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Abstract

In this thesis we extend some theoretical results about the forward-reflected-backward
splitting method and two of its variants, namely, the relaxed-inertial-forward-reflected-
backward splitting and the three operator splitting presented in [12]. These methods are
intended for solving monotone inclusions problems requiring only Lipschitz continuity of
the single-valued operator.
After an introduction to monotone operator theory and convex analysis, we show the
linear convergence of the forward-reflected-backward splitting method with variable step-
size, the linear convergence of the relaxed-intertial-forward-reflected-backward splitting
method as well as the linear convergence of the three operator splitting method.
We then derive methods to composite inclusion problems using a well known product
space technique and show an application to a general structured non-smooth convex
minimization problem. Lastly we provide numerical experiments comparing the above
methods to a variant of the forward-backward method proposed in [14] and the error-free
version of the forward-backward-forward method proposed in [10]. The numerical tests
were made on a system with Intel i5-7400 (4) 3.5 GHz and the python code can be found
on the attached USB flash drive.

Zusammenfassung

Diese Arbeit beinhaltet verschiedene erweiterte Konvergenzresultate des “forward-reflected-
backward splitting” Verfahrens und zwei seiner Varianten, nämlich das “relaxed-intertial-
forward-reflected-backward splitting” und das “three operator splitting”, welche in [12]
präsentiert wurden.
Diese Verfahren sind für die Lösung von “monotone inclusion problems” gedacht und er-
fordern nur Lipschitzstetigkeit des einwertigen Operators.
Nach einer Einführung in die Theorie monotoner Operatoren und konvexer Analysis, wird
die lineare Konvergenz mit variabler Schrittweite des “forward-reflected-backward” Ver-
fahrens, die lineare Konvergenz des “relaxed-intertial-forward-reflected-backward” Ver-
fahrens sowie die lineare Konvergenz des “three operator” Verfahrens gezeigt. Danach
werden Verfahren für “composite inclusion problems” abgeleitet und eine Anwendung zu
einem allgemeinen konvexen Optimierungsproblem gezeigt.
Abschließend werden die o.a. Verfahren mit einer Variante des “forward-backward” Ver-
fahrens aus [14] und mit der error-free Version des “forward-backward-forward” Ver-
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fahrens aus [10] in numerichen Experimenten verglichen, welche mit einem Desktop-
Computer mit Intel i5-7400 (4) 3.5 GHz gemacht wurden und die gebundenen Expem-
plare enthalten einen USB-Stick mit dem Python-Code.
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1 Introduction

Throughout this master’s thesis we consider real Hilbert spaces denoted by H,K,G,Gi.
For a Hilbert space H, its inner product is denoted by ⟨ ., . ⟩H and its associated norm by
}.}H “

a

⟨ ., . ⟩H. We will avoid subscripts when there is no risk of confusion.

For Gi, i “ 1, . . . ,m, real Hilbert spaces, we denote by

G “ G1 ‘ ¨ ¨ ¨ ‘ Gm,

their Hilbert direct sum endowed with inner product and associated norm defined as
follows:

⟨ v, w ⟩G :“
m
ÿ

i“1

⟨ vi, wi ⟩Gi
and }v}G :“

g

f

f

e

m
ÿ

i“1

}vi}2Gi
,

where v “ pv1, . . . , vmq, w “ pw1, . . . , wmq P G.

Several times we will use the parallelogram law :

2 ⟨ a1 ´ a2, b1 ´ b2 ⟩ “ }a1 ´ b2}2 ´ }a1 ´ b1}2 ` }a2 ´ b1}2 ´ }a2 ´ b2}2, (1.1)

as well as the Cauchy-Schwarz inequality (CS) |⟨x, y ⟩| ď }x}}y} in combination with
the Cauchy inequality :

p@ a, b P Rq, p@δ ą 0q 2ab ď δa2 `
b2

δ
. (1.2)

By BpH,Gq we denote the space of bounded linear operators from H to G and by
H˚ the dual space of H. If L P BpH,Gq, we denote by L˚ its adjoint, i.e., the unique
operator L˚ P BpG,Hq, that satisfies

p@x P Hq, p@v P Gq ⟨Lx, v ⟩G “ ⟨x, L˚v ⟩H .

By N we denote the set of natural numbers t0, 1, 2, . . . u and by N1 “ Nzt0u the set of
natural numbers without 0. By R we denote the set of real numbers, by R` the set of
nonnegative real numbers and by R`` the set of strictly positive real numbers. We also
denote the extended real line by R “ R Y t˘8u.

For two nonempty subsets C and D in H, their Minkowski sum is defined as

C ` D :“ tc ` d | c P C and d P Du,
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and for every λ P R the λ-scaled set λC is defined as

λC :“ tλc | c P Cu.

If Λ is a nonempty subset of R then

ΛC :“
ď

λPΛ

λC.

A subset C of H is called:

• convex if p@x, y P Cq and λ P r0, 1s

λx ` p1 ´ λqy P C.

• a cone if C “ R``C.

Be aware that in the literature a cone is sometimes defined as C “ R`C. Anyway, in
the context of this master’s thesis, there is no difference, since we only use the notion of
cone in definition 1.5, where 0 belongs to the set.

Definition 1.1. Let C be a subset of H.

• The smallest linear subspace of H containing C is called the span of C

spanC :“
č

tD Ď H |C Ď D and D is a linear subspaceu.

• The smallest cone in H containing C is called the conical hull of C

coneC :“
č

tD Ď H |C Ď D and D is a coneu.

For x P H and λ P R``, the open ball centered at x with radius λ is denoted by

BHpx;λq :“ ty P H | }y ´ x} ă λu.

For a subset C of H, its interior is denoted by

intC :“ tx P C | Dλ P R`` such that BHpx;λq Ă Cu,

and its topological closure by

C :“
č

tF Ď H |C Ď F and F is a closed setu.

Definition 1.2. A sequence txnunPN in H is said to converges to x˚

• weakly :
xn á x˚ :ô p@y P Hq lim

nÑ8
⟨xn ´ x˚, y ⟩ “ 0.
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• strongly:
xn Ñ x˚ :ô lim

nÑ8
}xn ´ x˚} “ 0.

• Q-linearly: if there is a constant r P p0, 1q such that

lim
nÑ8

}xn`1 ´ x˚}

}xn ´ x˚}
ď r.

• R-linearly: if there is a sequece tεnunPN in R that converges Q-linearly to 0 such
that:

}xn ´ x˚} ď εn, @n P N.

We need two results regarding convergence, the first one is often referred as Opial’s
Lemma :

Lemma 1.3. Let txnunPN be a bounded sequence in H. Then there exists a subsequence
txnk

ukPN of txnunPN that converges weakly.

Proof. See [1],Lemma 2.45.

Lemma 1.4. Let txnunPN be a sequence in H and let Z be a nonempty subset of H.
Suppose that for every x P Z, t}xn ´ x}unPN converges and that every weak sequential
cluster point of txnunPN belongs to Z. Then txnunPN converges weakly to a point in Z.

Proof. See [1], Lemma 2.47.

A nice result involving weak and strong convergence is given in ([1], Corollary 2.52).
Let txnunPN be a sequence in H and let x̄ P H. Then

xn Ñ x̄ ô xn á x̄ and }xn} Ñ }x̄}.

The following definitions are weaker notions of interiority:

Definition 1.5. Let C Ď H, be convex.

• The core of C is
coreC :“ tx P C | cone pC ´ xq “ Hu.

• The strong relative interior of C is

sriC :“ tx P C | cone pC ´ xq “ spanpC ´ xqu.

• The relative interior of C is

riC :“ tx P C | cone pC ´ xq “ spanpC ´ xqu.
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Since coneC Ď spanC Ď spanC Ď H for every convex set C in H, it follows that

intC Ď coreC Ď sriC Ď riC Ď C.

The above inclusions can be strict and examples can be found in ([1], Chapter 6).

Proposition 1.6. Let H be a real Hilbert space, let G and K be real finite-dimensinal
Hilbert spaces, let L1 P BpH,Gq, let L2 P BpG,Kq and let C, D and E be nonempty
convex subsets of H, G and K respectively. Then the following hold:

(i) sriE “ riE.

(ii) riL2pDq “ L2priDq.

(iii) If riD X riL1pCq ‰ H

then 0 P sri pD ´ L1pCqq. (1.3)

Proof. See [1], Corollary 6.15 and Proposition 6.19.

1.1 Monotone Operator Theory

Let X and Y be two nonempty sets. We denote by 2X the power set of X and by
A : X Ñ 2Y a set-valued operator A from X to Y. The domain of A is denoted by

domA :“ tx P X |Ax ‰ Hu,

its range by
ranA :“ tAx Ď Y |x P domAu,

its graph by
graA :“ tpx, yq P X ˆ Y | y P Axu,

and the inverse of A, denoted by A´1, is defined through its graph:

graA´1 “ tpy, xq P Y ˆ X | px, yq P graAu.

If Y is a vector space, we denote the set of zeros of A by

zerA “ A´1p0q “ tx P X | 0 P Axu.

Definition 1.7. Let H be a real Hilbert space. An operator A : H Ñ 2H is said to be:

• Monotone if
p@ px, uq, py, vq P graAq ⟨x ´ y, u ´ v ⟩H ě 0. (1.4)

• Maximally monotone if A is monotone and @px, uq P H ˆ H

px, uq P graA ô p@ py, vq P graAq ⟨x ´ y, u ´ v ⟩H ě 0. (1.5)
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• Strongly monotone with constant ρ P R`` if

p@ px, uq, py, vq P graAq ⟨x ´ y, u ´ v ⟩H ě ρ}x ´ y}2. (1.6)

Remark 1.8. A single-valued operator T from H to G, with dom T “ D Ď H will be
denoted by T : D Ñ G. Note that T : H Ñ G, means that T has full domain.

From the definition follows that the inverse A´1 of a maximally monotone operator
A, is maximally monotone as well, but the sum of maximally monotone operators is not
necessarily maximally monotone and we need extra assumptions:

Proposition 1.9. Let A : H Ñ 2H be maximally monotone, and let B : H Ñ H be
monotone and continuous. Then A ` B is maximallity monotone.

Proof. By ([1], Corollary 20.28) follows that B is maximally monotone, and by ([1],
Corollary 25.5) that A ` B is maximally monotone since domB “ H.

Proposition 1.10. Let A : H Ñ 2H be maximally monotone, let z, u P H and let
λ P R``. Then

x ÞÑ u ` λApx ` zq

is maximally monotone.

Proof. See [1], Proposition 20.22.

Proposition 1.11. Let A : H Ñ 2H be maximally monotone, let tpxn, unqunPN be se-
quence in graA and let px, uq P H ˆ H. If one of the following conditions holds:

(i) xn Ñ x and un á u,

(ii) xn á x and un Ñ u.

Then px, uq P graA.

Proof. See [1], Proposition 20.38.

Definition 1.12. Let A : H Ñ 2H be an operator and let γ P R``. The resolvent of
γA, denoted by JγA, is defined as:

JγA : H Ñ 2H : x ÞÑ pId ` γAq
´1

pxq.

From the definition of the resolvent it is clear that:

dom JγA “ ran pId ` γAq, and ran JγA “ domA.

In order to characterize the resolvent, we need further definitions:

Definition 1.13. Let D be a non-empty subset of H and let β P R``. An operator
T : D Ñ H is called:

5



• Lipschitz continuous with constant β if

p@x, y P Dq }Tx ´ Ty} ď β}x ´ y}. (1.7)

• Nonexpansive if it is Lipschitz continuous with constant 1, i.e.,

p@x, y P Dq }Tx ´ Ty} ď }x ´ y}. (1.8)

• Firmly nonexpansive if

p@x, y P Dq }Tx ´ Ty}2 ď ⟨x ´ y, Tx ´ Ty ⟩ . (1.9)

• β-cocoercive if βT is firmly nonexpansive, i.e.,

p@x, y P Dq β}Tx ´ Ty}2 ď ⟨x ´ y, Tx ´ Ty ⟩ . (1.10)

Proposition 1.14. Let A : H Ñ 2H be an operator with domA ‰ H, let D “ ran pId ` Aq,
and set T “ JA |D. Then the following hold:

(i) A is monotone ô T is firmly nonexpansive.

(ii) A is maximally monotone ô p@γ P R``q JγA is firmly nonexpansive and D “ H.

Proof. See [1], Proposition 23.10.

Remark 1.15. Note that this proposition implies that the resolvent JA of a monotone
operator A is single-valued.

Proposition 1.16 (Resolvent Calculus). Let A : H Ñ 2H be maximally monotone, let
x, z P H and let γ P R``. Then the following hold:

(i) Let B “ A ` γId . Then

JBpxq “ Jp1`γq´1A

ˆ

x

1 ` γ

˙

. (1.11)

(ii) Let Bx “ Ax ` z. Then
JBpxq “ JApx ´ zq. (1.12)

(iii) Let Bx “ Apx ´ zq. Then

JBpxq “ z ` JApx ´ zq. (1.13)

(iv)
Id “ JγA ` γ Jγ´1A´1 ˝ γ´1Id . (1.14)
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(v) Let Bpxq “ ρApρxq. Then

JBpxq “
1

ρ
Jρ2Apρxq, @ρ ‰ 0. (1.15)

Proof. (i), (ii), (iii) See [1],Proposition 23.17.
(iv) See [1], Proposition 23.20.
(v) See [1], Corollary 23.26.

Proposition 1.17. Let Ai : Gi Ñ 2Gi be maximally monotone for each i P t1, . . . ,mu,
and let

M : G :“
à

iPI

Gi Ñ 2G : px1, . . . , xmq ÞÑ pA1x1, . . . , Amxmq. (1.16)

Then M is maximally monotone and

JM : G Ñ G : px1, . . . , xmq ÞÑ pJA1 x1, . . . , JAm xmq. (1.17)

Proof. See [1], Proposition 23.18.

The next proposition will be the main tool for proving linear convergence of the algo-
rithms in the next section:

Proposition 1.18. Let A : H Ñ 2H be monotone, let D “ ran pId `Aq and let ρ P R``.
Then

A is ρ-strongly monotone ô JA|D
is p1 ` ρq-cocoervice. (1.18)

Proof. See [1],Proposition 23.13.

Many problems of nonlinear analysis can be reduced to solving a monotone inclusion
problem, i.e.

find x P H such that 0 P Mx

where M : H Ñ 2H is a monotone operator.

When M is maximally monotone, the above problem could “theoretically” be solved
by proximal-point algorithm, (ref. [1], Theorem 23.41) which asserts that:

xn`1 “ JγnM pxnq á x̄ P zerM,

whenever γn P R`` with
ř

nPN γ2n “ `8, and zerM ‰ H for x0 P H arbitrary.
Moreover, Proposition 1.10 implies that the trivial substitution

M 1pxq :“ Mpxq ´ z,

allows us to solve any problem of the form:

find x P H such that z P Mx,

7



since M 1 is maximally monotone and its resolvent can be computed using (1.12).

When the operator M represents the sum of two operators, the formula to compute its
resolvent is not useful in practise (see [1], Corollary 25.34) and the “splitting methods”
arise in such a situation, providing an algorithm which acts on each operator separately.
Let’s recall a simplified version of three of them, assuming that zer pA ` Bq ‰ H and
x0 P H:

• Douglas-Rachford (ref. [1], Theorem 26.11)
Assumptions: A,B : H Ñ 2H are both maximally monotone.
Step: γ P R``.
Update rule:

[

yn “ JγBpxnq

xn`1 “ JγAp2yn ´ xnq

Assertions:

(i) yn á x̄ P zer pA ` Bq,

(ii) If A or B is uniformly monotone then yn Ñ x̄, where x̄ is the unique solution.

Pros: It solves the problem when A and B are set valued operators.
Cons: The computation of the resolvent of both operators is required.

• Forward-backward (ref. [1], Theorem 26.14)
Assumptions: A : H Ñ 2H is maximally monotone, B : H Ñ H is β-cocoercive
with β P R``.
Step: γ P p0, 2βq

Update rule:
[

yn “ xn ´ γBxn

xn`1 “ JγApynq

Assertion:

(i) xn á x̄ P zer pA ` Bq,

(ii) If A or B is uniformly monotone then xn Ñ x̄, where x̄ is the unique solution.

Pros: It requires the computation of only one resolvent.
Cons: It is not suitable when A and B are set-valued operators.

• Forward-backward-forward (Tseng) (ref. [1], Theorem 26.17)
Assumptions: A : H Ñ 2H is maximally monotone, B : H Ñ H is monotone and
β-Lipschitz continuous with β P R``.
Step: γ P

´

0, 1
β

¯

8



Update rule:
—

—

—

—

—

–

yn “ xn ´ γBxn

pn “ JγApynq

xn`1 “ pn ` γpBxn ´ Bpnq

Assertion:

(i) xn á x̄ P zer pA ` Bq,

(ii) If A or B is uniformly monotone at x̄ then xn Ñ x̄.
Pros: It requires Lypschitz continuity of the operator B which is less restrictive
than cocoercivity.
Cons: It is not suitable when A and B are set-valued operators.

The forward-reflected-backward (FRB) method, proposed by Malitsky-Tam [12],
which is the motivation of this master’s thesis, requires only Lipschitz continuity of the
operator B as in the case of FBF.

1.2 Convex Analysis

Definition 1.19. Let f : H Ñ R be a function.

• The effective domain of f is

dom f :“ tx P H | fpxq ă `8u.

• f is called proper if
´8 R fpHq and dom f ‰ H.

• f is convex if @λ P p0, 1q, and p@x, y P dom fq

fpλx ` p1 ´ λqyq ď λfpxq ` p1 ´ λqfpyq.

• f is lower-semicontiunous (lsc) at x if

fpxq ď lim inf
yÑx

fpyq “ sup
εą0

inf
yPBpx,εq

fpyq.

The set of proper lower semicontinuous convex functions from H to R is denoted
by ΓpHq.

Definition 1.20. Let f : H Ñ R be a proper function, let x P dom f and let y P H.

• The directional derivative of f at x in the direction y is defined as

f 1px; yq :“ lim
αÓ0

fpx ` αyq ´ fpxq

α
,

whenever this limit exists in R.

9



• If f 1px, ¨q is linear and bounded, then f is said to be Gâteaux differentiable at x
and the Gâteaux gradient of f at x is the unique vector ∇fpxq P H (its existence
is guaranteed by the Riesz representation theorem) such that

f 1px, ¨q “ ⟨ ¨,∇fpxq ⟩ . (1.19)

• f is called Fréchet differentiable at x P int pdom fq if there exists a bounded
linear functional in H˚ » H (Riesz), called the Fréchet gradient of f at x, also
denoted by ∇fpxq, such that

lim
yÑ0

fpx ` yq ´ fpxq ´ ⟨ y,∇fpxq ⟩
}y}

“ 0. (1.20)

Remark 1.21. Let f P ΓpHq and let x P dom f . Suppose that f is Gâteaux differentiable
on Bpx; εq for some ε P R``. Then f is Fréchet differentiable at x if and only if ∇f is
continuous at x. Moreover, if a convex function is Gâteaux differentiable on its domain,
then its gradient is monotone.

Proof. See [1], Corollary 17.42 & Proposition 17.7.

Definition 1.22. Let f : H Ñ R be a proper function. The subdifferential of f is the
set-valued operator

Bf : H Ñ 2H : x ÞÑ tu P H | p@y P Hq ⟨ y ´ x, u ⟩ ` fpxq ď fpyqu. (1.21)

When a function f : H Ñ R is proper, convex and Gâteaux differentiable at x P dom f ,
then

Bfpxq “ t∇fpxqu, (1.22)

(see [1], Proposition 17.31). Moreover, is not difficult to see, that for poper functions
f : H Ñ R, g : G Ñ R, and L P BpH,Gq, such that dom g X Lpdom fq ‰ H, the
following inclusion holds:

Bfpxq ` pL˚ ˝ pBgq ˝ Lq pxq Ď Bpf ` g ˝ Lqpxq @x P H. (1.23)

Definition 1.23. Let f : H Ñ R be a function. The Fenchel conjugate f˚ of f is
defined as

f˚ : H Ñ R : u ÞÑ sup
xPH

t⟨x, u ⟩ ´ fpxqu. (1.24)

Example 1.24. Let C Ď H and fpxq “ ιCpxq be the indicator function of C, defined
as:

ιCpxq :“

#

0 if x P C,

`8 otherwise.

Then
f˚puq “ sup

xPH
t⟨x, u ⟩ ´ ιCpxqu “ sup

xPC
t⟨x, u ⟩u “ σCpuq,

is the support function of C, which is usually denoted by σC .

10



Example 1.25. Continuing with the last example, let C “ BHp0;λq with λ P R``.
Then

´

ιBHp0;λq

¯˚

puq “ sup
}x}ďλ

t⟨x, u ⟩Hu “ λ}u}H. (1.25)

Proposition 1.26. Let f : H Ñ R be a proper function. Then the following hold:

(i) f˚ is lower-semicontinuous and convex.

(ii) @x, u P H:
fpxq ` f˚puq ě ⟨x, u ⟩ , (1.26)

with equality if and only if u P Bfpxq.

(iii) f˚˚ ď f , and
f˚˚ “ f ô f P ΓpHq. (1.27)

(iv)
u P Bfpxq ñ x P Bf˚puq. (1.28)

Proof. (i) See [1], Proposition 13.13.

(ii) See [1], Proposition 13.15. (Young-Fenchel inequality).

(iii) See [1], Theorem 13.37. (Fenchel-Moreau theorem).

(iv) It is a consequence of (ii) and (iii).

Corollary 1.27.

If f P ΓpHq ñ pBfq´1 “ Bf˚. (1.29)

Example 1.28. Since C :“ BHp0, λq is a closed convex set, it follows that ιC P ΓpHq,
and the Fenchel-Moreau Theorem implies:

pλ} ¨ }Hq
˚

“
(1.25)

´

ιBHp0;λq

¯˚˚

“
(1.27)

ιBHp0;λq
. (1.30)

Proposition 1.29. For each i P t1, . . . ,mu, let yi P Hi and let fi : Hi Ñ R be a proper
function. Then the following hold:

piq f˚ :
m
à

i“1

Hi Ñ R : pu1, . . . , umq ÞÑ

m
ÿ

i“1

f˚
i puiq ` ⟨ yi, ui ⟩ , (1.31)

piiq Bf :
m
à

i“1

Hi Ñ

m
ą

i“1

2Hi : px1, . . . , xmq ÞÑ

m
ą

i“1

Bfipxi ´ yiq. (1.32)

where f :“
Àm

i“1 fi :
Àm

i“1Hi Ñ R : px1, . . . , xmq ÞÑ
řm

i“1 fipxi ´ yiq.
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Proof. (i) Combine ([1], Proposition 13.30) and ([1], Proposition 13.23).

(ii) See [1], Proposition 16.9.

Example 1.30. The last proposition provides a great flexibility. Let fi “ λi} ¨ }Hi for
i “ 1, . . . ,m and λi P R``. Define

f :
m
ą

i“1

Hi Ñ R : x ÞÑ

m
ÿ

i“1

fipxiq. (1.33)

Then

f˚ “

m
ÿ

i“1

f˚
i “

m
ÿ

i“1

ιBHi
p0,λiq

“ ιC , (1.34)

where

C “

m
ą

i“1

BHip0;λiq.

Now, let H “ Rmˆn, with ⟨A,B ⟩H “ tr pAtBq. Set

f : H ˆ H Ñ R : pA,Bq ÞÑ

m
ÿ

i“1

n
ÿ

j“1

}pAij , Bijq}R2 (1.35)

It is easy to verify that f is a norm in H ˆ H and that H ˆ H “
Śmn

k“1R2. Therefore,
calling }p¨, ¨q}ˆ :“ f and letting λ P R``, we obtain

pλ}p¨, ¨q}ˆq
˚

“
(1.30)
(1.31)

ιCp¨, ¨q (1.36)

where
C “

“

BR2p0;λq
‰mˆn

,

and } ¨ }R2 denotes the standard euclidean norm in R2.

The set of minimizers of a function f : H Ñ R is denoted by

Argmin f :“ tx P H | fpxq “ inf fpHqu.

Lemma 1.31. [Fermat’s rule] Let f : H Ñ R be a proper function. Then

Argmin f “ zer Bf “ tx P H | 0 P Bfpxqu. (1.37)

If f P ΓpHq then
Argmin f “ Bf˚p0q. (1.38)

Proof. This follows directly by the definition of the subdifferential and Corollary 1.27.
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Definition 1.32. Let f, g : H Ñ R Y t`8u be functions. The infimal convolution of
f and g is defined as

f l g : H Ñ R : x ÞÑ inf
yPH

tfpyq ` gpx ´ yqu. (1.39)

The infimal convolution is called exact at x whenever the infimun in (1.39) attained. If
the infimal convolution is exact for all x P H, it is denoted by d.

Proposition 1.33. Let f, g : H Ñ R be proper functions. Then the following hold:

piq pf l gq
˚

“ f˚ ` g˚. (1.40)

piiq pf ` gq
˚

“ f˚ d g˚ P ΓpHq, (1.41)

if, for instance, f, g P ΓpHq and 0 P sri pdom f ´ dom gq.

Proof. (i) See [1], Proposition 13.24.

(ii) See [1], Theorem 15.3.

Remark 1.34. A list of conditions satisfying 0 P sri pdom f ´ dom gq can be found in [1],
Proposition 15.5. Moreover, for proper functions f, g, the inequality pf ` gq

˚
ď f˚ l g˚

is always true.

Proposition 1.35. Let f P ΓpHq, let g P ΓpGq, and let L P BpH,Gq such that

0 P sri pdom g ´ Lpdom fqq .

Then the following hold:

piq Bpf ` g ˝ Lq “ Bf ` L˚ ˝ Bg ˝ L. (1.42)

piiq inf
xPH

fpxq ` gpLxq “ ´min
vPG

f˚p´L˚vq ` g˚pvq. (1.43)

Proof. (i) See [1], Theorem 16.47.

(ii) See [1], Theorem 15.23. See Remark 1.50 at the end of this section.

Definition 1.36. Let f P ΓpHq. The Proximity operator of f is defined as

Prox f : H Ñ H : x ÞÑ Argmin
yPH

fpyq `
1

2
}x ´ y}2. (1.44)

Proposition 1.37. Let f P ΓpHq. Then the following hold:

piq Bf is maximally monotone.

piiqProx f “ JBf . (1.45)

(1.46)
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Proof. (i) See [1], Theorem 20.25 (Moreau).

(ii) See [1], Proposition 16.44.

Corollary 1.38. Combining Proposition 1.16, Proposition 1.37 and Corollary 1.27 we
obtain the Moreau’s decomposition:

x “ Prox γf pxq ` γProx γ´1f˚pγ´1xq (1.47)

@x P H,@γ P R`` whenever f P ΓpHq.

Corollary 1.39. Let fi P ΓpHiq, let xi, zi P Hi let αi ‰ 0 and set

f “

m
à

i“1

fipαixi ´ ziq. (1.48)

Then combining Proposition 1.16, Proposition 1.17 and Proposition 1.29, we obtain the
following usefull rule:

Prox γf px1, . . . , xmq “

m
ą

i“1

1

αi

´

zi ` Prox γα2
i fi

pαixi ´ ziq
¯

. (1.49)

Next, let us compute a couple of proximity operators which will be used in our numer-
ical expermients:

Example 1.40. [Induced Norm] It is clear from the definition that the proximity opera-
tor of the indicator function of a nonempty closed convex set is the projection operator,
i.e., let H ‰ C Ď H be closed and convex and let f “ ιC , then

Prox γf pxq “ PCpxq, @γ P R``. (1.50)

where PC denotes the projection onto a nonempty closed convex set C.

Using Example 1.28, where pλ} ¨ }Hq
˚

“ ιBp0;λq
we obtain:

Prox λ}¨}Hpxq “
(1.47)

x ´ Prox ιBHp0;λq
pxq

“ x ´ PBHp0;λq
pxq

“

ˆ

1 ´
λ

maxt λ, }x}H u

˙

x. (1.51)

Observe that for:
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• H “ R, we obtain the soft threeshold function Tλ on r´λ, λs:

Tλpxq “ signpxqmaxt|x| ´ λ, 0u

“

$

’

&

’

%

x ´ λ, x ą λ,

0, |x| ă λ,

x ` λ, x ă ´λ.

(1.52)

Example 1.41 (l1 norm). Let H “ Rn and let fpxq “ λ}x ´ z}1 “ λ
řn

i“1 |xi ´ zi|.
Then

Prox γf pxq “

n
ą

i“1

zi ` Tγλpxi ´ ziq

“

n
ą

i“1

zi ` sign pxi ´ ziqmaxt|xi ´ zi| ´ γλ, 0u (1.53)

Prox γf˚pxq “ Pr´λ,λsnpx ´ γzq. (1.54)

Example 1.42. [Pointwise l2 norm] Let G “ H ‘ H with H “ Rmˆn and for λ P R``

set
f : G Ñ R : pA,Bq ÞÑ λ}pA,Bq}ˆ

Then
Prox γf˚pA,Bq “ PCpA,Bq, (1.55)

where
C “

“

BR2p0;λq

‰mˆn
,

and }p¨, ¨q}ˆ is the norm defined in (1.35).

Definition 1.43. Let f : H Ñ R be proper and let β P R``. We say that f is β-strongly
convex if @x, y P dom f and @λ P p0, 1q

fpλx ` p1 ´ λqyq ` λp1 ´ λq
β

2
}x ´ y}2 ď λfpxq ` p1 ´ λqfpyq (1.56)

It is easy to verify (see [1], Example 22.4) that

If f is β-strongly convex ñ Bf is β-strongly monotone. (1.57)

Proposition 1.44. Let f P ΓpHq. Then the following hold:

piq If f is β-strongly convex ñ f is supercoercive, i.e., lim
}x}Ñ`8

fpxq

}x}
“ `8. (1.58)

piiq f is β-strongly convex ô f˚ is Fréchet differentiable on H and ∇f˚ is β-cocoervice.
(1.59)
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Proof. (i) See [1], Corollary 11.17.

(ii) See [1], Theorem 18.15.

Remark 1.45. Let f : H Ñ R be a convex Fréchet differentiable function. The Baillon-
Haddad Theorem asserts that

∇f is β-Lipschitzian ô ∇f is
1

β
-cocoercive. (1.60)

In particular, if the gradient of a convex continuous differentiable function is nonexpan-
sive, then it is actually firmly nonexpansive.

1.2.1 Fenchel-Rockafellar Duality

Definition 1.46. Let F : H Ñ R and G : G Ñ R, be proper functions, and let L P BpH,Gq.

The primal problem associated with the composite function F ` G ˝ L is

minimize
xPH

F pxq ` GpLxq, (1.61)

its dual problem is
minimize

vPG
F ˚p´L˚vq ` G˚pvq, (1.62)

the optimal primal value is

µ “ inf
xPH

F pxq ` GpLxq,

the dual optimal value is

µ˚ “ inf
vPG

F ˚p´L˚vq ` G˚pvq,

and the the duality gap is

∆pF,G,Lq “

#

0 if µ “ ´µ˚ P t´8,`8u

µ ` µ˚ otherwise
(1.63)

Remark 1.47. It is always true that ´µ˚ ď µ, this result is known as weak-duality and
can be shown using the Fenchel-Young inequality. When µ “ ´µ˚ we say that strong-
duality holds. A comprehensive analysis of assumptions that guarantee strong-duality
is beyond the scope of this master’s thesis and my knowledge. We keep it as simple as
posible where our main argument is given in Proposition 1.35.

We close this section with two results regarding existence of solutions to the above
Problem. The first one ensures the existence of a primal solution, and the second one
states a relation between primal and dual solutions.
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Proposition 1.48. Let f P ΓpHq, let g P ΓpGq, and let L P BpH,Gq such that

dom g X Lpdom fq ‰ H.

Suppose that one of the following holds:

(a) f is supercoercive.

(b) f is coercive (i.e., lim}x}Ñ`8 fpxq “ `8q and g is bounded from below.

Then f ` g ˝ L is coercive and it has a minimizer over H.

Proof. See [1], Corollary 11.16 with g ˝ L P ΓpHq in place of g.

Proposition 1.49. Let f P ΓpHq, g P ΓpGq and let L P BpH,Gq be such

0 P sri pdom g ´ Lpdom fqq. (1.64)

Then there exists v P G solution to the dual problem (1.62), the duality gap (1.63) is
zero, i.e., stong duality holds and

Argminpf ` g ˝ Lq “ Bf˚p´L˚vq X L´1pBg˚pvqq. (1.65)

Proof. See [1], Theorem 19.1, Corollary 19.2.

Remark 1.50. The set in (1.65) could be empty and a list of conditions satisfying (1.64)
can be found in ([1], Proposition 15.24).
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2 Malitsky-Tam Algorithms

In this section we briefly recall some results presented in [12], from which we will derive
methods to solve general monotone inclusion problems. We also include their proofs,
where we made three small contributions, namely, the relaxation of a fixed λ in ([12],
Theorem 2.9) obtaining linear convergence under the same assumptions given in ([12],
Theorem 2.5); the proof of linear convergence of the relaxed-inertial-forward-reflected-
barckward algorithm ([12], Theorem 4.3), and the proof of linear convergence of the
three operator splitting algorithm ([12], theorem 5.2) whenever the operator A is strongly
monotone.

2.1 Forward Reflected Backward (FRB)

Theorem 2.1. Let A : H Ñ 2H be a maximally monotone operator, let C : H Ñ H be a
monotone and β-Lipschitzian operator with β P R``. Suppose that zer pA`Cq ‰ H and

tλnunPN Ď

„

ε,
1 ´ 2ε

2β

ȷ

, (2.1)

for some

ε P

ˆ

0,
1

2p1 ` βq

ȷ

. (2.2)

Given x0, x1 P H consider the sequence txnunPN generated by:

xn`1 “ JλnA

`

xn ´ rλn ` λn´1sCxn ` λn´1Cxn´1

˘

. (2.3)

Then the following hold:

(i) txnunPN converges weakly to a point in zer pA ` Cq.

(ii) Suppose that A or C is strongly monotone. Then txnunPN converges R-linearly to
the unique point in zer pA ` Cq.

Proof. (i) Let x̄ P zer pA`Cq, then x̄ “ JλnApx̄´λnCx̄q and by Proposition 1.14 we have
that JλnA is a single-valued, firmly nonexpansive operator with full domain. Therefore
the following holds:
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}xn`1 ´ x̄}2 “ } JλnApxn ´ λnCxn ´ λn´1pCxn ´ Cxn´1qq ´ JλnApx̄ ´ λnCx̄q}2 (2.4)

ď
(1.9)

⟨xn`1 ´ x̄, xn ´ λnCxn ´ λn´1pCxn ´ Cxn´1q ´ x̄ ` λnCx̄ ⟩ (2.5)

“ ⟨xn`1 ´ x̄, xn ´ x̄ ⟩ (2.6)

` λn ⟨xn`1 ´ x̄, Cxn`1 ´ Cxn ⟩ ´ λn⟨xn`1 ´ x̄, Cxn`1 ´ Cx̄ ⟩
l jh n

ě0 by (1.4)

´ λn´1 ⟨xn`1 ´ xn, Cxn ´ Cxn´1 ⟩ (2.7)

´ λn´1 ⟨xn ´ x̄, Cxn ´ Cxn´1 ⟩ .

By the identity (1.1), we can write (2.6) as

⟨xn`1 ´ x̄, xn ´ x̄ ⟩ “
1

2

`

}xn`1 ´ x̄}2 ` }xn ´ x̄}2 ´ }xn`1 ´ xn}2
˘

. (2.8)

and by the Lipschitz continuity of C, we can estimate (2.7) as follows

´λn´1 ⟨xn`1 ´ xn, Cxn ´ Cxn´1 ⟩ ď λn´1β}xn`1 ´ xn}}xn ´ xn´1}

ď
λn´1β

2

`

}xn`1 ´ xn}2 ` }xn ´ xn´1}2
˘

ď
1 ´ 2ε

4

`

}xn`1 ´ xn}2 ` }xn ´ xn´1}2
˘

. (2.9)

In light of (2.8) and (2.9), the inequality in (2.5) implies

}xn`1 ´ x̄}2 ´ 2λn ⟨xn`1 ´ x̄, Cxn`1 ´ Cxn ⟩ `

ˆ

1

2
` ε

˙

}xn`1 ´ xn}2

ď }xn ´ x̄}2 ´ 2λn´1 ⟨xn ´ x̄, Cxn ´ Cxn´1 ⟩ `
1

2
}xn ´ xn´1}2. (2.10)

We will use this inequality many times, therefore it is worth capturing its information
in a function which allows us to write the formulas in a short manner:

Proposition 2.2. In the setting of Theorem 2.1, let txnunPN be the sequence generated
in (2.3) and let Ψ : H ˆ N1 Ñ R be defined as:

Ψps, nq “
1

2
}xn ´ s}2 ´ 2λn´1 ⟨xn ´ s, Cxn ´ Cxn´1 ⟩ `

1

2
}xn ´ xn´1}2.

Then the following hold:

piq Ψps, nq ě 0.

piiq Ψps, nq ď p1 ´ εq
`

}xn ´ s}2 ` }xn ´ xn´1}2
˘

. (2.11)
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Proof. In both cases we use that C is β-Lipschitzian:

piq Ψps, nq ě
1

2
}xn ´ s}2 ´ 2λn´1β}xn ´ s}}xn ´ xn´1} `

1

2
}xn ´ xn´1}2

ě
1 ´ 2λn´1β

2
l jh n

ěε

p}xn ´ s}2 ` }xn ´ xn´1}2q ě 0.

piiq Ψps, nq ď
1

2
}xn ´ s}2 ` 2λn´1β}xn ´ s}}xn ´ xn´1} `

1

2
}xn ´ xn´1}2

ď
1 ` 2λn´1β

2
l jh n

ď1´ε

`

}xn ´ s}2 ` }xn ´ xn´1}2
˘

.

For the rest of the proof, we set Ψn :“ Ψpx̄, nq. Combining Proposition 2.2(i) with
(2.10) we obtain:

1

2
}xn`1 ´ x̄}2 ď

1

2
}xn`1 ´ x̄}2 ` Ψn`1 ` ε}xn`1 ´ xn}2

ď
1

2
}xn ´ x̄}2 ` Ψn

“
1

2
}xn ´ x̄}2 ` Ψn ` ε}xn ´ xn´1}2 ´ ε}xn ´ xn´1}2

...

ď
1

2
}x1 ´ x̄}2 ` Ψ1 ´ ε

n´1
ÿ

j“0

}xj`1 ´ xj}
2.

Rearranging the terms, we obtain:

1

2
}xn`1 ´ x̄}2 ` ε

n´1
ÿ

j“0

}xj`1 ´ xj}
2 ď

1

2
}x1 ´ x̄}2 ` Ψ1 ă 8 @n P N1.

This implies that the sequence txnunPN is bounded and that

}xn`1 ´ xn} Ñ 0 as n Ñ `8. (2.12)

By the definition of the resolvent, (2.3) implies:

Cxn`1 ´ Cxn ´
1

λn
pxn`1 ´ xn ` λn´1pCxn ´ Cxn´1qq P pA ` Cqxn`1. (2.13)
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By Lemma 1.3 there exists a subsequence txnk
ukPN of the bounded sequence txnunPN

which converges weakly to some point x̃ P H; we now show that x̃ P zer pA ` Cq.
Since λn is strictly positive and bounded @n P N, the limit of the LHS in (2.13) along
the subsequence txnk

ukPN converges strongly to 0:

lim
kÑ8

›

›

›

›

Cxnk`1
´ Cxnk

´
1

λnk

pxnk`1
´ xnk

` λnk´1
pCxnk

´ Cxnk´1
qq

›

›

›

›

ď lim
kÑ8

ˆ

β `
1

λnk

˙

}xnk`1
´ xnk

}
l jh n

(2.12)Ñ0

`
βλnk´1

λnk

}xnk
´ xnk´1

}
l jh n

(2.12)Ñ0

“ 0.
(2.14)

By Proposition 1.9 follows that A ` C is maximally monotone. Then, from (2.13),
(2.14), and Proposition 1.11 follows that every weak cluster point of txnunPN belongs to
zer pA ` Cq.
Moreover,

`

1
2}xn ´ x̄}2 ` Ψn

˘

nPN1
is nonnegative and nonincreasing, therefore its limit

exists for each x̄ P zer pA ` Cq and by the sandwich rule it is equal to limnÑ8 }xn ´ x̄}:

lim
nÑ8

}xn ´ x̃}2 “ lim
nÑ8

}xn ´ x̃}2 ´ 2λn´1β}xn ´ x̃}
l jh n

ă8

}xn ´ xn´1}
l jh n

Ñ0

`
1

2
}xn ´ xn´1}2

l jh n

Ñ0

ď lim
nÑ8

}xn ´ x̃}2 ´ 2λn´1 ⟨xn ´ x̃, Cxn ´ Cxn´1 ⟩ `
1

2
}xn ´ xn´1}2

ď lim
nÑ8

}xn ´ x̃}2 ` 2λn´1β}xn ´ x̃}
l jh n

ă8

}xn ´ xn´1}
l jh n

Ñ0

`
1

2
}xn ´ xn´1}2

l jh n

Ñ0

“ lim
nÑ8

}xn ´ x̃}2.

Since the limit of t}xn ´ x̃}unPN exists for each weak cluster point x̃ of the sequence
txnunPN, and every such weak cluster point belongs to zer pA ` Cq, it follows from
Lemma 1.4 that the sequence txnunPN generated in (2.3) converges weakly to a point
in zer pA ` Bq and the proof is complete.

(ii) In order to show linear convergence, we assume that A is ρ-strongly monotone
(there is no loss of generallity, see remark 2.3). Using that JλnA is p1 ` λnρq-cocoercive
guaranteed by Proposition 1.18, in place of firmly nonexpansivity in (2.4) we obtain:

p1 ` 2ρλnq}xn`1 ´ x̄}2´2λn ⟨xn`1 ´ x̄, Cxn`1 ´ Cxn ⟩ `

ˆ

1

2
` ε

˙

}xn`1 ´ xn}2

ď }xn ´ x̄}2´2λn´1 ⟨xn ´ x̄, Cxn ´ Cxn´1 ⟩ `
1

2
}xn ´ xn´1}2. (2.15)
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Next, set:

an :“
1

2
}xn ´ x̄}2,

µ :“ min

"

ρε

1 ´ ε
,

ε

1 ´ ε

*

.

Using the auxiliary function Ψn “ Ψpx̄, nq from Propositon 2.2, and replacing λn by ε
in the first term of the LHS in (2.15), (recall that λn ě ε for all n P N by assumption),
the inequality (2.15) implies that:

an ` Ψn ě p1 ` 4ερqan`1 ` Ψn`1 ` ε}xn`1 ´ xn}2

“ p1 ` 4ερqan`1 ` p1 ` µqΨn`1 ´ µΨn`1 ` ε}xn`1 ´ xn}2

ě
(2.11)

p1 ` 4ερqan`1 ` p1 ` µqΨn`1

´ µp1 ´ εq
`

2an`1 ` }xn`1 ´ xn}2
˘

` ε}xn`1 ´ xn}2

“ p1 ` 2ερqan`1 ` p1 ` µqΨn`1 ` 2pρε ´ µr1 ´ εsq
l jh n

ě0

an`1

` pε ´ µr1 ´ εsq
l jh n

ě0

}xn`1 ´ xn}2

ě p1 ` mint2ερ, µuqpan`1 ` Ψn`1q

“
εă 1

2

p1 ` µqpan`1 ` Ψn`1q.

From here, it follows that:

an`1 ď an`1 ` Ψn`1 ď
1

1 ` µ
pan ` Ψnq ď ¨ ¨ ¨ ď

1

p1 ` µqn
pa1 ` Ψ1q,

and according to Definition 1.2, the sequence txnunPN converges R-linearly to x̄. Since
A is strongly monotone, the set zer pA ` Cq has exactly one element.

Remark 2.3. In the case where the operator C is ρ-strongly monotone, we can reformulate
the equations using the operators Ã and C̃ defined as follows:

Ã :“ A ` ρId ,

C̃ :“ C ´ ρId .

Then
Ã ` C̃ “ A ` C,
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and by Proposition 1.16

JλÃ “
(1.11)

J λ
1`λρ

A ˝ p1 ` λρq´1Id .

where Ã is ρ-strongly monotone and C̃ is β̃-Lipschitz continuous, with β̃ “ pβ ` ρq.
In this case the recursion (2.3) takes the form

xn`1 “ JλnÃ

´

xn ´ λnC̃xn ´ λn´1pC̃xn ´ C̃xn´1q

¯

“ J λn
1`λnρ

A

˜

xn ´ λnC̃xn ´ λn´1pC̃xn ´ C̃xn´1q

p1 ` λnρq

¸

“ J λn
1`λnρ

A

ˆ

xn ´
pλn ` λn´1qCxn ´ λn´1Cxn´1 ´ λn´1ρpxn ´ xn´1q

1 ` λnρ

˙

and linear convergence is guaranteed by Theorem 2.1 as long as

tλnunPN Ă

„

ε,
1 ´ 2ε

2pβ ` ρq

ȷ

.

2.2 Relaxed Inertial Forward Reflected Backward (RIFRB)

Theorem 2.4. Let A : H Ñ 2H be maximally monotone, let C : H Ñ H be monotone
and β-Lipschitzian with β P R`` such that zer pA`Cq ‰ H. Let ξ P r0, 1q, η P p0, 1s and
λ P R`` such that

ξ ă
2 ´ η

2 ` η
, (2.16)

and

λ ă min

"

2p1 ´ ξq ´ ηp1 ` ξq

2β
,
1 ´ ξp1 ` ηq

ηβ

*

. (2.17)

Given x0, x1 P H, consider the sequence txnunPN generated by:
#

zn`1 :“ JλA

´

xn ´ λCxn ´ λ
η pCxn ´ Cxn´1q `

ξ
η pxn ´ xn´1q

¯

,

xn`1 :“ p1 ´ ηqxn ` ηzn`1.
(2.18)

Then the following hold:

(i) txnunPN converges weakly to a point in zer pA ` Cq.

(ii) Suppose that A is strongly monotone, then txnunPN converges R-linearly to the
unique point in zer pA ` Cq.
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Proof. (i) Define the operator

C 1 :“ C ´
ξ

λ
Id , (2.19)

which is β1-Lipschitz continuous, with

β1 “ β `
ξ

λ
. (2.20)

Then the recursion scheme (2.18) is equivalent to
#

zn`1 :“ JλA

´

xn ´ λCxn ´ λ
η pC 1xn ´ C 1xn´1q

¯

,

xn`1 :“ p1 ´ ηqxn ` ηzn`1.
(2.21)

Let x̄ P zer pA ` Cq, then x̄ “ JλApx̄ ´ λCx̄q and by Proposition 1.14 JλA is a single-
valued, firmly nonexpansive operator, therefore the following holds

}zn`1 ´ x̄}2 “ }JλArxn ´ λCxn ´
λ

η
pC 1xn ´ C 1xn´1qs ´ JλApx̄ ´ λCx̄q}2 (2.22)

ď
(1.9)

〈
zn`1 ´ x̄, xn ´ λCxn ´

λ

η
pC 1xn ´ C 1xn´1q ´ x̄ ` λCx̄

〉
(2.23)

“ ⟨ zn`1 ´ x̄, xn ´ x̄ ⟩ (2.24)

´ λ ⟨ zn`1 ´ x̄, Cxn ´ Cx̄ ⟩ (2.25)

´
λ

η

〈
zn`1 ´ x̄, C 1xn ´ C 1xn´1

〉
. (2.26)

Using the identity zn`1 “ 1
ηxn`1 `

η´1
η xn from (2.21) and the substitution

cn :“ 2λ ⟨xn ´ x̄, Cxn ´ Cx̄ ⟩ ě
(1.4)

0,

we can compute and estimate the terms in the last equation as follows:

(2.22) “

›

›

›

›

xn`1 ´ x̄

η
`

η ´ 1

η
pxn ´ x̄q

›

›

›

›

2

“
1

η2
p}xn`1 ´ x̄}2 ` pη ´ 1q2}xn ´ x̄}2

` 2pη ´ 1q ⟨xn`1 ´ x̄, xn ´ x̄ ⟩q

“
1

η2
p}xn`1 ´ x̄}2 ` pη ´ 1q2}xn ´ x̄}2

` pη ´ 1qp}xn`1 ´ x̄}2 ` }xn ´ x̄}2 ´ }xn`1 ´ xn}2q

“
1

η
}xn`1 ´ x̄}2 `

η ´ 1

η
}xn ´ x̄}2 `

1 ´ η

η2
}xn`1 ´ xn}2. (2.27)
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(2.24) “
1

η
⟨xn`1 ´ x̄, xn ´ x̄ ⟩ `

η ´ 1

η
⟨xn ´ x̄, xn ´ x̄ ⟩

“
1

2η

`

}xn`1 ´ x̄}2 ` }xn ´ x̄}2 ´ }xn`1 ´ xn}2
˘

`
η ´ 1

η
}xn ´ x̄}2

“
1

2η
}xn`1 ´ x̄}2 `

2η ´ 1

2η
}xn ´ x̄}2 ´

1

2η
}xn`1 ´ xn}2. (2.28)

(2.25) “ ´
λ

η
⟨xn`1 ´ x̄, Cxn ´ Cx̄ ⟩ `

p1 ´ ηq

η
λ ⟨xn ´ x̄, Cxn ´ Cx̄ ⟩

“ ´
cn`1

2η
`

λ

η
⟨xn`1 ´ x̄, Cxn`1 ´ Cxn ⟩ `

1 ´ η

2η
cn

“ ´
cn`1

2η
`

1 ´ η

2η
cn `

λ

η

〈
xn`1 ´ x̄, C 1xn`1 ´ C 1xn

〉
`

ξ

η
⟨xn`1 ´ x̄, xn`1 ´ xn ⟩

“ ´
cn`1

2η
`

1 ´ η

2η
cn `

λ

η

〈
xn`1 ´ x̄, C 1xn`1 ´ C 1xn

〉
`

ξ

2η

`

}xn`1 ´ x̄}2 ` }xn`1 ´ xn}2 ´ }xn ´ x̄}2
˘

. (2.29)

(2.26) “ ´
λ

η

〈
xn ´ x̄, C 1xn ´ C 1xn´1

〉
´

λ

η2
〈
xn`1 ´ xn, C

1xn ´ C 1xn´1

〉
ď ´

λ

η

〈
xn ´ x̄, C 1xn ´ C 1xn´1

〉
`

λβ1

2η2
p}xn`1 ´ xn}2 ` }xn ´ xn´1}2q. (2.30)

Substituting (2.22), (2.24), (2.25), (2.26) by (2.27), (2.28), (2.29), (2.30) respectively,
and multiplying every term by 2η; the inequality (2.23) implies:

p1 ´ ξq}xn`1 ´ x̄}2 ´ 2λ
〈
xn`1 ´ x̄, C 1xn`1 ´ C 1xn

〉
` cn`1 `

ˆ

2 ´ λβ1 ´ ηp1 ` ξq

η

˙

}xn`1 ´ xn}2

ď p1 ´ ξq}xn ´ x̄}2 ´ 2λ
〈
xn ´ x̄, C 1xn ´ C 1xn´1

〉
` p1 ´ ηqcn `

λβ1

η
}xn ´ xn´1}2. (2.31)

Observe that this inequality is very similar to (2.10). The idea is to show that this
recursion generates a nonnegative and nonincreasing sequence. To this end set

ε :“ mint2 ´ 2λβ1 ´ ηp1 ` ξq, 1 ´ ξ ´ λβ1ηu (2.32)

which is strictly positive by (2.17) and (2.20). Next, as we did in the last theorem, we
define an auxilliary function Φ which captures the information in (2.31):
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Proposition 2.5. In the setting of Theorem 2.4, let txnunPN be the sequence generated
in (2.21), let ε ą 0 defined in (2.32), and let Ψ : H ˆ N1 Ñ R be defined as:

Φ : H ˆ N1 Ñ R`

Φps, nq “ p1 ´ ξq}xn ´ s}2 ´ 2λ
〈
xn ´ s, C 1xn ´ C 1xn´1

〉
`

λβ1

η
}xn ´ xn´1}2. (2.33)

Then the following hold:

piq Φps, nq ě ε}xn ´ s}2, (2.34)

piiq Φps, nq ď p1 ´ ξ ` λβ1ηq}xn ´ s}2 `
2λβ1

η
}xn ´ xn´1}2. (2.35)

Proof. In both cases we use that C 1 is β1-Lipschitz continuos:

piq Φps, nq ě p1 ´ ξq}xn ´ s}2 ´ 2λβ1}xn ´ s}}xn ´ xn´1} `
λβ1

η
}xn ´ xn´1}2

ě p1 ´ ξq}xn ´ s}2 ´ λβ1

ˆ

η}xn ´ s}2 `
1

η
}xn ´ xn´1}2

˙

`
λβ1

η
}xn ´ xn´1}2

“ p1 ´ ξ ´ λβ1ηq
l jh n

ěε

}xn ´ s}2.

piiq Φps, nq ď p1 ´ ξq}xn ´ s}2 ` 2λβ1}xn ´ s}}xn ´ xn´1} `
λβ1

η
}xn ´ xn´1}2

ď
(1.2)
δ“η

p1 ´ ξ ` λβ1ηq}xn ´ s}2 `
2λβ1

η
}xn ´ xn´1}2.

For the rest of the proof, we set Φn :“ Φpx̄, nq in (2.33). Combining Proposition 2.5(i)
and (2.31) we obtain:

ε}xn`1 ´ x̄}2 ď Φn`1 ` cn`1 `
ε

η
}xn`1 ´ xn}2

ď Φn ` cn

“ Φn ` cn `
ε

η
}xn ´ xn´1}2 ´

ε

η
}xn ´ xn´1}2

...

ď Φ1 ` c1 ´
ε

η

n´1
ÿ

j“0

}xj`1 ´ xj}
2.
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or equivalently

ε

˜

}xn`1 ´ x̄}2 `
1

η

n´1
ÿ

j“0

}xj`1 ´ xj}
2

¸

ď Φ1 ` c1 ă 8, (2.36)

which implies that the sequence txnunPN is bounded and

}xn`1 ´ xn} Ñ 0, as n Ñ `8. (2.37)

The reminder of the proof follows a similiar argument to (2.13).

(ii) Suppose that A is ρ-strongly monotone and using that JλA is p1 ` λρq-cocoercive
in place of firmly nonexpansivity in (2.22) we obtain:

p1 ` λρq}zn`1 ´ x̄}2 ď ⟨ zn`1 ´ x̄, xn ´ x̄ ⟩ ´ λ ⟨ zn`1 ´ x̄, Cxn ´ Cx̄ ⟩

´
λ

η

〈
zn`1 ´ x̄, C 1xn ´ C 1xn´1

〉
. (2.38)

Next, we replace the computations (2.27) - (2.30) in (2.38) and we get:

p1 ´ ξ ` 2λρq}xn`1 ´ x̄}2 ´ 2λ
〈
xn`1 ´ x̄, C 1xn`1 ´ C 1xn

〉
` cn`1 `

2 ` 2λρp1 ´ ηq ´ ηp1 ` ξq ´ λβ1

η
}xn`1 ´ xn}2

ď p1 ´ ξ ` 2λρp1 ´ ηqq}xn ´ x̄}2 ´ 2λ
〈
xn ´ x̄, C 1xn ´ C 1xn´1

〉
` p1 ´ ηqcn `

λβ1

η
}xn ´ xn´1}2. (2.39)

Set
µ :“ min

"

λρη

1 ´ ξ ` ληβ1
,
ε ` 2ρλp1 ´ ηq

2λβ1

*

, (2.40)

which is strictly positive by (2.17), (2.20) and (2.32).

If η “ 1 then the inequality (2.39) reads (recall Φn “ Φpx̄, nq in (2.33))

Φn ě 2λρ}xn`1 ´ x̄}2 ` Φn`1 ` cn`1 ` ε}xn`1 ´ xn}2

“ 2λρ}xn`1 ´ x̄}2 ` p1 ` µqΦn`1 ´ µΦn`1 ` ε}xn`1 ´ xn}2

ě
(2.35)

λρ}xn`1 ´ x̄}2 ` p1 ` µqΦn`1

` pλρ ´ µrp1 ´ ξ ` λβ1qsq
l jh n

ě0 by (2.40)

`

}xn`1 ´ x̄}2
˘

` pε ´ 2λµβ1q
l jh n

ě0 by (2.40)

}xn`1 ´ xn}2.
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From here it follows that

}xn`1 ´ x̄}2 ď
1

λρ
Φn ď

1

λρ

1

p1 ` µq
Φn´1 ď ¨ ¨ ¨ ď

1

λρ

1

p1 ` µqn´1
Φ1, (2.41)

and according to the Definition 1.2, the sequence pxnqnPN converges R-linearly to x̄.

If η ă 1 set:

an :“ 2λρp1 ´ ηq}xn ´ x̄}2, (2.42)
c̃n :“ p1 ´ ηqcn, (2.43)

η˚ :“
η

2p1 ´ ηq
. (2.44)

Substituting (2.42), (2.43), and (2.44) in (2.39) we get:

an ` Φn ` c̃n ě
(2.39)

p1 ` 2η˚qpan`1 ` c̃n`1q ` Φn`1 `
ε ` 2λρp1 ´ ηq

η
}xn`1 ´ xn}2

“ p1 ` 2η˚qpan`1 ` c̃n`1q ` p1 ` µqΦn`1 ´ µΦn`1

`
ε ` 2λρp1 ´ ηq

η
}xn`1 ´ xn}2 (2.45)

“ p1 ` η˚qpan`1 ` c̃n`1q ` p1 ` µqΦn`1

` λρη}xn`1 ´ x̄}2 ´ µΦn`1 `
ε ` 2λρp1 ´ ηq

η
}xn`1 ´ xn}2 ` η˚c̃n`1

ě
(2.35)

p1 ` mintη˚, µu
l jh n

:“ω

qpan`1 ` Φn`1 ` c̃n`1q (2.46)

` pλρη ´ µr1 ´ ξ ` λβ1ηsq
l jh n

ě0 by (2.40)

}xn`1 ´ xn}2

`
ε ` 2λρp1 ´ ηq ´ 2µλβ1

η
l jh n

ě0 by (2.40)

}xn`1 ´ xn}2 `
1

2
ηcn`1
l jh n

.

ě0 by (1.4)

By (2.46), since ω “ mintη˚, µu ą 0, it follows that

an`1 ď an`1 ` c̃n`1 ` Φn`1

ď
1

1 ` ω
pan ` Φn ` c̃nq ď ¨ ¨ ¨ ď

1

p1 ` ωqn
pa1 ` Φ1 ` c̃1q. (2.47)
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and according to the Definition 1.2, the sequence xn converges R-linearly to x̄.

Remark 2.6. Since β´1-cocoercivity implies β-Lipschitz continuity for β ą 0. This algo-
rithm can be applied when C is β´1-cocoercive with the following modifications:

λ ă min

"

p2 ´ ηqp1 ` ξq

2β
,
1 ´ ξp1 ´ ηq

ηβ

*

, (2.48)

in place of (2.17), and the proof is carried out with

β1 “

#

β ´
ξ
λ if 2ξ ď λβ

ξ
λ if 2ξ ą λβ,

(2.49)

in place of (2.20). Observe that λ can be computed from the definition of ε in (2.32).
The computations in order to obtain β1 in (2.49) can be found in ([12], Lemma 4.1).

2.3 Three Operator splitting

We close this section showing the linear convergence of the algorithm proposed in ( [12],
section 5). Let us recall the theorem:

Theorem 2.7. Let A : H Ñ 2H be maximally monotone, let B : H Ñ H be monotone
and L1-Lipschitz, and let C : H Ñ H be 1

L2
-cocoercive.

Suppose that
zer pA ` B ` Cq ‰ H,

and
λ P

ˆ

0,
2

4L1 ` L2

˙

. (2.50)

Given x0, x1 P H define the sequence txnunPN according to

xn`1 “ JλApxn ´ 2λBxn ` λBxn´1 ´ λCxnq. (2.51)

Then the following hold:

(i) xn á x̄, for some x̄ P zer pA ` B ` Cq.

(ii) If A is ρ-strongly monotone, then xn converges R´linearly to the unique point
x̄ P zer pA ` B ` Cq.

Proof. (i) See ([12],Theorem 5.2).
(ii) From (2.50), choose ε ą 0 such that

ε ă 1 ´ 2λL1 ´ λ
L2

2
, (2.52)
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and let
x̄ P zer pA ` B ` Cq.

By Proposition 1.18 the resolvent JλA is p1 ` λρq-cocoercive and

x̄ “ JλApx̄ ´ λpBx̄ ` Cx̄qq. (2.53)

Combining cocoercivity, (2.51) and (2.53) we obtain

p1 ` λρq}xn`1 ´ x̄}2 (2.54)

“ p1 ` λρq} JλApxn ´ 2λBxn ` λBxn´1 ´ λCxnq ´ JλApx̄ ´ λpBx̄ ` Cx̄qq}2 (2.55)

ď
(1.10)

⟨xn`1 ´ x̄, xn ´ x̄ ⟩ (2.56)

` λ ⟨xn`1 ´ x̄, Bx̄ ´ Bxn ⟩ (2.57)

´ λ ⟨xn`1 ´ x̄, Bxn ´ Bxn´1 ⟩ (2.58)

` λ ⟨xn`1 ´ x̄, Cx̄ ´ Cxn ⟩ (2.59)

Doing some computations, we have that

(2.56) “
(1.1)

1

2

`

}xn`1 ´ x̄}2 ` }xn ´ x̄}2 ´ }xn`1 ´ xn}2
˘

. (2.60)

(2.57) “ λ⟨xn`1 ´ x̄, Bx̄ ´ Bxn`1 ⟩
l jh n

ď0

` λ ⟨xn`1 ´ x̄, Bxn`1 ´ Bxn ⟩ . (2.61)

(2.58) “ ´λ ⟨xn ´ x̄, Bxn ´ Bxn´1 ⟩ ´ λ ⟨xn`1 ´ xn, Bxn ´ Bxn´1 ⟩

ď ´λ ⟨xn ´ x̄, Bxn ´ Bxn´1 ⟩ ` λL1}xn`1 ´ xn}}xn ´ xn´1}

ď ´λ ⟨xn ´ x̄, Bxn ´ Bxn´1 ⟩ `
λL1

2
p}xn`1 ´ xn}2 ` }xn ´ xn´1}2q. (2.62)

(2.59) “ ´λ ⟨xn ´ x̄, Cxn ´ Cx̄ ⟩ ` λ ⟨xn`1 ´ xn, Cx̄ ´ Cxn ⟩

ď
C cocoercive

´
λ

L2
}Cx̄ ´ Cxn}2 ` λ}xn`1 ´ xn}}Cx̄ ´ Cxn}

ď
(1.2)
δ“ 2

L2

´
λ

L2
}Cx̄ ´ Cxn}2 `

λ

L2
}Cx̄ ´ Cxn}2 `

λL2

4
}xn`1 ´ xn}2

“
λL2

4
}xn`1 ´ xn}2. (2.63)
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Multiplying each equation (2.56)- (2.59) by 2 and substituting them by (2.60)- (2.63)
respectively, we obtain

p1 ` 2λρq}xn`1 ´ x̄}2 ´ 2λ ⟨xn`1 ´ x̄, Bxn`1 ´ Bxn ⟩ ` λL1}xn`1 ´ xn}2

`

ˆ

1 ´ 2λ

ˆ

L1 `
L2

4

˙˙

l jh n

ěε by (2.52)

}xn`1 ´ xn}2

ď }xn ´ x̄}2 ´ 2λ ⟨xn ´ x̄, Bxn ´ Bxn´1 ⟩ ` λL1}xn ´ xn´1}2 (2.64)

Next, let us capture the main information of this inequality in a function Φ:

Φn :“
1

2
}xn ´ x̄}2 ´ 2λ ⟨xn ´ x̄, Bxn ´ Bxn´1 ⟩ ` λL1}xn ´ xn´1}2 (2.65)

then

Φn ě
1

2
}xn ´ x̄}2 ´ 2λL1}xn ´ x̄}}xn ´ xn´1} ` λL1}xn ´ xn´1}2

ě
1 ´ 2λL1

2
}xn ´ x̄}2

ě
ε

2
}xn ´ x̄}2. (2.66)

Φn ď
1

2
}xn ´ x̄}2 ` 2λL1}xn ´ x̄}}xn ´ xn´1} ` λL1}xn ´ xn´1}2

ď
1 ` 2λL1

2
}xn ´ x̄}2 ` 2λL1}xn ´ xn´1}2

ă

´

1 ´
ε

2

¯

}xn ´ x̄}2 ` p1 ´ εq}xn ´ xn´1}2 (2.67)

Set

µ :“ min

"

2λρ

2 ´ ε
,

ε

1 ´ ε

*

(2.68)

an :“
1

2
}xn ´ x̄}2

Substituting Φn and an in (2.64) we obtain:
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an ` Φn ě
(2.64)

p1 ` 4λρqan`1 ` Φn`1 ` ε}xn`1 ´ xn}2

“ p1 ` 4λρqan`1 ` p1 ` µqΦn`1 ` ε}xn`1 ´ xn}2 ´ µΦn`1

ě
(2.67)

p1 ` 2λρqan`1 ` p1 ` µqΦn`1

`

´

λρ ´ µ
´

1 ´
ε

2

¯¯

}xn`1 ´ x̄}2 ` pε ´ µp1 ´ εqq}xn`1 ´ xn}2

ě
(2.68)

p1 ` mint2λρ, µuqpan`1 ` Φn`1q

“
εă1

p1 ` µqpan`1 ` Φn`1q

From here, it follows that:

an`1 ď an`1 ` Φn`1 ď
1

1 ` µ
pan ` Φnq ď ¨ ¨ ¨ ď

1

p1 ` µqn
pa1 ` Φ1q, (2.69)

and according to the Definition 1.2, the sequence xn converges R-linearly to x̄

2.4 Special Cases of FRB

As mentioned in ([12], Remark 2.1), there are important cases where the recursion

xn`1 “ JλnA

`

xn ´ rλn ` λn´1sCxn ` λn´1Cxn´1

˘

. (2.70)

in Theorem 2.1, (FRB) reduces or is equivalent to known algorithms:

1. If C “ 0, then (2.70) becomes

xn`1 “ JλnA xn

which is the proximal point algorithm.

2. If A “ NK is the normal cone to a nonempty closed convex set K, C is an affine
operator and λn “ λ for all n, then we obtain the projected reflected gradient
method (see Ref 26 in [12]):

xn`1 “ PK pxn ´ λBp2xn ´ xn´1qq , (2.71)

3. If A “ 0, λn “ λ for all n, and

C “

ˆ

∇xΦpx, yq

´∇yΦpx, yq

˙

(2.72)
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for a smooth convex-concave function Φ : H ˆ K Ñ R, then (2.70) becomes the
optimistic gradient descent ascent method (OGDA):

xn`1 “ xn ´ 2λ∇xΦpxn, ynq ` λ∇xΦpxn´1, yn´1q

yn`1 “ yn ` 2λ∇yΦpxn, ynq ´ λ∇yΦpxn´1, yn´1q
(2.73)

which is widely-used in saddle point problems and machine learning.
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3 Composite Inclusion Problems

The aim of this section is to solve monotone inclusion problems involving a mixture of
sums, linear compositions and parallel sums of operators. The strategy is to reduce this
new problem to the sum of two operators satisfying the assumptions of the algorithms
from section 2.
It is important to remark that the resulting algorithms (for details we refer to [9] and
[10]) act on each operator separately, offering a full splitting method which solves both,
the primal and dual problem simultaneaously.

The problem under investigation is the following:

Problem 3.1. Let H be a real Hilbert space, let A : H Ñ 2H a maximally monotone
operator and let C : H Ñ H a monotone and µ-Lipschitzian operator with µ P R``.
Let m be a strictly positive integer and for each i “ 1, . . . ,m, let Gi be a real Hilbert,
Bi : Gi Ñ 2Gi a maximally monotone operator, Di : Gi Ñ 2Gi a monotone operator such
that D´1

i is νi-Lipschitzian, for νi P R``. Suppose that Li : H Ñ Gi is a nonzero linear
continuous operator and let z P H, ri P Gi. The problem is to solve the primal inclusion

find x̄ P H such that z P Ax̄ `

m
ÿ

i“1

L˚
i ppBilDiqpLix̄ ´ riqq ` Cx̄, (3.1)

together with the dual inclusion

find v̄i P Gi, for i “ 1, . . . ,m, such that Dx P H :

$

’

&

’

%

z ´

m
ÿ

i“1

L˚
i v̄i P Ax ` Cx

v̄i P pBilDiqpLix ´ riq.

(3.2)

where AlB denotes the parallel sum of two operators defined as

AlB :“ pA´1 ` B´1q
´1

. (3.3)

We say that px̄, v̄1, . . . , v̄mq P H ˆ G1 ˆ ¨ ¨ ¨ ˆ Gm is a primal-dual solution to Problem
3.1 if

z ´

m
ÿ

i“1

L˚
i v̄i P Ax̄ ` Cx̄ and v̄i P pBilDiqpLix̄ ´ riq, i “ 1, . . . ,m. (3.4)

The solutions to (3.1) and (3.2) are denoted by P and D respectively. Note that if
x̄ P P then there exists v̄i P Gi, for each i P t1, . . . ,mu, such that px̄, v̄1, . . . , v̄mq is a
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primal-dual solution. On the other hand, if exists pv̄1, . . . , v̄mq P D then there exists
x̄ P P such that px̄, v̄1, . . . , v̄mq is a primal-dual solution. Moreover, if px̄, v̄1, . . . , v̄mq is
a primal-dual solution, then x̄ P P and pv̄1, . . . , v̄mq P D .

3.1 FRB adapted to composite inclusion problems

Theorem 3.2. (FRB) In the setting of Problem 3.1. Let

β “ maxtµ, ν1, . . . , νmu `

g

f

f

e

m
ÿ

i“1

}Li}
2. (3.5)

Suppose that

tλnunPN Ď

„

ε,
1 ´ 2ε

2β

ȷ

, (3.6)

for some

ε P

ˆ

0,
1

2p1 ` βq

ȷ

, (3.7)

and that

z P ran

˜

A `

m
ÿ

i“1

L˚
i pBilDiqpLi . ´ riq ` C

¸

. (3.8)

Given x0, x1 P H and vi0 , vi1 P Gi, for i “ 1, . . . ,m, consider the sequence

tpxn, v1n , . . . , vmnqunPN1

generated by:

—

—

—

—

—

—

—

—

—

—

—

–

αn “ λn ` λn´1

xn`1 “ JλnA

˜

xn ` λnz ´ αn

˜

Cxn `

m
ÿ

i“1

L˚
i vin

¸

` λn´1

˜

Cxn´1 `

m
ÿ

i“1

L˚
i vin´1

¸¸

for i “ 1, . . . ,m.
Y

vin`1 “ JλnB
´1
i

`

vin ´ λnri ´ αn

`

D´1
i vin ´ Lixn

˘

` λn´1

`

D´1
i vin´1 ´ Lixn´1

˘˘

(3.9)
Then the following hold:

(i) tpxn, v1n , . . . , vmnqunPN converges weakly to a primal-dual solution to Problem 3.1.

(ii) Suppose that A and B´1
i are strongly monotone for each i P t1, . . . ,mu. Then

tpxn, v1n , . . . , vmnqunPN converges R-linearly to the unique primal-dual solution to
Problem 3.1.

36



Proof. (i) Define the Hilbert Space K as:

K :“ H ‘ G1 ‘ ¨ ¨ ¨ ‘ Gm,

and the operators

M : K Ñ 2K : px, v1, . . . , vmq ÞÑ p´z ` Axq ˆ pr1 ` B´1
1 v1q ˆ ¨ ¨ ¨ ˆ prm ` B´1

m vmq

(3.10)

Q : K Ñ K : px, v1, . . . , vmq ÞÑ

˜

Cx `

m
ÿ

i“1

L˚
i vi,´L1x ` D´1

1 v1, . . . ,´Lmx ` D´1
m vm

¸

(3.11)

From Proposition 1.10 and Proposition 1.17 follows that M is maximally monotone.
The operator Q is monotone and β-Lipschitzian (see proof in [10], Theorem 3.1). More-
over,

(3.8) ô Dx P H s.t. z P ran

˜

Ax `

m
ÿ

i“1

L˚
i pBilDiqpLix ´ riq ` Cx

¸

(3.12)

ô Dpx, v1, . . . , vmq P K s.t.

$

&

%

z P Ax `
řm

i“1 L
˚
i vi ` Cx

vi P pBilDiqpLix ´ riq, i “ 1, . . . ,m.
(3.13)

ô Dpx, v1, . . . , vmq P K s.t.

$

&

%

0 P ´z ` Ax `
řm

i“1 L
˚
i vi ` Cx

0 P ri ` B´1
i vi ` D´1

i vi ´ Lix, i “ 1, . . . ,m.

ô Dpx, v1, . . . , vmq P K s.t. 0 P p´z ` Axq ˆ pr1 ` B´1
1 v1qˆ, . . . ,ˆprm ` B´1

m vmq

`
`

Cx `
řm

i“1 L
˚
i vi, D

´1
1 v1 ´ L1x, . . . ,D

´1
m ´ Lmx

˘

ô Dpx, v1, . . . , vmq P K s.t. 0 P pM ` Qqpx, v1, . . . , vmq. (3.14)

(3.14) implies that zer pM ` Qq ‰ H and we can apply Theorem 2.1 with M and Q.
To this end, let

wj “ pxj , v1j , . . . , vmj q P K, for j “ 0, 1,

be our starting points. Applying the recursion (2.3) with M , Q and wj , j “ 0, 1 we
obtain:

@n P N1

[

qn “ wn ´ pλn ` λn´1qQwn ` λn´1Qwn´1

wn`1 “ JλnM pqnq
(3.15)
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where
qn “ ppn, q1n , . . . , qmnq.

From Proposition 1.17 and Proposition 1.16 follows that

JλnM pqnq “
(1.17)

Jλnp´z`Aqppnq ˆ Jλnpr1`B´1
1 q

pq1nq ˆ ¨ ¨ ¨ ˆ Jλnprm`B´1
m q

pqmnq

“
(1.12)

JλnAppn ` λnzq ˆ JλnB
´1
1

pq1n ´ λnr1q ˆ ¨ ¨ ¨ ˆ JλnB
´1
m

pqmn ´ λnrmq.

(3.16)

Substituting (3.16) in (3.15) we have that @n P N1

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

pn “ xn ´ pλn ` λn´1q

˜

Cxn `

m
ÿ

i“1

L˚
i vin

¸

` λn´1

˜

Cxn´1 `

m
ÿ

i“1

L˚
i vin´1

¸

xn`1 “ JλnAppn ` λnzq

for i “ 1, . . . ,m.
—

—

—

–

qin “ vin ´ pλn ` λn´1q
`

D´1
i vin ´ Lixn

˘

` λn´1

`

D´1
i vin´1 ´ Lixn´1

˘

vin`1 “ JλnB
´1
i

pqin ´ λnriq

Replacing pn, qin and setting αn “ λn ` λn´1 we obtain exactly the iterative scheme
(3.9).

Next, by Theorem 2.1(i) follows that:

wn á w̄ “ px̄, v̄1, . . . , v̄mq, (3.17)

for some w̄ P zer pM ` Qq. Therefore, since (3.14) ñ (3.12) and (3.13)

xn á x̄ P P, (3.18)

and
pv1n , . . . , vmnq á pv̄1, . . . , v̄mq P D . (3.19)

(ii) This is straightforward, we only need to show that the operator M is strongly
monotone with constant ϕ for some ϕ ą 0.

Suppose that A is ρ-strongly monotone, and B´1
i is τi-strongly monotone, with ρ, τi ą 0

for i “ 1, . . . ,m. Set
ϕ “ mintρ, τ1, . . . , τmu. (3.20)
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Let px, v1, . . . , vmq, py, w1, . . . , wmq P K. Then

⟨Mpx, v1, . . . , vmq ´ Mpy, w1, . . . , wmq, px, v1, . . . , vmq ´ py, w1, . . . , wmq ⟩K

“ ⟨Ax ´ Ay, x ´ y ⟩H `

m
ÿ

i“1

〈
B´1

i pviq ´ B´1
i pwiq, vi ´ wi

〉
Gi

ě
(1.6)

ρ}x ´ y}2H `

m
ÿ

i“1

τi}vi ´ wi}
2
Gi

ě
(3.20)

ϕ

˜

}x ´ y}2H `

m
ÿ

i“1

}vi ´ wi}
2
Gi

¸

“ ϕ}px, v1, . . . , vmq ´ py, w1, . . . , wmq}2K

Therefore M is strongly monotone and the R-linear convergence follows from theorem
2.1(ii).

3.2 RIFRB adapted to composite inclusion problems

Theorem 3.3. (RIFRB) In the setting of Problem 3.1. Let

β “ maxtµ, ν1, . . . , νmu `

g

f

f

e

m
ÿ

i“1

}Li}
2. (3.21)

.
Suppose that η P p0, 1s, ξ P r0, 1q and λ P R`` such that

ξ ă
2 ´ η

2 ` η
, (3.22)

and

λ ă min

"

2p1 ´ ξq ´ ηp1 ` ξq

2β
,
1 ´ ξp1 ` ηq

ηβ

*

. (3.23)

Moreover, assume that

z P ran

˜

A `

m
ÿ

i“1

L˚
i pBilDiqpLi. ´ riq ` C

¸

. (3.24)

Given x0, x1 P H and vi0 , vi1 P Gi, for i “ 1, . . . ,m, consider the sequence

tpxn, v1n , . . . , vmnqunPN1

generated by:
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—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

pn “ xn ´ λ
1 ` η

η

˜

Cxn `

m
ÿ

i“1

L˚
i vin

¸

`
λ

η

˜

Cxn´1 `

m
ÿ

i“1

L˚
i vin´1

¸

`
ξ

η
pxn ´ xn´1q

xn`1 “ p1 ´ ηqxn ` η JλAppn ` λzq

for i “ 1, . . . ,m.
—

—

—

—

–

qin “ vin ´ λ
1 ` η

η

`

D´1
i vin ´ Lixn

˘

`
λ

η

`

D´1
i vin´1 ´ Lixn´1

˘

`
ξ

η
pvin ´ vin´1q

vin`1 “ p1 ´ ηqvin ` η JλB´1
i

pqin ´ λriq

(3.25)
Then the following hold:

(i) tpxn, v1n , . . . , vmnqunPN converges weakly to a primal-dual solution to Problem 3.1.

(ii) Suppose that A and B´1
i are strongly monotone for each i P t1, . . . ,mu. Then

tpxn, v1n , . . . , vmnqunPN converges R-linearly to the unique primal-dual solution to
Problem 3.1.

Proof. For j “ 0, 1, set

wj “ pxj , v1j , . . . , vmj q P K,

Applying the recursion (2.18) in Theorem 2.4 to M and Q with wj , j “ 0, 1 as starting
points, we obtain:

@n P N1

—

—

—

–

qn “ wn ´ λQwn ´
λ

η
pQwn ´ Qwn´1q `

ξ

η
pwn ´ wn´1q

wn`1 “ p1 ´ ηqwn ` η JλM pqnq

(3.26)

where

qn :“ ppn, q1n , . . . qmnq. (3.27)

Substituting the resolvent of M , (computed in (3.16)) in (3.26) we obtain @n P N1:
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—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

pn “ xn ´ λ

˜

Cxn `

m
ÿ

i“1

L˚
i vin

¸

´
λ

η

˜

Cxn `

m
ÿ

i“1

L˚
i vin ´ Cxn´1 ´

m
ÿ

i“1

L˚
i vin´1

¸

`
ξ

η
pxn ´ xn´1q

xn`1 “ p1 ´ ηqxn ` η JλAppn ` λzq

for i “ 1, . . . ,m.
—

—

—

—

—

—

–

qin “ vin ´ λ
`

D´1
i vin ´ Lixn

˘

´
λ

η

`

D´1
i vin ´ Lixn ´ D´1

i vin´1 ` Lixn´1

˘

`
ξ

η
pvin ´ vin´1q

vin`1 “ p1 ´ ηqvin ` η JλB´1
i

pqin ´ λriq

(3.28)

Factoring (3.28) we obtain exactly the iterative scheme (3.25). Next, by Theorem
2.4(i) follows that

wn á w̄ “ px̄, v̄1, . . . , v̄mq, (3.29)

for some w̄ P zer pM ` Qq. Therefore, since (3.14) ñ (3.12) and (3.13)

xn á x̄ P P, (3.30)

and
pv1n , . . . , vmnq á pv̄1, . . . , v̄mq P D . (3.31)

(ii) We have already shown that M is strongly monotone when A and B´1
i are strongly

monotone in the last theorem. Therefore R-linear convergence follows from theorem
2.4(ii).

3.3 Related Problems

The following remarks are intended to describe the form that FRB and RIFRB take
in Problems, which are special cases of Problem 3.1. Since the dual problem is a simple
substitution, we will only consider the formulation of the primal problem.

Remark 3.4. In Problem 3.1, let

Dipvq “

#

Gi, if v “ 0,

H, otherwise.
(3.32)

Then
Bi lDi “ Bi, with D´1

i pGiq “ 0, beeing 0-Lipschitzian. (3.33)
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Thus, the primal problem (3.1) reduces to

find x̄ P H such that z P Ax̄ `

m
ÿ

i“1

L˚
i pBipLix̄ ´ riqq ` Cx̄. (3.34)

• The update rule (3.9) of FRB becomes:
—

—

—

—

—

—

—

—

—

—

—

–

αn “ λn ` λn´1

xn`1 “ JλnA

˜

xn ` λnz ´ αn

˜

Cxn `

m
ÿ

i“1

L˚
i vin

¸

` λn´1

˜

Cxn´1 `

m
ÿ

i“1

L˚
i vin´1

¸¸

for i “ 1, . . . ,m.
Y

vin`1 “ JλnB
´1
i

pvin ´ λnri ` αnLixn ´ λn´1Lixn´1q

(3.35)

• The update rule (3.25) of RIFRB becomes:
—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

pn “ xn ´ λ
1 ` η

η

˜

Cxn `

m
ÿ

i“1

L˚
i vin

¸

`
λ

η

˜

Cxn´1 `

m
ÿ

i“1

L˚
i vin´1

¸

`
ξ

η
pxn ´ xn´1q

xn`1 “ p1 ´ ηqxn ` η JλAppn ` λzq

for i “ 1, . . . ,m.
—

—

—

—

–

qin “ vin ` λ
1 ` η

η
Lixn ´

λ

η
Lixn´1 `

ξ

η
pvin ´ vin´1q

vin`1 “ p1 ´ ηqvin ` η JλB´1
i

pqin ´ λriq

(3.36)

Remark 3.5. Under the assumption given in the above remark, further consider z “ 0,
ri “ 0 for each i P t1, . . . ,mu, and

Cx “ 0 @x P H. (3.37)

Then the primal problem (3.1) reduces to

find x̄ P H such that 0 P Ax̄ `

m
ÿ

i“1

L˚
i pBipLix̄qq. (3.38)

• The update rule (3.9) of FRB becomes:
—

—

—

—

—

—

—

—

—

—

—

–

αn “ λn ` λn´1

xn`1 “ JλnA

˜

xn ´ αn

m
ÿ

i“1

L˚
i vin ` λn´1

m
ÿ

i“1

L˚
i vin´1

¸

for i “ 1, . . . ,m.
Y

vin`1 “ JλnB
´1
i

pvin ` αnLixn ´ λn´1Lixn´1q

(3.39)
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• The update rule (3.25) of RIFRB becomes:
—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

pn “ xn ´ λ
1 ` η

η

m
ÿ

i“1

L˚
i vin `

λ

η

m
ÿ

i“1

L˚
i vin´1 `

ξ

η
pxn ´ xn´1q

xn`1 “ p1 ´ ηqxn ` η JλAppnq

for i “ 1, . . . ,m.
—

—

—

—

–

qin “ vin ` λ
1 ` η

η
Lixn ´

λ

η
Lixn´1 `

ξ

η
pvin ´ vin´1q

vin`1 “ p1 ´ ηqvin ` η JλB´1
i

pqinq

(3.40)
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4 Convex minimization problems

In this section we provide an application of the algorithms FRB, and RIFRB to convex
minimization problems by revisiting ( [10], Problem 4.1). Before we start, I would like
to point out, that there is no original idea in this section, except for the adaptation of
the algorithms to the problem below, which is straightforward, as soon as the necessary
substitutions are justified. For the sake of completeness and the readers convenience, I
prefer to include relevant proofs and analysis which can be found in its original work
[10].

Problem 4.1. Let H be a real Hilbert space, let z P H, let f P ΓpHq, and let h : H Ñ R
be convex and differentiable with µ-Lipschitzian gradient for some µ P R``. For each
i “ 1, . . .m, let Gi be a real Hilbert space, let ri P Gi, let gi, li P ΓpGiq, where li is
1
νi

-strongly convex with νi P R`` and suppose that Li P BpH,Giq is nonzero operator.
Consider the problem:

minimize
xPH

fpxq `

m
ÿ

i“1

pgi l liqpLix ´ riq ` hpxq ´ ⟨x, z ⟩ , (4.1)

and its dual problem

minimize
v1PG1,...,vmPGm

pf˚ lh˚q

˜

z ´

m
ÿ

i“1

L˚
i vi

¸

`

m
ÿ

i“1

pg˚
i pviq ` l˚i pviq ` ⟨ vi, ri ⟩q. (4.2)

We start reducing Problem 4.1 to the form given in Definition 1.46 by a special choice
of Hilbert spaces.

Proposition 4.2. The primal problem (4.1) and its dual problem (4.2) are equivalent
to

minimize
xPH

F pxq ` pG ˝ Lqpxq (4.3)

minimize
vPG

F ˚p´L˚vq ` G˚pvq (4.4)

respectively, with F P ΓpHq, G P ΓpGq and L P BpH,Gq where
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G :“ G1 ‘ ¨ ¨ ¨ ‘ Gm,

L : H Ñ G : x ÞÑ

m
ą

i“1

Lix, (4.5)

L˚ : G Ñ H : v ÞÑ

m
ÿ

i“1

L˚
i vi, (4.6)

F : H Ñ R : x ÞÑ fpxq ` hpxq ´ ⟨x, z ⟩ , (4.7)

G : G Ñ R : pw1, . . . , wmq ÞÑ

m
ÿ

i“1

pgi l liqpwi ´ riq. (4.8)

Moreover,

domF “ dom f, (4.9)

domG “

m
ą

i“1

dom gi ` dom li ` ri. (4.10)

Proof. A simple substitution using (4.5), (4.7) and (4.8) shows the equivalence between
(4.1) and (4.3).

Since F is a finite addtion of functions in ΓpHq, it follows that F P ΓpHq as well.
Moreover, since domh “ H, we have that

domF “ dom pf ` h ´ ⟨ ¨, z ⟩q “ dom f. (4.11)

The infinal convolution of convex functions is always convex, but it is not necces-
sarily lower-semicontinuous (see [1], Example 12.13). In this case, gi l li is lower-
semicontinuous since li is strongly convex, thus by (1.59) dom l˚i “ Gi and it follows
that

pg˚
i ` l˚i q

˚
“

(1.41)
g˚˚
i d l˚˚

i P ΓpGiq “
(1.27)

gi d li (4.12)

Thus, G P ΓpGq as a finite addition of functions in ΓpGiq, with

domG “

m
ą

i“1

dom pgi l liqp¨ ´ riq “

m
ą

i“1

dom gi ` dom li ` ri. (4.13)

Next, we compute their Fenchel conjugates:

F ˚puq “ sup
xPH

t⟨x, u ` z ⟩ ´ fpxq ´ hpxqu

“ pf ` hq
˚
pu ` zq

“
(1.41)

domh“H

pf˚ d h˚qpu ` zq (4.14)
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G˚pvq “
(1.31)

m
ÿ

i“1

pgi l liq
˚pviq ` ⟨ vi, ri ⟩

“
(1.40)

m
ÿ

i“1

g˚
i pviq ` l˚i pviq ` ⟨ vi, ri ⟩ (4.15)

where v :“ pv1, . . . , vmq P G.

Finally, substituting (4.6), (4.14) and (4.15) shows the equivalence between (4.2) and
(4.4).

By the Fermat’s rule we know that

x̄ P ArgminpF ` G ˝ Lq ô 0 P BpF ` G ˝ Lqpx̄q. (4.16)

On the other hand

BF px̄q ` pL˚ ˝ pBGq ˝ Lqpx̄q Ď
(1.23)

BpF ` G ˝ Lqpx̄q. (4.17)

Observe that if there exists a solution to problem (4.3) and we can guarantee equality
in (4.17), then we can apply FRB and RIFRB to find a point x̄ P H such that

0 P BF px̄q ` pL˚ ˝ pBGq ˝ Lqpx̄q. (4.18)

To this end, observe that, since domh “ H, Proposition 1.35 and Proposition 1.37
imply

BF “ Bpf ` h ´ ⟨ ¨, z ⟩q “
(1.42)
(1.22)

Bf ` ∇h ´ z. (4.19)

Applying Proposition 1.35 again, this time to g˚
i ` l˚i , (recall that dom l˚i “ Gi) and

combining with Proposition 1.33, follows that for each i “ 1, . . . ,m:

pBpgi l liqq
´1

“
(1.29)

Bpgi l liq
˚ “

(1.40)
Bpg˚

i ` l˚i q “
(1.42)

Bg˚
i ` Bl˚i “

(1.29)
pBgiq

´1 ` pBliq
´1

ñ Bpgi l liq “ Bgi l Bli. (4.20)

Thus, by Proposition 1.29(ii)

BGp¨q “
(1.32)

m
ą

i“1

pBgi l Bliqp¨ ´ riq (4.21)

Finally

BF ` L˚ ˝ pBGq ˝ L “ ´z ` Bf `

m
ÿ

i“1

L˚
i pBgi l BliqpLix ´ riq ` ∇h (4.22)
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The connection between Problem 3.1 and Problem 4.1 is established in the proof of
( [10], Theorem 4.2) setting:

A “ Bf, C “ ∇h, and for each i “ 1, . . . ,m, Bi “ Bgi, Di “ Bli. (4.23)

From Proposition 1.37 (i) follows that the operators A and Bi, for each i “ 1, . . . ,m,
are maximally monotone. The 1

νi
strongly convexity of li implies by (1.59) that l˚i is

Fréchet differentiable on Gi with 1
νi

-cocoercive (resp. νi-Lipschitz by (1.60)) gradient and
by Corollary 1.27 follows that

D´1
i “ pBliq

´1 “
(1.29)

Bl˚i “
(1.22)

∇l˚i , (4.24)

and
B´1

i “ Bg˚
i . (4.25)

Alltogether, under the assumption of the existence of a primal solution, we can apply
Theorem 3.2 and Theorem 3.3 to obtain the existence of a point px̄, v̄q P H ‘ G such that

z P Bfpx̄q `

m
ÿ

i“1

L˚
i ppBgi l BliqpLix̄ ´ riqq ` ∇hpx̄q (4.26)

and

Dx P H :

$

’

&

’

%

z ´

m
ÿ

i“1

L˚
i v̄i P Bfpxq ` ∇hpxq

v̄i P pBgi l BliqpLix ´ riq, @i “ 1, . . . ,m.

(4.27)

Observe that:

BF ˚ “ Bpf˚ d h˚qp¨ ` zq “ pBF q´1 “ pBf ` ∇h ´ zq´1 (4.28)

and

BG˚pv̄q “
(1.32)

m
ą

i“1

Bpg˚
i ` l˚i ` riqpv̄iq “

(1.42)
r `

m
ą

i“1

Bpg˚
i ` l˚i qpv̄iq (4.29)

where r “ pr1, . . . , rmq.

Hence, combining (4.27), (4.28) and (4.29), we obtain

Dx P H :

#

x P Bpf˚ d h˚qpz ´ L˚pv̄qq

Lix ´ ri P Bpg˚
i ` l˚i qpv̄iq, @i “ 1, . . . ,m.

(4.30)

which is equivalent to

Dx P H :

#

x P BF ˚p´L˚pv̄qq

Lx P BG˚pv̄q.
(4.31)
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Applying ´L to the first term in (4.31) and summing up, we obtain

0 P ´LpBF ˚p´L˚pv̄qqq ` BG˚pv̄q Ď
(1.23)

BpF ˚p´L˚pv̄qq ` G˚pv̄qq (4.32)

and the Fermat’s rule implies

v̄ P ArgminF ˚ ˝ p´L˚q ` G˚ (4.33)

Thus, v̄ is a dual solution to Problem 4.1.

Remark 4.3 (Existence of primal solution). The existence of a primal solution, is guaran-
teed, for instance by Proposition 1.48, i.e., if f `h´ ⟨ ¨, z ⟩ is coercive and gi is bounded
from below for each i “ 1, . . .m. Moreover, if f ` h is strongly convex, then so ist
F `G ˝L, and (4.1) has a unique solution. The coercivity of F can be checked applying
the Moreau-Rockafellar, Theorem ([1], Theorem 14.17) which asserst that

f ` h ´ ⟨ ¨, z ⟩ is coercive ô z P int dom pf ` hq
˚, (4.34)

or verifying if its lower level sets are bounded (see [1], Proposition 11.12).

Remark 4.4. Suppose that (4.1) has at least one solution. Applying Proposition 1.35 (i)
we have equality in (4.17) if, for instance,

0 P sri pdomG ´ LpdomF qq

ô
(4.9)
(4.10)

0 P sri

˜

m
ą

i“1

dom gi ` dom li ` ri ´ Lipdom fq

¸

Moreover, if H and Gi, are finite dimensional and there exists x P ri dom f such that
for each i “ 1, . . . ,m

Lix ´ ri P ri dom gi ` ri dom li

Then, by Proposition 1.6 follows that

0 P sri pdomG ´ Lpdom fqq

Finally, by Proposition 1.37 we have that

JλnA “
(1.45)

Prox λnf ,

JλnB
´1
i

“
(1.45)

Prox λng
˚
i
.

Now, that all substitutions are justified, we can continue with the application of the
algorithms from the previous section:
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4.1 FRB in convex minimization

Theorem 4.5 (Solving Problem 4.1 via FRB). In Problem 4.1, suppose that

z P ran

˜

Bf `

m
ÿ

i“1

L˚
i pBgilBliqpLi . ´ riq ` ∇h

¸

. (4.35)

Set

β “ maxtµ, ν1, . . . , νmu `

g

f

f

e

m
ÿ

i“1

}Li}
2. (4.36)

and suppose that

tλnunPN Ď

„

ε,
1 ´ 2ε

2β

ȷ

, (4.37)

for some

ε P

ˆ

0,
1

2p1 ` βq

ȷ

. (4.38)

Given x0, x1 P H, and vi0 , vi1 P Gi for i “ 1, . . . ,m, consider the sequence

tpxn, v1n , . . . , vmnqunPN1

generated by the following recursive scheme:

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

αn “ λn ` λn´1

pn “ αn

˜

∇hpxnq `

m
ÿ

i“1

L˚
i vin

¸

´ λn´1

˜

∇hpxn´1q `

m
ÿ

i“1

L˚
i vin´1

¸

xn`1 “ Prox λnf pxn ` λnz ´ pnq

for i “ 1, . . . ,m.
[

yin “ αnp∇l˚i vin ´ Lixnq ´ λn´1p∇l˚i vin´1 ´ Lixn´1q

vin`1 “ Prox λng
˚
i

pvin ´ λnri ´ yinq

(4.39)

Then the following hold:

(i) tpxn, v1n , . . . , vmnqunPN converges weakly to a primal-dual solution to Problem 4.1.

(ii) Suppose that f and g˚
i are strongly convex for each i P t1, . . . ,mu. Then tpxn, v1n , . . . , vmnqunPN

converges R-linearly to the unique primal-dual solution to Problem 4.1.

Proof. (i) Since the substitutions has been justified at the beginning of this section,
the assertion follows from Theorem 3.2 (i)
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(ii) The strongly convexity of f , and gi implies by Proposition 1.44 (iii) that their sub-
differentials are strongly monotone and the assertion follows from Theorem 3.2 (ii)

4.2 RIFRB in convex minimization

Theorem 4.6 (Solving Problem 4.1 via Relaxed Inertial FRB). In Problem 4.1, suppose
that

z P ran

˜

Bf `

m
ÿ

i“1

L˚
i pBgilBliqpLi . ´ riq ` ∇h

¸

(4.40)

Set

β “ maxtµ, ν1, . . . , νmu `

g

f

f

e

m
ÿ

i“1

}Li}
2 (4.41)

Moreover, suppose that η P p0, 1s, ξ P r0, 1q and λ P R`` such that

ξ ă
2 ´ η

2 ` η
(4.42)

and

λ ă min

"

2p1 ´ ξq ´ ηp1 ` ξq

2β
,
1 ´ ξp1 ` ηq

ηβ

*

. (4.43)

Given x0, x1 P H, and vi0 , vi1 P Gi for i “ 1, . . . ,m, consider the sequence

tpxn, v1n , . . . , vmnqunPN

generated by the following recursive scheme:

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

pn “ xn ´ λ
1 ` η

η

˜

∇hpxnq `

m
ÿ

i“1

L˚
i vin

¸

`
λ

η

˜

∇hpxn´1q `

m
ÿ

i“1

L˚
i vin´1

¸

`
ξ

η
pxn ´ xn´1q

xn`1 “ p1 ´ ηqxn ` ηProx λf ppn ` λzq

for i “ 1, . . . ,m.
—

—

—

–

qin “ vin ´ λ
1 ` η

η
p∇l˚i pvinq ´ Lixnq `

λ

η

`

∇l˚i pvin´1q ´ Lixn´1

˘

`
ξ

η
pvin ´ vin´1q

vin`1 “ p1 ´ ηqvin ` ηProx λg˚
i

pqin ´ λriq

(4.44)
Then the following hold:

(i) tpxn, v1n , . . . , vmnqunPN converges weakly to a primal-dual solution to Problem 4.1.
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(ii) If f and g˚
i are strongly convex, for each i P t1, . . . ,mu, then tpxn, v1n , . . . , vmnqunPN

converges R-linearly to the unique primal-dual solution to Problem 4.1.

Proof. (i) Since the substitutions has been justified at the beginning of this section,
the assertion follows from Theorem (3.2) (i)

(ii) The strongly convexity of f , and gi implies by Proposition 1.44 (iii) that their sub-
differentials are strongly monotone and the assertion follows from Theorem 3.2 (ii)

4.3 Naive stepsize strategy for FRB (FRBD)

The idea is very simple, since the FRB algorithm converges for any starting points x0, x1,
as long as λn satisfies (4.37), which can be written as

λmin ď λn ď λmax @n P N, (4.45)

we can try to find a good λn for the current iteration. For simplicity, denote the
recursive scheme (4.39) by

xn`1 “ FRBpxn, xn´1, λn, λn´1q

Now, we will assume that when the algorithm starts, it is important to use a big
stepsize, no matter in which direction we are moving. That means that we will break
the above restriction for a while, making use of a constant M ą 1 and settting

λ1 “ Mλmax.

We also want to be able to either reduce or enlarge the stepsize depending on the
behaviour of the objective function at xn. In order to be clear, suppose that we want to
minimize the function F , and we observe that

F pxn`1q ă F pxnq ă F pxn´1q ă ¨ ¨ ¨ ă F pxn´pq,

for some fixed positive integer p ă n, then we will enlarge the stepsize in the hope of
avoid some iterations. If F pxn`1q ą F pxnq ą F pxn´1q ą ¨ ¨ ¨ ą F pxn´pq, then we will
reduce the stepsize assuming that the current one is too large. For this enlarge/reduce
procedure we will use a finite sequence tD1, . . . , Dmu in p0, 1s

m and two positive con-
stants, called DecMax and IncMax, whose goal is to suggest when a new stepsize could
be more efficient.

Finally, we will always check that λn ą λmin, since if λn becomes too small the resol-
vent is nothing but the identity and we will get stuck. After a fixed number of iterations
we will also check that λn ă λmax, in order to ensure convergence.

This idea is better described with pseudocode below and in our numerical experiments
FRB with this stepsize strategy will be called FRBD.
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Algorithm 1 Current Stepsize determination in FRBD
1: procedure FRBD(x0, x1, λmin, λmax, MAXITER)
2: λ0 “ M0λmax with M0 ą 1
3: λ1 “ M1λmax with M1 ą 1
4: tD1, . . . , Dmu P

Śm
i“1p0, 1s

5: n :“ 2
6: Dec :“ 0
7: Inc :“ 0
8: Count :“ 1
9: xn`1 “ FRBpxn xn´1 λn λn´1q

10: if F pxn`1q ě F pxnq then
11: Inc “ Inc `1
12: Dec “ 0
13: if Count ď m then
14: λn “ DCountλn

15: Count = Count ` 1
16: goto 9
17: else
18: Count = 1
19: end if
20: else
21: Count “ 1
22: Inc “ 0
23: Dec “ Dec `1
24: end if
25: λn`1 “ λn

26: n “ n ` 1
27: if Dec “ Decmax then Ź number of consecutive decreasing function evaluations
28: λn`1 “ λn`1D

´1
1 D´1

2 . . . D´1
s Ź where 1 ď s ď m

29: end if
30: if Inc “ Incmax then Ź number of consecutive increasing function evaluations
31: λn`1 “ λn`1D1D2 . . . Dp Ź where 1 ď p ď m
32: end if
33: if λn`1 ă λmin then
34: λn`1 “

λmin`λmax
2

35: end if
36: if n ě MAXITER

N0
then Ź where 1 ă N0 ď MAXITER

37: λn`1 “ maxtλmin,mintλn`1, λmaxuu

38: end if
39: goto 9
40: end procedure
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4.4 Algorithms for comparison

In this subsection we breafly describe the algorithms, which we use to compare perfor-
mances.

4.4.1 Forward-Backward-Forward (FBF)

The error-free forward-backward-forward method proposed in ([10], Theorem 4.1) solves
Problem 4.1 as follows:

Set

β “ maxtµ, ν1, . . . , νmu `

g

f

f

e

m
ÿ

i“1

}Li}
2, (4.46)

let x0 P H, let pv1,0, . . . , vm,0q P G1 ‘ ¨ ¨ ¨ ‘ Gm, let δ P

´

0, 1
β`1

¯

, let tγnunPN be a

sequence in
”

δ, p1´δq

β

ı

and set

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

y1,n “ xn ´ γn

˜

∇hpxnq `

m
ÿ

i“1

L˚
i vi,n

¸

p1,n “ Prox γnf py1,n ` γnzq

for i “ 1, . . . ,m.
—

—

—

—

—

—

—

–

y2,i,n “ vi,n ` γnpLixn ´ ∇l˚i pvi,nqq

p2,i,n “ Prox γng
˚
i

py2,i,n ´ γnriq

q2,i,n “ p2,i,n ` γnpLip1,n ´ ∇l˚i pp2,i,nqq

vi,n`1 “ vi,n ´ y2,i,n ` q2,i,n.

q1,n “ p1,n ´ γnp∇hpp1,nq `

m
ÿ

i“1

L˚
i p2,i,nq

xn`1 “ xn ´ y1,n ` q1,n

(4.47)

Then the following statements are true:

i) The sequence tpxn, v1,n, . . . , vm,nqunPN converges weakly to a primal-dual solution
px̄, v̄1, . . . , v̄mq to Problem 4.1.

ii) Suppose that f or h is uniformly convex at x̄. Then xn Ñ x̄.

iii) Suppose that g˚
i or l˚i is uniformly convex at v̄i for some i P t1, . . . ,mu. Then

vi,n Ñ v̄i.

Remark 4.7. The results in ([10], Theorem 4.1) remain valid in the special case when
li “ ιt0u and even when h ” 0. (see [10], Remark 4.4).
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4.4.2 Forward-Backward (FB)

We will also use the forward-backward method proposed in ([4], Theorem 2), which is an
error-free, weights-free with λn “ 1 constant, adaptation of the algorithm proposed by
Vũ (see [14], Theorem 3.1) and solves Problem 4.1 as follows:

Let τ and σi for i “ 1, . . . ,m, be strictly positive numbers such that

2mintτ´1, σ´1
i , . . . , σ´1

m umintµ´1, ν´1
1 , . . . , ν´1

m u

¨

˝1 ´

g

f

f

eτ
m
ÿ

i“1

σi}Li}
2

˛

‚ą 1. (4.48)

Let px0, v1,0, . . . , vm,0q P H ˆ G1 ˆ ¨ ¨ ¨ ˆ Gm and for any n ě 0 set:
—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

pn “ xn ´ τ

˜

m
ÿ

i“1

L˚
i vi,n ` ∇hpxnq

¸

xn`1 “ Prox τf ppn ´ τzq

yn “ 2xn`1 ´ xn

for i “ 1, . . . ,m.
[

qi,n “ vi,n ` σirLiyn ´ ∇l˚i pvi,nqs

vi,n`1 “ Prox σig
˚
i

pqi,n ´ σiriq

(4.49)

Then the following statements are true:

i) the sequence tpxn, v1,n, . . . , vm,nqunPN converges weakly to a primal-dual solution
px̄, v̄1, . . . , v̄mq to Problem 4.1

ii) if h is strongly convex then xn Ñ x̄.

iii) if l˚i is strongly convex for some i P t1, . . . ,mu, then vi,n Ñ v̄i.

Remark 4.8. For the special case where z “ 0, ri “ 0, h ” 0 and li “ ιt0u for each
i “ 1, . . . ,m, the condition (4.48) must be replaced by

τ
m
ÿ

i“1

σi}Li}
2 ă 1. (4.50)

as mentioned in ([4], Remark 6).
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5 Numerical experiments

In the the next two subsections, we investigate the numerical perfomance of the pro-
posed algorithnms in the context of image processing. To this end, we formulate the
"real problem" as a convex optimization, fitting the assumptions of Problem 4.1 or one
of its derived problems (see Remark 3.4, Remark 3.5, Remark 4.7, Remark 4.8). We pro-
ceed as follows, each algorithm will be run twice. The first time for a number N “ 10000
of iterations, where X˚ “ XN will be stored as the minimizer. The second time, they
will run until a given stopping criteria is achieved.

The the so-called root-mean-square error (RMSE), will be our measure of performance,
and it is defined as

RMSEn “

g

f

f

f

e

ř

i,j

´

pXnqi,j ´ X˚
i,j

¯2

ř

i,j 1
:“

}Xn ´ X˚}F
?
d

(5.1)

where Xn is the current iterate, } ¨ }F is the Frobenius norm and d “ MN , is the
dimension of the image X P RMˆN .

The quality of the restored images will be measured based on the improvement in
signal-to-noise ratio (ISNR), defined as

ISNRn “ 20 log10

ˆ

}X ´ B}F

}X ´ Xn}F

˙

(5.2)

Our stopping criteria will be RMSEn ď ε, for some small ε ą 0.

Moreover, since the performance highly depends on the choosen parameters, when
possible, the parameters for FBF and FB will be taken from known experiments.

5.1 TV-based image deblurring

The first numerical experiment is the image deblurring problem with l2 data fidelity.
For a linear operator A P BpRmˆn,Rmˆnq describing the blur operator, and a matrix
B P Rmˆn representing the blurred and noisy image. Our task is to estimate the unkonwn
orignal image X̄ P Rmˆn fulfilling

AX̄ “ B

To this end, we solve the following regularized convex minimization problem
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inf
XPr0,1smˆn

␣

}AX ´ B}1 ` µ
`

TVisopXq ` }X}2F

˘(

(5.3)

where:

• } ¨ }1 is the sum of the absolute values of X

}X}1 “

m
ÿ

i“1

n
ÿ

j“1

|Xi,j |,

• µ ą 0 is a regularization parameters,

• TViso : Rmˆn Ñ R is the isotropic total variation functional defined as

TVisopxq “

m´1
ÿ

i“1

n´1
ÿ

j“1

b

pxi`1,j ´ xi,jq2 ` pxi,j ´ xi,j`1q2

`

m´1
ÿ

i“1

|xi`1,n ´ xi,n| `

n´1
ÿ

j“1

|xm,j`1 ´ xm,j |

In our numerical experiments we used a Gaussian blur operator with odd kernel size.
Due to the symmetry of this filter we have A˚ “ A with }A} “ 1.

Problem (5.1) fits the model of Problem 4.1:

• H “ G1 “ Rmˆn, with ⟨X,Y ⟩H :“ tr pXtY q.

• G2 “ H ‘ H, with ⟨ pV1, V2q, pW1,W2q ⟩G2
:“

ř2
i“1 ⟨Vi,Wi ⟩H.

where tr pXq denotes the trace of the matrix X.

The functions and operators are taken as follows:

• fpXq “ ιr0,1smˆnpXq ` µ}X}2F P ΓpHq, with dom f “ r0, 1s
mˆn

Prox γf pXq “
(1.11)
(1.37)
(1.42)

Pr0,1smˆn

´

1
1`2µγX

¯

• hpXq “ 0.

• g1pXq “ }X ´ B}1 P ΓpHq, with dom g1 “ H
Prox γg˚

1
pXq “

(1.54)
Pr´1,1smˆnpX ´ γBq.

58



• L1pXq “ AX,

L˚
1 “ L1,

}L1}H “ 1.

• g2pV,W q “ µ}pV,W q}ˆ :“ µ
řm

i“1

řn
j“1

b

V 2
ij ` W 2

ij , with dom g2 “ G2.

Prox γg˚
2

“
(1.36)

PC , where C “
“

BR2p0;µq
‰mˆn.

• L2pXq “ ppX , qXq, where

pXi,j “

#

Xi`1,j ´ Xi,j if i ă m

0 if i “ m
, and qX “

#

Xi,j`1 ´ Xi,j if j ă n

0 if j “ n

pL˚
2pV,W qqi,j “ Vi´1,j ´ Vi,j ` Wi,j´1 ´ Wi,j , with the convention (5.4),

}L2||G2 “
?
8.

The operator L2 represents a discretization of the gradient using reflexive (Neumann)
boundary conditions and standard finite differences. The following computations are
based on ([2], page 368):

⟨L2pXq, pV,W q ⟩G2
“

m´1
ÿ

i“1

n
ÿ

j“1

pXi`1,j ´ Xi,jqVi,j `

m
ÿ

i“1

n´1
ÿ

j“1

pXi,j`1 ´ Xi,jqWi,j

“

m
ÿ

i“1

n
ÿ

j“1

Xi,jpVi´1,j ´ Vi,j ` Wi,j´1 ´ Wi,jq

“ ⟨X,L˚
2pV,W q ⟩H

where we assumed that

V0,j “ Vm,j “ Wi,0 “ Wi,n “ 0 for each i “ 1, . . . ,m, j “ 1, . . . n. (5.4)

Therefore, with the convention (5.4)

pL˚
2pV,W qqi,j “ Vi´1,j ´ Vi,j ` Wi,j´1 ´ Wi,j ,

and an upper bound on }L2} can be easily computed:

}L2pXq}2 “

m´1
ÿ

i“1

n
ÿ

j“1

pXi`,j ´ Xi,jq
2

`

m
ÿ

i“1

n´1
ÿ

j“1

pXi,j`1 ´ Xi,jq
2

ď 2
m´1
ÿ

i“1

n
ÿ

j“1

pX2
i`1,j ` X2

i,jq ` 2
m
ÿ

i“1

n´1
ÿ

j“1

pX2
i,j`1 ` X2

i,jq

ď 8
m
ÿ

i“1

m
ÿ

j“1

x2i,j .
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Remark 4.3 implies te existence of a unique primal solution, since f is 2µ-strongly
convex and g1, g2 are non-negative. Moreover, according to Remark 4.4, we only need to
guarantee the existence of an x P ri pdom fq such that

Lix P ri pdom giq

which is trivial, since ri pdom fq “ p0, 1qmˆn, dom g1 “ H and dom g2 “ H ˆ H.

(a) ORIGINAL (b) Blurred and noisy FBF FB

FRB FRBD RIFRB

Figure 5.1: (a) Original 512 ˆ 512 astronaut.png test image, Source scikit-image,
(b) The obtained image after multiplying the original one with a blur operator
and adding Gaussian noise with standard deviation 10´3. The rest show the
reconstructed image by each method after 300 iterations.

The next table shows the execution time of each method for a fixed number of itera-
tions:

Number of Iterations FBF FB FRB
100 2.415 (s) 1.271 (s) 1.325 (s)
200 4.843 (s) 2.557 (s) 2.686 (s)
300 7.373 (s) 3.881 (s) 3.994 (s)
400 9.735 (s) 5.326 (s) 5.308 (s)
500 12.276 (s) 6.574 (s) 6.614 (s)
600 14.64 (s) 7.84 (s) 8.0 (s)
700 17.143 (s) 9.161 (s) 9.559 (s)
800 19.515 (s) 10.655 (s) 10.785 (s)
900 22.046 (s) 11.958 (s) 12.273 (s)
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Figure 5.2: Progress of the different methods solving (5.3) for a gaussian blur operator
of 13 ˆ 13 kernel size, standard deviation 8 and µ “ 0.01. The parameters
for the different methods are the following:
β “ 3.
FBF: γn “ 1´1e´12

β .
FB: τ “ 0.49, σ1 “ 0.7 and σ2 “ 0.01
FRB:λn “ 1´1e´10

2β .
FRBD:M “ 8, D “ t0.97, 0.95, 0.93, 1u, and λmin “ 1e´3

β , λmax “ 1
2β .

RIFRB: η “ 0.95 and ξ “ 0.003.
Stopping criteria: RMSE < 0.01.
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5.2 TV-based image inpainting

We consider the following TV-regularized model

inf
XPr0,1s

mˆn

MdX“B

TVisopXq (5.5)

where M P r0, 1s
mˆn, represents the missing pixels in the noisy image B P Rmˆn, i.e.

Mi,j “

#

0 if the pixel in the ith row and the jth column of B is missing,
1 otherwise.

M dX is the Hadamard product of matrices (or pointwise product) definded for matrices
A,B P Rmˆn as follows:

d : Rmˆn ˆ Rmˆn Ñ Rmˆn

pA d Bqi,j “ Ai,jBi,j .

Problem (5.5) can be formulated as:

inf
XPH

tfpXq ` g1pL1pXqq ` g2pL2pXqqu (5.6)

where

• H “ G1 “ G2 “ Rmˆn, with ⟨X,Y ⟩H :“ tr pXtY q.

The functions and operators are taken as follows:

• fpXq “ ιr0,1smˆnpXq P ΓpHq, with dom f “ r0, 1s
mˆn,

Prox γf “
(1.50)

Pr0,1smˆn .

• h ” 0.

• g1pXq “ ιtBupXq P ΓpHq, with dom g1 “ B,

Prox γg1pXq “
(1.50)

B,

Prox γg˚
1

pXq “
(1.47)

X ´ γB.

• L1pXq “ M d X,

L˚
1 “ L1,
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}L1} “ 1.

⟨L1pXq, Y ⟩ “ tr ppM d XqtY q

“

m
ÿ

i“1

n
ÿ

j“1

Mi,jXi,jYi,j

“

m
ÿ

i“1

n
ÿ

j“1

Xi,jMi,jYi,j

“ ⟨X,L1pY q ⟩

• g2 same as in deblurring problem.

• L2 same as in deblurring problem.

The existence of a primal solution is guaranteed by Remark 4.3. In order to apply
Remark 4.4 we need to find X P p0, 1qmˆn such that

M d X “ B

and this only true if Mi,j “ 0 whenever the value of the original image in the coefficients
pi, jq is either 0 or 1. Anyway, any number closed enough to 0 or 1 will be good enough
for our eyes. It means that we can assume that the original picture Xo lives in p0, 1q

mˆn.

(a) ORIGINAL (b) 70% missing pixels FBF

FRB FRBD RIFRB

Figure 5.3: (a) Original 512 ˆ 512 cameraman.png test image, Source scikit-image,
(b) The obtained image after a 70% uniformly distributed missing pixel. The
rest show the reconstructed image by each method after 300 iterations.
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Figure 5.4: Progress of the different methods solving (5.6).
The parameters for the different methods are the following:
β “ 3.
FBF: γ “ 1´1e´12

1`β .

FRB:1´1e´10

2β .

FRBD: M “ 4, D “ t0.97, 0.95, 0.93, 1u, λmin “ 1e´2
β , λmax “ 1´1e´12

2β .
RIFRB: η “ 0.85, ξ “ 0.0004.
Stopping criteria: ISNR < 19.

The next table shows the execution time for a fixed number of iterations:

Number of Iterations FBF FB FRB
200 3.086 (s) 1.999 (s) 1.981 (s)
300 4.584 (s) 2.91 (s) 2.925 (s)
400 6.128 (s) 3.893 (s) 3.891 (s)
500 7.666 (s) 4.757 (s) 4.84 (s)
600 9.188 (s) 5.664 (s) 5.766 (s)
700 10.697 (s) 6.593 (s) 6.764 (s)
800 11.981 (s) 7.417 (s) 7.562 (s)
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Now, we solve the inpainting problem using the following model:

inf
XPr0,1s

mˆn
}M d X ´ B}1 ` µTVisopXq (5.7)

which can also be formulated in the form of (5.6). This time we take:

• g1pXq “ }X ´ B}1,

Prox γg1pXq “ Pr´1,1smˆnpX ´ γBq

and f, L1, g2, L2 as in the previous example.

(a) ORIGINAL (b) 70% missing pixels FBF

FRB FRBD RIFRB

Figure 5.5: (a) Original 400 ˆ 600 coffee.png test image, Source scikit-image, (b) The
obtained image after a 70% uniformly distributed missing pixel. The rest
show the reconstructed image by each method after 300 iterations.

The next table shows the execution time for a fixed number of iterations:

Number of Iterations FBF FB FRB
200 3.406 (s) 2.073 (s) 2.055 (s)
400 6.794 (s) 4.038 (s) 4.057 (s)
600 10.069 (s) 5.992 (s) 6.024 (s)
800 13.285 (s) 7.916 (s) 8.022 (s)
1000 16.625 (s) 9.868 (s) 9.983 (s)
1200 20.104 (s) 11.768 (s) 11.961 (s)
1400 23.468 (s) 13.974 (s) 13.937 (s)
1600 26.782 (s) 15.558 (s) 15.88 (s)
1800 30.108 (s) 17.368 (s) 17.818 (s)
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Figure 5.6: Progress of the different methods solving (5.7).
The parameters for the different methods are the following:
FBF,FB, FRB: as in the previous example.
FRBD: M “ 2, D “ t0.93, 0.89, 1u, λmin “ 1e´2

β , λmax “ 1´1e´10

2β .
RIFRB: η “ 0.85, ξ “ 0.0012.
Stopping criteria: ISNR < 13.
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5.3 Fermat-Weber problem

The last experiment is the the Fermat-Weber problem consider in [3], which can be
expressed as the nondifferentiable convex minimization problem:

inf
xPRm

#

k
ÿ

i“1

λi}x ´ ci}

+

(5.8)

where ci P Rm are given points and λi P R``, for i “ 1, . . . , k.

We will solve the following example, which was taken from ([3], Eq (41)):

c1 “ p59, 0q, c2 “ p20, 0q, c3 “ p´20, 48q, c4 “ p´20,´48q,

λ1 “ λ2 “ 5, λ3 “ λ4 “ 13.
(5.9)

The optimal solution is x˚ “ p0, 0q and as starting point we take x0 “ p44, 0q, which
brings some algorithms into troubles (see [3]).

This particularly example, can obviously be represented as:

λj}x ´ cj} `

4
ÿ

i“1
i‰j

λi}x ´ ci}, with j P t1, . . . , 4u, (5.10)

and we will solve this example setting:

fpxq “ λj}x ´ cj}

gipxq “ λi}x ´ ci}
(5.11)

where

Prox γg˚
i

pxq “
λi

maxtλi, }x ´ γci}u
px ´ γciq (5.12)

with stopping criteria:

}xn ´ x˚} ă ε, for ε P R``. (5.13)

In the following figures, we show the different performances taking j P t1, 2, 3, 4u and
the following parameters:

FRB : λ “
1

2β
.

FRBD : M “ 8, D “ t0.95, 0.93, 1u, λmin “
10´2

β
, λmax “

1 ´ 10´12

2β
.

RIFRB : η “ 0.85, ξ “ 0.0121.
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Figure 5.7: Performances solving (5.10) with j “ 1 in (5.11).
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Figure 5.8: Performances solving (5.10) with j “ 2 in (5.11).
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Figure 5.9: Performances solving (5.10) with j “ 3 in (5.11).
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Figure 5.10: Performances solving (5.10) with j “ 4 in (5.11).
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Figure 5.11: Performances solving (5.10) for j “ 3 in (5.11) with x0 “ p40, 40q.
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Figure 5.12: Performances solving (5.10) for j “ 3 in (5.11) with x0 “ p40,´40q.
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6 Conclusion and future work

Conclusion

1. In section 2 we showed the linear convergence of the FRB method with variable
stepsize as well as the linear convergence of two of its variants (RIFRB and Three
operator splitting) as long as one of the operators is strong monotone.

2. According to our numerical experiments in section 5, we conclude that the FRB
algorithm is very competitive, when compared to FBF and FB. Its computational
cost per iteration was similar to the FB’s one and lower than the one of FBF.

3. In section 4 we described a known naive stepsize strategy to use with FRB.

4. We could not see any significant advantage applying the relaxed-intertial version
of FRB.

5. Even if our stepsize strategy was very simple, the FRB method with variable step-
size performed better than its variant with fixed stepsize in all our experiments.

Future Work

1. It does not look difficult to show the linear convergence of the RIFRB method with
variable stepsize.

2. It could be interesting to find out, if the strongly monotonicity of just one of the
operators in Theorem 3.2 and Theorem 3.3, would imply linear convergence in its
corresponding variable.
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