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Abstract
We verify the T-duality rules found in the worldsheet formulation of non-relativistic string
theory in a target space formulation given by non-relativistic NS-NS gravity. This T-
duality maps a non-relativistic string theory with a compact, spacial, longitudinal direction
to a relativistic string theory with a compact, lightlike direction. As was shown recently,
the non-relativistic limit of NS-NS gravity leads to a pseudo-action for non-relativistic
NS-NS gravity, which encodes all but one equation of motion, the Poisson equation.
We employ this pseudo-action and verify the T-duality rules at the level of actions. We
compare two different approaches: A Kaluza-Klein reduction along a spacelike longitudinal
direction starting from the non-relativistic NS-NS pseudo-action versus a null reduction
starting from the relativistic NS-NS action.
These two actions agree if we implement the T-duality rules as expected from the world-
sheet formulation. We thus verified that the T-duality rules on target space are consistent
with all, except one, equation of motion of non-relativistic NS-NS gravity.
Additionally, we have found the origin of the emergent dilatation symmetry which was the
reason why the Poisson equation could not be derived from the non-relativistic limit of
the action. This dilatation symmetry ultimately stems from the lightlike direction, which
inherently has no notion of length.

Zusammenfassung

Wir verifizieren in einer Hintergrundformulierung, die durch nichtrelativistische NS-NS-

Gravitation gegeben ist, die T-Dualitätsregeln, die in der Weltflächen-Wirkung der nicht-

relativistischen Stringtheorie gefunden wurden. Diese T-Dualität bildet eine nicht- rel-

ativistische Stringtheorie mit einer kompakten, räumlichen, longitudinalen Richtung auf

eine relativistische Stringtheorie mit einer kompakten, lichtartigen Richtung ab. Wie

kürzlich gezeigt wurde, führt der nicht-relativistische Limes von NS-NS-Gravitation zu

einer (Pseudo-)Wirkung für nicht-relativistische NS-NS-Gravitation, die alle Bewegungs-

gleichungen bis auf eine, die Poisson-Gleichung, kodiert.

Wir nutzen diese Pseudo-Wirkung und verifizieren die T-Dualitätsregeln auf der Ebene

der Wirkungen. Wir vergleichen zwei verschiedene Ansätze: Eine Kaluza-Klein-Reduktion

entlang einer raumartigen longitudinalen Richtung ausgehend von der nichtrelativistischen

NS-NS-Pseudo-Wirkung gegenüber einer Null-Reduktion ausgehend von der relativistis-

chen NS-NS-Wirkung.

Diese beiden Wirkungen stimmen überein, wenn wir die T-Dualitätsregeln anwenden, wie

sie auch in der Weltfächen-Formulierung auftreten. Wir haben also überprüft, dass die

T-Dualität im Hintergrund mit allen Bewegungsgleichungen der nicht-relativistischen NS-

NS-Gravitation konsistent sind, bis auf Ausnahme der Poisson Gleichung.

Außerdem haben wir den Ursprung der unerwarteten Dilatationssymmetrie gefunden, die

der Grund dafür war, dass die Poisson-Gleichung nicht aus dem nicht-relativistischen

Grenzwert der Wirkung abgeleitet werden konnte. Diese Dilatationssymmetrie ergibt sich

letztlich aus der lichtartigen Richtung, die von Natur aus keinen inherenten Begriff von

Länge hat.
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1. Introduction

One of Einstein’s genius thoughts in formulating general relativity was that physics
should describe gravity not as a force in the Newtonian sense but rather geometrically
caused by the curvature of spacetime [1, 2]. It was later discovered that a similar ap-
proach also allows us to geometrize other forces, such as electromagnetism, when we
view them through the lens of symmetries and subsequently interpret the physical field
strengths as a curvature in an abstract space related to the underlying symmetries of
nature.
This geometrization of forces, known as gauge theories, is now widely believed to be the
de facto way to describe physics, as it allows a formulation of physics in a way that is
independent of the frame of reference for any physical observable. Such a procedure is
formalized in the literature as a so-called gauging of the symmetries.

In such a framework of gauge theories, general relativity is the theory with the Lorentz
group SO(1, D − 1) as underlying symmetry group, which is exactly the group that
leaves the appropriate local notion of spacetime-distance, the metric g, invariant at each
point of spacetime. Moreover, also Newtonian gravity can be formulated geometrically
through the non-relativistic symmetries of the Galilei algebra, or more precisely, its cen-
tral extension, the Bargmann algebra [3]. Instead of a single spacetime metric, these
symmetries preserve the notion of time and space separately, which are encoded in a
time-metric τ and a space-metric h. The corresponding geometry of Newtonian gravity
is then called Newton-Cartan (NC) geometry and provides a formulation of Newtonian
gravity that is also invariant under general coordinate transformations.
As expected from a non-relativistic theory, Newton-Cartan type geometries also arise as
the large speed of light limits c→ ∞ [4] (or large c expansions [5]) of relativistic theories.
Such limits then provide a guiding principle in how to obtain geometries, actions and
equations of motion for non-relativistic theories.
While interesting in its own right from a gravitational and mathematical perspective,
Newton-Cartan geometry was also applied to problems in condensed matter physics,
such as the quantum hall effect in [6] and [7].

To this date, general relativity gives the most accurate description of gravitational dy-
namics, i.e. of large scale physics, while quantum field theory, guided by gauge theory,
provides the most accurate description of microscopic physics in terms of fundamental
particles. However, so far it is not clear how to combine the two into a combined theory
of quantum gravity, working across all length scales. One candidate for such a theory
of quantum gravity is given by string theory, where, instead of point-like particles, ex-
tended one-dimensional strings are considered to be fundamental. Formally, such string
theories are formulated in a so-called worldsheet action, generalizing the notion of the
worldline of a particle. As we will discuss in this work, the relativistic dynamics of the
string moving through a spacetime, the so-called background or target space, gives rise
to equations of motion for the background fields, one of which is a spacetime metric,
thus giving rise to gravitational dynamics. In the relativistic case, these equations of
motion can be accurately captured by an action principle.
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In 2001, Gomis and Ooguri [8] pioneered a formulation of non-relativistic strings, refer-
ring to a certain non-relativistic limit of relativistic string theory. Such non-relativistic
strings then also give rise to a corresponding target space formulation, which is geomet-
rically encoded in the so-called string Newton-Cartan (SNC) geometry. This geometry is
characterized by two distinguished so-called longitudinal directions along the worldsheet
of the string and is thus distinct from the Newton-Cartan geometry in particle theories,
where only the time direction was singled out.
Subsequent recent works [9, 10, 11] have expanded on the non-relativistic ansatz and its
geometry and formulated closed bosonic non-relativistic string theory in general curved
SNC backgrounds.

Similar to relativistic string theory, non-relativistic string theory is only consistent in
D = 26 spacetime dimensions for the bosonic string and D = 10 spacetime dimen-
sions for the supersymmetric string, leaving us with the task of connecting the 10- or
26-dimensional string to a theory in the familiar D = 4 spacetime dimensions. This is
usually achieved through compactifications, an ansatz where some directions of space-
time are assumed to be small compact dimensions of size R. In relativistic string theory,
surprisingly, the description of a string compactified over a single compact dimension of
size R is related to the one of size 1/R if one interchanges the number of times the string
winds around the compact direction with the (quantized) momentum number along the
compact direction. The resulting relation between the seemingly distinct descriptions
of the two models is called a T-duality. Such T-dualities give rules how to identify the
fields of the two theories, often encoded in so-called Buscher-rules [12].
Similar T-dualities have been considered for the non-relativistic string in [10], where it
was found that on the worldsheet the T-duality is more complex than in the relativistic
case. It turns out that a non-relativistic string moving in a background with a com-
pactified spacial direction is equivalently described by a relativistic string moving in a
background with a null isometry, i.e. a distinguished direction in spacetime along a ray
of light.

Analogously to how background dynamics followed in relativistic string theory, the non-
relativistic string also gives rise to equations of motion for the non-relativistic background
fields to which the string couples. Such equations of motion for the closed bosonic non-
relativistic string were computed in [13] and one of the equations of motion was found
to be the stringy analogue of the Poisson equation. In this sense, the non-relativistic
string gives rise to (a version of) Newtonian gravity in the target space.
In the recent work [4], the non-relativistic limit of NS-NS gravity, the bosonic sector
common to superstring theories, was constructed. As mentioned, the relativistic back-
ground dynamics could be accurately captured by the introduction of a corresponding
NS-NS gravity action. The non-relativistic case is more subtle. It was shown that the
non-relativistic limit of the equations of motion of NS-NS gravity agreed with the equa-
tions of motion deduced from the worldsheet formulation of the non-relativistic string.
On the other hand, the limit of the NS-NS action led to a non-relativistic action that
captured almost all corresponding equations of motion, yet, the string version of the
Poisson equation could not be inferred from it. This is due to an unexpected dilatation
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symmetry of the action that was not present in the relativistic action.

So far, T-dualities in non-relativistic string theory have been considered for closed [10]
and open [14] strings in the literature. However, they have only been performed in a
worldsheet formulation of string theory, not at the level of the target space. Expanding
on this, in [15] corresponding target space T-duality rules have been assumed to hold
to deduce non-relativistic string theory solutions from known appropriate relativistic
ones, but it was not shown that these rules actually hold at the level of non-relativistic
equations of motion.
It is thus the aim of this work to confirm the T-duality rules derived at the level of world-
sheet in a target space formulation of non-relativistic string theory and subsequently
show that these rules hold at the level of (pseudo-)actions between non-relativistic NS-
NS gravity and relativistic NS-NS gravity with a null isometry. Verifying this relation
then shows that under T-duality all but one pair of equations of motion (including the
Poisson equation) correctly transform into each other.

This thesis is organized as follows. In section 2 we introduce the language of repre-
sentation and gauge theory, which provide the foundation of all subsequent chapters.
In section 3 we study general relativity in this language as the gauge theory of the
Poincaré group. We introduce the notion of vielbeine, which is vital for the formulation
of Newton-Cartan geometry and, furthermore, discuss several technicalities regarding
torsion and diffeomorphisms that reappear similarly in the next part. In section 4 we
motivate the formulation of Newtonian gravity through Newton-Cartan geometry and
then follow the lines of the preceding sections to derive Newton-Cartan geometry as the
gauge theory of the Bargmann algebra. Lastly, we explain how to take non-relativistic
limits of relativistic theories and algebras. In section 5 we present different approaches
to compactifications via dimensional reductions. First, we introduce the original Kaluza-
Klein reductions, and then we explain null reductions. Both will be paramount in the
results and calculations of this thesis. Next, in section 6 we discuss string theory. First,
we consider the relativistic string to derive NS-NS gravity and discuss the general setup
of T-dualities. Then, we specialize to non-relativistic theory and present its historical
emergence in flat spacetime, as well as recent results in curved backgrounds. Finally,
in section 7, we present the results of this work, where we applied the techniques of
dimensional reductions of section 5 to non-relativistic NS-NS gravity.
In section 8, we summarize the results and give an outlook on how to further extend
and apply the results of this thesis.
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2. General Gauge Theory

Symmetries have always played a vital role in modern theoretical physics. It is not
hard to discover that symmetries greatly simplify the description or solution of physical
problems. One of the examples, taught as early as in undergraduate studies, is the
solution of the two-body problem of Newtonian gravity through the use of the Lenz-
Runge vector.
It was the genius work of Emmy Noether in 1918 that tied symmetries and physics closer
together. In her work [16] she showed that so-called global symmetries, symmetries with
a constant parameter, lead to conserved charges. However, in the same work, she also
showed that local symmetries, i.e. with parameters being functions of spacetime, lead
to relations between the equations of motion.
The theory of local symmetries is now called gauge theory and is one of the pillars of
contemporary physics and research, with the most notable example being the standard
model of particle physics.

In this chapter, we want to give a quick introduction to the language of representation
theory, which encodes physical symmetries, and then develop the language and tools of
gauge theory needed for the rest of this work. As this topic is very rich and broad, we
can only present a small fragment here.

2.1. Groups and Representations

2.1.1. Groups

Symmetries in physics are encoded in the mathematical structure of groups. Many of
these symmetries are Lie groups, groups whose elements are described by a simple set of
(finite) parameters, that are related to each other smoothly. More technically speaking,
Lie groups are groups that are also manifolds and whose group operations are smooth.
A nice and thorough mathematical treatment of such groups can be found in [17] and
[18, chapter 16]. Here we will briefly outline some conventions and language used in
physics, but made more clear in light of the mathematical background.

Usually, it suffices to only look at matrix Lie groups G, meaning Lie groups that are a
closed subset of GL(n,C), the group of invertible, complex n× n-matrices.
Each Lie group comes associated with a Lie algebra g, a vector space with a bilinear,
antisymmetric bracket [ , ] : g× g → g, satisfying the Jacobi-identity.
This algebra can be derived from the tangent space of the group G at the identity e ∈ G,
i.e. g = TeG, which in the setting of matrix groups is always a subset of Mat(n,C).
From this definition we can see that the dimension of g as a vector space is the same as
the dimension of G as a manifold.
We can think of the elements of g as a linearization of the group, something that is
often called an infinitesimal symmetry, while the elements of the group constitute finite
symmetries.

In the practical calculations of this work, the algebra is often more important than the
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group, but we should still describe the relationship between the two.
First note that, as is customary in physics, we can choose a basis on g denoted by
{TA}A∈I , where I is a (finite) index set. We then call the elements of this basis the
generators of g. For an element ξ ∈ g in the algebra, the expansion coefficients ξA ∈ C
such that ξ = ξATA are then called parameters. Since the bracket again gives an element
of the algebra, we can express its action via the above basis as

[TA, TB] = f C
AB TC .

The numbers f C
AB are called structure constants and completely characterize the algebra

(albeit in a basis dependent manner). It is for this reason that in physics usually only
the generators and this relation are given as “the algebra”. Algebras for which f C

AB ≡ 0
are called Abelian.
We can relate the algebra to the group through the exponential map exp: g → G, which
can be defined abstractly, but in the case of matrix groups and algebras is simply the
matrix exponential

exp(ξ) =
∑
n∈N

ξn

n!

for ξ ∈ g. It is then clear that exp(0) = e and that we have

d

dt
exp(tξ)|t=0 = ξ (1)

It is less clear that there is a neighborhood of 0 ∈ g and a neighborhood of e ∈ G, such
that between these two the exp-map is a diffeomorphism. This further justifies, why the
elements of the algebra are seen as “small” symmetries.

We can now tie this fact together with two further results. It can be shown [17, Prop. 2.5]
that any connected Lie group is generated by any neighborhood of the identity. So,
given a Lie group, we can consider its Lie algebra calculated as tangent space of the
identity. If we then take a neighborhood around the zero vector in g on which exp is a
diffeomorphism, we find that for a connected Lie group we can always write any g ∈ G
through a finite product

g = exp(ξ1) · · · exp(ξp)

of exponents of p elements ξi ∈ g of the algebra. Additionally, we have the Baker-
Campbell-Hausdorff-formula,

exp(ξ1) · exp(ξ2) = exp(C(ξ1, ξ2)),

where ξ1,2 ∈ g are near 0 ∈ g and C : g × g → g is a function that only involves ξ1,2
and nested commutators of them. This means that near the identity, the product of
elements in the group G is completely determined through the Lie algebra g.
So, for connected Lie groups we do not really need to distinguish between the group and
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its algebra, and we will henceforth do so and just assume that for any symmetry g ∈ G
we have a corresponding ξ ∈ g, such that

g = exp(ξ) = exp
(
ξATA

)
,

where we made the basis explicit.
We usually work over the connected component of a group, as we want to relate any
symmetry smoothly to “doing nothing”, i.e. to the identity.

Note that it is important that we start with a group and from there deduced the corre-
sponding algebra. Given an abstract (finite dimensional) Lie algebra, it is not clear what
group should be associated to its algebra. In general, different Lie groups might have
the same Lie algebra, e.g. both SU(2) and SO(3) have the same abstract Lie algebra
but are not isomorphic. However, if we require the group associated to the algebra to
be simply connected, one can associate to each finite dimensional Lie algebra a unique
(up to isomorphism) Lie group according to [17, Theorem 22.11]

2.1.2. Representations

A representation of G on V , where V is a vector space, is a Lie group homomorphism
ρ : G→ GL(V ). We call dim V the dimension of the representation.
A representation is called irreducible if for any subspace W ⊂ V that is an invariant
subspace, meaning gW ⊂ W for all g ∈ G, we find that either W is trivial W = {0} or
already the whole space W = V .
Irreducible representations are important, as they are the building blocks of other rep-
resentations, due to the result [17, Cor. 23.11] that any representation of a compact
Lie group is completely reducible, i.e. can be written as a direct sum of irreducible
representations. Moreover, for semisimple Lie groups, i.e. Lie groups whose Lie algebra
is semisimple, we have a similar, but more general, decomposition result. Every finite
dimensional representation of a semisimple Lie algebra is completely reducible [19, The-
orem 10.9]. For non-semisimple algebras this no longer holds true, and indeed, they are
often reducible but indecomposable. This means that we can no longer find representa-
tion matrices that are block diagonal, but only upper triangle matrices.

From [17, Prop. 5.4] we know that any Lie group homomorphism ρ gives rise to a Lie
algebra homomorphism ρ∗ = Teρ, i.e. a linear map ρ∗ : g → L(V ) from the algebra to
the linear maps on V , such that ρ∗([ξ1, ξ2]) = [ρ∗(ξ1), ρ

∗(ξ2)].
Thus, any group representation automatically gives an algebra representation, which for
us is the main point of interest here. To expand on this, note that by [17, Theorem 8.8(i)],
we have for any Lie group homomorphism ρ that

ρ ◦ exp = exp ◦ρ∗,

or acting on elements of the algebra that

ρ(exp(ξ)) = exp(ρ∗(ξ)) = exp
(
ξAρ∗(TA)

)
.
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This equation can be used to find the representation of the algebra. We can expand the
exponential up to first order in the parameters, giving

exp(ρ∗(ξ)) ≃ IdV + ρ∗(ξ).

Thus, we can also define the action of ρ∗(ξ) on an element v ∈ V via

δ(ξ)v := v′ − v ≡ ρ∗(ξ)v

where v′ is the element that we get by applying the exponential and then truncate after
the first order in the parameters. After a choice of basis on V , this can then naturally
be written as the action on the components of v, denoted by vi,

δ(ξ)vi = ξAρ∗(TA)
i
jv

j,

where i = 1, ..., dim(V ) is the index enumerating the basis of the representation and
ρ∗(TA)

i
j are the components of the matrix representing the action of the generator TA.

It is also common notation to drop the dependence on ξ altogether.
Furthermore, it is customary in physics to always choose a basis in the representation
space. Given such bases, one can write down the transformation rules corresponding
to the representation as acting on the indices of the basis. We then identify physical
objects by their transformation rules (i.e. their representation), effectively making these
rules their defining property1. We then also associate the indices to the representation,
which might lead to statements like: the index i transforms under SO(D) rotations.

For every Lie algebra there always exists at least one representation, the adjoint repre-
sentation, that will be of great importance in gauge theory.
Via the Jacobi-identity, one can check that we always get a representation of g onto
itself via the map

ρ∗ : g → L(g)

ξ 7→ [ , ξ],

or applied to an element χ ∈ g

ρ∗(ξ)[χ] = [χ, ξ].

After a choice of basis and using the delta symbol, this reads

δ(ξ)χA = f A
BC χBξC .

So far, we have only talked about finite dimensional representations but in physics we
usually consider infinite dimensional representations. As vector space, we take a vector
space of functions over some spacetime M that takes values in a second vector space W
that generally also carries a representation of some symmetry group. These functions

1Something often encountered in relativity, where a vector is introduced as transforming with the
Lorentz matrix, while the co-vector transforms with the inverse.
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we will call fields. After choosing a basis {wi} of W , we may write any field via its
components ϕi(x).
With this we can distinguish between internal symmetries, acting only on the compo-
nents of the fields ϕ(x) 7→ ϕ′(x) and spacetime symmetries, that act on the points of
spacetime as well as the components, i.e. ϕ(x) 7→ ϕ′(x′), where x′ is the transformed
coordinate of spacetime.
A simple example for an internal symmetry is given by fields with values in a vector
space that also carry a representation of the rotation group SO(D) for arbitrary dimen-
sion D. To illustrate this, we assume that this vector space is given by the defining
representation, where an element A ∈ SO(D) can act directly on the vector space by

ϕ′(x) = Aϕ(x).

Introducing a basis and hence the Latin SO(D)-indices i, j = 1, ..., D, we have the
components ϕi(x) and the transformation rule for internal symmetries reads

ϕ′i(x) = Ai
jϕ

j(x).

A more complicated example for a spacetime symmetry comes in the form of the Dirac
field ψa(x), where the index a is often referred to as spinor index. This field transforms
under an element Λ of the Lorentz group SO(1, D − 1) (or more precisely under the
universal cover of it, for details see [20, Ch. 2&3]) as

ψ′a(x′) = ρ(Λ)abψ
b(Λ−1x),

for ρ(λ) a certain representation2 matrix of an element of the Lorentz group.

We can now properly introduce the delta symbol acting on a field ϕ, which we will also
call the variation of ϕ, given by

δϕ(x) = ϕ′(x)− ϕ(x).

While the action of an internal symmetry is immediately seen to be

δ(ξ)ϕi(x) = ρ∗(ξ)ijϕ
j(x),

the action of spacetime symmetries seems to be more complicated. However, we can
also express them via actions which only act on the components of a field.
By linearizing the symmetry action on spacetime (i.e. truncating the exponential), we
can always write

x′ = x+ δx,

where δx is assumed to be small, and we thus see that the symmetry acts as a translation.
For simplicity, we assume that g acts directly on the spacetime coordinates as a spacetime
symmetry, i.e. that

δxµ = (ξ)µνx
ν ,

2Actually a projective representation, that is why one has to consider the universal cover.
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and that it acts only on the coordinates and not on the components. We can also
express that by saying that ϕ does not carry any indices and that ϕ′(x′) = ϕ(x). Again,
we note that the indices displayed here indicate a (choice of) representation, in this case
a defining representation on spacetime and a trivial representation on the components.
The latter defines the field ϕ as a scalar field. We can then use a Taylor expansion to
first order and thus get

ϕ′(x) = ϕ′(x′ − δx) ≃ ϕ′(x′)− δxµ∂µϕ
′(x′)

= ϕ(x)− δxµ∂µϕ(x).

So, in total, we find that spacetime symmetries act again only on the component of the
field ϕ as

δϕ(x) = −δxµ∂µϕ(x) = −(ξ)µνx
ν∂µϕ(x).

One can proceed in the same way, including spacetime symmetries that also act on
fields living in a representation with multiple components. In any case, in the linearized
form, every symmetry will only act on the components. More precisely, every spacetime
symmetry will contain a term as above and a term acting on the indices.
This is showcased considering the Dirac field again. By expansion, we have for an
element λ of the Lie algebra of the Lorentz group

δψa(x) = ρ∗(λ)
a
bψ

b(x) + λµνx
ν∂µψ

a(x).

Thus, how the first term acts distinguishes different field representations.
Further note, there seems to be a relation between spacetime symmetries and trans-
lations, something we will explore later when looking at general relativity as a gauge
theory.

Further, note that the delta symbol has the properties that it is

1. linear in ϕ,

2. commutes with partial derivative, i.e.

∂µδϕ = δ(∂µϕ),

3. a derivation

δ(ϕ1(x)ϕ2(x)) = (δϕ1(x))ϕ2(x) + ϕ1(x)(δϕ2(x)),

4. a representation of the algebra

[δ(ξ1), δ(ξ2)]ϕ(x) = δ([ξ1, ξ2])ϕ(x).
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2.2. Basic Concepts of Gauge Theory

At every point of the last section, we always assumed that the symmetry parameters ξA

were simply numbers. Gauge theory is the question of what happens if we instead allow
the parameters to be arbitrary functions of spacetime, i.e. ξA = ξA(x). Allowing this
type of spacetime dependence and all the modifications it entails is called gauging of the
symmetry.
From a mathematical perspective, however, this is a much more complicated process, as
we switch from the language of pure representation theory to the language of principal
fiber bundles. A thorough mathematical introduction can be found in [21] and [20]. We,
however, will be more concise from this point on and follow a more heuristic approach
(see [22, Chapter 11]).
Gauge theory is motivated by the idea that every physical quantity only makes sense
in relation to some kind of abstract reference frame. The classic example is spin, where
“spin up” and “spin down” are only a proper physical description of the system if one
gives the direction relative to which “up” and “down” is defined. Gauge theory is the
framework where we not only keep track of the physical quantity but also the frame
relative to which it is defined. A priori these frames need not be constant (consider a
rotating observer measuring “up” and “down”), hence it is fairly natural that frames are
needed for each point of the spacetime over which we regard physics and, as we want to
freely switch back and forth between different frames, that these have to be related by
some group G at each point.
We thus see that a) symmetries take on a different role than before, as they are now
redundancies in our description of the theory, and b) that we need to consider group
actions that differ at each spacetime point.

Let us now see at which point difficulties arise. We will start from an action given by a
Lagrangian

S[ϕ] =

ˆ
dDxL(ϕ(x), ∂ϕ(x)).

The action depends on the collection of fields ϕi from before, where i might be a generic
index to enumerate the fields or an index of a representation. An action is invariant if
we have that

δS[ϕ] = S[ϕ+ δϕ]− S[ϕ] = 0. (2)

When we naively plug in the now spacetime dependent transformation that acts only
internally

δ(ξ(x))ϕi(x) = ρ∗(ξ(x))ijϕ
j(x) = ξA(x)ρ∗(TA)

i
jϕ

j(x),

we see that while the fields transform as before, the same is not true for the partial
derivative of a field

δ(ξ(x))∂µϕ
i(x) = ξA(x)ρ∗(TA)

i
j∂µϕ

j(x) + ∂µ[ξ
A(x)]ρ∗(TA)

i
jϕ

j(x),
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as it picks up an extra derivative term, spoiling invariance of the action. To remedy
this, consider a 1-form field Bµ, taking values in the Lie algebra, i.e. Bµ = BATA, that
transforms in the adjoint representation, but only up to a derivative of the symmetry
parameter too

δ(ξ)BA
µ = ∂µξ

A + f A
BC BB

µ ξ
C

or in a basis and coordinate free notation

δ(ξ)B = dξ + [B, ξ].

A field with such variation is called a gauge field or connection. The combined expression

Dµϕ
i(x) := ∂µϕ

i(x)− δ(Bµ)ϕ
i(x) ≡ ∂µϕ

i(x)−BA
µ ρ

∗(TA)
i
jϕ

j(x)

is called covariant derivative and has the property that

δ(ξ)Dµϕ
i(x) = ξA(x)ρ∗(TA)

i
jDµϕ

j(x).

So, the covariant derivative of a field transforms as the field itself, and we say it “trans-
forms covariantly”.
If we then replace ∂µ 7→ Dµ in our Lagrangian, we indeed find that it is now invariant
under spacetime dependent transformations. Note though that we had to pay a price
for that, namely, we had to introduce an extra field in our theory.
This algorithm of replacing partial derivatives by covariant ones is called minimal cou-
pling.

For more complicated examples such as torsional Newton-Cartan geometry, which we
will deal with in section 4, we need to refine slightly what we mean by transforming
covariantly, as“transforming the same as the field” will not suffice.
We rather define a covariant quantity as a quantity that under gauge symmetries does
not transform with a derivative of the symmetry parameter. Clearly the connection is
not such a quantity.
When we build Lagrangians, we want to make sure that we build it only from such
covariant quantities, as physics should be invariant under gauge transformations.
The covariant derivative is such an object, thus, also subsequent applications of it should
be one. There is one particular quantity of interest Fµν(T

A), obtained by considering

[Dµ,Dν ]ϕ
i =: Fµν(T

A)ρ∗(TA)
i
jϕ

j.

This field Fµν(T
A) is a Lie algebra valued 2-form called the curvature of the generator(s)

TA and can be explicitly calculated to be

Fµν(T
A) = 2∂[µB

A
ν] + f A

BC BB
µ B

C
ν .

The name curvature stems from the similarity of this expression to the Riemann curva-
ture tensor (which in fact, is an explicit example of this) and that it defines a notion of
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parallel transport, albeit not in spacetime but in an abstract space (for details see [21,
Chapter 3.3&3.5]).

It can then be shown that F transforms in the adjoint representation, but more impor-
tantly, for any such curvature we get a so called Bianchi-identity, namely

D[µFνρ](T
A) = 0.

The field content (ϕi, BA
µ ), their symmetries and gauging them specifies the kinematics of

our theory, and a priori we get no dynamics purely by gauging an algebra. For dynamics,
we need a Lagrangian and/or equations of motion.

The above version of a gauge theory is somewhat sanitized since in the transformation of
B only other gauge fields appear. In reality, see supersymmetry and torsional Newton-
Cartan theory, our field content may also contain non-gauge fields, which then also
appear in the transformation of the gauge fields. This amounts to the more general
transformation law

δ(ξ)BA
µ = ∂µξ

A + f A
BC BB

µ ξ
C + ξBM A

µB .

This also modifies the curvature, resulting in the corrected covariant curvature

F̂µν(T
A) = Fµν(T

A)− 2BB
[µM A

ν]B . (3)

2.3. Noether Identities

As mentioned before, it is important to stress that gauge symmetries are not symmetries
of the physical system but only symmetries, or rather redundancies, of our description
of the system. It is customary to call degrees of freedom related to gauge symmetries
unphysical.

One of the more important implications of this is encoded in Noether’s second theorem,
which leads to the concept of Noether identities, i.e. relations between the equations of
motion due to gauge symmetries.
In modern language it is actually a direct consequence, as the invariance under a gauge
symmetry in eq. (2) is exactly the same as the ansatz we use for computing equations
of motion. It is thus clear that under a gauge symmetry we find

0 = δ(ξ)S =

ˆ
dDx

δL
δϕi

δ(ξ)ϕi.

If we then extract the parameters of ξ, and recall that they are arbitrary continuous
functions, we know that the part not containing ξ has to vanish. The equations corre-
sponding to the vanishing parts are then called Noether identities. More explicitly, for
simplicity, assume that the ϕ do not contain any gauge fields among them. We then find

0 = δ(ξ)S =

ˆ
dDx

δL
δϕi

ρ∗(TA)
i
jϕ

jξA. (4)
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Since the above has to vanish for any ξA that is continuous, we find the Noether identities

δL
δϕi

ρ∗(TA)
i
jϕ

j = 0,

relating the equations of motion δL
δϕi of different field components of ϕ. Note that the

action could also include gauge fields, therefore the Noether identities can, after integra-
tion by parts, be differential instead of algebraic equations.
Consequently, we have started with say N field components, hence degrees of freedom,
we see that we do not get an independent equation of motion for each component. For
each gauge symmetry we lose an equation of motion, so we actually only have N − r
physical degrees of freedom, where r is the number of gauged symmetry parameters.
This may seem pathological at first but only represents that we have equivalence classes
of field configurations that look different on paper but encode the same physical config-
uration. The representatives of the classes are related through gauge transformations.
Picking one representative and therefore removing the unphysical degree of freedom from
the mathematical description is called gauge fixing.
One can acquire another point of view in the Hamiltonian formulation, where gauge
symmetries present themselves as constraints on the system. See [23, Section. 3] for
more details.

We started from already knowing the symmetries and thus could find the independent
degrees of freedom. In applications, we can go in the opposite direction as well. If
we find (unexpectedly) a relation between equations of motion, then we know that a
gauge symmetry has to be present. We refer to these unexpected gauge symmetries as
emergent symmetries.

2.4. Example: The Relativistic Point Particle

Let us apply the abstract ideas of the previous section to the simple example of the
relativistic point particle, as presented in [24]. If we start with Minkowski space M1,D−1

and fix a frame with coordinates (t, x⃗), we have the action

S[x⃗] = −m
ˆ
dt

√
1− ˙⃗x · ˙⃗x. (5)

Computing the equations of motion and the energy, we find the known description of a
relativistic point particle

p⃗ =
m ˙⃗x√

1− ˙⃗x · ˙⃗x
, E2 = m2 + p⃗ · p⃗.

So the action (5) describes relativistic dynamics, but it has some drawbacks. Time and
space are not on equal footing in the action. While t is the curve parameter, the D − 1
positions x⃗ are the only dynamical variables of the theory. In this form, it is also not
clear how Lorentz transformations are supposed to act on the system.
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Let us instead start with the different action

S̃[Xµ] = −m
ˆ
dτ

√
−ηµνẊµẊν . (6)

Our dynamical degrees of freedom are now the D-many coordinates Xµ(τ). Lorentz
or rather Poincare symmetry is now immediately clear. But we now also have a gauge
symmetry present, as the action is invariant under reparametrizations

τ 7→ τ ′ = τ ′(τ).

Infinitesimally, we can express reparametrizations as small time translations

δτ = ε(τ),

described by the single parameter ε. This immediately tells us, that not all of D com-
ponents of Xµ are independent, and we should only have D− 1 independent dynamical
degrees of freedom.
We can now remove this artificial degree of freedom, by using the reparametrization
invariance to set

τ = X0(τ) ≡ t.

Doing this, we say that we fix the reparametrization invariance. In this gauge, the ac-
tions S̃[Xµ] and S[x⃗] have the exact same form.
When not fixing the gauge, thus keeping the extra degree of freedom, we find a corre-
sponding Noether identity. The variation of the coordinate reads

δXµ = −Ẋµε.

Hence, the variation of the action reads

0 = δS[X] = m

ˆ
dτ

d

dτ

(
Ẋµ√
−Ẋ2

)
δXµ

= −m
ˆ
dτ

d

dτ

(
Ẋµ√
−Ẋ2

)
Ẋµε.

This has to hold for any continuous function ε, thus we can read off the constraint

d

dτ

(
Ẋµ√
−Ẋ2

)
Ẋµ = 0,

which lets us remove exactly one equation of motion. Introducing the relativistic mo-
menta

pµ =
mẊµ√
−ẊαẊα

,
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we can also rephrase the Noether identity by writing the following relation for the mo-
mentum

d

dτ
(pµp

µ) = 0.

Ultimately, this amounts to the on-shell condition of special relativity

pµp
µ +m2 = 0.

In a Hamiltonian formulation, we would have found the last equation as single constraint
equation for the Hamiltonian system.

It is important to stress that the reparametrization symmetry does not map one solution
of equations of motion to another but relates the same solution in different descriptions.
Fixing a gauge may change the form of the action, but not the actual physics.

Also note that the action (6) can be easily coupled to an arbitrary background metric g
via ηµν 7→ gµν .
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3. General Relativity as a Gauge Theory

In this section, we want to introduce general relativity through the lens of gauge theories.
This will give us a proper example of how symmetries give rise to the geometric structures
underlying gravitational theories.
Here, we not only aim to introduce the basic notions of general relativity in a modern
vielbein formalism but want to clarify in what sense the Poincaré-symmetry determines
relativistic geometry.
This is important in its own right but also needed for our introduction to non-relativistic
geometry in section 4, first to know what the proper starting point for any kind of non-
relativistic limit should be and secondly, to reveal the changes resulting from the different
choice of symmetries later.

3.1. General Relativity

3.1.1. The Vielbein Formalism

In this part, we may only cover the bare basics of general relativity in the vielbein for-
malism. For a thorough treatment see [22, Ch. 7]. Before we turn to the main objects
of this part, let us first clarify some language.
It is often stated that general relativity is characterized by its diffeomorphism invariance.
While we will see later that this needs to be refined, diffeomorphisms take a prime role
in formulating the theory.
For a smooth manifold M of dimension D, a diffeomorphism F : M → M is a smooth
bijective map, which also has a smooth inverse. It is best to think of diffeomorphisms as
mere changes of coordinates, as we do not distinguish between diffeomorphic manifolds3.
While they form a group, it is infinite-dimensional and thus quite complicated to work
with.
We consequently only work with the linearized version, often called ”infinitesimal dif-
feomorphisms”, which are given by an arbitrary small coordinate change

δxµ = ξµ(x).

These are naturally identified with vector fields on M and their action on any tensor T
can be calculated to be the Lie derivative along ξ

δ(ξ)T = LξT.

To fully step into the realm of general relativity, we need to introduce a metric on the
manifold, a symmetric, non-degenerate 2-tensor g : TM × TM → C∞(M) of Lorentzian
signature (1, D − 1), which we usually refer to by its components gµν with respect to
some chart. It is only after the introduction of a metric that we have a notion of a
(pseudo-)Riemannian geometry on a manifold. One of the key ideas of general relativity
is to take the metric and hence the geometry to be a dynamical quantity.

3A fact which leads to some quite subtle questions, usually found under the word ”hole problem”.
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As we try to keep track of symmetries, so far, we only have the action of diffeomorphisms
on the metric via δ(ξ)gµν = Lξgµν .

By Gram-Schmidt, we can always find an orthonormal basis for g(x) for each tangent
space TxM . It turns out that we can extend this choice (locally) to a frame of the tangent
bundle. This so-called co-moving frame is denoted by {Eµ

A}
D−1
A=0 and its defining relation

is

gµνE
µ
AE

ν
B = ηAB.

This finally lets us introduce the vielbeine E A
µ as the corresponding dual basis of the

cotangent bundle: E A
µ Eµ

B = δAB . The defining relation for the vielbeine is then

gµν = ηABE
A

µ E B
ν . (7)

This equation, however, seems to be problematic, as we have D(D + 1)/2 independent
components for g, while we apparently have D2 independent components of the vielbein.
As mentioned in the section on gauge theory, such redundancies should always catch our
attention, as they are usually due to some symmetry in our description. Indeed, the
vielbeine are not uniquely defined by eq. (7), as it is invariant under (gauged) Lorentz
transformations of the form E A

µ 7→ A(x)ABE
B

µ . Since the dimension of this group is
D(D − 1)/2, it exactly cancels the undesired degrees of freedom in our description.
As the vielbeine are forms, we know how they transform under diffeomorphisms. We
thus find their infinitesimal symmetries to be

δ(ξ,Λ)E A
µ = LξE

A
µ + ΛA

BE
B

µ ,

for a vector field ξ and ΛAB = −ΛBA a function of spacetime with values in so(1, D−1),
the Lie algebra of the Lorentz group O(1, D − 1).
Usually, we require the preservation of time orientation and space orientation of our
spacetime, which leads us to the Lie group SO+(1, D − 1). This, coincidentally, is
exactly the connected component of O(1, D − 1). But as we are mainly interested in
infinitesimal actions, we only need to consider the corresponding Lie algebras, which are
naturally identical.
Hence, we usually drop the plus and, identifying algebra and group, we call this a
SO(1, D − 1) symmetry.

While we introduced the index A simply to enumerate the frames, we now see that we
can interpret it as a representation index transforming under (part of) the isometry-
group of flat Minkowski space.
We thus call capital Latin indices A,B, ... flat and Greek indices µ, ν, ... are called curved.
By introducing co-moving frames and the vielbeine, we can express all tensors in terms
of flat indices, i.e.

TA := Eµ
ATµ

TA := E A
µ T µ,

23



and similarly for higher tensors. These tensors do not transform under diffeomorphisms
anymore, but rather under (local) Lorentz transformations. We will call such a quantity
a spacetime scalar. Switching to flat indices has the benefit that now all tensors are
covariant quantities, unlike tensors with curved indices which transform under the Lie
derivative, which always includes a derivative of a parameter.
Clearly, we can then express the metric acting on two vector fields V,W as

gµνV
µW ν = ηABV

AWB.

Thus, we have found an isomorphism between each tangent space and flat Minkowski
space.

As we are now firmly in the realm of gauge theory, we want to identify covariant quanti-
ties. Clearly, the exterior derivative of the vielbein does not transform covariantly, as it
picks up a derivative of the parameter of Lorentz transformations δdEA = d(ΛA

BE
B).

As discussed in sec. 2, this may be resolved by introducing a so(1, D − 1)-gauge field
Ω AB

µ transforming as

δΩ AB
µ = ∂µΛ

AB − 2Λ
[A

CΩ
B]C

µ .

This connection is also called spin connection, a name that becomes clear when studying
spinors (for details see [20]). We can then define the following covariant quantity in terms
of the covariant derivative D with respect to Ω as

2D[µE
A

ν] = 2∂[µEν]
A − 2Ω AC

[µ Eν]C =: T A
µν (8)

or coordinate free as

DEA = dEA − ΩA
C ∧ EC = T A.

This equation is known as Cartan’s first structure equation. The 2-form T A is called
torsion and transforms under diffeomorphisms, as well as Lorentz transformations

δ(Λ)T A = ΛA
BT B.

We will see how this tensor relates to the torsion known from general relativity in metric
formulation and how it can be interpreted as the curvature of a connection later. It is also
interesting that torsion appears more generally when studying so called G-structures,
for a brief introduction see [25, Sec. 2.1].
Cartan’s first structure equation is also referred to as a conventional constraint. Since
it contains the spin connection only algebraically, we can solve for it in terms of the
vielbein E and the torsion T , consequently rendering the constraint an identity.

By requiring that D acts as a derivative on functions f : M → R and that it is compatible
with the tensor product, we can extend it such that it maps tensors to tensors. However,
this sentence is imprecise, as we have introduced two different kinds of indices, flat and
curved ones.

24



The action on tensors with all flat indices is completely clear by requiring the resulting
tensor to be a covariant quantity, resulting in

DµT
A1···Ap

B1···Bq
=∂µT

A1···Ap

B1···Bq
− Ω A1

µ CT
C···Ap

B1···Bq
− · · · − Ω

Ap

µ CT
A1···C

B1···Bq

− Ω C
µB1

T
A1···Ap

C···Bq
− · · · − Ω C

µBq
T

A1···Ap

B1···C .

But on the other hand, we already know that in the metric formulation, we have a
covariant derivative ∇, with affine connection form Γα

µν , that precisely covariantizes
curved indices. As we can freely switch from curved to flat indices via the vielbein, we
require that these two notions of covariant derivatives agree, i.e. that

∇µV
α = Eα

ADµV
A.

This condition can be formulated in terms of the connection forms and the vielbein as
the so called vielbein postulate

∂µE
A

ν − Ω A
µ CE

C
ν − E A

α Γα
µν = 0.

If we anti-symmetrize this in the curved indices, we get the relation

2E A
α Γα

[µν] = T A
µν . (9)

So indeed, the torsion T is precisely the torsion of the connection that covariantizes
curved indices.

From the vielbein postulate eq. (9) we can solve Γ in terms of the vielbein and the spin
connection as

Γα
µν = Eα

A(∂µE
A

ν − Ω A
µ CE

C
ν ).

Since ∇ naturally acts on an affine vector bundle, i.e. the tangent bundle, we call such
a connection Γ an affine connection.

As mentioned before, we can also solve Cartan’s first structure equation (8) to express
the spin connection in terms of the vielbein and the torsion. If we introduce the notation

E A
µν := ∂[µEν]

A

we can express the, now dependent on E and T , spin connection as

Ω AB
µ = EµCE

ABC − 2E [AB]
µ + T [AB]

µ − 1

2
EµCT ABC .

Consequently, we can also express the corresponding affine connection via the vielbein
and torsion or, equivalently, via the metric and the torsion Γ = Γ(g, T ).

If we require vanishing torsion of the connection, the unique torsion free solution, called
Levi-Civita spin connection, reads

Ω AB
µ = EµCE

ABC − 2E [AB]
µ . (10)
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The corresponding affine connection Γ(g) then corresponds to the infamous, unique,
torsion free Levi-Civita connection. As we will see in section 3.1.2, this is the connection
governing general relativity.

Independent of whether we use the torsionless or torsional connection, we can assemble
another covariant quantity, the curvature

R AB
µν = 2∂[µΩν]

AB + 2Ω AC
[µ Ω B

ν] C ; (11)

Or in a basis-free notation, we get the following equation

RAB = dΩAB + ΩAC ∧ ΩB
C ,

called Cartan’s second structure equation. When we express this abstract Lorentz cur-
vature in terms of the dependent spin connection, we recover precisely the Riemann
curvature tensor known from general relativity. It is this notion of curvature that we
utilize when formulating dynamics, as of now, we only have quantified the kinematics of
general relativity.

3.1.2. Dynamics for General Relativity and the Palatini Formalism

So far we have introduced 4 fields: The vielbein, the spin connection, torsion and the
curvature. We have seen that only the vielbein and the torsion are independent. A
priori we do not know if we should assume zero torsion and furthermore, we want and
need to prescribe dynamics, most conveniently through the use of an action principle.
To this end, we introduce the Ricci scalar or scalar curvature as

R := −Eµ
AE

ν
BR

AB
µν .

The governing action of general relativity, thought of by Hilbert and called the Einstein-
Hilbert action, is given as the one extremizing the scalar curvature i.e.

SEH =
1

2κ2

ˆ
dDxER. (12)

Here we have introduced E := det
[
(E A

µ )
]
and the gravitational constant κ, to render

the action dimensionless.
Note that we do not prescribe the variables of this action yet, as there are two ways to
think about this.

The first way is the so-called second order formalism. Here we assume a torsion free
connection, which is entirely determined by the vielbein via eq. (10) as Ω = Ω(E).
Thus, also our action has only the vielbein as dynamical variable SEH[E] = SEH[E,Ω(E)].
Varying the action then gives

δESEH[E] =
1

κ2

ˆ
dDxE

{
R AB

µν Eν
B − 1

2
E A

µ R

}
δEµ

A . (13)
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We see in the bracket the well-known vacuum Einstein equations

G A
µ := R AB

µν Eν
B − 1

2
E A

µ R = 0,

with G the corresponding Einstein Tensor. Note that in the derivation of this equation,
we use that the variation of R AB

µν is proportional to a divergence, hence we can discard
it by integration by parts.

The Einstein-Hilbert Lagrangian also provides another example of a Noether identity,
as introduced in section 2.3. We have the SO-gauge symmetry for the co-moving frame,
i.e. δ(Λ)Eµ

A = −ΛB
AE

µ
B , and plugging this into the variation of the action in eq. (13)

leads to

0 =
1

κ2

ˆ
dDxE

(
G A

µ

)
δEµ

A = − 1

κ2

ˆ
dDxE

(
G A

µ

)
ΛB

AE
µ
B = − 1

κ2

ˆ
dDxE (GAB) Λ

AB.

This has to hold for any (continuous) Λ ∈ so, i.e. ΛAB = Λ[AB], hence we can conclude

G[AB] ≡ 0,

so that the Einstein Tensor G is symmetric.

We can couple gravity to bosonic matter, adding a term Sboson =
´
dDxEL to the action,

making sure we use minimal coupling, and varying the total expression accordingly. But
this only gives a contribution in terms of an energy-momentum tensor

T A
µ := −2

1

E

δ(EL)

δEµ
a
.

Then we arrive at the full Einstein equations

G A
µ = R AB

µν Eν
B − 1

2
E A

µ R = κ2T A
µ .

The second point of view, known as first order formalism, assumes the spin connection
Ω is an independent field too. We thus arrive at the Palatini action

SP[E,Ω] := SEH[E,Ω].

We now get additional equations of motion when varying with respect to the spin con-
nection namely

δΩSP[E,Ω] =
1

2κ2

ˆ
dDxE 3

{
DµE

A
ν Eµ

[AE
ν
BE

α
C]

}
δΩ BC

α .

Which can be seen to result in the following set of equations

G A
µ := R AB

µν Eν
B − 1

2
E A

µ R = 0, (14)

T A
µν ≡ 2∂[µEν]

A − 2Ω AC
[µ Eµ]C = 0. (15)

Hence, we see that we derive the zero torsion condition we imposed earlier in the second
order formalism. Solving the torsion equation for the connection and substituting this
in the Palatini action recovers the second order formalism.
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3.2. Gauging the Poincaré Algebra

In the last section, we have seen how Lorentz symmetries arise naturally when describing
general relativity via Lorentzian geometry. We will now turn this logic around and find
a way to recover Lorentzian geometry if we start from a set of symmetries and consider
a gauge theory of them.

3.2.1. The Symmetries

As starting point we take the isometries of standard flat Minkowski space M1,D−1, mean-
ing the most general set of transformations F : RD → RD that leave the standard constant
Minkowski metric η invariant:

F ∗η = η.

Here, we denoted the pullback under F as F ∗. These symmetries are then given by maps

FA,a(x) = Ax+ a,

where A ∈ O(1, D− 1) is a Lorentz transformation and a ∈ RD a spacetime translation.
They form the Poincaré group

P = {(A, a)|A ∈ O(1, D − 1), a ∈ RD},

with the composition law

(A, a) · (B, b) = (AB,Ab+ a).

Thus, we see that the Poincaré group has the form of a semi-direct product

P = O(1, D − 1)⋉ RD.

We turn our attention to the infinitesimal action on Minkowski space, which is given by

δ(Λ, ξ)xA = ΛA
Bx

B + ξA, (16)

for Λ ∈ so(1, D − 1) and ξ ∈ RD. This is precisely the case of spacetime symmetries we
discussed in section 2, where the parameters could act directly on spacetime.
Of course, we still have the abstract algebra, and we associate, or rather have already
associated implicitly, a basis to the parameters. This basis is usually labeled as

{J[AB], PC}

and is of dimension D(D − 1)/2 +D. The P ’s are the generators of translations, while
the J ’s are the generators of Lorentz transformations. We conveniently grouped them
together in an antisymmetric form. This gives us the combined index [AB], which cor-
responds to a single Lie algebra index in section 2 on representation theory.
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In any case, we can now read off the commutation relations of the generators by us-
ing equation (16), its linearity, that it is a representation4 of the algebra and find the
commutation relations to be

[PA, PB] = 0

[PA, J[BC]] = 2ηA[BPC]

[J[AB], J[CD]] = 4η[A[CJD]B].

From this we can immediately read off the structure constants as

f C
AB = 0

f D
A[BC] = 2ηA[Bδ

D
C]

f
[EF ]

[AB][CD] = 8η[A[Cδ
[E

D]δ
F ]

B].

(17)

From the commutation relation we can infer two more things. First, recall that the
commutator defines the adjoint representation of the algebra onto itself. When we now
consider the action of a Lorentz transformation on the generator of translations, we find

ρ∗(Λ)[PA] =
1

2
ΛBC [PA, J[BC]] = Λ C

A PC .

Thus, we see that PA in the adjoint representation transforms exactly as xA in the
defining representation. As we identify objects with their representation, we say that
PA is a vector due to its commutation relation.
Note, we introduced a factor of 2! when summing over the grouped index [BC] to avoid
over-counting.

Secondly, we know that structure constants are basis dependent. If we choose a different
basis or simply relabel it, we will find different structure constants. One such relabeling
is given by

H := P0

Pa ≡ Pa

Ba := J[a0]

J[ab] ≡ J[ab]

where a = 1, ...D − 1. This relabeling makes clear the difference between the zero
coordinate, i.e. the time, and space. H is the generator of time translations, which can
be identified with the total energy or, in other words, with the Hamiltonian.
The Ba are called the boosts. Their action can best be understood via their defining
representation on Minkowski space, when splitting space and time. It is easy to see,
that they correspond to the Lorentz transformation with the parameters Λa

b = 0 and
Λa

0 := Λa. Their action is then given by

δBx
0 = −Λax

a

δBx
a = Λax0.

4In fact, it is the defining representation.
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Note that space and time appear on equal footing as it should be for a relativistic theory.
When considering non-relativistic symmetries later, this will no longer be the case. We
will understand the implications of that in section 4.
In terms of the relabeled generators we have the new non-zero commutation relations

[J[ab], J[cd]] = δ[a[cJd]b],

[Pa, J[bc]] = 2δa[bPc]

[Ba, J[bc]] = 2δa[bBc]

[Ba, Bb] = −Jab
[Pa, Bb] = δabH

[H,Ba] = Pa.

(18)

We see that the boosts transform as vectors under rotations, and they equally mix space
and time translations into each other.
Commutation relations of similar form will appear in non-relativistic gravity again, and it
is noteworthy that they can be interpreted in the theory of kinematical Lie algebras. This
theory allows for a nice treatment and classification of possible spacetime symmetries
(for details see [26]).

3.2.2. Gauging of the Poincaré Algebra

After having specified our desired symmetries, let us now gauge the algebra and consider
its kinematics.
Again, formally we just replace the symmetry parameters with spacetime functions,
but from section 2 we know the machinery to do this consistently. We start off with
associating a gauge field to each generator of the symmetry algebra:

Generator Parameter Gauge field
PA ξA E A

µ

J[AB] ΛAB Ω AB
µ

In principle, we could view the two gauge fields as a single Poincaré-algebra-valued gauge
field via

Bµ = E A
µ PA +

1

2
Ω AB

µ J[AB].

This makes the relation to the algebra much clearer, and we can employ the language of
Lie algebras directly, which has its benefits as well. For a short example see [27, Section
2]. In this thesis, however, we choose to work in all index notation. The variation of the
gauge fields, as given by the structure constants in eq. (17), reads

δ(ξ,Λ)E A
µ = ∂µξ

A − Ω A
µ Bξ

B + ΛA
BE

B
µ ≡ Dµξ

A + ΛA
BE

B
µ , (19)

δ(ξ,Λ)Ω AB
µ = ∂µΛ

AB − 2Ω C[A
µ Λ

B]
C ≡ DµΛ

AB. (20)
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If we now compute the associated curvatures of the connections, we find

Rµν(P
A) = 2∂[µEν]

A − 2Ω AC
[µ Eµ]C ,

Rµν(J
AB) = 2∂[µΩν]

AB + 2Ω AC
[µ Ω B

ν] C .

These are exactly the objects appearing in Cartan’s first and second structure equations
(8) and (11), which explains our suggestive notation for the connection of translations
with the same symbol as the vielbein.
However, it is important to stress that the field E A

µ of the current section is not the
vielbein at this point. This can be inferred from eq. (19), as E A

µ transforms under
translations, a symmetry only approximately present in general relativity, but not under
diffeomorphisms, one of the key symmetries of GR.
We will deal with this discrepancy soon, but if we ignore it for a moment, we can see
that torsion is nothing else but the curvature of translations as can be inferred from
section 3.1.1.

While discussing how spacetime symmetries act in field theories in section 2, we noticed
that there seems to be a close relation to infinitesimal translations. This becomes more
apparent by the following calculation. Recall that translations act on E A

µ via the
covariant derivative of the parameter. Assuming diffeomorphism with parameter ζµ act
on the translation connection, we find

δ(ζ)E A
µ = LζE

A
µ = ζα∂αE

A
µ + ∂µζ

αE A
α

= ∂µ(ζ
αE A

α )− ζα∂µE
A

α + ζα∂αE
A

µ

= ∂µ(ζ
αE A

α )− Ω A
µ Cζ

αE C
α + Ω A

µ Cζ
αE C

α − 2ζα∂[µE
A

α]

= D(ζαE A
α ) + ζαΩ A

α CE
C

µ − ζα
(
2∂[µE

A
α] − Ω A

µ CE
C

α + Ω A
α CE

C
µ

)
= D(ζαE A

α ) + ζαΩ A
α CE

C
µ − ζα

(
2∂[µE

A
α] − 2Ω A

[µ CE
C

α]

)
= D(ζαE A

α ) + ζαΩ A
α CE

C
µ − ζαRµα(P

A).

Henceforth, we can write the action of diffeomorphism as a translation by ξA := ζαE A
α ,

a rotation by ΛAB := ζαΩ AB
α and an extra shift by ζαRµα(P

A).
It is in this sense that we can interpret the translation connection as the vielbein, since
it transforms precisely as required for a vielbein. Furthermore, it turns curved spacetime
indices into flat algebra indices. This is apparent when we denote the vector field and
its corresponding translation with the same letter

ξA := ξαE A
α .

The extra term involving the torsion seems to spoil the exact correspondence. However,
we can deal with it in two ways.

The first would be to assume vanishing torsion Rµα(P
A) = 0. While this seems restric-

tive, we have already seen that in general relativity this is a quite natural choice. It
further allows us to express the connection of Lorentz transformations via E A

µ , leaving
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only the connection of translations as the only independent field. Additionally, we can
then interpret the curvature of Lorentz transformations as the Riemann curvature, as
discussed in section 3.1.1 for T = 0.

If we nonetheless want to avoid this restriction, we can define a modified variation under
diffeomorphisms schematically as

δ̄(ξ)E = LξE + iξR(P ), (21)

where i is the insertion operator on forms. This procedure is found sometimes in the
literature (see e.g. [27]), it is however not completely clear how such a transformation
should be interpreted or if it indeed defines a representation of the algebra. It should thus
be interpreted as merely a formal procedure, which should correspond to a formulation of
the problem in terms of SO(1, D−1)-structures. In such a formulation, diffeomorphisms
are naturally included, and torsion, as well as curvature, remain completely arbitrary a
priori.

Whichever variant we choose, we have now introduced diffeomorphisms into our gauge
theory. We can interpret them via a kind of change of basis in the symmetry algebra,
as they arise as a combination of translations and rotations. In conclusion, the full
variation of the connections is given by5

δ(ξ,Λ)E A
µ = LξE

A
µ + ΛA

BE
B

µ

δ(ξ,Λ)Ω AB
µ = LξΩ

AB
µ +DµΛ

AB.

As now E A
µ transforms as required for a vielbein, we will no longer make the distinction

and rightfully call it like that.
There is, however, still a discrepancy, as we do not know if E A

µ can be inverted to give
rise to a co-moving frame. We can just declare it to be invertible, then E A

µ satisfies the
definition of a soldering form and hence can be viewed as an isomorphism of the tangent
bundle onto itself (for further details see [28]).

In conclusion, we have seen how Lorentzian geometry arises through the gauge theory of
the Poincaré algebra. It is this connection of symmetry to the theory of gravity that will
guide us in the non-relativistic case. One can continue from here, imposing dynamics
via an appropriate gauge-invariant action or via equations of motion.

5Omitting bars if we have chosen the modified variation.
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4. Non-Relativistic Geometry

In the last section, we have seen the close relationship between geometry and gravity in
the relativistic case. In this section, we want to first motivate the correct symmetries
and preserved structures for the non-relativistic geometry and discuss the corresponding
algebra. We then turn the logic around, starting from the symmetries and gauging them,
leaving us with a genuine understanding and description of non-relativistic gravity that
is completely analogous to relativistic gravity.
Furthermore, we want to discuss how to derive the non-relativistic theory and symmetries
by an appropriate infinite speed of light limit.

4.1. Motivation

The general motion of a free-falling observer xµ(s), s ∈ I ⊆ R, µ = 0, ...D−1, i.e. in the
case of pure gravity in the absence of any external forces, is governed by the geodesic
(or autoparallel) equation

∇ẋẋ = 0,

which in coordinates reads

ẍµ + Γµ
αβẋ

αẋβ = 0.

We compare this to the equations of motion for a particle in Newtonian gravity

d2xa

dt2
+ δab∂bϕ = 0,

where the Latin index is considered to be a spacial one, taking values in a = 1, ..., D− 1
and ϕ is the Newtonian potential. Originally, this was interpreted as the deviation from
a straight line in space due to the presence of a gravitational force. However, following
Einsteins train of thought, we could imagine that the deviation is due to a curvature in
some kind of Newtonian spacetime. If we assume the Newtonian equation of motion is
just formulated in the special spacetime coordinates (xµ(t)) = (t, xa(t)), µ = 0, ..., D− 1
but otherwise completely analogous to GR, we can read off the only non-zero Christoffel
symbols to be

Γa
00 = δab∂bϕ. (22)

The corresponding non-zero components of the curvature tensor are

Ra
0b0 = δac∂c∂bϕ.

Imposing the equation of motion

Ra
0a0 = 4πGNρ,
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for GN the Newton constant and ρ the mass density, recovers the Poisson equation of
Newtonian gravity.

As of now, we have only rewritten Newtonian gravity as to mimic GR. It is not clear
how to interpret this result geometrically, as we do not know any further geometric
structure. Additionally, the curvature tensor differs in its index-structure from what we
expect coming from GR. Nonetheless, one could follow this different approach, as was
done in [29, Ch. 12].

4.1.1. From Non-Relativistic Symmetries to Geometry

Here however, we choose a more modern approach that, again, is strongly connected to
the underlying symmetries. In what follows, we will mainly refer to [30].
First, it is well known that Newtonian gravity should contain the Galilei symmetries
as structure group. We consider the Galilei transformations over a D−dimensional
spacetime, and if we split space and time, it is given by the transformations

t′ = t+ ζ0

x′a = Aa
bx

b + vat+ ζa,

where ζ0 is a time translation, ζa a space translation, va is the boost parameter and A
a spacial rotation SO(D − 1). This of course gives rise to an infinitesimal action of the
Galilei algebra, which we will introduce later. At this point it is only important that
boosts and translations commute with each other.
While splitting space and time is completely natural in Newtonian geometry, as we will
see later, it is still convenient to consider these transformations on spacetime, where
they take the form

x′µ = Λµ
νx

ν + ζµ,

with

Λ =

(
1 0
v A

)
.

If we examine which symmetric 2-tensors are preserved by the Galilei group, we do not
find a proper metric and a proper inverse metric but rather a temporal metric

(tµν) =

(
1 0
0 0D−1

)
,

with 0D−1 the D − 1-dimensional square zero matrix, and a spacial co-metric

(hµν) =

(
0 0
0 1D−1

)
.
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So the Galilei group keeps two degenerate “metrics” invariant that are mutually orthog-
onal

tµνh
νρ = 0.

It is this “metric” structure that is the starting point for describing Newtonian gravity
analogously to general relativity.
Similarly, we can also introduce two kinds of vielbeine associated to each metric, by
defining the temporal vielbein or clock form τµ and the spacial vielbein e a

µ via

tµν = τµτν ,

δab = hµνe a
µ e

b
ν .

Now, we carefully observe what the most general transformations rules are that leave
this relation invariant. While the temporal vielbein does not seem to have any viable
transformations, the index structure of the spacial vielbein hints at several symmetries.
First, since δab can be seen as the defining structure of spacial rotational symmetry
SO(D− 1), we can also assume that e transforms accordingly. Additionally, the second
relation also remains invariant, if e transforms under boosts to something proportional
to τµ, due to the orthogonality with h. Since we assumed that both vielbeine are forms,
we find in total the transformation rules

δτµ = Lξτµ,

δe a
µ = Lξe

a
µ + λabe

b
µ + λaτµ,

(23)

for an infinitesimal spacial rotation λab, an infinitesimal boost λa and an infinitesimal
diffeomorphisms ξ. Thus, we have formalized Newtonian geometry in a coordinate in-
variant fashion.

The spacial vielbein can then be interpreted as transforming the spacelike directions in
tangent space to flat RD−1 with the standard inner product. Since both metrics are de-
generate, they do not have proper inverses, but we can at least define projective inverses
τµ, eµa characterized by

e a
µ τ

µ = 0, eµaτµ = 0, e a
µ e

µ
b = δab, τµτ

µ = 1, δµν = τµτν + eµae
a

ν . (24)

This now allows us to split tensors with curved Greek indices µ, ν, ... into a temporal
and a spacelike part due to the last equation, since

Tµ = δνµTν = (τ νTν)τµ + (eνaTν)e
a

µ =: T0τµ + Tae
a

µ

for an arbitrary form T , and analogously for arbitrary tensors. We will see later that the
temporal and the spacelike part of a tensor then transform exactly like the corresponding
(inverse) vielbein and that they will be hugely beneficial in calculations.
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4.1.2. Completing the Symmetries

Ultimately, the question remains whether the Galilei transformations are the entire sym-
metry group of Newtonian physics. To answer this question, we analyze one of the
simplest systems available, the free Newtonian particle. This matter model can lat-
ter be coupled to Newtonian gravity and its action is given in spacetime coordinates
(xµ) = (x0, xa) by

S[xµ] =
m

2

ˆ
dτ
δabẋ

aẋb

ẋ0
. (25)

The inclusion of ẋ0 appears strange at first but ensures invariance of the action under
change of parametrization τ → τ ′(τ), similar to the relativistic particle in section 2.
We recover the more familiar expression of the kinetic energy upon imposing the gauge
x0 = τ .

The Galilei transformations take the infinitesimal form

δx0 = ζ0

δxa = λabx
b + λax0 + ζa,

where ζµ ∈ RD is a spacetime translation, λab ∈ so(D − 1) an infinitesimal rotation
and λa ∈ RD−1 an infinitesimal boost. Again, we stress that in this case boosts and
translations commute.
From a quick calculation we can infer that the above action (25) remains inert under
translations and rotations but is only quasi invariant under boosts, i.e. only invariant
up to the total derivative

δBS =

ˆ
dτ

d

dτ

(
mλix

i
)
≡ 0.

It is well known (see [23]) that for quasi invariance the corresponding conserved Noether
charge for the generator T is given by

QT = KT − pµδTx
µ,

where KT : R → R is such that δTL = K̇T and pµ := ∂L
∂ẋµ is the momentum. Furthermore,

the Noether charges generate the corresponding symmetries when turned into a vector
field via the Poisson bracket, i.e.

δTf = {f,QT} ,

for an arbitrary function f : M → R, in particular for f = xµ. Notably, we get a
representation of the symmetries via the charges and the Poisson bracket (for details see
[31, Ch. 11]) as

{QTA
, QTB

} = f C
AB QTC

.
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Naively, we expect this to be just the Galilean symmetries, where we noticed that boost
and translations were commuting. However, if we consider the Noether charges of the
spacial translations and of the boosts we find from the action, i.e.

QP = −paζa

QB = mλax
a − paλ

ax0

and calculate their Poisson bracket, we find that

{QB, QP} = −mλaζa.

Contrasting this with the Galilei algebra, where the boosts and translations were com-
muting, we see the emergence of an additional charge.
This novel charge commutes with all other Noether charges and is thus represented by
something proportional to the identity. Such a charge is called a central charge. If we
relate this charge to a new generator M , commuting with all other generators, we find
an extension of the Galilei algebra with central charge M , known as a central extension.
This central extension of the Galilei algebra is called Bargmann algebra, and by our
analysis above, it is the correct choice for the full symmetries of Newtonian physics, i.e.
Newtonian gravity. The extra generator is related to the fact that in Newtonian physics
mass is a conserved quantity as well. In fact, we will see this relation when gauging the
Bargmann algebra in section 4.2, where the corresponding gauge field will play a prime
role in encoding the gravitational dynamics.

For now, note that we get an invariant action if we introduce an extra coordinate s to
our spacetime and include it in the action as

S[x, s] =
m

2

ˆ
dτ

(
δabẋ

aẋb

ẋ0
+ 2ṡ

)
, (26)

provided that s is inert under rotations, transforms into a constant under translations
and under boosts transforms as

δs = −λaxa.

Importantly, the momentum conjugate to s is the mass m, i.e.

ps =
∂L
∂ṡ

≡ m,

and since s is a cyclic coordinate, the mass m is a conserved quantity. This shows
how the extra symmetry given by the central charge implements mass conservation in
Newtonian physics.

4.2. Gauging of the Bargmann Algebra

In the last section we have motivated that the correct set of symmetries in Newtonian
gravity is the Bargmann algebra. In 4.3.2 we will show how to properly derive the
algebra, but for now, we only want to present it and describe the geometry that follows
from gauging it, which we will call Newton-Cartan geometry.
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4.2.1. The Bargmann Algebra

The Bargmann algebra barg is given by a choice of basis Jab for rotations, Pa for spacial
translations, H for time translations, Ba for boosts and M for the central extension
generator, where indices a = 1, ...D − 1 denote spacial indices. To make it an algebra,
we define its following non-zero commutation relations

[Jab, Jcd] = 4δ[a[cJd]b],

[Pa, Jbc] = 2δa[bPc],

[Ba, Jbc] = 2δa[bBc],

[H,Ba] = Pa,

[Pa, Bb] = δabM.

(27)

Again, we can see that the boosts and translations transform as vectors under rotations,
and they commute into central charge transformations. Comparing the above commuta-
tion relations of the Bargmann algebra with the ones of the Poincaré algebra in eq. (18)
we can already infer that now space and time are not on equal footing, as time transla-
tions transform into space translations under boosts, but space translations under boosts
transform into central charge transformations and not into time translations.

4.2.2. Gauging Procedure

We now apply the same gauging procedure we have seen when gauging the Poincaré
symmetries, and start by associating gauge fields to each generator:

Generator Parameter Gauge field
H ξ0 τµ
Pa ξa e a

µ

J[ab] λab ω ab
µ

Ba λa ω a
µ

M σ mµ

It is again no coincidence that the gauge field of the time and space translations are
denoted by the same symbols as the non-relativistic vielbeine, and we will see the relation
once we introduce diffeomorphisms into the theory.
From their definition as gauge fields and the commutation relations of barg we can
immediately write down their variations

δτµ = ∂µξ
0,

δe a
µ = ∂µξ

a − ω a
µ bξ

b + λabe
b

µ + λaτµ − ω a
µ ξ0,

δω a
µ = ∂µλ

a − ω a
µ bλ

b + ω b
µ λ

a
b,

δω ab
µ = ∂µλ

ab − 2λ[acω
b]c

µ ,

δmµ = ∂µσ − ω a
µ ξa + λae

a
µ .

(28)
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We again see that space and time are not on equal footing, as the spacial vielbein trans-
forms into the temporal vielbein under boosts but not vice versa. It is rather the central
charge vielbein which under boosts transforms into the spacial vielbein.

Given the variations of the gauge fields, we can also immediately compute their curva-
tures

Rµν(H) = 2∂[µτ ν],

Rµν(P
a) = 2∂[µeν]

a − 2ω ab
[µ eν]b − 2ω a

[µ τν],

Rµν(J
ab) = 2∂[µω

ab
ν] + 2ω ac

[µ ω b
ν] c,

Rµν(B
a) = 2∂[µων]

a − 2ω ab
[µ ων]b,

Rµν(M) = 2∂[µmν] − 2ω a
[µ eν]a.

(29)

As in general relativity, we want to have diffeomorphisms as symmetries and not transla-
tions. Again, in complete analogy, we can compute how we can express diffeomorphisms
acting as a Lie derivative via other symmetries. If we compute the variation of (τ, e,m)
under diffeomorphisms (ξµ), we find that

δξτµ ≡ Lξτµ = ∂µ (ξ
ατα)− ξαRµα(H),

δξe
a

µ = ∂µ (ξ
αe a

α )− ω a
µ bξ

αe b
α + ξαω a

α be
b

µ + ξαω a
α τµ − ω a

µ ξατα − ξαRµα(P
a),

δξmµ = ∂µ (ξ
αmα)− ω a

µ ξαeµa + ξαωαaeµa − ξαRµα(M).

By comparison to eq. (28), we again see that up to curvature terms, the action of the
diffeomorphisms can be written as the action of a time translations with parameter ξ0 :=
ξατα, a space translation with parameter ξa := ξαe a

α , a central charge transformation
σ := ξαmα, a rotation λab := ξαω ab

α and a boost λa := ξαω a
α . As the transformation

rules of τ and e take exactly the form (23) of the defining fields of Newton-Cartan
geometry and as they transform curved indices µ into flat indices (0, a), we now again
rightfully call them temporal and spacial vielbeine, with the corresponding “inverses”
as in eq. (24).
Again, we see that we have encoded the geometric structure of non-relativistic gravity
through various gauge fields, and up to the curvature terms, diffeomorphisms are now
represented by merely a change of basis in the Bargmann algebra.
Completely analogously to the gauging procedure of the Poincaré algebra in section
3.2.2, we have two choices of dealing with the curvature terms. Either setting them to
zero or redefine the variation of the gauge fields to include the curvature term, as was
done in [27] for Carollian geometry. As discussed in section 3.2.2, the latter approach
leaves some open questions, thus we will focus on the former approach, trying to find
appropriate curvature constraints.
We see that in the curvatures appearing in this derivation, i.e. R(H), R(P ) and R(M),
the latter two contain the connections of boosts and rotations only algebraically (the
same is technically also true for R(H)). Therefore, we can impose curvature constraints,
similar to Cartan’s structure equations in general relativity in section 3.1.1. This allows
us to introduce diffeomorphisms into our gauge theory and to solve for the connections in
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terms of the fields (τ, e,m). Such constraints which only include gauge fields algebraically
are called conventional, and there is usually very little reason to not impose.

After imposing the conventional constraints, the upshot is that we only have (τ, e,m) as
independent fields of our theory, and they now transform as

δτµ = Lξτµ,

δe a
µ = Lξe

a
µ + λabe

b
µ + λaτµ,

δmµ = Lξmµ + ∂µσ + λae
a

µ .

We can use the equations for spacial translations R(P ) = 0 and charge transforma-
tions R(M) = 0 to express the dependent connection forms, which we will call spin
connections, as

ωµ
a = 2τµm0

a + eµc
(
−2e0

(ca) +mca
)
, (30)

ωµ
ab = −2eµ

[ab] + eµce
abc − τµm

ab, (31)

where e a
µν := ∂[µeν]

a and mµν = ∂[µmν] and for compact notation we have turned curved
indices into flat ones.

4.2.3. The Intrinsic Torsion of Newtonian Spacetime

We want to interpret the conventional constraints in the context of an affine connection
and its corresponding torsion. If we introduce the affine connection Γ via a two-fold
vielbein postulate for the temporal and spacelike vielbein

∇µτν = ∂µτν − Γρ
µντρ = 0,

∇µe
a

ν = ∂µe
a

ν − ω a
µ be

b
ν − ω a

µ τν − Γρ
µνe

a
ρ = 0,

we find that the temporal and spacial part of the torsion of the affine connection reads

T 0
µν := 2Γρ

[µν]τρ ≡ Rµν(H),

T a
µν := 2Γρ

[µν]e
a

ρ ≡ Rµν(P
a).

While not fully obvious in this formulation, these two torsion terms should be comple-
mented by an additional torsion

Tµν := Rµν(M),

that is given by the curvature of the central charge. This stems from the fact (see [32])
that the central charge gauge field mµ can be viewed as another vielbein, if we consider
the corresponding Bargmannian G-structure. Thus, also R(M) is part of the torsion of
this structure.

As it turns out (see [25, Thm. 6]), R(H) = dτ is the only relevant equation for describing
the so-called intrinsic torsion of a Galilean spacetime. Intrinsic torsion is characterized
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as the part of the torsion (in the sense of G-structures), which cannot be absorbed in a
redefinition of the connections ω. This can be seen directly, since R(H) does not contain
the connections at all, thus prescribing different values for T 0 leads to different theories.

In full generality, it is not necessary to assume the conventional constraints. Instead,
on can prescribe general torsion for time and space translations and curvature for the
central charge transformations, i.e.

T 0
µν

!
= Rµν(H),

T a
µν

!
= Rµν(P

a),

Tµν
!
= Rµν(M).

However, the choice of torsion is constrained by boost invariance. A quick calculation
(or see [32]) shows that under boosts the curvatures transform into each other, thus also
the prescribed torsion has to do so. More precisely

δBRµν(M) = λaRµν(P
a) =⇒ δBTµν = λaT a

µν ,

δBRµν(P
a) = λaRµν(H) =⇒ δBT a

µν = λaT 0
µν ,

δBRµν(H) = 0 =⇒ δBT 0
µν = 0.

(32)

One can then solve for the rotation and boost connections in terms of the geometric
data e, τ,m and the torsion T . Interestingly, by the above transformation rules for the
torsion and curvature, it is not consistent to set the curvature of M and the spacial
torsion to zero, while giving the intrinsic torsion a non-zero value. Consequently, the
resulting affine connection Γ can be not invariant under boosts, if torsion is set to zero
inconsistently, see [32] for further details.

We now give the variations of the spin connections in this general setting6. These
variations can be inferred from eq. (32), expanding the curvatures in terms of the
connections and vielbeine and by using the transformation rules of the latter. The
variations contain terms proportional to the intrinsic torsion τµν := (dτ)µν and read

δωµ
a = ∂µλ

a − ωµ
acλc + eµc2λ

(cτa)0 + λabωµ
b,

δωµ
ab = ∂µλ

ab − 2ωµ
c[aλb]c + 2λ[aτµ

b] + eµcλ
cτab.

(33)

We note that these are no longer the variations inferred from the commutation relations
of the Bargmann algebra as in eq. (29). This is due to the fact that we made the
connections dependent on the other fields. Consequently, also the curvatures of these
connections get modified, and we find the generalized curvature (in the sense of eq. (3))
to be

R̂µν(J
ab) := 2∂[µων]

ab + 2ω[µ
acων]

b
c − 4ω[µ

[aτν]
b] − 2ω[µ

ceν]cτ
ab,

R̂µν(B
a) := 2∂[µων]

a − 2ω ac
[µ ων]c − 4ω

(c
[µ τ

a)
|0| eν]c.

6We assume that we absorbed any non-intrinsic torsion terms into a redefinition of the boost and
rotation connections.
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Note that this reduces to the curvatures inferred from the Bargmann algebra in eq. (29)
upon imposing, τµν = 0. Hence, this underlies a more general theory of gravity than
standard Newton-Cartan geometry.

As was shown in [25] the intrinsic torsion R(H) ≡ dτ can only take thee different,
inequivalent values, each defining a different type of geometry depending on this torsion.

1. Torsionless Newton-Cartan (NC) Geometry This geometry is characterized by
setting the intrinsic torsion to zero, i.e.

R(H) = dτ = 0.

By the Lemma of Poincaré (assuming our manifold is simply connected), zero torsion
implies that there is a global function t : M → R, such that

τ = dt.

The function t then defines a notion of absolute time, as the time difference

T :=

ˆ
γ

τ ≡ t(x)− t(y),

between two points x, y ∈ M of the underlying Newtonian spacetime is independent of
the chosen path γ connecting the points.

2. Twistless Torsional Newton-Cartan (TTNC) Geometry This geometry has non-
vanishing torsion, but it is twistless, i.e.

dτ ̸= 0,

dτ ∧ τ = 0.

This gives us the following geometric consequences. First, we see that we lose the notion
of absolute time, as now time differences T will depend on the path. The upshot is that
the twistless condition is exactly the Frobenius condition from the Frobenius theorem
for forms (see [33, Appendix]), stating that a one-form τ defines a co-dimension one
foliation via its kernel, if it holds that

dτ ∧ τ = 0.

We thus obtain a notion of absolute simultaneity; two events are simultaneous if they
lie in the same leaf of the foliation. Furthermore, the spacial vielbeine give the leaves
the structure of Riemannian manifolds.
Clearly, zero intrinsic torsion is already sufficient to fulfill this condition, thus we also
get absolute simultaneity in the torsionless NC geometry. Overall, the torsionless setting
is the one most closely resembling what we naively expect from a Newtonian theory.

TTNC geometry, on the other hand, seems best to capture the post-Newtonian i.e.
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the large speed of light expansion of general relativity (something we will explore in
section 4.3) in the presence of strong gravitational fields (see [34] for details). It was
encountered in applications to the quantum Hall effect (see [7]) and it is also the correct
type of geometry in the presence of dilatations, for example in the Schrödinger algebra
[35].

3. Torsional Newton-Cartan (TNC) geometry This geometry has neither absolute
time nor simultaneity, i.e. it is characterized by

dτ ̸= 0,

dτ ∧ τ ̸= 0.

It is the most general description of Newton-Cartan geometry, as the first and second
case can be recovered on imposing the correct torsion constraints. It is generally most
useful in applications in condensed matter physics.

4.2.4. Galilean Gravity

Finally, let us connect back to the beginning of this section, and show that Newton-
Cartan geometry in fact encodes Newtonian gravity. In the following we will only present
a summary, for the full details see [36]. To do so, we first impose the constraints of case 1,
i.e. torsionless Newton-Cartan geometry, where we have set the conventional constraints

R(P ) = 0, and R(M) = 0,

together with imposing zero torsion

R(H) = 0

to recover the notion of absolute time. Furthermore, we want to describe a flat space,
which is implemented upon imposing

R(J) = 0.

So, only R(B), the curvature of boosts, remains non-zero and thus has to encode the
gravitational dynamics.

Upon imposing vanishing of the curvature, i.e. assuming that our manifold is flat (in
the sense of G-structures), we can, analogously to flat Riemannian manifolds, choose a
flat frame

τµ = δ0µ, e a
µ = δaµ, ma = 0, ω ab

µ = 0,

and corresponding so-called Galilean coordinates (xµ) = (t, xa), satisfying all the above
constraints. These choices break part of the gauge symmetries, such that only the
following ones are preserved

ξ0(x) = ξ0, λab(x) = λab, ξa(x) = ξa(t)− λabδ
b
µx

µ, λa(x) = −ξ̇a(t), σ = 0.

43



Note that time translations and spacial rotations are now constant, while boosts are
dependent on the (time derivative) of ξa(t), which is the only explicitly spacetime- or
rather time-dependent parameter.
Consequently, m0 is the only independent field left, thus has to equal a function

m0(x) ≡ ϕ(x)

that we will identify with the Newtonian potential of gravity. To do so, note that the
only non-zero component of the boost spin connection is given by

ω a
0 (x) = −∂aϕ(x),

which should immediately remind us of eq. (22). Consequently, if we impose the equation
of motion

R0a(B
a) = 0,

and plug in the connection in terms of ϕ, we precisely recover the Poisson equation

R0a(B
a) ≡ ∂a∂

aϕ = 0.

We see that we had to take the Bargmann algebra, i.e. the central extension of the
Galilei algebra, to be able to encode gravitational dynamics, where the gauge field of
the central extension generator carried the Newtonian potential. Furthermore, we can
then interpret the gravitational dynamics as a curvature constraint on the curvature of
boosts.

4.3. Non-Relativistic Limits

By gauging the Bargmann algebra, we have found the kinematics of Newtonian gravity.
Similar to the relativistic case, for dynamics we need equations of motion or an action
and some kind of guiding principle on how to obtain them, as non-relativistic boost
invariance is often highly non-trivial, thus difficult to guess.
Additionally, it is not clear how to properly motivate the constraints and equations of
motion we imposed at the end of the last section to derive the Poisson equation from
the curvatures.

Intuitively, we expect that actions, equations of motion and constraints can be inferred
from general relativity. To gain insight into this, observe that, after introducing explicit
factors of c, the speed of light, we can write the Minkowski metric and its inverse as

1

c2
η =

(
−1 0
0 1

c2
1D−1

)
, η−1 =

(
− 1

c2
0

0 1D−1

)
. (34)

Consequently, in the limit c→ ∞ we recover the defining geometric objects of Newton-
Cartan geometry from section 4.1.1, i.e.

lim
c→∞

1

c2
η = t,

lim
c→∞

η−1 = h.
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This now allows us to generate non-relativistic theories from relativistic ones. The formal
process and extensions to the geometric structures, as presented in [5, Sec. 2], is quite
involved and leads to more general or different theories than what is considered in this
work. It is important to note that taking non-relativistic limits is usually non-trivial, as
often divergences appear that have to be cancelled correctly by choosing the appropriate
ansatz.

4.3.1. Limits of Lagrangians

For now, we want to present a simple example taken from [37] showcasing the process
and some of its difficulties, but more interesting examples can be found in [38, 39, 40]
and references therein.
Note that there are two different approaches to extracting non-relativistic theories from
relativistic ones.
The first approach is via expansions and is reflected in [5]. In non-relativistic expansions,
the speed of light c is taken as an expansion parameter, thus has a finite value. Such ex-
pansions usually require the introduction of extra fields at each order. These extra fields
are needed to capture the corresponding dynamics, but they also render the relations to
the relativistic fields non-invertible. At full order, such expansions are equivalent to GR
and can also capture relativistic features such as time dilation, etc. (see [5]).
The second approach, which is the one taken in this thesis, is non-relativistic limits or
c → ∞ limits. This approach is analogously to the Inönü-Wigner contractions we will
present in 4.3.2. Here a redefinition of fields and transformation rules is chosen that
is invertible for finite speed of light. Then, leading order contributions of Lagrangians,
equations of motion, etc. are taken, where some subtleties and cancellations need to be
taken into account, which we will see in the following example. In the c → ∞ limit,
the resulting theory is fully non-relativistic and thus is distinctly different from general
relativity.

We start with the action of a relativistic point particle moving in a gravitational field

SRel[x] = −mc
ˆ
ds
√

−gµν ẋµẋν .

Here, s 7→ xµ(s) is the world line of the particle. Inspired by eq. (34), we introduce an
invertible (for finite c) ansatz for the relativistic vielbeine

E 0
µ = cτµ, E a

µ = e a
µ .

Note that the fields τ , e and their inverses satisfy the relations in eq. (24). Notably, so
far we have only found a reformulation that is fully relativistic but includes factors of
the speed of light.
If we now expand this action to first order in 1

c2
we find

SRel[x] ≃2 −mc2
ˆ
dsτµẋ

µ +
m

2

ˆ
ds
δabe

a
µ e

b
ν ẋ

µẋν

ταẋα
.
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Where the symbol ≃2 denotes that we excluded terms O(c−2). As stated above, the non-
relativistic expansion amounts to taking the leading order contribution of the expansion,
and in this case the result seems disappointing. The leading order is given by the
Lagrangian

(−2)

L = −mτµẋµ,

and its dynamics are rather boring. In flat space, they amount to the single equation
ẋ0 ≡ 0. This of course is not an interesting theory.
Furthermore, if we want to take the limit c → ∞, the leading order contribution is
divergent, and additionally, we see that the next to leading order term looks much more
promising as a theory. Thus, we need to find a procedure how to deal with the leading
order term. This phenomenon often appears in relativistic expansions and is caused by
the rest mass, or rather, rest energy of the particle E = mc2. There are usually two
approaches to resolve the divergence.

First, we can try to cancel the divergence by introducing extra constraints. The leading
order contribution certainly only gives a total derivative, consequently not contributing
to the equations of motion, if the clock form would be exact, i.e.

τµ = ∂µt,

for a function t. On a simply connected spacetime, this is equivalent to dτ = 0. Then
the next to leading order term is equivalent to the Newtonian particle action in eq. (25),
but with the torsion dτ set to zero.

Secondly, we could modify our theory and add additional fields to try and cancel the
divergence. If the particle is charged, we would add a so-called Wess-Zumino term to
the relativistic action including a U(1) gauge field Aµ

SRel[x] = −mc
ˆ
ds
√

−gµν ẋµẋν − q

ˆ
dsAµẋ

µ. (35)

Expanding this, while keeping A untouched for now, we find the leading order contribu-
tions

SRel[x] ≃2 −mc2
ˆ
ds
(
τµ +

q

mc2
Aµ

)
ẋµ +

m

2

ˆ
ds
δabe

a
µ e

b
ν ẋ

µẋν

ταẋα
.

Notably, we can cancel the divergence if we assume a critical value for the electromag-
netic part of the theory, i.e. assume that the charge is equal to the mass q = m and
that we have the ansatz for the electromagnetic field

Aµ = −c2τµ +mµ.

Then the divergent term cancels, and we find the non-relativistic action

Srel ≃2 SNR[x] =
m

2

ˆ
ds
δabẋ

aẋa

ẋ0
−m

ˆ
ds mµẋ

µ,
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where we have introduced a notation as in Newton-Cartan geometry, i.e. ẋ0 := τµẋ
µ and

ẋa := e a
µ ẋ

µ. Note that this looks like the invariant action of eq. (26) for ṡ = −mµẋ
µ,

i.e.

SNR[x] =
m

2

ˆ
dτ

(
δabẋ

aẋb

ẋ0
− 2mµẋ

µ

)
.

Indeed, this form of the action ensures boost invariance, and in the flat case reduces
precisely to eq. (26).

While we could now infer from the action that the non-relativistic fields (τ, e,m) are
exactly the gauge fields from the Bargmann algebra, and thus transform correspondingly
(to leave the action invariant), we can also derive their variations directly from the
relativistic ansatz, since we chose it invertible. We know how the relativistic fields
transform under Lorentz transformations and correspondingly find

δe a
µ ≡ δE a

µ = Λa
BE

B
µ = Λa

bE
b

µ + Λa
0E

0
µ = Λa

be
b

µ + Λa
0cτµ,

where the “relativistic” index A = 0, ..., D− 1 splits into 0 and a = 1, ..., D− 1. We see
that the second term is proportional to c and thus would diverge in the c → ∞ limit.
To cancel this, we introduce the boost parameter

Λa
0 =:

1

c
λa,

while the spacial rotations remain inert, i.e.

Λa
b ≡ λab.

Overall, after taking the limit, we find that

δe a
µ = λabe

b
µ + λaτµ.

Therefore, the spacial vielbein derived from the expansion transforms exactly as the
spacial vielbein derived from gauging the Bargmann algebra in section 4.2, hence the
two fields are the same. Repeating the same process for E 0

µ and Aµ lets us derive the
variations (without diffeomorphisms)

δτµ = 0,

δe a
µ = λabe

b
µ + λaτµ,

δmµ = ∂µσ + λae
a

µ .

So, the non-relativistic limit coincides with the gauging procedure of the Bargmann
algebra. Additionally, we also obtain a non-relativistic Lagrangian and therefore also
dynamics consistent with a limit of the relativistic theory.
Note however, that if we first take the equations of motion and then apply the non-
relativistic limit to them, we might end up with a bigger set of equations then first taking

47



the limit and then computing the equations of motion gives. Put differently, computing
equations of motion and taking non-relativistic limits is non-commuting. This has to do
with the degenerate nature of Newton-Cartan theory and is something we will explore
further in section 5.4.

Lastly, there is one more interesting detail in the non-relativistic action, namely an
emergent symmetry, i.e. an unexpected symmetry. The action SNR is inert under gauged
dilatations with parameter λ, provided that

δDe
a

µ = λe a
µ ,

δDτµ = 2λτµ.

This dilatation symmetry was not present in the relativistic case and thus emerged
in taking the non-relativistic limit. We will find a partial explanation in section 5.4
and again encounter this phenomenon in 7.1 when we examine NS-NS gravity in string
theory.

4.3.2. Deriving the Bargmann Algebra

So far, we have not properly derived the Bargmann algebra but have only given motiva-
tions as to why it is the correct choice for non-relativistic geometry. Now, equipped with
more motivation and intuition from the non-relativistic large speed of light expansion
from the last section, we will fill in the blanks.

We want to consider so-called Lie algebra contractions, for a proper introduction see [41,
Ch. 10]. Consider the following setting of a Lie algebra (g, [·, ·]) and generators {TA}dim g

A=1 ,
together with a family of invertible maps U(ε), ε ∈ (0, 1], such that U(1) = Idg and the
limit limε→0 U(ε) is degenerate, i.e. not invertible.
We can then construct the Lie algebra gε, with the same vector space underlying as g,
but with bracket

[TA, TB]ε := f C
AB (ε)TC ,

with the structure constants

f C
AB (ε) := U(ε) D

A U(ε) E
B f F

DE

(
U(ε)−1

) C

F
,

where f F
DE are the structure constants of g. For ε > 0, U(ε) defines a Lie algebra

isomorphism between gε and g, which is not necessarily true for ε → 0. We then say
that the Lie algebra (g′ = Span{TA}, [·, ·]′) is the contraction of g if the limit

[TA, TB]
′ := lim

ε→0
[TA, TB]ε = lim

ε→0
f C
AB (ε)TC ,

exists and defines a Lie algebra. Note, the contraction has the same dimension as the
initial algebra, but it is by construction generally not isomorphic to it.
Depending on the proposed form of U(ε), one can define different forms of contractions,
and usually the initial algebra has to fulfill extra conditions to make sure the contraction
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exists.

One such contraction is given by the Inönü-Wigner contraction [42], which is defined on
a Lie algebra g that as a vector space splits into the direct sum

g = g1 ⊕ g2,

such that contraction map is given by

U(ε)|g1 = Idg1 , U(ε)|g2 = εIdg2 .

It can be shown (see [41, Ch. 10]) that this only gives a well-defined contraction if g1 is
a subalgebra of g. If we define the generators of g1 as {TI} and the generators of g2 as
{Tα}, the contraction has the form of a semi-direct sum of the subalgebra g1, with the
Abelian ideal g2, given by the commutation relations

[TI , TJ ] = f K
IJ TK

[TI , Tα] = f J
Iα TJ

[Tα, Tβ] = 0.

We now want to relate this to the non-relativistic limit. For deriving the Galilean algebra
from the Poincaré algebra, this exactly holds, but for the derivation of the Bargmann
algebra, one has to expand the definition.

As motivation, note that we can expand the zero component of the momentum four-
vector due to the on-shell condition

p0 =
√
c2papa + c4m2 ≃2 mc

2 +
1

2m
pap

a, (36)

Where we have a sum of the rest energy and the kinetic energy. Furthermore, as
Minkowski space is a homogeneous spacetime, we can identify the 4-momentum with
the translation generators, i.e. pµ ↔ Pµ. We then trivially extend the Poincaré algebra
given by the generators {H,Pa, Jab, Ba} as in eq. (18) by a U(1) generator M that
commutes with all other generators. Additionally, we perform a mere change of basis in
the relativistic algebra motivated by eq. (36) and given by

H 7→ 1

c
H + cM,

M 7→ 1

c
H − cM,

Ba 7→ cBa,

and all others remaining inert. So we see, that we are not quite in the setting of an Inönü-
Wigner contraction but in a generalization of it. Here, we allow for different subspaces
being scaled by different powers of the contraction parameter. This generalization is then
known as a Weimar-Woods contraction (see [43]). Computing the commutation relations
and taking the limit c → ∞, we recover the Bargmann algebra with the commutation
relations in eq. (27).
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5. Dimensional Reduction

From what we experience in everyday life and also on the scale of current experiments,
the physical world presents itself in a 4-dimensional spacetime.
However, as modern theoretical physics searches for new ways to grapple with unsolved
problems such as quantum gravity, this experience has been questioned and more general
dimensions are now under consideration. The most notable cases of this being string
theories, which we will introduce in section 6, that are only consistent in D > 4 dimen-
sions. The question thus arises, how a lower-dimensional theory may be recovered from
a higher dimensional one, ensuring consistency of new and old physics.

This can be done via a procedure called dimensional reduction and was first considered
by Kaluza [44] in 1921 and expanded upon by Klein in 1926 [45]. Klein applied it to
5-dimensional general relativity and could reproduce (a form of) 4-dimensional gravity
and electromagnetism, hence unifying them.

In the context of string theory, dimensional reduction is a necessity to recover 4-dimensional
physics through a kind of “projection” from higher dimensions. However, it can also be
used as a tool to embed a lower-dimensional theory into a higher-dimensional one, giving
a new perspective and sometimes an easier description of the former theory.

This part is based upon [46, Chapter 11.2], [22, Chapter 5.3] and [47, Part 5].

5.1. Kaluza-Klein Reduction on Scalar Fields

To motivate the definitions and approaches we will consider later, let us first take a look
at what happens to a scalar field in Kaluza-Klein (KK) theory.

The idea of KK theory is that we have one extra compact dimension of size L, usually
assumed to be very small. This assumption explains why we cannot observe the extra
dimensions, as by the uncertainty principle we would need energies of E ≈ 1/L to probe
structures of spacial size L and for small L, this may get unreasonably large.

Formally, we assume our D + 1-dimensional flat spacetime MD+1 to be the Cartesian
product of a Minkowski space M1,D−1 and a circle S1, i.e. MD+1 = M1,D−1 × S1.
This gives natural coordinates on M via (xµ, z), where the former are the coordinates
of Minkowski space and the latter is the coordinate of the circle that is periodically
identified as

z ∼ z + 2πL.

The natural choice of metric on MD+1 is then

g = ηµνdx
µdxν + dz2,

introducing an extra spacelike dimension. Extra timelike dimensions have been con-
sidered, but as was shown in [48] they usually lead to problems with causality and/or
tachyons.
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Consider now a massless Klein-Gordon scalar field ϕ(x, z) and observe the splitting of
the Klein-Gordon equation in these coordinates

0 = □gϕ ≡ (□η + ∂2z )ϕ, (37)

where □g is the Laplacian with respect to the metric g. By the periodicity of the extra
dimension, we naturally have a Fourier decomposition of ϕ as

ϕ(x, z) =
∑
k∈Z

ei
kz
L ϕk(x).

Substituting the ansatz back into eq. (37), we gather an infinite number7 of equations
for the Fourier coefficients of ϕ, namely[

□η −
(
k

L

)2
]
ϕk = 0.

So we see that starting from amassless scalar field inD+1 dimensions, we end up with an
infinite number of massive scalar fields inD dimensions, which acquired massesmk :=

|k|
L

through the extra compact dimension. Note that these infinitely many fields ϕk(x) in D
dimensions are equivalently described by a single one ϕ(x, z) in D+1 dimensions, giving
a much simpler description in higher dimensions.

Interestingly, the masses are scaled by a factor 1/L. So for a small extra dimension,
i.e. L → 0, they become incredibly massive, which makes it reasonable to truncate
the expansion to only the zero mode k = 0 : ϕ0(x). Note that this truncation is
characterized by the condition

∂zϕ(x, z) = 0. (38)

5.2. Dimensional Reduction of the Geometry

Let us now turn to the more complicated setting of an arbitrary D + 1-dimensional
spacetime MD+1, with a general metric ĝ and non-scalar quantities, as well as one
compact dimension. Even imposing the zero mode condition, the interpretation of the
results is not straight forward, as the resulting fields now also carry a representation
of spacetime symmetries. We first have to clarify the role of these symmetries and can
then interpret the resulting fields as an appropriate representation over a D-dimensional
spacetime.

Our starting point is the vielbein of the metric ĝ, transforming under diffeomorphisms
ξ and SO(1, D + 1) transformations Λ as

δE A
µ̂ = LξE

A
µ̂ + ΛA

BE
B

µ̂

= ξα̂∂α̂E
A

µ̂ + ∂µ̂ξ
α̂E A

α̂ + ΛA
BE

B
µ̂ ,

7Often called “Kaluza-Klein tower”.
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note that a priori the indices µ̂ and A range from 0 to D + 1.

Recall the zero-mode-condition eq. (38) that amounts to finding a coordinate z such
that the vielbein is independent of it. We want to formulate this geometrically and thus
assume the existence of an isometry along the compact dimension. This is equivalent
to assuming that there exists a spacelike Killing vector field χ tangent to the compact
dimension, i.e. that

LχE
A

µ̂ = 0.

By invoking the Frobenius-theorem for a single vector field (for details look at [17, Corol-
lary 17.4]), there exists a foliation with codimension 1 and (locally) adapted coordinates
(xµ̂) = (xµ, z), where µ = 0, ...D, s.t.

χ = ∂z.

So far, it is not clear that the compact dimension, i.e. the integral curves of χ, are
closed and that we can interpret the compact dimension as an S1. From here one, we
will always assume that this holds and that the extra dimension is periodic8.

Assuming the correct boundary conditions, we find that the leaves of the foliation are
circles S1, while the directions orthogonal to χ are the desired D-dimensional spacetime
MD. This lower-dimensional spacetime carries the induced metric

Πµ̂ν̂ = ĝµ̂ν̂ −
χµ̂χν̂

ĝ(χ, χ)
.

Note that something interesting is happening for the case of χ being a null vector.
We will come back to this case in section 5.4, as it will give another way to derive
Newton-Cartan geometry, and it will play a central role in the results of this thesis. The
degeneracy of the induced metric then naturally connects to the degenerate metrics of
Newton-Cartan geometry.

Let us now analyze what happens to the spacetime symmetries under KK reduction. To
preserve the foliation and hence the adapted coordinates, we have to break part of the
diffeomorphism invariance by requiring that for a diffeomorphism ξ we have

0
!
= Lξχ

µ̂ = −∂zξµ̂.

Thus, diffeomorphisms do not depend on the compact direction z. Now as the left-hand
side of δE A

µ̂ does not depend on z, the same is true for the right-hand side, but the
only parameter left with an a priori z-dependency is ΛA

B. Hence, it cannot depend on
the compact direction either, so nothing is z-dependent.

8Indeed, it is a periodicity condition we have to impose by hand, which is essential to the KK dimen-
sional reduction, as different boundary conditions will change the mass values and most boundary
conditions don’t even allow for massless modes (for details see [49]).
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Though there is no geometric reason for it, we also assume that the zero-mode-condition
holds for any tensor T , which means that

LχT
!
= 0.

Effectively, this restricts all lower-dimensional fields from gaining mass through the
compact dimension as in section 5.1.

To investigate further symmetry breaking, first note that our foliation allows us to
split vector fields and hence diffeomorphisms as (ξµ̂(x)) = (ξµ(x), ξz(x)). Taking the
z-independence into account in the variation of the vielbein, we see that

δξE
A

µ ≡ LξE
A

µ = ξα∂αE
A

µ + ∂µξ
αE A

α + (∂µξ
z)E A

z , (39)

δξE
A

z ≡ LξE
A

z = ξα∂αE
A

z . (40)

Due to its action on the vielbeine, it is natural to interpret ξµ as D-dimensional diffeo-
morphisms of the hypersurface MD orthogonal to the compact dimension S1, while ξz

appears similar to a U(1) parameter.
Further, note that E A

z transforms as a scalar field over MD under these diffeomor-
phisms, while E A

µ correctly transforms as a one-form on MD.

We now also split the algebra index A = (a, z̄), a = 0, ..., D− 1 and see how our choices
affect the SO(1, D + 1) symmetry. Consider the transformations of the z-component of
the vielbein

δE z̄
z = Λz̄

bE
b

z ,

δE a
z = Λa

bE
b

z + Λa
z̄E

z̄
z .

As we already know, E z̄
z is a scalar under diffeomorphisms, hence the expression Ca :=

Λa
z̄E

z̄
z can be seen as an arbitrary collection of scalar functions {Ca}. These functions

act on E a
z by an arbitrary shift of the field components. Such arbitrary shifts are also

called Stückelberg symmetry9, and allow us to arbitrarily change the field value at any
given point. They indicate that the theory in question does not depend on the field after
all, and we can consistently set the corresponding field components to zero. Thus, we
may fix this symmetry in Kaluza-Klein reduction by setting

E a
z

!
= 0.

To preserve this choice of gauge, we break part of the SO(1, D + 1) symmetry, as we
have to require

Λa
z̄ = 0,

9They were first introduced 1938 in [50] by Stückelberg, and allowed for gauge invariant mass terms
for gauge fields. This was later rediscovered in 1964 with the now infamous Higgs-mechanism. For
more mathematical details see [51] and for a review and history of the matter see [52].
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effectively reducing to SO(1, D) symmetries as Λa
b stays unaffected. This gives the

variation for the remaining components of the vielbein

δSOE
a

µ = Λa
bE

b
µ

δSOE
z̄

µ = 0

δSOE
z̄

z = 0.

So we see, that E z̄
z =: k is a scalar under Lorentz transformations, as well as diffeo-

morphisms, making it a genuine scalar field that we will call the KK scalar. To explain
its role, note that the induced metric on the compact z-direction, i.e. on S1 at a fixed
point x ∈MD of the D-dimensional spacetime, is

gS1 = k2(x)dz2.

This now lets us integrate out the appropriate volume of the compact direction as

ˆ
S1

d vol(gS1) =

ˆ 2πL

0

k(x)dz = 2πLk(x). (41)

Thus, we see that we get an effective size of the circle L̃(x) := Lk(x). Thus, the KK
scalar “dilates” the size of the compact dimension. If k is a dynamical field, then the
size of the compact dimension is dynamical as well.

As the KK scalar k multiplies the U(1) parameter ξz in the transformation of E z̄
µ in eq.

(39), it is reasonable to define E z̄
µ =: kAµ, with Aµ a standard U(1) gauge field over

MD.

In conclusion, this allows us to express the D + 1-dimensional vielbein as

(E A
µ̂ ) =

a z̄( )
µ E a

µ kAµ

z 0 k
, (42)

transforming under diffeomorphisms ξµ of the D-dimensional hypersurface MD, U(1)-
transformations θ := ξz and D-dimensional Lorentz transformations λab as

δE a
µ = ξα∂αE

a
µ + ∂µξ

αE a
α + Λa

bE
b

µ ,

δAµ = ξα∂αAµ + ∂µξ
αAα + ∂µθ,

δk = ξα∂αk,

Note that E a
µ exactly transforms as a vielbein over the D-dimensional spacetime MD

and Aµ and k also transform correctly as a one-form and a scalar field overMD. As none
of the fields and transformation parameters depend on the extra compact dimension, we
indeed gain a gauge theory over the spacetime MD.
The appearance of a U(1) field seems mysterious at first, but recall that U(1) is diffeo-
morphic to S1. Therefore, our D+1-dimensional spacetime looks locally likeMD×U(1),
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i.e. a U(1) principle fiber bundle, where the emergence of a U(1) connection is com-
pletely natural.

Let us note the inverses of this ansatz as well

(Eµ̂
A) =

µ z( )
a Eµ

a −Eα
aAα

z̄ 0 1
k

,

with Eµ
aE

b
µ = δba, the correct D-dimensional inverse vielbein.

For any other p-form field T , we then define

Tµ1···µp−1
:= Tµ1···µp−1z,

T̂µ1···µp
:= Tµ1···µp ,

where the hat indicates, that we have a quantity remaining from higher dimensions,
but usually the unhatted quantity will be more relevant. It is important to stress, that
after the initial ansatz, we will never mix higher-dimensional indices µ̂,... with lower-
dimensional indices µ,..., etc. The same holds true in coordinate free notation, which
will only be considered over MD. Thus, the hatted quantities allow us to distinguish
the quantities when not using coordinates.
A quick calculation then shows, that under the remainder of the diffeomorphisms in the
z-direction, i.e. U(1)-transformations with parameter ξz, we have

δ(ξz)T̂ = T ∧ dξz. (43)

This means that the U(1)-transformations mix components of the hatted and unhatted
components and there usually is no trivial way to get rid of this.

Finally, we reconsider the scalar field ϕ and its Fourier decomposition, if we do not
truncate to massless modes

ϕ(x, z) =
∑
n∈Z

ei
nz
R ϕn(x).

Notably, the Fourier modes are now also charged under Aµ. Recall that the U(1) trans-
formations of Aµ came from the diffeomorphisms along the compact direction, i.e. for
δz = θ(x), we have δA = dθ. Consequently, since ϕ as a scalar field is inert under such
transformations, the Fourier decomposition lets us infer that

δθϕn = −i n
R
θϕn, (44)

i.e. ϕn carries charge n
R
under the U(1) field Aµ.
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5.3. Truncations and Subtleties

Let us now explore some subtleties of KK compactification. Through the use of our
ansatz in eq. (42), we can relate the lower-dimensional fields back to the higher-
dimensional ones.
We can also expand the equations of motion of the D+1-dimensional theory overMD+1

in terms of the fields over MD. This lets us infer under which conditions the equations
of motion over MD are consistent with the higher-dimensional ones, once expressed
through the ansatz (42).
Consequently, we find that truncation of equations by setting some fields to a particular
value will usually yield constraints (to retain compatibility with the original EOMs) that
cannot be reproduced from a truncated action.

We can see this, when looking at the original example of pure Einstein gravity in dimen-
sion D + 1. Starting from the Einstein-Hilbert action over MD+1

S =
1

2κ2

ˆ
dD+1x

√
|ĝ|R̂,

where the hatted quantities are the metric and the Ricci scalar of the D+1-dimensional
theory.
Proceeding as shown above, but with a metric ansatz, it is not too hard but tedious (for
details see [46, P. 300]) to show that this reduces to

S =
2πL

2κ2

ˆ
dDx

√
|g|k

[
R− 1

4
k2FµνF

µν

]
,

where the unhatted quantities now are the appropriate metric and Ricci scalar of the
D-dimensional theory, k is the KK scalar as above and Fµν := 2∂[µAν].

Now, the KK scalar appears in a rather unusual way. It looks as if it does not have a
kinetic term. However, in deriving the Einstein equations, one has to integrate by parts,
picking up derivatives of k. In total, the equations of motion read

0 = Gµν + (∂µ ln k∂ν ln k − gµν∂α ln k∂
α ln k) + (∇µ∂ν ln k − gµν∇α ln k∇α ln k) (45)

− 1

2
k2
(
F α
µ Fνα − 1

4
gµνFαβF

αβ

)
, (46)

0 = R− 3

4
k2FαβF

αβ, (47)

0 = ∇µ(k
3F µα). (48)

Taking the trace of the Einstein equation and combining it with eq. (47), we get a
proper equation of motion for k, namely

∇µ∇µk = −D − 1

4
k3FαβF

αβ.

We thus see, that setting k = const is only consistent if one also sets the field strength
F = 0, i.e. assuming A to be flat, which is generally not true. Thus, the KK scalar
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cannot be simply ignored.
Setting on the other hand A = 0 is completely consistent with the other equations
of motion, so truncating it in the action will still yield equations of motion that are
consistent with the ones in higher dimensions.

The issue of truncations becomes even more subtle if other tensor fields are present.
This issue stems largely from the mixing of components seen in equation (43).
Take the example of a Kalb-Ramond field, i.e. a two-form field B that transforms such
that its symmetry parameter is a one-form θµ̂

δBµ̂ν̂ = LξBµ̂ν̂ + (dθ)µ̂ν̂ .

It is straight forward to show that the one-form symmetry reduces to

δ(θ)Bµ = ∂µθz

δ(θ̂)B̂µν = 2∂[µθ̂ν].

So B is a standard U(1) gauge field, while B̂ still carries the remainder of the one-form
symmetry. If we, however, add the diffeomorphisms in z-direction, we are again mixing
with B, i.e. in the notation of section 5.2 and eq. (43)

δB̂ = dθ̂ +B ∧ dξz, (49)

where all quantities are defined over MD. Thus, if we want to truncate B̂, we find that
due to the mixing in eq. (49) our symmetries are constrained to satisfy

dθ̂ = −B ∧ dξz.

This however immediately implies via a second differentiation that

0 = dB ∧ dξz = F (B) ∧ dξz. (50)

Which in particular is fulfilled if either B is flat or we need to gauge fix dξz = 0. So
both options restrict the U(1) fields B and/or A.

More generally, as stated in [33, Appendix, Lemma 2], the truncation condition (50)
implies (provided that dξz ̸= 0) that there exists a one-form α such that

F (B) ≡ α ∧ dξz.

Note that this relation is invariant under a shift in α under dξz, i.e. we have the U(1)
symmetry

δα = dξz.

Thus, we can readily identify it with the U(1) field A gathered from the reduction ansatz
of the metric in eq. (42), i.e.

α ≡ A =⇒ F (B) ≡ A ∧ dξz.
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This in particular implies that A∧F (B) ≡ 0. While this identity seems obscure at first, it
ensures consistency of truncation. For example, the dimensional reduction of curvatures
of the higher-dimensional Kalb-Ramond field Bµ̂ν̂ often contains terms involving the

lower-dimensional fields B and B̂, as well as A in the form of a covariant derivative

DB̂ := dB̂ − A ∧ F (B),

to ensure invariance under ξz diffeomorphism. Thus, if we truncate the first term, the
second then also vanishes automatically, thus in total ensuring vanishing of the whole
covariant derivative.

Finally, observe what happens to generic connection forms B A
µ̂ , where A now is a generic

algebra index. As ∂zT = 0 for all objects T , we can easily deduce that

δBA
z = ∂zλ

A + f A
BC BB

z λ
C = f A

Bc BB
z λ

c,

if we assume that B just transforms in the adjoint representation, and we denote sum-
mation over the non-zero symmetry parameters with a small c. We see thus, that gauge
fields of the z-direction become ordinary fields.

5.4. Scherk-Schwarz and Null Reductions

As we imposed the zero-mode-condition for any tensor, it is clear that we cannot gener-
ate massive fields via KK dimensional reduction. Through the use of extra symmetries,
we can still introduce a mass through a process called Scherk-Schwarz dimensional re-
duction, which we will outline here briefly.
More importantly, we will also analyze how a dimensional reduction changes, if, instead
of a spacial direction, we consider a null direction along which we reduce. These reduc-
tions will play a central role in the results of this thesis in section 7.

The former was originally introduced in [53] under the name “generalized dimensional
reduction” to introduce mass parameters in supersymmetry. The basic idea is that if
the theory has a global symmetry group G, we can consistently allow for a z-dependence
during dimensional reduction, as long as it is realized by a group action depending on
z, i.e. that

ϕ(x, z) = g(z)(ψ(x))

where g(z) ∈ G and ψ(x) is the resulting field over MD. This ansatz together with
invariance under G of the higher-dimensional theory will guarantee that the resulting
theory is independent of z and hence is a theory over D dimensions.

We will illustrate this procedure together with ideas of the second type of dimensional
reduction, the so-called null reduction. Following [54], this gives us another way to derive
(torsional) Newton-Cartan geometry from Lorentzian geometry. Here we assume that
the compact direction is null instead of spacelike, which means that the killing vector
field χ tangent to the compact direction is lightlike, i.e. ĝ(χ, χ) = 0.
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Again, we first look at a massless, but now complex scalar field ϕ in a flat background,
to get some intuition and motivation.
Let us first change to lightcone coordinates, where we have the two null directions
(x+, x−) given by x± := x0 ± xD−1, together with the spacial directions xa, where a =
1, ..., D − 2. This means, that the Minkowski metric now reads ηab = δab, η+− = −1
and all others zero (in particular η−− = η++ = 0). Assuming that x+ is the compact
direction and invoking the U(1) symmetry of the complex scalar field, we may take the
Scherk-Schwarz ansatz

ϕ(x, x+, x−) = g(x+)(ψ(x, x−)) = e−imx+

ψ(x, x−),

for m ∈ R a real parameter. Then the Klein-Gordon equation for the massless scalar ϕ
reads:

□D+1ϕ = ∆xϕ− 2∂+∂−ϕ = 0

and plugging in the ansatz for ϕ, we get, renaming x− =: t, that

i∂tψ(x, t) = − 1

2m
∆xψ(x, t),

i.e. the free Schrödinger equation with ℏ = 1.

So, we see that one of the null directions becomes a time direction and that we can
embed the free Schrödinger equation, an equation invariant under the non-relativistic
Bargmann algebra, into the massless relativistic Klein-Gordon equation.

Let us now focus solely on the null reduction and apply it to a higher-dimensional
vielbein. We assume the existence of null Killing vector field χ of the metric ĝ in D+1-
dimensions, i.e.

Lχĝ = 0, ĝ(χ, χ) = 0.

Again, by the Frobenius theorem we find adapted coordinates (xµ̂) = (xµ, v), s.t. χ = ∂v,
which implies

∂vĝµ̂ν̂ = 0, ĝvv = 0. (51)

Null directions in tangent space always come in pairs, so we may write the vielbein index
as A = (a,+,−), where a = 1, ...D − 1 and ± denote the null directions.
Then, analogously to the KK reduction, we can infer that the fields E ±

v transform as
scalar fields under diffeomorphisms. We can then combine the null condition on g, i.e.

ĝvv = 0 ⇐⇒ ηabE
a

v E
b

v − 2E +
v E −

v = 0,

with the transformation property under SO(1, D)-transformations

δE a
v = λabE

b
v + λa+E

+
v + λa−E

−
v .
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Again as in section 5.2, since E +
v is a scalar field, we observe a kind of Stückelberg

symmetry for E a
v with parameter Ca := λa+E

+
v . Consequently, we can use this shift

symmetry to consistently set

E a
v = 0,

and the null condition then implies

E +
v E −

v = 0,

which will certainly hold if

E −
v ≡ 0.

To preserve the gauge E a
v = 0, we have to set λa+ ≡ 0, leading to the variation

δE +
v = λ++E

+
v ,

i.e. the scalar field E +
v transforms under dilatations with weight 1 and parameter λ++.

The condition E −
v ≡ 0 does not require any further restrictions on parameters, and the

remaining variations take the form

δE a
µ = LξE

a
µ + λa−E

−
µ ,

δE +
µ = LξE

+
µ + ∂µξ

vE +
v + λa−E

a
µ + λ++E

+
µ ,

δE −
µ = LξE

−
µ − λ++E

−
µ .

We summarize the above in the below ansatz (see [55] for a thorough treatment) of a
higher-dimensional vielbein under null reduction as

(E A
µ̂ ) =

a − +( )
µ e a

µ s−1τµ smµ

v 0 0 s
, (Eµ̂

A) =

µ v( )a eµa −eµamµ

− sτµ −sτµmµ

+ 0 s−1

. (52)

Note that the fields e and τ lead to the projective inverse relations we saw in eq. (24).
The ansatz breaks the full SO(1, D) symmetry, and we are left with spacial rotations
λab, boosts λ

a := λa− and dilatations of the null dilaton or null scalar s with parameter
λ := λ++. Note that, again, the component of diffeomorphisms in the v-direction appears
as a kind of U(1) parameter for mµ, so defining σ := ξv, we find the transformation rules
for the D-dimensional theory

δτµ = Lξτµ

δe a
µ = Lξe

a
µ + λabe

b
µ + s−1λaτµ

δmµ = Lξmµ + ∂µσ + s−1λae
a

µ

δs = Lξs+ λs.

(53)
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We can gauge fix the dilatation symmetry with parameter λ by setting s = 1 to recover
precisely Newton-Cartan geometry in D-dimensions, as discussed in Section 4.2. How-
ever, for the calculations of this thesis it is important to not fix this degree of freedom
and instead carry it through the calculations. The dilatation symmetry arises due to
the degeneracy of the metric in the lightlike direction. Thus, there is no inherent notion
of length on the lightcone, and, consequently, also the radius of the compact direction
has no inherent meaning.
Note that at no point any constraint on the torsion ∂[µτ ν] had to be imposed, resulting
in a torsional Newton-Cartan geometry.

More importantly though, deriving an action through a null reduction has an important
downside. Since we set one component of the metric equivalently to zero, i.e. gvv ≡ 0, it
will not appear in the action. It is in general not advisable to put on-shell information
back into the action. In this case, we lose the corresponding equation of motion, for-
mally speaking the part involving Rvv. Thus, one should rather take the null reduction
of the equations of motion and not of the action itself, as to not lose information. This
exact derivation and consequent applications of non-relativistic geometry through a null
reduction was already considered in [56], where it was also shown how to deal with the
degeneracy at the level of actions, which then leads to the natural inclusion of the mass
density in the equations of motion.
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6. Non-relativistic String Theory

String theory is built upon the idea that the fundamental elements of our physical world
are not particles, i.e. 0-dimensional objects, but rather extended 1-dimensional objects,
i.e. strings. Their different vibrational states can then be interpreted as different types
of particles, of which some can be interpreted as particles mediating gravity. Hence,
string theory is a theory of quantum-gravity and thus promises to unify the standard
model of particle physics with Einstein’s theory of general relativity. While string theory
so far did not make any measurable predictions, due to its high energy nature10, it is
still an inspiration for numerous advances in both theoretical physics and mathematics,
such as Calabi-Yau manifolds, Mirror symmetry and AdS/CFT-correspondence.
The term “string theory” is more of an umbrella term for multiple related theories, but,
usually, it refers to relativistic theories. In recent years, however, interest emerged in
the study of string theories that exhibit non-Lorentzian spacetime symmetries and in
particular Galilean symmetries [8, 57].

As string theory is under active research, there are plenty of references and resources to
study it. The “standard” Lorentzian formulation of string and superstring theory can
be found in the books [58, 59, 60], as well as in the lecture notes [24] which this section
will mostly follow. A concise overview and the history of string theory can be found in
the reviews [61, 62]. Material on non-relativistic string theory is not as expansive, but
[8, 63, 4, 37] and the references therein provide an introduction to the matter.

In this section, we will first introduce relativistic string theory to develop the underlying
concepts and language. For that, we will study string theory from the string perspective
and motivate how to infer the corresponding gravitational field theory relevant to the
results of this thesis. Then we will explain and examine the concept of T-dualities
in string theory, to motivate the relevance of this thesis. We will then discuss non-
relativistic string theory and how corresponding gravitational theories and T-dualities
can be inferred in this setting.

6.1. A Hint of Relativistic String Theory

6.1.1. Non-Linear Sigma Models

String theories are formulated as so-called non-linear sigma models (see [22, Chap-
ter 7.11] for details). The setup of non-linear sigma models is given by two (pseudo-
)Riemannian Manifolds (MW , g) and (MT , G), where MW is frequently called either
worldline (dimMW = 1), worldsheet (dimMW = 2), or worldvolume (dimMW > 2),
depending on the dimension of MW , while MT is usually called the target space, some-
times also referred to as background. We then view a set of coordinates of the tar-
get space MT as maps from the worldvolume MW to the target space, i.e. the co-
ordinates Xµ, µ = 0, ..., dimMT − 1 of MT are fields over MW with coordinates σi,

10Arguably it makes such a prediction in the sense that it predicts a dimension of spacetime other than
four.
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i = 0, ..., dimMW − 1:

Xµ ≡ Xµ(σ).

Overall, the action governing such a system is

S[X] = κ

ˆ
dDσ

√
− det ggij∂iX

µ∂jX
νGµν , (54)

where κ is an appropriate constant to render the action dimensionless, G ≡ G(σ) ≡
G(X(σ)) a symmetric two-tensor on target space, which can be interpreted as a metric
on target space, while g(σ) is the metric on the worldsheet, both of which are a priori
independent. We see that the Lagrangian is just the trace with respect to g of the
pullback of G to the worldvolume. In case g is defined as the pullback of G, the action
equals the volume of the target space worldvolume.
The simplest example is given if the worldvolume is one-dimensional, i.e. a subset of R,
and the target space is flat Minkowski space. Provided we equip the worldvolume with
the pullback of the Minkowski metric, the resulting sigma model action is

S[X] = κ

ˆ
dτ
√
− det(X∗η) ≡ −m

ˆ
dτ

√
−ηµνẊµẊν ,

which is just the action of the relativistic point particle, eq. (6), that we studied as an
example in section 2.4.

6.1.2. The Nambu-Goto and the Polyakov Action

String theory is another example of such a model. A string is a one-dimensional object
moving in some spacetime of dimensionD, which for now we assume to be flat Minkowski
space. The string sweeps out a two-dimensional worldsheet, parametrized by the timelike
coordinate τ ∈ R and the spacelike coordinate σ ∈ [0, 2π). Consequently, a point on the
worldsheet is given by the embedding of a string into target space via the embedding
functions

Xµ(τ, σ).

It is common notation to define (σα) := (τ, σ), α = 0, 1.

Either guided by our studies of sigma models or the relativistic point particle, we assume
that the dynamics of the string are such that it extremizes the volume11 of the worldsheet.
If we define the pullback of the Minkowski metric under X, i.e.

γ := X∗η ⇐⇒ γαβ :=
∂Xµ

∂σα

∂Xν

∂σβ
ηµν ,

11In the sense of its intrinsic volume, i.e. the area in this case.
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The action is given in the Nambu-Goto form as proportional to the area of the worldsheet,

SNG[X] := −T
ˆ
d2σ
√

− det γ ≡ −T
ˆ
d2σ

√
−(Ẋ)2(X ′)2 + (ηµνẊµX ′ν))2,

where Ẋ := ∂τX and X ′ := ∂σX. The proportionality constant T is the tension of the
string. It is common to express the tension through the Regge slope

T =:
1

2πα′ .

This notation rose out of the history of string theory, as it was invented to explain effects
of the strong interaction (see [24, Section 3.1.3] for details). α′ defines a length scale,
the so-called string scale ls defined by

α′ =: l2s ,

which is the natural length scale of string theory.

The Nambu-Goto action enjoys a global Poincaré symmetry Xµ 7→ Aµ
νX

ν + ξµ, as
well as a gauge reparametrization symmetry σ 7→ σ̃(σ), but as it is non-polynomial
in derivatives of fields, it is hard to quantize. Therefore, we introduce the equivalent
Polyakov action

SP [X] := − 1

4πα′

ˆ
d2σ
√
− det ggαβ∂αX

µ∂βX
νηµν ,

which we immediately recognize as the two-dimensional sigma model. Thus, we have
introduced the auxiliary field g onto the worldsheet, and the Polyakov action can be
interpreted as a collection of scalar fields X coupled to a two-dimensional gravity back-
ground.

We have discussed how the Polyakov action coincides with the Nambu-Goto action, pro-
vided that g is the pullback of η. However, when solving the (algebraic) equations of
motion for g, we find the result

gαβ = 2f∂αX
µ∂βX

νηµν ,

where

1

f
:= gαβ∂αX

µ∂βX
νηµν .

Thus, g is not necessarily the exact pullback metric but only a scaled version of it.
Notably, the scaling f cancels when plugging the resulting g in the Polyakov action and
gives exactly the Nambu-Goto action. This cancelation relies on the dimension of the
worldsheet being two.
It also hints at an important symmetry of the action. Firstly, the Polyakov action
enjoys the same symmetries as the Nambu-Goto action, i.e. a global Lorentz symmetry,
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as well as the reparametrization invariance, which we from now on recognize as two-
dimensional diffeomorphisms. The worldsheet metric g transforms correctly as 2-tensor
under these diffeomorphisms. More importantly, due to the fact that the worldsheet
is two-dimensional, we have a gauge symmetry involving a rescaling of the metric, i.e.
Weyl symmetry, acting as

X(σ) 7→ X(σ),

g(σ) 7→ Ω2(σ)g(σ).

The latter takes the infinitesimal form

δg = 2ωg,

for Ω2 = e2ω. We can now fix a gauge for the symmetries. The metric has three
independent components. Using our two diffeomorphism degrees of freedom, we impose
the conformal gauge, i.e. we fix the metric to be locally conformally flat

g = e2ωη,

for ω a function on the worldsheet. Invoking Weyl invariance, we can also gauge fix
ω ≡ 0 and thus end up with the flat Minkowski metric on the worldsheet.

Nonetheless, we still have some gauge freedom left. Due to the Weyl invariance, we can
take any conformal diffeomorphism, i.e. a diffeomorphism s.t. g 7→ e2ωg, and undo its
action by rescaling the metric.

As the metric defines the geometry of the manifold, the Polyakov string does not distin-
guish between geometries that are deformed locally, provided the deformation preserves
angles. Such an invariance poses a strong restriction on the theory and is generally
known as a conformal symmetry. A field theory with such a symmetry is called confor-
mal field theory (CFT) and is now recognized to be one of the de facto ways to describe
string theory. The study of CFTs is quite expansive, and hence, cannot be presented
here. A standard introduction can be found in [64].

6.1.3. The Classical Equations of Motion of the Closed String

Given the flat metric on the worldsheet, the Polyakov action simplifies tremendously, as
it takes the form of a theory of D free scalar fields. The equations of motion for the
string reduce to the free wave equation

∂α∂
αXµ = 0. (55)

However, by introducing the worldsheet metric g, we also introduced an auxiliary field
with its own equations of motion. They are given by requiring that the energy momen-
tum tensor vanishes, i.e.

Tαβ := − 2

T

1√
− det g

∂S

∂gαβ
= 0.
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This results in the two constraints

T01 = Ẋ ·X ′ = 0,

T00 = T11 =
1

2

(
Ẋ2 +X ′2

)
= 0,

(56)

where we denoted the inner product on target space with the usual dot. The first con-
straint imposes that the string moves perpendicular to itself, and the second constraint
results in a well-defined notion of a string length (for details see [24, Section 1.3.2]).

The two-dimensional wave equation eq. (55) can be easily solved by introducing light-
cone coordinates

σ± := τ ± σ,

where the general solution splits into a left and a right moving part

Xµ(τ, σ) = Xµ
L(σ

+) +Xµ
R(σ

−).

For now, we are mainly interested in the case of closed strings, i.e. the case in which we
impose periodic boundary conditions

X(τ, σ) = X(τ, σ + 2π),

which allows us to write the general solution in terms of Fourier modes as

Xµ
L(σ

+) =
1

2
xµ +

1

2
α′pµσ+ + i

√
α′

2

∑
n∈Z\{0}

1

n
ãµne

−inσ+

,

Xµ
R(σ

−) =
1

2
xµ +

1

2
α′pµσ− + i

√
α′

2

∑
n∈Z\{0}

1

n
aµne

−inσ−
.

(57)

Here, xµ and pµ correspond to the position and momentum of the center of mass of the
string. The normalization is chosen for later convenience. Furthermore, it is also often
convenient to define the zero modes

aµ0 :=

√
α′

2
pµ,

ãµ0 :=

√
α′

2
pµ,

for left and right moving modes. Finally, by requiring the solution to be real, we find
the relation for the Fourier modes

aµn = (aµ−n)
∗ ,

ãµn = (ãµ−n)
∗ .
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Defining the sum of oscillator modes as

Ln :=
1

2

∑
m∈Z

an−m · am,

and equivalently for the tilded oscillators, the constraints (56) take the form

Ln = L̃n = 0, ∀n ∈ Z.

The constraints for n = 0 are special, since they involve the a0 mode, and hence, by
definition, the momentum pµ. Thus, the constraints can be rewritten as the on-shell
condition p · p = −M2, where the effective mass M2 can be expressed in terms of the
oscillator modes as

M2 =
4

α′

∞∑
n=1

an · a−n =
4

α′

∞∑
n=1

ãn · ã−n. (58)

We see that the oscillator modes determine the mass, and even though we have not
quantized the theory yet, we may interpret the different excitations of the string as
particles of different masses.
We see that we can express the mass either via the left- or the right-moving modes, but
they have to match. If we define the level operators

N :=
∞∑
n=1

an · a−n,

Ñ :=
∞∑
n=1

ãn · ã−n,

the condition

N = Ñ

is called level matching, and it has interesting consequences when quantizing the closed
string.

6.1.4. Quantization of the Closed String

As this thesis is not directly concerned with quantum-aspects of string theory, we will
only provide an idea of the quantization procedure here. The full details can, however,
be found in [24, Chaper 2].

Taking the usual route of canonical quantization leads to the commutation relations

[xµ, pν ] = iδµν
[aµn, a

ν
m] = [ãµn, ã

ν
m] = nηµνδm+n,0.
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The commutation relations for x and p give exactly what we expect from operators
realizing momentum and position of a point-like object like the center of mass, while the
Fourier modes can be interpreted as creation and annihilation operators upon defining

cn :=
an√
n
, c†n :=

a−n√
n
, n > 0,

for each target space direction. Then we can build the Fock space as usual, but filled
with two different towers of states, by introducing a vacuum that obeys

aµn |0⟩ = ãµn |0⟩ , ∀n > 0.

Importantly, this is not the vacuum of spacetime but the vacuum of a string, i.e. de-
scribes an unexcited string. This can be seen from the center of mass position and
momentum operators, as they give this vacuum extra structure in the form of momen-
tum eigenvalues p, i.e. |0; p⟩. A generic state then takes the form of an excited state of
a string (

aµ1

−1

)nµ1
(
aµ2

−2

)nµ2 ...
(
ãν1−1

)nν1
(
ãν2−2

)nν2 ... |0; p⟩ ,

where each of the infinitely-many excitations can be interpreted as a different particle
in spacetime.

A problem arises due to the Lorentzian signature in target space. It results in negative
norm states, so-called ghosts, from the zero-direction

⟨p′; 0| a01a0−1 |0; p⟩ ∼ −δD(p− p′).

There are different approaches to remedy this, and we choose the so-called lightcone
quantization. The procedure starts with the introduction of lightcone coordinates on
target space

X± :=

√
1

2

(
X0 ±XD−1

)
.

It turns out that we can use the remnant reparametrization freedom from section 6.1.2
to set the Fourier modes in the plus-direction to zero, resulting in the solution in the
lightcone gauge

X+ = x+ + α′p+τ,

or put differently, we identify the plus-direction of target space with the time-direction of
the worldsheet. Furthermore, due to the constraints in eq. (56), the Fourier modes and
momentum in the minus-direction can be expressed in terms of the transverse quantities
pi and ain, where i = 1, ..., D − 2.
Furthermore, the classical spectrum and level-matching condition then read

M2 =
4

α′

D−2∑
i=1

∞∑
n=1

ai−na
i
n =

4

α′

D−2∑
i=1

∞∑
n=1

ãi−nã
i
n.
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In total, the general classical solution consists of transverse oscillator modes ain, ã
i
n and

the zero modes xi, pi, p+ and x− that characterize the motion of the center of mass.
x+ can be thought of as time and p− as the lightcone Hamiltonian, since it generates
translations in x+, i.e. in time.

Correspondingly, we impose the following commutation relations for quantization

[xi, pj] = iδij, [x+, p−] = [x−, p+] = −i,
[ain, a

j
m] = [ãin, ã

j
m] = nδijδm+n,0.

String states are again built from the vacuum |0; p⟩ with momentum eigenvalues of pµ

but only by acting with the transverse creation operators ai−n, n > 0. Thus, by con-
struction, no ghosts appear in the Fock space.

Still, we have to impose the level-matching condition. But quantization amounts to
introducing non-commuting objects, hence, we also have to consider the correct order-
ing to have a well-defined quantization. We will use normal ordering, where creation
operators are sorted to the left. Defining the quantum level operator

N :=
D−2∑
i=1

∞∑
n=1

: ai−na
i
n :

and similarly for the tilded modes, the spectrum and level-matching condition then
suffers from an ordering-ambiguity, which we can encode in the ordering constant a ∈ R.
Consequently, we postulate the ansatz for the mass formula to be

M2 =
4

α′ (N − a) =
4

α′ (Ñ − a).

Through a heuristic calculation (see [24, Equation (2.26)]) one can show that

a =
D − 2

24
.

This finally lets us analyze the spectrum of the closed string. The ground state |0; p⟩
corresponds to a tachyon, as it has negative mass squared

M2 = − 1

α′
D − 2

6
.

In quantum field theories, tachyons indicate an instability, as they arise from expansions
around a maximum of the potential. In String theory, the tachyon is poorly understood
and leads to some undesired effects, but it is not present in superstring theory, i.e. string
theory including fermions, thus it can be ignored for now.

Overall, the first excited states are more interesting anyway. Because of the level-
matching condition, we have to act with both a and ã, resulting in (D − 2)2 particle
states of the form

ãi−1a
j
−1 |0; p⟩ .
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They are of mass

M2 =
4

α′

(
1− D − 2

24

)
. (59)

This presents a problem, however, as by Wigner’s method of induced representations
(see [65]), massive states should transform under the group SO(D − 1) ⊂ SO(1, D − 1)
of spatial rotations. However, our states are built from the oscillators ai, i = 1, ..., D− 2
which transform under SO(D − 2) and the (D − 2)2-many states cannot fit in such a
massive representation.
If, on the other hand, the first excited states were massless, by Wigner’s Method they
would fall under the massless representation of the group SO(D − 2) we already have
present.
Thus, to implement Lorentz symmetry, we need the mass in eq. (59) to vanish, which
in turn requires that the dimension of spacetime is

D = 26.

This so-called critical dimension is an infamous result of string theory and also one
notable prediction of string theory. It is also one of the reasons why the techniques of
dimensional reduction we studied in section 5 became interesting again for theoretical
physicists.
It turns out that the critical dimension can also be inferred from requiring that the
Noether charges of the Lorentz transformations form a representation of the algebra
(see [24, Section 2.4]).

Altogether, the massless states in string theory split into a direct sum of irreducible
representations of SO(D − 2) given by the traceless symmetric, the antisymmetric and
the singlet/trace representation. To each mode there is a corresponding target space
field given by

Gµν(X), Bµν(X), Φ(X).

The first field can be identified as the spacetime metric of the target space, as it is a
massless spin 2 particle, the second field is called Kalb-Ramond field and the third, the
scalar field, is called the dilaton.

Thus, we see that string theory naturally includes a graviton in its spectrum, giving a
theory of quantum gravity.

6.1.5. The Open String and Branes

So far, we have only considered the closed string, i.e. strings with periodic boundary
conditions. If we now consider a general string, the variation of the action is only
stationary if the following boundary conditions are fulfilled

∂σX
µδXµ = 0, at σ = 0, π.

Thus, we can have two different boundary conditions for the endpoints of the string
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1. Neumann boundary conditions

∂σX
µ = 0, at σ = 0, π.

Here, the endpoints are free to move as δX is unconstrained.

2. Dirichlet boundary conditions

δXµ = 0, at σ = 0, π. (60)

Here, the endpoints are fixed at a constant position X = c.

The Dirichlet boundary conditions appear rather strange, but have ultimately led to
an important ingredient of string theory. Assume, that we impose Neumann boundary
conditions on the time and the first p ≤ D−1 coordinates and Dirichlet on the remaining
directions, i.e.

∂σX
a = 0, a = 0, ..., p,

XI = CI , I = p+ 1, ..., D − 1.

This effectively constrains the endpoints to move on a p+1-dimensional hypersurface of
spacetime, breaking the Lorentz symmetry SO(1, D− 1) into SO(1, p)×SO(D−p− 1).
We call this hypersurface a Dp-brane, where the p stands for its spacial dimension.
Notably, Dp-branes also become dynamical quantities. This revelation led to the second
superstring revolution and allowed for the construction of realistic cosmological models.

Solving the equations of motion leads to the same mode expansion as in eq. (57), but
the different boundary conditions lead to

aan = ãan,

xI = cI , pI = 0, aIn = −ãIn,

thus we have only one set of oscillators remaining.

Quantization then proceeds analogously to the closed string via lightcone quantization,
but as the momentum operator pI is constrained to be zero, the wave functions of such
string modes depend only on the first xa coordinates, thus effectively live on the Dp-
brane.
The mass formula is also modified slightly

M2 =
1

α′

(
p−1∑
i=1

∞∑
n=1

ai−na
i
n +

D−1∑
I=p+1

∞∑
n=1

aI−na
I
n − 1

)
.

It turns out that quantization again leads to the critical dimension D = 26. This
indicates that open and closed strings are not disjoint but form a common theory.
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We introduce a ground state that is annihilated by all annihilation operators, i.e.

aµn |0; p⟩ = 0, n > 0.

Again, this ground state is tachyonic and appears to be unstable.

The first excited states are more interesting as they are again massless. They split into
two distinct classes

1. Longitudinal:

ai−1 |0; p⟩ , i = 1, ..., p− 1.

The index i transforms under the rotation subgroup SO(p − 2) of the Lorentz
group SO(1, p) on the brane, thus they fit into a massless representation. The cor-
responding gauge field Aa, a = 0, ..., p living on the brane can then be interpreted
as a photon.

2. Transverse

aI−1 |0; p⟩ , I = p+ 1, ..., D − 1.

These states are scalars under the Lorentz group of the brane and transform under
the remaining SO(D − p− 1) rotations. They can be interpreted naturally as the
fluctuations of the brane in the orthogonal direction.

6.1.6. Superstring Theory

In this section we follow [62, Section 3.1], but only present the very minimum to intro-
duce language.

Superstring theory relies on introducing fermionic degrees of freedom ψ onto the world-
sheet, resulting in the action (in the conformal gauge)

S = −T
2

ˆ
d2σ

(
∂αX

µ∂αXµ − iψ̄µρα∂αψµ

)
.

We consider this theory over flat Minkowski space, with α a two-dimensional index
on the worldsheet, while µ is a D-dimensional index on target space. ρα are two 2 ×
2-dimensional matrices, which satisfy the Clifford relation

{
ρα, ρβ

}
= 2ηαβ and the

D-many massless spinors ψµ = (ψµ
−, ψ

µ
+) are Majorana. Again, introducing lightcone

coordinates on the worldsheet, we have the spinor equations of motion

∂+ψ
µ
− = ∂−ψ

µ
+ = 0.

Thus, ψ− corresponds to right-moving modes and ψ+ to left-moving. The action is
invariant under (worldsheet) supersymmetry (see [62, Equation (74)]), a symmetry
exchanging fermionic and bosonic degrees of freedom, hence the name superstring.
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Due to the extra fermionic degrees of freedom present, the critical dimension is now
reduced to

D = 10.

The quantization and the spectrum of superstring theory are more complicated than the
bosonic string (for details see [62, 59]). However, through the so-called GSO projection
introduced in [66] one can consistently truncate different modes from the spectrum,
in particular the tachyonic mode. Furthermore, it also implies that supersymmetry is
implemented on the target space as well.

One can then find different supersymmetric string theories, for example Type IIA, Type
IIB, Type I, E8 × E8 heterotic and SO(32) heterotic. At the level of massless modes,
the Type II string theories have a common sector, the so-called NS-NS-sector (where NS
stands for Neveu-Schwarz). It looks analogous to the massless modes of bosonic string
theory, i.e. we have the graviton, Kalb-Ramond field and dilaton

Gµν , Bµν ,Φ.

Additionally, superstring theories typically contain extra massless modes, including the
higher gauge fields A for Type II given by

Name Extra massless modes

Type IIA Aµ, Aµνρ

Type IIB A, Aµν , Aµνρσ

6.1.7. Low Energy Actions and Scaling Symmetry

We now return to the case of the bosonic string in D = 26 dimensions, following [24, 67,
Chapter 6&7]. So far, we have only considered a string moving in a flat background,
which ultimately led to a theory of D free scalar fields. In the following we want to give
a glimpse of how to do perturbative expansions in string theory, how this reproduces a
theory of gravity at low energies and finally, how we can couple a string to such a curved
background.

We can compute scattering amplitudes in string theory through the path integral for-
malism, in which we integrate eSPV over all possible metrics, where V is a so-called
vertex operator. We will not need the precise details of such operators in this thesis (see
[24, Section 5.4]), just note that they represent asymptotic in- and outgoing states on
a worldsheet with fixed topology. Additionally, to take interactions into account, we
need to also consider all different possible topologies of the worldsheet, which we then
summarize in a perturbative series. A visual example of this is given by the scattering
of two closed strings, visualized as in fig. 1 below:
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+ ++ ...

Figure 1: Visualization of string scattering given in terms of a perturbation series over
different topologies.

Contributions are weighted differently with a string coupling constant

gs := eλ,

where λ is a real number. It is useful, because it allows for an asymptotic series for
gs ≪ 1. In practice, the string coupling is introduced by an ad-hoc modification of the
Polyakov action given by the string action

Sstring = SP + λχ, (61)

where χ is the Euler characteristic, which in two dimensions can be expressed via the
Ricci scalar as

χ =
1

4π

ˆ
d2σ

√
− dethR(2)(h). (62)

This term is invariant under diffeomorphisms as well as Weyl transformations. As it is
also independent of the particular worldsheet metric h, it only amounts to a topological
term12, which turns out to be the number of holes, the genus g of the worldsheet, i.e.

χ = 2(1− g).

Thus, the summation over topologies translates into a summation over the genera, i.e.
we have the perturbative expansion∑

g

e−2λ(1−g)

ˆ
DXDhe−iSP(X,h)V.

This allows us to compute the scattering amplitudes order by order, and as it turns
out (see [24, Section 6.2.3]), the amplitude for tachyonic in- and out-goin states has
poles exactly at the physical masses of the string modes, which we identified as different

12And thus does not make gravity dynamical.
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particles.
Recall, the mass was proportional to 1/α′, thus, this leads to the idea of a double
expansion, where we expand the amplitudes in powers of α′.
It is then only natural to consider low energy effective actions, i.e. theories with an
action that effectively reproduces the string scattering amplitudes in the lowest order of
α′, while also respecting the gauge symmetries of the amplitudes.
Remarkably, as it turns out (see [68, Section 16.3]), at lowest order in α′ the effective
action of string scattering is given exactly by a modified version of Einstein gravity with
the Lagrangian

SNS-NS =
1

2κ2

ˆ
dDX

√
− detGe−2Φ

(
R− 1

12
HµνρH

µνρ + 4∂µΦ∂
µΦ

)
, (63)

where G is a Lorentzian metric, H := dB is the field strength of the Kalb-Ramond field
B and Φ is the dilaton. This theory of gravity is the common sector of all supergravity
effective actions.

So far, we viewed everything in the setting of the massless sector of the bosonic string.
However, the same formula holds in the case of the superstring and gives the low energy
effective action of the massless NS-NS sector we briefly saw in section 6.1.6, thus, for
D = 10 we will also call this theory NS-NS gravity.

The formalism to derive such effective actions is quite involved, however, there is an
alternative approach to derive similar results. For this approach, we consider a string
moving in a curved background, i.e. a sigma model with a general background metric G,
given by the action

S = − 1

4πα′

ˆ
d2σ
√
− det ggαβ∂αX

µ∂βX
νG(X)µν .

We interpret the target space metric G(X) as a self-coupling of the fields X and as
it turns out (see [24, Section 7]) the inclusion of G can be interpreted as a coherent
graviton state.

The non-linear sigma model of the string has a well-known perturbation theory, but
the quantum theory has divergences that have to be regularized. Thus, we have to
introduce cut-offs during regularization and consequently also a scale µ for a given
process. However, we have seen that classical string theory is conformally invariant, i.e.
scale independent, and we want to keep this gauge symmetry in the quantum theory.

Now, given a coupling g and an energy scale µ, the dependence of the coupling on the
scale is encoded in the beta function by

β(g) := µ
∂g

∂µ
.

If a process or theory is scale invariant, the beta function of its coupling should be zero,
β(g) ≡ 0. In our case, the coupling is the background metric G, and its beta function can

75



be computed order by order in perturbation theory (see [24, Section 7.1.1]). Remarkably,
doing so to first order for string theory in a curved background reveals that the theory
is scale invariant at the quantum level, i.e. conformally invariant, if we have

βµν(G) ≡ α′Rµν +O(α′2) = 0.

But for D ̸= 2 these are exactly the vacuum Einstein-equations (14). Thus, requiring
conformal invariance on the string worldsheet is equivalent to requiring that the target
space follows Einstein’s theory of general relativity. Thus, we see the emergence of
D-dimensional gravity from a two-dimensional string. Consequently, at low energies,
the string coupled to a curved background can be effectively described by the modified
version of the Einstein-Hilbert action (12).

We can continue and couple the string to the other massless background fields B,Φ we
have found in the quantum string theory. The fully coupled string is given by the action

S = − 1

4πα′

ˆ
d2σ
√

− det g
(
gαβ∂αX

µ∂βX
νG(X)µν − εαβ∂αX

µ∂βX
νB(X)µν + α′Φ(X)R(2)

)
,

(64)

where R(2) is the Ricci scalar of the two-dimensional worldsheet, i.e. of the metric g.
The coupling of B to the string is realized through the introduction of a so-called Wess-
Zumino term13 and amounts to considering a charged string (see [59, Chapter 16]).
The Wess-Zumino term remains invariant under transformations of the two-form field
B under the one-form symmetry with parameter θ given by

δBµν = 2∂[µθν]. (65)

Ultimately, the beta functions corresponding to the action (64) are

β(G)µν = α′
(
Rµν + 2∇µ∇νΦ− 1

4
HµλρH

λρ
µ

)
β(B)µν = α′

(
−1

2
∇ρH

ρ
µν +∇ρΦH

ρ
µν

)
β(Φ) = α′

(
1

2
∇2Φ +∇µΦ∇µΦ− 1

24
HµνρH

µνρ

)
,

where H := dB is the gauge invariant field strength of B. A background to string theory
is only consistent with Weyl symmetry on the quantum level if the above beta functions
vanish. We can interpret the vanishing of the beta functions as equations of motion for
the background, and they follow precisely from the low energy effective action eq. (63).

The dilaton coupling in the full string action (64) takes on an interesting role. Comparing
to eq. (62) and (61), we see that the dilaton Φ appears in the place of λ, thus making

13For more details see 6.2.4.
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the string coupling also a dynamical quantity. More precisely, the expectation value of
the dilaton determines the string coupling, hence the coupling is not and independent
parameter of the theory.

Remarkably, we have derived how spacetime and other fields behave inD = 26 orD = 10
just from the dynamics of a string moving in a flat spacetime.

6.2. T-dualities

In section 5 we studied the impact that compact dimensions of spacetime had on theories
formulated on them. There, we mostly used it as a tool to derive theories or embed
theories in higher dimensions. As mentioned, in string theory compactifications take
on a different role. We have seen that string theories are only consistent in dimension
D = 26 or D = 10, and as our world appears four-dimensional, we need a way to derive
lower-dimensional theories from string theory. Here, we want to investigate the interplay
between the compact dimensions and string theory. This will lead to a surprising duality,
i.e. a relation between distinct physical systems that are formulated in very different
ways but described by the same physics. This section follows mostly [24, Chapter 8]
and [59, Chapter 17].

6.2.1. Compactifications on Target Space

We thoroughly described the implications of compactifications on background fields in
section 5, but to connect to our current notation, we review some notions here.

The setup, again, is that we assume that one of the spacelike directions of target space
is compact and periodic, i.e. a circle of radius R. Without loss of generality, we assume
that direction to be the last one, i.e. in the setting of bosonic string theory, we assume
that

x25 = x25 + 2πR.

Such a compactification meant that the 26-dimensional metric Gµ̂ν̂ gave rise to a 25-
dimensional metric Gµν , a U(1) gauge field Aµ and a scalar k. Furthermore, as we have
seen in section 6.1.4, we also have the Kalb-Ramond field Bµ̂ν̂ present which splits into
a two-form field Bµν and another U(1) gauge field Ãµ =: Bµ25 (see the end of section
5.3 for details). All of these fields live on the 24-dimensional spacetime MD orthogonal
to the compact direction.

6.2.2. Compactifications on the Worldsheet

We consider the setting of closed strings, where we analyze the string embedding in the
compact direction, i.e. X25 for fixed τ ∈ R. We thus have the (differentiable) map

X25(τ, ·) : S1 → S1,

σ 7→ X25(τ, σ).
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But continuous maps between S1 are characterized by an integerm ∈ Z, called the wind-
ing number, and in our setting this amounts to the inclusion of more general periodicity
conditions than in section 6.1.3, namely

X25(τ, 2π) = X25(τ, 0) + 2πRm.

This number describes how many times the string winds around the compact dimen-
sion, hence the name. Furthermore, having a compact direction present quantizes the
momentum along the compact direction, as to leave the corresponding plane-wave eigen-
functions well-defined. Thus, the momentum takes the form

p25 =
n

R
, n ∈ Z.

Note, that this is exactly the charge for massive Fourier modes we found in eq. (44).
Ultimately, while all directions orthogonal to the compact direction have the same ex-
pansion as before, the embedding function of the compact direction now reads

X25(τ, σ) = x25 +
α′n

R
τ +mRσ + i

√
α′

2

∑
k∈Z\{0}

e−ikτ

k

(
ã25k e

−ikσ + a25k e
ikσ
)
. (66)

We see that the expansion includes the momentum proportional to n multiplying τ , but
also a term involving the winding number, multiplying σ.

It is useful to split this expression into a left- and right-moving part, introducing the
quantities

pL :=
n

R
+
mR

α′ , pR :=
n

R
− mR

α′ ,

xL := x+ q, xR := x− q.

The position q seems to be meaningless at this point, as it will cancel right away, but it
will be useful later on. Using this notation, we have the results

X25
L (σ+) =

1

2
xL +

1

2
α′pLσ

+ + i

√
α′

2

∑
k∈Z\{0}

1

k
ã25k e

−ikσ+

,

X25
R (σ−) =

1

2
xR +

1

2
α′pRσ

− + i

√
α′

2

∑
k∈Z\{0}

1

k
a25k e

−ikσ−
.

Quantization proceeds as before, but we now have to view formulas from the viewpoint
of an observer living in the spacetime xµ, µ = 0, ..., 24. The corresponding mass is

M2 = p2L +
4

α′ (Ñ − 1) = p2R +
4

α′ (N − 1),

where the level operators are defined as before including all directions. It turns out that
level matching now is implemented by the requirement

N − Ñ = nm.
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Plugging in the momenta into the mass formula, we find that

M2 =
n2

R2
+
m2R2

α′2 +
2

α′ (Ñ +N − 2). (67)

So, we see the effect of the quantized momentum, but also a new contribution from the
winding number, due to the tension of the string stretched around the compact direction.

We can now investigate the massless modes for zero momentum n = 0 and zero winding
m = 0, i.e. at level N = Ñ = 1. They arrange in the three groups

1. aµ−1ã
ν
−1 |0; p⟩ - These fit in a massless representation of SO(1, 24), resulting again

in a metric Gµν , a 2-form Bµν and a scalar Φ.

2.
(
aµ−1ã

25
−1 |0; p⟩ , a25−1ã

ν
−1 |0; p⟩

)
- These give two massless vector fields, but remember-

ing the decomposition of the metric and the Kalb-Ramond field under dimensional
reduction, we identify the sum(

aµ−1ã
25
−1 + a25−1ã

ν
−1

)
|0; p⟩

with the vector Aµ coming from the metric. As it turns out (see [24, Section 8.2.2])
fields with momentum number n are charged under Aµ with charge pL + pR ∼ n

R
.

Furthermore, we identify the difference(
aµ−1ã

25
−1 − a25−1ã

ν
−1

)
|0; p⟩

with the vector field Ãµ coming from the Kalb-Ramond field. Fields with winding
number m are now charged under Ãµ with charge pL−pR ∼ mR

α′ . The latter seems
unexpected, but as mentioned, the string is charged under the Kalb-Ramond field
and this is merely a lower dimensional artifact of this charge.

3. a25−1ã
25
−1 |0; p⟩ - This is simply a scalar field and can be identified with the Kaluza-

Klein scalar k.

6.2.3. T-Duality for Closed Strings

The spectrum of the closed string (67) has an interesting property. It remains inert if
we change the radius to

R → R̃ :=
α′

R
,

provided we also exchange winding and momentum number m ↔ n. Consequently,
string theory does not distinguish between large and small circles for compactifications,
provided it also exchanges the notion of momentum and winding. This phenomenon is
known as T-duality.
Furthermore, through T-duality there is also a minimal length scale in string theory,
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since one can only shrink the circle until the self dual radius R = R̃ =
√
α′, after which

shrinking ultimately amounts to increasing the size of the circle, but for momentum and
winding exchanged.

In bosonic string theory, T-duality does not give a mapping between different theories,
but can be interpreted as merely an interpretative ambiguity of a single theory. This
ambiguity is related to the coordinate q introduced earlier, which canceled in the expres-
sion for the string coordinate and thus at that point seemed pointless. For superstrings
T-duality is more complicated, as it maps different superstring theories into each other,
as we will explain briefly in section 6.2.6.
Exchanging winding and momentum number amounts to mapping the left- and right-
moving momenta to

pL 7→ pL, pR 7→ −pR.

Correspondingly, we then define the dual string coordinate

Y 25 := X25
L (σ+)−X25

R (σ−)

≡ q +mRτ +
α′n

R
σ + i

√
α′

2

∑
k∈Z\{0}

e−ikτ

k

(
ã25k e

−ikσ − a25k e
ikσ
)
.

Thus, compared to the initial expansion of the compact coordinate (66), we see that x25

is replaced by q and that the momentum and winding are exchanged. Furthermore, the
sign of the right-moving oscillators is changed. Interestingly, this is still a fully generic
solution to the classical wave equation, and as a quantum theory, it leads to the exact
same CFT as X25, provided we assume the compactification has the dual radius R̃ = α′

R
.

Hence, we see that by two equivalent choices, we could extract two seemingly different
theories from the same starting action, expressing that the two compactifications are
dual.

In the quantum theory, the exchange of winding and momentum implies the exchange
of the two U(1) gauge fields related to these charges, i.e. T-duality means Aµ ↔ Ãµ.
This duality will also be present in the effective action, and we will rediscover this in
the context of non-relativistic strings in section 7.

Finally, we also need to consider the dilaton. As mentioned above, the dilaton is related
to the coupling strength of string theory. Now, by considering the low energy effective
actions derived from the beta-functions, one finds that the coupling under dimensional
reduction reads R

g2s
. Thus, if the coupling gs were to remain inert under T-duality,

we could experimentally distinguish between large and small radii of compactifications,
which would contradict T-duality on the worldsheet. Thus, also the coupling strength,
and hence the dilaton, has to shift under T-duality, leading to

gs 7→ g̃s :=

√
α′

R
gs.
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6.2.4. T-Dualities of Open Strings

We now consider open strings. First, assume we have a string whose ends move freely
throughout spacetime, i.e. we have a space-filling D25-brane present. Again, we assume
that the 25th coordinate is compactified on a circle of radius R. The momentum of
the open string in this direction is quantized to p25 = n

R
, but contrary to before, as the

endpoints are free to move, the string can always just shrink to unwind itself, hence
there is no winding contribution, and thus no winding number.
Now, assume we have an open string moving on a D25-brane and spacetime compactified
over the dual radius R̃ = α′

R
, which for the closed string was physically equivalent to

R. But we now see, that the resulting quantized momentum is p25 = α′

R
n. Thus, the

open string seems to be able to distinguish between the dual radii, defying our notion
of T-duality.

However, we made the assumption that D-branes remain inert under T-dualities, and
this, in fact, does not hold. To see this, recall that we had the left- and right-moving
decomposition

X25(τ, σ) = X25
L (τ + σ) +X25

R (τ − σ).

The Neumann boundary condition for this direction then leads us to

∂σX
25(τ, σ) = X25

L (τ + σ)′ −X25
R (τ − σ)′ ≡ ∂τY

25(τ, σ).

We can also write this more compactly with the epsilon tensor as

∂αX
25 = εαβ∂

βY 25. (68)

As Y 25 represents the direction that led to the dual description over R̃, we see that under
T-duality, the boundary condition in the compact direction gets flipped from Neumann
to Dirichlet and vice versa, effectively mapping the D25-brane to a D24-brane. With
Dirichlet boundary conditions in place, the open string is now constrained to have zero
momentum in the compact direction, i.e. its endpoints stay at a fixed position, and
thus the open string can now wind around the compact direction, closely resembling the
closed string, only that the endpoints do not have to coincide.

We can see this more directly by writing out the mode expansions. We take a similar
ansatz as in the closed case and find for the standard expansion

X25 = x25 + α′ n

R
τ + oscillators.

The dual expansion then reads

Y 25 = q + α′ n

R
σ + oscillators.

Again, we see that in the dual world, the momentum is mapped to a winding, provided
the radius R is mapped to the dual radius R̃. Thus, we fully recover T-duality also for
the open string, provided we switch the boundary conditions of branes in the compact
direction, i.e. we map a Dp-brane to a D(p ± 1)-brane depending on the boundary
conditions.
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6.2.5. T-Duality on the Worldsheet

Let us now briefly state how T-duality might be formulated directly through the world-
sheet action. For this, we consider a simplified string model, where we have a single
string coordinate X, which winds once around the only compact direction, i.e.

X(2π) = X(0) + 2πR.

To make the radius dependence explicit, we introduce a single scalar field φ as

X := Rφ, =⇒ φ(2π) = φ(0) + 2π,

and consequently have the flat Polyakov action

S =
R2

4πα′

ˆ
d2σ∂αφ∂

αφ. (69)

We introduce the ad-hoc parent action with the new fields bα and φ̃ as

SParent :=
R2

4πα′

ˆ
d2bαb

α − 1

2π

ˆ
d2σεαβbα∂βφ̃

If we compute the equations of motion for the field φ̃, we see that it amounts to

db = 0.

Now, if we would consider our theory with a non-compact direction, this would amount
to b being exact due to the vanishing first de Rham cohomology. However, due to the
compactification, we have the topology of a circle. While far from obvious, as it turns
out (see [69, From eq. (11.86) onwards]), this amounts to the existence of a coordinate
function φ of the unit circle that is periodic up to a shift of 2π, such that

bα = ∂αφ. (70)

Plugging this solution into the parent action, we effectively recover the Polyakov action
for the single coordinate φ from eq. (69), as the second term in SParent is only a total
derivative.
Conversely, if we vary the action with respect to the field bα, we find the relation

Rbα =
α′

R
εαβ∂βφ̃. (71)

It is again not obvious, but it turns out, that φ̃ is again a coordinate function of the
unit circle, periodic up to a shift of 2π (again, see [69]). If we plug the above relation
into the parent action (using εαγε β

γ = ηαβ), we find the dual action

Sdual =
1

4πα′

(
α′

R

)2 ˆ
d2σ∂αφ̃∂

αφ̃.
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Comparing to eq. (69), we see that the dual action describes a single coordinate function

Y :=
α′

R
φ̃, (72)

i.e. a dual coordinate with periodicity condition

Y (2π) = Y (0) + 2π
α′

R
,

that now includes the dual radius. Thus, we have shown that both the compactification
over radius R and the one over the dual radius α′/R are contained in the parent action.
In this sense, T-duality is implemented in a worldsheet formulation. Furthermore, re-
calling equations (70), (72) and (71), we recover the relation between the derivatives of
coordinate and its dual from equation (68), i.e.

∂αX = εαβ∂
βY.

6.2.6. T-Duality in Type II Superstrings

In superstring theory T-duality becomes more complicated, as it now does not map the
same theory to itself, but instead it maps Type IIA theory compactified over radius R
to Type IIB theory compactified over radius R̃. Again, this duality shows, that we are
overall not dealing with distinct theories and that they appear to be different sides of
the same coin.

To swiftly motivate this, we have to expand our discussion of branes and their charge.
This will be brief again, so for a full introduction see [59, Chapter 16]. Dp-branes can
be described by one time coordinate τ and p space coordinates σi, i = 1, ..., p, and their
corresponding embedding into target space

(τ, σi) 7→ Xµ(τ, σi).

In this sense, a particle traces a D0-brane, while a string traces a D1-brane, etc. We
recall that the string naturally coupled to the two-form field Bµν and from electrody-
namics that particles naturally couple to a one-form gauge field Aµ. This coupling can
be generalized to Dp-branes coupling to a p + 1-form Aµµ1,...,µp and is realized through
the action

Sp =

ˆ
dτdσpAµµ1,...,µp∂τX

µ∂σ1Xµ1 ...∂σpXµp .

Therefore, Dp-branes can only be charged in the presence of massless forms. Recall, that
in Type IIA theory, we had the extra massless forms Aµ and Aµνρ from the R-R sector,
and correspondingly we have charged D0- and D2-branes in Type IIA. Furthermore,
through the magnetic dual of the A’s, one can also show that in Type IIA all Dp-branes
with p even are electrically or magnetically charged, and thus, only such branes are

83



present in Type IIA. The situation then reverses for Type IIB theory, where only Dp-
branes with p odd are present.
Since T-duality reduces or increases the degree of a Dp-brane by one, it exactly maps
the even to the odd branes and vice versa. While this does not give the exact mapping,
this motivates that under T-duality we map Type IIA string theory to Type IIB and
vice versa.

6.3. Non-relativistic String Theory

Non-relativistic string theory provides a simplified version of relativistic string theory,
and thus presents a model that can be used to gather hints and ideas on aspects of
the full theory, such as non-perturbative formulations or the AdS/CFT-correspondence.
Non-relativistic string theory is characterized by a two-dimensional relativistic CFT on
the worldsheet together with global string-Galilean symmetry on target space. Similar to
the relativistic case, where the global Poincaré invariance on the target space ultimately
led to the emergence of Lorentzian geometry and general relativity, the symmetries
of non-relativistic string theory give rise to target space fields that now encode non-
relativistic string-Galilean geometry. The non-relativistic string then naturally couples
to the geometry and extra fields, such as the (non-relativistic) Kalb-Ramond and dilaton
field. Furthermore, to ensure Weyl invariance of the quantized theory, the corresponding
beta-functions need to vanish, giving rise to equations of motion for the non-relativistic
background theory.
Non-relativistic string theory was originally introduced and studied as a conformal field
theory in [8], since then much work was done on the quantum aspects, as well as on the
geometry and backgrounds, see [4, 63, 10, 9, 11, 70] and references therein.

6.3.1. Non-relativistic Limit of Flat Spacetime

We try to gain intuition about the non-relativistic14 limit of string theory by first study-
ing the simplest example, a string moving in flat spacetime as presented in [11]. We
start with the Nambu-Goto action

SNG[X] := −T
ˆ
d2σ
√

− det γ

with γ := X∗η. As was shown in [71], consistent limits of objects with a p+1-dimensional
worldvolume (such as p-branes) require singling out and rescaling one timelike and p
spacial directions along the worldvolume of the brane, called longitudinal directions,
while the D− p− 1 remaining so-called transverse directions are left unchanged. As the
string has a two-dimensional worldvolume, we scale (adopting flat space index notation)
the longitudinal coordinates XA 7→ cXA, A = 0, 1 and leave the transverse directions
XA′

, A′ = 2, ..., D − 1 inert15. Plugging this redefinition into the Nambu-Goto action

14Note that this is a serious abuse of language, as the ansatz is notably different to what is considered
a non-relativistic limit. It is rather a low energy limit.

15Again, we emphasize that the contraction parameter c is not the usual speed of light.
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gives

SNG[X] ≃2 −Tc2
ˆ
d2σ
√

− det γ̄

(
1 +

1

2c2
γ̄αβ∂αX

A′
∂βX

B′
δA′B′

)
,

where now γ̄ is the pullback of the longitudinal metric ηAB under the longitudinal coor-
dinates XA, i.e. γ̄αβ = ∂αX

A∂βX
BηAB, with inverse γ̄αβ. It turns out that due to the

dimension of the worldsheet being two (see [11, Equation (3.7)]), the divergent term is
a total derivative, leaving us with the flat non-relativistic Nambu-Goto action

SNG-NR-flat = −T
2

ˆ
d2σ
√
− det γ̄γ̄αβ∂αX

A′
∂βX

B′
δA′B′ . (73)

This action is invariant under reparametrizations of the worldsheet, as well as under an
analog of boosts and rotations, the global string Galilei transformations

δXA = λABX
B + ζA,

δXA′
= λA

′

B′XB′
+ λA

′

AX
A + ζA

′
,

where λAB are SO(1, 1) transformations on the worldsheet, λA
′

B′ are SO(D − 2) trans-
verse rotations, the λA

′
A are “string” Galilean boosts and ζA, ζA

′
are longitudinal and

transverse translations. Making the spacial rotations and string boosts local provides a
guiding principle for constructing arbitrary string Newton-Cartan backgrounds16.

The geometric structure preserved by these transformations again consists of a degener-
ate longitudinal metric tµν and a degenerate spacial co-metric hµν that are orthogonal.
Now, however, the kernel of h is two-dimensional, i.e. the rank of t is two. We can again
introduce two types of vielbeine. First, the longitudinal vielbein by the relation

tµν = ηABτ
A

µ τ B
ν

and secondly, the spacial vielbein as before

δA
′B′

= hµνe A′

µ e B′

ν .

The above relations are certainly invariant under the following variations of the vielbeine

δτ A
µ = Lξτ

A
µ + λABτ

B
µ ,

δe A′

µ = Lξe
A′

µ + λA
′

B′e B′

µ + λA
′

Aτ
A

µ ,

Where ξ is an infinitesimal diffeomorphism, λAB an infinitesimal longitudinal Lorentz
transformation, λA

′

B′ an infinitesimal transverse rotation SO(D − 2) and λA
′
A an in-

finitesimal string boost. We will henceforth call this geometry a string Newton-Cartan (SNC)

16In doing so, an extension of the above symmetries has to be considered (see [11]), similar to the central
extension of the Galilei algebra to the Bargmann algebra we saw in section 4.1.2. The extension is
necessary, since, again, the action is only quasi-invariant under boosts. However, in the string case
it is not entirely clear what the correct extension should be, see [11, 9, 70, 37, 4].

85



geometry.

We can then define projective inverses given by the relations

e A′

µ τµA = 0, eµA′τ
A

µ = 0, e A′

µ eµB′ = δA
′

B′ , τ A
µ τµB = δAB , δµν = τµA τ

B
ν + eµae

a
ν .

(74)

Furthermore, we can split arbitrary tensor indices into longitudinal and transverse parts

Tµ = TAτ
A

µ + TA′e A′

µ ,

where

TA := Tµτ
µ
A (75)

TA′ := Tµe
µ
A′ . (76)

6.3.2. The Gomis-Ooguri String and the Non-Relativistic Spectrum

We now want to derive a Polyakov-type action following the lines of the original paper
[8], where an α′ → 0 limit was considered. This starting point is useful to see the
connection to the relativistic theory and to derive the appropriate spectrum.

We start from the closed relativistic string in conformal gauge coupled to a curved
background and a Kalb-Ramond field

SRel =
1

4πα̂′

ˆ
d2σ

(
∂αX

µ∂αXνGµν − iεαβ∂αX
µ∂αXνBµν

)
with the background fields

G =

(
ηAB 0

0 α̂′

α′ δA′B′

)
, B =

(
−εAB 0
0 0

)
. (77)

Here, α̂′ is the relativistic string tension which we want to send to zero, while α′ is the
effective tension of the non-relativistic string17. This results in the action

SRel =
1

4πα′

ˆ
d2σ

(
∂αX

A′
∂αXA′ − α′

α̂′ ∂̄X∂X̄

)
,

where we introduced the lightcone coordinates X := X0 +X1, X̄ := X0 −X1 and the
complex derivatives ∂ := ∂τ + i∂σ, ∂̄ := ∂τ − i∂σ.
Sending α̂′ → 0 would lead to divergences in the action, however we can introduce
Lagrange multipliers λ, λ̄ to make this limit well-defined. We thus write

SRel =
1

4πα′

ˆ
d2σ

(
∂αX

A′
∂αXA′ + λ∂̄X + λ̄∂X̄ +

α̂′

α′λλ̄

)
.

17To do this appropriately one has to simultaneously also send the string coupling ĝs to infinity.
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It is important to stress that this action is still fully relativistic, and that the term λλ̄
governs how the theory is deformed from the non-relativistic to the relativistic regime.
Taking the limit α̂′ → 0 leads to the Gomis-Ooguri action for non-relativistic strings

SGO =
1

4πα′

ˆ
d2σ

(
∂αX

A′
∂αXA′ + λ∂̄X + λ̄∂X̄

)
(78)

The action SGO is the Polyakov form of the action (73). We still have the Galilei
symmetries present in this action, provided that the Lagrange multipliers also transform
under boosts as

δBλ = (λ0A′ + λ1A′) ∂XA′
, δBλ̄ = (λ0A′ − λ1A′) ∂̄XA′

.

They also transform as one-forms under worldsheet diffeomorphisms, thus are overall
part of the geometric data. The relation will become more clear in the context of null
reductions.

To derive the spectrum of the theory, first note that the ansatz for the KR field is pure
gauge, i.e. gauge equivalent to the zero form under the one-form transformations with
parameter θ we introduced in eq. (65)

θA =
1

2
εABX

B, θA′ = 0

if we assume that all directions are non-compact. However, the non-zero contribution
by the KR field was important to take the correct limit. Thus, to have a non-trivial
form field, we need to assume that the X1 direction is compactified with radius R, which
renders the above one-form parameter discontinuous due to X1 being discontinuous.
One can see this more concretely by computing how the presence of the KR field changes
the energy of the relativistic string. Following [72], in the presence of the constant KR
field from (77), the relativistic energy of the string changes to

P̃0 = E +
1

2πα̂′

ˆ
dσ∂σX

1 ≡ E +
1

2πα̂′

[
X1(2π)−X1(0)

]
≡ E +

Rw

α̂′ .

We denote by E the kinetic energy of the string and by w the winding number of the
string. The latter is of course only present in the case of a compact X1-direction. Put
differently, the KR field we introduced is only physically relevant if we also have non-
trivial fundamental group, and we can implement this by introduction of a compact
direction. It turns out that the relativistic on-shell condition analogously to eq. (67) is
given by

−P̃µP̃
µ ≡

(
E +

Rw

α̂′

)2

− α′

α̂′P
A′
PA′ =

n2

R2
+
w2R2

(α̂′)2
+

2

α̂′ (Ñ +N − 2),

Together with the level matching N − Ñ = nw. Taking the limit α̂′ → 0 gives the
non-relativistic dispersion relation for a 9-dimensional particle with mass wR/α′

E =
α′

2wR

[
PA′

PA′ +
2

α′

(
N + Ñ − 2

)]
.
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It is important to note that this relation is only well-defined for strings with winding
around the compact direction, i.e. w ̸= 0, and taking the limit consistently even re-
quires the condition w > 0 (see the discussion around eq. (25) in [57])18. This can be
interpreted as anti-particles decoupling from the theory, similarly to how anti-particles
decouple in the non-relativistic limits of QFTs. Thus, strings in non-relativistic string
theory that are on-shell necessarily have winding, effectively only allowing states with a
mass. In particular this does not allow a graviton in the non-relativistic spectrum.
However, as was shown in [8, Section 4], unwound states do appear off-shell as interme-
diate states in scattering of wound strings that do not exchange winding number. The
long-range, leading-order behavior of their propagators is proportional to (PA′PA′

)−1,
corresponding to the Green’s function of the Poisson equation. As a consequence (see
also [73, Section 4] for extensive details), these unwound states correspond to a Newton-
like potential, introducing an instantaneous gravitational force between wound strings.

6.3.3. T-Dualities for the Gomis-Ooguri String

We can give an interpretation to the Lagrange multipliers λ, λ̄ through T-dualities. Note
that we can have T-dualities along a spacial19 longitudinal or transverse directions. Here,
we are following an approach as in [10]. We implement the T-duality along the compact
longitudinal spacelike direction X1, similarly to section 6.2.5, via a parent action

SParent =
1

4πα′

ˆ
d2σ

(
∂αX

A′
∂αXA′ + λ(∂̄X0 + v̄) + λ̄(∂X0 − v) + 2Y1(∂̄v − ∂v̄)

)
.

Integrating out Y1 gives the equation ∂̄v = ∂v̄, which is solved by v = ∂X1 and v̄ = ∂̄X1,
recovering the original SGO from eq. (78). Conversely, we can integrate out v, v̄, which
gives λ = −2∂Y1 and λ̄ = −2∂̄Y1, which gives the action

S =
1

4πα′

ˆ
d2σ

(
∂αX

A′
∂αXA′ − 2∂Y1∂̄X

0 − 2∂̄Y1∂X
0
)
.

We recognize this as the action of a relativistic string theory in a flat background with
spatial directions XA′

and lightlike directions Y1 and X0, where Y1 is compactified, as
it is dual to X1.20 We will encounter this relation again in section 7, when we consider
the effect of this T-duality on the target space in NS-NS gravity. Consequently, we
can interpret the Lagrange multipliers as conjugate to the longitudinal string winding,
characterized by a lightlike direction.
Quantizing such a theory is known as discrete lightcone quantization (DLCQ), which is
related to matrix models of string and M-theory, usually defined via a limiting procedure
of spacelike circles (see [74] and [8, Section 6]). Thus, non-relativistic closed string theory
provides an approach to define DLCQ of relativistic strings in a rigorous way.

18Note that what we call non-relativistic string theory is called NRCOS there.
19There also seem to be lightlike longitudinal T-dualities (see [10]), their interpretation is not completely

clear, however.
20In the literature often the radius of compactification is given as well, but as noted in section 5.4, null

directions have no inherent notion of length, hence also no radius.
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If instead of a longitudinal, a transverse direction is chosen to be compactified, we recover
a similar notion of T-duality as in the relativistic case, mapping one non-relativistic
string theory to another with dual radius (see [10]).

6.3.4. Curved Non-relativistic Limit

There are several approaches to introduce curved target spaces into non-relativistic string
theory. Here, we want to follow along the lines of [4] and consider a non-relativistic limit.

We start from the curved Nambu-Goto action coupled to a Kalb-Ramond field for the
moment omitting the dilaton coupling

SNG = −T
ˆ
d2σ

√
− det

(
ηÂB̂E

Â
µ E B̂

ν ∂αXµ∂βXν
)
− T

2

ˆ
d2σεαβBµν∂αX

µ∂βX
ν .

(79)

The hatted indices take values Â = 0, ..., D − 1 in the full tangent space. Note that the
target space fields E and B are functions of the string coordinates X.
Furthermore, it is important to recall from section 6.3.2 that the non-relativistic limit
required a compact (longitudinal) direction and our physical states all carried winding
number. On the contrary, the massless metric, i.e. vielbein, KR field and dilaton were all
part of the zero-winding sector (see discussion after (67)). Thus, taking this limit does
not yield physical non-relativistic states. However, as remarked at the end of section
6.3.2, these unwound intermediate states, corresponding to the limit of the above fields,
were mediating an instantaneous force between asymptotic states that carried winding
number. Thus, we expect that the limits of these fields are the correct ones to describe
the non-relativistic geometry of the target space.

We have already learned from the non-relativistic flat case in section 6.3.1 that we have
to introduce a splitting in longitudinal and transverse directions, i.e. Â 7→ A = 0, 1, and
A′ = 2, ..., D − 1, and we correspondingly split the vielbeine and make the ansatz for
the vielbeine and KR field

E A
µ = cτ A

µ +
1

c
m A

µ ,

E A′

µ = e A′

µ ,

Bµν = −c2τ A
µ τ B

µ εAB + bµν .

(80)

This closely resembles the ansatz for the particle in section 4.3.1, however, we included
the field m, that renders the above relations non-invertible. This introduction is not
strictly necessary, but, as we will comment on later, it will provide useful. The ansatz
for the KR field is chosen to, again, cancel a divergence coming from the rest tension of
the string. Furthermore, the fields (τ A

µ , e A′
µ ) admit (projective) inverses as in eq. (74).
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Defining the pullback metric

γαβ := ηABτ
A

µ τ B
ν ∂αX

µ∂βX
ν ,

and the boost-invariant spacial metric

Hµν := δA′B′e A′

µ e B′

ν + 2τ(µ
Amµ)

BηAB,

we find that the non-relativistic Nambu-Goto string action from the c → ∞ limit is
given by

SNG-NR = −T
2

ˆ
d2σ

{√
− det γγαβ∂αX

µ∂βX
νHµν + εαβ∂αX

µ∂βX
νbµν

}
.

The action is invariant under an Abelian one-form symmetry that is inherited from the
relativistic KR field

δb = dθ,

for an arbitrary one-form θ. Furthermore, the geometric fields transform under longitudi-
nal SO(1, 1) transformations with parameter λAB, transverse SO(D−2) transformations
with parameter λA

′

B′ , as well as string boosts with parameter λAA′
as

δτ A
µ = λABτ

B
µ ,

δe A′

µ = λA
′

B′e B′

µ + λA
′

Aτ
A

µ ,

δm A
µ = λABm

B
µ + λAA′e A′

µ .

(81)

Due to the form of H this action is manifestly invariant under all these symmetries.
Additionally, we observe an extra emergent symmetry in the form of a Stückelberg shift

δbµν = 2c A
[µ τ B

ν] εAB,

δm A
µ = −c A

µ .
(82)

This symmetry is due to the fact that with the introduction of m we introduced more
non-relativistic than relativistic fields, hence we over-parametrized our theory. It can
be used to relate the different approaches to non-relativistic string theory (see [70]).
Overall, this shift symmetry lets us gauge fix the extra field m to zero, i.e.

m A
µ ≡ 0.

As can be seen from eq. (82) and (81), keeping this gauge requires a compensating
transformation, which makes the non-relativistic KR field part of the geometric data, as
it now transforms under boosts as

δBbµν = −2εABλ
A
A′τ B

[µ e A′

ν] .

After gauge fixing, the Newtonian potential is now also part of the KR field, more
precisely it resides in the longitudinal components bAB (see [4] for details).
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We now also include the dilaton into the theory, where its non-relativistic ansatz is given
by a shift in c by

Φ = ϕ+ ln c,

resulting in the non-relativistic Nambu-Goto action of a string moving in a curved non-
relativistic string Newton-Cartan background

SNG-NR = −T
2

ˆ
d2σ

{√
− det γγαβ∂αX

µ∂βX
νδA′B′e A′

µ e B′

ν + εαβ∂αX
µ∂βX

νbµν

}
+

1

4π

ˆ
d2σ
√

− det γR(2)(γ)ϕ.

Similar to the particle action in section 4.3.1, this string action also has an emergent
dilatation symmetry, which has some interesting consequences in the target space for-
mulation, as we will see in section 7.1. The dilatation symmetry manifests as

δτ A
µ = λDτ

A
µ ,

δϕ = λD.

Note that we can equivalently also introduce a non-relativistic Polyakov action (see [10])

SP-NR =− T

2

ˆ
d2σ

{√
− det ggαβ∂αX

µ∂βX
νHµν + εαβ

(
λeατµ + λ̄ēατ̄µ

)
∂βX

µ
}

(83)

− T

2

ˆ
d2σεαβ∂αX

µ∂βX
νbµν +

1

4π

ˆ
d2σ
√

− det γR(2)(γ)ϕ. (84)

Here, g is the worldsheet metric, for which we introduced a zweibein e A
α , that we then

expressed in lightcone coordinates as e, ē. Similarly, we introduced lightcone coordinates
for the longitudinal vielbein21 τ A

µ as τ, τ̄ . Again, we have the Lagrange multipliers λ, λ̄
as in the flat non-relativistic string action in eq. (78).

As can be shown by a gauging of the SNC algebra (see [11]) the intrinsic torsion of such
a geometry is given by

Rµν(H
A) := 2D[µτ

A
ν] .

Here, the covariant derivative is covariant with respect to the worldsheet Lorentz trans-
formations, i.e. Dµτν = ∂µτν −ω A

µ Bτ
B

µ . This provides an analog of the intrinsic torsion
we have found for standard Newton-Cartan geometry in section 4.2.3.
Originally, earlier works on SNC imposed a “zero torsion constraint”, given by

D[µτ
A

ν] = 0,

leading to a torsionless SNC geometry. This can also be reformulated as

dτA = ωA
B ∧ τB,

21Recall that this lives on target space, contrary to the zweibein of g, which lives on the worldsheet.
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which in turn by the Frobenius theorem for forms implies that our target space admits a
codimension 2 foliation into two longitudinal directions and D− 2 transverse directions.
Contracting with all possible combinations of longitudinal and transverse vielbeine, we
see that part of the zero torsion constraint is conventional, while others pose a genuine
constraint on the geometry.

Recent works ([39, 4, 15, 37, 70]) have shown that it is relevant to relax the zero torsion
condition to allow for more general torsion, leading to different types of torsional string
Newton-Cartan (TSNC) geometries.

Furthermore, torsion constraints also appear when taking the non-relativistic string limit
in the target space without including the KR field, as then the divergent leading order
terms of the relativistic spin connections include the torsion.
Additionally, this constraint does not emerge as an equation of motion, hence has to be
imposed by hand (see [4] and references therein for details).
Introducing the KR field with the ansatz as above in eq. (80) results in the cancelation
of the divergences and thus allows to take the non-relativistic limit including torsion.

Thus, we see that the non-relativistic limit of a string moving in curved relativistic
background naturally leads to non-relativistic strings coupled to arbitrary curved TSNC
backgrounds.

6.3.5. T-Duality on the worldsheet

We have seen in section 6.2.5 how T-dualities in relativistic string theory can be formu-
lated purely in the worldsheet action. Following allowing the lines of [10], we want to
take the same approach for introducing T-dualities in the non-relativistic setting, now,
however, we consider a curved SNC background.

First, recall that for the non-relativistic limit to be well-defined, we necessarily needed
one direction of target space compactified. In string Newton-Cartan theory, we have
three different choices for the causal structure of the compact direction. This is encoded
in the direction of the Killing field. Here, we consider spacial longitudinal directions22.

We thus assume the existence of a longitudinal spacelike Killing vector χ, and as
in section 5 this amounts to adapted coordinates (X µ̂) = (Xµ, z), µ̂ = 0, ..., D and
µ = 0, ..., D − 1, such that χ = ∂z. The longitudinal vielbein in these adapted coordi-
nates fulfills (for details see 7.3)

τ 0
z = 0, τ 1

z ̸= 0, e A′

z = 0.

We assume all fields and parameters to be independent of the coordinate z. Defining

uα := ∂αz,

22Other types were considered in [10].
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we can write a parent action that is equivalent to the non-relativistic Polyakov action
(83), given by

SParent =− T

2

ˆ
d2σ
√

− det ggαβ [uαuβHzz + 2uα∂βX
µHµz + ∂αX

µ∂βX
νHµν ]

− T

2

ˆ
d2σεαβ

[
λeα (uβτz + ∂βX

µτµ) + λ̄ēα (uβ τ̄z + ∂βX
µτ̄µ)

]
− T

2

ˆ
d2σεαβ [2uα∂βX

µbzµ + ∂αX
µ∂βX

νbµν + 2v∂αuβ]

+
1

4π

ˆ
d2σ

√
gR(2)ϕ

In this action, we consider uα to be an independent field and introduced v as a Lagrange
multiplier. Its equations of motion impose du = 0, which locally is solved by uα = ∂αz,
giving our original Polyakov action.

Integrating out first uα and then the original Lagrange multipliers λ, λ̄, results in the
T-dual action

Sdual =− T

2

ˆ
d2σ

(√
ggαβ∂αY

µ̂∂αY ν̂G̃µ̂ν̂ + εαβ∂αY
µ̂∂βY

ν̂B̃µ̂ν̂

)
+

1

4π

ˆ
d2σR(2)Φ,

(85)

where we introduced the dual coordinates (Y µ̂) := (Xµ, v) and the non-relativistic
Buscher rules [12]

G̃vv = 0, Φ = ϕ− 1

2
ln tzz,

G̃vµ =
τ A
µ τ B

z εAB

tzz
, B̃vµ =

tzµ
tzz
,

G̃µν = Hµν +
2bz(µτ

A
ν) τ B

z εAB +Hzztµν − 2Hz(µtν)z

tzz
,

B̃µν = bµν +
2bz[µtν]z − (Hzzτ

A
µ τ B

ν + 2Hz[µτ
A

ν] τ B
z )εAB

tzz
.

We recognize that the action (85) represents the action of a string moving in a relativistic
background with null isometry along the Killing vector ∂v. We will discuss this relation
and the Buscher rules in depth in section 7 in a target space formulation.

6.3.6. Weyl Invariance and Beta functions

We have seen that in the case of the relativistic string, the target space equations of
motion, i.e. the Einstein equations were given by requiring that the sigma model coupled
to curved spacetime preserves the Weyl invariance at the quantum level.

93



The same logic applies to the non-relativistic string coupled to a curved non-relativistic
(but torsionless) background. The vanishing of the beta functions leads to equations
of motion that were computed in [13]. In [4] it was shown that the same equations
of motion could be generated from a non-relativistic limit of NS-NS gravity, showing
that taking the limit and computing the beta functions commutes upon assuming zero
intrinsic torsion.
The resulting non-relativistic version of NS-NS gravity describes the dynamics of the
zero-winding sector in non-relativistic string theory, which encodes the instantaneous
Newtonian gravitational force. The corresponding non-relativistic action will be the
starting point for the calculations in this thesis, therefore, we will start the next section
by briefly reviewing the result.
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7. T-Dualities in Non-relativistic Target Space

We have seen in the previous section that the non-relativistic limit of string theory
necessarily needs a compactified direction. Thus, it is fairly natural to consider T-
dualities in this setting. We have already seen that a longitudinal T-duality maps the
non-relativistic string worldsheet action to the worldsheet action of the relativistic string
with a null direction. While this worldsheet point of view is well understood and was
shown to hold in [10, 70], the corresponding reductions in the target space formulation of
effective actions was only considered recently in [15] for some solutions of non-relativistic
(super)string theories and without verifying that the target space equations of motion
indeed are mapped correctly under T-duality.
As was shown in [4], most of the bosonic equations of motion could be inferred from
the non-relativistic limit of the NS-NS gravity action. However, compared to the direct
limit of the equations of motion, one equation of motion does not follow from the action,
and it turns out to be the covariant version of the Poisson equation. This entails that
the action does not describe a dynamical gravitational background, and the source of
the discrepancy could ultimately be traced back to an emergent dilatation symmetry.
The main goal of this work is to provide a check that the longitudinal, spacial Kaluza-
Klein reduction of the non-relativistic NS-NS action of [4] is equal to a null reduction of
the action of the relativistic NS-NS action (86). As mentioned in the previous paragraph,
this shows that all but one equation of motion are mapped to each other under T-
duality23. This verifies that the T-duality on the target space is compatible with T-
duality on the worldsheet. Along this way, we will see how and why the emergent
dilatation symmetry comes into the non-relativistic limit, ultimately explaining why the
limit cannot generate the Poisson equation.

7.1. Non-relativistic NS-NS Gravity

We want to briefly review [4], as it is the starting point for the calculations of this thesis.
The action of NS-NS gravity is given by

SNS-NS =
1

2κ2

ˆ
d10xEe−2Φ

(
R + 4∂µΦ∂

µΦ− 1

2
H2

)
, (86)

where κ is the gravitational coupling constant, H = dB the KR field strength, with

kinetic term H2 := 1
3!
HµνρH

µνρ, E = det
(
E Â

µ

)
and R is the Ricci scalar of the back-

ground metric (or equivalently of the vielbein E). Greek curved indices and hatted
capital flat Latin indices run from 0, ..., D − 1.

The non-relativistic limit ansatz corresponds to the one from the worldsheet action in
section 6.3.4 with the gaugem = 0 in eq. (80). It is noteworthy, as was shown in [4], that
this ansatz had to be chosen exactly as in the worldsheet action. In the current setting,

23Recall from the discussion at the end of section 5.4 that also the null reduction of an action could
not give rise to all equations of motion, due to the degenerate nature of the metric.
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it was needed to ensure a fine-tuned cancellation between a divergent term stemming
from the Ricci tensor with a divergence coming from the kinetic term H2 of the KR field.
Thus, the non-relativistic string action leads exactly to the same gravitational theory
as the non-relativistic limit of the target space equations of motion. The corresponding
non-relativistic transformations follow as

δτ A
µ = λMε

A
Bτ

A
µ ,

δe
µA′ = −λ A′

A τ A
µ + λA

′

B′e B′

µ ,

δbµν = 2∂[µθν] − 2εABλ
A
A′τ B

[µ e A′

ν] ,

δϕ = 0.

(87)

The resulting non-relativistic action is

(0)

S =
1

2κ2

ˆ
d10x det(e, τ)e−2ϕ

{
R(J) + 4∂µϕ∂

µϕ− 1

12
hA′B′C′hA

′B′C′
(88)

− 4DA′dA
′ − 4dA′dA

′ − 4τA′{AB}τ
A′{AB}

}
. (89)

We have turned curved indices into flat ones using τ and e according to eq. (75),
introduced the notation τ A

µν = ∂[µτ ν]
A and the traceless symmetric part of a tensor by

T{AB}. Furthermore, we encoded the geometric data in a dependent dilatation connection
dµ, rotation and boost connections ω A′B′

µ , ω A′
µ , as well as a worldsheet spin connection

ωµ as detailed in [4, Equation (39)]24. Additionally, we introduced a scalar curvature
for the rotations, as well as a covariant derivative25 for the dilatation connection that is
covariant with respect to rotations and boosts

R(J) := −2eµA′e
ν
B′

(
∂[µων]

A′B′
+ ω A′C′

[µ ω B′

ν] C′

)
− 4ωA′BB′

τA′B′B,

Dµd
A′

:= ∂µd
A′ − ω A′B′

µ dB′ − ω AB′

µ τA′B′A.

These fields correspond to a string Galilei symmetry, extended by dilatations in τ and
ϕ. Together with the intrinsic torsion constraint

τ
[µ− ∂µτ

−
ρ] = 0,

the resulting geometry is called Dilatation invariant SNC (DSNC−) geometry (see Ap-
pendix B and [39]).
The torsion constraint is needed for consistency under supersymmetry transformations
when considering the supergravity version of non-relativistic NS-NS gravity. Further-
more, this constraint corresponds to a twistless torsional Newton-Cartan geometry,
defining a co-dimension one foliation of spacetime. This constraint is also inert un-
der supersymmetry transformations and dilatations, thus it does not give rise to further

24Note that they denote the dilatation connection d by b, which we do not, to avoid confusion with the
KR field b.

25Note that this is not a proper covariant derivative, but more of a notational device.
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constraints. While this constraint plays an important role in the supergravity setting,
it will play no further role in this thesis.
The action (88) is invariant under the expected string Newton-Cartan symmetries (87)
but also under the emergent dilatation symmetry

δτ A
µ = λDτ

A
µ ,

δϕ = λD.

We can bring the non-relativistic action into a form where the dilatation symmetry is
manifest

SNR =
1

2κ2

ˆ
d10x det(e, τ)e−2ϕ

{
R(J) + 4∇A′ϕ∇A′

ϕ− 1

12
hA′B′C′hA

′B′C′

− 4τA′{AB}τ
A′{AB} + 4ωA′BB′

τA′B′B

}
,

(90)

where we introduced the dilation covariant derivative ∇µϕ := ∂µϕ− dµ.

This emergent dilatation symmetry has profound consequences, as due to its Noether
identity26, we lose one equation of motion. In [4] the equations of motion from the
non-relativistic action were compared to the non-relativistic limit of the equations of
motion of NS-NS gravity, and it was found that the lost equation of motion is precisely
the covariant Poisson equation, deleting the Newtonian gravitational dynamics from the
action.
Thus, the above functional gives only rise to a pseudo-action. It is not a proper action for
non-relativistic NS-NS gravity, as it does not give rise to the (arguably) most important
equation of motion. However, it still gives almost all equations of motion and thus
provides a solid base to study the role of T-dualities.

7.2. Particle Limit and Geometry

This section is a technical, preliminary introduction into the geometry we will encounter
during the spacelike and the null reduction. It will prove useful to organize and identify
fields and connections we encounter during the reductions and give their corresponding
geometry.

7.2.1. The Particle Limit of String Theory

We start with the relativistic closed string in the Nambu-Goto action coupled to a target
space metric G and a KR field B, i.e. we start from eq. (79). We assume that the string
appears as a particle in the reduced theory, i.e. that our coordinates take the special
form

(X µ̂(τ, σ)) = (Xµ(τ), Rσ),

26See 2.3 for an in depth explanation of such identities.
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where µ̂ = 0, ..., D − 1, z and µ = 0, ..., D − 1. This ansatz means that the string winds
exactly once around the compact direction with radius R and only moves along the
non-compact directions. Using these coordinates and the Kaluza-Klein ansatz (42), we
find that the pullback under X of the metric to the two-dimensional worldsheet reads

X∗G =

(
ẊAẊA + k2(AµẊ

µ) Rk2AµẊ
µ

Rk2AµẊ
µ R2k2

)
.

Here, we already used TA := E A
µ T µ, where A = 0, ..., D− 1 takes values in the tangent

space transverse to the compact direction. A quick calculation reveals thus

detX∗G = R2k2ẊAẊA.

A similar calculation for the KR field B gives

X∗B =

(
0 RBµẊ

µ

−RBµẊ
µ 0

)
,

where we defined Bµ := Bµz. Putting this back into the Nambu-Goto action and defining
m := TR, we find the particle action

SRel = −mc
ˆ
ds

(
k

√
−ηABẊAẊB −BµẊ

µ

)
.

Up to a sign and a factor of k, this is exactly the critical action (35) of a relativistic
particle moving in a curved background and electromagnetic field that was tuned such
that the electric charge was equal to the mass, i.e. q = m. As such, we can immediately
write down its non-relativistic limit

SNR[x] =
m

2

ˆ
dτ

(
k
δabẊ

aẊb

Ẋ0
− 2bµẊ

µ

)
.

Here we have split already T a := e a
µ T

µ and T 0 := τµT
µ. Note that we have kept the

name bµ instead of introducing the fieldmµ. This is to remind us of the origin of the U(1)
potential from the KR field and its corresponding relation to the winding. Furthermore,
we have kept the KK scalar k explicit which we could have also absorbed in a redefinition
of e and τ .
Keeping it explicit has the benefit that the emergent dilatation symmetry is now encoded
in the variations

δDk = λDk,

δDτµ = λDτµ.

Recall that in the non-relativistic string case, the KR field became part of the geometric
data. This is matched in the particle case, as we have the variations under central charge
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transformations, boosts and spacial rotations (omitting diffeomorphisms and dilatations)

δτµ = 0,

δeaµ = λabe
b
µ + λaτµ,

δbµ = ∂µθ + kλae
a
µ.

Note, the presence of k in the variations of b will slightly complicate the computations
of curvatures and connections in the next section.

7.2.2. The Reduced Geometry (DTNC)

With the above variations under boosts and rotations, we may introduce the curvatures
(or rather torsion) for the geometric data

Rµν(H) = 2τµν

Rµν(Q) = F (b)µν − 2kω[µ
ceν]c

Rµν(P
a) = 2eµν

a − 2ω[µ
aceν]c − 2ω[µ

aτν],

(91)

where we defined τµν := ∂[µτ ν], eµν
a := ∂[µe

a
ν] and F (b)µν := 2∂[µbν]. We want to

emphasize that we do not introduce a connection for dilatations, as it is not necessary
or enlightening for this work.
Note, we want to leave the intrinsic torsion unconstrained, but imposing the conventional
constraints

Rµν(Q)
!
= 0, Rµν(P

a)
!
= 0, (92)

we can solve for the boost and spin connection. This is analogously to eq. (30) but is
modified by terms including the KK scalar, reading

ωµ
a = τµ

1

k
F (b)0

a + eµc

(
−2e0

(ca) +
1

k

F (b)ca

2

)
, (93)

ωµ
ab = −2eµ

[ab] + eµce
abc − τµ

1

k

F (b)ab

2
. (94)

Consequently, also the variations of the dependent connections are modified and now
take the more complicated form

δωµ
a = ∂µλ

a − ωµ
acλc + τµλ

a∂0 ln k + eµc
(
2λ(cτa)0 + ∂[c ln kλa]

)
+ λabωµ

b − λDωµ
a,

δωµ
ab = ∂µλ

ab − 2ωµ
c[aλb]c + 2λ[aτµ

b] + eµcλ
cτab − τµ∂

[a ln kλa].

(95)

This in turn leads to the modified27 SO(D − 1) rotation curvature

R̂µν(J
ab) := 2∂[µων]

ab + 2ω[µ
acων]

b
c

− 4ω[ν
[aτν]

b] − 2ω[µ
ceν]cτ

ab + 2∂[a ln kω
b]

[µ τν],

R̂(J) := −eµaeνbRµν(J
ab) = −2eµae

ν
b (∂[µων]

ab + ω[µ
acω b

ν] c) + 4ωabτ
ab.

(96)

27As in the sense of eq. (3).
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We see, that upon imposing k = 1, we recover the standard version of TNC we have
seen in eq. (33). Furthermore, note that part of the intrinsic torsion transforms as the
spacial part of a connection for dilatations, i.e.

δD2τa0 = ∂aλD.

It will prove useful later to also introduce a corresponding covariant derivative for this
field

Dµτ
a

0 =
SO

Dµτ
a

0 − ωµbτ
ab, (97)

where
SO

D is covariant with respect to spacial rotations SO(D− 2). We could thus define
a dilatation connection da := 2τa0. However, for the applications of this thesis it is not
necessary.

We will call the geometry derived from the Kaluza-Klein reduction dilatation invariant
torsional Newton-Cartan (DTNC) geometry.

7.3. Kaluza-Klein Reduction of Non-Relativistic NS-NS Gravity

We now want to perform a KK28 reduction along a spacelike longitudinal direction as
in section 5.2. Even though we are in the setting of a Newton-Cartan type geometry,
we can still use most of the results of section 5, as the longitudinal vielbein τ A

µ̂ remains
Lorentzian. Our starting point is the geometric data of [4], i.e. section 7.1, namely the
non-relativistic vielbeine τ A

µ̂ , e A′

µ̂ and the KR field bµ̂ν̂ that transform under longitu-

dinal Lorentz SO(1, 1) λM , transverse rotations SO(D − 2) λA
′

B′ , string boosts λ A′
A ,

dilatations λD and one-form symmetries θµ̂ as

δτ A
µ̂ = λDτ

A
µ̂ + λMε

A
Bτ

A
µ̂ ,

δe
µ̂A′ = −λ A′

A τ A
µ̂ + λA

′

B′e B′

µ̂ ,

δbµ̂ν̂ = 2∂[µ̂θν̂] − 2εABλ
A
A′τ B

[µ̂ e A′

µ̂] ,

δϕ = λDϕ.

(98)

Now, we again assume the existence of a spacelike Killing vector field χ for the longitu-
dinal vielbein, i.e. Lχτ

A
µ̂ = 0 and ηABχ

AχB = 1. By the Frobenius theorem there exist

coordinates (xµ̂) = (xµ, z), such that χ ≡ ∂z. Correspondingly, the Killing equation
becomes

∂zτ
A

µ̂ = 0.

Furthermore, we impose the zero-mode condition, i.e. all fields and parameters should
be independent of z.

28Note that while the null reduction is technically also a KK reduction, we will henceforth always refer
to a spacelike KK reduction.
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Following the lines of section 5, we split the target space diffeomorphisms as (ξµ̂(x, z)) =
(ξµ(x), ξz(x)) and require that they leave the adapted coordinates inert.
Furthermore, we can use part of the string Galilei symmetries to gauge fix τ 1

z = 0,
leading to restricting λM = 0 and gauge fix e A′

z = 0, leading to λ A′
1 = 0. This amounts

to the ansatz

(τ A
µ̂ ) =

0 1( )
µ τµ kmµ

z 0 k
, (e

µ̂A′ ) =

A′( )
µ e A′

µ

z 0
.

The corresponding string projective inverses (74) imply the Newton-Cartan projective
inverses (24) if we take the following ansatz for the inverses

(τ µ̂A ) =

µ z( )
0 τµ −ταmα

1 0 1
k

, (eµ̂A′) =
µ z

( )A′ eµA′ −eαA′mα .

Here, we have defined the KK scalar k := τ 0
z and the U(1) field kmµ := τ 1

µ , which
transforms under diffeomorphisms in the compact z-direction as

δξzmµ = ∂µξ
z.

Recall that this implies that mµ is related to the momentum in the compact direction,
i.e. fields with such momentum are charged under mµ.

Introducing the reduced boost parameter

λA
′
= −λ A′

0

and the reduced KR field

bµ := bµz,

δbµ = ∂µθz + kλae
a
µ,

(99)

we recover exactly the transformation rules of DTNC we found in section 7.2.1 from
reducing the variations in eq. (98) in this gauge (upon identifying θz ≡ θ).

We want to emphasize that in all subsequent discussions, we will never discuss higher
dimensional fields over the D + 1-dimensional spacetime, but only fields after we have
performed the KK reduction. Consequently, the symbol b will always refer to the re-
duced KR field (99). Index free notation will also always refer to D−dimensional fields
carrying spacetime indices µ, ν, ... = 0, ..., D − 1.

Contrary to the particle case, we also keep the remainder of the KR field29 which trans-
forms non-trivially under both boosts and ξz transformations

b̂µν := bµν ,

δb̂µν = 2∂[µθν] − 2kλA′m[µe
A′

ν] − 2∂[µξ
zbν].

29We introduce this redundant notation for clarity in index free notation.
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Thus, we see that boosts mix winding modes with compact momentum, while diffeo-
morphisms in z-direction mix b̂ and b, as we have already discussed at the end of section
5.3.

Note that we can introduce a composite field containing the remainder of the KR field,
such that it only transforms under U(1) and one-form symmetries

b̂′µν := b̂µν + 2m[µbν], (100)

δb̂′µν = 2∂[µθν] + 2m[µ∂ν]θz. (101)

It is also convenient to give the results in coordinate free notation, where its transfor-
mation rule is given by

δb̂′ = dθ − dθz ∧m. (102)

This will be useful later, when comparing to the result of the null reduction. Again, in
coordinate free notation, we can write

b̂′ = b̂+m ∧ b,
db̂′ = db̂+ F (m) ∧ b−m ∧ F (b),

with the field strengths F (m) := dm and F (b) := db. For compact notation we also
introduce the corresponding covariant derivative

Db̂′ := db̂′ − F (m) ∧ b = db̂−m ∧ F (b). (103)

Due to the structure of the KK reduction, we are always guaranteed to reduce higher-
dimensional curvatures to lower-dimensional covariant derivatives. It has to be the
case as we need to preserve invariance under the U(1) symmetry remnant of the z-
diffeomorphisms.
Note that this definition is indeed covariant, however, it transforms non trivially under
boosts

δBDb̂′ = −F (m) ∧ δBb = −kλA′F (m) ∧ eA′

In total, we have thus shown that we recovered DTNC geometry from section 7.2.2
substituted with a U(1) field m and the remainder b̂ of the KR field.

For notational convenience, we also introduce a notation that lets us distinguish between
contractions with the higher-dimensional vielbeine, i.e. with index µ̂ and the reduced
vielbeine, i.e. with index µ

Ta := eµA′Tµ TA′ := eµ̂A′Tµ̂ ≡ Ta − Tzma,

T0 := τµTµ T0̂ := τ µ̂0Tµ̂ = T0 − Tzm0,

T1̂ := τ µ̂1Tµ̂ =
1

k
Tz

for an arbitrary tensor T . The spacial index takes values a = 2, .., D−1. Thus, in places
where there is no danger of confusion, we will freely identify A′ = a, etc.
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7.3.1. KK Reduction of Curvatures and Connections

When we consider the spacial reduction of the conventional constraints in DSNC (122),
we find that they reduce to a torsional version of DTNC, as can be seen in Appendix
C.2. However, these torsion terms are largely non-intrinsic and can thus be seen as a
simple redefinition of the connections (something similar was observed in [35] for the
null reduction of conformal gravity).
There are terms involving the intrinsic torsion, which we could also absorb into a reduced
dilatation connection, but again, such a connection will not be relevant for this thesis.
Continuing with the Kaluza-Klein reduction of the DSNC connections (123) (for full
details see Appendix C), we can express the torsional connections ω̂ inferred from the
DSNC as

ω̂ a
µ = −2eµbe

(ab)
0 +

1

k

F (b) a
µ

2
+W 0A′

µ

= ω a
µ − τµ

1

2k
F (b) a

0 +W 0A′

µ ,

ω̂ ab
µ = −2e [ab]

µ + eµce
abc − τµ

1

k

F (b)ab

2
+mµω̂

ab
z

= ω ab
µ +mµω̂

ab
z ,

ω̂ ab
z =

1

2
kDb̂′0ab.

Here, the connections ω are now precisely the dependent connections of boosts and ro-
tations of DTNC transforming as in eq. (95) (see Appendix C.4). All other connection
coefficients (see Appendix C.3) not indicated here, as well as the undetermined compo-
nents W , will ultimately drop out in the final expression for the action, thus are not
important for this thesis.

7.3.2. KK Reduction of the Non-relativistic NS-NS Action

Applying the Kaluza-Klein reduction to the non-relativistic NS-NS gravity action (90),
we find the reduced action

SKK :=
(0)

S |KK

=
L

2κ2

ˆ
d9x det(e, τ)ke−2ϕ

{
R̂(J, ω)− 1

12
Db̂′abcDb̂′abc −

1

2
kF (m)abDb̂′0ab +

k2

2
F (m)a0F (m)a0

+4∂aϕ (∂
aϕ− ∂ ln k) +

1

2
∂a ln k∂

a ln k + 2∂a ln kτ
a
0 − 6τa0τ

a
0

−4Daτ
a
0

}
.

(104)
Here, all fields and indices appearing correspond to DTNC from section 7.2.2, R̂(J, ω)
corresponds to the DTNC curvature (96), while the covariant derivatives act as indicated
in eq. (97) and (103). Note that there is no explicit Yang-Mills-like term present for the
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reduced KR field b.

This action is invariant under all transformations of DTNC, i.e. rotations, boosts, central
charge transformations and also dilatations, the latter only up to a boundary term.
We can bring the action also to an equivalent, manifestly dilatation invariant form by
integration by parts

SKK-dil =
L

2κ2

ˆ
d9x det(e, τ)ke−2ϕ

{
R̂(J, ω)− 4ωabτ

ab

− 1

12
Db̂′abcDb̂′abc −

1

2
kF (m)abDb̂′0ab +

k2

2
F (m)a0F (m)a0

+ 4∇aϕ(∇aϕ−∇a ln k) +
1

2
∇a ln k∇a ln k

}
,

(105)

where we introduced the dilatation invariant covariant derivative ∇af = ∂af − 2τa0, for
f ∈ {ϕ, ln k}. Note that this action now is no longer manifestly boost invariant as can
be seen by the bare boost connection.

7.4. Null Reduction of NS-NS Gravity

In accordance with the worldsheet T-duality 6.3.5, we want to perform a null reduction
of the relativistic NS-NS gravity action (86). We choose our ansatz exactly as in 5.4,
i.e. we choose the form of the metric (52) with variations (53). However, we will adopt
a slightly different notation that aims at clarifying the T-duality rules we expect to
find. To see the emergence of the dilatation symmetry, it is important to keep the null
reduction scalar s, which transforms under said dilatations.

The full details of the calculation can be found in Appendix D. For now, we assume
adapted coordinates (X µ̂) = (Xµ, Xv), where Xv is the lightlike isometry direction and
µ = 0, ...D − 1. Additionally, we introduce lightcone coordinates in tangent space
and split its index Â = (a,+,−), in which the Minkowski metric reads ηab = δab and
η+− = −1.

We repeat the ansatz for the metric in our adapted notation

(E A
µ̂ ) =

a − +( )
µ ẽ a

µ s−1τ̃ ′µ sm̃µ

v 0 0 s
, (Eµ̂

A) =

µ v( )a ẽµa −ẽµam̃µ

− sτ̃ ′µ −sτ̃ ′µm̃µ

+ 0 s−1
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and its corresponding variations under spacial rotations λ̃ab, boosts λ̃
a, dilatations λ̃D

and ξv the remainder of diffeomorphisms in v-direction as

δτ̃ ′µ = 0

δẽ a
µ = λ̃abẽ

b
µ + s−1λ̃aτ̃ ′µ,

δm̃µ = ∂µξ
v + s−1λ̃aẽ

a
µ ,

δs = λ̃Ds.

Recall, the U(1) field m̃ is related to the momentum along the null direction along
which we reduce. Furthermore, the prime on the temporal vielbein is foreshadowing an
upcoming redefinition that is necessary to compare to the results of the KK reduction.

We again split the KR field in a remainder
˜̂
b′ and a reduced part b̃ defined as

˜̂
b′µν := Bµν ,

b̃µ := Bµv.

These fields transform under the reduced diffeomorphisms ξµ, U(1) transformations θv
and ξv, as well as one form symmetries θ as

δb̃ = Lξ b̃+ dθv,

δ
˜̂
b′ = Lξ

˜̂
b′ + dθ − dξv ∧ b̃.

Thus, we see that b̃, which is related to the winding along the null direction, transforms
as a U(1) connection under the reduction of the one-form symmetry θv. The remainder

of the KR field
˜̂
b′ transforms under the remainder of the one-form symmetry θ and also

experiences mixing with b̃ under diffeomorphisms in the compact direction for ξv.

Note that the transformation of
˜̂
b′ here corresponds to the variation of the remainder

of the KR field under KK reduction (100), if we identify the parameters ξv from null
reductions and θz from KK reduction. This is already the first hint of the upcoming
T-duality.
This does not hold, however, for the reduced KR fields b from the KK reduction and b̃
from the null reduction. While the former also transforms under boosts, the latter does
not.

7.4.1. Null Reduction of the Connections

We can express the reduction of the relativistic spin connections Ω from eq. (129) in the
following form

Ω a+
µ = −sω̃′ a

µ − sm̃µτ̃
′ a
0 ,

Ω ab
µ = ω̃′ ab

µ − m̃µτ̃
′ab.

105



This matches a similar result in [35] upon gauge fixing s = 1. Here, we identified the
spin and boost connections ω̃′ that represent TNC connections built from ẽ, τ̃ ′ and m̃
as in eq. (30). Note, however, that they covariantize boosts with parameter λ̃a/s and
thus transform as

δω̃′ a
µ =

SO

Dµ

(
λ̃a

s

)
+ ẽµc2

λ̃(cτ̃ ′
a)
0

s
+ λ̃abω̃

′ b
µ

δω̃′ ab
µ =

SO

Dµλ̃
ab + 2

λ̃[aτ̃ ′
b]

µ

s
+ ẽµc

λ̃c

s
τ̃ ′ab.

We introduced the notation
SO

D for covariantizing spacial rotations SO(D−2) only. Given
these connections and variations, we can immediately write down the corresponding TNC
geometry if we just absorb s into λ̃a.

7.4.2. Null Reduction of the Action

Using the results from Appendix D for the expression of the curvatures under null
reduction, we derive the null-reduced action

SNull := SNS-NS|Gvv=0

=
L

2κ2

ˆ
d9x det

(
ẽ,
1

s
τ̃ ′
)
e−2Φs

{
R̂(J, ω̃′)− 1

12
(d
˜̂
b′ − m̃ ∧ F (b̃))abc(d˜̂b′ − m̃ ∧ F (b̃))abc

−1

2
F (b̃)ab

(
d
˜̂
b′ − m̃ ∧ F (b̃)

)ab0
+

1

2
F (b̃)a0F (b̃)

a
0

+4∂aΦ∂
aΦ− 6τ̃ ′a0τ̃

′
a0 − 4D̃aτ̃

′a
0

}
.

Here, all fields and connections correspond to a version of TNC from section 4.2.3 and
F (b̃) = db̃. This action is fully invariant under the Bargmann symmetries as well as
dilatations of s.

As can be inferred from the determinant, the above action is not in the typical form we
expect from a non-relativistic limit. We can write it in a known form if we redefine the
temporal vielbein to include the null reduction scalar s

τ̃µ :=
1

s
τ̃ ′µ =⇒ τ̃ ′µ = sτ̃µ. (106)

It is important that the temporal vielbein τ̃ is completely equivalent to τ̃ ′ and fulfills the
same completeness and degeneracy relations (24), if we introduce an according inverse
temporal vielbein.
Importantly though, it changes its behavior under dilatations and is no longer inert

δDτ̃µ = −λ̃Dτ̃µ.
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Furthermore, the spacial vielbein now transforms under boost as expected in a DTNC
geometry

δBẽ
a

µ = λ̃aτ̃µ.

Combined, these changes have subtle implications. The connections can now be written
as

ω̃′ ab
µ = −2ẽ [ab]

µ + ẽµcẽ
abc − sτ̃µm̃

ab =: ω̃ ab
µ

ω̃′ a
µ =

1

s

[
τ̃µ2 s m̃

a
0̃
+ ẽµc

(
−2ẽ

(ac)

0̃
+ sm̃ac

)]
=:

1

s
ω̃ a
µ .

The tilde over the 0 signals that we used τ̃ as projector, and we recall that m̃µν = ∂[µm̃ν].
By comparison to eq. (93), we see that the connections without tilde correspond exactly
to the connections of DTNC in terms of τ̃µ and ẽ a

µ , given we also identify k ≡ s−1 and
m̃ ≡ b, which is the next hint at the presence of a T-Duality.

The above expression lets us read off the altered transformations

δω̃µ
a = ∂µλ̃

a − ω̃µ
acλ̃c + τ̃µλ̃

a∂0̃ ln
1

s
+ ẽµc

(
2λ̃(cτ̃a)0̃ + ∂[c ln

1

s
λ̃a]
)

+ λ̃abω̃µ
b + λ̃Dω̃

a
µ

(107)

δω̃µ
ab = ∂µλ̃

ab − 2ω̃µ
c[aλ̃b]c + 2λ̃[aτ̃µ

b] + ẽµcλ̃
cτ̃ab − τ̃µ∂

[a ln
1

s
λ̃b]. (108)

Clearly, these are exactly the variations of the DTNC connections in eq. (95) under the
identification of k and s−1, so we can apply all other results for curvatures, variations,
etc. from section 7.2.2.
Now, observe how the intrinsic torsion changes under the redefinition of the temporal
vielbein

τ̃ ′µν = ∂[µsτ̃ ν] + sτ̃µν .

Therefore, also the covariant derivative changes to

Daτ̃
′a
0 = Daτ̃

a
0̃
+

1

2

SO

Da∂
a ln s,

where on the right-hand side we covariantized with ω̃ instead of ω̃′. From now on, we
drop the tilde on indices and remember that such indices are no longer inert under
dilatations.
Furthermore, we also introduce a shift of the relativistic dilaton Φ by s (similarly to the
Buscher rules in [39]), given as

Φ := ϕ̃+ ln s.
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Consequently, the non-relativistic dilaton ϕ̃ is no longer inert under dilatations and
transforms as

δDϕ̃ = −λ̃D.

Finally, we can rewrite the null-reduced action in a form that resembles a non-relativistic
limit, given by

SNull =
L

2κ2

ˆ
d9x det(ẽ, τ̃)e−2ϕ̃1

s

{
R̂(J, ω̃)− 1

12
(d
˜̂
b′ − m̃ ∧ F (b̃))abc(d˜̂b′ − m̃ ∧ F (b̃))abc

− 1

2

1

s
F (b̃)ab

(
d
˜̂
b′ − m̃ ∧ F (b̃)

)ab0
+

1

2

1

s2
F (b̃)a0F (b̃)

a
0

+ 4∂aϕ̃

(
∂aϕ̃− ∂a ln

1

s

)
+

1

2
∂a ln

1

s
∂a ln

1

s
+ 2∂a ln

1

s
τ̃a0 − 6τ̃a0 τ̃a0 − 4Daτ̃

a
0

}
.

(109)

Here, R̂(J, ω̃) corresponds to the DTNC curvature (96). This action is by construction
invariant under all Bargmann symmetries, as well as dilatations, diffeomorphisms on the
lower-dimensional spacetime and U(1) transformations along the null direction.

7.5. T-Dualities and Emergent Dilatations

Let us now compare the two types of geometries we have found. Under the spacial
Kaluza-Klein reduction of non-relativistic NS-NS gravity, we found the geometric data
τµ, e

a
µ , bµ, k and the matter fields mµ, b̂

′
µν and ϕ, with the following variations under

dilatations λD, spacial rotations λ
a
b, boosts λ

a, U(1) transformations θz and ξz, as well
as one-form symmetries θµ

δτµ = λDτµ, δmµ = ∂µξ
z,

δe a
µ = λabe

b
µ + λaτµ, δb̂µν = 2∂[µθν] + 2m[µ∂ν]θz,

δbµ = ∂µθz + kλae
a

µ , δϕ = λD,

δk = λDk.

This geometric data defines a DTNC geometry (see section 7.2.2) with connections ω
depending on the geometric data τµ, e

a
µ , bµ, k, transforming as

δωµ
a = ∂µλ

a − ωµ
acλc + τµλ

a∂0 ln k + eµc
(
2λ(cτa)0 + ∂[c ln kλa]

)
+ λabωµ

b − λDωµ
a,

δωµ
ab = ∂µλ

ab − 2ωµ
c[aλb]c + 2λ[aτµ

b] + eµcλ
cτab − τµ∂

[a ln kλb].

(110)
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We can express the spacial reduction of the non-relativistic NS-NS gravity action through
this data by the action (104), where we expand the covariant derivative on b̂′ and find

SKK =
L

2κ2

ˆ
d9x det(e, τ)e−2ϕk

{
R̂(J, ω)− 1

12
(db̂′ − b ∧ F (m))abc(db̂− b ∧ F (m))abc

− 1

2
kF (m)ab

(
db̂′ − b ∧ F (m)

)ab0
+

1

2
kF (m)a0F (m)a0

+ 4∂aϕ (∂
aϕ− ∂a ln k) +

1

2
∂a ln k∂

a ln k + 2∂a ln kτ
a
0 − 6τa0 τa0 − 4Daτ

a
0

}
.

In comparison, the null reduction of relativistic NS-NS gravity leads us to the geometric

data τ̃µ, ẽ
a

µ , m̃µ, s and the matter fields b̃µ,
˜̂
b′µν and ϕ̃, transforming under dilatations

λ̃D, spacial rotations λ̃
a
b, boosts λ̃

a, U(1) transformations θv and ξ
v, as well as one-form

symmetries θµ as

δτ̃µ = −λ̃Dτ̃µ, δb̃µ = ∂µθv,

δẽ a
µ = λ̃abẽ

b
µ + λ̃aτ̃µ, δ

˜̂
b′µν = 2∂[µθν] + 2b̃[µ∂ν]ξ

v,

δm̃µ = ∂µξ
v + s−1λ̃aẽ

a
µ , δϕ̃ = −λ̃D,

δs = λ̃Ds.

The null reduction defines another DTNC geometry in terms of the geometric data
τ̃µ, ẽ

a
µ , m̃µ, s. The connections ω̃, which are dependent on the geometric data of this

geometry, transform as

δω̃µ
a = ∂µλ̃

a − ω̃µ
acλ̃c + τ̃µλ̃

a∂0 ln
1

s
+ ẽµc

(
2λ̃(cτ̃a)0 + ∂[c ln

1

s
λ̃a]
)
+ λ̃abω̃µ

b + λ̃Dω̃
a

µ

δω̃µ
ab = ∂µλ̃

ab − 2ω̃µ
c[aλ̃b]c + 2λ̃[aτ̃µ

b] + ẽµcλ̃
cτ̃ab − τ̃µ∂

[a ln
1

s
λ̃b].

We then have the action of NS-NS gravity under the null reduction (109), i.e.

SNull =
L

2κ2

ˆ
d9x det(ẽ, τ̃)e−2ϕ̃1

s

{
R̂(J, ω̃)− 1

12
(d
˜̂
b′ − m̃ ∧ F (b̃))abc(d˜̂b′ − m̃ ∧ F (b̃))abc

− 1

2

1

s
F (b̃)ab

(
d
˜̂
b′ − m̃ ∧ F (b̃)

)ab0
+

1

2

1

s2
F (b̃)a0F (b̃)

a
0

+ 4∂aϕ̃

(
∂aϕ̃− ∂a ln

1

s

)
+

1

2
∂a ln

1

s
∂a ln

1

s
+ 2∂a ln

1

s
τ̃a0 − 6τ̃a0 τ̃a0 − 4Daτ̃

a
0

}
.

From this comparison, we can now immediately infer how we can identify the two ge-
ometries, fields and actions under the T-duality in target space. The duality is given in
two parts. The more obvious one is implemented, if we naturally identify the fields

τ ↔ τ̃ , (111)

e↔ ẽ, (112)

b̂′ ↔ ˜̂
b′, (113)

ϕ↔ ϕ̃, (114)
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and symmetry parameters

λab ↔ λ̃ab,

λa ↔ λ̃a.

On the left-hand side we always have the fields and parameters from the KK reduction,
while on the right-hand side we have the fields from the null reduction.

The second and more interesting part is given if we identify the fields

k ↔ 1

s
, (115)

b↔ m̃, (116)

m↔ b̃. (117)

Furthermore, we identify the symmetry parameters of KK reduction on the left with the
symmetry parameters of the null reduction on the right as

θz ↔ ξv, (118)

ξz ↔ θv, (119)

λD ↔ −λ̃D. (120)

Given these identifications, the actions, fields and variations agree, thus also the corre-
sponding geometry, i.e. the DTNC connections ω and ω̃. Note, for this identification
to hold, we had to use the redefined null reduction vielbein τ̃ that included the null
reduction scalar s and thus transformed under dilatations.

In conclusion, we see how the T-duality on the worldsheet, as discussed in section 6.2.3
and 6.3.5, is implemented on the target space.
Recall that the fields b and b̃ correspond to a winding of the string along the compact
spacial and null directions, while the fields m and m̃ correspond to the momentum along
said directions. Under the T-duality, b and m̃, as well as m and b̃ where interchanged.
Thus, we observe the interchange of momentum and winding under T-duality.

Furthermore, recall from eq. (41) that under KK reduction, we could interpret the KK
scalar k as the effective size of the compact direction. Thus, under the T-duality map,
it seems that k also corresponds to the inverse dual size 1/s, mimicking the dual radius.
However, this interpretation is flawed, as a lightlike direction simply does not have a
well-defined length. Due to the degeneracy of the metric along this direction, the corre-
sponding size (41) would be equivalently zero.
This is the source of the emergent dilatation symmetry. Under T-duality, the spacelike
longitudinal direction corresponds to a lightlike isometry direction. As the latter does
not have a notion of length or scale, thus having an inherent dilatation symmetry, also
the former cannot have a notion of scale either. That the dilatations involve the tempo-
ral vielbein τ is then just a happy accident, due to the redefinition (106).
As the dilatation acts as a Stückelberg shift on the non-relativistic dilaton ϕ, we can
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simply gauge it to zero. This signals that the corresponding (pseudo-)action was inde-
pendent of ϕ after all.

More importantly, we have now shown explicitly that under T-duality the Kaluza-
Klein reduction along a longitudinal, spacelike reduction of the pseudo-action of non-
relativistic NS-NS gravity maps to the null reduction of the relativistic NS-NS gravity
action.
By showing that these two ansätze lead to the same lower-dimensional theory, we have
found an effective way to implement the T-duality in the higher-dimensional theories.
This could be further encoded in Buscher rules as in relativistic string theory. How-
ever, as non-relativistic string theory always necessitates compactified directions to be
present, we think that the T-duality rules given in the lower-dimensional formulation
are sufficient.
As mentioned before and shown in [4], the pseudo-action (90) gives rise to almost all
equations of motion of non-relativistic NS-NS gravity, except for the equation of motion
that corresponds to a string version of the Poisson equation. Thus, we have verified
and shown, at least up to one equation, the T-duality between non-relativistic NS-NS
gravity with a compactified longitudinal spacial direction and relativistic NS-NS gravity
with a compactified null direction also holds true on the level of equations of motion of
the target space formulation.
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8. Outlook

In this thesis, we have investigated how T-dualities of non-relativistic string theory are
realized in a target space formulation. We could verify in the target space formulation
the results of [10], where it was found that the worldsheet formulation of non-relativistic
string theory in a curved SNC background with a compactified longitudinal spacelike
direction is T-dual to a relativistic string theory in a curved background with a null
isometry.
We have shown that the Kaluza-Klein reduction of non-relativistic NS-NS gravity along
a longitudinal spacial direction leads to the same 9-dimensional action as the null re-
duction of relativistic NS-NS gravity. Since the actions agree, the equivalence between
the two models also holds at the level of equations of motion, except for the string ver-
sion of the Poisson equation. Recall that the information about this equation was lost
in the action due to the emergent dilatation symmetry, which we now understand to
be a consequence of the vanishing metric component in the null direction. The almost
equivalence in the lower-dimensional equations of motion then strongly suggests that we
can lift the equivalence in form of a T-duality to the full 10-dimensional gravitational
theories.

Therefore, we verified the approach of [15], where the above T-duality30 was assumed and
used as a tool to map relativistic string solutions with null directions to non-relativistic
string solutions. There it was shown that the so-called pp-wave, corresponding to a
relativistic non-winding string, was mapped to a non-relativistic solution that is purely
winding and sources a Newtonian potential corresponding to a massive Newtonian par-
ticle. Furthermore, the fundamental NS string solution with pure winding was shown to
map to a non-winding non-relativistic mode. As mentioned in section 6.3.2, unwound
non-relativistic string modes mediate the instantaneous Newtonian gravity. Thus, this
mode was interpreted as a massless Galilei particle sourcing a torsional Newton-Cartan
geometry.

Even though the worldsheet T-duality tells us that the corresponding target space du-
ality should also hold for the missing Poisson equation, further work should verify the
T-duality for the full set of equations of motion of non-relativistic NS-NS gravity, in-
cluding the Poisson equation.
Furthermore, in [15] the T-duality was conjectured to also hold for the supersymmetric
extension of non-relativistic NS-NS gravity, corresponding to a supersymmetric DSNC−

geometry. Since we have verified the duality already for the bosonic part of such a model,
the natural next step is to apply the above reduction techniques also to the fermionic
part, thus deriving T-duality rules for the fermionic degrees of freedom.
Such T-duality rules can then be used to further chart non-relativistic string theory in
terms of the discrete lightcone quantization (DLCQ) of the relativistic string, i.e. with
a null isometry, and vice versa.

In subsequent works it could also prove valuable to try and refine the null reduction

30Complemented with torsion constraints.
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(and consequently also spacial reduction). As was shown in [32], the Bargmann algebra,
which was part of the geometry we found after both reductions, acts only naturally on
spacetimes including a compact U(1) direction. Since, we assumed the zero mode con-
dition in our reduction ansätze, we lost the dependence on this extra coordinate in our
theory. Importantly, this extra coordinate can be interpreted as a “mass direction” and
as such could be related to the gravitational dynamics encoded in the Poisson equation.
Choosing an ansatz that incorporates the extra dimension could then result in an action
that encodes all equations of motion.
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A. Conventions

Throughout this work we always assume the Einstein summation convention.

For the Minkowski metric we choose the mostly plus convention, i.e.

η = diag(−1, 1, ..., 1).

Correspondingly, we define the two-dimensional Levi-Civita symbols as

ε01 = 1, ε01 = −1.

Symmetrizations and antisymmetrizations are defined with weight 1, i.e.

A[µ1...µp] :=
1

p!

∑
σ∈Sp

sign(σ)Aµσ(1)...µσ(p)
,

A(µ1...µp) :=
1

p!

∑
σ∈Sp

Aµσ(1)...µσ(p)
,

where Sp is the permutation group of p elements. We also introduce the traceless sym-
metric part of the tensor by defining

A{µν} := A(µν) −
1

D
gµνA

α
α.

Components of forms are defined without the weight of the permutation of the basis,
i.e. for a p-form

ω(p) =
1

p!
ωµ1...µpdx

µ1 ∧ ... ∧ dxµp .

We define the exterior derivative without a combinatorial factor, i.e.

dω(p) :=
1

p!
∂µ1ωµ2...µpdx

µ1 ∧ ... ∧ dxµp+1 ,

or in components

(dω(p))µ1...µp+1 = (p+ 1)∂[µ1ωµ2...µp+1].

Similarly, we have for the wedge product

(ω(p) ∧ α(q))µ1...µp+q =
(p+ q)!

p!q!
ω
(p)
[µ1...µp

α
(q)
µp+1...µp+q ]

.

Our conventions for Lorentzian geometry can be found in the corresponding section 3.
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B. DSNC

The DSNC geometry with the string critical dimension D = 10 introduced in [4] is
a string Newton-Cartan geometry characterized by eq. (87) with an added dilatation
symmetry

δτ A
µ = λDτ

A
µ ,

δϕ = λD.

The corresponding curvatures are given as

Rµν(H
A) = 2τ A

µν − 2εABω[µτν]
B − 2d[ντν]

A,

Rµν(P
A′
) = 2e A′

µν − 2ω A′B′

[µ eν]B′ + 2ω AA′

[µ τν]A,

Hµνρ = hµνρ + 6εABω
AB′

[µ τ B
ν eρ]B′ ,

(121)

where

τ A
µν := ∂[µτ ν]

A, e A′

µν := ∂[µeν]
A′
, hµνρ := 3∂[µbµν].

We introduced the SNC connections ωµ for SO(1, 1) transformations, ω A′
µ for string

boosts and ω A′B′
µ for SO(8) rotations. This is supplemented by the dilatation connection

dµ and the dilatation covariant derivative

∇µϕ = ∂µϕ− dµ.

We have turned curved indices into flat ones by virtue of the vielbeine as in eq. (75).
To express the connection forms in terms of the geometric data τ, e, ϕ, b we want to
impose conventional constraints that at the same time do not restrict the torsion of the
geometry. Such constraints are given by

εABRA′A(HB)= 0, Rµν(P
A′
) = 0,

ηABRA′A(HB)= 0, HAA′B′ = 0,

εABRAB(HC) = 0, ∇Aϕ = 0.

(122)

These only constitute 444 algebraic equations for the 460 components of the connection
forms. Thus, there are 16 undetermined components of ω A

{AB} that we will denote by

W A′
µA = τ B

µ ω A
{AB} . Note that these drop out in most of the results and are thus not

important for most applications.
The most general solution of the above constraints is given by

dµ = e A′

µ τ A
A′A + τ A

µ ∂Aϕ,

ωµ =

(
τ AB
µ − 1

2
τ C
µ τAB

C

)
εAB − τ A

µ εAB∂
Bϕ,

ω AA′

µ = −e AA′

µ + eµB′eAA′B′
+

1

2
εABh

BA′

µ +W AA′

µ ,

ω A′B′

µ = −2e [A′B′]
µ + eµC′eA

′B′C′ − 1

2
τ A
µ εABh

BA′B′
.

(123)
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The corresponding transformations can be calculated from requiring that the constraints
remain invariant under variations. Thus, under dilatations, transverse rotations SO(8)
and longitudinal SO(1, 1) the connections transform as

δSO,R,Ddµ = ∂µλD,

δSO,R,Dωµ = ∂µλM ,

δSO,R,Dω
A′B′

µ = ∂µλ
A′B′ − 2ω C′[A′

µ λ
B′]

C′ ,

δSO,R,Dω
AA′

µ = λMε
A
Bω

BA′

µ + λA
′

B′ω AB′

µ − λDω
AA′

µ .

(124)

Under string boosts we find the boost transformations

δBdµ = e A′

µ τA′B′Bλ
BB′

+ τ A
µ λAA′∇A′

ϕ,

δBωµ = −e A′

µ εABτA′B′Aλ
B′

B − 2τ A
µ

(
εBCλBB′τB′{AC} +

1

2
εABλ

BB′∇B′ϕ

)
,

δBω
AA′

µ = ∇µλ
AA′

+ 2e B′

µ

(
λBB′τA

′{AB} +
1

4
εABλBC′hA

′B′C′
)
,

δBω
A′B′

µ = 4τ A
µ

(
λB[A′

τ
B′]

{AB} − 1

8
εABλBC′hA

′B′C′
)
− e C′

µ

(
λCC′τA

′B′C − 2λ
[A′

C τB
′]C′C

)
,

(125)

where a “covariant derivative” for the boost parameter was introduced as

∇µλ
AA′

:= ∂µλ
AA′ − ωµε

A
Bλ

BA′ − ω A′B′

µ λAB′ + dµλ
AA′

.

C. Kaluza-Klein Reduction Results

With the ansatz and conventions as in section 7.3, we can express the components of
the intrinsic torsion as

τµν
0 = ∂[µτ

0
ν] = τµν ,

τ 1
µν = ∂[µkmν] +

k

2
F (m)µν ,

τ 0
µz = 0,

τ 1
µz =

1

2
∂µk,

where F (m) = dm. The spacial vielbein then reads

e A′

µν = ∂[µeν]
A′

=: e a
µν

e A′

µz = 0
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C.1. Curvatures

Here, we present the KK reduction of the curvatures of DSNC in eq. (121). We start
with the curvature of H:

Rµ̂ν̂(H
A) = 2τ A

µ̂ν̂ − 2εABω̂[µ̂τν̂]
B − 2d̂[ν̂τν̂]

A.

We distinguish the following 4 cases:

Rµν(H
0) = 2τµν − 2d̂[µτν] + 2kω̂[µmν]

= Rµν(H)− 2d̂[µτν] + 2kω̂[µmν]

Rµν(H
1) = k

(
F (m)µν − 2d̂[µmν]

)
+ 2∂[µkmν] + 2ω̂[µτν]

Rµz(H
0) = k (ω̂µ − ω̂zmµ) + d̂zτ0

Rµz(H
1) = ∂µk + k(d̂zmµ − d̂µ)− ω̂zτµ,

Where we have indicated with hats on the connections that they may be different com-
pared to the DTNC connections in eq. (93).

We turn to the curvature of PA′

Rµ̂ν̂(P
A′
) = 2e A′

µ̂ν̂ − 2ω̂ A′B′

[µ̂ eν̂]B′ + 2ω̂ AA′

[µ̂ τν̂]A.

Here we only need to distinguish two cases (with ω̂ a
µ := ω̂ a

µ 0)

Rµν(P
A′
) = 2e a

µν − 2ω̂ ab
[µ eν]b − 2ω̂ a

[µ τν] + 2kω̂ 1A′

[µ mν]

= Rµν(P
a, ω̂) + 2kω̂ 1A′

[µ mν]

Rµz(P
A′
) = ω̂ a

z be
b

µ + k
(
ω̂ 1a
µ − ω̂ 1a

z mµ

)
.

While the torsions take the functional form (91) of DTNC, we explicitly denoted the
dependence on the hatted connections to remind us that there might be torsion present
for the connections stemming from the reduction of DSNC, which would give a different
result than DTNC.
At last, we look at the curvature of the KR field

Hµ̂ν̂ρ̂ = hµ̂ν̂ρ̂ + 6εABω̂
AB′

[µ̂ τ B
ν̂ eρ̂]B′ ,

where

hµ̂ν̂ρ̂ := 3∂[µ̂bµ̂ν̂].

This results in the two cases:

Hµνρ = hµνρ + 6kω̂ b
[µ mνeρ]b − 6ω̂ 1b

[µ τνeρ]b

Hµνz = F (b)µν + 2k
(
ω̂zbm[µe

b
ν] − ω̂ b

[µ eν]b
)
+ 2ω̂ 1b

z τ[µeν]b

= Rµν(Q, ω̂) + 2kω̂zbm[µe
b

ν] + 2ω̂ 1b
z τ[µeν]b
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C.2. Constraints

Starting from the full conventional constraints (122) of DSNC, we may write them in
terms of the reduced curvatures (91) of DTNC.
We start with the dilaton field

0 = ∇Aϕ

A = 0̂ : ∇0ϕ−m0d̂z = ∂0ϕ− d̂0 −m0d̂z
!
= 0

A = 1̂ : −kd̂z
!
= 0

We continue with the constraints on the curvature of longitudinal translations HA:

RA′A(H
A) = Ra0(H) + ∂a ln k ≡ 2τa0 − 2d̂a + ∂a ln k

!
= 0

εABRA′A(HB) = −kF (m)a0 − 2ω̂a + 2ω̂zma
!
= 0

εABRAB(H
C)

!
= 0

C = 0̂ : k(ω̂0 − ω̂zm0) + d̂z = 0
!
= 0

C = 1̂ : ∂0 ln k + k(d̂zm0 − d̂0)− ω̂z
!
= 0.

For the constraints on longitudinal translations PA′
we find:

Rµν(P
A′
) = Rµν(P

a, ω̂) + 2kω̂ 1A′

[µ mν]
!
= 0

Rµz(P
A′
) = ω̂ a

z be
b

µ + ω̂ a
z τµ + k

(
ω̂ 1a
µ − ω̂ 1a

z mµ

) !
= 0

Finally we turn to the constraints on the curvature of b:

HAA′B′
!
= 0

A = 0̂ : 0
!
= h0ab + 2ω̂ 1

[ab] − 2m[aF (b)b]0 − 2ω̂ 1
z [amb] −m0F (b)ab

=
1

2
Db̂′0ab + 2ω̂ 1

[ab] − 2ω̂ 1
z [amb]

m = 1̂ :
1

k

[
Rab(Q, ω̂)− 2kω̂z[amb]

] !
= 0

HABA′
!
= 0

⇐⇒ εABHABA′ ∼ 1

k
Ha0z =

1

k
Ra0(Q, ω̂)−m0ω̂za −

1

k
ω̂ 1
z a

=
1

k
F (b)a0 + ω̂0a − ω̂zam0 −

1

k
ω̂ 1
z a

!
= 0

So we see that the KK reduction of DSNC corresponds to a torsional version of DTNC.
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C.3. The connections

Under the KK reduction the DSNC connections (123) reduce to the following:
For the connection of dilatations we find

d̂z = 0

d̂µ = e a
µ

[
τa0 +

1

2
∂a ln k

]
+ τµ∂0ϕ.

For the connection of longitudinal SO(1, 1) we find

ω̂z = k(∂0 ln k − ∂0ϕ)

ω̂0 = km0(∂0 ln k − ∂0ϕ)

ω̂a = k

[
−1

2
F (m)a0 +ma(∂0 ln k − ∂0ϕ)

]
.

For the connection of boosts we find

ω̂ a
z = W 0A′

z = −kω̂ A′

{00}

ω̂ 1A′

z =
1

2
F (b) a

0 +W 1A′

z =
1

2
F (b) a

0 + kω̂ A′

{10}

ω̂ 1A′

µ =
1

2

[
F (b) a

µ − F (b)µ0m
a + F (b) a

µ m0

]
+W 1A′

µ

ω̂ a
µ = −2eµbe

(ab)
0 +

1

k

F (b) a
µ

2
+W 0A′

µ

= ω a
µ − τµ

1

2k
F (b) a

0 +W 0A′

µ

Finally for the connection of transverse rotations we find that

ω̂ ab
z = −1

2
k
[
h ab
0 − 2m[aF (b)

b]
0 − F (b)abm0

]
=

1

2
k
[
h0ab − 3m[0F (b)ab]

]
=

1

2
kDb̂′0ab,

ω̂ ab
µ = −2e [ab]

µ + eµce
abc − τµ

1

k

F (b)ab

2
−mµ

1

2
k
[
h ab
0 − 2m[aF (b)

b]
0 − F (b)abm0

]
= −2e [ab]

µ + eµce
abc − τµ

1

k

F (b)ab

2
+mµω̂

ab
z

= ω ab
µ +mµω̂

ab
z .

Thus, we recover the reduced DTNC geometry from 7.2.2 encoded in the connections ω,
up to extra torsion terms and corrections from the reduction of the DSNC connections.
However, these corrections will drop out in the final result and thus do not play a role.

C.4. Transformations

To compute the reduction of the variations of the DSNC connections (124) and (125)
we need

τA′{AB} = τa{AB} −maτz{AB}
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and find

τA′{00} =
1

2

[
1

2
∂a ln k − τa0

]
τA′{01} =

k

4
F (m)a0

τA′{11} =
1

2

[
1

2
∂a ln k − τa0

]
.

We start with the transformation of the reduced connections under dilations and rota-
tions

δD,Rd̂z = 0

δD,Rd̂µ = ∂µλD

δD,Rω̂µ̂ = 0

δD,Rω̂
ab

z = λacω̂
cb

z + λbcω̂
ac

z

δD,Rω̂
ab

µ = ∂µλ
ab − 2ω̂ c[a

µ λb]c

δD,Rω̂
AA′

z = λabω̂
ab

z − λDω̂
AA′

z

δD,Rω̂
AA′

µ = λabω̂
ab

µ − λDω̂
AA′

µ .

The boosts are much more intricate:

δBd̂z = 0

δBd̂µ = −e a
µ τabλ

b − τµλ
a∇aϕ

δBω̂
AA′

µ̂ = ∇µ̂λ
AA′ − 2e b

µ̂

{
λbτ

A′{A0} +
1

4
εA0λc

[
habc − 3m[aF (a)bc]

]}
δBω̂

AA′

z = ∇zλ
AA′

= −ω̂zε
A
0λ

a − δA0ω̂
A′B′

z λB′

δBω̂
a

µ =
SO

Dµλ
a − e b

µ λb

(
1

2
∂a ln k − τa0

)
δBω̂

1A′

µ = ω̂µλ
a + e b

µ λbk
F (m)a0

2
− 1

4
λcDb̂′abc

δBω̂
A′B′

z = k2λ[aF (m)
b]

0 +
1

4
kλcDb̂′abc

δBω̂
A′B′

µ = 2τµλ
[a

(
1

2
∂b] ln k − τ b]0

)
+ e c

µ λcτ
ab − 2eµcλ

[aτ b]c +mµδBω̂
A′B′

z .

Note that this gives us in particular that the connections ω transform exactly as con-
nections of DTNC.

C.5. The Action

We expand each ingredient of the NS-NS action (86) separately:

det
(
e A′

µ̂ , τµ̂A

)
= k det

(
e a
µ , τµ

)
≡ k det(e, τ).
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The curvature of rotation becomes

R(J, ω̂) = R(J, ω)− F (m)abω
ab

z + 4W a0bτab

= R(J, ω)− 1

2
kF (m)abDb̂′0ab + 4W a0bτab,

Where R(J, ω̂) is the DSNC curvature of rotations, while R(J, ω) now is the proper
curvature of DTNC rotations (96). The kinetic term for the dilaton reads

∂A′ϕ∂A
′
ϕ = ∂aϕ∂

aϕ,

while the curvature of the KR-field reads

hA′B′C′ = habc − 3m[aF (B)bc] = Db̂′abc,

with the covariant derivative Db̂ as in eq. (103). The mass term of the dilatation
connection reduces to

d̂A′ d̂A
′
= d̂ad̂

a = τa0τ
a
0 + τa0∂

a ln k +
1

4
∂a ln k∂

a ln k.

And the covariant derivative of the dilatation connection reads

DA′ d̂A
′
=

SO

Daτ
a
0 + ωabτ

ab +
1

2

SO

Da∂
a ln k +W a0bτab = Daτ

a
0 +

1

2

SO

Da∂
a ln k +W a0bτab,

where
SO

Dµ is covariant with respect to transverse rotations and Dτ is the covariant
derivative (97).
Finally, the traceless symmetric part in the action reduces to

−4τA′{AB}τ
A′{AB} = −1

2
∂a ln k∂

a ln k + 2∂a ln kτ
a
0 − 2τa0τ

a
0 +

k2

2
F (m)a0F (m)a0.

Altogether, these reductions amount to the total reduced action

(0)

S =
L

2κ2

ˆ
d9x det(e, τ)ke−2ϕ

{
R(J, ω)− 1

12
Db̂′abcDb̂′abc −

1

2
kF (m)abDb̂′0ab +

k2

2
F (m)a0F (m)a0

+ 4∂aϕ∂
aϕ− 3

2
∂a ln k∂

a ln k − 2∂a ln kτ
a
0 − 6τa0τ

a
0

− 4Daτ
a
0 − 2

SO

Da∂
a ln k

}
C.6. Modified integration by parts

In the above action we integrate by parts for an arbitrary Tensor T as

SO

DaT
a P.I.
= −2τa0T

a + (2∂aϕ− ∂a ln k)T
a

≡ (2∇aϕ−∇a ln k)T
a,

where
P.I.
= indicates that this only holds under the integral with measure d9x det(e, τ)ke−2ϕ,

and we discarded boundary terms.
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C.7. Final form of action

Integrating by parts, we find

(0)

S =
L

2κ2

ˆ
d9x det(e, τ)ke−2ϕ

{
R(J, ω)− 1

12
Db̂′abcDb̂′abc −

1

2
kF (m)abDb̂′0ab +

k2

2
F (m)a0F (m)a0

+ 4∂aϕ (∂
aϕ− ∂ ln k) +

1

2
∂a ln k∂

a ln k + 2∂a ln kτ
a
0 − 6τa0τ

a
0

− 4Daτ
a
0

}
.

(126)

This is not obvious, but it is boost invariant and also dilatation invariant.
Furthermore, we can bring the action into a manifest dilatation invariant form by inte-
grating by parts, giving

SKK =
L

2κ2

ˆ
d9x det(e, τ)ke−2ϕ

{
R(J, ω)− 4ωabτ

ab

− 1

12
Db̂′abcDb̂′abc −

1

2
kF (m)abDb̂′0ab +

k2

2
F (m)a0F (m)a0

+ 4∇aϕ(∇aϕ−∇a ln k) +
1

2
∇a ln k∇a ln k

}
.

(127)

Due to the presence of a bare boost connection term, this is no longer manifestly boost
invariant.

D. Null Reduction of NS-NS gravity

D.1. Ansatz

We start from the Lagrangian of NS-NS gravity

SNS-NS =
L

2κ2

ˆ
d10xEe−2Φ

{
R + 4∂ÂΦ∂

ÂΦ− 1

12
HÂB̂ĈH

ÂB̂Ĉ

}
.

The hatted Latin indices run from 0, ..., D and take values in the full tangent space.
We single out the lightlike isometry direction Xv and find adapted coordinates (X µ̂) =
(Xµ, Xv). Furthermore, we work in lightcone coordinates in tangent space, where we
split Â = (a,+,−), such that ηab = δab and η+− = −1. This gives the ansatz for the
metric as

(Eµ̂
A) =

a − +( )
µ ẽ a

µ s−1τ̃ ′µ sm̃µ

v 0 0 s
, (Eµ̂

A) =

µ v( )a ẽµa −ẽµam̃µ

− sτ̃ ′µ −sτ̃ ′µm̃µ

+ 0 s−1

,
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and corresponding variations as in section 5.4

δτ̃ ′µ = 0

δẽ a
µ = λ̃abẽ

b
µ + s−1λ̃aτ̃ ′µ,

δm̃µ = ∂µξ
v + s−1λ̃aẽ

a
µ ,

δs = λ̃Ds,

D.2. Contractions

For two vectors V,W :

ηÂB̂V
ÂW B̂ = ηabV

aW b − (V +W− − V −W+).

We introduce a notation that lets us distinguish between contractions with the full
vielbein and the reduced vielbein

TA′ := Eµ̂
aTµ̂ = Ta − m̃aTv,

T− = s(T0 − m̃0Tv),

T+ =
1

s
Tv,

where

Ta := ẽµaTµ,

T0 := τ̃ ′µTµ.

D.3. The dilaton

The kinetic term for the dilation reduces to

∂AΦ∂
AΦ = ∂aΦ∂

aΦ,

and we will also have to introduce a shift in the dilaton to make contact to the KK
reduction

Φ := ϕ̃+ ln s (128)

D.4. The Kalb Ramond field

First we split the KR field

˜̂
b′µν := Bµν ,

b̃µ := Bµv.
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Note that for b̃ the one-form symmetry reduces to a standard U(1) symmetry, while for
˜̂
b′ the remainder of diffeomorphisms mixes it with b̃

δb̃ = Lξ b̃+ dθv

δ
˜̂
b′ = Lξ

˜̂
b′ + dθ̂ − dξv ∧ b̃

where θ̂ is the remainder of the one-form symmetry. Note that
˜̂
b′ transforms exactly like

the boost invariant two-form (100) we introduced during the KK reduction. Further-
more, we denoted the reduction of the KR field with b̃, as we cannot identify it with the
reduced KR field from the KK reduction, due to the different variation under boosts.
The kinetic term for the KR field then reduces to

HÂB̂ĈH
ÂB̂Ĉ =(d

˜̂
b′ − m̃ ∧ F (b̃))abc(d˜̂b′ − m̃ ∧ F (b̃))abc

+ 6F (b̃)ab

(
d
˜̂
b′ − m̃ ∧ F (b̃)

)ab0
− 6F (b̃)a0F (b̃)

a
0,

with F (b̃) = db̃.

D.5. The geometry

D.5.1. The connections

We solve Cartan’s first structure equation

Rµ̂ν̂(P
Â) = 2Eµ̂ν̂

Â − 2 Âc
[µ̂ E

ν̂]c
+ 2

(
Ω Â+

[µ̂ E −
ν̂] + Ω Â−

[µ̂ E +
ν̂]

)
,

where Eµ̂ν̂
Â = ∂[µEν]

Â and Ω the full relativistic spin connections. We infer from this
that

Ω +−
v = 0,

Ω +−
µ = τ̃ ′µ0 −

1

s
∂µs,

Ω a−
v = 0,

Ω a−
µ = −1

s
τ̃ ′ a

µ ,

Ω a+
v = −sτ̃ ′0a,

Ω a+
µ = −sω̃′ a

µ − sm̃µτ̃
′ a
0 ,

Ω ab
v = −τ̃ ′ab,

Ω ab
µ = ω̃′ ab

µ − m̃µτ̃
′ab.

(129)

Note that this is always of the form Tµ 7→ tµ + m̃µTv, guaranteeing that it is covariant
under U(1) transformations along the lightlike direction.
We introduced the spin and boost connections ω̃′ which are now exactly the TNC con-
nections built of ẽ, τ̃ ′, and m̃ as in eq. (30).
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It is important to Note that ω̃′ a
µ covariantizes boosts with λ̃a/s. Consequently, the

variations of the connections are given by

δω̃′ a
µ =

SO

Dµ

(
λ̃a

s

)
+ ẽµc2

λ̃(cτ̃ ′
a)
0

s
+ λ̃abω

b
µ

δω̃′ ab
µ =

SO

Dµλ̃
ab + 2

λ̃[aτ̃ ′
b]

µ

s
+ ẽµc

λ̃c

s
τ̃ ′ab.

We have exactly the same curvatures as in normal TNC, as we could always just absorb
s into λ̃a.

D.5.2. The curvature

We expand the Riemann tensor as

R ÂB̂
µ̂ν̂ = 2∂[µ̂Ων̂]

ÂB̂ + 2Ω Âc
[µ̂ Ω B̂

ν̂] c
− 2Ω Â+

[µ̂ Ω B̂−
ν̂] − 2Ω Â−

[µ̂ Ω B̂+
ν̂] .

The Ricci Scalar reads

R = −R ÂB̂
ÂB̂

= −
(
R ab

ab − 2m̃bR
ab

av

)
− 2s

(
R a−

a0 + m̃aR
a−

0v − m̃0R
a−

av

)
− 2

1

s
R a+

av + 2R +−
0v

The terms needed to express the Ricci scalar are

R +−
µv = −τ̃ ′µaτ̃ ′ a

0

R a+
µv = s

(
Dµτ

a
0 + τµ0 τ

a
0

)
R a−

av =
1

s
τ̃ ′µbτ̃

′ab

R a−
µν = −1

s

[
2∂[µτ̃

′
ν]
a − 2ω̃′ ac

[µ τ̃ ′ν]c + 2m̃[µτ̃
′
ν]bτ̃

′ab + 2τ̃ ′ a
[µ τ̃

′
ν]0

]
R ab

µz = −
SO

Dµτ̃
′ab − m̃µ2τ̃

′[a
cτ̃

′b]c + 2τ̃ ′
[a

0 τ̃ ′ b]
µ

R̂ ab
µν = Rµν(J

ab, ω̃′) + 2ω̃′ c
[µ ẽν]cτ̃

′ab − 2m̃µν τ̃
′ab − 2

SO

D[µτ̃
′abm̃ν] − 4m̃[µτ̃

′ [a
0 τ̃ ′

a]
ν] ,

where R̂(J, ω̃′) corresponds to the TNC curvature (33), and we have the covariant deriva-
tive

Dµτ̃
′a
0 :=

SO

Dµτ̃
′a
0 + ω̃′

µbτ̃
′ab.

In total, the Ricci scalar reads

R = R̂(J, ω̃′)− 4Daτ̃
′a
0 − 6τ̃ ′a0τ̃

′
a0.

125



D.5.3. Null Reduction of the Action of NS-NS gravity

So we arrive at the action

SNull =
L

2κ2

ˆ
d9x det

(
ẽ,
1

s
τ̃ ′
)
e−2Φs

{
R̂(J, ω̃′)− 1

12
(d
˜̂
b′ − m̃ ∧ F (b̃))abc(d˜̂b′ − m̃ ∧ F (b̃))abc

− 1

2
F (b̃)ab

(
d
˜̂
b′ − m̃ ∧ F (b̃)

)ab0
+

1

2
F (b̃)a0F (b̃)

a
0

+ 4∂aΦ∂
aΦ− 6τ̃ ′a0τ̃

′
a0 − 4Daτ̃

′a
0

}
.

It is hard to see, but the above is in fact invariant under boost (and rotations), whereas
it is immediately clear that it is invariant under dilatations of s.
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