

DISSERTATION / DOCTORAL THESIS

Titel der Dissertation /Title of the Doctoral Thesis

Fast, accurate and user-friendly alignment of short and
long read data with high mismatch rates

verfasst von / submitted by

Dipl.-Ing. Philipp Rescheneder, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Doctor of Philosophy (PhD)

Wien, 2022 / Vienna 2022

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on the student
record sheet:

UA 794 685 490

Dissertationsgebiet lt. Studienblatt /
field of study as it appears on the student record sheet:

Molekulare Biologie

Betreut von / Supervisor:

Univ.-Prof. Dr. Arndt von Haeseler

ii

Acknowledgments

I want to start by thanking my supervisor Arndt. Thank you for providing such a
welcoming and engaging working environment that allowed me to focus on learning
about science, and the fascinating field of molecular biology and genomics. Thank
you for letting me explore my own interests and ideas and for the constant support
when it came to smaller and bigger things like going to conferences, visiting other
labs or starting collaborations or projects. I also want to thank Fritz, not only for
the countless discussions about our shared work, but also for keeping to push me
to go out of my comfort zone. This brings me to Mike who I want to thank for
welcoming me in his group for a summer on very short notice and for giving me
the opportunity to experience science in a different environment. This experience
has had a profound impact on the course of my thesis as well as my career. I also
want to thank Niko, Tobi, Nadia, Ivana and Meghan for all the great collaborations
and Mihn for always being available for a chat about algorithms. Tina, Steffi, Olga,
Ingo, Florian and Moritz - thank you for your support and the countless chats about
science, work, politics, life and everything else. I have truly enjoyed the time with
all off you and have learned a lot. Of course, also thank you to all the other mem-
bers of CIBIV for the amazing working environment, the many great lunch breaks,
and evenings we have spent together and last but not least teaching me the joy of
drinking authentic Vietnamese green tea all day long. I also want to wholeheartedly
thank my parents. Without your support I would not have been able to pursue my
interests in the way I did. Also thank you to all my friends who have supported me
throughout working on this thesis, especially Irene and Benni and lately Phill and
Vania. Finally, I want to thank Tamara for being there for me and for supporting me
to get this thesis over the finishing line.

iii

iv

Abstract

The advent of high-throughput sequencing has enabled us to study genomic varia-
tion at an unprecedented scale, providing us with insight into how genomes evolve,
how phenotypes are influenced by genetic changes, and the mechanisms behind
countless diseases. Large-scale projects, like the 1000 genomes project, or similar
projects for other model organisms sequenced thousands of genomes and cataloged
the genetic variation they found. Most of these projects use a reference genome-
based analysis approach where short high-quality sequencing reads are aligned to
a high-quality reference genome like the human genome. Differences between the
sequenced and the reference genome - mostly single nucleotide changes or small
variants - are then detected using specialised tools.
Many analysis tools have been developed and optimised to efficiently analyse the
immense amounts of data produced by these projects. However, these tools are
often not applicable to experimental setups where either no high-quality reference
genome exists, other less accurate sequencing technologies are used, more complex
genetic variations are studied, or other sources of noise cause higher mismatch rates
between the reads and the reference.
In this thesis we address this issue by introducing short and long read mapping tools
that handle higher numbers of differences caused by sequencing error, evolutionary
distance, or custom experimental designs, while offering the same ease of use and
short runtimes as more specialised tools. Furthermore, we show how our analysis
tools can enable researchers to study a wide range of genetic variations in model
organisms as well as non-model organisms.

v

vi

Parts of this thesis have been published in the following articles:

i) Sedlazeck, F. J.*, Rescheneder, P.*, Smolka, M., Fang, H., Nattestad, M., von
Haeseler, A. and Schatz, M. C. (2018) Accurate detection of complex struc-
tural variations using single-molecule sequencing, Nature Methods, 15(6),
pp. 461468.

ii) Sedlazeck, F. J.*, Rescheneder, P.* and von Haeseler, A. (2013) NextGen-
Map: fast and accurate read mapping in highly polymorphic genomes, Bioin-

formatics, 29(21), pp. 27902791.

* equal contributions

Other articles published during the course of this thesis:

i) Neumann, T., Herzog, A., V., Muhar, M., von Haeseler, A., Zuber, J., Ameres,
S., L. and Rescheneder, P. (2019). Quantification of experimentally induced
nucleotide conversions in high-throughput sequencing datasets, BMC Bioin-

formatics, 20(1)
ii) Nattestad, M., Goodwin, S., Ng, K., Baslan, T., Sedlazeck, F. J., Rescheneder, P.,

Garvin, T., Fang, H., Gurtowski, J., Hutton, E., Tseng, E., Chin, C.-S., Beck,
T., Sundaravadanam, Y., Kramer, M., Antoniou, E., McPherson, J. D., Hicks,
J., McCombie, W. R. and Schatz, M. C. (2018) Complex rearrangements and
oncogene amplifications revealed by long-read DNA and RNA sequencing of
a breast cancer cell line, Genome Research, 28(8), pp. 11261135.

iii) Muhar, M., Ebert, A., Neumann, T., Umkehrer, C., Jude, J., Wieshofer, C.,
Rescheneder, P., Lipp, J. J., Herzog, V. A., Reichholf, B., Cisneros, D. A.,
Hoffmann, T., Schlapansky, M. F., Bhat, P., von Haeseler, A., Kcher, T., Obe-
nauf, A. C., Popow, J., Ameres, S. L. and Zuber, J. (2018) SLAM-seq defines
direct gene-regulatory functions of the BRD4-MYC axis, Science, 360(6390),
pp. 800805.

vii

iv) Drecktrah, D., Hall, L. S., Rescheneder, P., Lybecker, M. and Samuels, D. S.
(2018) The Stringent Response-Regulated sRNA Transcriptome of Borrelia
burgdorferi, Frontiers in Cellular and Infection Microbiology, 8(JUL).

v) Herzog, V. A., Reichholf, B., Neumann, T., Rescheneder, P., Bhat, P., Burkard,
T. R., Wlotzka, W., von Haeseler, A., Zuber, J. and Ameres, S. L. (2017)
Thiol-linked alkylation of RNA to assess expression dynamics, Nature Meth-

ods, 14(12), pp. 11981204.
vi) Sedlyarova, N., Rescheneder, P., Magn, A., Popitsch, N., Rziha, N., Bilusic,

I., Epshtein, V., Zimmermann, B., Lybecker, M., Sedlyarov, V., Schroeder,
R. and Nudler, E. (2017) Natural RNA Polymerase Aptamers Regulate Tran-
scription in E . coli, Molecular Cell, 67(1), p. 3043.e6.

vii) Popitsch, N., Bilusic, I., Rescheneder, P., Schroeder, R. and Lybecker, M.
(2017) Temperature-dependent sRNA transcriptome of the Lyme disease spiro-
chete, BMC Genomics, 18(1), p. 28.

viii) Gesson, K., Rescheneder, P., Skoruppa, M. P., von Haeseler, A., Dechat, T.
and Foisner, R. (2016) A-type lamins bind both hetero- and euchromatin,
the latter being regulated by lamina-associated polypeptide 2 alpha, Genome

Research, 26(4), pp. 462473.
ix) Smolka, M., Rescheneder, P., Schatz, M. C., von Haeseler, A. and Sedlazeck,

F. J. (2015) Teaser: Individualized benchmarking and optimization of read
mapping results for NGS data, Genome Biology, 16(1), p. 235.

x) Drecktrah, D., Lybecker, M., Popitsch, N., Rescheneder, P., Hall, L. S. and
Samuels, D. S. (2015) The Borrelia burgdorferi RelA/SpoT Homolog and
Stringent Response Regulate Survival in the Tick Vector and Global Gene
Expression during Starvation, PLOS Pathogens, 11(9), p. e1005160.

xi) Bilusic, I., Popitsch, N., Rescheneder, P., Schroeder, R. and Lybecker, M.
(2014) Revisiting the coding potential of the E. coli genome through Hfq
co-immunoprecipitation, RNA Biology, 11(5), pp. 641654

viii

Zusammenfassung

Das Aufkommen der Hochdurchsatz-Sequenzierung hat es uns ermöglicht genomis-
che Variationen in einem noch nie dagewesenen Ausmaß zu studieren. Diese Un-
tersuchungen gewährten uns Einblicke in die Entwicklung von Genomen, die Bee-
influssung von Phänotypen durch genetische Veränderungen und die Mechanis-
men hinter zahlreichen Krankheiten. In groß angelegten Projekten wie dem 1000-

Genome-Projekt oder ähnlichen Projekten für andere Modellorganismen wurden
tausende von Genomen sequenziert und die gefundenen genetischen Varianten kat-
alogisiert. Die meisten dieser Projekte verwenden einen referenzgenombasierten
Analyseansatz, bei dem kurze, qualitativ hochwertige Sequenzen ausgelesen (se-
quenziert) und mit einem hochwertigen Referenzgenom wie dem menschlichen
Genom verglichen werden. Unterschiede zwischen dem sequenzierten Genom und
dem Referenzgenom - meist einzelne Nukleotidveränderungen oder kleine Vari-
anten - werden dann mit speziellen Analyseprogrammen detektiert.
In den letzten Jahren wurden zahlreiche hoch optimierte Analysewerkzeuge en-
twickelt um die immensen Datenmengen, die bei diesen Projekten anfallen, effizient
zu analysieren. Diese Werkzeuge sind jedoch oft nicht auf Versuchsanordnungen
anwendbar, bei denen entweder kein hochwertiges Referenzgenom existiert, an-
dere, weniger genaue Sequenzierungstechnologien verwendet werden oder kom-
plexere genetische Variationen untersucht werden und daher eine höhere Anzahl an
Unterschieden zwischen dem sequenzierten Genom und dem Referenzgenome zu
erwarten sind.
In dieser Arbeit befassen wir uns mit diesem Problem, indem wir Analysewerkzeuge
für die effizienten Analyse von kurzen und langen DNA-Sequenzen vorstellen,
welche eine höhere Toleranz für Sequenzierungsfehler und evolutionären Abstand

ix

x

haben und dabei die gleiche Benutzerfreundlichkeit und kurze Laufzeiten bieten
wie sie sonst nur höher spezialisierte Werkzeuge liefern. Darüber hinaus zeigen
wir, wie unsere Analysewerkzeuge es Forschern ermöglichen, ein breites Spektrum
an genetischen Variationen in Modellorganismen sowie in Nicht-Modellorganismen
zu untersuchen.

Teile dieser Arbeit wurden in folgenden Artikeln publiziert:

i) Sedlazeck, F. J.*, Rescheneder, P.*, Smolka, M., Fang, H., Nattestad, M., von
Haeseler, A. and Schatz, M. C. (2018) Accurate detection of complex struc-
tural variations using single-molecule sequencing, Nature Methods, 15(6),
pp. 461468.

ii) Sedlazeck, F. J.*, Rescheneder, P.* and von Haeseler, A. (2013) NextGen-
Map: fast and accurate read mapping in highly polymorphic genomes, Bioin-

formatics, 29(21), pp. 27902791.

* equal contributions

Contents

Acknowledgments iii

1 Introduction 1
1.1 Genetic variation . 3

1.1.1 Single nucleotide variants and small indels 4

1.1.2 Structural variation . 5

1.2 High-throughput sequencing . 6

1.2.1 Illumina short read sequencing 8

1.2.2 Single molecule real time sequencing 10

1.2.3 Oxford Nanopore sequencing 12

1.3 Analysis of High-throughput sequencing data 13

1.3.1 Reference-based read mapping analysis 15

1.3.2 Variant calling . 22

2 Main contributions of this thesis 27

3 NextGenMap: Fast and accurate read mapping independent of evolu-
tionary distance 29
3.1 Introduction . 29

3.2 Methods . 30

3.2.1 k-mer representation & extraction 31

3.2.2 Indexing the reference genome 33

3.2.3 Identification of CMRs . 35

xi

xii CONTENTS

3.2.4 Data driven threshold on the number of alignment compu-
tations . 38

3.2.5 Alignment computation 40
3.2.6 Mapping quality . 41
3.2.7 Paired-end mapping . 42
3.2.8 Benchmark datasets and tools 42

3.3 Results & Discussion . 43
3.4 Summary . 47

4 Accurate detection of complex structural variations using single-molecule
sequencing 49
4.1 Introduction . 49
4.2 Methods . 52

4.2.1 Accurate alignment of noisy long reads 52
4.2.2 Detecting structural variation from long read alignments . . 63
4.2.3 Benchmarking NGMLR and Sniffles 64

4.3 Results & Discussion . 73
4.3.1 Evaluation of NGMLR and Sniffles using simulated SVs . . 73
4.3.2 Trio-based analysis of genuine SVs 77
4.3.3 Comparison of Illumina, PacBio and Oxford Nanopore SV

calling results . 80
4.3.4 Detection of complex SVs 83
4.3.5 How much coverage is required? 84
4.3.6 Runtime and memory usage comparison 86

4.4 Conclusion . 87

5 Summary and Outlook 89

Bibliography 94

Appendices 115

A Supplementary Material to Chapter 3 115
A.1 Supplementary tables . 116

A.2 Parameters for NextGenMap . 117

B Supplementary Material to Chapter 4 121
B.1 SV detection with Sniffles . 121

B.1.1 Preprocessing and parameter estimation 123
B.1.2 Scanning for SVs . 124
B.1.3 Detection of spurious SV calls 132
B.1.4 Genotyping . 140
B.1.5 Phasing and read clustering 140

B.2 Coverage based filtering of Arabidopsis CVI 141
B.3 Determining the effect of genome coverage on SV calling 141
B.4 Supplementary tables . 142

xiv CONTENTS

List of Figures

1.1 Different types of structural variation. Image taken from Alkan
et al., 2011. 5

1.2 Timeline showing the year of introduction for major sequencing
platforms since 2000. Image taken from Mardis, 2017. 6

1.3 Schematic workflow of sequencing by synthesis. Image taken from
Goodwin et al., 2016. 8

1.4 Illustration of (A) PacBio SMRT sequencing and (B) Oxford Nanopore
sequencing. Image taken from Reuter et al., 2015. 11

1.5 Basic reference-based read mapping workflow including most im-
portant file formats. 14

1.6 Example of a read alignment. Matches are marked by the pipe sym-
bol, mismatches by dots. Bases missing in the read but not the ref-
erence are called deletions. Additional bases in the read are called
insertions. 15

1.7 Example pileup of five reads against a reference. Sequencing error
is coloured in red and genuine biological variation in green. 23

1.8 Different strategies for calling SVs from sequencing data. Image
taken from Alkan et al., 2011. 25

xv

xvi LIST OF FIGURES

3.1 Reversing the sequence of a k-mer with bit operations. Illustrated
with a 16-bit word containing nucleotides N1..N7. First, we switch
the order of the two 8-bit blocks depicted in green and red. Next, we
switch the order of all 4-bit block pairs within the 8-bit blocks. The
same is done for all pairs of 2-bit blocks. The last switch (dashed
grey lines) is omitted since nucleotides are represented by 2-bits.
Each switch requires five bit operations. 33

3.2 Index structure to efficiently compute CMRs. 34

3.3 Identification of candidate-mapping regions in the reference genome
(G) for an individual read (R) using a k-mer size of 3bp and a step
size of ∆= 2: (A) Detection of seed words. (B) Shift to the potential
read start. (C) Accounting for insertions or deletions. (D) Comput-
ing the seed-word distribution FR along the reference genome G. . . 36

3.4 Seed-word distribution along the human genome for two reads. The
green arrow indicates the correct mapping position. The green line
displays the read specific threshold ΘR. The red line displays a fixed
threshold, here 2 seed words. The number of CMRs exceeding the
respective threshold are written in green and red. 38

3.5 Mason efficiently computes short many-to-many alignments. Pic-
ture taken from Rescheneder et al., 2012 41

3.6 (a) Percent of correctly (solid) and incorrectly (dashed) mapped
reads and (b) running times for different degree of genomic poly-
morphisms between read and reference genome for five million
100bp A. thaliana reads (A1, . . . ,A11). 46

4.1 Example regions showing alignments spanning a 228-bp deletion
(left) and a 150-bp inversion (right). BWA-MEM alignments (upper
tracks) show alignment artefacts in reads spanning the two SVs.
NGMLR alignments are free of artefacts and thus enable accurate
calling of the two SVs. 51

4.2 Overview of the read mapping algorithm implemented by NGMLR. 52

LIST OF FIGURES xvii

4.3 NGMLR workflow for detecting linear mapping pairs (LMPs). (a)
Reads are split into sub-segments and aligned to the reference genome
(a). A modified longest increasing subsequence algorithm detects
sub-segments that map co-linearly to the reference sequence to de-
tect LMPs (b and c). LMPs located on the same diagonal in the
alignment matrix are merged (d) to form the final set of LMPs (e). . 54

4.4 Two different alignments for the same sequences with affine gap-
costs (a) and convex gap-costs (b). Only with convex gap-costs,
the correct alignment shows a higher score than the incorrect align-
ment. 58

4.5 Detection of a 5bp inversion in a 17 bp alignment. 61

4.6 Overview of the SV calling algorithm implemented by Sniffles. . . . 64

4.7 Visualisation of an empirically determined per read position error
profile for (a) PacBio and (b) Oxford Nanopore reads. For read
positions > 20kb in PacBio reads and >30kb in Nanopore reads
the error profiles are unreliable as there are not enough reads of
these lengths in the dataset. 66

4.8 Per read position error profile for our simulated (a) PacBio and (b)
Oxford Nanopore datasets. For read positions > 20kb in PacBio
reads and >30kb in Nanopore reads the error profiles are unreliable. 67

4.9 Evaluation of simulated reads. All reads are divided into six cat-
egories depending on how well they capture the SV they overlap.
(a) Schematic visualisation of example reads for all evaluation cat-
egories and all evaluated SV types. (b) IGV screenshot of read
alignments coloured and grouped by evaluation category. 68

xviii LIST OF FIGURES

4.10 Read mapper evaluation with simulated data. In each plot, the x-
axis indicates the size of the 840 simulated SVs. We simulated
PacBio-like (left) and Oxford Nanopore-like reads (right) and de-
termined whether alignments were precise, indicated, forced, un-
aligned, or trimmed but not forced to wrongly aligned across the
SV. For the SV analysis (bottom), we used the same alignments as
before and distinguished among precise, indicated, not indicated,
and false positive calls. 73

4.11 IGV screenshot of incorrect MECAT alignments spanning a deletion. 74

4.12 SV caller evaluation with simulated data. In each plot, the x-axis
shows the size of the simulated SVs. We distinguished between
precise, indicated, not detected, and false positive calls. 75

4.13 Overlap between SV calls from different call-sets for NA12878. . . 81

4.14 Systematic error in short-read based SV calling. (a) Example of a
putative translocation identified in short-read data (top alignments)
that overlaps an insertion detected using PacBio (middle) or Oxford
Nanopore sequencing (bottom). (b) Example of a putative inversion
identified in the short-read data (top) that overlaps an insertion de-
tected in both PacBio (middle) and Oxford Nanopore reads (bottom). 82

4.15 Nested SV calling in simulated data and the SKBR3 cancer cell
line. (a) Evaluation of NGMLR and Sniffles with simulated data
to identify nested SVs. (b) A 3-kb region including two deletions
flanking an inverted sequence is clearly visible and was detected by
NGMLR and Sniffles (top) but was not detected using short-reads
(bottom). (c) The start of an inverted duplication. Breakpoints were
reported by Sniffles as the start of an inverted duplication (top) but
were not correctly detected using short-reads (bottom). 83

LIST OF FIGURES xix

4.16 (a) Theoretical assessment of recall versus coverage for different
read lengths requiring 50-bp overlap of each breakpoint for SV
calls. (b) Subsampling results for 55X PacBio NA12878 data. (c)
Subsampling results for 28X Oxford Nanopore NA12878 data. (d)
Subsampling results for the 70x PacBio SKBR3 breast cancer cell
line dataset. 85

xx LIST OF FIGURES

List of Tables

3.1 Summary of the data sets used for the benchmarking study. 42
3.2 Runtimes in minutes. We highlighted the shortest runtime per data

set. We excluded the results from BWA for R4 and R5 as it was
developed for Illumina reads only. 44

3.3 Percent of correctly mapped, unmapped (¬map) and wrongly mapped
reads for S1,. . . , S4 and percent of mapped and unmaped reads for
R1,. . . , R5. 45

4.1 Number of SVs detected in Arabidopsis thaliana PacBio data. . . . 78
4.2 Number of SVs detected in PacBio and Illumina data from a human

trio. 79
4.3 Number and types of SVs detected in human NA12878 datasets for

different sequencing technologies. 80

xxi

Chapter 1

Introduction

The development of DNA sequencing technologies has allowed us to read out ge-
netic information as well as identify and catalogue differences ranging from single
base changes to large structural rearrangements between single individuals or whole
populations. The overall goal is to understand how genomic variation drives phe-
notypical changes, influences fitness, and causes diseases (Chong et al., 2015). A
first major milestone was achieved in 2001 when Lander et al. and Craig Venter
et al. finished the first drafts of a human reference genome. This project provided a
foundation for studying human genetics. For the first time arbitrary human genomes
could be independently sequenced and compared to the human reference genome to
identify genetic variation (Pavlopoulos et al., 2013). By using the reference genome
as a shared coordinate system, the identified variants could be stored in databases
and shared with the research community, significantly accelerating research of hu-
man genetics. With the advent of second generation or high-throughput sequencing
projects like the 1000 genomes project set out to study and catalogue the full spec-
trum of genetic variation in multiple human populations (Gibbs et al., 2015). At the
same time large genome-wide association studies were used to identify what vari-
ants or sets for variants are associated with a specific trait. With cost for sequencing
decreasing exponentially and increasing throughput (Canzar and Salzberg, 2015),
more large-scale projects like the HapMap project, the 10,000 Genomes Project,
the ENCODE project and the Genotype-Tissue Expression project (GTEx) further
expanded our understanding of genomic variation and its functional consequences

1

2 CHAPTER 1. INTRODUCTION

in human populations. Similar projects were launched for microbes, plants, and
other kingdoms (Pavlopoulos et al., 2013). Whilst different in goals most of these
projects rely on shotgun sequencing at their core, meaning DNA is extracted, ran-
domly fragmented, and subjected to DNA sequencing. The sequencing machine
reads out (parts of the) DNA fragments. These sequences called reads are then
compared to a reference genome to identify genomic variation (Pfeifer, 2017). The
computational analysis of these experiments typically starts with aligning reads to
a reference genome using a read aligner, followed by finding differences between
reference and reads using a variant caller. Much research has gone into developing
these tools. For example, more than 70 read aligners for short read sequencing have
been developed (Canzar and Salzberg, 2015). Most initial large-scale sequencing
projects were focused on human genomics or other well characterised model organ-
isms. For these organisms high-quality reference sequences are available. Further-
more, polymorphism rates - meaning the number of differences between two indi-
viduals - are relatively low in organisms like human or mouse. As a result, when
comparing reads from these experiments to their respective reference sequence only
a small number of differences is expected. Furthermore, there has been a strong fo-
cus on short, mostly single nucleotide variants, in coding regions of the genome
as these have historically been the easiest to identify and interpret with available
technologies (Reuter et al., 2015). Regions with larger structural differences have
mostly been ignored (Weischenfeldt et al., 2013). As a result, most read aligners
have been optimised for this use-case. By optimising alignment algorithms to data
sets with a low rate of differences between the reads and the reference, runtime and
memory usage could be reduced by orders of magnitude, allowing read alignment
to keep up with the exponential increase in available genomic data (Stephens et al.,
2015).
However, since less focus has been put on non-model organisms or datasets with
higher error or mismatch rates, tools available to analyse these data types are either
too slow to deal with increasing data volume or require careful tuning and detailed
knowledge of the data at hand. Furthermore, important classes of genetic variants
like structural variations have been understudied or missed as they are difficult or
impossible to detect in read alignments from state-of-the-art alignment tools. In

1.1. GENETIC VARIATION 3

this thesis we address challenges in read mapping that arise off the beaten path
of common workflows like short variant detection in model organisms. In the first
chapter we propose and implement an algorithm for highly efficient short read map-
ping independent of error and mismatch rate. In the second chapter we extend this
approach to noisy long third generation reads with a focus on achieving accurate
read alignments even in the presences of large structural variations and throughout
repetitive regions of the genome.

1.1 Genetic variation

In languages arbitrary amounts of information can be encoded by stringing to-
gether letters into sentences. In the case of the English language this alphabet
would consist of 26 letters. Similarly, biological information is encoded by us-
ing a four-letter code consisting of the nucleotides: adenine, thymine, guanine, and
cytosine. Through covalent bonds nucleotides can be arrange in long chains (Al-
berts B et al., 2002). The specific combination and order of the nucleotides in these
polynucleotides encodes information similar to the letters in sentences. Through
hydrogen bonds forming between adenine and thymine and guanine and cytosine
two complementary copies of a polynucleotide can form a double helix structure re-
ferred to as Deoxyribonucleic acid (DNA). The vast majority of known organisms
use DNA to encode their genetic information (Stefanie Tauber, 2013). As described
by the central dogma of molecular biology, genes - functional units of information
encoded in DNA - are transcribed into a single stranded RNA messenger molecule.
Messenger RNAs are then translated into proteins (Crick, 1970). Proteins, one of
the most important classes of biological molecules, carry out a majority of functions
within cells and whole organisms, ranging from catalysing metabolic reactions, cell
signalling, immune response to serving as structure components (Alberts B et al.,
2002). Thus, they influence or define a wide range of the observable traits of an
organism also called the phenotype. Through this process variations in the genetic
makeup of an organism - the genotype - are translated into observable phenotypical
changes. During cell division the two strands of a DNA molecule are separated.

4 CHAPTER 1. INTRODUCTION

Both strands then independently serve as templates for two newly synthesised com-
plementary strands resulting in two identical copies of the initial DNA molecule.
Especially higher organisms possess complex proofreading mechanisms, minimis-
ing errors during this process (Bȩbenek and Ziuzia-Graczyk, 2018). However, not
all errors are detected or can be fixed. Thus, the two daughter cells might not have
the exact same genetic information but contain small variations.
Genetic variation is generally categorised by the type of change and its size (Gibbs
et al., 2015). Substitutions of a single nucleotide are called Single nucleotide vari-
ants (SNVs). When a small number of nucleotides is omitted or added the resulting
variants are called small deletions or insertions (sometimes collectively referred to
as indels). In contrast to these small variants, larger changes are called structural
variations (SVs) sometimes also referred to as rearrangements. These three classes
and their relevance to read mapping algorithms will be discussed in more detail
below.

1.1.1 Single nucleotide variants and small indels

Single nucleotide variants are the simplest type of genetic variation. SNVs can
either occur in regions of the genome that encode for a gene (coding regions) or
regions that do not (non-coding regions). In coding regions, SNVs can alter the
amino acid sequence of a protein (Robert and Pelletier, 2018). The terms SNV
and Single nucleotide polymorphisms (SNPs) are often used interchangeably. A
common distinction is that a SNP has to occur in a sufficiently large percentage of
individuals in a population (e.g., > 1%). Following this definition, all SNPs are
SNVs but not the other way around. Small indel variants occur when either one or
more bases are skipped (for example during replication) or when one or more bases
are added. In genes, groups of three nucleotides (codons) code for a single amino
acid. Thus, if the number of deleted or inserted bases is not a multiple of three,
indels interrupt the so-called reading frame and change all codons downstream.
Consequently, indels are more likely to have a strong negative impact on fitness
causing indels to be rarer than SNVs (Lin et al., 2017).

1.1. GENETIC VARIATION 5

Figure 1.1: Different types of structural variation. Image taken from Alkan et al., 2011.

1.1.2 Structural variation

The second major class of variation is large alterations of the genome called struc-
tural variations. Initially, they were defined as variations larger than 1,000 bp.
However, this threshold was mostly dictated by technical limitations (Alkan et al.,
2011). With detection methods improving, the minimum size reduced over the last
years. To date, a working definition of 50 bp and up has been established (Mills
et al., 2011). SVs comprise several sub-categories including deletions, insertions,
duplications, inversions, and translocations (Figure 1.1). Insertions can be further
divided into novel sequence insertions and insertions of mobile elements like Alu

or L1 elements. Duplications might occur in tandem meaning the duplicated se-
quence is inserted directly up- or downstream of the template sequence or inter-
spersed (Alkan et al., 2011). Furthermore, inversions and translocations are called
balanced structural variations as they do not change the number of base pairs in
the genome, whereas all others are called unbalanced. In humans, SVs make up
the largest amount of differing base pairs (1-1.5%) when comparing the genome
of two individuals (Mahmoud et al., 2019). SVs can arise during DNA recombi-

6 CHAPTER 1. INTRODUCTION

Figure 1.2: Timeline showing the year of introduction for major sequencing platforms since
2000. Image taken from Mardis, 2017.

nation, DNA replication and DNA repair. Errors in these processes are facilitated
by the presence of low sequence complexity or repetitive regions (repeats) in the
genome (Carvalho and Lupski, 2016). For example, during recombination two non-
homologous repeats in the two sister chromatids can wrongly pair and cross over
unequally (Schaeffer, 2016). Thus a larger percentage of SVs are found in repetitive
or low complexity regions (Lucas Lledó and Cáceres, 2013).

1.2 High-throughput sequencing

Identifying and understanding genetic variation within a population requires se-
quencing of a large number of individuals. The introduction of Sanger sequenc-
ing, usually referred to as first generation sequencing, in the 1970ies revolutionised
biological research (Mardis, 2017). For the first time researchers were able to in-
vestigate the genetic foundations of known phenotypic traits. Although Sanger se-
quencing was used to sequence the first draft of the human genome, outside of
large collaborative projects the limited throughput and high cost mostly prohibited
whole genome sequencing and population scale sequencing (Metzker, 2010). In the
early 2000s multiple companies started commercialising new sequencing technolo-
gies that aimed at increasing sequencing throughput and decreasing cost (Mardis,
2017). Most notably Roche’s 454 and Solexa’s (now Illumina) Genome analyser.
Unlike Sanger sequencing which yields a low number of longer reads (1000bp),
these second-generation sequencing platforms aimed at providing a high number of

1.2. HIGH-THROUGHPUT SEQUENCING 7

short (36-500bp) reads (Glenn, 2011). This was achieved by using an approach
called sequencing by synthesis (SBS). Briefly, for SBS a high number of exact
copies of a DNA molecule are produced first, using PCR also called clonal am-
plification (Reuter et al., 2015). Second, complementary strands are synthesised for
all copies synchronously. Depending on the sequencing technology different mech-
anisms are used (for example fluorescent labelling of nucleotides) to monitor which
nucleotide was inserted, during synthesis of the second strand. The key advantage
is that this process can be run in parallel yielding millions or even billions of short
reads in one sequencing run (Goodwin et al., 2016). As a result of this improved
throughput the cost of sequencing dropped. For example, the cost of sequencing
a human genome decreased from ∼ 100 million dollars in 2001 to around 1,000
dollars in 20151. This change allowed researchers to transition from mostly site
or gene-specific assays to studying the whole genome and made population scale
sequencing possible (Mardis, 2017). However, second-generation sequencing plat-
forms come with limitations. For example, short read lengths make it impossible
to study highly repetitive or low complexity parts of the genome and complicate
identification of large genomic rearrangements (Mardis, 2017). Also, clonal am-
plification might introduce biases (Metzker, 2010). Third-generation sequencing
platforms set out to solve these limitations by skipping amplification and sequenc-
ing single molecules. Producing strong enough signals from single molecules does
not come without challenges either. As a result, error rates are generally higher than
for second generation sequencing for most platforms. However, the read length is
orders of magnitudes longer and sequence specific biases are reduced (Goodwin
et al., 2016). Often the term next-generation sequencing technologies (NGS) is
used to either refer to second only, or to second and third generation sequencing
technologies. Furthermore, short read sequencing is now often used to refer to sec-
ond generation sequencing and long read sequencing to refer to third generation
sequencing. Today a mix of second and third generation sequencing technologies
is used. Each of the platforms has their own strengths and limitations. In the fol-
lowing paragraphs we will briefly summaries the principles behind the three major
sequencing platforms, Illumina, Pacific Biosciences and Oxford Nanopore and their

1https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

8 CHAPTER 1. INTRODUCTION

Figure 1.3: Schematic workflow of sequencing by synthesis. Image taken from Goodwin
et al., 2016.

modes of error and biases. Understanding these characteristics is crucial for pro-
viding accurate and efficient computational analysis tools.
Independent of the sequencing platform, throughput has been improving rapidly
over the last decade. In addition, NGS sequencing has been adopted in a wide range
of research areas. Taken together, this caused exponential growth of sequencing
data generation (Stephens et al., 2015) requiring computational analysis tools to
not only provide accurate results but also to be extremely efficient.

1.2.1 Illumina short read sequencing

Before sequencing, extracted DNA is fragmented to a specific length. The fragment
length is usually referred to as insert size (Goodwin et al., 2016). To prepare the
fragmented molecules for sequencing, synthetic sequencing adapters are ligated to
their 5’ and 3’-end. This process is referred to as library preparation. The sequenc-
ing reaction itself takes place on a solid surface called flow cell and consists of the
following steps:

Clonal amplification: During clonal amplification DNA fragments are immobilised
on the flowcell and amplified into clusters of identical molecules (Goodwin

1.2. HIGH-THROUGHPUT SEQUENCING 9

et al., 2016). To this end, flowcells come prepared with covalently bound
forward and reverse primers. These primers are complementary to parts of
the sequencing adapters allowing DNA fragments to base-pair with them. A
polymerase then extends the primer by synthesising a strand of DNA comple-
mentary to the bound fragment. The now covalently bound fragments, from
here on called templates, are amplified into clonal clusters through a process
called bridge PCR. Briefly, the adapter on the unbound end of the fragments
base pairs with reverse primers bound to the flow cell in close proximity.
These primers are used to synthesis a complementary strand (Reuter et al.,
2015). After denaturation of the template and complementary strand the pro-
cess is repeated. Control of the number of initial fragments and PCR cycles
ensures the formation of none overlapping clusters of identical copies of a
single fragment.

Sequencing: The sequencing reaction is initiated by adding sequencing primers
which are complementary to the sequencing adapters and a mixture of all four
individually labelled and 3’-blocked deoxynucleoside triphosphate (dNTPs)
(Goodwin et al., 2016). A polymerase binds the double stranded DNA region
formed by the adapter and the primer and starts synthesizing a complemen-
tary strand based on the sequence of the template. However, since all dNTPs
are 3’-blocked the polymerase will stall after incorporation of the first nu-
cleotide. All unbound dNTPs are washed away, and a CCD camera is used
to identify which dNTP was incorporated (Reuter et al., 2015). Finally, the
fluorophore and the blocking group are cleaved from the incorporated dNTPs
allowing the polymerase to incorporate the second nucleotide, initiating the
second sequencing cycle. This process is done for all clonal clusters on the
flowcell at the same time allowing for massively parallel sequencing.

Error profile

For this process to work it is required that all copies within a cluster are in synchro-
nisation meaning exactly one nucleotide is added per sequencing cycle. Although
efficiency of cleaving blocking groups as well as nucleotide incorporation rates are

10 CHAPTER 1. INTRODUCTION

high, they are not 100% (Metzker, 2010). Thus, over time more and more copies
within a cluster can get out of sync. As a result, determining the correct bases for
a cluster becomes harder over time, causing sequencing accuracy to decrease. This
process is called dephasing and is one of the main factors limiting read length and
sequencing quality (Metzker, 2010). Overall, sequencing error for Illumina reads is
estimated to be between 0.1% and 1% (Nielsen et al. (2011), Goodwin et al. (2016),
Canzar and Salzberg (2015)). Due to dephasing and other processes Illumina reads
show the highest quality at the start of a read. Due to the blocking chemistry se-
quencing error is dominated by substitution errors as it is more like to misidentify
the fluorescent signal than to either miss a base or add in an additional base. Due
to amplification bias during clonal amplification Illumina sequencing might under-
represent AT- and GC-rich regions of the genome (Goodwin et al., 2016).

Read length

Early Illumina sequencing chemistries were limited to 25 bp single-end sequencing
meaning that only one end of the DNA fragments could be sequenced. Today read
lengths of up to 250 bp are supported (Goodwin et al., 2016). Furthermore, the
addition of ”turn-around” chemistries enables sequencing of both ends of DNA
fragments. Thus, a single cluster yields two reads instead of one. These two reads
are guaranteed to originate from the exact same DNA fragment and are referred to
as pair. Since paired-end sequencing allows reading twice the number of base pairs
from a fragment it comes with advantages when aligning to repetitive regions of a
genome.

1.2.2 Single molecule real time sequencing

Introduced in 2010, PacBio’s Single molecule real time (SMRT) sequencing was
one of the first third generation sequencing platforms (Mardis, 2017). It allows for
sequencing of long native DNA fragments without the need for clonal amplification
or fixed chemical cycles (Goodwin et al., 2016). Instead of immobilizing DNA tem-
plates on a flowcell, a single polymerase is fixed to the bottom of a zeptoliter-sized

1.2. HIGH-THROUGHPUT SEQUENCING 11

Figure 1.4: Illustration of (A) PacBio SMRT sequencing and (B) Oxford Nanopore sequenc-
ing. Image taken from Reuter et al., 2015.

12 CHAPTER 1. INTRODUCTION

well called zero-mode waveguide detector (ZMW) (Reuter et al., 2015). In addi-
tion to the polymerase, ZMWs contain dye-labelled nucleotides and the template
DNA. As the polymerase copies the template, incorporation of dNTPs is continu-
ously monitored using a laser/camera setup. In addition to the colour of the labelled
dNTP also the duration of the incorporation is recorded. After incorporation, the
polymerase removes the dye from the dNTP allowing for the incorporation of the
next dNTP. This enables real time monitoring of the process and removes the need
for blocking mechanisms.
During library preparation hair pin sequences are ligated to both ends of a double
stranded DNA fragment. As a result, the molecules are circular meaning they can
be sequenced multiple times by the same polymerase (Reuter et al., 2015). After
sequencing has finished a high-quality consensus sequence can be computed from
those copies. These reads are then called circular consensus sequencing (CCS)
reads. In contrast, longer reads that stem from a single pass are called continuous
long reads (CLR). It is up to the user which of these two modes to use. Since the
same molecule is sequenced multiple times the overall throughput per SMRT cell is
significantly lower when run in CCS mode. Also read length is reduced. However,
read accuracy is significantly higher. CLR reads show an error rate of about 14%
whereas CCS reads are typically more than 99% accurate (Goodwin et al., 2016).
For both modes the main errors are short random insertion and deletions especially
around homopolymers. A fundamental limitation in PacBio sequencing is that a
single ZWM can only produce a single CLR or CSS read.

1.2.3 Oxford Nanopore sequencing

Unlike any other sequencing platform Oxford Nanopore sequencing does not rely
on template DNA guided synthesis of a complementary strand (Goodwin et al.,
2016). Instead, native DNA strands are sequenced directly by passing them through
a protein pore. The pores are placed in a synthetic membrane and a specially de-
signed motor protein ensures that the DNA translocates through the pore at a con-
stant speed. Nucleotides passing through the pore create a characteristic change in
current between both sides of the membrane. Measuring the current at 4,000 times

1.3. ANALYSIS OF HIGH-THROUGHPUT SEQUENCING DATA 13

a second results in a so-called squiggle, a temporal recording of the current changes
(Rang et al., 2018). The basecaller translates these squiggles into nucleotide se-
quences. Initially, DNA molecules were moving through the pore at a speed of
70 bases per second. However, through improvements in sequencing chemistry
and electronics the speed increased to currently 450 bases per second (Rang et al.,
2018). After a DNA molecule has passed through a pore, the motor protein disasso-
ciates from the pore allowing another DNA molecule to be sequenced by the same
pore. As current changes can be monitored while DNA molecules move through
the pore, Nanopore is the only sequencing platform that offers real-time sequenc-
ing. That means after starting a sequencing run, reads are immediately written
to disk and available for downstream analysis. Similar to PacBio, Nanopore se-
quencing shows higher raw read error rates than short read sequencing. Early ver-
sion of Nanopore flowcells were limited to a sequencing accuracy of roughly 60%
(Rang et al., 2018). Through improvements in chemistry and software the current
R9.41 pore shows a median raw read accuracy of 90 to 95% (Rang et al., 2018).
Nanopore’s main mode of error are short insertions and deletions with deletions in
homopolymer regions being the most prevalent. These errors are mostly caused by
nonuniform speed of the motor protein and problems with estimating the length of
homopolymer regions. While rare reads of up to several megabases have been ob-
served, read lengths of 10 to 50 kb are routinely obtained while so-called ultra-long
read sequencing pushes read length into the range of 100kb and up (Rang et al.,
2018).

1.3 Analysis of High-throughput sequencing data

Modern sequencing platforms are capable of producing billions of reads. Each
read individually carries only relatively little information (Canzar and Salzberg,
2015). Thus, efficient analysis software is required to aggregate information con-
tained in those small pieces and transform them into results that can be interpreted
by researchers. There are two different workflows for analysing sequencing data:
reference-based read mapping and de-novo assembly (Pavlopoulos et al., 2013).

14 CHAPTER 1. INTRODUCTION

Basecalling + QC Read Mapping Variant calling,
Visualization, …

FASTQ SAM/BAM

Reference genome

FASTA

Figure 1.5: Basic reference-based read mapping workflow including most important file
formats.

Reference-based read mapping uses prior knowledge in form of a reference se-
quence whereas de-novo assembly only relies on data produced by the experiment
at hand. Conceptually, for de-novo assembly sequencing, reads are compared and
collapsed if they show sufficient overlap. Under optimal circumstances, this allows
a step-by-step reconstruction of the genome that was sequenced. Since no prior
knowledge was used, this reconstruction is unbiased. However, genome assem-
bly is hampered by repetitive regions in the genome where read overlaps cannot
be uniquely resolved (Pavlopoulos et al., 2013). Furthermore, finding overlaps be-
tween all reads of a dataset is computationally intensive for long reads and not
practical for short reads. Many data structures like bruijn graphs and algorithms
that circumvent all vs all comparisons have been devised to optimise genome as-
sembly from long and short reads. A comparison is outside of the scope of this work
and readers are redirected to Sohn and Nam (2018) and Wick and Holt (2019) for
an in-depth analysis. Independent of the approach used, genome assembly remains
computationally expensive and heavily impacted by genome structure, ploidy, and
read length. Thus, a reference-based approach has been the method of choice for
most large-scale (re)sequencing and variant calling projects.

1.3. ANALYSIS OF HIGH-THROUGHPUT SEQUENCING DATA 15

CATCCC-GAATGAATGAAAAGCGTTTCCTAGTGGCTGTAATTTGCATCT-CCTGGTGGCTGAReference:

|| ||||.||||||||||| ||||||||||||||.|||||||| |||||

CCGGAATCAATGAAAAGCG---CCTAGTGGCTGTAACTTGCATCTCCCTGGRead:

Figure 1.6: Example of a read alignment. Matches are marked by the pipe symbol, mis-
matches by dots. Bases missing in the read but not the reference are called deletions. Addi-
tional bases in the read are called insertions.

1.3.1 Reference-based read mapping analysis

The inputs to a reference-based read mapping analysis workflow (Figure 1.5) are
sequencing reads stored in a (compressed) FASTQ file and the sequence of the
reference genome stored in a FASTA files (Pavlopoulos et al., 2013). FASTQ is
a simple text-based file format that holds the nucleotide sequence for each read
plus their respective per-base quality scores. These quality scores are expressed
as PHRED scores and are a measure of the quality of every sequenced nucleotide.
The FASTQ file and the sequence of the reference genome are the input for read
mapping tools. The aligned reads are stored using the SAM/BAM format and are
the input for all downstream analysis. After all reads have been aligned, variant
calling tools use the read alignments of all reads to identify true biological variation
and distinguish them from sequencing error (Koboldt, 2020).

Read mapping

Read mapping describes the process of identifying the most likely region of origin
for a given read in a given reference genome (Canzar and Salzberg, 2015). This is
done by finding the region of the reference genome that shows the highest sequence
similarity to the given read. In addition to the position on the reference genome

16 CHAPTER 1. INTRODUCTION

read mapping will provide an associated (optimal) alignment between the read and
the reference. This alignment establishes a position-wise correspondence between
each nucleotide in the read and the reference as illustrated in Figure 1.6 (Canzar
and Salzberg, 2015). All nucleotides in a read that match the reference are referred
to as matches. Nucleotides that are different to the reference are called mismatches.
These mismatches might indicate e.g., a SNV. Nucleotides that have either been
deleted from or added to the sequenced genome are illustrated by dashes (Figure
1.6) and called indels.
Various characteristics of genome structure, genetic variation and sequencing plat-
forms make read mapping more difficult:

Sequencing error As discussed in an earlier paragraph, different technologies have
different sequencing error profiles. The most common sequencing errors in
Illumina short reads are substitutions (Goodwin et al., 2016). Error rates dif-
fer between instruments but are reported to be in the range of 0.1 - 1.0 %
(Canzar and Salzberg, 2015, Nielsen et al., 2011). Long read platforms on
the other hand show between 5 - 20 % sequencing error mostly consisting of
indel error (Mahmoud et al., 2019).

Quality and availability of suitable reference genomes Outside of established model
organisms high-quality reference genomes are often not available (Rhie et al.,
2021). Errors in the reference genome like shortened tandem repeats (Yang
et al., 2019) cause differences between reads and the reference. Further-
more, for organisms or strains that have never been studied before reference
genomes are not available. Thus, reads must be mapped to the evolutionary
closest available reference genome. In such a case, the number of differences
between reads and the reference will be determined by the evolutionary dis-
tances between the sequenced genome and the reference genome.

True biological variation Even if a high-quality reference genome exists the se-
quenced genome will never match the reference genome perfectly (Reinert
et al., 2015). True biological variation within populations will lead to differ-
ences between the reads and the reference. In humans this has been estimated
to be between 0.1% and 0.3% (Canzar and Salzberg, 2015, Mahmoud et al.,

1.3. ANALYSIS OF HIGH-THROUGHPUT SEQUENCING DATA 17

2019). However, much higher variability is observed in other organisms.
Furthermore, variation is not uniformly distributed throughout the genomes.
Some regions like for example the MHC locus in humans is more variable
than other highly conserved loci (Reinert et al., 2015). As discussed ear-
lier, finding true biological variation is the main goal of many (re)sequencing
projects. Thus, accurate mapping of reads which span variants is one of the
main objectives of read mapping tools (Nielsen et al., 2011).

Repeats A common characteristic of genomes is that they often contain one or
more copies of identical or near identical sequences or motifs. These repeated
sequences (repeats) are frequently caused by duplication events, transportable
elements, or satellite repeats in centromeric or telomeric regions (Cechova,
2021). For the human genome an estimated 50 - 69 % of all nucleotides can
be characterised as being part of a repeat (de Koning et al., 2011). Repeats
longer than the read length will result in so-called multi-mapping reads. For
these reads it is impossible to assign a single unique region of origin.

Read mapping tools need to account for these sources of sequence differences and
biases to allow for accurate identification of the regions in the genome that show
the highest sequence similarity to a given read.
A common approach to determine pairwise sequence similarity and compute se-
quence alignments are dynamic programming algorithms like the Needleman-Wunsch

(NW) or the Smith-Waterman algorithm (SW).

Sequence alignment algorithms: Sequence alignment algorithms require a scor-

ing function that assigns a positive score to each match and a negative score (penalty)
to each mismatch and indel. For two sequences S and Q, the global alignment al-
gorithm (also referred to as Needleman-Wunsch algorithm) uses dynamic program-

ming to find the optimal sequence alignment given the respective scoring function
in quadratic time and space complexity (Knuth, 1997). Conceptually, the algorithm
works by filling in a two-dimensional matrix V of length m times n where m and n

are the length of S and Q, respectively. Each element Vi, j of the matrix represents
the optimal alignment score - i.e. the sum of all individual match, mismatch and
indel scores of the optimal alignment - between the sub-sequences S0..i and Q0.. j.

18 CHAPTER 1. INTRODUCTION

Filling in the first row and column is trivial. All remaining cells can be filled in
using a simple recurrence:

Vi, j = max

Vi−1, j−1 + s(Si,Q j)

Vi−1, j +G

Vi, j−1 +G

, where s is the scoring function and G is the penalty for introducing a one base
pair insertion or deletion. In other words, the value of each cell only depends on
the value of their three neighbouring cells. After filling in V , the bottom and left
most cell (V i, j) contains the optimal alignment score for S and Q. This part of the
algorithm is also called the forward step. In a second step (called backtracking),
the optimal sequence alignment is reconstructed using the values in V . First, it is
determined from which of the cells the score in Vi, j was derived from. If it was
Vi−1, j−1 the reconstructed alignment will contain a match or mismatch (depending
on the sequence of S and Q). If it was Vi−1, j or Vi, j−1 the alignment will contain
an insertion or deletion, respectively. Repeating this step until reaching V0,0 will
reconstruct the optimal alignment between S and Q. A variation of this algorithm
called Smith-Waterman algorithm computes so called local alignments. Instead of
the best alignment between S and Q it will find the alignment with the highest score
for all possible sub-strings of S and all sub-strings of Q.
If we think of S as our reference genome and of Q as our read, it becomes obvious
how the SW algorithm could be used to find the optimal read mapping. Factors like
the number of differences between the read and the reference genome and the repeat
content of the reference genome have little to no influence on this approach. Fur-
thermore, alignment algorithms can be extended to model indels of multiple con-
secutive base pairs stemming from a single mutation event (Canzar and Salzberg,
2015) using gap costs. As introduced earlier indels are visualised by using dash
characters in alignments. We can think of a gap as a consecutive run of one or
more dash characters in an alignment (Knuth, 1997) (see Figure 1.6). For a naive
alignment algorithm, the penalty for a gap of length n equals n times the penalty for
a gap of length one (linear gap costs). Evidently, when using linear gap costs two

1.3. ANALYSIS OF HIGH-THROUGHPUT SEQUENCING DATA 19

gaps of length two are assigned the same penalty as one gap of length four. For bi-
ological variation it is however more likely to observe one longer gap than multiple
shorter gaps in close proximity. Thus, so-called affine gap costs have been intro-
duced which use a separate gap-open gO and gap-extension penalty gE and define
the cost of a gap with length n as:

G(n) = gO +n∗gE

Affine gap costs have been shown to model genetic variation more accurately and
thus improve alignments of reads spanning indels (Knuth, 1997).
The main disadvantage of alignment algorithms is that their runtime and mem-
ory requirements scale with the size of the reference genome. As a result, us-
ing sequence alignment algorithms alone for read mapping is impractical even for
smaller bacterial genomes and computational infeasible for larger mammalian or
plant genomes (Canzar and Salzberg, 2015). Note, optimised alignment algorithms
exist which reduce either runtime or memory complexity. However, even these
algorithms are not efficient enough to be used for read mapping directly.

String matching: Searching large databases of text for exact matching substrings
is an important and well-studied problem in computer science (Knuth, 1997). Most
notably indexed string matching allows for finding occurrences of a search pattern
without having to scan the full database (Canzar and Salzberg, 2015). Suffix trees

or the more compact Suffix arrays allow for search times that only scale with the
length of the pattern (the read sequence in our case) and not the reference genome.
Although, the size of a suffix array scales only linearly with the input text (the
reference genome), the amount of memory required still makes suffix arrays im-
practical for routine use in read mapping tools (Canzar and Salzberg, 2015). Only
after Ferragina and Manzini had shown how to reduce memory requirements by us-
ing the Burrows Wheeler Transform (BWT) when presenting their FM-Index, string
matching started to be widely applied to the read mapping problem. BWT based
data-structures like the FM-Index mimic suffix/prefix tries but combine them with
compression. This makes them similar in size to the original text, while maintain-

20 CHAPTER 1. INTRODUCTION

ing near optimal search time (Canzar and Salzberg, 2015). Note, the FM-Index
still only permits searching for exact matches and thus cannot be applied to read
mapping without modifications.
Most read mapping tools use heuristics to either speed up sequence alignments, ex-
tend BWT/FM-Index like data-structures to account for sequencing error, or com-
bine the two approaches to enable fast, efficient, and accurate mapping. Since read
mapping is one of the first steps of a reference-based analysis workflow, the choice
of reads mapper and its algorithmic approach can influence downstream analysis
(Cechova, 2021). In the following we will briefly discuss the trade-offs between
different read mapping algorithms for short and long read mapping.

Short read mapping

As Illumina’s sequencing platform has been dominant for more than a decade2 most
short read mapping tools have been optimised for aligning billions of reads with a
length between 25 and 250 bp, containing mostly substitution error, to an arbitrary
high-quality reference genome. As discussed earlier, it is computationally infeasi-
ble to align these reads using pairwise sequence alignment algorithms alone. How-
ever, many heuristics have been introduced to reduce runtime and memory usage
while maintaining the favourable characteristics of sequence alignment algorithms.
The key observation was that the vast majority of the reference genome will share
little to no sequence similarity with a given read (Canzar and Salzberg, 2015). An-
other observation was that reference genomes, for all practical purposes, are static.
Thus, data structures that allow for a quick identification of all regions in the refer-
ence that show a sufficiently high sequence similarity to a read are beneficial, even if
they are compute- or memory-intensive to build as they can be reused over and over
again. As a result, many approaches have been developed that follow a so-called
seed and extend or seed and vote approach (Canzar and Salzberg, 2015). Briefly, in
the seeding phase an index is used to quickly identify short exact matches between
a read and the reference (seeds). Most commonly the index is a hash table that
stores the positions in the reference genome of all k-mers with a fixed k (e.g., 13).

2https://frontlinegenomics.com/how-did-illumina-monopolize-the-sequencing-market/

1.3. ANALYSIS OF HIGH-THROUGHPUT SEQUENCING DATA 21

As hash table look-ups only take constant time, retrieving reference locations for all
k-mers occurring in a given read is fast and only scales with the read length. In the
extension phase seeds in close proximity to each other are connected using a more
time intensive sequence alignment algorithm. Seed and vote algorithms work in a
similar fashion. However, they use the number of seed matches in close proximity
as a proxy for the overall similarity between the read and the reference (Canzar
and Salzberg, 2015). During an additional filtering step all regions with no or an
insufficient number of seed matches are discarded. All remaining regions are ”cut
out” from the reference and subjected to a pairwise sequence alignment with the
read sequence. Different approaches for how to implement the seeding and filtering
steps have been proposed and were summarised by Canzar and Salzberg (2015).
With the introduction of the FM-Index more read mapping tools started adopting
a mapping strategy that does not involve dynamic programming-based sequence
alignment algorithms. A straightforward approach to apply the BWT based FM-
Index to the read mapping problem is to assume an upper bound for the number of
allowed differences k. A given read can then be mutated into all possible sequences
with a maximum of k differences and the BWT index searched for all these strings.
While this strategy can be implemented using a straightforward recursive function
the search time increases exponentially with k. Tools like BWA (Li and Durbin,
2009) and Bowtie (Langmead et al., 2009) use a similar approach but implement
pruning strategies and heuristics to allow for fast and memory efficient mapping
of short reads (<100bp). Tools like bowtie2 (Langmead and Salzberg, 2012), in
contrast, rely on a seed and extend approach but use a modified FM-Index for iden-
tifying fixed length seeds. The advantage is that here k can be low (e.g., 1) allowing
for fast and memory efficient seed identification even in repetitive regions. We will
discuss differences in runtime and mapping accuracy for specific mapping strategies
in more detail in chapter 3.

Long read mapping

Long reads come with 5-20% sequencing error. Furthermore, reads are on aver-
age two orders of magnitudes longer than short reads. Thus, short read mapping

22 CHAPTER 1. INTRODUCTION

tools are generally not applicable to long read data. However, similar to short read
mapping tools, current long read mappers like BLASR (Chaisson and Tesler, 2012)
detect short exact matches between the read and the reference first. Due to the high
error rate this step alone is not informative enough to determine the most likely
mapping location of the full read. Thus, long read mappers add a clustering step
- often called chaining - to combine short matches in close proximity which are
consistent with an alignment of the full read, discarding spurious matches to unre-
lated parts of the genome (Canzar and Salzberg, 2015). Finally, they use sequence
alignment algorithms to either compute the final alignment between the read and
the reference (BLASR) or connect already identified exact matches (BWA-MEM
(Li, 2013)). BLASR uses either a suffix array or a FM-index for the first step while
BWA-MEM uses an algorithm to identify so-called super maximal exact matches
between the read and the reference (Liu and Schmidt, 2012). This algorithm iden-
tifies all unique matches i.e., non-overlapping exact matches between the read and
the reference that cannot be extended any further (Canzar and Salzberg, 2015). Due
to the read length multi-mapping reads are observed less frequently with long reads.
However, split reads - reads that cannot be mapped to the reference with a single lin-
ear alignment - are commonly observed for reads that overlap structural variations
and need to be addressed properly.

1.3.2 Variant calling

Variant calling is the process of identifying or calling genetic variation from a se-
quencing dataset (Olson et al., 2015). Typically, calling of SNV and small indels
(up to 30bp) is carried out by SNV calling tools (often called SNP callers). Larger
structural variations are called using specialised SV calling tools (SV callers). Ac-
curate alignments are crucial for variant detection as alignment errors could be mis-
interpreted as true biological variation (Nielsen et al., 2011). In the following we
will give a brief overview of SNV and SV calling and their respective challenges
they pose for read mapping.

1.3. ANALYSIS OF HIGH-THROUGHPUT SEQUENCING DATA 23

AGCCATCCCGGAATGAATGAAAAGCGTTTCCTAGTGGCTGTAATTTGCATCTCCCTGGTGGCTGAReference:

TCCCGGAATGAATGAAAAGCGTTTCCTAGTGGCTGTAACTTGCATCTCCCTG-TGGRead 1:

CATCCCGGAATCAATGAAAAGCGTTTCCTAGTGGCTGTAACTTGCATCTCCCTGGTGGCTGARead 2:

AGCCATCCCGGAATGAATG--AAGCGTTTCCAAGTGGCTGTAACTTGCATCTCCCTGGTGGCTRead 3:

TGAATG--AAGCGTTTCCTAGTGGCTGTAACTTGCATCTCCCTGGTGGGTGRead 4:

Figure 1.7: Example pileup of five reads against a reference. Sequencing error is coloured
in red and genuine biological variation in green.

Single nucleotide variation calling

SNV callers screen read alignments for sites where one or more reads differ from
the reference genome (Nielsen et al., 2011). These differences can either be caused
by sequencing error or true variation in the sequenced individual. The process
of SNV calling can be visualised by piling up all the reads that overlap with a
given region of the reference as shown in Figure 1.7. Each column of this pileup
represents a single nucleotide in the reference (for simplicity we ignore insertions
here). As long as sequencing errors (indicated by the red letters in Figure 1.7)
is mostly random, the chance for observing the same error multiple times in one
column is low. In contrast, for true variation we expect roughly 50 % of the reads to
show the same alternate nucleotide for a heterozygous variant. For a homozygous
variant, we expect most of the reads to show an alternative nucleotide (i.e., not the
nucleotide present in the reference genome).
The first generation of SNV callers simply scanned the pileup column by column.
If in a given column the number of reads that show an alternative allele exceeds
a certain fixed threshold (e.g., 20% of the overall read depth), a SNV or indel is
called (Nielsen et al., 2011). Typically, a second fixed threshold (e.g., 80% of the
overall read depth) was used to determine whether the sequenced individual is het-
erozygous or homozygous for the variant. This process is also called genotyping.
However, for samples with lower read depth this approach might lead to under-
calling of heterozygous variants (Nielsen et al., 2011). In addition, it doesn’t take
into account non-random sequencing errors and does not provide reliable quality
scores along with the variant calls. For this reason, later SNV callers use several
probabilistic methods to included base quality scores, models of sequencing error
and information about allele frequencies or patterns of linkage disequilibrium when

24 CHAPTER 1. INTRODUCTION

calling variants from a large number of samples (Nielsen et al., 2011).
Independent of the SNV calling algorithm, accurately aligned reads are required for
high-quality SNV calls (Nielsen et al., 2011). In the context of short reads, it is most
important to identify the correct mapping location for reads overlapping repeats as
well as highly variable regions of a genome. Reads that cannot be mapped uniquely
must be reliably identified as multi mapping reads and assigned a low mapping
quality score. Otherwise, reads incorrectly mapped to a similar but not identical
repeat could cause false positive SNV calls. Furthermore, read alignments need
to be accurate around short indels to avoid alignment artifacts being called as true
variation.

Structural variation calling

Multiple strategies for SV calling from short read data exist (see Figure 1.8).

Read depth So-called copy number variation (CNV) callers use read depth to de-
tect large (> 1000 nucleotides) deletions or duplications. A region that was
duplicated in the sequenced individual will yield roughly double the read
depth when mapping to a reference that does not have the duplication (see
Figure 1.8 second column). Equally, deleted regions will yield half the read
depth for heterozygous deletions or no reads at all for homozygous dele-
tions. Detecting these changes allows for robust CNV calling. Evidently,
this approach is not applicable to balanced SVs like translocations or in-
versions. Furthermore, depth based CNV callers cannot accurately detected
break points (Alkan et al., 2011).

Read pair For paired-end sequencing read-pair information can be used for SV
calling. Two reads that form a pair are expected to map within a certain
distance (the insert size). Furthermore, their direction is determined by the
library preparation. If a read pair is mapped across a break point of a SV ei-
ther the distance or the orientation will be affected. For example, the distance
between two reads from a read pair spanning the break point of a 10 kbp dele-
tion will be much larger than expected when mapped to the reference. While

1.3. ANALYSIS OF HIGH-THROUGHPUT SEQUENCING DATA 25

Figure 1.8: Different strategies for calling SVs from sequencing data. Image taken from
Alkan et al., 2011.

26 CHAPTER 1. INTRODUCTION

this approach is able to identify all types of SVs, reliable detection of exact
break points is not possible (Alkan et al., 2011).

Split read To detect exact break points a SV caller must take split read alignments
into account (Alkan et al., 2011). Reads that span a breakpoint of a large SV
will need to be split into two separate alignments when aligning them back
to the reference. In the case of a 10 kbp deletion the part of the read that
is upstream of the break point will for example map 10 kbp upstream of the
second part of the read. Thus, accurate split read alignments can be used to
identify exact break points for SVs (Alkan et al., 2011).

Another approach for detecting SVs is to create a de-novo assembly from the reads
first and call SVs from a whole genome alignment between the assembly and ref-
erence genome. While this strategy can help to identify complex SVs, it is more
compute intensive and lacks sensitivity when calling heterozygous SVs (Nattestad,
2017).
As discussed in a previous paragraph, a characteristic of SVs is that they mostly oc-
cur in repetitive regions of the genome. Since short reads can often not be aligned
uniquely in these regions, SV calling from short reads is inherently difficult (Mah-
moud et al., 2019). Furthermore, short reads are less likely to fully span a SV thus
complicating SV calling even further. Long reads, on the other hand, span most
repetitive regions and have a higher chance to completely span SVs like large in-
sertions. There are two ways a SV can be represented in long read alignments.
Insertions or duplications with lengths exceeding the read length as well as inver-
sions and translocation are represented as split alignments. Insertions, deletions,
and duplications with lengths significantly shorter than the read length can either
be represented as split alignments or as a single alignment. For example, a 1,000 bp
deletion spanned by a 5,000 bp read could be expressed as two 2,500 bp alignments
mapping 1,000 bp apart or as a single 6,000 bp alignment containing the full 1,000
bp deletion. To enable accurate SV calling, long read mapping tools must be able
to create accurate split read alignments and alignments fully spanning SVs in the
presence of the high indel based sequencing error observed in long read sequencing
technologies.

Chapter 2

Main contributions of this thesis

While there is a wealth of read mapping tools available, we found that the majority
of these tools, especially the most popular ones, only focus on a specific well-
defined use-case. Namely, mapping of short high-quality reads to a high-quality
reference genome. The goal of this thesis is to develop easy-to-use read mapping
tools that map reads efficiently and accurately and enable accurate variation calling
in the absence of a closely related high-quality reference sequence or in the presence
of high levels of sequencing error.
In chapter 3 we present an easy-to-use short read mapping tool that can tolerate
a high number of differences between the reads and the reference and therefore
enables researchers to apply large scale NGS reference-based analysis outside of
standard model organisms. Our main contributions were:

Optimised index data-structure Our index improves over available hash-tables
by using domain knowledge like typical genomes sizes, useful ranges of k

for read mapping and knowledge about the repeat content and structure of
genomes to allow for efficient querying of k-mer positions while being com-
pact enough to fit into main memory.

Adaptive seed filtering The vast majority of reads in a dataset share sufficient sim-
ilarity with only a single region in the reference genome. The correct mapping
location for these reads is easily determined in the seeding step and needs
only minimal verification using sequence alignments. Only a small percent-

27

28 CHAPTER 2. MAIN CONTRIBUTIONS OF THIS THESIS

age of reads - mostly reads stemming from repetitive or highly polymorphic
regions - are typically hard to map and thus need extensive verification using
sensitive sequence alignments. We defined a seed filtering heuristic that effi-
ciently discriminates between easy and hard to map reads in the seeding step
enabling accurate and fast mapping at the same time.

Self-tuning of most important parameters All important read mapping parame-
ters are automatically estimated from the input data. Thus, no custom param-
eters have to be adjusted by the user.

Furthermore, we found that existing long read mapping tools are unable to align
noisy long reads accurately in the presence of larger structural variations. First,
routinely used affine gap costs are unable to accurately align reads that span true bi-
ological insertions and deletions in the presence of sequencing error that is found in
current single molecule sequencing platforms. Second, long reads that span break-
points caused by large structural variation cannot be aligned in a single linear align-
ment but need to be split. The optimal strategy for splitting reads depends on the
length of the reads and the length and type of SV. To address these issues in chapter
4 we introduce a new long read mapping tool that includes:

Convex gap costs We introduce a heuristic alignment algorithm that mimics con-
vex gaps costs enabling accurate alignment of reads spanning large insertions
and deletions even in the presence of sequencing error.

SV aware per-read selection of highest scoring non-overlapping alignments To
improve SV calling we implemented a step-wise alignment approach were
high confidence linear alignments are found first and then pieced together to
create the optimal split read alignment.

Chapter 3

NextGenMap: Fast and accurate
read mapping independent of
evolutionary distance

3.1 Introduction

High throughput sequencing (HTS) technologies produce several million reads per
run with read lengths ranging from 36 to >1000 bp. The increasing read length
and the advent of technologies like Ion Torrent and MiSeq drive the need for new
efficient read mapping methods. In addition, the demand increases for methods that
can cope with high sequence divergence and at the same time are user friendly.
Two main groups of read mapping programs are distinguished based on their align-
ment methods (Nielsen et al., 2011). First, Burrows Wheeler transformation (BWT)
based methods e.g. BWA (Li and Durbin, 2009), which are fast but optimized for
short reads and genomes with low polymorphism. Second, hash based methods like
Stampy (Lunter and Goodson, 2011), which are slow but also suited for highly poly-
morphic genomes. A method that combines speed and accuracy provides a quan-
titative and qualitative improvement of current methods. To this end, we introduce
NextGenMap, a method that is faster than current BWT based methods and at the
same time handles short and long reads independent of the number of differences

29

30
CHAPTER 3. NEXTGENMAP: FAST AND ACCURATE READ MAPPING

INDEPENDENT OF EVOLUTIONARY DISTANCE

between read and reference genome. NextGenMap implements new techniques to
efficiently identify a minimal set of genomic regions on the reference genome that
share a sequence similarity with a read. Furthermore, NextGenMap estimates the
most important parameters (e.g. minimal k-mer matches, alignment corridor width)
to reliably map reads. To achieve a short run time, NextGenMap makes use of multi
core CPUs and if available any OpenCL enabled graphic card (GPU) independent
of its manufacturer. Therefore, NextGenMap can bridge the gap between fast and
flexible mapping programs. NextGenMap supports fasta, fastq, SAM, and BAM as
input formats; and outputs SAM and BAM files. Furthermore, NextGenMap maps
single-end and paired-end data, offers a local (Smith Waterman) and an end-to-end
alignment mode and supports aligning bisulfite treated reads (Dinh et al., 2012).
The peak memory consumption of NextGenMap ranged from 5 to 6 GB depending
on the read length. Thus, NextGenMap runs on a standard desktop computer with 8
GB of RAM.

3.2 Methods

NextGenMap comprises three steps. First, it splits the reference genome into over-
lapping k-mers and stores the positions in a hash-table. Second, NextGenMap iden-
tifies the genomic regions, where a read potentially maps to. To this end, the k-mers
from each read are extracted and putative genomic locations are retrieved from the
hash-table. Only regions on the genome where the number of k-mer matches ex-
ceeds a certain threshold are considered as candidate mapping regions. Unlike other
methods NextGenMap automatically determines a read specific threshold, rather
than one threshold for all reads. Third, NextGenMap computes the alignment score
for the candidate mapping regions. For the candidate region(s) with the highest
alignment score the full alignment is computed and reported. This final step is per-
formed using a extended implementation of the MASon library (Rescheneder et al.,
2012).
Like other hash-based methods (Lunter and Goodson, 2011) we use overlapping k-
mers (substrings of k letters that occur in the reference genome) to identify regions
on the genome that show a high similarity to a read. To this end, we construct a

3.2. METHODS 31

hash-table to store the k-mer positions in the reference genome. If a k-mer occurs
in the reference genome and in a read, we call it seed-word for the particular read.
We will use seed-word whenever it is clear that a particular read is meant. One
or more seed-words in close vicinity define a candidate-mapping region (CMR) in
the genome, where the read potentially maps. Thus, a read may have many CMRs.
For each CMR NextGenMap computes a pairwise sequence alignment score. For
highest scoring CMRs the corresponding alignment is computed and output.
To reduce computation time without compromising the number of correctly mapped
reads we introduced four steps. Each of the steps are in principal not new, but we
developed and implemented new ideas that lead to the observed performance.

1. Efficient k-mer representation
2. Indexing the reference genomes
3. Identification of CMRs
4. Threshold computation
5. Alignment computation

3.2.1 k-mer representation & extraction

In NextGenMap k-mers only consist of the nucleotides A, C, G, or T; k-mers con-
taining other letters according to the IUPAC nucleotide code are excluded. Nu-
cleotides are converted to upper case letters before processing. Soft masking –
marking repeats by lower case letters – of reference sequences is ignored. To
reduce memory usage and speed up k-mer operations like comparison or lookup
NextGenMap converts nucleotides from the standard 8-bit ASCII to a 2-bit binary
representation. The nucleotides A, C, T and G are represented by the binary values
002, 012, 102 and 112. Conversion of a single nucleotide can be done efficiently
using bit operations:

N2 = (NASCII >> 1)∧112

where N2 is a nucleotide in 2-bit representation, NASCII is a nucleotide in ASCII
representation, >> 1 shifts all bits one position to the right and ∧ is the logical
AND operator. For example, for the nucleotide A with the binary ASCII code of

32
CHAPTER 3. NEXTGENMAP: FAST AND ACCURATE READ MAPPING

INDEPENDENT OF EVOLUTIONARY DISTANCE

010000012, shifting all bits by one, 0010000002, and retaining only the two least
significant bits results in the 2-bit representation of 002.
To store k-mers NextGenMap places the 2-bit representation of the k nucleotides in
a 64-bit word starting from the least significant bit. The 4-mer AT GC for example
is represented by the binary number 001011012. Therefore, each k-mer implicitly
has a numerical representation. For AT GC the numerical value is 45. In theory the
maximal length of a k-mer in NextGenMap is 32 nucleotides.
The 2-bit representation allows us to extract adjacent k-mers from a reference se-
quence or a read – one of the most important operations during read mapping –
efficiently. Instead of extracting all k nucleotides for each k-mer at position i, we
reuse the k−1 already encodes nucleotides from the k-mer at position i−1:

Ki = (Ki−1 << 2)∨Ni

where Ki is the 2-bit encoded k-mer ending at position i and Ni the 2-bit encoded
nucleotide at position i.
Furthermore, the 2-bit representation allows us to efficiently compute the reverse
complement of a k-mer only using bit operations. Another important operation for
finding seed words. Computing complementary nucleotides requires only a single
XOR operation with the bit pattern 102:

A
 T : 002⊕102 = 102⊕102 = 002

C
 G : 012⊕102 = 112⊕102 = 012

We can extend this to compute the complementary sequence of a full k-mer with
0 < k <= 32 by using the bit pattern 101010101010101010101010101010102 for
the XOR operation.
To reverse the sequence of a k-mer we modified a well know approach to reverse
the bit order in a 64-bit word 1. As shown in figure 3.1 this approach first switches
the order of the upper and lower 32-bit block of the 64 bit word. Next, it recursively
switches the order of the nested 16, 8, 4, 2 and 1 bit blocks. Since we want to

1http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious

3.2. METHODS 33

15 14 1213 11 10 89 7 6 45 3 2 01

7 6 45 3 2 01 15 14 1213 11 10 89

3 2 01 7 6 45 11 10 89 15 14 1213

01 3 2 45 7 6 89 11 10 1213 15 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N1 N2 N3 N4 N5 N6 N7 N8

N5 N6 N7 N8 N1 N2 N3 N4

N7 N8 N5 N6 N3 N4 N1 N2

N8 N7 N6 N5 N4 N3 N2 N1

switch
8 bit blocks

switch
4 bit blocks

switch
2 bit blocks

switch
1 bit blocks

Figure 3.1: Reversing the sequence of a k-mer with bit operations. Illustrated with a 16-
bit word containing nucleotides N1..N7. First, we switch the order of the two 8-bit blocks
depicted in green and red. Next, we switch the order of all 4-bit block pairs within the 8-bit
blocks. The same is done for all pairs of 2-bit blocks. The last switch (dashed grey lines) is
omitted since nucleotides are represented by 2-bits. Each switch requires five bit operations.

reverse the nucleotides encoded by 2-bit, we skip the last step.

3.2.2 Indexing the reference genome

To reduce the size of the hash-table NextGenMap by default only considers k-mers
that start at every third position (∆ = 3) in the reference genome. Moreover, for
indexing we only consider k-mers from the plus strand. To accommodate for reads
that map to the minus strand we retrieve the genomic positions of a k-mer and its
reverse complement during the CMR search. Our index consists of an array (GP)
and a hash-table (HT). GP stores the genomic positions of all k-mers and thus
its size equals the number of k-mer positions in the reference genome. Positions
where the same k-mer starts are stored consecutively in GP, we call them k-mer
blocks. The order of the k-mer blocks is determined by the lexicographic ordering
of the k-mers, starting with AA . . .A and ending with T T . . .T . HT allows the quick
retrieval of the genomic positions of a k-mer. A hash function maps the k-mer to
the corresponding entry in HT , which contains the index of the entry in GP that

34
CHAPTER 3. NEXTGENMAP: FAST AND ACCURATE READ MAPPING

INDEPENDENT OF EVOLUTIONARY DISTANCE

Figure 3.2: Index structure to efficiently compute CMRs.

3.2. METHODS 35

stores the first genomic position of the k-mer. As an example, assume that AAAA

occurs six times in the reference genome and the next k-mer AAAC occurs 20 times,
then HT contains the index 0, identified by keyAAAA and the index 6 identified by
keyAAAC. GP(0 . . .5) stores the genomic positions of AAAA and GP(6 . . .26) the
positions of AAAC (see Figure 3.2).
To build our index, NextGenMap first determines the k-mer frequencies. To this end,
we introduce a temporary hash-table (tHT) where each entry stores the number
of times the corresponding k-mer occurs. Second, NextGenMap tags k-mers that
occur more than 1,000 times as repetitive. Repetitive k-mers will be excluded from
subsequent steps, because they do not contribute to the identification of the correct
mapping positions. Third, NextGenMap initializes HT . To this end, NextGenMap

iterates through tHT . The entry in HT that corresponds to the current entry in
tHT is assigned the cumulative number of k-mer positions found in tHT so far not
counting the current number.
To continue our example tHT (AAAA) = 6, tHT (AAAC) = 20, then NextGenMap

stores the indices 0, 6, and 26 identified by the keys keyAAAA, keyAAAC, keyAAAG

in HT . Finally, NextGenMap parses the reference genome and stores the genomic
position of each k-mer in GP according to the indices in HT . If AAAA occurs at
positions 100, 211, 795, 1001, 3128 and 5895 then these numbers constitute the
first k-mer block in GP (see Figure 3.2).
Our index retrieves the genomic positions for a k-mer with one consecutive memory
access to GP. Thus, we optimally exploit the CPU cache.
To save memory HT consists of unsigned 32-bit integer numbers. Therefore, the
number of entries in GP is limited to 232 = 4,294,967,296.

3.2.3 Identification of CMRs

Figure 3.3 illustrates how NextGenMap efficiently determines CMRs in a self-
contained and intelligible way. More specifically, we map the read R of length
l = 8 to the reference genome G, assuming step-size ∆ = 2 and considering 3bp
long k-mers in the reference genome.

36
CHAPTER 3. NEXTGENMAP: FAST AND ACCURATE READ MAPPING

INDEPENDENT OF EVOLUTIONARY DISTANCE

0 5 10 15 20 25

0
1

2
3

4
5

Position on the genome [bp]

nu
m

be
r

of
 s

ee
d

w
or

ds

fmax
R

Figure 3.3: Identification of candidate-mapping regions in the reference genome (G) for an
individual read (R) using a k-mer size of 3bp and a step size of ∆ = 2: (A) Detection of seed
words. (B) Shift to the potential read start. (C) Accounting for insertions or deletions. (D)
Computing the seed-word distribution FR along the reference genome G.

3.2. METHODS 37

The arrows in Figure 3.3(a) shows the start of the seed-words in R and G. Note
the 3-mer AAA at position 1 in the reference is not detected due to ∆ = 2. The set
S P i collects the genomic starting positions of the seed-word beginning at position
i = 1, . . . ,(l− k) of the read (last line Figure 3.3(a)).
Because we want to align R to G, we compute the potential starting point of the
read in the reference genome with respect to the elements in S P i. That is, we
compute the shifted sets S P ′

i = {p− i|p ∈S P i} for each i. The last line in Fig-
ure 3.3(b) shows the result. The shift concentrates seed-words at certain positions
in the genome, for example S P ′

0 = S P ′
2 an indication that R if aligned starting

at genomic position 8 will have at least two seed-words.
Finally, to account for insertions or deletions, that may be prevalent for highly poly-
morphic genomes or sequencing technologies e.g. Ion Torrent, we collect the seed-
words of R that occur in the segments [8 j,8 j+1,8 j+2,8(j+1)−1] (j = 0,1, . . .)
at the starting point 8 j of the segment (highlighted yellow in Figure 3.3(c)). Lump-
ing seed-words modulo 8 leads to an accumulation of seed-words at fewer genomic
positions. More formally, we finally compute how often, FR(p′′), the genomic po-
sition p′′ occurs in all S P ′′

i ’s. Figure 3.3(d) shows the resulting frequency dis-
tribution (FR) for the toy example. We note that the segmentation of the reference
genome can be done efficiently using bit-shift operations, that is why we selected
the particular value 8 = 23

Computing the seed-word distribution FR

To compute FR, we construct a hash-table of length L and process all starting posi-
tions. The hash key is computed using a multiplication hashing approach with the
parameter suggested by Knuth (1997):

key j = (2,654,435,761 · p′′) mod L,

where p′′ ∈S P ′′
i . For each p′′ we increase by one the corresponding hash value,

which represents FR(p′′). Linear probing is applied to resolve collisions. Collisions
occur, when two different p′′ result in the same hash key. L is automatically adjusted
to efficiently operate on the hash-table. Initially L = 216. If for a particular read an

38
CHAPTER 3. NEXTGENMAP: FAST AND ACCURATE READ MAPPING

INDEPENDENT OF EVOLUTIONARY DISTANCE

(a)

0 500 1000 1500 2000 2500 3000

0
10

20
30

40
50

Position on the genome [mio bp]

nu
m

be
r

of
 s

ee
d

w
or

ds

= 315

= 1

fmax
 R

(b)

0 500 1000 1500 2000 2500 3000

0
10

20
30

40
50

Position on the genome [mio bp]

nu
m

be
r

of
 s

ee
d

w
or

ds

= 634
= 138

fmax
 R

Figure 3.4: Seed-word distribution along the human genome for two reads. The green arrow
indicates the correct mapping position. The green line displays the read specific threshold
ΘR. The red line displays a fixed threshold, here 2 seed words. The number of CMRs
exceeding the respective threshold are written in green and red.

overflow occurs, we double L for this read and redo the computation. An overflow
occurs when ∑

l
i=0 |S P ′′

i|> L. If an overflow occurs for 10 out of 100 reads, then
the global L is doubled. This reduces the number of re-computations. On the other
hand, if no overflow occurs for 100 reads, then L is globally halved. This ensures
that the CPU cache is optimally exploited.
Finally, the hash-table lists all genomic starting positions that have at least one seed-
word in common with read R. FR specifies the number of seed-words that support a
particular starting position (see Figure 3.3(d)).

3.2.4 Data driven threshold on the number of alignment com-
putations

Figure 3.4 shows the seed-word count distributions FR1,FR2 for reads R1,R2. The
distributions for both reads are quite distinct. FR1 shows one clear peek while FR2

is uninformative with respect to the potential location of the read. It is intuitively
obvious that R1 should be aligned to the region around the peak and that it is not
necessary to take into account other genomic regions and in fact, the green arrow

3.2. METHODS 39

(origin of the read) coincides the maximum of FR1. For R2 it is not clear, which
genomic region is the correct one, thus we need to also compute alignment scores
for other genomic regions. We want to optimize the number of alignment computa-
tions automatically, taking into account the degree of genomic polymorphism and
the read specific characteristics. We note that a firm threshold (red line in Figure
3.4) would cause unnecessarily many alignment score computations for R1.
In the following we describe our approach to compute such a read specific threshold
ΘR.
To this end, we notice that if all k−mers of a read are pairwise different, the maxi-
mal number of seed-word equals

Smax =

⌈
l− k+1

∆

⌉
, (3.1)

To elucidate how similar the sequenced reads are to the theoretical Smax, we com-
pute for a random sample of B reads max{FR} for each read R and the average

Fmax =
1
B

B

∑
j=1

max{FR j}, (3.2)

where B = 10,000.
The ratio

σ =
Fmax

Smax
(3.3)

describes how similar the seed-word count of an average read is to the seed-word
count of a perfectly matching read (Smax). Thus, a small (close to zero) σ indicates
that the reads are on average very different from the reference genome, whereas a
σ close to one is indicative of reads that are very similar to the reference genome.
Large σ values imply that we only need to compute few alignment scores, since we
expect situations similar to Figure 3.4a.
However σ describes the average similarity. Figure 3.4 shows reads with very dif-
ferent signals of similarity occur in the same sample. To accommodate for this

40
CHAPTER 3. NEXTGENMAP: FAST AND ACCURATE READ MAPPING

INDEPENDENT OF EVOLUTIONARY DISTANCE

observation with the overall similarity σ , we define the read specific threshold

ΘR = σ max{FR}. (3.4)

Finally, NextGenMap offers the option to switch off the automatic threshold de-
termination. Then the user can define σ . Setting σ = 1 implies that only ge-
nomic regions with the highest FR are further processed (fast mode), setting σ = 0
(slow mode), results in alignment score computations for all genomic positions with
FR ≥ smin. By default smin = 1, but it can also be specified by the user.
To conclude this section: All the genomic positions that exceed the read specific
threshold are considered as starting positions for CMRs.

3.2.5 Alignment computation

Finally, the alignment computation identifies the CMR(s) with the highest align-
ment score and computes the corresponding full alignment(s).
Here, we compute the alignment based on a read and the region on the genome
starting from p′′−c/2 to p′′+ l+c/2, where c is the size of the alignment corridor
and l is the length of the read. Note that c only restricts the number of consecutive
insertion or deletion. The overall number of differences (mismatches, insertion and
deletions) are not restricted by c. By default, the alignment corridor is set according
to the read length:

c = 5+ l ∗0.15

, where l is the average read length over all reads. The value can also be modified
by the user.
For both, the score and the alignment computation NextGenMap uses the MASon
library (Rescheneder et al., 2012). MASon utilizes a wide range of CPUs and GPUs
independent of the available memory and the maximum number of concurrent com-
putations.
We extended MASon by providing end-to-end alignment algorithms. Furthermore,
the user can tune its own preferred scoring parameters. (e.g. for bisulfite treated

3.2. METHODS 41

T C C G A A A

G

A

T

C

C

A

A

0 0 0 0 0 0 0

0 0 0 0 2 2 2

0 0

0

0

0

0

2

2

1

0

0 0 1

2 1

4

3

3

0

1

2

3

2

0

1

0

1 0

5 4 3

2 5 7 6

Thread 1

Thread 2

Thread 4

T C C G A A A

G

A

T

C

C

A

A

0 0 0 0 0 0 0

0 0 0 0 2 2 2

0 0

0

0

0

0

2

2

1

0

0 0 1

2 1

4

3

3

0

1

2

3

2

0

1

0

1 0

5 4 3

2 5 7 6

T C C G A A A

G

A

T

C

C

A

A

0 0 0 0 0 0 0

0 0 0 0 2 2 2

0 0

0

0

0

0

2

2

1

0

0 0 1

2 1

4

3

3

0

1

2

3

2

0

1

0

1 0

5 4 3

2 5 7 6

T C C G A A A

G

A

T

C

C

A

A

0 0 0 0 0 0 0

0 0 0 0 2 2 2

0 0

0

0

0

0

2

2

1

0

0 0 1

2 1

4

3

3

0

1

2

3

2

0

1

0

1 0

5 4 3

2 5 7 6

T C C G A A A

G

A

T

C

C

A

A

0 0 0 0 0 0 0

0 0 0 0 2 2 2

0 0

0

0

0

0

2

2

1

0

0 0 1

2 1

4

3

3

0

1

2

3

2

0

1

0

1 0

5 4 3

2 5 7 6

T C C G A A A

G

A

T

C

C

A

A

0 0 0 0 0 0 0

0 0 0 0 2 2 2

0 0

0

0

0

0

2

2

1

0

0 0 1

2 1

4

3

3

0

1

2

3

2

0

1

0

1 0

5 4 3

2 5 7 6

T C C G A A A

G

A

T

C

C

A

A

0 0 0 0 0 0 0

0 0 0 0 2 2 2

0 0

0

0

0

0

2

2

1

0

0 0 1

2 1

4

3

3

0

1

2

3

2

0

1

0

1 0

5 4 3

2 5 7 6

T C C G A A A

G

A

T

C

C

A

A

0 0 0 0 0 0 0

0 0 0 0 2 2 2

0 0

0

0

0

0

2

2

1

0

0 0 1

2 1

4

3

3

0

1

2

3

2

0

1

0

1 0

5 4 3

2 5 7 6

T C C G A A A

G

A

T

C

C

A

A

0 0 0 0 0 0 0

0 0 0 0 2 2 2

0 0

0

0

0

0

2

2

1

0

0 0 1

2 1

4

3

3

0

1

2

3

2

0

1

0

1 0

5 4 3

2 5 7 6

T C C G A A A

G

A

T

C

C

A

A

0 0 0 0 0 0 0

0 0 0 0 2 2 2

0 0

0

0

0

0

2

2

1

0

0 0 1

2 1

4

3

3

0

1

2

3

2

0

1

0

1 0

5 4 3

2 5 7 6

T C C G A A A

G

A

T

C

C

A

A

0 0 0 0 0 0 0

0 0 0 0 2 2 2

0 0

0

0

0

0

2

2

1

0

0 0 1

2 1

4

3

3

0

1

2

3

2

0

1

0

1 0

5 4 3

2 5 7 6

T C C G A A A

G

A

T

C

C

A

A

0 0 0 0 0 0 0

0 0 0 0 2 2 2

0 0

0

0

0

0

2

2

1

0

0 0 1

2 1

4

3

3

0

1

2

3

2

0

1

0

1 0

5 4 3

2 5 7 6

T C C G A A A

G

A

T

C

C

A

A

0 0 0 0 0 0 0

0 0 0 0 2 2 2

0 0

0

0

0

0

2

2

1

0

0 0 1

2 1

4

3

3

0

1

2

3

2

0

1

0

1 0

5 4 3

2 5 7 6

T C C G A A A

G

A

T

C

C

A

A

0 0 0 0 0 0 0

0 0 0 0 2 2 2

0 0

0

0

0

0

2

2

1

0

0 0 1

2 1

4

3

3

0

1

2

3

2

0

1

0

1 0

5 4 3

2 5 7 6

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 50000

.

.

.

.

.

.

T C C G A A A

G

A

T

C

C

A

A

0 0 0 0 0 0 0

0 0 0 0 2 2 2

0 0

0

0

0

0

2

2

1

0

0 0 1

2 1

4

3

3

0

1

2

3

2

0

1

0

1 0

5 4 3

2 5 7 6

T C C G A A A

G

A

T

C

C

A

A

0 0 0 0 0 0 0

0 0 0 0 2 2 2

0 0

0

0

0

0

2

2

1

0

0 0 1

2 1

4

3

3

0

1

2

3

2

0

1

0

1 0

5 4 3

2 5 7 6

T C C G A A A

G

A

T

C

C

A

A

0 0 0 0 0 0 0

0 0 0 0 2 2 2

0 0

0

0

0

0

2

2

1

0

0 0 1

2 1

4

3

3

0

1

2

3

2

0

1

0

1 0

5 4 3

2 5 7 6

T C C G A A A

G

A

T

C

C

A

A

0 0 0 0 0 0 0

0 0 0 0 2 2 2

0 0

0

0

0

0

2

2

1

0

0 0 1

2 1

4

3

3

0

1

2

3

2

0

1

0

1 0

5 4 3

2 5 7 6

T C C G A A A

G

A

T

C

C

A

A

0 0 0 0 0 0 0

0 0 0 0 2 2 2

0 0

0

0

0

0

2

2

1

0

0 0 1

2 1

4

3

3

0

1

2

3

2

0

1

0

1 0

5 4 3

2 5 7 6

Intel i5-2500k
1 million

0.48 s
2.18 s

Hardware:
Sequences:
Time (Scores):
Time (Alignments):

OpenCL
PA

R
A

LL
E

L
E

X
E

C
U

T
IO

N

Nvidia GTX480
1 million

0.25 s
1.14 s

Hardware:
Sequences:
Time (Scores):
Time (Alignments):

OpenCL

4 Alignment/Thread 1 Alignment/Thread

VS

Figure 3.5: Mason efficiently computes short many-to-many alignments. Picture taken from
Rescheneder et al., 2012

.

reads the score penalty of T-C or A-G mismatches is reduced).

3.2.6 Mapping quality

NextGenMap computes the mapping quality (MQ) as the relative difference be-
tween the alignment score of the best alignment (AS1) and the score of the second
best alignment (AS2). While mapping quality is defined to be in the range of 0 to
255 most tools use 60 as the maximum. To stick to this convention NextGenMap

scales the relative difference to a range from 0 to 60:

MQ = 60∗ AS1−AS2

AS1
(3.5)

Thus, if AS1 and AS2 are very similar MQ will be low indicating low confidence
in the mapping location. If AS2 is much smaller than AS1, MQ will approach 60
indicating high confidence. If only a single CMR was identified for a read, meaning
AS2 does not exist, the MQ is set to 60.

42
CHAPTER 3. NEXTGENMAP: FAST AND ACCURATE READ MAPPING

INDEPENDENT OF EVOLUTIONARY DISTANCE

3.2.7 Paired-end mapping

When mapping paired-end reads NextGenMap first retrieves alignment scores for
all CMRs identified for both reads in the pair. Next, NextGenMap enumerates all
possible pairs of mapping locations found for both reads and discards all pairs with
incorrect read orientations and insert sizes that exceed a user-defined threshold. Out
of the remaining pairs NextGenMap picks the one that has the highest joined map-
ping score. If multiple pairs have the same joined alignment score, NextGenMap

chooses the pair with the insert size that is the closest to the average insert size
identified in the dataset so far. Finally, NextGenMap outputs both alignments and
mapping locations as a paired alignment according to the SAM specification. If no
proper pair is found NextGenMap outputs the top alignment positions for both reads
and marks them as a broken pair as defined by the SAM specification.

3.2.8 Benchmark datasets and tools

Data Genome Technology Reads Source
number [mio] length [bp]

R1 human Illumina 29.6 35 SRA
R2 human Illumina 10.3 76 SRA
R3 human Illumina 10.0 101 SRA
R4 human Ion Torrent 0.6 5-396 Life Tech.
R5 human 454 5.4 51-4,935 SRA
S1 human Illumina 20.0 150 Mason
S2 human Illumina 20.0 250 Mason
S3 Arabidopsis thal. Illumina 20.0 100 Mason
S4 Drosophila mel. Illumina 24.0 100 Mason

Table 3.1: Summary of the data sets used for the benchmarking study.

To study the performance of NextGenMap on re-sequencing projects we selected
5 real data sets and 4 simulated data sets. Three Illumina (R1, R2, and R3), one
Ion Torrent (R4), and one 454 dataset (R5) from the Sequence Read Archive (SRA-
NCBI) served as benchmark data. Furthermore, to assess the mapping accuracy we
simulated four read sets using Mason (Holtgrewe, 2010), S1 (150 bp reads), S2 (250

3.3. RESULTS & DISCUSSION 43

bp reads) derived form the human genome, S3 (100 bp reads) from the A thaliana

genome, and S4 (100bp) from the D melanogaster genome. In all data sets we
introduced a 1.2% sequencing error and assumed a genomic polymorphism (SNPs,
insertion and deletions) of 0.1% (S1,S2) and 2% (S3, S4). Finally, we simulated 11
data sets (A1, . . . ,A11) based on the A thaliana genome with an increasing degree of
genomic polymorphisms (0% - 10%). Total number of reads and read length for all
datasets are summarised in Table A.1.
Based on the findings from Nielsen et al. (2011) we compared NextGenMap with
four popular mapping methods. Representatives of BWT methods were: BWA
(version 0.5.9) (Li and Durbin, 2009), its extension for longer reads BWA-SW (ver-
sion 0.5.9) (Li and Durbin, 2010), and Bowtie2 (version 2.0.0-beta6) (Langmead
and Salzberg, 2012). As alignment based representative we selected Stampy (ver-
sion 1.0.17) (Lunter and Goodson, 2011). We executed all programs with default
parameter settings, as suggested by Fonseca et al. (2012). Since Stampy (version
1.0.17) does not support multi-threading we used the “–processpart” parameter to
split the dataset and executed four instance in parallel. NextGenMap (version 0.4.2)
was also executed with its default parameter settings which are: a k-mer size of
13bp and a step-size of ∆ = 3. All other parameters are automatically chosen as
described. Computations were executed on a desktop computer (AMD Phenom II
X4 965, 16 GB RAM, NVidia GTX 460) using 4 threads.
To the best of our knowledge, two other mappers are available that use a graphic
card: SARUMAN (Blom et al., 2011) and SOAP3 (Liu et al., 2012). We did not use
SARUMAN because it is only designed for mapping reads to microbial genomes
and can not efficiently handle eukaryote genomes. In addition only binaries of
SARUMAN are available which crashed when we tried mapping our benchmark
datasets. SOAP3 was excluded because it was developed for a specific hardware
configuration and therefore our computers do not meet the hardware requirements.

3.3 Results & Discussion

In terms of runtimes NextGenMap outperformed all analyzed mappers (see Table
3.2) on all real (R1, . . . ,R5) and simulated data sets (S1, . . . ,S4 and A1, . . . ,A11). The

44
CHAPTER 3. NEXTGENMAP: FAST AND ACCURATE READ MAPPING

INDEPENDENT OF EVOLUTIONARY DISTANCE

Dataset BWA BWA-SW Bowtie2 Stampy NextGenMap NextGenMap
(CPUonly) (+GPU)

R1 29 35 19 270 12 10
R2 19 35 11 128 8 7
R3 75 48 18 262 13 11
R4 - 104 32 812 28 18
R5 - 117 70 1026 48 25
S1 151 190 61 961 33 29
S2 476 370 107 2,193 65 53
S3 31 67 14 278 8 5
S4 56 81 39 290 17 8

Table 3.2: Runtimes in minutes. We highlighted the shortest runtime per data set. We
excluded the results from BWA for R4 and R5 as it was developed for Illumina reads only.

CPU implementation was 1.1 to 2.3 times faster than Bowtie2, the fasted method so
far. The GPU implementation further reduces the runtime (1.6 to 4.9 times faster).
If we compare the runtimes of the methods that showed the highest accuracy, Nex-

GenMap is between 2.9 and 5.8 times faster than BWA-SW. Stampy, though very
accurate for high polymorphic genomes (2.0%), shows the longest runtimes (maxi-
mum 37 hours) compared to NextGenMap (65 minutes for the same data set).
Table 3.3 displays the mapping accuracies for the benchmark study. For a low ge-
nomic polymorphism (S1 and S2) BWA-SW shows shows 0.1% and 0.2% more
correctly mapped reads compared to NextGenMap for S1 and S2 respectively. How-
ever, for genomic polymorphism of 2% the alignment based mappers (NextGen-

Map, Stampy) are the best with a mapping accuracy of 97.6% and 85.5% for S3 and
S4 respectively.
To further elucidate the influences of polymorphic genomes on the mapping ac-
curacy, we varied the degree of genomic polymorphism from 0% to 10% for A.

thaliana (A1, . . . ,A11). Figure 3.6a display the decline in mapping accuracy for
BWT based methods and also shows that accuracy is unaffected by degree of ge-
nomic polymorphism for the alignment based mappers (see Table A.2 and Table
A.3 for exact numbers). However, Stampy can only retain the accuracy with the ex-
pense of an increased computing time (Figure 3.6b). On the contrary, NextGenMap

shows no substantial increase in runtime. In summary, NextGenMap maps reads
very accurately and independent of the amount of genomic polymorphism (up to

3.3. RESULTS & DISCUSSION 45

Program: BWA BWA-SW Bowtie2 Stampy NextGenMap NextGenMap
(CPUonly) (+GPU)

S1

correct map (%) 83.6 98.3 97.6 97.8 98.1 98.1
¬ map (%) 15.0 0.0 0.3 0.1 0 0
wrong map (%) 1.4 1.7 2.1 2.1 1.9 1.9

S2

correct map (%) 69.2 99.0 98.7 98.9 98.9 98.9
¬ map (%) 30.1 0.0 0.0 0.0 0.0 0.0
wrong map (%) 0.7 1.0 1.3 1.1 1.1 1.1

S3

correct map (%) 58.0 93.7 94.7 97.6 97.6 97.6
¬ map (%) 40.6 3.8 2.9 0.0 0.0 0.0
wrong map (%) 1.4 2.5 2.4 2.4 2.4 2.4

S4

correct map (%) 50.9 81.9 82.6 85.5 85.5 85.5
¬ map (%) 40.3 3.5 3.0 0.6 0.0 0.0
wrong map (%) 8.8 14.6 14.4 13.9 14.5 14.5

R1
map (%) 90.8 81.8 92.7 88.9 97.4 97.4
¬ map (%) 9.2 18.2 7.3 11.1 2.6 2.6

R2
map(%) 93.2 95.7 96.8 94.6 97.4 97.4
¬ map (%) 6.8 4.3 3.2 5.4 2.6 2.6

R3
map(%) 69.4 91.6 90.9 85.7 96.6 96.6
¬ map (%) 30.6 8.4 9.1 14.3 3.4 3.4

R4
map(%) - 96.1 98.3 97.4 99.9 99.9
¬ map (%) - 3.9 1.7 2.6 0.1 0.1

R5
map(%) - 97.8 99.0 90.0 99.8 99.8
¬ map (%) - 2.2 1.0 10.0 0 0

Table 3.3: Percent of correctly mapped, unmapped (¬ map) and wrongly mapped reads for
S1,. . . , S4 and percent of mapped and unmaped reads for R1,. . . , R5.

10%). At the same time NextGenMap exhibits the fastest runtime of all tested tools.
We also note that graphic cards provide additional speedup. However, a strong ef-
fect is only observed when the number of alignment computations is high, as is the
case for highly polymorphic genomes (8% or more).

46
CHAPTER 3. NEXTGENMAP: FAST AND ACCURATE READ MAPPING

INDEPENDENT OF EVOLUTIONARY DISTANCE

(a)

divergence [%]

m
ap

pe
d

[%
]

0 2 4 6 8 10

0
20

40
60

80
10

0

(b)

divergence [%]

ru
nt

im
e

[m
in

]

0 2 4 6 8 10

0
20

40
60

80
10

0

NGM (GPU)
NGM (CPU)
Bowtie2
BWA−SW
Stampy
BWA

(a)

divergence [%]

m
ap

pe
d

[%
]

0 2 4 6 8 10

0
20

40
60

80
10

0

(b)

divergence [%]

ru
nt

im
e

[m
in

]

0 2 4 6 8 10

0
20

40
60

80
10

0

NGM (GPU)
NGM (CPU)
Bowtie2
BWA−SW
Stampy
BWA

Figure 3.6: (a) Percent of correctly (solid) and incorrectly (dashed) mapped reads and (b)
running times for different degree of genomic polymorphisms between read and reference
genome for five million 100bp A. thaliana reads (A1, . . . ,A11).

3.4. SUMMARY 47

3.4 Summary

Here we showed with real and simulated data that NextGenMap maps High Through-
put Sequencing reads very accurate and fast at the same time. Finally, the autom-
atized adjustment of the parameters (e.g. minimal k-mer matches, alignment cor-
ridor) based on the input and the automatic adaptation to the hardware results in a
reliable and fast read mapper with minimal user interaction. This allows NextGen-

Map to map reads reliably even to highly polymorphic genomes (10%). Thus it
may also be used to map reads from non-standard organism to a phylogenetically
close genome or to apply it to metagenomics data.

48
CHAPTER 3. NEXTGENMAP: FAST AND ACCURATE READ MAPPING

INDEPENDENT OF EVOLUTIONARY DISTANCE

Chapter 4

Accurate detection of complex
structural variations using
single-molecule sequencing

4.1 Introduction

Structural variations (SVs), including insertions, deletions, duplications, inversions,
and translocations at least 50 bp in size, account for the greatest number of divergent
base pairs across human genomes (Weischenfeldt et al., 2013). SVs contribute to
polymorphic variation; pathogenic conditions; large-scale chromosome evolution
(Lupski, 2015); and human diseases such as cancer (Macintyre et al., 2016), autism
(Hedges et al., 2012), and Alzheimer’s (Rovelet-Lecrux et al., 2006). SVs also
affect phenotypes in many other organisms (Sudmant, 2015, Dennenmoser, 2017,
Jeffares et al., 2017, Zichner et al., 2013, Imprialou et al., 2017).
In one of the first reports of SV prevalence, published in 2004, Sebat et al. discov-
ered in a microarray study that large-scale copy-number polymorphisms are com-
mon across healthy human genomes. Today, SV detection most often uses short
paired-end reads. Copy-number variations are observed as decreases (deletions)
or increases (amplifications) in aligned read coverage (Kadalayil et al., 2015), and
other types of SVs are identified by the arrangement of paired-end reads or split-

49

50
CHAPTER 4. ACCURATE DETECTION OF COMPLEX STRUCTURAL

VARIATIONS USING SINGLE-MOLECULE SEQUENCING

read alignments (Alkan et al., 2011, Layer et al., 2014, Rausch et al., 2012, Chen
et al., 2016). Short read SV callers, however, have been reported to lack sensitiv-
ity (only 10% (Huddleston, 2017) to 70% (Sudmant, 2015, Jeffares et al., 2017) of
SVs detected), exhibit very high false positive rates (up to 89%) (Sudmant, 2015,
English et al., 2014, Mills et al., 2011, Tattini et al., 2015, Teo et al., 2012), and
are unable to capture complex or nested SVs (Sudmant, 2015, Lucas Lledó and
Cáceres, 2013).
Long-read single-molecule sequencing has the potential to substantially increase
the reliability and resolution of SV detection. With average read lengths of 10 kbp
or higher, the reads can be more confidently aligned to repetitive sequences which
often mediate the formation of SVs (Lucas Lledó and Cáceres, 2013). Long reads
are also more likely to span SV breakpoints with high-confidence alignments. De-
spite these advantages, long reads introduce new challenges. Most importantly,
they have a high sequencing error rate - currently 10-15% for Pacific Biosciences
(PacBio) and 5-20% for Oxford Nanopore sequencing (Goodwin et al., 2016) -
which necessitates new computational tools. A number of long-reads aligners are
available including LAST (Kiełbasa et al., 2011), BlasR (Chaisson and Tesler,
2012), BWA-MEM (Li, 2013), GraphMap (Sović et al., 2016) and MECAT (Xiao,
2017). However, none of them have been optimised for SV calling and thus fail to
accurately align reads spanning SVs. Furthermore, only one stand-alone SV calling
tool, PBHoney (English et al., 2014), is available to detect all types of SVs from
long-read data. Other tools such as SMRT-SV (Chaisson, 2015) have been proposed
but only support a subset of all SV types.
To address these challenges, we introduce two open-source algorithms, NGMLR
and Sniffles, for comprehensive long-read alignment and SV detection. NGMLR
is a fast and accurate aligner for long-reads based on extension of our previous
short-read aligner, NextGenMap (Sedlazeck et al., 2013), with a new convex gap-
cost scoring model to align long reads across SV breakpoints. Sniffles successively
scans the high accuracy alignments to identify all types of SVs. Its SV-scoring
scheme evaluates candidate SVs on the basis of their size, position, type, coverage,
and breakpoint consistency, and thus overcomes the high insertion/deletion (indel)
error rates in long-read sequencing.

4.1. INTRODUCTION 51

Figure 4.1: Example regions showing alignments spanning a 228-bp deletion (left) and a
150-bp inversion (right). BWA-MEM alignments (upper tracks) show alignment artefacts
in reads spanning the two SVs. NGMLR alignments are free of artefacts and thus enable
accurate calling of the two SVs.

We applied NGMLR and Sniffles to simulated and genuine datasets for Arabidopsis,
healthy human genomes, and a cancerous human genome to demonstrate their in-
creased accuracy compared to alternate short- and long-read callers. A particularly
innovative feature of Sniffles is its ability to detect nested SVs, such as inverted tan-
dem duplications (INVDUPs) and inversions flanked by indels (INVDELs). These
are poorly studied classes of SVs. Although both have been previously associated
with genomic disorders (Carvalho et al., 2011, Shimojima et al., 2012, Carvalho
and Lupski, 2016, Mühle et al., 2007), they could not be routinely detected, and
so their full significance is currently unknown. Finally, we show that our methods
reduce the sequencing and computational costs required per sample, and thus make
the application of long reads to large numbers of samples increasingly feasible.

52
CHAPTER 4. ACCURATE DETECTION OF COMPLEX STRUCTURAL

VARIATIONS USING SINGLE-MOLECULE SEQUENCING

Figure 4.2: Overview of the read mapping algorithm implemented by NGMLR.

4.2 Methods

4.2.1 Accurate alignment of noisy long reads

NGMLR uses a convex gap-scoring model (Gusfield, 1997) to accurately align
reads spanning genuine structural variation in the presence of small indels (1-10
bp) that commonly occur as sequencing errors (Figure 4.1 bottom left). Larger or
more complex SVs are captured through split-read alignments (Figure 4.1 bottom
right).
Similar to other tools (Chaisson and Tesler, 2012), to achieve both high performance
and accuracy, NGMLR first partitions long reads into short subsegments and aligns
them independently to the reference genome (Figure 4.2). It groups colinear sub-
segment alignments into longer segments, which are then aligned using dynamic
programming and our convex gap-cost scoring scheme. Finally, NGMLR selects
the highest-scoring non-overlapping combination of aligned segments per read and

4.2. METHODS 53

outputs the results in standard SAM/BAM format. In the following, we describe the
details of alignment computation in NGMLR.

Detection of linear mapping pairs

Sub-segment alignment: To identify local similarities between a long read and
the reference genome, NGMLR splits each read into non-overlapping 256 bp sub-
segments and maps them to the reference genome independently of each other us-
ing the seed and vote approach described by Sedlazeck et al. (2013). Figure 4.3a
shows a toy example for a read of length 1,536 that was split into six sub-segments.
Briefly, a sub-segment is decomposed into all overlapping k-mers (13-mers per de-
fault). For each k-mer, the location(s) for that k-mer on the reference genome are
retrieved from a hash table index data structure. All regions of the reference genome
that exceed a certain number of k-mer matches are considered candidate mapping
regions (CMR) for the sub-segment. Next, a pairwise local alignment score for all
CMRs and the sequence of the sub-segment is computed. If the alignment score
does not exceed a minimal threshold the CMR is discarded. NGMLR sorts all re-
maining CMRs based on their alignment score and retrieves the highest score. All
CMRs with a score lower than 75% of the highest score found for their respective
sub-segment are discarded. We call all remaining CMRs ”anchors” between the
sub-segment and the reference genome. An anchor is described by its starting po-
sition on the long read, its mapping position on the reference genome, its mapping
orientation, and its alignment score (Figure 4.3a bottom). Sub-segments that map
to highly repetitive regions with more than 1000 (default) anchors are discarded,
as they are not informative for finding local similarities between the read and the
reference. Note, short stretches of higher error rates sometimes observed in long
reads could prevent anchor detection. As this will be relevant for accurate align-
ments later, Figure 4.3a shows an example of a sub-segment (orange arrow) where
NGMLR was not able to identify any anchors.

Building linear mappings pairs: Next, NGMLR identifies all segments of the
read that are not interrupted by a structural variation and can therefore be repre-

54
CHAPTER 4. ACCURATE DETECTION OF COMPLEX STRUCTURAL

VARIATIONS USING SINGLE-MOLECULE SEQUENCING

(a)

(b)

(c)

(d) (e)

Figure 4.3: NGMLR workflow for detecting linear mapping pairs (LMPs). (a) Reads are
split into sub-segments and aligned to the reference genome (a). A modified longest in-
creasing subsequence algorithm detects sub-segments that map co-linearly to the reference
sequence to detect LMPs (b and c). LMPs located on the same diagonal in the alignment
matrix are merged (d) to form the final set of LMPs (e).

4.2. METHODS 55

sented by a single linear alignment to the reference genome. We call these pairs of
segments of the read and regions on the reference linear mapping pairs (LMP). To
identify LMPs, NGMLR identifies the largest set of anchors that map co-linearly to
the reference genome. In other words, NGMLR looks for high quality sub-segment
mappings that are located on the same diagonal in a hypothetical dot plot of the read
and the reference genome. The search for anchors that map in the same order to the
read and the reference can be implemented by sorting the anchors based on their
position on the read and searching for the longest increasing subsequence (LIS)
(Gusfield, 1997) of their respective reference coordinates (Figure 4.3b). To enforce
co-linearity between anchor mappings, we extended the basic LIS algorithm to in-
clude the following restrictions: (1) Two subsequent anchors can only be included
in the LIS if they are on the same strand and (2) if the distance between their starting
positions on the read and distance between their mapping location on the reference
genome deviates by only 25% of the sub-segment length. This ensures that the two
anchors are not separated by a structural variation. To avoid merging of two unre-
lated anchors, we further require their distance on the reference genome and on the
read, be less than two times the length of the sub-segment. This constrained longest
increasing subsequence algorithm allows us to identify the largest set of co-linear
anchors mappings. Joining this set gives us the longest LMP of the read. As a
read that spans a structural variation might generate more than one LMP, NGMLR
removes all anchors that have been used to form a LMP and repeats the above step
until it is unable to find any more LMPs with support from at least two anchors.
Figure 4.3c shows a visualisation of this process as a dot plot between the read and
the reference. Anchors are shown as arrows. Coloured circles show the two LMPs
detected in our toy example.

Merging compatible linear mapping pairs: So far, NGMLR has identified a set
of LMPs that do not span structural variations and are therefore guaranteed to align
linearly to the reference genome. However, for a sufficiently long read, insertions
and deletions shorter than the read length can be part of a linear local alignment.
Spanning these shorter SVs with a linear alignment is preferable to creating two
split alignments as it makes SV detection easier for downstream tools. Further-

56
CHAPTER 4. ACCURATE DETECTION OF COMPLEX STRUCTURAL

VARIATIONS USING SINGLE-MOLECULE SEQUENCING

more, missed anchors (orange arrow in Figure 4.3a) will artificially split LMPs.
To identify the minimal number of linear local alignments needed to correctly map
a read NGMLR next looks for pairs of LMPs that are separated by short indels
or were falsely split because of sequencing error and merges them. To this end,
NGMLR clusters all LMPs into subsets such that within a subset all LMPs are in a,
per default, 8000 bp wide corridor in our hypothetical dot-plot between the read and
the reference sequence. Next, NGMLR sorts the LMPs within each subset by their
start location on the read and iteratively attempts to merge adjacent LMPs. The
relative location of two adjacent LMPs can indicate whether they are separated by a
structural variation or not. If the distance between two LMPs on the read and on the
reference is the same, meaning they align collinearly, this indicates that they are not
separated by a structural variation (Figure 4.3d dark blue and grey anchors). Thus,
NGMLR will join them. In contrast, a larger distance on the reference indicates
a deletion, while a larger distance on the read indicates an insertion. In this case,
NGMLR joins two LMPs only if the size of the insertion or deletion is smaller than
both LMPs. LMPs on opposite strands are never joined (Figure 4.3c grey, green
and light blue anchors).

Extending linear mapping pairs: LMPs frequently do not contain the first and
the last few base pairs of a long high error rate read. Therefore, NGMLR extends
all LMPs by two times the sub-segment length. Furthermore, NGMLR closes all
gaps between two adjacent LMPs that are within an alignment corridor but were
not merged (e.g., because of different strands) to form the final set of LMPs.

Computing pairwise alignments with convex gap costs for LMPs

Alignment using a convex gap-cost model: For each LMP we know its approx-
imate start and end position on the read and its approximate start and end posi-
tion on the reference genome but not the specific sequence alignment. Therefore,
in the next step, for each LMP, NGMLR extracts the read sequence and the refer-
ence sequence and uses a Smith-Waterman-like dynamic programming algorithm to
compute their pairwise sequence alignment. When aligning long-reads it is crucial

4.2. METHODS 57

to choose an appropriate gap model as there are two distinct sources of insertions
and deletions (indels): Sequencing error predominantly causes very short randomly
distributed indels (1-5bp), while biological structural variations cause longer indels
(20bp+). Furthermore, for indels caused by structural variations it is more likely to
find one large indel than two smaller indels in close proximity.
Currently, two gap models are mainly used: linear and affine gap cost models. A
linear gap cost model - where the cost of a gap with length L equals the cost of
L gaps with length 1 - appropriately models indels originating from sequencing
error. However, linear gap costs favour shorter gaps and therefore cause long in-
dels stemming from SV to be falsely split into several smaller indels. Affine gap
costs more realistically model indels from SVs by introducing a separate penalty
for gap opening and gap extension. However, for long-reads the effect of the higher
gap-open penalty is outweighed by the cost of the gaps from the many sequencing
errors, causing them to be falsely clustered. Therefore, the affine gap cost only has
a small effect on longer indels, especially when indels are located in regions of low
sequence complexity. Figure 4.4a shows two different pairwise alignments of the
same sequences. Alignment 1 is the correct alignment showing one long deletion
stemming from a SV and six 1bp indels stemming from sequencing error. In Align-
ment 2 the deletion is split into three mid-sized deletions and only four 1bp indels
are reported. However, the number of gap openings and gap extensions is the same
between both alignments. Therefore, with an affine gap cost model the alignment
score of both alignments is the same.
To account for sequencing error and real SVs at the same time, NGMLR uses con-
vex gap-costs for aligning long-reads. Appropriately parameterized, convex gap
costs mimic linear gap costs for short indels (e.g., sequencing errors) while at the
same time favouring longer gaps for indels stemming from structural variations
(Figure 4.4b).
We define the cost of a gap G of length i to be:

G(i) =

g0 i = 0

G(i−1)+min

gM

gE +gD ∗ (i−1)
i > 0

58
CHAPTER 4. ACCURATE DETECTION OF COMPLEX STRUCTURAL

VARIATIONS USING SINGLE-MOLECULE SEQUENCING

Alignment 1 (correct):

Alignment 2 (incorrect):

Alignment 1 (correct):

Alignment 2 (incorrect):

Score

56

56

31.6

24.2

Score

a) Affine gap-costs

b) Convex gap-costs

sequencing error structural variation

sequencing error structural variation

AA- GAATTCATAAGCAAACACTGG- TAAACTACT- C
AAAGA- T- CA- - - - - - - - - - CTGGGTA- ACTACTAC

AA- GAATTCATAAGCAAACACTGG- TAAACTACT- C
AAAGA- - - - - T- - - CA- - - - CTGGGTA- ACTACTAC

AA- GAATTCATAAGCAAACACTGG- TAAACTACT- C
AAAGA- T- CA- - - - - - - - - - CTGGGTA- ACTACTAC

AA- GAATTCATAAGCAAACACTGG- TAAACTACT- C
AAAGA- - - - - T- - - CA- - - - CTGGGTA- ACTACTAC

Figure 4.4: Two different alignments for the same sequences with affine gap-costs (a) and
convex gap-costs (b). Only with convex gap-costs, the correct alignment shows a higher
score than the incorrect alignment.

Similar to the affine gap cost model, gO only applies to the first gap character while
gE is used for any additional gap character. Note, while we use different names
here (gO and gE) to make the differences to affine gap costs clear. For all practical
purposes we use gE = gO. In addition, we introduce a gap decay parameter gD

(default: 0.15) that reduces the cost of adding an additional gap character depending
on the total length of the gap. In other words, the longer a gap is the lower the
penalty of extending it. To prevent the penalty for extending a gap from going to
zero, we also introduce the gap min gM (default: -1) parameter.
For very short insertions and deletions, |gD ∗ (i− 1)| is close to zero. Thus, gE +

gD ∗ (i−1)≈ gO, meaning our gap model behaves similarly to linear gap penalties
(Figure 4.4b, gap length 0− 10). As a result, two gaps of length one are assigned
a very similar score as a single gap of length two (G1 +G1 ≈ G2). This correctly
models indels originating from random sequencing error. For medium length gaps
and longer insertions or deletion, where gE + gD ∗ (i− 1) ≈ gM , our gap model
favors one longer gap over two smaller ones as extending a longer gap becomes
much cheaper than opening a new gap (G25+G25�G50). Therefore, the alignment
score of the correct Alignment 1 from Figure 4.4b is higher than the score of the

4.2. METHODS 59

incorrect Alignment 2.
Available algorithms capable of using this gap model for computing alignments
have to scan the full row i and column j of the alignment matrix V to compute the
correct score of any cell Vi, j. This increases the runtime complexity from O(m2) to
O(m3) for a naive implementation. Using such an algorithm for aligning long-reads
to a reference genome is computationally infeasible. Gusfield (1997) describes
an improved implementation with O(m2 ∗ log(m)). Although more favorable in
terms on runtime complexity, this algorithm is complex and hard to optimize and
therefore still not fast enough for mapping large datasets in practice. Therefore,
we adapted a heuristic implementation of the convex gap cost algorithm found in
swalign (https://github.com/mbreese/swalign). We follow the approach of linear
gap costs were the value of Vi, j only depends on Vi−1, j, Vi, j−1 and Vi−1, j−1. How-
ever, we define a function g(l) the gives us the penalty of extending an indel of
length l by one as follows:

g(l) =

gO l = 0

min

gM

gE +gD ∗ l
l > 0

Furthermore, we introduce two additional matrices to keep track of our length esti-
mates for insertions Ii, j and deletions Di, j while computing Vi, j:

Di, j =

Di−1, j +1, Vi, j =Vi−1, j +g(Di−1, j)

0, otherwise

Ii, j =

Ii, j−1 +1, Vi, j =Vi, j−1 +g(Ii, j−1)

0, otherwise

In other words, if the maximum score in Vi, j was derived from V i−1, j we assume
that the final alignment will contain a deletion at this position. Therefore, we in-
crease the estimated length of the deletion at cell Vi, j by one. Finally, we compute
the alignment matrix as follows:

60
CHAPTER 4. ACCURATE DETECTION OF COMPLEX STRUCTURAL

VARIATIONS USING SINGLE-MOLECULE SEQUENCING

Vi, j = max

Vi−1, j−1 + s(Qi,S j)

Vi−1, j +g(Di−1, j)

Vi, j−1 +g(Ii, j−1)

where s(Qi,S j) is the match score or the mismatch penalty for the reference base i

and the read base j. After computing V we search for the element with the highest
score and use backtracking to find the full sequence alignment.

Speeding up alignment computation: Computing the full alignment matrix V

is infeasible for long read alignments (Chaisson and Tesler, 2012). Since NGMLR
knows from the sub-segment alignments that the read and the reference sequence
are highly similar, the optimal alignment will be close to the diagonal of the full
alignment matrix. Therefore, NGMLR computes a banded alignment centered be-
tween the start and end positions of the LMP and extends its width until all sub-
segment mappings the LMP is based on are contained. In cases where NGMLR
underestimated the bandwidth, the computed alignment will not span the full read
sequence but stop at or very close to the border of the alignment band. NGMLR
detects such cases during backtracking and then recomputes the alignment with a
larger band.
NGMLR further optimizes the computation of the convex alignments by applying
vectorization using SSE2 instructions. SSE are a form of SIMD (single instruction,
multiple data) and save computational time by processing multiple values simul-
taneously. The use of SSE allows NGMLR to raise the number of reads that are
mapped within the same amount of time, independently of the number of CPU
threads used. Computing the alignment matrix is the bottleneck when computing
convex gap cost alignments and therefore was chosen as primary target for opti-
mization with SSE. In this step, the alignment matrix is filled with the optimal
sub-alignment scores for each letter pair between the read and reference sequence.
NGMLR applies vectorization to optimize the forward step, by concurrently com-
puting the values of multiple cells in the alignment matrix. Most of the computa-
tionally expensive branching operations, e.g., the selection of the optimal scores, are

4.2. METHODS 61

scor eL scor eM scor eR>> <<

(a)

A T T G C G A C T C C A T T G C

A T T G C G G A G T C A T T G C

Aligned segment 1

100

Id
en

ti
ty

(3
 b

p
 w

in
d

o
w

)

A T T G C G

A T T G C G

A C T C

G A G T

C A T T G C

C A T T G C

Split alignment

Aligned segment 1.1 Aligned segment 1.2 Aligned segment 1.3

reverse read sequence

(b)

Figure 4.5: Detection of a 5bp inversion in a 17 bp alignment.

further replaced with linear arithmetic operations. The concurrent step is followed
up by a regular non-SIMD pass which then resolves the dependencies between the
values of the cells which were computed in parallel.

Small inversion detection

The LMP identification and the alignment step account for most types of structural
variations. However, short inversions and balanced translocations are difficult to
detect as they often do not get sufficient sub-segment support to be identified during
the LMP identification step. Therefore, two LMP that are separated by a small
inversion or balanced translocations are sometimes falsely merged. Even during the
subsequent alignment computation of the merged LMP these SVs stay undetected,
especially in long reads, since the score penalty of misaligning e.g., a short inverted
segment is small compared to the overall alignment score of the rest of the read
(Figure 4.5a). Thus, the segment of the read covering the inversion is forced to
align to its reverse complement in the reference genome. This leads to random
alignments for the inverted segment and makes it impossible to detect the inversion
in down-stream analysis.
The correct way to handle such an inversion is splitting the reads at the borders
of the inversion and mapping it in three separate segments. To this end, NGMLR

62
CHAPTER 4. ACCURATE DETECTION OF COMPLEX STRUCTURAL

VARIATIONS USING SINGLE-MOLECULE SEQUENCING

scans all aligned LMP for regions with a sequence identity smaller 65% (as ex-
pected from random alignments). If such a region is detected, NGMLR extracts
the respective sequence, computes the reverse complement, and realigns it to the
reference genome. If the score increases compared to the original alignment and is
above an empirically determined threshold, NGMLR reports the inversion.
In more detail, NGMLR computes for each match, or mismatch position of the
alignment its local sequence identity Ii as follows:

li =
m
32

Where m is the number of matches found between i−16 and i+16 in the alignment.
Next, NGMLR scans for clusters of positions I with an identity Ii < 65%. Briefly,
NGMLR looks for neighboring positions with II < 65% which are separated by not
more than 20 bp. If it finds a cluster C that covers at least 40 bp, NGMLR extracts
the covered read sequence and aligns this sequence and its reverse complement to
the reference sequence. If the alignment score is higher for the reverse complement,
the read covers an inversion. Therefore, NGMLR splits the LMP at the borders of
the inversion and recomputes the alignments for the three resulting LMPs. Figure
4.5b shows an example of an aligned LMP. The read and the reference sequences
are identical except for 4 bp inversion. For simplicity, we chose a 3 bp window to
compute the local sequence identity for this example. For the positions of the align-
ment that cover the inversion the local sequence identity drops (Figure 4.5b top).
All positions below the 65 % threshold are extracted. The extracted sequence and
its reverse complement are aligned to the reference genome. Since the alignment
of the reversed sequence is higher, the LMP is split, and the respective alignments
computed (Figure 4.5b bottom).

Selection of linear alignments & Mapping Quality computation

The final set of aligned LMPs contains all linear alignments required for the correct
read mapping. However, due to repeats in the reference genome, segments of a read
can map to more than one location. For such a segment, NGMLR would detect
two independent linear alignments. However, in the final output we want every

4.2. METHODS 63

nucleotide of the read aligned to exactly one nucleotide in the reference sequence.
Therefore, NGMLR must choose the best combination of linear alignments that do
not overlap on read coordinates. NGMLR uses a dynamic programming algorithm
that determines the non-overlapping set of linear alignments with the maximal joint
score by computing the best joint score S(i) for all prefixes of the read that end in
position i. For illustration, assume a read R has a linear alignment with score s that
starts on the read at position 3000 and ends at position 8000. If we know all S(j)

with j < 8000:

S(8000) = max

S(7999)

S(2999)+ s

Similarly, S(1) only depends on S(0) and the scores of all linear alignments that
end in position 1. Since we know the alignment scores for all linear alignments,
and S(0) = 0, we can compute S(1) and subsequently S(i) for all prefixes of R.
Finally, we use a simple backtracking procedure, to determine the set of linear
alignments S was computed from. For each linear alignment of this set, NGMLR
finally computes a mapping quality value individually. We define the mapping qual-
ity of a linear alignment to be the average mapping quality of all its overlapping
sub-segments. Note that this potentially underestimates mapping quality, as the
mapping of an LMP can be unique with respect to the genome even if all its sub-
segments have a low mapping quality.

4.2.2 Detecting structural variation from long read alignments

Since we focus on read mapping in this thesis, we will give only a brief overview of
Sniffles and how it implements SV calling from accurate long read alignments. For
more info, please see Appendix B.1. Briefly, Sniffles detects indels, duplications,
inversions, translocations, and nested events and can be used with any aligner, al-
though it performs best with NGMLR, as it produces the most accurate alignments.
The principal steps consist of scanning the alignments of each read independently
for potential SVs and then clustering the candidate SVs across all reads (Figure
4.6). Sniffles uses both within-alignment and split-read information to detect SVs,

64
CHAPTER 4. ACCURATE DETECTION OF COMPLEX STRUCTURAL

VARIATIONS USING SINGLE-MOLECULE SEQUENCING

Figure 4.6: Overview of the SV calling algorithm implemented by Sniffles.

as small indels can be spanned within a single alignment, but large or complex
events lead to split-read alignments. The major advance of Sniffles is its ability to
filter false SV signals from the noisy reads. As with other variant detectors, mini-
mum read support (default: 10 reads) is a critical feature, but Sniffles also consid-
ers the consistency of the breakpoint position and size. In addition, it can perform
read-based phasing of SVs and report adjacent or nested events in the output VCF
(Variant Call Format) file.

4.2.3 Benchmarking NGMLR and Sniffles

To validate NGMLR and Sniffles we performed a series of evaluations using sim-
ulated and genuine read data. First, we modified existing reference genomes by
adding simulated SVs and created simulated long reads based on these modified
genomes. Next, we aligned the simulated reads to the initial reference genome,
called SVs and compared these calls to the set of simulated SVs (truth set). This
approach allowed us to evaluate how accurate the read alignments are, how many

4.2. METHODS 65

of the simulated SVs we are able to call correctly, and how many of our calls are
false positives.

Benchmarking using simulated SVs and simulated reads

We used the SURVIVOR toolkit (Jeffares et al., 2017) to simulate insertions, in-
versions, deletions, duplications, and translocations. Furthermore, we extended
SURVIVOR to introduced nested SVs such as an inversion flanked by two dele-
tions or a tandem duplication which has one copy inverted. For the evaluation, each
breakpoint is treated as a separate event, e.g., a caller must call the inversion and the
two deletions separately to be correct. To simplify analysis, we simulated datasets
that hold only one specific type of SVs and a specific average length of the SV.
Specifically, we simulated a size range of 100bp, 250bp, 500bp, 1kbp, 2kbp, 5kbp
and 10kbp, and for each data set we simulated a total of 20 SVs of the same type.
For translocations we randomly chose a region of a defined size (e.g., 250bp) to be
swapped with a region of the same length from a different chromosome. To sim-
ulate INVDEL variants we simulated an inversion flanked with two deletions that
are 10% of the total size. Thus, INVDEL data set consists of 20 inversions and 40
deletions.

Read simulation: To simulated PacBio and Oxford Nanopore reads from our
modified genomes we extended SURVIVOR with an error profile generator and
read simulator that can generate long reads based on an error profile and a speci-
fied coverage. Given alignments from a genuine long read dataset the error profile
generator module scans all aligned reads and records the ratio of reads showing
a deletion, insertion, match or mismatch at each read position. Furthermore, it
records the number of reads that overlapped with each position. Figure 4.7a and
b show the error profiles for Oxford Nanopore and PacBio data, respectively. We
note that the error profiles become highly variable towards the end because of the
limited numbers of reads available for sampling. For this analysis we used the
BWA-MEM alignments from a PacBio HG002 dataset provided by the Genome
in a Bottle Project (GiaB) (Zook et al., 2014) and an Oxford Nanopore NA12878

66
CHAPTER 4. ACCURATE DETECTION OF COMPLEX STRUCTURAL

VARIATIONS USING SINGLE-MOLECULE SEQUENCING

Figure 4.7: Visualisation of an empirically determined per read position error profile for
(a) PacBio and (b) Oxford Nanopore reads. For read positions > 20kb in PacBio reads and
>30kb in Nanopore reads the error profiles are unreliable as there are not enough reads of
these lengths in the dataset.

dataset (Jain et al., 2018) requiring a minimum alignment length of 1kb. Using error
profiles derived from those alignments we simulated reads from the modified ref-
erence genome. Briefly, we first compute the required number of reads for a given
level of read coverage given the median read length. For each read, chromosome
and starting position are chosen randomly. The position on the chromosome and
the length of the read defines the sequence of the read. If more then 10% of the read
sequence are N’s we discard the read and chose a new random starting location.
The read subsequence is then altered according to the error profile shown in Figure
4.7. A limitation of this approach is that it only allows us to introduce insertion
and deletion of length 1 for simulating sequencing errors. However, we found this
to sufficiently capture the main characteristics of sequencing error for all practical
purposes.
For each data set we simulated 347,538 PacBio-like reads of length 21kbp and
662,943 Nanopore reads. Furthermore, we simulated 39.8 million Illumina like
100bp paired-end reads with an insert size of 500bp using Mason (Holtgrewe,
2010). Figure 4.8 a and b show the profiles computed from our simulated data
PacBio and Oxford Nanopore like reads.

4.2. METHODS 67

(a) (b)

Figure 4.8: Per read position error profile for our simulated (a) PacBio and (b) Oxford
Nanopore datasets. For read positions > 20kb in PacBio reads and >30kb in Nanopore
reads the error profiles are unreliable.

Evaluation of read mappings and SV calls: All simulated reads were mapped
to the human reference genome using BWA-MEM, BLASR, GraphMap, MECAT
and NGMLR. Reads that overlap or map in close proximity to a simulated SV were
extracted from the BAM files. The extracted reads were divided into six categories
(see Figure 4.9):

Correct Read mappings are considered correct (illustrated in green) if they allow
to fully identify the SV they cover. To fall into this category, read mappings
have to cover all parts of the SV that are required for identification, e.g., a
read mapping to an inversion has to cover the inverted part of the genome as
well as the non-inverted part(s) flanking the inversion. Furthermore, correct
mappings have to be split at the simulated breakpoints (+/- 10bp) of the SV.

Indicated Read mappings that indicate the correct SV (e.g., a duplication that is
represented as an insertion) or mappings that show the correct SV but do not
show the exact borders are considered partially correct (yellow).

Incorrect Mappings that indicated the wrong SV or contain a significant portion of
mapping artefacts (e.g., not simulated mismatches) (> 10% of the SV length)

68
CHAPTER 4. ACCURATE DETECTION OF COMPLEX STRUCTURAL

VARIATIONS USING SINGLE-MOLECULE SEQUENCING

Correct

Indicated

Incorrect

Not found

Fragmented

50

5 45

10 8 4 13 11

72

50

Correct

Indicated

Indicated

Incorrect

Not found

Correct 50

Correct

Indicated

10 8 4 13 11

7 2

Incorrect

Not found

Correct

Correct

Indicated

A T GT Incorrect

Not found

Indicated

2 bp 1 bp5 bp

Chr1

1 3 2 Correct

Deletion Insertion Duplication

Inversion

Chr8 Chr1 Chr8 Chr1 Chr8

Chr1 Chr8

1 3 2 Correct

1 2 Correct

1 Indicated

A T GT

2 15

Incorrect

1 3 2 Incorrect

1 2

1

Not found

Not found

Translocation

a) b) c)

d) e)

Sequenced genome

Read (forward)

Read (reverse)

Insertion

Deletion

Reference genome

Breakpoint

1 bp

Evaluation: Evaluation: Evaluation:

Evaluation: Evaluation:

2

Not aligned

(a)

Correct

Indicated

Wrong

(b)

Figure 4.9: Evaluation of simulated reads. All reads are divided into six categories depend-
ing on how well they capture the SV they overlap. (a) Schematic visualisation of example
reads for all evaluation categories and all evaluated SV types. (b) IGV screenshot of read
alignments coloured and grouped by evaluation category.

4.2. METHODS 69

are considered incorrect (red). E.g., a read that is forced to align through an
inversion.

Not found Reads that do not indicate any SV and do not contain randomly aligned
base pairs (i.e. noisy regions) fall in the category not found (grey).

Fragmented Reads that are split into more parts than required to cover the under-
lying SV are classified as fragmented (brown).

No aligned Reads that are supposed to map across the SV but are not mapped
(white)

For all simulated SV types, sizes and mappers, we counted what percentage of reads
fell into the six categories and visualised the result as barplots.
Furthermore, SVs were called from the read alignments using Sniffles, PBHoney,
Lumpy, Manta and Delly and evaluated in a similar manner:

Precise SVs are considered ”precisely detected” if their breaks points are reported
within 10bp up or downstream of the simulated (true) position and the type
of SV (e.g., insertion, deletion) is correctly reported (green).

Indicated A caller ”indicates” the right call if it reports an SV within 1kbp up or
downstream of the true location. Furthermore, the reported type of SV does
not have to be correct (yellow).

Not detected An SV is considered not detected if there is no call found within
1kbp up or downstream of the true location (red).

False positive Furthermore we consider calls that were found but not simulated as
false positives (brown).

Similarly, to the read mapping evaluation, we summarized all results and visualised
them as a colored barplot.

Benchmarking using genuine read data and simulated SVs

After establishing Sniffle’s and NGMLR’s performance on simulated that we next
used read data from genuine NA12878 PacBio (Zook et al., 2014) and Oxford

70
CHAPTER 4. ACCURATE DETECTION OF COMPLEX STRUCTURAL

VARIATIONS USING SINGLE-MOLECULE SEQUENCING

Nanopore (Jain et al., 2018) datasets to verify our results. Since the true struc-
tural variants are unknown in this genome, we had to alter the reference sequence
to introduced artificial SVs. We simulated:

1. 140 insertions by deleting regions from the reference
2. 140 deletions by adding new sequence to the reference
3. 140 inversions by inverting parts of the reference
4. 140 balanced translocations by exchanging regions of the same length from

two different chromosomes creating 280 translocation events

We did not attempt to simulate tandem duplications, as this would require detecting
and modifying existing tandem duplications in the reference. The mean indel and
inversion size was 1.6kb. After aligning the genuine PacBio and Oxford Nanopore
reads to these simulated references and calling SVs we used the same approach to
evaluate read alignments and SV calls as for simulated reads (see previous para-
graph).

Benchmarking using published SV calls from genuine reads datasets

Evaluation using simulated SVs can give an upper bound for SV calling perfor-
mance. However, it cannot capture the full complexity of naturally occurring SVs.
To date no full SV truth-sets or gold standard call-sets exists for NA12878 (or any
other human sample). Thus, to investigate NGMLR and Sniffle’s ability to call
genuine SV we compared to existing (incomplete) call-sets. To this end, we down-
loaded the following published SV callsets for NA12878:

1. One calls set1 from the Platinum genomes project and the 1000 genomes
project for NA12878 currently hosted on dbGaP: phs001224.v1.p12. The
data set consisted of 1802 deletions.

2. callsets provided by GiaB from 7 different SV callers3.

1NA12878.wgs.illumina platinum.20140404.svs v2.vcf
2https://www.illumina.com/platinumgenomes.html
3ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_

MtSinai/

4.2. METHODS 71

Next, we called variants for a PacBio and an Oxford Nanopore NA12878 datasets
using NGMLR and Sniffles using an unaltered version of the human reference
genome. The resulting calls represent the true genetic variation between NA12878
and the human reference. Using the SURVIVOR toolkit and allowing for a 1kbp
distance between two calls we computed how many SV the callsets had in com-
mon and how many where unique to different sequencing technologies and analysis
pipelines. Based on the results we then investigated differences between sequencing
technologies specifically for indels and translocations calls.

Assessing discrepancies between indel calls from different platforms: First
we checked for short read support for deletion calls from our PacBio and Oxford
Nanopore datasets. To this end we looked for changes in short read insert sizes
around indel calls from Sniffles. We customized the script 4 provided in the Lumpy
(Layer et al., 2014) package to obtain the mean and standard deviation of insert
sizes across the entire Illumina data set. The mean insert size was 311.70. Using
the SURIVOVR toolkit we converted the insertion and deletions with a length of
50bp to 3kbp to a BED file containing the chromosome, start and stop coordinates of
the PacBio-based or Oxford Nanopore-based SVs. Note that the stop coordinate is
with respect to the reference genome, so does not contain the length of the insertion.
We then identified Illumina read pairs mapping within 300bp up and downstream
of the start and end breakpoint of an insertion or deletion. For each of the insertions
and deletions we computed the mean and standard deviation of the insert size of
all the spanning short read pairs. These were then tested for a significant deviation
compared to the global average insert size using a two-sided, one sample t-test.
We considered a p-value < 0.01 as significant and interpreted it as indication for
the short read pairs supporting the SV call from the PacBio or Oxford Nanopore
datasets.

Assessing discrepancies between translocation calls from different platforms:
To investigated differences between short and long read translocation calls, using
the SURVIVOR toolkit, we first identified translocation calls called in at least

4pairend distro.py

72
CHAPTER 4. ACCURATE DETECTION OF COMPLEX STRUCTURAL

VARIATIONS USING SINGLE-MOLECULE SEQUENCING

2 of our Illumina callsets. Through manual inspection of the short read align-
ments, we found many translocation calls to overlapped with short insertions in
low-complexity regions (e.g., di-nucleotide repeats). To quantify how many of the
short-read translocation calls overlapped with insertions and other SV called by
Sniffles, we reran Sniffles with less stringent settings using -l 10 (to obtain all
SVs of length 10bp or larger) as well as -s 5 (to require only 5 supporting reads
for an SV to be called) and converted these calls to the BED format. In the BED
file, each short-read translocation call was represented by two 400bp intervals cen-
tered around its break points. Next, we split the Sniffles calls into 5 separate VCF
files, where each file contained only one of the following SV types: translocation,
insertion, duplication, deletion, inversions. We used bedtools (Quinlan and Hall,
2010) to identify if at least one of the break points of a short-read translocation call,
overlapped with SVs in one of the five Sniffles VCF files. If a short-read translo-
cation call overlapped with more than one Sniffles call, we counted only the first
overlap we found.
For the remaining short-read translocation calls that did not overlap with any Snif-
fles call, we checked whether they overlapped with a repeat annotation or a region
with substantially increased read coverage as this could indicated missmapping of
the short reads. To this end, we computed the coverage for the 400 bp regions cen-
tered around the translocation break points using bedtools multicov. As a baseline
we used the coverage of randomly shuffled 400bp intervals (bedtools shuffle). We
considered a translocation as falling in a high coverage region, if at least one of its
breakpoints shows a higher coverage than all the random intervals tested.

4.3. RESULTS & DISCUSSION 73

Figure 4.10: Read mapper evaluation with simulated data. In each plot, the x-axis indicates
the size of the 840 simulated SVs. We simulated PacBio-like (left) and Oxford Nanopore-like
reads (right) and determined whether alignments were precise, indicated, forced, unaligned,
or trimmed but not forced to wrongly aligned across the SV. For the SV analysis (bottom),
we used the same alignments as before and distinguished among precise, indicated, not indi-
cated, and false positive calls.

4.3 Results & Discussion

4.3.1 Evaluation of NGMLR and Sniffles using simulated SVs

Simulated reads

We simulated 50X PacBio-like and 50X Oxford Nanopore-like read datasets from
two human chromosomes (chr21 and chr22). In the simulation, we included a to-
tal of 840 homozygous SVs consisting of equal numbers of indels, duplications,
balanced translocations, and inversions ranging from 100bp to 50kbp in size (see
Method section for more details). Figure 4.10 (left) summarizes the results when
evaluating read alignments from NGMLR, BWA-MEM, BLASR, GraphMap, LAST
and MECAT. Each stacked bar represents one data set consisting of 20 SVs of a cer-
tain type and length. Across all SV types, NGMLR outperformed the other mappers
with an average of 80.32% precisely aligned reads versus 26.03% for the second-

74
CHAPTER 4. ACCURATE DETECTION OF COMPLEX STRUCTURAL

VARIATIONS USING SINGLE-MOLECULE SEQUENCING

Figure 4.11: IGV screenshot of incorrect MECAT alignments spanning a deletion.

best tool. When counting all alignments that could aid SV detection (precise and
indicated), NGMLR showed the highest performance with an average of 91.83%
versus 69.17% for the next closest competitor. Except for NGMLR, essentially all
the other aligners showed a high number of alignment artifacts and overall poor
performance when aligning reads spanning SVs (see Figure 4.11 for an example
from MECAT).
Next, we compared the performance of NGMLR, BWA-MEM, GraphMap and
LAST when mapping simulated Oxford Nanopore-like reads. BlasR and MECAT
were excluded, as they are only applicable to PacBio reads. Again, NGMLR outper-
formed the other mappers in terms of precisely aligned reads (72.42% vs 24.90%
for the second-best), or when considering both precise and indicating alignments
(88.57% versus 67.95%) (Figure 4.10 right). GraphMap performed poorly on these
data, with on average only 18.19% of reads aligned precisely or indicating the SV.
61.13% of GraphMap’s alignments showed aliment artifacts which obfuscated the
SV spanned by the read. Please see Supplementary Table B.1 a full list of all eval-
uation results.
Next, we evaluate the performance of Sniffles compared to other short and long

4.3. RESULTS & DISCUSSION 75

Figure 4.12: SV caller evaluation with simulated data. In each plot, the x-axis shows the
size of the simulated SVs. We distinguished between precise, indicated, not detected, and
false positive calls.

read SV detection tools using the PacBio-like and Nanopore-like alignments re-
ported above (see Methods). We were able to use Sniffles with either NGMLR or
BWA-MEM. The output formats of the other aligners are not compatible with Snif-
fles. We also extended the analysis to include simulated short reads. We called SVs
for the short reads using an ensemble calling method implemented in the SUR-
VIVOR toolkit. SURVIVOR aggregates the outputs from several short read SV
caller (Lumpy, Manta and Delly) and excludes variants reported by only a single
caller. This approach was shown to increases specificity without sacrificing sensi-
tivity (Jeffares et al., 2017).
Using PacBio data the combination of Sniffles and NGMLR performs best with
an average of 94.20% precisely detected SVs and a false discovery rate (FDR) of
0.00% (Figure 4.12 left). We found that the most problematic class of SVs was
short (100bp) tandem duplications, as they are identified as insertions rather than
tandem duplications. Hence, we classified them as indicated and not as precisely
called. The second-best result was achieved using Sniffles with BWA-MEM align-
ments, with on average 79.11% precisely detected SVs and a 0.68% FDR. PB-
Honey, which relies on BlasR alignments, precisely detected only 32.58% of simu-
lated SVs and missed 25.18%. Most of the 40.73% indicated SVs from PBHoney
came from misinterpreting tandem duplications as insertions. For the short-read
analysis, SURVIOR detected 18.81% of the simulated SVs precisely and indicated

76
CHAPTER 4. ACCURATE DETECTION OF COMPLEX STRUCTURAL

VARIATIONS USING SINGLE-MOLECULE SEQUENCING

another 57.89%. This matches previous findings for short-read based SV analysis
(Hartigan and Hartigan, 1985, Jeffares et al., 2017). Only the the FDR was lower
(0.17%) then usually observed with short reads due to the consensus-based SUR-
VIVOR analysis we used. See Supplementary Table B.2 for more details.
Finally, we benchmarked the performance of Sniffles using BWA-MEM and NGMLR
on the Oxford Nanopore-like reads (Figure 4.12 right). Using Sniffles with NGMLR,
82.25% of SVs were precisely identified, compared to 76.35% for BWA-MEM and
Sniffles. Due to the higher rate of sequencing errors in the Oxford Nanopore-like
data, Sniffles using either aligner showed a higher FDR calling 1-4 false positive
events per data set.

Genuine long human reads

Evaluations using simulated reads establish a baseline of performance but may not
capture the full complexity of real sequencing data. To benchmark more realistic
datasets, we next analyzed genuine PacBio and Oxford Nanopore reads from the
well-studied NA12878 human cell line. Since a complete truth set of SVs is not
available for this genome, we modified the human reference genome to introduce
700 simulated homozygous SVs (see Methods).
In this analysis, we can only evaluate how well the alignments capture our simulated
SVs. We cannot quantify the number of false positive calls introduced by align-
ment artifacts as they would be impossible to distinguish from true SVs present
in NA12878. NGMLR showed a clear improvement over BWA-MEM (58.65%
vs 32.35%) for precisely aligned reads across the SVs (Supplementary Table B.3).
The shorter average length of the genuine reads limited the number of reads that
could be aligned precisely. For example, if an insertion is longer than the read
length, the read can only indicate the SV. When summing up precise and indicated
calls, NGMLR achieved a substantially better result than BWA-MEM (76.96% vs
49.21%). Furthermore, NGMLR considerably reduced the number of reads show-
ing alignment artifacts compared to BWA-MEM (3.01% vs 24.21%). Using the
Oxford Nanopore reads we observed a similar trend with NGMLR giving the most

4.3. RESULTS & DISCUSSION 77

precise alignments (51.56% vs. 27.35%) with the lowest percent of alignment arti-
facts (5.94% vs. 29.15%).
Using the long reads alignment discussed in the last paragraph and alignments of
50X genuine Illumina sequencing data (Eberle et al., 2017), we next benchmarked
the available SV callers (Supplementary Table B.4). Sniffles and NGMLR achieved
the highest rate of precisely called SVs with 95.14% using PacBio and 88.29% us-
ing Oxford Nanopore reads, respectively. In contrast, the short-read based SUR-
VIVOR analysis had a much lower percentage (76.57%) of precise and indicated
SV calls.

4.3.2 Trio-based analysis of genuine SVs

So far, using simulated SVs we have shown NGMLR and Sniffles to be the most
accurate of all tested long-read SV calling tools. Next, we investigated the per-
formance of long-read based SV calling using NGMLR and Sniffles and how it
compares to conventional short-read based calls using real SVs. Since no SV truth
sets exist to evaluate precision and recall directly, we used sequencing data from
trios. When sequencing parents and offspring we can use assumptions based on the
expected Mendelian inheritance pattern to evaluate SV calling. We will use two
assumptions. First, all homozygous SVs identified in the parents should be present
in the offspring as well (as a heterozygous or homozygous SV). This allows us to
estimated recall (we will call it parental recall here). Second, since the rate of spon-
taneously occurring SVs is expected to be low, the vast majority of SVs detected
in the offspring (both heterozygous and homozygous) should be present in at least
one of the parents. This allows us to identify missing calls (false negatives) in the
parents or additional calls (false positives) in the offspring. We will call these calls
discordant calls.

Arabidopsis thaliana Trio analysis

First, we looked at a trio of Arabidopsis thaliana genomes previously sequenced
with PacBio and Illumina by Chin et al. (2016). The trio consisted of two inbred

78
CHAPTER 4. ACCURATE DETECTION OF COMPLEX STRUCTURAL

VARIATIONS USING SINGLE-MOLECULE SEQUENCING

Dataset Technology Coverage Read length Total SVs
Col-0 PacBio 127x 6,482 355
CVI PacBio 123x 6,073 9,652
Col-0xCVI PacBio 155x 11,206 11,935

Table 4.1: Number of SVs detected in Arabidopsis thaliana PacBio data.

cultivars called Col-0 and CVI and a F1 hybrid of the two (Col-0xCVI). Using
NGMLR and Sniffles, we identified 355 SVs in Col-0 when comparing it to the
standard Arabidopsis thaliana reference genome version 10 (TAIR10). For CVI,
NGMLR and Sniffles detected 9,652 SVs (Table 4.1). 42 and 6,679 of these calls
were homozygous in Col-0 and CVI respectively and thus expected to be present in
Col-0xCVI. When comparing our Col-0xCVI calls to the homozygous calls from
Col-0 we found that 4 of the homozygous SVs were not identified in Col-0xCVI
which equals a parental recall of 90.4%. On closer inspection we found that one
missed insertion was reported as 47bp in Col-0xCVI vs. 53bp in Col-0, and simi-
larly a deletion was reported as 48bp in Col-0xCVI vs. 53bp in Col-0. Thus, these
SVs were initially not found due to our minimum length cut-off of 50bp. Similarly,
NGMLR and Sniffles were able to detect the remaining two SVs - another deletion
and a duplication - in the Col-0xCVI when we reduced the read support required
to call a SV. The deletion was supported by only 4 reads and the duplication by
only 3 reads. When looking at the CVI calls, NGMLR and Sniffles initially missed
370 SVs (94.5% parental recall). 159 of these were present but lacked a sufficient
number of supporting reads in Col-0xCVI; 101 had slightly different SV sizes re-
ported which were below the minimum size; 43 were interpreted as different SV
types; and 50 were caused by spurious read alignments that could easily be filtered
out (see Appendix B.2). After considering these factors, only 17 SVs present in the
CVI data set were missed by NGMLR and Sniffles (parental recall of 99.9%). Next,
we looked at the discordance rate. NGMLR and Sniffles detected 767 SVs that were
unique to Col-0xCVI, resulting in a discordance rate of 7.22%. Upon closer inves-
tigation, we found that most of these calls were caused by a shorter average read
length in the Col-0 and CVI datasets. The shorter reads caused certain repetitive

4.3. RESULTS & DISCUSSION 79

Dataset Technology Coverage Read length Total SVs
HG002 (son) PacBio 69x 8,540 19,131
HG002 (son) Illumina 80x 148 10,822
HG003 (father) PacBio 32x 6,284 11,964
HG003 (father) Illumina 80x 148 11,395
HG004 (mother) PacBio 30x 7,285 10,463
HG004 (mother) Illumina 80x 148 8,901

Table 4.2: Number of SVs detected in PacBio and Illumina data from a human trio.

regions to have lower coverage than expected after mapping quality filtering. When
adjusting our read support parameter to a minimum of 5 reads, the inconsistency
rate dropped to 3.4%. When allowing for larger distances SV calls in the parents
and the offspring (10kbp) the discordance rate dropped further to 1.2%.

Genome-in-a-Bottle Human Trio Analysis

To evaluate the performance NGMLR and Sniffles for human datasets we used
PacBio and Illumina data of the Ashkenazim trio provided by the GiaB consortium.
NGMLR and Sniffles reported 5,244 and 5,964 SVs as homozygous in the father
and mother, respectively. 93.84% and 94.01% of these SVs were found in the son
as well. In contrast, when using the Illumina-based SURVIVOR calls, we identified
only 1,586 and 1,668 homozygous SVs for father and mother, respectively. Note,
the coverage in the Illumina data was >2.5 times higher than for the long-read
datasets (Figure 4.2). Of the homozygous calls, 89.66% and 87.82%, respectively,
were found in the son as well. The discordance rate was 5.8% for NGMRL and
Sniffles and 21.9% for the short-read callset (Supplementary Table B.5e). Inter-
estingly, when splitting the discordant calls by SV type we found that most of the
discordant calls from short reads were translocation calls (1,550 vs. 90 for NGMLR
and Sniffles).

80
CHAPTER 4. ACCURATE DETECTION OF COMPLEX STRUCTURAL

VARIATIONS USING SINGLE-MOLECULE SEQUENCING

Source Technology Deletions Duplications Insertion Inversions Translocations
NGMLR+Sniffles PacBio 6,734 606 7,880 160 119
NGMLR+Sniffles Oxford Nanopore 19,074 761 6,376 334 112
SURVIVOR Illumina 3,744 553 0 731 2,247
1k genomes project Illumina 1802 0 0 0 0

Table 4.3: Number and types of SVs detected in human NA12878 datasets for different
sequencing technologies.

4.3.3 Comparison of Illumina, PacBio and Oxford Nanopore SV
calling results

All sequencing platforms come with different limitations for SV calling. To quan-
tify differences and biases in SV calling for the different sequencing platforms
we compared Sniffles (using NGMLR alignments) and SURVIOR calls for three
NA12878 datasets (PacBio (Zook et al., 2014), Oxford Nanopore (Jain et al., 2018)
and Illumina (Zook et al., 2014)) with a short-read deletion-only call-set from
the 1000 genomes project and a long-read call-set provided by the GiaB consor-
tium. NGMLR and Sniffles identified a total of 15,499 SVs using PacBio reads
and 26,657 SVs using the Oxford Nanopore reads. SURVIVOR reported 7,275
SVs (Table 4.3) for the short read dataset. Together, the five callsets yielded a to-
tal of 40,601 SVs. The majority (24,392) of the identified SVs were present in
only one callset (see Figure 4.13), whereas 16,209 SVs were identified in two or
more callsets. Of the 15,499 PacBio calls, most (94.8%) were confirmed by Oxford
Nanopore, Illumina, or the other existing call-sets. Oxford Nanopore had a sub-
stantially lower concordance, as NGMLR and Sniffles reported 11,433 calls unique
to Oxford Nanopore. 10,977 (96.0%) of these calls were deletions and the majority
(92.9%) overlapped homopolymers or other simple repeats. In contrast, the 773
calls found only by PacBio were mainly insertions (66.5%), and only 323 (41.8%)
overlapped homopolymers or repeats. This systematic bias for deletions in the Ox-
ford Nanopore data is most likely due to base-calling errors, also reported by Jain
et al. (2018). The majority of these artifacts are small deletions. When we increased
the minimum SV size to 200bp, NGMLR and Sniffles reported only 38.6% of the
SV calls within homopolymers and low-complexity regions (Supplementary Table

4.3. RESULTS & DISCUSSION 81

Figure 4.13: Overlap between SV calls from different call-sets for NA12878.

B.6).
Illumina-based SV calling had low concordance with alternative approaches. 49.7%
of Illumina calls were unique to the technology. Matching the results from our trio
analysis, the majority (54.1%) of unique calls were translocations. Deletions on the
other hand were underrepresented in Illumina call-sets. We observed 40-50 % fewer
deletions calls compared with long reads. The biggest limitation however is precise
calling of insertions. Only one of the SV callers (Manta) used by SURVIVOR
supports insertion calling which relies on read-pair distance changes and thus can
neither report exact break points nor the inserted sequence. Since SURVIVOR
requires two short read callers to support a call, insertions are not reported.

Investigation of unique short-read versus long-read SV calls

The two most striking difference between long and short read SV call-sets were
the high number of insertions and deletions called with long reads and the high
number of translocations called in short reads. We first looked at small insertion
(50 - 300bp) and deletion (50 bp - 3 kbp) calls from Sniffles to see if we can find

82
CHAPTER 4. ACCURATE DETECTION OF COMPLEX STRUCTURAL

VARIATIONS USING SINGLE-MOLECULE SEQUENCING

Figure 4.14: Systematic error in short-read based SV calling. (a) Example of a putative
translocation identified in short-read data (top alignments) that overlaps an insertion detected
using PacBio (middle) or Oxford Nanopore sequencing (bottom). (b) Example of a putative
inversion identified in the short-read data (top) that overlaps an insertion detected in both
PacBio (middle) and Oxford Nanopore reads (bottom).

support from short reads. We used the distance between Illumina read pairs that
span Sniffles call as orthogonal evidence. To this end, we used the compression-
expansion statistic (Zimin et al., 2008) as an unbiased measure of the Illumina read-
pair placements near predicted indels (see Methods). True insertions should cause
BWA-MEM to map read pairs closer than expected, and deletions farther away,
with respect to the average Illumina insert size of 311 bp observed genome-wide.
Using the Illumina data and a P value threshold of 0.01 (two- sided, one-sample
t-test), we confirmed 3,415 (PacBio) and 3,879 (Oxford Nanopore) deletions and
2,685 (PacBio) and 1,703 (Oxford Nanopore) insertions reported by NGMLR and
Sniffles (Supplementary Table B.7).
Next, we investigated the large number of translocations reported in the Illumina-
based consensus calls. We found a large overlap (48.9%) between Illumina-based
translocation calls and insertion calls from NGMLR and Sniffles supported by both
long-read technologies. Figure 4.14a shows a representative example of a long-read
insertion call overlapping with a low-complexity region which causes short reads
to be mismapped. These mismapped reads were then misinterpreted as reads that
span a translocation by the SV caller even when excluding low mapping quality

4.3. RESULTS & DISCUSSION 83

Figure 4.15: Nested SV calling in simulated data and the SKBR3 cancer cell line. (a)
Evaluation of NGMLR and Sniffles with simulated data to identify nested SVs. (b) A 3-
kb region including two deletions flanking an inverted sequence is clearly visible and was
detected by NGMLR and Sniffles (top) but was not detected using short-reads (bottom). (c)
The start of an inverted duplication. Breakpoints were reported by Sniffles as the start of an
inverted duplication (top) but were not correctly detected using short-reads (bottom).

(< 20) reads. In total, 1,869 (83.2%) of the Illumina-based translocation calls,
overlapped with long-read insertion calls (48.9%). An additional 8.9% overlapped
with short deletions calls that led to similar mapping artifacts (Supplementary Table
B.7). 404 (18.0%) of the remaining Illumina-based translocation calls were located
in low-complexity regions where unique mapping of short reads is difficult. 141
(6.3%) overlapped with regions that showed abnormally high coverage in the short
read data but no increase in coverage in the long-read data. Inversions showed a
similar pattern: 60% of calls overlapped with a different SV type identified using
long reads (Fig. 4.14b) or aligned to low-complexity regions of the genome. In
summary, the majority of PacBio-based indel calls from NGMLR and Sniffles were
validated by either Oxford Nanopore or Illumina paired-end reads. In contrast, the
majority of calls unique to the Illumina-based methods were false positive calls,
especially translocations caused by mismapped reads in low complexity regions.

4.3.4 Detection of complex SVs

In addition to single SVs that occur in isolation, multiple SVs can occur at the same
time (nested SVs) or in close proximity and form more complex rearrangements.

84
CHAPTER 4. ACCURATE DETECTION OF COMPLEX STRUCTURAL

VARIATIONS USING SINGLE-MOLECULE SEQUENCING

Known examples of nested SVs are inverted duplications (INVDUPs) and inver-
sions where parts of the inverted sequenced are deleted (INVDELs). INVDUPs
have been associated with Pelizaeus-Merzbacher disease (Shimojima et al., 2012)
and a number of other conditions (Carvalho et al., 2011, Beri et al., 2013). IN-
VDELs haven been observed in Hemophilia A patients (Mühle et al., 2007). To
investigate the performance of NGMLR and Sniffles for calling nested SVs, we
simulated 280 nested SVs of different sizes and types in the human genome, along
with simulated PacBio-like, Oxford Nanoporelike, and Illumina-like reads (Fig.
4.15A). Using PacBio data Sniffles called 67.9% of the nested SVs precisely and
partially detected another 22.9%. With Oxford Nanopore-like reads, Sniffles de-
tected 67.3% of simulated SVs precisely and 21.9% partially. Neither PBHoney
using PacBio reads nor SURVIVOR calls from short reads were able to accurately
identify these nested SVs (2.6% and 2.7% precisely called). PBHoney missed most
of the SVs completely (62.7%). Using short reads, most of the SVs were only par-
tially detected (71.2%). See Supplementary Table B.2 for a full list of all evaluation
results.
To further investigate calling of nested and complex SVs using real data, we ex-
amined a PacBio dataset for the SKBR3 breast cancer cell line (Nattestad, 2017).
NGMLR and Sniffles revealed 15 gene fusions caused by complex SVs with as
many as three rearrangements happening in close proximity. Figure 4.15B shows
an example where short read alignments indicated an inversion, but the poor break
point resolution made it impossible to detect and connect all breakpoints. In con-
trast, NGMLR and Sniffles detected an INVDEL and an INVDUP, as well as reads
that span both calls and thus fully resolved this complex rearrangement.

4.3.5 How much coverage is required?

Finally, we assessed how much coverage is required to detect SVs using long read
sequencing. This is an important consideration as long-read sequencing is still more
expensive than short read sequencing (Goodwin et al., 2016). Based on a naive
simulation (see Methods), about 10X coverage should be sufficient to infer all SV
breakpoints (100% recall) using 10-kbp reads in a human genome, whereas about

4.3. RESULTS & DISCUSSION 85

Figure 4.16: (a) Theoretical assessment of recall versus coverage for different read lengths
requiring 50-bp overlap of each breakpoint for SV calls. (b) Subsampling results for 55X
PacBio NA12878 data. (c) Subsampling results for 28X Oxford Nanopore NA12878 data.
(d) Subsampling results for the 70x PacBio SKBR3 breast cancer cell line dataset.

86
CHAPTER 4. ACCURATE DETECTION OF COMPLEX STRUCTURAL

VARIATIONS USING SINGLE-MOLECULE SEQUENCING

25X coverage is needed for paired-end 100-bp short reads (Fig. 4.16a). How-
ever, this simulation ignores important factors like the repeat content of the human
genome, read coverage biases, mapping bias and sequencing error and thus under-
estimates the required coverage. To get a more realistic estimation of the coverage
required, we called SV from a 55X human NA12787 PacBio and a 28X NA12878
Oxford Nanopore datasets as well as a 69X PacBio SKBR3 dataset. Next, we down-
sampled these datasets to 5X, 10X, 15X, 20X, and 30X coverage. For all datasets
we called SVs using NGMLR and Sniffles varying the minimum number of re-
quired supporting reads from 1 to 10. Finally, we computed precision and recall
for all 50 callsets by comparing them to the SV calls from the initial full-coverage
dataset. We found that requiring only one or two supporting reads led to an unac-
ceptably high number false positives (not shown). Thus, we ignored these call-sets
and focused on call-sets with a precision of 80% or higher. Out of these the high-
est recall for the 15X PacBio datasets was 69.6% and 67.2% for NA12878 and
SKBR3 respectively (Fig. 4.16b,d). The difference in recall was largely due to the
complexity of the SKBR3 cancer sample, which has several extreme copy number
amplifications (> 20-fold). When we increased the coverage to 30X, NGMLR and
Sniffles showed 80.0% and 76.6% recall with a precision of 85% for NA12878
and SKBR3, respectively. For the Oxford Nanopore NA12878 dataset, the highest
recall was 84.2% for 20X coverage (Fig. 4.16c). Note, that the initial Nanopore
dataset was 28X so the results are not directly comparable to the PacBio results.

4.3.6 Runtime and memory usage comparison

We benchmarked the different long read mappers used in this study on a PC equipped
with 4 x AMD Opteron 6348 Processors with each having 12 cores and 512 GB
RAM in total. Every program was executed with 10 threads to map subsampled
NA12878 Nanopore (Jain et al., 2018) and PacBio (Zook et al., 2014) NA12878
data. MECAT was the fastest with 1,236 seconds while NGMLR took 4,788 sec-
onds (1.3 hours) followed by BWA-MEM with 6,133 seconds (1.7 hours). BlasR
took 18,518 seconds (5.1 hours). We stopped GraphMap after running for a week
without finishing. GraphMap used the most memory (106.9 GB), whereas BWA-

4.4. CONCLUSION 87

MEM used the least (6.0 Gbytes). NGMLR used 10.2 GB. We also benchmarked
Sniffles on the full datasets mapped by NGMLR: Sniffles required 12,102 seconds
(3.3 hours) for the 44x PacBio data set, and 7,744 seconds (2.2 hours) for the 28x
Nanopore data set. Supplementary Table B.9 shows all results including memory
usage for all mappers.

4.4 Conclusion

NGMLR and Sniffles enable an unprecedented view of SVs with long-read se-
quencing, by outperforming existing tools in terms of both sensitivity and speci-
ficity with simulated and real data. In particular, we demonstrated that they can
overcome the sensitivity issues reported for short-read callers, which miss 30%
(Sudmant, 2015, Jeffares et al., 2017) to 90% (Huddleston, 2017) of SVs. This
allowed us to detect many thousands of additional variants beyond what has been
reported for large-scale short-read sequencing projects such as the 1000 Genomes
Project. Indeed, prototype versions of our methods were recently used to identify
the causal pathogenic SV in a patient with multiple neoplasia and cardiac myx-
omata (Merker et al., 2017). We also used long-read data to identify systematic
errors in short-read SV calling, for which the vast majority (> 85%) of identified
translocations were false positives caused by mismapped reads. The identification
of SVs from long reads is challenging chiefly because of the high underlying error
rates. In addition to numerous small indels, we discovered that PacBio introduces
larger insertion artifacts at a low but noticeable rate. We control for this artifact by
requiring that the size and composition of candidate SVs be consistent across the
spanning reads. Within the Oxford Nanopore dataset, we highlighted systematic ar-
tifacts in base-calling that generate deletions in low-complexity repeats. Although
we fully expect accuracy to improve with improved base-calling, it is currently
necessary to exclude small (<200bp) SV calls when using Oxford Nanopore se-
quencing. Beyond sequencing errors, alignment artifacts can lead to false positive
SVs. For example, some long-read mappers falsely align reads across a SV with-
out indication of the underlying event. Although Sniffles recognizes the increase
in mismatches, NGMLR alignments correct these issues more directly. Finally,

88
CHAPTER 4. ACCURATE DETECTION OF COMPLEX STRUCTURAL

VARIATIONS USING SINGLE-MOLECULE SEQUENCING

we showed NGMRL and Sniffles to be the only tools that reliably detect nested
or complex SVs such as INVDUPs and INVDELs. Several diseases are already
known to be associated with these SV types, and we expect that their importance
will increase as more are detected. A key remaining barrier to routine analysis of
SVs across large numbers of samples is cost. Long-read sequencing is becoming
less expensive every year but remains more expensive than short-read sequencing
(Goodwin et al., 2016). We addressed this by showing that high accuracy is possi-
ble with as little as 15X to 30X coverage for healthy or cancerous human genomes.
These requirements will be further reduced as read lengths increase and error rates
drop. We expect that these improvements, aided by NGMLR and Sniffles, will
usher in a new era of high-quality genome sequences for a broad range of research
and clinical applications.

Chapter 5

Summary and Outlook

The goal of this thesis was to develop easy-to-use read mapping tools that map reads
efficiently and accurately independent of the number of differences between the
reads and the reference genome. We, therefore, set off by discussing the basics of
high-throughput next-generation sequencing workflows and summarised the main
challenges that need to be addressed by read mapping tools. We found that a wide
range of analysis tools exist that are optimised for the more common use-cases
like mapping of high accuracy reads to high quality reference genomes followed
by SNP and small indel calling. However, with the decreasing cost and increasing
availability of next-generation sequencing we saw a need for efficient, accurate and
easy-to-use read mapping tools that address challenges that come with the analysis
of data from none model organisms, sequencing platforms with higher sequencing
error or other types of genetic variants like structural variations.
To address this, in chapter 3 we presented NextGenMap a sequence alignment-
based short read mapper. We introduced a k-mer index that is optimised for read
mapping by enabling fast querying of k-mer positions, while being compact enough
to fit into main memory on standard desktop computers. Next, we demonstrated
how we use a read specific k-mer filtering strategy to quickly identify regions in
the reference genome with high similarity to a given read. Most importantly, we
show this approach to work efficiently independent of the overall number of dif-
ferences between the reads and the reference (up to 10%). Paired with low-level
optimisations like using efficient bit-wise operations e.g., for k-mer representation

89

90 CHAPTER 5. SUMMARY AND OUTLOOK

and extraction as well as using CPU cache efficiently, these two innovations enable
NextGenMap to map reads faster and more accurate than state of the art BWT-
based aligners. We found NextGenMap to be between 1.1 and 2.3 times faster than
the fastest BWT-based mapper. At the same time, NextGenMap maps roughly the
same number of reads correctly as BWT-based mappers at low levels of differences
between the reads and the reference (1-2%) and up to 46% more at higher lev-
els. Furthermore, NextGenMap is between 11 and 67 times faster than a sequence
alignment-based tool that gives similar alignment accuracy at higher polymorphism
rates.
Currently, NextGenMap only supports reference genomes smaller than 4GB. This
is sufficient for the majority of the currently studied genomes including the human
genome. However, with more large plant genome assemblies becoming available it
would be beneficial to remove this restriction in the future. NextGenMap’s index
data-structure can be easily extended to support larger genomes. The index used
by NextGenMap comprises two data-structures. An array (GP) used to store the
genomic positions of all k-mers and a hash-table (HT) that enables fast querying of
GP. To this end, HT uses the k-mer sequence as a key and stores the information
where the genomic positions of the respective k-mer are found in GP, as a value.
The limiting factor for the reference genome size is that both, the values in HT

as well as the elements of GP, are unsigned 32-bit integers. A straightforward
approach to resolve this issue is to double the size to 64-bit. However, this would
make the index twice as big - even for genomes < 4GB. A more memory efficient
strategy would be to split the reference into two 4GB chunks and compute HT1 and
GP1 for the first part and HT2 and GP2 for the second. All genomic position <

4GB would be stored in GP1 all others in GP2. Querying HT1 and GP1 would be
unchanged compared to the current implementation. For GP2 the only difference
would be that all genomic positions would have to be offset by 232 when querying k-
mer positions. This approach would double the supported reference size. Querying
k-mer position would take slightly longer as it would require two hash-table look-
ups instead of one and two read operations if the reference size is > 8GB. However,
k-mer position querying is currently not the bottleneck in NextGenMap. Thus, real
world runtimes should not be noticeably impacted. Evidently, this strategy can be

91

extended to use four or more GP tables to increase the size of supported reference
genomes even further.
The SAM specification defines mapping quality as the probability of the reported
mapping position to be wrong (expressed as a Phred quality score). In NextGen-
Map we currently use the relative difference between the best and the second-best
alignment score scaled to a number between 0 and 60 as a proxy for this probability.
We have found this approach to approximate mapping quality well for all practical
purposes. However, a potential next step would be to use a probabilistic framework
to calibrate the mapping qualities and thus mimic the probability of the mapping to
be wrong more accurately. This calibration would most likely have to be done sep-
arately for different sequencing platforms and might need adjustment depending on
how big the evolutionary distance between the sequenced and the reference genome
is. Furthermore, no base qualities are taken into account for match and mismatch
scores in the scoring function of the sequence alignment algorithms NextGenMap
uses. This is a limitation of the MAson library. Extending MAson or switching to
another alignment library would be possible and should come at little to no compu-
tational overhead when running on a CPU. Due to the limited amount of memory
and the additional data transfer overhead required it could however noticeably in-
fluence the alignment performance when using a GPU. Furthermore, while easy
to apply to platforms with mostly substitution-based sequencing error it is unclear
how to extend this approach to indel based sequencing errors as seen in 454 or
IonTorrent sequencing. Lastly, NextGenMap was not optimised for detecting split
read alignments required for reads that span break points of SVs. A straightforward
approach would be to find the primary mapping location as it is implemented now
and scan for unaligned bases at the 5’ or 3’ end of the aligned read. If the num-
ber of unaligned bases exceeds a threshold the respective part of the read would be
remapped.
However, SV calling from short reads comes with considerable limitations lead-
ing to low precision and recall. Thus, to address SV calling, we decided to focus
on long read sequencing in chapter 4 instead. We found that existing long read
aligners were unable to account for indel based sequencing error and biological
variation at the same time. This led to alignment artifacts which significantly lim-

92 CHAPTER 5. SUMMARY AND OUTLOOK

ited SV calling performance. Furthermore, established tools were not optimised for
aligning reads that span complex SV and therefore require accurate split read align-
ments. In addition, no long-read optimised SV caller existed that supported calling
of all SV types. To enable researchers to investigate the important role of struc-
tural variation in a cost-efficient manner using long reads we introduced NGMLR,
an SV aware long read aligner and its companion tool Sniffles, a long-read opti-
mised SV caller. For NGMLR the key innovations were: (1) the introduction of a
heuristic implementation of a convex gap cost alignment algorithm that is able to
account for sequencing error and true biological SVs while being fast enough to
be applied to whole genome datasets. (2) a step wise alignment approach that first
finds linear alignments between the reads and the reference and then chooses the
non-overlapping subset of linear alignments that taken together result in the highest
alignment scores in a SV-aware fashion.
We showed that NGMLR aligns 92% of all reads spanning SVs correctly when
using simulated data. Compared to 69% achieved by the second-best long read
aligner. NGMLR and Sniffles correctly identified 94% of all simulated SVs with
an FDR of 0 % compared to 79% with an FDR of 0.7% for the second-best long
read aligner. For comparison, using state of the art short read SV calling tools
only recovered 19% of the SVs with an FDR of 0.2% when applying the same
evaluation criteria. When looking at a PacBio trio dataset NGMLR and Sniffles
detected ∼ 94% of all paternal and maternal homozygous SVs in the son as well.
Using short reads four times more SVs were missed. Finally, we showed that highly
accurate SV calling is possible using 15 - 30 times coverage when using long reads
making our approach generally applicable and cost effective.
Two notably limitations of NGMLR are: (1) it can only map to one linear refer-
ence genome and (2) as it was optimised for aligning raw long sequencing reads
it currently does not support whole genome alignments. With the increasing avail-
ability of long read sequencing, more and more assemblies of human genomes as
well as growing catalogues of common SVs will be available. Thus, adding support
to NGMLR for aligning full genome assemblies as well as aligning to a reference
genome graph that contains information of common SVs on top of the reference
sequence might be of general interest. A more practical limitation is that NGMLR

93

currently implements stringent read length filters. Since short single molecules
sequencing reads are generally not useful for SV calling NGMLR discards reads
shorter than a given length (< 1 kb by default). While not affecting overall SV call-
ing performance this reduces the percentage of aligned reads. With long read se-
quencing platforms becoming more accurate and thus being applied to small variant
calling as well, revisiting these thresholds could increase the overall applicability
of NGMLR.
Similar to the development seen for short read data we expect more tools becoming
available for long-read alignment and SV calling in the future. A robust approach
for benchmarking of these tools will be required. In chapter 4 we introduced an
approach to evaluate read alignments and SV calls from simulated data and trio
datasets. Consolidating these evaluations in an easy-to-use framework to allow
for automatic and comprehensive evaluation of SV calling tools could be of great
benefit to the SV calling community.

94 CHAPTER 5. SUMMARY AND OUTLOOK

Bibliography

Alberts B, Johnson A, and Lewis J (2002):
Molecular Biology of the Cell. 4th edition, New York: Garland Science,
4th edition, URL https://www.ncbi.nlm.nih.gov/books/NBK21054/.

Alkan, C., B. P. Coe, and E. E. Eichler (2011): “Genome structural varia-
tion discovery and genotyping,” Nature Reviews Genetics, 12, 363–376,
URL http://www.ncbi.nlm.nih.gov/pubmed/21358748http://www.

pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4108431http:

//www.nature.com/doifinder/10.1038/nrg2958.

Bȩbenek, A. and I. Ziuzia-Graczyk (2018): “Fidelity of DNA replicationa matter of
proofreading,” .

Beri, S., M. C. Bonaglia, and R. Giorda (2013): “Low-copy repeats at the
human VIPR2 gene predispose to recurrent and nonrecurrent rearrange-
ments.” European journal of human genetics : EJHG, 21, 757–61, URL
http://www.nature.com/doifinder/10.1038/ejhg.2012.235http://

www.ncbi.nlm.nih.gov/pubmed/23073313http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=PMC3722940.

Blom, J., T. Jakobi, D. Doppmeier, S. Jaenicke, J. Kalinowski, J. Stoye, and
A. Goesmann (2011): “Exact and complete short-read alignment to micro-
bial genomes using graphics processing unit programming,” Bioinformatics, 27,
1351–1358.

Canzar, S. and S. L. Salzberg (2015): “Short Read Mapping: An Algorithmic
Tour,” Proceedings of the IEEE, 1–23, URL http://ieeexplore.ieee.org/

document/7244195/.

Carvalho, C. M. B. and J. R. Lupski (2016): “Mechanisms underlying structural
variant formation in genomic disorders,” Nature Reviews Genetics, 17, 224–238,
URL http://www.ncbi.nlm.nih.gov/pubmed/26924765http://www.

BIBLIOGRAPHY 95

pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4827625http:

//www.nature.com/doifinder/10.1038/nrg.2015.25.

Carvalho, C. M. B., M. B. Ramocki, D. Pehlivan, L. M. Franco, C. Gonzaga-
Jauregui, P. Fang, A. McCall, E. K. Pivnick, S. Hines-Dowell, L. H. Seaver,
L. Friehling, S. Lee, R. Smith, D. Del Gaudio, M. Withers, P. Liu, S. W. Cheung,
J. W. Belmont, H. Y. Zoghbi, P. J. Hastings, and J. R. Lupski (2011): “Inverted
genomic segments and complex triplication rearrangements are mediated by
inverted repeats in the human genome.” Nature genetics, 43, 1074–81, URL
http://www.nature.com/doifinder/10.1038/ng.944http://www.ncbi.

nlm.nih.gov/pubmed/21964572http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=PMC3235474.

Cechova, M. (2021): “Probably correct: Rescuing repeats with short and long
reads,” .

Chaisson, M. J. (2015): “Resolving the complexity of the human genome using
single-molecule sequencing,” Nature, 517, URL https://doi.org/10.1038/

nature13907.

Chaisson, M. J. and G. Tesler (2012): “Mapping single molecule se-
quencing reads using basic local alignment with successive refine-
ment (BLASR): application and theory,” BMC Bioinformatics, 13, 238,
URL http://www.ncbi.nlm.nih.gov/pubmed/22988817http://www.

pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3572422http:

//bmcbioinformatics.biomedcentral.com/articles/10.1186/

1471-2105-13-238.

Chen, X., O. Schulz-Trieglaff, R. Shaw, B. Barnes, F. Schlesinger, M. Källberg,
A. J. Cox, S. Kruglyak, and C. T. Saunders (2016): “Manta: rapid detection of
structural variants and indels for germline and cancer sequencing applications.”
Bioinformatics (Oxford, England), 32, 1220–2, URL https://academic.oup.

com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/

96 CHAPTER 5. SUMMARY AND OUTLOOK

btv710http://www.ncbi.nlm.nih.gov/pubmed/26647377.

Chin, C.-S., P. Peluso, F. J. Sedlazeck, M. Nattestad, G. T. Concepcion,
A. Clum, C. Dunn, R. O’Malley, R. Figueroa-Balderas, A. Morales-
Cruz, G. R. Cramer, M. Delledonne, C. Luo, J. R. Ecker, D. Cantu,
D. R. Rank, and M. C. Schatz (2016): “Phased diploid genome as-
sembly with single-molecule real-time sequencing,” Nature Methods, 13,
1050–1054, URL http://www.ncbi.nlm.nih.gov/pubmed/27749838http:

//www.nature.com/doifinder/10.1038/nmeth.4035.

Chong, J. X., K. J. Buckingham, S. N. Jhangiani, C. Boehm, N. Sobreira, J. D.
Smith, T. M. Harrell, M. J. McMillin, W. Wiszniewski, T. Gambin, Z. H.
Coban Akdemir, K. Doheny, A. F. Scott, D. Avramopoulos, A. Chakravarti,
J. Hoover-Fong, D. Mathews, P. D. Witmer, H. Ling, K. Hetrick, L. Watkins,
K. E. Patterson, F. Reinier, E. Blue, D. Muzny, M. Kircher, K. Bilguvar, F. López-
Giráldez, V. R. Sutton, H. K. Tabor, S. M. Leal, M. Gunel, S. Mane, R. A. Gibbs,
E. Boerwinkle, A. Hamosh, J. Shendure, J. R. Lupski, R. P. Lifton, D. Valle,
D. A. Nickerson, and M. J. Bamshad (2015): “The Genetic Basis of Mendelian
Phenotypes: Discoveries, Challenges, and Opportunities,” .

Craig Venter, J., M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton,
H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt, J. D. Gocayne, P. Amanatides,
R. M. Ballew, D. H. Huson, J. R. Wortman, Q. Zhang, C. D. Kodira, X. H.
Zheng, L. Chen, M. Skupski, G. Subramanian, P. D. Thomas, J. Zhang, G. L.
Gabor Miklos, C. Nelson, S. Broder, A. G. Clark, J. Nadeau, V. A. McKusick,
N. Zinder, A. J. Levine, R. J. Roberts, M. Simon, C. Slayman, M. Hunkapiller,
R. Bolanos, A. Delcher, I. Dew, D. Fasulo, M. Flanigan, L. Florea, A. Halpern,
S. Hannenhalli, S. Kravitz, S. Levy, C. Mobarry, K. Reinert, K. Remington,
J. Abu-Threideh, E. Beasley, K. Biddick, V. Bonazzi, R. Brandon, M. Cargill,
I. Chandramouliswaran, R. Charlab, K. Chaturvedi, Z. Deng, V. di Francesco,
P. Dunn, K. Eilbeck, C. Evangelista, A. E. Gabrielian, W. Gan, W. Ge, F. Gong,
Z. Gu, P. Guan, T. J. Heiman, M. E. Higgins, R. R. Ji, Z. Ke, K. A. Ketchum,
Z. Lai, Y. Lei, Z. Li, J. Li, Y. Liang, X. Lin, F. Lu, G. V. Merkulov, N. Mil-

BIBLIOGRAPHY 97

shina, H. M. Moore, A. K. Naik, V. A. Narayan, B. Neelam, D. Nusskern,
D. B. Rusch, S. Salzberg, W. Shao, B. Shue, J. Sun, Z. Yuan Wang, A. Wang,
X. Wang, J. Wang, M. H. Wei, R. Wides, C. Xiao, C. Yan, A. Yao, J. Ye, M. Zhan,
W. Zhang, H. Zhang, Q. Zhao, L. Zheng, F. Zhong, W. Zhong, S. C. Zhu, S. Zhao,
D. Gilbert, S. Baumhueter, G. Spier, C. Carter, A. Cravchik, T. Woodage, F. Ali,
H. An, A. Awe, D. Baldwin, H. Baden, M. Barnstead, I. Barrow, K. Beeson,
D. Busam, A. Carver, A. Center, M. Lai Cheng, L. Curry, S. Danaher, L. Daven-
port, R. Desilets, S. Dietz, K. Dodson, L. Doup, S. Ferriera, N. Garg, A. Gluecks-
mann, B. Hart, J. Haynes, C. Haynes, C. Heiner, S. Hladun, D. Hostin, J. Houck,
T. Howland, C. Ibegwam, J. Johnson, F. Kalush, L. Kline, S. Koduru, A. Love,
F. Mann, D. May, S. McCawley, T. McIntosh, I. McMullen, M. Moy, L. Moy,
B. Murphy, K. Nelson, C. Pfannkoch, E. Pratts, V. Puri, H. Qureshi, M. Rear-
don, R. Rodriguez, Y. H. Rogers, D. Romblad, B. Ruhfel, R. Scott, C. Sitter,
M. Smallwood, E. Stewart, R. Strong, E. Suh, R. Thomas, N. Ni Tint, S. Tse,
C. Vech, G. Wang, J. Wetter, S. Williams, M. Williams, S. Windsor, E. Winn-
Deen, K. Wolfe, J. Zaveri, K. Zaveri, J. F. Abril, R. Guigo, M. J. Campbell, K. V.
Sjolander, B. Karlak, A. Kejariwal, H. Mi, B. Lazareva, T. Hatton, A. Narecha-
nia, K. Diemer, A. Muruganujan, N. Guo, S. Sato, V. Bafna, S. Istrail, R. Lippert,
R. Schwartz, B. Walenz, S. Yooseph, D. Allen, A. Basu, J. Baxendale, L. Blick,
M. Caminha, J. Carnes-Stine, P. Caulk, Y. H. Chiang, M. Coyne, C. Dahlke,
A. Deslattes Mays, M. Dombroski, M. Donnelly, D. Ely, S. Esparham, C. Fos-
ler, H. Gire, S. Glanowski, K. Glasser, A. Glodek, M. Gorokhov, K. Graham,
B. Gropman, M. Harris, J. Heil, S. Henderson, J. Hoover, D. Jennings, C. Jor-
dan, J. Jordan, J. Kasha, L. Kagan, C. Kraft, A. Levitsky, M. Lewis, X. Liu,
J. Lopez, D. Ma, W. Majoros, J. McDaniel, S. Murphy, M. Newman, T. Nguyen,
N. Nguyen, M. Nodell, S. Pan, J. Peck, M. Peterson, W. Rowe, R. Sanders,
J. Scott, M. Simpson, T. Smith, A. Sprague, T. Stockwell, R. Turner, E. Ven-
ter, M. Wang, M. Wen, D. Wu, M. Wu, A. Xia, A. Zandieh, and X. Zhu (2001):
“The sequence of the human genome,” Science, 291.

Crick, F. (1970): “Central dogma of molecular biology,” Nature, 227.

de Koning, A. P., W. Gu, T. A. Castoe, M. A. Batzer, and D. D. Pollock (2011):

98 CHAPTER 5. SUMMARY AND OUTLOOK

“Repetitive elements may comprise over Two-Thirds of the human genome,”
PLoS Genetics, 7.

Dennenmoser, S. (2017): “Copy number increases of transposable elements and
protein-coding genes in an invasive fish of hybrid origin,” Mol. Ecol., 26, URL
https://doi.org/10.1111/mec.14134.

Dinh, H., M. Dubin, F. Sedlazeck, N. Lettner, O. Mittelsten Scheid, and A. von
Haeseler (2012): “Advanced methylome analysis after Bisulfite deep sequencing:
An example in Arabidopsis,” PLoS ONE, 7.

Eberle, M. A., E. Fritzilas, P. Krusche, M. Källberg, B. L. Moore, M. A. Bekritsky,
Z. Iqbal, H.-Y. Chuang, S. J. Humphray, A. L. Halpern, S. Kruglyak, E. H.
Margulies, G. McVean, and D. R. Bentley (2017): “A reference data set
of 5.4 million phased human variants validated by genetic inheritance from
sequencing a three-generation 17-member pedigree.” Genome research, 27,
157–164, URL http://genome.cshlp.org/lookup/doi/10.1101/gr.

210500.116http://www.ncbi.nlm.nih.gov/pubmed/27903644http://

www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5204340.

English, A. C., W. J. Salerno, and J. G. Reid (2014): “PBHoney: identifying
genomic variants via long-read discordance and interrupted mapping.” BMC
bioinformatics, 15, 180, URL http://www.ncbi.nlm.nih.gov/pubmed/

24915764http://www.pubmedcentral.nih.gov/articlerender.fcgi?

artid=PMC4082283.

Ferragina, P. and G. Manzini (2005): “Indexing compressed text,” Journal of the
ACM, 52.

Fonseca, N., J. Rung, A. Brazma, and J. Marioni (2012): “Tools for mapping high-
throughput sequencing data,” Bioinformatics, 28, 3169–3177.

Gibbs, R. A., E. Boerwinkle, H. Doddapaneni, Y. Han, V. Korchina, C. Kovar,
S. Lee, D. Muzny, J. G. Reid, Y. Zhu, J. Wang, Y. Chang, Q. Feng, X. Fang,

BIBLIOGRAPHY 99

X. Guo, M. Jian, H. Jiang, X. Jin, T. Lan, G. Li, J. Li, Y. Li, S. Liu, X. Liu, Y. Lu,
X. Ma, M. Tang, B. Wang, G. Wang, H. Wu, R. Wu, X. Xu, Y. Yin, D. Zhang,
W. Zhang, J. Zhao, M. Zhao, X. Zheng, E. S. Lander, D. M. Altshuler, S. B.
Gabriel, N. Gupta, N. Gharani, L. H. Toji, N. P. Gerry, A. M. Resch, P. Flicek,
J. Barker, L. Clarke, L. Gil, S. E. Hunt, G. Kelman, E. Kulesha, R. Leinonen,
W. M. McLaren, R. Radhakrishnan, A. Roa, D. Smirnov, R. E. Smith, I. Streeter,
A. Thormann, I. Toneva, B. Vaughan, X. Zheng-Bradley, D. R. Bentley, R. Gro-
cock, S. Humphray, T. James, Z. Kingsbury, H. Lehrach, R. Sudbrak, M. W.
Albrecht, V. S. Amstislavskiy, T. A. Borodina, M. Lienhard, F. Mertes, M. Sul-
tan, B. Timmermann, M.-L. Yaspo, E. R. Mardis, R. K. Wilson, L. Fulton,
R. Fulton, S. T. Sherry, V. Ananiev, Z. Belaia, D. Beloslyudtsev, N. Bouk,
C. Chen, D. Church, R. Cohen, C. Cook, J. Garner, T. Hefferon, M. Kimelman,
C. Liu, J. Lopez, P. Meric, C. OSullivan, Y. Ostapchuk, L. Phan, S. Ponomarov,
V. Schneider, E. Shekhtman, K. Sirotkin, D. Slotta, H. Zhang, G. A. McVean,
R. M. Durbin, S. Balasubramaniam, J. Burton, P. Danecek, T. M. Keane, A. Kolb-
Kokocinski, S. McCarthy, J. Stalker, M. Quail, J. P. Schmidt, C. J. Davies, J. Gol-
lub, T. Webster, B. Wong, Y. Zhan, A. Auton, C. L. Campbell, Y. Kong, A. Mar-
cketta, R. A. Gibbs, F. Yu, L. Antunes, M. Bainbridge, D. Muzny, A. Sabo,
Z. Huang, J. Wang, L. J. M. Coin, L. Fang, X. Guo, X. Jin, G. Li, Q. Li, Y. Li,
Z. Li, H. Lin, B. Liu, R. Luo, H. Shao, Y. Xie, C. Ye, C. Yu, F. Zhang, H. Zheng,
H. Zhu, C. Alkan, E. Dal, F. Kahveci, G. T. Marth, E. P. Garrison, D. Kural, W.-P.
Lee, W. Fung Leong, M. Stromberg, A. N. Ward, J. Wu, M. Zhang, M. J. Daly,
M. A. DePristo, R. E. Handsaker, D. M. Altshuler, E. Banks, G. Bhatia, G. del
Angel, S. B. Gabriel, G. Genovese, N. Gupta, H. Li, S. Kashin, E. S. Lander, S. A.
McCarroll, J. C. Nemesh, R. E. Poplin, S. C. Yoon, J. Lihm, V. Makarov, A. G.
Clark, S. Gottipati, A. Keinan, J. L. Rodriguez-Flores, J. O. Korbel, T. Rausch,
M. H. Fritz, A. M. Stütz, P. Flicek, K. Beal, L. Clarke, A. Datta, J. Herrero,
W. M. McLaren, G. R. S. Ritchie, R. E. Smith, D. Zerbino, X. Zheng-Bradley,
P. C. Sabeti, I. Shlyakhter, S. F. Schaffner, J. Vitti, D. N. Cooper, E. V. Ball,
P. D. Stenson, D. R. Bentley, B. Barnes, M. Bauer, R. Keira Cheetham, A. Cox,
M. Eberle, S. Humphray, S. Kahn, L. Murray, J. Peden, R. Shaw, E. E. Kenny,
M. A. Batzer, M. K. Konkel, J. A. Walker, D. G. MacArthur, M. Lek, R. Sud-

100 CHAPTER 5. SUMMARY AND OUTLOOK

brak, V. S. Amstislavskiy, R. Herwig, E. R. Mardis, L. Ding, D. C. Koboldt,
D. Larson, K. Ye, S. Gravel, A. Swaroop, E. Chew, T. Lappalainen, Y. Er-
lich, M. Gymrek, T. Frederick Willems, J. T. Simpson, M. D. Shriver, J. A.
Rosenfeld, C. D. Bustamante, S. B. Montgomery, F. M. De La Vega, J. K.
Byrnes, A. W. Carroll, M. K. DeGorter, P. Lacroute, B. K. Maples, A. R. Mar-
tin, A. Moreno-Estrada, S. S. Shringarpure, F. Zakharia, E. Halperin, Y. Baran,
C. Lee, E. Cerveira, J. Hwang, A. Malhotra, D. Plewczynski, K. Radew, M. Ro-
manovitch, C. Zhang, F. C. L. Hyland, D. W. Craig, A. Christoforides, N. Homer,
T. Izatt, A. A. Kurdoglu, S. A. Sinari, K. Squire, S. T. Sherry, C. Xiao, J. Se-
bat, D. Antaki, M. Gujral, A. Noor, K. Ye, E. G. Burchard, R. D. Hernandez,
C. R. Gignoux, D. Haussler, S. J. Katzman, W. James Kent, B. Howie, A. Ruiz-
Linares, E. T. Dermitzakis, S. E. Devine, G. R. Abecasis, H. Min Kang, J. M.
Kidd, T. Blackwell, S. Caron, W. Chen, S. Emery, L. Fritsche, C. Fuchsberger,
G. Jun, B. Li, R. Lyons, C. Scheller, C. Sidore, S. Song, E. Sliwerska, D. Tal-
iun, A. Tan, R. Welch, M. Kate Wing, X. Zhan, P. Awadalla, A. Hodgkinson,
Y. Li, X. Shi, A. Quitadamo, G. Lunter, G. A. McVean, J. L. Marchini, S. My-
ers, C. Churchhouse, O. Delaneau, A. Gupta-Hinch, W. Kretzschmar, Z. Iqbal,
I. Mathieson, A. Menelaou, A. Rimmer, D. K. Xifara, T. K. Oleksyk, Y. Fu,
X. Liu, M. Xiong, L. Jorde, D. Witherspoon, J. Xing, E. E. Eichler, B. L. Brown-
ing, S. R. Browning, F. Hormozdiari, P. H. Sudmant, E. Khurana, R. M. Durbin,
M. E. Hurles, C. Tyler-Smith, C. A. Albers, Q. Ayub, S. Balasubramaniam,
Y. Chen, V. Colonna, P. Danecek, L. Jostins, T. M. Keane, S. McCarthy, K. Wal-
ter, Y. Xue, M. B. Gerstein, A. Abyzov, S. Balasubramanian, J. Chen, D. Clarke,
Y. Fu, A. O. Harmanci, M. Jin, D. Lee, J. Liu, X. Jasmine Mu, J. Zhang, Y. Zhang,
Y. Li, R. Luo, H. Zhu, C. Alkan, E. Dal, F. Kahveci, G. T. Marth, E. P. Garri-
son, D. Kural, W.-P. Lee, A. N. Ward, J. Wu, M. Zhang, S. A. McCarroll, R. E.
Handsaker, D. M. Altshuler, E. Banks, G. del Angel, G. Genovese, C. Hartl,
H. Li, S. Kashin, J. C. Nemesh, K. Shakir, S. C. Yoon, J. Lihm, V. Makarov,
J. Degenhardt, J. O. Korbel, M. H. Fritz, S. Meiers, B. Raeder, T. Rausch, A. M.
Stütz, P. Flicek, F. Paolo Casale, L. Clarke, R. E. Smith, O. Stegle, X. Zheng-
Bradley, D. R. Bentley, B. Barnes, R. Keira Cheetham, M. Eberle, S. Humphray,
S. Kahn, L. Murray, R. Shaw, E.-W. Lameijer, M. A. Batzer, M. K. Konkel, J. A.

BIBLIOGRAPHY 101

Walker, L. Ding, I. Hall, K. Ye, P. Lacroute, C. Lee, E. Cerveira, A. Malhotra,
J. Hwang, D. Plewczynski, K. Radew, M. Romanovitch, C. Zhang, D. W. Craig,
N. Homer, D. Church, C. Xiao, J. Sebat, D. Antaki, V. Bafna, J. Michaelson,
K. Ye, S. E. Devine, E. J. Gardner, G. R. Abecasis, J. M. Kidd, R. E. Mills,
G. Dayama, S. Emery, G. Jun, X. Shi, A. Quitadamo, G. Lunter, G. A. McVean,
K. Chen, X. Fan, Z. Chong, T. Chen, D. Witherspoon, J. Xing, E. E. Eichler, M. J.
Chaisson, F. Hormozdiari, J. Huddleston, M. Malig, B. J. Nelson, P. H. Sudmant,
N. F. Parrish, E. Khurana, M. E. Hurles, B. Blackburne, S. J. Lindsay, Z. Ning,
K. Walter, Y. Zhang, M. B. Gerstein, A. Abyzov, J. Chen, D. Clarke, H. Lam,
X. Jasmine Mu, C. Sisu, J. Zhang, Y. Zhang, R. A. Gibbs, F. Yu, M. Bain-
bridge, D. Challis, U. S. Evani, C. Kovar, J. Lu, D. Muzny, U. Nagaswamy,
J. G. Reid, A. Sabo, J. Yu, X. Guo, W. Li, Y. Li, R. Wu, G. T. Marth, E. P.
Garrison, W. Fung Leong, A. N. Ward, G. del Angel, M. A. DePristo, S. B.
Gabriel, N. Gupta, C. Hartl, R. E. Poplin, A. G. Clark, J. L. Rodriguez-Flores,
P. Flicek, L. Clarke, R. E. Smith, X. Zheng-Bradley, D. G. MacArthur, E. R.
Mardis, R. Fulton, D. C. Koboldt, S. Gravel, C. D. Bustamante, D. W. Craig,
A. Christoforides, N. Homer, T. Izatt, S. T. Sherry, C. Xiao, E. T. Dermitzakis,
G. R. Abecasis, H. Min Kang, G. A. McVean, M. B. Gerstein, S. Balasubra-
manian, L. Habegger, H. Yu, P. Flicek, L. Clarke, F. Cunningham, I. Dunham,
D. Zerbino, X. Zheng-Bradley, K. Lage, J. Berg Jespersen, H. Horn, S. B. Mont-
gomery, M. K. DeGorter, E. Khurana, C. Tyler-Smith, Y. Chen, V. Colonna,
Y. Xue, M. B. Gerstein, S. Balasubramanian, Y. Fu, D. Kim, A. Auton, A. Marck-
etta, R. Desalle, A. Narechania, M. A. Wilson Sayres, E. P. Garrison, R. E. Hand-
saker, S. Kashin, S. A. McCarroll, J. L. Rodriguez-Flores, P. Flicek, L. Clarke,
X. Zheng-Bradley, Y. Erlich, M. Gymrek, T. Frederick Willems, C. D. Busta-
mante, F. L. Mendez, G. David Poznik, P. A. Underhill, C. Lee, E. Cerveira,
A. Malhotra, M. Romanovitch, C. Zhang, G. R. Abecasis, L. Coin, H. Shao,
D. Mittelman, C. Tyler-Smith, Q. Ayub, R. Banerjee, M. Cerezo, Y. Chen, T. W.
Fitzgerald, S. Louzada, A. Massaia, S. McCarthy, G. R. Ritchie, Y. Xue, F. Yang,
R. A. Gibbs, C. Kovar, D. Kalra, W. Hale, D. Muzny, J. G. Reid, J. Wang,
X. Dan, X. Guo, G. Li, Y. Li, C. Ye, X. Zheng, D. M. Altshuler, P. Flicek,
L. Clarke, X. Zheng-Bradley, D. R. Bentley, A. Cox, S. Humphray, S. Kahn,

102 CHAPTER 5. SUMMARY AND OUTLOOK

R. Sudbrak, M. W. Albrecht, M. Lienhard, D. Larson, D. W. Craig, T. Izatt, A. A.
Kurdoglu, S. T. Sherry, C. Xiao, D. Haussler, G. R. Abecasis, G. A. McVean,
R. M. Durbin, S. Balasubramaniam, T. M. Keane, S. McCarthy, J. Stalker,
W. Bodmer, G. Bedoya, A. Ruiz-Linares, Z. Cai, Y. Gao, J. Chu, L. Peltonen,
A. Garcia-Montero, A. Orfao, J. Dutil, J. C. Martinez-Cruzado, T. K. Oleksyk,
K. C. Barnes, R. A. Mathias, A. Hennis, H. Watson, C. McKenzie, F. Qadri,
R. LaRocque, P. C. Sabeti, J. Zhu, X. Deng, P. C. Sabeti, D. Asogun, O. Fo-
larin, C. Happi, O. Omoniwa, M. Stremlau, R. Tariyal, M. Jallow, F. Sisay Joof,
T. Corrah, K. Rockett, D. Kwiatkowski, J. Kooner, T. Tnh Hiê‘n, S. J. Dun-
stan, N. Thuy Hang, R. Fonnie, R. Garry, L. Kanneh, L. Moses, P. C. Sabeti,
J. Schieffelin, D. S. Grant, C. Gallo, G. Poletti, D. Saleheen, and A. Rasheed
(2015): “A global reference for human genetic variation,” Nature, 526, 68–74,
URL http://www.nature.com/articles/nature15393.

Glenn, T. C. (2011): “Field guide to next-generation DNA sequencers.” Molecular
ecology resources, 759–769, URL http://www.ncbi.nlm.nih.gov/pubmed/

21592312.

Goodwin, S., J. D. McPherson, and W. R. McCombie (2016): “Coming of age: ten
years of next-generation sequencing technologies,” Nature Reviews Genetics, 17,
333–351, URL http://www.ncbi.nlm.nih.gov/pubmed/27184599http://

www.nature.com/doifinder/10.1038/nrg.2016.49.

Gusfield, D. (1997): Algorithms on strings, trees, and sequences: computer science and computational biology,
New York, NY, USA: Cambridge University Press.

Hartigan, J. A. and P. M. Hartigan (1985): “The Dip Test of Unimodality,” Ann.
Statist., 13, 70–84, URL https://doi.org/10.1214/aos/1176346577.

Hedges, D. J., K. L. Hamilton-Nelson, S. J. Sacharow, L. Nations, G. W. Beecham,
Z. M. Kozhekbaeva, B. L. Butler, H. N. Cukier, P. L. Whitehead, D. Ma, J. M.
Jaworski, L. Nathanson, J. M. Lee, S. L. Hauser, J. R. Oksenberg, M. L. Cuccaro,
J. L. Haines, J. R. Gilbert, and M. A. Pericak-Vance (2012): “Evidence of novel

BIBLIOGRAPHY 103

fine-scale structural variation at autism spectrum disorder candidate loci.”
Molecular autism, 3, 2, URL http://molecularautism.biomedcentral.

com/articles/10.1186/2040-2392-3-2http://www.ncbi.nlm.nih.gov/

pubmed/22472195http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=PMC3352055.

Holtgrewe, M. (2010): “Mason a read simulator for second generation sequencing
data.” Technical Report TR-B-10-06, Institut für Mathematik und Informatik,
Freie Universität Berlin.

Huddleston, J. (2017): “Discovery and genotyping of structural variation from long-
read haploid genome sequence data,” Genome Res., 27, URL https://doi.

org/10.1101/gr.214007.116.

Imprialou, M., A. Kahles, J. G. Steffen, E. J. Osborne, X. Gan, J. Lempe,
A. Bhomra, E. Belfield, A. Visscher, R. Greenhalgh, N. P. Harberd, R. Goram,
J. Hein, A. Robert-Seilaniantz, J. Jones, O. Stegle, P. Kover, M. Tsiantis,
M. Nordborg, G. Rätsch, R. M. Clark, and R. Mott (2017): “Genomic Rearrange-
ments in Arabidopsis Considered as Quantitative Traits.” Genetics, 205, 1425–
1441, URL http://www.genetics.org/lookup/doi/10.1534/genetics.

116.192823http://www.ncbi.nlm.nih.gov/pubmed/28179367http://

www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5378104.

Jain, M., S. Koren, K. H. Miga, J. Quick, A. C. Rand, T. A. Sasani, J. R. Tyson,
A. D. Beggs, A. T. Dilthey, I. T. Fiddes, S. Malla, H. Marriott, T. Nieto,
J. O’Grady, H. E. Olsen, B. S. Pedersen, A. Rhie, H. Richardson, A. R. Quin-
lan, T. P. Snutch, L. Tee, B. Paten, A. M. Phillippy, J. T. Simpson, N. J. Loman,
and M. Loose (2018): “Nanopore sequencing and assembly of a human genome
with ultra-long reads,” Nature Biotechnology, 36, 338–345.

Jeffares, D. C., C. Jolly, M. Hoti, D. Speed, L. Shaw, C. Rallis, F. Bal-
loux, C. Dessimoz, J. Bähler, and F. J. Sedlazeck (2017): “Transient
structural variations have strong effects on quantitative traits and repro-

104 CHAPTER 5. SUMMARY AND OUTLOOK

ductive isolation in fission yeast.” Nature communications, 8, 14061, URL
http://www.nature.com/doifinder/10.1038/ncomms14061http://www.

ncbi.nlm.nih.gov/pubmed/28117401http://www.pubmedcentral.nih.

gov/articlerender.fcgi?artid=PMC5286201.

Kadalayil, L., S. Rafiq, M. J. J. Rose-Zerilli, R. J. Pengelly, H. Parker,
D. Oscier, J. C. Strefford, W. J. Tapper, J. Gibson, S. Ennis, and
A. Collins (2015): “Exome sequence read depth methods for identify-
ing copy number changes.” Briefings in bioinformatics, 16, 380–92, URL
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/

bbu027http://www.ncbi.nlm.nih.gov/pubmed/25169955.

Kiełbasa, S. M., R. Wan, K. Sato, P. Horton, and M. C. Frith (2011): “Adaptive
seeds tame genomic sequence comparison,” Genome Res., 21, URL https://

doi.org/10.1101/gr.113985.110.

Knuth, D. E. (1997): Art of Computer Programming, Volume 2: Seminumerical Algorithms,
Addison-Wesley Professional, third edition, URL http://www.amazon.com/

exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0201896842.

Koboldt, D. C. (2020): “Best practices for variant calling in clinical sequencing,” .

Lander, E. S., L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin,
K. Devon, K. Dewar, M. Doyle, W. Fitzhugh, R. Funke, D. Gage, K. Harris,
A. Heaford, J. Howland, L. Kann, J. Lehoczky, R. Levine, P. McEwan, K. McK-
ernan, J. Meldrim, J. P. Mesirov, C. Miranda, W. Morris, J. Naylor, C. Ray-
mond, M. Rosetti, R. Santos, A. Sheridan, C. Sougnez, N. Stange-Thomann,
N. Stojanovic, A. Subramanian, D. Wyman, J. Rogers, J. Sulston, R. Ainscough,
S. Beck, D. Bentley, J. Burton, C. Clee, N. Carter, A. Coulson, R. Deadman,
P. Deloukas, A. Dunham, I. Dunham, R. Durbin, L. French, D. Grafham, S. Gre-
gory, T. Hubbard, S. Humphray, A. Hunt, M. Jones, C. Lloyd, A. McMurray,
L. Matthews, S. Mercer, S. Milne, J. C. Mullikin, A. Mungall, R. Plumb, M. Ross,
R. Shownkeen, S. Sims, R. H. Waterston, R. K. Wilson, L. W. Hillier, J. D.

BIBLIOGRAPHY 105

McPherson, M. A. Marra, E. R. Mardis, L. A. Fulton, A. T. Chinwalla, K. H.
Pepin, W. R. Gish, S. L. Chissoe, M. C. Wendl, K. D. Delehaunty, T. L. Miner,
A. Delehaunty, J. B. Kramer, L. L. Cook, R. S. Fulton, D. L. Johnson, P. J. Minx,
S. W. Clifton, T. Hawkins, E. Branscomb, P. Predki, P. Richardson, S. Wenning,
T. Slezak, N. Doggett, J. F. Cheng, A. Olsen, S. Lucas, C. Elkin, E. Uberbacher,
M. Frazier, R. A. Gibbs, D. M. Muzny, S. E. Scherer, J. B. Bouck, E. J. Soder-
gren, K. C. Worley, C. M. Rives, J. H. Gorrell, M. L. Metzker, S. L. Naylor, R. S.
Kucherlapati, D. L. Nelson, G. M. Weinstock, Y. Sakaki, A. Fujiyama, M. Hat-
tori, T. Yada, A. Toyoda, T. Itoh, C. Kawagoe, H. Watanabe, Y. Totoki, T. Taylor,
J. Weissenbach, R. Heilig, W. Saurin, F. Artiguenave, P. Brottier, T. Bruls, E. Pel-
letier, C. Robert, P. Wincker, A. Rosenthal, M. Platzer, G. Nyakatura, S. Taudien,
A. Rump, D. R. Smith, L. Doucette-Stamm, M. Rubenfield, K. Weinstock, M. L.
Hong, J. Dubois, H. Yang, J. Yu, J. Wang, G. Huang, J. Gu, L. Hood, L. Rowen,
A. Madan, S. Qin, R. W. Davis, N. A. Federspiel, A. P. Abola, M. J. Proctor, B. A.
Roe, F. Chen, H. Pan, J. Ramser, H. Lehrach, R. Reinhardt, W. R. McCombie,
M. De La Bastide, N. Dedhia, H. Blöcker, K. Hornischer, G. Nordsiek, R. Agar-
wala, L. Aravind, J. A. Bailey, A. Bateman, S. Batzoglou, E. Birney, P. Bork,
D. G. Brown, C. B. Burge, L. Cerutti, H. C. Chen, D. Church, M. Clamp, R. R.
Copley, T. Doerks, S. R. Eddy, E. E. Eichler, T. S. Furey, J. Galagan, J. G. Gilbert,
C. Harmon, Y. Hayashizaki, D. Haussler, H. Hermjakob, K. Hokamp, W. Jang,
L. S. Johnson, T. A. Jones, S. Kasif, A. Kaspryzk, S. Kennedy, W. J. Kent,
P. Kitts, E. V. Koonin, I. Korf, D. Kulp, D. Lancet, T. M. Lowe, A. McLysaght,
T. Mikkelsen, J. V. Moran, N. Mulder, V. J. Pollara, C. P. Ponting, G. Schuler,
J. Schultz, G. Slater, A. F. Smit, E. Stupka, J. Szustakowki, D. Thierry-Mieg,
J. Thierry-Mieg, L. Wagner, J. Wallis, R. Wheeler, A. Williams, Y. I. Wolf, K. H.
Wolfe, S. P. Yang, R. F. Yeh, F. Collins, M. S. Guyer, J. Peterson, A. Felsen-
feld, K. A. Wetterstrand, R. M. Myers, J. Schmutz, M. Dickson, J. Grimwood,
D. R. Cox, M. V. Olson, R. Kaul, C. Raymond, N. Shimizu, K. Kawasaki, S. Mi-
noshima, G. A. Evans, M. Athanasiou, R. Schultz, A. Patrinos, and M. J. Morgan
(2001): “Initial sequencing and analysis of the human genome,” Nature, 409.

106 CHAPTER 5. SUMMARY AND OUTLOOK

Langmead, B. and S. Salzberg (2012): “Fast gapped-read alignment with Bowtie
2,” Nature Methods, 9, 357–359.

Langmead, B., C. Trapnell, M. Pop, and S. Salzberg (2009): “Ultrafast
and memory-efficient alignment of short {DNA} sequences to the human
genome,” Genome Biology, 10, R25+, URL http://dx.doi.org/10.1186/

gb-2009-10-3-r25.

Layer, R. M., C. Chiang, A. R. Quinlan, and I. M. Hall (2014): “LUMPY: a
probabilistic framework for structural variant discovery.” Genome biology,
15, R84, URL http://genomebiology.biomedcentral.com/articles/

10.1186/gb-2014-15-6-r84http://www.ncbi.nlm.nih.gov/pubmed/

24970577http://www.pubmedcentral.nih.gov/articlerender.fcgi?

artid=PMC4197822.

Li, H. (2013): “Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM,” .

Li, H. and R. Durbin (2009): “Fast and accurate short read alignment with Burrows-
Wheeler transform,” Bioinformatics, 25, 1754–1760.

Li, H. and R. Durbin (2010): “Fast and accurate long-read alignment with Burrows-
Wheeler transform,” Bioinformatics, 26, 589–595.

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,
G. Abecasis, R. Durbin, and 1000 Genome Project Data Processing Sub-
group (2009): “The Sequence Alignment/Map format and SAMtools,”
Bioinformatics, 25, 2078–2079, URL http://www.ncbi.nlm.nih.gov/

pubmed/19505943http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=PMC2723002https://academic.oup.com/bioinformatics/

article-lookup/doi/10.1093/bioinformatics/btp352.

Lin, M., S. Whitmire, J. Chen, A. Farrel, X. Shi, and J. T. Guo (2017): “Effects
of short indels on protein structure and function in human genomes,” Scientific

BIBLIOGRAPHY 107

Reports, 7.

Liu, C.-M., T. Wong, E. Wu, R. Luo, S.-M. Yiu, Y. Li, B. Wang, C. Yu, X. Chu,
K. Zhao, R. Li, and T.-W. Lam (2012): “SOAP3: Ultra-fast GPU-based parallel
alignment tool for short reads,” Bioinformatics, 28, 878–879.

Liu, Y. and B. Schmidt (2012): “Long read alignment based on maximal exact
match seeds,” Bioinformatics, 28.

Lucas Lledó, J. I. and M. Cáceres (2013): “On the power and the systematic biases
of the detection of chromosomal inversions by paired-end genome sequencing.”
PloS one, 8, e61292, URL http://dx.plos.org/10.1371/journal.pone.

0061292http://www.ncbi.nlm.nih.gov/pubmed/23637806http://www.

pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3634047.

Lunter, G. and M. Goodson (2011): “Stampy: A statistical algorithm for sensitive
and fast mapping of Illumina sequence reads,” Genome Research, 21, 936–939.

Lupski, J. R. (2015): “Structural variation mutagenesis of the human genome:
impact on disease and evolution,” Environ. Mol. Mutagen., 56, URL https:

//doi.org/10.1002/em.21943.

Macintyre, G., B. Ylstra, and J. D. Brenton (2016): “Sequencing Struc-
tural Variants in Cancer for Precision Therapeutics,” Trends in Genetics, 32,
530–542, URL http://www.ncbi.nlm.nih.gov/pubmed/27478068http://

linkinghub.elsevier.com/retrieve/pii/S0168952516300701.

Mahmoud, M., N. Gobet, D. I. Cruz-Dávalos, N. Mounier, C. Dessimoz, and F. J.
Sedlazeck (2019): “Structural variant calling: The long and the short of it,” .

Mardis, E. R. (2017): “DNA sequencing technologies: 2006?2016,” Nature
Protocols, 12, 213–218, URL http://www.ncbi.nlm.nih.gov/pubmed/

28055035http://www.nature.com/doifinder/10.1038/nprot.2016.

182.

108 CHAPTER 5. SUMMARY AND OUTLOOK

Merker, J. D., A. M. Wenger, T. Sneddon, M. Grove, Z. Zappala, L. Fre-
sard, D. Waggott, S. Utiramerur, Y. Hou, K. S. Smith, S. B. Montgomery,
M. Wheeler, J. G. Buchan, C. C. Lambert, K. S. Eng, L. Hickey, J. Ko-
rlach, J. Ford, and E. A. Ashley (2017): “Long-read genome sequencing
identifies causal structural variation in a Mendelian disease.” Genetics in
medicine : official journal of the American College of Medical Genetics,
URL http://www.nature.com/doifinder/10.1038/gim.2017.86http://

www.ncbi.nlm.nih.gov/pubmed/28640241.

Metzker, M. L. (2010): “Sequencing technologies the next generation,” .

Mills, R. E., K. Walter, C. Stewart, R. E. Handsaker, K. Chen, C. Alkan, A. Abyzov,
S. C. Yoon, K. Ye, R. K. Cheetham, A. Chinwalla, D. F. Conrad, Y. Fu, F. Grubert,
I. Hajirasouliha, F. Hormozdiari, L. M. Iakoucheva, Z. Iqbal, S. Kang, J. M. Kidd,
M. K. Konkel, J. Korn, E. Khurana, D. Kural, H. Y. K. Lam, J. Leng, R. Li, Y. Li,
C.-Y. Lin, R. Luo, X. J. Mu, J. Nemesh, H. E. Peckham, T. Rausch, A. Scally,
X. Shi, M. P. Stromberg, A. M. Stütz, A. E. Urban, J. A. Walker, J. Wu, Y. Zhang,
Z. D. Zhang, M. A. Batzer, L. Ding, G. T. Marth, G. McVean, J. Sebat, M. Sny-
der, J. Wang, K. Ye, E. E. Eichler, M. B. Gerstein, M. E. Hurles, C. Lee, S. A.
McCarroll, J. O. Korbel, and 1000 Genomes Project (2011): “Mapping copy
number variation by population-scale genome sequencing,” Nature, 470, 59–65,
URL http://www.ncbi.nlm.nih.gov/pubmed/21293372http://www.

pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3077050http:

//www.nature.com/doifinder/10.1038/nature09708.

Mühle, C., M. Zenker, N. Chuzhanova, and H. Schneider (2007): “Recurrent in-
version with concomitant deletion and insertion events in the coagulation factor
VIII gene suggests a new mechanism for X-chromosomal rearrangements caus-
ing hemophilia A.” Human mutation, 28, 1045, URL http://doi.wiley.com/

10.1002/humu.9506http://www.ncbi.nlm.nih.gov/pubmed/17823971.

Nattestad, M. (2017): “Complex rearrangements and oncogene amplifications re-
vealed by long-read DNA and RNA sequencing of a breast cancer cell line,”

BIBLIOGRAPHY 109

BioRxiv.

Nielsen, R., J. Paul, A. Albrechtsen, and Y. Song (2011): “Genotype and SNP call-
ing from next-generation sequencing data,” Nature Reviews Genetics, 12, 443–
451.

Olson, N. D., S. P. Lund, R. E. Colman, J. T. Foster, J. W. Sahl, J. M. Schupp,
P. Keim, J. B. Morrow, M. L. Salit, and J. M. Zook (2015): “Best practices for
evaluating single nucleotide variant calling methods for microbial genomics,” .

Pavlopoulos, G. A., A. Oulas, E. Iacucci, A. Sifrim, Y. Moreau, R. Schnei-
der, J. Aerts, and I. Iliopoulos (2013): “Unraveling genomic varia-
tion from next generation sequencing data,” BioData Mining, 6, 13,
URL http://www.ncbi.nlm.nih.gov/pubmed/23885890http://www.

pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3726446.

Pfeifer, S. P. (2017): “From next-generation resequencing reads to a
high-quality variant data set,” Heredity, 118, 111–124, URL http:

//www.ncbi.nlm.nih.gov/pubmed/27759079http://www.nature.com/

doifinder/10.1038/hdy.2016.102.

Quinlan, A. and I. Hall (2010): “BEDTools: A flexible suite of utilities for compar-
ing genomic features,” Bioinformatics, 26, 841–842.

Rang, F. J., W. P. Kloosterman, and J. de Ridder (2018): “From squiggle to basepair:
computational approaches for improving nanopore sequencing read accuracy,”
Genome Biology, 19, 90, URL https://genomebiology.biomedcentral.

com/articles/10.1186/s13059-018-1462-9.

Rausch, T., T. Zichner, A. Schlattl, A. M. Stütz, V. Benes, and J. O. Korbel
(2012): “DELLY: structural variant discovery by integrated paired-end and
split-read analysis.” Bioinformatics (Oxford, England), 28, i333–i339, URL
https://academic.oup.com/bioinformatics/article-lookup/doi/10.

1093/bioinformatics/bts378http://www.ncbi.nlm.nih.gov/pubmed/

110 CHAPTER 5. SUMMARY AND OUTLOOK

22962449http://www.pubmedcentral.nih.gov/articlerender.fcgi?

artid=PMC3436805.

Reinert, K., B. Langmead, D. Weese, and D. J. Evers (2015): “Alignment
of Next-Generation Sequencing Reads,” Annual Review of Genomics
and Human Genetics, 16, 133–151, URL http://www.ncbi.nlm.nih.

gov/pubmed/25939052http://www.annualreviews.org/doi/10.1146/

annurev-genom-090413-025358.

Rescheneder, P., A. Von Haeseler, and F. Sedlazeck (2012): “MASon: Million
alignments in seconds: A platform independent pairwise sequence alignment
library for next generation sequencing data,” in BIOINFORMATICS 2012 -
Proceedings of the International Conference on Bioinformatics Models, Methods
and Algorithms, 195–201.

Reuter, J., D. V. Spacek, and M. Snyder (2015): “High-Throughput Sequencing
Technologies,” Molecular Cell, 58, 586–597.

Rhie, A., S. A. McCarthy, O. Fedrigo, J. Damas, G. Formenti, S. Koren, M. Uliano-
Silva, W. Chow, A. Fungtammasan, J. Kim, C. Lee, B. J. Ko, M. Chais-
son, G. L. Gedman, L. J. Cantin, F. Thibaud-Nissen, L. Haggerty, I. Bista,
M. Smith, B. Haase, J. Mountcastle, S. Winkler, S. Paez, J. Howard, S. C.
Vernes, T. M. Lama, F. Grutzner, W. C. Warren, C. N. Balakrishnan, D. Burt,
J. M. George, M. T. Biegler, D. Iorns, A. Digby, D. Eason, B. Robertson, T. Ed-
wards, M. Wilkinson, G. Turner, A. Meyer, A. F. Kautt, P. Franchini, H. W. Det-
rich, H. Svardal, M. Wagner, G. J. Naylor, M. Pippel, M. Malinsky, M. Mooney,
M. Simbirsky, B. T. Hannigan, T. Pesout, M. Houck, A. Misuraca, S. B. Kingan,
R. Hall, Z. Kronenberg, I. Sović, C. Dunn, Z. Ning, A. Hastie, J. Lee, S. Selvaraj,
R. E. Green, N. H. Putnam, I. Gut, J. Ghurye, E. Garrison, Y. Sims, J. Collins,
S. Pelan, J. Torrance, A. Tracey, J. Wood, R. E. Dagnew, D. Guan, S. E. London,
D. F. Clayton, C. V. Mello, S. R. Friedrich, P. V. Lovell, E. Osipova, F. O. Al-
Ajli, S. Secomandi, H. Kim, C. Theofanopoulou, M. Hiller, Y. Zhou, R. S. Har-
ris, K. D. Makova, P. Medvedev, J. Hoffman, P. Masterson, K. Clark, F. Martin,

BIBLIOGRAPHY 111

K. Howe, P. Flicek, B. P. Walenz, W. Kwak, H. Clawson, M. Diekhans, L. Nassar,
B. Paten, R. H. Kraus, A. J. Crawford, M. T. P. Gilbert, G. Zhang, B. Venkatesh,
R. W. Murphy, K. P. Koepfli, B. Shapiro, W. E. Johnson, F. Di Palma, T. Marques-
Bonet, E. C. Teeling, T. Warnow, J. M. Graves, O. A. Ryder, D. Haussler, S. J.
OBrien, J. Korlach, H. A. Lewin, K. Howe, E. W. Myers, R. Durbin, A. M.
Phillippy, and E. D. Jarvis (2021): “Towards complete and error-free genome
assemblies of all vertebrate species,” Nature, 592.

Robert, F. and J. Pelletier (2018): “Exploring the Impact of Single-Nucleotide Poly-
morphisms on Translation,” .

Rovelet-Lecrux, A., D. Hannequin, G. Raux, N. L. Meur, A. Laquerrière, A. Vital,
C. Dumanchin, S. Feuillette, A. Brice, M. Vercelletto, F. Dubas, T. Frebourg, and
D. Campion (2006): “APP locus duplication causes autosomal dominant early-
onset Alzheimer disease with cerebral amyloid angiopathy,” Nature Genetics,
38, 24–26, URL http://www.ncbi.nlm.nih.gov/pubmed/16369530http:

//www.nature.com/doifinder/10.1038/ng1718.

Schaeffer, S. W. (2016): “Genome Organization, Evolution of,” in Encyclopedia of
Evolutionary Biology.

Sebat, J., B. Lakshmi, J. Troge, J. Alexander, J. Young, P. Lundin,
S. Månér, H. Massa, M. Walker, M. Chi, N. Navin, R. Lucito,
J. Healy, J. Hicks, K. Ye, A. Reiner, T. C. Gilliam, B. Trask,
N. Patterson, A. Zetterberg, and M. Wigler (2004): “Large-Scale Copy
Number Polymorphism in the Human Genome,” Science, 305, 525–
528, URL http://www.ncbi.nlm.nih.gov/pubmed/15273396http://www.

sciencemag.org/cgi/doi/10.1126/science.1098918.

Sedlazeck, F. J., P. Rescheneder, and A. von Haeseler (2013): “NextGenMap: fast
and accurate read mapping in highly polymorphic genomes,” Bioinformatics,
29, 2790–2791, URL https://academic.oup.com/bioinformatics/

article-lookup/doi/10.1093/bioinformatics/btt468.

112 CHAPTER 5. SUMMARY AND OUTLOOK

Shimojima, K., T. Mano, M. Kashiwagi, T. Tanabe, M. Sugawara, N. Okamoto,
H. Arai, and T. Yamamoto (2012): “Pelizaeus-Merzbacher disease caused by a
duplication-inverted triplication-duplication in chromosomal segments including
the PLP1 region.” European journal of medical genetics, 55, 400–3, URL http:

//linkinghub.elsevier.com/retrieve/pii/S1769721212000833http:

//www.ncbi.nlm.nih.gov/pubmed/22490426.

Sohn, J. I. and J. W. Nam (2018): “The present and future of de novo whole-genome
assembly,” Briefings in Bioinformatics, 19.

Sović, I., M. Šikić, A. Wilm, S. N. Fenlon, S. Chen, and N. Na-
garajan (2016): “Fast and sensitive mapping of nanopore sequenc-
ing reads with GraphMap.” Nature communications, 7, 11307, URL
http://www.nature.com/doifinder/10.1038/ncomms11307http://

www.ncbi.nlm.nih.gov/pubmed/27079541http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=PMC4835549.

Stefanie Tauber (2013): Exploring the transcriptome: innovative methods for analyzing RNA-Seq data,
Ph.D. thesis, Universität Wien.

Stephens, Z. D., S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai, M. J. Efron, R. Iyer,
M. C. Schatz, S. Sinha, and G. E. Robinson (2015): “Big data: Astronomical or
genomical?” PLoS Biology, 13.

Sudmant, P. H. (2015): “An integrated map of structural variation in 2,504 human
genomes,” Nature, 526, URL https://doi.org/10.1038/nature15394.

Tarasov, A., A. Vilella, E. Cuppen, I. Nijman, and P. Prins (2015): “Sambamba:
Fast processing of NGS alignment formats,” Bioinformatics, 31, 2032–2034.

Tattini, L., R. DAurizio, and A. Magi (2015): “Detection of Genomic Structural
Variants from Next-Generation Sequencing Data,” Frontiers in Bioengineering
and Biotechnology, 3, 92, URL http://www.ncbi.nlm.nih.gov/pubmed/

26161383http://www.pubmedcentral.nih.gov/articlerender.fcgi?

BIBLIOGRAPHY 113

artid=PMC4479793http://journal.frontiersin.org/Article/10.

3389/fbioe.2015.00092/abstract.

Teo, S. M., Y. Pawitan, C. S. Ku, K. S. Chia, and A. Salim (2012): “Sta-
tistical challenges associated with detecting copy number variations with
next-generation sequencing.” Bioinformatics (Oxford, England), 28, 2711–8,
URL https://academic.oup.com/bioinformatics/article-lookup/

doi/10.1093/bioinformatics/bts535http://www.ncbi.nlm.nih.gov/

pubmed/22942022.

Weischenfeldt, J., O. Symmons, F. Spitz, and J. O. Korbel (2013): “Phenotypic
impact of genomic structural variation: insights from and for human disease.”
Nature reviews. Genetics, 14, 125–38, URL http://dx.doi.org/10.1038/

nrg3373.

Wick, R. R. and K. E. Holt (2019): “Benchmarking of long-read assemblers for
prokaryote whole genome sequencing,” F1000Research, 8.

Xiao, C. L. (2017): “MECAT: fast mapping, error correction, and de novo assembly
for single-molecule sequencing reads,” Nat. Methods, 14, URL https://doi.

org/10.1038/nmeth.4432.

Yang, X., W. P. Lee, K. Ye, and C. Lee (2019): “One reference genome is not
enough,” Genome Biology, 20.

Zichner, T., D. A. Garfield, T. Rausch, A. M. Stütz, E. Cannavó,
M. Braun, E. E. M. Furlong, and J. O. Korbel (2013): “Impact of
genomic structural variation in Drosophila melanogaster based on
population-scale sequencing.” Genome research, 23, 568–79, URL
http://genome.cshlp.org/cgi/doi/10.1101/gr.142646.112http://

www.ncbi.nlm.nih.gov/pubmed/23222910http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=PMC3589545.

Zimin, A. V., D. R. Smith, G. Sutton, and J. A. Yorke (2008): “Assembly

114 CHAPTER 5. SUMMARY AND OUTLOOK

reconciliation,” Bioinformatics, 24, 42–45, URL http://www.ncbi.nlm.nih.

gov/pubmed/18057021https://academic.oup.com/bioinformatics/

article-lookup/doi/10.1093/bioinformatics/btm542.

Zook, J. M., B. Chapman, J. Wang, D. Mittelman, O. Hofmann, W. Hide, and
M. Salit (2014): “Integrating human sequence data sets provides a resource
of benchmark SNP and indel genotype calls.” Nature biotechnology, 32, 246–
51, URL http://www.nature.com/doifinder/10.1038/nbt.2835http://

www.ncbi.nlm.nih.gov/pubmed/24531798.

Appendix A

Supplementary Material to Chapter
3

115

116 APPENDIX A. SUPPLEMENTARY MATERIAL TO CHAPTER 3

A.1 Supplementary tables

Data Genome Technology Reads Source
number [mio] length [bp]

R1 human Illumina 29.6 35 SRA
R2 human Illumina 10.4 76 SRA
R3 human Illumina 10.0 101 SRA
R4 human Ion Torrent 6.1 5-396 Life Tech.
R5 human 454 2.8 51-4,935 SRA
S1 human Illumina 20.0 150 Mason
S2 human Illumina 20.0 250 Mason
S3 A thaliana Illumina 20.0 100 Mason
S4 D melanogaster Illumina 20.0 100 Mason
A0 A thaliana Illumina 5.0 100 Mason
A1 A thaliana Illumina 5.0 100 Mason
A2 A thaliana Illumina 5.0 100 Mason
A3 A thaliana Illumina 5.0 100 Mason
A4 A thaliana Illumina 5.0 100 Mason
A5 A thaliana Illumina 5.0 100 Mason
A6 A thaliana Illumina 5.0 100 Mason
A7 A thaliana Illumina 5.0 100 Mason
A8 A thaliana Illumina 5.0 100 Mason
A9 A thaliana Illumina 5.0 100 Mason
A10 A thaliana Illumina 5.0 100 Mason

Table A.1: Summary of the data sets used for benchmarking. All data sets are available on
http://www.cibiv.at/software/ngm/data/

A.2. PARAMETERS FOR NEXTGENMAP 117

BWA BWA-SW Bowtie2 Stampy NextGenMap NextGenMap
(CPUonly) (+GPU)

A0 96.4(2.2) 97.6(2.3) 97.7(2.3) 97.7(2.3) 97.7(2.3) 97.7(2.3)
A1 82.0(1.9) 96.9 (2.4) 97.5 (2.3) 97.7 (2.3) 97.6 (2.4) 97.6 (2.4)
A2 65.0(1.6) 95.0 (2.5) 96.2 (2.4) 97.7 (2.3) 97.5 (2.5) 97.5 (2.5)
A3 48.6(1.2) 91.4 (2.6) 92.8 (2.3) 97.6 (2.4) 97.5 (2.5) 97.5 (2.5)
A4 34.7(0.8) 86.2 (2.7) 86.5 (2.2) 97.5 (2.5) 97.4 (2.6) 97.4 (2.6)
A5 23.7(0.6) 79.6 (2.8) 77.5 (2.0) 97.4 (2.5) 97.3 (2.7) 97.3 (2.7)
A6 15.5(0.4) 71.9 (2.9) 66.5 (1.8) 97.3 (2.6) 97.1 (2.8) 97.1 (2.8)
A7 9.8(0.3) 63.7 (2.9) 54.8 (1.5) 97.2 (2.7) 96.9 (3.0) 96.9 (3.0)
A8 6.0(0.2) 55.4 (2.9) 43.2 (1.2) 96.9 (2.8) 96.5 (3.2) 96.5 (3.2)
A9 3.5(0.1) 47.3 (2.9) 32.8 (0.9) 96.5 (3.0) 96.2 (3.4) 96.2 (3.4)
A10 2.0(0.1) 39.8 (2.8) 24.1 (0.7) 96.0 (3.1) 95.6 (3.7) 95.6 (3.7)

Table A.2: Percent of correctly (incorrectly) mapped reads for A0,. . . , A10. For NextGen-
Map the results for CPU only and GPU version are shown (CPU/ GPU). We highlighted the
highest percent of correctly and lowest percent of incorrectly mapped reads per data set.

BWA BWA-SW Bowtie2 Stampy NextGenMap NextGenMap
(CPUonly) (+GPU)

A0 3.7 10.2 3.6 36.9 2.3 1.9
A1 8.7 10.2 3.8 54.1 2.7 2.0
A2 9.8 9.9 3.9 66.8 2.6 1.9
A3 10.1 9.4 3.8 74.2 2.5 1.8
A4 8.6 9.2 3.6 80.4 2.6 1.9
A5 8.1 8.7 3.4 83.8 2.8 2.0
A6 5.9 8.1 3.1 89.1 3.0 1.9
A7 4.9 7.9 3.0 88.7 3.9 2.2
A8 4.0 7.2 2.7 86.3 4.5 2.3
A9 3.2 6.9 2.6 87.0 9.5 3.2
A10 2.4 6.4 2.4 88.1 11.7 3.9

Table A.3: Runtimes in minutes for A0,. . . , A10. For NextGenMap the runtime for CPU only
and GPU version are shown (CPU/ GPU). We highlighted the shortest runtime per data set.

A.2 Parameters for NextGenMap

In the following we give the full list of command line parameters of NextGenMap

and their default values.

118 APPENDIX A. SUPPLEMENTARY MATERIAL TO CHAPTER 3

Parameter Description

-c/–config <path> Path to the config file.

The config file contains all advanced options.

If this parameter is omitted, default values will be used.

-r/–reference <path> Path to the reference genome

(format: FASTA, can be gzipped).

-q/–query <path> Path to the read file. Valid input formats are:

FASTA/Q (gzipped), SAM/BAM

If the query file is omitted, NGM will only pre-process

the reference.

-p/–paired Input data is paired end. (default: off)

-I/–min-insert-size The minimum insert size for paired end alignments

(default: 0)

-X/–max-insert-size The maximum insert size for paired end alignments

(default: 1000)

Table A.4: List of input parameters for NextGenMap.

Parameter Description

-o/–output <path> Path to output file.

-b/–bam Output BAM instead of SAM.

–hard-clip Use hard instead of soft clipping for SAM output

–silent-clip Hard clip reads but don’t add clipping information to

CIGAR string

Table A.5: List of output parameters for NextGenMap.

A.2. PARAMETERS FOR NEXTGENMAP 119

Parameter Description

-t/–threads <int> Number of candidate search threads

-s/–sensitivity <float> A value between 0 and 1 that determines the number of

possible mapping locations that will be evaluated with an

sequence alignment. 0 means that all possible mapping

locations will be evaluated 1 means that only the best pos-

sible mapping location(s) will be evaluated Higher values

will reduce the runtime but also have a negative effect on

mapping sensitivity. (default: estimated from input data)

-i/–min-identity <0-1> All reads mapped with an identity lower than this thresh-

old will be reported as unmapped (default: 0.65)

-R/–min-residues <int> All reads mapped with lower than <int> residues will be

reported as unmapped (default: 0.0)

-g/–gpu [int,...] Use GPU(s) for alignment computation

(GPU Ids are zero-based!).

With -g or –gpu GPU 0 will be used.

With -g 1 or –gpu 1 GPU 1 will be used.

With -g 0,1 or –gpu 0,1 GPU 0 and 1 will be used.

If -g/–gpu is omitted, alignments will be computed on the

CPU

–bs-mapping Enables bisulfite mapping (For bs-mapping kmer-skip

will be applied to the reads instead of the reference se-

quence).

–bs-cutoff <int> Max. number of Ts in a k-mer. All k-mers were the num-

ber of Ts is higher than <int> are ignored (default: 8)

-h/–help Prints help and aborts program

-k/–kmer [10-14] Kmer length in bases. (default: 13)

–kmer-skip <int> Number of k-mers to skip when building the lookup table

from the reference(default: 2)

–kmer-min <int> Minimal number of k-mer hits required to consider a re-

gion a CMR. (default: 0)

–max-cmrs <int> Reads that have more than <int> CMRs are ignored.

(default: infinite)

-m/mode [0—1] Alignment mode: 0 = local, 1 = semi-global. (default: 0)

-C/–max-consec-indels

<int>

Maximum number of consecutive indels allowed.)

(default: computed from input)

Table A.6: List of advanced parameters for NextGenMap.

120 APPENDIX A. SUPPLEMENTARY MATERIAL TO CHAPTER 3

Appendix B

Supplementary Material to Chapter
4

B.1 SV detection with Sniffles

Sniffles is a long read based structural variation (SV) caller capable of detect-
ing deletions, tandem duplications, insertions, inversions, translocations as well as
combinations (nested SV) of these five SV types. Sniffles incorporates multiple ap-
proaches for detecting small (by default: 30bp) to large (10kb+) SV. Furthermore,
Sniffles implements multiple novel techniques to ensure a low false discovery rate.
In the following, we give a detailed description how Sniffles works and the imple-
mented novel mechanisms that lead to an enhancement in sensitivity and precision.
Sniffles incorporates four major phases, which are all automatically executed during
runtime (Supplementary Figure B.1). First, Sniffles quantifies characteristics of the
input data such as the overall sequencing error rate, SNP rate, and the average
alignment scores of the reads. Second, Sniffles uses within-alignment and split
read information to call SVs. Finally, in steps 3 and 4 Sniffles infers genotype and
phasing information from the SVs called in the previous steps. In the following we
give a detailed description of the individual parts.

121

122 APPENDIX B. SUPPLEMENTARY MATERIAL TO CHAPTER 4

Figure B.1: Overview of Sniffles workflow. Sniffles incorporates four major steps. (1) First,
it estimates required parameters from the mapped read file. (2) Second, it identifies SVs
based on split read and alignment events. (3) Third, optionally it estimates the genotype of
the called SVs. (4) Fourth, optionally it attempts to cluster SVs together based on the same
set of reads that are overlapping (Part 4).

B.1. SV DETECTION WITH SNIFFLES 123

Figure B.2: Density Plots for the parameter estimation of two different PacBio data sets
(Giab, SKBR3) and one Nanopore (NA12878).

B.1.1 Preprocessing and parameter estimation

The Sniffles SV calling algorithm depends on three key parameters:

1. The sequencing error observed in the reads, the average distance between
indels or mismatches in the read alignments, and the 95th percentile of the
number of mismatches and indels in a 100bp window. Sniffles uses these
parameters to detect read alignments or parts of read alignments that show an
increased mismatch/indel rate and therefore might overlap with a SV.

2. The ratio between the best and second best alignment scores for each read
mapping. Sniffles uses this parameter to assess the reliability of a particular
read mapping.

These parameters differ between genomes and sequencing technologies (see Sup-
plementary Figure B.2). Therefore, Sniffles tries to estimate them from the input

124 APPENDIX B. SUPPLEMENTARY MATERIAL TO CHAPTER 4

data. To this end, Sniffles scans 10,000 randomly chosen reads to obtain the dis-
tribution of these parameters. We emphasize that this is done solely to estimate
these parameters and not designed to obtain a comprehensive view across the en-
tire genome. The assumption is SVs are generally rare so that most of these reads
should not overlap a SV and thus representing a solid baseline of these parameters.

B.1.2 Scanning for SVs

To reduce false positive SV calls Sniffles stringently filters for spurious read map-
pings. A read is discarded if it has a mapping quality lower than 20 (by default) or
the ratio of its best and second best alignment score is less than 2, or its alignment
score ratio is smaller than the minimum alignment score ratio computed by the pa-
rameter estimation step (see section B.1.1). Furthermore, a read is discarded if it
shows more than 7 (by default) split read alignments or if none of the aligned parts
of the read exceeds a length of 1 kbp (by default).
For each of the remaining reads, Sniffles performs the following four steps to detect
SVs:

1. Sniffles scans the read alignments to detect smaller (¡1kb) insertions, dele-
tions and regions with an increased number of mismatches and very short
(1-5bp) indels. These noisy regions often indicate incorrect read mappings
caused by SV.

2. Sniffles processes split read information to identify SV that cannot be repre-
sented in a single alignment (large indels, inversions, duplications, transloca-
tions). All SVs found during step 1 and 2 are stored in a self-balancing binary
tree.

3. Sniffles traverses the binary tree to merge SV calls that were caused by the
same SV.

4. After all reads were scanned for SVs, Sniffles identifies spurious SV calls and
discards them.

B.1. SV DETECTION WITH SNIFFLES 125

Figure B.3: Schematic of alignment events. Sniffles distinguishes between 3 different types:
insertions, deletions and noisy regions. Noisy regions often indicate that a read overlaps a
deletion or inversion.

Alignment analysis

To identify SVs within read alignments Sniffles first extracts the genomic position
and the length of all mismatches and indels from the MD and CIGAR string of
every read. All insertions and deletions longer then the user defined minimum SVs
length (default: 30bp) are recorded as potential starting points of a SV. Next, we
use a PlaneSweep algorithm to identify segments of the read that show an increased
number of mismatches and small indels which we will refer to as noisy regions (see
Supplementary Figure B.3 for an example).
PlaneSweep algorithms are widely used in genomics for determining for example
the read coverage for each position of a reference genome. Instead of read start
and end positions, here we use the genomic position of the mismatches and indels
as start and define the end location of the interval as its length plus 100bp (by de-
fault) to allow for some noise in the position of the SV event. Our PlaneSweep
algorithm is modified so that it takes these intervals as input and outputs candidate
SV regions if the number of mismatches and indels at a certain position exceeds the
maximum number of differences per 100bp computed in the parameter estimation
step (section B.1.1). Thus, each of the coordinates identified by the PlaneSweep
algorithm represent start locations of a segment along the read that shows an in-

126 APPENDIX B. SUPPLEMENTARY MATERIAL TO CHAPTER 4

creased accumulation of mismatches and short indels and therefore might overlap a
SV. Subsequently, for each of previously stored regions, Sniffles attempts to enlarge
the size in both directions. This is done until the distance between two differences
on the read minus the length of the event is larger than the maximum difference
distance allowed, as determined in the parameter estimation (section B.1.1).
Next, Sniffles tries to determine the SV type that most likely caused the noisy re-
gions. To this end, Sniffles uses the number of mismatches (M), the maximum
length of a single insertion (sl) and the maximum length of a single deletion event
(dl) within the determined region. Sniffles reports an insertion if sl > minimum
SVs size (default: 30bp) and the sum of all insertion lengths observed in that re-
gion is at least twice as much as sum of the length of all deletions. Deletions are
identified using a reciprocal rule. We required this more complicated rule set to
distinguish clear indels from noisy regions in a read. Sniffles reports the region as
being noisy if it is neither a distinct insertion nor a distinct deletion, but the sum
of mismatches in this area is larger than the minimum allowed SV size (default
30bp). Such noisy regions are most commonly caused by deletions or inversions,
especially from aligners other than NGMLR.
In addition to these three cases (insertions, deletions and noisy regions), Sniffles
also checks whether the read was clipped by more than 2kbp (by default). This
often indicates that the read partly spans an insertion. Furthermore, Sniffles utilizes
a flag reported by NGMLR, which indicates if a read was clipped due to Ns in the
reference genome or if it could not identify a region where the clipped sequence
maps to. In this case we cannot determine the exact size and thus we set every
insertion of this type to have a size of NA.
At the end of this scan, Sniffles knows the number of potential insertions, deletions
and noisy regions in every read. If a read contains more than 3 noisy regions it is
discarded and all SV calls from this read are removed. Otherwise, all remaining
SVs are inserted into our binary tree to collect all potential SVs from all valid reads
(see section B.1.2).

B.1. SV DETECTION WITH SNIFFLES 127

Figure B.4: Schematic illustration of the different SV types Sniffles can detect and the split
reads can be used to detect these events.

Split read analysis

Reads spanning inversions and translocations can only be mapped by splitting the
read and reporting two or more separate alignments (see Supplementary Figure B.4
for examples of split read alignments). These split read mappings are typically re-
ported as separate SAM records (see SAM specifications by (Li et al., 2009)) in a
SAM/BAM file. For each read one of the alignments (usually the longest) is marked
as primary alignment. All the others are called supplementary alignments. To sim-
plify parsing, BWA-MEM and NGMLR compute the SA tag for each SAM record.
The SA tag of the primary alignment record contains all information about all sup-
plementary alignments required for SV calling. Therefore, Sniffles only reads the
primary alignment for each read from the BAM file and extracts supplementary
alignment information from the SA tag.
Note that the SA tag does not provide a second-best alignment score, therefore
Sniffles filter supplementary alignments only by MQ but not by alignment score
ratio. Reads with more than N alignments (default N = 7, but user definable) are
typically low quality reads and are therefore ignored. Furthermore, Sniffles ignores
reads where non of the sub alignments are larger then 1kbp (by default) as these

128 APPENDIX B. SUPPLEMENTARY MATERIAL TO CHAPTER 4

Figure B.5: Example INVDUP signal due to an error in base calling and/or subread seg-
mentation. Note that one polymerase read (marked) is folded over 11 times on top of itself
with in a 1 kbp region.

often sequencing artifacts (Supplementary Figure B.5). For all other reads, Sniffles
extracts starts and end positions on the read and on the reference of the primary
and supplementary alignments and stores them as intervals in a list ordered by the
starting position on the read.
Next, Sniffles divides the reads into two categories: reads with two alignments that
most probably span simple SVs, and reads with more alignments that potentially
span nested SVs. For reads consisting of two alignments Sniffles applies the fol-
lowing rules to detect SVs:

1. If the two segments of the read are aligned to the same chromosome and
share the same orientation then Sniffles compares their distances on the read
level to their distances on the genome level. Sniffles calls an insertion if
the distance on the read level minus the distance on the genome is larger
than the minimum SV length (default 30bp). Sniffles calls a deletion if the
distance on the genome level minus the distance on the read level is larger
than the minimum SV length. If the distance on the reference is larger than

B.1. SV DETECTION WITH SNIFFLES 129

the minimum SV length and the distance on the read level is smaller than the
minimum SV length, Sniffles calls a duplication.

2. If the two segments are on the same chromosome, but have different strands
Sniffles calls an inversion. In case these two segments overlap by at least
200bp and at least 40% of the shorter segment length they are called an in-
verted duplication (”U-turn”). For inverted duplications, Sniffles requires one
of the segments to be larger than 2kbp (by default). This is necessary to ig-
nore certain base calling artifacts where a read is ”folded” multiple times onto
itself (Supplemental Figure B.5)

3. If the two segments are aligned to different chromosomes Sniffles calls a
translocation.

Reads that consist of more than two segments with a length larger than 200 bp and
map to the same chromosome potentially cover a nested SV. For such reads, Sniffles
applies separate rules: If the segments are overlapping and only one segment has a
different strand then the other two, an inverted duplication is called. Furthermore,
to account for inversion flanked with indels we determine if one segment has a
different strand then the other two flanking it and the overlap or the distance of
the segments in read space vs. the reference space is more then the minimum SVs
length. If this is the case, Sniffles introduces pseudo segments, which are 1bp long
elements that ease the detection of such complicated inversion segments. This is
necessary to generalize and distinguish this nested inversion,
Finally, all detected SVs are inserted into our binary tree of all detected SVs in all
valid reads (see Section B.1.2).

Storing/Clustering of SVs

Sniffles use a self-balancing binary tree to store and merge SV calls. Each node in
the tree represents a single SV. The SVs are sorted based on the start coordinate of
each SV.
Each time Sniffles detects a read that supports a SV, Sniffles traverses the binary
tree to see if that particular SV has been observed before. The current SV call is
merged with an already known one if their types (e.g. deletion) are the same and

130 APPENDIX B. SUPPLEMENTARY MATERIAL TO CHAPTER 4

their breakpoints are within the maximum distance D. Sniffles automatically infers
sensible values for D based on SV length and type (see section B.1.2). In addition,
an upper bound for D can be specified by the user (by default: 1kbp). This tolerated
distance (D) is necessary to account for imprecise alignments due to sequencing
errors or sequence composition (e.g. microsatellites) or non-optimal score function
of the mapper itself (Supplementary Figure B.8).
In the tree, each SV is represented by the coordinates that it was first found at.
However, the coordinates from other reads supporting the same SV are stored as
well. To store the SV type Sniffles uses a set of bit flags to enable a fast comparison
between different SVs. Furthermore, the bit flags allow Sniffles to assign multiple
types and additional information to a single SV, especially for nested SVs. For
complex types, we allow inversions or deletions to be merged with a candidate SV
as long as they agree on the coordinates. Furthermore, we allow insertions and
tandem duplications to be merged since a tandem duplication is an insertion of the
same element next to itself.
To account for multiple overlapping SVs or SVs in close proximity, especially if the
genome is polyploid in this region as commonly observed in human cancers or plant
genomes, Sniffles implements a more thorough tree search to assess whether the
current SV has already been observed. Here, Sniffles starts at the current parental
node and walks using an in-order traversal search through the sub tree to identify an
already stored SV that would match the current one. Note that this does not signif-
icantly increase the runtime, since this procedure will generally only be performed
on a very small subtree.
If Sniffles does not find the current SV in the tree, it adds it as a new leaf node. Each
SV is stored together with the name of the read it was observed in, the strands, the
start and stop position of the genome, the start and stop position on the read, the
bit-flag for the type and information about the source (split reads, alignment event,
noisy region).

B.1. SV DETECTION WITH SNIFFLES 131

Figure B.6: Breakpoint distribution of clustered read events compared to the estimated
breakpoint taken from real data in the SKBR3 data set.

Estimation of maximum distance between SVs

In the previous section, we described how Sniffles merges SVs based on their type
and the distances between their breakpoints. This is necessary due to imprecise
alignment breakpoints that can occur due to sequencing errors, complexity or se-
quence composition (e.g. microsatellites) or non-optimal score function of the map-
per itself. Next Sniffles estimates the maximum distance D that should be allowed
between genuine variants. If the distance is too large, it will merge distinct SV
calls or spurious SVs stemming from sequencing artifacts in regions with high read
coverage and falsely call a SV. Supplementary Figure B.8 shows examples of in-
sertions caused by PacBio sequencing artefacts. Conversely, if the distance is too
short, a genuine single SV could be called twice with slightly different breakpoints.
In addition, read support for these SVs will be lower, potentially causing them to
be filtered by the minimum read support threshold.
Sniffles attempts to balance these two scenarios, while letting the user decide about
the maximum distance (d). We define the estimated length of an SV as length est =

132 APPENDIX B. SUPPLEMENTARY MATERIAL TO CHAPTER 4

max(length(SV),min size∗2), where min size is user defined (default: 30bp). This
controls for very small events that are harder to place due to e.g. sequencing errors.
The allowed distance between two SV are then computed as d =min(length est(SV),d).
This allows for an adaptive distance threshold while setting the upper bound ac-
cording to the user. Translocations have an undefined size since they connect two
chromosomes together. Thus, d = d in this case. When comparing two SVs, Snif-
fles computes the allowed maximum distance (d) for both SVs and takes the smaller
estimate for the comparison to avoid merging two distinct SV with different sizes.

Filtering and summarizing SVs

When Sniffles reaches the first read of a new chromosome it triggers the filtering
and processing step for all the SVs observed so far. Only translocations are omitted
as they might span a chromosome not yet processed by Sniffles. All other SV types
identified so far are processed and printed. All translocations are summarized and
filtered after the last read of the data set was processed.
For each SV, Sniffles counts the number of supporting reads and compares this to
the user defined threshold (default: 10 reads). If the number of supporting reads is
at least the threshold, Sniffles computes the most likely start and stop position. This
is done by counting the number of reads supporting the same start position. If at
least 5 reads share the same breakpoint position, then that value is used. Otherwise,
Sniffles reports the average position of the breakpoints. This is done independently
for start and stop breakpoints. For insertions Sniffles further computes in the same
way the supported length of the insertion.

B.1.3 Detection of spurious SV calls

Usually, all the read alignments that support a SV call show very similar break-
point positions. However, high sequencing error, repeat rich sequences, or low
complexity regions of the genome can cause the breakpoints from different reads
supporting the same SV to be scattered. One example are short randomly occurring
insertions caused by sequencing or base calling errors. Especially in regions with

B.1. SV DETECTION WITH SNIFFLES 133

Figure B.7: Simulated breakpoints of a mix of a uniform distribution and a normal distri-
bution. From left to right the concentration of uniform distributed breakpoints increases by
10%. The y axis reports the standard deviation (σ) given that we ignore the most outliers
(x axis). In a typical truly identified SVs we would expect some alignments to break earlier
or later depending on the sequencing error or sequence complexity at the region. However,
a complete artificial signal should have a broader distribution even with a more stringed
filtering.

134 APPENDIX B. SUPPLEMENTARY MATERIAL TO CHAPTER 4

high read coverage, the number of these random insertions might exceed the mini-
mum read support causing Sniffles to report them as genuine SV. To filter out these
phantom insertions Sniffles scans for abnormally noisy breakpoints. For a spurious
SV call we expect the positions of the read breakpoints to be uniformly randomly
distributed. In contrast, for genuine SVs we expect read breakpoints to be nor-
mally distributed (with a small standard deviation) around the correct breakpoints
of the SV. Thus, we need to distinguish between a uniform/random distribution of
read breakpoints and normal distributed read breakpoints even when the number
of spanning reads is low. To this end, Sniffles computes the standard deviation
(σ) of all read breakpoints that support a SV (separately for the start end the end
breakpoints) as follows:

σ =

√
1
N

N

∑
i=1

(xi−µ)2

where:
µ =

1
N
(x1 + ...+XN)

or the most (n > 5) observed break point.
The idea is that σ will be small for normally distributed read breakpoints stem-
ming from genuine SVs and large for random read breakpoints. A crucial factor
for this analysis is read coverage. To determine how many read breakpoints are
required to confidently differentiate between real and random breakpoints, we sam-
pled genomic locations once from a uniform distribution and once from a normal
distribution (σ = 5) and investigated different sample rations between those two.
Supplemental Figure B.9 shows the impact of coverage on the reliability of our stan-
dard deviation based filter. Given only 5 or more observed read breakpoints we can
reliably distinguish between the uniform and the normal distribution. Thus, Sniffles
uses the standard deviation of read breakpoints to filter out alignment artifacts or
phantom SVs. However, even for genuine SV we sometimes observe outliers in the
read break point distribution. These outliers artificially increase σ making it more
difficult to distinguish them from random breakpoints. Supplemental Figure B.7
shows an example, of different mixtures of noisy breakpoints and precise break-

B.1. SV DETECTION WITH SNIFFLES 135

Figure B.8: Comparison of phantom insertions (region of∼ 800 bp) and scattered insertions
(region of∼ 200 bp) using IGV. We define phantom insertions as random events that happen
due to the base calling of PacBio. In high coverage regions these events sometimes cluster to
form a signal. Sniffles detects and erases such calls. We define a scattered insertion as a real
SV event, that has imprecise breakpoints. This is often due to the sequencing error occurring
near the breakpoints. Sniffles cluster these events together and allows for a wobble on the
breakpoints according to the size of the SV.

136 APPENDIX B. SUPPLEMENTARY MATERIAL TO CHAPTER 4

points. Here we observe a large impact of already 10-20% of the reads being more
disturbed on σ . This has a direct impact on the comparison between the phantom
events and real SV as shown in Supplemental Figure B.8.
To account for this, we perform 1st and 4th quintile filtering. Supplementary Figure
B.10 shows the difference between σ with and without quintile filtering for genuine
SVs from the SKBR3 data set. If the set of breakpoints is originally approximately
a random/uniform distribution, σ will not change when doing quintile filtering (see
Supplementary Figure B.4). However, for real SVs with a small fraction of outlier
breakpoints σ will dramatically reduce (even to 0) when applying out filter (see
Supplementary Figure B.7).
Next, we need to compare the trimmed-σ to an expected σ given the type and length
of the SV. Here, we use a uniform distribution, with σ equal to the length of the
region (d)∗ sqrt(1/12). Since we compare it to the σ of a trimmed distribution, we
need to correct this threshold accordingly. Through simulations of random variables
within d iterating 1000 times we identified a ratio of filtered vs. not filtered of
1.99949. Thus, a SV is filtered out when the filtered sd > d ∗(sqrt(1/12)/2) as this
is most likely a set of spurious events rather than a true SV.

Detection of falsely merged SV calls

In section B.1.2 we described how Sniffles merges SVs of the same type and with
breakpoints in close proximity to account for sequencing error, repeat rich se-
quences, and low complexity regions. However, sometimes this causes two sep-
arate SVs in close proximity to be falsely merged. To detect such falsely merges
SV calls, Sniffles evaluates if the read breakpoint positions associated with a sin-
gle SV follow a bimodal distribution. Supplementary Figure B.11 shows such a
case for two merged translocation breakpoints. There are multiple ways to test for
bimodal distributions such as evaluating the skewness and kurtosis, or Hartigan’s
Dip Test Statistic for Unimodality (Hartigan and Hartigan, 1985). Nevertheless, the
statistics require a minimum number of observations (read breakpoints in our case)
to be reliable, which is higher than the read coverage in a typical dataset. Therefore,
they are not applicable here, and instead we apply a heuristic that we have found

B.1. SV DETECTION WITH SNIFFLES 137

Figure B.9: Box-and-whisker plot of standard deviation given different number of
points/coverage levels from 1-100. Left: Uniform random variables were simulated from
an interval of 100bp. Right: Random variables were simulated from a normal distribution
with µ = 0 and σ = 5. Note that both plots converge to the expected σ = 28.8 for the uni-
formly random distribution and σ = 5 from the normal distribution. For each point we run
the sampling 1,000 times. Box plots where generated using the default values from R.

138 APPENDIX B. SUPPLEMENTARY MATERIAL TO CHAPTER 4

Figure B.10: Filtered (red) and unfiltered (black) breakpoint distribution over insertion and
deletions on chr17 of the SKBR3 data set. As one can see the filtering enables a more precise
prediction of noise vs. precise events.

B.1. SV DETECTION WITH SNIFFLES 139

Figure B.11: Example of two translocation breakpoints merged to one event leading to a
bimodal distribution in the breakpoint position.

140 APPENDIX B. SUPPLEMENTARY MATERIAL TO CHAPTER 4

performs well in practice.
Our heuristic approach first clusters the breakpoints within the minimum size of an
SVs together. Next, Sniffles counts the number of clusters that have more break-
points clustered than the minimal number of reads supporting a SV. If this is the
case, we replace the original entry with two new entries according to the clustering.

B.1.4 Genotyping

To infer genotype and allele frequency for SV calls, Sniffles also needs to access
information about reads that do not support SVs. Therefore, while scanning the
alignments Sniffles also records the start and location of reads that do not support
a SV, but otherwise match the filter requirements (score ratio and MQ quality) in a
separate binary file. After all alignments are scanned, Sniffles analyzes the file of
read placements and check for every read if it overlaps one or more SV calls and
a read counter is increased for the respective SV call. This is efficiently computed
using Sniffles self-balancing binary tree that is used to store all SV calls. Finally,
Sniffles uses this information to estimate the genotype based on the allele frequency
of the SVs and prints the result to the VCF file.

B.1.5 Phasing and read clustering

If the phasing/read clustering mode is activated, Sniffles records the number of
reads that support each SV as well as their read IDs. This is computed using a
hash table with the read IDs as key and the variant IDs as value. In addition, Snif-
fles scans the hash table and groups all variants spanned by a single read. This is
computed by storing the lowest observed variant ID for each read in cases there are
multiple variants assigned to one read name. For each so detected variant, Sniffles
updates the hash table to set the variant ID to the minimum observed variant ID of
the subgroup to indicate their clustering. In addition, Sniffles stores the number of
reads that carry the same variant IDs. Given a user definable threshold (default: 1)
on the minimum number of reads supporting the same two variants, Sniffles cluster
the variant IDs together. The clustered IDs are indicated by the same number plus

B.2. COVERAGE BASED FILTERING OF ARABIDOPSIS CVI 141

a with a running number from 0 to the number of variants associated to aid in
downstream analysis and further phasing.

B.2 Coverage based filtering of Arabidopsis CVI

We used Sambamba (v0.6.6) (Tarasov et al., 2015) to compute the base pair cov-
erage across the CVI PacBio mapping. Next we used SURVIVOR (option 23) to
identify and cluster regions with zero coverage within 10kb intervals. We excluded
these regions from further analysis in the Col-0 x CVI F1, as the zero coverage
indicates these regions are specific to Col-0.

B.3 Determining the effect of genome coverage on SV
calling

After evaluating SV calling performance for Sniffles and NGMLR on high cover-
age datasets, we tested the effect of reducing genome coverage. To this end we first
established an upper bound for how many SVs can be detected using a certain cov-
erage using a naive simulation. This simulation is implemented in the SURVIVOR
toolkit. In brief, we first simulate reads for a genome given a specified coverage
and read length. Next, we simulated a set of SVs (700 for this experiment). For
each breakpoint we count how many simulated reads overlap with this breakpoint
by 50bp on each side and call these overlapping reads. Finally, we count the num-
ber of overlapping reads for each break point. Break points with > 5 overlapping
reads are considered detected, break points with fewer we call undetected. The
assumption is that a read that overlaps a break point by 50bp at each side can be
used to successfully call the break point and that 5 overlapping reads give sufficient
information to distinguish real break points from sequencing artifacts. We note that
both assumption do not hold true in reality however it gives us an upper bound for
SV calling recall.

142 APPENDIX B. SUPPLEMENTARY MATERIAL TO CHAPTER 4

Next, we compared this theoretical upper bound for recall to results obtained from
genuine sequencing data. To this end we used seqtk1 (version: 1.1-r93-dirty) to
subsample the raw read data to 5x, 10x, 15x, 20x, 30x using the average read length
of 4,334 and 9,872 for NA12878 and SKBR3 Pacbio datasets, respectively. For
Nanopore we used the average read length of 6,432bp. Next, we mapped the sub-
sampled read files using NGMLR and called SVs using Sniffles with different pa-
rameters for minimum read support (s: 1,2,3,4,5,6,7,8,9,10). Finally, we compute
precision and recall for all call-sets by using the SV calls we got from the full
datasets as our truth-set.

B.4 Supplementary tables

Program Techn. Type Length Precise Indicated Forced Fragmented Trimmed
BLASR PacBio DEL,INS 100 4.10 41.67 51.97 0.00 0.00
BLASR PacBio DEL,INS 250 7.12 65.72 24.48 0.00 0.00
BLASR PacBio DEL,INS 500 12.59 74.65 3.50 0.00 1.50
BLASR PacBio DEL,INS 1000 13.45 68.47 2.20 0.00 8.59
BLASR PacBio DEL,INS 5000 3.61 40.76 3.19 0.00 38.23
BLASR PacBio DEL,INS 10000 9.20 39.67 1.24 0.00 46.74
BLASR PacBio DEL,INS 50000 17.01 58.76 0.19 0.00 23.97
BLASR PacBio DUP 100 0.00 39.74 59.57 0.00 0.00
BLASR PacBio DUP 250 0.00 71.50 29.92 0.00 0.00
BLASR PacBio DUP 500 0.00 81.93 12.16 0.00 3.74
BLASR PacBio DUP 1000 0.00 71.66 6.89 0.00 18.69
BLASR PacBio DUP 5000 0.71 5.14 5.78 0.00 50.63
BLASR PacBio DUP 10000 8.00 18.58 1.96 0.00 15.73
BLASR PacBio DUP 50000 35.43 66.70 0.35 0.00 0.00
BLASR PacBio TRA 100 0.00 0.00 98.67 0.00 0.00
BLASR PacBio TRA 250 0.00 0.00 98.60 0.00 0.00
BLASR PacBio TRA 500 2.04 0.42 96.61 0.00 1.04
BLASR PacBio TRA 1000 15.68 0.87 81.28 0.00 1.70
BLASR PacBio TRA 5000 73.20 8.03 13.48 0.00 5.29
BLASR PacBio TRA 10000 93.10 3.26 0.46 0.00 3.01
BLASR PacBio TRA 50000 96.95 0.00 0.73 0.00 2.17

1https://github.com/lh3/seqtk

B.4. SUPPLEMENTARY TABLES 143

BLASR PacBio INV 100 0.00 0.00 99.19 0.00 0.00
BLASR PacBio INV 250 0.00 0.00 99.23 0.00 0.00
BLASR PacBio INV 500 0.80 0.88 96.97 0.00 0.80
BLASR PacBio INV 1000 7.95 12.08 78.24 0.00 1.37
BLASR PacBio INV 5000 29.54 53.29 12.83 0.00 4.29
BLASR PacBio INV 10000 31.99 59.28 2.38 0.05 5.76
BLASR PacBio INV 50000 36.63 61.10 0.94 0.00 0.98
BWA-mem PacBio DEL,INS 100 62.51 23.10 10.63 0.00 2.01
BWA-mem PacBio DEL,INS 250 25.65 22.97 41.07 0.42 10.65
BWA-mem PacBio DEL,INS 500 19.02 31.36 36.53 0.25 11.09
BWA-mem PacBio DEL,INS 1000 18.09 40.58 24.32 0.15 11.40
BWA-mem PacBio DEL,INS 5000 12.82 49.67 3.49 0.12 22.03
BWA-mem PacBio DEL,INS 10000 17.16 59.03 1.51 0.07 20.11
BWA-mem PacBio DEL,INS 50000 13.47 58.18 0.00 0.06 27.58
BWA-mem PacBio DUP 100 4.52 74.17 16.78 0.17 4.17
BWA-mem PacBio DUP 250 23.69 46.39 24.84 0.36 6.86
BWA-mem PacBio DUP 500 26.06 41.53 21.29 0.26 9.12
BWA-mem PacBio DUP 1000 27.13 54.18 12.49 0.43 6.63
BWA-mem PacBio DUP 5000 23.58 61.31 0.24 0.16 5.06
BWA-mem PacBio DUP 10000 24.27 71.56 0.09 0.18 1.60
BWA-mem PacBio DUP 50000 23.29 70.95 0.27 0.35 0.00
BWA-mem PacBio TRA 100 1.03 2.75 64.55 0.13 30.73
BWA-mem PacBio TRA 250 5.59 33.59 14.62 0.21 45.67
BWA-mem PacBio TRA 500 15.57 53.08 3.86 0.27 27.26
BWA-mem PacBio TRA 1000 22.91 57.14 2.13 0.22 17.24
BWA-mem PacBio TRA 5000 69.04 24.45 0.18 0.18 6.24
BWA-mem PacBio TRA 10000 82.11 10.09 0.02 0.14 7.27
BWA-mem PacBio TRA 50000 85.88 5.73 0.13 0.09 7.85
BWA-mem PacBio INV 100 2.27 2.43 64.99 0.41 29.90
BWA-mem PacBio INV 250 10.07 17.15 15.96 6.31 50.94
BWA-mem PacBio INV 500 18.28 36.95 3.19 15.40 25.54
BWA-mem PacBio INV 1000 23.93 53.58 4.27 5.50 12.44
BWA-mem PacBio INV 5000 24.37 68.91 0.16 0.47 6.16
BWA-mem PacBio INV 10000 28.93 64.76 0.00 0.32 5.58
BWA-mem PacBio INV 50000 25.37 64.78 0.00 0.21 9.24
GraphMap PacBio DEL,INS 100 37.47 29.62 26.58 0.00 0.00
GraphMap PacBio DEL,INS 250 35.71 40.86 18.28 0.00 0.00
GraphMap PacBio DEL,INS 500 38.40 43.09 7.47 0.00 0.00

144 APPENDIX B. SUPPLEMENTARY MATERIAL TO CHAPTER 4

GraphMap PacBio DEL,INS 1000 37.56 46.85 8.32 0.00 0.00
GraphMap PacBio DEL,INS 5000 9.15 15.99 54.13 0.00 0.20
GraphMap PacBio DEL,INS 10000 1.26 3.21 68.25 0.00 0.28
GraphMap PacBio DEL,INS 50000 0.00 0.13 84.35 0.00 1.73
GraphMap PacBio DUP 100 0.00 43.63 53.95 0.00 0.00
GraphMap PacBio DUP 250 0.00 68.66 28.05 0.00 0.00
GraphMap PacBio DUP 500 0.00 77.77 19.07 0.00 0.00
GraphMap PacBio DUP 1000 0.00 72.63 22.54 0.00 0.17
GraphMap PacBio DUP 5000 0.00 7.46 49.20 0.00 1.26
GraphMap PacBio DUP 10000 0.00 0.00 15.90 0.00 0.00
GraphMap PacBio DUP 50000 0.00 0.00 0.17 0.00 0.00
GraphMap PacBio TRA 100 0.00 0.00 97.17 0.00 0.00
GraphMap PacBio TRA 250 0.00 0.00 96.63 0.00 0.00
GraphMap PacBio TRA 500 0.00 0.00 96.84 0.00 0.08
GraphMap PacBio TRA 1000 0.00 0.00 92.23 0.00 1.59
GraphMap PacBio TRA 5000 0.00 0.00 78.78 0.00 4.47
GraphMap PacBio TRA 10000 0.00 0.00 57.93 0.00 20.34
GraphMap PacBio TRA 50000 0.00 0.00 58.05 0.00 22.70
GraphMap PacBio INV 100 0.00 0.00 98.46 0.00 0.16
GraphMap PacBio INV 250 0.00 0.00 98.55 0.00 0.17
GraphMap PacBio INV 500 0.00 0.00 97.05 0.00 0.32
GraphMap PacBio INV 1000 0.00 0.00 90.53 0.00 0.58
GraphMap PacBio INV 5000 0.00 0.00 80.39 0.00 0.52
GraphMap PacBio INV 10000 0.00 0.00 62.29 0.00 15.45
GraphMap PacBio INV 50000 0.00 0.00 61.49 0.00 18.40
NGMLR PacBio DEL,INS 100 93.92 2.95 0.17 0.00 0.00
NGMLR PacBio DEL,INS 250 90.56 7.98 0.17 0.00 0.17
NGMLR PacBio DEL,INS 500 85.49 10.95 0.43 0.00 1.39
NGMLR PacBio DEL,INS 1000 81.34 15.99 0.08 0.00 0.97
NGMLR PacBio DEL,INS 5000 51.29 42.62 0.07 0.14 0.81
NGMLR PacBio DEL,INS 10000 52.20 34.68 0.07 0.07 3.63
NGMLR PacBio DEL,INS 50000 40.64 44.47 0.00 0.06 0.77
NGMLR PacBio DUP 100 7.03 91.15 0.35 0.00 0.35
NGMLR PacBio DUP 250 87.62 9.70 0.09 0.17 1.21
NGMLR PacBio DUP 500 91.48 2.72 3.25 0.44 0.88
NGMLR PacBio DUP 1000 93.31 3.22 0.59 0.42 0.93
NGMLR PacBio DUP 5000 86.59 1.93 0.00 0.00 1.51
NGMLR PacBio DUP 10000 91.62 5.13 0.00 0.09 0.60

B.4. SUPPLEMENTARY TABLES 145

NGMLR PacBio DUP 50000 92.40 4.22 0.00 0.25 0.00
NGMLR PacBio TRA 100 23.99 1.07 13.86 0.09 59.40
NGMLR PacBio TRA 250 68.75 3.20 6.41 0.16 19.71
NGMLR PacBio TRA 500 83.81 5.78 3.08 0.27 5.05
NGMLR PacBio TRA 1000 91.15 6.00 0.11 0.29 1.30
NGMLR PacBio TRA 5000 95.47 2.24 0.03 0.16 1.34
NGMLR PacBio TRA 10000 96.04 0.51 0.00 0.16 2.04
NGMLR PacBio TRA 50000 96.71 0.09 0.00 0.18 1.95
NGMLR PacBio INV 100 87.20 6.65 4.29 0.24 0.81
NGMLR PacBio INV 250 87.37 7.42 2.65 0.17 1.37
NGMLR PacBio INV 500 91.94 2.55 0.88 0.80 1.84
NGMLR PacBio INV 1000 92.99 4.19 0.14 0.51 1.30
NGMLR PacBio INV 5000 96.07 1.71 0.00 0.36 1.09
NGMLR PacBio INV 10000 95.29 1.87 0.00 0.14 1.65
NGMLR PacBio INV 50000 96.75 1.37 0.00 0.26 0.56
Minimap2 PacBio DEL,INS 100 98.23 0.34 0.00 0.00 0.00
Minimap2 PacBio DEL,INS 250 98.45 0.43 0.17 0.00 0.00
Minimap2 PacBio DEL,INS 500 88.88 8.17 0.17 0.00 0.26
Minimap2 PacBio DEL,INS 1000 61.87 15.67 11.47 0.00 10.99
Minimap2 PacBio DEL,INS 5000 51.08 45.93 0.14 0.00 1.69
Minimap2 PacBio DEL,INS 10000 55.83 41.52 0.14 0.07 2.09
Minimap2 PacBio DEL,INS 50000 40.77 55.72 0.00 0.06 1.85
Minimap2 PacBio DUP 100 0.00 98.70 0.17 0.00 0.00
Minimap2 PacBio DUP 250 0.00 97.49 0.52 0.00 0.61
Minimap2 PacBio DUP 500 2.28 69.33 2.55 0.00 15.99
Minimap2 PacBio DUP 1000 90.51 5.34 0.08 0.34 2.63
Minimap2 PacBio DUP 5000 91.11 4.78 0.25 0.08 1.26
Minimap2 PacBio DUP 10000 92.56 4.62 0.09 0.09 0.43
Minimap2 PacBio DUP 50000 93.33 3.38 0.17 0.17 0.00
Minimap2 PacBio TRA 100 0.00 0.00 98.50 0.00 0.00
Minimap2 PacBio TRA 250 0.08 0.00 98.23 0.00 0.33
Minimap2 PacBio TRA 500 4.51 0.12 0.35 0.08 94.37
Minimap2 PacBio TRA 1000 18.90 0.00 0.11 0.07 79.44
Minimap2 PacBio TRA 5000 95.53 1.74 0.00 0.13 2.55
Minimap2 PacBio TRA 10000 96.20 0.39 0.00 0.14 2.94
Minimap2 PacBio TRA 50000 96.64 0.00 0.00 0.15 2.70
Minimap2 PacBio INV 100 0.00 0.00 98.78 0.00 0.16
Minimap2 PacBio INV 250 0.00 0.00 98.63 0.00 0.77

146 APPENDIX B. SUPPLEMENTARY MATERIAL TO CHAPTER 4

Minimap2 PacBio INV 500 4.79 0.32 13.17 0.24 80.29
Minimap2 PacBio INV 1000 17.14 0.58 0.00 0.14 79.68
Minimap2 PacBio INV 5000 93.79 3.26 0.00 0.16 2.69
Minimap2 PacBio INV 10000 93.46 3.20 0.00 0.14 2.70
Minimap2 PacBio INV 50000 91.83 5.39 0.00 0.17 2.01
LAST PacBio DEL,INS 100 48.35 14.18 22.19 14.09 1.77
LAST PacBio DEL,INS 250 55.45 22.15 8.76 12.70 5.67
LAST PacBio DEL,INS 500 53.43 28.67 3.48 12.68 6.95
LAST PacBio DEL,INS 1000 53.80 31.58 1.94 11.15 2.91
LAST PacBio DEL,INS 5000 33.13 48.64 3.12 6.37 8.06
LAST PacBio DEL,INS 10000 35.80 46.27 3.14 7.12 7.47
LAST PacBio DEL,INS 50000 26.26 52.59 4.35 6.45 9.84
LAST PacBio DUP 100 57.76 22.98 3.04 15.52 1.04
LAST PacBio DUP 250 56.97 23.38 3.64 15.84 0.43
LAST PacBio DUP 500 54.48 20.91 4.22 22.50 0.79
LAST PacBio DUP 1000 50.59 23.39 5.59 25.17 0.42
LAST PacBio DUP 5000 45.93 22.13 20.37 32.44 0.50
LAST PacBio DUP 10000 53.16 27.44 25.13 20.85 0.68
LAST PacBio DUP 50000 58.11 27.36 25.08 16.55 0.00
LAST PacBio TRA 100 30.13 27.73 0.09 10.52 31.03
LAST PacBio TRA 250 40.94 40.29 0.08 13.14 5.22
LAST PacBio TRA 500 46.49 37.01 0.04 15.42 1.16
LAST PacBio TRA 1000 51.64 32.96 0.04 13.84 1.01
LAST PacBio TRA 5000 70.94 19.08 0.11 9.03 0.97
LAST PacBio TRA 10000 72.69 22.68 0.12 3.22 1.06
LAST PacBio TRA 50000 74.14 23.23 0.07 1.28 0.95
LAST PacBio INV 100 47.33 16.29 0.00 16.69 20.18
LAST PacBio INV 250 50.68 23.29 0.00 18.52 7.85
LAST PacBio INV 500 53.55 26.02 0.16 18.68 0.96
LAST PacBio INV 1000 53.58 24.37 0.29 20.97 0.58
LAST PacBio INV 5000 53.65 26.13 0.00 19.35 0.93
LAST PacBio INV 10000 58.32 24.41 0.00 15.81 1.01
LAST PacBio INV 50000 59.91 25.67 0.00 13.18 0.73
MECAT PacBio DEL,INS 100 0.00 2.03 96.88 0.00 0.17
MECAT PacBio DEL,INS 250 0.00 0.09 99.66 0.00 4.21
MECAT PacBio DEL,INS 500 0.00 0.70 97.91 0.00 0.00
MECAT PacBio DEL,INS 1000 NaN NaN NaN NaN NaN
MECAT PacBio DEL,INS 5000 NaN NaN NaN NaN NaN

B.4. SUPPLEMENTARY TABLES 147

MECAT PacBio DEL,INS 10000 NaN NaN NaN NaN NaN
MECAT PacBio DEL,INS 50000 NaN NaN NaN NaN NaN
MECAT PacBio DUP 100 0.00 0.00 103.30 0.00 1.04
MECAT PacBio DUP 250 0.00 0.00 103.64 0.00 7.79
MECAT PacBio DUP 500 0.00 0.00 128.03 0.00 2.46
MECAT PacBio DUP 1000 0.00 0.08 120.85 0.00 2.37
MECAT PacBio DUP 5000 0.00 51.05 50.71 0.00 3.27
MECAT PacBio DUP 10000 0.09 72.82 15.98 0.00 0.43
MECAT PacBio DUP 50000 0.00 82.85 0.00 0.00 0.00
MECAT PacBio TRA 100 0.00 0.00 98.54 0.00 0.00
MECAT PacBio TRA 250 0.00 0.00 91.62 0.00 3.29
MECAT PacBio TRA 500 0.00 0.00 93.45 0.04 1.62
MECAT PacBio TRA 1000 0.47 0.98 92.41 0.00 5.46
MECAT PacBio TRA 5000 64.91 22.53 1.08 0.00 15.27
MECAT PacBio TRA 10000 82.02 4.28 8.29 0.07 16.62
MECAT PacBio TRA 50000 86.80 0.11 13.68 0.00 16.25
MECAT PacBio INV 100 0.00 0.00 99.11 0.00 0.00
MECAT PacBio INV 250 0.00 0.00 69.03 0.00 26.71
MECAT PacBio INV 500 0.00 0.00 42.78 12.93 39.90
MECAT PacBio INV 1000 0.00 0.00 98.41 0.22 1.23
MECAT PacBio INV 5000 0.00 87.64 19.30 0.00 13.55
MECAT PacBio INV 10000 0.00 82.91 3.47 0.00 17.50
MECAT PacBio INV 50000 0.00 83.57 0.00 3.17 12.71
BWA-mem ONT DEL,INS 100 61.46 20.78 12.94 0.00 2.20
BWA-mem ONT DEL,INS 250 20.37 22.59 47.03 0.07 9.86
BWA-mem ONT DEL,INS 500 19.24 33.93 33.21 0.00 13.19
BWA-mem ONT DEL,INS 1000 16.20 42.45 23.75 0.26 9.67
BWA-mem ONT DEL,INS 5000 10.97 53.75 6.48 0.05 20.88
BWA-mem ONT DEL,INS 10000 16.97 55.00 1.89 0.00 20.70
BWA-mem ONT DEL,INS 50000 10.73 58.46 0.00 0.05 27.08
BWA-mem ONT DUP 100 0.37 75.15 18.44 0.00 1.03
BWA-mem ONT DUP 250 14.76 50.30 27.82 0.15 4.75
BWA-mem ONT DUP 500 24.34 41.84 27.13 0.29 5.15
BWA-mem ONT DUP 1000 25.96 55.91 10.91 0.38 4.69
BWA-mem ONT DUP 5000 23.74 71.38 1.24 0.31 5.96
BWA-mem ONT DUP 10000 21.30 63.84 0.58 0.36 1.67
BWA-mem ONT DUP 50000 22.15 67.55 0.23 0.08 0.00
BWA-mem ONT TRA 100 0.74 3.54 70.72 0.07 23.13

148 APPENDIX B. SUPPLEMENTARY MATERIAL TO CHAPTER 4

BWA-mem ONT TRA 250 4.70 29.50 27.62 0.14 35.81
BWA-mem ONT TRA 500 13.54 52.80 7.50 0.24 24.49
BWA-mem ONT TRA 1000 24.05 56.33 2.02 0.19 15.67
BWA-mem ONT TRA 5000 68.06 24.19 0.17 0.27 6.04
BWA-mem ONT TRA 10000 83.65 8.39 0.02 0.06 6.23
BWA-mem ONT TRA 50000 89.90 0.98 0.04 0.15 6.93
BWA-mem ONT INV 100 2.47 2.47 69.75 0.14 22.97
BWA-mem ONT INV 250 8.59 17.03 27.06 5.77 39.83
BWA-mem ONT INV 500 18.18 38.24 5.69 15.82 19.99
BWA-mem ONT INV 1000 20.58 57.18 3.05 5.08 12.83
BWA-mem ONT INV 5000 22.82 68.88 0.55 0.64 5.83
BWA-mem ONT INV 10000 26.94 67.16 0.00 0.40 4.24
BWA-mem ONT INV 50000 24.37 66.06 0.00 0.19 7.40
GraphMap ONT DEL,INS 100 37.33 29.36 28.67 0.00 0.00
GraphMap ONT DEL,INS 250 36.84 34.37 24.00 0.00 0.00
GraphMap ONT DEL,INS 500 34.29 38.57 13.94 0.00 0.00
GraphMap ONT DEL,INS 1000 36.00 40.64 14.82 0.00 0.27
GraphMap ONT DEL,INS 5000 14.59 17.15 50.88 0.00 0.34
GraphMap ONT DEL,INS 10000 4.17 4.79 63.37 0.00 0.49
GraphMap ONT DEL,INS 50000 0.00 0.16 83.03 0.00 2.04
GraphMap ONT DUP 100 0.00 14.28 83.51 0.00 0.00
GraphMap ONT DUP 250 0.00 34.58 63.15 0.00 0.00
GraphMap ONT DUP 500 0.00 54.33 42.61 0.00 0.07
GraphMap ONT DUP 1000 0.00 62.63 31.66 0.00 0.15
GraphMap ONT DUP 5000 0.00 13.59 46.01 0.00 0.72
GraphMap ONT DUP 10000 0.00 1.69 23.81 0.00 0.39
GraphMap ONT DUP 50000 0.00 0.00 0.08 0.00 0.00
GraphMap ONT TRA 100 0.00 0.00 96.18 0.00 0.00
GraphMap ONT TRA 250 0.00 0.00 96.02 0.00 0.00
GraphMap ONT TRA 500 0.00 0.00 95.09 0.00 0.00
GraphMap ONT TRA 1000 0.00 0.00 90.11 0.00 2.50
GraphMap ONT TRA 5000 0.00 0.00 76.65 0.00 5.50
GraphMap ONT TRA 10000 0.00 0.00 54.89 0.00 21.69
GraphMap ONT TRA 50000 0.00 0.00 55.40 0.00 24.51
GraphMap ONT INV 100 0.00 0.00 97.17 0.00 0.28
GraphMap ONT INV 250 0.00 0.00 97.98 0.00 0.14
GraphMap ONT INV 500 0.00 0.00 95.84 0.00 0.07
GraphMap ONT INV 1000 0.00 0.00 91.99 0.00 0.83

B.4. SUPPLEMENTARY TABLES 149

GraphMap ONT INV 5000 0.00 0.00 78.86 0.00 1.23
GraphMap ONT INV 10000 0.00 0.00 58.12 0.00 18.42
GraphMap ONT INV 50000 0.00 0.00 57.67 0.00 19.36
NGMLR ONT DEL,INS 100 90.65 5.47 0.69 0.00 0.21
NGMLR ONT DEL,INS 250 87.16 7.69 0.07 0.00 0.51
NGMLR ONT DEL,INS 500 79.28 13.57 0.37 0.00 2.65
NGMLR ONT DEL,INS 1000 77.60 17.42 0.27 0.07 1.37
NGMLR ONT DEL,INS 5000 51.62 39.60 0.06 0.06 1.71
NGMLR ONT DEL,INS 10000 48.77 36.87 0.06 0.00 4.79
NGMLR ONT DEL,INS 50000 38.83 43.50 0.00 0.11 1.93
NGMLR ONT DUP 100 0.52 97.78 0.59 0.00 0.07
NGMLR ONT DUP 250 28.72 68.57 0.22 0.00 0.88
NGMLR ONT DUP 500 83.25 10.63 2.33 0.51 1.02
NGMLR ONT DUP 1000 89.37 6.47 0.77 0.39 0.39
NGMLR ONT DUP 5000 80.09 6.11 0.43 0.50 2.23
NGMLR ONT DUP 10000 86.44 7.94 0.00 0.69 0.31
NGMLR ONT DUP 50000 84.61 9.19 0.00 0.00 0.00
NGMLR ONT TRA 100 18.49 1.77 14.11 0.14 63.08
NGMLR ONT TRA 250 52.56 6.38 6.66 0.24 29.98
NGMLR ONT TRA 500 69.24 11.26 4.43 0.24 11.32
NGMLR ONT TRA 1000 80.86 10.28 0.35 0.26 4.14
NGMLR ONT TRA 5000 90.51 4.25 0.12 0.27 3.04
NGMLR ONT TRA 10000 91.34 2.42 0.00 0.24 3.95
NGMLR ONT TRA 50000 93.20 0.55 0.02 0.17 3.65
NGMLR ONT INV 100 82.76 6.78 3.04 0.99 3.46
NGMLR ONT INV 250 81.75 8.01 1.44 0.36 4.62
NGMLR ONT INV 500 83.97 5.90 0.90 0.76 4.09
NGMLR ONT INV 1000 85.01 8.32 0.13 0.25 2.16
NGMLR ONT INV 5000 90.98 4.60 0.05 0.50 2.41
NGMLR ONT INV 10000 89.46 5.39 0.00 0.59 2.73
NGMLR ONT INV 50000 90.85 5.32 0.04 0.27 1.29
LAST ONT DEL,INS 100 47.71 12.47 19.46 18.01 2.22
LAST ONT DEL,INS 250 49.17 23.21 7.25 16.82 6.02
LAST ONT DEL,INS 500 47.42 31.05 2.88 14.53 9.51
LAST ONT DEL,INS 1000 43.10 33.33 1.91 17.35 3.35
LAST ONT DEL,INS 5000 29.74 45.70 4.05 9.97 8.66
LAST ONT DEL,INS 10000 31.72 43.74 3.80 9.82 9.08
LAST ONT DEL,INS 50000 21.54 53.92 4.51 8.11 10.74

150 APPENDIX B. SUPPLEMENTARY MATERIAL TO CHAPTER 4

LAST ONT DUP 100 48.89 27.66 4.36 18.05 0.07
LAST ONT DUP 250 45.27 26.45 4.47 23.08 0.07
LAST ONT DUP 500 45.81 23.02 5.46 26.73 0.00
LAST ONT DUP 1000 45.22 21.96 7.63 31.43 0.00
LAST ONT DUP 5000 36.09 19.19 19.55 44.00 0.00
LAST ONT DUP 10000 39.68 23.11 30.35 37.29 0.00
LAST ONT DUP 50000 50.61 27.79 32.77 21.52 0.00
LAST ONT TRA 100 25.46 27.97 0.07 12.41 32.36
LAST ONT TRA 250 33.69 42.81 0.03 17.15 4.29
LAST ONT TRA 500 38.92 39.29 0.00 19.20 1.40
LAST ONT TRA 1000 44.09 34.81 0.19 17.69 1.61
LAST ONT TRA 5000 64.65 18.30 0.05 14.12 1.71
LAST ONT TRA 10000 64.85 24.40 0.06 7.68 1.69
LAST ONT TRA 50000 63.10 32.06 0.06 1.58 1.47
LAST ONT INV 100 40.14 19.36 0.07 17.46 20.92
LAST ONT INV 250 47.76 24.60 0.00 19.91 6.13
LAST ONT INV 500 48.51 25.82 0.07 22.21 1.73
LAST ONT INV 1000 45.43 30.30 0.13 21.54 1.40
LAST ONT INV 5000 44.56 27.11 0.00 25.97 1.32
LAST ONT INV 10000 48.26 25.32 0.00 23.53 1.82
LAST ONT INV 50000 51.78 28.21 0.00 17.31 0.99

Table B.1: Full evaluation results for simulated SVs and simulated reads.

Program Techn. Type Length Precise Indicated Incorrect Fragmented Not found
BLASR PacBio DEL 1000 6.92 71.14 9.57 0.00 9.78
BLASR PacBio DEL 2000 5.84 47.19 4.25 0.00 36.34
BLASR PacBio DEL 3000 6.52 34.26 4.61 0.00 48.24
BLASR PacBio INS 1000 5.84 35.89 28.55 0.00 23.32
BLASR PacBio INS 2000 6.25 21.62 3.75 0.00 45.93
BLASR PacBio INS 3000 2.45 9.47 2.23 0.00 50.65
BLASR PacBio TRA 1000 NaN NaN NaN NaN NaN
BLASR PacBio TRA 2000 36.82 10.58 41.39 0.70 7.40
BLASR PacBio TRA 3000 51.91 14.55 19.33 0.69 7.69
BLASR PacBio INV 1000 2.89 5.63 84.24 0.00 3.97
BLASR PacBio INV 2000 14.71 30.44 44.58 0.00 7.73
BLASR PacBio INV 3000 19.30 44.69 23.84 0.08 7.50
BWAMEM PacBio DEL 1000 40.17 30.60 20.98 1.53 5.23

B.4. SUPPLEMENTARY TABLES 151

BWAMEM PacBio DEL 2000 53.64 28.91 4.40 2.28 4.63
BWAMEM PacBio DEL 3000 48.83 39.17 2.34 1.83 4.39
BWAMEM PacBio INS 1000 11.26 11.92 52.20 1.36 16.92
BWAMEM PacBio INS 2000 6.45 10.01 36.55 1.02 25.45
BWAMEM PacBio INS 3000 4.72 5.61 25.47 1.08 32.08
BWAMEM PacBio TRA 1000 NaN NaN NaN NaN NaN
BWAMEM PacBio TRA 2000 47.55 26.72 15.53 2.00 6.22
BWAMEM PacBio TRA 3000 61.64 24.30 1.97 2.33 4.95
BWAMEM PacBio INV 1000 7.07 5.89 77.22 1.77 4.82
BWAMEM PacBio INV 2000 34.89 24.62 26.71 5.38 6.49
BWAMEM PacBio INV 3000 39.66 38.75 8.28 5.08 4.67
GraphMap PacBio DEL 1000 19.40 59.04 19.24 0.00 0.05
GraphMap PacBio DEL 2000 19.65 55.69 10.09 0.00 0.46
GraphMap PacBio DEL 3000 11.27 49.19 16.91 0.00 0.29
GraphMap PacBio INS 1000 34.95 17.57 38.04 0.00 0.84
GraphMap PacBio INS 2000 19.43 12.74 36.24 0.00 1.25
GraphMap PacBio INS 3000 9.80 5.46 39.84 0.00 2.27
GraphMap PacBio TRA 1000 NaN NaN NaN NaN NaN
GraphMap PacBio TRA 2000 0.00 0.00 91.15 0.00 2.72
GraphMap PacBio TRA 3000 0.00 0.00 85.39 0.00 4.05
GraphMap PacBio INV 1000 0.00 0.00 94.91 0.00 0.48
GraphMap PacBio INV 2000 0.00 0.00 92.53 0.00 1.87
GraphMap PacBio INV 3000 0.00 0.00 90.21 0.00 1.43
NGMLR PacBio DEL 1000 77.06 8.77 2.64 0.11 7.56
NGMLR PacBio DEL 2000 69.80 8.57 1.06 1.06 13.43
NGMLR PacBio DEL 3000 70.06 9.66 0.66 1.17 12.15
NGMLR PacBio INS 1000 47.52 12.62 5.37 0.33 25.98
NGMLR PacBio INS 2000 24.24 6.92 2.54 0.90 39.91
NGMLR PacBio INS 3000 13.44 4.49 2.12 0.97 43.15
NGMLR PacBio TRA 1000 NaN NaN NaN NaN NaN
NGMLR PacBio TRA 2000 68.70 15.96 2.17 1.17 6.58
NGMLR PacBio TRA 3000 68.82 14.68 1.82 1.06 6.89
NGMLR PacBio INV 1000 58.04 8.20 12.00 2.89 9.11
NGMLR PacBio INV 2000 73.82 10.44 1.78 3.91 5.78
NGMLR PacBio INV 3000 73.66 11.92 0.98 3.32 5.12
BWAMEM ONT DEL 1000 50.69 31.78 13.87 0.38 2.13
BWAMEM ONT DEL 2000 46.18 41.99 3.35 1.47 3.98
BWAMEM ONT DEL 3000 40.63 48.39 3.83 0.91 3.02

152 APPENDIX B. SUPPLEMENTARY MATERIAL TO CHAPTER 4

BWAMEM ONT INS 1000 5.87 10.12 69.47 0.23 9.58
BWAMEM ONT INS 2000 4.42 14.86 46.92 1.27 19.81
BWAMEM ONT INS 3000 4.84 13.91 34.50 0.95 24.60
BWAMEM ONT TRA 1000 NaN NaN NaN NaN NaN
BWAMEM ONT TRA 2000 33.39 35.36 22.88 1.39 4.51
BWAMEM ONT TRA 3000 47.65 38.05 3.32 2.06 4.07
BWAMEM ONT INV 1000 5.35 4.79 83.96 1.84 2.55
BWAMEM ONT INV 2000 27.50 25.65 30.02 5.63 5.63
BWAMEM ONT INV 3000 34.29 43.20 8.56 7.01 3.51
GraphMap ONT DEL 1000 19.89 59.53 19.21 0.00 0.00
GraphMap ONT DEL 2000 19.16 67.64 7.54 0.00 0.10
GraphMap ONT DEL 3000 14.01 61.90 12.80 0.00 0.10
GraphMap ONT INS 1000 16.23 19.63 58.89 0.00 0.15
GraphMap ONT INS 2000 16.20 23.29 43.51 0.00 0.54
GraphMap ONT INS 3000 10.41 20.20 40.40 0.00 1.06
GraphMap ONT TRA 1000 NaN NaN NaN NaN NaN
GraphMap ONT TRA 2000 0.00 0.00 95.28 0.00 0.88
GraphMap ONT TRA 3000 0.00 0.00 90.66 0.00 1.65
GraphMap ONT INV 1000 0.00 0.00 98.00 0.00 0.32
GraphMap ONT INV 2000 0.00 0.00 92.22 0.00 0.30
GraphMap ONT INV 3000 0.00 0.00 92.71 0.00 0.28
NGMLR ONT DEL 1000 84.76 8.38 0.76 0.08 1.98
NGMLR ONT DEL 2000 71.41 16.75 0.94 0.21 5.13
NGMLR ONT DEL 3000 65.63 18.15 0.40 0.20 6.55
NGMLR ONT INS 1000 43.04 27.82 9.27 0.00 11.90
NGMLR ONT INS 2000 25.77 24.36 5.76 0.54 26.04
NGMLR ONT INS 3000 17.81 19.76 4.12 0.45 31.89
NGMLR ONT TRA 1000 NaN NaN NaN NaN NaN
NGMLR ONT TRA 2000 52.13 29.18 9.99 0.45 4.06
NGMLR ONT TRA 3000 57.03 24.98 6.81 0.68 4.10
NGMLR ONT INV 1000 36.95 18.44 23.70 0.96 15.00
NGMLR ONT INV 2000 55.30 29.50 2.82 1.85 2.97
NGMLR ONT INV 3000 57.36 31.63 0.77 1.40 3.37

Table B.3: Mapping comparison for simulated reference and real reads

B.4. SUPPLEMENTARY TABLES 153

Caller Read length Category Indel Dup Inv Tra Invdel Invdup
DELLY short correct 37.82 62.61 72.31 83.28 0.00 27.16
DELLY short indicated 0.00 4.81 26.33 14.61 69.62 52.45
DELLY short notfound 60.82 30.71 0.00 1.42 27.68 6.93
DELLY short incorrect 1.36 1.86 1.36 0.70 2.70 13.46
Lumpy short correct 52.14 89.29 93.57 96.07 2.38 30.58
Lumpy short indicated 0.00 5.00 6.43 3.57 64.39 34.80
Lumpy short notfound 47.86 5.71 0.00 0.36 25.97 6.49
Lumpy short incorrect 0.00 0.00 0.00 0.00 7.26 28.13
Manta short correct 2.73 11.39 25.27 49.01 0.23 5.15
Manta short indicated 33.12 49.60 62.99 46.10 64.74 73.63
Manta short notfound 57.66 26.84 0.00 0.31 25.52 5.32
Manta short incorrect 6.49 12.17 11.74 4.58 9.52 15.90
SURVIVOR (2+caller) short correct 2.86 12.76 18.57 41.07 0.24 5.23
SURVIVOR (2+caller) short indicated 35.71 55.85 81.43 58.57 67.95 74.54
SURVIVOR (2+caller) short notfound 61.43 30.71 0.00 0.36 27.85 6.93
SURVIVOR (2+caller) short incorrect 0.00 0.68 0.00 0.00 3.96 13.29
PBHoney Pacbio correct 26.73 0.00 59.29 44.29 0.00 5.32
PBHoney Pacbio indicated 25.06 82.86 9.29 45.71 19.68 34.00
PBHoney Pacbio notfound 42.14 17.14 31.43 10.00 80.08 44.26
PBHoney Pacbio incorrect 6.06 0.00 0.00 0.00 0.23 16.42
Sniffles(BWA) Pacbio correct 80.17 77.86 79.39 79.03 21.92 62.87
Sniffles(BWA) Pacbio indicated 12.07 19.29 5.00 8.85 41.71 23.40
Sniffles(BWA) Pacbio notfound 6.39 2.86 14.93 11.42 31.83 10.34
Sniffles(BWA) Pacbio incorrect 1.36 0.00 0.68 0.70 4.55 3.39
Sniffles(NGMLR) Pacbio correct 97.14 84.29 97.86 97.50 63.60 72.15
Sniffles(NGMLR) Pacbio indicated 0.71 14.29 2.14 1.79 27.01 18.93
Sniffles(NGMLR) Pacbio notfound 2.14 1.43 0.00 0.71 4.73 8.57
Sniffles(NGMLR) Pacbio incorrect 0.00 0.00 0.00 0.00 4.65 0.35
Sniffles+BWA Nanopore correct 81.29 70.84 79.75 73.52 30.89 61.67
Sniffles+BWA Nanopore indicated 6.65 21.74 4.08 19.86 50.06 26.39
Sniffles+BWA Nanopore notfound 5.44 2.04 10.17 4.18 12.65 7.60
Sniffles+BWA Nanopore incorrect 6.62 5.38 6.00 2.44 6.40 4.34
Sniffles+NGM Nanopore correct 87.37 62.04 87.05 92.56 63.21 71.47
Sniffles+NGM Nanopore indicated 0.00 22.16 1.33 2.03 26.26 17.56
Sniffles+NGM Nanopore notfound 1.95 4.49 0.00 0.68 1.41 5.29
Sniffles+NGM Nanopore incorrect 10.68 11.30 11.62 4.73 9.11 5.68

Table B.2: SVs caller statistics for simulated reads

154 APPENDIX B. SUPPLEMENTARY MATERIAL TO CHAPTER 4

Caller Dataset Read length Category # SVs SVs(%)
DELLY sim ref + real reads short Precise 551 78.71
DELLY sim ref + real reads short Indicated 36 5.14
DELLY sim ref + real reads short Not found 113 16.14
Lumpy sim ref + real reads short Precise 538 76.86
Lumpy sim ref + real reads short Indicated 49 7.00
Lumpy sim ref + real reads short Notfound 113 16.14
Manta sim ref + real reads short Precise 622 88.86
Manta sim ref + real reads short Indicated 42 6.00
Manta sim ref + real reads short Not found 36 5.14
SURVIVOR (2+caller) sim ref + real reads short Precise 536 76.57
SURVIVOR (2+caller) sim ref + real reads short Indicated 50 7.14
SURVIVOR (2+caller) sim ref + real reads short Not found 114 16.29
Sniffles (NGMLR) sim ref + real reads Pacbio Precise 666 95.14
Sniffles (NGMLR) sim ref + real reads Pacbio Indicated 10 1.43
Sniffles (NGMLR) sim ref + real reads Pacbio Not found 24 3.43
Sniffles (NGMLR) sim ref + real reads Nanopore Precise 618 88.29
Sniffles (NGMLR) sim ref + real reads Nanopore Indicated 49 7.00
Sniffles (NGMLR) sim ref + real reads Nanopore Not found 33 4.71

Table B.4: SVs caller comparison for simulated reference and real reads.

B.4. SUPPLEMENTARY TABLES 155

Tool DEL DUP INS INV TRA
Delly 13555 1864 3467 18103
Lumpy 11847 1008 1930 5760
Manta 12264 1567 3196 1181 10398
SURV 7936 1046 0 1238 6903
Sniffles 9806 1251 11300 876 1562

(a) Union (3 samples)

Tool DEL DUP INS INV TRA
Delly 2922 439 469 1613
Lumpy 1317 375 609 0
Manta 3556 498 1094 376 1861
SURV 2414 353 394 801
Sniffles 3743 496 4226 67 24

(b) Cat1: found in all(%)

Tool DEL DUP INS INV TRA
Delly 5337 820 856 3730
Lumpy 2482 628 1134 1913
Manta 6443 887 1814 683 4015
SURV 4224 621 0 720 2575
Sniffles 6798 828 7606 137 107

(c) Cat2: son, at least one parent (%)

Tool DEL DUP INS INV TRA
Delly 1962 253 1042 5138
Lumpy 1109 65 134 1940
Manta 1328 108 288 80 1438
SURV 595 70 86 1533
Sniffles 726 114 1208 67 91

(d) Cat3: son, not in parents (%)

Tool DEL DUP INS INV TRA
Delly 1962 253 0 1042 5138
Lumpy 1109 65 0 134 1940
Manta 1328 108 288 80 1438
SURV 677 75 0 90 1550
Sniffles 515 115 1045 66 90

(e) Cat3: son, not in parents accounted for length (%)

156 APPENDIX B. SUPPLEMENTARY MATERIAL TO CHAPTER 4

Length cuttoffs 50bp 200bp
#SVs supported by 1 out of 5 data sets 24392 9941
#SVs supported by 2 out of 5 data sets 4782 1929
#SVs supported by 3 out of 5 data sets 8289 3327
#SVs supported by 4 out of 5 data sets 2086 1377
#SVs supported by 5 out of 5 data sets 1052 827
Unique Pacbio 773 307
70% overlap repeats 323 74
Unique Nanopre 11433 1146
70% overlap repeats 10250 442
Unique illumina 4070 3479
70% overlap repeats 41 21
Unique GIAB Pacbio 7637 4711
70% overlap repeats 994 462
Unique 1k deletions 479 298
70% overlap repeats 13 0

Table B.6: Comparison of existing NA12878 data sets.

Program Type Tested p<0.01 p<0.01 (%)
Delly DEL 8842 2474 27.98
Lumpy DEL 2387 1534 64.26
Manta DEL 5301 2868 54.10
SURVIVOR DEL 3102 1873 60.38
Sniffles + Pac DEL 6399 3415 53.37
Sniffles + Nano DEL 12045 3879 32.20
Manta INS 1095 629 57.44
Sniffles + Pac INS 5786 2685 46.41
Sniffles + Nano INS 3488 1703 48.82

Table B.7: Indel assessment using Illumina short read data.

B.4. SUPPLEMENTARY TABLES 157

Illumina Pacbio Count Percent
dup INV 9 1.63
dup INVDUP 7 1.27
dup INV INVDUP 0 0.00
dup DUP 197 35.62
dup DUP INS 4 0.72
dup INS 172 31.10
dup DEL 21 3.80
dup TRA 11 1.99
dup highcov 35 6.33
dup repeats 50 9.04
dup no overlap 47 8.50
inv INV 143 19.56
inv INVDUP 10 1.37
inv INV INVDUP 0 0.00
inv DUP 8 1.09
inv DUP INS 0 0.00
inv INS 129 17.65
inv DEL 32 4.38
inv TRA 12 1.64
inv highcov 24 3.28
inv repeats 221 30.23
inv no overlap 152 20.79
tra TRA 295 13.13
tra INS 1098 48.87
tra DUP INS 0 0.00
tra DEL 199 8.86
tra DUP 5 0.22
tra INV 8 0.36
tra INVDUP 14 0.62
tra INV INVDUP 0 0.00
tra highcov 141 6.28
tra repeats 404 17.98
tra no overlap 83 3.69
del TRA 55 1.47
del INS 352 9.40
del DUP INS 0 0.00
del DEL 2905 77.59
del DUP 28 0.75
del INV 1 0.03
del INVDUP 3 0.08
del INV INVDUP 0 0.00
del highcov 68 1.82
del repeats 168 4.49
del no overlap 164 4.38

Table B.8: Analysis of potential biases in short read calling.

158 APPENDIX B. SUPPLEMENTARY MATERIAL TO CHAPTER 4

Dataset Program Runtime [s] Memory [MB] Threads
NA12878 PacBio 1x ngmlr-0.2.3 4,788 10,238 10
NA12878 PacBio 1x bwa 6,133 6,039 10
NA12878 PacBio 1x graphmap 557,493 (failed) 106,923 10
NA12878 PacBio 1x blasr 18,518 19,337 10
NA12878 PacBio 1x minimap2 546 10,051 10
NA12878 PacBio 1x mecat 1,236 22,935 10
NA12878 PacBio 1x lastal 5,575 17,367 10
NA12878 PacBio 1x last-split 5,755 2,118 1
NA12878 PacBio 1x last-mafconvert 991 10 1
NA12878 PacBio 1x last sum 12,321 17,367 10
NA12878 PacBio full sniffles-1.0.5 12,102 15,270 10
NA12878 ONT full sniffles-1.0.5 7,744 5,238 10

Table B.9: Runtime comparisons for NA12878

B.4. SUPPLEMENTARY TABLES 159

N
am

e
Te

ch
no

lo
gi

e
O

rg
an

is
m

Sa
m

pl
e

A
cc

es
si

on
Pa

c
sk

br
3

Pa
cB

io
hu

m
an

SK
B

R
3

ht
tp

s:
//w

w
w

.b
io

rx
iv

.o
rg

/c
on

te
nt

/e
ar

ly
/2

01
7/

08
/1

0/
17

49
38

Pa
c

gi
ab

Pa
cB

io
hu

m
an

H
00

2
ft

p:
//f

tp
-t

ra
ce

.n
cb

i.n
lm

.n
ih

.g
ov

/g
ia

b/
ft

p/
da

ta
/A

sh
ke

na
zi

m
Tr

io
/

Pa
c

gi
ab

Pa
cB

io
hu

m
an

H
00

3
ft

p:
//f

tp
-t

ra
ce

.n
cb

i.n
lm

.n
ih

.g
ov

/g
ia

b/
ft

p/
da

ta
/A

sh
ke

na
zi

m
Tr

io
/

Pa
c

gi
ab

Pa
cB

io
hu

m
an

H
00

4
ft

p:
//f

tp
-t

ra
ce

.n
cb

i.n
lm

.n
ih

.g
ov

/g
ia

b/
ft

p/
da

ta
/A

sh
ke

na
zi

m
Tr

io
/

N
an

op
or

e
N

A
12

87
8

O
N

T
hu

m
an

N
A

12
87

8
ht

tp
s:

//g
ith

ub
.c

om
/n

an
op

or
e-

w
gs

-c
on

so
rt

iu
m

/N
A

12
87

8
N

A
12

87
8

Pa
cB

io
M

tS
in

ai
Pa

cB
io

hu
m

an
N

A
12

87
8

ft
p:

//f
tp

-t
ra

ce
.n

cb
i.n

lm
.n

ih
.g

ov
/g

ia
b/

ft
p/

da
ta

/N
A

12
87

8/
N

A
12

87
8

Pa
cB

io
M

tS
in

ai
N

A
12

87
8

gi
ab

ca
lls

Pa
cb

io
hu

m
an

N
A

12
87

8
ft

p:
//f

tp
-t

ra
ce

.n
cb

i.n
ih

.g
ov

/g
ia

b/
ft

p/
da

ta
/N

A
12

87
8/

N
A

12
87

8
Pa

cB
io

M
tS

in
ai

/

Ta
bl

e
B

.1
0:

R
ea

ld
at

a
se

ts
an

d
ac

ce
ss

io
ns

160 APPENDIX B. SUPPLEMENTARY MATERIAL TO CHAPTER 4

Parameter Default Explanation
-r, –reference NA Path to the reference genome (FASTA/Q, can be gzipped)
-q, –query NA Path to the read file (FASTA/Q) [/dev/stdin]
-o, –output Path to output file [stdout]
–skip-write false Don’t write reference index to disk

–bam-fix false
Report reads with >64k CIGAR operations as unmapped.
Required to be compatibel to BAM format [false]

-t, –threads 1 Number of threads
-x, –presets pacbio Parameter presets for different sequencing technologies

-i, –min-identity 0.65
Alignments with an identity lower than this threshold will be
discarded

-R, –min-residues 0.25
Alignments containing less than <int>or (<float>
* read length) residues will be discarded

–no-smallinv false Don’t detect small inversions
–no-lowqualitysplit false Split alignments with poor quality
–verbose false Debug output
–no-progress false Don’t print progress info while mapping
–match 2 Match score
–mismatch -5 Mismatch score
–gap-open -5 Gap open score
–gap-extend-max -5 Gap open extend max
–gap-extend-min -1 Gap open extend min
–gap-decay 0.15 Gap extend decay

-k, –kmer-length 2
Number of k-mers to skip when building the lookup table from
the reference

–bin-size 4 Sets the size of the grid used during candidate search
–max-segments 1 Max number of segments allowed for a read per kb
–subread-length 256 Length of fragments reads are split into
–subread-corridor 40 Length of corridor sub-segments are aligned with

Table B.11: NGMLR command line parameters.

