct statement also includes the possibility that the differential dn+1f(ξ) may
be an infinite number at some point. For this reason, in (6.1.1) and (6.1.2),
considering a sufficiently small increment k, we get more classical infinitesimal
remainders dn+1f(ξ) · kn+1 ≈ 0. We can also define right and left derivatives as

e.g. f ′(a) := f ′+(a) := limt→a
a<t

f ′(t), which always exist if f ∈ ρGC∞([a, b], ρR̃d).

6.1.2 Embedding of Sobolev-Schwartz distributions and
Colombeau functions

We finally recall two results that give a certain flexibility in constructing em-
beddings of Schwartz distributions. Note that both the infinitesimal ρ and the

48



embedding of Schwartz distributions have to be chosen depending on the prob-
lem we aim to solve. A trivial example in this direction is the ODE y′ = y/dε,
which cannot be solved for ρ = (ε), but it has a solution for ρ = (e−1/ε). As
another simple example, if we need the property H(0) = 1/2, where H is the
Heaviside function, then we have to choose the embedding of distributions ac-
cordingly. In other words, both the gauges and the particular embedding we
choose have to be thought of elements of the mathematical structure we are con-
sidering to deal with the particular problem we want to solve. See also [32, 49]
for further details in this direction.
If φ ∈ D(Rn), r ∈ R>0 and x ∈ Rn, we use the notations r ⊙ φ for the function
x ∈ Rn 7→ 1

rn ·φ
(
x
r

)
∈ R and x⊕φ for the function y ∈ Rn 7→ φ(y−x) ∈ R. These

notations permit us to highlight that⊙ is a free action of the multiplicative group
(R>0, ·, 1) on D(Rn) and ⊕ is a free action of the additive group (R>0,+, 0) on
D(Rn). We also have the distributive property r ⊙ (x⊕ φ) = rx⊕ r ⊙ φ.

Lemma 64. Let b ∈ ρ
R̃ be a net such that limε→0+ bε = +∞. Let d ∈ (0, 1)R,

there exists a net (ψε)ε∈I of D(Rn) with the properties:

1. supp(ψε) ⊆ B1(0) and ψε is even for all ε ∈ I.

2. Let ωn denote the surface area of Sn−1 and set cn := 2n
ωn

for n > 1 and
c1 := 1, then ψε(0) = cn for all ε ∈ I.

3.
�
ψε = 1 for all ε ∈ I.

4. ∀α ∈ Nn : supx∈Rn |∂αψε(x)| = O(b
2+|α|
ε ) as ε→ 0+.

5. ∀j ∈ N∀0ε : 1 ≤ |α| ≤ j ⇒
�
xα · ψε(x) dx = 0.

6. ∀η ∈ R>0 ∀0ε :
�
|ψε| ≤ 1 + η.

7. If n = 1, then the net (ψε)ε∈I can be chosen so that
� 0

−∞ ψε = d.

In particular ψb
ε := b−1

ε ⊙ ψε satisfies 3 - 6.

Concerning embeddings of Schwartz distributions, we have the following result,
where c(Ω) := {[xε] ∈ [Ω] | ∃K ⋐ Ω∀0ε : xε ∈ K} is called the set of compactly
supported points in Ω ⊆ Rn. Note that c(Ω) = {x ∈ [Ω] | x is finite} (see Def. 2).

Theorem 65. Under the assumptions of Lemma 64, let Ω ⊆ Rn be an open set
and let (ψb

ε) be the net defined in 64. Then the mapping

ιbΩ : T ∈ E ′(Ω) 7→
[(
T ∗ ψb

ε

)
(−)
]
∈ ρGC∞(c(Ω), ρR̃) (6.1.3)

uniquely extends to a sheaf morphism of real vector spaces

ιb : D′ −→ ρGC∞(c(−), ρR̃),

and satisfies the following properties:
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1. If b ∈ ρ
R̃>0 is a strong infinite number, then ιb|C∞

(−) : C∞(−) −→
ρGC∞(c(−), ρR̃) is a sheaf morphism of algebras and ιbΩ(f)(x) = f(x) for
all smooth functions f ∈ C∞(Ω) and all x ∈ Ω;

2. If T ∈ E ′(Ω) then supp(T ) = stsupp(ιbΩ(T )), where

stsupp(f) :=
(⋃

{Ω′ ⊆ Ω | Ω′ open, f |Ω′ = 0}
)c

(6.1.4)

for all f ∈ ρGC∞(c(Ω), ρR̃).

3. Let b ∈ ρ
R̃>0 be a strong infinite number. Then

[ �
Ω
ιbΩ(T )ε(x) ·φ(x) dx

]
=

⟨T, φ⟩ for all φ ∈ D(Ω) and all T ∈ D′(Ω);

4. ιb commutes with partial derivatives, i.e. ∂α
(
ιbΩ(T )

)
= ιbΩ (∂αT ) for each

T ∈ D′(Ω) and α ∈ N.

5. Similar results also hold for the embedding of tempered distributions:

ιbΩ : T ∈ S ′(Ω) 7→
[(
T ∗ ψb

ε

)
(−)
]
∈ ρGC∞(c(Ω), ρR̃).

Concerning the embedding of Colombeau generalized functions (CGF), we
recall that the special Colombeau algebra on Ω is defined as the quotient
Gs(Ω) := EM (Ω)/N s(Ω) of moderate nets over negligible nets, where the for-
mer is

EM (Ω) := {(uε) ∈ C∞(Ω)I | ∀K ⋐ Ω ∀α ∈ N
n ∃N ∈ N : sup

x∈K
|∂αuε(x)| = O(ε−N )}

and the latter is

N s(Ω) := {(uε) ∈ C∞(Ω)I | ∀K ⋐ Ω ∀α ∈ N
n ∀m ∈ N : sup

x∈K
|∂αuε(x)| = O(εm)}.

Using ρ = (ε), we have the following compatibility result:

Theorem 66. A Colombeau generalized function u = (uε) +N s(Ω)d ∈ Gs(Ω)d

defines a GSF u : [xε] ∈ c(Ω) −→ [uε(xε)] ∈ R̃d. This assignment provides a

bijection of Gs(Ω)d onto ρGC∞(c(Ω), ρR̃d) for every open set Ω ⊆ Rn.

Example 67.

1. Let δ ∈ ρGC∞(c(Rn), ρR̃) and H ∈ ρGC∞(c(R), ρR̃) be the ιb-embeddings of
the Dirac delta and of the Heaviside function. Then δ(x) = bn · ψ(b · x),
where ψ(x) := [ψε(xε)] is called n-dimensional Colombeau mollifier. Note
that δ is an even function because of Lem. 64.1. We have that δ(0) = cnb

n

is a strong infinite number and δ(x) = 0 if |x| > r for some r ∈ R>0 because
of Lem. 64.1 (see Lem. 64.2 for the definition of cn ∈ R>0). If n = 1, by
the intermediate value theorem (see [31]), δ takes any value in the interval

[0, b] ⊆ ρ
R̃. Similar properties can be stated e.g. for δ2(x) = b2 · ψ(b · x)2.

Using these formulas, we can simply consider δ ∈ ρGC∞(ρR̃n, ρR̃) and H ∈
ρGC∞(ρR̃, ρR̃).
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Figure 6.1.1: Representations of Dirac delta and Heaviside function

2. Analogously, we have H(x) = 1 if x > r for some r ∈ R>0; H(x) = 0 if
x < −r for some r ∈ R>0, and finally H(0) = 1

2 because of Lem. 64.1.
By the intermediate value theorem, H takes any value in the interval
[0, 1] ⊆ ρ

R̃.

3. If n = 1, The composition δ ◦ δ ∈ ρGC∞(ρR̃, ρR̃) is given by (δ ◦ δ)(x) =
bψ
(
b2ψ(bx)

)
and is an even function. If |x| > r for some r ∈ R>0, then

(δ ◦ δ)(x) = b. Since (δ ◦ δ)(0) = 0, again using the intermediate value

theorem, we have that δ ◦ δ takes any value in the interval [0, b] ⊆ ρ
R̃.

Suitably choosing the net (ψε) it is possible to have that if 0 ≤ x ≤ 1
kb for

some k ∈ N>1 (hence x is infinitesimal), then (δ ◦ δ)(x) = 0. If x = k
b for

some k ∈ N>0, then x is still infinitesimal but (δ ◦ δ)(x) = b. Analogously,
one can deal with compositions such as H ◦ δ and δ ◦H.

See Fig. 6.1.1 for a graphical representations of δ and H. The infinitesimal
oscillations shown in this figure can be proved to actually occur as a consequence
of Lem. 64.5 which is a necessary property to prove Thm. 65.1, see [31, 32]. It
is well-known that the latter property is one of the core ideas to bypass the
Schwartz’s impossibility theorem, see e.g. [37].
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6.2 Functionally compact sets and multidimen-
sional integration

6.2.1 Extreme value theorem and functionally compact
sets

For GSF, suitable generalizations of many classical theorems of differential and
integral calculus hold: intermediate value theorem, mean value theorems, suit-
able sheaf properties, local and global inverse function theorems, Banach fixed
point theorem and a corresponding Picard-Lindelöf theorem both for ODE and
PDE, see [29, 30, 31, 49, 32].

Even though the intervals [a, b] ⊆ ρ
R̃, a, b ∈ R, are not compact in the sharp

topology (see [29]), analogously to the case of smooth functions, a GSF satisfies
an extreme value theorem on such sets. In fact, we have:

Theorem 68. Let f ∈ GC∞(X, ρR̃) be a GSF defined on the subset X of ρ
R̃n.

Let ∅ ≠ K = [Kε] ⊆ X be an internal set generated by a sharply bounded net
(Kε) of compact sets Kε ⋐ Rn , then

∃m,M ∈ K ∀x ∈ K : f(m) ≤ f(x) ≤ f(M). (6.2.1)

We shall use the assumptions on K and (Kε) given in this theorem to intro-
duce a notion of “compact subset” which behaves better than the usual classical
notion of compactness in the sharp topology.

Definition 69. A subset K of ρ
R̃n is called functionally compact, denoted by

K ⋐f
ρ
R̃n, if there exists a net (Kε) such that

1. K = [Kε] ⊆ ρ
R̃n.

2. ∃R ∈ ρ
R̃>0 : K ⊆ BR(0), i.e. K is sharply bounded.

3. ∀ε ∈ I : Kε ⋐ Rn.

If, in addition, K ⊆ U ⊆ ρ
R̃n then we write K ⋐f U . Finally, we write [Kε] ⋐f U

if 2, 3 and [Kε] ⊆ U hold. Any net (Kε) such that [Kε] = K is called a
representative of K.

We motivate the name functionally compact subset by noting that on this type
of subsets, GSF have properties very similar to those that ordinary smooth
functions have on standard compact sets.

Remark 70.

1. By Thm. 14.3, any internal set K = [Kε] is closed in the sharp topology
and hence functionally compact sets are always closed. In particular, the
open interval (0, 1) ⊆ ρ

R̃ is not functionally compact since it is not closed.

2. If H ⋐ Rn is a non-empty ordinary compact set, then the internal set
[H] is functionally compact. In particular, [0, 1] = [[0, 1]R] is functionally
compact.
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3. The empty set ∅ = ∅̃ ⋐f
ρ
R̃.

4. ρ
R̃n is not functionally compact since it is not sharply bounded.

5. The set of compactly supported points c(R) is not functionally compact be-
cause the GSF f(x) = x does not satisfy the conclusion (6.2.1) of Thm. 68.

In the present paper, we need the following properties of functionally compact
sets.

Theorem 71.

1. Let K ⊆ X ⊆ ρ
R̃n, f ∈ GC∞(X, ρR̃d). Then K ⋐f

ρ
R̃n implies f(K) ⋐f

ρ
R̃d.

2. Let K, H ⋐f
ρ
R̃n. If K ∪ H is an internal set, then it is a functionally

compact set. If K ∩H is an internal set, then it is a functionally compact
set.

3. Let H ⊆ K ⋐f
ρ
R̃n, then if H is an internal set, then H ⋐f

ρ
R̃n.

As a corollary of this theorem and Rem. 70.2 we get

Corollary 72. If a, b ∈ ρ
R̃ and a ≤ b, then [a, b] ⋐f

ρ
R̃.

Let us note that a, b ∈ ρ
R̃ can also be infinite numbers, e.g. a = dρ−N , b = dρ−M

or a = −dρ−N , b = dρ−M with M > N , so that e.g. [−dρ−N ,dρ−M ] ⊇ R.
Finally, in the following result we consider the product of functionally compact
sets:

Theorem 73. Let K ⋐f
ρ
R̃n and H ⋐f

ρ
R̃d, then K×H ⋐f

ρ
R̃n+d. In particular,

if ai ≤ bi for i = 1, . . . , n, then
∏n

i=1[ai, bi] ⋐f
ρ
R̃n.

Applying the extreme value theorem Thm. 68 to the first derivative, we also
have the following

Theorem 74. Let a, b ∈ ρ
R̃n, a < b, f ∈ ρGC∞([a, b], ρR̃) be a GSF. Then

1. ∃c ∈ [a, b] : f(b)− f(a) = (b− a) · f ′(c).

2. SettingM := maxc∈[a,b] |f ′(c)| ∈ ρ
R̃, we hence have ∀x, y ∈ [a, b] : |f(x)− f(y)| ≤

M · |x− y|.

A theory of compactly supported GSF has been developed in [30], and
it closely resembles the classical theory of LF-spaces of compactly supported
smooth functions.
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6.2.2 Multidimensional integration

Finally, to define FT of multivariable GSF we have to introduce multidimen-
sional integration on suitable subsets of ρ

R̃n (see [31]).

Definition 75. Let µ be a measure on Rn and let K be a functionally compact
subset of ρ

R̃n. Then, we call K µ-measurable if the limit

µ(K) := lim
m→∞

[µ(BE
ρm
ε
(Kε))] (6.2.2)

exists for some representative (Kε) of K. Here m ∈ N, the limit is taken in the

sharp topology on ρ
R̃, and BE

r(A) := {x ∈ Rn : d(x,A) ≤ r}.
Let K ⋐f

ρ
R̃n. Let (Ωε) be a net of open subsets of Rn, and (fε) be a net of

continuous maps fε: Ωε −→ R. Then we say that

(fε) defines a generalized integrable map : K −→ ρ
R̃

if

1. K ⊆ ⟨Ωε⟩ and [fε(xε)] ∈ ρ
R̃ for all [xε] ∈ K.

2. ∀(xε), (x′ε) ∈ Rn
ρ : [xε] = [x′ε] ∈ K ⇒ (fε(xε)) ∼ρ (fε(x

′
ε)).

If f ∈ Set(K, ρR̃) is such that

∀[xε] ∈ K : f ([xε]) = [fε(xε)] (6.2.3)

we say that f : K −→ ρ
R̃ is a generalized integrable function.

We will again say that f is defined by the net (fε) or that the net (fε) represents
f . The set of all these generalized integrable functions will be denoted by
ρGI(K, ρR̃).

E.g., if f = [fε(−)]|K ∈ ρGC∞(K, ρR̃), then both f and |f | = [|fε(−)|]|K are
integrable on K (but note that, in general, |f | is not a GSF).
In the following result, we show that this definition generates a correct notion
of multidimensional integration for GSF.

Theorem 76. Let K ⊆ ρ
R̃n be µ-measurable.

1. The definition of µ(K) is independent of the representative (Kε).

2. There exists a representative (Kε) of K such that µ(K) = [µ(Kε)].

3. Let (Kε) be any representative of K and let f = [fε(−)]|K ∈ ρGI(K, ρR̃).
Then �

K

f dµ := lim
m→∞

[�
BE

ρmε
(Kε)

fε dµ

]
∈ ρ

R̃

exists and its value is independent of the representative (Kε).
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4. There exists a representative (Kε) of K such that

�
K

f dµ =

[�
Kε

fε dµ

]
∈ ρ

R̃ (6.2.4)

for each f = [fε(−)]|K ∈ ρGI(K, ρR̃). From (6.2.4), it also follows that∣∣�
K
f dµ

∣∣ ≤ �
K
|f | dµ.

5. If K =
∏n

i=1[ai, bi], then K is λ-measurable (λ being the Lebesgue measure

on Rn) and for all for each f = [fε(−)]|K ∈ ρGI(K, ρR̃) we have

�
K

f dλ =

[� b1,ε

a1,ε

dx1 . . .

� bn,ε

an,ε

fε(x1, . . . , xn) dxn

]
∈ ρ

R̃ (6.2.5)

for any representatives (ai,ε), (bi,ε) of ai and bi respectively. Therefore, if
n = 1, this notion of integral coincides with that of Thm. 59 and Def. 60.
Note that (6.2.5) also directly implies Fubini’s theorem for this type of
integrals.

6. Let K ⊆ ρ
R̃n be λ-measurable, where λ is the Lebesgue measure, and let

φ ∈ ρGC∞(K, ρR̃d) be such that φ−1 ∈ ρGC∞(φ(K), ρR̃n). Then φ(K) is
λ-measurable and �

φ(K)

f dλ =

�
K

(f ◦ φ) |det(dφ)| dλ

for each f ∈ ρGI(φ(K), ρR̃).

In order to state a continuity property for this notion of integration, we have to
introduce hypernatural numbers and hyperlimits as follows

6.3 Convolution on ρ
R̃
n

In this section, we define and study convolution f ∗ g of two GSF, where f or g
is compactly supported. Compactly supported GSF were introduced in [28] for
the gauge ρε = ε. For an arbitrary gauge, we here define and study the notions
needed for the HFT as well as for the study of convolution of GSF.

Definition 77. Assume that X ⊆ ρ
R̃n, Y ⊆ ρ

R̃d and f ∈ ρGC∞ (X,Y ), then

1. supp (f) := {x ∈ X | |f (x)| > 0}, where (·) denotes the relative closure
in X with respect to the sharp topology, is called the support of f . We
recall (see just after Def. 1 and Lem. 4) that x > 0 means that x ∈ ρ

R̃≥0

is positive and invertible.

2. For A ⊆ ρ
R̃ we call the set ext (A) :=

{
x ∈ ρ

R̃ | ∀a ∈ A : |x− a| > 0
}
the

strong exterior of A. Recalling Lem. 4, if x ∈ ext(A), then |x− a| ≥ dρq

for all a ∈ A and for some q = q(a) ∈ N.
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3. Let H ⋐f
ρ
R̃n, we say that f ∈ ρGD (H,Y ) if f ∈ ρGC∞(ρR̃n, Y ) and

supp (f) ⊆ H. We say that f ∈ ρGD(ρR̃n, Y ) if f ∈ ρGD (H,Y ) for some

H ⋐f
ρ
R̃n. Such an f is called compactly supported ; for simplicity we set

ρGD(H) := ρGD(H, ρC̃). Note that supp(f) is clearly always closed, and
if f ∈ ρGD (H,Y ) then it is also sharply bounded. However, in general it
is not an internal set so it is not a functionally compact set. Accordingly,
the theory of multidimensional integration of Sec. 6.2.2 does not allow us
to consider

�
supp(f)

f even if f is compactly supported.

Remark 78.

1. Note that the notion of standard support stsupp (f) as defined in Thm. 65
and the present notion supp (f) of support, as defined above, are differ-

ent. The main distinction is that stsupp (f) ⊆ Rn while supp (f) ⊆ ρ
R̃n.

Moreover if we consider a CGF f ∈ ρGC∞(c(Ω), ρR̃d), then supp (f)∩Ω ⊆
stsupp (f).

2. Since δ (0) > 0 then δ|Br(0) > 0 for some r ∈ ρ
R̃>0 by the sharp continuity

of δ, i.e. Thm. 56.2, hence Br (0) ⊆ supp (δ), whereas stsupp (δ) = {0}.
Example 67.1 also yields that supp(δ) ⊆ [−r, r]n for all r ∈ R>0.

3. Any rapidly decreasing function f ∈ S(Rn) satisfies the inequality 0 ≤
f (x) ≤ |x|−q

, ∀q ∈ N, for |x| finite sufficiently large. Therefore, for all

strongly infinite x, we have f (x) = 0 i.e., f ∈ ρGD
(
ρ
R̃n
)
.

Lemma 79. Let ∅ ≠ H ⋐f
ρ
R̃n. Then ext (H) is sharply open.

Proof. If x = [xε] ∈ ext (H), we set dε := d (xε, Hε) where H = [Hε] and
∅ ̸= Hε ⋐ Rn for all ε (because H ̸= ∅). Then ∃hε ∈ Hε : d := d (xε, hε), we
set h := [hε] ∈ H and |x− h| = [dε] =: d > 0 because x ∈ ext(H) and h ∈ H.
Now, by taking r := d

2 > 0, we prove that Br (x) ⊆ ext (H). Pick y ∈ Br (x),

then for all a ∈ H, we have |y − a| ≥ |x− a| − |y − x| ≥ d− d
2 > 0.

Theorem 80. Let H ⋐f
ρ
R̃n and f ∈ ρGC∞(ρR̃n, ρC̃), then the following prop-

erties hold:

1. f ∈ ρGD (H) if and only if f |ext(H) = 0.

If f ∈ ρGD (H), x ∈ ρ
R̃n and α ∈ Nn, then:

2. ∂αf (x) = 0 for all x ∈ ext(H).

3. If H ⊆ [−h, h]n then ∂αf(x) = 0 whenever xp ≥ h or xp ≤ −h for some
p = 1, . . . , n.

4. If H ⊆ [−h, h]n ⊆
∏n

p=1[ap, bp], then

b1�

a1

dx1 . . .

bn�

an

f (x) dxn =

h�

−h

dx1 . . .

h�

−h

f (x) dxn

56



Proof. 1: Assume that supp(f) ⊆ H and x = [xε] ∈ ext(H), but f(x) ̸= 0.
This implies that |f(x)| ̸≤ 0 because always |f(x)| ≥ 0. Thereby, Lem. 10

yields |f(x)| >L 0 for some L ⊆0 I. Applying Lem. 4 for the ring ρ
R̃|L we get

|f(x)| >L dρq for some q ∈ R>0, i.e. |fε(xε)| > ρqε for all ε ∈ L≤ε0 . Define

x̄ε := xε for all ε ∈ L and x̄ε := xε0 otherwise, so that x̄ := [x̄ε] ∈ ρ
R̃n and

|f(x̄)| > dρq. This yields x̄ ∈ supp(f) ⊆ H, and hence |x − x̄| > 0, which is
impossible by construction because x̄|L = x|L and because of Lem. 4.

Vice versa, assume that f |ext(H) = 0 and take x = [xε] ∈ supp(f) \H. The
property

∀q ∈ R>0 ∀0ε : d(xε, Hε) ≤ ρqε

cannot hold, because for q → +∞ Thm. 14.1 would imply x ∈ H = [Hε].
Therefore, for some q ∈ R>0 and some L ⊆0 I, we have d(xε, Hε) ≥ ρqε for all
ε ∈ L. Thereby, if a = [aε] ∈ H where aε ∈ Hε for all ε, we get d(xε, aε) ≥
d(xε, Hε) ≥ ρqε for all ε ∈ L, i.e. x|L ∈ ext(H)|L. Applying Lem. 79 for the ring
ρ
R̃|L we get

Br(x)|L ⊆ ext(H)|L (6.3.1)

for some r ∈ ρ
R̃>0. From x ∈ supp(f), we get the existence of a sequence

(xp)p∈N of points of
{
x ∈ ρ

R̃n | |f(x)| > 0
}

such that xp → x as p → +∞ in

the sharp topology. Therefore, xp ∈ Br(x) for p ∈ N sufficiently large. Thereby,
xp|L ∈ ext(H)|L from (6.3.1) and hence f(xp)|L =

[
(fε(xpε))ε∈L

]
= 0, which

contradicts |f(xp)| > 0.
Property 2 follows by induction on |α| ∈ N using Thm. 57. We prove prop-

erty 3 for the case xp ≥ h, the other case being similar. We consider

x̄q := (x1,
p−1. . . . . . , xp−1, xp + dρq, xp+1, . . . , xn) ∀q ∈ N.

Then |x̄q−a| ≥ |xp+dρq−ap| ≥ dρq for all a ∈ [−h, h]n ⊇ H because xp ≥ h ≥
ap. Therefore, x̄q ∈ ext(H) and hence ∂αf(x̄q) = 0 from the previous 2. The
conclusion now follows from the sharp continuity of the GSF ∂αf (Thm. 56.2).

4: The inclusion ±(h, . . . , h) ∈ [−h, h]n ⊆
∏n

p=1[ap, bp] implies ap ≤ −h and
bp ≥ h for all p = 1, . . . , n. Using Thm. 76.5, we can write

b1�

a1

dx1 . . .

bn�

an

f (x) dxn =

b1�

a1

dx1 . . .

bn−1�

an−1

dxn−1

−h�

an

f (x) dxn+

b1�

a1

dx1 . . .

bn−1�

an−1

dxn−1

+h�

−h

f (x) dxn+

b1�

a1

dx1 . . .

bn−1�

an−1

dxn−1

bn�

h

f (x) dxn.
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But if xn ∈ [an,−h] or xn ∈ [h, bn], then property 3 yields f(x) = 0 and we
obtain

b1�

a1

dx1 . . .

bn�

an

f (x) dxn =

b1�

a1

dx1 . . .

bn−1�

an−1

dxn−1

h�

−h

f (x) dxn.

Proceeding in the same way with all the other integrals we get the claim.

In particular, if T ∈ E ′(Ω), then Thm. 80.1 implies that ιbΩ(T ) ∈ ρGD
(
ρ
R̃n
)
.

Also observe that f(x) = e−x2

, x ∈
{
x ∈ ρ

R̃ | ∃N ∈ N : x2 ≥ N log dρ
}
, satis-

fies f(x) ≤ x−q for all infinite x and all q ∈ N. Therefore

∀Q ∈ N : f ∈ ρGD
(
[−dρ−Q,dρ−Q]

)
.

Based on these results, we can define

Definition 81. Let f ∈ ρGD(ρR̃n), then

�
f :=

�
ρR̃n

f :=

b1�

a1

dx1 . . .

bn�

an

f (x) dxn (6.3.2)

where supp(f) ⊆
∏n

p=1[ap, bp]. This equality does not depend on ap, bp because
of Thm. 80.4.

Note that we can also write (6.3.2) as

�
f = lim

ap→−∞
bp→+∞
p=1,...,n

b1�

a1

dx1 . . .

bn�

an

f (x) dxn = lim
h→+∞

h�

−h

dx1 . . .

h�

−h

f (x) dxn (6.3.3)

even if we are actually considering limits of eventually constant functions. Using
this notion of integral of a compactly supported GSF, we can also write the
value of a distribution ⟨T, φ⟩ as an integral: let b ∈ ρ

R̃>0 be a strong infinite
number, Ω ⊆ Rn be an open set, T ∈ D′(Ω) and φ ∈ D(Ω), with supp(φ) ⊆∏n

i=1[ai, bi]R =: J . Then from Thm. 65.3 and Thm. 76.5 we get

⟨T, φ⟩ =
�
[J]

ιbΩ(T )(x) · φ(x) dx =

�
ιbΩ(T )(x) · φ(x) dx, (6.3.4)

where the equalities are in ρ
R̃.

Definition 82. Let f , g ∈ ρGC∞(ρR̃n), with f ∈ ρGD(ρR̃n) or g ∈ ρGD(ρR̃n). In

the former case, by Thm. 56.4 and Thm. 80.1, for all x ∈ ρ
R̃n, f · g(x − ·) ∈

ρGD(ρR̃n) with supp (f · g(x− ·)) ⊆ supp(f) ⋐f
ρ
R̃n. Moreover, supp (f(x− ·) · g) ⊆

58



x−supp(f) ⋐f
ρ
R̃n. Similarly, we can argue in the latter case, and we can hence

define

(f ∗ g) (x) :=
�
f (y) g (x− y) dy =

�
f (x− y) g (y) dy ∀x ∈ ρ

R̃
n. (6.3.5)

Note that directly from Thm. 59 and Def. 81, it follows that f ∗ g ∈ ρGC∞(ρR̃n).
The next theorems provide the usual basic properties of convolution suitably
formulated in our framework. We start by studying how the convolution is in
relation to the supports of its factors:

Theorem 83. Let f , g, h ∈ ρGD(ρR̃n). Then the following properties hold:

1. Let supp(f) ⊆ [−a, a]n, supp(g) ⊆ [−b, b]n, a, b ∈ ρ
R̃>0, and x ∈ ρ

R̃n. Set
Lx := [−a, a]n ∩ (x− [−b, b]n), then

supp (f · g(x− ·)) ⊆ Lx =
n∏

p=1

[max(−a, xp − b),min(a, xp + b)] (6.3.6)

(f ∗ g) (x) =
�

Lx

f (y) g (x− y) dy. (6.3.7)

2. supp(f ∗ g) ⊆ supp(f) + supp(g), therefore f ∗ g ∈ ρGD(ρR̃n).

Proof. 1: If |f(t)g(x− t)| > 0, then t ∈ supp(f) and x− t ∈ supp(g). Therefore,
supp (f · g(x− ·)) ⊆ [−a, a]n∩ (x− [−b, b]n). As in the case of real numbers, we
can say that if t ∈ [−a, a]n∩(x− [−b, b]n), then −a ≤ tp ≤ a and −b ≤ xp−tp ≤
b for all p = 1, . . . , n. Therefore, tp ∈ [max(−a, xp−b),min(a, xp+b)]. Similarly,
we can prove that also Lx ⊆ [−a, a]n ∩ (x− [−b, b]n). The conclusion (6.3.6)
now follows from Def. 81. For completeness, recall that in general supp(f) and
supp(g) are not functionally compact sets and our integration theory allows to
integrate only over the latter kind of sets. This justifies our formulation of the
present property using intervals.

2: Since f and g are compactly supported, we have supp(f) ⊆ H and

supp(g) ⊆ L for some H, L ⋐f
ρ
R̃n. Assume that |(f ∗ g)(x)| > 0. Then, by

Thm. 61.7, Thm. 76.5 and the extreme value Thm. 68, we get

0 < |(f ∗ g)(x)| ≤ λ(H) ·max
y∈H

|f(y)g(x− y)|,

where λ is the extension of the Lebesgue measure given by Def. 75. Therefore,
there exists y ∈ H such that 0 < λ(H) · |f(y)g(x− y)|. This implies that
y ∈ supp(f) and x−y ∈ supp(g). Thereby, x = y+(x−y) ∈ supp(f)+supp(g).
Taking the sharp closure we get the conclusion. Finally, supp(f) + supp(g) ⊆
H + L = H + L and H + L ⋐f

ρ
R̃n because it is the image under the sum + of

H × L (see Thm. 73 and Thm. 71).

Now, we consider algebraic properties of convolution and its relations with
derivations and integration:
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Theorem 84. Let f , g, h ∈ ρGC∞(ρR̃n) and assume that at least two of them
are compactly supported. Then the following properties hold:

1. f ∗ g = g ∗ f .

2. (f ∗ g) ∗ h = f ∗ (g ∗ h).

3. f ∗ (h+ g) = f ∗ h+ f ∗ g.

4. f ∗ g = f ∗ g

5. t⊕ (f ∗ g) = (t⊕ f) ∗ g = f ∗ (t⊕ g) where t ⊕ f is the translation of the
function f by t defined by (t⊕ f) (x) = f (x− t) (see Sec. 6.1.2).

6. ∂
∂xp

(f ∗ g) = ∂f
∂xp

∗ g = f ∗ ∂g
∂xp

for all p = 1, . . . , n.

7.
�
(f ∗ g) (x) dx =

(�
f (x) dx

) (�
g (x) dx

)
Proof. 1: We assume, e.g., that f ∈ ρGD(ρR̃n). Take h ∈ ρ

R̃>0 such that
supp(f) ⊆ [−h, h]n. By (6.3.7) and Def. 81, we can write

(f ∗ g) (x) =
h�

−h

dy1 . . .

h�

−h

f (y) g (x− y) dyn.

We can now proceed as in the classical case, i.e. considering the change of
variable z = x− y (Thm. 62). We get

(f ∗ g) (x) =
x1+h�

x1−h

dz1 . . .

xn+h�

xn−h

f (x− z) g (z) dzn.

Taking the limit h→ +∞ (see (6.3.3)), we obtain the desired equality. Similarly,
we can also prove 2 and 3.

As usual, 4 is a straightforward consequence of the definition of complex
conjugate.

5: The usual proof applies, in fact

t⊕ (f ∗ g) (x) = (f ∗ g) (x− t) =

�
f (y) g (x− t− y) dy =

=

�
f (y) (t⊕ g) (x− y) dy = (f ∗ (t⊕ g)) (x) . (6.3.8)

Finally, the commutativity property 1 yields (t⊕ f)∗g = g∗(t⊕f) and applying
(6.3.8) g ∗ (t⊕ f) = t⊕ (g ∗ f) = t⊕ (f ∗ g).

6: Set h := f ∗ g and take x ∈ ρ
R̃n. Using differentiation under the integral

sign (Thm. 61.8) and Def. 81 we get

∂

∂xp
h (x) =

�

ρR̃n

f (y)
∂g

∂xp
(x− y) dy =

(
f ∗ ∂g

∂xp

)
(x) .
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Using 1, we also have ∂
∂xp

h = ∂f
∂xp

∗ g.
To prove 7 we show the case n = 1, even if the general one is similar. Let

a, b ∈ ρ
R̃>0 be such that supp(f ∗ g) ⊆ [−a, a] (Thm. 83) and supp(f) ⊆ [−b, b].

Then �
(f ∗ g)(x) dx =

� a

−a

dx

� b

−b

f(y)g(x− y) dy.

Using Fubini’s Thm. 76.5, we can write

�
(f ∗ g)(x) dx =

� b

−b

f(y)

� a

−a

g(x− y) dxdy =

=

� b

−b

f(y)

� a−y

−a−y

g(z) dz dy =

=

� b

−b

f(y) dy

� c

−c

g(z) dz,

where we have taken a→ +∞ or equivalently, considered any c ≥ a+ b.

Young’s inequality for convolution is based on the generalized Hölder’s in-
equality, on the inequality

∣∣�
K
f dµ

∣∣ ≤ �
K
|f | dµ (see Thm. 76.4), monotonicity

of integral (see Thm. 61.7) and Fubini’s theorem (see Thm. 76.5). Therefore,
the usual proofs can be repeated in our setting if we take sufficient care of terms
such as |f(x)|p if p ∈ ρ

R̃≥1:

Definition 85. Let f ∈ ρGD(ρR̃n) and p ∈ ρ
R̃≥1 be a finite number. Then, we

set

∥f∥p :=

(�
|f(x)|p dx

)1/p

∈ ρ
R̃≥0.

Note that |f |p is a generalized integrable function (Def. 75) because p is a finite

number (in general the power xy is not well-defined, e.g.
(

1
ρε

)1/ρε

= ρ
−1/ρε
ε is

not ρ-moderate).

On the other hand, Hölder’s inequality, if ∥f∥p > 0 and ∥g∥q > 0, is simply
based on monotonicity of integral, Fubini’s theorem and Young’s inequality for
products. The latter holds also in ρ

R̃≥0 because it holds in the entire R≥0, see
e.g. [63].

Theorem 86 (Hölder). Let fk ∈ ρGD(ρR̃n) and pk ∈ ρ
R̃≥1 for all k = 1, . . . ,m

be such that
∑m

k=1
1
pk

= 1 and ∥fk∥pk
> 0. Then∥∥∥∥∥

m∏
k=1

fk

∥∥∥∥∥
1

≤
m∏

k=1

∥fk∥pk
.

Theorem 87 (Young). Let f , g ∈ ρGD(ρR̃n) and p, q, r ∈ ρ
R̃≥1 be such that

1
p + 1

q = 1 + 1
r and ∥f∥p, ∥g∥q > 0, then ∥f ∗ g∥r ≤ ∥f∥p · ∥g∥q.
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In the following theorem, we consider when the equality (δ ∗ f) (x) = f(x) holds.
As we will see later in Sec. 6.4.2, as a consequence of the Riemann-Lebesgue
lemma we necessarily have a limitation concerning the validity of this equality.

Theorem 88. Let δ be the ιb
Rn-embedding of the n-dimensional Dirac delta (see

Thm. 65). Assume that f ∈ ρGC∞
(
ρ
R̃n
)

satisfies, at the point x ∈ ρ
R̃n, the

condition

∃r ∈ R>0 ∃M, c ∈ ρ
R̃ ∀y ∈ Br(x)∀j ∈ N :

∣∣djf (y)∣∣ ≤Mcj , (6.3.9)

b

c
is a large infinite number

i.e. all its derivatives in a finite neighborhood of x are bounded by a suitably
small polynomial Mcj (such a function f will be called bounded by a tame
polynomial at x). Then (δ ∗ f) (x) = f(x).

Proof. Considering that δ(y) = bnψ(by), where ψ is the considered n-dimensional
Colombeau mollifier and b is a strong infinite number. (see Example 67.1), we
have:

(δ ∗ f) (x)− f (x) =

�
f (x− y) δ (y) dy − f (x)

�
δ (y) dy =

=

�
(f (x− y)− f (x)) δ (y) dy =

=

�
[
− r√

n
, r√

n

]n (f (x− y)− f (x)) δ (y) dy =

=

�
[
− r√

n
, r√

n

]n (f (x− y)− f (x)) bnψ (by) dy,

where r ∈ ρ
R̃>0 is the radius from (6.3.9), so that supp(δ) ⊆

[
− r√

n
, r√

n

]n
since

r ∈ R>0. By changing the variable by = t, and setting H :=
[
− br√

n
, br√

n

]n
we

have

(f ∗ δ) (x)− f (x) =

�
H

(
f

(
x− t

b

)
− f (x)

)
ψ (t) dt.

Using Taylor’s formula (Thm. 63.2) up to an arbitrary order q ∈ N, we get

�
H

(
f

(
x− t

b

)
− f (x)

)
ψ (t) dt =

�
H

∑
0<|α|≤q

1

α!

(
− t
b

)α

∂αf (x)ψ (t) dt+

+

�
H

1

(q + 1)!

� 1

0

(1− z)
q
dq+1f

(
x− z

t

b

)(
− t
b

)q+1

ψ (t) dz dt. (6.3.10)

But 1 and 5 of Lem. 64 yield:

�
H

tαψ(t) dt =

[�
[
− bεr√

n
, bεr√

n

]n tαψε(t) dt

]
=

[�
tαψε(t) dt

]
= 0 ∀|α| ≤ q,
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where we also used that bεr√
n
> 1 for ε sufficiently small because b > 0 is an

infinite number and r ∈ R>0. Thereby, in (6.3.10) we only have to consider the
remainder

Rq (x) :=

�
H

1

(q + 1)!

� 1

0

(1− z)
q
dq+1f

(
x− z

t

b

)(
− t
b

)q+1

ψ (t) dz dt =

=
(−1)q+1

bq+1(q + 1)!

�
H

� 1

0

(1− z)
q
dq+1f

(
x− z

t

b

)
tq+1ψ (t) dz dt.

For all z ∈ (0, 1) and t ∈ H =
[
− r√

n
, r√

n

]n
, we have

∣∣ zt
b

∣∣ ≤ ∣∣ tb ∣∣ ≤ √
n|t|∞
b ≤ rb

b =

r and hence x−z t
b ∈ Br(x). Thereby, assumption (6.3.9) yields dq+1f

(
x− z t

b

)
≤

Mcq+1, and hence

|Rq (x)| ≤ b−q−1 Mcq+1

(q + 1)!

�

H

∣∣tq+1ψ (t)
∣∣ dt =

=

(
b

c

)−q−1
M

(q + 1)!

�

[−1,1]n

∣∣tq+1ψ (t)
∣∣ dt ≤

≤
(
b

c

)−q−1
M

(q + 1)!

�

[−1,1]n

|ψ (t)| dt ≤

≤
(
b

c

)−q−1
2M

(q + 1)!
,

where we used 1 and 6 of Lem. 64 and br√
n
> 1. We can now let q → +∞

considering that b
c > dρ−s for some s ∈ R>0, so that |Rq (x)| → 0 and hence

(δ ∗ f) (x) = f(x).

Example 89.

1. If fω(x) = e−ixω, b ≥ dρ−r and ω ∈ ρ
R̃ satisfies |ω| ≤ dρ−s with s < r

(e.g. if ω is a weak infinite number, see Def. 3), then b
|ω| ≥ dρ−(r−s) and fω

is bounded by a tame polynomial at each point x ∈ ρ
R̃. On the contrary,

e.g. if b = dρ−r and |ω| ≥ dρ−r, then b
|ω| ≤ 1 and fω is not bounded by a

tame polynomial at any x ∈ ρ
R̃.

2. If f ∈ ρGC∞(ρR̃n) has always finite derivatives at a finite point x ∈ ρ
R̃n

(e.g. it originates from the embedding of an ordinary smooth function),
then it suffices to take c = dρ−r−1 to prove that f is bounded by a tame
polynomial at x. Similarly, we can argue if f is polynomially bounded for
x→ ∞ and x ∈ ρ

R̃n is not finite.

3. The Dirac delta δ(x) = bnψ(bx) is not bounded by a tame polynomial
at x = 0. This also shows that, generally speaking, the embedding of
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a compactly supported distribution is not bounded by a tame polyno-
mial. Below we will show that indeed δ ∗ δ ̸= δ, even if we clearly have
(δ ∗ δ) (x) = δ(x) = 0 for all x ∈ ρ

R̃n such that |x| ≥ r ∈ R>0.

4. If f ∈ ρGC∞
(
ρ
R̃n
)
is bounded by a tame polynomial at 0, then since δ is

an even function (see Example 67.1), we have:
�
δ(x) · f(x) dx =

�
δ(0− x) · f(x) dx = (f ∗ δ) (0) = f(0). (6.3.11)

Finally, the following theorem considers the relations between convolution
of distributions and their embedding as GSF:

Theorem 90. Let S ∈ E ′(Rn), T ∈ D′(Rn) and b ∈ ρ
R̃>0 be a strong positive

infinite number, then for all φ ∈ D(Rn):

1. ⟨S∗T, φ⟩ =
�
ιb
Rn(S)(x)·ιbRn(T )(y)·φ(x+y) dxdy =

� (
ιb
Rn(S) ∗ ιbRn(T )

)
(z)·

φ(z) dz.

2. T ∗ φ = ιb
Rn(T ) ∗ φ.

Proof. 1: Using (6.3.4), we have

⟨S ∗ T, φ⟩ = ⟨S(x), ⟨T (y), φ(x+ y)⟩⟩ = ⟨S(x),
�
ιb
Rn(T )(y)φ(x+ y) dy⟩ =

=

�
ιb
Rn(S)(x)

�
ιb
Rn(T )(y)φ(x+ y) dy dx =

=

� (
ιb
Rn(S) ∗ ιbRn(T )

)
(z)φ(z) dz,

where, in the last step, we used the change of variables x = z − y and Fubini’s
theorem.

2: For all x ∈ c(Rn), using again (6.3.4), we have (T ∗ φ) (x) = ⟨T (y), φ(x−
y)⟩ =

�
ιb
Rn(T )(y)φ(x− y) dy =

(
ιb
Rn(T ) ∗ φ

)
(x).

We note that an equality of the type ιb
Rn(S ∗ T ) = ιb

Rn(S) ∗ ιbRn(T ) cannot hold
because from Thm. 84.2 it would imply 1∗(δ′ ∗H) = (1∗δ′)∗H as distributions.
Considering their embeddings, we have ιb

Rn(1) ∗
(
ιb
Rn(δ′) ∗ ιbRn(H)

)
= ιb

Rn(1) ∗(
ιb
Rn(δ) ∗ ιbRn(δ)

)
=
(
ιb
Rn(1) ∗ ιbRn(δ′)

)
∗ ιb
Rn(H) =

(
ιb
Rn(1′) ∗ ιbRn(δ)

)
∗ ιb
Rn(H) = 0.

In particular, at the term ιb
Rn(δ) ∗ ιbRn(δ) we cannot apply Thm. 88 because

δ(j)(x) = bj+1ψ(j)(bx). This also implies that ιb
Rn(δ) ∗ ιbRn(δ) ̸= ιb

Rn(δ) because
otherwise we would have 0 = ιb

Rn(1)∗
(
ιb
Rn(δ) ∗ ιbRn(δ)

)
= ιb

Rn(1)∗ ιbRn(δ) =
�
δ =

1.

6.4 Hyperfinite Fourier transform

Definition 91. Let k ∈ ρ
R̃>0 be a positive infinite number. Let f ∈ ρGC∞(K, ρC̃),

we define the n-dimensional hyperfinite Fourier transform (HFT) Fk(f) of f on
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K := [−k, k]n as follows:

Fk (f) (ω) :=

�

K

f (x) e−ix·ω dx =

k�

−k

dx1 . . .

k�

−k

f (x1, . . . , xn) e
−ix·ω dxn,

(6.4.1)

where x = (x1 . . . xn) ∈ K and ω = (ω1 . . . ωn) ∈ ρ
R̃n. As usual, the product

x·ω on ρ
R̃n denotes the dot product x·ω =

∑n
j=1 xjωj ∈ ρ

R̃. For simplicity,

in the following we will also use the notation ρGC∞(X) := ρGC∞(X, ρC̃). If
f ∈ ρGD(X) and supp(f) ⊆ K = [−k, k]n, based on Def. 81, we can use the
simplified notation F(f) := Fk(f).

In the following, k = [kε] ∈ ρ
R̃>0 will always denote a positive infinite

number, and we set K := [−k, k]n ⋐f
ρ
R̃n.

The adjective hyperfinite can be motivated as follows: on the one hand,
k ∈ ρ

R̃ is an infinite number, but on the other hand we already mentioned
that GSF behave on a functionally compact set like K as if it were a compact
set. Similarly to the case of hyperfinite numbers ρ

Ñ (see Def. 16), the adjective
hyperfinite is frequently used to denote mathematical objects which are in some
sense infinite but behave, from several points of view, as bounded ones.

Theorem 92. Let f ∈ ρGC∞ (K), then the following properties hold:

1. Let ω = [ωε] ∈ ρ
R̃n and let f be defined by the net (fε). Then we have:

Fk (f) (ω) =

�

K

f (x) e−ix·ω dx =

 kε�

−kε

dx1 . . .

kε�

−kε

fε (x1, . . . , xn) e
−ix·ωε dxn

 ∈ ρ
C̃.

2. ∀ω ∈ ρ
R̃n : |Fk(f)(ω)| ≤

�
K
|f(x)| dx = ∥f∥1, so that the HFT is always

sharply bounded.

3. Fk : ρGC∞ (K) −→ ρGC∞
(
ρ
R̃n
)
.

Proof. 1: For all ω ∈ ρ
R̃n fixed, the map x ∈ K 7→ f (x) e−ix·ω is a GSF by the

closure with respect to composition, i.e. Thm. 56.4. Therefore, we can apply
Thm. 76.5.

To prove 3, we have to show that Fk(f) : ρ
R̃n −→ ρ

C̃ is defined by a net
(Fk)ε ∈ C∞ (Rn,C) (see Def. 55). We can naturally define such a net as

(Fk)ε (y) :=

kε�

−kε

dx1 . . .

kε�

−kε

fε (x1, . . . , xn) e
−ix·y dxn ∀y ∈ R

n,

and we claim it satisfies the following properties:

(a) [(Fk)ε (ωε)] ∈ ρ
C̃, ∀ [ωε] ∈ ρ

R̃n.
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(b) ∀ [ωε] ∈ ρ
R̃n ∀α ∈ Nn : (∂α (Fk)ε (ωε)) ∈ Cρ.

Claim (a) is justified by 1 above. From 1 it directly follows 2. In order to prove
(b), we use the standard derivation under the integral sign to have

∂α (Fk)ε (ωε) =

kε�

−kε

dx1 . . .

kε�

−kε

fε (x1, . . . , xn) e
−ix·ωε(−ixα) dxn.

We can now proceed as above to prove (b) and hence the claim 3.

6.4.1 The heuristic motivation of the FT in a non-Archimedean
setting

Frequently, the formula for the definition of the FT (e.g. for rapidly decreasing
functions) is informally motivated using its relations with Fourier series. In order
to replicate a similar argument for GSF, we need the notion of hyperseries. In
fact, exactly as the ordinary limit limn∈N an is not well suited for the sharp
topology (because of its infinitesimal neighbourhoods) and we have to consider

hyperlimits ρlimn∈σÑ
an (see Def. 35), likewise to study series of an ∈ ρ

C̃, n ∈ N,
we have to consider

ρ∑
n∈σÑ

an := ρ lim
N∈σÑ

N∑
n=0

an ∈ ρ
C̃,

ρ∑
n∈σZ̃

an := ρ lim
N∈σÑ

N∑
n=−N

an ∈ ρ
C̃,

where σ
Z̃ := σ

Ñ ∪
(
−σ
Ñ

)
⊆ σ

R̃. The main problem in this definition is how

to define the hyperfinite sums
∑N

n=M an ∈ ρ
C̃ for arbitrary hypernatural num-

bers N , M ∈ σ
Ñ and starting from suitable ordinary sequences (an)n∈N of ρ

C̃.
However, this can be done, and the resulting notion extends several classical
theorems, see [69].

Only for this section, we hence assume that f ∈ ρGD([−T, T ]), T ∈ ρ
R̃>0,

can be written as a Fourier hyperseries

f(t) =
ρ∑
n∈σZ̃

cne
2πi n

T t ∀t ∈ (−T, T ),

where σ is another gauge such that σε ≤ ρqε for all q ∈ N and for ε small (so that
Rρ ⊆ Rσ, see Def. 1). Using Thm. 41 to exchange hyperseries and integration,

for each h ∈ σ
Z̃, we have

� T

−T

f(t)e−2πi h
T t dt =

ρ∑
n∈σZ̃

cn

� T

−T

e2πi
t
T (n−h) dt = 2T · ch.
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That is ch = 1
2T F(f)

(
2π h

T

)
.

It is also well-known that, informally, if T is “sufficiently large”, then the
Fourier coefficients cn “approximate” the FT scaled by 1

2T and dilated by 2π.
Using our non-Archimedean language, this can be formalized as follows: Let
ω = [ωε] ∈ ρ

R̃, and assume that T = [Tε] is an infinite number, then setting

hω := [int (ωε · Tε)] ∈ ρ
Z̃ (here we use Rρ ⊆ Rσ), we have ωε ≤ hωε

Tε
≤ ωε +

1
Tε
,

so that hω

T ≈ ω because T is an infinite number. By Thm. 92, F(f) is a GSF.

Let a, b, c, d ∈ρ
R̃, with a < c < d < b, and set M := maxω∈[2πa,2πb] F(f)′(ω).

Using Lem. 4, we can find q ∈ N such that c−a ≥ dρq and b−d ≥ dρq. Assume
that T is sufficiently large so that the following conditions hold

1

T
≤ dρq,

M

T
≈ 0.

Then, for all ω ∈ [c, d], we have hω

T ≤ ω+ 1
T ≤ d+dρq ≤ b, and hω

T ≥ ω ≥ c > a,

so that hω

T , ω ∈ [a, b]. From the mean value theorem Thm. 74, we hence have∣∣∣∣F(f)

(
2π
hω
T

)
−F(f) (2πω)

∣∣∣∣ ≤ 2πM

∣∣∣∣hωT − ω

∣∣∣∣ ≤ 2π
M

T
≈ 0.

We hence proved that

∃Q ∈ N∀T ≥ dρ−Q : chω
≈ 1

2T
F(f)(2πω).

Finally, note that since T is an infinite number, if hω ∈ Z, then necessarily
ω must be infinitesimal; on the contrary, if ω ≥ r ∈ R ̸=0, then necessarily

hω ∈ σ
Z̃ \ Z is an infinite integer number.

Therefore, with the precise meaning given above, the heuristic relations be-
tween Fourier coefficients and HFT holds also for GSF.

6.4.2 The Riemann-Lebesgue lemma in a non-linear set-
ting

The following result represents the Riemann-Lebesgue lemma in our framework.
It immediately highlights an important difference with respect to the classi-
cal approach since it states that the HFT of a very large class of compactly
supported GSF is still compactly supported (see also Thm. 102 for a classical
formulation of the uncertainty inequality for GSF).

Lemma 93. Let H ⋐f
ρ
R̃n and f ∈ ρGD (H) be a compactly supported GSF.

Assume that

∃C, b ∈ ρ
R̃>0 ∀x ∈ H ∀j ∈ N :

∣∣djf(x)∣∣ ≤ C · bj . (6.4.2)

For all N1, . . . , Nn ∈ N and ω ∈ ρ
R̃n, if ωN1

1 · . . . · ωNn
n is invertible, then

|F(f)(ω)| ≤ 1∣∣∣ωN1
1 · . . . · ωNn

n

∣∣∣ ·
�
H

∣∣∣∂N1
1 . . . ∂Nn

n f(x)
∣∣∣ dx. (6.4.3)
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Therefore
lim

ω→∞
|F(f)(ω)| = 0. (6.4.4)

Actually, (6.4.3) yields the stronger result:

∃Q ∈ N : F(f) ∈ ρGD
(
Bdρ−Q(0)

)
. (6.4.5)

Proof. Let us apply integration by parts Thm. 61.6 at the p-th integral in (6.4.1)
(assuming that Np > 0):

k�

−k

f (x) e−iω·x dxp = −f (x)
iωp

e−iω·x
∣∣∣∣xp=k

xp=−k

+
1

iωp

k�

−k

∂pf (x) e
−iω·x dxp =

=
1

iωp

k�

−k

∂pf (x) e
−iω·x dxp.

because Thm. 80.3 yields f(x) = 0 if xp = ±k. Applying the same idea with
Np ∈ N repeated integrations by parts for each integral in (6.4.1), and using
Thm. 80.3, we obtain

F(f)(ω) =
1

ωN1
1 · . . . · ωNn

n iN1+...+Nn

�
K

∂N1
1 . . . ∂Nn

n f(x)e−ix·ω dρ.

Claims (6.4.3) and (6.4.4) both follows from Thm. 76.4 and from the closure of
GSF with respect to differentiation, i.e. Thm. 57.

To prove (6.4.5), we first recall (5.1.7), so that Bdρ−Q(0) ⋐f
ρ
R̃n. Let C,

b ∈ ρ
R̃>0 from (6.4.2) and λ(H) ∈ ρ

R̃, where λ is the Lebesgue measure.
Therefore, b ≤ dρ−R for some R ∈ N, and we can set Q := R + 1. We
want to prove the claim using Thm. 80.1, so that we take ω = (ω1, . . . , ωn) ∈
ext
(
Bdρ−Q(0)

)
. It cannot be |ω| <s dρ

−Q because this would yield |ω−a| =s 0

for some a ∈ Bdρ−Q(0); thereby, |ω| ≥ dρ−Q by Lem. 11. It always holds
maxl=1,...,n |ωl| ≥ 1

n |ω|, i.e. [maxl=1,...,n |ωlε|] ≥ 1
n [|ωε|], where ωl = [ωlε] and

ωε := |(ω1ε, . . . , ωnε)|. In general, we cannot say that |ωp| = maxl=1,...,n |ωl| for
some p = 1, . . . , n because at most this equality holds only for subpoints. In
fact, set Lp := {ε ∈ I | maxl=1,...,n |ωlε| = |ωpε|} and let P ⊆ {1, . . . , n} be the
non empty set of all the indices p = 1, . . . , n such that Lp ⊆0 I. We hence have
|ωp| =Lp maxl=1,...,n |ωl| ≥ 1

n |ω| ≥
1
ndρ

−Q for all p ∈ P , and

∀0ε∃p ∈ P : ε ∈ Lp. (6.4.6)

We apply assumption (6.4.2) and inequality (6.4.3) with an arbitrary Np = N ∈
N, p ∈ P , and with Nj = 0 for all j ̸= p to get

|F(f)(ω)| ≤ 1

|ωp|N
·
�
H

∣∣∂Np f(x)∣∣ dx ≤Lp
nN · dρNQCbNλ(H) ≤

≤ dρ−1 · dρN(Q−R)Cλ(H) = dρN−1Cλ(H).

68



For N → +∞ (in the ring ρ
R̃|Lp), we hence have that F(f)(ω) =Lp 0. From

(6.4.6) we hence finally get F(f)(ω) = 0.

Remark 94.

1. Considering that δ(t) = bnψ(bt) and that ψ is an even function (Lem. 64.1),
we have

F(δ)(ω) =

�
δ(t)e−itω dt =

�
δ(0− t)e−itω dt =

(
δ ∗ e−i(−)ω

)
(0).

(6.4.7)
We already know that if b/|ω| is a strong infinite number, then the function
fω(t) = e−itω is bounded by a tame polynomial. Thereby, using Thm. 88,
we have F(δ)(ω) = fω(0) = 1; in particular, F(δ)|R = 1.

2. On the other hand, δ(j)(t) = bj+nψ(j)(bt) and hence Lem. 64.4 yields∣∣∣δ(j)(t)∣∣∣ ≤ bj+nCbj+2 = Cbn+2
(
b2
)j ∀t ∈ ρ

R̃.

Thus, Dirac’s delta satisfies condition (6.4.2) and hence

∃Q ∈ N : F(δ) ∈ ρGD(Bdρ−Q(0)). (6.4.8)

In the following, we will use the notation 1 := F(δ).

3. The previous result also yields that f ∗ δ = f cannot hold in general since
otherwise, we can argue as in (6.4.7) to prove that F(δ)(ω) = 1 for all

ω ∈ ρ
R̃, in contradiction with (6.4.8).

Inequality (6.4.3) can also be stated as a general impossibility theorem
(where we intuitively think n = 1).

Theorem 95. Let (R,≤) be an ordered ring and G be an R-module. Assume
that we have the following maps (for which we use notations aiming to draw the
interpretation where G is a space of GF)

(−)′ : G −→ G�
: G −→ R

(−) · expω : G −→ G ∀ω ∈ R

| − | : R −→ R.

These maps satisfy the following integration by parts formula
�
f · expω =

1

ω

�
f ′ · expω (6.4.9)

for all invertible ω ∈ R∗, f ∈ G, and

|rs| = |r||s| ∀r, s ∈ R (6.4.10)
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∀f ∈ G∃C ∈ R ∀ω ∈ R∗ :

∣∣∣∣� f · expω
∣∣∣∣ ≤ C. (6.4.11)

Then for all f ∈ G and all N ∈ N>0 there exists C = C(f,N) ∈ R such that

∀ω ∈ R∗ :

∣∣∣∣� f · expω
∣∣∣∣ ≤ C

|ω|N
. (6.4.12)

Therefore, if δ ∈ G satisfies C(δ,N)
|ω|N < 1 for some ω ∈ R and some N ∈ N, then∣∣∣∣� δ · expω

∣∣∣∣ < 1.

Proof. For f ∈ G, in the usual way we recursively define f (p) ∈ G using the map
(−)′ : G −→ G. Taking formula (6.4.9) for N ∈ N>0 times we get

�
f · expω =

1
ωN

�
f (N) · expω. Applying | − | and using (6.4.10) and (6.4.11) we get the

conclusion (6.4.12).

Note that we can take R =
{
i · r | r ∈ ρ

C̃

}
to apply this abstract result to the

case of Lem. 93. This result also underscore that in the case G = D′(R), R = R

we cannot have an integration by parts formula such as (6.4.9). Once more, it
also underscores that, since (6.4.9) holds in our setting, we cannot have f ∗δ = f

without limitations because this would imply F(δ)(ω) = 1 for all ω ∈ ρ
R̃.

Example 96. Let f (x) = ex for all |x| ≤ k, where k := − log (dρ). The
hyperfinite Fourier transform Fk of f is

Fk (f) (ω) =
ek(1−iω) − e−k(1−iω)

1− iω
=

dρ(iω−1) − dρ(1−iω)

1− iω
=

=
1

1− iω

(
dρiω

dρ
− dρ

dρiω

)
∀ω ∈ ρ

R̃.

Note that 1 − iω, ω ∈ ρ
R̃, is always invertible with the usual inverse 1+iω

1+ω2 ,

moreover, dρiω = eiω log dρ and hence |dρiω| = 1. Therefore, Fk(f)(ω) is always
an infinite complex number for all finite numbers ω. If ω ≥ dρ−1−r, r ∈ R>0,
then Fk(f)(ω) is infinitesimal but not zero. Clearly, f /∈ ρGD(K).

6.5 Elementary properties of the hyperfinite Fourier
transform

In this section, we list and prove the elementary properties of the HFT.

Theorem 97. (see Sec. 6.1.2 for the notations ⊙ and ⊕) Let f ∈ ρGC∞ (K)

and g : ρR̃n −→ ρ
C̃, then

1. Fk (f + g) = Fk (f) + Fk (g) if g ∈ ρGC∞(K).

70



2. Fk (bf) = bFk (f) for all b ∈ ρ
C̃.

3. Fk

(
f
)
= −1 ⋄ Fk(f), where −1⋄f is the reflection of f , i.e. (−1 ⋄ f) (x) :=

f (−x).

4. Fk (−1 ⋄ f) = −1 ⋄ Fk(f)

5. Fk (t ⋄ g) = t ⊙ Ftk (g) for all t ∈ ρ
R̃>0 such that tk is still infinite and

g|K ∈ ρGC∞(K), g|tK ∈ ρGC∞(tK). Here, t ⋄ g is the dilation of f,
i.e. (t ⋄ g) (x) := g (tx).

6. Let k > h > 0 be infinite numbers, s ∈ [−(k−h), k−h]n, f ∈ ρGD([−h, h]n).
Then

Fk (s⊕ f) = e−is·(−)Fk (f) = e−is·(−)Fh (f) = e−is·(−)F (f) .

In particular, if h ≥ dρ−p, k ≥ dρ−q, p, q ∈ R>0, q > p, and s ∈ c(Rn),
then s ∈ [−(k − h), k − h]n. In particular, Rn ⊆ [−(k − h), k − h]n.

7. Fk

(
eis·(−)f

)
= s⊕Fk (f) for all s ∈ ρ

R̃n.

8. Let ω ∈ ρ
R̃n and α ∈ Nn\{0}. For p = 1, . . . , |α|, define βp = (βp,q)q=1,...,n ∈

Nn with

β0 := α

βp+1 := (0, jp−1. . . . . . , 0, βp,jp − 1, βp,jp+1, . . . , βp,n) if jp := min {q | βp,q > 0} .

Finally, for all f̄ ∈ ρGC∞(K) and j = 1, . . . , n, set

∆1kf̄(ω) :=
[
f̄(x)e−ix·ω]xj=k

xj=−k

∆jkf̄(ω) :=

k�

−k

dx1 . . .

k�

−k

dxj−1

k�

−k

dxj+1 . . .

k�

−k

[
f̄(x)e−ix·ω]xj=k

xj=−k
dxn.

Then, we have

Fk (∂jf) = iωjFk (f) + ∆jkf ∀j = 1, . . . , n (6.5.1)

Fk (∂
αf) = (iω)

α Fk (f) +

|α|−1∑
p=0

(iω)α−βp∆jpk(∂
βp+1f). (6.5.2)

In particular, if

f (x1, . . . , xj−1, k, xj+1) = f (x1, . . . , xj−1,−k, xj+1) = 0 ∀x ∈ K,
(6.5.3)

then
Fk (∂jf) = iωjFk (f) .
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9. ∂
∂ωj

Fk (f) = −iFk (xjf) for all j = 1, . . . , n.

10. If f ∈ ρGD(K) or g ∈ ρGD(K), then Fk (f ∗ g) = Fk (f)Fk (g). Therefore,

if f ∈ ρGD(ρR̃n) and g ∈ ρGD(ρR̃n), then F (f ∗ g) = F (f)F (g).

11. Fk (s⊙ g) = s ⋄ F k
s
(g) for all invertible s ∈ ρ

R̃>0 such that k
s is infinite,

g|K ∈ ρGC∞(K) and g|K/s ∈ ρGC∞(K/s).

Proof. Properties 1-5 can be proved like in the case of rapidly decreasing smooth
functions. For 6, we have

Fk (s⊕ f) (ω) = Fk (f (x− s)) (ω) =

�

K

f (x− s) e−ix·ω dx =

=

k�

−k

dx1 . . .

k�

−k

f (x− s) e−ix·ω dxn.

Considering the change of variable x− s = u we have

Fk (s⊕ f) (ω) = e−is·ω
k−s1�

−k−s1

du1 . . .

k−sn�

−k−sn

f (u) e−iu·ω dun.

Finally, considering that k > h and s ∈ [−k + h, k − h]n we have k − si ≥ h,
−h ≥ −k − si and k + si ≥ h for all i = 1, . . . , n, so that

k−s1�

−k−s1

du1 . . .

k−sn�

−k−sn

f (u) e−iu·ω dun =

h�

−h

du1 . . .

h�

−h

f (u) e−iu·ω dun =

=

k�

−k

du1 . . .

k�

−k

f (u) e−iu·ω dun

from Def. 81 since f ∈ ρGD([−h, h]n).
7 is immediate from the Def. 91.
To prove 8, using integration by parts formula, we have

Fk (∂jf) (ω) =

�

K

∂jf (x) e
−ix·ω dx =

k�

−k

dx1 . . .

k�

−k

∂jf (x) e
−ix·ω dxn =

= −
k�

−k

dx1 . . .

k�

−k

f (x) (−iωj) e
−ix·ω dxn+

+

k�

−k

dx1 . . .

k�

−k

dxj−1

k�

−k

dxj+1 . . .

k�

−k

[
f(x)e−ix·ω]xj=k

xj=−k
dxn =

= iωjFk (f) (ω) + ∆jkf(ω).
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Therefore, by applying this formula with ∂pf instead of f , we obtain

Fk (∂j∂pf) (ω) = −ωjωpFk(f)(ω) + iωj∆pk (f) (ω) + ∆jk (∂pf) (ω).

Proceeding similarly by induction on |α|, we can prove the general claim.
To prove 9, we use Thm. 61.8, i.e. derivation under the integral sign:

∂

∂ωj
Fk (f) (ω) =

∂

∂ωj

 k�

−k

dx1 . . .

k�

−k

f (x) e−ix·ω dxn

 =

=

k�

−k

dx1 . . .

k�

−k

∂

∂ωj

(
f (x) e−ix·ω) dxn =

=

k�

−k

dx1 . . .

k�

−k

−ixjf (x) e−ix·ω dxn =

= −iFk (xjf) (ω) .

10:

Fk ((f ∗ g)) (ω) =
�

K

e−ixω (f ∗ g) (x) dx =

=

�

K

e−ixω

�

K

f (y) g (x− y) dy dx.

Considering the change of variable x− y = t and using Fubini’s theorem, we
have �

K

e−i(t+y)ω

�

K

f (y) g (t) dy dt =

�

K

e−iyωf (y) dy

�

K

e−itωg (t) dt =

= Fk (f) (ω)Fk (g) (ω) .

Finally, we prove 11:

Fk (s⊙ g) (ω) = Fk

(
1

sn
g
(x
s

))
(ω) =

�

K

e−ix·ωg
(x
s

) dx

sn
.

Considering the change of variable x
s = y we have

�

K

e−ix·ωg
(x
s

) dx

sn
=

k/s�

−k/s

dy1 . . .

k/s�

−k/s

g (y) e−isy·ω dyn =

=

�

K/s

g (y) e−iy·sω dy = Fk/s (g) (sω) =

=
[
s ⋄ Fk/s (g)

]
(ω).

73



We will see in Sec. 6.8 that the additional term in (6.5.2) plays an impor-
tant role in finding non tempered solutions of differential equations (like the
exponentials of the trivial ODE y′ = y). We also note that condition (6.5.3) is
clearly weaker than asking f compactly supported. For example, setting

lj(x) :=
1

2k

[
f (x) |xj=k − f (x) |xj=−k

]
· (xj + k) + f (x) |xj=−k,

then f̄ := f − lj satisfies (6.5.3).

6.6 The inverse hyperfinite Fourier transform,
Parseval’s relation, Plancherel’s identity and
the uncertainty principle

We naturally define the inverse HFT as follows:

Definition 98. Let f ∈ ρGC∞ (K), we define the inverse HFT as

F−1
k (f) (x) :=

1

(2π)
n

�

K

f (ω) eix·ω dω (6.6.1)

for all x ∈ ρ
R̃. As we proved in Thm. 92, we have F−1

k : ρGC∞ (K) −→
ρGC∞

(
ρ
R̃n
)
. We immediately note that the notation of the inverse function

F−1
k is an abuse of language because the codomain of Fk is larger than the

domain of F−1
k (and vice versa). When dealing with inversion properties, it is

hence better to think at

Fk|K := (−)|K ◦ Fk : ρGC∞ (K) −→ ρGC∞ (K)

F−1
k |K := (−)|K ◦ F−1

k : ρGC∞ (K) −→ ρGC∞ (K) .

We will see in Sec. 6.8 that lacking this precision can easily lead to inconsisten-
cies.

Note that
(2π)

n F−1
k (f) = Fk (−1 ⋄ f) = −1 ⋄ Fk(f), (6.6.2)

where −1⋄ denotes the reflection (−1 ⋄ g) (x) := g(−x).

Our main goal is clearly to investigate the relationship between HFT and
its inverse HFT, i.e. to prove the Fourier inversion theorem for the HFT. Three
important results used in the classical proof of the Fourier inversion theorem are:
the application of approximate identities for convolution defined by Gaussian
like functions, Lebesgue dominated converge theorem (we can replace it with
Thm. 41), and the translation property of FT. In our setting, the last property
corresponds to Thm. 97.6, which works only for compactly supported GSF. The
idea is hence to avoid proving the inversion theorem firstly at the origin and
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then employing the translation property, but to prove it directly at an arbitrary
interior point y ∈ K using approximate identities obtained by mollification of a
Gaussian function.

We hence start by the latter, explicitly noting that, contrary to the usual
setting, considering Robinson-Colombeau generalized numbers, the Gaussian is
compactly supported:

Lemma 99. Let f (x) = e−
|x|2
2 for all x ∈ ρ

R̃n. Then f ∈ ρGD
(
Bh(0)

)
for all

strong infinite number h ∈ ρ
R̃>0. Moreover, F (f) (ω) = (2π)

n
2 e−

|ω|2
2 .

Proof. The function f satisfies the inequality 0 ≤ f (x) ≤ x−q, ∀q ∈ N, for |x|
finite sufficiently large. Therefore, for all strongly infinite x, we have f (x) = 0

i.e., f ∈ ρGD
(
ρ
R̃n
)
. We first prove the second claim in dimension n = 1, by

noting that f (x) = e−
|x|2
2 satisfies the ODE

f ′ (x) + xf (x) = 0 (6.6.3)

with the initial value f (0) = 1. By separation of variables, any solution of

(6.6.3) is of the form f (x) = c · e− x2

2 , where c = f (0) . Applying the HFT to
(6.6.3), and considering 8 and 9 of Thm. 97, we have

iωF (f) (ω) + iF ′ (f) (ω) = 0.

Thus F (f) also solves the ODE (6.6.3). Therefore we must have F (f) (ω) =

ce−
ω2

2 and, taking as h = [hε] any strong infinite number so that Fh(f) = F(f),
we have

c = F (f) (0) =

h�

−h

e−
x2

2 dx =

 hε�

−hε

e−
x2

2 dx

 =

=

 ∞�

−∞

e−
x2

2 dx+

−hε�

−∞

e−
x2

2 dx+

∞�

hε

e−
x2

2 dx

 =
√
2π

since
� −hε

−∞ e−
x2

2 dx and
�∞
hε
e−

x2

2 dx are negligible: in fact, using L’Hôpital rule

we can prove that limy→0+

�±∞
±1/y

e−
x2

2 dx

yq = 0 for all q ∈ N. We note that natu-

rally the equality above is in ρ
R̃. In dimension n > 1 we directly calculate using

Fubini’s theorem:

F
(
e−

|x|2
2

)
(ω) =

n∏
j=1

�
e−ixj ·ωje−

x2
j
2 dxj

=
n∏

j=1

F (f) (ωj) =
n∏

j=1

(2π)
1
2 e−

ω2
j
2 = (2π)

n
2 e−

|ω|2
2 .
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In the following result, we use the notation ∀∞p ∈ ρ
Ñ to denote ∃P ∈ ρ

Ñ∀p ∈
ρ
Ñ≥P , and we read it for all p ∈ ρ

Ñ sufficiently large.

Theorem 100. Let y be a sharply interior point of K, f ∈ ρGC∞ (K), Gp ∈
ρGD

(
ρ
R̃n
)
, for p ∈ ρ

Ñ>0, satisfy

(a)
�
Gp = 1 for p ∈ ρ

Ñ>0 sufficiently large.

(b) For p sufficiently large, (Gp)∈ρÑ>0
is zero outside every ball Bδ (0), δ ∈

ρ
R̃>0, i.e.,

∀δ ∈ ρ
R̃>0 ∀∞p ∈ ρ

Ñ∀x : |x| ≥ δ ⇒ Gp (x) = 0. (6.6.4)

(c) ∃M ∈ ρ
R̃>0 ∀∞p ∈ ρ

Ñ :
�
|Gp (y)| dy ≤M.

Then

1.
�
y+K

f (x)Gp (y − x) dx =
�
f (x)Gp (y − x) dx =

�
f (y − z)Gp (z) dz

for all p ∈ ρ
Ñ>0 sufficiently large.

2. ρlimp∈ρÑ
(f ∗Gp) (y) = f (y).

Proof. We only have to generalize the classical proof concerning limits of convo-
lutions between continuous functions and approximate identities. Since Bδ(y) ⊆
K for some δ ∈ ρ

R̃>0, we have that supp (Gp(y − ·)) ⊆ y + K, for p large, by
condition (6.6.4). The remaining equality of property 1 is immediate by consid-
ering the change of variable y − x = z. For 2, we proceed as follows. Using (a),

for p large, let us say for p ≥ P ∈ ρ
Ñ>0, we get∣∣∣∣� f(x)Gp(y − x)dx− f(y)

∣∣∣∣ = ∣∣∣∣� [f(x)− f(y)]Gp(y − x) dx

∣∣∣∣
≤

�
|f(x)− f(y)| · |Gp(y − x)| dx.

Now, for each l ∈ ρ
R̃>0, sharp continuity of f at y yields |f(x)− f(y)| < l for

all x such that |x− y| < δ ∈ ρ
R̃>0. By (b), for p large, we have∣∣∣∣� f(x)Gp(y − x) dx− f(y)

∣∣∣∣ ≤ l

�
Bδ(0)

|Gp(y − x)| dx ≤ l ·M, (6.6.5)

where we have taken p sufficiently large so that also (c) holds. The right hand

side of (6.6.5) can be taken arbitrarily small in ρ
R̃>0 because l ∈ ρ

R̃>0 is an
arbitrary positive generalized number.

For example, we can set tp := 1
p for p ∈ ρ

Ñ>0, g(z) := e−|z|2/2 and Gp := tp ⊙ g,

so that Gp(z) = (2π)−n/2 · e
− |z|2

2t2p · 1
tnp

for all z ∈ ρ
R̃n. Let δ ≥ dρQ and |z| ≥ δ;
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for all q ∈ N and for p ∈ ρ
Ñ sufficiently large, we have

e
− |z|2

2t2p · 1

tnp
≤ pne−

1
2 δ

2p2

≤ pn
1

δ2qp2q
≤ dρq,

where the latter inequality holds e.g. for all p ≥ dρ−Q. This shows that property
(6.6.4) holds in this case.

Theorem 101. Let h ∈ ρ
R̃>0 be an infinite number and set H := [−h, h]n. Let

f ∈ ρGC∞ (K) and g ∈ ρGC∞ (H). Then

1.
�
H
Fk (f) (ω) g (ω) dω =

�
K
f (x)Fh (g) (x) dx.

2. F−1
k |K (Fk|K (f)) = f = Fk|K

(
F−1

k |K (f)
)
.

3. Fk|K(Fk|K(f)) = (2π)n (−1 ⋄ f), where we recall that −1 ⋄ f is the reflec-
tion of f .

If H = K, then

4. (Parseval’s relation) (2π)n
�
K
fg =

�
K
Fk (f)Fk (g).

5. (Plancherel’s identity) (2π)n
�
K
|f |2 =

�
K
|Fh (f)|2.

6.
�
K
fg =

�
K
Fk (f)F−1

k (g).

Proof. 1 follows from Def. 91 and Fubini’s theorem.
2: We first prove the inversion theorem for sharply interior points y ∈ K.

Hence, let Bδ(y) ⊆ K for some δ > 0. Set tp, g and Gp as above. Set

gp(ω, y) :=
eiy·ω

(2π)n/2 ·e−
|tpω|2

2 for all ω ∈ ρ
R̃n, and hence gp(−, y) = eiy·(−)

(2π)n/2 ·(tp ⋄ g).
Thereby, from g ∈ ρGD(ρR̃n), we also get gp(−, y) ∈ ρGD(ρR̃n). Since k > 0 and

supp(Gp) ⊆ Btp·dρ−1(0) (see Lem. 99), we get that

supp(Gp) ⊆ K (6.6.6)

for all p sufficiently large. Let’s compute the HFT F [gp(−, y)] for an arbitrary

p ∈ ρ
Ñ:

F [gp(−, y)] =
1

(2π)n/2
F
[
eiy·(−) · (tp ⋄ g)

]
=

1

(2π)n/2
· y ⊕F (tp ⋄ g) ,

where we used Thm. 97.7. We have supp(tp⋄g) ⊆ Bdρ−1/tp(0) because supp(g) ⊆
Bdρ−1(0). Set hp := dρ−1

tp
, and use Thm. 97.5 noting that tphp = dρ−1 is an

infinite number:

F [gp(−, y)] (x) =
[

1

(2π)n/2
· y ⊕Fhp

(tp ⋄ g)
]
(x) =

=
1

(2π)n/2
· [tp ⊙F(g)] (x− y) =

=
1

(2π)n/2
·
[
tp ⊙ (2π)n/2g

]
(x− y) =

= [tp ⊙ g] (x− y) = Gp(x− y) = Gp(y − x).
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Therefore, using 1, and for p sufficiently large, we obtain

�
K

Fk(f)(ω) · gp(ω, y) dω =

�
K

f(x) · F [gp(−, y)] (x) dx =

=

�
K

f(x) ·Gp(y − x) dx = (f ∗Gp)(y), (6.6.7)

where for p large, we have supp (Gp(y − ·)) ⊆ Bδ(y) ⊆ K. Taking the hyperlimit

for p ∈ ρ
Ñ of the right hand side of (6.6.7), Thm. 100 yields that it converges

to f(y). The same hyperlimit of the left hand side and Thm. 41 give

ρ lim
p∈ρÑ

�
K

Fk(f)(ω) · gp(ω, y) dω =

�
K

Fk(f)(ω) · ρ lim
n∈ρÑ

gp(ω, y) dω =

=

�
K

Fk(f)|K(ω)
eiy·ω

(2π)n
dω

because of the definition of gp. For boundary points of K, the identity follows
using sharp continuity. This proves that F−1

k (Fk(f)|K) = f on K, i.e. that
F−1

k |K (Fk|K(f)) = f . To prove the other identity, it suffices to apply this
equality to −1 ⋄ f and consider (6.6.2).

3 follows by (6.6.2) using 2 and the definition of reflection.
To prove 4, use 1 with Fk (g) instead of g, then Thm. 97.3, and finally 3.
Plancherel’s identity 5 is a trivial consequence of 4.
Finally, 6 follows from 2 and 1.

We close this section with a proof of the uncertainty principle

Theorem 102. If ψ ∈ ρGD(ρR̃), then

1. If ψ ∈ ρGD(H) ∩ ρGD(K), then

�

H

ω2 |F (ψ) (ω)|2 dω =

�

K

ω2 |F (ψ) (ω)|2 dω =:

�
ω2 |F (ψ) (ω)|2 dω

2.
(�

x2 |ψ (x)|2 dx
)(�

ω2 |F (ψ) (ω)|2 dω
)
≥ 1

4∥ψ∥2∥F(ψ)∥2.

Proof. Properties 2 and 1 of Thm. 80 imply that also ψ′ ∈ ρGD(H). Therefore,
Plancherel’s identity Thm. 101.5 yields

�
H

|ψ′|2 =
1

2π

�
H

|F(ψ′)|2 .

But |F(ψ′)|2 = ω2 |F(ψ)|2 from Thm. 97.8 because ψ is compactly supported
and hence ∆1kψ = 0. Therefore

�
H

|ψ′|2 =
1

2π

�
H

ω2 |F(ψ)(ω)|2 dω. (6.6.8)
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At the same result we arrive considering K instead of H. Finally, we apply
Def. 81 of integral of a compactly supported GSF, which yields independence
from the functionally compact integration domain.

To prove inequality 2, we assume that ψ ∈ ρGD(K); using integration by
parts, we get:

�
xψ(x)ψ′(x) dx =

� k

−k

xψ(x)ψ′(x) dx =

=
[
xψ(x)ψ(x)

]x=k

x=−k
−
�
ψ(x)

(
ψ(x) + xψ′(x)

)
dx =

= −
� [

|ψ(x)|2 + xψ(x)ψ′(x)
]
dx.

Thereby

�
|ψ(x)|2 dx = −2Re

(�
xψ(x)ψ′(x) dx

)
≤

≤ 2

∣∣∣∣Re(� xψ(x)ψ′(x) dx

)∣∣∣∣ ≤
≤ 2

� ∣∣∣xψ(x)ψ′(x)
∣∣∣ dx.

Where we used the triangle inequality for integrals (see Thm. 76.4). Using
Cauchy-Schwarz inequality (see Thm. 86), we hence obtain(�

|ψ(x)|2 dx

)2

≤ 4

(� ∣∣∣xψ(x)ψ′(x)
∣∣∣ dx)2

≤

≤ 4

(�
x2 |ψ(x)|2 dx

)(�
|ψ′(x)|2 dx

)
.

From this, thanks to (6.6.8) and Plancherel’s equality, the claim follows.

Note that if ∥ψ∥2 ∈ ρ
R̃ is invertible, then also ∥F(ψ)∥2 is invertible by Plancherel’s

equality, and we can hence write the uncertainty principle in the usual normal-
ized form.

Example 103. On the contrary with respect the classical formulation in L2(R)

of the uncertainty principle, in Thm. 102 we can e.g. consider ψ = δ ∈ ρGD(ρR̃),
and we have �

x2δ(x)2 dx =

[� 1

−1

x2b2εψε(bεx)
2 dx

]
where ψ(x) = [ψε(xε)] is a Colombeau mollifier and b = [bε] ∈ ρ

R̃ is a strong in-
finite number (see Example 67). Since normalizing the function ε 7→ b2εψε(bεx)

2

we get an approximate identity, we have limε→0+
� 1

−1
x2b2εψε(bεx)

2 dx = 0,

and hence
�
x2δ(x)2 dx ≈ 0 is an infinitesimal. The uncertainty principle
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Thm. 102 implies that it is an invertible infinitesimal. Considering the HFT
1 = F(δ) ∈ ρGD(ρR̃), we have�

ω2
1(ω)2 dω ≥

� r

−r

ω2 dω = 2
r3

3
∀r ∈ R>0.

Thereby,
�
ω21(ω)2 dω is an infinite number.

6.7 Preservation of classical Fourier transform

It is natural to inquire the relations between classical FT of tempered distribu-
tions and our HFT.

Let us start with a couple of exploring examples:

1. Fk(1)(ω) =
� k

−k
1 · e−ixω dx =

� k

−k
cos(xω) dx. If L ⊆0 I and ω|L is

invertible (see Sec. 5.1.3 for the language of subpoints), then Fk(1)(ω) =L

2 sin(kω)
ω ; if ω =L 0, then Fk(1)(ω) = 2k. Classically, we have 1̂ = 2πδ.

2. Fk(H)(ω) =
� k

−k
H(x)e−ixω dx. Assuming that ω|L is invertible on L ⊆0

I, we have Fk(H)(ω) =L
i
ω e

−ikω− i
ω1(ω). Classically, we have Ĥ = πδ− i

ω .
Therefore, if k is a strong infinite number and ω is far from the origin,

|ω| ≥ r ∈ R>0, we have Fk(H)(ω) = ιb
R

(
Ĥ
)
(ω) (here ιb

R
is an embedding

of D′(R) into ρGC∞(c(R)), see Sec. 6.7). However, the latter equality does
not hold if ω ≈ 0.

Since classically we do not have infinite numbers, the former of these examples
leads us to the following idea

F(1 · 1) = F(F(δ)) = 2π (−1 ⋄ δ) = 2πδ.

Note that if f ∈ ρGC∞(K), then (f · 1) (ω) = f(ω) for all finite point ω ∈ K.
We therefore call f · 1 the finite part of f . The same idea works for eiax and
hence also for sin, cos. Let us now consider δ · 1:

F(δ · 1)(ω) =
�
δ(x)F(δ)(x)e−ixω dx.

We recall that integrating against δ yields the evaluation of the second factor at
0 only if the latter is bounded by a tame polynomial at 0 (see Example 89.4).
But the function x 7→ F(δ)(x)e−ixω is bounded by a tame polynomial at x = 0
for all ω, and we get F(δ · 1)(ω) = 1. Being bounded by a tame polynomial is,
in general, a necessary assumption because

F(H · 1)(ω) =
�
H(x) · F(δ)(x)e−ixω dx =

=

�
δ(x)Fk(H · e−i(−)ω)(x) dx =

=

�
δ(x)Fk(H)(x+ ω) dx,

80



but Fk(H)(x + ω) = i
x+ω e

−ik(x+ω) − i
x+ω1(x + ω) is not bounded by a tame

polynomial at x = 0 if ω ≈ 0 because of the terms 1
ω .

These exploratory examples lead us to the following

Theorem 104. Let f ∈ ρGC∞(K), and assume that Fk(f) is bounded by a tame

polynomial at ω ∈ ρ
R̃n. Then F(f · 1)(ω) = Fk(f)(ω).

Proof. It suffices to apply Thm. 101.1:

F(f · 1)(ω) =
�
f(x)F(δ)(x)e−ix·ω dx =

=

�
δ(x)Fk

(
f · e−i(−)·ω

)
(x) dx =

=

�
δ(x)Fk (f) (x+ ω) dx = Fk (f) (ω).

Since ∂
∂xj

[Fk(f)] (ω) = −iFk(xjf)(ω), we have the following sufficient con-

dition for Fk(f) being bounded by a tame polynomial at ω ∈ ρ
R̃n:

Theorem 105. Let b ∈ ρ
R̃>0 be a large infinite number, and let f ∈ ρGC∞(K)

be uniformly bounded by a tame polynomial at K, i.e.

∃M, c ∈ ρ
R̃∀y ∈ K ∀j ∈ N :

∣∣djf(y)∣∣ ≤M · cj , b

c
is a large infinite number.

(6.7.1)

Then for all ω ∈ ρ
R̃n, the HFT Fk(f) is bounded by a tame polynomial at ω. In

particular, every f ∈ S(Rn) satisfies condition (6.7.1), and hence

F(f) = F(f · 1) = ιb
Rn(f̂), (6.7.2)

where f̂ ∈ S(Rn) is the classical FT of f .

Proof. We have∣∣djFk(f)(ω)
∣∣ ≤ max

h≤j
|Fk(xhf)(ω)| ≤ max

h≤j

�
K

|xhf(x)| dx ≤

≤Mcj max
h≤j

�
K

|xh|dx =: M̄cj .

If f ∈ S(Rn), then
∣∣djf(y)∣∣ ∈ R, so that if b ≥ dρ−r, r ∈ R>0, it suffices to

take c = dρ−r+s where 0 < s < r to have that (6.7.1) holds. The last equality
in (6.7.2) is equivalent to say that

�
Rn f(x)e

−ix·ω dx =
�
K
f(x)e−ix·ω dx, which

can be proved as for the Gaussian, see Lem. 99.

We can now consider the relations between ιb
Rn(T̂ ) and Fk(ι

b
Rn(T )) when

T ∈ S ′(Rn). A first trivial link is given by the so-called equality in the sense of
generalized tempered distributions: For all φ ∈ S(Rn), from (6.3.4) we have�

ιb
Rn(T̂ )φ = ⟨T̂, φ⟩ = ⟨T, φ̂⟩ =

�
ιb
Rn(T )φ̂.
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Using the previous Thm. 105 we get φ̂ = F(φ) (identifying a smooth function
with its embedding). Thereby�

ιb
Rn(T̂ )φ =

�
ιb
Rn(T )F(φ) =

�
F
(
ιb
Rn(T )

)
φ ∀φ ∈ S(Rn). (6.7.3)

In Colombeau’s theory, this relation is usually written ιb
Rn(T̂ ) =g.t.d. F

(
ιb
Rn(T )

)
.

In the following result, we give a sufficient condition to have a pointwise
equality between the HFT of the finite part of ιb

Rn(T ) and T̂ :

Theorem 106. Let b ∈ ρ
R̃>0 be a large infinite number and T ∈ S ′(Rn). As-

sume that F(ιb
Rn(T )) is bounded by a tame polynomial at ω ∈ ρ

R̃n. Then

Fk(ι
b
Rn(T ))(ω) = F(ιb

Rn(T ) · 1)(ω) = ιb
Rn(T̂ )(ω).

Proof. For simplicity of notation, we use ι := ιb
Rn . Using Thm. 104, we have

F (ι(T ) · 1) (ω) = Fk(ι(T ))(ω).

Let ψ(x) = [ψε(xε)] be an n-dimensional Colombeau mollifier defined by b, and
set Kε := [−kε, kε]n; we have

Fk (ι(T )) (ω) =

[�
Kε

⟨T (y), ψε(x− y)⟩e−ix·ωε dx

]
=

=

[
⟨T (y),

�
ψε(x− y)e−ix·ωε dx⟩

]
=

=
[
⟨T (y), ŷ ⊕ ψε(ωε)⟩

]
=

=
[
⟨T̂ (y), (y ⊕ ψε) (ωε)⟩

]
=

=
[
⟨T̂ (y), ψε(ωε − y)⟩

]
= ι(T̂ )(ω).

6.7.1 Fourier transform in the Colombeau’s setting

Only in this section we assume a very basic knowledge of Colombeau’s theory.
Assume that Ω ⊆ Rn be an open set. The algebra Gs

τ (Ω) of tempered
generalized functions was introduced by J.F. Colombeau in [13], in order to
develop a theory of Fourier transform. Since then, there has been a rapid
development of the Fourier analysis, regularity theory and micro-local analysis
in this setting.

Definition 107. The Gs
τ (Ω) algebra of Colombeau tempered GF (trivially gen-

eralized by using an arbitrary gauge ρ) is defined as follows:

Es
τ (Ω) :=

{
(uε) ∈ (C∞(Ω))

I | ∀α ∈ N
n ∃N ∈ N :

sup
x∈Ω

(1 + |x|)−N |∂αuε (x)| = O(ρ−N
ε )

}
,
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N s
τ (Ω) :=

{
(uε) ∈ (C∞(Ω))

I | ∀α ∈ N
n ∃p ∈ N∀m ∈ N :

sup
x∈Ω

(1 + |x|)−p |∂αuε (x)| = O(ρmε )

}
,

Gs
τ (Ω) := Es

τ (Ω)/N s
τ (Ω).

Colombeau tempered GF can be embedded as GSF, at least if the internal set
[Ω] is sharply bounded:

Theorem 108. Let Ω ⊆ Rn be an open set such that [Ω] is sharply bounded. A
Colombeau tempered GF u = (uε) + N s

τ (Ω) ∈ Gs
τ (Ω) defines a GSF u : [xε] ∈

[Ω] −→ [uε(xε)] ∈ ρ
C̃. This assignment provides a bijection of Gs

τ (Ω) onto the
space defined by u ∈ ρGC∞

τ ([Ω]) if and only if u ∈ ρGC∞([Ω]) and

∀α ∈ N
n ∃N ∈ N∀x ∈ [Ω] : |∂αu (x)| ≤ (1 + |x|)N

dρN
.

Integration of a CGF u = [uε] ∈ Gs(Ω) over a standard K ⋐ Ω can be

defined ε-wise as
�
K
u (x) dx :=

[�
K
uε (x) dx

]
∈ ρ

R̃. Similarly we can proceed
for

�
Ω
u if u is compactly supported and Ω ⊆ Rn is an arbitrary open set. On

the other hand, to define the Fourier transform, we have to integrate tempered
CGF on the entire Rn. Using this integration of CGF, this is accomplished
by multiplying the generalized function by a so-called damping measure φ, see
e.g. [39]:

Definition 109. Let φ ∈ S(Rn) with
�
Rn φ = 1,

�
Rn x

αφ(x) dx = 0 for all
α ∈ Nn \{0}, and set φε(x) := ρε⊙φ(x) = ρ−n

ε φ(ρ−1
ε x). Let u = [uε] ∈ Gτ (R

n),

then uφ̂ := [uεφ̂ε],
�
Rn u(x) dφ̂x :=

�
Rn uφ̂ dx =

[�
Rn uε(x)φ̂ε(x) dx

]
∈ C̃, where

φ̂ε denotes the classical FT. In particular,

Fφ̂(u)(ω) :=

�
Rn

e−ixωu(x) dφ̂x =

[�
Rn

e−ixωuε(x)φ̂ε(x) dx

]
F∗

φ̂(u)(x) := (2π)−n

�
Rn

e−ixωu(ω) dφ̂ω =

[
(2π)−n

�
Rn

e−ixωuε(ω)φ̂ε(ω) dω

]
.

As a result, although this notion of Fourier transform in the Colombeau
setting shares several properties with the classical one, it lacks e.g. the Fourier
inversion theorem, which holds only at the level of equality in the sense of gen-
eralized tempered distributions [14, 16, 52], see also (6.7.3). See also [67] for a
Paley-Wiener like theorem. In other words, we only have e.g. Fφ̂(∂

αu) =g.t.d.

i|α|ωαFφ̂(u), i
|α|F∗

φ̂(∂
αu) =g.t.d. x

αF∗
φ̂(u), Fφ̂F∗

φ̂u =g.t.d. F∗
φ̂Fφ̂u, where

Fφ̂(u) denotes the Fourier transform with respect to the damping measure.

Moreover ⟨ιR(T̂ ), ψ⟩ ≈ ⟨Fφ̂ιR(T ), ψ⟩ for all T ∈ S ′(R) and all ψ ∈ S(R), where
ιR(T ) is the embedding of Thm. 65. Intuitively, one could say that the use of
the multiplicative damping measure introduces a perturbation of infinitesimal

83



frequencies that inhibit several results that, on the contrary, hold for the HFT.
On the other hand, HFT lies on a better integration theory that allows to inte-
grate any GSF on the functionally compact set K. The only known possibility
to obtain a strict Fourier inversion theorem in Colombeau’s theory, is the ap-
proach used by [53], where smoothing kernels are used as index set (instead of
the simpler ε ∈ I) and therefore the knowledge of infinite dimensional calculus
in convenient vector spaces is needed. Unfortunately, the latter approach is
not widely known, even in the community of CGF, and it can be considered as
technically involved.

Finally, the following result links the HFT with the FT of tempered CGF
as defined above.

Theorem 110. Let Ω ⊆ Rn be an open set such that [Ω] is sharply bounded,
and let u ∈ ρGC∞

τ ([Ω]) be a tempered CGF (identified with the corresponding
GSF). Finally, let φ ∈ S(Rn) be a dumping measure. Then

Fφ̂(u) = F [u · φ̂((−) · dρ)] = F [u · F(φ)((−) · dρ)] .

Proof. Def. (109) yields

Fφ̂(u)(ω) =

�
Rn

u(x)e−ix·ω dφ̂x =

=

�
Rn

u(x)e−ix·ωd̂ρ⊙ φ(x) dx =

=

�
Rn

u(x)e−ix·ω (dρ ⋄ φ̂) (x) dx =

=

�
Rn

u(x)e−ix·ωφ̂(dρ · x) dx =

= F [u · φ̂((−) · dρ)] (ω) =
= F [u · F(φ)((−) · dρ)] (ω),

where, in the last equality, we applied (6.7.2).

6.8 Examples and applications

In this section we present an initial study of possible applications of HFT. Our
aim is mainly to highlight the new potentialities of the theory.

6.8.1 Applications of HFT to ordinary differential equa-
tions

1) We first consider the following, apparently trivial but actually meaningful,
example:

y′ = y, y (0) = c, y ∈ ρGC∞ ([−k, k]) , c ∈ ρ
R̃, (6.8.1)
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where k = − log (dρ). Since we do not impose limitations on the initial
value c, this simple example clearly shows the possibilities of the HFT to
manage non tempered generalized functions. Applying the HFT to both
sides of (6.8.1) and using the derivation formula (6.5.1), we get

Fk (y) = ∆1ky + iωFk (y) . (6.8.2)

Set for simplicity C (ω) := ∆1ky (ω) = y(k)e−ikω − y(−k)eikω and note
that the function C does not depend on the whole function y but only on

the two values y(±k). We get Fk (y) (ω) =
C(ω)
1−iω , and applying the inverse

HFT Thm. 101.2, we obtain

y = F−1
k |K

(
C (ω)

1− iω

∣∣∣∣
K

)
. (6.8.3)

Using the initial condition in (6.8.1), we have

y (0) = F−1
k

(
C (ω)

1− iω

)
(0) =

� k

−k

C (ω)

1− iω
dω = c. (6.8.4)

Clearly, e.g. by separation of variables, (6.8.1) necessarily yields y(x) = cex

for all x ∈ [−k, k]. Therefore, y (k) = ce− log dρ = c
dρ , y (−k) = celog dρ =

cdρ and C (ω) = cdρiω−1 − cdρ−iω+1 because dρiω = e−ikω. Vice versa, if

(6.8.3) holds, using again Thm. 101.2, we obtain Fk|K(y)(ω) = C(ω)
1−iω for

all ω ∈ K; from the differentiation formula (6.5.1) we hence get Fk(y)(ω)−
Fk(y

′)(ω)+C(ω) = C(ω). Another application of the inversion Thm. 101.2
yields y′ = y in K. We have hence proved that y satisfies (6.8.1) if and
only if

y(x) = cex = F−1
k |K

(
c
dρiω−1 − dρ−iω+1

1− iω

∣∣∣∣
K

)
(x) ∀x ∈ K. (6.8.5)

We finally underscore that:

(a) In the classical theory, the lacking of the term C(ω) does not allow to
obtain the non-tempered solution for c ̸= 0: in other words, if c ̸= 0,
then (6.8.4) implies that C ̸= 0.

(b) In the previous deduction, it is clearly important that the HFT can
be applied to all the GF of the space ρGC∞(K).

(c) If we missed the restriction to K in (6.8.3), we would wrongly ob-

tained that y = cex ∈ ρGC∞(ρR̃), which necessarily implies c = 0

because the exponential function is not defined on the whole ρ
R̃.

(d) Compare (6.8.5) with Example 96 to note that if c ≥ r ∈ R>0, then
in (6.8.5) we are considering the inverse HFT of a GSF which always
takes infinite values for all finite ω. Clearly, this strongly motivates
the use of a non-Archimedean framework for this type of problems.
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(e) All our results, in particular the inversion Thm. 101.2, hold for an
arbitrary infinite number k. In this particular case, we considered k
of logarithmic type to get moderateness of the exponential function.

2) Let us consider an arbitrary n-th order constant (generalized) coefficient
ODE

any
(n) + . . . a1y

(1) + a0y = h, y, h ∈ ρGC∞([−k, k]), aj ∈ ρ
R̃, n ∈ N≥1.

(6.8.6)
Note that simply assuming to have a solution y defined on the infinite
interval [−k, k] already yields an implicit limitation on the coefficients

aj ∈ ρ
R̃. In fact, the equation y′ − 1

dρy = 0 has solution y(x) = y(0)ex/dρ,
which is defined only if x ≤ −Ndρ log dρ ≈ 0 for someN ∈ N. By applying
the HFT to both sides of equation (6.8.6), the differential equation is
converted into the algebraic equation

P (ω)Fk (y) + C (ω) = Fk (h) , (6.8.7)

where

P (ω) =

n∑
j=0

aj (iω)
j
,

and C (ω) is the sum of all the extra terms in Thm. 97.8, which in this
case becomes

C(ω) :=
n∑

j=1

aj ·
j∑

p=1

(iω)j−p∆1ky
(p−1)(ω) ∀ω ∈ K.

Note that the function C depends only on the points y(p)(±k) for p =
0, . . . , n − 1 and not on the whole function y. Assuming that P (ω) is
invertible for all ω ∈ K, from (6.8.7) and the inversion Thm. 101.2, we get

y = F−1
k |K

(
Fk(h)− C

P

∣∣∣∣
K

)
. (6.8.8)

Proceeding as in the previous example, i.e. using again the inversion
Thm. 101.2 and the differentiation formula (6.5.1), we can actually prove
that (6.8.8) is equivalent to (6.8.6). For a generalization to GSF of the
usual results about n-th order constant generalized coefficient ODE, see
[48].

3) A simple example of non-constant coefficient linear ODE is given by the
Airy equation

u′′(x)− x · u(x) = 0, u ∈ ρGC∞([−k, k] , ρR̃). (6.8.9)

By applying the derivative formulas Thm. 97.8 and Thm. 97.9, we get

−ω2Fk (u) + iω∆1ku+∆1ku
′ − iFk (u)

′
= 0
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or dividing both sides by i

iω2Fk (u) + ω∆1ku− i∆1ku
′ −F ′

k (u) = 0

Let us now set C (ω) := ω∆1ku (ω) − i∆1ku
′ (ω), ∀ω ∈ K. Note, once

again, that the function C does not depend on the whole functions u and
u′ but only on the points u (±k) and u′ (±k).

F ′
k (u)− iω2Fk (u) = C. (6.8.10)

Equation (6.8.10) is a first order non-constant coefficient, non-homogeneous
generalized ODE with respect to the variable ω. We can solve it e.g. by

considering the integrating factor µ (ω) := e
� ω
0

−iz2 dz = e−iω3

3 . Then, the
solution of (6.8.10) is given by

Fk (u) (ω) =

� ω

0
µ (z)C (z) dz + c

µ (ω)
=

� ω

0
e−

iz3

3 C (z) dz + c

e−
iω3

3

∀ω ∈ ρ
R̃,

where c := Fk(u)(0) ∈ ρ
R̃. Finally, we apply the inversion Thm. 101.2 and

substitute C (ω) to recover the original function

u(x) = F−1
k

∣∣
K

( � ω

0
e−

iz3

3 C (z) dz + c

e−
iω3

3

∣∣∣∣∣
K

)
(x) =

= F−1
k

∣∣
K

( � ω

0
e−

iz3

3 C (z) dz

e−
iω3

3

∣∣∣∣∣
K

)
(x) +

c

π

� k

0

cos

(
ω3

3
+ ωx

)
dω

=
1

π

� k

0

cos

(
ωx+

ω3

3

) � ω

0

e
−i

(
kz+ z3

3

)
(zu (k)− iu′ (k)) dzdω−

− 1

π

� k

0

cos

(
ωx+

ω3

3

) � ω

0

e
−i

(
−kz+ z3

3

)
(zu (−k)− iu′ (−k)) dzdω

+
c

π

� k

0

cos

(
ω3

3
+ ωx

)
dω ∀x ∈ K.

If we assume that u(±k) ≈ 0 and u′ (±k) ≈ 0, then C(z) ≈ 0 for all z ∈ ρ
R̃

and we get the first Airy function up to infinitesimals u(x) ≈ c · Ai(x).
Therefore, if u(±k) ̸≈ 0 or u′ (±k) ̸≈ 0 and c = 0, we must get, up to
infinitesimals, a multiple of the second Airy function (see e.g. [1])

∃d ∈ ρ
R̃ : u(x) ≈ Bi(x) =

d

π

� +∞

0

{
exp

(
− t

3

3
+ xt

)
+ sin

(
t3

3
+ xt

)}
dt.

We explicitly recall that Bi(x) is of exponential order as x → +∞ and
hence it is not a tempered distribution, so that classically we miss this
solution.
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6.8.2 Applications of HFT to partial differential equations

The wave equation

Let us consider the one dimensional (generalized) wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, c ∈ ρ

R̃, u ∈ ρGC∞([−k, k]× ρ
R̃≥0), (6.8.11)

where c is invertible, and subject to the boundary conditions at t = 0 and
x = ±k

u(−, 0) = f, ∂tu(−, 0) = g, (6.8.12)

u(±k,−) = F±, ∂xu(±k,−) = G±. (6.8.13)

Explicitly note that all the GSF f , g ∈ ρGC∞([−k, k]), F+, F−, G+, G− ∈
ρGC∞(ρR̃≥0) are completely arbitrary. As usual, we directly apply the HFT
with respect to the variable x to both sides and then apply Thm. 97.8 to the
right hand side

Fk

(
∂2u

∂t2

)
= c2Fk

(
∂2u

∂x2

)
,

∂2Fk (u)

∂t2
= −c2ω2Fk (u) + iω∆1ku+∆1k (∂xu) .

Note that also the ∆1k-terms refer to the variable x, but the result is a function
of t. Set C (ω, t) := iω∆1k (u(−, t)) + ∆1k (∂xu(−, t)). The function C does
not depend on the whole functions u and ∂xu but only on the functions of t:
u (±k,−) = F± and ∂xu (±k,−) = G±:

C(ω, t) = iω
[
F+(t)e

−ikω − F−(t)e
ikω
]
+G+(t)e

−ikω −G−(t)e
ikω ∀ω ∈ ρ

R̃.
(6.8.14)

Hence, we get

∂2Fk (u)

∂t2
(ω,−) + c2ω2Fk (u) (ω,−) = C(ω,−) ∀ω ∈ ρ

R̃. (6.8.15)

We obtain, for each fixed ω, a constant (generalized) coefficient, non-homogene-
ous, second order ODE in the unknown Fk (u) (ω,−). Clearly, (6.8.15) already
highlights a difference with the classical FT, where C = 0. To solve equation
(6.8.15), we can use the standard method of variation of parameters to get

Fk(u)(ω, t) = d2(ω)tS(cωt) + d1(ω) cos(cωt)+

+ tS(cωt)

� t

1

C(ω, s) cos(cωs) ds− (6.8.16)

− cos(cωt)

� t

1

sC(ω, s)S(cωs) ds, (6.8.17)

S(z) :=
1

2

� 1

−1

cos(zt) dt. (6.8.18)
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More precisely, in the previous step we applied the general theory of linear
constant generalized coefficient, non-homogeneous ODE developed in [48], which
generalizes the classical theory proving that the space of all the solutions is
a 2-dimensional ρ

R̃-module, generated in this case by tS(cωt) and cos(cωt),
and translated by a particular solution of (6.8.15). Explicitly note that every
functions in (6.8.17) is a smooth function or a GSF; in particular, S(z) is the

smooth extension of sin(z)
z . We also note that the functions d1, d2 satisfy

d1(ω) = Fk(f)(ω)−
� 1

0

sC(ω, s)S(cωs) ds

d2(ω) = Fk(g)(ω) +

� 1

0

C(ω, s) cos(cωs) ds.

They hence depend on all the functions of the boundary conditions. Finally,
applying the inversion Thm. 101.2 we get

u(x, t) = F−1
k

∣∣
K
(d2(ω)tS(cωt) + d1(ω) cos(cωt)|K) (x, t)+

+ F−1
k

∣∣
K

(
tS(cωt)

� t

1

C(ω, s) cos(cωs) ds

∣∣∣∣
K

)
(x, t)−

− F−1
k

∣∣
K

(
cos(cωt)

� t

1

sC(ω, s)S(cωs) ds

∣∣∣∣
K

)
(x, t).

Following the usual calculations, the first summand yields the d’Alembert for-
mula

u(x, t) =
1

2
[f(x− ct) + f(x+ ct)] +

1

2c

� x+ct

x−ct

g(x′) dx′+

+ F−1
k

∣∣
K

(
tS(cωt)

� t

1

C(ω, s) cos(cωs) ds

∣∣∣∣
K

)
(x, t)−

− F−1
k

∣∣
K

(
cos(cωt)

� t

1

sC(ω, s)S(cωs) ds

∣∣∣∣
K

)
(x, t). (6.8.19)

Given f , g ∈ ρGC∞([−k, k]) and F±, G± ∈ ρGC∞(ρR̃≥0), we can define u(x, t)
using (6.8.19) and reverse all the steps above to get a global solution of the wave
equation subject to the given boundary conditions. This proves the following

Theorem 111. Given f , g ∈ ρGC∞([−k, k]) and F±, G± ∈ ρGC∞(ρR̃≥0), there

exists one and only one solution u ∈ ρGC∞([−k, k]× ρ
R̃≥0) of the wave equation

subject to the boundary conditions (6.8.12). In particular, if F± = G± = 0, we
get the usual solution, and if in addition we take f = 0, g = δ, we get the wave
kernel u(x, t) = 1

2c [H(x+ ct)−H(x− ct)].

The Heat equation

Let us consider the one dimensional (generalized) heat equation

∂u

∂t
= a2

∂2u

∂x2
, u ∈ ρGC∞([−k, k]× ρ

R̃≥0). (6.8.20)
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where a ∈ ρ
R̃>0, t ≤ N

a2k2 log (dρ), N ∈ N>0 and subject to the boundary
conditions at t = 0 and x = ±k

u(−, 0) = f, (6.8.21)

u(±k,−) = F±, ∂xu(±k,−) = G±. (6.8.22)

Note, once again, that all the GSF f ∈ ρGC∞([−k, k]), F+, F−, G+, G− ∈
ρGC∞(ρR̃≥0) are completely arbitrary. Applying, as usual, the HFT with respect
to the variable x to both sides of (6.8.20) and Thm. 97.8 we get

∂Fk (u)

∂t
= −a2ω2Fk (u) + iω∆1ku+∆1k (∂xu) .

For all ω ∈ ρ
R̃, set

C (ω, t) := iω∆1k (u(−, t)) + ∆1k (∂xu(−, t)) =
= iω

[
F+(t)e

−ikω − F−(t)e
ikω
]
+G+(t)e

−ikω −G−(t)e
ikω.

Therefore, we get

∂Fk (u)

∂t
(ω,−) + a2ω2Fk (u) (ω,−) = C (ω,−) ∀ω ∈ ρ

R̃. (6.8.23)

Solving (6.8.23) with the integrating factor µ (t) := ea
2ω2

� t
0
dt = ea

2ω2t (which
is well-defined if ω ∈ K because we assumed that t ≤ N

a2k2 log (dρ)), we have

Fk (u) (ω, t) =

� t

0
ea

2ω2tC (ω, t) dt+ c(ω)

ea2ω2t
,

where c(ω) := Fk (u) (ω, 0) = Fk(f)(ω) ∈ ρ
R̃, so that

Fk (u) (ω, t) = e−a2ω2t

t�

0

ea
2ω2tC (ω, t) dt+ Fk(f)(ω)e

−a2ω2t =

= e−a2ω2t

t�

0

ea
2ω2tC (ω, t) dt+ Fk(f)(ω)F

(
1

2a
√
πt
e−

x2

4a2t

)
(ω, t) =:

=: e−a2ω2t

t�

0

ea
2ω2tC (ω, t) dt+ Fk(f)(ω)F (Ha

t (x)) (ω, t) =

= e−a2ω2t

t�

0

ea
2ω2tC (ω, t) dt+ Fk (f ∗Ha

t ) (ω, t),

where Ha
t (x) := 1

2a
√
πt
e−

x2

4a2t is the heat kernel (which, in our setting, is a

compactly supported GSF). Finally, applying the inversion Thm. 101.2 and the
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convolution formula Thm. 97.10 we get

u(x, t) = (f ∗Ha
t )(x, t) + F−1

k |K

e−a2ω2t

t�

0

ea
2ω2tC (ω, t) dt

 (x, t).

As usual, if C (ω, t) equals zero, we obtain the classical solution. We can reverse
all the steps above to get a global solution of the heat equation subject to the
given boundary conditions. This proves the following

Theorem 112. Given f ∈ ρGC∞([−k, k]) and F±, G± ∈ ρGC∞(ρR̃≥0), there

exists one and only one solution u ∈ ρGC∞([−k, k]× ρ
R̃≥0) of the heat equation

subject to the boundary conditions (6.8.21). In particular, if F± = G± = 0, we
get the usual solution, and if in addition we take f = δ, then we get the heat

kernel u(x, t) = Ha
t (x) =

1
2a

√
πt
e−

x2

4a2t .

Laplace’s equation

Let us consider the one dimensional Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0 , u ∈ ρGC∞([−k, k]× [

N

k
log dρ,

N

k
log dρ]), (6.8.24)

where N ∈ N>0, and subject to the boundary conditions at y = 0 and x = ±k

u(−, 0) = f, ∂yu(−, 0) = 0, (6.8.25)

u(±k,−) = F±, ∂xu(±k,−) = 0, (6.8.26)

where f ∈ ρGC∞([−k, k]), F+, F− ∈ ρGC∞(Y ) and Y := [Nk log dρ, Nk log dρ] ⊆
ρ
R̃. Actually, we show this example only for the sake of completeness, but we
present here only a preliminary study. By applying the HFT with respect to x
and applying Thm. 97.8, the problem is converted into

∂2Fk (u)

∂y2
= ω2Fk (u) + iω∆1ku+∆1k (∂xu)

Set

C (ω, y) : = iω∆1k (u (−, y)) + ∆1k (∂xu (−, y)) =
= iω

[
F+(y)e

−ikω − F−(y)e
ikω
]
. (6.8.27)

Note explicitly that C(ω,y)
ω is a GSF exactly because of our boundary condition

∂xu(±k,−) = 0 (compare (6.8.27) with (6.8.14)). Hence, we get

∂2Fk (u)

∂y2
(ω, y)− ω2Fk (u) (ω, y) = C (ω, y) , ∀ω ∈ ρ

R̃, (6.8.28)
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whose general solution is

Fk(u)(ω, y) = d1(ω)e
ωy + d2(ω)e

−ωy−

− e−ωy

� y

1

ezω

2
i
[
F+(z)e

−ikω − F−(z)e
ikω
]
dz+

+ eωy

� y

1

e−zω

2
i
[
F+(z)e

−ikω − F−(z)e
ikω
]
dz =:

=: d1(ω)e
ωy + d2(ω)e

−ωy +D(ω, y)

where the functions d1, d2 satisfy

Fk(f)(ω) = d1(ω) + d2(ω) +D(ω, 0)

0 = ωd1(ω)− ωd2(ω),

because ∂yu(−, 0) = 0 and ∂yD(ω, 0) = 0. Since the set of invertible numbers

in ρ
R̃ is dense in the sharp topology, we hence have

d1(ω) = d2(ω) =
1

2
[Fk(f)(ω)−D(ω, 0)] .

Note that e±ωy is well defined for all ω ∈ K and all y ∈ Y = [Nk log dρ, Nk log dρ].
Finally, applying the inversion Thm. 101.2 we get

u(x, y) = F−1
k

∣∣
K

(
d1(ω)e

ωy + d2(ω)e
−ωy

∣∣
K

)
(x, y)+

+ F−1
k

∣∣
K
(D(ω, y)|K) (x, y).

Theorem 113. Given f ∈ ρGC∞([−k, k]) and F± ∈ ρGC∞([Nk log dρ, Nk log dρ]),

N ∈ N>0, there exists one and only one solution u ∈ ρGC∞([−k, k]×[Nk log dρ, Nk log dρ])
of the Laplace’s equation subject to the boundary conditions (6.8.25). In partic-
ular, if F± = 0, we get the usual solution, and if in addition we take f = δ,
then u(x, y) = F−1

k

∣∣
K
(1(ω) cosh(ωy)|K) (x, y).

6.8.3 Applications to convolution equations.

Consider the following convolution equation in y

h = g + f ∗ y, (6.8.29)

where we assume that y, h, g ∈ ρGC∞(K) and f ∈ ρGD(ρR̃). As in the classical
theory, we apply the convolution Thm. 97.10 to get

Fk (h) = Fk (g) + F (f)Fk (y) .

Assuming that F (f) (ω) is invertible for all ω ∈ K, the inversion Thm. 101.2
yields

y = F−1
k

∣∣
K

(
Fk (h)−Fk (g)

F (f)

∣∣∣∣
K

)
.
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For example, to highlight the differences with the classical theory, let us consider
the convolution equation (δ′ + δ) ∗ y = δ with y(−1) = 0. We have h = δ, g = 0
and f = δ′ + δ so that F(f) = iω1 + 1, where as usual 1 = Fk (δ). Since

1(ω) ∈ ρ
R̃ for all ω, the quantity iω1(ω) + 1(ω) is always invertible, and we

obtain

y = F−1
∣∣
K

(
1

iω1+ 1

∣∣∣∣
K

)
.

It is easy to prove that y(t)+ y′(t) = F−1|K (1|K) (t) = 1
2π

� k

−k
eiωt dt = k

πS(kt)

(see (6.8.18)) and hence y(t) = e−t k
π

� t

−1
S(kx)ex dx e.g. for all log(dρ) ≤ t ≤

− log(dρ). Therefore

y(t) = e−t

� t

−1

F−1|K (1|K) (s)es ds ≈ e−t

� t

−1

δ(s)es ds = e−tH(t)

for all t ∈ ρ
R̃ which are far from the origin, i.e. such that |t| ≥ r ∈ R>0 for some

r.

6.9 Summary of the chapter 6

All in all, in this chapter, we have motivated the natural attempts of several
authors to extend the domain of some kind of Fourier transform. The HFT
presented in this chapter can be applied to the entire space of all the GSF
defined in the infinite interval [−k, k]n. These clearly include all tempered
Schwartz distributions, all tempered Colombeau GF, but also a large class of
non-tempered GF, such as the exponential functions, or non-linear examples
like δa ◦ δb, δa ◦Hb, a, b ∈ N, etc.

We want to summarize by listing some features of the theory that allow some
of the main results that we have considered in this chapter:

1. The power of a non-Archimedean language permeates the whole theory
since the beginning (e.g. by defining GF as set-theoretical maps with in-
finite values derivatives or in the use of sharp continuity). This power
turned out to be important also for the HFT: see the heuristic motivation
of the FT in Sec. 6.4.1, Example 103 about application of the uncertainty
principle to a delta distribution, or the HFT of exponential functions in
Example 96 and in Sec. 6.8.

2. The results presented here are deeply founded on a strong and flexible
theory of multidimensional integration of GSF on functionally compact
sets: the possibility to exchange hyperlimits and integration is an impor-
tant step in the proof of the Fourier inversion theorem Thm. 101.2; the
possibility to compute ε-wise integrals on intervals is another feature used
in several theorems and a key step in defining integration of compactly
supported GSF.
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3. It can also be worth explicitly mentioning that the definition of HFT is
based on the classical formulas used only for rapidly decreasing smooth
functions and not on duality pairing. In our opinion, this is a strong
simplification that even more underscores the strict analogies between
ordinary smooth functions and GSF. All this in spite of the fact that the
ring of scalars ρ

R̃ is not a field and is not totally ordered.

4. Important differences with respect to the classical theory result from the
Riemann-Lebesgue Lem. 93 and the differentiation formula (6.5.1). In
the former case, we explained these differences as a general consequence
of integration by part formula, i.e. of the non-linear framework we are
working in, see Thm. 95. The compact support of the HFT 1 of Dirac’s
delta reveals to be very important in stating and proving the preservation
properties of HFT, see Sec. 6.7. Surprisingly (the classical formula dates
back at least to 1822), in Sec. 6.8 we showed that the new differentiation
formula is very important to get out of the constrained world of tempered
solutions.

5. Finally, Example 103 of application of the uncertainty principle, further
suggests that the space ρGC∞(K) may be a useful framework for quantum
mechanics, so as to have both GF and smooth ones in a space sharing
several properties with the classical L2(Rn) (but which, on the other hand,
is a graded Hilbert space).
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Chapter 7

Fourier transform of rapidly
decreasing generalized
smooth functions.

7.1 Space of rapidly decreasing GSF

7.1.1 Definition, properties and examples

We introduce the space of rapidly decreasing generalized functions on ρ
R̃n. The

general idea of standard rapidly decreasing functions on Rn remains unchanged
on ρ

R̃n i.e., they are smooth, and all of their derivatives decay faster than the
reciprocal of any polynomial at infinity. More precisely, we give the following
definition:

Definition 114. Let X ⊆ ρ
R̃n, Y ⊆ ρ

C̃n. We say that f ∈ ρGS (X,Y ) if and
only if

1. f ∈ ρGC∞(X,Y )

2. ∀α ∈ ρ
Ñn

f ∀β ∈ Nn ∃ρk (f) ∈ ρ
R̃ such that ρk (f) := maxx∈X

∣∣xα∂βf (x)∣∣,
where ρ

Ñf :=
{
n ∈ ρ

Ñ |n is finite
}
.

The space of all rapidly decreasing functions on ρ
R̃n denoted by ρGS

(
ρ
R̃n
)
.

Remark 115. Note that n ∈ ρ
Ñ is finite if and only if

∃N ∈ N : |n| < N i.e., ∀0ε : ni(n)ε < N (7.1.1)

We now define the following

Definition 116. Let n ∈ ρ
Ñ, then the image of n is Im (n) := {k ∈ N | ∃J ⊆0 I ∀ε ∈ J : ni (n)ε = k}.

Recall that J ⊆0 I means a cofinal set; see e.g. [31] and [50] for more details.
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Remark 117. Note that we can have the following two cases:

1. Im (n) = ∅, e.g. for nε → +∞ as ε→ 0+.

2. Im (n) is an infinite set if ∃ (Jp)p∈N ∀p ∈ N : Jp ⊆0 I, ∪p∈NJp = I such

that ∀p, q ∈ N : p ̸= q ⇒ Jp ∩ Jq = ∅. We set nε := p if ε ∈ Jp.

Theorem 118. Let n ∈ ρ
Ñ, then the following are equivalent:

1. n ∈ ρ
Ñf.

2. ∃M ∈ N∀0ε : M = maxe≤ε ni (n)e.

Before proving this theorem we first prove the following result:

Lemma 119. Let x := (xε) : J −→M ⊆ R, where J ⊆0 I, M is finite. Then

∃m ∈M : {ε ∈ J |xε = m} ⊆0 I.

Proof. Assume by contradiction that ∀m ∈ K : {ε ∈ J |xε = m} ⊈0 I. There-
fore

∃εm ∈ I : (0, εm) ∩ {ε ∈ J |xε = m} = ∅. (7.1.2)

We set that ε := minm∈M εm > 0. Then (7.1.2) implies that ∀ε ∈ (0, ε) ∀m ∈
M : ε < εm ⇒ ε /∈ {ε ∈ J |xε = m}. But J ⊆0 I ⇒ ∃e ∈ J ∩ (0, ε) and for
xe =: m we have e ∈ {ε ∈ J |xε = m} which is a contradiction.

We can now prove Thm. 118.

Proof. (1⇒2): We first prove that Im (n) is finite and non-empty. (7.1.1) implies
that,

∃N ∈ N : ∀0ε : ni (n)ε ∈ {0, . . . N − 1} =: K. (7.1.3)

Using Lem. 119 with xε := ni (n)ε, we get ∃k ∈ K : {ε ∈ I |ni (n)ε = k} ⊆0 I,
hence k ∈ Im (n). Finally, ∀k ∈ Im (n) : ∃J ⊆0 I ∀ε ∈ J : ni (n)ε = k. From
(7.1.1) we have that ∀0ε ∈ J : in (n)ε = k ∈ K i.e, Im (n) ∈ K. We can hence
set that M := max {Im (n)} ∈ N. We now prove that ∀0ε : ni (n)ε ∈ Im (n).
To prove this, we assume by contrdiction that ∃L ⊆0 I ∀ε ∈ L : ni (n)ε /∈
Im (n). From (7.1.3) and Lem. 119 with xε := ni (n)ε, ∀ε ∈ L : ∃k ∈ K :
{ε ∈ L | ni (n)ε = k} ⊆0 L yields that k ∈ Im (n). But this is a contradiction
to ∃ε ∈ L : ni (n)ε = k. Therefore ∃ε0 ∀ε ≤ ε0: ni (n)ε ∈ Im (n). In particular,
∀e ≤ ε : ni (n)e ∈ Im (n). On the other hand, since ni (n)e ≤ M we have that
supe≤ε ni (n)e ≤ M . But M ∈ Im (n) implies that ∃J ⊆0 I ∀ε ∈ J : ni (n)ε =
M . For any arbitrary ε ∈ J≤ε, M = ni (n)ε ≤ supe≤ε ni (n)e which proves our
claim above.

(2⇒1): From 2 we have that, M ∈ N, ∃ε0 ∀ε ≤ ε0 : M = max {Im (n)},
ni (n)ε ≤ max {Im (n)} =M . Hence n ∈ ρ

Ñf.

From the previous proof, we also obtain the following:
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Corollary 120. Let n ∈ ρ
Ñf, then

1. Im (n) is finite and non-empty.

2. ∀0ε : ni (n)ε ∈ Im (n)

3. Set Jk := {ε ∈ I |ni (n)ε = k}, ∀k ∈ Im (n) then Jk ⊆0 I, ∀k ∀0ε : ε ∈
∪k∈Im(n)Jk.

Note that 3 holds because we have that ∀0ε : ni (n)ε = k ∈ Im (n) yields
ε ∈ Jk.

The results above show that we can have Im (n) finite and non-empty even if

n ∈ ρ
Ñ \ ρ

Ñf. It can be easily proved that the maximum in Thm. 118 is unique.

Example 121. Trivially, the function f (x) = e−x2

is in ρGS
(
ρ
R̃

)
but g (x) =

e−|x| is not even a GSF because the absolute value is not a GSF. The generalized

smooth function h (x) =
(
1 + |x|4

)−a

, a > 0 is not in ρGS
(
ρ
R̃

)
since it decays

only like the reciprocal of a fixed polynomial at infinity.

Not every rapidly decreasing GSF has rapidly decreasing derivatives like the
following example.

Example 122. Let f : ρ
R̃ → ρ

R̃. Then the function f (x) := e−x2

sin
(
ex

2
)
is

rapidly decreasing but its derivative f ′ (x) = −2xe−x2

sin
(
ex

2
)
+2xe−x2

cos
(
ex

2
)

is asymptotically linearly increasing due to the second term.

Remark 123. If f1 ∈ ρGS
(
ρ
R̃n
)
and f2 ∈ ρGS

(
ρ
R̃m
)
, then the function of n+m

variables f1 (x1, . . . , xn) f2 (xn+1, xn+2 . . . xn+m) ∈ ρGS
(
ρ
R̃n+m

)
. If f (x) ∈

ρGS
(
ρ
R̃

)
and P (x) is a polynomial of n-variables, then f (x)P (x) ∈ ρGS

(
ρ
R̃n
)
.

If α ∈ ρ
Ñf, then ∂

αf ∈ ρGS
(
ρ
R̃n
)
.

7.2 Fourier transform of the rapidly decreasing
GSF

Definition 124. We define Fourier transform of n- dimensional rapidly de-
creasing GSF f ∈ ρGS(ρR̃n, C̃n) as follows:

F (f) (ω) :=

�

ρR̃n

f (x) e−ixω dx =

�
dx1 . . .

�
f (x1 . . . xn) e

−ix·ω dxn, (7.2.1)

where x = (x1 . . . xn) ∈ ρ
R̃n and ω = (ω1 . . . ωn) ∈ ρ

R̃n. Note that the

product x·ω on ρ
R̃n as usual denotes the dot product:

x·ω =

n∑
j=1

(xjωj) .
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In the sequel, we denote ρGS(ρR̃n) := ρGS(ρR̃n, ρC̃n).

Theorem 125. Fourier transform of the rapidly decreasing GSF F maps ρGS
(
ρ
R̃n
)
→

ρGS
(
ρ
R̃n
)
.

Proof. Let f ∈ ρGS
(
ρ
R̃n
)
. In order to show that F (f) ∈ ρGS

(
ρ
R̃n
)
we need to

establish an upper bound for the function ωα∂βF (f) for each α ∈ ρ
Ñn

f , β ∈ Nn.
By Thm. 97.8 and 9 we have that

ωα∂βωF (f) (ω) = i|α|+|β|
�

ρR̃n

xα∂βxf (x) e
−ixω dx. (7.2.2)

To estimate, we set

MN,α,β = max
x∈ρR̃n

∣∣∣∣(1 + |x|2
)N

xα∂βxf

∣∣∣∣ ,
which is finite by Def. 114. Since the term

(
1 + |x|2

)−N

is integrable for N

sufficiently large, we can estimate (7.2.2) by

ωα∂βωF (f) (ω) ≤MN,α,β

�

ρR̃n

1(
1 + |x|2

)N dx.

The right side is independent of the variable ω, so this yields the required

estimate. Now, assume that f ∈ ρGS
(
ρ
R̃n
)
and set k := dρ−1. Then

F (f) (ω) =

�
f (x) e−ixω dx =

[�
f (x) e−ixωε dx

]
=:
[
FR

n

(f) (ωε)
]
= ıb

R

(
FR

n

(f)
)
(ω) .

This implies that F (f) = ıb
R

(
FR

n

(f)
)
= FR

n

(f). Note that the last equality
comes from [31, Thm.31] .

Theorem 126. Every compactly supported GSF is rapidly decreasing i.e., if

f ∈ ρGD
(
ρ
R̃n
)
then f ∈ ρGS

(
ρ
R̃n
)
.

Proof. We need to show that

1. f ∈ ρGC∞(X,Y )

2. ∀α ∈ ρ
Ñn

f ∀β ∃ρk (f) ∈
ρ
R̃ such that ρk (f) = maxx∈ρR̃n max|α|+|β|≤k

∣∣xα∂βf (x)∣∣.
The first condition is satisfied by definition of the compactly supported GSF. For

the second condition, we assume that f ∈ ρGD
(
ρ
R̃

)
and hence ∂βf ∈ ρGD

(
ρ
R̃

)
,

where β is a multi-index. Then ∀β ∃a∀x ∈ ρ
R̃ : |x| ≤ dρ−a =⇒ ∂βf (x) = 0.

Then ρk (f) ≤ maxx∈[−dρ−a,dρ−a]
n max|α|+|β|≤k

∣∣xα∂βf (x)∣∣ = 0.
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7.3 Properties and the inverse of the Fourier
transform of rapidly decreasing GSF and the
inversion theorem

First, we state the main properties of the Fourier transform of rapidly decreasing
GSF. Note that we do not prove these properties at this time, since the proofs
are similar to those of HFT (see Thm. 97).

Theorem 127. Let f ,g ∈ ρGS
(
ρ
R̃n
)
, then

1. F (f + g) = F (f) + F (g).

2. Let b ∈ C̃, then F (bf) = bF (f).

3. F
(
f
)
= −1 ⋄ Fk(f).

4. Fk (−1 ⋄ f) = −1 ⋄ Fk(f).

5. F (t ⋄ f) = t⊙F (f) , t ∈ ρ
R̃n.

6. F (s⊕ f) = e−is(−)F (f) , s ∈ ρ
R̃.

7. F
(
eis(−)f

)
= s⊕F (f) for all s ∈ ρ

R̃n.

8. F (∂jf) (ω) = iωjF (f) (ω) .

9. ∂
∂ωj

F (f) (ω) = −iF (xjf) (ω).

10. F (f ∗ g) = F (f)F (g).

11. F (s⊙ g (x)) (ω) = F
(
g
(
t
s

))
(ω), for all invertible s ∈ ρ

R̃>0.

Next, we consider the inverse Fourier sransform of rapidly decreasing GSF.
We prove that the inversion theorem, the Parseval’s relation and the Plancherel’s
identity. We define the inverse hyperfinite Fourier transform as follows:

Definition 128. Let f ∈ ρGS
(
ρ
R̃n
)
, then

F−1 (f) (x) =

(
1

2π

)n �
f (ω) eixω dω (7.3.1)

for all x, ω ∈ ρ
R̃n. The operation (7.3.1) is called the inverse of the FT of

rapidly decreasing GSF f .
Note that

(2π)
n F−1(f) = Fk (−1 ⋄ f) = −1 ⋄ F(f), (7.3.2)

where recall that −1⋄ denotes the reflection (−1 ⋄ g) (x) := g(−x).
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In fact, we can prove that the inverse FT of the rapidly decreasing GSF
share the same properties as the hyperfinite Fourier transform does. In the next
theorem, we state the main properties of FT of the rapidly decreasing GSF as
follows but we do not prove them all since the proof is similar to those in HFT
(see Thm.101).

Theorem 129. Let f , g, h ∈ ρGS
(
ρ
R̃n
)
we have

1.
�
f (x)F (g) (x) dx =

�
F (f) (ω) g (ω) dω.

2. F−1 [F (f)] = f = F
[
F−1 (f)

]
.

3. (Parseval’s relation) (2π)
n �

f (x)h (x) dx =
�
F (f) (ω)F (h) (ω) dω.

4. (Plancherel’s identity) (2π)
n � |f (x)|2 dx =

�
|F (f) (ω)|2 dω.

5.
�
f (x) g (x) dx =

�
F (f) (x)F−1 (g) (x).

Proof. 1 follows immediately from Def. 124 and the Fubini’s theorem. The
inversion theorem 2 has already proved (see Thm.101.2). To prove 3, we use
1 with g = F (h) and the fact that F (g) = h, which is a consequence of 127.
3 and 2. Plancherel’s identity 4 is a trivial consequence of 3. Finally 5 easily
follows from 1 and 2.

7.4 Summary of the chapter 7

In this chapter, we have introduced a new space of rapidly decreasing GSF that
preserves a general idea of the classical space of rapidly decreasing functions on
Rn but extends it to ρ

R̃n. We have defined a proper notion of Fourier transform
in this space and have proved that it preserves the most of the basic and main
properties of the standard FT of rapidly decreasing functions on Rn. We have
further proved that the FT of rapidly decreasing GSF is a continuous mapping
from a space of rapidly decrasing GSF into itself. Moreover, we showed that the
space of compactly supported GSF ρGD (−) is contained in the space of rapidly
decreasing GSF ρGS (−) as a subspace and vice versa. We have also seen that the
usual properties of the classical FT can be extended in the framework of rapidly
decreasing GSF without any restrictions. This is one of the main advantages of
the concept of FT of the rapidly decreasing GSF.
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