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Abstract

In this thesis we extend some theoretical results about the forward-reflected-backward
splitting method and two of its variants, namely, the relaxed-inertial-forward-reflected-
backward splitting and the three operator splitting presented in [12]. These methods are
intended for solving monotone inclusions problems requiring only Lipschitz continuity of
the single-valued operator.

After an introduction to monotone operator theory and convex analysis, we show the
linear convergence of the forward-reflected-backward splitting method with variable step-
size, the linear convergence of the relaxed-intertial-forward-reflected-backward splitting
method as well as the linear convergence of the three operator splitting method.

We then derive methods to composite inclusion problems using a well known product
space technique and show an application to a general structured non-smooth convex
minimization problem. Lastly we provide numerical experiments comparing the above
methods to a variant of the forward-backward method proposed in [I4] and the error-free
version of the forward-backward-forward method proposed in [I0]. The numerical tests
were made on a system with Intel i5-7400 (4) 3.5 GHz and the python code can be found
on the attached USB flash drive.

Zusammenfassung

Diese Arbeit beinhaltet verschiedene erweiterte Konvergenzresultate des “forward-reflected-
backward splitting” Verfahrens und zwei seiner Varianten, ndmlich das “relaxed-intertial-
forward-reflected-backward splitting” und das “three operator splitting”, welche in [12]
prasentiert wurden.

Diese Verfahren sind fiir die Lésung von “monotone inclusion problems” gedacht und er-
fordern nur Lipschitzstetigkeit des einwertigen Operators.

Nach einer Einfiihrung in die Theorie monotoner Operatoren und konvexer Analysis, wird
die lineare Konvergenz mit variabler Schrittweite des “forward-reflected-backward” Ver-
fahrens, die lineare Konvergenz des “relaxed-intertial-forward-reflected-backward” Ver-
fahrens sowie die lineare Konvergenz des “three operator” Verfahrens gezeigt. Danach
werden Verfahren fiir “composite inclusion problems” abgeleitet und eine Anwendung zu
einem allgemeinen konvexen Optimierungsproblem gezeigt.

Abschliefsend werden die o.a. Verfahren mit einer Variante des “forward-backward” Ver-
fahrens aus [14] und mit der error-free Version des “forward-backward-forward” Ver-
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fahrens aus [I0] in numerichen Experimenten verglichen, welche mit einem Desktop-
Computer mit Intel i5-7400 (4) 3.5 GHz gemacht wurden und die gebundenen Expem-
plare enthalten einen USB-Stick mit dem Python-Code.
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1 Introduction

Throughout this master’s thesis we consider real Hilbert spaces denoted by H, K, G, G;.
For a Hilbert space H, its inner product is denoted by (.,.),, and its associated norm by
I-l2¢ = /(- )4 We will avoid subscripts when there is no risk of confusion.

For G;, i = 1,...,m, real Hilbert spaces, we denote by

G=0G1® - DG,

their Hilbert direct sum endowed with inner product and associated norm defined as
follows:
m
(v,w)g = Z (vi,uh-)gi and [v|lg :=
i=1

m
>, lwillg,
i=1

=

where v = (v1,...,Up), w = (w1, ..., wy) €G.

Several times we will use the parallelogram law:

2(a1 — az, by — b)) = |lay — ba|* — [lay — b1|* + [lagz — b1|* — [laz — be]?, (1.1)

as well as the Cauchy-Schwarz inequality (CS) |(x,y)| < ||z][ly| in combination with
the Cauchy inequality:

2

(Ya,beR), (V6 >0)  2ab< 5a2+%. (1.2)

By #(H,G) we denote the space of bounded linear operators from H to G and by
H* the dual space of H. If L € B(H,G), we denote by L* its adjoint, i.e., the unique
operator L* € B(G,H), that satisfies

(Ve eH), VveG) (Lzx,v)g= (x,L*)y.

By N we denote the set of natural numbers {0,1,2,...} and by N; = N\{0} the set of
natural numbers without 0. By R we denote the set of real numbers, by R, the set of
nonnegative real numbers and by Ry the set of strictly positive real numbers. We also
denote the extended real line by R = R U {£o0}.

For two nonempty subsets C' and D in H, their Minkowski sum is defined as

C+D:={c+d|ceC and de D},



and for every A € R the A-scaled set A\C is defined as
AC :={)Xc|ce C}.
If A is a nonempty subset of R then

AC = U AC.
AEA

A subset C of H is called:
e convex if (Vz,y e C) and A € [0,1]

Ax+ (1—-ANyeC.

e aconeif C =R, ,C.

Be aware that in the literature a cone is sometimes defined as C = R;C. Anyway, in
the context of this master’s thesis, there is no difference, since we only use the notion of
cone in definition where 0 belongs to the set.

Definition 1.1. Let C be a subset of H.

e The smallest linear subspace of H containing C' is called the span of C'

spanC' := ﬂ{D C H|C < D and D is a linear subspace}.

e The smallest cone in H containing C is called the conical hull of C

cone C' := ﬂ{D C H|C < D and D is a cone}.

For x € H and A € R, 4, the open ball centered at x with radius A is denoted by
By(z; M) = {y e H|lly — = <A}
For a subset C of H, its interior is denoted by
int C := {z € C'| 3\ € R, such that By(z;\) < C},
and its topological closure by
C:= ﬂ{F CH|C < F and F is a closed set}.

Definition 1.2. A sequence {zy,}nen in H is said to converges to x*

o weakly:
x, — 2" e (VyeH) lirrgo(xn —z*y) =0.



e strongly:
Ty — ¥ i< lim |z, — 2% = 0.
n—00
e Q-linearly: if there is a constant r € (0,1) such that

o Szt =]
m ——
5% oo —°]

e R-linearly: if there is a sequece {e,}nen in R that converges Q-linearly to 0 such
that:
|n — 2*| < en, Vn e N.

We need two results regarding convergence, the first one is often referred as Opial’s
Lemmea:

Lemma 1.3. Let {z,}nen be a bounded sequence in H. Then there exists a subsequence
{zn, }ken Of {xp}nen that converges weakly.

Proof. See [I],Lemma 2.45. O

Lemma 1.4. Let {z,},eny be a sequence in H and let Z be a nonempty subset of H.
Suppose that for every x € Z,{|z, — z|}neny converges and that every weak sequential
cluster point of {z,,}nen belongs to Z. Then {x,},en converges weakly to a point in Z.

Proof. See [1], Lemma 2.47. O

A nice result involving weak and strong convergence is given in ([1], Corollary 2.52).
Let {x;, }nen be a sequence in H and let z € H. Then

Ty —> T < x, — T and |z, — |Z.
The following definitions are weaker notions of interiority:

Definition 1.5. Let C < H, be convex.

e The core of C is
coreC := {x € C'|cone (C —z) = H}.

e The strong relative interior of C is

sriC := {z € C'|cone (C — z) = span(C — z)}.

e The relative interior of C is

riC := {x € C'|cone (C — z) = span(C — x)}.



Since cone C' < span C' € span C' € H for every convex set C' in H, it follows that
intC S coreC csriCcriC cC.
The above inclusions can be strict and examples can be found in ([I], Chapter 6).

Proposition 1.6. Let H be a real Hilbert space, let G and K be real finite-dimensinal
Hilbert spaces, let Ly € B(H,G), let Ly € B(G,K) and let C, D and E be nonempty
convez subsets of H, G and K respectively. Then the following hold:

(i) stiE =r1iE.
(it) i La(D) = Lo(ri D).

(1ii) IfriD n1iLi(C) # &
then 0 € sri (D — L1(C)). (1.3)

Proof. See|[l], Corollary 6.15 and Proposition 6.19. O

1.1 Monotone Operator Theory

Let X and ) be two nonempty sets. We denote by 2% the power set of X and by
A: X — 2Y a set-valued operator A from X to ). The domain of A is denoted by

dom A :={x e X| Az # I},

its range by
ran A := {Az < Y|z € dom A},

its graph by
graA = {(z,y) e X x V|ye Az},

and the inverse of A, denoted by A~!, is defined through its graph:
graA™l = {(y,z) € Y x X|(x,y) € gra A}.
If YV is a vector space, we denote the set of zeros of A by
zer A= A710) = {x e X|0e Ax}.
Definition 1.7. Let H be a real Hilbert space. An operator A : H — 2% is said to be:

e Monotone if
(V(x,u),(y,v)egraA) <.'I?—y,u—’l)>7_[>0. (14)

e Mazimally monotone if A is monotone and V(x,u) € H x H

(z,u) € grad < (V(y,v) egrad) (z—y,u—v)y =0. (1.5)



e Strongly monotone with constant pe R, if
(v (.’L’,U), (y,'l)) € gra‘A) <IE —Yyu-— U>H = pH{Il - yH2 (16>

Remark 1.8. A single-valued operator T from H to G, with dom T' = D < H will be
denoted by T': D — G. Note that T : H — G, means that T has full domain.

From the definition follows that the inverse A~! of a maximally monotone operator
A, is maximally monotone as well, but the sum of maximally monotone operators is not
necessarily maximally monotone and we need extra assumptions:

Proposition 1.9. Let A : H — 2% be mazimally monotone, and let B : H — H be
monotone and continuous. Then A + B is maximallity monotone.

Proof. By ([1], Corollary 20.28) follows that B is maximally monotone, and by ([I],
Corollary 25.5) that A + B is maximally monotone since dom B = H. O

Proposition 1.10. Let A : H — 2™ be mazimally monotone, let z,u € H and let
)\ € R++. Then
z— u+ ANz + 2)

is mazimally monotone.
Proof. See [I], Proposition 20.22. O

Proposition 1.11. Let A : H — 2% be mazimally monotone, let {(xn,un)}nen be se-
quence in gra A and let (z,u) € H x H. If one of the following conditions holds:

(i) zn, — = and u, — u,
(ii) z, — x and u, — u.
Then (x,u) € gra A.
Proof. See [1], Proposition 20.38. O

Definition 1.12. Let A : H — 2 be an operator and let v € R, .. The resolvent of
vA, denoted by J, 4, is defined as:

Joa:H—-2" e (Id +4A4) H(2).
From the definition of the resolvent it is clear that:
dom J,4 =ran (Id +~vA), and ranJ,4 =dom A.

In order to characterize the resolvent, we need further definitions:

Definition 1.13. Let D be a non-empty subset of H and let 8 € R, . An operator
T:D — H is called:



Lipschitz continuous with constant (5 if

(Ve,ye D) [Te—Ty| < Bz —yl. (1.7)

Nonexpansive if it is Lipschitz continuous with constant 1, i.e.,

(Ve,ye D) [Te =Tyl < [z —yl. (1.8)

Firmly nonexpansive if

(Vz,ye D) [Tz —Ty|* <{x—y,Te-Ty). (1.9)

e [-cocoercive if BT is firmly nonexpansive, i.e.,
(Vz,ye D) BTz —Ty|* < (z—y, Tz —Ty). (1.10)
Proposition 1.14. Let A : H — 27 be an operator with dom A # (F, let D = ran (Id + A),
and set T = J 4 |p. Then the following hold:
(i) A is monotone < T is firmly nonexpansive.
(1) A is mazimally monotone < (Vy € Ry 1) Jya is firmly nonexpansive and D = H.
Proof. See [1], Proposition 23.10. O

Remark 1.15. Note that this proposition implies that the resolvent J4 of a monotone
operator A is single-valued.

Proposition 1.16 (Resolvent Calculus). Let A : H — 2% be maximally monotone, let
x,z€ H and let vy € Ry . Then the following hold:

(i) Let B= A+ ~Id. Then

x
JB(JZ) :J(1+7)*1A <1+7> . (1.11)
(ii) Let Bx = Ax + z. Then
Jp(z) =Ja(x — 2). (1.12)

(i1i) Let Bx = A(x — z). Then

Jp(x) =2+ Ja(z — 2). (1.13)

(iv)
Id = Jysg +vJ-14-107'1d. (1.14)



(v) Let B(x) = pA(px). Then
Jp(z) = ;;JpzA(p:U), Vp # 0. (1.15)

Proof. (i), (ii), (iii) See [I],Proposition 23.17.
(iv) See [I], Proposition 23.20.

(v) See [1], Corollary 23.26. O
Proposition 1.17. Let A; : G; — 29 be mazimally monotone for each i € {1,...,m},
and let
M:G:= (—Bgz- —929 . (1, ..y xm) — (A1x1, ..., Apy). (1.16)
el

Then M is maximally monotone and
Ju:G6—->G : (x1,...,2m)— (Jay 21,...,J4,, Tm). (1.17)
Proof. See [1], Proposition 23.18. O

The next proposition will be the main tool for proving linear convergence of the algo-
rithms in the next section:

Proposition 1.18. Let A : H — 2" be monotone, let D = ran (Id + A) and let pe R, .
Then
A is p-strongly monotone < J 4|, is (1 + p)-cocoervice. (1.18)

Proof. See [1],Proposition 23.13. O

Many problems of nonlinear analysis can be reduced to solving a monotone inclusion
problem, i.e.

find z € H such that 0 € Mx

where M : # — 2™ is a monotone operator.

When M is maximally monotone, the above problem could “theoretically” be solved
by proximal-point algorithm, (ref. [I], Theorem 23.41) which asserts that:

Tue1 = Jyai(2n) — & € zex M,

whenever v, € Ry with >, 72 = +oo, and zer M # & for zg € H arbitrary.
Moreover, Proposition [I.10] implies that the trivial substitution

M'(z) := M(z) — z,

allows us to solve any problem of the form:

find z € H such that z € Mz,



since M’ is maximally monotone and its resolvent can be computed using (1.12)).

When the operator M represents the sum of two operators, the formula to compute its
resolvent is not useful in practise (see [I], Corollary 25.34) and the “splitting methods”
arise in such a situation, providing an algorithm which acts on each operator separately.
Let’s recall a simplified version of three of them, assuming that zer (A + B) # ¢ and
o € H:

e Douglas-Rachford (ref. [I], Theorem 26.11)
Assumptions: A, B : H — 2" are both maximally monotone.
Step: ve Ry ;.
Update rule:
Yn = JwB (xn)
Tntl = JWA(Qyn —Tp)

Assertions:
(i) yp — T €zer (A+ B),
(ii) If A or B is uniformly monotone then y, — Z, where Z is the unique solution.

Pros: It solves the problem when A and B are set valued operators.
Cons: The computation of the resolvent of both operators is required.

e Forward-backward (ref. [I], Theorem 26.14)
Assumptions: A : H — 2" is maximally monotone, B : H — H is [S-cocoercive
Wlth ﬁ € R++.
Step: v € (0,25)
Update rule:
Yn = T — yBxy,
Ip+1 = J'yA(yn)

Assertion:
(i) @, — T € zer (A + B),

(ii) If A or B is uniformly monotone then z,, — &, where Z is the unique solution.

Pros: It requires the computation of only one resolvent.
Cons: It is not suitable when A and B are set-valued operators.

e Forward-backward-forward (Tseng) (ref. [I], Theorem 26.17)
Assumptions: A : H — 27 is maximally monotone, B : H — H is monotone and
B-Lipschitz continuous with g€ R, ..
Step: v € (0, %)



Update rule:
Yn = Tn — yBxy
Pn = Jya(Yn)
Tnt1 = pn + y(Bxy, — Bpy,)
Assertion:
(i) zp, — T € zer (A + B),

(ii) If A or B is uniformly monotone at z then z,, — Z.

Pros: It requires Lypschitz continuity of the operator B which is less restrictive
than cocoercivity.

Cons: It is not suitable when A and B are set-valued operators.

The forward-reflected-backward (FRB) method, proposed by Malitsky-Tam [12],
which is the motivation of this master’s thesis, requires only Lipschitz continuity of the
operator B as in the case of FBF.

1.2 Convex Analysis

Definition 1.19. Let f : H — R be a function.

e The effective domain of f is
dom f:={zeH| f(x) < +o0}.

e f is called proper if
—w ¢ f(H) and dom f # .

e fis convex if Y\ € (0,1), and (Vz,y € dom f)
fOz+ (1 =XNy) < Mf(z) + (1 =2 f(y).
e fis lower-semicontiunous (Isc) at x if

f(z) <liminf f(y) =sup inf f(y).
y—o e>0 yeB(x,¢)

The set of proper lower semicontinuous convex functions from H to R is denoted
by I'(H).

Definition 1.20. Let f : H — R be a proper function, let z € dom f and let y € H.

e The directional derivative of f at x in the direction y is defined as

T [z +ay) — f(x)
f(w,y)-—lcgg o ,

whenever this limit exists in R.



o If f/(x,-) is linear and bounded, then f is said to be Gdteaux differentiable at x
and the Gdteaux gradient of f at z is the unique vector V f(z) € H (its existence
is guaranteed by the Riesz representation theorem) such that

fl@,) = (- Vf(x)). (1.19)

e f is called Fréchet differentiable at x € int (dom f) if there exists a bounded
linear functional in H* ~ #H (Riesz), called the Fréchet gradient of f at z, also
denoted by V f(z), such that

i J@ T Y) = f@) = (g, V(@)
y—0 ]
Remark 1.21. Let f € T'(H) and let « € dom f. Suppose that f is Gateaux differentiable
on B(xz;e) for some ¢ € Ry 4. Then f is Fréchet differentiable at z if and only if Vf is

continuous at x. Moreover, if a convex function is Gateaux differentiable on its domain,
then its gradient is monotone.

= 0. (1.20)

Proof. See [1]], Corollary 17.42 & Proposition 17.7. O

Definition 1.22. Let f : H — R be a proper function. The subdifferential of f is the
set-valued operator

of i H—2% + wo{ueH|(VyeH) (y—z,u)+ flz) < f(y)} (1.21)

When a function f : H — R is proper, convex and Gateaux differentiable at = € dom f,
then
of(x) = {Vf(x)}, (1.22)

(see [1], Proposition 17.31). Moreover, is not difficult to see, that for poper functions

f:H >R, g:G — R, and Le B(H,G), such that domg n L(dom f) # &, the
following inclusion holds:

Of(x) + (L* o (dg)o L) (z) < o(f +goL)(x) VreH. (1.23)

Definition 1.23. Let f : H — R be a function. The Fenchel conjugate f* of f is
defined as

f*:H->R : wuw—sup{{z,u)— f(x)}. (1.24)
xeH
Example 1.24. Let C € H and f(z) = tc(x) be the indicator function of C, defined
as:
() 0 ifxeC,

to(z) ==

¢ +00  otherwise.
Then

f*(u) = sup{(z, u) —ro(x)} = sup{(z,u)} = oc(u),
zeH zeC

is the support function of C, which is usually denoted by o¢.

10



Example 1.25. Continuing with the last example, let C = By/(0;\) with X\ € Ry ,.
Then

*
(Buton) (@ = 509 () = Al (1.25)
Proposition 1.26. Let f : H — R be a proper function. Then the following hold:

(i) f* is lower-semicontinuous and convez.

(ii) Yz, ue H:
f@)+ [ (u) = (2,u), (1.26)
with equality if and only if u e of(x).

(iii) f** < f, and
[ =f< fel(H). (1.27)

(i)
ue df(x) = xedf*(u). (1.28)

Proof. (i) Seell], Proposition 13.13.
(ii) SeelI], Proposition 13.15. ( Young-Fenchel inequality).
(iii) See[I], Theorem 13.37. (Fenchel-Moreau theorem).

(iv) It is a consequence of (ii) and (iii).

Corollary 1.27.
If feD(H) = (of) "L = of*. (1.29)

Example 1.28. Since C' := By(0,)) is a closed convex set, it follows that (o € I'(H),
and the Fenchel-Moreau Theorem implies:

kk
%
(Al l3) (LBH(O;A)) i T (1.30)

Proposition 1.29. For each i€ {1,...,m}, let y; € H; and let f; : H; — R be a proper
function. Then the following hold:

(i) f:PH >R P () o Y FE () + (i) (1.31)
i=1 1=1

(i) of : ET—)Hz — X 2% : (1, xm) — X Ofi(x; —yi). (1.32)
i=1 i=1 =1

where f:= @, fi : B Hi — R: (21,...,2m) — Sty filmi — vi).

11



Proof. (i) Combine ([I], Proposition 13.30) and ([I], Proposition 13.23).

(ii) SeeldI], Proposition 16.9.
O

Example 1.30. The last proposition provides a great flexibility. Let f; = \;| - |5, for
1=1,...,mand \; € Ry .. Define

i=1 i=1
Then m N
fr= Z fi= Z UBy,(0) = 4O (1.34)
i=1 i=1
where

Now, let H = R™*", with (A, B),, = tr (A’B). Set

FrHXH—-R : (A4,B)— > > (A, Bij) e (1.35)

i=1j=1

It is easy to verify that f is a norm in H x H and that H x H = X", R%. Therefore,
calling | (-, )| x := f and letting A\ € R, 4, we obtain

(1.30)
(T31)

C = [ Bgz(0;0)]™"",

AIC, I<)* te(ss0) (1.36)

where

and || - | g2 denotes the standard euclidean norm in R2.

The set of minimizers of a function f : H — R is denoted by
Argmin f :={z e H | f(x) = inf f(H)}.
Lemma 1.31. [Fermat’s rule] Let f : H — R be a proper function. Then
Argmin f = zer 0f = {x e H|0€ df(x)}. (1.37)

If feTI(H) then
Argmin f = 0f*(0). (1.38)

Proof. This follows directly by the definition of the subdifferential and Corollary[I.27 O

12



Definition 1.32. Let f,g: H — R u {400} be functions. The infimal convolution of
f and g is defined as

fOg:H—R : 2z inf{f(y)+g(x—y)} (1.39)
yeH

The infimal convolution is called exact at x whenever the infimun in (1.39)) attained. If
the infimal convolution is exact for all x € H, it is denoted by [].

Proposition 1.33. Let f,g: H — R be proper functions. Then the following hold:
(i) (fO9)" = f*+g" (1.40)
(i) (f +9)" = f*EHg" eT(H), (1.41)
if, for instance, f,g € T'(H) and 0 € sri(dom f — dom g).
Proof. (i) Seell], Proposition 13.24.

(i) See[1], Theorem 15.3.
O

Remark 1.34. A list of conditions satisfying 0 € sri (dom f — dom g) can be found in [I],
Proposition 15.5. Moreover, for proper functions f, g, the inequality (f + ¢)* < f*g*
is always true.

Proposition 1.35. Let f e I'(H), let g € I'(G), and let L € B(H,G) such that
0 € sri (dom g — L(dom f)) .
Then the following hold:

(1) o(f +goL)=0f + L*odgo L. (1.42)
(#0) inf f(x) +g(La) = —min f*(=L*v) + g% (v). (1.43)

Proof. (i) See|[I], Theorem 16.47.
(ii) See[I], Theorem 15.23. See Remark(1.50| at the end of this section.

O
Definition 1.36. Let f € I'(H). The Proximity operator of f is defined as
Proxf: H—-H : x+— Aggeglin fly) + %HZE —yl?. (1.44)
Proposition 1.37. Let f € I'(H). Then the following hold:
(1) 0f is mazimally monotone.
(1) Prox y = Joy . (1.45)
(1.46)
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Proof. (i) See[l], Theorem 20.25 (Moreau).

(ii) SeelI], Proposition 16.44.
O

Corollary 1.38. Combining Proposition [1.16, Proposition [1.57 and Corollary [1.27 we
obtain the Moreau’s decomposition:

z = Prox ,¢(x) + 7Pr0x7_1f*(7_1:n) (1.47)

Vo e H,Vvy e Ry whenever f el (H).

Corollary 1.39. Let f; € I'(H;), let z;,z; € H; let oy # 0 and set

[ = éfi(ami - z;). (1.48)

i=1

Then combining Proposition[1.16, Proposition[I.17 and Proposition[I.29, we obtain the
following usefull rule:

Prox . ¢(z1,...,%m) =

N

1
— (zi + Prox. 2 (aizi — zl)) . (1.49)
=1 @i o

Next, let us compute a couple of proximity operators which will be used in our numer-
ical expermients:

Example 1.40. |[Induced Norm] It is clear from the definition that the proximity opera-
tor of the indicator function of a nonempty closed convex set is the projection operator,
ie., let @ # C < H be closed and convex and let f = 1o, then

Prox ,f(xz) = Po(x), VyeRi. (1.50)

where P denotes the projection onto a nonempty closed convex set C.

Using Example where (A - |»)* = L5 (0, We obtain:

Prox . (2) = @ = Prox, (@)

-
=z —Pg (ox)( z)

( max{ A ED }> (1.51)

Observe that for:
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e H =R, we obtain the soft threeshold function 7 on [—A\, A]:

Tx(z) = sign(z) max{|z| — A, 0}
T— A x>\
=10, |z < A, (1.52)
T+ A <=\

Example 1.41 (I; norm). Let H = R"” and let f(z) = Na — 21 = A2 |z — 2l
Then

Prox . ¢(z) = X zi + Tox(wi — 2)
i=1
= X z; + sign (x; — z;) max{|x; — z| — v\, 0} (1.53)
i=1
Prox .« () = P_y (. — 72). (1.54)

Example 1.42. |[Pointwise [y norm| Let G = H @ H with H = R™*" and for A € R,
set

f:G—>R : (A B)— (A4 B)|x
Then
PI"OX,Yf*(A, B) = Pc(A, B), (155)
where
- mXxXn
C = Breop]

and [(-,-)]x is the norm defined in (1.35).

Definition 1.43. Let f : H — R be proper and let 3 € R, . We say that f is -strongly
convex if Vx,y € dom f and YA € (0,1)

fOz+ (1= XNy) + A(1 - )\)gl\w Yl < Af(2) + (1= N f(y) (1.56)
It is easy to verify (see [I], Example 22.4) that

If f is B-strongly convex = 0f is -strongly monotone. (1.57)

Proposition 1.44. Let f € I'(H). Then the following hold:
f(z)

lej—+oo x|

(2) If f is B-strongly convex = f is supercoercive, i.e., +00. (1.58)

(i1) f is B-strongly conver < f* is Fréchet differentiable on H and V f* is [3-cocoervice.

(1.59)
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Proof. (i) See[ll], Corollary 11.17.

(ii) See[I], Theorem 18.15.
O

Remark 1.45. Let f : H — R be a convex Fréchet differentiable function. The Baillon-
Haddad Theorem asserts that

1
V f is -Lipschitzian < V[ is B-Cocoercive. (1.60)

In particular, if the gradient of a convex continuous differentiable function is nonexpan-
sive, then it is actually firmly nonexpansive.

1.2.1 Fenchel-Rockafellar Duality
Definition 1.46. Let F: H — Rand G : G — R, be proper functions, and let L € Z(H, G).

The primal problem associated with the composite function F' + G o L is

minimize F'(z) + G(Lx), (1.61)
zeH
its dual problem is
minirélize F*(—=L*v) + G*(v), (1.62)
ve

the optimal primal value is
w = inf F(z) 4+ G(Lx),
zeH
the dual optimal value is

pt = ing F*(—=L*v) + G*(v),
ve

and the the duality gap is

0 if u=—p* e {—o0,+w0}

A(F,G,L) = { (1.63)

w+ p*  otherwise

Remark 1.47. It is always true that —p* < p, this result is known as weak-duality and
can be shown using the Fenchel-Young inequality. When p = —p* we say that strong-
duality holds. A comprehensive analysis of assumptions that guarantee strong-duality
is beyond the scope of this master’s thesis and my knowledge. We keep it as simple as
posible where our main argument is given in Proposition [1.35]

We close this section with two results regarding existence of solutions to the above
Problem. The first one ensures the existence of a primal solution, and the second one
states a relation between primal and dual solutions.
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Proposition 1.48. Let f e I'(H), let g € I'(G), and let L € B(H,G) such that
dom g n L(dom f) # &.

Suppose that one of the following holds:
(a) f is supercoercive.
(b) f is coercive (i.e., lim|,|_ 4o f(x) = +00) and g is bounded from below.
Then f + go L is coercive and it has a minimizer over H.
Proof. See|[1], Corollary 11.16 with g o L € T'(H) in place of g. O
Proposition 1.49. Let f e I'(H),g € I'(G) and let L € B(H,G) be such

0 € sri(dom g — L(dom f)). (1.64)

Then there exists v € G solution to the dual problem (1.62)), the duality gap (1.63)) is

zero, i.e., stong duality holds and
Argmin(f + go L) = df*(—L*v) n L1 (dg* (v)). (1.65)
Proof. See [1], Theorem 19.1, Corollary 19.2. O

Remark 1.50. The set in ([1.65)) could be empty and a list of conditions satisfying (1.64)
can be found in ([I], Proposition 15.24).
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2 Malitsky-Tam Algorithms

In this section we briefly recall some results presented in [I2], from which we will derive
methods to solve general monotone inclusion problems. We also include their proofs,
where we made three small contributions, namely, the relaxation of a fixed A in ([12],
Theorem 2.9) obtaining linear convergence under the same assumptions given in ([12],
Theorem 2.5); the proof of linear convergence of the relaxed-inertial-forward-reflected-
barckward algorithm ([I2], Theorem 4.3), and the proof of linear convergence of the
three operator splitting algorithm (|12], theorem 5.2) whenever the operator A is strongly
monotone.

2.1 Forward Reflected Backward (FRB)

2.1. Let A : H — 2" be a mazimally monotone operator, let C : H — H be a
monotone and (B-Lipschitzian operator with § € Ry .. Suppose that zer (A+ C) # & and

(e = |25 2.1)

for some

ce (o, 2(11%)] . (2.2)

Given g, 1 € H consider the sequence {xy}nen generated by:

Tptl = J)\nA (fn — [)\n + )\n,l]C:cn + )\nflcl‘nfl). (2.3)
Then the following hold:
(i) {xn}nen converges weakly to a point in zer (A + C').

(11) Suppose that A or C' is strongly monotone. Then {x,},.y converges R-linearly to
the unique point in zer (A + C').

Proof. (i) Let Z € zer (A+C), then & = Jy, 4(Z —\,CZ) and by Propositionl.14] we have

that Jy, 4 is a single-valued, firmly nonexpansive operator with full domain. Therefore
the following holds:
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|Zn1 — 35”2 = [JIn,a(@n = AnCp — Ap—1(Cap — Cn—1)) — In,a(Z — )‘nCi‘)HQ

< (Tpt+1 — T,y — A Cxyy — A1 (Cxyy — Cxppy) — T + A CT)

= <xn+1_j77$n_i>

B
2

+ An <xn+1 —Z,Cwpy1 — an> - )\n<xn+1 —Z,Crpy1 — Ci’>

~r

>0 by
— An—1 (xn-i-l —Zp, Crp — Cxpyy >
— A1 (@ —Z,Cxp — Cxpy) .
By the identity (1.1]), we can write (2.6] as
B 1
S 2
and by the Lipschitz continuity of C, we can estimate ([2.7)) as follows

(Tnt1 —Z,0p —T) (”mn-&-l - j|‘2 + |n — j”2 — [znt1 — anQ) .

M1 (Tpt1 — Tn, Cxp — Cxp1 ) < M1 B Tns1 — ool xn — zn-1]
An-15
2
1—2¢
4
In light of and , the inequality in implies

< (lzns1 = zal® + l2n — 2n-1]?)

(lzns1 — Tol® + |on — xn—lHQ) :

~

1
i1 — 72 = 20 (20s1 — 7, Oy — Cy) + (2 n a) s — 2

1
< lzn — 2> = 201 (2 — &, Cxpy — Cppq ) + 5“:1,‘” — a2

(2.10)

We will use this inequality many times, therefore it is worth capturing its information

in a function which allows us to write the formulas in a short manner:

Proposition 2.2. In the setting of Theorem let {xp}nen be the sequence generated

in (2.3) and let ¥ : H x Ny — R be defined as:

1 1
U(s,n) = §||$n —s|? =2\ 1 (zn —5,Cxp — Cxpyy ) + iﬂxn — 1]

Then the following hold:
(1) U(s,n) = 0.

(i) U(s,n) < (1 =€) (Jon = s|* + [2n — 2na]?).

20
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Proof. In both cases we use that C is §-Lipschitzian:

. 1 1
(1) ¥(s,n) = §Hwn = 8]% = 2x 1 Blzn — sl @n — zpa] + iuxn — p?

> 1_'2An—16
2
N

~~

(l#n = s[* + lzn — 2n-1]*) = 0.

=€

.. 1 1
(i) U(s,m) < S llwn = s* + 21 Bllan — sl = 2na| + Sllon — 20|

142M,-18
<—— (Il - s + |n — 2n1]?) .
N e B
<l-—e¢

O]

For the rest of the proof, we set ¥, := U(z,n). Combining Proposition i) with
(2.10) we obtain:

1 1
§H93n+1 —z|* < QH%H — 2 + Upni1 + elzni1 — zn|?
1 _
< 5“% —z|*+ v,

1
= §\|xn — a‘cHZ + VU, +¢|z, — Jcn,1||2 —¢ellan — xn,lHQ

1 n—1
< 5”»”51 —z?+ ¥ —¢ Z |21 — ;.
j=0
Rearranging the terms, we obtain:
1 = 1
Slonsr =72 +e 3 oy 2l < Sloy — 2l + 01 <0 Ve Ny,
§=0

This implies that the sequence {x,},en is bounded and that
[Tnt1 — zn|| = 0  asn — 4o0. (2.12)

By the definition of the resolvent, (2.3)) implies:

Crpy1 — Cxp — )\i(xnﬂ —p + M1 (Cxy, — Cxpmq)) € (A+ Czpga. (2.13)
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By Lemma there exists a subsequence {xy, }ren of the bounded sequence {x;,}nen
which converges weakly to some point & € H; we now show that & € zer (A + C).
Since A, is strictly positive and bounded Vn € N, the limit of the LHS in (2.13) along

the subsequence {x, }ren converges strongly to 0:

lim chnk_H - ank - 7(1:71;“_1 — Ty, + )\nk_1(cxnk - ank—l))'
k—o0 Any,
. 1 BAn,—1 2.14
< Jim <5 ¥ /\) [ y1 = Engll + =L = @y | = 0. (2.14)
e LA - L ~~ ~
(2.12)—0 (2.12)—0

By Proposition follows that A + C is maximally monotone. Then, from ([2.13)),
(2.14), and Proposition follows that every weak cluster point of {x,},en belongs to
zer (A + C).

1 D)
Moreover, (3llzn — Z|? + \Ij")neNl
exists for each = € zer (A + C) and by the sandwich rule it is equal to lim,_, ||z, — Z|:

is nonnegative and nonincreasing, therefore its limit

. - . - N 1
lim |z, — "17”2 = lim |z, — tz = 2p-18l|zn — 2| |Tn — 2n-1l| + 578 — xn—le
e e ST~ IS~ 7 2 ~ ~~ -
<0 —0 —0
. - - 1
< lim ||z, — Z)> = 201 (2 — &, Czpy — Czpp 1 ) + = |20 — 21|
n—o 2
. ~12 ~ 1 2
< lim |lzy — Z[° + 2An-18)lzn — Z[l|2n — Zn-1| + S 20 — Zn-1]|
noe YA N ~ ~~ -~
<0 —0 —0

lim ||z, — Z]?.
n—ao0

Since the limit of {||x,, — Z||}nen exists for each weak cluster point Z of the sequence
{@n}nen, and every such weak cluster point belongs to zer (A + C), it follows from
Lemma that the sequence {x,}nen generated in converges weakly to a point
in zer (A + B) and the proof is complete.

(ii) In order to show linear convergence, we assume that A is p-strongly monotone
(there is no loss of generallity, see remark [2.3). Using that Jy_ 4 is (1 + A, p)-cocoercive
guaranteed by Propositionl.18] in place of firmly nonexpansivity in (2.4) we obtain:

1
(1 4+ 22 [enss — E|2=2A (a1 — &, Carnsr — G} + (2 " ) [Zns1 — wal?

1
< xpn — £\|2—2)\n_1 (xp, —2,Cxp — Crp_1) + iﬂxn — iL‘n_1H2. (2.15)
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Next, set:

1 _
Gp 1= inn — x\|2,

M:zmin{ pe , c }
l—-¢e 1-¢

Using the auxiliary function ¥,, = ¥(z,n) from Propositon and replacing A\, by €
in the first term of the LHS in (2.15)), (recall that A\, > ¢ for all n € N by assumption),
the inequality (2.15]) implies that:

an + VU, = (1 +4ep)ans1 + Vi1 +ellxne — :17n||2
= (1 + 4€p)an+1 + (1 + M)\Iln+1 — Wy + €H$n+1 - anZ

> (14 4ep)a +(1+p)v
-2.11( p) n+1 ( M) n+1

—pu(l—e¢) (2an+1 + [zns1 — mnHQ) +elzntt — @l

= (1+2ep)ans1 + (L + p)Wny1 + 2(pe — p[l —€])ant1

< ~ —

=0

+ (e = pll = e])|wns1 — @nl?

~ -~

~~
=0

> (14 min{2ep, u})(an+1 + Ypt1)

= (1 + M)(an+1 + \I/n-&-l)-

e<

SIS

From here, it follows that:

1
Ap+l < Apy1 + \I/n+1 < 7(an + \Pn) <K (al + 1111)7

L+ p (L+ )™

and according to Deﬁnition the sequence {x,, }nen converges R-linearly to z. Since
A is strongly monotone, the set zer (A + C') has exactly one element. O

Remark 2.3. In the case where the operator C'is p-strongly monotone, we can reformulate
the equations using the operators A and C' defined as follows:

A=A+ pld,

C:=C—pld.
Then o

A+C=4+C,
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and by Proposition [I.16]

= J o1+ M) 'd.

J ~
AA (1.11) I+Xxp

where A is p-strongly monotone and C is 3-Lipschitz continuous, with 3 = (B + p).
In this case the recursion (2.3)) takes the form

Tnt1 =Jy 4 (CCn —\Cxp — )\n,l(CN'J:n — éxn,1)>

_J Ty — MCapy — An_l(éxn — éxn_l)
T A (1+ Anp)
()\n + An—l)cxn — A—1CTp_1 — )\n—lp($n - xn—l)
= J An A Ty —
T+Anp 1+ Aap

and linear convergence is guaranteed by Theorem as long as

1—2¢

O © |21 5157 -

2.2 Relaxed Inertial Forward Reflected Backward (RIFRB)

2.4. Let A:H — 2" be mazimally monotone, let C : H — H be monotone
and [B-Lipschitzian with € Ry such that zer (A+C) # . Let £ € [0,1),n € (0,1] and
A e Ry, such that

¢ < ;;Z (2.16)
and
)\<min{2(1_§)2_ﬁ77(1+§),1_§7§;+n)}. (2.17)

Given xg,x1 € H, consider the sequence {x,}nen generated by:

{zn+1 = Jaa (xn — ACzy, — 5(Cp — Crps) + & (wn — :r:n—l)) ; (2.18)

Tpny1l = (1 - "7)33n + NzZp41-
Then the following hold:
(1) {xn}nen converges weakly to a point in zer (A + C).

(ii) Suppose that A is strongly monotone, then {x,}neny converges R-linearly to the
unique point in zer (A + C).
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Proof. (i) Define the operator

' =C— %Id, (2.19)
which is B’-Lipschitz continuous, with
B =p+ % (2.20)
Then the recursion scheme (2.18]) is equivalent to
{zn+1 = Jya (xn —\Cx,, — %(C”xn - C’xn_1)> , (2.21)
Tpt1 = (1= n0)Tn + N2ni1-

Let 7 € zer (A + C), then = = Jya(Z — ACZ) and by Proposition|l.14] Jy4 is a single-
valued, firmly nonexpansive operator, therefore the following holds

|2nt1 — 2| = || Taalzn — ACzp — z(c’xn — C'zp1)] = Taa( — XCT)|? (2.22)
< <zn+1 — T,y — ANCxpy — A(C'xn —C'rp1) — T+ )\Cx> (2.23)
7
= (Zn41 — T, 2p — T) (2.24)
— X zp41 — z,Cxy — CT) (2.25)
A - /
— ;<2n+1 —x,C’xn—C’xn_1>. (2.26)

Using the identity 2,41 = %xnﬂ + "T_lscn from (2.21)) and the substitution

eni=2X(xyp —2,Cxy, — Cz) = 0,
)

we can compute and estimate the terms in the last equation as follows:

ﬂfn_H_—ii' 77_1( —
n n

@.22) =

(lensr = z)* + (= 1?20 — 2|

3=

+2(n = 1) (Tns1 — T, 20 — 7))

(lens1 =21 + (0 = 1)? |z — 2

3=

+ (= Dlzns1 = 2 + Jzn — 2] = Jzns1 — 2af?)

1 —1 1—
= et =2l + 1 on =l + nz”uxnﬂ — )% (2.27)
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1
(2.24) = E<xn+1 —Z,Tp —T) +

n
1 _ _ n—1 _
=2 (lzns1 — 21 + |zn — 21 = |zne1 — 20l ®) + |zn — Z|
1 _ 2n—1 _ 1
= gl = 27 + o — 27 - ol — 2l (225)
A 1-—
(2.25) = - (xpe1 — 2, Cxy — CT) + ( 7 n))\<xn - z,Cx, — CT)
c A 1—
= ol +*<$n+1_570$n+1_0$n>+ ncn
2n 7
Cny1 1 — _ _
- -t + ncn+*<$n+1_$70/xn+l_C,xn>+*<xn+1_l‘7$n+1_$n>
2n 2n n n
Cn+1 1— _
= — g; + 27777671 —+ ; <l’n+1 — I, C/$n+1 — C,:L‘n>
§ _ _
+ = (lzns1 — 21 + |zns1 — znl® — o0 — Z/7) . (2.29)

2n

A A
(2.26]) = f; <xn —z,C'xy — C'zpq > — ? <xn+1 —p,C'xy — C'wpy >

A AG

< 0 (2 —2,C'xp — C'wpy ) + 2772(”%714& — zn|® + |20 — zna]?). (2.30)

Substituting (2.22)), (2.24)), (2.25)), (2.26]) by (2.27), (2.28), (2.29), (2.30) respectively,
and multiplying every term by 27; the inequality (2.23]) implies:

(1 - £)||33n+1 - jHQ —2A < Tn4+1 — i’, C,$n+1 — C/l'n>

2 -3 —n(1+
+cn+1+( B n”< Q)mﬂ—wnrﬁ

< 1=9lzn — 2> —2X (21, — 2,C"2y — C'wpp1 )

!/

A
+ (1 =n)en + fllxn — x| (2.31)

Observe that this inequality is very similar to (2.10). The idea is to show that this
recursion generates a nonnegative and nonincreasing sequence. To this end set

g:=min{2 — 223 —n(1 +&),1 — £ - \3'n} (2.32)

which is strictly positive by (2.17) and (2.20)). Next, as we did in the last theorem, we
define an auxilliary function ® which captures the information in (2.31):
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Proposition 2.5. In the setting of Theorem let {xn}nen be the sequence genmerated
in (2.21), let € > 0 defined in (2.32)), and let ¥ : H x N; — R be defined as:

:H x N, - R,

/

®(s,n) = (1 —&)|z, —s|* — 2A( @y — 5,C"wp — C'wpy ) + Af\a:n — x| (2.33)

Then the following hold:

(i) (s, n) = el|zn — s, (2.34)

2\G'

(i7) ®(s,n) < (L =&+ A8z — s + lzn — 21 (2.35)

Proof. In both cases we use that C’ is 5’-Lipschitz continuos:

. A3
(@) ®(s,n) = (1= &)lwn — sI* — 228’ |n — sllan — 2] + :Ilwn —

1 A5
> (1—=¢&)|zn — 3H2 -5 (onn - 3H2 + HHxn - mn—IHZ) + THxn - xn—lHQ

= (1= &= |zn — s|*.

S —

~~
=€

. AB
(i1) ®(s,n) < (1= &)am — s|* + 208 |20 — sl |2n — 2na ]| + =y e = w1

206’
< (1= €+ M8n)an = s|* + =—lan — zn|.

0=1

S
L2

O
For the rest of the proof, we set ®,, := ®(z,n) in (2.33). Combining Proposition [2.5(1)
and (2.31]) we obtain:
_ €
6Hanrl - l‘”2 < (I)nJrl + Cn+1 + EHanrl - xn”2

<P, +cp

€ €
=®, +cp+ —|xn — xn,lHQ - =z — xn,le
n n

c n—1
<P+ —— Z 1 — 4],
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or equivalently

- 1 n—1
€ <||acn+1 — 7% + 7 Z |1 — $j||2> <P+ < o, (2.36)
=0

which implies that the sequence {x;,}nen is bounded and

|Zns1 — zn| — 0, asn— +o0. (2.37)

The reminder of the proof follows a similiar argument to (2.13]).

(ii) Suppose that A is p-strongly monotone and using that Jy4 is (1 + Ap)-cocoercive
in place of firmly nonexpansivity in (2.22)) we obtain:

1+ M) 2ns1 — Z)? < (2ns1 — T, 20 — ) — A 2n1 — &, Cxyy — CT )

A
— ; <zn+1 —z,C0'xp — C'apy > . (2.38)

Next, we replace the computations (2.27)) - (2.30)) in (2.38]) and we get:

(1 — €+ 2)\p)||zns1 — Z[* — 2X (Tn41 —Z,C' 01 — C'zyy )

24+ 220(1 —n) —n(1+&) = \F
+Cn+1 + p( 77) ; 77( 6) /8 ”xn—i-l _an2

< Q=&+ 2201=n)|zn — 2> —2X (20, — 2,C'2p — C'wpo1 )

/!

A
+ (1 —=n)en + flxn — zp1|? (2.39)

Set

)\PTI €+ 2/))‘(1 — 77) } , (240)

1—&+ B 2053
which is strictly positive by (2.17)), (2.20]) and (2.32).

If n = 1 then the inequality (2.39)) reads (recall ®,, = ®(z,n) in (2.33))

W= min{

¢, > 2/\/)Hxn+1 - fHQ + Ppy1 +Cni1 + 6Hxn+1 - anQ
= 2Xp||Tpi1 — jHQ + (T4 p)Prr1 — pPryr + el T — an2

> Aplap — ‘/EHQ + (1 + p) P

+ (= pl(1 =€+ A80]) (|wnsr = 2)) + (e — 228" w41 — 2.
~ ~~ - S~~~
=0 by >0 by
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From here it follows that

i < i#q) < < i#@
ot @) TS T M@t
and according to the Deﬁnition the sequence (x,)pen converges R-linearly to Z.

|#ns1 — 2] < (2.41)

Ifn <1 set:
= 2201 ) — 3, (2.42)
én = (1 —n)cy, (2.43)
n
Nt = . 2.44
21— 7) .

Substituting (2.42)), (2.43), and (2.44)) in (2.39) we get:

~ ~ e+ 2Xp(1 —
an+®p+¢ = (1+20")(ans1 + Cns1) + Pryr + MH%H — x|

2.39)

= (1 +20")(ant1 + 1) + (L + @) Pps1 — pPpia
+ 2Xp(1 —
L et2(d —n)
n
= (L+7%)(ans1 + Car1) + (1 + p)Ppp1
e+ 2Mp(l —n)

[ (2.45)

+ )\PﬂHﬂ?nH - 'iH2 — uPpi1 + H«Tn-i-l - anQ + n*én-i-l

> (14 min{n*, u})(ans1 + Ppt1 + Ent1) (2.46)

~-

=w

+ (Ao — p[1 — €+ 28] |znt1 — zn?

S —~

~r

=0 by
£+ 22p(1 — 1) — 2u\3’ 1
R ™
77 \'\,'J
h ~ ” >0 by
>0 by
By ([2.46)), since w = min{n*, u} > 0, it follows that
An+1 < Qpyl + Cpg1 + q)n-‘rl
< (an +Pp +6p) <+ < (a1 + ®1 + &1). (2.47)

l+w T (1+w)n
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and according to the Definition[I.2] the sequence z,, converges R-linearly to Z.

O

Remark 2.6. Since B~ '-cocoercivity implies S-Lipschitz continuity for 8 > 0. This algo-
rithm can be applied when C' is 3~ !-cocoercive with the following modifications:

f2=n)A+& 1-£60—n)
A <m1n{ 25 , e }, (2.48)

in place of (2.17)), and the proof is carried out with

e
6,:{5 £ if26 < A8 (2.49)

£ if 26 > \B,

in place of (2.20). Observe that A can be computed from the definition of € in (2.32).
The computations in order to obtain ' in (2.49) can be found in ([12], Lemma 4.1).

2.3 Three Operator splitting

We close this section showing the linear convergence of the algorithm proposed in ( [12],
section 5). Let us recall the theorem:

2.7. Let A : H — 2™ be mazimally monotone, let B : H — H be monotone
and Ly-Lipschitz, and let C : H — H be L%—cocoercive,
Suppose that
zer(A+ B+ C) #+ J,

and

2

Given xg,x1 € H define the sequence {xy}, . according to

Tnt1 = Iya(zn — 2ABxy, + ABxy—1 — ACxy). (2.51)
Then the following hold:
(i) n, — T, for some T € zer (A + B + C).

(ii) If A is p-strongly monotone, then x, converges R—linearly to the unique point
zezer(A+ B+ C).

Proof. (i) See ([12],Theorem 5.2).
(i) From ([2.50)), choose € > 0 such that

L
e<1—2\L1 — )\?2, (2.52)
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and let
zezer(A+ B+ C).

By Proposition|1.18| the resolvent Jy4 is (1 + Ap)-cocoercive and
T = Jya(z — \(BZ + Cx)). (2.53)
Combining cocoercivity, (2.51)) and (2.53|) we obtain

(1+ Ap)|znt1 — 2| (2.54)

= (1 + o) Iaa(wy — 2XBxy, + ABxy_1 — AC2y) — Jaa(Z — M(BZ + C7))|*  (2.55)

(Tny1 — T, 00 — T) (2.56)
+ A xp41 — T, BT — Bxy,) (2.57)
— M xp+1 — 2, Bxy, — Bxp_q) (2.58)
+ M aps1 —2,C2 — Cay,) (2.59)

Doing some computations, we have that

1
256) = — — z|? —z|? - —z,|?) . 2.60
(2-56) 5 (lzns1r — Z)° + [2zn — Z° — |2ns1 — 2a]?) (2.60)
(12.57) = M zpt1 — &, BT — Bxpi1) + AN{@pt1 — T, Brpi1 — By, . (2.61)
A ~ —
<0

(2.58) = =A(xy, — &, By, — Bxp_1) — AN{xpy1 — Ty, By — Bay—1)
< —A(xp —Z,Bxy — Brp_1) + ALt||znt1 — xp||2n — 2n—1]

AL
< —A{xp — %, By — Bap_1) + Tl(uxnﬂ — 2al? + |20 — Taoa ). (2.62)

(12.59) = =X (2, — %, Cxp, — CT) + A Xps1 — Tn, CT — Cayy)

A e —
< =0z = Cxp[? + N|zps1 — 20| |CZ — Oy
C cocoercive L2
A A AL
<~ |C% ~ Cunl® + -|C = Caa* + =% |1 — 2
@2 Lo Ly 4
§=-2
2
AL
= 2 @i — (2.63)
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Multiplying each equation (12.56))- (2.59)) by 2 and substituting them by (2.60))- (2.63])

respectively, we obtain

(1 + 220)|1zns1 — Z|* = 2A (2pi1 — T, Bxpy1 — Ban ) + ALy |2y — 20

L
+ (1 —2) <L1 + 42>) H.%'n_H — anQ

S ~

~~

>¢ by
< |zn — a’cHQ —2X(xy, — &, Bry, — Bxy_1) + ALi |z, — xn,lHQ (2.64)

Next, let us capture the main information of this inequality in a function &:

1
@y = 5l - > — 2\ (xn — Z, Bxy, — Bry_1) + ALy |z — 21| (2.65)
then
1
Py = iHCCn - CEHQ = 2AL1|zy — Z||zn — 2p—1] + AL1[lzn — xn—1”2
1—2\L
> " lan — ]
€ =12
> §Hazn —Z|°. (2.66)

1
D, < inn — ;T:H2 + 2AL1||xn — Z| |20 — 21| + AL1||2n — ;1:n,1||2

14+ 2)\L _
< 5 len = 27 + 2AL e — 2o ?

€ _

< (1=3) lzn =212 + (1 = )lwn — 20 (2.67)
Set
2 p €
1= mi 2.68
1
ap, 1= §|\xn —z|?

Substituting ®,, and a, in (2.64]) we obtain:
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an + P, = (L+4Xp)ans1 + Ppi1 + €|zpy1 — :En||2
69

= (1 +4xp)ant1 + (1 + 1) Pi1 + elznsr — 2] — pPnia
(1

ﬁ
o
=

=
6

+2\p)an+1 + (1 + @) Ppia

©
=

£ =2 _ _ _ 2
# (o= n(1=3)) lonss =2 + (= (1 = £)|wns1 — 2l
> (1+ 2Ap, n+1 + Py

B3 (1 4+ min{2Ap, pi})(an41 +1)

(1 + p)(ans1 + @nya)

e<1

From here, it follows that:

1
An+1 < Apa1 + Ppa1 < 1 ,u(an + (I)n) < (a1 + @1), (269)

< —
(14 p)"

and according to the Definition[I.2] the sequence x,, converges R-linearly to

O
2.4 Special Cases of FRB
As mentioned in ([12], Remark 2.1), there are important cases where the recursion
Tptl = J)\nA (In — [)\n + )\nfl]CfL‘n + )\n,len,l). (2.70)

in Theorem [2.1] (FRB) reduces or is equivalent to known algorithms:
1. If C =0, then becomes
Tpi1 = x4 %n
which is the proximal point algorithm.

2. If A = Nk is the normal cone to a nonempty closed convex set K, C' is an affine
operator and A, = A for all n, then we obtain the projected reflected gradient
method (see Ref 26 in [12]):

Tn+1 = Pk (xn - )\B(zxn - xn—l)) ) (271>

3. If A=0, A\, = X for all n, and
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for a smooth convex-concave function ® : H x K — R, then (2.70) becomes the
optimistic gradient descent ascent method (OGDA):

Tn+l = Tp — 2)\vxq)($n7 yn) + )‘vxq)(xnfla ynfl)

(2.73)
Yn+1l = Yn + 2)\qu)($7¢’ yn) - )\qu)(fﬂn—lv yn—l)

which is widely-used in saddle point problems and machine learning.



3 Composite Inclusion Problems

The aim of this section is to solve monotone inclusion problems involving a mixture of
sums, linear compositions and parallel sums of operators. The strategy is to reduce this
new problem to the sum of two operators satisfying the assumptions of the algorithms
from section 2.

It is important to remark that the resulting algorithms (for details we refer to[9] and
[10]) act on each operator separately, offering a full splitting method which solves both,
the primal and dual problem simultaneaously.

The problem under investigation is the following:

Problem 3.1. Let H be a real Hilbert space, let A : H — 27t a maximally monotone
operator and let C' : H — H a monotone and u-Lipschitzian operator with p € Ry .
Let m be a strictly positive integer and for each ¢ = 1,...,m, let G; be a real Hilbert,
B; : G; — 2Y% a maximally monotone operator, D; : G; — 2% a monotone operator such
that Di_1 is v;-Lipschitzian, for v; € Ry . Suppose that L; : H — G; is a nonzero linear
continuous operator and let z € H,r; € G;. The problem is to solve the primal inclusion

find Z € H such that z € AT + Y L¥((BOID:)(LiZ — 13)) + CZ, (3.1)
i=1

together with the dual inclusion

z—Zsz‘;ieA:L‘+C’:U
find v, € G;, fori =1,...,m, such that 3z € H : iz (3.2)

v; € (BlDDz)(LliL' — 7"1').

where A[] B denotes the parallel sum of two operators defined as

-1

AOB:= (A" + B (3.3)

We say that (Z,01,...,0m) € H x G1 X -+ x Gy, is a primal-dual solution to Problem
Bl if
m
Z—ZL;"T)Z'EAQ?-FC.@ and ;€ (BZDDZ)(LlZZ‘—T‘l), 1=1,...,m. (34)
i=1

The solutions to (3.1) and (3.2)) are denoted by &7 and 2 respectively. Note that if
T € & then there exists v; € G;, for each i € {1,...,m}, such that (Z,01,...,0,y) is a
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primal-dual solution. On the other hand, if exists (01,...,0y) € Z then there exists
T € & such that (z,01,...,0y) is a primal-dual solution. Moreover, if (Z,01,...,0y) is
a primal-dual solution, then z € & and (v1,...,0p,) € Z.

3.1 FRB adapted to composite inclusion problems

3.2. (FRB) In the setting of Problem[3.1 Let

m

D IL2. (3.5)

i=1

B =max{u,vi,...,Un}+

Suppose that

1—2¢
{)\TL}TLEN < |:€7 2/8:| ; (36)
for some
1
e(0,——|, 3.7
< ("33 D
and that
Z € ran (A + Z L;k (BZDDZ)(L’L .= ’l“i) + 0) . (38)
=1
Given xg,z1 € H and vy, vi;, € G;, fori=1,...,m, consider the sequence
{(wn, Vlpy - - 7Umn)}nEN1

generated by:

Oy = Ap + Ap—1

Tp+1 = I, A (acn + Az — ap (C’mn + 2 Lfvin> + A1 (C’mn_l + Z Lfvin1>>

i=1 i=1
for i=1,...,m.

[Uin+1 = JAnBi_l ('Uin — ApTi — Qp, (D;lvin — Liﬁn) + An—1 (Dz 1vin_1 — Lixn_l))
(3.9)

Then the following hold:

(i) {(Zn, 01,5 Um,) }pen cOnverges weakly to a primal-dual solution to Problem|3.1]

(ii) Suppose that A and B; ' are strongly monotone for each i € {1,...,m}. Then
{(Zn, V1,0, -y Umy) b pen cOnverges R-linearly to the unique primal-dual solution to

Problem[31l.
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Proof. (i) Define the Hilbert Space K as:

Ki=H®G® - ®Gn,

and the operators

M:K —25: (z,01,...,0m) = (=2 + Az) x (r1 + By v1) x -+ x (7 + By, vm)

(3.10)
m
Q:K—-K:(x,v1,...,0m)— (Cx—l—ZLfvi,—L1x+Dl_lvl,...,—Lm:L'+D;llvm>
i=1
(3.11)

From Proposition [I.10] and Proposition [I.17] follows that M is maximally monotone.
The operator @ is monotone and S-Lipschitzian (see proof in [10], Theorem 3.1). More-
over,

m
(3.8) « Jx € H s.t. z€eran <Ax + Z LY (BOD;)(Lix —r;) + C’x) (3.12)
i=1
zeAx + 3" L¥v; + Cx

< I(z,v1,...,0m) € K sit. (3.13)
Vi € (BlDDZ)(LZl‘—T‘Z), t=1,...,m.

0 —z+ Az + > L¥v;+ Cx

< I(z,v1,...,0m) € K sit.
OEri—i-B;lvi—FD;lvi—Lix, i=1,...,m.
< I(z,v1,...,0m) ELst. 0€ (—2+Am)><(r1+Bf1v1)><,...,><(rm+B;11vm)
+ (Cz+ X" Livi, Di'vy — Lz,..., Dyt — Lya)
< I(z,v1,...,0m) e Lst. 0 (M + Q)(x,v1,...,Um). (3.14)

(3.14)) implies that zer (M + Q) # & and we can apply Theorem with M and Q.
To this end, let

wj=($j,U1j,---,Umj)€IC7 for j=0,1,

be our starting points. Applying the recursion (2.3) with M, @ and w;, j = 0,1 we
obtain:

n — n >\n+)\nf n+)\n7 n—
wnen, | BTV ( 1)Qu 1Qwp—1 (3.15)
Wp+1 = J)\nM(Qn)
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where
gn = (p’IM qlys--- 7qmn)

From Proposition and Proposition follows that

J/\nM(q") " J)\n(_Z+A) (p") X JAn(T1+B;1)(q1n) Koo X J)\n(rm-&-B;Ll)(qmn)

) Inna®n + An2) X Iy por(qr, = Anr1) X oo Xy gt (G, — AnTm)-
(3.16)

Substituting (3.16]) in (3.15)) we have that ¥n € N;

Pn=2n — A + An1) <an + ) L;"vin> + A1 (an_l +> L;-"vin1>

=1 =1
Tn+l = J)\nA(pn + Anz)
for i=1,...,m.

4, = Vi, — ()\n + )\n—l) (D;lv,-n — L,xn) + )\n_l(D-ilvin_l - Lil'n—l)

7

Vipyr = JAnle(qz'n — AnTi)

Replacing pn, ¢, and setting o, = Ay, + Ap—1 Wwe obtain exactly the iterative scheme

B9).

Next, by Theorem [2.1](i) follows that:

Wy, — W = (T,01,...,0m), (3.17)

for some w € zer (M + Q). Therefore, since (3.14) = (3.12) and (3.13])

Ty =T EDP, (3.18)

and
(Uln,...,vmn)—‘(171,...,17m)€@. (319)

(ii) This is straightforward, we only need to show that the operator M is strongly
monotone with constant ¢ for some ¢ > 0.

Suppose that A is p-strongly monotone, and B, s 74-strongly monotone, with p, 7; > 0
fori=1,...,m. Set

¢ =min{p,71,...,7Tm} (3.20)
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Let (z,v1,...,0m), (y,w1,...,wy) € K. Then

,’Um) _M(y,W1,...,wm),(fE,’Ul,...,’Um) _(yawlv"'ywm)>]c

(M(x,vq,...
= <Am—Ay,x—y>H+2<B;1(vi) _Bfl(wi)avi_wi>gi
i=1

m
> plle—ylF + D Tl — wil3,

m
= z—yl3 + vi — w;|%
0l ¢ (H yHH 1_21 H i ZHQZ>
7vm) - (yawlv .. awm)H%C

= ¢|(z,v1,...
Therefore M is strongly monotone and the R-linear convergence follows from theorem

2.1]i).
O

3.2 RIFRB adapted to composite inclusion problems
3.3. (RIFRB) In the setting of Problem[3.1 Let

3 (3.21)

2 1L

i=1

B =max{u,v1,...,Um} +

Suppose that n € (0,1], £ €[0,1) and XA € Ry such that

2—n
) 3.22
E<opr (322)
and
20 -8 —n1+8) 1*5(1+n)}
A < min , . 3.23
{ 26 np (3:23)
Moreover, assume that
z € ran (A + Z LY (BOD;)(Li. — r;) + C) . (3.24)
i=1
Given xo,x1 € H and vy, v, € G;, fori=1,...,m, consider the sequence
{(xn,v1,,... ’Umn)}neNl

generated by:



147 S A O 3
Dn = Tp — A—— an+ZLivin +5 C'acn_l—kZLivin_l +E(acn—xn_1)

N i=1 i=1
Tni1 = (L=n)zn +nJxa(pn + A2)
for i=1,...,m.

1+ _ A, 1
qi,, = Vi, — Tn (DZ 17)Z'n — LZCCn) + 5 (D 1vin_1 - Li.CUn_l) + ;(Uln - Uin—l)

(2

Vipt1 = (1 —n)vi, + anBi—l (g, — Ar5)
(3.25)
Then the following hold:

(i) {(Tn, V1,5 Umy ) bney COnvErges weakly to a primal-dual solution to Problem|3.1]

(ii) Suppose that A and Bi_1 are strongly monotone for each i € {1,...,m}. Then
{(Tn, V1,5 -+ s Vmy ) b pen cOnwerges R-linearly to the unique primal-dual solution to

Problem|3.1.
Proof. For j =0,1, set

w; = (:cj,vlj,...,vmj) e,

Applying the recursion (2.18)) in Theorem to M and @Q with wj, j = 0,1 as starting
points, we obtain:

A §
n = Wy — AQuw, — — (Quwy, — Qwp_1) + = (wWy — Wiy
Vne N, q Q U(Q Quy—1) 77( 1) (3.26)
wpt1 = (1 —n)wy + 1 I (qn)
where
an = Pnsq1,s -+ Gy )- (3.27)

Substituting the resolvent of M, (computed in (3.16)) in (3.26]) we obtain Vn € Nj:
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Dn = Tp — A (an + ZL;UM)

i=1
A - S 3
_2 <an + Z Liv;, — Cxp_q — 2 L;“Uin1> + 2 (xp — Tp—1)
n i=1 i=1 N
Tnt1 = (1 = m)xn +nJIxa(pn + A2) (3.28)
for i=1,...,m.
G, = Vi, — A (Di_l’UZ'n — Liwn)
A

— ; (Dz_lfUan - len - Di_lv’in_l + Lzl‘nfl) + g(v’in - ,Ul'n—l)

Vipyr = (1 - n)vin + 77‘],\3;1 (Qin - )\’l“l)

Factoring (13.28]) we obtain exactly the iterative scheme (3.25). Next, by Theorem
2.4(i) follows that

Wy — W= (T, 01, -.,0m), (3.29)
for some w € zer (M + Q). Therefore, since = and
Ty —TE P, (3.30)
and
(Vi ey Um,,) — (V1,0 ., 0m) € D. (3.31)

(ii) We have already shown that M is strongly monotone when A and B;” ! are strongly
monotone in the last theorem. Therefore R-linear convergence follows from theorem

2.4)(ii). O
3.3 Related Problems

The following remarks are intended to describe the form that FRB and RIFRB take
in Problems, which are special cases of Problem Since the dual problem is a simple
substitution, we will only consider the formulation of the primal problem.

Remark 3.4. In Problem [3.1] let

Gi, if v=0,
Di(v) = e (3:32)
f,  otherwise.

Then
B,0O0D; = B;, with Dl-_l(Gi) = 0, beeing 0-Lipschitzian. (3.33)
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Thus, the primal problem (3.1} reduces to
m
find Z € H such that z € AT + ) L¥(By(Li& — ;) + CZ. (3.34)
i=1
e The update rule (3.9) of FRB becomes:
Qp = A+ Ap_1

Tnt1 = Ja,a (mn + Anz — (C:cn + ) Lfvin> + A1 (C:cn_1 + ) L;‘vin_1>>

i=1 i=1
for i=1,...,m.

lvi"“ = JAnle (vi,, — Anri + anLizy — Ap—1Lixp—1)
i (3.35)
e The update rule of RIFRB becomes:
Dn = Tp — 1+n (C’xn + i L;‘vin> + i (C’xnl + i L;‘vin_1> + §(:Un —Tp_1)
U i=1 " iz N
Tnt1 = (L=n)zn + nJIxa(pn + A2)

for i =1,...,m.

1+ A
v, + )\JLimn — —Lizn_1 + §(Uin — Vip_1)
n n n

i,

Vips1 = (1 - 77)Uin =+ 77J,\B;1(Qin — )\’I"Z)

(3.36)

Remark 3.5. Under the assumption given in the above remark, further consider z = 0,
r; = 0 for each i € {1,...,m}, and

Cr=0 VreH. (3.37)
Then the primal problem (3.1)) reduces to

find Z € H such that 0 € AZ + ) L (Bi(LiT)). (3.38)
i=1

e The update rule (3.9) of FRB becomes:
Qp = Ap + Ap_1

m m
Tnt1 = Jx,A <$n — oy Z Liv, + A1 Z L;"vin_1>

i=1 i=1 (3.39)

for i=1,...,m.

[Uin+l = J)\nB_—l (Uin + oLz, — )\n—lLixn—l)
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e The update rule (3.25) of RIFRB becomes:

by = 1+772Lz v + = ZL*U'Lnl

Tp+l = (1 - Tl)xn + nJ)\A(pn)
for i=1,...,m.

1+ A
Qin = Vi, t AJLZ Tp — —Lizpn_1 + §(Uz'n
n n n

Uin+1 = (1 - n)vln + 77‘])\3;1 (qln>

d\m

- $nfl)

- vin—l )

(3.40)
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4 Convex minimization problems

In this section we provide an application of the algorithms FRB, and RIFRB to convex
minimization problems by revisiting ([10], Problem 4.1). Before we start, I would like
to point out, that there is no original idea in this section, except for the adaptation of
the algorithms to the problem below, which is straightforward, as soon as the necessary
substitutions are justified. For the sake of completeness and the readers convenience, I
prefer to include relevant proofs and analysis which can be found in its original work
[10].

Problem 4.1. Let H be a real Hilbert space, let z € H, let f e T'(H), and let h: H — R
be convex and differentiable with p-Lipschitzian gradient for some p € Ry, . For each
i = 1,...m, let G; be a real Hilbert space, let r; € G;, let g;,l; € I'(G;), where [; is
V%—strongly convex with v; € Ry, and suppose that L; € Z(H, ;) is nonzero operator.
Consider the problem:

zeH

mlmmlzef Z 9i L) (Lix —r;) + h(x) — (z,2), (4.1)

and its dual problem

gF(v) + 1 (vi) + (wi,ri ). (4.2)

EMS

PP * h* . L*
o Sz, (70 ( 5, )
We start reducing Problem [4.1] to the form given in Definition by a special choice

of Hilbert spaces.

Proposition 4.2. The primal problem (4.1) and its dual problem (4.2) are equivalent

to

minirﬁize F(z) + (Go L)(x) (4.3)

xre

minirgize F*(—L*v) + G*(v) (4.4)
(S

respectively, with F' e T'(H), G € I'(G) and L € #(H,G) where
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G=G1®  ®YGnm,

L:H—>G : z— ;Lx (4.5)
i=1
L*:G->H UHiL;‘Ui, (4.6)
i=1
F:H->R : z— f(x)+h(x)—(z,2), (4.7)
G:Gg—->R : (wl,--~,wm)’—’i(gimli)(wi—ﬂ')- (4.8)
i=1
Moreover,
dom F' = dom f, (4.9)
dom G = ; dom g; + dom I; + r;. (4.10)
i=1

Proof. A simple substitution using (4.5)), (4.7) and (4.8) shows the equivalence between
[1) and (L3).

Since F is a finite addtion of functions in I'(#H), it follows that F' € I'(H) as well.
Moreover, since dom h = H, we have that

domF =dom (f +h—(-,z)) =dom f. (4.11)

The infinal convolution of convex functions is always convex, but it is not necces-
sarily lower-semicontinuous (see [I], Example 12.13). In this case, g;[(Jl; is lower-
semicontinuous since [; is strongly convex, thus by (1.59) dom [} = G; and it follows
that

P = g DT el(G) =
(9 )g ()

Thus, G € I'(G) as a finite addition of functions in I'(G;), with

9i B 1; (4.12)

dom G = >”2 dom (g; [1L;) (- — ;) = ; dom g; + dom l; + r;. (4.13)
Next, we compute thezi_rlFenchel conjugates: -
F*(u) = 2273{@,” +2) — f(x) — h(x)}
=(f+h)"(u+=2)
= O R ) (u+ 2 4.14
gy R (4.14)
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G*(v) i ;(%Dli) (i) + (vi, 1)
e ;g (v7) + I (v3) + (vi, 73 ) (4.15)
where v := (v1,...,vm) € G.

Finally, substituting (4.6)), (4.14]) and (4.15)) shows the equivalence between (4.2]) and
().

0
By the Fermat’s rule we know that
zeArgmin(FF +GoL) < 0e€d(F +GoL)(x). (4.16)
On the other hand
OF(Z)+ (L* o (0G) o L)(Z) < O(F + Go L)(Z). (4.17)

(1.23)

Observe that if there exists a solution to problem (4.3]) and we can guarantee equality
in (4.17]), then we can apply FRB and RIFRB to find a point Z € H such that

0€ OF(Z) + (L* o (0G) o L)(%). (4.18)

To this end, observe that, since domh = H, Proposition|l.35 and Proposition|l.37]
imply
OF =0d(f+h—{(-,z2)) = of + Vh — z. (4.19)
(™.
(.22)
Applying Proposition|1.35| again, this time to g + [, (recall that dom [} = G;) and
combining with Proposition [I:33] follows that for each i = 1,...,m

(O = d(gF+1F) = dgf+olf = (dg)" '+ (al;) ™
(QD)MO (9 )9 (9) @)

(0(g: O00;)) i
= 0(¢g;01;) = 0g; 1 0l;. (4.20)

Thus, by Proposition [1.29(ii)

0G(-) = X (dg; ) (- — i) (4.21)
@32
Finally
OF + L* 0 (0G)o L = —z + 0f + 2 L (0g;0L)(Liz — r;) + Vh (4.22)
=1
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The connection between Problem [3.I] and Problem [4.1]is established in the proof of
([10], Theorem 4.2) setting:

A=0f, C=Vh, andforeachi=1,...,m, B;=20dg;, D;=27l,. (4.23)

From Proposition (i) follows that the operators A and B;, for each i = 1,...,m,
are maximally monotone. The y% strongly convexity of I; implies by that [} is
Fréchet differentiable on G; with V%_—cocoercive (resp. v;-Lipschitz by ) gradient and
by Corollary[I.27] follows that

D' =(o)t = o = VIF, (4.24)
and
Bt = ogt. (4.25)

Alltogether, under the assumption of the existence of a primal solution, we can apply
Theorem and T heorem to obtain the existence of a point (Z,v) € H @ G such that

2 e 0f(z) + i L ((3g; 0L (LiZ — 7)) + Vh(Z) (4.26)

i=1

and

z— i Liv; € 0f(xz) + Vh(x)
i=1

JreH : (4.27)
Eie(agiﬂﬁli)(Lm—ri), Vi=1,...,m.
Observe that:
OF* = 0(f*h*)(-+2) = (0F) ' = (0f + Vh—2)7! (4.28)
and
*(5) — S ) () = 1) (5 49
G0) gy X AL+ r)@) 2 v X it @) (429
where r = (r1,...,rp).

Hence, combining (4.27), (4.28]) and (4.29)), we obtain

et {w eAf LM L7w) (4.30)
Liz —r;ed(gf +1F)(v), Vi=1,...,m.

which is equivalent to

(zeoF*(~L*(v))
JreM : {Lx ¢ 3G (2). (4.31)
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Applying —L to the first term in (4.31)) and summing up, we obtain
0e —L(OF*(—L*(v))) + 0G*(v) < O(F*(—L*(v)) + G*(v)) (4.32)
[T23)

and the Fermat’s rule implies

v € Argmin F* o (—L*) + G* (4.33)
Thus, ¥ is a dual solution to Problem[d.1]

Remark 4.3 (Existence of primal solution). The existence of a primal solution, is guaran-
teed, for instance by Proposition , e, if f+h— (- z) is coercive and g; is bounded
from below for each ¢ = 1,...m. Moreover, if f + h is strongly convex, then so ist
F+GolL, and has a unique solution. The coercivity of F' can be checked applying
the Moreau-Rockafellar, Theorem ([1], Theorem 14.17) which asserst that

f+h—{-z) is coercive < z € intdom (f + h)*, (4.34)

or verifying if its lower level sets are bounded (see [1], Proposition 11.12).

Remark 4.4. Suppose that (4.1) has at least one solution. Applying Proposition|1.35|(i)
we have equality in (4.17)) if, for instance,

0 € sri(dom G — L(dom F'))

) 2

< (€ sri <>< dom g; + doml; + r; — Li(domf)>
(4-10)

Moreover, if H and G;, are finite dimensional and there exists « € ridom f such that
foreachi=1,....,m
L;x —r; € ridom g; + ridom;

Then, by Proposition[I.6] follows that
0 € sri(dom G — L(dom f))

Finally, by Proposition[1.37| we have that

Jx Prox ,,

@

Jy p-1 = Prox, .
B (@) Angi

Now, that all substitutions are justified, we can continue with the application of the
algorithms from the previous section:
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4.1 FRB in convex minimization

4.5 (Solving Problem [4.1) via FRB). In Problem suppose that

Z € ran (Qf + i L} (0gi000L;)(L; . — ;) + Vh) : (4.35)

i=1
Set

B =max{u,v1,...,Vm}+

D2 (4.36)
=1

and suppose that

1—2¢

{Antnen S [5, 2/8] ) (4.37)

for some
N — (4.38)
€ Sear1 o |t .
21+ p)

Given xg,z1 € H, and v;,,v;; € G; fort=1,...,m, consider the sequence

{($N7 Vlpy - - 7U’mn)}n€N1

generated by the following recursive scheme:

ap = Ay + A1

Pn = an (Vh(xn) + ) L;‘vin) S - <Vh(xn_1) + ) L;"viM)
i=1 1=1

Tp4+1 = Prox Anf (xn + A\pz — pn) (439)
for i=1,...,m.
{yin = an(Vliv, — Lizy) — A1 (Vv — Lizp—1)

U’in+1 = Prox )\ng;k (vin - )‘nri - yZn)

Then the following hold:

(i) {(Zn,v1,,, ..., VUm,)}nen converges weakly to a primal-dual solution to Problem [{.1]

(it) Suppose that f and g} are strongly convex for eachi € {1,...,m}. Then {(Tn,vi,,- -, Vm,)}nen
converges R-linearly to the unique primal-dual solution to Problem [{.1].

Proof. (i) Since the substitutions has been justified at the beginning of this section,
the assertion follows from Theorem [3.2(i)
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(ii) The strongly convexity of f, and g; implies by Proposition|1.44|(iii) that their sub-
differentials are strongly monotone and the assertion follows from Theorem [3.2](ii)
O

4.2 RIFRB in convex minimization

4.6 (Solving Problem via Relaxed Inertial FRB). In Problem suppose
that

Z € ran <6f + i Lj‘(@gZD&lz)(Lz .= T‘i) + Vh) (4.40)

i=1
Set

B =max{u,v1,...,vm}+

m
2Ll (4.41)
i=1

Moreover, suppose that n € (0,1],£ € [0,1) and A € Ry such that

9 _

g<270 (4.42)

2+
and
2(1—-¢) —n(1 1—-¢&(1

20 np

Given xo,x1 € H, and vi,,vi, € G; fori=1,...,m, consider the sequence
{(xna Vlpy-- oy Umn)}neN

generated by the following recursive scheme:

1 m
Dn = Tp — )\‘;77 (Vh(:):n) + Z L;"wn> +
i=1

Tnt1 = (1 —n)zp + nProx \s(pn + A2)

| >

(Vh(xn_l) + 2 Lfvin1> + i(wn — Tp-1)

=1

for i=1,...,m.

1 A
Qi = Vi, — A ;77 (VI (vi,,) — Lizn) + p (VI (vi,_,) — Liwn—1) + f](vin — Vi, )

Vipyr = (1 =i, + nProx gx (g, — Ari)
(4.44)
Then the following hold:

(i) {(zn,v1,,- .., VUm,)}nen converges weakly to a primal-dual solution to Problem[{.1]
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(it) If f and g} are strongly convez, for eachi e {1,...,m}, then {(zn,v1,,...,Vm,)}neN
converges R-linearly to the unique primal-dual solution to Problem [{.1]

Proof. (i) Since the substitutions has been justified at the beginning of this section,
the assertion follows from Theorem (3.2 (i)

(ii) The strongly convexity of f, and g; implies by Proposition|1.44|(iii) that their sub-
differentials are strongly monotone and the assertion follows from Theorem (ii)
O

4.3 Naive stepsize strategy for FRB (FRBD)

The idea is very simple, since the FRB algorithm converges for any starting points xg, x1,
as long as \, satisfies (4.37)), which can be written as

Amin < M < Amax  Vn €N, (4.45)

we can try to find a good A, for the current iteration. For simplicity, denote the

recursive scheme ([4.39)) by

Tn+l1l = FRB(xna Tn—1, >\na )\n—l)

Now, we will assume that when the algorithm starts, it is important to use a big
stepsize, no matter in which direction we are moving. That means that we will break
the above restriction for a while, making use of a constant M > 1 and settting

A1 = MApax.

We also want to be able to either reduce or enlarge the stepsize depending on the
behaviour of the objective function at z,. In order to be clear, suppose that we want to
minimize the function F', and we observe that

F(ani1) < F(zp) < F(zp-1) < -+ < F(xn—p),

for some fixed positive integer p < n, then we will enlarge the stepsize in the hope of
avoid some iterations. If F(xp41) > F(z,) > F(ap—1) > -+ > F(2p—p), then we will
reduce the stepsize assuming that the current one is too large. For this enlarge/reduce
procedure we will use a finite sequence {D1,..., Dy} in (0,1]™ and two positive con-
stants, called DecMax and IncMaz, whose goal is to suggest when a new stepsize could
be more efficient.

Finally, we will always check that \,, > Anin, since if \,, becomes too small the resol-
vent is nothing but the identity and we will get stuck. After a fixed number of iterations

we will also check that A, < Amax, in order to ensure convergence.

This idea is better described with pseudocode below and in our numerical experiments
FRB with this stepsize strategy will be called FRBD.
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Algorithm 1 Current Stepsize determination in FRBD

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

procedure FRBD(zg, 1, Amin, Amax, MAXITER)

Ao = Modmax  with My > 1
)\1 = Ml)\max with M1 >1
{D1,...,Dp} e x2(0,1]
n:=2
Dec :=0
Inc:=0
Count :=1
Tn+1 = FRB(«TTL Tn-1 An )\n—l)
if F(zp+1) = F(x,) then
Inc = Inc +1
Dec =0
if Count < m then
>\n = DCount)\n
Count = Count + 1

goto 9
else
Count =1
end if
else
Count =1
Inc =0
Dec = Dec +1
end if
)\nJrl = )\n
n=n+1
if Dec = Decpax then = number of consecutive decreasing function evaluations
At1 = A1 D7Dy DY > where 1 < s <m
end if
if Inc = Incpax then = number of consecutive increasing function evaluations
Mgl = Ag1D1Ds ... D) > where 1 < p<m
end if
if )\n+1 < /\m'm then
Ay = dminhuas
end if
if n > MAXIEER then > where 1 < Ny < MAXITER
Ant1 = max{Amin, min{A, 1, Amax}}
end if
goto 9

40: end procedure
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4.4 Algorithms for comparison

In this subsection we breafly describe the algorithms, which we use to compare perfor-
mances.

4.41 Forward-Backward-Forward (FBF)

The error-free forward-backward-forward method proposed in ([10], Theorem 4.1) solves
Problem [.1] as follows:
Set

m

DL, (4.46)

i=1

B = max{u,v1,...,Um} +

let z9 € H, let (v10,....0m0) € G @ @ G, let § € (O,ﬁ), let {7n}nen be a

sequence in [6, % and set

Yin = Tn — Tn (Vh(xn) + Z Lf“i,n)

=1
Pin = Prox, r (y1,n + 1m2)

for i=1,...,m.
Y2in = Vin + 'WL(L'an - Vl;k (Uz',n))
D2in = Prox Yng (y2,i,n - ’ani) (447)

@imn = D2,in + n(Lip1n — Vi (p2,in))

Vin+l = Vin — Y2,in T q2,in-

m
Qi = Do — W(VA(pLR) + D Lip2in)
=1

| Tntl = Tp —Yin T Q10

Then the following statements are true:

i) The sequence {(Zpn,V1n,--.,Vmn)}nen converges weakly to a primal-dual solution

(Z,01,...,0m) to Problem [1.1]
ii) Suppose that f or h is uniformly convex at Z. Then z,, — Z.

iii) Suppose that ¢ or [} is uniformly convex at v; for some ¢ € {1,...,m}. Then

Vi — Vi

Remark 4.7. The results in ([10], Theorem 4.1) remain valid in the special case when
li = 1{oy and even when h = 0. (see [10], Remark 4.4).
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4.4.2 Forward-Backward (FB)

We will also use the forward-backward method proposed in ([4], Theorem 2), which is an
error-free, weights-free with \,, = 1 constant, adaptation of the algorithm proposed by
Vi (see [14], Theorem 3.1) and solves Problem [4.1| as follows:

Let 7 and o; for i = 1,...,m, be strictly positive numbers such that

m
2min{T_1,ai_1,...,J;Ll}min{,u_l,ul_l,...,V;Ll TZJiHLiHQ > 1. (4.48)
i=1
Let (20, 01,0, --,Um0) € H x G1 X -++ x G, and for any n > 0 set:
m
Pn =2Tn —T (Z L,T”Uz‘ﬂ + Vh(fl,‘n)>
i=1
Tps1 = Prox,¢(p, — 72)
Yn = 2mn-i—l — Tn (449)
for i=1,...,m.

\f]i,n = Uin + Uz[Lzyn - VZ:‘ (Ui,n)]

Vin+1 = Prox oigf (@in — oiri)

Then the following statements are true:

i) the sequence {(Zn,Vin,--.,Umn)}nen converges weakly to a primal-dual solution
(Z,01,...,0m) to Problem

ii) if A is strongly convex then z, — Z.

i) if I is strongly convex for some i € {1,...,m}, then v;,, — v;.

Remark 4.8. For the special case where z = 0,r; = 0,h = 0 and l; = 1 for each
i =1,...,m, the condition (4.48|) must be replaced by

m
T ol Li]* < 1. (4.50)

=1

as mentioned in (|4], Remark 6).
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5 Numerical experiments

In the the next two subsections, we investigate the numerical perfomance of the pro-
posed algorithnms in the context of image processing. To this end, we formulate the
"real problem" as a convex optimization, fitting the assumptions of Problem or one
of its derived problems (see Remark Remark , Remark Remark . We pro-
ceed as follows, each algorithm will be run twice. The first time for a number N = 10000
of iterations, where X* = Xy will be stored as the minimizer. The second time, they
will run until a given stopping criteria is achieved.

The the so-called root-mean-square error (RMSE), will be our measure of performance,
and it is defined as

2
. *
e S (B0 = X5) v, xey, -
! Zi,jl ' Vd .

where X, is the current iterate, | - | is the Frobenius norm and d = MN, is the
dimension of the image X € RM*N,

The quality of the restored images will be measured based on the improvement in
signal-to-noise ratio (ISNR), defined as

X-B
ISNR,, = 20log; ( | |z >

|1X = Xullr

Our stopping criteria will be RMSE,, < ¢, for some small € > 0.

(5.2)

Moreover, since the performance highly depends on the choosen parameters, when
possible, the parameters for FBF and FB will be taken from known experiments.
5.1 TV-based image deblurring

The first numerical experiment is the image deblurring problem with o data fidelity.
For a linear operator A € B(R™*" R™*™) describing the blur operator, and a matrix
B e R™*" representing the blurred and noisy image. Our task is to estimate the unkonwn
orignal image X € R™*" fulfilling

AX =B

To this end, we solve the following regularized convex minimization problem
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inf  {JAX = Bly + u (TVieo(X) + |X]3)} (5.3)

Xe[0,1]mxn
where:
e | -1 is the sum of the absolute values of X
m n
10 = D0 1Xasl,
i=1j=1

e 1 > 0 is a regularization parameters,

e TV : R™*™ — R is the isotropic total variation functional defined as

TVisol Z \/ (i1 — xig)? + (@ij — @i jp1)?

3

=1 j
m—1 n—1

+ D @i — il + D, [Tmgi1 — Ty
i=1 j=1

In our numerical experiments we used a Gaussian blur operator with odd kernel size.
Due to the symmetry of this filter we have A* = A with |A| = 1.

Problem fits the model of Problem [4.1}

o H =G =R™" with (X,Y ), := tr (X'Y).

o Gy = H@®H, with ((V1,V2), (W1, Wa))g, i= D1 (Vi, Wi )y
where tr (X) denotes the trace of the matrix X.
The functions and operators are taken as follows:

o f(X) = to1mxn(X) + u| X|7 € T(H), with dom f = [0, 1]™*"

P X f— P mxn (#X)
rOX’Yf( ) 1) [0,1] 1+2uy
(11.37)
(1.42)
o h(X)=0.

e gi(X) = |X — BJ; € T(H), with dom g = H

X) = P[le]mxn(X — ’}/B)

Prox
o1 £ [T54)
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o [1(X)=AX,
L} =Ly,
| L[z = 1.

o (VW) = pl (VW) o= pn 52 X1\ VG + W

i with dom go = Go.

=1 mxn
L 3 Pc,  where C = [ Bgz(0;p)] :

e Lo(X) = (0¥, ¢¥), where

Xiv1.— X, ifi<m Xiiz1—X;,;, ifj<n
pi{j:{ i+1,5 2, 7 and qX:{ i,7+1 1,7 ]

0 if i =m 0 if j =n

(L5(V,W)), ; = Vie1y — Vij + Wij—1 — Wi, with the convention (5.4),
HL2||Q2 = \/g

The operator Lo represents a discretization of the gradient using reflexive (Neumann)
boundary conditions and standard finite differences. The following computations are
based on (2], page 368):

m—1 n m n—1

(L2(X), (V, W)> = Z Xiy1,j — Xij V,J + Z Z t,j+1 ,J)Wi,j

<.
_
<.
Il
—
s
,_.
u
,_.

where we assumed that
Vo, =Vimj=Wio=W;p,=0 foreachi=1,...,m,j=1,...n. (5.4)
Therefore, with the convention ([5.4)

(L3 (V. W), 5 = Vi1 — Vij + Wijo1 — Wi,

and an upper bound on | Lz|| can be easily computed:

LX) = ) )

=1 j=1 i=1j=1
m—1 n m n—1
<2 YK+ X)) 2D ) (X + X))
=1 j=1 i=1j5=1
m m
2
<8 Z Z Tij
i=1j=1
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Remark[4.3] implies te existence of a unique primal solution, since f is 2u-strongly
convex and g1, g2 are non-negative. Moreover, according to Remark[£.4] we only need to
guarantee the existence of an z € ri (dom f) such that

L;x € ri(dom g;)

which is trivial, since ri (dom f) = (0,1)™*", dom ¢g; = H and dom gy = H x H.

(a) ORIGINAL (b) Blurred and noisy

Figure 5.1: (a) Original 512 x 512 astronaut.png test image, Source scikit-image,
(b) The obtained image after multiplying the original one with a blur operator
and adding Gaussian noise with standard deviation 1073, The rest show the
reconstructed image by each method after 300 iterations.

The next table shows the execution time of each method for a fixed number of itera-
tions:

Number of Iterations | FBF | FB | FRB |

100 2.415 (s) | 1.271 (s) | 1.325 (s)
200 4.843 (s) | 2.557 (s) | 2.686 (s)
300 7.373 (s) | 3.881 (s) | 3.994 (s)
400 9.735 (s) | 5.326 (s) | 5.308 (s)
500 12.276 (s) | 6.574 (s) | 6.614 (s)
600 14.64 (s) | 7.84 (s 8.0 (s)

700 17.143 (s) | 9.161 (s) | 9.559 (s)
800 19.515 (s) | 10.655 (s) | 10.785 (s)
900 22.046 (s) | 11.958 (s) | 12.273 (s)
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Figure 5.2:

Function value (per CPU Time) RMSE = %. with x™ = X10000 Elapsed Time
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g
s
8
@
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1071 10° 10! 1071 10° 10t FB FRB FRBD
Time (sec) Time (sec)
N . . X=Xo N
Function value (per iteration) ISNR = 20\0910”)«)&” Number lterations
4 —— FBF 10!
S A P B
Y] - 2500
ay FRB
Y —-- FRBD
[ RIFRB
2000
10°
1500
1000
107t
500
T T T T T T T T 0
10° 10! 102 10° 10° 10! 102 10° FRB FRBD  RIFRB
Iteration Iteration

Progress of the different methods solving for a gaussian blur operator
of 13 x 13 kernel size, standard deviation 8 and p = 0.01. The parameters
for the different methods are the following:

g =3. Y

FBF: 7, = 1=15—.

FB:7 = 0.49,01_i) 0.7 and o9 = 0.01

FRB: A, = 55—

FRBD: M =8, D = {0.97,0.95,0.93,1}, and Ay, = 167—3, Amax = %.
RIFRB:7n = 0.95 and & = 0.003.

Stopping criteria: RMSE < 0.01.
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5.2 TV-based image inpainting

We consider the following TV-regularized model

inf  TVi(X) (5.5)
Xe[0,1]™*"
MGOX=B

where M € [0,1]™"", represents the missing pixels in the noisy image B € R™*" i.e.

{O if the pixel in the i** row and the j* column of B is missing,
(2

1 otherwise.
M @®X is the Hadamard product of matrices (or pointwise product) definded for matrices

A, B € R™*™ ag follows:

@ R™" x R™*™ — R™*"
(A®B)i; = Ai;jBi;-
Problem ([5.5)) can be formulated as:
0 (F(X) + (L1 (X)) + galLa(X)} (506)
where
o H=3G =Gy =R"™" with (X,Y),, :=tr (X'Y).
The functions and operators are taken as follows:
o f(X) = 1pmxn(X) € T(H), with dom f = [0, 1]™*",

PI’OX.yf = P[071]mxn.
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| Za] = 1.

(L1(X),Y) = tr (M O X)'Y)

m n

= 1> M ;XY

i=1j=1

m n
= Z Z XijM; ;Y

i=1j=1
e go same as in deblurring problem.

e [ same as in deblurring problem.

The existence of a primal solution is guaranteed by Remark[d.3] In order to apply
Remark[4.4] we need to find X € (0,1)™*" such that

M®X =B
and this only true if M; ; = 0 whenever the value of the original image in the coefficients

(i,7) is either 0 or 1. Anyway, any number closed enough to 0 or 1 will be good enough
for our eyes. It means that we can assume that the original picture X, lives in (0,1)™*™.

(a) ORIGINAL (b) 70% missing pixels FBF

FRBD

Figure 5.3: (a) Original 512 x 512 cameraman.png test image, Source scikit-image,
(b) The obtained image after a 70% uniformly distributed missing pixel. The
rest show the reconstructed image by each method after 300 iterations.
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Function value (per CPU Time) Elapsed Time

FBF
-~ FRB

A
10t 1071 10° 10t FBF FRB FRBD RIFRB
Time (sec)
X=X .
ISNR = ZOIOQIQHXﬁk” Number Iterations

FBF FBF
- FRB —-- FRB
-~ FRBD 101 { —-- FRBD
RIFRB | ] e RIFRB

e i,

10° 10! 102 10° 10° 10! 10? 10° FBF FRB FRBD RIFRB

Figure 5.4: Progress of the different methods solving (5.6}).

The parameters for the different methods are the following:

B =3

FBF: y = 15le =

. —16_10
FRB: =15,

FRBD: M =4, D = {0.97,0.95,0.93, 1}, Amin = 252, Anax = %
RIFRB: = 0.85, ¢ = 0.0004.
Stopping criteria: ISNR < 19.

The next table shows the execution time for a fixed number of iterations:

‘ Number of Iterations ‘ FBF ‘ FB ‘ FRB ‘

200 3.086 (s) | 1.999 (s) | 1.981 (s)
300 4.584 (s) | 2.91 (s) | 2.925 (s)
400 6.128 (s) | 3.893 (s) | 3.891 (s)
500 7.666 (s) | 4.757 (s) | 4.84 (s

600 9.188 (s) | 5.664 (s) | 5.766 (s)
700 10.697 (s) | 6.593 (s) | 6.764 (s)
800 11.981 (s) | 7.417 (s) | 7.562 (s)
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Now, we solve the inpainting problem using the following model:

inf  |[MO®X — Bl + uTViso(X) (5.7)
Xe[0,1]™*™

which can also be formulated in the form of ([5.6)). This time we take:
e g1(X) = |X = BJx,
PI'OX—ygl (X) = P[_Ll]mxn(X — ’}/B)

and f, L1, g2, Lo as in the previous example.

(b) 70% missing pixels

(a) ORIGINAL

Figure 5.5: (a) Original 400 x 600 coffee.png test image, Source scikit-image, (b) The
obtained image after a 70% uniformly distributed missing pixel. The rest
show the reconstructed image by each method after 300 iterations.

The next table shows the execution time for a fixed number of iterations:

Number of Iterations ‘ FBF FB FRB
200 3.406 (s) | 2.073 (s) | 2.055 (s)
400 6.794 (s) | 4.038 (s) | 4.057 (s)
600 10.069 (s) | 5.992 (s) | 6.024 (s)
800 13.285 (s) | 7.916 (s) | 8.022 (s)
1000 16.625 (s) | 9.868 (s) | 9.983 (s)
1200 20.104 (s) | 11.768 (s) | 11.961 (s)
1400 23.468 (s) | 13.974 (s) | 13.937 (s)
1600 26.782 (s) | 15.558 (s) | 15.88 (s)
1800 30.108 (s) | 17.368 (s) | 17.818 (s)
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Function value (per CPU Time)

RMSE = 1L with x* = x30000

Elapsed Time

107t 10°

Seconds

1071 10° 10! FRB FRBD RIFRB
Time (sec) Time (sec)
. . N X = Xo .
Function value (per iteration) ISNR = ZOIOQNH)(?XJ‘I Number Iterations
~—— FBF i
—-- FRB 1014 —.- rRB
—-- FRBD
<<<<< RIFRB
s
10° :
107t
1072
10° 10t 102 10° 10! FRBD
Iteration Iteration

Figure 5.6: Progress of the different methods solving (5.7)).
The parameters for the different methods are the following:
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FBF,FB, FRB: as in the previous example.

FRBD: M =2, D = {0.93,0.89, 1}, Apin =
RIFRB: n = 0.85, ¢ = 0.0012.
Stopping criteria: ISNR, < 13.

le—2
B

’Amax—

1—1e—10
28 °



5.3 Fermat-Weber problem

The last experiment is the the Fermat-Weber problem consider in [3], which can be
expressed as the nondifferentiable convex minimization problem:

k
inf. {Z Ml - |} (58)
=1
where ¢; € R™ are given points and \; e Ry, fori=1,... k.

We will solve the following example, which was taken from ([3], Eq (41)):

C1 = (5970)7 C2 = (2070)> 3 = (_2())48)7 C4 = (_207 _48)7

(5.9)
M=X=5 M=\=13

The optimal solution is z* = (0,0) and as starting point we take x° = (44,0), which
brings some algorithms into troubles (see [3]).

This particularly example, can obviously be represented as:

4
Allz = ¢l + D Nillz — ail, with j e {1,...,4}, (5.10)
=

and we will solve this example setting:

f(@) = Ajllz — ¢

(5.11)
9i(z) = Aillz — ¢
where
Prox s (¢) & (v~ 7e) (5.12)
rox z) = T — e )
W T max (O Jz — el
with stopping criteria:
|y — ¥ <&, fore e Ry4. (5.13)

In the following figures, we show the different performances taking j € {1,2, 3,4} and
the following parameters:

1
FRB: A= —.
RB: =3

1072 1—-1012

FRBD : M =8, D = {0.95,0.93,1}, Amin = 057 Amax = 250'

RIFRB : 7 = 0.85, £ = 0.0121.
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Figure 5.7: Performances solving
a) Solution path for e = 1e-03 b) Elapsed Time (s) c) Number Iterations
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Figure 5.8:
a) Solution path for e = 1e-03 b) Elapsed Time (s) c) Number Iterations
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Figure 5.9: Performances solving
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Figure 5.11: Performances solving (5.10) for j = 3 in (5.11)) with xy = (40, 40).

40

Figure 5.12: Performances solving (5.10]) for 7 = 3 in (5.11) with zo = (40, —40).
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Figure 5.10: Performances solving (5.10) with j = 4 in (
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6 Conclusion and future work

Conclusion

1.

In section 2 we showed the linear convergence of the FRB method with variable
stepsize as well as the linear convergence of two of its variants (RIFRB and Three
operator splitting) as long as one of the operators is strong monotone.

. According to our numerical experiments in section 5, we conclude that the FRB

algorithm is very competitive, when compared to FBF and FB. Its computational
cost per iteration was similar to the FB’s one and lower than the one of FBF.

. In section 4 we described a known naive stepsize strategy to use with FRB.

. We could not see any significant advantage applying the relaxed-intertial version

of FRB.

. Even if our stepsize strategy was very simple, the FRB method with variable step-

size performed better than its variant with fixed stepsize in all our experiments.

Future Work

1.

It does not look difficult to show the linear convergence of the RIFRB method with
variable stepsize.

2. It could be interesting to find out, if the strongly monotonicity of just one of the

operators in Theorem and Theorem [3.3] would imply linear convergence in its
corresponding variable.
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