
DISSERTATION / DOCTORAL THESIS

Titel der Disseratation / Title of the Doctoral Thesis

„TIDATE - Time and Data Aware Process Mining at Runtime“

verfasst von / submitted by

Florian Stertz

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Doktor der technischen Wissenschaften (Dr.techn.)

Wien, 2022 / Vienna, 2022

Studienkennzahl lt. Studienblatt / UA A 786 880
degree programme code as it appears on
the student record sheet:

Studienrichtung lt. Studienblatt / Informatik
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Dipl.-Math. oec. Dr. Stefanie Rinderle-Ma

Declaration of Authorship

I, Florian Stertz, declare that I have authored this thesis entitled, “TIDATE - Time and
Data Aware Process Mining at Runtime” independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources.

Ich, Florian Stertz, erkläre an Eides statt, dass ich die vorliegende Arbeit mit dem Titel
“TIDATE - Time and Data Aware Process Mining at Runtime” selbstständig verfasst,
andere als die angegebenen Quellen / Hilfsmittel nicht benutzt und die den benutzten

Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Signature/Unterschrift Date

Acknowledgements

I would like to thank my supervisor Prof. Dr. Stefanie Rinderle-Ma for academical
guidance during this whole thesis, even 355.77 kilometers apart. Through our regularly
discussions, the ideas of this thesis could be formed and molded into scientific contributions.
I also want to highlight, her swift and precise feedback, even in the darkest time of night,
enabled me to never miss a deadline. I could not ask for better supervisor.

Furthermore, I thank Prof. Dr. Andrea Burattin, who has given me good ideas for
papers and future work during discussions at conferences, and Prof. Dr. Erich Schikuta
who accepted to act as referees.

While writing this thesis, I had the fantastic experience of working with great colleagues
and friends at the WST team, who provided me with a good amount of laughs, academical
insights, and, at least sometimes, productive working sessions.

Special thanks go to Karolin Winter for the great collaboration and discussions on our
publication.

Moreover, I thank Jürgen Mangler, whose advice helped me, even in the unholiest hours
of the day and night and I thank Monika Hofer-Mozelt. Without her help, I would be
stuck with some paperwork or still even on sick leave.

In addition, I want to thank my dearest friends, that play games with me for at least 15
years now. Together we created the funniest and most enjoyable hours of procrastination, I
can imagine. Special thanks go to my best man, Philip Thonke, who attended my wedding,
even though he had to take three flights to arrive here. Without all of you, my dissertation
would have been finished at least 2 years ago, but the enjoyable moments we shared, make
up for this tenfold.

Last, but not least, I want to thank my wonderful family. I cannot even imagine a life
without them. I thank my children Leia, Lara and Finn for their love, every night they
allowed me some sleep, diapers, and the joy they brought to my life. My dearest thanks
go to my hot waifu Lisa, who has always been there for me, encouraged me, gave me loads
of chores, and without her support, this would never have been possible.

Lastly, I want to thank, the new HR4U department. The new system is miserable and
exhausting, which accelerated my desire to finish to this.

May the force be with us. Always.

iii

Abstract

In a short period of time, process mining emerged successfully as a technology to support
companies in identifying business processes, check the conformance of business processes,
and even enhance business processes by detecting bottlenecks with shared resources across
different processes. This is usually achieved by using process execution logs, i.e., data files
containing information of the executed tasks like the name of a task, or the timestamp of
the execution. In its traditional application, process mining is applied offline, i.e., after
the execution. It is also important to note, that specific data elements, e.g., time series
sensor data, that are often captured outside of the process execution log, can potentially
impact the execution of a process as well, but are not properly taken into account in
traditional process mining, e.g., the blood pressure and other vital signs are periodically
measured for patients in a hospital, but the data points are not related to a specific task
in a process. Online process mining tackles the first problem of traditional process mining
and applies techniques directly during the execution, but data elements are often not
taken into account as well as exterior data, like sensor data elements. These limitations of
offline process mining and negligence of exterior data, create a research gap, i.e., how can
deviations in the execution of process instances be explained? E.g., a new medical guideline
changes the therapy plan for patients in a hospital. Online process mining using data
elements can detect a new process model in store it in a history of older process models for
a process. This allows domain experts to determine the type of concept drift and suggest
adjustments for the process model for future instances. When process mining techniques
take exterior data into account, an explanation for a deviation can be provided for domain
experts, i.e., a specific drug is not working according to the body temperature of a patient,
hence a different drug is used. The body temperature is usually monitored constantly and
not logged in a process execution log directly, but offers an explanation for the change in
the therapy plan. This thesis provides the TIDATE framework, containing novel concepts
and algorithms for online process mining. It comprises techniques to generate an event
stream, i.e, a data structure created during the execution of business processes containing
all generated events of process instances. In addition, since business processes change
constantly, TIDATE also provides an innovative concept, that reflects the evolution of
a business process, containing all different process models, discovered after drifts in the
workflow perspective and/or data perspective for a process, a process history. The
online conformance checking approach of this framework is based on data elements, interior
data captured by the process execution as well as exterior data like sensor data streams,
to identify the source of a potential drift in the business process and weigh deviations in
a process instance to better quantify the degree of conformance of an instance. These
concepts are evaluated through prototypical implementations using artificial and real world
data sets. To conclude TIDATE enables companies to generate event streams and apply
online process mining techniques. It is used to identify drifts in the process logic as early
as possible, find the reason and explanation of the drift and to detect and quantify non
conformance in the behavior of executed process instances.

v

Kurzfassung

In einer relativen kurzen Zeit hat sich Process Mining erfolgreich als Technologie etabliert,
welche Unternehmen unterstuetzt Business Processes zu finden. Process Mining Algo-
rithmen kontrollieren auch die Ausführung von Prozessinstanzen im Vergleich mit einen
Prozessmodell und das Verbessern der Prozesse durch das Entdecken von Engpässen bei
der Nutzung von geteilten Ressourcen. Die Grundlage für diese Verfahren bilden Process
Execution Logs Dateien. Diese beinhalten Informationen von bereits ausgeführten Ak-
tivitäten alter Prozessinstanzen, wie Namen und Ausführungsdatum einer Aktivität.
Üblicherweise werden Prozessminingalgorithmen nach der Exekution von Prozessinstanzen
durchgeführt, offline. Außerdem werden Datenelemente, wie Sensordaten, welche nicht
direkt in der Logik von Prozessen verarbeitet und gespeichert werden, nicht in die Algorith-
men miteinbezogen, obwohl diese den Ablauf von Prozessinstanzen beeinflussen können.
So werden z.B. der Blutdruck oder andere Vitalitätszeichen in bestimmen Abständen im
Krankenhaus gemessen werden , die Messwerte werden jedoch nicht einer bestimmten
Aktivität zugeordnet in einem Prozess. Online Prozessminingalgorithmen hingegen werden
direkt während der Ausführung von Prozessinstanzen angewendet. Externe Datenelemente
werden aber weiterhin nicht beachtet. Diese Limitierungen von offline Prozessminingalgo-
rithmen, sowie die Vernachlässigung von externen Daten bilden eine Forschungslücke, z.B.
wie kann man Abweichungen nicht nur feststellen sondern auch den Grund erklären? Sollte
zum Beispiel eine neue medizinische Richtlinie den Therapieplan von Patienten in einem
Krankenhaus ändern, so können online Prozessminingalgorithemn, welche Datenelemente
miteinbeziehen, eine Veränderung in dem Prozessmodel feststellen. Durch das Entdecken
aller Prozessmodelle für einen Prozess in seiner Lebenszeit, können die Arten von Concept
Drifts (Änderungen im Modell) genau bestimmt werden and Domainexperten können
diese Modelle nutzen um zukünftige Prozessinstanzen anzupassen. Durch in Betracht
ziehen von externen Datenelementen kann der Grund für eine Abweichung festgestellt
werden. Wird z.B. ein anderes Medikament verabreicht weil ein Medikament zuvor nicht
gewirkt hat, kann dies über das Einbeziehen von externen Datenelementen, wie der Tem-
peratur eines Patienten, ermittelt werden. Die Temperatur wird ständig gemessen, jedoch
nicht als Datenelement in einer Aktivität gespeichert, aber sie würde den Grund für
die Abweichung in der Prozessinstanz erklären im Therapieplan. Diese Abschlussarbeit
präsentiert das TIDATE framework, welches neue Konzepte und Algorithmen für online
Prozessmining beinhaltet. Es beinhaltet Techniken um einen Event Stream zu erzeugen,
eine Datenstruktur welche direkt während der Ausführung einer Prozessinstanz generiert
wird. Zusätzlich, da die Logik von Prozessen sich laufend ändert, bietet TIDATE auch ein
innovatives Konzept, Process History, welches die Evolution von einem Prozess abbildet
und Prozessmodelle beinhaltet, welche nicht nur die Arbeitsabläufe darstellen, sondern
auch die Datenelemente berücksichtigen. Die online Conformance Checking-Algorithmen
in TIDATE basieren auf den Datenelementen, welche intern gespeichert in einer Prozessen-
gine sind und jene welche außerhalb der Prozesse gespeichert werden, wie z.B. Sensordaten.
Das ist wichtig, um den Grund für Abweichungen in Prozessinstanzen zu ermitteln, aber

vii

Kurzfassung

auch um die Abweichungen zu gewichten. Diese Konzepte sind evaluiert durch Prototypen,
welche künstlich erzeugte Datensätze und auch echte Datensätze verwenden. Abschließend
ist festzuhalten, dass TIDATE es Unternehmen ermöglicht, einen Datensatz zu generieren
auf welchen online Prozessminingalgorithmen angewendet werden können. Auf diesen
können Abweichungen und Änderungen in der Prozesslogik ehestmöglich erkannt, bestimmt
und gewichtet werden.

viii

Contents

Declaration of Authorship i

Acknowledgements iii

Abstract v

Kurzfassung vii

List of Tables xiii

List of Figures xv

List of Algorithms xix

Listings xxi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement and Challenges . 4
1.3 Research Questions . 8
1.4 Methodological Background and Contributions 10
1.5 Thesis Structure . 15

2 Related Work 17
2.1 Input Sources for Process Mining . 18
2.2 Process Discovery Algorithms . 19
2.3 Conformance Checking Algorithms . 23
2.4 Process Enhancement . 25
2.5 Concept Drift in Process Mining . 26

3 Creating Data Sets for Process Mining 29
3.1 Data Set properties and format . 32

3.1.1 Designing the XES-YAML Approach 33
3.1.2 Evaluation of XES-YAML File Format 37
3.1.3 Results of the XES-YAML Approach 38

3.2 Creating Process Mining Data Sets during the Execution of a Process . . 39
3.2.1 Process model creation . 39
3.2.2 Implementation . 40
3.2.3 Application Scenarios . 42

3.3 Creating Accurate Data Sets for Process Mining with Human Resources
Involved . 42
3.3.1 Care scenario and contributions . 43

ix

Contents

3.3.2 Background on NFC technology . 45
3.3.3 Conceptual solution design based on use cases 46
3.3.4 Realizing automatic task completion in a process-aware care solution 52
3.3.5 Practical evaluation . 57
3.3.6 Discussion . 62

3.4 Conclusion and outlook . 64

4 Discovering the Evolution of Processes through Concept Drifts 67
4.1 Concept Drifts at the Control Flow Perspective 69

4.1.1 Fundamentals of Process Histories 70
4.1.2 Algorithms for Synthesizing Process Histories 72
4.1.3 Evaluation of process histories . 78
4.1.4 Summary and Outlook of Process Histories 81

4.2 Concept Drifts on the Data Perspective 82
4.2.1 Fundamentals for Detecting Data Drifts 83
4.2.2 Detecting and Identifying Data Drifts 84
4.2.3 Evaluation of Data Drift Detection Algorithms 88
4.2.4 Conclusion for Data Drift Detection 89

4.3 Conclusion and Outlook . 89

5 Time & Data-Aware Conformance Checking and Explaining Drifts 93
5.1 Extending Conformance Checking Algorithms Using an Advanced Cost

Function . 96
5.1.1 Advanced Cost Function . 98
5.1.2 Evaluation of Extended Conformance Checking 103

5.2 Temporal Perspective . 110
5.2.1 Temporal Conformance Checking 111
5.2.2 Evaluation of Temporal Conformance Checking 115
5.2.3 Financial Example . 116
5.2.4 Manufacturing Example . 118

5.3 Discover and Explain Concept Drifts based on external data sources . . . 121
5.3.1 Fundamentals of Dynamic Time Warping 122
5.3.2 Time Sequence Assignment and Root Cause Detection 124
5.3.3 Evaluation of Drift Explanation Discovery using Real-World Data . 128
5.3.4 Discussion of Drift Explanation Discovery 134

5.4 Conclusion and Outlook . 135

6 Evaluating TIDATE - Time and Data Aware Process Mining at Runtime 137
6.1 TIDATE - Artifact Design . 138

6.1.1 Methodology . 139
6.1.2 Research Design . 141
6.1.3 Artifact Validation . 142
6.1.4 Research Execution . 142
6.1.5 Discussion of Results . 145

6.2 Expectations and Experiences of Process Mining in Action 147
6.2.1 Overview on Methodology and Study Design 149
6.2.2 Applied Process Mining Scenario 150

x

Contents

6.2.3 Results of Focus Group Interviews 152
6.2.4 Discussion and Implications for Research and Practice 155

6.3 Conclusion and Outlook . 158

7 Conclusion 161
7.1 Results of Research Questions . 161

7.1.1 Creating Data Sets for Process Mining 161
7.1.2 Discovering the Evolution of Processes through Concept Drifts . . 163
7.1.3 Time & Data-Aware Conformance Checking and Explaining Drifts 164
7.1.4 Evaluating TIDATE - Time and Data Aware Process Mining at

Runtime . 165
7.2 Future Work . 165

Bibliography 167

xi

List of Tables

1.1 Example of data elements on the instance level for Table 1.2 4
1.2 Example of process execution log for the example from Figure 1.1. Each id

is matching an id from Table 1.1. 5
1.3 Details of Chapter 3 . 12
1.4 Details of Chapter 4 . 13
1.5 Details of Chapter 5 . 14

2.1 Dependency relation between Tasks for the dependency graph in Figure 2.3 22
2.2 Example of alignment with only synchronous moves. 24
2.3 Example of alignment with a model move. 24
2.4 Example of alignment with a log move. 24

3.1 Comparison of different log formats for XES serialization. Well structured
reflects if the data format can easily be checked for a specific format.
Comments reflects the ability to make comments in the log file. Append
without Parsing describes if the format is able to be extended without
parsing the complete file format. 34

3.2 Performance Cornerstones . 38
3.3 Use case: Register NFC tag . 47
3.4 Use case: Register resident . 48
3.5 Use case: Write on NFC tag . 49
3.6 Use case: Write utility information . 49
3.7 Use case: Get ToDo list . 50
3.8 Use case: Give utility to resident . 50
3.9 Use case: Document further information 51
3.10 Use case: Document injected task . 51
3.11 Use case: Delete resident . 52
3.12 Possible improvements through automatic documentation 59

5.1 Alignment of the first deviation . 108
5.2 Alignment of the second deviation . 108
5.3 Results Alg. 5 . 109
5.4 BPIC 2012: Task Duration in seconds for all 6 events of 3271 process instances117
5.5 BPIC 2012: Temporal Distance in Seconds of the first 10469 process in-

stances with κ set to 200 . 118
5.6 Manufacturing: Task Duration in Seconds of first 30 process instances in

the data set. 121
5.7 Results of both Algorithms . 132
5.8 Runtime of Alg.8. 134
5.9 Runtime of Alg.9. 134

xiii

List of Tables

6.1 Focus Group Participants Profile . 153

xiv

List of Figures

1.1 Example of a process model describing the treatment for gall stones designed
after description from https://www.gesundheit.gv.at/krankheiten/ver
dauung/gallenblase/gallensteine-therapie 3

1.2 Overview of Targets, Research Goals, Problems and where addressed in this
thesis. 8

2.1 Process Model from Figure 1.1 with abbreviated labels for an easier under-
standing. 19

2.2 Example of process execution log and event stream for the process model in
Figure 1.1 . 20

2.3 Example of dependency graph depicting the frequency of sequences and the
dependency relation from Table 2.1 . 22

2.4 Example of the splits for the model in Figure 2.1. Following a similar design
to depict the splits as seen in [LFvdA13] 23

2.5 Example of a small social network for the bottom path of the process model
depicted in Figure 2.1. 26

2.6 Example of an incremental drift to the process model in Figure 2.1. The
red dashed line marks the additional event. 27

2.7 Example of a recurring drift. Two process models alternate depending on
the season. 27

3.1 Overview of Targets, Research Goals, Problems of this thesis. The features
for this chapter are marked. 29

3.2 Example Process containing 2 parallel branches with 3 activities each in a
loop. 37

3.3 Time consumption for storing events in XES-XML and XES-YAML 38
3.4 Process model containing one decision and one parallel gateway (modeled

in BPMN, using Signavio) . 39
3.5 CPEE Process model . 40
3.6 Daily morning care routine (BPMN notation using Signavio) 43
3.7 Resident bed equipped with NFC reader and a NFC tag on a small plastic lid. 44
3.8 Use case Diagram showing the potential actors and use cases 47
3.9 Use case analysis: derivation of components and data artefacts 53
3.10 Architecture for process-based care system with embedded NFC-based

documentation. Red-dotted components have been developed in this work. 54
3.11 The communication of the components. 57
3.12 Process Model for Afternoon / Evening Routine 58
3.13 Paper-based documentation . 61
3.14 XES log (log-based documentation) . 62

xv

https://www.gesundheit.gv.at/krankheiten/verdauung/gallenblase/gallensteine-therapie
https://www.gesundheit.gv.at/krankheiten/verdauung/gallenblase/gallensteine-therapie

List of Figures

4.1 Overview of Targets, Research Goals, Problems of this thesis. The features
for this chapter are marked. 67

4.2 Small process model example based on the running example in Figure 1.1.
The activities are executed in sequence. 70

4.3 Small process model example based on the running example in Figure 1.1.
The activities are executed in parallel. 70

4.4 Event stream containing two traces with different order of events. 71
4.5 A process model with one parallel gateway and 3 related traces. While the

Move-Log fitness is perfect for the first two traces, the last trace contains
an additional event and receives a lower score 73

4.6 Model Mn−1 is only fitting the first trace perfectly. Model Mn is fitting all
traces. Mn is now the new model. 75

4.7 Complete process history of a single business process 77
4.8 Process Models containing concept drifts. 80
4.9 The concept drift from a to b is not detectable as well as the drift from a

to c, since traces from b and c fit a. The drift from b to c is detectable. . 80
4.10 Process Models containing concept drifts. 81
4.11 Process model with data attributes of event Transportation 82
4.12 Process History showing a data drift in the attribute speed. 84
4.13 Synthesising a process history with κ = 1 and ϕ = 1 86
4.14 Results reflecting the range of the torque value 88

5.1 Overview of Targets, Research Goals, Problems of this thesis. The features
for this chapter are marked. 93

5.2 An overview of the three different areas of this chapter. Conformance
checking on a structural perspective is targeting the order of event. Semantic
conformance checking is focusing on other perspectives, i.e., the temporal
perspective. The last area, aims at taken external data into account to
discover the source of a drift in a process model. 94

5.3 A smaller version of the running example depicted in Figure 1.1. Here only
the tasks for patients with severe symptoms are used for demonstration. . 95

5.4 Conformance Checking Types and Affected Artifacts. This section focuses
on the circled area. 96

5.5 Scenarios for Conformance Deviations (PM: Process Model) 97
5.6 Example for Numerical Values. A range classifying acceptable values . . . 101
5.7 Example for Categorical Values . 102
5.8 Example for Time Sequence Values. The average time sequence and the

maximal allowed distance to it are stored 103
5.9 Artificial Example . 105
5.10 Manufacturing Example. The ’S’ in the modeled tasks, shows that a script

is executed by the process execution engine after a task has been completed.106
5.11 Shop Floor: Robot, Lathe, Micrometer, Stock 107
5.12 GV12 Part [SRM20a] . 107
5.13 Trays in Stock Area [SRM20a] . 107
5.14 Time Sequences of Manufacturing Example. Red line is the average time

sequence, dashed from one trace. The cost is reduced because the distance
is below the threshold of 29.12 . 108

xvi

List of Figures

5.15 Conformance Checking Types and Affected Artifacts. This section focuses
on the circled area. 110

5.16 Temporal Profile – Example. 112
5.17 Process Model Infused with Temporal Profile – Example 116
5.18 Manufacturing of Parts . 119
5.19 Conformance Checking Types and Affected Artifacts. This section focuses

on the circled area. 121
5.20 Concept drift resulting in adapted process model – medical example . . . 123
5.21 Plot of two time sequences and their corresponding values 123
5.22 Warp matrix constructed using DTW: orange cell = distance 124
5.23 Proposed architecture: red parts denote the contribution of this section . . 125
5.24 Exemplary Result of Alg. 8 The red line is the average sequence calculated

using DBA. The green dashed lines represent outliers, potentially due to a
faulty process instance. 127

5.25 GV12 part . 129
5.26 Batches of GV12 parts . 130
5.27 Result of implementation. The red line represents the average sequence . . 131
5.28 Chips on GV12 - wrong measurement . 132
5.29 GV12 Prototype Part . 133

6.1 Overview of Targets, Research Goals, Problems of this thesis. The features
for this chapter are marked. 137

6.2 TAR cycles (based on [Wie14]) . 139
6.3 TIDATE architecture . 141
6.4 Process model used in the process execution engine for producing Turm parts.143
6.5 Small example of process model in execution engine at client. The time

∼ T represents the expected task duration on average. 144
6.6 Process model for the daily production of parts. The signal indicates a new

online mining item. 147
6.7 Double layer focus group study. All participants are grouped along both

layers. 149
6.8 Electroplating – A bath for surface treatment of parts has to be refilled

after use or time . 151

xvii

List of Algorithms

1 Algorithm for synthesizing a process history based on an event stream. . . 74
2 Algorithm for identifying the specific type of concept drift. 79
3 Algorithm to synthesise a process history 91
4 Algorithm to identify data drift. 92

5 Finding Cost of Alignment . 100
6 Temporal Profile Generation . 113
7 Finding Cost of Alignment . 115
8 Find relevant time sequences and compute avg. time sequence 126
9 Detecting a set of sensor data streams which caused a drift 127

xix

Listings

3.1 Example XES log file snippet for one process instance with severe symptoms
for process depicted in Figure 1.1 . 30

3.2 Example XES Event Stream for one process instance with severe symptoms
for process depicted in Figure 1.1 . 31

3.3 Example of a YAML XES File . 35
3.4 Pseudocode for loading a XES-YAML file Into Memory 36
3.5 Example of storing received data . 41
3.6 Example of Log File . 41

xxi

1 Introduction

“Business processes represent a core asset of corporations” [DRMR18]. They describe
the connection and interaction of resources of an organization within and with external
resources from other organizations. The area of analyzing business process and checking
their behavior is defined as Business Process Management (BPM). Driven by the ever
increasing number of recorded events in working processes, i.e., the tasks performed
in a treatment plan for a patient in a nursing home or tasks performed by employees
and robots in a manufacturing process, process mining enables companies to gather and
visualize information from the actual executed processes instead of information from
the design of a process [vdA16]. Process mining enables companies to analyze their
business processes by discovering process models (referred to as process discovery)
[LFvdA13, VdAWM04, WvDADM06], to monitor the conformance of business processes
(referred to as conformance checking) [RVdA08, CvDSW18, BC17], and to improve the
processes by processing the information of previously executed process instances (referred to
as process enhancement) [RvdA06, VdASS11]. While current process mining algorithms
are providing useful insights, three major drawbacks can be observed. First, the results
are often generated using information of process execution logs, which are created after a
process instances have been executed (referred to as offline process mining). Second,
while the focus on the execution of a business process enables companies to acquire
knowledge of the actual execution of business process and thus supports quicker changes in
the business process logic, other perspectives of a business process are oftentimes neglected,
i.e., data elements attached to events or even data points outside of the business process,
e.g., periodic measurements of vital signs of a patient in the ICU of an hospital. Third,
according to [The19] “ [...] world-class organizations leverage business process change as a
means to improve performance, reduce costs, and increase profitability”. Thus deviations
in the behavior of the executed process and the designed process need to be detected as
early as possible and quantified to calculate the expected cost.

This thesis aims at overcoming these drawbacks by developing online process mining
algorithms, which can be applied directly on a stream of events while a process is still
active and by taking different perspectives into account, i.e., data elements of events and
external data points, for process discovery and process enhancement.

1.1 Motivation

Process Mining [VDAADM+11], established itself as valuable asset for companies [KSSI20].
Gartner [KSSI20] says, “ [...], digital transformation drives growth in business users’
awareness of the benefits of analyzing and understanding their own processes and business
operations in a broader enterprise context”, highlighting the importance of creating a
shared business understanding of processes, to make them more efficient. A process model
describes the logic of a business process, i.e., which activity is followed by which activity,
which activities are executed simultaneously, which activity prevents the execution of

1

1 Introduction

another activity and so on. For the visualization of a process model, different notations
are available, including Petri Nets [Pet81], Business Process Modeling Notation (BPMN)
[OMG13], and Unified Modeling Language (UML) [Fow04]. An example of a process model
modeled in BPMN can be seen in Figure 1.1a.

The execution of a process model is realized by a process instance. A process instance
contains information of a process for one specific case. Figure 1.1b shows an example of
attribute values for an instance, i.e., the name of the patient, Jane Doe, as well as her age
and the level of severity of the current suffered symptoms. These values are collected by a
health provider.

The process model describes the guidelines for treating gall stones and have been
gathered from the official website of the Austrian health ministry1. In the beginning of the
process, the severity of a patient’s symptoms are evaluated from the instance attributes
(cf. Figure 1.1b). If a patient is suffering a moderate level of symptoms due to gall stones,
antispasmodic drugs and abrosia, i.e., the abstinence of food, are administered. Note that
the medication and the abstinence of food are to be executed in parallel, i.e., the order
of both activities is not determined and succeeding activities can only be executed after
both activities finished their execution. In addition to these events, a pain therapy can be
performed if necessary. Since a possible pain therapy is performed in parallel, it has to be
finished as well, before succeeding events can be executed.

If the severity of symptoms is at a severe level, a surgical removal of the gall bladder
is planned, a cholecystectomy. For this, the patient has to be admitted to a hospital.
Afterwards the cholecystectomy is performed and the patient is dismissed in the end.

Such process models are designed by domain experts but the process instances are
executed by different parties. Therefore the execution does not always match the designed
process model [CW99].

Process mining aims to mitigate the differences between the described behavior and the
execution and analyzes the executed behavior of processes. The different algorithms of
process mining are categorized into the following three categories [VDAADM+11]too:

• Process discovery algorithms use the logged data of process instances of a business
process and mine a process model which corresponds to the logged data.

• Conformance checking algorithms monitor the behavior of logged data of process
instances related to a process model for this business process, detect deviations and
calculate the fitness of the logged data.

• Process Enhancement algorithms use logged data of process instances as well as a
process model to detect bottlenecks in a process model and aim at improving the
business process, i.e., suggesting a different process model after a change the in logic
of the process has been detected.

The logged data of process instances is stored in a process execution log (cf. Table 1.2).
A log contains several process instances, i.e., traces. Each of these traces can contain
different information on a process instance (cf. Figure 1.1b). A trace consists of several
events. An event comprises the actual information of an executed activity, e.g., which
activity has been executed, by whom, in which state is the activity now, and when has this

1https://www.gesundheit.gv.at/krankheiten/verdauung/gallenblase/gallensteine-therapie

2

https://www.gesundheit.gv.at/krankheiten/verdauung/gallenblase/gallensteine-therapie

1.1 Motivation

20

80

140

200

systolic

diastolic

time in days

mmHg

heart rate

20

80

140

200

time in days

bpm

Sensor-
streams
during
Hospital
stay

resource: string
lifecycle: [start,complete]
timestamp: date

c)

b)

a)

Instances attributes:

name of patient: string
age: int
severity of symptoms: [not severe, severe]

Severe Level

Severity of
Symptoms

Start

Pain Therapy?

Yes

No

End

Moderate
Level

Ø: 2 days Ø: 4 days

Ø: 30 minutes Ø: 1 hour

Ø: 2 seconds

Ø: 30 minutes

Ø: 1
second

Ø: 3
seconds

Ø: 2 minutes

Ø: 2 minutes

Ø: 2 minutes

Painkiller

Antispasmodic
Drugs

Abrosia

Hospital
Admission

Cholecystec-
tomy

Hospital
Dismissal

Figure 1.1: Example of a process model describing the treatment for gall stones designed
after description from https://www.gesundheit.gv.at/krankheiten/verda
uung/gallenblase/gallensteine-therapie

3

https://www.gesundheit.gv.at/krankheiten/verdauung/gallenblase/gallensteine-therapie
https://www.gesundheit.gv.at/krankheiten/verdauung/gallenblase/gallensteine-therapie

1 Introduction

Table 1.1: Example of data elements on the instance level for Table 1.2
Trace information

trace name of patient age severity of symptoms
1 Jane Doe 20 Severe
2 Gustav Schmidt 33 Moderate
3 Lisa Eipel 31 Moderate

been done. An example of data elements attached to an event can be seen in Figure 1.1a
at activity “Hospital Admission”, i.e., the performing resource, i.e., a staff worker of the
hospital, the current lifecycle status and the point in time of the execution. The lifecycle
of an activity reflects the state of an activity, i.e., if the activity is starting, complete,
or in any other state. The number of data elements attached to an event is unlimited.
In addition to data elements, an activity can carry certain temporal properties. Every
activity has an execution time, i.e., the time between the start event and the end event
of an activity, e.g., 30 minutes for the “Hospital Admission”. Furthermore the time gap
between two activities can be expressed as well, i.e., the time between the end event of one
activity and the start event of the next activity, e.g., 4 days between “Cholecystectomy”
and “Hospital Dismissal” (cf. Figure 1.1a).

An example of a process execution log can be seen in Table 1.2 with the corresponding
process instance information in Table 1.1. Each row in Table 1.2 represents an event
for a process instance of the business process seen in Figure 1.1a. The first column
displays the trace id for a logged event. The second column contains the name of an
event. In this process execution log the acting resource of an activity, the lifecycle status
and the timestamp of the execution are logged in the following columns. As can be
seen in Table 1.1, the patient of trace 1 suffers a severe level of symptoms, whereas the
other patients only suffer a moderate level of symptoms. Hence the events “Hospital
Admission”, “Cholecystectomy” , and “Hospital Dismissal” are present for trace 1 and
not in traces 2 and 3. Both follow the other path depicted in the process model. Note
that, since the process model has the activities “Abrosia”, “Antispasmodic drugs” and
optionally “Painkiller” depicted in parallel, the order of these events can vary. In trace
2 “Antispasmodic drugs” is executed before “Abrosia” where the order of these events is
switched in trace 3 with the event “Painkiller” preceding them as well.

1.2 Problem Statement and Challenges

In traditional process mining, the control flow of a process is analyzed using the information
of a process execution log. These log files are generated after the process is finished, i.e.,
every event generated by the actors in a process are collected and put into a log. Thus the
analytical results of a process are retrieved ex-post, i.e., based on offline process mining.
To compensate this drawback, event streams [IEE16] instead of process execution logs
can be used as an input for process mining algorithms, while the processes are still being
executed, i.e., using online process mining.

What both variants of process mining have in common, is the focus on the control
flow of a process, but more information is available in events that influences the process
logic and control flow of a process. Most of the data elements that are available in events

4

1.2 Problem Statement and Challenges

Table 1.2: Example of process execution log for the example from Figure 1.1. Each id is
matching an id from Table 1.1.

Process Execution Log
trace event resource lifecycle timestamp

1 Hospital Admission John Doe start 20-05-2021 14:30:24
1 Hospital Admission John Doe complete 20-05-2021 14:50:14
1 Cholecystectomy Jane Shepard start 22-05-2021 11:15:20
1 Cholecystectomy Jane Shepard complete 22-05-2021 12:18:10
1 Hospital Dismissal Steve Smith start 26-05-2021 09:15:33
1 Hospital Dismissal Steve Smith complete 26-05-2021 09:42:16
2 Antispasmodic drugs Joanne Miller start 24-05-2021 09:23:10
2 Antispasmodic drugs Joanne Miller complete 24-05-2021 09:24:10
2 Abrosia Joanne Miller start 24-05-2021 09:24:11
2 Abrosia Joanne Miller complete 24-05-2021 09:26:06
3 Painkiller Joanne Miller start 25-05-2021 09:23:11
3 Painkiller Joanne Miller complete 25-05-2021 09:25:16
3 Abrosia Joanne Miller start 25-05-2021 09:25:17
3 Abrosia Joanne Miller complete 25-05-2021 09:26:00
3 Antispasmodic drugs Joanne Miller start 25-05-2021 09:26:10
3 Antispasmodic drugs Joanne Miller complete 25-05-2021 09:28:11

are not used by existing approaches, even though they could potentially provide useful
insights. Recent literature emphasizes the need to retrieve information on processes as
soon as possible, [KSSI20, Rei20, CLS20], as well as, to develop process mining algorithms
to process the ever increasing amount of data [vZvDvdA18, BC17, vZBH+17]. To meet
this demand and to incorporate data elements into process mining algorithms, several
problems and challenges arise.

The first problem, is concerning the point of time process mining algorithms which use
data elements, are applied. To enable online process mining algorithms, i.e., algorithms
applied during the execution of processes, events have to be created immediately and
collected in a suitable data set for process mining algorithms. A process execution log
can be seen in Table 1.2. Even though tasks executed by non-human resources can create
events immediately, i.e. the information system in a hospital for the activity “Hospital
Admission”, human resources tend to create events when time is available [AZAMBH18].
Thus the execution log is generated afterwards, i.e., for the activity “Painkiller”. Therefore
a solution is required, that supports human resources to create events immediately without
adding an additional workload for the human resources. Another important factor is the
quality of the event information, i.e., if a human resource is executing an activity, the
event information can vary between different human resources, e.g., while one nurse is
capturing additional information of a patient, another nurse may only be capturing the
point of time of the execution. Thus it is important to support human resources even
further and generate events systematically providing the same level of documentation, to
produce a stream or a log of events to apply process mining algorithms on.

In addition, working with a stream of data, poses stream specific problems [Agg07], e.g.,
even though the data points in the stream often contain a small amount of data elements,

5

1 Introduction

the amount of data is infinite and therefore cannot be stored and must be processed
immediately (cf. Figure 1.2 I).

Another problem are concept drifts in processes [BVDAZP14, MBCS13, WK96].
Processes evolve and are changed by domain experts. Every time a change is committed
to the logic of a business process, e.g., a new activity is introduced, an activity is removed,
or the order of activities got changed, the change is not always made subsequently in
the current process model. This mismatch between the newly designed process logic by
domain experts and the currently used process model can be leading to unexpected results
of process mining algorithms. Deviations in the behavior of process instances compared to
the desired behavior defined in a process model are calculated using conformance checking
algorithms [CvDSW18, MdLRvdA16a, VdAAvD12]. For example, a deviating process
instance with an additional event could be detected and determined as unfit, where in
reality the added event has been added by domain experts and the process model has not
been updated just yet. Incorrectly detected deviations can be costly, thus process mining
algorithms must be able to deal with a new process logic fast, e.g. the General Data
Protection Regulation (GDPR)2 legislature required processes to be adapted and deviations
to the new legislature could cost up to “20 million euros [..] or 4% of the total worldwide
annual turnover of the preceding financial year”, according to [Dro17]. While there is
already work existing for performing conformance checking online [BC17, vZBH+17], only
the control flow perspective is usually taken into account. Current literature shows that the
data elements in a process can reflect the behavior of process instance without requiring
the actual sequence of events in a process instance [RTG+20], thus motivating the need
for new conformance checking algorithms which take data elements in the workflow of a
process into account.

Additionally, concept drifts can be detected and categorized it into a specific concept
drift [BVDAZP14]. The literature describes four different kinds of drifts. A recurring drift,
reflects a seasonal pattern, i.e., the process model changes between two different models
each summer and winter. An incremental drift reflects a small adaption in the process, i.e.,
a new activity added to the process model. The last two type of drifts are sudden drifts
and gradual drifts. A sudden drift is happening if all process models immediately match
the behavior of the new process model, while in gradual drift, the new process instances
match the new behavior and the old instances match match the previous behavior. These
drifts are described for changes in the control flow perspective of a process. As can be seen
in Table 1.2, events contain more information than only control flow data, therefore not
only can the control flow of a process change, but also the logic rules for data elements of
a process can vary [RW12], i.e., a legislature change could allow pharmacists to administer
painkiller drugs instead of only medical doctors or a new medical study enforces a longer
stay period for patients in the hospital after a cholecystectomy, leading to an increased
temporal distance between the “Cholecystectomy” event and the “Hospital Dismissal” to 5
days instead of 4.

As mentioned before, concept drifts, a change in the logic of a business process, imposes
several challenges for process mining algorithms. Even though different categories of
concept drifts are already described in the literature [BVDAZP14], a formal definition to
distinguish these drifts is lacking. In an online setting new challenges arise as well for
concept drift detection. Working with an event stream instead of a process execution log,

2https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu_en

6

https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu_en

1.2 Problem Statement and Challenges

implies that there is an unlimited number of process instances. In these process instances
the process logic could change at any point, thus process mining algorithms need to detect
concept drifts fast. This also affects the detection of outliers in the data perspective. Each
data element can require a different outlier detection, i.e., some numerical data elements
can be normally distributed, while other data elements like the acting resource, follow a
organizational diagram of a company (cf. Figure 1.2 II).

Another problem, concerning the monitoring of the behavior of process instances com-
pared to the proposed behavior of a process model (cf. Figure 1.2 III), is the quantification
of a deviating process instance. Deviations can be detected using conformance checking
algorithms. These deviations are assigned a penalty cost using a cost function, but this
function does usually not take the process history or data elements into account for
adjusting the costs. By taking the control flow perspective into account as well as the
data elements attached to the events, new cost functions should be able to adjust the
severeness of a deviation for processes, e.g., could an overdose of a medical drug lead to
major complications in a process for a patient in a hospital, while the missing of a medical
drug could lead to only minor complications. This leads to new challenges, adjusting the
deviation cost a process instance depending on the data elements of various events during
the execution of a process instance.

In addition to data elements attached to events in a log or event stream, there are
potential data streams outside of the process environment, i.e., the room temperature
of a manufacturing domain, which could potentially influence a process. These external
data sources, can help identify the reason for a concept drift and explain it. Even though
some concept drifts are ultimately committed by domain experts, the reason for a change
is often not visible in the log or event stream. While specific information on an event is
captured in an event stream or log, an external sensor, e.g., a periodical blood pressure
measurement, is not attached to a specific event, but a suspicious blood pressure could
explain certain deviations, e.g., a planned medical drug could be prohibit by a specific
blood pressure, which can lead to a drift. A challenge hereby is the integration of an
external sensor data stream into a log or event stream. As can be seen in Figure 1.1c, the
blood pressure and heart rate of a patient are constantly measured during the whole stay
of a patient in a hospital, i.e., from “Hospital Admission” to “Hospital Dismissal”. There is
not a specific activity assigned to it, since such data is usually monitored over a period
of time instead of one specific point in time. Thus the data preparation for generating a
suitable data set for process mining algorithms need to be extended, to relate data point
sequences of external sensor streams to a process instance. Changes in the behavior of
the external data can help domain experts determine the root cause of a concept drift.
Additional challenges evolve around the detection of relevant sensor streams for a process
and the comparison of data streams, since traditional process mining algorithms are not
suitable for comparing an arbitrary number of data points, i.e., measurements.

Finally, the solution for these problems, as well as the effects of the solutions need to be
evaluated (cf. Figure 1.2 IV). While a generalization to other domains is a difficult task,
an evaluation of elaborated algorithms and of process mining in general is required.

Figure 1.2 gives an overview of the previously identified research goals and their challenges.
In the following the section the corresponding research questions of the previously described
challenges and problems are defined.

7

1 Introduction

Challenge

Process Execution
Engine

Data Set
Generation

Model
Discovery

Conformance
Checking

I

III

II

Evaluation
IV

IV

I

Target Research Goal Realization

Create suitable
Data Set for
Process Mining
Algorithms

Evaluate Logging Formats;
Create Data Set with Minimal
Interaction;
Enable Online and Offline
Algorithms

High Velocity of Data;
Finite Memory;
Reduce Documentional Effort;

Chapter 3

II

Detect and Determine
Concept Drifts;
Take Data Perspective
into Account

Chapter 4

Defining Process History;
Define Concept Drifts
and Data Drift Based
on History;

Unlimited Number of
Process Instances;
Outlier Detection of
Data Elements;

III

Extend Conformance
Checking;
use External and
Internal Data Sources

Chapter 5

Use Process History to
Quantify Deviations;
Include External Data
Sources;
Define Temporal
Deviations

How to Relate External
Data to Process;
Different Types of Data
Require Different Outlier
Detection;
Adjust Severness of
Deviation

Chapter 6Evaluation of
Perception of
Process Mining

Evaluate Impact
of Prototype;
Evaluate Perception
of Process Mining in
Manufacturing Domain

Generalization
to Other Domains;

Figure 1.2: Overview of Targets, Research Goals, Problems and where addressed in this
thesis.

1.3 Research Questions

In this section, the research questions of this thesis are stated and elaborated. Section 1.4
gives an overview, on how these research questions are tackled.

The first research questions discuss the technical properties for a suitable data set on
which process mining algorithms can be applied on.
RQ 1a How should a data format for process mining algorithms be designed to

be created during the execution? While the human-readable structured XML serial-
ization of XES provides a useful representation to be used in process execution logs, it
still poses some liabilities in an online setting, where speed and data space are oftentimes
limited. The tree structure of XML documents can be tedious to modify, since modifica-
tions have to be made at the correct position in a document, therefore the whole document
has to be parsed, using memory and time. Desired properties for a suitable data set are

8

1.3 Research Questions

discussed and a serialization format is proposed for process execution logs to parse and
extend them easily during and after the execution of a process.
RQ 1b How to generate data sets directly at the execution of a process for

online process mining algorithms? While a process execution log is generated after
the process instances have been executed, an event stream is a data source containing
events, which are generated directly when they are executed. An approach to generate an
event directly when it is executed, containing all necessary and desired data elements for
process mining algorithms is elaborated in connection with a process execution engine.
RQ 1c How to improve the quality of the data set and reduce the error-proneness?

Tasks in business processes oftentimes are executed by one or more human actors. The
documentation of a task in a business process is typically not a desirable duty for human
actors and a time consuming task. Thus the documentation is often made when the human
actor finished all other tasks at the end of their shift and is prone to errors due to the time
gap between the execution of the activity and the documentation task. To support human
actors by reducing the amount of time spent on the documentation of their activities as
well as increasing the quality of the documentation, different technologies, are investigated
and combined with a process execution engine.

The following research questions discuss the evolution of a business process by taken
multiple perspectives into account, i.e., a collection of process models and categorized
concept drifts to document the history of a business process. The influence of data elements
on concept drifts is discussed as well.
RQ 2a How can the evolution of a business process be discovered at runtime?

A business process has to adapt constantly. The reasons can be manifold, i.e., a seasonal
effect or a legislation change. While other approaches already looked into the analysis
of concept drifts in a process execution log, a definition of the evolution of a process is
missing. A formalization of the different types of concept drifts related to the evolution of
a business process is elaborated as well.
RQ 2b How do data elements relate to concept drifts? The main focus for a

plethora of process mining algorithms is on the control flow of a business process, but
events in a process execution log oftentimes contain a variety of data elements attached
to them. In Figure 1.1a, data elements are shown for the activity “Hospital Admission”.
For example, to optimize the workflow, patients could be admitted directly in the correct
hospital unit instead of a general admission but has to be done by the medical personnel
instead of the general personnel. This would lead to human actors of a different hierarchy
level in the hospital organization, which is reflected in the event stream. This drift in
the process logic is not reflected in the control flow of a business process but in the data
perspective, a data drifts.

The following research questions discuss the conformance of single process instances,
how deviations can be quantified and if the deviations can be explained.
RQ 3a How to better quantify the costs of deviations between process instances

and a process model using data elements? Conformance checking tries to align the
actual execution of a process instance to a process model. If there are deviations present,
they are assigned a cost to them. Usually a default cost function, that assigns a fixed value
to mismatch is used, but a deviation in the process mining data set does not necessarily
reflect an error in the execution of a process, but could also reflect an error in the logging
of the process instance. With the information of previously executed process instances
in a process history, an amount of acceptable values for attached data elements can be

9

1 Introduction

gathered and an advanced cost function be introduced.
RQ 3b How can the temporal perspective be taken into account for conformance

checking? While a deviation of a executed process instance compared to a process model
can be detected by aligning both sequences, the tasks can still be executed incorrectly, e.g.,
the time passed between events or the duration of a task can exceed certain thresholds,
i.e., taking too long or not long enough. The example in Figure 1.1a shows the average
duration for each task and the average time between tasks. New conformance checking
algorithms are necessary to take temporal deviations into account.
RQ 3c How to discover the source of a concept drift? Concept drifts can be

detected using process execution logs or event streams, but they are often not sufficient to
detect the reason a concept drift happened, i.e., a recurring drift often reflects a seasonal
change, so the temperature could be a potential cause for a drift. To analyze external
sources, e.g., the heart rate and blood pressure in Figure 1.1c which are not included in
an event stream or process execution log, external sensor data streams can be related to
business process. As the source and explanation of a concept drift, a drift in the behavior
of external sensor data streams at the same time can be identified.
RQ 4 What are the general expectations on process mining algorithms by domain

experts and what are the actual results after it has been introduced? A plethora
of process mining algorithms are already present and this thesis provides some new ap-
proaches to close present research gaps. The impact of process mining in general and of
the elaborated algorithms in this thesis need to be evaluated by domain experts.

1.4 Methodological Background and Contributions

This thesis follows the Design Science Research approach. In [Wie14], design science is
described as follows: “In design science, we iterate over two activities: designing an artifact
the improves something for stakeholders and empirically investigating the performance
of an artifact in a context”. In this research method the focus is on the artifact, i.e., it
is artifact driven instead of problem driven with the main objective to draw prescriptive
knowledge about the design of artifacts [vBM19]. Such artifacts range from metrics, formal
definitions, complete frameworks to algorithms.

The contribution of this thesis is structured into artifacts, containing algorithms to
tackle the before mentioned challenges and provide new meaningful insights in processes.
The artifacts together form the main artifact of this thesis, an online process mining
framework providing online process mining algorithms as well as a method to generate
data sets suitable for process mining, called TIDATE.

Using the six core dimensions to design science research, according to [vBM19], this
thesis can be categorized as follows:

• Problem Description: Deviations in business processes oftentimes are detected
after the processes have been executed. Information is more valuable if gathered
earlier.

• Input Knowledge: Consisting of interviews with domain experts, real-world process
information of the manufacturing domain, cloud-based process execution engine,
prior knowledge from previous process executions and external data streams from
sensors

10

1.4 Methodological Background and Contributions

• Research Process: Creating artifacts in form of algorithms and prototypes. Eval-
uated on real-life process data as well as through domain experts using focus groups
[Kru14] and technical action research [WM12].

• Key Concepts: Creating data sets suitable for process mining as well as supporting
human actors working with a process execution engine. Discovering the evolution
of a business process. Also to detect, quantify and explain deviations in process
instances and discover opinions of process mining of domain experts through focus
groups.

• Solution description: Extending process execution engine to generate a data set
for process mining while processes are being executed, enabling online and offline
process mining algorithms. Collect the evolution of a business process by detecting
concept drifts [BvdAŽP11] and analyze the differences between the process models as
process history. Include data perspective for process models and use process history
and external data streams to quantify deviations in process instances. Evaluate
impact using focus group interviews.

• Output Knowledge: Process execution logs and event streams are generated. A
process history containing identified and classified concept and data drifts is built.
The alignments costs are adapted through the inclusion of process history and
external data streams in conformance checking.

The artifacts of this thesis are now outlined per chapter.
Chapter 2, Related Work, provides the related work und fundamentals required to

follow the contribution.
Chapter 3, Creating Data Sets for Process Mining, contains the methods for the

creation of a suitable data set for process mining as well as a discussion on the format the
data set is serialized in. The content of Chapter 3 is based on the following publications:

Stertz, F., Rinderle-Ma S., Hildebrandt T., Mangler J.: Testing Processes with Service
Invocation: Advanced Logging in CPEE. In: 14th ICSOC Workshops (2016), Pages:
189-193
https://doi.org/10.1007/978-3-319-68136-8_22

Stertz, F., Mangler J., Rinderle-Ma S.,: Balancing Patient Care and Paperwork Auto-
matic Task Enactment and Comprehensive Documentation in Treatment Processes. In:
Enterprise Model. Inf. Syst. Archit. Int. J. Concept. Model. (EMISA) Vol. 15, 2020,
Pages: 34-48

An overview of the contribution of this chapter can be seen in Table 1.3. This thesis is
using the cloud-based process execution engine, CPEE [MRM14]. While tasks are being
executed, the process execution engine is producing notifications to different services. This
thesis provides a logging services, which generates an event stream and a process execution
log, both following the XES format [IEE16], on which process mining algorithms can be
applied on. Section 3.1 represents a new approach to serialize the XES format to suit the
needs of a fast lightweight logging format which is human readable and can be used to

11

https://doi.org/10.1007/978-3-319-68136-8_22

1 Introduction

Table 1.3: Details of Chapter 3
Chapter 3

Input - Execution of Process Instance
- Stream of non formatted events

Output
- Process Execution Log
- Event Stream (XES)
- Human readable Documentation

Artifacts

- New Serialization Format of XES
- Extension of Process Execution Engine
- Prototype using NFC tags with
Process Execution Engine

apply process mining algorithms on. Furthermore the necessary properties of the format
and its requirements are discussed (RQ 1a). Section 3.2 describes the extensions of the
process execution engine to generate a data set directly at the execution. The extension
provides a process execution log directly after an event is detected and injects it into an
event stream as well for further services (RQ 1b). In Section 3.3, the quality of a process
documentation is discussed with involved human actors. For this, use cases from the care
domain are treated from a process oriented view in a nursing home. The staff members of a
nursing home have to log each task they perform to due to legal legislation, but because of
a heavy workload the documentation is often postponed to the end of their shift which can
lead errors. A novel approach is presented using NFC3 technology and a process execution
engine to support staff members of a nursing home, generate a data set directly at the
execution and transform to a fitting documentation for the nursing home (RQ 1c).

Chapter 4, Discovering the Evolution of Processes through Concept Drifts,
focuses on online process discovery by defining and classifying concept and data drifts. This
allows to collect a process history, which represents the evolution of business process.
The content of Chapter 4 is based on the following publications:

Stertz, F., Rinderle-Ma S.: Process histories-detecting and representing concept drifts
based on event streams. In: On the Move to Meaningful Internet Systems. OTM 2018
Conferences - Confederated International Conferences (CoopIS), Pages: 318-335
https://dx.doi.org/10.1007/978-3-030-02610-3_18

Stertz, F., Rinderle-Ma S.: Detecting and Identifying Data Drifts in Process Event
Streams Based on Process Histories. In: CAiSE Forum 2019, Pages 240-252,
https://dx.doi.org/10.1007/978-3-030-21297-1_21

An overview of the contribution of this chapter can be seen in Table 1.4. With the
results from Chapter 3, an event stream is now generated when tasks are being executed
and processed in the process execution engine, CPEE. In this chapter of the thesis, changes
in the executed process instances are detected to identify drifts in the process model.

3Near-field communication

12

https://dx.doi.org/10.1007/978-3-030-02610-3_18
https://dx.doi.org/10.1007/978-3-030-21297-1_21

1.4 Methodological Background and Contributions

Table 1.4: Details of Chapter 4
Chapter 4

Input - Process model with data elements
- Event Stream

Output - Process model with data elements
- Process history

Artifacts

- Algorithms to generate a Process history
- Data Drift formalization
- Drift formalization related to process
history

These drifts can be caused by different sources. A recurring drift, for example, represents
seasonal changes for example, while an incremental drift reflects small changes may be due
to a legislation change [BVDAZP14]. To classify the different types of concept drifts, a
formalization of a process history and the definition of four concept drift types according
to process history are presented in Section 4.1 (RQ 2a). This approach is prototypically
implemented and evaluated through an artificial data set, inspired from an use case from
[BVDAZP14]. It shall be noted, that these concept drifts are not only detectable on the
workflow perspective, but also the data perspective can contain changes, i.e., data drifts.
In Section 4.2, algorithms are elaborated to detect drifts in an event stream focusing on
the data elements attached to events. All of these data drifts are classified and formalized
(RQ 2b). The approach is prototypically implemented and evaluated through a real-world
log from the manufacturing domain.

Chapter 5, Time & Data-Aware Conformance Checking and Explaining
Drifts, focuses on conformance checking, detecting the deviations in process instances and
trying to explain the deviations. While oftentimes, conformance checking is only used with
a standard cost function, a more refined cost function is elaborated and external sensors
are used to explain deviations in the process instances. The content of Chapter 5 is based
on the following publications:

Stertz, F., Mangler J., Rinderle-Ma S.: Analyzing Process Concept Drifts Based on
Sensor Event Streams During Runtime In: 18th Business Process Management, BPM
2020), Pages: 202=219
https://doi.org/10.1007/978-3-030-58666-9_12

Stertz, F., Mangler J., Rinderle-Ma S.: Data-driven Improvement of Online Confor-
mance Checking. In: International Enterprise Distributed Object Computing Conference,
EDOC 2020), Pages: 187-196
https://doi.org/10.1109/EDOC49727.2020.00031

13

https://doi.org/10.1007/978-3-030-58666-9_12
https://doi.org/10.1109/EDOC49727.2020.00031

1 Introduction

Table 1.5: Details of Chapter 5
Chapter 5

Input
- Process model with data elements
- Event Stream
- External Sensor Streams

Output

- Alignments
- Deviation costs
- Process Model infused with Time
Series
- Temporal Profiles

Artifacts

- Advanced Cost Function for Conformance Checking
- Algorithms incorporating external Sensor
- Temporal Profiles
- Algorithm to detect reason for concept drift

Stertz, F., Mangler J., Rinderle-Ma S.: Temporal Conformance Checking at Runtime
based on Time-infused Process Models. Tech. rep. (2020), https://arxiv.org/abs/
2008.07262

An overview of the contributions of this chapter can be seen in Table 1.5. With the
results from Chapter 3 and Chapter 4, a process model and an event stream is now used
as input to detect and analyze deviations of a process instance compared to the process
model.

Section 5.1 introduces a more refined cost function for conformance checking in general.
In comparison to the default cost function in conformance checking, where a deviation in
the log and a deviation in the model are assigned a cost of 1, this approach adapts the
cost of a deviation by tracking the data elements attached to events. Using the process
history, acceptable values for data elements can be determined and the deviations in the
data elements are used to adapt the cost of deviation in the process instance accordingly
(RQ 3a).

In Section 5.2, temporal profiles are introduced, to detect the average time between
tasks and the time for a task to complete. Using this temporal profiles, the temporal
behavior of process instances is inspected. Using the z-score [CA86], temporal deviations
are calculated and used to assign costs to a process instance using conformance checking
(RQ 3b).

Section 5.3 presents a novel approach to detect deviations which is taking external
sensors into account. These sensors produce data streams containing measurements, e.g.,
temperature of a room or measurement of a work piece. The data streams are interpreted
as time series and are related to a process instance. The time series are compared using
Dynamic Time Warping (DTW) [BC94] and every time a concept drift is detected in a
process history, deviations in the time series are detected to explain the reason of the drift
in the process history (RQ 3c).

Chapter 6, Evaluating TIDATE - Time and Data Aware Process Mining at
Runtime, contains the evaluation of the algorithms. There are two different methods used
for evaluating this thesis, Technical Action Research (TAR) [WM12] and Focus Groups

14

https://arxiv.org/abs/2008.07262
https://arxiv.org/abs/2008.07262

1.5 Thesis Structure

interviews [Kru14]. The content of Chapter 6 is based on the following publication:

Stertz, F., Mangler J., Scheibel B., Rinderle-Ma S.: Expectations vs. Experiences–Process
Mining in Small and Medium Sized Manufacturing Companies
In: International Conference on Business Process Management Forum, Pages: 195-211
https://www.doi.org/10.1007/978-3-030-85440-9_12

In Section 6.1 the TIDATE framework is validated using the TAR approach (RQ 4).
Section 6.2, investigates the general perception of process mining of members of manu-
facturing companies, before and after there have been exposed to process mining in their
areas. To accomplish this evaluation, focus group interviews have been conducted. The
participants are categorized by two layers. The first layer differentiates on the hierarchical
position of a participant in the company, while the second layer categorizes participants
on their level of exposure to process mining in their area, i.e., is process mining already
introduced or not.

Chapter 7, Conclusion gives a short summary of the contributions of the complete
thesis and an outlook for future work.

1.5 Thesis Structure

This thesis presents new algorithms incorporating data elements attached to events for
process mining, reflected in the TIDATE framework. These algorithms can be applied
at any time during the execution of processes and provide useful insights in behavior of
process instances. Additions, like the advanced cost function for conformance checking
algorithms, are presented as well as new approaches to explain the source of a drift in a
process.

The remainder of this thesis contains the following chapters:

• Chapter 2, Related Work. This chapter summarizes the related work for this thesis
and explains the necessary fundamentals to follow this thesis..

• Chapter 3, Creating Data Sets for Process Mining. This chapter focuses on
the generation of a suitable data set on which process mining algorithms can be
applied on. This enfolds offline process mining algorithms, i.e., after the execution of
a business process and online process mining algorithms, i.e., during the execution
of a business process. To achieve this, a new serialization format is presented and an
approach to create a process execution log and event stream during the execution of
business process using TIDATE.

• Chapter 4 ,Discovering the Evolution of Processes through Concept Drifts.
This chapter focuses on the creation of a process history reflecting the evolution
of a business process. A process history contains all different process models that
have been detected via TIDATE after a concept drift has been detected and identified.
In addition to concept drifts, drifts in the data elements are analyzed as well and
data drifts are introduced.

15

https://www.doi.org/10.1007/978-3-030-85440-9_12

1 Introduction

• Chapter 5, Time & Data-Aware Conformance Checking and Explaining Drifts.
This chapter describes a novel approach to combine exterior data sources, e.g., sensor
data streams or the history of previous business process executions, to better quantify
a deviation in the behavior of process instance to the process model. In addition
to this, exterior data sources can be used to identify the cause of a deviation in a
process instance.

• Chapter 6, Evaluating TIDATE - Time and Data Aware Process Mining at Runtime.
In this chapter, the TIDATE framework and the impact of process mining in general
is being evaluated using the Technical Action Research (TAR) method [WM12] and
focus group interviews [Kru14].

• Chapter 7, Conclusion. The last chapter gives a brief summary of all gathered
results with a discussion and possible future work is outlined.

16

2 Related Work

In this chapter the related work is outlined as well as the fundamentals to follow the
contribution of this thesis. The content is based on the following publications:

Stertz, F., Rinderle-Ma S., Hildebrandt T., Mangler J.: Testing Processes with Service
Invocation: Advanced Logging in CPEE. In: 14th ICSOC Workshops (2016), Pages:
189-193
https://doi.org/10.1007/978-3-319-68136-8_22

Stertz, F., Mangler J., Rinderle-Ma S.,: Balancing Patient Care and Paperwork Auto-
matic Task Enactment and Comprehensive Documentation in Treatment Processes. In:
Enterprise Model. Inf. Syst. Archit. Int. J. Concept. Model. (EMISA) Vol. 15, 2020,
Pages: 34-48

Stertz, F., Rinderle-Ma S.: Process histories-detecting and representing concept drifts
based on event streams. In: On the Move to Meaningful Internet Systems. OTM 2018
Conferences - Confederated International Conferences (CoopIS), Pages: 318-335
https://dx.doi.org/10.1007/978-3-030-02610-3_18

Stertz, F., Rinderle-Ma S.: Detecting and Identifying Data Drifts in Process Event
Streams Based on Process Histories. In: CAiSE Forum 2019, Pages 240-252,
https://dx.doi.org/10.1007/978-3-030-21297-1_21

Stertz, F., Mangler J., Rinderle-Ma S.: Analyzing Process Concept Drifts Based on
Sensor Event Streams During Runtime In: 18th Business Process Management, BPM
2020), Pages: 202=219
https://doi.org/10.1007/978-3-030-58666-9_12

Stertz, F., Mangler J., Rinderle-Ma S.: Data-driven Improvement of Online Confor-
mance Checking. In: International Enterprise Distributed Object Computing Conference,
EDOC 2020), Pages: 187-196
https://doi.org/10.1109/EDOC49727.2020.00031

17

https://doi.org/10.1007/978-3-319-68136-8_22
https://dx.doi.org/10.1007/978-3-030-02610-3_18
https://dx.doi.org/10.1007/978-3-030-21297-1_21
https://doi.org/10.1007/978-3-030-58666-9_12
https://doi.org/10.1109/EDOC49727.2020.00031

2 Related Work

Stertz, F., Mangler J., Rinderle-Ma S.: Temporal Conformance Checking at Runtime
based on Time-infused Process Models. Tech. rep. (2020), https://arxiv.org/abs/
2008.07262

Stertz, F., Mangler J., Scheibel B., Rinderle-Ma S.: Expectations vs. Experiences–Process
Mining in Small and Medium Sized Manufacturing Companies
In: International Conference on Business Process Management Forum, Pages: 195-211
https://www.doi.org/10.1007/978-3-030-85440-9_12

Stertz, F., Mangler J., Rinderle-Ma S.: The Role of Time and Data: Online Conformance
Checking in the Manufacturing Domain. Tech. rep. (2021), https://arxiv.org/abs/
2105.01454

This thesis is placed in the field of process mining. Process mining aims to analyze event
information of business processes by discovering workflows, monitoring the behavior of
process instances, identifying bottle necks and improving process models [VDAADM+11].

Process mining consists of three different areas: process discovery, conformance checking
and process enhancement [vdA16]. As a main input, a process execution log is used,
often employing the eXtensible Event Stream (XES) format [IEE16]. A process execution
log contains a sequence of events. Each event relates to an activity in the process. An
event is also part of a trace, i.e., a specific process instance. The complete collection
of traces with their events is called a log, i.e., one log for one process. To inject more
information into these process execution logs, data elements can be attached to events, e.g.,
the timestamp of an event. Data elements attached to events are not mandatory and can
be arbitrary, but there is a small number of data elements widely accepted by a plethora
of process mining algorithms, e.g., the name, the timestamp or the current lifecycle of
an event [vdA16]. An example of a process execution log can be seen in Table 1.2 which
contains events for the process shown in Figure 1.1a. In the following, the difference
between offline and online process mining is explained with a detailed explanation of the
three process mining areas afterwards.

2.1 Input Sources for Process Mining

There are two common input sources for process mining algorithms currently established.
For standard process mining algorithms, a process execution log is used, i.e., a file containing
all event information required for the algorithms following the XES format [VBDA11]. A
file is created after the execution of a process. One file represents one process containing
one root node, called log. A log contains the information on several process instances,
called traces. Each trace then contains the information of all executed activities, called
events, like acting resource or timestamp of execution. The second input source follows
the XES format as well, but is used for online process mining, i.e., during the execution of
a process, an event stream. Contrary to a process execution log, an event stream contains
an unlimited number of events which poses several challenges since memory is finite and
computational time should be short to handle the next event.

18

https://arxiv.org/abs/2008.07262
https://arxiv.org/abs/2008.07262
https://www.doi.org/10.1007/978-3-030-85440-9_12
https://arxiv.org/abs/2105.01454
https://arxiv.org/abs/2105.01454

2.2 Process Discovery Algorithms

Figure 2.1 shows a simplified version of the running example from Figure 1.1a, which is
used to demonstrate the most common process mining algorithms.

Start End

P

AD

A

HA C HD

Figure 2.1: Process Model from Figure 1.1 with abbreviated labels for an easier under-
standing.

Figure 2.2 shows an example of a process execution log and an event stream, where both
data snippets contain the same information. There are exactly 5 events on both data sets
visible. On the left, in the process execution log, a complete log is present containing 3
events for the trace t1 and 2 events for the trace t2. Both traces are fitting the process
model (cf. Figure 1.1). The events are ordered by trace in a process execution log. On the
right, an event stream is shown. In addition to the 5 events, events before HA are present
in the stream as well as after HD. The events in the event stream are ordered by their
timestamp, i.e., when their activities have been executed.

2.2 Process Discovery Algorithms

The α-miner is one of the first established algorithms [VdAWM04]. This mining algorithm
searches a process execution log for specific patterns, i.e., which event is directly preceding
or directly succeeding which event, which events are directly following each other at all and
which events are not following any specific order. The algorithm defines the 4 following
relations between two events, a and b from one process execution log.

• a > b if in at least one trace b is directly following a.

• a → b, if a > b and a ̸> b.

• a # b, if a ̸> b and b ̸> a.

• a ∥ b, if a > b and b > a.

19

2 Related Work

Process Execution Log

HAt1

trace

t1 AD
t1
t2
t2

HD
A
C

events

Event Stream

...

...

HA
t1

AD
t2

C
t1

A
t2

HD
t2

Figure 2.2: Example of process execution log and event stream for the process model in
Figure 1.1

Using these definitions, specific workflow patterns can be discovered from a log, i.e.,
sequences, decisions and parallel patterns. A sequence pattern, for example HA → C,
is detected, since a “Cholecystectomy” is performed after the “Hospital Admission” and
never before the “Hospital Admission”. A decision pattern, for example AD or HA after
Start, is detected, since both events, AD and HA are executed directly after Start, i.e.,
Start → AD and Start → HA, but AD#HA also applies, i.e., AD is not executed
directly after HA nor HA after AD. This reflects the decision in the process model. Either
“Hospital Admission” or “Antispasmodic Drugs” are executed in one process instance.
The end of this decision is detected by looking at the following relations. HD → End,
AD → End, and AD#HD represent the end of a split in a process model. Since AD,
A, and P are executed in parallel, all of the decision patterns are detected for the other
activities as well.

A parallel pattern is present in this process model, i.e., A, AD and P , where P is
optional. This is detected, since Start → AD, Start → A, Start → P , AD ∥ A, AD ∥ P
and A ∥ P are present. A limitation of the α- algorithm is now visible, since P#AD or
P#A cannot be detected. Therefore this decision pattern is lost using these relations. The
join for the parallel pattern is detected, since AD → End, A → End, P → End, A ∥ P ,
AD ∥ P , and AD ∥ A are present.

The α-miner starts by scanning for every event in a log, the possible start events and
the possible end events. Afterwards computationally intensive steps are applied to detect
all possible sequences from one or more activities to others and filtered by removing
nonmaximal pairs [VdAWM04]. These results are then finally processed into a workflow
net.

Two major limitations of the α-miner are short loops and infrequent sequences of a
process. A short loop can consist of only 2 activities, where for example the sequence ⟨a, b⟩
can be repeated n times. This leads to the relations a > b and b > a, thus determined as
a ∥ b, where in reality these 2 activities are never performed in parallel. A similar problem,
can be witnessed by using the example from above, where the decision pattern starting P

20

2.2 Process Discovery Algorithms

cannot be detected. The second limitation, i.e., infrequent sequences, makes the α-miner
error-prone to incorrectly recorded traces. If, for example, one trace out of 1000 traces
features a wrong order of events, the α-miner algorithm is not taking the frequency of
certain relations into account and treats each relation equally. Extensions published in
[DMvDVdAW04, MWVdAvdB02], extend the α-miner to mitigate these limitations, by
adding new relations for short loops and taken the frequency into account, by adding
dependency/frequency tables.

The heuristics miner [WvdA03] takes the frequency of sequences into account and thus
is better capable to deal with noisy logs, i.e., infrequent wrong paths due to an error in the
execution or in the logging. The heuristics miner algorithm generates a dependency graph,
i.e., a model displaying only connections with a sufficiently high dependency measure. The
dependency measure between two events in a log, e.g. b following a, is calculated using
the difference between the number of occurrences of a > b and b > a divided by the sum
of occurrences plus 1. Let L be a log for the process model in Figure 2.1, consisting of the
following sequences:

• ⟨Start,HA,C,HD,End⟩, 5 times

• ⟨Start, P,A,AD,End⟩, 1 time

• ⟨Start, A,AD,End⟩, 2 times

• ⟨Start, A,AD,P,End⟩, 5 times

• ⟨Start, AD,A, P,End⟩, 3 times

The dependency measures for L are calculated in Table 2.1. A number close to 1 likely
reflects this sequence. A number close to -1 likely reflects this sequence in an inverse order,
and a number close to 0 represents no dependency to each other.

The corresponding dependency graph for Table 2.1 can be seen in Figure 2.3. For the
dependency graph two thresholds need to be defined, one for the absolute frequencies of
an event sequence and one for the dependency relation. The graph in Figure 2.3 is created
using only sequences, that have been observed at least 3 times and a have dependency
relation of at least 0.42. As can be seen in the graph, there are some connections missing,
e.g., between P and A, because it has been observed only once. The advantage of the
heuristics miner is the speed of the algorithm, since the dependency relation can be
calculated in linear time. A major disadvantage is the missing knowledge of parallel and
decision gateways, since only the occurrences of sequences are taken into account.

The inductive miner [LFvdA13] requires a process execution log as input and guarantees
a sound and fitting model. The models discovered by the inductive miner are typically
represented as a process tree, i.e., a structured presentation, consisting of smaller subtrees
which are connected through operators. As a base for calculating the relation of all the
events of a process execution log, a directly follows graph is created, similar to the α-miner.

The following operators are defined in the inductive miner:

• →, a sequence from the left subtree to the right subtree

• ∧, parallel execution of all subtrees.

• ×, an exclusive choice between all subtrees.

21

2 Related Work

Table 2.1: Dependency relation between Tasks for the dependency graph in Figure 2.3
Start A AD P HA C HD End

Start 0
1

7
8

3
4

1
2

5
6

0
1

0
1

0
1

A −7
8

0
1

5
12

2
5

0
1

0
1

0
1

0
1

AD 3
4

−5
12

0
1

5
6

0
1

0
1

0
1

3
4

P 1
2

−2
5

−5
6

0
1

0
1

0
1

0
1

8
9

HA −5
6

0
1

0
1

0
1

0
1

5
6

0
1

0
1

C 0
1

0
1

0
1

0
1

−5
6

0
1

5
6

0
1

HD 0
1

0
1

0
1

0
1

0
1

−5
6

0
1

5
6

End 0
1

0
1

−3
4

−8
9

0
1

0
1

−5
6

0
1

Start

P

AD

A

HA C HD

End

7(0.88)

5(0.83)
5(0.83) 5(0.83) 5(0.83)

3(0.75)

8(0.42)

5(0.83)

3(0.75)

8(0.89)

Figure 2.3: Example of dependency graph depicting the frequency of sequences and the
dependency relation from Table 2.1

• ⟳, a loop. The left subtree is the loop body while the right subtree is executed after
the body, otherwise the loop ends.

The inductive miner is trying to find specific splits in a process execution log for each
operator. The result of the process model from Figure 2.1 would be ×(∧(×(P,), AD,A),→
(HA,→ (C,HD))) Figure 2.4, shows where the splits are detected by the inductive miner
for the model depicted in Figure 2.1, where the rectangles reflect splits within another the
split of the outer rectangle.

A disadvantage of the inductive miner is, that it can only discover process models which
can be described by process trees, since the underlying algorithm is generating process
trees. Another limitation shared with other mining algorithms, is the requirement of a

22

2.3 Conformance Checking Algorithms

Start End

P

AD

A

HA C HD

Figure 2.4: Example of the splits for the model in Figure 2.1. Following a similar design
to depict the splits as seen in [LFvdA13]

sufficient process execution log, i.e., infrequent sequences that are not detected in a log are
not present in the process tree and sequences that reflect a rare noise occasion are present
in the process tree, which requires some processing of the process execution log before the
algorithm can be applied..

Even though these are the three most common process discovering algorithms, there
is a plethora of additional algorithms available, dealing with the limitations mentioned
above, for example the genetic miner [vdAdMW05]. The genetic miner is capable to deal
with noise and incomplete data in process execution logs, introducing a Causal Matrix,
displaying the causal relation between activities, i.e., detecting the possible input and
output activities for a specific activity.

2.3 Conformance Checking Algorithms

Several algorithms for process conformance checking exist [vdA16]. The first conformance
checking algorithms, analyzed the behavior of process instances compared to a process
model using token-replay in a Petri Net. After the replay the fitness of a process instance
is then calculated using the missing and remaining tokens that still remain in the Petri
net [RVdA08, VdAAvD12]. Nowadays alignments [Adr14] are used to calculate the fitness
of a process instance by assigning a cost to missing or additional events in the event log
and or the process model, called moves in the following. The different types of moves in
an alignment are explained in detail using the notation from [CvDSW18] and the process
model from Figure 1.1.

Synchronous moves are detected when the expected event in the trace and the event in

23

2 Related Work

Table 2.2: Example of alignment with only synchronous moves.
trace1 Hospital Admission Cholecystectomy Hospital Dismissal

sequence Hospital Admission Cholecystectomy Hospital Dismissal

Table 2.3: Example of alignment with a model move.
trace2 Hospital Admission >> Hospital Dismissal

sequence Hospital Admission Cholecystectomy Hospital Dismissal

the model sequence are equivalent. For a synchronous move, usually no costs are assigned
and a trace is fitting a process model if only synchronous moves are detected. A trace
with three synchronous moves can be seen in Table 2.2, where all events from the trace
match a possible execution of the process model.

Model moves represent that an event should be executed according to the process model
at this position, but is not present in the event sequence of the trace. As can be seen in
Table 2.3, the event “Cholecystectomy” is missing in trace2. This model move is presented
with a >> in the trace sequence.

If an event is appearing in the event sequence of a trace, but is not planned at this
position in the process model, a log move is detected. In Table 2.4, the event “Hospital
Admission” appears twice in the event sequence of trace3, but is only expected once in the
process model. Therefore, the symbol >> is placed in the trace row as annotation of a log
move.

Calculating these alignments is an immense computational task, since lots of variations
have to be considered finding the best alignment. To tackle this problem, an approximation
of the conformance value is introduced by [SvZvdA20], which uses only a subset of all the
possible sequences of the process model and approximates the alignments using the edit
distance function. To identify events from each other in a process execution log or event
stream, an identifier is required, e.g., the name of an event and the id of the related trace
for example, which can be a source for errors [RMRJ11].

It is important to note, that current conformance checking techniques are usually not
taking the likelihood of observed events into consideration. Stochastic Conformance
Checking [LSvdA19] tackles this question. It translates event logs into a stochastic
language, assigning a probability to each observed event sequence in a process execution
log, and uses it to construct stochastic petri nets. Stochastic conformance checking then
calculates the conformance of an event log by analyzing the distribution of the stochastic
petri net and the event log using the Earth Movers’ Distance. This distance represents the
cost for transforming a pile of earth,i.e. a distribution, to another one.

Another limitation of conformance checking approaches currently is the main focus on
the control flow of a process instance without considering the data elements attached to the
events in an instance, e.g., an activity is performed by a none authorized resource. Thus

Table 2.4: Example of alignment with a log move.
trace3 Hospital Admission Hospital Admission Cholecystectomy Hospital Dismissal

sequence Hospital Admission >> Cholecystectomy Hospital Dismissal

24

2.4 Process Enhancement

the event is in the log, even though the activity has not been executed by a designated
resource.

To overcome this, [RTG+20], do not use event information at all, but monitor the data
elements related to a process instance in a data stream. The change of data elements are
logged as a sequence of measurements, i.e., a time series. A workflow net is then enriched
by these time sequences. The approach aims at the differences between the workflow net
and a log of time sequences. In comparison to existing work, the event information is
not used anymore. The differences between the time sequences is also not calculated on
the time sequence as a whole, like the difference between two time sequences, i.e., using
Dynamic Time Warping [BC94]. Instead the approach detects if the data elements are
within certain intervals and increase or decrease at the expected point of time.

Recent approaches aim to perform conformance checking at run-time using an event
stream [BSvdA14] instead of an event log. In such an online approach [vZBH+17], prefix
alignments are calculated incrementally. This is necessary since traces in an event stream
are not always complete all the time, i.e., a process instance can still be active and therefore
some events are not present already in the event stream, but appear when the activities
are executed. An optimal alignment would increase the costs, since the events are not
present at this point in time. Prefix alignments allow to adjust the costs and use only
present events, e.g., it does not increase the costs for an alignment if an event can still
potentially appear in the event stream.

2.4 Process Enhancement

Process enhancement extends a process model, e.g., by introducing multiple perspectives
[vdA11].

Organizational mining, for example, discovers patterns in the organizational perspective
of a process execution log, i.e., the role of a resource or the executed tasks by one resource
compared to another [SVdA08]. This information allows the detection of social networks
from a process execution log as well [VDARS05]. A social networks describes how strongly
connected two resources are to each other, as can be seen in Figure 2.5. The nodes represent
the different staff members of a hospital, where a big node represents a resource that is
often executing tasks, while a small node represents a resource that is executing only a
few tasks from the process execution log, e.g., Dr. Shepard performs more tasks than
the two staff members Doe and Smith. A thick arc represents a strong connection, i.e.,
these two resources work often in the same process instance, while a thin arc represents a
lose connection, e.g., Doe executes activities often before Shepard and rarely afterwards,
where Smith executes activities more often after Shepard. The time perspective focuses
on the frequency of certain events and the timestamps of events, if available [BGvdW09].
They are used to detect certain bottlenecks to increase the efficiency of a process. Decision
mining focuses on discovering rules for choices in a process based on the data elements of
events in a process execution log [MDLRVDA16b].

Another possibility for process enhancement is reflected in repairing a process model,
i.e., paths from a process model that are not discovered in a process execution log, can
be removed to better reflect the information of a log [vdA16]. This is combined with
the results of conformance checking and a process model. If the behavior of the process
execution log is not matching the process model for example, the model can be adapted,

25

2 Related Work

Shepard

Doe Smith

Figure 2.5: Example of a small social network for the bottom path of the process model
depicted in Figure 2.1.

by adding and removing activities to the process model automatically. The goal is that a
user-set threshold of traces is fitting the behavior of the process model afterwards. It is
also possible to remove specific optional paths from a process model if the activities in
this path are never executed according to a process execution log.

2.5 Concept Drift in Process Mining

A sudden shift, induced by, for example, a new legislation, can cause a change in a process.
This is followed by a change in the process execution and the process execution logs. These
changes are often not transferred to the process model, i.e., the new process instances are
not fitting the already discovered process model based on the previous process instances.
Therefore conformance checking algorithms in this case, are often detecting non fitting
process instances. This phenomenon is called a concept drift [WK96]. In [BvdAŽP11], an
approach to find concept drifts in process execution logs is discussed and the following
features to interpret the relationships of events are introduced.

• Relation Type Count. Defines a vector for every event, containing the number of
events that always, sometimes and never follow a specific event.

• Relation Entropy. The average rate at which a specific relation is being created.

• Window Count. The count is defined for a specific relation, like the follows relation,
on a give length.

• J-measure. Originally proposed by Smyth and Goodman [GS91], to calculate the
goodness of a rule, like b follows a. This is done with cross-entropy of two events
and a specific windows size.

Concept drifts, are detected by splitting the log into smaller sub-logs and finding the
point of change through statistical tests, like the Kolmogorov-Smirnov test and the
Mann-Whitney U test.

26

2.5 Concept Drift in Process Mining

Four different types of concept drifts are mentioned in [BvdAŽP11] and are explained
in the following. An incremental drift, reflects only small changes in the new process
model, i.e., a new additional event in the process model. Figure 2.6 presents a process
model similar to Figure 2.1 but with an additional activity FT , reflecting a test for a
flu infection, since an infected patient could be the source for severe problems for other
patients in the same room.

Start End

P

AD

A

HA C HDFT

Figure 2.6: Example of an incremental drift to the process model in Figure 2.1. The red
dashed line marks the additional event.

A recurring drift, reflects the use of a previously used process model for a time,
before switching to another process model again. This is often due to seasonal effects, e.g.,
a different process model is used in the winter than in the summer. Figure 2.7 presents an
example for a recurring drift. During the summer the process model from Figure 2.1 is
used, while in the flu season, typically winter, the model from Figure 2.6 is used.

Start End

P

AD

A

HA C HDFT

Start End

P

AD

A

HA C HD

Start End

P

AD

A

HA C HD

Summer SummerWinter
season

Figure 2.7: Example of a recurring drift. Two process models alternate depending on the
season.

27

2 Related Work

A gradual drift occurs, when currently active process instances are still using the
previous process model, but newly started process instances are using a new process model,
i.e., patients admitted before the flu season do not have to be tested for the flu and follow
the old process model, while new patients are tested for flu.

Contrary to this drift, is the sudden drift. When a sudden drift occurs, all currently
active process instances are stopped, and have to be adapted to fit the behavior of the
new process model, i.e., if the flu is already present in a medical care unit, all patients
have to be tested for flu to contain the infection.

As already mentioned, these concept drifts can be detected, but the reason for the concept
drift is unknown. The approach from [AvZQ+21] aims to mitigate this, by analyzing the
different perspectives of a process execution log, e.g., the workflow and the resource
perspective for example. After a concept drift has been detected, two perspectives are
transformed to time series and are checked for drifts as well. If drifts are detected, the
cause-effect is analyzed to see if a drift in one perspective is the cause for the drift in the
other perspective.

Prediction in process mining is sometimes accomplished by using machine learning
algorithms, which train a model based on a process execution log of a process [VdASS11].
Concept drifts can make these trained models inaccurate. The approach in [BRK20] aims
to deal with concept drifts, by taken concept drift detection into account for the machine
learning algorithms. The approach shows, that a retraining of the model as soon as the
drift is detected, increases the accuracy, increasing the importance of online process mining
algorithms.

The algorithms in this thesis build upon the related work that has been presented in
this chapter. While there are already concept drift detection algorithms available, a clear
definition of the drift types is still missing. Concept drifts are also not only occurring
in the workflow perspective of a process, but can also occur in the data perspective of a
process. This thesis aims at closing this gap and provide a collection of all documented and
classified concept drifts and process models of a process. Conformance checking algorithms
are usually only concerned with the control flow perspective as well and use a rather trivial
cost function to calculate the alignments. This thesis emphasizes on this and provides
new methods to annotate a process model for a more detailed cost function, as well as
taking the data elements into account for the alignments. Last but not least, the cause for
concept drift is only calculated using the data available in the process execution log in
known approaches, but the cause can easily be outside of the process data, therefore a
new method is presented to find the reason for a concept drift using data streams outside
the process data.

28

3 Creating Data Sets for Process Mining

Challenge

Process Execution
Engine

Data Set
Generation

Model
Discovery

Conformance
Checking

I

III

II

Evaluation
IV

IV

I

Target Research Goal Realization

Create suitable
Data Set for
Process Mining
Algorithms

Evaluate Logging Formats;
Create Data Set with Minimal
Interaction;
Enable Online and Offline
Algorithms

High Velocity of Data;
Finite Memory;
Reduce Documentional Effort;

Chapter 3

II

Detect and Determine
Concept Drifts;
Take Data Perspective
into Account

Chapter 4

Defining Process History;
Define Concept Drifts
and Data Drift Based
on History;

Unlimited Number of
Process Instances;
Outlier Detection of
Data Elements;

III

Extend Conformance
Checking;
use External and
Internal Data Sources

Chapter 5

Use Process History to
Quantify Deviations;
Include External Data
Sources;
Define Temporal
Deviations

How to Relate External
Data to Process;
Different Types of Data
Require Different Outlier
Detection;
Adjust Severness of
Deviation

Chapter 6Evaluation of
Perception of
Process Mining

Evaluate Impact
of Prototype;
Evaluate Perception
of Process Mining in
Manufacturing Domain

Generalization
to Other Domains;

Figure 3.1: Overview of Targets, Research Goals, Problems of this thesis. The features for
this chapter are marked.

This chapter addresses objective I in Fig. 3.1, i.e., the generation of suitable data sets
to apply process mining algorithms on, e.g., data sets that can be used for process mining
algorithms either after or during the execution of a process without any transformation
algorithms needed.

Process mining algorithms provide useful insights into the execution of processes. In
order to apply process mining, a suitable data set is required. This chapter focuses on the

29

3 Creating Data Sets for Process Mining

generation of such a data set and is split into three sections. . As mentioned in Chapter 1,
the following three research questions have been derived for the generation of data sets.

• RQ 1a How should a data format for process mining algorithms be designed to be
created during the execution?

• RQ 1b How to generate data sets directly at the execution of a process for online
process mining algorithms?

• RQ 1c How to improve the quality of the data set and reduce the error-proneness?

Section 3.1 tackles RQ 1a and focuses on the properties of a data set for process mining,
which is able to be generated during the execution of a process. As described in the
previous chapter, there are two different input sources for process mining algorithms
available, process execution logs and event streams. Listing 3.1 provides an overview of an
example process execution log in the XES XML format [VBDA11] for one patient with
severe symptoms following the process depicted in Figure 1.1. The log is starting with a
log node, followed by a trace. The name of the trace reflects the name of a process instance,
e.g., the name of a patient and provides important data elements, like the severity of the
symptoms. A trace contains a number of events, describing the executed activities in a
process instance. In this example, the start point and the end point of an activity is logged
and distinguished by the lifecycle attribute of an event. XES XML is the most common
adaption of the XES standard and offers a structured log which is human readable. An
event stream, typically used for online process mining algorithms, consists of events similar
to events in a process execution log. The events contain information of the related process
instance, i.e., a trace, of the process. Contrary to a process execution log, the complete
information of a process is not known since a stream is infinite, i.e., an endless number of
events need to processed. This imposes several challenges, i.e., a high velocity of events in
an event stream, requires the algorithms to process one event in a short amount of time
and an unlimited number of events cannot be stored, since memory is finite. The event
stream is also following the XES standard [VBDA11]. Listing 3.2 provides an excerpt of
an event stream, following the process depicted in Figure 1.1. As can be seen, the event
stream does only contain events referring to the start of the “Cholecystectomy”, because
apparently the activity is still being executed and no completing event has been detected
in the event stream. Note that the trace information in the event stream is stored within
the events as concept:instance1. Section 3.1 focuses on the feasibility of a suitable data
set for process mining algorithms. It focuses on providing a light weight human readable
format with a consistent performance in logging process instances, which can then be
directly used for process mining algorithms, online and offline.

1 <log xmlns=" ht tp : //www. xes−standard . org /" xes . v e r s i on=" 2 .0 " xes . f e a t u r e s="nested−a t t r i b u t e s ">
2 <trac e>
3 <s t r i n g key="concept:name" value="John Doe"/>
4 <in t key="age" value="31"/>
5 <s t r i n g key=" s e v e r i t y " value=" seve r e "/>
6 <event>
7 <s t r i n g key="concept:name" value=" Hosp i ta l Admission"/>
8 <s t r i n g key=" l i f e c y c l e : t r a n s i t i o n " value=" s t a r t "/>
9 <s t r i n g key=" o r g : r e s ou r c e " value="Jane"/>

10 <date key=" time:timestamp" value="2021−09−10T13:00:12 "/>
11 </ event>
12 <event>
13 <s t r i n g key="concept:name" value=" Hosp i ta l Admission"/>

1https://www.tf-pm.org/resources/xes-standard/about-xes/standard-extensions/concept

30

https://www.tf-pm.org/resources/xes-standard/about-xes/standard-extensions/concept

14 <s t r i n g key=" l i f e c y c l e : t r a n s i t i o n " value=" complete "/>
15 <s t r i n g key=" o r g : r e s ou r c e " value="Jane"/>
16 <date key=" time:timestamp" value="2021−09−10T13:28:56 "/>
17 </ event>
18 <event>
19 <s t r i n g key="concept:name" value="Cholecystectomy"/>
20 <s t r i n g key=" l i f e c y c l e : t r a n s i t i o n " value=" s t a r t "/>
21 <s t r i n g key=" o r g : r e s ou r c e " value="Joan MD"/>
22 <date key=" time:timestamp" value="2021−09−12T09:22:51 "/>
23 </ event>
24 <event>
25 <s t r i n g key="concept:name" value="Cholecystectomy"/>
26 <s t r i n g key=" l i f e c y c l e : t r a n s i t i o n " value=" complete "/>
27 <s t r i n g key=" o r g : r e s ou r c e " value="Joan MD"/>
28 <date key=" time:timestamp" value="2021−09−12T10:29:00 "/>
29 </ event>
30 <event>
31 <s t r i n g key="concept:name" value=" Hosp i ta l Di smi s sa l "/>
32 <s t r i n g key=" l i f e c y c l e : t r a n s i t i o n " value=" s t a r t "/>
33 <s t r i n g key=" o r g : r e s ou r c e " value="Jane"/>
34 <date key=" time:timestamp" value="2021−09−16T15:28:56 "/>
35 </ event>
36 <event>
37 <s t r i n g key="concept:name" value=" Hosp i ta l Di smi s sa l "/>
38 <s t r i n g key=" l i f e c y c l e : t r a n s i t i o n " value=" complete "/>
39 <s t r i n g key=" o r g : r e s ou r c e " value="Jane"/>
40 <date key=" time:timestamp" value="2021−09−16T15:52:56 "/>
41 </ event>
42 </ t rac e>
43 </ log>

Listing 3.1: Example XES log file snippet for one process instance with severe symptoms
for process depicted in Figure 1.1

1 <s t r i n g key="concept:name" value="John Doe"/>
2 <in t key="age" value="31"/>
3 <s t r i n g key=" s e v e r i t y " value=" seve r e "/>
4 <event>
5 <s t r i n g key=" concep t : i n s t anc e " value="John Doe"/>
6 <s t r i n g key="concept:name" value=" Hosp i ta l Admission"/>
7 <s t r i n g key=" l i f e c y c l e : t r a n s i t i o n " value=" s t a r t "/>
8 <s t r i n g key=" o r g : r e s ou r c e " value="Jane"/>
9 <date key=" time:t imestamp" value="2021−09−11T13:00:12 "/>

10 </ event>
11 <event>
12 <s t r i n g key=" concep t : i n s t anc e " value="John Doe"/>
13 <s t r i n g key="concept:name" value=" Hosp i ta l Admission"/>
14 <s t r i n g key=" l i f e c y c l e : t r a n s i t i o n " value=" complete "/>
15 <s t r i n g key=" o r g : r e s ou r c e " value="Jane"/>
16 <date key=" time:t imestamp" value="2021−09−11T13:28:56 "/>
17 </ event>
18 <event>
19 <s t r i n g key=" concep t : i n s t anc e " value="John Doe"/>
20 <s t r i n g key="concept:name" value="Cholecystectomy"/>
21 <s t r i n g key=" l i f e c y c l e : t r a n s i t i o n " value=" s t a r t "/>
22 <s t r i n g key=" o r g : r e s ou r c e " value="Joan MD"/>
23 <date key=" time:t imestamp" value="2021−09−13T09:22:51 "/>
24 </ event>

Listing 3.2: Example XES Event Stream for one process instance with severe symptoms
for process depicted in Figure 1.1

Section 3.2 focuses on RQ 1b and establishes a system that allows process instances
oprchestrated by a process execution engine, to directly generate data sets for process
mining while a process instance is being executed. Every time an activity is executed, a
XES event is generated which can be used immediately. Using this system, process mining
algorithms can be applied directly on an event stream of a process or on process execution
logs, after the process instances are completed.

Section 3.3 focuses on RQ 1c and introduces a novel approach to integrate human
resources in the generation of a data set suitable for process mining. A process execution
engine as discussed in the previous Section 3.2, allows the generation of a data set suitable
for process mining, but it is still not clear how human resources can interact with this
system, i.e., how can human resources execute a task in a process instance without
increasing their effort with tedious tasks. Currently, human resources tend to fulfill their

31

3 Creating Data Sets for Process Mining

tasks, but create the documentation of these tasks later, e.g., at the end of their shift. This
leads to incorrect timestamps in the data set or even missing information. The approach
presented in this section, enables human resources to directly interact with the process
execution system using NFC tags, thus documenting every task when it is being executed
leading to a data set with higher quality, e.g, correct timestamps. An additional benefit of
this system is the reduction of documentation effort by human resources, since the data set
generated by the process execution engine can be transformed to a standard documentation
sheet. This can lead to a high acceptance of human resources for introducing a system like
this.

A selection of text, figures and tables within this chapter is based on the following
publications.

Stertz, F., Rinderle-Ma S., Hildebrandt T., Mangler J.: Testing Processes with Service
Invocation: Advanced Logging in CPEE. In: 14th ICSOC Workshops (2016), Pages:
189-193
https://doi.org/10.1007/978-3-319-68136-8_22

Stertz, F., Mangler J., Rinderle-Ma S.,: Balancing Patient Care and Paperwork Auto-
matic Task Enactment and Comprehensive Documentation in Treatment Processes. In:
Enterprise Model. Inf. Syst. Archit. Int. J. Concept. Model. (EMISA) Vol. 15, 2020,
Pages: 34-48

3.1 Data Set properties and format

A plethora of process mining algorithms exist currently. There are offline process mining
algorithms, i.e., after the execution of a process on a process execution log [vdA16]. There
are also online process mining algorithms [MBCS13, vZBH+17, BC17]. Online process
mining is applied to an event stream instead of a process execution log. Both of these
input formats typically rely on the Extensible Event Stream (XES) [IEE16] format. A
detailed description of both input formats is presented in Chapter 2.

The ex post setting is usually not time-critical, since the execution of the process is
already finished. By contrast, the application of process mining techniques during run
time can be quite time-critical, in particular, in high-volume settings with lots of running
process instances producing a vast amount of events at the same time, thus an event
should be already processed before the next event can be handled in the event stream.
These online settings are highly relevant in order to monitor the compliance of process
instances [LMM+15]. Thus computational time has to be short in order to react as soon
as possible to emerging irregularities.

The XES format is commonly represented as an XML file, which is easily human-
readable and can be processed in common open-source tools like ProM. But this aspect of
XES constitutes a potential bottleneck at the same time.

Log files typically have two critical access patterns, where time is of the essence. The
first access pattern is when an information system or workflow engine writes or updates
the corresponding log file. The second access pattern is when process mining algorithms

32

https://doi.org/10.1007/978-3-319-68136-8_22

3.1 Data Set properties and format

are to be applied and therefore a log file has to be loaded into memory. In the second case,
the memory restricts the amount of data that can be analyzed.

Writing log files directly when an event is occurring, does not seem to be the case in
the current situation. XES files seem to be generated after process execution from more
efficient internal representations, like databases [dMvdAR15].

Most existing widely-used log formats (NCSA Common Log Format2, Extended Log
File Format3), try to store a log message as fast as possible to not disrupt the actual
work of the server. Further goals are to keep the log messages as compact as possible,
to produce minimal system overhead during writing the message, and to provide decent
extensibility regarding custom information. Thus these log formats typically are specified
so that entries can be appended, which has the advantage that no file locking is necessary.

Exactly these two properties, the appending of entries so the file does not have to be
locked and creating compact messages with minimal overhead concerning time efficiency
can be improved. Currently, by using XML representations it is necessary to parse the
entire file for adding entries to XML files and a write lock has to be set, thus leading to
the question, is there another file format already available in which the XES standard can
be represented without losing the advantages of XML?

In the following, an approach is proposed to keep the XES meta-model specification as
is, but use a different representation, i.e., YAML. YAML is as human readable as XML
[SH12, CGG+07] and can be used by many programming languages. Log messages can just
be appended at the end of a file without needing to parse the entire document. Because it
is not necessary to parse the whole tree structure like in XML, to verify its consistency
and syntactic correctness, lots of memory can be saved.

This section in the following describes the structure of the YAML representation using
the XES format and a prototypical implementation.

In Section 3.1.1, the XES-YAML approach is introduced together with its features. In
Section 3.1.2, the approach is evaluated and the conclusion and a discussion is in Section
3.1.3.

3.1.1 Designing the XES-YAML Approach

To improve previously described disadvantages of logging in XML, other popular formats
are investigated in the following, i.e., the aforementioned NCSA log format family, JSON
[Cro06], and YAML. For the selection process of a logging format, it is important that any
other chosen format than XML, still needs to be able to implement the XES standard,
thus a conversion between both formats should be possible.

For the scenario of process logging, the NCSA log format has one severe disadvantage:
as every entry, in this case most likely an event, is stored in one line, the format becomes
hard to read for humans, and special escaping is required to store all the information
required. Although it can be extended, it seems not a suitable candidate.

JSON [Cro06] is very suitable for representing the deeply structured information that
the XES meta-model provides, but has the same disadvantages as XML: the whole file
has to be read into memory to ensure syntactic consistency and thus access the data.
Furthermore comments are not possible in the JSON format, and schema languages for
validation are obscure.

2https://en.wikipedia.org/wiki/Common_Log_Format
3https://www.w3.org/TR/WD-logfile.html

33

https://en.wikipedia.org/wiki/Common_Log_Format
https://www.w3.org/TR/WD-logfile.html

3 Creating Data Sets for Process Mining

Table 3.1: Comparison of different log formats for XES serialization. Well structured
reflects if the data format can easily be checked for a specific format. Comments
reflects the ability to make comments in the log file. Append without Parsing
describes if the format is able to be extended without parsing the complete file
format.

XML YAML NCSA JSON
Well structured yes yes no yes
Comments yes yes no no
Append without Parsing no yes yes no

YAML [BKEI05], shares the advantage of being structured and readable with JSON
and XML, but has none of the disadvantages: as the format is not structured through
begin and end tags, but rather through indentation and special characters, its consistency
(and also conformance to schemas) can be checked on-the-fly for parts of documents.

Thus YAML is selected as the alternative format to represent the XES meta-model. The
table 3.1 shows a comparison of the different log formats and their In the following, the
corresponding XES-YAML representation of the core XES-XML concepts are introduced.

XML is typically structured like a tree. The root node being the log node
1 <log xmlns="http://www.xes -standard.org/" xes.version="2.0" xes.features="

nested -attributes">

in XML equals
1 log:
2 _xmlns ="http ://www.xes -standard.org/2
3 _xes.version ="2.0"
4 _xes.features ="nested -attributes"

The standard extensions are represented like this:
1 <extension name="Time" prefix="time" uri="http://www.xes -standard.org/

time.xesext"/>
2 <extension name="Concept" prefix="concept" uri="http://www.xes -standard.

org/concept.xesext"/>

This turns out in YAML as:
1 extension:
2 -
3 _name: Time
4 _prefix: time
5 _uri: ’http ://www.xes -standard.org/time.xesext ’
6 -
7 _name: Concept
8 _prefix: concept
9 _uri: ’http ://www.xes -standard.org/concept.xesext ’

The classifier would work with the same concept.
A trace containing a name is represented in XML as follows:

1 <trace >
2 <string key=" concept:name" value="John Doe"/>
3 </trace >

In YAML, a trace can be expressed as:

34

3.1 Data Set properties and format

1 trace:
2 string:
3 _key: ’concept:name ’
4 _value: ’John Doe ’

Events follow the same principle. An event is represented in XML as follows:
1 <event >
2 <string key=" concept:name" value=" Hospital Admission"/>
3 <string key=" lifecycle:transistion" value ="start"/>
4 <string key="org:resource" value="Jane"/>
5 <date key="time:timestamp" value ="2021 -09 -10 T13 :00:12"/ >
6 </event >

The corresponding representation in YAML looks like:
1 event:
2 ’concept:name ’: ’Hospital Admission ’
3 ’lifecycle:transition ’:’start ’
4 ’org:resource ’: ’Jane ’
5 ’time:timestamp ’: ’2021 -09 -10 T13 :00:12 ’

The above examples show that translation of XES-XML concepts to XES-YAML is
simple and straightforward.

One advantage of YAML, is the performance during the creation of execution logs.
Basically – like XML – YAML [BKEI05] can be easily parsed in most programming
languages. For the following example, every process instance creates its own log file. To
create a process execution log with all instances, these log files need to be merged, where
each log file is reflected as a trace for the whole process.

In principle, appending data to XML files is not straightforward, due to the end-tags.
Appending, for example, an event to a trace in XES-XML is not as simple as appending an
event to the end of the file. Instead it can be compared to inserting characters before the
end of the file, specifically, before the </trace> and </log> tags, which in turn are allowed
to have different indentations, or can even occur in the same line. Thus the file has to
be read completely, in order to find out the correct point of insertion. The insertion then
requires file locking at file-system level, which is rather inefficient if many such operations
occur.

In YAML you can just append an event at the end of the file without reading or parsing
the document. File-system level append operations are VERY efficient and require no file
locking. An example of a YAML log file can be seen in Lst. 3.3.

Every — marks the start of a new part in a YAML file. That is because every time a
new event arrives at the logger, a new YAML file gets appended to the old one. This file
can then be loaded again through a simple script, see for example Lst. 3.4.

1 ---
2 log:
3 extension:
4 time: http ://www.xes -standard.org/time.xesext
5 concept: http ://www.xes -standard.org/concept.xesext
6 organisational: http :// www.xes -standard.org/org.xesext
7 lifecylce: http ://www.xes -standard.org/lifecycle.xesext
8 global:
9 trace:

10 ’concept:name ’: __INVALID__
11 event:

35

3 Creating Data Sets for Process Mining

12 ’concept:name ’: __INVALID__
13 ’lifecycle:transition ’: complete
14 ’time:timestamp ’: ’’
15 trace:
16 ’concept:name ’: ’John Doe ’
17 ’trace:id ’: ’674’
18 ---
19 event:
20 ’trace ’:id: ’674’
21 ’concept:name ’: ’Hospital Admission ’
22 ’lifecycle:transition ’: ’start ’
23 ’org:resource ’: ’Jane ’
24 ’time:timestamp ’: ’2021-09-10T13 :00:12 ’
25 ---
26 event:
27 ’trace:id ’: ’674’
28 ’concept:name ’: ’Hospital Admission ’
29 ’lifecycle:transition ’: ’complete ’
30 ’org:resource ’: ’Jane ’
31 ’time:timestamp ’: ’2021-09-10T13 :28:56 ’

Listing 3.3: Example of a YAML XES File

Furthermore, in order to show how to efficiently read a YAML file the following pseudo
code is provided:

1 def load_yaml_from_buffer(buf)
2 unless buf.empty?
3 x = YAML.load(buf)
4 end
5 buf.clear
6 return x
7 end
8

9 def loop_xes_file(fname)
10 buf = ""
11 file = File.open fname
12 file.each do |line|
13 if line == "---\n" || file.eof?
14 full_event = pbuf(buf)
15 ### work on single events
16 end
17 buf += line
18 end
19 end
20

21 loop_xes_file "log.xes"

Listing 3.4: Pseudocode for loading a XES-YAML file Into Memory

As can be seen in Lst. 3.4, two simple functions can be written to read the XES file.
The function load_yaml_from_buffer is merely a helper that loads a YAML object out
of a string buffer. The loop_xes_file function loops the file line by line (line 12 in the
source) and triggers the YAML parsing whenever a new part (see explanation above)
occurs. Line 15 in the source shows where the code to work on individual events can be
inserted. Line 21 shows how loop_xes_file is called with a XES file.

The code in Lst. 3.4, even when parsing a million events, never uses more memory than
the maximum size of a single event.

36

3.1 Data Set properties and format

Figure 3.2: Example Process containing 2 parallel branches with 3 activities each in a loop.

3.1.2 Evaluation of XES-YAML File Format

For the evaluation of the XES-YAML file format, a simple process is created, which
basically runs forever. The goal for this evaluation, is to test the feasibility and the
performance of this file format. This process can be seen in Fig. 3.2. The test machine had
2 CPUs, each with 2.2 GHz and 8 GB RAM. The OS was Fedora 25 Server Edition. The
start point for measuring the time spent for saving one event was when the log file was
opened. The end point for measuring the time spent for saving one event was when the
log file was closed again. A first log file was created in the XES-XML format that contains
1000 events. A second log file was created in the XES-YAML format that contains 1000
events as well. The time spent for saving one event was extracted and saved and evaluated
with R [T+13]. The time spent for each event was then plotted against the number of the
activities already stored in the log file.

As can be seen in Fig. 3.3, while the time used for saving an event with the XML
representation is growing linearly, the time used for saving an event with the YAML
representation remains constant.

Table 3.2 shows, that as expected, the time spent for storing an event is lower using
the YAML representation. The time difference between XML and YAML does not seem
much, but since a workflow engine typically has multiple process instances running in
parallel, this time difference can make a big difference, since each process instance creates
a separate log file, which can be merged after the execution for process mining algorithms.
For this evaluation, only one process instance is executed at a time, so that the results can
be compared at hand. For 1000 events, the XML representation also consumes more space
on the hard disk with 547 kibibytes4 compared to 376 kilobytes.

XES-XML’s disadvantages concerning runtime of process mining techniques or the
creation of log files usually are not problematic for offline process mining. However for
online process mining, time is a crucial resource. XES-YAML can reduce the problems of
XES-XML, still following the meta model of XES. Moreover, XES-YAML event files can
be created in a linear time during execution.

4SI unit (Systeme international d’unites); 1 kibibyte is 1024 bytes, cmp. 1 kilobyte is 1000 bytes.

37

3 Creating Data Sets for Process Mining

Figure 3.3: Time consumption for storing events in XES-XML and XES-YAML

Representation XML YAML
Minimal time in seconds 0.0014 0.0005
Maximal time in seconds 0.3058 0.0208
Average time in seconds 0.0576 0.0010

Filesize in kibibytes 547 376

Table 3.2: Performance Cornerstones

3.1.3 Results of the XES-YAML Approach

A new XES format has been elaborated to improve on its current XML representation.
The disadvantages of XML are: (1) performance problems when directly writing big logs
from process engines, and (2) memory problems when reading big logs. To pave the way
for modern, future real-time process mining techniques, a faster approach for representing
and loading XES is needed.

The approach presented, does not interfere with the XES meta-model, but instead relies
on replacing the XES-XML representation with a XES-YAML representation.

The advantages of YAML over other well known formats, like JSON and NCSA, are
discussed and the XES-YAML approach is compared with other related work concerning
the creation and processing of log files. Although the XES-YAML approach is much
simpler and straightforward than other approaches, it solves the problems at hand in a
more efficient and elegant way.

38

3.2 Creating Process Mining Data Sets during the Execution of a Process

3.2 Creating Process Mining Data Sets during the Execution
of a Process

Simulating and testing business processes is crucial for different reasons such as improving
process performance or detecting problems with web services. Process simulations are
performed based on stochastic information and without considering the behavior of invoked
services. As a consequence, the obtained results do not reflect the behavior that can be
observed later during process execution.

Instead of simulating process executions, the system described in this section, creates
and runs process instances in a testing environment based on the Cloud Process Execution
Engine (CPEE)5. The CPEE – a lightweight, modular, and service oriented process engine
- has proven its maturity in many application scenarios [MRM14]. Working with a process
engine enables the testing of process instances together with the invoked services by calling
real services, which may either be the same services used in productive execution, or demo
services simulating a specific behavior for testing purposes. On top of more realistic testing
results, the tested process instances can be directly put into “production mode” without
export / import between execution engine and simulation environment, necessitating
possibly quite some additional reworking of the simulated processes before being able to
execute them. This section focuses on the suitability of a process execution engine to
generate data sets for process mining algorithms. In the following, the necessary steps and
different options for testing process instances in the CPEE are described, starting with the
import of a process model provided in BPMN notation and creating and assigning services
that are to be executed. It is then shown how to spawn and execute process instances and
how the generated process logs can be configured and retrieved. Application scenarios are
discussed as a conclusion.

3.2.1 Process model creation

Figure 3.4: Process model containing one decision and one parallel gateway (modeled in
BPMN, using Signavio)

At first, the process model will be initiated and executed has to be created. In the
CPEE, a process model can be created either directly using a graph model or by importing
BPMN process models created in, for example, Signavio6.

Figure 3.4 shows a small BPMN use case that can be imported. This model shows a
parallel activity, at a21 and a22, and a decision at a4a and a4b. This use case will be
employed throughout this section.

Another option would be to compose the diagram directly in the CPEE Cockpit7. The
result of both options can be seen in Figure 3.5. Each of these activities invokes a specific

5http://cpee.org
6http:/academic.signavio.com/
7A simple frontend for the CPEE, that allows for creating and inspecting process images

39

http://cpee.org
http:/academic.signavio.com/

3 Creating Data Sets for Process Mining

Figure 3.5: CPEE Process model

web service. The CPEE can orchestrate services that are reachable over the HTTP(S) or
XMPP protocols, other protocols are easy to implement. When a service is finished, the
next activity is marked active.

The goal is to create a log file for every process instance in the CPEE to simulate a
huge amount of data in a short time. These logs are created using the XES format, YAML
and XML, but any other format can be easily implemented.

3.2.2 Implementation

Every time an activity is enacted, manipulated, or finished, the custom logging extension
is called to process this information. There are different types of events that can be logged.

• Activity/Called. Every time a service is invoked, usually after the last activity has
been finished.

• Activity/Manipulated. When a service returns some data, this data is incorporated
into the process context (assigned to variables, made available as potential input for
future service invocations) which triggers this notification.

• Activity/Finished. When the invocation as well as the manipulation of process
context is finished, a notification is pushed.

40

3.2 Creating Process Mining Data Sets during the Execution of a Process

Usually for mining a process model, finding the control flow is most important. Therefore
it has to be logged when a service reports back to the CPEE and an activity is finished.
The main part of such log files are timestamps for every event. There are at least two
possible options for timestamps.

Every time the process management system receives the information about an activity
to be finished, the timestamp can be either (1) a timestamp provided by the service, which
marks the exact time when work was finished, or (2) a timestamp generated by the process
engine that includes the latency and time that is required for returning the data from a
service.

Both options have their advantages when analyzing the result. Especially the first option
(which is not very common) can be useful when huge quantities of data are transmitted
over unreliable connections.

The developed logging service supports both options. If the services deliver a timestamp,
the timestamp of the service will be used, but if no timestamp is delivered, the CPEE
will create a timestamp and use this one for the log file. The minimum documentation
of events are timestamps and a label of an event, but usually there is more information
associated to an event. Another interesting point in logging information of the execution of
a process instance are data values. For each service there is input and output. Currently,
there is no standardized way of storing this data in the XES8 format, but it allows to be
extended in a flexible way. Thus two lists per event are created in the log file to store this
additional information (see Listing 3.5).

1 if @log_hash.has_key ?(: data_received)
2 @log_hash [: data_received]. delete_if do |e|
3 if e.keys [0]=="timestamp"
4 event.add ’date’, :key => "time:timestamp", :value => e.values [0]
5 time_added=true
6 else
7 false
8 end
9 end

10 if @log_hash [: data_received]. length > 0
11 list = event.add ’list’, :key => "data_received"
12 @log_hash [: data_received].each do
13 |e| list.add ’string ’, :key => e.keys [0] , :value => e.values [0]
14 end
15 end
16 end

Listing 3.5: Example of storing received data

This allows for more than mining the process model, like decision point mining [RvdA06]
for specific events. After the instance is executed and the status is finished, the log file
can be retrieved directly from the CPEE.

1 <event >
2 <string key="concept:name" value="a22"/>
3 <date key="time:timestamp" value="2016 -07 -14 T12:56:36 +02 :00"/>
4 </event >
5 <event >
6 <string key="concept:name" value="a3"/>
7 <date key="time:timestamp" value="2016 -07 -15 T12:56:36 +02 :00"/>

8http://www.xes-standard.org

41

http://www.xes-standard.org

3 Creating Data Sets for Process Mining

8 <list key="data_received">
9 <string key="decision" value="yes"/>

10 </list>
11 </event >
12 <event >
13 <string key="concept:name" value="a4a"/>
14 <date key="time:timestamp" value="2016 -07 -16 T12:56:36 +02 :00"/>
15 <list key="data_send">
16 <string key="value" value="yes"/>
17 </list>
18 </event >

Listing 3.6: Example of Log File

Listing 3.6 shows an example of a log file for the process model described Figure 3.4.
For each event the name and the timestamp is stored and for some events the used data is
stored as well if available.

3.2.3 Application Scenarios

The logs retrieved from the CPEE can be utilized for process mining algorithms, on- and
offline, i.e., by listening to the notifications stream of events from the CPEE directly or by
reading the created log file per process instance. The creation of other log types is possible,
for example, change logs that are crucial for recommending changes [KMS+15b] or change
propagation logs that enable the prediction of change propagation behavior in distributed
process settings [FRMI14]. The advantages of the CPEE combined with the new logging
services are in creating a fast test environment for services, which can deployed into real
world production environments with minimum effort.

Section 3.1 and Section 3.2 described a suitable format for process mining data sets
and how they can be generated. It is important to note, that the logging approach in this
form automatically logs activities that are performed by services. However, in various
domains, activities are performed by human resources without any computer interaction
at all. In the next section, a novel system is established, that allows human resources
to interact with a process execution without increasing the complexity of their work by
adding additional tasks to log their activities.

3.3 Creating Accurate Data Sets for Process Mining with
Human Resources Involved

For creating accurate data sets during the execution of process instances with human
actors involved, a closer look is taken into the care domain. Processes in the care domain,
are typically executed by human resources, i.e., nurses in a nursing home, without any
computer interaction, however the log of a process instance equals a good documentation
of the tasks the staff in a nursing home is executing. Thus the care domain is an ideal
subject for creating process mining data sets with human resources involved.

Basically, documentation in the care domain is carried out based on paper-based or
electronic health records where “each have their drawbacks in the real practice of nursing
documentation” [AZAMBH18]. On the one side, paper-based documentation is found
to “not meet the requirements of high-quality documentation and communication among

42

3.3 Creating Accurate Data Sets for Process Mining with Human Resources Involved

healthcare providers, because it is time-consuming, repetitive and inaccurate” [AZAMBH18].
On the other side, the application of electronic health records is still limited and its impact
on quality of documentation has not been fully proven yet [AZAMBH18]. As stated in
[LR07], (health) care in general craves for process-aware solutions. The process awareness
leads to a task-oriented instead of data-centered view on the residents. This, in turn,
facilitates the continuity of the documentation at the granularity of a care task and is
hence promising for decreasing documentation effort and increasing documentation quality.
This approach is taking a process-aware care solution and the results from the previous
sections as a starting point with the main goal to automatically log the tasks executed by
the staff of a nursing home, while not increasing the documentational effort of the staff
members.

3.3.1 Care scenario and contributions

As an example for this approach, the morning routine in a nursing home9 is depicted
in Fig. 3.6. The control flow is modeled using Business Process Modeling and Notation
(BPMN).

Change
incontinence

pants

Go to toilet
with resident

Wash resident

Conduct
intimate care Comb hair

Brush teeth

Apply
ointments

Dress
resident

Escort to
community

room

Give drugs

Give Water

Change
Sheets

Pants Toilet paper

Glass

Pill tray

Washing cloth

Toothbrush

Comb

Ointment
package

Figure 3.6: Daily morning care routine (BPMN notation using Signavio)

For each of these tasks, typically, the nurse has to document that i) the task has been
completed and ii) data connected to the task (e.g., the task was conducted by Nurse A at
time T with drug dosage D). A process-aware solution where care processes are modeled,
enacted, and executed through a PAIS, provides essential support for automation of i) and
ii). More precisely, a PAIS offers work lists to the nurses. These work lists contain the care
tasks that are due in their context (i.e., for a specific resident with his/her data necessary
for the task). One example is task Give drugs where the dose for a specific resident is
indicated in the work list. Hence, overall, PAIS support could already facilitates automatic
and continuous care documentation.

However, this approach aims at going one step further, exploiting the fact that typically
many tasks in a care processes utilize physical objects (denoted as care utilities in the

9The process is delineated by international nursing guidelines such as of the North American Nursing
Diagnosis Association (NANDA) [BM98] and national laws.

43

3 Creating Data Sets for Process Mining

following). Take the morning routine as an illustration10. Nine out of twelve care tasks
involve care utilities, for example, Pants for task Change incontinence pants.

Care utilities are key to enable automatic completion of tasks, equipped with some
set of data values. In detail, care utilities are equipped with NFC tags storing precise
information about the care utility. Figure 3.7 shows a resident bed equipped with a NFC
reader in an experimental setting at the lab of the Research Group Workflow Systems and
Technology and a NFC tag on the bottom right corner on a small plastic lid. NFC tags
can be applied on nearly any surface, are small, and are cheap to be produced. Every time
a care utility equipped with such an NFC tag gets swiped in front of the NFC reading
device, a message is sent.

Figure 3.7: Resident bed equipped with NFC reader and a NFC tag on a small plastic lid.

To realize this, tag readers are built into the nursing home residents’ beds. Every tag
reader is associated with the bed of one specific resident. Every time the reader detects
a tag, it tries11 to find a matching active task in the residents’ care process, marks it as
finished and documents the occurrence with a timestamp and the care utility. This can
effectively reduce the time a nurse needs for the documentation of a resident and improve
the quality of the documentation at the same time.

The requirements on the intended solution are elaborated based on selected use cases
from the care domain. These use cases are derived from interviews with experts in the care
domain. The artifacts, in turn, are elaborated based on the requirements and evaluated
through a prototypical implementation (feasibility) and interviews with domain experts

10As BPMN does not support the modeling of physical devices, it was opted to model the care utilities as
input data objects at the tasks where they are used.

11If no task is found, the activity for the resident is logged with a note that it was either an emergency or
an error.

44

3.3 Creating Accurate Data Sets for Process Mining with Human Resources Involved

(effectiveness). Note that this approach is a revised and extended version of [SMR17]. The
extension includes a more comprehensive set of use cases, a more detailed and comprehensive
solution design, and the automatic generation of paper-based documentation based on the
logs.

The remainder of this section is structured as follows: Section 3.3.2 provides specific
background information on NFC technology together with justification to employ NFC
technology in the envisioned process-aware care solution. The conceptual solution based
on nine care use cases is presented in Sect. 3.3.3. Section 3.3.4 describes the architecture of
a process-aware care solution and presents its implementation and various design choices.
The evaluation of the proposed solution is provided in Sect. 3.3.5. The initial solution
has been designed and realized for the care domain. As discussed in Sect. 3.3.6, it can
be transferred to other application domains such as manufacturing and logistics. In
Section 3.4, a summary and outlook for future work is provided.

3.3.2 Background on NFC technology

In order to not increase the documentational effort for the nursing home staff, each care
utility has to provide information about its existence and potentially its state. Near Field
Communication (NFC) is one of the technologies for sending and receiving data wireless in
close range. Alternative technologies would be Barcodes or RFID. In the following, pros
and cons of the three technologies are discussed.

Barcodes: 1D barcodes store rather little information (13 digits) since usually additional
information is then looked up in the database [KT05]. 2D barcodes, e.g., QR-Codes, can
hold more information which can be decoded without accessing a database. Limitations of
using barcodes are restricted usage (“line of sight” is needed), lack of reusability (barcodes
are printed on the object), and that they cannot be edited.

Radio-frequency identification technology, RFID [Wan06] supports active and passive
devices. Another advantage is that no “line of sight” is required. Moreover, RFID devices
are cheap to produce, hence can be used at a large scale from an expenses point of view.

Near Field Communication, NFC [AB12] is used in many applications and devices such
as Smartphones, Debit cards, and tickets for public transportation. NFC builds upon the
RFID technology [AB12] and communicates on a very short range below 10cm. NFC can
work with an active device, the NFC reader, and a passive object, like a tag or card. The
reader can write and read information of the object. A big difference to RFID is the range.
A RFID reader can create a larger electromagnetic field to automatically detect different
objects going through it. Since the communication range of the NFC reader is quite low
in comparison, there will not be any unwanted detection of different tags entering a room,
which would create a flawed documentation. NFC tags are cheap to produce, very thin,
and can be attached to any surface, like stickers.

In conclusion, NFC is chosen for the process-aware care solution presented in this work
due to the following advantages:

1. Ubiquitous availability: NFC-capable devices can be found everywhere nowadays
such as smart phones, toys, table computers, and even watches. This allows for an
approach which is feasible to acquire and relatively easy to learn, since the devices
are used in everyday lives.

45

3 Creating Data Sets for Process Mining

2. Better security: Since the distance to communicate is only about a few centimeters,
NFC is safer to use than RFID. The short range increases the level of difficulty to
create unwanted detections and or malfunctioned detections.

3. No unwanted detection: Another advantage of the close communication range of the
NFC technology is the elimination of unwanted tag detection. In a room of a resident
are many care utilities. RFID creates a large field, where every tag will be detected.
This is useful for warehouses, but in the nursing home, it is only necessary to detect
the right NFC tag at the right time. The short communication range allows only
one tag to be detected if it is right in front of the NFC reading device, thus allowing
for a correct documentation.

4. Usability: Existing approaches state that “NFC technology was perceived as very
intuitive and the information quality of each patient’s health status could be improved”
for a project on documentation of the health status of patients [PML12]. Another
approach utilizes NFC in nurse training, emphasizing the unobtrusiveness of the
solution [FHBV11]. For not changing the daily routine of nurses too much, a way
to unobtrusively register these tags with a PAIS during care activities is needed.
Reading the tags is not intended to take longer than a few seconds and should happen
right at the moment the care task is finished. Additionally, nurses are generally
open to try out new technology as long as it helps reducing the documentary effort
[DHK+10].

3.3.3 Conceptual solution design based on use cases

The solution design covers nine use cases that are relevant for automatic task completion
and documentation in care processes.

Figure 3.8, gives a quick overview of the use cases, their actors and the relations between
the use cases. Organizational tasks such as “Register resident” are usually conducted by
the administrative staff of a nursing home. If the nursing home is small, care staff members
can do organizational tasks as well. Use cases like “Write Utility Information” is a use case
for more complex care utilities, which provide information on contradicting care utilities,
for example two drugs that act as a blood thinner are contradicting each other, since the
doubled amount of blood thinners will lead to complications. A detailed description of all
use cases is following.

A use case description contains information about its scope, level, primary actor, stake-
holders and interests, preconditions, postconditions, realization and frequency of occurrence.
The scope of all relevant use cases is system-wide, i.e., the related information is relevant
and visible not only for a certain task, but throughout the system. The level for all use
cases is user goal, i.e., all use cases can be done completely by one staff member or nurse
at one time, thus keeping the data consistent.

For each task that employs NFC-supported documentation, first of all, a corresponding
NFC tag is registered in order to be used in the sequel (cf. Use case 3.3). Also, each
resident has to be registered in the database (cf. Use case 3.4). Each resident is associated
with one NFC reader attached to a bed, and each NFC reader is associated to at most one
resident. This one-to-one relationship between residents and NFC tags is necessary for the
assignment of events to the resident.

46

3.3 Creating Accurate Data Sets for Process Mining with Human Resources Involved

Register NFC tag

Register resident

Get ToDo
List

Delete
Resident

Write on NFC tag

Write utility
information

<<extend>>

Give utility
to resident

Document further
information

Complete task
in process

<<extend>>

<<include>>

Administrative
Staff

Nursing
Staff

Figure 3.8: Use case Diagram showing the potential actors and use cases

Table 3.3: Use case: Register NFC tag

primary actor staff of nursing home
stakeholders and inter-
ests

staff member (stakeholder 1) wants to register a NFC tag for
documentation.

preconditions ID of NFC tag not in database (see realization)
postconditions unique ID for NFC tag in database (see realization)

realization

N
u
rs

in
g
 H

o
m

e

S
y
st

e
m Show failure

message Register tag

S
ta
ff Define class

name of tag

N
FC

 r
e
a
d
e
r

Read NFC tag

error reading tag OR tag in database

frequency often

It is also possible to write on a NFC tag (cf. Use case 3.5), specifically, the type of the
connected care utility (e.g., a comb). The type can be simple or complex. For complex
care utilities the NFC tag holds additional information, e.g., the dosage for utility drug.
In the realization of the use case this distinction is made by invoking a subprocess.

If a care utility contains complex information this information is written onto the NFC
tag as described in Use case 3.6. An example is painkiller Parkemed as care utility which
can be administered in dosages 250mg and 500mg. Dosage is a critical parameter in the

47

3 Creating Data Sets for Process Mining

Table 3.4: Use case: Register resident

primary actor staff of nursing home
stakeholders and inter-
ests

staff member (stakeholder 1) wants to register a resident and
relate him or her a NFC reading device.

preconditions new resident has not been assigned a NFC reading device
(see realization)

postconditions NFC reading device is connected to the resident in the
database (see realization)

realization

N
u
rs

in
g
 h

o
m

e

S
y
st

e
m

System

Show failure
message

Show failure
message

Register
resident

N
FC

 r
e
a
d
e
r

NFC reader

Read resident
ID

Read NFC
reader ID

S
ta
ff

Staff

Hold Tablet
sending resident

ID in front of
NFC Reading

device
error reading tag

NFC reading device or resident already connected

error reading tag

frequency often

context of care utilities due to the prevention of misuse. Use case 3.6 can be generalized
to other parameters. Nested information can be stored on a NFC tag as well, i.e., using
containers. Containers also enable to store the information of more than one care utility
on the NFC tag. The medical containers are usually prepared in the nursing room during
quieter times like the night shift. To write the information on a NFC tag, a tablet in the
nursing room is required. Tablet PCs can act as NFC reading and writing devices.

Often staff members want to retrieve the upcoming tasks, either for themselves or for
a specific resident. Both can be initialized by reading the NFC tag assigned to the staff
member or the resident respectively. As process technology is employed the upcoming
tasks can be determined based on the to do list for the staff member or resident (cf. Use
case 3.7). Knowing upcoming tasks, the staff member can optimize the personal work
routine and hence avoid unnecessary tasks or waiting times during his or her shift. A
requirement for the accessing the to do list is that the staff member is equipped with a
tablet computer holding a NFC reading device, which displays the currently active tasks.

Use case 3.8 Give Utility to Resident realizes the automatic documentation of a care
task. The care utility carries a NFC tag which is placed on the NFC reading device of
the resident. Doing so the connection between resident (specifying the treatment process
instances) and care utility (specifying the care task) is made. The NFC reader decodes the
information read from the NFC tag. The system automatically documents that the care
task has been completed for the resident with all necessary information such as timestamp
and possibly dosage. Looking at the morning care shown in Fig. 3.6 together with care
utilities, the automatic documentation would be conducted, for example, when the staff
member hands the toothbrush to resident Smith. The system would then automatically

48

3.3 Creating Accurate Data Sets for Process Mining with Human Resources Involved

Table 3.5: Use case: Write on NFC tag

primary actor care staff
stakeholders and inter-
ests

staff member (stakeholder 1) wants to connect a care utility
to a specific NFC tag.

preconditions NFC tag is not connected to a care utility in the database
yet (see realization)

postconditions ID of NFC tag is connected to a care utility in the database
(see realization)

realization

N
u
rs

in
g
 h

o
m

e

S
y
st

e
m

System

Show failure
message

Show failure
message

Show failure
message

N
FC

 r
e
a
d
e
r

NFC reader

Read ID of
care utility

Read ID of
NFC tag

Write utility
information
(Scenario 4)

Write ID of
care utility on

NFC tag

S
ta
ff

Staff

Put Care Utility
in front of NFC

Reader

Put NFC Tag
to NFC reader

complex care utility

read error

read error

read error

frequency often

Table 3.6: Use case: Write utility information

primary actor care staff
stakeholders and inter-
ests

staff member (stakeholder 1) wants to connect a care utility
to a specific NFC tag.

preconditions utility type is complex; complex parameters (like dosage)
need to be specified (see realization)

postconditions dosage is written on NFC tag with ID of care utility (see
realization)

realization

N
u
rs

in
g
 h

o
m

e

N
FC

 r
e
a
d
e
r

NFC reader

Write care
utility ID on

NFC tag

Write complex
information on

NFC tag

S
y
st

e
m

System

Show failure
message

Show failure
message

S
ta
ff

Staff

Staff started
writing on NFC

tag.

simple care utility

error writing care utility
information

error in writing care utility
information

complex care utility

frequency often

document that task Brush teeth has been completed for process instance Smith.

49

3 Creating Data Sets for Process Mining

Table 3.7: Use case: Get ToDo list

primary actor care staff
stakeholders and inter-
ests

staff member (stakeholder 1) wants to avoid unnecessary
tasks and waiting periods during shifts.

preconditions –
postconditions list of upcoming tasks is received (see realization)

realization
N

u
rs

in
g
 h

o
m

e

S
y
st

e
m

System

Retrieve ToDo
List

Show failure
message

Display ToDo
List

N
FC

 r
e
a
d
e
r

NFC reader

Read ID from
NFC tag

S
ta
ff

Staff

Enter
personal ID

no todo list
found for ID

ID stored on NFC tag

frequency often

Table 3.8: Use case: Give utility to resident

primary actor care staff
stakeholders and inter-
ests

staff member (stakeholder 1) wants automatic documentation
of care utility given to resident.

preconditions
resident is ready to receive care utility; NFC reading device
for resident is registered; NFC tag of care utility is registered
and has necessary information stored (e.g., dosage)

postconditions resident successfully receives care utility; this is documented
automatically in the system (see realization)

realization

N
u
rs

in
g
 h

o
m

e

S
ta
ff

Staff

Give resident
care utility

Put NFC tag of care
utility on NFC reader

of resident

S
y
st

e
m

System

Show failure
message

Show failure
messageLog action

N
FC

 r
e
a
d
e
r NFC reader

Read NFC tag

no connection
to databaseread error

frequency often

For some tasks the automatic documentation that the task was completed using the care
utility is not sufficient, e.g., if further relevant information is created and to be documented
as well. An example is a discussion about the health status of a resident between staff

50

3.3 Creating Accurate Data Sets for Process Mining with Human Resources Involved

Table 3.9: Use case: Document further information

primary actor care staff
stakeholders and inter-
ests

staff member (stakeholder 1) wants to document further
information, e.g., the health status of a resident.

preconditions additional information cannot be stored on NFC tag

postconditions additional information is (correctly) stored in database (see
realization)

realization

N
u
rs

in
g
 h

o
m

e

S
y
st

e
m

System

Show failure
message

Log gathered
information

S
ta
ff

Staff

Gather
information

from resident

Information to
currently active
task for resident
on NFC Reader
using a Tablet

N
FC

 R
e
a
d
e
r

NFC Reader

Read
information

data doesn't
match req.

frequency often

Table 3.10: Use case: Document injected task

primary actor care staff

stakeholders and inter-
ests

staff member (stakeholder 1) wants to document his/her
completed duties; nursing homes (potential stakeholder 2)
wants documentation of higher quality

preconditions NFC tag registered; NFC tag stores information; resident is
registered

postconditions task completion is stored in database (see realization)

realization

N
u
rs

in
g
 h

o
m

e

S
y
st

e
m

System

Show failure
message

Show failure
message

Find
associated

task in
process

Create new
entry

Show failure
message

Document
information in

database

S
ta
ff

Staff

Put NFC tag
on reader

N
FC

 r
e
a
d
e
r

NFC reader

Check NFC tag

read error
tag not registered

no task available

no connection

frequency rarely

member and resident. Use case 3.9 summarizes the necessary steps, i.e., the documentation
of the additional information by the staff member using a form which is stored in the

51

3 Creating Data Sets for Process Mining

Table 3.11: Use case: Delete resident

primary actor staff of nursing home
stakeholders and inter-
ests

staff member (stakeholder 1) wants to maintain a current
status in the database and to create room for new connections

preconditions resident leaves nursing home; resident still connected to NFC
reader

postconditions NFC reader is disconnected and available for new connection
(see realization)

realization

N
u
rs

in
g
 h

o
m

e

S
y
st

e
m

System

Remove entry
in database
and make

device
available

Show failure
message

Show failure
message Abort task

S
ta
ff

Staff

Input
Resident ID
with Delete
Request to
NFC Reader

N
FC

 R
e
a
d
e
r

NFC Reader

Read Data from
NFC Tablet

error when
reading input

NFC already available

frequency rarely

system.
Use case 3.10 offers the option to document information connected to a NFC tag that is

not assigned to any task. In this case, a task is injected and all information is documented
in the database by the system.

Use case 3.11 describes the process if a resident leaves the nursing home and the connected
NFC reading device (individual to this resident) is disconnected from the resident. The
latter is realized by removing the associated entry in the database. Afterwards the NFC
reading device can be reused, i.e., made available for a new resident.

3.3.4 Realizing automatic task completion in a process-aware care solution

The goal of this section is to show how automatic NFC-based task completion and
documentation can be realized in a process-aware care solution.

Architecture

The process-aware care solution ACaPlan12 has been developed for supporting the de-
velopment and execution of flexible care processes based on established care guidelines,
i.e., Nursing Interventions Classification (NIC), Nursing Outcomes Classification (NOC),
and NANDA [KMS+15a]. ACaPlan builds on the multi-purpose cloud process execution
engine CPEE13 [MRM14]. The user interface is realized through the Who Cares cockpit.
Figure 3.10 depicts these existing components in black. In order to enable NFC-based task
completion the existing solution is extended by the newly realized components depicted
12Adaptive Care Planning
13http://cpee.org/

52

http://cpee.org/

3.3 Creating Accurate Data Sets for Process Mining with Human Resources Involved

with red, dotted outlines, i.e., (Automatic Care Completion (ACC), NFC Reader, XES
Logging, the data repositories, and optionally a KPI Monitor.

In order to derive a suitable set of components, the use cases presented in Sect. 3.3.3 have
been analyzed for required common functionalities as well as data artefacts. This includes
interaction with components and data artefacts, that are available through ACaPlan and
the Process Engine. The results of this analysis are depicted in Fig. 3.9.

Pr
oc

es
s
En

gi
ne

AC
C

Car
e

Util
iti

es

Har
dw

ar
e

NFC
 R

ea
de

r

 X

ES
 L
og

gi
ng

AC
aP

la
n

 (e

.g
. T

ODO L
ist

)

Use case 1

Use case 2

Use case 3

Use case 4

Use case 5

Use case 6

Use case 7

Use case 8

Use case 9

Pa
tie

nt
 D

at
a

Figure 3.9: Use case analysis: derivation of components and data artefacts

As can be seen in Fig. 3.9, each use case requires a set of functionalities and data
artefacts. For example, in Use case 2, when a simple care utility is registered, the Hardware
identification (tag id) has to be connected to an entry in the Care Utilities table. This
also requires the NFC Reader component to scan the tag. In Use case 3 basically the same
is done, except that more complex semantic information like side effects has to be saved.
Also, for example for a pill tray, an individual NFC tag has to store dosage. The schema
for the data that has to be stored on the NFC tag has to be saved in the care utilities
data repository as well.

The granularity of individual components becomes clearer with each scenario. NFC
Reader and Hardware, although present in all scenarios, are separate, because NFC Reader
represents functionality, whereas Hardware constitutes a data artefact.

The necessity for the ACC components stems from the necessity to coordinate the
information flow between different components when utilized from a process engine (see
Fig. 3.11).

The final architecture is depicted in Fig. 3.10. Components for implementing the ideas
in this approach are modeled with dotted outlines (red). All other components (black) are
part of the existing solution the implementation is built on.

In the following, the general functionality of the newly realized components from an
architectural point of view is described. At the end of this section the realization of the
scenario “Give utility to resident” (cf. Table 3.8) illustrates the interaction between the
components of the system.

The basis – Automatic Care Completion

Automatic Care Completion (ACC) as the main component has the following functionalities:

53

3 Creating Data Sets for Process Mining

XES Logging

ACC

NFC Reader

Care Utilities
<<data repository>>

Hardware
<<data repository>>

[optional]
KPI Monitor

Execution
Engine

Figure 3.10: Architecture for process-based care system with embedded NFC-based docu-
mentation. Red-dotted components have been developed in this work.

• Collection of events from the process engine implementing the therapy processes.
ACC knows all currently active tasks for all residents.

• Collection of events from the NFC readers. ACC knows all care utilities and the
properties that have been used for each resident.

• Completion of active tasks. ACC selects all tasks that are potentially affected by
a care utility and supplies it with information found on the NFC tag and allows
the process engine to finish this task. Alternatively, it notifies the caretaker that
additional (manual) input is necessary. In future revisions of the system, caretakers
should be prompted to record voice messages which are automatically assigned to
the correct task.

Data repositories: hardware & care utilities

In the hardware repository, all residents are stored with the ID of the related NFC reading
device which is a prerequisite to relate events and residents.

The care utilities repository contains all data about the care utilities used during treat-
ment, i.e., care utilities and their encoding, their type (simple or complex), interrelations
with other care utilities such as side effects of drugs, and defined breaks between using the
utilities (mainly relevant for drugs again).

Therapy processes often contain tasks that are executed in parallel. A resident, for
example, has to be medicated and at the same time a proper level of hydration (periodic
liquid intake) has to be maintained. While assigning the intake of a certain drug to a task
might be unambiguous, proper hydration might be a side effect of different tasks such as
serving the resident a cup of coffee or a glass of lemonade with the lunch, as well as the
glass of water that is part of the medication intake all count towards the goal of proper
hydration.

54

3.3 Creating Accurate Data Sets for Process Mining with Human Resources Involved

When hydration is seen as task in the therapy process that (in a loop) collects the
quantities of liquid that has been consumed over the course of a certain time period, it
becomes clear that whenever one of the above (separate) tasks happen, the hydration task
additionally has to be provided with the correct information.

Thus, the care utility repository does not merely contain a list of data, but a flexible
ontology that contains all facts connected to a certain care utility. Based on the ontology
it becomes possible to identify the correct hydration task from a multitude of care utility
applications. All facts in the ontology are described as turtle triplets and can be queried
through SPARQL [PS+08].

Interaction Between the Components Based on a Scenario

As an example the implementation of the scenario conceptually described in Scenario 3.8 is
provided. This scenario is chosen, because it covers a wide variety of interactions between
ACC, nurses, residents, care utilities, and NFC reading devices (i.e. a full-stack example).
In order to register the usage of a care utility (stored in “«data repository» Care Utilities”),
the NFC tag attached to the utility has to be moved near the NFC reader.

In the “«data repository» Hardware” the IDs of the NFC readers for all residents are
stored (thus the connection to the existing “«data repository» Patient Data”).

The component “NFC Reader ” sends a stream of events to the “ACC ” component,
whenever care utilities are used with NFC readers.

The “ACC ” utilizes the data repositories to interact with the “Process Engine” regarding
the process execution. It is assumed that using a care utility always correlates to a currently
active care task in the process engine. Every other situation is a possible violation of care
standards.

However, the usage of care utilities also has a semantic side to it, that is not easily
covered by imperative process models and their strict logic. For example, the glass of
water coming with medication contributes to hydration (i.e., contribution to multiple
tasks), or medication may have side-effects when given with other medication (i.e., detect
problems in process logic). Of course, the process logic describing the care of a resident
could encompass all fuzzy uses and side effects, but that would complicate the process
model to a point where it would be hard to maintain by nurses.

Thus the “«data repository» Care Utilities” includes an ontology which is used by the
“ACC ” to generate warnings and identify the relevant active tasks. Finally, for complex
care utilities the events include information such as dosage and time interval (e.g., for
administering drugs) which again can be utilized to issue warnings and check compliance
to care standards.

If “ACC ” successfully identifies a care task, the data of the NFC tag (e.g. dosage
information) will be sent to the process engine, and the event will discarded (events are
treated as a stream). The activity is then marked finished in the process engine, which in
turn results in a log entry in the “Logging” component, and the next task will be marked
as active. If “ACC ” does not find a correlating care task, something not foreseen in the
process happened. The “ACC ” then registers the occurrence with the “XES Logging”, the
progress of the care process remains unchanged.

The “XES Logging” component stores data as XML or YAML, containing timestamps of
the events, the ID of a care utility with the described details, like inhibitors, suggestions and
dosage, as well as notes and additional input from the caretakers. Additionally it provides

55

3 Creating Data Sets for Process Mining

data to any interested external services, such as an optional ‘KPI Monitor ” component.
In order to realize and complete the solution design, a prototypical implementation

supporting the scenarios presented in Sect. 3.3.3 is required. This section describes the
design choices and implementation details in more detail (cmp. Fig. 3.10):

• Using ACaPlan and CPEE as the basic software stack.

• Using NFC on the hardware side.

• Using XES for logging.

• Process XES documents and KPIs.

ACaPlan & CPEE

The implementation extends an existing solution called Adaptive Care Planning (ACaPlan)
[KMS+15a] that realizes therapy processes for nursing home. ACaPlan has been selected,
because it is a solution in the domain that (a) has a modern message-based architecture
and (b) is readily available as open source. ACaPlan provides a system, where a resident
in a nursery is related to a therapy process. ACaPlan uses medical knowledge (derived
from literature) which is stored in the “«data repository» NIC & NOC & NANDA”. A
graphical user interface (Who Cares) to create and modify care processes for residents
from this repository allows for simple exploration of examples and scenarios.

The implementation also utilizes event streams from the CPEE. The CPEE relies on a
publish/subscribe model for a wide variety of events that occur during process execution.
The approach relies on notifications whenever a task becomes active or is finished (per
process, i.e., per resident), as discussed in Section 3.2.

The currently active tasks are compared to the events of by the “NFC Reader ” component
to determine which task (or which tasks) a certain care utility tackles.

It is important to note that the interaction with the Process Engine, ACaPlan, and
concepts presented in this approach is generic. Thus, the CPEE used by ACaPlan could
be replaced by other process engines, e.g., Apache ODE.

NFC

Background information on NFC is provided in Sect. 3.3.2. At the design level, whenever
a NFC reader sends information about a care utility, with the help of the data repositories
as depicted in Fig. 3.10 the following information can be deduced:

• Which resident is affected and thus: which care process is affected?

• What additional information about this care utility is available?

In order to make the functionality available, an open-source C library has been developed
which talks to the NFC hardware14 via a hardware-supported binary communications
protocol. This C library serves as a basis for high-level languages bindings.

14http://www.kronegger.com/

56

http://www.kronegger.com/

3.3 Creating Accurate Data Sets for Process Mining with Human Resources Involved

Interaction of Components

To give a more detailed view on this architecture, the sequence diagram in Fig. 3.11, shows
the interaction of the new components in the system and how the execution engine gathers
the data from the hardware repositories.

Figure 3.11 also explains how the ontology in the care utilities repository is working.
For example, if the current active task asks for hydration and a glass of water is detected,
a SPARQL query is used to understand the concepts of a glass of water and to see if the
concepts of a class of water are actually a part of hydration care utilities.

Process
Engine

ACC Care Utilities
<<data repository>>

Hardware
<<data repository>>

NFC Reader

request concept X
for particular
patient; e.g.
X := hydration

notify of event
i.e. hydration

query NFC

reading device

for patient

wait for any event from

NFC reading device

notify of event Y

query semantic concepts Z for Y

e.g. Y := glass of water -> Z := {hydration,...}

determine if X

is

in Z

loop [until X is in Z]

XES Logging

log completion of task and all data collected (see above)

Ta
sk

,
e
.g

.
h
y
d

ra
te

 a
 p

a
ti

e
n
t

Figure 3.11: The communication of the components.

3.3.5 Practical evaluation

The evaluation is divided into two parts. At first, the reduction of documentation time
and effort by automatic NFC-based task completion is evaluated with domain experts.
Secondly, the feasibility of the creation of paper-based documentation from the XES logs
ips shown.

Reduction of documentation time and effort

The evaluation with domain experts is described based on its context, the data collection
procedure, and the obtained results.

Evaluation context: The evaluation context is set by two different nursing homes.
The daily routines in these nursing homes can be divided in morning routine, lunch, and
afternoon & evening routine. Lunch mainly consists of two tasks, i.e., assist residents with
intake and give drugs. For the intake a form has to be filled manually for documentation.
Support for this documentation task has been outside the scope of this work so far. Giving

57

3 Creating Data Sets for Process Mining

drugs is supported by the system. All of the process models have been modelled with
experts from the nursing domain, specifically from the 2 nursing homes.

Morning routine The process model for the morning routine is depicted in Fig. 3.6
together with the assigned care utilities. One nurse is typically responsible for 14 residents.
The morning shift for a nurse starts at 7:30 am and he/she has to conduct the morning
routine all by himself/herself within 2 hours. Afterwards a second nurse joins. The tasks
for the residents are split evenly. The residents have different levels of care, i.e., are able
to conduct a varying number of tasks in the morning routine themselves. Even though the
independence of the residents is to be preserved as much as possible, each of the tasks
has to be documented by the nurse. This results in a higher amount of time for residents
with a low level of care. As there is a substantial time pressure to finish the morning
routine for all residents before breakfast, often the documentation of the morning routine
is postponed to the end of the shift from noon to 13:00 pm. This constitutes a risk of
lowering the documentation quality (e.g., by forgetting tasks).

Evening and Night Routine Figure 3.12 depicts the evening and night routine. For this
shift a nurse is typically responsible for about 70 residents. During the night, additionally,
a graduate nurse is present for emergency cases. The night shift runs from 8 pm to 7:30
am the next day. After handover of shift the general health status and clothes are checked.
Repeating tasks of the night routine are changing incontinence pants and bed positions of
the residents in order to avoid bedsore, typically performed every 2 to 3 hours. In quieter
periods in between documentation is performed. In case of emergencies the nurse prepares
the associated documents and calls the ambulance if necessary.

Handover
shift

Check
incontinence

Check clothes

Check health
state

Change
sleeping
position

Perform
documenta-

tion

Respond to
alarms

Call
ambulance

Prepare
documents

Check
incontinence

Change
sleeping
position

Finish docu-
mentation

Handover
shift

severe injury

Figure 3.12: Process Model for Afternoon / Evening Routine

Data collection procedure:
The evaluation is based on two expert interviews with nurses from two different nursing

homes. In the beginning the nurses were asked to describe the tasks that have to be done
with every resident of the nursing home. This lead to the process models, which can be
seen in Fig. 3.6 and 3.12. Afterwards data has been collected on the average time spent
on the documentation for each shift and when this documentation is typically done by
asking them to log their behaviour for one week. At last, the nurses where asked, for each
shift and for each task, how much time could be saved with the solution presented in this
approach, taking into account that some tasks need additional information (i.e. comments

58

3.3 Creating Accurate Data Sets for Process Mining with Human Resources Involved

by the nurses) that can not be automatically acquired. Thus, the nurses, for each shift
and each task, provided the following information:

• Potential physical objects and how practical it would be to use them for automatic
logging.

• Current documentation effort, and estimated savings with the solution presented in
this approach.

The time for using a physical care object is determined by three aspects:

• How long is the physical object used for the care purpose?

• How long does it take to bring the physical object next to a NFC reader (integrated
into the bed)?

• How long has the physical object to remain next to a NFC reader, in order for the
data to be read out?

While the duration of the first aspect is fixed, the two other aspects replace the manual
documentation. They are assumed to take about 10 seconds in total per task15.

Additionally to the expert interviews, the whole system has been prototypically imple-
mented in the lab of the research group. As can be seen in Fig. 3.7, a testing environment
using nursing home beds and NFC reading devices has been built and the individual tasks
have been replayed in the testing environment.

Obtained results:
Table 3.12 summarizes the results of the study which are explained in more detail in

the following. The overall time reduction as expected by the experts are about 60%.

Table 3.12: Possible improvements through automatic documentation
Task Morning Evening

Residents 14 70
Tasks per resident 12 3-6 (4.5 avg.)

Tasks total 168 370
Worktime (nurses) 540 min. 420 min.
Worktime per task 03:12 min. 01:06 min.

Nurses 2 1
Documentation Manual Automatic Manual Automatic Improv.

per resident 07:30 min. 02:00 min. 03:00 min. 01:10 min. 68.00%
per nurse 52:30 min. 14:00 min. 210:00 min. 90:50 min. 64.87%

average per task 00:38 min. 00:10 min. 00:40 min. 00:10 min. 74.34%

Morning routine: 12 tasks have to be performed for 14 residents resulting in 168 tasks
altogether. The average time per task is 03 : 12 min. The manual documentation time has
been estimated as 07 : 30 min per resident, 52 : 30 min per nurse, and 00 : 38 min per task.
15It took about 2 seconds in tests with nurses, but we conservatively estimated 10 seconds to account for

delays due to sloppy usage

59

3 Creating Data Sets for Process Mining

Evening routine: Though the nurse is responsible for more residents the tasks are less
intense and frequent. The shift handover takes about 30 minutes. On average, 370 tasks
are performed by one nurse per night, taking 420 minutes of the shift. 210 minutes are
left for documentation, resulting in an average documentation time of approx. 40 seconds
per tasks. The experts were positive, that except for the health status check, all tasks
contained in the process model in Fig. 3.12 can be documented automatically. Again, tests
revealed a time of 10 seconds per task for automatic documentation under pessimistic
assumptions. The documentation time per nurse will be reduced from 210 minutes to
90:50 minutes.

This means a reduction of 74.34% of time per documentation task, 68% per resident
and 64.87% per nurse on average for both shifts. It should also be noted, that in this
approach, the identity of the nurse fulfilling a task gets drawn out of the shift schedule.
An adaption could be NFC tags placed on the clothes of a nurse as identifier.

Comprehensive documentation

The implementation is tested and forms are generated, following the guidelines of an
Austrian nursing home, see Fig. 3.13. From the point of view of the nursing home
there is no drawback or noticed difference regarding the operation without automatic
documentation. One perceived advantage by the experts was, that when additional
(available but not used) information needed to be included into the documentation, the
documentation could be simply regenerated.

In order to evaluate if comprehensive documentation can be achieved a comparison of
actual documents covering the morning routine of residents16 is done.

According to the involved care takers the created documents would be sufficient. As the
care takers themselves consult the documentation of fellow care takers, in order to learn
details of the residents, they anticipate automatically generated documents to be easier to
read, as they all strictly follow the same structure and granularity.

In Fig. 3.13, a typical paper-based documentation can be seen, while Fig. 3.14 shows
the equivalent in XES.

In the following the process on how the data was processed to generate the paper-based
documentation is elaborated. 1 shows the timestamp of the documentation. In the log,
the timestamp exists for each task. For the paper-based documentation just the date, not
the time is necessary. N shows the name of the nurse. The fact that multiple nurses may
share the workload for one resident, is reflected in the paper-based documentation. In the
log the responsible actor is again saved with each task. 2 documents the behavior of a
resident in the community room. In the log that this is a note attached to a certain task.
For the current implementation nurses can take audio notes with their smartphone which
are automatically converted to text and saved with the last task that was worked on (i.e.
activated through a care utility). 3-8 show care tasks as defined in Fig. 3.6. The text is
generated automatically from (1) the existence of the log entry and (2) notes attached
to the log entry, as can be for example seen with 6a and 6b. Tasks 4 , 5 , and 7

have been omitted in the log to simplify presentation, but look similar to 3 . 3+4 in the
paper-based documentation are a special case, as the standardized sentence “The morning
hygiene has been carried out” depends on the existence of multiple tasks.
16No personal data that allows to infer on residents is included in the data excerpt presented below

60

3.3 Creating Accurate Data Sets for Process Mining with Human Resources Involved

3
4

3+4

6a

6b
5

8

7

1
1

2

N

N

N

N

N

N

Figure 3.13: Paper-based documentation

The newly gained information about the exact point of time an event occurred due to
the reading of the NFC tag, can be used to analyze the care process for each resident or of
the nurses even, for example, the intervals between intakes of medication.

61

3 Creating Data Sets for Process Mining

3

4

6a

6b

5

8

7

1

2

N
1

1

Figure 3.14: XES log (log-based documentation)

3.3.6 Discussion

This section reflects on different aspects that are crucial for the success of automatic task
completion and documentation as proposed in this approach. At first, the applicability of
the approach in the care domain is discussed (cf. Sect. 3.3.6). The transferability of the
approach to other domains such as production are discussed in Sect. 3.3.6.

Estimation of Cost Categories

The evaluation showed that potentially a good amount of time could be saved during tasks
of documentation. If time can be saved, other aspects are affected as well. In [JVKN08],
the four dimensions, time, quality, cost, flexibility are shown to in relation to each other.
In the view of performance measurement, the following points can be established.

Time Dimension In the time dimension, a look at the lead time is taken. The lead time
is defined as the time it takes to finish a whole case. A case in this scenario would
be the complete morning shift. With the reduction of time spent on documenting
tasks, the lead time can be reduced.

Quality Dimension The approach focused on the internal quality in the quality dimension.
The NFC service can provide immediate feedback to the nurses and the documentation
is done in an automatic way.

62

3.3 Creating Accurate Data Sets for Process Mining with Human Resources Involved

Cost Dimension The cost dimension is directly connected to the time and quality di-
mensions. With a decrease in the lead time, costs can be reduced. Moreover, a
documentation with a poor quality can increase costs, if steps have to be redone or
unsatisfied residents file in complaints.

The flexibility dimension is omitted in this discussion, since this dimension is untouched
from this approach.

While the chosen example on a nursing home, contains only a small number of residents,
this solution can easily scale to bigger environments like a hospital. In a hospital the
number of persons needing treatment would increase greatly, but also the nursing staff
and the amount of hardware. The price of this solution should increase linearly, because
a one to one relation of NFC reading devices to the number of beds is established. The
number of care utilities used, increases as well linearly, since the same care utilities are
used for each person.

Transferability to other domains

The evaluation indicates the potential for integrating automatic NFC-based task completion
into process-aware care solutions. In the following, other potential domains are discussed,
which might benefit from automatic NFC-based task completion as well.

At first, domains can benefit that possess similar characteristics as the care domain.
In [KRVM14, KR17], several of these domains are identified such as manufacturing and
event management. In all these domains, process-aware solutions are expedient. Process
instances are connected to different subject, e.g., the patient, the product, or the customer.
Process data as well as environmental data plays an important role as well as different
actors working on the tasks. Some of these domains such as manufacturing (but also, for
example, logistics) are already familiar with the use of sensors. Documentation plays an
important role in these domains – for different reasons – as well. Some also are subject to
documentation obligations and for some the monitoring of KPIs is daily business. Finally,
in all these domains, physical objects are employed in process tasks such as machines in
production and goods in logistics. In summary, the factors for a domain to potentially
benefit from automatic NFC-based task completion are:

1. Process-aware solution

2. Need for documentation/KPI monitoring

3. Process subjects and / or objects can be equipped with NFC tags and connected
to NFC reading devices. A process subject [GR15] denotes the person or item that
denominates the process instance, e.g., the resident or the product. Process objects
describe in a broader sense data that is processed during process execution as well
as physical objects that are utilized for conducting process tasks such as a vehicle, a
comb, or an employee card.

Application areas that fulfill the above-mentioned preconditions are, for example, manu-
facturing and logistics. Both crave for process support [SSSA12, BCD15] and are prone to
documentation for quality assurance and traceability [GSC09]. Specifically in the logistics
domain, sensor-based technology such as RFID is already in use [CCL07]. Moreover, man-
ufacturing and logistics processes employ process subjects, i.e., products and goods/cargo

63

3 Creating Data Sets for Process Mining

as well as process objects such as vehicles and machines that can all be equipped with
NFC technology.

Manufacturing: The applicability of sensor-based documentation in the manufacturing
domain was analyzed in the experimental manufacturing environment LegoFactory17, at
WST research lab. In this setting, several sensors are integrated and utilized anyway.
Here the product is the driving factor for the process execution, i.e., the product is to be
equipped with a NFC tag and the different machines with readers in order to document
automatically that a product has passed a certain machine.

Logistics: Similar to the manufacturing domain, the goods are the process subjects which
drive the process execution. Hence, for logistics as already done in practice, goods can be
equipped with NFC tags and the utilities for transportation, e.g., the truck, equipped with
the readers. This would not only facilitate documentation, but also foster the traceability
of the goods on the transport. An interesting question is whether single goods are equipped
with NFC tags each or cargo, i.e., bundles of goods. This becomes particularly important
for bundling and unbundling of cargo.

Currently, only a restricted amount of data input can be processed through NFC
technology, e.g., dosage. For future applications, extended solutions connecting automatic
documentation with data input are conceivable as well.

Limitations

• The process-aware care solution has been developed using the information from
nurses prototypically implemented in a lab setting, i.e., It has not been tested in a
real-world environment yet. A process-aware system environment would be beneficial
to implement this system, although a data centric approach can be used as well. The
disadvantage of not having a process-aware solution, is that information of the NFC
tags can only be documented without the enriched information of the ontology and
the information of the whole care process. So instead of a glass of water has been
given to achieve the task of hydration, only a glass of water would be documented.

• Technical knowledge is required for writing information on an NFC tag, which
imposes a burden. This problem can be mitigated with the help of an easy to use
software. However, a new task concerning technical interactions is still added to the
daily routine.

• If a tag is faulty or contains wrong information, the information has to be rewritten
on the tag, even though the medical container could contain the correct medication.

3.4 Conclusion and outlook

This chapter focused on the creation of a data set, which can be used for process mining
algorithms. It is crucial, that the data sets should be able to be generated during the
execution of a process, thus the file format needs to be modifiable in a short amount of
time. In addition, these data sets should be generated automatically without any required
transformation algorithms. The input of human resources needs to be automatically
processed as well.
17http://gruppe.wst.univie.ac.at/projects/LegoIndustry/index.php?t=project

64

http://gruppe.wst.univie.ac.at/projects/LegoIndustry/index.php?t=project

3.4 Conclusion and outlook

To summarize the main contributions of this chapter:

• Different formats for process mining data sets have been analyzed and a new XES
serialization has been presented in Section 3.1. YAML has been chosen, since it can
handle the same amount of information as XML, yet also is modifiable in a shorter
amount of time.

• An approach has been described and evaluated in Section 3.2, which allows to log
process instances directly during their execution. These data sets can be used as an
input source for process mining algorithms, on- and offline.

• The human interaction with a process execution engine has been studied in Section 3.3,
enabling humans complete activities in a process instance and automatically document
their activities, thus creating process mining data sets with human involvement during
the execution of process instances.

The next chapter, Chapter 4, introduces novel process mining algorithms, that focuses
on the detection and determination of concept drifts of a process.

65

4 Discovering the Evolution of Processes
through Concept Drifts

Challenge

Process Execution
Engine

Data Set
Generation

Model
Discovery

Conformance
Checking

I

III

II

Evaluation
IV

IV

I

Target Research Goal Realization

Create suitable
Data Set for
Process Mining
Algorithms

Evaluate Logging Formats;
Create Data Set with Minimal
Interaction;
Enable Online and Offline
Algorithms

High Velocity of Data;
Finite Memory;
Reduce Documentional Effort;

Chapter 3

II

Detect and Determine
Concept Drifts;
Take Data Perspective
into Account

Chapter 4

Defining Process History;
Define Concept Drifts
and Data Drift Based
on History;

Unlimited Number of
Process Instances;
Outlier Detection of
Data Elements;

III

Extend Conformance
Checking;
use External and
Internal Data Sources

Chapter 5

Use Process History to
Quantify Deviations;
Include External Data
Sources;
Define Temporal
Deviations

How to Relate External
Data to Process;
Different Types of Data
Require Different Outlier
Detection;
Adjust Severness of
Deviation

Chapter 6Evaluation of
Perception of
Process Mining

Evaluate Impact
of Prototype;
Evaluate Perception
of Process Mining in
Manufacturing Domain

Generalization
to Other Domains;

Figure 4.1: Overview of Targets, Research Goals, Problems of this thesis. The features for
this chapter are marked.

This chapter addresses objective II in Fig. 4.1, i.e., the discovery of the evolution of a
process by detecting and defining concept drifts.

A process typically changes over time [RW12], for example due to, a new legislature that
forces adaptions in a process, e.g., the introduction of a new law, enforces medical staff

67

4 Discovering the Evolution of Processes through Concept Drifts

members in a hospital to conduct a special test for a specific disease on patients before
they are admitted to the hospital. Another common reason for a change in a process are
environmental factors, i.e., the temperature or the weather. Custom labels, for example,
cannot be printed on champagne bottles in a factory when at a high temperature. Thus
this option is not available in the summer. These changes are often present in the process
logic, but not always updated in the current process model, which creates a mismatch
between the execution of process instances and the process model. These changes are
concept drifts [BVDAZP14]. It is important to note, that such drifts can be occurring
on the control flow level, but also at the data level, i.e., data elements attached to the
events. It is of utmost importance to identify these drifts as soon as possible and to remedy
the probable mismatch between process logic and process model. To discovery and detect
all concept drifts of a process, the following research questions are derived:

• RQ 2a How can the evolution of a business process be discovered at runtime?

• RQ 2b How do data elements relate to concept drifts?

Section 4.1 tackles RQ 2a. It introduces the concept of process history. Using an
event stream as an input source, a process model is detected. Every time a certain number
of process instances are not fitting the current process model, a new process model is
discovered and the previous model is saved in a collection of process models for this process.
This signals a concept drift at the control flow perspective. In addition to the collection of
the process models, Section 4.1 provides a formal definition for the four types of concept
drifts based on the process history, e.g., incremental drift, recurring drift, gradual drift and
sudden drift [BVDAZP14]. The algorithms to discover and identify drifts are evaluated on
an artificial data set.

Section 4.2 focuses on RQ 2b , drifts at the data perspective. A drill, for example, uses
a certain amount of power which is stored as a data element in an event. If the drill is
becoming dull, the amount of power which is used for a work piece increases. This change
can be detected as a drift at the data perspective and with the support of process history,
the drill head can be changed before unwanted accidents occur. Thus Section 4.2 provides
a formal definition for all four drifts, previously described on the control flow perspective,
at the data perspective. A drift in a data element can be detected, by identifying outliers,
tailored to the type of data element, i.e., a numerical value requires a different outlier
detection than an arbitrary string. Algorithms to discover outliers and identify drifts are
evaluated on a real-world data set from the manufacturing domain.

A selection of text, figures and tables within this chapter is based on the following
publications.

Stertz, F., Rinderle-Ma S.: Process histories-detecting and representing concept drifts
based on event streams. In: On the Move to Meaningful Internet Systems. OTM 2018
Conferences - Confederated International Conferences (CoopIS), Pages: 318-335
https://dx.doi.org/10.1007/978-3-030-02610-3_18

68

https://dx.doi.org/10.1007/978-3-030-02610-3_18

4.1 Concept Drifts at the Control Flow Perspective

Stertz, F., Rinderle-Ma S.: Detecting and Identifying Data Drifts in Process Event
Streams Based on Process Histories. In: CAiSE Forum 2019, Pages 240-252,
https://dx.doi.org/10.1007/978-3-030-21297-1_21

4.1 Concept Drifts at the Control Flow Perspective

Business processes have to constantly adapt in order to react to changes [RW12] induced by,
for example, new regulations or customer needs often lead to concept drifts [BVDAZP14],
since not conforming to a new legislation, can cause tremendous fines [Dro17]. Process
changes are explicitly defined and stored in change logs [RRJK06] and hence are known to
the company. Contrary, concept drifts are happening as the process evolves and hence
are to be detected from process execution logs, i.e., logs that store events of executing
process instances such as starting or completing process tasks. By now techniques to
detect concept drifts in business processes work on process execution logs and are hence
applied ex post, i.e., after the process is finished. However, detecting concept drifts during
run-time bears many benefits such as being able to instantly react to the concept drift.

Run-time detection of concepts drifts works on event streams rather than on process
execution logs. As event streams are infinite, online concept drift detection faces the
following challenges:

• The start and end event of the stream are unknown due to the infinite nature of the
stream.

• It is not known how many events belong to a trace since new events can still appear
in the stream.

• it is not known which future events will occur and when they will occur.

Moreover, different kinds of concept drift are to be distinguished, i.e., incremental,
sudden, recurring, and gradual drifts [BVDAZP14]. So far, the focus has been put on
incremental and sudden drifts only. However, detecting recurring and gradual drifts can
be important for many application domains as well.

To detect the evolution of a process, process histories are introduced. A process history
reflects models that are discovered for a process based on an event stream. Process histories
provide a novel way to detect and represent concept drifts through mining the evolution of
a process model based on an event stream. The challenging question is when a new model
is created, i.e., which event or sequence of incoming events triggers the creation of a new
model in the history. Two new algorithms are presented in this section. The first algorithm
creates the process history and discovers new models. The detection of a new model, is
based on conformance [RVdA08] and the “age” of the event information using the sliding
window approach, i.e., older process instances do have no impact on the current business
process logic. The second algorithm determines concept drifts based on the synthesized
process histories and enables the detection of incremental, sudden, recurring, and gradual
drifts. The evaluation comprises a prototypical implementation as well as a comparison
with existing approaches on detecting concept drifts based on synthetic logs. In summary,
this section provides means to detect incremental, sudden, recurring, and gradual concept
drifts based on event streams and the concept of process histories during run-time.

69

https://dx.doi.org/10.1007/978-3-030-21297-1_21

4 Discovering the Evolution of Processes through Concept Drifts

In Section 4.1.1, a formal definition of a process history is provided and the different
types of concept drifts explained. Section 4.1.2 features the algorithms to synthesize a
process history and determine the type of the concpet drit. An evaluation is present
Section 4.1.3, based on a synthetic log created using the process models of [BvdAŽP11].

4.1.1 Fundamentals of Process Histories

This section defines process histories and the necessary data structures for the proposed
algorithms. The different types of concept drifts are described at the end.

Process History. A process history reflects a collection of process models that have
been executed for a majority of process instances at a certain point in time, i.e., a collection
of all process models between all concept drifts. It is defined as follows:

Definition 1 (Process History). Let P be a business process. A process history HP is
a list of process models Mn, n ∈ N that have been discovered for P . Mn is the current
model for P . A new model is discovered, if the certain amount of currently active process
instances are not fitting the current model.

HP :=< M0,M1, ...,Mn−1,Mn, .. > (4.1)

For synthesizing a process history, process model discovery and process conformance
checking algorithms are applied in Alg. 1 in Section 4.1.2 to find, check and adapt the
current process model. A small example can be seen in Figure 4.2. Both activities in this
process model, are executed in sequence. Suddenly, in new process instances “Abrosia” is
executed sometimes before “Antispasmodic Drugs”, but not always. A new process model
is detected, as can be seen in Figure 4.3. This figure presents a similar process model,
where the same activities are executed in parallel and it fits the new process instances. A
concept drift happened and the process model in Figure 4.3 is now the current model for
this process.

Start End
Antispasmodic

Drugs Abrosia

Figure 4.2: Small process model example based on the running example in Figure 1.1. The
activities are executed in sequence.

Start End
Antispasmodic

Drugs

Abrosia

Figure 4.3: Small process model example based on the running example in Figure 1.1. The
activities are executed in parallel.

For the implementation of Alg. 1, specific data structures are required to keep track
of already handled events and create identify their traces in order to discover a process
model, described in the following.

70

4.1 Concept Drifts at the Control Flow Perspective

Data structures: A process history covers all process models that have been executed
for a specific process. Any time a task is executed, an event is created and injected into
an event stream.

Here, an adapted version of stream-based abstract representation (S-BAR) [vZvDvdA18]
is used, since it can be applied directly onto an event stream. S-BAR introduces an
abstract representation of the directly follows set of events. This set of events consists of
every observed pair of subsequently executed events, created by using two maps. In this
case, a map relates to the well-known data structure of a hash table [CLRS09], consisting
of keys and their corresponding values.

The trace_map, is built using the trace id of a trace as key. The corresponding value
to a trace id, is the whole trace. In an event stream, one event at a time is processed.
After processing the event, is put into the trace_map. To cope with memory issues and
to help determine active traces, the point in time when the first and currently last event
of a trace is being processed is also stored. The second map, directly_follows_map
represents the directly follow relations of all events w.r.t. the trace_map. As key, the
preceding event is being stored, with the following event as the corresponding value.

The usage of these maps is explained in detail in Section 4.1.2. Figure 4.4, shows the
trace_map and directy_follows_map for the traces [A,B,C] and [A,C,B]

Traceid Trace

t1

Tracemap

Event Event

Directly_Follows_Map

A,B,C

t2 A,C,B

A
A
B
C

B

B

C
C

A
t2

B
t1

C
t1

C
t2

B
t2

A
t1

Event stream

Figure 4.4: Event stream containing two traces with different order of events.
This approach is using the inductive miner, since it always generates a sound process

model. For using the inductive miner, an assumption of specific start and end events is
required. Since an event stream is used as an input source for the algorithms, it cannot
be guaranteed to identify the correct end or start events. The approach is constructing a
set of potential start events, by collecting the start events of each trace discovered in the
event stream. The example in Fig. 4.4, shows two traces that both have the same starting
event “A”, so this event would be the only start event for the inductive miner. For the end
events, only the last known events of already known traces can be considered. The traces
in Fig. 4.4 provide two possible end events. The first trace has as an end event “C”, while
the second trace has as an end event “B”. This results in a set containing two end events
marked for the inductive miner, namely “B” and “C”.

Sliding Window: The two maps, trace_map and directly_follows_map, contain the
necessary information about every processed event, i.e., point of time of execution, data
elements of events, e.g., the name of an event and the corresponding trace. Since business
processes change, already finished or older traces may be part of a preceding version
of the business process. Not every trace can be saved in the main memory, because of
capacity issues. To resolve that, the sliding window approach is used. The sliding window

71

4 Discovering the Evolution of Processes through Concept Drifts

only stores k data entries, here keys in the trace_map. If there are already k entries
stored, the oldest one is removed before storing the new entry. If the trace_map would
be exceeding k, the key value pair with the oldest currently known end event is removed.
This method ensures, that only currently active and newer traces are taken into account
while discovering a new process model and checking its fitness.

Concept Drifts reflect a shift in the business process logic, meaning that the execution
of a business process changed over time. There are several reasons for a change in the
process model, like a new business policy or adaptions in the business process logic to
meet customer needs. Every time the business process logic changes, a new process model
is discovered.

[BvdAŽP11] describes 4 kinds of types of concept drifts.

• Sudden Drift. It shows a complete new workflow for the business process, for example
caused by a new legislation, like GDPR.

• Recurring Drift. There could be a process model that is used for a specific time in
the year, for example, Christmas season, in which workflows are executed differently
to meet customer needs. These drifts appear periodically and replace the process
model with another already known process model.

• Incremental Drift. Describes small changes, that are natural in the evolution of
a business process. Especially in the beginning, the process history will be often
extended, because a new process model is discovered after each new event in the
event stream. This results in many sub process models.

• Gradual Drift. The process got changed and all process instances since the change
point have a different process model. Mn and Mn−1 coexist, as long as already
started process instances of Mn−1 are still running.

A closer look at concept drifts, can be seen in Chapter 2. It is to be noted, that recurring
drifts and incremental drifts, can also be gradual drifts, since process instances of the
PMn−1 could still be executed.

A process history enables the detection of each of these drifts and is defined in the next
section.

4.1.2 Algorithms for Synthesizing Process Histories

This section describes the synthesizing process histories and detection of concept drifts.
Synthesizing a Process History: For detecting the evolution of a process, a process

history, HP , is synthesized. The process history contains a list of already known process
models, Mi, where M0 is the first known process model for P and Mn is the last known
and currently used model for P . With the list of process models, all historical changes of
P ’s logic are represented in HP , and show the evolution of P .

The developed Algorithm 1 synthesizes a process history based on an event stream and
is described in the remainder of this subsection. As input an event stream, ES, a window
limit k and the thresholds ϕ and σ are required. The thresholds are described in detail in
the following paragraphs.

At the beginning the process history, HP , is an empty list and does not contain any
process models. The trace_map, explained in Section 4.1.1, is also empty and contains

72

4.1 Concept Drifts at the Control Flow Perspective

no items in the beginning. The directly_follows_map is created after an unfit trace is
detected based on the content of the trace_map.

The sliding window approach is used, to only take recent process instances into account,
since the approach focuses on detecting new process models and older instances are removed
from memory. For usage of the sliding window approach, the window size k must be
defined. Only k items are possible in the trace_map. Every time a new event is processed,
it is checked, if its trace id is already existing in the trace_map. If it does not exist and
the size of the map is smaller than k, the trace id is used as key and as a value, the event
is used as the starting event of the corresponding trace. If the map has already k items,
the oldest trace is removed from the trace_map. If the trace id is found in the trace_map,
this event will be appended to the trace.

Afterwards, if there is already at least one model in the process history, the fitness of
the active trace is checked. The fitness of a trace reflects the conformance of a process
instance and is defined between 0 and 1, where 0 reflects non-conforming instances and
1 conforming instances. For this purpose, common conformance checking algorithms are
used. Conformance checking algorithms are explained in detail in Chapter 2. In short, the
event sequence of a process instance is aligned to a process model and for every deviation
the fitness is decreased and a move is detected. For the alignment costs of the trace, two
costs are calculated. The costs for a move in a log, describe if an event is found in the
log but not in the model at this position. Costs for a move in a model, describe if an
event is found in the model but not in the log. For our purposes, only moves in a log are
considered, because in an online environment, it is not known, if a process instance has
reached its end event yet, which means, that the trace can still fit the model.

Assume that the model in Fig. 4.5, is our last known model in the process history. The
two traces that perfectly match are [A, B, C, D] and [A, C, B, D]. Since only the moves in
the log are taken into account, the two traces [A, B, C] and [A, C, B] receive a perfect
score, and it is assumed, that those process instances are still being executed and the end
event “D” has not been processed at the moment.

The last trace [A, D, B], received a lower fitness score, based only on moves in the log.
The second event “D” is not expected this early in the process model and cannot be aligned
in a perfect way, so it is moved in the log.

+ +A

C

B

D

A CB

A BC

A BD

Fitness: 1

Fitness: 1

Fitness: 0.67

t1

t2

t3

Figure 4.5: A process model with one parallel gateway and 3 related traces. While the
Move-Log fitness is perfect for the first two traces, the last trace contains an
additional event and receives a lower score

To define if a trace fits the model, a threshold, σ is introduced, ranging from 0 to 1.
While 0, would result in any trace fitting any model, 1 would only consider perfectly

73

4 Discovering the Evolution of Processes through Concept Drifts

Input: Event Stream ES (a series of events)
k (Limit for number of trace_map items)
σ (Threshold for the fitness of a trace for a model, [0,1])
ϕ (Threshold for distinction of a new viable model [0,1])

Result: Process History HP (contains all viable process models in chronological
order.)

HP = []
M_duration = 0
trace_map<trace_id,trace> = 0
for e in ES do

if trace_map contains_key e.trace_id then
trace_map[’e.trace_id’].append(e)

else
if trace_map.size ≥ k then

trace_map.delete_oldest
end
trace_map.insert(e.trace_id,e)

end
if H.size ̸= 0 and conformance_checking(traces[e.trace_id],HP .last) < σ then

directly_follows_map<event,event> = 0
for t in trace_map.values do

if conformance_checking(t,HP .last) < σ then
for i in t.size do

if i != 0 then
directly_follows_map.insert(t[i-1],t[i])

end
end

end
end
Model = inductive_miner(directly_follows_map)
fitting_traces_counter = 0
durations = []
for t in trace_map.values do

if conformance_checking(t,Model)≥ σ then
fitting_traces_counter+= 1
if t.end_event in Mode.end_events then

durations.append(t.end_event.time-t.start_event.time)
end

end
end
ScoreModel,trace_map.values s= fitting_traces_new / trace_map.values.size
if s ≥ ϕ then

HP .append(Model)
M_duration = durations.average + durations.std_deviation
unfinished_traces =
trace_map.get_unfinished(HP [HP .size-1],trace_map, M_duration)

detect_concept_drift(trace_map.values,unfinished_traces,HP ,ϕ,δ)
end

end
if |HP | = 0 then

HP .append(inductive_miner(e))
end

end
Algorithm Part 1: Algorithm for synthesizing a process history based on an event
stream.

74

4.1 Concept Drifts at the Control Flow Perspective

A +

B

C

+ D A +

B

C

+ D E

A B C

A C B D E

A B C D E

Mn-1 Mn

A B C

A C B D E

A B C D E

F: 1F: 1

F: 1

F: 1

F: 0.8

F: 0.8

t1

t2

t3

t1

t2

t3

Figure 4.6: Model Mn−1 is only fitting the first trace perfectly. Model Mn is fitting all
traces. Mn is now the new model.

matching traces as fitting. For the purpose of detecting viable process models, a high
threshold like 1 is suggested. This guarantees to only consider perfectly matching traces
for the distinction.

If the trace of the currently processed event, does not fit the last known process model
of the process history, a new model is mined, using the inductive miner. As input for the
inductive miner, the abstract representation of the directly follows relation is sufficient.
Only unfitting traces in the current window are used for discovering the new process model.
The inductive miner always produces sound workflow nets and suffers from less instabilities
like the α-miner, which does not detect short loops for example.

To distinguish between viable new process models and anomalous process instances, a
score for a process model for a set of traces is defined as:

Definition 2 (Model score). Let T be a given set of traces, M a process model, and ϕ ∈
(0,1] be a threshold. Moreover let A ⊆ T be the set of all traces having a fitness score
greater or equal than ϕ and let χA(t) be the indicator function, returning 1 if t ∈ T is in
A, 0 otherwise.
Then SM,T , the model score of process model M w.r.t. T, is defined as

SM,T =

∑︁
t∈T χA(t)

|T |
.

In Algorithm 1, for calculating the score for the new model using the current trace_map,
the values of the whole map, are checked for conformance with the newly discovered
process model. If a trace is fitting the new model, a counter is increased by 1, starting
at 0. In addition, if the trace’s end event is one of the end events of the new model, the
complete execution time is calculated and stored in a list of execution times for this model.
The variable M_duration describes the average execution time of M plus the standard
deviation. The number of fitting traces is then divided by the number of all possible traces
from the trace_map, which results in the score for the new model and the trace_map.
The score for this model, ranges from 0 to 1 as well. To determine if the new model is
viable, the score must be greater or equal than ϕ. ϕ is introduced as a threshold between
0 and 1, where 0 considers any model as viable and 1 only models that fit every trace
from the current window to the new model. For the history in the evaluation, only models
fitting at least 90% of the traces from the current window have been considered to get a
strict list of viable models, with results discussed in Section 4.1.3.

75

4 Discovering the Evolution of Processes through Concept Drifts

In Figure 4.6, the detection and creation of a new process model in the process history
is shown. On the left, the two longer traces do not fit the last known process model in
the process history. The newly discovered model, visible in Fig. 4.6 on the right, is able
to fit all current traces into the model. Since the new model fits all current traces, the
new model is appended to the process history. The old model is now Mn−1 in the process
history and the newly created model is now the last and current model in our process
history, Mn.

Every time a new model is discovered and appended to HP , a concept drift is detected.
To determine the type of the concept drift, unfinished traces for Mn−1 from the trace_map
need to be collected. A trace is likely to be unfinished if its end event is not part of the
end events of Mn−1 and its current execution time is lower than the execution time stored
in M_duration. If its execution time is larger, the process instance is likely to be canceled.

Concept Drift Distinction: Algorithm 1 synthesizes a process history for a specific
process. Every time a new process model is appended to the process history, a concept
drift is detected. The 4 types of concept drifts, in relation to a process history, can be
defined formally as follows:

Definition 3 (Concept Drift Types). Let T be a given set of traces and U be a given set
of unfinished traces. Moreover let H be a process history for a process P and δ ∈ [0, 1] ,
ϵ ∈ [0, 1] be thresholds and the function fitness, defined for one trace and a model, ranging
from 0 to 1. The following drift types are defined as follows:

• Incremental Drift if |H| ≥ 2 ∧ ∃(t ∈ T, fitness(t,Mn−1) ≥ δ∧ fitness(t,Mn) ≥ δ)

• Recurring Drift if |H| ≥ 3∧ ¬ IncrementalDrift∧ ∃ m ∈ N, 2 ≤ m ≤ n, |SMn,T −
SMn−m,T

| ≤ ϵ

• Gradual Drift if U ̸=

• Sudden Drift if ¬ Gradual Drift

Following this definition, an incremental or recurring drift can either be a gradual or
sudden drift as well, e.g., if there are still process instances using the previous process
model, it is a gradual drift. Otherwise it is a sudden drift.

Algorithm 2 focuses on identifying the type of drift. As input parameters a list of traces
T , the traces from the trace_map, a list of unfinished traces U for Mn−1, collected by Alg.
1, for detecting gradual drifts, a process history HP , δ for determining fit traces and ϵ are
required. ϵ describes the maximum error that is allowed between two model scores to be
equally viable for T and ranges from 0 to 1, where 0 only determines equal scores to be
similar viable and 1 determines any scores to be similar viable.

If there are less than two process models in the process history, it can be concluded that
there is no concept drift, since a drift appears when the business process logic changes and
a new model is discovered.

For every process model of H the model score is calculated using traces from T , like
described in Alg. 1. The variable Incremental is calculated during the calculation of the
scores to save execution time. If “Incremental” equals 1 an incremental drift is detected,
otherwise not.

76

4.1 Concept Drifts at the Control Flow Perspective

+ +A

C

B

M0

M1

M2

Mn-1

F G

E G Mn

Figure 4.7: Complete process history of a single business process

If there are traces out of T that fit the preceding model and the current model, an
incremental drift is detected. As as long as U is not empty, the incremental drift is a
gradual drift as well. Otherwise it is a sudden incremental drift.

For recurring drifts, the score of any model from Mn−2 to M0 is calculated. If there is
at least one model Mm, where the difference between SMn,T and SMm,T is less or equal ϵ,
a recurring drift is detected. Then it is again distinguished between a gradual recurring
drift and a sudden recurring drift, using the same approach as before.

If it is not a recurring drift or an incremental drift, it number of elements in U is checked.
If there is at least one trace, a gradual drift is detected. Otherwise it is not a gradual drift
and a sudden drift is detected, since it is already concluded that it is not an incremental
or recurring drift either.

The return value is a vector with 4 items corresponding to Incremental Drift, Recurring
Drift, Gradual Drift and Sudden Drift. E.g., a gradual recurring drift return [0,1,1,0],
while a sudden drift returns [0,0,0,1].

In Fig 4.7, a complete process history is shown with ϵ = 0.05 and δ = 1. The first concept
drift from M0 to M1 is detected with T containing t1 [A,B,C,D,E] and t2 [A,C,B,D,E]. An
incremental drift can be detected between M0 and M1, since there is only a new event, E,
added to the end of the process. The same traces that fit M0, fit M1 as well.

Let t2,3 [A,B,C,D], t4,5 [A,C,B,D] and t6,...,9 [A,F,G,D] be new traces in the event stream.
With a small window size k, e.g, 5, M2 is mined. Only t6,...,9 are considered for the model,
since they are not fitting M1. The difference between SM2,t5−9 and SM1,t5−9 or SM0,t5,...,9

is greater than ϵ, so it is not a recurring drift. There are no traces fitting M2 and M1 as
well, so an incremental drift is not possible. Since t5 is likely to be not finished for M1, a
gradual drift is detected.

Assume the next traces in the event stream are t10−12 [A,B,C,D] and t13 [A,C,B,D]. This
results in Mn−1. The difference between SM0,t9,...,13 and SMn−1,t9,...,13 is 0. A recurring
drift is detected with the recurrence of M0. Since t9 s already finished, it is not a gradual

77

4 Discovering the Evolution of Processes through Concept Drifts

drift as well.
Let the next traces be, t14,...,17 [A,E,G], which result in Mn. There is no equally similar

score to SMn,t13,...,17 and there are no unfinished traces.
In the next section, Algorithms 1 and 2 are evaluated on a synthesized log, following

the insurance example used in [BvdAŽP11].

4.1.3 Evaluation of process histories

For this evaluation, process execution log files have been synthesized, transformed into
an event stream and the process history discovered. The business process describes an
insurance process, first seen in [BvdAŽP11]. This evaluation focuses on the feasibility of
process histories. The first part of this section covers the implementation of the algorithms
and the framework for the evaluation. The second part shows the execution and results.

Implementation: To synthesize log files and an event stream, the algorithms from
Chapter 4 are used. A web service is generated, which listens to the event stream. This web
service, written in Ruby [MI02], processes each event and runs both algorithms described
in Section 4.1.2. The process history is constantly adapted and provided through a REST
interface. For the mining algorithm the inductive mining algorithm is used, implemented
in the ProM extension RapidProm [vdABvZ17]. The model is then retrieved using the
REST interface.

Evaluation: For the evaluation, process execution log files, based on the process models
used in [BVDAZP14], have been synthesized. Small modifications have been applied,
because only one path of some decisions showed concept drifts. For every process model
100 process instances were created. Since not all types of drifts are detectable in these
models, new process instances to find every type of concept drift have been added. For
the creation of the process history, k was set to 50, δ to 1 and σ to 0.9. For the distinction
of a concept drift, ϵ was set to 0.05 and σ to 1.

The first 100 process instances consists of “Register”, “Decide High/Low”, , “High
Insurance Check”, “High Med.History Check”, “Contact Hospital”, “Prepare Notification”,
“By Phone”, “By Email”,“By Post” and “Notification Sent”. The order of “High Insurance
Check”, “High Med. History Check” and the order and existence of “By Phone”, “By
Email”, “By Post” have been randomised, so that the inductive miner is able to detect
the parallel paths and decisions. The first models produced can vary a lot, depending
on the order of events in the event stream. Fig. 4.8 shows the first discovered viable
process models in the process history. M0 consists of only one event. During the first
100 instances, the process model evolves and, depending on the order of the execution
of the process instances, the first part of the first parallel gateway can be seen in M4.
Algorithm 2 detects for the first process models in the history only incremental drifts, as
expected. This can be reasoned because, every time a new event is found at the end of
a trace or a new parallel order instead of sequence is mined, all other traces from the
previous model are fitting the new model, e.g, the trace [“Register”, “Decide High/Low”,
“High Insurance Check”,“Contact Hospital”] and the trace [“Register”, “Decide High/Low”,
“Contact Hospital”, “High Insurance Check”] are both fitting M5.

After each possible combination is executed, Mn−4 (Fig. 4.10), is discovered. To create
a gradual drift, the next 50 instances are fitting Mn−4, but did not finish before the next
100 instances started in the stream, containing small adaptations. Instead of a parallel
gateway for the medical checks, cheaper checks, like “High Insurance Check”, are done

78

4.1 Concept Drifts at the Control Flow Perspective

Input: Traces traces (list of traces), Traces u (list of unfinished traces), H (Process
History),

δ (Threshold for fitting models ∈ [0,1]
ϵ (maximum error between similar process models)

Result: type_vector[0,0,0,0] (Positions represent Drifts
[Inc,Rec,Grad,Sudden] 1 represents this type of drift occurred.)

if H.size <= 1 then
return "Error: No drift"

end
Scores = []
Incremental = 0
for M in H do

model_score = 0
for t in traces do

if conformance_checking(t,PM)>= δ then
model_score += 1
if M == Mn−1 and conformance_checking(t,Mn)>= δ then

Incremental = 1
end

end
end
Scores.append(model_score/traces.size)

end
Scores = Scores.reverse // Reverse order so Scores[0] == Mn

if (Incremental == 1) then
if u.size ̸= 0 then

return [1,0,1,0] //Incremental Gradual Drift
else

return [1,0,0,1] // Incremental Sudden Drift
end

end
for i in Scores.size do

//Start with 0 if i ≤ 1 then
next

end
if (|Scores[0]-Score|≤ ϵ) then

if u.size ̸= 0 then
return [0,1,1,0] //Recurring Gradual Drift

else
return [0,1,0,1] // Recurring Sudden Drift

end

end
end
if u.size ̸= 0 then

return [0,0,1,0] // Gradual Drift
end
return [0,0,0,1] // Sudden Drift
Algorithm Part 2: Algorithm for identifying the specific type of concept drift.

79

4 Discovering the Evolution of Processes through Concept Drifts

Register

Register Decide
High/Low

Register Decide
High/Low

Contact
Hospital

Register Decide
High/Low

Contact
Hospital

High
Insurance
Check

+ +Register Decide
High/Low

Contact
Hospital

High
Insurance
Check

M4

M0

M1

M2

M3

High
Med.History

Check

Figure 4.8: Process Models containing concept drifts.

+ +

+

+ By Post

By Email

By Phone

+

+

+

+ +

By Post

By Email

By Phone

+ +

By Email

By Post

By Phone

++

+

+

+

a) Optional parallel
paths

b) Choice c) Parallel Email and
choice of others

Figure 4.9: The concept drift from a to b is not detectable as well as the drift from a to c,
since traces from b and c fit a. The drift from b to c is detectable.

at the beginning. If this check fails, the other checks are automatically skipped. Unfit
traces now contain only a subset of the 3 events. After 45 instances, σ and the score of
the new process model Mn−3 for the traces of the trace_map are equal, so the model is
appended to the process history. Since there are 5 instances for Mn−4 not finished as well,
a gradual drift is detected. An incremental drift has been detected as well, since some
traces fit Mn−4 and Mn−3 perfectly.

All the concept drifts from [BvdAŽP11] cannot be detected with our approach. As can
be seen in Fig. 4.9, the first process model includes the events “By Phone”, “By Email”, “By
Post” in optional parallel paths. The first concept drift described in [BvdAŽP11] changes
the parallel gateway to a decision, where only one event is chosen (Fig. 4.9(b)). Since all
paths are optional anyway, all traces fit, even if only one event is present. To negate this,
a periodical model could be mined, using all traces in the trace_map to detect a stricter
model fitting all traces. The other model containing again a subset of choices already
possible in the parallel optional model, suffers from the same problem. The concept drift
from Fig. 4.9 (b) to (c) could be detected, but only if b is discovered. The drift from (a)
to (c) cannot be detected.

Another 100 instances have been injected into the event stream, representing a new
legislation. The split of high and low insurance claims has been removed, i.e., every claim
is treated the same way. The notifications are only allowed to be sent per post as well.
After 45 instances, the model Mn−2 is discovered. This model varies vastly from Mn−3,
since the score from Mn−2 is 0.9 and the score of Mn−3 is 0.1. No traces from Mn−3 match
Mn−2. Also Mn−2 does not conform to any other known model in the process history. A
sudden drift is detected.

In the next 100 instances, a new event at the end has been discovered. “Receive delivery

80

4.1 Concept Drifts at the Control Flow Perspective

Mn-4

Mn-3

Register Decide
High/Low +

High
Insurance

Check

High
Med.History

Check

Contact
Hospital

+ Prepare
Notification + +

+

+ By Post

By Email

By Phone

+

+

+

+ Notification
Sent

Register Decide
High/Low

High
Med.History

Check

High
Insurance

Check

Contact
Hospital

Prepare
Notification+ + + + +

+

+ By Post

By Email

By Phone

+

+

+

+ Notification
Sent

Register Contact
Hospital

Prepare
Notification By Post Notification

Sent

Mn-2

Register Contact
Hospital

Prepare
Notification By Post Notification

Sent

Mn-1

Receive
Delivery

Confirmation

Mn

Register Decide
High/Low +

High
Insurance

Check

High
Med.History

Check

Contact
Hospital

+ Prepare
Notification + +

+

+ By Post

By Email

By Phone

+

+

+

+ Notification
Sent

Figure 4.10: Process Models containing concept drifts.

confirmation” is appended to the end of the new process instances. Again after 45 instances,
Mn−1 is discovered. Since the 5 oldest traces still fit Mn−2 and Mn−1 an incremental drift
is detected.

For the last 100 instances, the first 100 instances have been injected into the stream
again with modified time stamps. As expected, after 45 instances, Mn is discovered, which
is identical to Mn−4 and both have the same score of 0.9. A recurring drift has been
detected.

All four types of concept drifts can be detected. A problem occurs, if the process model
after the concept drift is just a stricter model. This means if new traces fit the current
model perfectly, no new model will be discovered and no concept drift will be detected.
This can be negated by discovering a new model periodically instead of only if an unfit
trace has been found, but this could lead to big mixed process models, if not only the
unfit traces are used for discovering a new model. E.g., the sudden drift in Fig. 4.10 from
Mn−3 to Mn−2, could also be interpreted with a decision after the “Register” event, which
leads to the path from Mn−3 or the path from Mn−2.

4.1.4 Summary and Outlook of Process Histories

This section introduces process histories to reflect the evolution of a process based on
an event stream during run-time. The histories consist of a sequence of viable models of
this process. Based on this model sequence, incremental, sudden, recurring, and gradual
concept drifts can be detected. For synthesizing the process histories, an algorithm utilizing
conformance checking and the “age” of event information has been presented. The feasibility
of all concepts are evaluated through a proof-of-concept implementation. With static log
files [BvdAŽP11], the exact point of time of a concept drift can be detected, but is not
using an online environment and does not differentiate the types of concept drifts. In
an online environment [MBCS13] [vZBH+17], concept drifts can be detected, but not all

81

4 Discovering the Evolution of Processes through Concept Drifts

types of concept drifts have been covered and the drift is detected relatively late. The
advantage of the other approaches is the detection of stricter process models, since they
are not focused on detecting drifts, but discovering new process models. Future work
will focus on the refinement of synthesizing process histories, i.e., parallel events at the
end of a process, other techniques to calculate the fitness of a specific trace, detecting
concept drifts in a stricter model as well as testing other mining algorithms including the
frequency of events and other approaches like lossy counting instead of sliding window for
the determination of impactful traces. The next section focuses on process histories which
take the data elements of events into account.

4.2 Concept Drifts on the Data Perspective

Flexibility and change are still among the most pressing challenges for processes [RW12].
This holds particularly true for data-driven process executions in volatile environments
such as manufacturing processes [PMRP18]. Manufacturing processes control and are
controlled by a multitude of data, e.g., machining parameters and sensor data for example,
that constantly monitor the state of the process and the machines. Changes in these
parameters are common due to, for example, environmental changes or errors, and can
be of tremendous importance for the quality of the process and the product. Similar
requirements hold for patient treatments where shifts in vital parameters have to be
detected immediately. Hence it is of great importance to be able to detect changes in
the data attributes of processes, specifically during run-time, i.e., based on process event
streams.

This necessitates making a next step in detecting and evaluating so called concept drifts
[BVDAZP14]. So far concept drift refers to changes in the control flow of the process that
are discovered based on process execution logs. In the previous section, algorithms for
detecting and representing concept drifts in control flow from event streams are provided.
This section aims at detecting changes in process data, called data drift in the following,
from process event streams at run-time. This is necessary as detecting data drifts from
process execution logs ex-post might be too late in order to take necessary actions in many
cases.

Generally, data drifts can be categorized following the same guidelines gathered from
[BVDAZP14]: data drifts can have recurring effects as well as incremental effects or just
reflect sudden changes in the business process logic.

Pick
Up

Trans-
port Deliver

AttributesAttributes Attributes
... ...name: Transport

time: 17-02-1990
resource: Driver

speed: 100

Figure 4.11: Process model with data attributes of event Transportation

Figure 4.2 shows a process example from the logistics domain. A product is picked up
by a delivery service, transported and delivered to the customer. The data attributes for

82

4.2 Concept Drifts on the Data Perspective

the event transportation are timestamp, name of the event, resource that is executing
this event, and average speed. Assume that the system is detecting that a significantly
decreased speed is detected in events of new process instances. The reason for this can be
manifold, like a construction site on the road, or even a construction site on a different
road, which causes the normal route to be jammed. The control flow of this process is
not changed, but the data attributes show a drift in the execution of the process, a data
drift. Detecting such drifts early helps tremendously in finding errors and bottlenecks
that suddenly occur. A data drift could also reflect the natural evolution of a process, e.g,
instead of only doctors, nurses administer drugs as well, due to a legislation change. This
would be reflected in a new organisational role for this event.

Similarly to control flow drifts (cf. Section 4.1), data drifts can have different effects, i.e.,
recurring as well as incremental effects or they just reflect sudden changes in the business
process logic. Moreover, data drifts must be detected during run-time and not ex post
for many application domains where immediate action is required. Finally, data-intense
processes are often emitting a huge amount of events in high frequency.

Note that the problem is two-fold: First, a data drift needs to be detected. Afterwards,
the of the data drift, e.g., recurring needs to be identified. For addressing the first part, the
already established concept of process histories (cf. Algorithm 1 and 2, is extended
to store information on process data attributes and to allow the detection of data drifts.
These drifts are identified using outlier detection on the values of a data attribute. The
approach can independent of the control flow of the process if instead of a model, only
event attribute pairs are saved. This would yield the disadvantage of not seeing the data
drifts as the evolution of a process without the process history. For the latter part, a formal
definition for the data drift types is provided and an algorithm that determines the type
of a data drift based on process histories. Therefore two algorithms are presented in this
section. One of them synthesizes the extended process history in order to detect the data
drift and the other one determines its type. They are evaluated through a prototypical
implementation and application to a real-world data set from the manufacturing domain.

Section 4.2.1 provides fundamentals. In Sect. 4.2.2 the definition of data drift types and
two new algorithms are presented. This section is followed by the evaluation in Sect. 4.2.3.
An outlook and summary is provided in Section 4.2.4.

4.2.1 Fundamentals for Detecting Data Drifts

Process histories (cf. Section 4.1), are extended to comprehend viable data attributes into
the process history and to detect new types of drift, data drifts.

The main contribution of this section focuses on events and their data attributes.
Common attributes would be the point of time when an event has been executed, a
organizational resource that has executed the event, or other arbitrary data attributes,
e.g., the cost of an activity.

So far, only control flow drifts are captured in a process history, in fact data attributes
are rarely considered except some exceptions like the decision mining algorithm[RvdA06].
In order to enable the detection of data drifts, process histories can be extended as
follows.

Definition 4 (Data-extended Process History). Let P be a process and ES the corre-
sponding process event stream. A process history

83

4 Discovering the Evolution of Processes through Concept Drifts

HP :=< M0,M1, ...,Mn−1,Mn, .. > is a list of viable process models Mn, n ∈ N that have
been discovered for P from ES with Mn being the current model for P . M ∈ HP is defined
as

M :=< E,< (e0, A
c
0), . . . , (ek, A

c
k) >>, ei ∈ E with

• E ⊆ ES is the set of all events in M;

• ei ∈ E : ei = (lei , Ai), i.e., an event stores its label lei and the set of data attributes
Ai;

• For ei, A
c
i ⊆ Ai denotes the sub set of attributes from Ai that have caused the data

drift.

Pick
Up

Trans-
port Deliver

AttributesAttributes Attributes
... ...name: [Transport ,100%]

timestamp: [arbitrary]
resource: [Driver,100%]
speed: [90,110]

Pick
Up

Trans-
port Deliver

AttributesAttributes Attributes
... ...name: [Transport ,100%]

timestamp: [arbitrary]
resource: [Driver,100%]
speed: [20,80]

Mn

Mn-1

Figure 4.12: Process History showing a data drift in the attribute speed.

Figure 4.12 shows the extended process history for the example of Figure. 4.2. The
control flow of the models Mn and Mn−1 is not changed, but still a new model has been
detected because of a data drift in the event Transport. As can be seen, the lower bound
for the average speed in Mn−1 equals 90 and the upper bound equals 110. A number of
outliers have been detected, e.g, 40, 40, 40, 40, 50, 50, 50, 60, 60, 60, 60, 50, 50, and 50. This
results in the new lower bound 20 and the upper bound 80. The data extension does not
interrupt the detection of control flow drifts as presented in Section 4.1.

For the algorithm the data structure trace_map is used. In addition, the data attributes
are now stored as well for each event in the trace_map. In the following algorithms, this
map is synthesized using an event stream. To detect the currently relevant traces in an
event stream, the sliding window approach is used. This means that only k traces are
considered for the detection of drifts. If a new trace is detected and there are already k
traces in the trace_map, the oldest trace is removed and the new trace is stored.

Concept/Data Drifts: The 4 different types of concept drifts at the control flow level
can also be defined and detected at the data level, which is explained in detail in Sect.
4.2.2. Concept drifts on the data level are called data drifts in this thesis.

4.2.2 Detecting and Identifying Data Drifts

In this section, the synthesis of data-extended process histories as basis for detecting and
identifying data drifts is elaborated.

84

4.2 Concept Drifts on the Data Perspective

Detecting Data Drifts

Assume a process history HP =< M0, ...,Mn > as defined in Def. 4 with most current
process model Mn and the corresponding trace_map. The difference between Mn and
Mn+1 yields the data drift and its type. As basis, for each new event in the stream, the data
attributes are checked for changes. In this work, changes in data attributes are detected
based on outlier detection in the data attribute values. For this statistical methods will be
used. However, it is not feasible to compare every new event to all previous events in all
traces as this might be too complex and might lead to misleading results in terms of the
drifts. Imagine that a change happened in one event and later the inverse change occurs.
Considering all traces this change would not be detected as a drift. Hence, it is feasible to
restrict the set of considered events and traces. In Section 4.1, the idea of using a sliding
window on the traces has been proven promising and hence this concept will be applied
for the synthesis of process histories in the following as well.

Algorithm 3 implements the core ideas of using a sliding window on the traces and
outlier detection on the data attributes. As input an event stream, ES, a window limit
k and the thresholds ϕ and κ are required. The thresholds are described in detail in the
following paragraphs. The algorithm is used while synthesizing a process history. A data
drift is detected after the detection of a control flow drift; algorithms for detecting control
flow drifts are provided in Section 4.1. At the beginning of Alg. 3, process history HP is
an empty list and does not contain any process models. Also the trace_map which is used
in the detection of data drifts does not contain any items in the beginning.

The sliding window technique, allows to identify currently significant traces for the
detection of new viable models, where k is the maximal number of traces stored in the
trace_map. The data extension uses the same window for detecting drifts in the data
elements. Since outliers shall be detected, a certain amount of values for a specific data
element, respectively a certain number of an events, needs to be detected for statistical
analysis. The minimum number of events, κ, is user defined and a value between 0 and k,
since it is, except for a loop, impossible to have more events stored, than there are traces
in the trace_map.

After the event has been stored in the trace_map, the algorithm tries to detect a data
drift. A whole new range of drift types is possible if a concept drift and a data drift occur
simultaneously, which require a definition and an algorithm to be detected. This approach
is planned to be researched in future work.

If the process history contains at least one model, a copy of the current model and its
events with attributes is created. At the start the list_of_data_drifts is an empty list
and contains pairs of the drifting attribute and its corresponding event. If the current
model of the process history contains the currently processed event, an iteration over the
data attributes of this event starts. In this iteration, a denotes a data attribute of currently
processed event e. The next expression checks, if a is an outlier to e of the current model.

For the outlier detection following methods are used. If the data attribute a contains
continuous data, the data could be transformed into a normal distribution [CG01] and a
range is calculated. Outliers are defined for this approach at 1.5 times of the interquartile
range below the first quartile and 1.5 times of the interquartile range above the third
quartile [HV08]. The implementation currently only supports continuous data. If the data
attribute a does not contain continuous data, we use the likelihood. If for example, only 3
equally common values have been detected in the last model for this attribute in 50 events,

85

4 Discovering the Evolution of Processes through Concept Drifts

and a new value occurs, its likelihood is lower than all of the known values. On the other
hand, if there are 50 different values for one attribute in 50 events, it could be deduced
that this attribute is arbitrary. A user input, defining the maximum distance between the
new likelihood and the average likehood of choices, is used as threshold, to detect outliers
for this. If this attribute is not in the last known model for event e, the outlier function
automatically returns true.

Pick
Up

Trans-
port Deliver

AttributesAttributes Attributes
... ...name: [Transport ,100%]

time: [arbitrary]
resource: [Driver,100%]
speed: [90,110]

Pick
Up

Attributes
...

Trans-
port

Pick
Up

Pick
Up

Trans-
port

Trans-
port

Attributes
...

Attributes
...

Attributes
name: Transport
time: 17-02-1990
resource: Driver
speed: 50

Attributes
name: Transport
time: 18-02-1990
resource: Driver
speed: 40

Attributes
name: Transport
time: 19-02-1990
resource: Driver
speed: 60

Event-
stream

New Interval: [30.0,70.0]

Pick
Up

Trans-
port Deliver

AttributesAttributes Attributes
... ...

name: [Transport ,100%]
time: [arbitrary]
resource: [Driver,100%]
speed: [30.0,70.0]

Mn

t1 t2 t3 t2 t3 t1

Mn-1

Figure 4.13: Synthesising a process history with κ = 1 and ϕ = 1

In the next step an empty list list_a is created and the variable as is initialised with
0. This variable counts how often event e is found in the trace_map containing a. The
algorithm searches every trace in the trace_map. If an event is found that equals e and
also has the same attribute a as an outlier, this attribute is added to the list.

If the number of occurrences for attribute a in the trace_map (as) is smaller than κ,
a data drift has been detected. Apparently this data attribute is not used often enough
to retrieve significant information and is removed from the new model. The pair e,a is
appended to the list_of_data_drifts

Otherwise, the new range or likelihoods will be calculated using only the information of
outlying attribute values. It is then counted how often an attribute of the trace_map fits
the new properties and is divided by the number of events e. This yields a score value,
which represents the percentage of fitting attributes for the new properties. If this score
is greater or equal than ϕ, the new properties are added to the new model and the pair
e,a is appended to the list_of_data_drifts. The threshold ϕ is in [0,1], where 0 would be
everything and 1 would be only considering scores, where 100% of the attributes match
the new properties as a data drift. Afterwards, Algorithm 4 is executed, to detect the type
of the data drift.

Figure 4.13, shows how an outlier is detected for the running example Fig. 4.2 and
how and when a new model is appended. The range from 90 to 110 has been detected
earlier. In the event stream three new traces are occuring, each of them having an outlier
in the event Transport. With a sliding window size of 3, only outliers are in consideration
for new models. Each time an outlier is detected, a new range is calculated if there are
more or equal κ outlier in the sliding window. When the third outlier is detected, this
requirement is met and the new range from 30 to 70 is calculated. Each of the currently
viewed speed values are fitting this range. A new model is appended to the process history.

86

4.2 Concept Drifts on the Data Perspective

Data Drift Identification

Algorithm 3 detects data drifts in an event stream and creates new models for the process
history. Every time a new process model is appended to the process history a data drift is
detected. The four types of data drifts, in relation to a process history, can be defined
formally as follows:

Definition 5 (Data Drift Types). Let U be a given set of unfinished traces. Moreover let H
be a process history for a process P containing only data drifts, which can be easily filtered
by checking if the list of data drifts in a Model M is ̸= ∅. Let Hdd ⊆ H be the models of the
process history containing data drifts and for Mn =< E,< (e0, A

c
0), ..., (ek, A

c
k) >>∈ Hdd

let Mn.drifts:= < (e0, A
c
0), ..., (ek, A

c
k) > yield the list of event attribute pairs, containing

the attributes which have shown the data drift. Let ϕ ∈ [0, 1] , σ ∈ [0, 1] be thresholds,
the function outlier, defined for a model and a data attribute, yielding true or false and
the function similarity, defined for two attributes of an event, ranging from 0 to 1. The
following drift types are defined as follows:

• Incremental Drift if |H| ≥ 2 ∧ ∃ (e,A) ∈ Mn.drifts, (A ̸⊂ Mn−1[e] ∧ A ⊂
Mn[e]) ∨ (A ̸⊂ Mn[e] ∧A ⊂ Mn−1)

• Recurring Drift if |H| ≥ 3 ∧ ∃ m ∈ N, 2 ≤ m ≤ n,Mn−m∀ ({e,A} ∈ Mn.drifts,
similarity(Mn[e].A, Mn−m[e].A) ≥ σ

• Gradual Drift if |H| ≥ 2 ∧ ∃ t ∈ U , {e,A} ∈ Mn.drifts, ¬outlier(Mn−1, t[e].A))

• Sudden Drift if ¬GradualDrift

As a fitness function the same technique as in Section 4.1 using conformance checking
with only considering moves in the log [VdAAvD12] is used. The similarity function checks
if the statistical properties are alike. For example, if the intervals have a tremendous
overlap or the distribution of likelihoods is similar.

It should be noted, that in this definition of data drift types, only the sudden and the
gradual drift are distinct. It is possible for a data drift to be an incremental drift and
recurring drift at the same time, e.g., a new data attribute has been detected in comparison
to the last model, but this data attribute is also available and similar to an even older
model. In the following, Alg. 4, is explained in detail and shows how to answer RQ3.

As input parameters a list of unfinished traces U for M0,Mn−1, a process history HP

and σ are required. σ describes the threshold for determining if two statistical properties
are alike and ranges from 0 to 1, where 0 determines any 2 properties as equal and 1
determines only exactly equal properties to be similar.

If there is only one process model in the new process history no data drift had happened.
The first distinction is made between a gradual drift and a sudden drift. It has to be
either of them, so if it is a gradual drift, it cannot be a sudden drift and vice versa. For
this, the algorithm iterates over the list_of_data_drifts of the current model. If there
is a trace out of U for which its attributes and events match an entry in the list and is
not an outlier, if compared to the second to last model, Mn−1, a gradual drift is detected,
because there are still unfinished traces, that corresponds to the older model. The outlier
function is the same, like in Alg. 3. The third position in the return vector is set to 1,

87

4 Discovering the Evolution of Processes through Concept Drifts

M0 M1 M2

Figure 4.14: Results reflecting the range of the torque value

which signals a detected gradual drift. Likewise it can be determined if it is not a gradual
drift, a sudden drift is detected.

In the next step, the list_of_drift_events is again iterated. If an attribute is not found
in the older model Mn−1 or if an attribute is not found in the current model Mn, it can
be deduced that the attribute has been added or removed respectively. This indicates an
incremental drift, represented by a change the value of the first element to 1 of the return
vector.

If there are at least 3 process models in the history, a recurring drift can be detected. If
there is at least one model from M0 to Mn−2 where all attributes of the list_of_data_drifts
are similar, a recurring drift is detected. The resulting vector is returned at the end
containing the information on which data drift could been detected. In the next section,
the two algorithms are evaluated on a real life log, using a log from the manufacturing
domain.

4.2.3 Evaluation of Data Drift Detection Algorithms

For evaluating the approach, a prototypical implementation in Ruby [MI02] is used and
applied on a real world process execution log from the manufacturing domain. The
underlying process executes the manufacturing of small metal parts for different machines.

Algorithms 3 and 4, are integrated into the algorithms presented in Section 4.1. The
steps of creating the trace_map and using a sliding window have been merged from
Algorithm 1 into Algorithm3 and Algorithm 4 to save computation time.

The log files from the real world example are stored in XES format and consist of
10 process instances containing 40436 events in total, but instead of being serialized in
XML, the log files are serialized in YAML [BKEI05]. The process execution log has been
transformed into an event stream. The models in the process history have been discovered,
using the approach in Section 4.1.

For this evaluation the event “AXIS/Z/aaTorque” is chosen and the data attribute “value”
is looked at. This event appears 4415 times in the log files in total and is numeric. The
only available non-numeric data attributes in this log file, reflect either an enumeration,
where only specific values are allowed or an arbitrary value.

The event “AXIS/Z/aaTorque” describes the positioning of the machine part in the z
axis. With the sliding window k set to 200 and κ to 100, the first boxplot, seen in Fig.
4.14 (M0), has been detected. For the outlier detection, the length of the whiskers, the
interval [-11.05, 15.28] has been calculated. Using 0.9 for the threshold ϕ, 2 data drifts
have been detected, at the 123rd and 3187th time the event appeared in the event stream,
shifting the boxplot to Fig. 4.14 (M1) and (M2) with the new intervals [-105.10, 38.75]
and [-20.28, 89.99], two significant changes in the business process logic. This could be

88

4.3 Conclusion and Outlook

caused by a different part being produced in the machine using different values, or the
replacement of a part of the machine where the new part is using new parameters.

Using a less strict drift detection threshold ϕ with 0.8, 8 drifts have been detected. The
ranges of the intervals differ greatly, where only the fourth drift, when the event appeared
for the 1795th time and the last drift, when the event appeared for the 2800th time could
be suggested as a recurring drift. The intervals [-105.10, 38.75] and [-117.42, 91.08] overlap
about 68%. Since there is always the same number of data attributes in the event, caused
be the process execution engine which saved these logs, the only incremental drift is always
the first on at the κth time the event occurs, since in the previous model the data attribute
is absent. All of these drifts are gradual drifts, because the drift never occurred in the last
appearance of an event of a process instance.

This evaluation was carried out with a proof of concept implementation to present data
drifts in a data attribute of an event and the determination of its type. This procedure
can be reproduced with any number of attributes of events, yielding a new model with
adjusted statistical properties for the drifting attributes.

4.2.4 Conclusion for Data Drift Detection

An extension to process histories to include data attributes and to detect and identify
data drifts from event streams has been introduced. Data drifts are part of the evolution
of business process, therefore a data drift can be categorized into the four categories of
concept drifts., i.e., incremental, recurring, gradual, and sudden. All four types can be
detected and are formally defined. Two new algorithms have been presented. The first
one synthesizes a process history with data attributes. The other one allows to determine
the type of data drift. The evaluation shows promising results. Based on a prototypical
implementation and a real-world data set from the manufacturing domain it is possible to
detect data drifts. The future work includes a more user friendly implementation of the
algorithms and testing the algorithms on more data sets.

4.3 Conclusion and Outlook

This chapter investigates the changes a process model experiences in its lifetime, on the
control flow and on the data level. To summarize, the main contributions of this chapter
are:

• In Section 4.1, two algorithms are presented to identify concept drifts and determine
the type of concept drift occurring. Additionally the concept of a process history is
presented, e.g., a collection of all the process models and concept drifts. The concept
is evaluated on a synthetic log.

• Section 4.2 enriches the previously defined concept of a process history by defining
data drifts, i.e., concept drifts on the data level instead on the control flow level. In
this section, two algorithms are provided to identify and categorize data drifts and
are evaluated on a real-life process log.

Each process model in a process history is the result of a drift. This could be a concept
drift, a data drift or even both at the same time. Future work is planned to use process

89

4 Discovering the Evolution of Processes through Concept Drifts

histories to predict changes in a process, i.e., predict a recurring drift happening, e.g., a
change to an older process model of the process. In Chapter 5, conformance checking
algorithms are being investigated and extended by external data elements like data sensor
streams as well as a more refined cost function for the conformance checking algorithms.

90

4.3 Conclusion and Outlook

Input: Event Stream ES (a series of events)
k (Limit for number of trace_map items)
κ (Threshold for number of an attribute for consideration, [0,k])
ϕ (Threshold for distinction of a new viable data range [0,1])

Result: Process History HP (contains all viable process models in chronological order.)
HP = [], trace_map<trace_id,trace> = 0
for e in ES do

if trace_map contains_key e.trace_id then
trace_map[’e.trace_id’].append(e)

else
if trace_map.size ≥ k then

trace_map.delete_oldest
end
trace_map.insert(e.trace_id,e)

end
detect_concept_drifts_based_on_workflow_drifts();
if |HP | ̸= 0 then

New_Model = HP .last, list_of_data_drifts = []
if HP .last.contains(e) then

for a in e do
if outlier(HP .last[e],a) then

list_a = [], as = 0
for t in trace_map.values do

for ev in t do
if ev == e and ev contains a then

as+=1;
end
if ev == e and outlier(HP .last[e],ev.a) then

list_a.append(ev.a);
end

end
end
if as < κ then

if New_Model[e] contains a then
New_Model[e].remove(a);
list_of_data_drifts.append({e,a});

end
break;

else
e_size = 0; fitting_e = 0; properties = calc_properties(list_a);
for t in trace_map.values do

for ev in t do
if ev==e then

e_size+=1;
if !outlier(properties,ev.a) then

fitting_e+=1;
end

end
end

end
score = fitting_e / e_size;
if score ≥ ϕ then

New_Model[e].a.properties = properties;
list_of_data_drifts.append({e,a});

end
end

end
end
if |list_of_data_drifts| >0 then

HP .append(New_Model)
end

end
end

end
Algorithm 3: Algorithm to synthesise a process history

91

4 Discovering the Evolution of Processes through Concept Drifts

Input: Traces u (list of unfinished traces), H (Process History),
ϵ (maximum error between similar statistical properties.)

Result: type_vector[0,0,0,0] (Positions represent Drifts [Inc,Rec,Grad,Sudden], 1 represents
this type of drift occurred.)

res = [0,0,0,0];
if |H| ≤ 1 then

return "Error: No drift"
end
// M is an abstraction to directly access the models of H
for e,a in M.list_of_data_drifts do

for t in U do
if !outlier(Mn−1,t[e].a) then

res[2] = 1 //Gradual Drift
break;

end
end

end
if res[2] ̸= 1 then

res[3]=1; // Sudden Drift
end
for e,a in Mn.list_of_drift_events do

if (!(Mn−1[e].contains a) then
res[0]=1; // Incremental Drift

end
if (!(Mn[e].contains a) then

res[0]=1; // Incremental Drift
end

end
if |H| ≥ 3 then

for m in (M0,Mn−2) do
bool found = false;
for e,a in Mn.list_of_drift_events do

if similarity(Mn[e].a,m[e].a) < ϵ then
found = true;
break;

end
end
if found then

res[1]=1; // Recurring drift;
end

end
end
return res;

Algorithm 4: Algorithm to identify data drift.

92

5 Time & Data-Aware Conformance
Checking and Explaining Drifts

Challenge

Process Execution
Engine

Data Set
Generation

Model
Discovery

Conformance
Checking

I

III

II

Evaluation
IV

IV

I

Target Research Goal Realization

Create suitable
Data Set for
Process Mining
Algorithms

Evaluate Logging Formats;
Create Data Set with Minimal
Interaction;
Enable Online and Offline
Algorithms

High Velocity of Data;
Finite Memory;
Reduce Documentional Effort;

Chapter 3

II

Detect and Determine
Concept Drifts;
Take Data Perspective
into Account

Chapter 4

Defining Process History;
Define Concept Drifts
and Data Drift Based
on History;

Unlimited Number of
Process Instances;
Outlier Detection of
Data Elements;

III

Extend Conformance
Checking;
use External and
Internal Data Sources

Chapter 5

Use Process History to
Quantify Deviations;
Include External Data
Sources;
Define Temporal
Deviations

How to Relate External
Data to Process;
Different Types of Data
Require Different Outlier
Detection;
Adjust Severness of
Deviation

Chapter 6Evaluation of
Perception of
Process Mining

Evaluate Impact
of Prototype;
Evaluate Perception
of Process Mining in
Manufacturing Domain

Generalization
to Other Domains;

Figure 5.1: Overview of Targets, Research Goals, Problems of this thesis. The features for
this chapter are marked.

This chapter addresses objective III in Figure 5.1, i.e., novel approaches for taking
different perspectives and additional data into account for conformance checking.

The previous chapter, introduced algorithms to discover and identify drifts in a process
using standard conformance checking algorithms and outlier detection to detect such drifts.

93

5 Time & Data-Aware Conformance Checking and Explaining Drifts

Figure 5.2 gives a brief overview of the three different perspectives of conformance
checking this chapter is focusing on.

Conformance Checking

Semantic

Timing Deviation

Data Deviation

Resource Irregularities

Structural

Missing

Additional

External

Data points Deviation

Time Series Deviation

Figure 5.2: An overview of the three different areas of this chapter. Conformance checking
on a structural perspective is targeting the order of event. Semantic confor-
mance checking is focusing on other perspectives, i.e., the temporal perspective.
The last area, aims at taken external data into account to discover the source
of a drift in a process model.

This chapter investigates all three different branches depicted in Figure 5.2. A simplified
version of the process model present in Figure 1.1 can be seen in Figure 5.3. Traditional
conformance checking focuses on the structural branch of Figure 5.2, i.e., the order of
events that are present in a process instance and assigns a cost for missing and additional
events present in a process instance [CvDSW18]. Usually the cost for a deviation is taken
any information into account, to adjust the severity of mismatch in a process instance,
i.e., it can be argued that if a cholecystectomy is performed twice on the same patient,
it is a more severe situation, than if the event for the hospital admission is missing. Yet,
a mismatch can also occur at the attached data elements of an event and the point of
time events are registered, i.e., the duration for an event or the time duration between
events. The semantic branch of Figure 5.2, focuses on detecting deviations on these
different perspectives. While there is already algorithms focusing on data deviations
[MdLRvdA16a], temporal deviations are still untouched. Lastly, data outside the process
perspective can influence the behavior of a process instance. The external branch of
Figure 5.2 focuses on external data [DvC+16], that can be put into relation to a process
instance, i.e., the blood pressure and heart rate measurements of a patient in a hospital
are not related to a specific event in the process, but rather measured during the complete
stay of a patient (cf. 5.3). This external data can contain information on the root cause of
a concept drift, i.e., a canceled or deviating flight due to bad weather conditions [DvC+16].

The following three research questions are targeting all different areas of conformance
checking seen in Figure 5.2:

• RQ 3a How to better quantify the costs of deviations between process instances
and a process model using data elements?

• RQ 3b How can the temporal perspective be taken into account for conformance
checking?

• RQ 3c How to discover the source of a concept drift?

Section 5.1 focuses on RQ 3a, an advanced approach to adjust costs of mismatches
in conformance checking algorithms, reflected in the structural branch of Figure 5.2.

94

20

80

140

200

systolic

diastolic

time in days

mmHg

heart rate

20

80

140

200

time in days

bpm

Sensor-
streams
during
Hospital
stay

Start End
Hospital

Admission
Cholecystec-

tomy
Hospital

Dismissal

Ø: 30 minutes Ø: 1 hour Ø: 30 minutes

Ø: 2 days Ø: 4 days

Figure 5.3: A smaller version of the running example depicted in Figure 1.1. Here only
the tasks for patients with severe symptoms are used for demonstration.

Conformance checking algorithms analyze the behavior of a process instance compared to
a process model and for every mismatch a certain cost is assigned. Currently these costs
are assigned by a basic cost function. Section 5.1 presents a novel approach, to adjust the
costs of mismatches using an advanced cost function. The cost is adjusted, based on the
data elements attached to events, i.e., if the data elements do not contain any anomalies,
a mismatch can be reduced to logging error instead of an execution error. The approach is
evaluated on a real-world data set.

Section 5.2 concerns oneself with RQ 3b , the temporal perspective of a process for
conformance checking, positioned in the semantic branch of Figure 5.2. It establishes new
algorithms to detect anomalies in the temporal distances between different events in a
process instance as well, as the execution duration of an event, e.g., a suspiciously small or
huge temporal distance between two events or an extraordinarily short or long duration of
an event. The approach is evaluated on a real-world data set.

Section 5.3 tackles RQ 3c and focuses therefore on the external branch of Figure 5.2.
As mentioned before, additional data elements outside the process can affect a process,
e.g., the blood pressure and heart rate of a patient during a hospital stay. These external
data sources can be interpreted as a stream of data points. Drifts in these streams, can be
identified as the source for a drift in the process. Section 5.3 provides methods to include
these external data streams into a process instance and presents a novel approach using
dynamic time warping [RCM+12] to detect drifts in the data streams and to explain drifts
in a process model. The approach is evaluated on a real-world data set.

95

5 Time & Data-Aware Conformance Checking and Explaining Drifts

A selection of text, figures and tables within this chapter is based on the following
publications.

Stertz, F., Mangler J., Rinderle-Ma S.: Analyzing Process Concept Drifts Based on
Sensor Event Streams During Runtime In: 18th Business Process Management, BPM
2020), Pages: 202=219
https://doi.org/10.1007/978-3-030-58666-9_12

Stertz, F., Mangler J., Rinderle-Ma S.: Data-driven Improvement of Online Confor-
mance Checking. In: International Enterprise Distributed Object Computing Conference,
EDOC 2020), Pages: 187-196
https://doi.org/10.1109/EDOC49727.2020.00031

Stertz, F., Mangler J., Rinderle-Ma S.: Temporal Conformance Checking at Runtime
based on Time-infused Process Models. Tech. rep. (2020), https://arxiv.org/abs/
2008.07262

5.1 Extending Conformance Checking Algorithms Using an
Advanced Cost Function

As mentioned in the introduction of this chapter, conformance checking can affect different
areas. This section focuses on the structural area, as depicted in Fig. 5.4. Structural
conformance checking deals with missing/additional events or data. Conformance checking
is designed to determine if the logged process execution of a business process correctly
represents the desired execution specified by a process model [CvDSW18]. A conformance
of 1 means that the behavior described by the model is perfectly reflected in the log and
vice versa. A conformance < 1 indicates deviations in the behavior described by the model
and reflected by the log. Then a conformance deviation has occurred. It is crucial to
detect conformance deviation and to investigate their reasons in detail in order to, for
example, be able to distinguish intended deviations and undesired ones. The latter might
hint to security breaches or ad-hoc changes in process instances due to problems during
process execution.

Conformance Checking

Semantic

Timing Deviation

Data Deviation

Resource Irregularities

Structural

Missing

Additional

External

Data points Deviation

Time Series Deviation

Figure 5.4: Conformance Checking Types and Affected Artifacts. This section focuses on
the circled area.

Figure 5.5 shows reasons and causes which might lead to conformance deviations. An
automatic differentiation between those causes as well as the quantification of individual
deviations is the main motivation for this section.

96

https://doi.org/10.1007/978-3-030-58666-9_12
https://doi.org/10.1109/EDOC49727.2020.00031
https://arxiv.org/abs/2008.07262
https://arxiv.org/abs/2008.07262

5.1 Extending Conformance Checking Algorithms Using an Advanced Cost Function

Conformance Deviation

Normative PMDescriptive PM

Reason
Infrequent Cases

Cause

IS Bugs Ad-Hoc Repair
TamperingIS Changes

Integrity Violation

Desired Behavior
Reason Cause

Resource Problems Ad-Hoc Repair
TamperingIntegrity Violation

Figure 5.5: Scenarios for Conformance Deviations (PM: Process Model)

Process models can be descriptive, i.e., described by a rule set consisting of rules defining
the order of tasks for example, allowing execution of more infrequent cases, since the rule
set typically is not covering every option possible. On the other hand, process models
can be normative, where the order of the events is strict and each execution sequence not
following the process model is not correct.

In a scenario with a descriptive process model, Information Systems (IS) with hard
coded process logic contribute to an event log. These IS may contain logic for infrequent
cases, that are not yet fully described by the process model. These IS may furthermore
contain bugs (erroneous code), or they may be still under development introducing new
behaviors. Lastly the underlying IS may be compromised, leading to security violations,
or tampering. With conformance checking it is possible to point out deviations which may
then be attributed to one of the aforementioned reasons.

A scenario with a normative process model on the other hand is much less fuzzy.
It can be assumed that the process model is actively enacted by some kind of process
engine, thus most of the time the log will always be perfectly aligned with the PM. It can
be furthermore assumed that PM changes only occur in line with conformance checking
changes. Thus the causes for conformance deviations can typically be attributed to either
problems with resources or security violations (tampering).

While previous chapters of this thesis concentrated on semantic aspects, this section will
concentrate strictly on missing/additional events (see in Fig. 5.4). In particular, an
approach to quantify and classify conformance deviations is presented, as well as a method
to automatically classify conformance deviations.

Thus, this section proposes a novel approach to quantify the overall conformance
deviation cost of a single process execution for a given PM and a given log, based on
per-deviation cost values assigned to missing / additional events occurring in a process
log. These per-deviation cost values can then be automatically adjusted based on causes
shown in Fig. 5.5. While ad-hoc repair typically is conducted in a way that it does not
affect any subsequent events, tampering can lead to observable effects in the log. Thus,
based on a set of well-defined effects observable in the process log, the cost values may
be either decreased on increased. The per-deviation costs contribute to advanced cost
function which yields a conformance deviation cost value. The conformance deviation cost
value can then be utilized for automatic classification of causes as depicted through in
Fig. 5.5. In addition, this approach can be applied on an event stream as well, instead of

97

5 Time & Data-Aware Conformance Checking and Explaining Drifts

Definition 6.

advanced_cost_function(x) =

{︄
0, if no deviation
bm −

∑︁len(de)
n=0 (ωn ∗ bm ∗ χDn(den)), otherwise

Let bm be the base cost per deviation and de, a set of selected data_elements attached to an event.
D is a set of acceptable values for the data elements for this event, ω any number between 0 and 1,
and χ the indicator function. This function returns the altered cost for a preceding deviation.

a process log, to detect tampering as soon as possible, therefore help the user repair the
process more efficiently.

While the proposed approach is valid for both, descriptive and normative PMs, the
evaluation has been conducted based on a normative PM and a process log produced by a
process engine. For the evaluation an artifical dataset, as well as a real-world dataset from
the manufacturing domain have been used.

Section 5.1.1 introduces the advanced cost function and a possible implementation
of a algorithm incorporating it. The contribution is then evaluated and discussed in
Section 5.1.2.

5.1.1 Advanced Cost Function

In this section the main contribution is explained in detail, i.e., the definition of the
advanced cost function and how to gather the relevant data out of a process execution log.

Advanced Cost Function

Conformance checking aims to align a sequence of events of a process log to a possible
event sequence of a process model. For every deviation, i.e., an unexpected event in a
sequence, a cost for the deviation is assigned. The alignment cost of a event sequence of a
process log consists of the sum of all deviation costs. Currently, the cost for a deviation
equals 1, whereas correctly fitting events have a cost of zero assigned [CvDSW18].

While this cost function is generic, it does not use any information on data elements
of events at all, an event simply is visible in a process execution log or not. This section
introduces a new generic advanced cost function that aims to use all of the available
information of the events in a process execution log and improve the results of conformance
checking.

This approach is focusing on deviations, i.e., a missing or additional event in the process
execution log to align to a possible sequence of a process model. To achieve this, acceptable
values are gathered during the discovery of the process model. Acceptable values are,
values for data elements that are compliant to the current process model. At the end of
the section, the finding of acceptable values depending on the type of the data element is
explained. When deviation is detected in an alignment, the data elements of the event after
the deviation using a synchronous move are taken into consideration. If the values of the
data elements result in correct values, even though an event is missing, the per-deviation
cost of the preceding deviation should be reduced, since it indicates an error in logging if
an event is missing in the log, or a successful repair of the process instance if an event is
added to the log. Thus the following advanced cost function is defined:

98

5.1 Extending Conformance Checking Algorithms Using an Advanced Cost Function

Since the advanced cost function is applied on a deviation using the data elements of the
succeeding event, the standard cost function is used before and the per-deviation cost of
the alignment is then altered using the advanced cost function. bm represents the base cost
for a deviation, often 1. Since more than one data element can be attached to an event,
the effect of specific data elements can be controlled. D contains sets of all acceptable
values for each data element attached to an event. The sets of acceptable values for each
data element is calculated using a process execution log as a test set or while discovering
the process model from an event stream, which is explained in detail at the end of this
section. The function χ is the indicator function and checks if the value for a data element,
is correct by checking if the value is in a set of acceptable values D. The indicator function
returns 1 if the value is present and 0 if not. The result is then multiplied by a weight, ω.
This weight allows user to distribute the impact of data elements. The value of a weight is
defined between [0, 1] and the sum of all weights must be 1.

The base assumption here is the usage of a process execution engine, which does not
allow unwanted events to be executed. If a deviation is still being detected, then there
are 2 potential reasons for this deviation. Either, (a), an event is missing in the log. This
could be the due to an error in the log or, worse, an attack on the process execution engine,
skipping events. On the other hand, if (b), an additional event is found in the process
execution log, it represents a repair event or an attack as well. If the data elements of
the succeeding event contain acceptable values, an error in the log or a successful repair
attempt is assumed and the conformance deviation cost of the alignment reduced. If the
data elements do not contain acceptable values, an attack or unsuccessful repair attempt is
assumed and the cost of the alignment is not reduced. Since more than one data element
can be linked to an event, each of this data elements is inspected on its own.

Implementation

Algorithm 5, shows a possible implementation of the elaborated approach. As parameters
a process model, a trace and κ are needed. The parameter κ is needed to define, how
many none synchronous moves in a row can be affected by the advanced cost function,
since depending on the process and the process domain it may not seem feasible to reduce
the per-deviation costs for lots of deviations caused by data elements of the event of the
next synchronous move. At first an alignment is calculated using a standard cost function.
Afterwards a loop iterates through every move of the alignment and collects κ deviation
in a row. If a synchronous move is found, the advanced cost function is applied to every
collected deviation and then the list is emptied, lines 5 and 5. After the loop, the cost
of this alignment is calculated, through a loop collecting the cost for each move, and
returned. Note that, this algorithm can be applied in an online and offline setting. For the
offline setting, the alignment cost can be generated for the complete trace. In an online
setting, standard online conformance checking is used [vZBH+17], which is calculated
incrementally. Algorithm 5 is applied every time a new event is detected on the trace the
event relates to.

Data Element Acquisition

To use data elements of an event in a process execution log, a distinction of the types of
the data elements has to be made, since not every data element type can be used.

99

5 Time & Data-Aware Conformance Checking and Explaining Drifts

Input: M : Process Model with information on acceptable values for data elements
T : A Trace, containing events of a process execution κ: maximum of consecutive
deviations, ≥ 1
Result: C: Cost for the alignment of T with M .
alignment = conformance_checking(T)
deviations = []
for move in alignment do

// iterate over every move in the alignment
if move.type == Deviation then

deviations.append(move)
if len(deviations) > κ then

deviations.shift
end

end
if move.type != Deviation then

advanced_cost = advanced_cost_function(move.event) // the event of the
move

for m in deviations do
m.cost = advanced_cost

end
deviations = []

end
end
C = 0
for m in alignment do

C += m.cost
end
return C

Algorithm 5: Finding Cost of Alignment

Numerical Data: Numerical data elements provide a numerical value which is con-
tinuous, can be compared to other numerical values and has an ordering. In the process
model, for a numerical data element, an interval can be stored to check if the data element
in a trace is within a certain range. This interval can be calculated for example using the
interquartile range (IQR), which equals the difference between the third and first quartile.
The lower bound usually then equals the first quartile minus 1.5 times the IQR, while the
upper bound equals the third quartile plus 1.5 times the IQR.

In Fig. 5.6, a small example can be seen for numerical values impacting the moving
costs in an alignment. The process model shows the only possible sequence is (A,B,C).
Trace t shows a possible alignment, where a deviation is seen in the log, since event B is
missing. For the basic per-deviation cost penalty 1 is assigned, allow one missing event
and weigh each data element equally. Since 2 out of 3 data elements at event C yield
acceptable values and only one deviation is used in this alignment before a synchronous
move, it seems plausible that event B has taken place and a potential error has occurred
while logging. Therefore the cost of this alignment drops to 0.33 instead of 1.

Categorical Data: This data element type represents data elements with a fixed
number of possible values, i.e., day of the week. The XES format allows to relate a data

100

5.1 Extending Conformance Checking Algorithms Using an Advanced Cost Function

A

C

A

B

C

Model Trace

Data elements
x: [10,20]
y: [5,7]
Z: [30,40]

Data elements
x: 14
y: 6
Z: 35

Data elements
x: [20,30]
y: [9,15]
Z: [10,20]

Data elements
x: [56,80]
y: [2,5]
Z: [15,30]

Data elements
x: 40
y: 3
Z: 20

Figure 5.6: Example for Numerical Values. A range classifying acceptable values

element to a specific extension, like lifecycle1, thus enabling us to distinguish between
categorical data elements and arbitrary data elements. To see if a categorical data element
contains a correct value, a set of possible values for this data element, is added to an event
in the process model. The possible values are values that occurred as value for this data
element a certain amount of times, e.g, 30%.

In Fig. 5.7, again a process model with only one possible sequence, (A,B,C), is shown, but
with a different set of relevant data elements attached to event C, one of them categorical
and two numerical. Trace t features a possible alignment with a deviation for event B.
Again, a basic per-deviation cost of 1 is assumed, allowing one missing event and weighing
each data element equally. Both numerical data elements are not within the corresponding
interval, but the categorical data element is one of the 3 possible values, therefore the
alignment cost drops to 0.66 instead of 1.

Time Sequence Data: In [DRMGF14] by Dunkl et al., 3 approaches to relate a time
sequnce of a sensor event stream to a process model instance are introduced. The first
one recording the sensor event stream separately and matching them with the process
execution log afterwards. The second one, storing the time sequence in a data element and
the third one splitting the sensor event stream into recurring events with a single value
into the process execution log. The first approach is used here to detect the time sequence
of a data element from one specific event to another.

In Fig. 5.8, the process model is enriched with the average time sequences between
two events. To compare the time sequence of a process model and the time sequence of a

1http://www.xes-standard.org/lifecycle.xesext

101

http://www.xes-standard.org/lifecycle.xesext

5 Time & Data-Aware Conformance Checking and Explaining Drifts

A

C

A

B

C

Model Trace

Data elements
x: [10,20]
y: [5,7]
z: {start,begin}

Data elements
x: 14
y: 6
z: begin

Data elements
x: [20,30]
y: [9,15]
z: {intermediate}

Data elements
x: [56,80]
y: [2,5]
z: {complete}

Data elements
x: 40
y: 1
z: complete

Figure 5.7: Example for Categorical Values

trace between two events, the corresponding time sequences are concatenated together,
i.e., for the sequence (A,B,C), the average time sequences between A and B and, B and C
are concatenated and compared to the time sequence from the trace. To compare time
sequences, Dynamic Time Warping (DTW) is used [BC94]. DTW can cope with time
sequences of different lenghts and calculates an alignment between both time sequences
and the cost for this alignment. If the costs are below a user specific threshold, the
costs for a deviation are reduced. To find the average time sequence is calculated using
DTW Barycenter Averaging (DBA) [PKG11]. The example in Fig. 5.8, using a basic
per-deviation cost of 1, allowing one missing event and weighing each data element equally,
shows that in event C, both numerical data elements are within the interval of the model
and that the distance between the time sequence of data element x from the process model
and the time sequence of data element x from the trace equals 1.73, which is below the
threshold of 5, therefore reducing the cost of this alignment to 0.

Other data element types, e.g., arbitrary strings, are currently not supported for this
method, since no relation between the data element values is known. Data element types
representing a hierarchical structure, like an organizational chart, are currently being
assessed and are marked for future work.

Offline and Online:
A process history allows to discover process models online, so at runtime. The information

for all relevant data element types can be gathered at runtime, while time sequences from
a sensor event stream can be stored online as well. Therefore the information for the
advanced cost function differs, that only the currently available and processed data from

102

5.1 Extending Conformance Checking Algorithms Using an Advanced Cost Function

A

C

A

B

C

Model Trace

Data elements
x: [1,1,1,1,1,1,1], th: 5
y: [5,7]
z: [3,10]

Data elements
x: [1,2,1,2,1,1]
y: 6
z: 5

Data elements
x: [7,7,9,8,9,9,7] th: 5
y: [9,15]
z: [7,20]

Data elements
x: [5,6,7,8,8,7,5], th: 5
y: [2-5]
z: [3,10]

Data elements
x: [5,8,7,8,9,7,5]
y: 3
z: 8

Figure 5.8: Example for Time Sequence Values. The average time sequence and the
maximal allowed distance to it are stored

already executed events out of the event stream can be taken into account. The offline
approach gathers the information on data element intervals, sequences and sets usually
from a training set out of a process execution log without the need for a process history.

In section 5.1.2, the conformance checking method is evaluated using a real word data
set from the manufacturing domain and an artificial data set to cover every possible data
element type.

5.1.2 Evaluation of Extended Conformance Checking

The function and algorithm, elaborated in section 5.1.1 are prototypically implemented
and evaluated based on an artificial and real-world log from the manufacturing domain.
At the end of the section, the results are discussed.

The evaluation is twofold. The artificial example covers numeric and categorical data
elements, while the real-world log is providing time sequence data for one data element.

Artificial Example

A test set consisting of 100 traces with data elements has been generated. The complete
process model with information on the accepted values for the data elements can be seen
in Fig. 5.9. For the heart rate and blood pressure, an interval is presented, while for
the status a set of acceptable values is given.

As mentioned earlier, there are only two combinations for a trace that corresponds
perfectly to the process model, i.e., either (Check General State of Health, Administer

103

5 Time & Data-Aware Conformance Checking and Explaining Drifts

Drugs, Check Blood Pressure, Check Heart Rate) or (Check General State of Health,
Administer Drugs Check Heart Rate, Check Blood Pressure). From the data set the
following acceptable values have been gathered.

• A set consisting of NOK for status in Check General State of Health.

• A set consisting of NOK for status and the values ranging from 61 to 101 for
measurement in Check Heart Rate.

• A set consisting of NOK for status and the values ranging from 85.375 to 134.375 for
measurement in Check Blood Pressure.

• A set consisting of NOK for status in Administer Drugs.

Figure 5.9 shows the result of Alg. 5 using the process model, κ equaling 1 and the
sequences shown in the figure. Each event only contains acceptable values.

Sequence a, (Check Heart Rate, Check Blood Pressure, Check General State of
Health), features a deviation, since Administer Drugs is not present in the sequence.
Using the standard cost function the cost of the alignment would be 1, but since all the
values are acceptable for the following event, the cost is reduced to 0 and an error in the
logging is likely, since the heart rate and blood pressure show correct values.

Sequence b, (Administer Drugs, Check General State of Health), features a se-
quence with 2 deviations in succession. With κ set to 1, the first missing event, Administer
Drugs, is not altered by the advanced cost function. This can be considered by changing
the κ to 2, which reduces the cost of the alignment to 0.

Sequence c, (Administer Drugs, Check Heart Rate, Check General State of Health),
features an interesting case, since again, the cost of the alignment can be reduced from 1
to 0, since all values of Administer Drugs are acceptable, but since the data element is
usually constant over the first 2 events of this process, it can be argued, that this is not
caused by an error in the log and the event indeed, never has been executed. This shows
that the selection of relevant data elements is important and has a great impact on the
results.

Real World Example

The example shown in Fig. 5.10 is from the manufacturing domain. The process model
described in BPMN2 is depicted without labels. The labels and decision conditions can be
seen in the second column, followed by the task IDs in the third column, and the estimated
times (and loop iterations) in the last column.

The whole process is executed using the cloud process execution engine (CPEE) [MRM14]
on the shop floor (see Fig. 5.11) of a company specialized on prototyping and small
production batches.

The process deals with the machining of a part for a gas turbine (see Fig. 5.12), and
models the interplay of three machines and a stock area. MT45 is a lathe by the company
EMCO with produces the parts, IRB2600 is a robot by ABB which extracts the machined
parts from the lathe, moves it through a high-speed 2D optical micrometer by Keyence in
order to get some production quality data. Afterwards the IRB2600 puts each part onto

2http://www.bpmn.org/

104

http://www.bpmn.org/

5.1 Extending Conformance Checking Algorithms Using an Advanced Cost Function

Administer
Drugs

Check General
State of Health

Check Blood
Pressure

Check Heart
Rate

+

+
value: [85.375,134.375]
status: NOK

value: [61,101]
status: NOK

status: NOK

status: NOK

(a)

Model: Drugs, Heart, Blood, Check

Trace : >> , Heart, Blood, Check

Cost: 1 Advanced Cost: 0

Advanced Cost: 0

(b)

Model: Drugs, Heart, Blood, Check

Trace : Drugs, >> , >> , Check

Cost: 2

Advanced Cost: 0

(c)

Model: Drugs, Heart, Blood, Check

Trace : Drugs, Heart, >> , Check

Cost: 1

Movecost: 1 κ: 1

Movecost: 1 κ: 2

Movecost: 1 κ: 1

All tasks containing
acceptable values

Figure 5.9: Artificial Example

an individual trays (see Fig. 5.13) in the stocking area. Each tray is labeled with a QR
code, it is assumed that the trays are lined up sequentially in the stocking area, so that
only the first tray has to be scanned, the QR code for each subsequent tray can then be
calculated.

The process consists mostly of sub-processes which encapsulate the details of dealing
with heterogeneous machine interfaces and operational safety (i.e. while the robot operates,
no humans are allowed in the vicinity of the robot). The process is subject to frequent
ad-hoc repair actions, as humans frequently stroll into the safety area protected by Pilz
light barriers. Whenever that happens, the robot goes into an emergency stop state, that
has to be acknowledged by a human. Sometimes the robot is in a position the requires
manual position change by an operator in order to avoid damaging equipment, which
means some steps in the process model have to be skipped or repeated.

105

5 Time & Data-Aware Conformance Checking and Explaining Drifts

s

s

s

s

s

Scan First Tray QR a7 1min

data.num > 0 && data.trays.any? 21x

Get Machine State a9 0.03min

exclusive

data.state == 'Cancelled' 100%

Spawn Production a8 0.01min

MT45 Start a1 0.29min

Wait For Machining End a4 4min

MT45 Take Out a10 1.3min

Next Position on Tray a17

IRB2600 Measure and Put on Tray a11 0.01min

Next QR a14

0%

s

s

Correct Queue a2

Fetch a1 4min

x

x

1

2

3

a

Figure 5.10: Manufacturing Example. The ’S’ in the modeled tasks, shows that a script is
executed by the process execution engine after a task has been completed.

The second process shown in Fig. 5.10 is part of “MT45 Start”, and deals with collecting
a stream of data from 14 different sensors in the lathe while the part is produced.

When looking at the loop a in Fig. 5.10, out of 21 iterations, 19 had only synchronous
moves. The alignments of the other 2 traces are shown in Tab. 5.1 and 5.2. κ is set to 1 and
the base deviation cost is 1. The first alignment features the swap of two events, 1 , while
the other one the missing of an event, 2 . The deviation cost for the first alignment is 2, but
in GV12 MT45 Take Out and Next Position on Tray the data element tray positions
is present. The range for all 3 values for tray_positions equals to [-362.87,437.13],
[-382,21,417.79], [220,220]. The values of the trace are in the range of [-112.87,-187.13],

106

5.1 Extending Conformance Checking Algorithms Using an Advanced Cost Function

Figure 5.11: Shop Floor: Robot, Lathe, Micrometer, Stock

Figure 5.12: GV12 Part [SRM20a]

Figure 5.13: Trays in Stock Area [SRM20a]

107

5 Time & Data-Aware Conformance Checking and Explaining Drifts

Model Get Spawn MT45 Start Wait Next Take out >> IRB2600 QR
Trace Get Spawn MT45 Start Wait >> Take out Next IRB2600 QR

Table 5.1: Alignment of the first deviation

Model Get Spawn MT45 Start Wait Take out Next IRB2600 QR
Trace Get Spawn MT45 Start Wait Take out Next >> QR

Table 5.2: Alignment of the second deviation

[-182.21,217.79],[220,220], which are acceptable. For GV12 IRB2600 Measure and Put on
Tray, the second deviation, features similar acceptable values, [-212.87, 187.13], [-382.21,
417.79], [220.0, 220.0] are the acceptable values for the data element value. The values of
the trace -112.87, -182.21 and 220 are acceptable, hence the conformance deviation cost is
reduced to 0.

For 2 , only one deviation is witnessed. The acceptable values for Next QR are [-362.87,
437.13], [-382.21, 417.79] and [220.0, 220.0]. Since the values for the deviated trace are in
between [-112.87,187.13],[-182.21,217,79] and [220, 220], the conformance deviation cost is
reduced to 0.

In Fig 5.14 the average time sequence for one sensor can be seen as a red line, 3 . The
measurements are done in the event Fetch, which is done in a loop. The data set was split
into a training set consisting of 10 out of the 19 traces that featured traces with a correct
outcome, i.e., the part has been correctly built.

A sensor provides time sequence data, so the alignment cost can be reduced if the
distance between the time sequence of the model and of the deviated trace is below a
certain threshold, here 29.12. This threshold was set by a domain expert.

Time in milliseconds

D
ia

m
e
te

r
in

 m
m

Trace

Avg Sequence

Distance: 19.72

Alignment: >> , Fetch Cost: 0

Figure 5.14: Time Sequences of Manufacturing Example. Red line is the average time
sequence, dashed from one trace. The cost is reduced because the distance is
below the threshold of 29.12

108

5.1 Extending Conformance Checking Algorithms Using an Advanced Cost Function

Trace with Correct Parts Trace with Faulty Part
Traces with

reduced costs 50% 0%

Traces with
no reduced costs 50% 100%

Table 5.3: Results Alg. 5

Because all traces out of the data set comply to the process model, the first event of the
process Correct Queue has been randomly removed out of 20 traces.

Figure 5.14 shows the result of one trace 3 using the advanced cost function. The cost
of the alignment can be reduced to 0, because the distance between both time sequences is
19.72 below the threshold of 29.12. This threshold is set by a domain expert.

The 17 traces without missing events, have been aligned perfectly with an alignment
cost of 0. Out of the 20 traces, 8 traces resulted in an accepted outcome of the process,
while the other 12 traces yielded faulty parts. Out of the 8 traces, the alignment cost of 4
traces has been correctly reduced to 0, since even though the Fetch event is missing, the
time sequence is below the threshold and the part is correct.

Out of the 12 traces with faulty parts, no alignment costs have been reduced at all,
since the time sequence difference was to big. This leads to believe that the error is in the
execution and not in the logging, therefore the alignment cost using the standard function
is correct.

Discussion

The results of the artificial and the real world example showed interesting results. The best
results are achieved using data elements that always yield the same values in every process
instance. For example, in the manufacturing domain, the dimensions of the produced part
are always the same, thus the interval for this data elements can be calculated easily. The
same can be observed while using time sequence data elements. Since the time sequences
are fairly similar of all process instances. On the other hand, i.e., if the values for the data
elements vary and do not follow a pattern, the advanced cost function cannot be applied.
For example in the finance domain in a loan approval process, the amount of the loan can
vary greatly and the different instances are not related.

This leads to an important aspect of the advanced cost function, the selection of relevant
data elements of the events. This can be seen in the artificial example.

As mentioned before, data element that vary greatly are problematic, since acceptable
values would contain a great range. This would result in a reduced alignment cost, since
almost all values are acceptable for such a data element even though it is faulty. Therefore
experts have to select viable data elements to apply the advanced cost function onto.

The value of a data element at a certain amount of time, always leaves some room for
interpretation. Time sequence on the other hand shows the full history of a data element.
For example, the blood pressure of a patient should be elevated for a certain time span
instead of one measurement. It can be seen that the advanced cost function on the real
world data set assigns lower alignment cost values for good parts and does not reduce the

379917b2a-5bac-4074-8690-4e4e5cdf0b8f

109

5 Time & Data-Aware Conformance Checking and Explaining Drifts

alignment cost for faulty parts for 50% of the traces. This leads to the assumption, that
the costs be calculated best using time sequence data.

The algorithms in this section presented a novel approach to adjust the costs of mis-
matches in an alignment based on an advanced cost function. The next section focuses on
the next area of Figure 5.2, semantic deviations.

5.2 Temporal Perspective

while the previous section presented new approaches to adjust the cost of structural
deviations detected via conformance checking methods, this section focuses on the semantic
deviations [MdLRvdA16a] (cf. Figure 5.15), mainly temporal deviations.

Conformance Checking

Semantic

Timing Deviation

Data Deviation

Resource Irregularities

Structural

Missing

Additional

External

Data points Deviation

Time Series Deviation

Figure 5.15: Conformance Checking Types and Affected Artifacts. This section focuses on
the circled area.

Temporal information in a process can be defined in two different ways: (a) the time
between start events of two subsequent tasks (temporal distance) and (b) the time between
start and end events of a single task (task duration) [PLCR19]. In general, logs for mining
purposes are either generated by extracting data from a specialized information system,
or alternatively generated by a process execution engine. Most available data sets only
contain end events. Thus temporal distance is the prevalent definition, while some process
managements systems produce logs with start and end events and thus allow for the more
concise task duration point of view.

Temporal deviations might occur for the following reasons:

• Reduced duration: A task was not executed properly because, e.g., a machine failed
or information was missing.

• Increased duration: Preconditions for the tasks have not been met, or hidden
dependencies between tasks exist.

This section aims at finding and quantifying such temporal deviations. By contrast to
existing work [MdLRvdA16a], the temporal information is not available in the form of
temporal constraints, but is determined based on an input process execution log. The
result is a temporal profile. The input process model is infused with the temporal profile.
The goal of this work is to determine temporal deviations of an (ongoing) process event
stream with the temporal profile during runtime (online). A process event stream contains
events reflecting the execution of process instances. Instead of a protocol of finished process
instances, the events of all process instances currently being executed are being put into a
stream. An event stream contrary to a process execution log is infinite.

110

5.2 Temporal Perspective

Another important feature of this apporach is to propose a user-adjustable semantic
quantification (in the form of an annotation to the process model) in order to quantify the
significance of temporal deviations for a certain task. This way, it can be expressed that
exceeding the limit of a task duration can be more severe for some events (or tasks) and
even affect succeeding events.

Two real-world data sets are used for the evaluation of the approach. The first one is
the BPI Challenge 2012, since it meets the criteria of providing the start and end time
of at least some events of the process execution log [Van12]. The other data set is from
the manufacturing domain and features the production of industry parts where the whole
production process is managed and enacted by a process execution engine.

Section 5.2.1 provides the algorithm for infusing process model with a temporal profile.
Moreover, Sec. 5.2.1 introduces the cost function for temporal deviations and the algorithm
incorporating it. The contribution is then evaluated and discussed in Section 5.2.2.

5.2.1 Temporal Conformance Checking

This section infuses process models with temporal profiles as input for temporal conformance
checking using a cost function to quantify temporal deviations.

Temporal Profile Generation

The basic idea of temporal conformance checking is to infuse a process model with a
temporal profile and then to conduct conformance checking using a cost function that
quantifies temporal deviations between the temporal profile and an event stream of interest.
The input for temporal conformance checking hence comprises a process model and (i) a
process log in an offline setting or (b) an event stream in a runtime (online) setting. For
(i) the process log can be split into a training set for calculating the temporal profile and a
test set for temporal conformance checking. The evaluation will show both, (i) offline and
(ii) online settings

The temporal profile captures task duration and temporal distance between events/tasks.
Both are explained in the following and sketch some scenarios. Algorithm 6 calculates
a temporal profile from a process model and a process execution log. An example for a
process model infused with a temporal profile is provided in Sec. 5.2.1.

Task Duration: To compare the attached event data between process execution logs in
the XES format, standard extensions are available, for example, the name, the timestamp,
and the lifecycle of an event. The lifecycle data element of an event reflects its current
status. For temporal conformance checking, start and end lifecycle event are needed
to calculate the complete task duration by calculating the difference between these two
timestamps (cf. Fig. 5.16 (b)).

Temporal Distance: The temporal distance determines the time after an event is
completed and before a new event starts. For this, the events have to contain again a
data element describing its lifecycle, i.e., start and complete. The notation |AB| is used
for describing the temporal distance between event A and B. While in a strict sequence of
events, like events A and B in Fig. 5.16 (a), the computation of the temporal distance is
trivial, some interesting occurrences can be witnessed if events are executed in parallel,
i.e., event C and D in Fig. 5.17.

111

5 Time & Data-Aware Conformance Checking and Explaining Drifts

Event B has to be completed before either event C or D can be started. This leads to 4
possible temporal distances, namely |BC|, |BD|, |CD|, and, |DC|. Both, C and D have to
be finished before event E can be performed, thus the distances |DE| and |CE| emerge as
well.

Algorithm 6 calculates the mean and standard deviation for all observed temporal
distances and stores them. Infrequent distances can be filtered out using a threshold value.

Astart Aend Bstart

Temporal Distance

Astart Aend

Task Duration
b)a)

Figure 5.16: Temporal Profile – Example.

For this, Alg. 6 starts with creating two hash tables [CLRS09] to save the time distances,
one for task duration and one for temporal distances. Afterwards, each event of every
process instance is parsed. If a start event is detected, the temporal distance is calculated
to the last detected end event and the timestamp is saved for the task duration. On the
other hand, if an end event is detected, the task duration is calculated and the event
is saved as the currently last finished event for the temporal distance. Lines 6 and 6
determine the mean and standard deviation and filter out infrequent temporal distances.

Temporal Conformance Checking

After temporal profile is calculated, temporal conformance checking can be performed,
either online at runtime on an event stream or offline on a process execution log.

The z-score [CA86] is used to determine the distance of new observations to the
gathered data sets from the preparation phase. Since the data for the data sets has been
collected in a complete test set, it can therefore be argued that the data set is complete,
which enables the use of the z-score. The z-score is defined as follows:

z = |x− µ

σ
|

Thus, the deviation is calculated by subtracting the mean of all time distances for an
event from the new observation and divides it by standard deviation of all time distances
for one event. If the z-score exceeds a specified threshold, a deviation is detected. Certain
tasks allow a greater deviation while other tasks demand to be very precise. The z-score
determines how many standard deviations the observation is distant to the mean. Thus a
list of thresholds is used, containing a threshold for every task in the process model to
reflect the needs for adjustable outlier detection.

To use this z-score for quantifying the cost of a temporal deviation, a temporal deviation
cost is introduced as follows:

The end cost for an alignment calculated by temporal deviation conformance checking
is the sum of all costs of structural movements using standard conformance checking, i.e.,
log and model moves, and of all costs of temporal deviations using the temporal deviation
cost function.

Algorithm 7 shows a prototypical implementation for temporal conformance checking at
runtime. Line 7 starts a hash table for all currently saved process instances. The parameter
TSIZE defines how many process instances can be stored at the same time. Since the

112

5.2 Temporal Perspective

Input: M : A process model,
L: A process execution log, containing traces of process instances, κ: threshold for filtering
infrequent time distances
Result: M : A process model containing information of time distances
td = dict() // Hash Map of Execution time duration
inter_td = dict() // Hash Map of Inter Time distances
for trace in L do

// iterate over every process instance in the log
current_starts = dict() // Hash Map for execution time duration
last_end = None
for event in trace do

//iterate over every event of trace
// lc() == lifecycle of event, ts() == timestamp of event
if event.lc() == ’start’ then

current_starts[event.name] = event.ts()
if last_end != None then

if inter_td[last_end.name+event.name] == None then
inter_td[last_end.name+event.name] = list()

end
inter_td[last_end.name+event.name].append(last_end.ts()-event.ts())

end
end
if event.lc() == ’complete’ then

if td[event.name] == None then
td[event.name] = list()

end
td[event.name].append(event.ts()-current_starts[event.name].ts())
current_starts.remove(event.name)
last_end = event

end
end

end
stats = dict() // Hash Map of all means and standard deviations of time distances
for key in td do

stats[key] = (mean(td[key]),stddev(td[key]))
end
for key in inter_td do

if len(inter_td[key]) ≥ κ then
stats[key] = (mean(inter_td[key]),stddev(inter_td[key]))

end
end
M .add(stats) // Infusing Process Model with Hash Map of time distances
return M

Alg. 6. Temporal Profile Generation

algorithms are dealing with possibly infinite process instances, only a fixed number can
be stored. If the hash table is full, an older process instance is removed from the table.
There are many classifiers possible for determining the to be removed process instance.
This approach opted for the oldest process instance to be removed, line 7. Lines 7 to 7
create the necessary variables for each instance.

In line 7 the alignment cost for standard conformance checking is calculated [vZBH+17].
The hash map unfinished_events saves all timestamps of starting events. Every time a
starting event is detected, the timestamp is added. If the related end event is detected,
line 7, the timestamp is removed from the hash map. For each end event, the temporal
deviation cost is calculated based on the duration of the event, line 7. For every detected

113

5 Time & Data-Aware Conformance Checking and Explaining Drifts

Definition 7 (Cost Function for Temporal Deviations).

temporal_deviation_cost_function(x,M) =

{︄
0, if no mean(Mx) available || z-score(x) ≤ κMx

ωMx ∗ ϕ ∗ z-score(x), otherwise

Let x be a time distance, M a process model containing information of time distances, κ a
threshold defined between 0 and ∞ and Mx the data set of related time distances, containing
the mean and standard deviation and a related κ-threshold. If a mean is available and the
z-score is smaller or equals κ, this function yields 0. Otherwise let ϕ any number between
0 and inf to adjust the impact of a temporal deviation in general and let ωMx be a weight
between 0 and ∞ for the related event to adjust the impact of specific events. The function
yields the temporal deviation cost for observations with a z-score greater than the threshold
κ.

start event, the temporal deviation cost for inter event time distance is calculated, line 7.
If an event is still being executed and its task duration is already greater than the

average time for this task, the temporal deviation cost is calculated using the time duration
between the moment the last event is detected in the event stream of this process instance
and the starting event, line 7.

Illustrating Example

As can be seen in Fig. 5.17, the process model has been infused with a temporal profile
capturing temporal distances and task durations on average and with the standard
deviation.

Assume the following traces t1 and t2 to appear in an event stream of interest:
t1 = ((Astart,0) ,(Aend,19) ,(Bstart, 29))
t2 = ((Astart,0) ,(Aend,20) ,(Bstart, 23),(Cstart, 24),(Cend, 28),(Bend, 29)).

Note that in order to illustrate the run through of Alg. 6 and Alg. 7, the events are
listed with their time spent related to the start of the process instance in seconds.

The ωevent is set for A and B to 1 and for |AB| to 2 to represent a more sever deviation,
ϕ to 1 for both instances and κevent to 2 for the task duration of B and to 3 for all other
distances. The events in t1 are in the correct order, so there are no costs for aligning this
trace to the process model. The z-score for event A is calculated when Aend is detected,
which yields 0.25. Since 0.25 is smaller than 3 (κ), no temporal deviation cost is added.
When Bstart is detected, the temporal deviation cost is calculated based on the temporal
distance of 10. This yields a z-score of 14, which is greater than κ, increasing the cost for
this trace to 28, since ω is set to 2 for this distance. Assume that 7 seconds passed after
Bstart has been performed and the algorithm has been executed. Since that is greater
than the average execution time of 6 seconds of event B, the temporal deviation cost is
calculated, which yields a z-score of 2. Because κ is set to 2 for the task duration of B,
the cost value is increased by 6. The current cost of this trace is therefore 34.
t2 shows an deviating structure, since the execution of C has been executed before event

B finished, which results in move in the alignment and by using the default conformance
checking cost function yields costs of 1. The execution time duration of all events is fitting
the process model, as well as the temporal distances. There are no recordings for the

114

5.2 Temporal Perspective

Input: M : Process Model with information on time distances
ES: An event stream, sending events related to model M .
TSIZE: Maximum Number of available process instances that can be stored.
κevent a list of thresholds the maximum allowed z-score per event
ωevent a list of weights for the results of temporal deviation cost function per event
ϕ: general cost modifier for temporal deviations
Result: C: Cost for last alignment of ES.
// temporal_deviation_cost_function(x) == tc(x)
traces = dict()
for e in ES do

if e.trace not in traces then
if len(traces) ≥ TSIZE then

traces.remove_oldest()
end
traces[e.trace] = dict()
traces[e.trace][’cost_time] = 0
traces[e.trace][’preceding_event] = None
traces[e.trace][’unfinished_events] = dict()
traces[e.trace][’trace’] = list()

end
t = traces[e.trace][’trace’]
t.append(e)
traces[e.trace][’cost_structural’]= online_conformance_checking(t,e)
if e.lc() == ’complete’ then

if tc(e,M) > κ then
traces[e.trace][’cost_time’] += tc(e,ωe, ϕ)

end
traces[e.trace][’preceding_event’] = e
traces[e.trace][’unfinished_event’].remove(e.name)

end
if e.lc() == ’start’ then

if traces[e.trace][’preceding_event′] != None and
tc(|traces[e.trace][’preceding_event’]e|) > κe then

traces[e.trace][’cost_time’] += tc(|traces[e.trace][’preceding_event’]e|,ωe, ϕ)
end
traces[e.trace][’unfinished_events’][e.name] = e.ts()

end
for event in traces[e.trace][’unfinished_events’] do

if Time.now - M [event].mean() > 0 and
tc(event(Time.now-traces[e.trace][’unfinished_events’][event]),ωe, ϕ) > κe then

traces[e.trace][’cost_time’] +=
tc(event(Time.now-traces[e.trace][’unfinished_events’][event]),ωevent, ϕ)

end
end

end
C = traces[e.trace][’cost_structural’] + traces[e.trace][’cost_time’]
return C

Alg. 7. Finding Cost of Alignment

temporal distances |AC| and |CB|, thus the temporal deviation costs cannot be calculated
for these distances.

5.2.2 Evaluation of Temporal Conformance Checking

Algorithms 6 and 7, together with the cost function for temporal deviations (cf. Def.
7) are evaluated based on two real-world data sets. The one is the BPI Challenge 2012

115

5 Time & Data-Aware Conformance Checking and Explaining Drifts

A

B

C

D

E

+

+

μ = 3s, σ = 0.5s

μ = 5s, σ = 1s

μ = 20s, σ = 4s

μ = 7s, σ = 1.5s

μ = 6s, σ = 1s

μ = 4s, σ = 2s

μ = 7s, σ = 1.5s

μ = 5s, σ = 1s

μ = 9s, σ = 0.5s

μ = 6s, σ = 3s

μ = 4s, σ = 1s

μ = 3s, σ = 1s

|CD|

|DC|

Figure 5.17: Process Model Infused with Temporal Profile – Example

(BPIC2012 for short) [Van12], which features a process from the financial domain. This log
has been chosen, since it provides lifecycle attributes for at least a few number of events
to calculate the temporal distances. The feasibility of the approach is evaluated using this
log.

Since no additional knowledge of the log is present to evaluate the results of temporal
deviation conformance checking, a second real-world is presented in the evaluation. The
second log [SRMM] features a business process in the manufacturing domain4 and experts
are evaluating the results afterwards to assess the applicability of the approach. A
prototypical implementation of the temporal profile can also be found in the pm4py
framework [BvZvdA19].

5.2.3 Financial Example

The data set from the BPI Challenge 2012 contains 262200 events from 13087 process
instances. Since only the process execution log is given by this data set, the evaluation

4http://gruppe.wst.univie.ac.at/data/manufactoring_log.zip

116

http://gruppe.wst.univie.ac.at/data/manufactoring_log.zip

5.2 Temporal Perspective

Name Profile Size µ σ Min Max
W_Completeren aanvraag 18562 640.03 5883.48 0.77 244731.43
W_Nabellen offertes 18975 560.58 7302.64 0.95 243191.22
W_Valideren aanvraag 6493 1268.71 6098.85 1.1 238256.25
W_Afhandelen leads 4864 1012.62 9905.82 0.67 243739.82
W_Nabellen incomplete dossiers 9574 771.07 8052.62 1.03 239878.67
W_Beoordelen fraude 211 73.77 640.81 0.77 9240.84

Table 5.4: BPIC 2012: Task Duration in seconds for all 6 events of 3271 process instances

mainly focuses on calculating the additional temporal deviation costs for an alignment
without the costs of structural conformance checking and assign ωx to 1 for every event.
The events contain data elements describing the values for a financial transaction as well
as timestamps. A mandatory requirement for the elaborated approach of this section, is
the availability of lifecycle attributes of an event.

Out of the 23 different tasks in the business process, only 6 tasks have a lifecycle logged
with a start and an end event. This can be explained, because the process consists of 3
inter twined sub-processes, but only sub-process W contains the start and end event of
activities, while the other two A and O do not.

The data set is analyzed as a whole instead of breaking it up into 3 different processes,
because these sub-processes are inter-twined, therefore do some temporal distances appear
from sub-processes without start events. The task duration does not change if other events
happen during the execution. Since no event stream of the data set is available, the data
set is split into a process execution log consisting of the first 80% of process instances
and an event stream constructed using the other 20% of the process instances, a similar
approach to machine learning algorithms [Alp20].

For Algorithm 6, the first 10469 process instances are used as a set to gather the temporal
profile.

As can be seen in Tab. 5.4, the task duration varies to a great extent. Often the
duration of an event takes seconds, other times the duration spans several days. This can
be attributed to the fact, that these events are inter-twined with events from the other
sub-processes. Hence the task duration time of these events is depending on the time of
the other events. The duration cannot be calculated for the other sub processes, since only
end events are found in the process execution log.

As sub-process W contain start events, temporal distances can be determined. κ is set to
20 to filter out distances, that only have been detected like 2% of the time.

The remaining temporal distances can be seen in Tab. 5.5. Again, a wide range of time
distances between the events is detected. This is reasonable, because the task duration
varies to a great extent as well.

Algorithm 7 is applied to the test set consisting of the remaining traces in the log.
Even though the algorithm has been designed for online execution, it is still possible to
calculate the temporal deviations in an offline setting. To achieve this all events have been
collected and have been sorted according to their timestamp. Each of these events has
then been injected into an event stream with random intervals, but still using their original
timestamp for the calculation. κevent has been set to 3 for all events, ϕ and all ωx to 1.

Out of 12650 task duration, 12607 events yielded a z-score below κ, but 43 yield a higher
score. The maximum z-score of 3620.9 has been found in process instance 207263. As can

117

5 Time & Data-Aware Conformance Checking and Explaining Drifts

Name Profile Size µ σ Min Max
A_PREACCEPTEDW_Completeren aanvraag 3819 22875.3 33214.99 3.55 156982.87
W_Completeren aanvraagW_Nabellen offertes 4019 270672.33 308357.9 6.61 1206235.29
W_Nabellen offertesW_Nabellen offertes 14955 258339.44 279374.88 1.4 2572740.11
W_Nabellen offertesW_Valideren aanvraag 2640 233294.08 159396.81 7.2 617152.84
W_Completeren aanvraagW_Completeren aanvraag 12686 79836.59 228186.05 1.47 2583000.9
W_Valideren aanvraagW_Valideren aanvraag 2402 39583.82 112968.6 1.95 1289690.02
A_PARTLYSUBMITTEDW_Afhandelen leads 3905 18670.85 30043.74 11.57 151792.25
W_Afhandelen leadsW_Completeren aanvraag 2064 12132.28 20071.87 6.76 159723.98
W_Valideren aanvraagW_Nabellen incomplete dossiers 1764 5108.96 8359.51 4.62 147659.13
W_Nabellen incomplete dossiersW_Nabellen incomplete dossiers 7809 61731.99 112940.21 1.54 1117225.91
W_Nabellen incomplete dossiersW_Valideren aanvraag 1421 34776.54 75051.87 9.97 614586.68
W_Afhandelen leadsW_Afhandelen leads 940 3669.69 12485.41 1.46 160780.79

Table 5.5: BPIC 2012: Temporal Distance in Seconds of the first 10469 process instances
with κ set to 200

be seen in Tab. 5.4, W_Beoordelen fraude is the event with a small standard deviation.
In this process instance the task is started at 09:00 on a Thursday and finished the next
day at 06:15. Thus a holiday does not seem plausible and it is likely that something
happened during this task. The advantage of using this algorithm online would be the
possibility to examine the process instance immediately when enough time has past after
the starting event of this task. No process instance showed more than 2 deviations.

Out of 12654 possible temporal distances, 12395 do not deviate and 259 do. The
maximum deviations of one process instance is 5, detected in 2 process instances. Without
domain experts, it is difficult to classify the severeness of these deviations.

5.2.4 Manufacturing Example

The first example showed that the algorithm is returning good results with no knowledge
of the underlying process. For the manufacturing data set5, a process model with different
ωx and κx is provided. An expert has been assessing the results.

Figure 5.18 shows the manufacturing of a part6. The main process (tasks a1..15)ashows
the interaction between different machines (EMCO MT45 Turning Machine, ABB IRB2600
Robot, Keyence Optical Measurement Machine) during production, while the sub-process
× is spawned for every single produced part, and tracks its full production lifecycle.
Every task has an ω assigned, values of 1 signify normal (high) importance. Values of 0
signify that deviations can be ignored. In addition to that, a κ is assigned to each task,
representing how many standard deviations an observation can be distant to the mean of
a distance. Often 3 is used as a default value to detect outliers [CA86]. A higher value
allows for greater distant distances, while a smaller value implies, that the distance has to
be closer to the mean.

The × sub-process is forked, i.e., the main process does not wait for it to finish, but
executes in parallel. The duration between the b1 start event and the b1 end event should
always be identical to the duration between a8 start event and the a4 end event. For
a1 : ω = 0, as a1 forks a sub-process (without waiting for it to end). Hence its duration is
negligible.

5http://gruppe.wst.univie.ac.at/data/manufactoring_log.zip
6Note that the tasks IDs a1 to a15, and b1 to b4, are neither continuous nor in sequence as this version

of the process is the result of several redesigns

118

http://gruppe.wst.univie.ac.at/data/manufactoring_log.zip

5.2 Temporal Perspective

s

+

+

data.parts_to_produce > 0

Spawn Production a8 ω = 0 κ = 0

MT45 Start a1 ω = 1 κ = 5

Wait For Machining End a4 ω = 0 κ = 0

MT45 Take Out a10 ω = 0.5 κ = 3

exclusive

data.first_run?

IRB2600 Door to Scanner a11 ω = 0.5 κ = 3

IRB2600 Scan a12 ω = 0.5 κ = 3

IRB2600 Scanner to Door a13 ω = 0.5 κ = 3

IRB2600 Door to Portal a14 ω = 0.5 κ = 3

IRB2600 Unload to Tray a15 ω = 0.5 κ = 3.5

Turn a1 ω = 1 κ = 3

Signal Machining End a4 ω = 0 κ = 0

Measure with Keyence a2 ω = 0.5 κ = 3.2

Measure with MicroVu a3 ω = 0.5 κ = 3

X

X

Figure 5.18: Manufacturing of Parts

119

5 Time & Data-Aware Conformance Checking and Explaining Drifts

Every occurrence of ω = 1 is attributed to actual machining of the part, which is
expected to show small deviations. When the MT45 turning machine closes its door and
starts machining, only two cases can lead to a deviation: A power failure or if raw material
or the machining tool breaks. Both of these cases are unlikely. Especially the latter is
important. If a tool or the raw material breaks, two things can happen: (1) the machine
triggers an emergency stop if any damage due to flying metal parts is detected, or (2) the
machining time is reduced, as there is no longer contact between machining tool and raw
material. Thus no friction occurs7.

Thus, a first perceived application of temporal conformance checking is to trigger an
emergency stop of the machines.

All tasks with the prefix IRB2600 are robot tasks (a10, a11, a12, a13, a14, a15). The
robot takes the finished parts out of the MT45 Turning Machine. This can partly happen
in parallel to the machining. As soon as the robot leaves the confines of the MT45, the
machine can start producing the next part. While the MT45 is producing the next part,
the robot (a12, b2) scans the part with the help of a Optical Measurement Machine, and
(a15) puts it on a tray which, in turn, is placed on pallet with 50 other trays. All of the
IRB2600 tasks are expected to show small deviations, except for a15. As all the trays
are on a different position on the pallet, each operation should have a slightly different
duration, thus yielding the highest standard deviation of all tasks. All robot tasks are
also prone to extreme outliers, as the robot is subject to an industrial safety mechanisms:
whenever someone accidentally walks close to the robot, a full emergency stop is triggered
to avoid injuries. This can indeed be observed in the data multiple times. Afterwards it is
not always trivial to restart the robot as sometimes it has to manually be moved into a
defined state, before the process can be continued.

As a second application, temporal conformance checking can be used to automatically
determine the significance of cases, in order to notify personnel for solving the situation.

Table 5.6 shows selected durations of different tasks. Temporal conformance checking
proves efficient in pointing out small deviations in the manufacturing process, instanta-
neously at runtime. For the task duration, 27 deviations of 1373 distances and for the
temporal distance, 47 deviations of 1334 distances have been detected At one point the
raw material was running out. Thus the resulting part was missing some of its mass. Due
to the reduced weight, slightly different timings can be accurately pointed out in the log.
While this is probably also possible through other means (e.g., analyzing the deviations in
data from the measurement), the runtime temporal deviations provide much faster and
more universally applicable feedback.

Threats to validity: Even though real world data sets are used in this evaluation
there are still potential problems. One concern is the volume and velocity of data in the
event stream. While both of these data sets are rather small and can easily fit into the
memory of a modern computer, there could be performance issues when dealing with a
real infinite event stream. Another important aspect is the need for an expert to receive
satisfying results. Even though deviations have been detected in the finance example, it is
hard to argue automatically if these deviations are a real concern for the process instance
or are negligible.

This section presented algorithms to identify temporal deviations and perform confor-
mance checking on a semantic perspective. The next section focuses on the last area of

7This can also be confirmed through lower power usage.

120

5.3 Discover and Explain Concept Drifts based on external data sources

Name Profile Size µ σ Min Max
IRB2600 Grip 30 40.66 6.3 37.32 74.03

IRB2600 Extract 30 23.17 1.43 21.21 28.85
IRB2600 Portal to Door 30 12.22 6.28 9.48 45.91

IRB2600 Door to GS 30 12.47 0.56 11.48 13.85
IRB2600 GS to Take 30 14.78 0.47 13.96 15.81
IRB2600 Take to GS 30 10.5 1.1 9.69 15.73
IRB2600 GS to Door 30 11.49 0.7 10.1 13.12

IRB2600 Door to Scanner 30 13.75 1.62 11.19 18.2
IRB2600 Scan 30 29.59 1.82 26.08 32.59

IRB2600 Scanner to Door 30 12.89 0.98 11.19 14.84
IRB2600 Door to Portal 30 10.96 1.47 9.56 18.03
IRB2600 Unload to Tray 30 20.86 9.6 17.4 69.16

Table 5.6: Manufacturing: Task Duration in Seconds of first 30 process instances in the
data set.

conformance checking, external data analysis and presents an approach to explain the root
cause of a concept drift using external sensor data streams.

5.3 Discover and Explain Concept Drifts based on external
data sources

This section focuses on external data used in conformance checking as can be seen in
Figure 5.19.

Conformance Checking

Semantic
Timing Deviation
Data Deviation
Resource Irregularities

Structural
Missing
Additional

External
Data points Deviation
Time Series Deviation

Figure 5.19: Conformance Checking Types and Affected Artifacts. This section focuses on
the circled area.

“World-class organizations leverage business process change as a means to improve
performance, reduce costs, and increase profitability” [The19]. Companies can react by
adapting their business process to the changing requirements at a large scale, e.g., new
regulations, and at a smaller scale, e.g., deviations in sensor streams in manufacturing or
medicine. In any case, adaptations of the process logic result in a so called concept drift
[WK96].

When adapting business processes, a concept drift might be known in case of explicitly
defined and applied process changes, but also unknown and “only” recorded in so called
process event logs that store information on business process execution in an event-based
manner. If the process execution events are continuously collected during runtime, a
process event stream. Existing techniques detect concept drifts from process event logs in

121

5 Time & Data-Aware Conformance Checking and Explaining Drifts

an offline manner (ex post) based on process execution logs [BVDAZP14] or in an online
way based on process event streams [vZvDvdA18, MBCS13, SRM18], i.e., during runtime
as the processes are executed. Online concept drift detection can be crucial to react on
process changes in time. However, approaches to analyze and identify the reason why a
concept drift happened, i.e., its root cause, are missing although knowing the root cause
contributes to, e.g., optimizing future occurrences of similar concept drifts.

Hence the basic question is how to identify and analyze the root cause for concept
drifts at runtime. Several examples suggest that data from IoT devices, i.e., external
sources such as sensors can influence the execution behavior of a process. Temperature, for
example, might cause exceptions in logistics processes [BFN+19]. Variations in parameters
might indicate the quality of products in manufacturing [KHP+19, EFMR19]. The data
emitted by sensors is called sensor event streams and is captured externally, i.e., outside
the process execution [MPO+19]. Sensor event streams constitute time sequence data
[KHP+19]. Informally, a time sequence holds quantitative, time-stamped data.

In order to facilitate root cause analysis for concept drifts, this chapter focuses on
aligning drifts in sensor event streams to associated process instances and helping domain
experts to assess root causes and thus propose concept drifts.

The approach takes the methods from the previous chapters as input. The process
history holds an ordered sequence of process models that have been mined online and
are connected to per-instance sensor event streams. These sensor event streams are time
sequences, and the deviations between the streams of different instances of each model are
determined using dynamic time warping (DTW). DTW calculates the distance between
two time sequences. The challenge is to interpret the drifts in the sensor event streams to
identify future concept drifts in the process model (in contrast to [SRM18], which deals
with the identification of concept drifts ex-post). The approach was implemented for a
real-world IoT application from the manufacturing domain and a data set was gathered
that is used to evaluate the approach. Specifically, it is shown how the results of the
analysis support domain experts in understanding why a drift happened (root cause) and
to learn what can be done to efficiently deal with it. The objective is therefore to evaluate
the applicability of this approach in finding the cause for a concept drift, to evaluate the
performance of this approach, i.e., how many reasons can be correctly detected in which
time and to give information on how to adapt the current process model to the current
situation.

This section is outlined as follows: In Section 5.3.1, a running example as well as
preliminaries are introduced. Section 5.3.2 features two algorithms to determine drifts in
event streams from external sources. Section 5.3.3 evaluates these algorithms based on a
real world IoT application. The results and impressions are discussed in section 5.3.4.

5.3.1 Fundamentals of Dynamic Time Warping

Figure 5.20(a) shows the process model of a medical round for a patient of a health
care facility. This model represents the current care plan for one specific patient. The
general health status of a patient is checked, the blood pressure is measured, and drugs
are administered. During runtime process instances are created and executed based on the
process model. The execution information is stored in a process event log. Assume that a
concept drift occurs, which results in the process model depicted in Fig. 5.20(b), i.e., an
additional hydration check is added in parallel to checking the blood pressure. Another

122

5.3 Discover and Explain Concept Drifts based on external data sources

drift could be detected in the data elements of a process instance, for example, the task
“Blood Pressure” is in (b) done by nurses, while it has been done in (a) by medical doctors.
Existing approaches [MBCS13, SRM18, vZvDvdA18, MDRO17] enable drift detection,
but do not explain why the drift happened in the first place.

Unlike process data such as resource or patient age, typically, the temperature and
humidity of the patient’s room are constantly monitored by external sensors. The sensors
produce event streams which consist of data points representing a single measurement.
These measurements are typically not stored in a process execution log, but in a different
database, since the tasks are not directly linked to any process data. It is investigated
whether and how such sensor event streams can be exploited in order to analyze and
explain why a concept drift happened.

(a)

Check
Patient

Blood
Pressure

systolic: 120mm Hg
diastolic: 80mm Hg

resource: Medical Doctor

data elements

Check
Patient

Blood
Pressure

Check
Hydration

+ + Administer
Drugs

(b)

systolic: 120mm Hg
diastolic: 80mm Hg

resource: Nurse

data elements

Administer
Drugs

Figure 5.20: Concept drift resulting in adapted process model – medical example

A time sequence is defined as follows in [GRM15, p. 208]: A sequence of time-stamped
data for which the attribute values are the result of measurements of a quantitative
real-valued state variable, denoted by y ∈ R, y = (y(t1), y(t2), ..., y(tn)).

The challenge is to compare the time sequences in order to detect differences in the
associated sensor event streams that can lead to drifts. To compare two time sequences,
an alignment is calculated to determine the distances from one sequence to another. The
most common distances measure are the Euclidean Distance (ED) [FRM94] and Dynamic
Time Warping (DTW) [BC94]. While ED has several advantages like linear computing
time and being straightforward, it requires time sequences to be of the same length and is
deceptive for noise. DTW is also able to globally find the best alignment and can cope
with sequences of different length. The complexity is quadratic, since a m×n matrix has
to be constructed, where m and n are the lengths of the time sequence.

A

B

28

25 25

28 28

26 2626

23

27

25 25

2727 27

24

26 26

29

Time passed in minutes
5 10 15 20 25 30 35 40 45

Time passed in minutes
5 10 15 20 25 30 35 40 45

Figure 5.21: Plot of two time sequences and their corresponding values

123

5 Time & Data-Aware Conformance Checking and Explaining Drifts

28 25 25 28 28 26 26 2623

27

25

25

27

27

24

26

26

29

3 5 6 7 8 12 13 14

4 1 4 7 8 10 11 12

7 1 4 7 8 10 11 12

8 3 3 4 8 9 10

9 5 5 3 3 8 9 10

13 6 6 7 7 5 7 9

15 7 7 8 9 5 8 5

17 8 8 9 10 5 8 5

18 12 12 9 9 8 11 8

B
A

5

5

5

1

1

1

2 3

4

8

Figure 5.22: Warp matrix constructed using DTW: orange cell = distance

DTW is used, since it is able to deal with sequences of different lengths. Figure 5.21
shows time sequences A and B, together with a table containing the exact values at every
timestamp. The m×n matrix D for the alignment between A and B is constructed by
starting in the bottom row and filling every value from left to right, as can be seen in Fig.
5.22. The distance as absolute difference between the actual values is calculated, so in the
bottom left corner it is | 28− 27 |= 1. Afterwards the cheapest cost from one of the cells
before is used, so D(n,m1),D(n1,m1) and D(n1,m) is added to the distance and assigned
to D(n,m). The definition follows [SC07]: D(i, j) = Dist(i, j) +min[D(i− 1, j), D(i, j −
1), D(i− 1, j − 1)]

The distance is found in the top right corner of Fig. 5.22. The alignment can be found
using back-tracing starting in the top right corner and following the path back to the start
cell in the bottom left corner, i.e., the green cells.

This sections employs the DTW Barycenter Averaging (DBA) [PKG11] algorithm. DBA
uses DTW as distance measure and calculates the average time sequence for a set of time
sequences. It starts by an arbitrary average sequence and adapts it iteratively by trying
to minimize the sum of squared DTW distances from the average sequence to the set
of sequences. The computation time of this technique is again quadratic, since a DTW
matrix has to be created for each iteration.

5.3.2 Time Sequence Assignment and Root Cause Detection

This section details the components of this approach, i.e., how to utilize time sequence data
from sensor event streams to flag process instances for closer inspection when performing
a root cause analysis for concept drifts. Note that an analysis for both cases is possible,
i.e., finding reasons for concept drifts that have already been detected (ex post) and
– particularly during runtime – detecting and analyzing deviations in the sensor event
streams that might lead to a future concept drift, i.e., a process evolution.

The architecture of the solution (cf. Fig. 5.23) is used as foundation for the subsequent
considerations. Note that the components Time Sequence Module and Drift Decision
Detection (both red) realize the contribution.

For detecting drifts, sensor event streams are taken as input. They can be fed into the
system by any process execution engine. In the manufacturing scenario presented in this
section, the Cloud Process Execution Engine CPEE8 is utilized. The sensor components

8http://cpee.org/

124

http://cpee.org/

5.3 Discover and Explain Concept Drifts based on external data sources

provide data streams collected through tasks in 5 (Fig. 5.26). The process history is
therefore extended to include all the data from the sensors. Further implementation details
will be described in Sect. 5.3.3.

Time
Sequence

Module

Execution
Engine

Sensors

<<external service>>

Data
Stream0

<<external service>>

Data
Streamn-1

Data
Streamn

<<external service>>Synthesing
Process History

Data points
Event

Stream

Drift
Decision
Detection

Process History

Time
Sequence

Process Models

Averaged Time
Sequence

Drift
Sequence

Figure 5.23: Proposed architecture: red parts denote the contribution of this section

Time Sequence Module

This component enriches the process history by adding the average time sequence of
every sensor to each new viable process model Mn. To relate a time sequence of an event
stream produced by a sensor to a specific process instance, the timestamps of the first
and currently last event of the stream are taken into account and the corresponding time
sequence is cut out for the process instance. In the example (cf. Fig. 5.20), time sequences
between the start time of “Check patient” and end time “Administer Drugs” are mapped
to a process instance for both sensors, temperature and humidity.

Algorithm 8 shows the pseudo code for the Time Sequence Module. The set of unfitting
traces T is provided by the process history, i.e., those traces that do not conform to
the current model Mn. The time sequences are provided by external sensors through
the process history. In line 8, the return value is initialized as an empty dictionary. A
dictionary here reflects a hash table [CLRS09] data structure with a key and a related
value to it. Line 8 starts the iteration over time sequences of each sensor. At first, the time
sequence for each trace out of T is collected starting in line 8. A time sequence is mapped
from a sensor to a trace by beginning from the first time stamp of this trace to the last
known time stamp of this trace, as can be seen in line 8. Since an online environment is
used, it is possible that traces just started and contain only one event, which results in no
time sequence for this specific trace.

Another important aspect of the online setting is, that each trace could have greatly
varying execution times, since it is not known how long a complete trace is going to
take. To diminish the impact of outliers and faulty or aborted instances, sequences with
a duration shorter than the first quartile minus 1.5 times the IQR (Interquartile Range)
or with a duration greater than the third quartile plus 1.5 times the IQR, are excluded.
The IQR is calculated here between third and first quartile. Other methods for detecting
outliers can be applied here or even working with every trace.

125

5 Time & Data-Aware Conformance Checking and Explaining Drifts

The quartile are calculated at (lines 8 and the IQR at line 8). Afterwards the outliers
of the collected time sequences are removed. Otherwise the time sequence will be taken
into account (lines 8- 8). In the last step (line 8), the averaged time sequence is put into
the dictionary ATS with its corresponding sensor id as key. The dictionary of averaged
time sequences is then sent back to the process history. The current viable process model
in the process history is thereby extended by this dictionary, which is then used by the
Drift Decision Detection component.

Input: ST : dictionary of a time sequence for each sensor ID
Result: ATS: dictionary of an averaged time sequence for each sensor ID
ATS = dict()
for w,ts in ST do

// w is id of sensor, ts its corresponding time sequence
temp_ts_list = list()
stats = list()
for t in ts do

if |t| < 2 then
next

end
temp_ts_list.append(time_sequence(t.first_event.timestamp,t.last_event.timestamp))

stats.append(temp_ts_list.last.length)
end
first,second,third,fourth = quartile(stats)
x = iqr(stats)
ts_list = list()
for t in temp_ts_list do

if |t| < first− x || |t| > third+x then
next

end
ts_list.append(t)

end
ATS[w] = dba(ts_list)

end
return ATS

Algorithm 8: Find relevant time sequences and compute avg. time sequence

Figure 5.24 shows an example of Alg. 8 where the following 5 sequences for the room tem-
perature have been collected: (27, 29), (27, 27, 28, 27, 29, 27, 29, 28], [30, 30, 30, 30, 29, 27),
(27, 30, 29, 30, 29, 27), (30, 27, 29, 29, 28, 28, 30, 29, 30, 29, 30,
29, 28, 29). The third quartile for the lengths of these sequences would be 8, the first quartile
is 6. Therefore the IQR equals 2. This excludes sequences which are shorter than 3 or longer
than 11. The first sequence (27, 29) and the last sequence (30, 27, 29, 29, 28, 28, 30, 29, 30, 29, 30, 29, 28, 29)
are not taken into account for the calculation and are printed in a green dashed line. The
red time sequence shows the calculated average time sequence with DBA.

126

5.3 Discover and Explain Concept Drifts based on external data sources

time sequence
average sequence

outlier sequence

Figure 5.24: Exemplary Result of Alg. 8 The red line is the average sequence calculated
using DBA. The green dashed lines represent outliers, potentially due to a
faulty process instance.

Drift Decision Detection

The second component of the solution proposed in this work is the Drift Decision
Detection component.

Input: M : A list of process models with averaged time sequence dictionary
TH: Dictionary of thresholds for similarity

Result: D: Set of sensor IDs that are likely to have caused a drift
D = set()
for ws_id in M .second.ATS.keys do

if ws_id not in M .first.ATS.key then
next

end
ts_a = M .first.ATS[ws_id]
ts_b = M .last.ATS[ws_id]
if dtw(ts_a,ts_b) > TH[ws_id] then

D.add(ws_id)
end

end
return D

Algorithm 9: Detecting a set of sensor data streams which caused a drift

Algorithm 9 shows the detection of the most likely external sensors that can have caused
the drift in the process model. The process history sends two process models to this
component in order to receive a set of external sensors which caused a drift from the
first model to the second model. Each of these process models contains its average time
sequence for each external sensor. The dictionary TH is user defined and contains for
every external sensor, a related threshold for the distance between the two average time
sequences. A different threshold for each external sensor is needed, because the dynamic
warp distance is calculated using the differences in the data points. Assume that for the
running example (cf. Fig. 5.20), the ideal temperature ranges between 27◦ and 29◦C. Thus
similar time sequences have a low absolute cost depending on the length of the alignment.
A sensor keeping track of parts with higher tolerances can therefore have a higher warping
distance for similar sequences. These thresholds can be approximated using a test set for
the classification, where an expert has to define sensitivity and specificity for the sensor
data. At the start, the return value D is initialized as an empty set in line 9. The loop

127

5 Time & Data-Aware Conformance Checking and Explaining Drifts

iterates over every key that is in the dictionary of averaged time sequences (ATS) in the
second model in line 9. It is to be noted that the models could have different events
attached to them, but the external sensors should be the same. If a specific sensor is
not present in both models, it cannot taken into account, see lines 9. The average time
sequence for one sensor is retrieved for both models in line 9 and 9. If the cost of the
alignment, which is reflected in the top right cell of the warping matrix, see Fig. 5.22, is
greater than the corresponding threshold to the sensor, this sensor is added to the return
value D in line 9. This set of external sensors is then returned to the process history,
where it is stored.

Performance Optimizations

One problem with DTW is the computation time, since a m×n matrix has to be constructed,
where m is the length of one time sequence and n the length of the other time sequence.

One approach that can be used to optimize the performance of Alg. 8 and Alg. 9
is FastDTW [SC07]. FastDTW aims at performing DTW in linear time with 3 steps.
First the time sequence is shrunk into smaller time sequences that reflect the same curve
approximately. Then the minimum distance warp path is computed for the smaller time
sequence. Afterwards this warp path is adjusted to the original time sequence. For a
length of 10000 data points the computation time can be reduced from 57.45 seconds to
8, 42 seconds. The error rate for this approximation is below 1%.

Another way to speed up time warping is early abandoning [WKVHMN05, JY09]. In
this strategy, if the warping distance is above a certain threshold while creating the warping
matrix, the algorithm can stop the execution and label it as an outlier.

Both methods are suitable optimizations for Alg. 9, since it uses user defined thresholds
for each external sensor, but not for Alg. 8. This is because the average time sequence is
computed using the complete DTW distance score, thus not exact methods like FastDTW
and early abandoning cannot be used. In Sect. 5.3.3, Alg. 9 is evaluated using DTW and
FastDTW.

5.3.3 Evaluation of Drift Explanation Discovery using Real-World Data

The algorithms and components presented in Sect. 5.3.2 are prototypically implemented
and tested based on a real-world IoT application from the manufacturing domain in
order to prove the effectiveness and feasibility of the approach: The Austrian Center for
Digital Production9 produces parts called GV12 for a gas-turbine (see Fig. 5.25) as a
prototypical solution for a customer. The requirements for the part include high precision
manufacturing (low tolerances, i.e. some aspects allow for deviations of only 0.02 mm),
and strict quality assurance for each part, including (a) detailed tracking of manufacturing
data for each part and (b) measuring the adherence to tolerances for more than 12 features
with automated precision measurement equipment.

The entire production is carried out automatically by implementing the interaction
between the involved machines through industrial robots and transport systems. Here, the
focus is on the manufacturing and quality control as shown in Fig. 5.26. Currently more
than 20 processes and sub-processes are involved, and orchestrated during production of
up to 40 parts per batch. Figure 5.26 illustrates the basic manufacturing logic:

9https://www.acdp.at/

128

https://www.acdp.at/

5.3 Discover and Explain Concept Drifts based on external data sources

• 1 Batches of up to 40 pieces are ordered, the manufacturing is scheduled.

• 2 The interaction between all machines and robots is orchestrated, while enforcing
industrial safety principles10.

• 3 Individual parts are produced by using the following three steps:

– Machining of a part from hardened steel, which takes about 4 minutes per part.

– Measuring of the part by a high-speed optical micrometer11, while the next
part is machined. This takes about 12 seconds per part.

– Measuring of a part with automated precision measurement equipment12, which
takes about 8 minutes per part, and is also done in parallel to the machining.

• 4 A generic machine monitoring process determines when to start data collection
for both, machining and measuring.

• 5 A generic data collection process produces a continuous stream of values when
the laser of the high-speed optical micrometer is scanning the surface of the part.

The “Measure with Keyence” task is done automatically by a Keyence measuring machine
at no additional cost in parallel to the production of the next part.

Figure 5.25: GV12 part

As the Keyence machine is very compact, fast, and operates without touching the part,
this step is done after the robot extracted the part from the production machine, and
before it puts it on the palett. On the palett it is transported to the MicroVu measuring
machine, which is rather big and has to be operated in a location with low vibrations and
special light and temperature conditions. The task “Measure with MicroVu”, as opposed to
the task “Measure with Keyence”, is required by the customer, because it basically creates
an objective report about the quality of a part.

After some time, deviations in the process event stream collected by 5 can be observed.
These deviations can happen based on

• physical effects due to deteriorating machining tools, or temperature fluctuations.
10https://www.iso.org/standard/51330.html
11https://www.keyence.com/products/measure/micrometer/ls-9000/index.jsp
12https://www.microvu.com/products/vertex.html

129

https://www.iso.org/standard/51330.html
https://www.keyence.com/products/measure/micrometer/ls-9000/index.jsp
https://www.microvu.com/products/vertex.html

5 Time & Data-Aware Conformance Checking and Explaining Drifts

s Correct Queue

s
Fetch

Data Collection5

Turn

Signal Machining End

Measure with Keyence

s
Measure with MicroVu

s
Detection Machining

data.queue.to_s.empty?

Machining

exclusiveexclusive

data.finished.nil?

Generic Machine MonitoringProduction Logic
Single Part

Machine/Robot & Production Interaction

Order Processing - Batches of ~ 40 Parts1

2

3 4

Figure 5.26: Batches of GV12 parts

• problems stemming from accumulating debris that affects the production quality as
well as measurement quality.

Up to this point only the extreme values of the time sequence (i.e. min, max) from the
Keyence machine were used, which are sufficient for detecting (a) if the part has been
dropped by the robot (no part), or (b) the part appears to be too big (i.e., it is engulfed
by chips). However, the extreme values proved not to be effective for early detection of
parts which do not comply to the quality requirements. If an early reliable estimation of
the quality was available, it could be used to skip the ‘Measure with MicroVu” altogether,
which would save valuable resources.

Hence, our approach for this evaluation is instead of taking only the extreme values of
the measurement into account, to analyze the complete time sequence of the measurement.
Every time the process history detects a drift in the data elements, i.e, “Measure with
MicroVu” detects only faulty instances, a drift has been detected in the data model.
Algorithm 8 calculates then the average sequence, e.g., Fig. 5.27. The threshold for Alg. 9
is here calculated ex-post, with the results of “Measure with MicroVu”.

Prototypical Implementation

The orchestration of the BPMN 2.x based process models on the factory floor (cf. Fig.
5.26) is driven by the process engine CPEE1. The process history component subscribes to
the CPEE in order to receive information about every executing event. The external sensor
represented by activity “Measure with MicroVu” is a high-speed optical micrometer13.
13https://www.keyence.com/products/measure/micrometer/ls-9000/index.jsp

130

https://www.keyence.com/products/measure/micrometer/ls-9000/index.jsp

5.3 Discover and Explain Concept Drifts based on external data sources

The data set14 contains 1026 traces in the XES15 format for 37 parts and is available at
the figshare repository [SRMM]. The traces are produced by 13 different process models.
The sensor values amount for 6.2 MiB out of 1 GiB of total data. A time sequence for this
event contains on average about 776 data points. Measurements from a time sequence
range from 4.09 up to 37.87 millimeters.

The process history creates the process models as described in [SRM18]. The process
history uses a sliding window approach to deal with infinite amount of data that is being
captured by listening to streams, i.e., only a specified number of traces are used for
detecting a new process model in the history.

35
d

ia
m

e
te

r
in

 m
m

25

20

15

10

5

30

14108642 120

time passed in seconds

Figure 5.27: Result of implementation. The red line represents the average sequence

The Time Series Module component is implemented in Python as the tslearn package
[Tav18] is used, because it provides functions for computing an alignment using DTW
as well as DBA for finding the average time series. The results of this component are
retrievable via a RESTful web service as well. The Drift Decision Detection component
also uses these libraries. The result of Alg. 8 on the data set is depicted in Fig. 5.27.
Each grey sequence relates to one specific trace and shows the measurement data points of
one part. As it can be seen, one time sequence only lasts for about 8 seconds, while the
other ones last about 12 to 14 seconds. The average sequence, calculated using DBA is
depicted in red. This sequence is stored as additional information in the process history
for the current process model. Since this log only provides one sensor, i.e., “Keyence”,
only one sequence has to be calculated using DBA. To determine the feasibility of the
implementation, the following questions is looked at:

• How are parameters such as the duration of a process instance or the number of
traces in the process history sliding window, affecting the algorithms?

• What is the performance of these algorithms?

The performance of Alg. 9 is only depending on the length of the average time sequence,
which is hard to tweak with parameters of the process history and the number of sensors.
It can be adapted by changing the amount of data points that are to be stored per time
unit. The performance of Alg. 8 on the other hand is highly dependent of the parameters
set for the process history.

In order to rate the effectiveness of the approach it is possible to rely on the data
provided by “Measure with MicroVu”. Out of 37 parts, 18 parts were faulty. With this
14http://gruppe.wst.univie.ac.at/data/timesequence.zip
15http://xes-standard.org/

131

http://gruppe.wst.univie.ac.at/data/timesequence.zip
http://xes-standard.org/

5 Time & Data-Aware Conformance Checking and Explaining Drifts

Table 5.7: Results of both Algorithms
Window Size False Positives False Negatives Runtime

1 45% 0% 1.4s
5 0% 0% 10.3s
10 0% 0% 20.7s

knowledge the threshold is varied in order to achieve 0% false negative detection of parts.
In other words: no parts that are faulty should be delivered to the customer, on the other
hand it is acceptable that some parts that are actually good are detected as faulty. The
optimal threshold proved to be 22.

When varying the window size, i.e., the number of traces to be analyzed during the drift
detection, the following results emerge: As can be seen in Tab. 5.7, a window size of 5
and a threshold of 22 is sufficient for our scenario. With these values 100% of the faulty
parts can be identified, without relying on the time intensive “Measure with MicroVu” task.
This means that for a rate of 18 faulty tasks, almost 50% of the production time can be
saved, based on calculation of drift for sensor event streams.

Concept Drift Prediction / Process Evolution

For the task “Measure with Keyence” in Fig. 5.26, as collected by process 5 , the deviations
for the measurements between parts have some serious repercussions that can lead to
multiple possible process evolutions.

The results were discussed with three domain experts involved in the production of the
GV12 parts. When discussing the results from the drift analysis, the domain experts came
up with the following discussion points.

As can be seen in Fig. 5.28, the machining produced long chips, which entangled the
part. Furthermore, the comparison of the drift for “Measure with Keyence” with the quality
data from “Measure with MicroVu” (see Fig. 5.26) was deemed sufficient for predicting
the quality of a part, thus allowing for immediate removal of faulty parts from production
which decreases the overall time per batch greatly: the less “Measure with MicroVu” the
better. This led to the proposal of the concept drifts / process evolutions shown in Fig.
5.29. Overall, the concept drifts can be classified as follows:

• Static Evolution a : an extra activity “Chip Removal” was proposed to be inserted,
based on the observed drifts. A robot blows compressed air on the part, to remove

Figure 5.28: Chips on GV12 - wrong measurement

132

5.3 Discover and Explain Concept Drifts based on external data sources

Turn

Signal Machining End

s
Chip Removal

Measure with Keyence

s
Calculate Concept Drift

Concept Drift > X%

exclusiveexclusive

s
Measure with MicroVu

a

b

c

Figure 5.29: GV12 Prototype Part

debris and chips, which allows for more accurate measuring. This will allow for lower
possible thresholds in future / similar scenarios.

• Dynamic Evolution b + c : The drift is to be actively calculated at runtime, based
on previous process instances, and made available to the current instance. A decision
c is proposed to be inserted, that allows for terminating single parts without

“Measure with MicroVu”.

Performance evaluation: Table 5.8 shows the runtime of Alg. 8 to analyze the
applicability of this solution. Random time sequences are generated with 10, 100, and
1000 data points on average. Algorithm 8 is then applied on a set consisting of 5, 10, 50,
and 100 time sequences. The results of 10 data points on average show, that the execution
time of Alg. 8 for 100 sequences is even lower as the one for 50 sequences. This happens,
because the time for the calculation is so small, that other currently running tasks of the
operating system may interfere with the execution.

With 100 data points, Alg. 8 affects the total execution time to a greater extent, especially
with more sequences: 50 sequences result in a more than 3 times longer execution time
than 10 sequences. With 1000 data points, the execution time with more than 50 sequences
is increased by more than 10 times the execution time with 10 sequences.

Table 5.9 shows the comparison between DTW and FastDTW (cf. Sect. 5.3.2) in

133

5 Time & Data-Aware Conformance Checking and Explaining Drifts

Table 5.8: Runtime of Alg.8.
Datapoints/
Sequences 10 100 1000

5 1.17s 1.22s 3.53s
10 1.18s 1.31s 7.01s
50 1.29s 4,43s 75.83s
100 1.22s 4.63s 133.00s

Table 5.9: Runtime of Alg.9.
Datapoints DTW FastDTW

10 0.88s 0.0002s
100 0.87s 0.0003s
1000 0.91s 0.001s
10000 4.70s 0.01s

terms of speed. As expected, FastDTW is the faster technique as it works in linear time.
Unfortunately the results differ greatly for DTW when compared to FastDTW. While, for
example, the distance between 2 sequences with random values between 90 and 110 and
10000 data points was 343.2 when using DTW, the distance equals to 45299 when using
FastDTW. Since both algorithms are highly depending on the global maximum of the
alignment of sequences, FastDTW is not a suitable option.

Assessment by domain experts: The results are presented to a machine operator, a
mechanical engineer, and a measurement engineer. All three experts were overall satisfied
with the results. They highlighted that to the best of their knowledge in order to achieve
similar results, additional – hard to configure – software would be necessary.

5.3.4 Discussion of Drift Explanation Discovery

Possible limitations in the context of the presented approach include:
• Performance: An important aspect for the performance of this approach is the number
of data points in a time sequence. As can be seen in Tab. 5.8, even with 1000 data points
and 10 time sequences the implementation took about 7 seconds. This of course increases
linearly with number of sensors. Other techniques like FastDTW instead of DTW, reduce
the runtime drastically, but the alignment using FastDTW varies greatly from the globally
best alignment using DTW, which leads to worse results.
• Sensors selection: While in general IoT devices such as external sensors provide a valuable
source for detecting the cause of a concept drift, choosing the “right” IoT device may be
hard in some cases. The reason is that in many real-world scenarios there is a plethora of
devices creating data streams and therefore time sequences. Taking an external sensor
into account, that has no relation to the process model, for example, can produce wrong
results, since the time sequences of this sensor may vary to a great extent and hence be
incorrectly identified as the source of a drift. In addition, the runtime is heavily depending
on the number of sensors, hence not significant sensors should be excluded. Therefore it
is recommended that an expert additionally validates the results. If no sensors can be

134

5.4 Conclusion and Outlook

excluded by experts, a parallel optimization is advised of Alg. 8 where each sensor can be
calculated separately. This reduces the execution time of the algorithm to the execution
time of the sensor with the most data points.
• Thresholds: Another important aspect is finding the threshold for Alg. 9 automatically.
If there is a training set, the threshold can be calculated until a specified sensitivity and
specificity are met. Otherwise, an expert sets the threshold.

Also, the following threats to validity have to be considered: The data set of the
evaluation comprises the data of one sensor. Hence, the selection of the sensors cannot
be evaluated. While the increase of the runtime is predictable, the quality of the results
can differ greatly, if not related sensors are taken into account. The real-world case comes
from the manufacturing domain, where the selection of the sensors may be easier, since
the conditions of the events are often in a controlled environment, like a factory. In other
domains, like the medical domain or logistic domain where numerous external data stream
sources can affect the execution of a process, the selection may be more difficult. In future
work, experiments in different domains are planned.

5.4 Conclusion and Outlook

This chapter focuses on the execution of a process and analyzes the behavior of process
instances to a process model.

An advanced cost function to calculate the deviation cost in an alignment for conformance
checking in an online and offline way is introduced as well. The advanced cost function
allows conformance checking algorithms to alter the deviation costs for an alignment. The
data elements that are attached to events are used to distinguish errors in the logging
and security breaches, giving a more detailed view on the results of standard conformance
checking. The required data to make this distinction is gathered from an process execution
log. The results are promising.

Temporal conformance checking is introduced, in order to detect and quantify temporal
deviations for task durations and temporal distances between events. The approach can
be executed in an offline and online setting. For an offline setting, a process execution log
can be split in training and test sets. Based on the training set and the process model, a
temporal profile is calculated. In addition, the tasks in the process model can be annotated
with their significance for temporal conformance. The temporal profile and the model
can then be compared to the test set (offline) or an even stream of interest (online). A
drawback of this approach is the requirement of lifecycles attached to events, in order
to distinguish start and end events. Without this, the distance within events cannot be
detected at all and the distance between events can only be guessed.

A novel approach to predict the root cause of a concept drift in a business process based
on external sensor streams is presented, consisting of two algorithms to compare time
sequences associated with sensor event streams in combination with a process event stream.
The algorithms are capable of detecting the drifts in the external sensor event stream with
high accuracy.

To summarize, the main contributions of this chapter are:

• Conformance checking usually focuses on the workflow perspective of a process
instance and uses a trivial cost function for deviations in an event sequence.. The
approach introduced in Section 5.1 extends the conformance checking algorithms

135

5 Time & Data-Aware Conformance Checking and Explaining Drifts

by defining an advanced cost function for deviations and analyzes deviations on the
data perspective as well as the workflow perspective.

• Temporal deviations are analyzed in Section 5.2. The section enriches process
models by a temporal perspective, i.e., the temporal distance between events and
the duration of events. In addition a new algorithm is presented to quantify the cost
of temporal deviations.

• Section 5.3 investigates the source of a concept drift of a process. The presented
approach aligns data points, produced by external sensors as a data streams, to a
process instance and process model. Each time a concept drift is detected, the data
points for a process instance are interpreted as a time sequence and compared to a
time sequence of the process model, to explain why this drift happened.

As future work, a personalized generation of temporal profiles is planned, i.e., young
patients could need a shorter recovery time for the process depicted in Figure 5.3 than older
patients, thus the temporal profile should feature a different temporal distance between the
“Cholecystectomy” and “Hospital Dismissal”. Further predicting and explaining of future
drifts as well as analyzing hierarchical data elements, like an organizational chart, using
the advanced cost function is planned. The next chapter, Chapter 6, the requirements
for the algorithms presented in this thesis, are evaluated using a focus group study and a
technical action research study.

136

6 Evaluating TIDATE - Time and Data
Aware Process Mining at Runtime

Challenge

Process Execution
Engine

Data Set
Generation

Model
Discovery

Conformance
Checking

I

III

II

Evaluation
IV

IV

I

Target Research Goal Realization

Create suitable
Data Set for
Process Mining
Algorithms

Evaluate Logging Formats;
Create Data Set with Minimal
Interaction;
Enable Online and Offline
Algorithms

High Velocity of Data;
Finite Memory;
Reduce Documentional Effort;

Chapter 3

II

Detect and Determine
Concept Drifts;
Take Data Perspective
into Account

Chapter 4

Defining Process History;
Define Concept Drifts
and Data Drift Based
on History;

Unlimited Number of
Process Instances;
Outlier Detection of
Data Elements;

III

Extend Conformance
Checking;
use External and
Internal Data Sources

Chapter 5

Use Process History to
Quantify Deviations;
Include External Data
Sources;
Define Temporal
Deviations

How to Relate External
Data to Process;
Different Types of Data
Require Different Outlier
Detection;
Adjust Severness of
Deviation

Chapter 6Evaluation of
Perception of
Process Mining

Evaluate Impact
of Prototype;
Evaluate Perception
of Process Mining in
Manufacturing Domain

Generalization
to Other Domains;

Figure 6.1: Overview of Targets, Research Goals, Problems of this thesis. The features for
this chapter are marked.

This chapter addresses objective IV in Fig. 6.1, i.e., the evaluation of the framework
of this thesis, i.e., the algorithms presented in the previous chapters, the generation of a
XES event stream (cf. Chapter 3), the discovery of the process models based on an event

137

6 Evaluating TIDATE - Time and Data Aware Process Mining at Runtime

stream (cf. Chapter 4) and conformance checking based on different areas (cf. Chapter 5).
To evaluate the collection of the algorithms of this thesis as an artifact, a technical

action research (TAR) [WM12] study has been chosen, since it focuses on an artifact which
is developed closely with potential stakeholders. In addition a focus group study [Kru14]
has been conducted. This study allows to identify the requirements, the desired outcome
as well as the actual results of the framework. Through both studies, the following research
questions can be answered:

• RQ 4 What are the general expectations on process mining algorithms by
domain experts and what are the actual results after it has been introduced?

Section 6.1 provides the evaluation of the TIDATE framework using TAR as research
method. The algorithms are applied on an event stream generated by a process execution
engine, CPEE [MRM14] (cf. Chapter 3), where deviations are detected. The discovery
of process models is not evaluated as part as the TIDATE framework, since the process
models have been designed already by domain experts and a process execution engine is
already in use. In Section 6.2, the focus group study is presented using a double-layer
design involving two different companies and employees on three different hierarchy levels
in their organization.

A selection of text, figures and tables within this chapter is based on the following
publications.

Stertz, F., Mangler J., Rinderle-Ma S.: The Role of Time and Data: Online Conformance
Checking in the Manufacturing Domain. Tech. rep. (2021), https://arxiv.org/pdf/
2105.01454

Stertz, F., Mangler J., Scheibel B., Rinderle-Ma S.: Expectations vs. Experiences–Process
Mining in Small and Medium Sized Manufacturing Companies
In: International Conference on Business Process Management Forum, Pages: 195-211
https://www.doi.org/10.1007/978-3-030-85440-9_12

6.1 TIDATE - Artifact Design

While the previous chapters, introduced new algorithms to extend the current established
process mining algorithms, the design of a framework consisting of these algorithms and a
possible implementation needs to be looked at. From a methodological point, Technical
Action Research [WM12, Wie14] is employed. ”Technical action research (TAR) is the
use of an experimental artifact to help a client and to learn about its effects in practice”
[Wie14]. Doing so, TAR constitutes the last step “from the conditions of the laboratory
to the unprotected conditions of practice”. This study focuses on the framework of this
thesis, TIDATE as experimental artifact. TIDATE consists of a lightweight and modular
process engine for modeling and executing the manufacturing processes and the presented
algorithms in the previous chapters.

The findings are promising. From the different process mining tasks, process discovery
seems to play a minor role in manufacturing whereas the importance of online conformance

138

https://arxiv.org/pdf/2105.01454
https://arxiv.org/pdf/2105.01454
https://www.doi.org/10.1007/978-3-030-85440-9_12

6.1 TIDATE - Artifact Design

Research Context

Treatment design

Treatment validation

(Implementation)

(Evaluation)

Research Problem

Research design

Validation

Execution

Data Analysis

Problem Investigation

Treatment design

Treatment validation

Implementation

Evaluation

Technical Researchers's
Design Cycle

Empirical Researcher's
Empirical Cycle

Helper's Client
Engineering Cycle

Figure 6.2: TAR cycles (based on [Wie14])

checking is emphasized. The role of time and data in conformance checking is emphasized,
too, i.e., shopfloor workers and process supervisors are actually supported in their process
monitoring task. The generation of data sets that are suitable for a product-oriented
analysis is possible and does not conflict with the batch-oriented modeling of the processes.
Linking sensor data requires a certain upfront effort.

The section is structured as follows. The methodology and setup of the study is
explained in Sec. 6.1.1. The implemented approach is then tested and evaluated in Sec.
6.1.4. Section 6.1.5 answers the knowledge questions of the approach and discusses further
improvements.

6.1.1 Methodology

This study employs Technical Action Research (TAR) [WM12, Wie14] aiming at the
validation of an artifact in a realistic case, i.e., the implementation in a real-world or-
ganization. This is a major distinction to other forms of Action Research as TAR is
technology-driven instead of problem-driven. Section 6.1.1 outlines the research context of
this study, Section 6.1.2 the research design, and Section 6.1.3 the artifact validation.

This section provides an overview of the artifact, applied in a real-world application and
on the research method used to validate the artifact. This artifact is designed and then
evaluated using technical action research in the following section 6.1.4.

Research Context

In TAR, the researcher takes three logically separate roles, i.e., technical researcher,
empirical researcher, and helper. Consequently, the researcher in TAR, is allowed to
guide domain experts using the artifact, to interfere, and aims to answer research questions
with the results of the experiment.

Figure 6.2 (based on [WM12]) shows the three cycles used in TAR that reflect the three
roles of the researcher in TAR.

The technical researcher’s design cycle defines the research context of a study. According
to [Wie14], at first, the research problem is investigated and the research context is
defined by describing the goals of the created artifact and the current knowledge of the
environment. For this study, the experimental artifact is the lightweight process execution
and mining framework TIDATE and the practical setting is a manufacturing environment.
The clients are the domain experts, i.e., the shopfloor workers and the process supervisors.

139

6 Evaluating TIDATE - Time and Data Aware Process Mining at Runtime

In this study, the clients can benefit from time and data-aware conformance checking
techniques by detecting errors in the behavior of the manufacturing processes as soon as
possible. Moreover, the clients benefit from a minimally invasive generation of product-
oriented logs/event streams based on their batch-oriented process models. In the following,
the research context is defined by dividing the goals into knowledge and improvement
goals.

Knowledge goal: Can TIDATE help shopfloor workers and process supervisors in a
manufacturing environment in a useful way?

Improvement goals:

• Generate event streams for time and data-aware conformance checking during
runtime in a product-oriented manner.

• Highlight time deviations in process instances as soon as possible.

• Highlight data deviations linked to process instances as soon as possible.

• Highlight deviating behavior in the execution order of events in process instances
as soon as possible.

Current Knowledge: Process mining techniques have been evaluated using real-world pro-
cess execution logs. However, these evaluations are usually still based on laboratory
settings, i.e., the techniques have not yet been applied in a live real-world setting.

The treatment design yields TIDATE as a lightweight process execution and mining
framework to achieve the previously defined goals. For treatment validation TIDATE
is validated performing the Empirical cycle of the TAR study. In the protocol for the
TAR study the research problem is defined as follows using the checklist from [Wie14].

Conceptual Framework: TIDATE enables the logging of process instance executions and
the detection of deviating behavior in the execution.

Knowledge Questions:

• How can domain experts easily use process mining techniques?

• Can the results provided by process mining techniques be used by domain
experts?

Population: The population for this approach consists of companies which already have
knowledge of their processes and focus on the correct execution of process instances.

The validation of TIDATE and the answer for the research problem are generated by
implementing the treatment at a potential client.

For the client selection process, a suitable client was identified through previous collabo-
rations in different projects. The resources of the client are reachable through web services.
Hence only small adaptations of TIDATE were necessary to deploy it at the client’s site.
There are threats to generalizability, since the research applied the elaborated approach,
but domain experts have been shown the results and developed process models inside the
process execution engine to witness the usability of the approach.

140

6.1 TIDATE - Artifact Design

Execution
Engine

Sensors

<<external service>>

Data
Stream0

<<external service>>

Data
Streamn-1

Data
Streamn

<<external service>>
Data Set

Generator

Data points

Event
Stream

Proces Mining

Notifications

Conformance
Checking

Deviation
costs

Figure 6.3: TIDATE architecture

6.1.2 Research Design

After the research context and research problem are defined and a suitable client is found,
the empirical cycle is further defined by the researcher, and the helper’s client cycle (cf.
Fig. 6.2) is defined by the researcher and the client. Both cycles interact with each other,
therefore the coordination starts as soon as the client is acquired and ends after the client
cycle is evaluated (cf. [Wie14]). The problem investigation is the starting point of this
design and adaptation of TIDATE to the client’s needs.

Problem Investigation: The client is interested to know how tasks are being executed,
and if a process model is available, to know if the execution of instances are matching
the behavior of the related model. Common phenomena for this problem are a different
execution behavior due to a missing automatic task enactment like a process execution
engine and missing data sets allowing the detection of said behavior.

Artifact Design: The artifact TIDATE, that is introduced and implemented at the
client, contains a process execution engine. The client models the manufacturing processes
which are then enacted and executed by the process execution engine. Moreover, the
engine generates an event stream for the executed process instances. This event stream is
then used for conformance checking to give the client feedback. Process discovery is not
used, since process models have to be created for the use of the process execution engine.
The engine then orchestrates the execution of active tasks. Hence, no unknown process
models should be discovered from the event stream.

Fig. 6.3 shows the TIDATE architecture. This architecture can be used as blueprint
for (lightweigt) process execution and mining frameworks. The process execution engine
creates process instances using process models from a repository. The models in the
repository are designed by domain experts. The engine then enacts the tasks in the
sequence dictated by the model. To generate an event stream and a process execution log,
a notification is generated each time a task is enacted, finished, or changed. A description
of the process model is also sent as a notification when a process instance is created or
the model is changed for the process instance. The Logger component is subscribed to
the engine and generates an event stream based on the information received from the
notifications, creates an process execution log and stores the description of the related
model. This is important for checking the conformance of an instance.

141

6 Evaluating TIDATE - Time and Data Aware Process Mining at Runtime

The conformance checking component is receiving the event stream and the model
description from the Logger component and computes the alignment costs every time
a new event for a trace is detected. Note that the main focus of this framework is on
conformance checking in real time. Since conformance checking of the workflow perspective
is a time consuming task to detect the alignment with the smallest cost, the framework
focuses on conformance of the data elements . The conformance checking component
is receiving data from external sensors as well. The process execution engine typically
controls the workflow perspective of a process instance, but the data elements attached to
events could still contain wrong information. In addition, not every information affecting
the execution of a task is shown in an event. External sources, like the temperature in room
for example, can affect an instance, as well. To exploit this information in conformance
checking, the data from external sensors can be used, which is typically stored as a time
sequence. Time sequences can be compared using, for example, dynamic time warping
[SRM20b, RCM+12].

6.1.3 Artifact Validation

To solve the client’s problem of ensuring a correct execution order of the tasks in a
process instance and detecting errors as soon as possible, the following data is measured.
Domain experts design the process model and together with the researchers create the
necessary interfaces for the process execution engine to interact with the machines. After
an introduction, the domain experts create and start the execution of new process instances.
The event stream is generated by the process execution engine without needed interference
from anyone and the behavior is automatically checked on the data perspective of the
events. This data involves time sequences, temporal deviations between events and the
duration of events as well as other numerical data relating to the configuration of the
participating machines. The conformance costs are reported back to the process execution
engine where notification events can be produced to inform domain experts. Domain
experts are interviewed in the end to see if process instances that have gone wrong are
detected correctly with an increased cost, if the information was useful in detecting the
exact problem of the process instance as well if problems occurred during the usage of the
framework.

In the following Section 6.1.4, the artifact is executed inside the client’s environment,
results are generated and possible improvements are being created, based on the feedback
of the client.

6.1.4 Research Execution

In Section 6.1.1, the methodology and planned actions for applying and executing TIDATE
at a client, i.e., a manufacturing environment, were outlined. This section describes the
actual research execution along its setup in Section 6.1.4 and its execution and results in
Section 6.1.4.

Setup

The process execution engine provided by TIDATE, is used at the client, as it already
provides a notification stream to detect process model changes as well as the enactment and

142

6.1 TIDATE - Artifact Design

Tu
rn

 B
at

ch
Pr

oc
es

si
n

g

Spawn Turm
Production

Start Turning
Machine

Wait for
Machining End

Robot
Keyence Measure

Robot has Part

Raw Material
Available

Spawn Create
Turning Program

Spawn Copy Program to
Turning Machine

Robot
Take Part Out of

Machine

Tu
rm

Pr
od

u
ct

io
n

Spawn Turm
Turn Production

Send
Machining End

Spawn
Keyence

Measuring

Tu
rm

 T
u

rn
Pr

od
u

ct
io

n

Detect
Measuring

Spawn
Data Collection

Tu
rm

 T
u

rn
M

ac
h

in
in

g
Select Collection

Queue Collect Data
St

ar
t

Tu
rn

in
g

M
ac

h
in

e

Aux On Mode Auto Close Door Program
Start

Ke
ye

n
ce

M
ea

su
ri

n
g

Detect
Measuring

Spawn
Data Collection

Ke
ye

n
ce

D
at

a
C

ol
le

ct
io

n

Select Collection
Queue Collect Data

Figure 6.4: Process model used in the process execution engine for producing Turm parts.

completion of tasks. For this application, robotic machines and other software interfaces
are orchestrated and controlled by the process execution engine.

A client process driving the production of small metal parts called “Turm” by machines
for the usage by another company is depicted in Fig. 6.4. In the beginning the machine’s
state is checked and if it is free, the production process is spawned. Note that the whole
production process is split into a number of sub processes, so it is easier to read for the
domain experts as well as it is easier to maintain small processes. While different parameters
are fetched during the “Turn Production” process, the machine is set up accordingly with
a program to be deployed on the machine. This allows for a high flexibility to change the
process for the machine for each process instance. When the machine is finished, the part
is taken out and measured by the Keyence software and afterwards manually by domain
experts using MicroVU. In the end it, the produced part is put onto a tray outside of the
machine to be used in another process.

The notifications detected by the process execution engine are transformed into an event
using the XES format. These events can then be immediately used by the conformance
checking algorithms. Additional information which is captured by external sensors is
detected by the Fetch task from the “Turm Keyence Measurement” process in Fig. 6.4. The
machine is constantly measuring the diameter of the produced parts, to check if the parts

143

6 Evaluating TIDATE - Time and Data Aware Process Mining at Runtime

Select Collection Queue a2

Collect Data a3 ~T = 4m

Figure 6.5: Small example of process model in execution engine at client. The time ∼ T
represents the expected task duration on average.

have been correctly produced. The gathered data points of these sensors are aggregated
by the software of the machine, fetched by the process execution engine in the Fetch task
and then put into the notification of the task execution. Hence a time sequence for the
diameter of parts is generated for every process instance. For detecting imperfect parts,
the time sequence of a well produced part is saved additionally in the process execution
engine which is compared by using dynamic time warping, see Chapter /refch:cc.

For the detection of temporal deviations, algorithms from Chapter 5 are used. There are
2 types of temporal deviations. The first one is concerning the task duration. If the start
and end of a task is supported by the event stream, the task duration can be calculated by
determining the difference. The other type of deviation that can occur, is the time distance
between the end of a task and the start of the next task. Fig. 6.5 shows a sub-process as
implemented in the process execution engine. For task a3, “Collect Data”, a time duration
is put into the model. This duration symbolizes the expected task duration on average. If
no time is present, a deviation in this task is seen as harmless. The z-score [CA86] is
used to determine the distance of a witnessed task duration to the task duration in the
process model. If the distance exceeds a threshold, typically 3, an outlier, hence a severe
deviation, is detected.

To apply process mining techniques with correct results, every produced part should
be treated like an process instance. An interesting thing emerged at the beginning of the
implementation and setup of the framework at the client. Instead of viewing each produced
part as a process instance, the shopfloor workers view the production of a batch as one
instance. This means, that if out of a batch of 5 for example, only one instance shows
deviating behavior, the conformance score is still quite high, since the other 4 instances
show no deviations. For the beginning of this study, the produced parts have been divided
hard coded, with a better solution presented in Sect. 6.1.5.

Execution and Results

The process execution engine enacts the different tasks for process instances and generates
an event stream. This section focuses on discussing the results of the experiment.

Logging: The client is now able to automatically generate an event stream and even
process execution logs for the analysis of executed process instances. This allows for
repeatable results using process mining techniques, since the process execution log contains
time stamps as well to generate an event stream out of it. The logging component is being
executed as a separate process, hence it is never interfering directly with the execution of
process instances.

144

6.1 TIDATE - Artifact Design

Conformance Checking: Interesting results emerged from the first batch of parts
produced out of the data set. By taking a look into the process execution logs of the
different sub processes, no deviations are detected concerning the event flow of the process
instances, but instance b20fedd7 of the “IRB2600 Unload to Tray” process, contains time
deviatons. The “Move up” and “Move down” events, which relate to the tasks a12 and a21
with a task in between “wait” relating to a17. Compared to other process instances and
checked with the domain experts, this measurement, done by external sensors, takes about
30 seconds to move a part through the laser. In the log, all 3 tasks are taking 0 seconds.
After further investigation, a software error has been detected, leading to no measurement
at all by the external sensors, which yielded a return value immediately, hence the task is
logged and detected in the event stream as an event, but with an unexpected time stamp
and no values attached to the event. Therefore an error, has been detected as soon as
possible and the external software with sensors has been restarted to avoid this mistake in
future parts.

Another error that has been detected was due to a collision of the robotic machine
arm with another machine. This collision led to a slight misplacement of a mandrel of
the machine. The mandrel is still within a certain safety range, hence the robotic arm is
still reaching inside the machine. However, the produced part is not at the programmed
position due to the misplaced mandrel by a few millimeter. Hence the robotic arm is still
allowed to move, but grabs the produced part not correctly. The collision is not detectable
in the event stream, since the time stamps, data elements, and event order are correct, but
the time sequence from the external sensors during the measurement of the current and
following parts yields a different time sequence than the expected time sequence which
results in a high distance using dynamic time warping. This is detected by TIDATE. After
investigating the collision, the reason has been detected. It has been due to a not logged
meddling with the program of the robotic arm, which led to an incorrect execution in the
process instance.

Other than the situations described above the process instance of the inspected batch
conforms to the process model and yields correctly produced and placed parts.

The results of the client’s cycle are discussed in the following Section 6.1.5 to conclude
the empirical research cycle.

6.1.5 Discussion of Results

This section discusses how the previously gathered knowledge questions and improvement
goals (cf. Section 6.1.1) can be answered/addressed with the results of the client’s cycle.

Overall, the implementation at the client showed that errors in the process execution can
be indeed detected in a real-world setting and help domain experts detect errors quickly.

Knowledge questions

The first knowledge question targets the ability to use process mining techniques easily
in such settings. While the treatment at the client showed that process mining techniques
can be applied easily on event streams and process execution logs in a real-world setting,
the generation of a sufficient data set needed guidance by researchers. To accomplish the
generation of an event stream using a process execution engine, events have to be reported
back to the engine. Therefore notifications have to be sent to and from the engine to the

145

6 Evaluating TIDATE - Time and Data Aware Process Mining at Runtime

services, that are actually performing the tasks. At the client, this has been done using
the HTTP protocol and web services. For tasks to be executed by human resources, an
automatic way to log the execution of an event is preferable, like in Chapter 3.

After setting up a web service that responds to the process execution engine, domain
experts by themselves produced the programs to generate the notifications needed to create
an event stream. In addition, the domain experts independently created new process
models and instances without the need of assistance.

Also for the second knowledge question, if domain experts can actually use the
results of process mining techniques, the answer is split into parts. After a process model is
created, the process execution engine ensures the correct enactment of tasks for a process
instance for that model. Standard conformance checking focuses on the control flow of
events, which is a time consuming task and provides results that should be ensured anyway.
The client is satisfied with the advantages of creating an executable process model, but
is more interested in the data flow of a process instance. Multi perspective conformance
checking provides the client and the domain experts with knowledge on process instances
going astray through temporal deviations, analyses the behavior and conformance of data
elements inside and outside an event stream provided through external sensors. These
results are highly appreciated at the client and help domain experts detecting problems in
the execution of an automated process early on. At the moment, the results of conformance
checking are only published as alerts. An implementation providing a visualization of
deviations is desired as an addition to the framework.

Improvement goals

For the improvement goals defined in the research context, the implementation and
execution at the client yielded promising results. An interesting observation has been made
for the generation of suitable data sets. While the process execution engine is generating
an event stream and a log for each process instance, the fragmentation of the process
“Produce Turm Part” into many sub-processes, resulted into events that are assigned to
their individual process instance, but the instance is not related to the production of a
specific part. Therefore all spawned sub-processes by the main processes are now related
to the main process to allow for better results using offline process mining techniques if
desired. Another aspect that has been improved after the client’s cycle, is the separation
of produced parts into individual process instances. As explained before, every spawned
process is related to the main process in the event stream and log. However, for the
interaction with the process execution engine, all production instances of one batch of
parts, are designed as one process. This process spawns “Produce Turm Part” as often
as parts are wanted, i.e., a loop is spawning the production process 5 times to produce 5
parts during one day. To distinguish between a spawned sub-process and the start of a
new main process, a new icon is introduced for BPMN 2.0.

Fig. 6.6, shows the process for the production for one day. The process utilizes a
custom BPMN event (intermediate throwing event, magnifying glass), which allows to
group log-data based on individually produced parts, instead of saving it solely based
on the given processes structure. While industrial processes are often modeled around
the interaction of machines and the production of batches (restricted by raw material
availability in the machine), the information derived from online mining is expected to
be about individually produced parts. Thus when a process is modeled from a machine

146

6.2 Expectations and Experiences of Process Mining in Action

Raw Material Available

New Production Part a1

Spawn Turm Production a2

Figure 6.6: Process model for the daily production of parts. The signal indicates a new
online mining item.

coordination point-of-view, a single instance contains information about multiple produced
parts. The custom BPMN event is a simple way tell where the event-stream for a single
parts, thus allowing to automatically extract and separate part-information.

The highlighting of deviating data elements is already explained in Section 6.1.4, where
the alert of temporal deviations and the increased distance between two time sequences,
helped detecting incorrectly executed process instances and discovering the source for
the error. So both improvement goals (cf. Sect. 6.1.1) have been reached. The last
improvement goal of highlighting deviating behavior in the execution order, cannot be
fully answered at this moment. Since the process execution engine is ensuring the order of
the tasks to be fulfilled, the main reason for deviating behavior is an error in the logging
component or an attacker tampering with the process execution engine. None of these
two scenarios has taken place in the study at the client. Since conformance checking for
deviating behavior in the order of events is quite time consuming, this result can still
show the benefit of having a process execution engine enacting process instances in an
organization.

For the research goal, it can be concluded that an online process mining framework,
indeed supports domain experts in an environment with defined process models. After
the implementation, domain experts can model new process models, start and execute
process instances. Instances containing errors in the execution are reported to the experts
and offer an explanation for incorrect products. The implementation at the client yielded
promising results. There are some threats to generalizability, since the manufacturing
domain offers process models, which are usually already known by the organization and
focuses on conformance checking. Other domains with increased human interactions which
do not follow a strict structure could yield incorrect results.

Following the results of this TAR study, the impact of process mining in a company is
presented in the next section through a focus group study [Kru14].

6.2 Expectations and Experiences of Process Mining in
Action

To discover the impact of process mining in a company, the manufacturing domain has been
chosen. [Rei20] presents best practice use cases and [CLS20] emphasizes the importance
of process mining due to the data that is available in a manufacturing company. However,
studies on process mining expectations and experiences in Small and Medium Sized

147

6 Evaluating TIDATE - Time and Data Aware Process Mining at Runtime

Manufacturing Companies (SMMC), are missing although SMMC account for 55.4% of
manufacturing companies in the EU1 and for 44.4% of the employees in manufacturing in
the US2. Moreover, these expectations and experiences have not been analyzed from the
viewpoint of different organizational positions so far. It can be expected that due to the
differences in daily work life as described below, expectations might vary which should
be considered for a smooth introduction of process mining. In the following the different
hierarchical positions are described in a SMMC for a better understanding of this study.

1 Shopfloor workers tend to perform their work in a process-oriented way due to the
structure of manufacturing processes, since a certain set of tasks has to be applied
in a logical order. Even though most machines nowadays have their own logging
mechanism, there is often no software orchestrating resources as well as coordinating
the cooperation with other departments.

2 Supervising operatives usually can observe specific steps in a process instance. If
a workpiece or process subject is faulty due to an error, it is often unclear how
and where in a process an error started occurring. Process mining can be vital for
optimizing processes and detecting erroneous behavior.

3 For employees in managing positions, transparency is especially relevant. Trans-
parency is a crucial aspect for companies nowadays, for legal protection as well as
for cooperation with other companies. Process mining can increase the transparency
by providing knowledge about business processes and their execution.

Using this scenario at SMMC and the algorithms from the previous chapters, the
following questions haven been derived.

• What benefits and drawbacks are expected by SMMC when introducing process
mining?

• What benefits and drawbacks are perceived by SMMC after the introduction of
process mining?

• How can the implementation of process mining at SMMC be designed?

A focus group study following the guidelines stated in [Kru14] has been conducted
to answer these questions. Focus groups have proven themselves as adequate means to
assess the impact of process mining in practice [GMOvB20]. The specific study design
for these questions is developed along a double layer approach enabling the distinction
of the organizational position of participants and their exposure to process mining. The
double layer approach is realized by two rounds of interviews with employees of two
manufacturing companies covering organizational positions 1 , 2 , and 3 . Moreover, in
one company, process mining has already been introduced and the other is planning the
introduction of process mining in the near future. Two real-world cases for process mining
in manufacturing, i.e., electroplating and electronics assembly, are described in detail.

The findings of this study show that the expectations involve increased transparency
which is crucial for collaborations with business partners. In addition, it is expected that

1https://ec.europa.eu/eurostat/statistics-explained/pdfscache/10086.pdf
2https://www.sba.gov/sites/default/files/advocacy/2018-Small-Business-Profiles-US.pdf

148

https://ec.europa.eu/eurostat/statistics-explained/pdfscache/10086.pdf
https://www.sba.gov/sites/default/files/advocacy/2018-Small-Business-Profiles-US.pdf

6.2 Expectations and Experiences of Process Mining in Action

process mining can help to detect deviations in process executions at runtime. Main
concerns regard employees feeling observed by the increased transparency and reluctance
of them to share tacit knowledge. The introduction of process mining confirms that
the expected benefits indeed occur. Moreover, the decreased documentation effort for
employees, due to process mining, outweighs the fear of surveillance of employees.

Section 6.2.1 explains the detailed structure of the focus group study and the partici-
pants. Section 6.2.2 introduces the real-world scenarios for process mining application in
manufacturing. Section 6.2.3 contains a summarized overview of the results of the focus
group interviews. The findings that can be deducted from the interviews are discussed in
Section 6.2.4 where also future implications based on these findings are discussed and the
research question answered.

6.2.1 Overview on Methodology and Study Design

This study employs focus groups [Kru14] to assess the expectations on and experiences
with process mining in SMMC.

The focus groups are organized according to the double-layer design depicted in Fig.
6.7. The first layer distinguishes the focus group participants by their organizational
positions, i.e., shopfloor worker, supervising operative, and manager. This distinction aims
to identify the impact of process mining from different work perspectives. The second layer
distinguishes the participants by exposure to process mining in their current company,
i.e., if process mining has already been used in the company or not. Doing so aims at
comparing the general expectations on process mining to its actual results.

Shopfloor
Workers

Supervising
Operatives

Manager

Before
Process Mining

After
Process Mining

Organizational
Position

Exposure
to Process

mining

Figure 6.7: Double layer focus group study. All participants are grouped along both layers.

Two rounds of focus group interviews have been conducted. The first one consisted of
three people who have not been using process mining in their work at the moment, but are
planning to implement it in the near future. The second group consisted of four people,
who are already using process mining, and plan to increase the usage of process mining.

As depicted in Fig. 6.7, participants of the focus group interviews can be distinguished
along two layers.

The first layer focuses on the organizational position of a participant. In order to
identify a set of participants for the focus group, a representative set of roles and their
responsibilities based on [DLO00] is identified. As both companies operate in a lean
teamworking environment but are SMEs and thus not necessarily differentiate roles as
much as big companies, the set of roles down has to be reduced to a feasible number,
that was then basis for organizing the actual focus group. 1 reflects shopfloor workers
who execute the tasks on the shopfloor. This task execution is then logged for applying
process mining. Hence, the shopfloor workers can be seen as directly confronted with
process mining and its results in their work life. 2 reflects the supervising operatives of a
company who are monitoring the shopfloor. Supervising operatives are interested in using

149

6 Evaluating TIDATE - Time and Data Aware Process Mining at Runtime

process mining to discover rarely executed paths in a business process, use conformance
checking to detect faulty process instances and tasks that caused a failure. 3 reflects the
manager of a department or company. Process mining can be used to evaluate the general
performance.

The second layer of this focus group study emphasizes the exposure of process mining
in the company. The participants are therefore split into two groups. 1 of the second
layer, reflects employees in a company which has not used process mining yet. The second
group, 2 consists of employees who are using process mining already. The associated
process scenarios are introduced in Sec. 6.2.2.

6.2.2 Applied Process Mining Scenario

The study design outlined in Sec. 6.2.1 demands that selected participants of the focus
group have already been exposed to process mining which is an important part of the
interviews and the findings.

In the following, the scenarios, in which participants of the focus group (Shopfloor
Workers & Supervising Operatives) have experienced the application of process mining,
are introduced.

Electroplating

Company E produces parts which have to be surface-treated. This is done by submerging
these parts in a chemical bath, giving them certain desired properties. After the bath is
used for a certain amount of parts, or if the bath has been inactive for a certain time,
it has to be refilled. For refilling, certain (dangerous) chemicals have to be combined.
Before introducing a BPMN process-based orchestration solution to support the process,
workers were following guidelines, taking notes, and manually filling out reports. In cases
where these guidelines were not followed, accidents have occurred. Avoiding these kinds of
accidents was one of the main reasons to introduce an orchestration solution.

After introducing a process-based solution, the process has been formalized as depicted
in Fig. 6.8. The solution consists of two parts (CPEE [MRM14] BPMN notation): Fig.
6.8 a depicts a control process that determines based on sensors and human input, when
to start a refilling cycle. Figure 6.8 b depicts the actual refill process, as carried out by
two human workers. Figure 6.8 b starts with selecting a refill recipe. This can be either
based on input from sensors in the bath or through human intervention from a supervising
operative.

The recipe consists of a list of chemicals, and the required amount. Afterwards, the
system waits for two workers to identify themselves through their NFC badges at the
entrance of the chemicals storage locker. Only after their identity and role is established
(one worker and one supervising operative are required), the locker can be opened. A
screen shows which amount of which chemical has to be taken and added to the bath (in
no particular order). Each chemical is in a container that is mounted on a digital weighting
scale. Thus when the wrong amount of the chemical is taken, an emergency stop can be
triggered. It is also possible to automatically track which chemicals have been used, as
well as their exact amount. The workers are encouraged to write down their observations
at a computer terminal after they are done (and the protective gear is removed).

150

6.2 Expectations and Experiences of Process Mining in Action

O
ne W

orker is a S
upervisor?

exclusive

S
how

 S
afety Instructions to W

orkers

S
how

 List of R
equired C

hem
icals

(+
 A

m
ount) and S

tatus

W
orkers Take S

pecified
A

m
ount of C

hem
ical

Irregularity or
E

m
ergency S

top?

exclusive
exclusive

C
hem

ical is S
et to

S
tatus F

IN
IS

H
E

D

R
ecipe finished?

W
orkers W

rite dow
n

O
bservations

Get Recipe

Identify Worker 1

Identify Worker 2

+

+

Wait for Required Chemicals Refill

Initiate Chemicals Refill

Send eMail With Link to Report (Online Process Mining)

a bGalvanik Cycles Galvanik Chemicals Refill

Figure 6.8: Electroplating – A bath for surface treatment of parts has to be refilled after
use or time

Online process mining techniques, including mining for data elements, sensor data and
time deviations, have been utilized to generate detailed reports about each instantiation of
Fig. 6.8 b . These reports are sent to all supervising operatives at the end of each cycle
depicted in Figure 6.8 a .

Electronics Assembly

Company E manually assembles products which consist of different parts (> 100, including
slight part variations). This leads to over 64, 000 possible variations that can be ordered
by customers. Typical order sizes range from 2 to 500. The assembly involves soldering as
well as intricate mechanical manipulation of parts that are less than 2 millimeters in size.
This high variance, paired with the required intricate mechanical manipulation is a major
hurdle for automatic assembly, thus the assembly is carried out by humans. The human
workers have different skill levels. While some have the knowledge to assemble all variants
from the back of their head, others need guidance which is provided by the experienced
workers as well as through extensive technical documentation.

The problem is that many details involve tacit knowledge, i.e., knowledge that just
exists in the minds of the workers. For quality assurance and product improvement it is
not easy to determine which particular step during the assembly took how long, and which
steps were most error prone.

151

6 Evaluating TIDATE - Time and Data Aware Process Mining at Runtime

In order to solve this problem, the assembly has been split into a number of sequential
work packages, and for each work package a graphical worker assistance system system has
been designed. All logic for selecting individual steps and showing them on screen is imple-
mented as a BPMN process-based solution. The worker assistance system automatically
shows the correct set of steps for the work-piece in front of the worker (no variants have
to be remembered), and also assumes a standard order of putting work-pieces together.
Each step has to be acknowledged with a foot pedal. When a problem occurs, a worker
can leave a (spoken, speech-to-text) note, and dismiss the work-piece for later fixing.

This setup forms a good basis for (online) process mining. It is possible to extract
detailed information about durations and error rates, paired with information about the
particular work-piece variation, used parts, and steps. Online process mining techniques
are used to generate early warnings for supervising operators. Ex-post process mining is
utilized for continuous process improvement. Though company E just started utilizing the
system, early results have been deemed promising by workers, supervising operators, and
management.

6.2.3 Results of Focus Group Interviews

The double layer design of the focus group study is depicted in Fig. 6.7 and explained in
Section 6.2.1. The focus group features two interviews with employees from manufacturing
companies CDP and E.

Manufacturing company CDP: The first focus group contained participants of two man-
agement levels. Three participants were interviewed, i.e., one supervising operative, and
two general managers/CEOs. None of them was using process mining in their department
at the time of the interview.

Manufacturing company E: The second focus group contained participants of three
management levels. Company E is in the metal-processing domain and employs around
750 people. Four participants have been interviewed, i.e., two supervising operatives, a
general manager and one shopfloor worker.

After an introduction into process mining, all participants revealed a good understanding
of the basic principles of process mining and could identify scenarios in their company,
where process models are already in place, i.e., in the electroplating department (cf. Sec.
6.2.2).

Table 6.1 provides a summary of the profile of the participants to identify theirs answers.
In the following, the interview results are presented for each question.
What benefits do you see in a process-oriented view of your field?
ED thinks that one’s workload is better structured using a process-oriented view, which

increases the cooperation quality with other departments. The operative CA, sees benefits
of process mining with respect to the transparency of their department and their company.
Knowledge, in particular, domain specific knowledge is lost if an employee leaves, is a
concern mentioned by CA. Workflows here are not explicitly available as formal models,
but workers loosely follow learned rules/guidelines, hence it is difficult to detect the source
of an error. Conformance checking and process model discovery are regarded as useful
techniques to ease these problems. These benefits are confirmed by the operatives EA and
EB. The correct execution of a process instance, supervised by process mining, allows them
to detect and react to errors as soon as they happen. Moreover, the process models enable
a good visual representation of the currently active tasks. EB mentions that, “A huge

152

6.2 Expectations and Experiences of Process Mining in Action

Table 6.1: Focus Group Participants Profile

Coding Participants Company Position Experience in
Company

Working with
Process Mining

EA E Supervising Operative >10 years yes
EB E Supervising Operative 2-4 years yes
EC E General Manager >10 years yes
ED E Shopfloor Worker >10 years yes
CA CDP Supervising Operative >3 years no
CB CDP General Manager >2 years no
CC CDP General Manager >4 years no

advantage of a process-oriented view is the improved communication between employees
from all levels”.

The managers, CB and CC, share concerns regarding the usability of process mining in the
daily routine of employees. The discovery of process models is seen as an important feature
of process mining as it increases transparency, which is often required for cooperations
with other companies. The correct process execution is crucial as well, to discover and
fix problems. EC confirms the previously outlined benefits. In addition, the application of
process enhancement is envisioned in the near future, through implementing lean manage-
ment techniques and optimizing resource sharing between multiple departments.

How are processes and tasks executed and logged at the moment?

ED states, that their department uses work instructions as a basis for processes, obtained
by interviewing workers. It was mentioned that this is useful for new employees, but yields
some uncertainties (e.g., for rarely produced parts). CA explains that most of the activities
are still logged manually in a rudimentary way without much information on the input /
output of each task. The detection of faulty behavior in the process execution is crucial, but
hard to track without a rich documentation. EA mentions, that unlike the electroplating
unit, in his unit everything is currently only logged in an ERP-system. However, these
event are only available at a high level and only for certain tasks, e.g., only measurements
are logged, but not the production itself. These logs are used for making operational
decisions, such as determining the delivery date. EA is aware that this leads to resource
waste, as parallel processes are not properly synchronized, and departments sometimes
have to wait on other departments, because they decided on a sub-optimal production
order. EA also claims, that the work instructions mentioned by shopfloor workers, are often
not followed, but instead slight variations learned from colleagues are used. CB emphasizes
again, that identifying errors and increasing the efficiency is very important. Therefore,
processes have been modeled showing the interaction between humans. These interactions
are currently logged in an ERP system. Process mining techniques such as conformance
checking or using a system to enact the correct tasks at the right time have not been used.
EC is aware of the benefits of process mining in the implemented scenarios. Additionally
EC mentioned the wish to implement process mining at the managerial level, i.e., mine
and analyze management processes.

153

6 Evaluating TIDATE - Time and Data Aware Process Mining at Runtime

How is the correct execution of a process model currently ensured?

Process models are used and tasks are logged with a process execution engine in the
application scenario of the electroplating unit as mentioned by ED. Currently active tasks
are shown on a screen and are executed by interacting with the screen. CA, CB, and CC state
that, as no process models are used, their correct execution is not ensured. EA explains
that, correctness for the scenarios is enforced by a process engine, but for many other sce-
narios, the status quo has not changed. EB says, that additional process mining techniques
to automatically notice errors is desirable, as currently root-cause analysis for errors is
mostly done manually. EC is aware of the benefits of process mining in the implemented
scenarios as decisions regarding high-level process changes become easier, and controlling
is improved. EC again states that processes at managerial level should be formalized as well.

Which advantages do you see for your company with the support of process
mining?

ED sees a reduced documentation effort due to automatic documentation. The in-
structions are well presented and help following the process model. CA emphasizes the
importance of process enhancement as an important factor in the company, but is also
keen on improving the efficiency using process mining techniques in general. EA sees a
lot of potential, especially for protection against insurance claims if accidents happen
or if products do not adhere to the quality standards. EB mentions that with increased
process standardization they would be able to take on more risky projects. EA mentions an
accident that happened in a sub-department where the cause could not be determined. To
avoid such accidents in the future, it is essential to better structure the workflow, making
it more transparent, provide support for the employees taking part in critical processes
and log interactions with dangerous chemicals. CC sees advantages in understanding
of processes for different positions in the organizational hierarchy. CB also thinks that
processes can be communicated better between companies from different domains for a
more efficient cooperation. With the help of process mining, especially process discovery
and conformance checking, the perspectives of the shopfloor level and the management
level should be more aligned. In the company, workflows rarely show deviations and more
often follow a common path, which should allow for understandable process models. CC
mentions explicitly that “While a performance evaluation of a process can be done every
three months and does not have to be online, a deviation of a process instances should
be reported immediately”. EC added, that there are additional benefits for planning and
analysis that could be obtained by introducing process mining.

Which advantages do you see for your specific department with the support
of process mining?

ED sees a big advantage, in the training of new employees with the use of process models
and process mining. Process models provide a good visual representation of the workflow
and allow for a better communication between departments. Online process mining can
give immediate feedback about the current state of produced parts. CA points out the
importance of identifying errors and the increased efficiency when communicating with
other departments based on data produced by process mining. Both operatives, EA and
EB, think that process transparency is increased due to the use of process models and a

154

6.2 Expectations and Experiences of Process Mining in Action

process execution engine. They mention automatic reports after each crucial step executed
by shopfloor workers, which help to ensure the conformance of a process instance (regard-
ing many aspects: process structure, timing, resource deviations, data deviations). CA
emphasizes that not only the production should benefit from process mining techniques,
but tasks involving only humans as well, such as creating reports, delivering a product,
and communication between departments. EC again emphasize that data obtained through
process mining (e.g., duration & resource utilization for a multitude of product variations)
are a huge benefit for planning and process optimization.

What problems do you anticipate for the introduction of process mining in
your department?

ED sees the benefits of process mining in one’s department, but fears that long-term
employees still might not see the purpose of process mining in other departments, because
they are often not interested in changing their daily routine. However, ED states that
if the benefits, i.e., less documentation effort, are clear to the employees, they can be
convinced. CA voices concerns about the acceptance by the workers, since they tend to
use their acquired knowledge to secure their position in the company. CA also fears high
costs for heterogeneous workflows, since the discovery of the process model and its variants
could imply a huge effort. The advantages of process mining are clear in CA’s opinion.
EA fears that the employees could feel observed. Hence, EA thinks it is important to
encourage strong involvement of employees when implementing future scenarios. CC echos
the concerns about employee acceptance. The increased process transparency is viewed as
critical, as it paves the road towards cooperations with future customers and partners. CB
voiced concerns, that the increased logging and data availability makes data leaks possible,
which would harm the company. EC thinks that employee acceptance is a challenge,
but in hindsight was easier to achieve than expected. EC thinks that the introduction
for the whole company is too complex and that they will aim for implementing process
mining in many small projects (as they want to focus on techniques that require heavy
use of domain knowledge –analysis of process data, durations and resource usage). Lastly,
EC raises the concern that the current IT infrastructure (networking and computational
power– more sensors produce more data requires more analysis capabilities) and human
resources are not sufficient. Currently, process mining has been successfully introduced in
one department.

6.2.4 Discussion and Implications for Research and Practice

Based on the results of the focus group interviews as summarized in Section 6.2.3, the
following findings have been deduced. The findings can be categorized as follows:

• Requirements before process mining can be introduced.

• Expected results when introducing process mining.

• Actual improvements after process mining has been introduced.

The three categories are now discussed in detail.

155

6 Evaluating TIDATE - Time and Data Aware Process Mining at Runtime

Requirements

The settings in both companies CDP and E distinguish themselves by the granularity of the
logged tasks. The first focus group from CDP does not use any of the three fields of process
mining at the moment, but is already working with the support of a process execution
engine, which enables the creation of an event stream and the automatic documentation
of each task in a process. In company E, by contrast, not every task is logged, but only
certain checkpoints, i.e., a finished piece. This leads to inaccurate process execution logs,
since it is not clear, how and when the different tasks have been executed. Company
E is using a process execution engine only in a sub-department. In other departments
of company E different approaches have been tried, i.e., a manually created handbook
of business processes for new employees. Unfortunately, this handbook is rarely used
and instead knowledge is transferred from senior employees to newer ones. This leads to
undocumented steps, which renders retrieving fine granular results and therefore process
mining on a more granular basis impossible.

The focus group interviews showed, that even though companies are putting effort
in creating process models through intensive interviews with employees and are making
these process models available, the documentation of tasks is often too time consuming.
However, the introduction of process mining supported by a process execution engine
showed, that employees are willing to log their tasks if enough support is available, like a
monitor showing the current active task and an automated documentation. The supervising
operatives and managers are benefiting from the generated reports about conformance of
a process instance and general behavior through process mining.

Expected Results

Most of the participants share similar experiences concerning the process of creating process
models i.e., through interviews, since employees often follow a process from tacit knowledge.
Since it is important to be as transparent as possible for potential business partners as
per the statements of the focus group participants, a better representation of the actual
processes is desired. Another important factor concerns correct process execution as this
increases transparency. The participants also emphasize the moment of time when a
deviating process instance is detected. While the evaluation of a whole department can be
calculated every few months, a process instance with a deviating conformance should be
detected as early as possible. To check the conformance during execution, an event stream
is required to apply process mining.

For the implementation, the participants raised concerns about the introduction of
process mining in their departments. Employees could feel observed, since their daily
routine could be analyzed from the process execution logs. Another problem is, that
employees sometimes tend to gather knowledge and not share it, making themselves harder
to be replaced. The participants agreed, that the employees should be involved in the
process of introducing process mining. It was also mentioned that as soon as the benefits
of the approach became very clear, acceptance was very high.

In addition, it was mentioned, that the IT infrastructure could be an issue for imple-
menting process mining.

156

6.2 Expectations and Experiences of Process Mining in Action

Improvements

The introduction of process mining in a department of company E results in the following
improvements. The process of obliging two employees to perform several tasks, where one
of them has to have a specific role, can be accurately logged with the support of a process
execution engine. Conformance checking, taking the data perspective into account, can
reveal deviations, if the criteria of the correct amount or the correct roles is not fulfilled.
Another important aspect is the temporal perspective. Conformance checking allows to
detect temporal deviations in the process, e.g., an extremely short duration for putting
the protective gear on, leading to the assumption that the gear is not worn correctly.

When a deviation is detected at runtime, it is possible to provide the company with the
information for which process instance the deviation occurred. With this information, it
can be tried to explain the reason for this deviation through the information stored for a
process instance by the process mining framework.

Based on the findings, creating automatic reports to detect undesired behavior in process
instances and help to ensure the correct order of events is beneficial. Drawbacks such as
the fear of surveillance can be avoided through outlining major benefits of process mining
to shopfloor workers, including the automatic documentation of tasks.

As to how the implementation of process mining in SMMC can be designed, as mentioned
in Section 6.2.3, a process model is often already available in the production, generated from
the knowledge of the shopfloor workers and process supervisors. Based on the interviews,
it can be concluded that correct process execution and its documentation are of utmost
importance. This can be achieved by implementing and executing the existing process
model through a process execution engine. The engine is used to orchestrate active process
instances of process models and manages the documentation of tasks, i.e., timestamps of
start and end events. To give shopfloor workers a better visualization of the process and
the currently active task in a process instance, a screen can be used to provide additional
information. Utilities, such as a hand scanner or a foot pedal, can be used to automatically
complete the current task in a process instance which leads to the next task shown to
the worker. A possible setup is the Electroplating process (cf. Sec. 6.2.2). To increase
the knowledge of currently active process instances, wearable information systems can
be connected to the process mining framework as well and display process instances not
matching the expected behavior [SJEA18].

Discussion

When looking at the significance of the results, three groups can be established.
Not surprising: Digitalization gaps exist and SMMC struggle to close them. All

participants agree that explicit process orchestration from the business level to the shop-
floor level will improve the quality of available event logs, and is a first step towards online
process mining and process enhancement. It became clear that SMMC suffer from a lack
of IT resources. However, they are aware that process mining and data analysis in general
will help them with digitalization (i.e., new ways of interacting with their customers).

Expected, but disappointing: Process discovery is not considered important. All
participants agreed that process elicitation through explicit modeling leads to better results
and understandability. This was not unexpected as SMMC often have flat hierarchies,
hence involvement and knowledge of the processes is high. The participating companies

157

6 Evaluating TIDATE - Time and Data Aware Process Mining at Runtime

(some of the participants also talked about previous employments) often utilize flexible
manufacturing islands with unstructured manual labor instead of production lines. The
effort for data collection there could very well be so high that focus group participants
might be right.

Surprising: Shop-floor workers were expected to be critical of process mining super-
vising operatives and management alike. However, they were very easily convinced when
demonstrating process mining results. Supervising operatives and management wish for
the application of process mining on high-level processes, but can neither clearly express
the expected results nor have a clear vision how to digitalize these processes. Conformance
checking is well understood by the focus group participants. Mining of temporal deviations
and performance indicators based on fine-grained sensor data are seen as an important
short-term goal. Surprisingly, online process mining, i.e., making deviations visible and
explainable at runtime, is considered more important than ex-post analysis.

Limitations and Threats to Validity

Focus group interviews bear certain threats to validity [Kru14]. In particular, investigating
expectations and experiences of process mining in SMMC is relatively complex. Hence,
there is a threat of either made up answers, i.e., caused by insufficient experience of a
participant or trying to avoid negative feedback by colleagues afterwards, or just trivial
answers caused by too many participants. To minimize these threats, small focus groups
have been chosen, ensured that a certain level of knowledge of processes in general is
present, and the questioning route following the guidelines in [Kru14] has been developed.
Further limitations involve:
• Transferability to other domains: Manufacturing can be seen as “killer application”.
Hence it is promising to look at other domains such as medicine that also combine processes,
physical world, and human work.
• Generalizability: SMMC struggle with specific problems, hence the generalizablity to
bigger companies is questionable. Moreover, while a small focus group helps in getting
meaningful results for complicated subjects, it can still be argued that similar SMMC are
not sharing the same experiences. More interviews with different SMMC could overcome
this limitations.

Finally, the companies and participants of the focus group were all volunteers, that
answered to an email to a list of companies that regularly participate in research projects.
It is possible that (a) the results are not representative of SMMC, or (b) a John Henry
effect (over-performance) [Sar72] regarding process mining was observed.

6.3 Conclusion and Outlook

This chapter focuses on the execution of a process and analyzes the behavior of process
instances to a process model.

A possible solution design is presented in Section 6.1, the experimental framework
TIDATE following a Technical Action Research study.

The implementation at the client

• revealed differences section a real-world setting and the academic environment, in
particular, the different perspectives on process instances, i.e., batch-oriented vs.

158

6.3 Conclusion and Outlook

product-oriented.

• led to answers to research and improvement questions, for example, how process
mining can be integrated in the manufacturing domain and if domain experts can
use these techniques and with how much effort required.

The introduction of a process execution engine and the nature of the manufacturing
domain, helped applying process mining and the results look promising. Time deviations
and deviations in data elements, even from external sources, like data sensors, are providing
much needed information on the conformance of a process instance and give a close
inspection to analyze where a process instance is deviating from the expected behavior.

Since not every domain has the same degree of process orientation as the manufacturing
domain, conducting a TAR study with TIDATE in another domain is desired.

The focus group study in Section 6.2 collected expectations on and experiences with
process mining in SMMC, including two real-world process mining scenarios at one
company’s side. The main findings are that a suitable data set generation is a major
challenge (I), transparency of business process becomes increasingly important (II), Human
resources should be included into the process (III), and that Infrastructure plays an
important role for SMMC (IV).

The status quo in SMMC is that logging is part of the business logic and data-centric
(I). Selected milestones in the production produce a data dump with a timestamp, while
most process steps in the manufacturing domain just produce no events at all.

Transparency (II) is considered important for four key aspects: (a) legal protection
against insurance claims, (b) protection against liability claims when dealing with bad
parts, (c) reduction of erroneous parts before quality control, and (d) streamlining of
processes when dealing with a huge number of product variants in combination with human
resources.

It is important to consider that human resources may feel observed and become reluctant
to share their tacit knowledge (III). Successful communication and demonstration of the
benefits of process mining, on the other hand led to high acceptance among workers.

Currently, the local IT infrastructure is a perceived bottleneck (IV) for the increasing
data volume and velocity that comes with fine-grained logging of all steps involved
manufacturing and production of goods.

Another important aspect for future work is how the information on deviations is
conveyed to the clients, i.e., domain experts. In this study, simple alert notifications are
sent if a deviation is detected, but a visualization of the deviating tasks of the process
model in the process execution engine, would lower the entry barrier even more for domain
experts to get accustomed to process mining.

159

7 Conclusion

This chapter provides a summary of this thesis. Section 7.1 provides an overview of the
results of the Chapters 3 to 6 where each research question of the thesis is addressed.
Potential future work is described in Section 7.2.

7.1 Results of Research Questions

The results of the different chapters are here summarized and used to answer the research
questions of this thesis, defined in Section 1.3. A short summary of the chapters is described
in the following:

• Chapter 3 established a new serialization format for XES data, an approach to create
an event stream and process execution files online, as well, as a way to integrate
human resources into the automatic generation of such files.

• Chapter 4 presents a novel approach for detecting drifts in the workflow perspective
as well as the data perspective at runtime and defines process histories, a collection
of the process models between each drift.

• Chapter 5 focuses on conformance checking algorithms and establishes an advanced
cost function for adjusting the costs of structural deviations, a new approach to
handle semantic deviations in the temporal perspective, as well as explaining the root
cause of concept drifts based on external sensor streams, e.g., external deviations.

• Chapter 6 gives an overview on the acceptance of the presented algorithms as well
as on the expectations companies have related to process mining.

7.1.1 Creating Data Sets for Process Mining

Chapter 3 focused on the following research questions

• RQ 1a How should a data format for process mining algorithms be designed
to be created during the execution?

• RQ 1b How to generate data sets directly at the execution of a process
for online process mining algorithms?

• RQ 1c How to improve the quality of the data set and reduce the error-proneness?

Section 3.1 addresses RQ 1a. For a suitable data format, different operations have been
identified, which are crucial for the performance of algorithms using the data format. A
human readable format is advantageous, since it can be easily modified by all ubiquitously
available tools and also is easy to handle for domain experts. Consequently, the data

161

7 Conclusion

set format should allow to comment on log entries for a better understanding. For the
automatic handling of a data set for process mining algorithms, a defined structure, which
can easily be checked by using a specific schema is mandatory.

The most crucial aspect in an online setting is the performance, i.e., how long it takes to
generate a new log entry. Different file formats have been analyzed, leading to the answer
that, while XML provides a solid serialization format for the XES format, it is not the
format for creating such XML-XES files during the execution, since the format is tree
based, and for a new log entry the complete tree has to be parsed, saved in memory and
generated again. YAML proved to be a valid choice for the XES serialization, since it is
able to save the same information as XML and it is possible to append new log entries
easily to already existing log files, without parsing the file.

Section 3.2 addresses RQ 1b . For online process mining algorithms, an event stream
is used as an input source. These events should be generated when an activity in a
process instance is executed. This led to the use of a process execution engine, which
orchestrates the currently active activities and generates and injects events into a stream.
For the specific lifecycle transitions of an activity, specific events in the process execution
engine have been defined, which allows process mining algorithms to easily filter the event
stream. The presented approach creates events for resources without human interaction
automatically during their execution. Events with human interaction are not yet taken
into account, which is achieved using the approach to answer RQ 1c .

Section 3.3 addresses RQ 1c . To improve the data quality, especially with human
resources, a process execution engine is used in conjunction with a new NFC approach.
Each time an activity is executed, the human resource can apply an NFC tag to an NFC
reading device. This reading device is connected to the process execution engine and
automatically generates a new log entry for the data set. The advantage of this approach,
is that the timestamp of an event is accurate and events are not lost, because in current
scenarios, human resources tended to generate the log entries of their activities at the
end of their shift, thus forgetting sometimes some events. The NFC approach reduces the
amount of time spent on generating log entries and generate data sets of a higher quality.

While addressing RQ 1a-1c , the following lessons were learned:
Preparation of Event Stream. For online process mining algorithms an event stream

is required, but generating such a stream at the point of time an activity is executed
proved to be challenging. Even with the help of a process execution engine, data elements,
like acting resource, have be present during all the different lifecycle events to be cohesive,
which depending on the engine is not always easy to achieve. Another challenge proved
to be the timestamp of an event. Even if a process execution engine is creating an event
directly at the point of time of the execution, it is still possible to arrive in wrong order
at the end service. This is often related to connection issues, e.g., two events are created
nearly at the same time, but due to another process finishing at one service, the other
event can slightly arrive earlier at the end service. A timestamp created at the end of the
as a data element in the event can be used instead, to mitigate this behavior.

Acceptance of Human Resource. Through interviews with domain experts in the
care domain, the importance of involving human resources became evident. Staff members
in the care domain have to document every activity, which results in a lot of documentation
work. Thus a solution for creating data sets for process mining algorithms should not
increase the workload of human resources. The NFC solution presented in Section 3.3
enables human resources to generate events directly when an activity is executed without

162

7.1 Results of Research Questions

increasing the workload. An additional benefit of this approach is an automatically
generated documentation for staff members in the care domain, which motivates users to
interact with the system.

7.1.2 Discovering the Evolution of Processes through Concept Drifts

Chapter 4 focused on the following research questions

• RQ 2a How can the evolution of a business process be discovered at runtime?

• RQ 2b How do data elements relate to concept drifts?

Section 4.1 addresses RQ 2a. Processes evolve over time, i.e., the logic of a process
changes due to a new legislature for example. These process changes are not always
communicated to every layer in a company, e.g., the execution of a process changes, but the
process model to reflect the changes is not updated. The solution in Section 4.1 provides a
definition of process histories, which effectively uses an event stream to discover a new
process model as soon as the events of an event stream are not fitting the currently used
process model. The collection of the discovered process models defines a process history.
The change between two different process models is described and defined in four different
types of concept drifts based on a process history, i.e., a change in the workflow perspective
of a process, similar to [BvdAŽP11].

Section 4.2 addresses RQ 2b and focuses on changes in the data perspective between
two different process models in a process history. To achieve this, the data elements
attached to events in an event stream are collected. For each discovered process model in
a process history, statistical values, e.g., the mean and standard deviation for numerical
data elements or the occurrences of different roles for resources, are collected and added
to the process model. The elaborated algorithms analyze the data elements in the event
stream for outliers. If the data elements are not fitting the values from the process model,
a data drift occurred and a new process model is discovered with updated values for the
data elements in the model. Data drifts can be distinguished by four different type of
drifts, similar to concept drifts.

While addressing RQ 2a-2b , the following lessons were learned:
Types of Concept Drifts. While four different types of concept drifts are already

known, a formal definition has been missing. When defining the four types of concept
drifts based on a process history, it became evident, that one type is not automatically
excluding another type, e.g., a recurring drift, can also be a gradual drift for example, if
there are still some process instances active following the behavior of the previous model.
The recurring drift can also be a sudden drift instead, if process instances following the
behavior of the previous model are aborted. The definition of the concept drifts hence
enables to discover different combinations of concept drift.

Different Drifts can happen simultaneously. Concept drifts usually are related
to the workflow perspective of a process model, i.e., the order, the addition, and the
removal of events in a process. An interesting finding is that, drifts, that occur in the data
perspective, can simultaneously occur with a drift in the workflow perspective. A new
legislation, for example, may add a new event to a production process and, in addition,
enforces events of this process to be executed with by a resource with another role, e.g., a

163

7 Conclusion

doctor instead of a nurse. This reflects an incremental drift in the workflow perspective
and a gradual drift in the data perspective.

7.1.3 Time & Data-Aware Conformance Checking and Explaining Drifts

Chapter 5 focused on the following research questions

• RQ 3a How to better quantify the costs of deviations between process instances
and a process model using data elements?

• RQ 3b How can the temporal perspective be taken into account for conformance
checking?

• RQ 3c How to discover the source of a concept drift?

Section 5.1 addresses RQ 3a. Deviations in the behavior of the process execution and
the behavior of a process model can be detected at different levels. This section concerned
itself with deviation at the structural level, i.e., missing or additional events in a process
instance. Conformance checking algorithms assign a cost to a deviation, but the standard
cost function is not differentiating between events. This section introduces the advanced
cost function for conformance checking algorithms which adjusts the cost of a deviation
based on the data elements of an event. If the data elements contain correct values, even
though some events are missing, the costs for a deviation can be reduced.

Section 5.2 addresses RQ 3b . In this section, semantic deviations are analyzed, in
particular temporal deviations. There are two important temporal distances to observe.
First, the distance between two different events and the distance between the start and the
end of an event, i.e., the duration of an event. A new conformance checking algorithm is
presented to detect temporal deviations, for which a cost is assigned based on the severity
of the deviation.

Section 5.3 addresses RQ 3c and focuses on external deviations. Process instances can
be influenced by data streams, that are not available in a process instance, e.g., the
temperature and humidity of a room or the current power consumption of a resource.
These data streams are generating data points constantly, but are not typically assigned to
a specific event in a process. The provided algorithms relate process instances to specific
intervals in the data streams and explain the reason for a concept drift in a process by
identifying drifts in the external data streams through dynamic time warping algorithms.

While addressing RQ 3a-3c , the following lessons were learned:
Areas of Deviations. Following the results of each section in this chapter, different

types and areas of deviations in conformance checking algorithms have been identified.
Traditional conformance checking algorithms, focus on structural deviations, i.e., the
addition and absence of events in a process instance. Semantic deviations are discovered
by taken the data elements of events into account [MdLRvdA16a]. Section 5.2 has taken
a new approach for detecting semantic deviations by focusing on temporal deviations, i.e.,
the time between two events or the duration of an activity. The external data, e.g., data
streams that are not related to a process instance directly, is addressed by identifying
deviations in data sensor streams using time series processing algorithms, i.e., dynamic
time warping.

164

7.2 Future Work

External Data Streams relating to Process Instances. The external data streams
are usually constantly producing data points in the streams and are not assigned to a
specific event, i.e., the blood pressure of a patient is measured constantly without a
fetching event in the process instance, which reads the blood pressure measurements each
millisecond. Thus it is important to discover the snippets of a data stream that are relevant
for specific events in a process instance to apply conformance checking algorithms onto
and to discovery the root cause of a concept drift.

7.1.4 Evaluating TIDATE - Time and Data Aware Process Mining at
Runtime

Chapter 6 focused on the following research questions

• RQ 4 What are the general expectations on process mining algorithms by
domain experts and what are the actual results after it has been introduced?

Sections 6.1 and 6.2 address RQ 4 . To answer this question, the presented algorithms
in this thesis are evaluated as an artifact and evaluated using the technical action research
methodology in Section 6.1. A focus group study is conducted in Section 6.2. The
participants are categorized in two layers, differentiated by their hierarchical position in
their company and their level of exposure to process mining. It was confirmed, that process
mining is a valuable asset for domain experts and that they request results as soon as
possible, i.e., online process mining instead of offline process mining.

While addressing RQ 4 , the following lessons were learned:
Transparency. The focus group interviews showed, that transparency is of utmost

importance for companies. It is important for their own optimizations and it is required
for a cooperation with other companies nowadays. Thus process mining proofs to be an
important asset.

Inclusion of Employees. Employees tend to be afraid of changes in a company and
are afraid of sharing knowledge of the companies work flows with other colleagues to make
them not replaceable. Thus it is important to include employees and a possible works
committee in the project of introducing process mining algorithms into a company.

7.2 Future Work

This thesis provides algorithms to generate a data set for process mining algorithms in
general, to collect the history of a process, and to compare the behavior of a process model
to the behavior of a process instance. Conformance checking algorithms are now able
to adjust deviations based on an advance cost function and can take data elements into
account. Deviations in external data streams open a new field used for explaining the root
cause of concept drifts. Thus, a process history provides new insights into the evolution of
a process and could possibly be used to predict future changes. Future work is identified
in the two following categories:

Exception Handling: The algorithms in this thesis are able to detect deviations in
a process instance. A deviation can reflect an error in the process execution which can
handled by different exception handling strategies, e.g., if a resource is faulty, new process
instances could use a different resource. Different exception handling strategies need to be

165

7 Conclusion

identified, described, and algorithms need to developed to handle these strategies. The
strategies are then to be incorporated into a process history.

Temporal Profiles: Temporal profiles are described in Section 5.2, but currently,
temporal profiles are generalized for all process instances and neglect data elements. The
temporal profile for patients in a hospital could vary greatly for patients, that are 20 years
old, to patients that are 70 years old. Thus, it seems feasible to discover more specialized
temporal profiles depending on specific data elements. Future work is aimed at analyzing
the impact of specialized temporal profiles.

Moreover, future work is also aimed at developing better algorithms for incorporating
multiple different data sensor streams to discover the data sensor streams, which are the
root cause of a drift and use these explanations to predict future process changes based on
the changes found in a process history.

166

Bibliography

[AB12] Pankaj Agrawal and Sharad Bhuraria. Near field communication. SET-
Labs Bridfings, 10(1):67–74, 2012.

[Adr14] A. Adriansyah. Aligning observed and modeled behavior. PhD thesis,
Department of Mathematics and Computer Science, 2014.

[Agg07] Charu C. Aggarwal, editor. Data Streams - Models and Algorithms,
volume 31 of Advances in Database Systems. Springer, 2007.

[Alp20] Ethem Alpaydin. Introduction to machine learning. MIT press, 2020.

[AvZQ+21] Jan Niklas Adams, Sebastiaan J. van Zelst, Lara Quack, Kathrin Haus-
mann, Wil M. P. van der Aalst, and Thomas Rose. A framework
for explainable concept drift detection in process mining. In Artem
Polyvyanyy, Moe Thandar Wynn, Amy Van Looy, and Manfred Re-
ichert, editors, Business Process Management, pages 400–416, Cham,
2021. Springer International Publishing.

[AZAMBH18] Laila Akhu-Zaheya, Rowaida Al-Maaitah, and Salam Bany Hani. Quality
of nursing documentation: Paper-based health records versus electronic-
based health records. Journal of clinical nursing, 27(3-4):e578–e589,
2018.

[BC94] Donald J Berndt and James Clifford. Using dynamic time warping
to find patterns in time series. In KDD workshop, volume 10, pages
359–370. Seattle, WA, 1994.

[BC17] Andrea Burattin and Josep Carmona. A framework for online con-
formance checking. In International Conference on Business Process
Management, pages 165–177. Springer, 2017.

[BCD15] Anne Baumgrass, Cristina Cabanillas, and Claudio Di Ciccio. A con-
ceptual architecture for an event-based information aggregation engine
in smart logitics. In Enterprise Modelling and Information Systems
Architectures, pages 109–123. Gesellschaft für Informatik eV, 2015.

[BFN+19] Michael Borkowski, Walid Fdhila, Matteo Nardelli, Stefanie Rinderle-
Ma, and Stefan Schulte. Event-based failure prediction in distributed
business processes. Inf. Syst., 81:220–235, 2019.

[BGvdW09] Melike Bozkaya, Joost Gabriels, and Jan Martijn van der Werf. Process
diagnostics: a method based on process mining. In 2009 International
Conference on Information, Process, and Knowledge Management, pages
22–27. IEEE, 2009.

167

Bibliography

[BKEI05] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. Yaml ain’t markup
language (yaml™) version 1.1. yaml. org, Tech. Rep, page 23, 2005.

[BM98] BA Brooks and K. Massanari. Implementation of nanda nursing diag-
noses online. north american nursing diagnosis association. Computers
in nursing, 16(6):230–6, 1998.

[BRK20] Lucas Baier, Josua Reimold, and Niklas Kühl. Handling concept drift for
predictions in business process mining. In 2020 IEEE 22nd Conference
on Business Informatics (CBI), volume 1, pages 76–83. IEEE, 2020.

[BSvdA14] Andrea Burattin, Alessandro Sperduti, and Wil MP van der Aalst.
Control-flow discovery from event streams. In 2014 IEEE Congress on
Evolutionary Computation (CEC), pages 2420–2427. IEEE, 2014.

[BvdAŽP11] RP Jagadeesh Chandra Bose, Wil MP van der Aalst, Indrė Žliobaitė,
and Mykola Pechenizkiy. Handling concept drift in process mining. In
International Conference on Advanced Information Systems Engineering,
pages 391–405. Springer, 2011.

[BVDAZP14] RP Jagadeesh Chandra Bose, Wil MP Van Der Aalst, Indre Zliobaite,
and Mykola Pechenizkiy. Dealing with concept drifts in process mining.
IEEE transactions on neural networks and learning systems, 25(1):154–
171, 2014.

[BvZvdA19] Alessandro Berti, Sebastiaan J van Zelst, and Wil van der Aalst. Process
mining for python (pm4py): bridging the gap between process-and data
science. arXiv preprint arXiv:1905.06169, 2019.

[CA86] Linda Crocker and James Algina. Introduction to classical and modern
test theory. ERIC, 1986.

[CCL07] Harry K.H. Chow, K.L. Choy, and W.B. Lee. A dynamic logistics
process knowledge-based system - an {RFID} multi-agent approach.
Knowledge-Based Systems, 20(4):357 – 372, 2007.

[CG01] Scott Saobing Chen and Ramesh A Gopinath. Gaussianization. In
Advances in neural information processing systems, pages 423–429, 2001.

[CGG+07] Robert C Cannon, Marc-Oliver Gewaltig, Padraig Gleeson, Upinder S
Bhalla, Hugo Cornelis, Michael L Hines, Fredrick W Howell, Eilif Muller,
Joel R Stiles, Stefan Wils, et al. Interoperability of neuroscience mod-
eling software: current status and future directions. Neuroinformatics,
5(2):127–138, 2007.

[CLRS09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to algorithms. MIT press, 2009.

[CLS20] Angelo Corallo, Mariangela Lazoi, and Fabrizio Striani. Process mining
and industrial applications: A systematic literature review. Knowledge
and Process Management, 27(3):225–233, 2020.

168

Bibliography

[Cro06] Douglas Crockford. The application/json media type for javascript
object notation (json). RFC 4627, 2006.

[CvDSW18] Josep Carmona, Boudewijn F. van Dongen, Andreas Solti, and Matthias
Weidlich. Conformance Checking - Relating Processes and Models.
Springer, 2018.

[CW99] Jonathan E Cook and Alexander L Wolf. Software process validation:
quantitatively measuring the correspondence of a process to a model.
ACM Transactions on Software Engineering and Methodology (TOSEM),
8(2):147–176, 1999.

[DHK+10] Diane M Doran, R Brian Haynes, André Kushniruk, Sharon Straus,
Jeremy Grimshaw, Linda McGillis Hall, Adam Dubrowski, Tammie
Di Pietro, Kristine Newman, Joan Almost, et al. Supporting evidence-
based practice for nurses through information technologies. Worldviews
on Evidence-Based Nursing, 7(1):4–15, 2010.

[DLO00] Rick Delbridge, James Lowe, and Nick Oliver. Shopfloor responsibilities
under lean teamworking. Human relations, 53(11):1459–1479, 2000.

[dMvdAR15] Eduardo González López de Murillas, Wil MP van der Aalst, and Hajo A
Reijers. Process mining on databases: Unearthing historical data from
redo logs. In International Conference on Business Process Management,
pages 367–385. Springer, 2015.

[DMvDVdAW04] AK Alves De Medeiros, Boudewijn F van Dongen, Wil MP Van der
Aalst, and AJMM Weijters. Process mining: Extending the α-algorithm
to mine short loops. 2004.

[DRMGF14] Reinhold Dunkl, Stefanie Rinderle-Ma, Wilfried Grossmann, and
Karl Anton Fröschl. A method for analyzing time series data in process
mining: application and extension of decision point analysis. In CAiSE
Forum, pages 68–84, 2014.

[DRMR18] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Rei-
jers. Fundamentals of Business Process Management, Second Edition.
Springer, 2018.

[Dro17] Michelle Drolet. How much will non-compliance with gdpr cost you?
CSO, October 2017.

[DvC+16] Claudio Di Ciccio, Han van der Aa, Cristina Cabanillas, Jan Mendling,
and Johannes Prescher. Detecting flight trajectory anomalies and pre-
dicting diversions in freight transportation. Decision Support Systems,
88:1–17, 2016.

[EFMR19] Matthias Ehrendorfer, Juergen-Albrecht Fassmann, Juergen Mangler,
and Stefanie Rinderle-Ma. Conformance checking and classification of
manufacturing log data. In Business Informatics, pages 569–577, 2019.

169

Bibliography

[FHBV11] J. Fontecha, R. Hervas, J. Bravo, and V. Villarreal. An nfc approach for
nursing care training. In 2011 Third International Workshop on Near
Field Communication, pages 38–43. IEEE, 2011.

[Fow04] Martin Fowler. UML distilled: a brief guide to the standard object
modeling language. Addison-Wesley Professional, 2004.

[FRM94] Christos Faloutsos, Mudumbai Ranganathan, and Yannis Manolopoulos.
Fast subsequence matching in time-series databases, volume 23. ACM,
1994.

[FRMI14] Walid Fdhila, Stefanie Rinderle-Ma, and Conrad Indiono. Memetic algo-
rithms for mining change logs in process choreographies. In International
Conference on Service-Oriented Computing, pages 47–62. Springer, 2014.

[GMOvB20] Thomas Grisold, Jan Mendling, Markus Otto, and Jan vom Brocke.
Adoption, use and management of process mining in practice. Business
Process Management Journal, 2020.

[GR15] Wilfried Grossmann and Stefanie Rinderle-Ma. Fundamentals of Busi-
ness Intelligence. Data-Centric Systems and Applications. Springer,
2015.

[GRM15] Wilfried Grossmann and Stefanie Rinderle-Ma. Fundamentals of Busi-
ness intelligence. Springer, 2015.

[GS91] Rodney M Goodman and P Smyth. Rule induction using information
theory. G. Piatetsky, 1991.

[GSC09] Koni Grob, Julian Stocker, and Ron Colwell. Assurance of compliance
within the production chain of food contact materials by good manufac-
turing practice and documentation - part 1: Legal background in europe
and compliance challenges. Food Control, 20(5):476 – 482, 2009.

[HV08] Mia Hubert and Ellen Vandervieren. An adjusted boxplot for skewed
distributions. Computational statistics & data analysis, 52(12):5186–
5201, 2008.

[IEE16] IEEE. Ieee standard for extensible event stream (xes) for achieving
interoperability in event logs and event streams. IEEE Std 1849-2016,
pages 1–50, 2016.

[JVKN08] Monique H Jansen-Vullers, PAM Kleingeld, and Mariska Netjes. Quanti-
fying the performance of workflows. Information Systems Management,
25(4):332–343, 2008.

[JY09] Li Junkui and Wang Yuanzhen. Early abandon to accelerate exact
dynamic time warping. International Arab Journal of Information
Technology (IAJIT), 6(2), 2009.

170

Bibliography

[KHP+19] Klaus Kammerer, Burkhard Hoppenstedt, Rüdiger Pryss, Steffen Stökler,
Johannes Allgaier, and Manfred Reichert. Anomaly detections for man-
ufacturing systems based on sensor data - insights into two challenging
real-world production settings. Sensors, 19(24):5370, 2019.

[KMS+15a] Georg Kaes, Jürgen Mangler, Florian Stertz, Ralph Vigne, and Stefanie
Rinderle-Ma. Acaplan - adaptive care planning. In BPM Demo, pages
11–15. Springer, 2015.

[KMS+15b] Georg Kaes, Jürgen Mangler, Florian Stertz, Ralph Vigne, and Stefanie
Rinderle-Ma. Acaplan-adaptive care planning. 2015.

[KR17] Georg Kaes and Stefanie Rinderle-Ma. Generating data from highly
flexible and individual process settings through a game-based experi-
mentation service. In Datenbanksysteme für Business, Technologie und
Web, pages 331–350. Gesellschaft für Informatik, Bonn, 2017.

[Kru14] Richard A Krueger. Focus groups: A practical guide for applied research.
Sage publications, 2014.

[KRVM14] Georg Kaes, Stefanie Rinderle-Ma, Ralph Vigne, and Juergen Mangler.
Flexibility requirements in real-world process scenarios and prototypical
realization in the care domain. In OTM Industry Case Studies Program,
pages 55–64. Springer, 2014.

[KSSI20] Marc Kerremans, Samantha Searle, Tushar Srivastava, and Kimihiko
Iijima. Market guide for process mining, 2020.

[KT05] Hiroko Kato and KT Tan. 2d barcodes for mobile phones. In Mobile Tech-
nology, Applications and Systems, 2005 2nd International Conference
on, pages 8–pp. IET, 2005.

[LFvdA13] Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst.
Discovering block-structured process models from event logs - a con-
structive approach. In José-Manuel Colom and Jörg Desel, editors,
Application and Theory of Petri Nets and Concurrency, pages 311–329,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[LMM+15] Linh Thao Ly, Fabrizio Maria Maggi, Marco Montali, Stefanie Rinderle-
Ma, and Wil M. P. van der Aalst. Compliance monitoring in business
processes: Functionalities, application, and tool-support. Information
systems, 54:209–234, 2015.

[LR07] Richard Lenz and Manfred Reichert. IT support for healthcare processes
- premises, challenges, perspectives. Data & Knowledge Engineering,
61(1):39–58, 2007.

[LSvdA19] Sander JJ Leemans, Anja F Syring, and Wil MP van der Aalst. Earth
movers’ stochastic conformance checking. In International Conference
on Business Process Management, pages 127–143. Springer, 2019.

171

Bibliography

[MBCS13] Fabrizio Maria Maggi, Andrea Burattin, Marta Cimitile, and Alessandro
Sperduti. Online process discovery to detect concept drifts in ltl-based
declarative process models. In OTM Confederated International Con-
ferences" On the Move to Meaningful Internet Systems", pages 94–111.
Springer, 2013.

[MdLRvdA16a] Felix Mannhardt, Massimiliano de Leoni, Hajo A. Reijers, and Wil
M. P. van der Aalst. Balanced multi-perspective checking of process
conformance. Computing, 98(4):407–437, 2016.

[MDLRVDA16b] Felix Mannhardt, Massimiliano De Leoni, Hajo A Reijers, and Wil MP
Van Der Aalst. Decision mining revisited-discovering overlapping rules.
In International conference on advanced information systems engineering,
pages 377–392. Springer, 2016.

[MDRO17] Abderrahmane Maaradji, Marlon Dumas, Marcello La Rosa, and Alireza
Ostovar. Detecting sudden and gradual drifts in business processes from
execution traces. IEEE Trans. Knowl. Data Eng., 29(10):2140–2154,
2017.

[MI02] Yukio Matsumoto and K Ishituka. Ruby programming language, 2002.

[MPO+19] Luca Mottola, Gian Pietro Picco, Felix Jonathan Oppermann, Joakim
Eriksson, Niclas Finne, Harald Fuchs, Andrea Gaglione, Stamatis
Karnouskos, Patricio Moreno Montero, Nina Oertel, Kay Römer, Patrik
Spieß, Stefano Tranquillini, and Thiemo Voigt. makesense: Simplifying
the integration of wireless sensor networks into business processes. IEEE
Transactions on Software Engineering, 45(6):576–596, 2019.

[MRM14] Jürgen Mangler and Stefanie Rinderle-Ma. Cpee - cloud process exection
engine. In Int’l Conference on Business Process Management, CEUR-
WS.org. IEEE, 2014.

[MWVdAvdB02] Laura Maruster, AJMM Ton Weijters, WMP Wil Van der Aalst, and
Antal van den Bosch. Process mining: Discovering direct successors in
process logs. In International Conference on Discovery Science, pages
364–373. Springer, 2002.

[OMG13] OMG. Business Process Model and Notation (BPMN), Version 2.0.2,
December 2013.

[Pet81] James L Peterson. Petri net theory and the modeling of systems. 1981.

[PKG11] François Petitjean, Alain Ketterlin, and Pierre Gançarski. A global aver-
aging method for dynamic time warping, with applications to clustering.
Pattern Recognition, 44(3):678–693, 2011.

[PLCR19] Roberto Posenato, Andreas Lanz, Carlo Combi, and Manfred Reichert.
Managing time-awareness in modularized processes. Software and Sys-
tems Modeling, 18(2):1135–1154, 2019.

172

Bibliography

[PML12] Andreas Prinz, Philipp Menschner, and Jan Marco Leimeister. Electronic
data capture in healthcare - nfc as easy way for self-reported health
status information. Health Policy and Technology, 1(3):137 – 144, 2012.

[PMRP18] Florian Pauker, Juergen Mangler, Stefanie Rinderle-Ma, and Christoph
Pollak. centurio.work - modular secure manufacturing orchestration. In
BPM Industry Track, pages 164–171, 2018.

[PS+08] Eric Prud’Hommeaux, Andy Seaborne, et al. Sparql query language for
rdf. W3C recommendation, 15, 2008.

[RCM+12] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo
Batista, Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn
Keogh. Searching and mining trillions of time series subsequences under
dynamic time warping. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
262–270, 2012.

[Rei20] Lars Reinkemeyer. Process Mining in Action – Principles, Use Cases
and Outlook. Springer International Publishing, 2020.

[RMRJ11] Stefanie Rinderle-Ma, Manfred Reichert, and Martin Jurisch. On uti-
lizing web service equivalence for supporting the composition life cycle.
International Journal of Web Services Research (IJWSR), 8(1):41–67,
2011.

[RRJK06] Stefanie Rinderle, Manfred Reichert, Martin Jurisch, and Ulrich Kre-
her. On representing, purging, and utilizing change logs in process
management systems. In Business Process Management, 4th Interna-
tional Conference, BPM 2006, Vienna, Austria, September 5-7, 2006,
Proceedings, pages 241–256, 2006.

[RTG+20] V. Rodriguez-Fernandez, A. Trzcionkowska, A. Gonzalez-Pardo, E. Brzy-
chczy, G. J. Nalepa, and D. Camacho. Conformance checking for time
series-aware processes. IEEE Transactions on Industrial Informatics,
pages 1–1, 2020.

[RvdA06] Anne Rozinat and Wil MP van der Aalst. Decision mining in prom.
In International Conference on Business Process Management, pages
420–425. Springer, 2006.

[RVdA08] Anne Rozinat and Wil MP Van der Aalst. Conformance checking of
processes based on monitoring real behavior. Information Systems,
33(1):64–95, 2008.

[RW12] Manfred Reichert and Barbara Weber. Enabling Flexibility in Process-
Aware Information Systems - Challenges, Methods, Technologies.
Springer, 2012.

[Sar72] G. Saretsky. The OEO P.C. experiment and the John Henry effect. Phi
Delta Kappan, 53:579–581, 1972.

173

Bibliography

[SC07] Stan Salvador and Philip Chan. Toward accurate dynamic time warping
in linear time and space. Intelligent Data Analysis, 11(5):561–580, 2007.

[SH12] P Shadiya and PP Abdul Haleem. Energy efficient data formatting
scheme: A review and analysis on xml alternatives. Energy, 1(1):1–4,
2012.

[SJEA18] Stefan Schönig, Stefan Jablonski, Andreas Ermer, and Ana Paula Aires.
Digital connected production: Wearable manufacturing information sys-
tems. In Christophe Debruyne, Hervé Panetto, Georg Weichhart, Peter
Bollen, Ioana Ciuciu, Maria-Esther Vidal, and Robert Meersman, editors,
On the Move to Meaningful Internet Systems. OTM 2017 Workshops,
pages 56–65, Cham, 2018. Springer International Publishing.

[SMR17] Florian Stertz, Juergen Mangler, and Stefanie Rinderle-Ma. Nfc-based
task enactment for automatic documentation of treatment processes. In
Enterprise, Business-Process and Information Systems Modeling - 18th
International Conference, BPMDS 2017, 22nd International Conference,
EMMSAD 2017, Held at CAiSE 2017, Essen, Germany, June 12-13,
2017, Proceedings, pages 34–48. Springer, 2017.

[SRM18] Florian Stertz and Stefanie Rinderle-Ma. Process histories – detecting
and representing concept drifts based on event streams. In Cooperative
Information Systems, pages 318–335, 2018.

[SRM20a] Florian Stertz, Stefanie Rinderle-Ma, and Juergen Mangler. Analyzing
process concept drifts based on sensor event streams during runtime. In to
appear in Business Process Management, 18th International Conference,
BPM 2020. Springer International Publishing, 2020.

[SRM20b] Florian Stertz, Stefanie Rinderle-Ma, and Juergen Mangler. Analyzing
process concept drifts based on sensor event streams during runtime. In
Business Process Management, pages 202–219, 2020.

[SRMM] Florian Stertz, Stefanie Rinderle-Ma, and Juergen Mangler. Data set
containing process execution log data with time sequence information
for conference proceeding 2020 paper: Analyzing process concept drifts
based on sensor event streams during runtime. http://dx.doi.org/10.
6084/m9.figshare.12472634.

[SSSA12] Stefan Schulte, Dieter Schuller, Ralf Steinmetz, and Sven Abels. Plug-
and-play virtual factories. IEEE Internet Computing, 16(5):78–82, 2012.

[SVdA08] Minseok Song and Wil MP Van der Aalst. Towards comprehensive
support for organizational mining. Decision support systems, 46(1):300–
317, 2008.

[SvZvdA20] Mohammadreza Fani Sani, Sebastiaan J van Zelst, and Wil MP van der
Aalst. Conformance checking approximation using subset selection and
edit distance. In International Conference on Advanced Information
Systems Engineering, pages 234–251. Springer, 2020.

174

http://dx.doi.org/10.6084/m9.figshare.12472634
http://dx.doi.org/10.6084/m9.figshare.12472634

Bibliography

[T+13] R Core Team et al. R: A language and environment for statistical
computing. 2013.

[Tav18] Romain Tavenard. tslearn documentation. 2018.

[The19] The Hackett Group. Enabling business process change, 2019.

[Van12] Van Dongen, B.F. (Boudewijn). Bpi challenge 2012, 2012.

[VBDA11] H. M. W. Verbeek, Joos C. A. M. Buijs, Boudewijn F. Dongen, and
Wil M. P. Aalst. XES, XESame, and ProM 6. In Information Systems
Evolution, volume 72, pages 60–75. IEEE, 2011.

[vBM19] Jan vom Brocke and Alexander Maedche. The DSR grid: six core
dimensions for effectively planning and communicating design science
research projects. Electronic Markets, 29(3):379–385, 2019.

[vdA11] Wil M. P. van der Aalst. Mining Additional Perspectives, pages 215–240.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[vdA16] Wil M. P. van der Aalst. Process Mining - Data Science in Action,
Second Edition. Springer, 2016.

[VDAADM+11] Wil Van Der Aalst, Arya Adriansyah, Ana Karla Alves De Medeiros,
Franco Arcieri, Thomas Baier, Tobias Blickle, Jagadeesh Chandra Bose,
Peter van den Brand, Ronald Brandtjen, Joos Buijs, et al. Process
mining manifesto. In International Conference on Business Process
Management, pages 169–194. Springer, 2011.

[VdAAvD12] Wil Van der Aalst, Arya Adriansyah, and Boudewijn van Dongen.
Replaying history on process models for conformance checking and
performance analysis. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 2(2):182–192, 2012.

[vdABvZ17] Wil MP van der Aalst, Alfredo Bolt, and Sebastiaan J van Zelst. Rapid-
ProM: mine your processes and not just your data. arXiv preprint
arXiv:1703.03740, 2017.

[vdAdMW05] W. M. P. van der Aalst, A. K. Alves de Medeiros, and A. J. M. M.
Weijters. Genetic process mining. In Gianfranco Ciardo and Philippe
Darondeau, editors, Applications and Theory of Petri Nets 2005, pages
48–69, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[VDARS05] Wil MP Van Der Aalst, Hajo A Reijers, and Minseok Song. Discovering
social networks from event logs. Computer Supported Cooperative Work
(CSCW), 14(6):549–593, 2005.

[VdASS11] Wil MP Van der Aalst, M Helen Schonenberg, and Minseok Song. Time
prediction based on process mining. Information systems, 36(2):450–475,
2011.

175

Bibliography

[VdAWM04] Wil Van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining:
Discovering process models from event logs. IEEE Transactions on
Knowledge and Data Engineering, 16(9):1128–1142, 2004.

[vZBH+17] Sebastiaan J van Zelst, Alfredo Bolt, Marwan Hassani, Boudewijn F
van Dongen, and Wil MP van der Aalst. Online conformance check-
ing: relating event streams to process models using prefix-alignments.
International Journal of Data Science and Analytics, pages 1–16, 2017.

[vZvDvdA18] Sebastiaan J van Zelst, Boudewijn F van Dongen, and Wil MP van der
Aalst. Event stream-based process discovery using abstract representa-
tions. Knowledge and Information Systems, 54(2):407–435, 2018.

[Wan06] Roy Want. An introduction to rfid technology. Pervasive Computing,
5:25–33, 2006.

[Wie14] Roel J Wieringa. Design science methodology for information systems
and software engineering. Springer, 2014.

[WK96] Gerhard Widmer and Miroslav Kubat. Learning in the presence of
concept drift and hidden contexts. Machine learning, 23(1):69–101,
1996.

[WKVHMN05] Li Wei, Eamonn Keogh, Helga Van Herle, and Agenor Mafra-Neto.
Atomic wedgie: efficient query filtering for streaming time series. In
Fifth IEEE International Conference on Data Mining (ICDM’05), pages
8–pp. IEEE, 2005.

[WM12] Roel Wieringa and Ayşe Moralı. Technical action research as a valida-
tion method in information systems design science. In International
Conference on Design Science Research in Information Systems, pages
220–238. Springer, 2012.

[WvdA03] A. J. M. M. Weijters and Wil M. P. van der Aalst. Rediscovering workflow
models from event-based data using little thumb. Integr. Comput. Aided
Eng., 10(2):151–162, 2003.

[WvDADM06] AJMM Weijters, Wil MP van Der Aalst, and AK Alves De Medeiros. Pro-
cess mining with the heuristics miner-algorithm. Technische Universiteit
Eindhoven, Tech. Rep. WP, 166:1–34, 2006.

176

	Declaration of Authorship
	Acknowledgements
	Abstract
	Kurzfassung
	List of Tables
	List of Figures
	List of Algorithms
	Listings
	Introduction
	Motivation
	Problem Statement and Challenges
	Research Questions
	Methodological Background and Contributions
	Thesis Structure

	Related Work
	Input Sources for Process Mining
	Process Discovery Algorithms
	Conformance Checking Algorithms
	Process Enhancement
	Concept Drift in Process Mining

	Creating Data Sets for Process Mining
	Data Set properties and format
	Designing the XES-YAML Approach
	Evaluation of XES-YAML File Format
	Results of the XES-YAML Approach

	Creating Process Mining Data Sets during the Execution of a Process
	Process model creation
	Implementation
	Application Scenarios

	Creating Accurate Data Sets for Process Mining with Human Resources Involved
	Care scenario and contributions
	Background on NFC technology
	Conceptual solution design based on use cases
	Realizing automatic task completion in a process-aware care solution
	Practical evaluation
	Discussion

	Conclusion and outlook

	Discovering the Evolution of Processes through Concept Drifts
	Concept Drifts at the Control Flow Perspective
	Fundamentals of Process Histories
	Algorithms for Synthesizing Process Histories
	Evaluation of process histories
	Summary and Outlook of Process Histories

	Concept Drifts on the Data Perspective
	Fundamentals for Detecting Data Drifts
	Detecting and Identifying Data Drifts
	Evaluation of Data Drift Detection Algorithms
	Conclusion for Data Drift Detection

	Conclusion and Outlook

	Time & Data-Aware Conformance Checking and Explaining Drifts
	Extending Conformance Checking Algorithms Using an Advanced Cost Function
	Advanced Cost Function
	Evaluation of Extended Conformance Checking

	Temporal Perspective
	Temporal Conformance Checking
	Evaluation of Temporal Conformance Checking
	Financial Example
	Manufacturing Example

	Discover and Explain Concept Drifts based on external data sources
	Fundamentals of Dynamic Time Warping
	Time Sequence Assignment and Root Cause Detection
	Evaluation of Drift Explanation Discovery using Real-World Data
	Discussion of Drift Explanation Discovery

	Conclusion and Outlook

	Evaluating TIDATE - Time and Data Aware Process Mining at Runtime
	TIDATE - Artifact Design
	Methodology
	Research Design
	Artifact Validation
	Research Execution
	Discussion of Results

	Expectations and Experiences of Process Mining in Action
	Overview on Methodology and Study Design
	Applied Process Mining Scenario
	Results of Focus Group Interviews
	Discussion and Implications for Research and Practice

	Conclusion and Outlook

	Conclusion
	Results of Research Questions
	Creating Data Sets for Process Mining
	Discovering the Evolution of Processes through Concept Drifts
	Time & Data-Aware Conformance Checking and Explaining Drifts
	Evaluating TIDATE - Time and Data Aware Process Mining at Runtime

	Future Work

	Bibliography

