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Abstract

Analysing sequences of phylogenetic trees is not an easy task. Especially the differences between neighbouring

trees might be significant. Such sequences of trees could originate from by reconstructing trees for sliding

windows along genomic alignments, e.g., to detect recombination events. Another source might be the

sequence of trees found in a tree search during phylogenetic analysis. After obtaining such sequences of

trees, it is tedious to manually analyse neighbouring pairs of trees and to detect major transitions, changes,

or recombination events.

The main project focuses on building a tool for dynamic visualisation of phylogenetic trees like a media

player. This player enables browsing dynamically through a sequence of trees. We called this tool Phylo-

Movies.

Because it is hard to see differences between the two trees, we found ways to highlight changes in the tree

topologies so that the user can easily recognise the significant changes. Without a beneficial visual transition

using intermediates between neighbouring trees, it is hard to comprehend the differences between two trees

because the bare eye has problems identifying them. The addition of colourisation makes it easier for the

user to see where rearrangements happen. With the combination of colourisation and the intermediate steps,

it is easier for the eyes to see apparent differences during the transition. The tool will be tested by analysing

tree sequences generated by simulated and real data.

We discuss the technical realisation using Frontend-Backend structure and also the technologies used to

develop our tool called Phylo-Movies.

Furthermore we analyse three different sequences of different origin and show the use ability of Phylo-

Movies.

At the end we discuss some future extension that can be done, to further improve Phylo-Movies.
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Zusammenfassung

Die Analyse der Sequenzen von phylogenetischen Bäumen ist keine leichte Aufgabe. Insbesondere die Un-

terschiede zwischen benachbarten Bäumen können erheblich sein. Solche Baumsequenzen könnten durch

die Rekonstruktion von Bäumen für gleitende Fenster entlang genomischer Alignments entstehen, z. B. um

Rekombinationsereignisse zu erkennen. Eine andere Quelle könnten die Baumsequenzen sein, die bei einer

Baumsuche während einer phylogenetischen Analyse gefunden wurden. Nachdem man solche Baumsequen-

zen erhalten hat, ist es mühsam, benachbarte Baumpaare manuell zu analysieren und größere Übergänge,

Veränderungen oder Rekombinationsereignisse zu erkennen.

Das Hauptprojekt konzentriert sich auf die Entwicklung eines Werkzeugs zur dynamischen Visualisierung

von phylogenetischen Bäumen in Form eines Mediaplayers. Dieser Player ermöglicht es, dynamisch durch

eine Sequenz von Bäumen zu blättern. Wir haben dieses Tool Phylo-Movies genannt.

Da es schwierig ist, Unterschiede zwischen den beiden Bäumen zu erkennen, haben wir Wege gefunden,

Veränderungen in den Baumtopologien hervorzuheben, so dass der Benutzer die wesentlichen Veränderungen

leicht erkennen kann. Ohne einen vorteilhaften visuellen Übergang mit Hilfe von Zwischenstufen zwischen

benachbarten Bäumen ist es schwierig, die Unterschiede zwischen zwei Bäumen zu erkennen, da das bloße

Auge Probleme hat, sie zu identifizieren. Durch die Einfärbung wird es für den Benutzer einfacher zu

erkennen, wo Umschichtungen stattfinden. Durch die Kombination von Einfärbung und Zwischenschritten

ist es für das Auge einfacher, offensichtliche Unterschiede beim Übergang zu erkennen. Das Tool wird anhand

der Analyse von Baumsequenzen aus simulierten und realen Daten getestet.

Wir diskutieren die technische Umsetzung mit Hilfe der Frontend-Backend-Struktur und auch die Tech-

nologien, die zur Entwicklung unseres Tools namens Phylo-Movies verwendet wurden.

Weiterhin analysieren wir drei verschiedene Sequenzen unterschiedlicher Herkunft und zeigen die Ein-

satzmöglichkeiten von Phylo-Movies.

Zum Schluss werden einige zukünftige Erweiterungen diskutiert, die Phylo-Movies weiter verbessern

können.
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Chapter 1

Introduction

Experimental studies and analyses of the growing databases of viral gene sequences show that recombination

occurs in various families of viruses, and recombination has a significant impact on their evolution, emergence,

and epidemiology (Nora et al., 2007). Recombination has links to the increase of virulence (Khatchikian

et al., 1989), escape from host immunity (Malim and Emerman, 2001) and the evolution of resistance to

antivirals (Nora et al., 2007; Simon-Lorière and Holmes, 2011). Recombination forms new genomes from

the parent genomes, which consists of recombinant DNA or RNA (Simon-Lorière and Holmes, 2011). Each

fragment of the recombinant DNA is inherited from the respective parent genome. The location of the

end of a fragment and the beginning of the next fragment is a recombinant breakpoint. Every fragment

might represent a different evolutionary history, depending on the ancestor’s genomes (Simon-Lorière and

Holmes, 2011). Phylogenetic trees, diagrams representing evolutionary history among organisms, help us

detect different ancestral histories. When analysing alignments of genomes containing recombinants, the

generated phylogenetic trees for each fragment may be different and show a different ancestral history.

Fig. 1.1 demonstrates a simulated example with two recombinations. Taxon X is a recombinant of A2

and C1 with the recombination breakpoint at location 2000. Fig. 1.1.b shows that fragment ”a” (1-2000)

of taxon X is similar to taxon C1 while fragment ”b”, ”c” and ”d” (2000-7000) closely resembles those of

A2. The ancestor of B1 and B2 is a recombinant of D2 and an ancestor of A1 and A2. There are two

recombination breakpoints at locations 3500 and 5000. Fragment ”c” (3500-5000) B1 and B2 resembles with

D2, while the other two fragments ”a”, ”b” and ”d” B1 and B2 resembles with A1 and A2 (Fig. 1.1c).

The different histories of the fragments are typically depicted as phylogenetic trees as in Fig. 5.2. In

Fig. 5.2a taxon X clusters with taxon C1, in the fragment ”b”, ”c” and ”d” taxon X clusters with taxon A2.

Taxon X jumps from C1 to A2 in the trees. In Fig. 5.2a the subtree B1 and B2 clusters with the subtree A1

and A2. In Fig. 5.2c the subtree B1 and B2 clusters with D2. In Figs. 5.2b-5.2d the subtree with taxa B1,

B2, are clustering with the subtree with taxa X, A1, A2 . The subtree with the taxa B1, B2 jumps from

(A1, A2) to D2 in Figs. 5.2c-5.2d back.

While we knew the beginning and the end of the fragments of the examples Figs. 1.1-5.2, in reality,

the recombination breakpoints are unknown and need to be found. To find the recombination breakpoints

we can utilise sliding window approaches by dividing the alignment into overlapping subalignments and

constructing phylogenetic trees from those to create a sequence of phylogenetic trees (Fig. 1.2) (Lemey

et al., 2009, Chapter 16). Two consecutive phylogenetic trees that differ may indicate a recombination

breakpoint, because of two different consecutive phylogenetic trees which are generated by two consecutive

1
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Figure 1.1: Visualisation of the relation of a simulated data set with genomes A1 - X. a): Tree of the
alignment with markings where changes happen (dotted lines). b) Alignment of the genomes, grey fields
show the relation of X to other genomes. c) Alignment of the genomes, grey fields show the relation of B1
and B2 to other genomes. *A1 and A2 have switched patterns. (courtesy of H.A.Schmidt)

subalignments with different ancestral histories (see Fig. 1.2). However, not all differences in phylogenetic

trees need to be a consequence of recombination. The sliding window approaches may result in sequences of

trees. This makes a manual comparison of changes of all consecutive trees infeasible.

Visualisation is a well-known and useful tool for converting data into comprehensible graphics and thus

helping users to make sense of the original data sources or subsets of data obtained by analysis (Heer and

G. Robertson, 2007). The visualisation itself should be simple and provide enough information to see the

proper display of movement and change. We assume that looking at two static pictures of two different

phylogenetic trees is more demanding than focusing on a transition from the previous tree to the current

tree (Heer and G. Robertson, 2007; Tversky et al., 2002). Research has found that animated transitions

help viewers to be oriented (G. G. Robertson et al., 1991), support learning (Bederson and Boltman, 1999)

and decision making (Gonzales, 1996; Heer and G. Robertson, 2007).

Here we introduce Phylo-Movies, a bioinformatics tool that visualises differences in phylogenetic tree

sequences by animation. An influence for the development of Phylo-Movies was a similar visualisation tool

that has been successfully implemented and used in the field of RNA structure comparison named RNA-

Movies (Kaiser et al., 2007). In the previous example (Fig. 1.1- 5.2), we have seen that manual analysis of

trees changed by jumping taxa is very tedious and gets even worse the more taxa are present. With Phylo-

Movies, this analysis is effortless and not even limited to detecting recombinations. Sequences of changing

trees occur in different contexts, as in heuristic tree search. While searching for optimal trees, by methods

for improving them as with nearest neighbour interchange, subtree pruning and regrafting or tree bisection

and reconnection, sequences of trees are generated (Felsenstein, 2004, Chapter 4). Phylo-Movies can also

2
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Figure 1.2: A example for (different from Figs. 1.1-5.2). The brackets represent the sliding window (each
bracket is one window). From every window one tree gets formed.(courtesy of H.A.Schmidt)

identify and visualise differences between this sequence of trees.

The following section of this introduction explains the concepts involved in detail, such as recombination,

the definition of trees and data structures that depict phylogenetic trees and the tree space (Felsenstein,

2004, Chapter 4). Subsequently Chapter 2 explains how to generate animations from sequences of trees.

Chapter 3 will describe algorithms we developed to identify jumping taxa. Chapter 4 is dedicated to the

technical implementation. In Chapter 5 we apply Phylo-Movies to identify recombinations and changes in

three different tree sequences. In Chapter 6 we discuss aspects that occurred while developing and using

Phylo-Movies on specific data sets and give an outlook to future work and possible improvements.

1.1 Phylogenetics: A General Introduction

Phylogenetics is an interdisciplinary research field joining bioinformatics, biology and math that studies

evolutionary relationships between or within groups of organisms called taxa. A taxon (plural taxa) is a group

of one or more species considered by taxonomists to be a single unit. A phylogeny or phylogenetic tree depicts

the hypothetical evolutionary relationship between selected groups of taxa. In the past, scientists constructed

phylogenies on morphological characters (Lee and Palci, 2015); today, the construction of phylogenetic

trees is mainly based on nucleotide and protein sequences stored in public databases such as the NCBI

database (Wheeler et al., 2007). Phylogenetic trees must be inferred from a data set. For the construction

of phylogenetic trees, typically multiple sequence alignments are used (Schmidt, 2003). A multiple sequence

alignment is a data matrix in which molecular sequences from different species, typically with a common

ancestor, are aligned (Schmidt, 2003).

1.1.1 Recombination in RNA viruses

RNA viruses exhibit high genetic variability, primarily due to high mutation rates and large population

sizes (Holmes, 2009). The recombination process in RNA viruses corresponds to a new formation of seg-

3



mented or unsegmented RNA from parent genomes of mixed origin (Simon-Lorière and Holmes, 2011). This

recombination can occur in a single genomic segment known as RNA recombination. When this process

occurs in viruses that have segmented genomes, and there is an exchange of entire genomic segments be-

tween viruses, it will be referred to as reassortment (Simon-Lorière and Holmes, 2011). The principle of

RNA recombination and reassortments are two different procedures, requiring two or more viruses to infect

the same host cell. We will only deal with the characterisation of recombinations, and the most widely

accepted model of RNA recombination is ’copy choice’ recombination (Simon-Lorière and Holmes, 2011).

RNA-dependent polymerase RNA (RdpR) causes such viral replication (Simon-Lorière and Holmes, 2011).

The RNA polymerase switches from one RNA template to another (might have a different ancestral history)

during RNA synthesis while bound to the generated nucleic acid chain. In this way, a new mixed RNA

molecule with a different ancestry is synthesised (Simon-Lorière and Holmes, 2011). Bioinformatics methods

that search for differences in phylogenetic trees have identified RNA recombinations in RNA viruses probably

produced by a copy choice mechanism (Simon-Lorière and Holmes, 2011).

When aligning RNA or DNA of viruses and then when we utilise the sliding window approach, we can

detect RNA recombinations from different ancestors by sequentially dividing multiple sequence alignments

into overlapping subalignments (Lemey et al., 2009, Chapter 16). Subsequently, we construct a phylogenetic

tree for each subalignment, which leads us to generate a sequence of trees.

1.2 Mathematical Description of Phylogenetic Trees

1.2.1 Introduction into Trees

Trees, Nodes and Edges As explained before, phylogenetic trees are used to analyse the relation of

species. Furthermore, they can be utilised for more advanced techniques such as building phylogenetic

trees for every subalignment constructed out of a whole multiple sequence alignment to find recombination

breakpoints (Fig. 1.2). Hence, we want to explain the specific structure of phylogenetic trees.

A tree can be denoted as acyclic graph T = (V,E) (Schmidt, 2003). Trees denoted as an acyclic graph

consists of nodes V and a set E of edges. The edges are linking two nodes. The edges in a tree are e E

directed away from the root as in a directed acyclic graph (see Fig. 1.3 for the components of tree diagrams

with different layouts). We denoted edges by their adjacent nodes. The degree of a node V is the sum of

outgoing and ingoing edges. Nodes without descendants are leaves. Furthermore, they have a degree of one

because they only have one ingoing edge. Nodes with a degree greater than one are internal nodes (Schmidt,

2003).

Phylogenetic Trees Nodes in phylogenetic trees correspond to taxa and their ancestors. Leaves depict

taxa, while internal nodes in phylogenetic trees depict hypothetical ancestors. Edges, in the context of

phylogenetic trees, are called branches. They represent the development between two nodes (Schmidt, 2003),

(Felsenstein, 2004, Chapter 2). Weights are assigned to edges to depict evolutionary time (Schmidt, 2003).

When weights are assigned to a phylogenetic tree, they will be referred to as weighted trees. The weights

assigned to the branches are depicted as branch lengths (see Fig. 1.3). In Fig. 1.3a the radial elements do

not characterise evolutionary time, whereas straight lines emerging from the radials do. In Fig. 1.3b the

vertical lines characterise evolutionary time, while the horizontals do not.

Phylogenetic trees can have a root. A root node r has only outgoing edges, but no ingoing ones. If a

phylogenetic has a root node r ∈ V it is referred to as a rooted tree. However, if they don’t have a root,

4
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Figure 1.3: Tree notation on different tree diagrams of the same rooted tree topology (a) radial tree (b)
rectangular tree (c) the unrooted toplogy of the same tree.

they will be referred to as unrooted trees. See Fig. 1.3c for an example for an unrooted. In Fig. 1.3a we

can see the root node in the centre of the tree, whereas in Fig. 1.3a it is on the highest point of the tree.

All internal nodes have a minimum degree of three apart from the root node. We will focus on rooted trees

because Phylo-Movies can visualise and animate only rooted trees.

Additionally, nodes in phylogenetic trees that have three adjacent branches will be referred to as bi-

furcating, or they are bifurcations, whereas when the degree is greater than three, they are referred to

as mulitfurcations (Felsenstein, 2004; Schmidt, 2003). If a tree has a multifurcation, the tree is not fully

resolved (Schmidt, 2003). The knowledge about ancestral sequences is not existent, so phylogenetic trees

are leaf-labelled trees (Schmidt, 2003). We use the definitions as taxon (plural taxa), species, leaf inter-

changeably. Hence, the lack of knowledge of ancestral sequences is the reason that evolutionary trees are

leaf labelled trees (Schmidt, 2003).

Splits and Topology The term phylogenetic tree refers to a topology or the weighted tree. A topology

τ is defined by a taxon set X and a set of edges. There are two types of edges: external (terminal) edges

connecting leaf with inner nodes and internal edges connecting internal nodes. Suppose one deletes an edge

in phylogenetic tree results in a decomposed tree connected by two components (Kupczok, 2010, Chapter 1).

Thus a set of taxa is then segmented into two sets (X1, X2).

We term this segments as splits and define it by X1|X2. Each edge in a topology corresponds to a split.

Thus a topology τ on a taxon set X identifies by the corresponding split set (Kupczok, 2010, Chapter 1).
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Figure 1.4: Strict consensus of trees Tree 1 and Tree 2

Furthermore, that for n ≤ |τ | ≤ 2n − 3. Furthermore there are m = 2n−1 − 1 possible splits for n = |X|
taxa and a tree can only contain 2n− 3 splits, i.e. external splits and n− 3 internal splits (Kupczok, 2010,

Chapter 1). |τ | will be referred as count of splits in τ . The set of all splits for n taxa is denoted Sn and

distinguished into n terminal splits (trivial splits) and m− n internal splits (Kupczok, 2010, Chapter 1).

1.2.2 Consensus Trees

A set of trees can be summarised using consensus tree approaches (Felsenstein, 2004, Chapter 30). Here we

will later use the so-called strict consensus tree method (Felsenstein, 2004, Chapter 30). A strict consensus

tree of two trees T1 and T2 with the same taxa set is the tree that contains all splits which exist in both

trees T1 and T2.

Splits absent in both trees cannot be resolved and lead to multifurcations. Consensus trees summarise the

information contained in a set of trees. T1 and T2 in Fig. 1.4 share the same split (ABCD|EFG),(EFG|ABCD)

and (FG|ABCD). But the splits (ABC|ABCEG), (AB|CDEFG), (BCD|AEFG) and (BD|ACEFG) are

absent in one of the trees. They are deleted and result in a multifurcation in the consensus tree, as seen in

Fig. 1.4.

1.2.3 The Continuous Tree Space

Before we defined topologies and we explained that the branches of trees have lengths. For all of the examples

that will occur, we assume that there are no initial trees with the branch length zero. The set of all trees

with n leaves and branches with positive branch lengths are in the tree space Tn (Billera et al., 2001). In

the tree space Tn, every point represents a rooted tree with n leaves and branches with positive branch

lengths (Billera et al., 2001).

In the beginning, we have two trees. We aim to transform the first tree into the second one. At

the moment when the length of the branches are shrunk to zero and it reaches the same multifurcation

occurring in both trees, in tree space the trees are adjacent to each other and span a subspace in the tree

space (Felsenstein, 2004, Chapter 4). If we then insert a new branch that occurs in the second tree with a

branch length of zero and then lengthen it, we can smoothly transition from the topology of the first tree to
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Figure 1.5: Here we depict a subspace in the tree space for a tree with five taxa. Here we depict a consensus
tree lying between a segmented path leading from one tree to another. We based this figure on a previous
figure explaining the tree space in Kupczok, 2010, Chapter 1

the other (Felsenstein, 2004, Chapter 4). We define the different transition forms as paths, that can lead to

the second tree. The different paths will be discussed in Chapter 2. But all lead from one tree to another

as shown in Fig. 1.5. We shrink an internal branch until it has zero length so that we reach a subspace

of multifurcating trees (Felsenstein, 2004, Chapter 4). In Fig. 1.5 we see a subspace spanned by the splits

(CD|ABE), (AB|CDE), (AE|BCD). The two topologies (τ1,τ2) have one common split (CD|ABE). The

tree space is connected because each subspace includes the star tree in which no internal splits exists.

Distances

A function that measures the distance between two trees will be referred to as the distance function. A

distance function quantifies how different two trees are (Kupczok, 2010, Chapter 1). A certain number of

distance functions use only the topology to calculate a distance between a pair of trees, as the Robinson-

Foulds distance (D. Robinson and Foulds, 1981). Other distance functions are utilising the branch length

and the topology of the tree like the weighted Robinson-Foulds distance (D. Robinson and Foulds, 1979).

Robinson-Foulds Distance The Robinson-Foulds distance (D. Robinson and Foulds, 1981) is denoted

by the count of splits in each topology which are absent in the other topology. The set-theoretical formu-

lation would given by the symmetric difference denoted by 4 on the split set of τ1 and τ2 and the follows

RF (τ1, τ2) = |τ14τ2| = |(τ1 ∪ τ2) \ (τ1 ∩ τ2)| (Kupczok, 2010, Chapter 1). The relative Robinson-Foulds

distance is the Robinson-Foulds distance divided by the sum of all internal splits in τ1 and τ2. In Fig. 1.5
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for the pair of trees the Robinson-Foulds distance is 2 because they do not have the split (AE|BCD) and

(AB|CDE) in common.

Weighted Robinson-Foulds Distance The weighted Robinson-Foulds distance (D. Robinson and Foulds,

1979) is not only taking the topology into account but also the branch lengths (Kupczok, 2010, Chapter 1).

Hence, the weighted Robinson-Foulds distance is denoted as the sum of absolute branch length differences

for all splits in a pair of weighted trees (Kupczok, 2010, Chapter 1). Furthermore in b1 all the branch lengths

of each split in T1 will be included but also the non-existent splits in T1 existent in T2 will assigned with

zero, whereas in b2 all the branch lengths of each split in T2 will be included but also the non-existent splits

in T2 but existent in T1 will assigned with zero (Felsenstein, 2004, Chapter 30). We include branch lengths

of all present splits in both trees in b1 and b2. So the weighted Robinson-Foulds distance will be calculated

as follows:

RFw(T 1, T 2) =
∑

S∈Sn

|b1S − b2S |

The weighted Robinson-Foulds distance corresponds to the Manhattan distance (Kupczok, 2010, Chapter 1).

Paths A path between two trees T1 and T2 in Tn will be defined as a continuous function p(t) that yields

us a point on the tree space. The unit interval u is a closed interval [0, 1] which is a set of all real numbers

that are equal or greater than zero and less than or equal to one (Robert and Donald, 1967, Chapter 1).

The variable t lies in the closed unit interval u = [0, 1]. Let t ∈ u be time that we need to transition from

T1 to T2. Hence, p(t) from T1 to T2 is a continuous function from the closed unit interval u = [0, 1] which

delivers us a point on the path in Tn. Every point on the path represents a tree, so we can say in Tn that

p(0) = T1 and p(1) = T2. One can interpret the variable t as a time and the value of p(t) as the point on a

path at time t. In a sense we walk from T1 to T2 in time t.

We consider three paths Tn: Euclidean path (see Fig. 1.5 the orange line), Geodesic path (see Fig. 1.5

the red line) and the Manhattan path (Fig. 1.5 black dashed line).

The Euclidean path (see Fig. 1.5 the orange line), is the shortest path between two trees but note that

this path may not lie in the tree space and it is unclear how the intermediate states should be translated to

a tree topology (Billera et al., 2001). So we cannot use the Euclidean path.

The Manhattan path is the shortest path with the length of the Manhattan distance which allows only

vertical or horizontal moves (Krause, 1973). Therefore only one split and/or branch length is adjusted at a

time (dashed black paths in Fig. 1.5). The length of this path, the Manhattan distance, coincides with the

weighted Robinson-Foulds distance (Kupczok, 2010, Chapter 1).

The shortest possible path between two trees in the tree space is called the geodesic path, and its length

is the geodesic distance (Billera et al., 2001). It can be shown that the geodesic path between two trees exists

and is unique (Billera et al., 2001; Kupczok, 2010). The geodesic path is partitioned into two segments (see

Fig. 1.2.3 the orange line). The midpoint of the geodesic paths will be defined as the point where the first

segment ends and the second emerges that leads to T2 (see Fig. 1.2.3). For two trees with branch length, the

midpoint of a geodesic path is a consensus tree C. Therefore the path is segmented by the point where the

consensus tree C lies. But calculating the geodesic path is in the worst-case exponential, so we use a special

path in Tn known as cone path and this path can be computed in linear time (Kupczok, 2010, Chapter 1).

We assume that the cone path in Tn, is a good approximation of the geodesic distance (Kupczok, 2010,

Chapter 1) for our usage. The way how the cone path is used will be described in Chapter 2. This chapter

will also explain how we use the cone path for our visualisation.
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Figure 1.6: An example of how a phylogenetic tree can be described with a corresponding Newick string.

1.2.4 File Formats for Depicting Trees

We are taking the two file formats which are known as Newick (Felsenstein, 2004, Page 590) and Nexus (Mad-

dison et al., 1997) for our visualisation of trees into account because they can define a sequence of trees. So

the user can define both initial trees in Newick or Nexus in one file instead of uploading separate files for

every tree.

Newick Format

The Newick format represents trees in computer-readable form (Felsenstein, 2004, Page 590). We took some

parts of the explanation and the example from the website: https://evolution.genetics.washington.edu/

phylip/newicktree.html. The format takes advantage of the correspondence between the hierarchy of trees

and nested brackets. The Newick format represents a phylogenetic tree as a sequence of nested brackets and

taxa labels. For example, the tree in Fig. 1.6 is represented by the Newick string ”(B, (A, C, E), D);”. Each

Newick string is terminated with a semicolon. A pair of matching parentheses represent the inner nodes of a

phylogenetic tree. Inside these brackets are comma-separated representations of nodes that descend directly

from that inner node. In Fig. 1.6 the immediate descendants of the root are the internal node B and the

leaf D. The second internal node is represented by a pair of parentheses enclosing its next descendants A, C,

and E. But the descendant’s A, C and E could also be inner nodes. We could do this by creating a nested of

parentheses at each level. A real number indicates the branch length of a branch after a colon (Felsenstein,

2004, Page 590). Because semicolons delimit Newick Tree strings, thus files can easily contain sets of trees.

This is one of the possible input formats for Phylo-Movies. (see Listing 1.1).
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(((A:4.0,B:4.0):1.0,C:3.0):4,(D:5.0,E:4.0):3.0,F:11.0);

(((A:4.0,B:4.25):0.00000,C:3.0):4,(D:5.0,E:4.0):3.0,F:11.0);

((A:4.0,B:4.25,C:3.0):4,(D:5.0,E:4.0):3.0,F:11.0);

Listing 1.1: Here we can see a sequence of Newick strings. Due to the fact that we want to visualise a
sequence of trees, the user has to define a set of Newick strings.

#NEXUS

BEGIN TAXA;

DIMENSIONS ntax=6;

TAXLABELS A B C D E F;

END;

BEGIN TREES;

TREE tree_1 = (((A:4.0,B:4.0)3:1.0,C:3.0)2:4,(D:5.0,E:4.0):3.0,F:11.0);

TREE tree_2 = (((A:4.0,B:4.0)3:1.0,C:3.0)2:4,(D:5.0,E:4.0):3.0,F:11.0);

TREE tree_3 = ((A:4.0,B:4.25,C:3.0):4,(D:5.0,E:4.0):3.0,F:11.0);

END;

Listing 1.2: In the block BEGIN TREES we see a list of Newick Strings.

NEXUS

The second file type a user can use as input for Phylo-Movies is NEXUS (Maddison et al., 1997): The

primary design feature of a NEXUS file is based on multiple blocks (see Listing 1.2). Nexus is very versatile

and can contain many more blocks than those listed here. These blocks are represented by text and display,

for instance, TAXA, CHARACTERS, and TREES. The tree block in a NEXUS file uses Newick strings to

denote the trees (Maddison et al., 1997).
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Chapter 2

Generating Intermediate Trees

In the last chapters, we explained phylogenetic trees defined in the tree space. We want to use the tree

space to construct intermediate trees between a pair of trees. We use intermediate trees to create a sequence

of images that describes the transition from one tree to another. Animation is a sequence of consecutive

pictures that depict intermediate states between a beginning and an end (Wells, 2013). These consecutive

pictures depicting the transitions, when played quickly, lead to an animation that shows the transition from

one to the other.

To animate the difference between two phylogenetic trees, we need to create intermediate trees that show

the transition from one tree to another. We call the first tree T1 and the second tree T2. So we want

a transition from T1 to T2. We are generating four intermediate trees. These intermediate trees can be

created by following a path in the tree space (see Section 1.2.3 for a description of the tree space). In further

sections, we explain how we transition from one tree to another. Creating intermediate points on a path is

also known as interpolation. Interpolation is the process of creating data points due to the range of a finite

set of data points (Richard, Andrew, et al., 1994, Page 800). So constructing a path from the known point

”a” to ”b” in tree space is the same as interpolating between points a and b. By constructing a series of

intermediate trees from a pair of trees, we create the animation of the transition from one tree to another.

By this interpolation, we try to adhere to the principles Congruence and Apprehension of Tversky et al.,

2002 for effective animations. In our animation in Phylo-Movies, we try to maintain valid graphics of trees

during the transitions. We prevent misunderstandings about the animation by maintaining valid graphics,

therefore preventing the user’s attention disruption.

2.1 Method for Generating Dynamic Tree Visualisation

2.1.1 Layout Calculations

When visualising or drawing a tree on a canvas we need to specify coordinates for each node and draw lines

between adjacent nodes. A canvas has two dimensions: a height and a width. We call a function that defines

the position of each node a layout function L. The layout function correspond to L : Tn → R2. We consider

two layouts: rectangular, circular (Figs. 2.2-2.1).

While the layouts have a different appearance, they provide the same information. The horizontal lines

describing the branch length in a rectangular tree are the same as the straight lines emerging from the radial

lines (curved lines). While radials in the radial tree express how related two taxa are with each other, this
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Figure 2.1: Displaying an example for a radial layout of a phylogenetic tree.
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Figure 2.2: Displaying an example for a rectangular layout of a phylogenetic tree

will be explained by the vertical lines in the rectangular layout. The right side of a rectangular layout has

more nodes than the left side in the rectangular layout. In contrast, the leaves in a circular layout are evenly

distributed around a circle, it can be seen in Figs. 2.1-2.2. In Phylo-Movies, we decided to use the radial

layout. With the radial layout, the density of nodes is better distributed than in a rectangular layout, which

gives users the ability to display more taxa in a graphical, more pleasant way. Additionally, the radial layout

provides us with the possibility that when we animate the branches along the radial, the movement is easier

to trace and that while we are animating, the trees are valid.

We can easily describe the circular layout in polar coordinates (Richard, Andrew, et al., 1994, Chapter 11),

consisting of an angle and a radial where the midpoint of the canvas (in Cartesian coordinates (0,0)) is the

centre of the canvas. Instead of straight lines, circular arcs are naturally arising. The formerly horizontal

lines now radiate from the centre of the circle. To calculate the radial layout of the trees, we proceed as

follows: Initially, the radius of each leaf is set to the length of the width or the height of the canvas, according

to which value is smaller. Then the radius of each internal node is calculated depending on their cumulative

branch length from the root up to their ancestor nodes. Then all the angles are calculated. Each leaf is

assigned an index according to the topological linear order. The angle of a leaf in the radial layout with

the index i is i2π/|leaves|. The angle of an internal node is the mean of all its child nodes and leaves’

angles. Finally, the radius is scaled based on the canvas’s minimal dimension, and the polar coordinates are

translated to Cartesian coordinates.
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tree pair. b) - e) The transition trees that are constructed by the program to simplify visualisation. The
circles filled with orange and with a blue stroke are indicating where the branch with the length zero lies,
which will emerge or will be deleted in the transition.

2.1.2 Combining the Cone Path with Layouting

A path from T1 to T2 in the tree space is only dependent on the topology and the branch lengths, the layout

of a tree depends on the circular order of its taxa. The cone path is segmented into two paths, but for a

continuous animation, there needs to be an intermediate step to change the circular order of leaves of T1 to

T2. To define a continuous interpolation, we utilise four intermediate trees between the two input trees.

The intermediate trees are intermediate tree 1 IT1, consensus tree 1 CT1, consensus tree 2 CT2 and

intermediate tree 2 IT2. We call the two input trees full Tree 1 (FT1) and full Tree 2 (FT2). For the

transformation we now have three trees FT1, C, FT2. Recall that C is the consensus tree constructed by

following the cone path. Because the circular order of the leaves of FT1 and FT2 may differ, one consensus

tree is insufficient. So we decided to construct two consensus trees. The two consensus trees CT1 and CT2

are isomorphic but differ in the circular order of the taxa. The circular order of C1 follows that of T1 and C2

follows that of T2. Additionally, the layout of taxa also depends on the topology and is different depending

on whether a branch length is zero or not existent. To compensate we define the trees intermediate tree 1

and 2 (IT1 and IT2). IT1 has the same topology as T1. If a branch exists in T1 and T2, we set the length of

the branch to the average. If a branch is present in T1 but not in T2, the length of that branch is set to zero

in IT1 . So in the animation, we shrink the branches from their initial branch length to zero. The branches

present in T2 but not in T1 are set to zero in IT2. The branches existent in T2 but are absent in T1, will be

inserted from the transition from C2 to IT2, with the branch length zero. Then if we transition from IT2 to

T2, we lengthen these branches. So, T1 is to linear IT1 and IT2 is linear to T2, but C1 is not linear to C2

because only the order of the leaves is different.
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2.1.3 Example on the Individual Steps

The first transition tree IT1 (Fig. 2.3b) has the same topology as T1, but the branch lengths of the branches

present in T1 and T2 have the average branch length of the length which they had in T1 and T2. The split

representing a branch that exists in both trees without the trivial splits is (ED|ABCF ). The existing split

in T1 but not existing in T2 is (AB|CDEF ). Because there is no corresponding branch in T2, the length is

set to zero. This can be observed in the split (AB|CDEF ) (Fig. 2.3b). The second transition tree Fig. 2.3c

is the first consensus tree C1. As we can see, there is a multifurcation, since the split (AB|CDEF ) is absent

in T2 and the split (AC|BDEF ) is absent in T1. The branches set to zero in the previous tree have now

been deleted. The third transition tree (Fig. 2.3d) is the second consensus tree. However, this time, the

order of taxa within the multifurcation is determined by the order of T2. The fourth transition tree IT2

(Fig. 2.3f) has the same topology as the second tree, but its branch lengths are still the intermediate lengths,

and the branches that are not present in T1 have length zero as seen in the split (AC|BDEF ) representing

the branch which is set to zero in IT2. Moving from tree IT2 to T2, we assign lengths to the branches that

had length zero, and we assign the branch lengths of T2 to the branches that are present in both trees.
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Chapter 3

Highlighting Changes in Topologies

In the previous chapter, we defined how to interpolate from one tree to another to create a continuous

animation. Just from the movement of subtrees and taxa in the animation it is hard to comprehend the

actual transformation between two trees and to deduce the relocating taxa causing the topological changes

from one tree to another. Therefore, we want to identify and highlight those taxa that move between the

two trees. In this chapter we develop an algorithm to find jumping taxa in two steps. In the implementation

of Phylo-Movies, this algorithm is used to highlight those jumping taxa.

3.1 Central Idea of the Algorithm

The same terminology as in Chapter 2 is used. But the input trees will be referred as full tree 1 (FT1) and

2 (FT2). We assume that all branches have non-negative branch lengths in FT1 and FT2. We call a branch

with length zero a zero-branch and a branch with a length greater than zero a positive branch. We denote

an s-edge a branch (in an intermediate tree) with positive length, and at least one child branch with length

zero. Since s-edges have positive branch lengths, they exist in FT1 and FT2. We denote the opposite tree of

FT1, FT2, whereas the opposite tree of FT2 will be FT1. The opposite tree IT1 will be IT2 and the opposite

tree of IT2 will be IT1.

We categorise s-edges by their direct child branches. We call an s-edge with at least one positive child

branch a partial-s-edge (Fig. 3.1) and s-edges with only zero child branches a full s-edge (Fig. 3.2). There

are cases where the s-edge’s corresponding edge in the opposite tree has only child branches with positive

values, they will be referred to as non-s-edges (Fig. 3.3). We call an edge with branch length zero and

which children’s branch lengths are all positive an anti s-edge (see red branch in Fig. 3.1), as the definition

of an anti s-edge (Fig. 3.1) is formally the logical negation of the definition of an s-edge.

Given an s-edge in FT1 or FT2, we call the same edge in the opposite tree the corresponding edge. Note

that the corresponding edge does not need to be an s-edge in the opposite tree (for an example see Fig. 3.3).

The leaf set of a branch is the set of all taxa in the subtree to which the branch leads. The components of

a corresponding edge are the leaf sets of its adjacent positive descendant branches (e.g., colourised blocks in

Fig. 3.2). The component set of a child branch of an s-edge is called one of the s-edge’s arm.

A zero branch carries information about the taxa movement, indicating that a split changed and is either

absent in FT1 or FT2. As the zero branches might be absent in one or both trees, we need a branch that

exists in IT1 or IT2 to investigate. The ancestor of the zero branches is either a zero branch itself or an
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Figure 3.1: Example: A subtree (X1, X2) jumps directly to the s-edge. Here we can see when the subtree
jumps directly to the s-edge, it becomes a partial-s-edge (blue edge). One of the children leading to the
subtree (X1, X2) has a positive branch length, whereas the other child is zero-branch, leading to an anti
s-edge.

FT1

O1 O2 AB C F E G DH

3

2 1

41

1

1

2 2

FT2

O1 O2 AB C D E F G H

3

2 1

2

2

1

4

1

3

G jumps into the edge of F
FEG jumps into the edge of D 

Arm Arm ArmArm 
 

O1 O2 AB C F E G D H O1 O2 B C D E F G H

IT1 IT2

3

2 1

00

1

02

3

2 1

0

2

0

1

0

A

0 0

IT1 First IT1 Second IT2 Second IT2 First

full-s-edge 

}

Arms for full-s-edge Arms for full-s-edge

}

partial-s-edge 

full-s-edge 

partial-s-edge

full-s-edges - partial-s-edges

Figure 3.2: This figure shows an example of a full s-edge. E, F, and G. So one full s-edge and a partial-s-edge
are emerging. As we can see, the full s-edge has only zero children branches.

16



anti s-edge

partial-s-edge

non-s-edgepartial-s-edge & non-s-edge

O1O265432BA 1

IT1
anti s-edge

partial-s-edge

IT1

O1O2654321A B

non-s-edge

O1O2654321BA O1O2654321A B

A or B jumps into his ancestor edge

F T 2
FT1

Arms of 
the partial s-edge

Arms of 
the anti s-edge
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which means that it results in IT1 of an emergence of a partial-s-edge, whereas in IT2 it leads to corresponding
non-s-edge, because external branches cannot be missing, so they cannot become zero edges.

s-edge. We examine this s-edge, which exists in FT1 and FT2. Intuitively the jumping taxa or subtrees must

have switched from one arm to another arm of the s-edge.

We utilise set operations to compare the taxa of the arms. Which set operations to use in which cases

will be developed in the upcoming sections. It does not matter whether a single taxon jumps or an entire

subtree. The definition of components captures both because the positive descendant branch of an s-edge

can lead to a taxon or a subtree. Instead of finding jumping taxa, we want to find jumping components,

which also could be a single taxon. Note that within a component, more than one jump may occur. However

this does not influence that all types of the component jump as a whole.

3.2 The Initial Approach

The first version of our algorithm to identify taxa that jumped proceeds as follows. The explanation of

the algorithms is denoted in pseudo-code as for example in Algorithm 1. Each declaration of a variable

is followed by colons, after the colons a data type for the declared variable is set. In our algorithms, the

smallest units are the components. A set of components is therefore defined as an arm. Components will be

denoted by C, its arms will be denoted by Set[C], and the set of arms will be defined by Set[Set[C]].

In Algorithm 1 in Line 2, we declare a set called c2, with a set of arms. We first construct IT1 and IT2

from the input trees FT1 and FT2. Then we traverse IT1 and IT2, collect all s-edges and their corresponding

edges and store them in a set.

For each pair of corresponding edges, we traverse IT1 and IT2 and collect the arms and store them
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Algorithm 1 Considering the intersection and symmetric difference of the component sets of the s-edges
the IT1 and IT2. t1 is input tree1, t2 is input tree 2, e is the s-edge.

1: procedure InitialApproach(t1,t2,e)
2: c1 : Set[Set[C]] = GET the set of arms for the s-edge e in reference to t1
3: c2 : Set[Set[C]] = GET the set of arms for the s-edge e in reference to t2
4: v = {}
5: for each arm1 in c1 do
6: for each arm2 in c2 do
7: ADD arm1 ∩ arm2 TO v
8: ADD arm1 4 arm2 TO v
9: end for

10: end for
11: m : Set[Set[C]] = GET the component with the highest frequency in v
12: r : Set[Set[C]] = GET the component with the least count of components in m
13: rr = UNITE the components of r
14: return rr
15: end procedure

in c1 and c2 (Algorithm 1 Lines 2-3). Then, for each pair of arms arm1, arms2 ∈ c1 × c2, we compute

the intersection arm1 ∩ arm2 and the symmetric difference arm14arm2 of components and store them in

v (Algorithm 1 Lines 7-8). We retain how often an element is stored in v. Subsequently we get the component

set with the highest frequency in v and discard all the other component sets (Algorithm 1 Line 11). If there

are multiple components sets, also referred to as candidates we get the sets with the least components

(Algorithm 1 Line 12). We assume that the component set with the least components is the reason for the

topological change. Afterwards each taxon of the component set is returned as the jumping taxa of this

s-edge (Algorithm 1 Line 13).

Fig. 3.4 shows an example application of Algorithm 1. E, F and G jump into D and G jumps into

F (Fig. 3.4a). There are two s-edges, s-edge 1 and 2 (Fig. 3.4b). For each s-edge the component sets are

calculated and visualised by colourised blocks (Fig. 3.4c). The components in Fig. 3.4 for the s-edge-1 in

tree IT1 are {A,B}, {C}, {E,F,G}, {D} and {H}, whereas the components in IT2 are {A,B}, {C}, {D},
{E,F,G}, {H}. The various components are distributed in different arms. Each block is one component,

and the colour indicates whether the component is in arm 1 or arm 2 (Figs. 3.4c and 3.4d). For s-edge 1 two

arms in IT1 and IT2. The first arm in IT1 has the components {{A,B}, {C}, {E,F,G}}, the second arm

has {{D}, {H}}. For the s-edge 1 in IT2 we have {{D}, {E,F,G}, {H}} and {{A,B}, {C}}. For each pair

of arms of IT1 and IT2, the intersections and symmetric differences are calculated (Fig. 3.4e). For example

the arm {{A,B}, {C}, {E,F,G}} will be intersected with the arm {{D}, {E,F,G}, {H}}, which results in

{{E,F,G}}. Whereas the symmetric difference for the pairs of arms would be {{A,B}, {C}, {D}, {H}}.
At last for each s-edge, the component set with the highest frequency is returned (Fig. 3.4f). In example

Fig. 3.4, for s-edge 1 only one component set occurs with highest frequency, which is {{E,F,G}}. If there

were multiple component sets with the same frequency, we would choose a component set with the least

amount of components.

In some cases, this algorithm produces wrong results. The algorithm computes the intersection and

symmetric differences of each corresponding s-edge and considers all components as candidates. In Fig. 3.5e,

we can see how the Initial Approach chooses the wrong results. Components sets containing taxa that have

not moved (in Fig. 3.5 for example A1) are returned. Hence we improve the part of the algorithm where the

calculation of the correct candidates takes place (Fig. 3.4f) in the following sections.
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Algorithm 2 FinalApproach, differentiating between different types of s-edges and then calculating the
jumping taxa with three different algorithms. t1 is input tree1, t2 is input tree 2, e is the s-edge.

1: procedure FinalApproach(t1,t2,e)
2: if isFullSedge(t1,e) or isFullSedge(t2,e) then
3: result = InitialApproach(t1,t2,e)
4: end if
5: if isPartialSedge(t1,e) and isPartialSedge(t2,e) then
6: result = calculateResultPartialPartial(t1,t2,e)
7: end if
8: if isPartialSedge(t1,e) and isNonSedge(t2,e) then
9: result = calculateResultPartialNon(t1,e)

10: end if
11: if isNonSedge(t1,e) and isPartialSedge(t2,e) then
12: result = calculateResultPartialNon(t2,e)
13: end if
14: return result
15: end procedure

3.3 Final Approach

In the Initial Approach, we treated each s-edge’s components of an arm as a possible solution candidate.

In simple cases (which can be correctly highlighted by the Initial Approach), all children of the s-edge have

length zero. However as we can see in Fig. 3.5 this produces wrong results. We observe that if a subtree or

taxon relocates itself directly to the s-edge not all child branches are becoming zero-edges (see Fig. 3.5). The

branch of the subtree or leaf that jumped directly to the s-edge is a positive branch (see Fig. 3.6a). Thus, an

s-edge where a subtree directly jumps to is now identified as a partial-s-edge (see Fig. 3.1). This direct jump

leads our calculation in the Initial Approach to be insufficient to generate possible solutions. We look in IT1

and IT2 from what type of edge the components descent from. If the components descent from the expected

edges in IT1 and IT2 , we store them, whereas the components that will be discarded (see Fig. 3.6c). By

discarding the components in arms, it is possible to calculate component sets that indicate taxa which may

have caused the change in a pair of trees. By our investigation, we identified as a crucial step to distinguish

between the different types of s-edges that we have defined in Section 3.1.

In the Final Approach for the types of s-edges in IT1 and IT2 we use different strategies (see Algorithm 2).

There can be alternating permutations of corresponding s-edges in two trees. For example in the tree IT1, the

s-edge can be partial whereas the corresponding edge in IT2 can be a non-s-edge. Hence in Final Approach,

we traverse IT1 and IT2 and collect the corresponding s-edges. Then for every corresponding s-edge in

IT1 and IT2, we identify the type of the corresponding s-edge to determine the right strategy. It happens

when finding a partial-s-edge in IT1 (see Fig. 3.7 blue edge in IT2) or IT2 and its corresponding s-edge is a

non-s-edge (see Fig. 3.7 orange edge in IT2). This situation occurs when the non-s-edge’s children external

branches because all external branches leading to leaves have positive length. We have three procedures;

if the s-edge in IT1 or IT2 is full s-edge, we use the Initial Approach (Algorithm 1). In the case that in

both trees the corresponding s-edges are partial we use the calculateResultPartialPartial procedure see

(Algorithm 3). In the case if in one of the two trees is a non-s-edge and in the other a partial-s-edge we are

using the calculateResultPartialNon procedure (Algorithm 4).
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Algorithm 3 calculateResultPartialPartial for the case if both s-edges are from the type partial.
t1 is input tree1, t2 is input tree 2, e is the s-edge.

1: procedure filterCond(c1, t1, t2)
2: for each arm in c1 do
3: for each component in arm do
4: REMOVE component if not descendent of anti s-edge in t2 and not a descendent of an partial-

sedge in t1
5: REMOVE component if not descendent of anti s-edge in t1 and not a descendent of an partial-

sedge in t2
6: end for
7: end for
8: return c1
9: end procedure

10: procedure calculateResultPartialPartial(t1,t2,e)
11: c1 : Set[Set[C]] = GET the set of arms for the edge e in reference tot1
12: c2 : Set[Set[C]] = GET the set of arms for the edge e in reference to t2
13: cf1 : Set[Set[C]] = FilterCond(c1, t1, t2)
14: cf2 : Set[Set[C]] = FilterCond(c2, t1, t2)
15: v =
16: for each arm1 in cf1 do
17: for each arm2 in cf2 do
18: ADD arm1 ∩ arm2 TO v
19: ADD arm1 4 arm2 TO v
20: end for
21: end for
22: DELETE ALL EMPTY SETS in v.
23: rh : Set[Set[C]] = GET the arm with the highest frequency in v.
24: rf : Set[Set[C]] = REMOVE every component except the last one in rf
25: rr = UNITE the components of rl
26: return rr
27: end procedure

3.3.1 Partial-Partial Procedure

The calculateResultPartialPartial procedure (see Algorithm 3) will now be explained in detail. For

each corresponding s-edge of IT1 and IT2 we traverse IT1 and IT2, collecting the arms as in the Initial

Approach and store them in c1 and c2 (see Algorithm 3 Line 11). In the partial-partial case we restrict the

components. We collect the components of the arms of c1 which are direct children of anti s-edges in IT2

and of partial-s-edges in IT1 to store them in cf1. For the components in the arms of c2, we are only taking

the direct children of anti s-edges in IT1 and of partial-s-edges in IT2 and store them in cf2 (see Algorithm 3

Lines 12-13). Then for each arm1 and arm2 in cf1 and cf2, we compute arm1 ∩ arm2 and arm14arm2

and store the result in v (see Algorithm 3 Lines 16)-21). Then we take the component sets with the highest

frequency and store them in rh (see Algorithm 3-Line 23). Note that, there may be several candidates, that

can explain the topological change. Because we only want to indicate one solution, we consider the last

element as solution and assign it to rf (see Algorithm 3 Line 24). From the component set rf the names of

taxa will be extracted and stored in rr and then rr will be returned.

Fig. 3.6 shows an example of the usage of the calculateResultPartialPartial in the Final Approach,

where the subtree of taxa (X1, X2) jumps into A3 (Fig. 3.6a). There is only one corresponding s-edge in this

example (Fig. 3.6b blue edges). We calculate for each s-edge the component sets, visualised by colourised
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blocks (Fig. 3.6c). The components for the partial-s-edge in IT1 in Fig. 3.4c are {A1}, {A2}, {A3} and

{X1, X2}, whereas for IT2 they are {A1}, {A2}, {A3} and {X1, X2}. Some of the blocks are crossed out

because they are not direct children of an anti s-edge in IT1 and not direct children of a partial-s-edge in

IT2 or conversely not direct children of an anti s-edge in IT2 and not direct children of a partial-s-edge

IT1. We can see in Fig. 3.4e in IT1 the components in the second arm have these requirements {{X1, X2}}
(Fig. 3.6.c blue block), whereas no component fulfils the requirements in the second arm, so the arm and all

of its components will be discarded. The same happens for the second arm in IT2 and only the arm with the

component {X1, X2} is left, represented by Fig. 3.6.c by the not crossed out green block. Then we proceed

by calculating for each arm the intersections and symmetric differences (Fig. 3.6e). So we calculate the

intersection for the component in the arms of IT1 and IT2, which is {{X1, X2}}∩{{X1, X2}} = {{X1, X2}}
and the symmetric difference {{X1, X2}}4{{X1, X2}} = {{}}. For each s-edge the component set with the

highest frequency is returned. We take the last component set if the resulting set still has more components

than one. In Fig. 3.6g the only left component set is {{X1, X2}}, which in our case is the result.

3.3.2 Partial-Non and Non-Partial Procedure

For the situation where either in IT1 the s-edge is partial whereas in IT2 it’s and non or vice versa we use the

calculateResultPartialNon (see Algorithm 4). In the calculateResultPartialNon algorithm, we collect

the arms of the tree with the partial-s-edge because we assume that the relevant information for finding the

component set explaining the topological change is embedded in there. So we will only use the tree with the

partial s-edge for finding the jumping taxa. We consider for this explanation that IT1 is the tree with the

partial-s-edge. So first we collect the arms in IT1 and store them in c1 (see Algorithm 4 Line 2).

We divide the arms c1 that are direct children of the partial-s-edge and those of the anti s-edge and

store them separately in two different variables. In Fig. 3.7c we can see that in IT1 the partial-s-edge is

marked blue and the anti s-edge red. The arms of the anti s-edge will be stored in cfanti and the arm of the

partial-s-edge will be stored in cfpartial (see Algorithm 4 Lines 3 and 4). Then we unite all the arms that are

stored in cfpartial to one arm (see Algorithm 4 Line 5). Then the arms of cfanti and cfpartial will be stored

in v (see Algorithm 4 Line 6). We take the arm with the least components as a result, because we assume

the minimal count of jumps of the components is the reason for the topological change (see Algorithm 4

Line 8). After converting the component set to a taxa set we are returning it as a result (see Algorithm 4

Line 9).

Fig. 3.7 shows how the calculateResultPartialNon procedure proceeds in calculating the results in the

Final Approach, where in tree FT1 the subtree with the taxa A or B jumps into his ancestors (Fig. 3.7a).

For the s-edge in IT1 the arms with its components are collected, visualised by colourised blocks (Fig. 3.7c).

We have 8 arms, two of the anti s-edge {{A} {B}} and the other six arms of the partial-s-edge

{{{1}}, {{2}}, {{3}}, {{4}}, {{5}}, {{6}}}. Then we unite the arms of the partial-s-edge

{{{1}}, {{2}}, {{3}}, {{4}}, {{5}}, {{6}}} to one arm {{{1}, {2}, {3}, {4}, {5}, {6}}} (Fig. 3.7d). Then we

put all arms in to one set (Fig. 3.7d). In Fig. 3.7d the combined set of arms is

{{{A}, {B}}, {{1}, {2}, {3}, {4}, {5}, {6}}}. Then choose the the arm, with the least components (Fig. 3.7d),

which in our example is the arm {{{A}, {B}}}. We take the last component as a result, because only one

of the components is required to explain why the topology changed. In our example this is the component

{A}.
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Algorithm 4 calculatePartialNon for the case if one of the s-edges are from the type partial and the
other non. t1 is input tree1, e is the s-edge.

1: procedure calculateResultPartialNon(t1,e)
2: c1 : Set[Set[C]] = GET the set of arms for the edge e in reference to t1
3: cfanti : Set[Set[C]] = FILTER components in c1 that are no descendant of anti s-edges in t1.
4: cfpartial : Set[Set[C]] = FILTER components in c1 that are no descendant of partial-s-edges in t1
5: cfpartialu : Set[Set[C]] = UNITE all component sets in cfpartial to one component set.
6: u : Set[Set[C]] = cfpartialu ∪ cfantir
7: umin : Set[Set[C]] = GET the item with the least components sets ut
8: r : Set[Set[C]] = REMOVE every component except the last one in umin

9: rr = UNITE the components of rl.
10: return rr
11: end procedure

Case Initial Approach Final Approach

Case-1 Worked Worked
Case-2 Worked Worked
Case-3 Worked Worked
Case-4 Worked Worked
Case-5 Fail Worked
Case-6 Fail Worked
Case-7 Fail Worked
Case-8 Worked Worked

Figure 3.8: Table showing for which case the Initial approach or the Final approach worked. For a detailed
view, please see the appendix.

Removing Taxa and Reiterate After identifying the taxa to be highlighted, we remove them from FT1

and FT2. Subsequently, we recalculate the intermediate trees and traverse the new IT1 and IT2 and identify

further s-edges because, in an s-edge, more than one relocation of taxa may have happened. So if we find

further s-edges, we repeat the Final Approach algorithm, whereas when not, we can stop. The pruning is

done via the ETE3 toolkit (Huerta-Cepas, François Serra, et al., 2016b).

3.4 Testing the Algorithm

We created a test data set of tree pairs to compare the algorithms more methodically. The trees cover a

range of complexities: nothing jumps, one taxon jumps, two taxa jump, one subtree jumps, two taxa swap

positions in two separate subtrees, two taxa jump independently in two subtrees. Initial Approach finds

taxa that jumped in the full s-edge cases, whereas when we started to construct trees where partial-s-edges

occur, it was incapable of solving them. The Final Approach can detect jumping taxa in the cases of partial-

s-edges. There could be phylogenetic trees that could lead to unforeseen results. There has to be further

investigation on pathological cases that leads The Final Approach to produce wrong results. In the cases that

we constructed, our Final Approach yields the expected results. We display the examples in Appendix A.

We can see in Table 3.8 that all of the cases are solved by the Final Approach whereas, the Initial Approach

is not yielding the right results in some cases. This is because the Initial Approach is not pruning the trees

and is also not recalculating if there are some s-edges. Also, the differentiation between s-edges can lead to

different results in both trees.
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We have summarised in Appendix A a few examples that were relevant in the development of the

highlighting algorithm. The pictures were generated with ETE3 (Huerta-Cepas, François Serra, et al.,

2016a). One example is shown per page and the result of the algorithm. You can see the first initial tree

(FT1) and the second one (FT2) on the left side. But also the differentiation of the strategies for the

different types of s-edges, shows the differences. As it can bee seen in the cases Sections A.5, Sections A.6,

Sections A.7.

Specific taxa are marked in colour. The taxa marked in green are taxa that have been correctly identified.

Taxa that are marked in blue are those that were not recognised, although they are valid candidates of

jumping taxa. The taxa marked in red are mismarked or do not serve as solution candidates for the cases.

First, all the case examples and their results for the Initial Approach are shown, followed by the same

examples, except that this time the results of the Final Approach are shown. All cases are numbered and

can be recognised by their numbering. First, we have examples where a taxon jumps Section A.1, two taxa

exchange Section A.2, and a small example where a taxon jumps in a subtree Fig. A.3. After that, we see

a case where two subtrees exchange Section A.4. Then we have a case where two different s-edges appear

Section A.5. Then we have a case where a subtree move toward the root Section A.6. Then we have two

cases where subtrees dissolve into a multifurication and where the subtree is swapping position (Section A.7

and Section A.8). It is a representative subset of cases we tested the approaches on to better understand

topologies of trees.
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Chapter 4

Technical Implementation

4.1 Introduction

We want to visualise the transition from one tree to another. In Chapter 2, we defined an interpolation

from one tree to another by the cone path, which is an approximation on the geodesic path (Kupczok,

2010, Chapter 1). The result is that we can represent the interpolation by six trees. Then in Chapter 3 we

developed an algorithm for finding taxa that most likely caused the topological changes between a pair of

trees. These two algorithms are the two basic principles along which we developed the comparison of the

trees. Here we describe how to convert the interpolation to a visualisation displayed on a screen.

To display an image on a computer screen, one needs a software module to render it before it is displayed

on the screen (Grosskurth and Godfrey, 2005). To access a module enabling rendering a picture on a

screen, one can either write their software or use software the user already has. Because one of our goals is

accessibility, we opt for the second choice and base Phylo-Movies on a widely installed software basis. Such

installed software that could be used to display animations are either web browsers or movie players. We

want our software to be interactive, but since movie players do not offer interactivity, we decided to develop

Phylo-Movies as a web application displayed by a web browser. This means that Phylo-Movies must contain

a web server that speaks the HTTP protocol (Nielsen et al., 1999). HTTP is the protocol that one can use to

interact with the browser (Nielsen et al., 1999). Generally, one does not need to program a completely new

HTTP server but can use frameworks that work as plugins to existing HTTP servers.

There are many frameworks for different programming languages to develop the backend part, but we

decided to base Phylo-Movies on Flask (Grinberg, 2014, Chapter 1). Flask is a widely used framework that

provides basic functionality for building web applications without relying on external libraries (Grinberg,

2014, Chapter 1). There are three relevant approchaes in HTTP that have the capability to display animations:

(a) sequence of static images (like JPEGs (Stewart et al., 1998) or PNGs (Boutell, 1997)), (b) a movie format

(like MP4 (Lim and Singer, 2006) or animated GIF (Alvestrand, 1998)) or (c) web page. From these three

approaches, only web pages offer interaction capability.

Web pages consist of three complementary parts: Hypertext Markup Language (HTML) (Berners-Lee and

Connolly, 1995) is the standard markup language for documents intended for display in a web browser and

defines the content of the web page. Cascading Style Sheet (CSS) (Flanagan, 2016) is a text format that

defines the styling of the content of the web page (Grosskurth and Godfrey, 2005). Finally JavaScript

is a dynamic programming language, which is generally used to define the interactions of the web page.
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A subpart of HTML is Scaleable Vector Graphics (SVG) (Brownlee and IAB, 2016), which is a vector image

format, that meets our criteria of usability and high fidelity.

All three parts, HTML, CSS, JavaScript operate on the Document Object Model (Berners-Lee and Con-

nolly, 1995) also knows as DOM. An Application Programming Interface API that represents the web page

as a tree of DOM nodes (Grosskurth and Godfrey, 2005). DOM nodes include text elements (like paragraphs

or headings), structural elements (like spans or divs) and graphical elements (like SVGs). HTML defines the

content of the web page by creating DOM nodes, CSS defines the style of the content by defining how each DOM

node is visualised and JavaScript defines the interactions of the web page by defining how each DOM node

reacts on mouse clicks or keyboard events.

In Phylo-Movies we generate the HTML documents by the templating library of Flask, which is called

Jinja (Grinberg, 2014, Chapter 3). D3 (Bostock et al., 2011) was used for the visualisation of the data.

While there are many JavaScript frameworks available, D3 is the state of the art in interactive web visuali-

sations (Bostock et al., 2011). HTML, CSS and JavaScript are called the frontend, while the Python server is

called the backend (see Fig. 4.1 for visual representation of the structure). The data which should be visu-

alised in the frontend is transmitted from the backend to the frontend via the JavaScript Object Notation

JSON (Bray, 2017) also referred as JSON format. In the next few sections several aspects of DOM, CSS, SVG,

JavaScript and templating will be discussed and how every technology contributed to the development of

Phylo-Movies.

4.2 Backend and Frontend

As discussed in the previous section, we split Phylo-Movies into two separate parts interacting with each

other. The two parts are backend (server) and frontend (client). See Fig. 4.1 for an explanation how specific

tasks are executed in the backend and which are executed in the frontend. The frontend gets a sequence of

phylogenetic trees in the Newick or Nexus format as input and sends them to the backend. The backend

computes the consensus and intermediate trees and converts them into hierarchical JSON objects; these

computed trees are then sent to the frontend. After the backend completes the computation, it redirects the

browser to the visualisation page. As mentioned before, the backend is implemented in Flask (Grinberg,

2014, Chapter 1), a micro web framework. A web framework is based on a set of components. This

components allow one to build an application without repeatedly implementing the same parts.

Whenever the user enters a URL (Uniform Ressource Locator (Berners-Lee, Masinter, et al., 1994)), the

browser sends a request to a server, which return files that the browser then processes and renders (Grinberg,

2014, Chapter 2). Every Web application encounters problems such as mapping a specific URL to a specific

function returning files or dynamically creating a web page (Grinberg, 2014, Chapter 1). One can focus

on writing the code for a particular URL quickly with a web framework. The major alternative to Flask is

Django (Holovaty and Kaplan-Moss, 2009), but we found that Flask is better suited for the requirements

of Phylo-Movies. Django provides form validation, object-relational mappers, open authentication systems,

upload mechanisms, and several other tools, which Phylo-Movies does not require and impose additional

overhead. Since Flask provides us with enough utility with its basic features and its lightweight design, we

decided that Flask is better suited for Phylo-Movies. For a graphical overview of how the input will be

transformed into a visualisation, see Fig. 4.2. For the dependencies to run the backend on a server please

see Appendix B.
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Figure 4.1: Visualising how the specific tasks are handled by the backend and frontend.

4.3 Rendering HTML with a sequence of trees

As mentioned before the HTML document will be rendered after the calculation of the intermediate trees.

The intermediate tree then will be embedded into the HTML. Jinja, a template engine enables us to embed

the sequence of trees into the HTML file, which then will be loaded into the browser of the user (Grinberg,

2014, Chapter 3). A Jinja template is simply a text file (Grinberg, 2014, Chapter 3). Jinja can produce

any text-based format (HTML, XML, CSV, LaTeX, etc.). A template contains variables and/or expressions that

are replaced with values when a template is rendered, as well as tags that control the logic of the template

(Grinberg, 2014, Chapter 3). The string {{X}} is expanded into the value of the variable X. Phylo-Movies

includes the computed trees as JSON in the HTML file, stored in the variable list_of_trees (see Listing.4.1).

The list of list_of_trees variable consists of the originals trees and the interpolated trees (see Chapter

2 for the sequential order of the trees) which were then transformed into a list of JSON objects (see how a

transformed Newick or Nexus tree into JSON object looks like in Table 4.1). Also for every transition from

one tree to another the to be highlighted taxa (stored in the variable to_highlighted_taxa in Listing 4.1)

were previously calculated in the backend. This then will be used for colouring the labels, circles which

represent the taxa and the branches leading to the taxa.

4.4 Transforming JSON to D3 Nodes

The further mentioned sequence of trees (list_of_trees) in Listing 4.1 now have to be visualised. We use

D3 for the visualisation, D3 (Data-Driven Documents) is a novel approach for data visualisation on the web

(Bostock et al., 2011). D3 was developed to build web-based data visualisations (Bostock et al., 2011) and

31



<html lang="en">

<body>

<script language="js">

let list_of_trees = {{ list_of_trees }}

let to_be_highlighted_taxa = {{ to_be_highlighted_taxa }}

</script>

</body>

</html>

Listing 4.1: Phylo-Movies includes the computed trees as JSON in the HTML file, assigned in the variable
list_of_trees and the to be highlighted taxa for each tree will be assigned to to_be_highlighted_taxa

JSON
Property Type Description

name string union of child names
length integer branch lengths
children <JSON> children of nodes

Table 4.1: The structure of a JSON Object which was transformed from a Newick. Here we can see the
properties of the JSON object.

provides a tool to create interactive and animated content based on data by linking data to existing web

page elements (see Fig. 4.5). Since we are using functions from D3, we need to use the appropriate data

structures that the framework provides. All D3 functions operate on D3 Node instances, but our data is in

the format of JSON (see for its properties Table 4.1).

But D3 offers a function to transform a JSON object into a D3 node instances, called d3.hierarchy() (Jan-

ert, 2019, Chapter 9). We convert each tree including the intermediate trees and the consensus tree into

D3 Nodes instances with d3.hierarchy(tree) function, where the variable tree is a JSON object. D3 node

instances have the following additional properties: parent, height, children and depth (see Table 4.2). The

parent is every node’s ancestor, the height is the total height from the root node and can be calculated from

the length of all parents and depth is the number of parents one node has. The property children includes the

descendants of one node. In our JSON object, this information is not included directly but can be calculated.

In addition, each D3 node instance may have associated data stored in node.data(). Note that access to D3

Node instance properties is done via accessors (Janert, 2019, Chapter 9).

D3 Nodes offer many utility functions; we shortly describe those functions which are used in Phylo-Movies.

In this case, the ”node” namespace defines the object we are operating on, which is an instance of the D3

Node class. The function transforming the JSON to D3 Node instances is embedded in the TreeConstructor

module in Phylo-Movies. The node.each() accessor returns a list of nodes in level order. The tree.nodes()

accessor returns an array of nodes connected to the root node. The tree.leaves() accessor returns the

array of node that have no children in traversal order. The tree.links() accessor returns an array of tuples

representing the branches from the parent to the children for each node. These tuples contain as a first

element the outgoing node and as a second the ingoing one ((the parent node,the child node)). In D3

the parent node will be referred to as sources, whereas the child will be referred to as targets. We mentioned

some of the accessors but there a lot more functions available, which are listed at https://github.com/d3/

d3-hierarchy/blob/main/README.md.
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Set of Newick Strings

[{ "name"     : [0, 1, 2, 3, 4, 5 ],
    " length"    : 1,
    "children" : [
       {
          "name"      : [ 0, 1, 2 ],
          " length"    : 4.0,
          "children" : [
             {
                "name"     : [ 0, 1 ],
                " length"    : 1.0,
                "children" : [
                   { "name"    : "A" ,
                      " length"  : 4.0 },
                   { "name"    : "B" ,
                      " length"  : 4.0 }
                ]
             },
             { "name"    : "C" ,
                " length"  : 3.0 }
          ]
       }
    ]}, { "name"   : [0, 1, 2, 3, 4, 5 ], 

... ]

(((A:4.0,B:4.0):1.0,C:3.0):4)

Set of  Newick 
to Set of JSON 
objects

D3 Hierarchy

(((A:4.0,C:4.0):1.0,B:3.0):4)

D3 Hierarchy 
Extended

Animation along a 
trajectory of trees by 
using SVG

Figure 4.2: First, we convert the input data into JSON objects. This is because D3 only accepts JSON format.
Then, D3 converts the JSON object into a D3 hierarchy object. The TreeConstructor module extend the
D3 hierarchy object with coordinates so that our TreeDrawer module can later visualise our trees. The
TreeDrawer module then animates the trees along a sequence in an SVG canvas.

D3 Node instances
Property Type Description

name string union of child names
length integer branch lengths
children Optional<Array<D3Hierarchy>> children of nodes
parent Optional<D3Hierarchy> parent of node if not root
height integer zero for leaves, and the greatest distance from

descendants
depth integer zero for root, increasing by one for each de-

scendant

Table 4.2: Properties of D3 Node instances

4.5 Assigning Coordinates To D3 Nodes

For rendering trees, we need a fixed layout function that specifies how the trees should be drawn. The layout

functions take a data set, compute appropriate sizes and positions for each node, and add them to the input

data set as numeric member variables. For creating hierarchical layouts and storing data, D3 provides two

functions d3.cluster() and d3.tree() (Janert, 2019, Chapter 9). However, the length of branches is not

accounted in d3.cluster() and d3.tree(), so we neglected them. Hence, after finding out that the internal

D3 methods d3.cluster() and d3.tree() are inadequate we had to implement a new layout function.

We implemented a module that computes the positions of all nodes and stores them in the D3 Node

instances, as mentioned in Chapter 2.1.1. As before mentioned this module is called TreeConstructor.

After the calculation, we store the positions as values of x and y coordinates, angles, and radii as additional

member fields in the D3 Node instances. For the additional property members see Table 4.3. The extended D3

Node Class with additional members will be referred to as D3 Node Extended. Since we only add additional

fields to the class D3 Node, it is still part of the D3 family. So we can still use the original function of
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(((A,B),C),(D,E),F);

(((A,C),B),(D,E),F);

Input data converted 
to the trees along a 
trajectory 

Figure 4.3: The user input will be taken and transformed to the animation of trees along a sequence.

D3 Node Extended
Property Type Description

name string union of child names
length integer branch lengths
children Optional<<Array<D3Hierarchy>>> children of nodes
parent Optional<D3Hierarchy> parent of node if not root
height integer zero for leaves, otherwise the greatest distance from

descendants
depth integer zero for root otherwise increasing by one for each

descendant
x integer the computed x-coordinate of the node position
y integer the computed y-coordinate of the node position
radius integer the computed radius of the node
angle integer the computed angle of the node in the radial tree

Table 4.3: Properties of D3 Node instances with additional fields marked in blue

the D3 Node class. The TreeDrawer module then uses this described D3 Hierarchy Extended Objects to

generate graphical output by the given additional fields as the x, y coordinates. For an illustration of how

the sequence and how the data types are handled and converted see Fig. 4.3.

4.5.1 DOM (Document Object Model)

A web page like Phylo-Movies is a dynamic data structure accessed, manipulated, and updated by the

browser via the Document Object Model. The DOM represents the elements of a web page as a tree where

the elements are the nodes (see Fig. 4.4). So DOM nodes can be, circles representing leaves in phylogenetic

trees, or labels with the name of a taxon or the lines depicting branches; otherwise, in HTML documents,

they can be paragraphs. The DOM is a object-oriented API which follows specific standards(Janert, 2019,

Appendix C). The API exposes the tree like data-structure and allows one to query and manipulate it

(Janert, 2019, Appendix C).

One accesses the DOM using different programming languages, but in our case, we consider JavaScript

as a solution since it is the only programming language that runs in a web browser (client) (Grosskurth and

Godfrey, 2005). We are using D3 to apply the change on the DOM dynamically, which wraps the functionality

of DOM and provides APIs, making it easier to implement a visualisation. D3 thereby enables navigation
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Figure 4.4: A representation how a DOM tree could look like.

through the structure and dynamic addition, modification, or deletion of elements and content (Janert,

2019, Appendix C).

4.5.2 SVG (Scaleable Vector Graphics)

Since the goal is to display trees graphically, we need a technology that is used to display and animate images

in web browsers. We use SVGs (Brownlee and IAB, 2016) to draw and animate trees. SVG is a vector-based

image format for creating two-dimensional graphics, that enables animation and interactivity (Ferraiolo et

al., 2000). The format of SVGs is based on the hierarchical structure of XML (Ferraiolo et al., 2000; Rose

et al., 2003). SVGs can be standalone but also included in web pages, as in Phylo-Movies.

In an SVG document the graphical elements can be styled, transformed, grouped and arranged (Ferraiolo

et al., 2000). Modern browsers can render the input of SVG elements. Three types of graphic objects are

depicted by SVGs: vector graphic shapes (straight lines and curves), pixel-based images, and text (Ferraiolo

et al., 2000). Writing applications based on SVG is possible by using an additional scripting language like

JavaScript. We wrote a JavaScript module which uses D3 to animate SVGs named TreeDrawer. SVG

drawings can be interactive and dynamic. One can define animations declaratively or via scripts. An SVG

document fragment may contain no element, it may be a very simple SVG document fragment containing a

single SVG graphical element such as a rectangle, or a complex, deeply nested collection of lines, circles and

labels such as our visualisation of trees (Ferraiolo et al., 2000).

SVG Paths

The graphical output of branches of trees in Phylo-Movies is implemented using SVG path technology. One

can define with SVG clip paths a shape. It is based on the analogy of drawing on paper with a pen (Ferraiolo

35



Selection

A

B

C

D

Data

DOM-Node

DOM-Node

DOM-Node

DOM-Node

Assigning Data Points TO DOM Nodes

Figure 4.5: The letters which are in this case data points are assigned to selected DOM nodes. In this case
the count of data points and DOM nodes is the same. So we see assign to every letter a DOM Node.

<svg>

<path d=" M -174.37500000000014, -302.02635956982294

A 348.75, 348.75

0 0 0

-348.75, 4.2709557120263946e-14

L -558, 6.833529139242231e-14">

</path>

</svg>

Listing 4.2: Example of a path in an SVG environment

et al., 2000). Hence, the current position is analogue to the position of the pen’s tip (Ferraiolo et al., 2000).

One can change the position of the pen. The outline of a shape is drawn by guiding the pen in straight

lines or curves. A path is defined by inserting a path element into an SVG canvas, where the d property

specifies the outline of the path data. All instructions are expressed as one character (for example, a ”move

to” instruction is expressed by an M). The path data contains the moveto, lineto as ”L” (draw a straight

line), curveto as ”C” (draw a curve using a cubic Bézier), arc as ”A” (elliptical or circular arc), and close

path as ”Z” (close the current shape by connecting to the last ”move to” instruction) instructions (Ferraiolo

et al., 2000). See Table 4.4 for more information about the instruction. The d properties of a clip-path can

only be interpolated if the structure stays the same (Ferraiolo et al., 2000). Please see for an example, of a

command generating a line in a SVG canvas depicting a branch in Listing 4.2. The output of the example in

Listing 4.2, is depicted in Fig. 4.6. For a detailed description of the commands for generating a shape please

refer to the Table 4.4. The commands are translated into a visualisation in a SVG canvas.
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Figure 4.6: SVG Path Drawn, with Commands M x,y A rx,ry x-axis-rotation, large-arc-flag, sweep-flag, x, y
L x, y

Command Name Parameters Description

M moveto (x, y)+ Begin a path at the given absolute coordinates.;

L lineto (x, y)+ A line from the current point to the given (x, y)
coordinate

A elliptical arc (rx ry )+ Elliptical arc from the current point to (x, y). Two
radii (rx, ry) define orientation and size of the ellip-
tical arc

x-axis-rotation indicates how the ellipse as a whole is rotated
large-arc-flag contributes to arc calculations
sweep-flag help determine how the arc is drawn
x y Target Point

Table 4.4: Commands and their explanation for defining a path in an SVG environment. The statements and
explanations of the statements were taken from Ferraiolo et al., 2000

4.6 Assigning Classes, IDs and Aesthetics

Cascading Style Sheets (CSS) and JavaScript code rely on classes and IDs to identify and query for DOM

nodes (Murray, 2017). The HTML/SVG class attribute is used to specify a single or multiple class names for

a DOM element. In our use case, we distinguish between nodes and branches by labelling the nodes with the

class ”node” and the branches with ”link”. This makes it easier to access the element through selectors (see

Listing 4.4). Selectors are methods to refer to DOM elements and apply changes on the specific DOM element as

changing the colour or width. Selectors will be explained in detail in the further sections. IDs are assigned

to a DOM element, but each ID must be unique, so there can only be one element per ID (Listing 4.3).

Uniqueness in the context of web pages means that there can only be one element with a given ID in each

HTML document (Murray, 2017, Chapter 1). As an example of a taxon, there can only be one label with the

ID of the taxon’s name.

Selectors are patterns used to select elements in HTML or SVG documents and manipulate them. D3 uses

these selectors derived from CSS (Bostock et al., 2011). Selectors are a declarative language for applying
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<div class="tree-1">

<div id="node-1"></div>

<div id="node-2"></div>

</div>

Listing 4.3: An example how unique ids are assigned to DOM elements.

<div class="tree">

<div class="node"></div>

<div class="node"></div>

</div>

Listing 4.4: An example how classes are assigned to DOM elements.

aesthetic features such as fonts and colours on DOM elements (Bostock et al., 2011). So that elements can be

identified and then changes can be applied on them (see Listing 4.7) (Bostock et al., 2011). The elements

of a HTML document corresponding to a selector are called the selector’s subjects (Bos et al., 2005). There

are many different types of selectors. Each selector matches any element that satisfies its requirements (Bos

et al., 2005). JavaScript based selectors provide the dynamic ability, in addition to CSS, to compute styles

based on user events or changing data (Janert, 2019, Appendix C).

Class selectors match the elements of any type that have been assigned a specific class (Murray, 2017).

Selecting a class is done by a period followed by the name of the class, as shown in Listing 4.5, whereas

when selecting an element with a specific ID, a hash mark precedes the ID name (see Listing 4.6). The DOM

is dynamic; classes and IDs can be added and removed. Because of the dynamic behaviour, CSS rules are

defined that only apply in certain scenarios (Janert, 2019, Appendix C). As mentioned, properties can also

be used to change the style of an element. For changing the style, we have to assign them specific values.

Each property expects different inputs. For example, the colour property requires a string defining the colour

in hexadecimal or RGBA values; the margin property requires a measurement (pixel) for an example, see

Listing 4.7.

As a reminder HTML and SVG attributes are special keywords within the opening tag to control the

behaviour of the element as it can be seen in Listing 4.8. An HTML document consists of simple DOM elements,

such as text elements or shapes in an SVG canvas. Some attributes are assigned to HTML and SVG elements

by including property/value pairs in the opening tags as classes and IDs (Janert, 2019, Appendix C). See

Listing 4.8) for an example. The property name is followed by an equal sign. Double quotes enclose the

value and one can assign different attributes as IDs and classes to HTML or SVG elements (Janert, 2019,

Appendix C). For example, one can assign a value for the radius or colour (fill) to a circle element(see

Listing 4.8).

.node /* Selects elements with class "node" */

.link /* Selects elements with class "link" */

Listing 4.5: Here we are selecting DOM elements with the assigned class ”node” or ”link”. A period precedes
the Classes
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#tree-1 /* Selects element with ID "tree-1" */

#node-1 /* Selects element with ID "node-1" */

#link-1 /* Selects element with ID "link-1" */

Listing 4.6: ID selectors match a single element with a unique ID. A hash mark precedes the IDs. Here we
are selecting DOM element with the assigned IDs with the prefixes ”tree”, ”node”, and ”link”. IDs have to be
unique, whereas classes don’t need to be unique.

.node{

margin: 10 px;

padding: 25 px;

color: pink;

font-family: Arial;

}

Listing 4.7: Assigning CSS properties. Here we assigning the DOM element with the assigned class different
properties, as colouring the DOM element pink.

4.7 Using D3 to Dynamically Select DOM Nodes

and Applying Aesthetic Properties

D3 offers functionalities to specify where on the DOM tree changes should be applied (Janert, 2019, Chapter 3).

To associate individual data points with specific nodes of the DOM tree is an important aspect of how we

visualise our tree. So that we can represent the change in position and colour of DOM nodes according to

the data points they are linked to. The two selection methods are methods for querying specific DOM nodes,

for example by their ID or class name and changing their appearance without iterating over their nodes. D3

uses Selectors used in CSS to identify document elements for selection (Bostock et al., 2011).

One of the functions is d3.selectAll(selectorString) (see Listing.4.9), which is a D3 selection method.

Both the d3.select(selectorString) and d3.selectAll(selectorString) methods accept the previ-

ously described CSS selector patterns. Hence, we give the selection method as input a string the matched

DOM nodes are returned.

Selections can be made with d3.select(selectorString), which selects the first matched element, or

by d3.selectAll(selectorString) which returns all matching DOM nodes. Example: We have a set of

SVG circles in our SVG canvas labelled with the class name ”leaf” and we want to select them, then we use

d3.selectAll(".leaf") (see for a visual representation Fig. 4.7). If there is no matching element then an

empty collection will be returned (Janert, 2019, Chapter 3).

After we have selected a group of elements, we can modify the appearance of those elements to visualise

the change in the data. We want to change the position of the leaves, delete branches or the colour of

branches. The D3 function d3.attr(property, value) sets DOM attributes and their value for an element.

<svg width="400px" height="110px">

<circle class=leaf radius="20px" rx="0" ry="0" fill="blue" />

</svg>

Listing 4.8: Example of the creation a rectangle in an SVG environment. The SVG canvas has the width of
400px and height of 110px. In the canvas we are creating a circle with the radius of 20x.
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d3.selectAll(".leaf")

Query all elements with the class name leaf

d3.selectAll(".leaf")

class: leaf class: leaf class: leaf class: leaf

Figure 4.7: A representation how a selection works on the nodes of a DOM tree. We are only selecting the
DOM nodes, with the class name ”leaf”.

We can use the d3.attr(property, value) function to access the properties or set the attribute on an

DOM node. With the d3.attr(property, value) function we can set values like the ID or the class and a

specific style attribute (Murray, 2017).

d3.selectAll('.leaf').attr("fill","red");

Listing 4.9: We are selecting all DOM elements with the class ”leaf” and assigning them the colour red.

After the selection of DOM nodes by their class or ID, we have to bind each data point to DOM nodes.

For instance, we bind the leafs in the JSON data set to circles and labels. Whereas we bind the branches

generated by the node.links() function to SVG paths (see Fig. 4.8). Recall that SVG paths are drawn lines

in our canvas used for representing the ingoing and outgoing branches in our phylogenetic trees. SVG paths

should not be mistaken with the paths in the tree space (Explained in Section.1.2.3), although they share

the same name. Using the data binding functions of D3, we bind our data (nodes, branches) to associated

nodes in our DOM. Data Binding assigns a data point to a particular DOM node (Janert, 2019, Chapter 3).

Later, D3 associate each data point as identifier to apply mapping rules (see Fig. 4.5). Without this crucial

step, we are incapable of referencing SVG elements to data points. The binding, drawing and construction of

the animation are done by the module TreeDrawer, which provides several methods for updating branches

and leaves and their labels. The further sections explain how the branches and leaves will be updated. The

function d3.data(dataPoints, key) accepts a set of arbitrary data and assigns the entries of the set to

selected DOM nodes. If no key function is specified, the elements in the array are assigned to DOM nodes based

on their index in the set (Janert, 2019, Chapter 3). The first element in the set is assigned to the first

selected DOM node, the second to the second selected DOM node, and so on (see Fig. 4.5). If a key function is
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Figure 4.8: Binding the data of branches generated by the function d3.links() to DOM nodes. As an identifier
for the assignment of data point to a DOM node, we are using the outgoing internal node’s (source) name and
the of the ingoing one (target).

defined, the default algorithm is replaced by a function that associates values of data points with DOM nodes.

We use as a key the leaf set of a branch for the association for the path elements and the branches in the

dataset, whereas for the leaves and the labels, we use the taxon name (see Fig. 4.8). Recall that the leaf set

of a branch is a set of the names that the branch is leading to.

The d3.data(dataPoints, key) method returns a new selection object containing the elements that

were successfully bound to entries in the data set (Janert, 2019, Chapter 3). The d3.data(dataPoints, key)

method also returns the ”enter” and ”exit” selections. The ”enter” selection contains the unmatched data

points, while the ”exit” selection contains the unmatched DOM nodes (Janert, 2019, Chapter 3). This different

types of selections will be discussed in the further sections.

4.7.1 Update Pattern

Now we focus on representing the change in data sets through the DOM. We use the D3 Update Pattern (Jan-

ert, 2019, Chapter 3) in the module TreeDrawer for constructing the animation. If the number of data points

(branches) and DOM nodes (paths representing the branches) are not equal, there will be an excess of unas-

signed data points or DOM nodes. The methods for creating and updating the branches is implemented in the

module TreeDrawer in the function updateLinks(). The methods for updating the position of the circles

representing leaves is implemented in updatesLeaves().

The enter selection d3.enter() (see Fig. 4.9) for an illustration, returns placeholder nodes for data that

has no corresponding DOM nodes in the selection (Janert, 2019, Chapter 3). We can use these placeholders

to create DOM nodes for our unmatched data points. At the initialisation of our visualisation, there are no

DOM nodes representing our branches or our leaf labels. So at the initialisation for every leaf and branch, we
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Figure 4.9: Example of how D3 binds data to a selection of DOM nodes when the number of data points is
higher than the selected DOM nodes (Janert, 2019, Chapter 4).

create placeholders. This placeholder translates D3 into DOM elements for the leaf labels, and D3 will translate

placeholders associated with branches into paths in the SVG canvas. We assign our paths the ”d” attribute,

which describes where they should be positioned and which nodes they should lead. We assign the x and y

coordinates to the leaf labels. As a reminder, a detailed instruction on how the module TreeConstructor

calculates the radial layout can be read in the Subsection 2.1.1. Branches absent in consensus tree two,

which exist in intermediate tree two, will be inserted with zero branch length. A reminder of which branches

are deleted and added along the transition from one tree to another can be read in Section 2.1.1.

The exit selection (d3.exit()) (Fig. 4.10) returns a set of DOM nodes that no longer have corresponding

data points. The exit selection is mostly used in combination with the remove method to delete elements (Jan-

ert, 2019, Chapter 3). In Phylo-Movies, when we switch from intermediate tree one to consensus tree one,

the number of branches in the trees of the data set may decrease. In Phylo-Movies, there are branches

represented by paths, which are existent in intermediate tree one but absent in consensus tree one. The exit

selection is then used to delete these no longer existing branches. The d3.data(dataPoints, key) method

itself returns DOM nodes that have been successfully bound to data points by keys. These are for instance

branches, which are not deleted or newly added, but their length is adjusted from the previous tree to one

of the current trees. In the transition from full tree one to intermediate tree one the branches which are not

existent in full tree two will be set to zero in the visualisation. Whereas the branches that are existent in full

tree one and full tree two will be adjusted to the average. The successfully bounded branches by the keys (as

before discussed are the leaf set of the branches) will be moved along the radial, to depict their relationship

to their descendants.

With the D3 Update Pattern as it was described here, the pictures would be static, and the animation

would correspond to the static exposition of the transition as in Fig. 2.3. But as we described in the previous
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Figure 4.10: Binding data to a selection when the number of data points is not equal as the number of
selected DOM nodes (Janert, 2019, Chapter 4).

Chapter 2 that we want to have an animation along the sequence of times to reflect the changes in our

dataset because we want to depict in a flux changes in trees constantly over time.

Moving Leaves Branches Over a Time Span Smooth transitions visualise development over time and

change the appearances of graphical elements (Janert, 2019, Chapter 3). We want our change to occur

gradually rather than immediately. The d3.transition() function generates animations that visualise

change gradually, using the d3.attr(property, value) function (Janert, 2019, Chapter 3). The changes

are not executed immediately; they are applied over a time span (Janert, 2019, Chapter 4).

The function d3.transition() calls an interpolator function (Janert, 2019, Chapter 3). Given a starting

value a and an ending value b, an interpolator takes a parameter t in the interval of a unit vector [0, 1] and

returns the corresponding interpolated value between a and b. Any intermediate state of a branch or leaf

for the time point in the period is calculated. An interpolator will be called for every branch that changes

its position, which calculates interpolated positions to the parameter t from the origin position a to its final

destination b.

The d3.transition() function gives us the ability to visualise the movement when the coordinate of a

component changes (Listing 4.10). A value to the d3.duration(timeSpan) function specifies how long the

transition should last. After invoking the d3.transition() function the d3.duration(timeSpan) function

has to be invoked to define the time span, how long the transformation should take. The duration function

must be specified after the d3.transition() function, and the duration is specified in milliseconds (Janert,

2019, Chapter 4). So, for example, if 1000 milliseconds are defined for a transition, the animation will last

one second (Murray, 2017).

We found a way to access the ”d” attribute of paths. Due to the given circumstance that the attribute
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d3.select('#leaf-1')

.attr('rx','0')

.attr('ry','0')

.attr('radius','100px')

.transition()

.duration(1000)

.attr('radius', '250px');

Listing 4.10: We are changing the radius of a circle representing a leaf from 100px to 250px over the time
span of 1 second. So in the animation, a circle would just grow bigger.
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Figure 4.11: The first tree of the tree pair (a) where the transition is supposed to happen. (f) the Second tree
of the tree pair. (b) - (e) The transition trees that are constructed by the program to simplify visualisation.
This visualisation was generated with Phylo-Movies.

”d” of a path cannot be interpolated along a radial with the standard D3 interpolator as we wanted, we

used the d3.attrTween(property, interpolator), which is used to specify a custom interpolator during

a transition. Then we can interpolate the values in the instruction in the ”d” attribute, so we interpolate the

previous state of the branch and tween the branch along the radial to its new position. This method gives

us precise, fluid animations showing how the branches’ path moves from the origin to a new destination.

These functions are provided for building up animation; we try to maintain good graphics of trees during

the transitions. So that we, as before mentioned, prohibit misunderstandings about the animation, which

might disrupt the user’s attention.
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a)Play b) Stop

Forward /Backward 
Intermediate Trees

Forward /Backward 
Initial trees (full trees) Save SVG

c) d)

e)

Figure 4.13: Here we can see the application bar with different buttons for stopping and starting the
animation, rewinding intermediate trees, and saving the current tree as SVG pictures.

Figure 4.14: A line chart showing the Robinson-Foulds distance and scale so that the user can detect regions
in the tree sequence that might be an interesting transition, indicating recombinations. The line chart is in
Phylo-Movie in the bottom left corner.

4.8 Realisation of Phylo-Movies

We can provide a continuous animation transition from one tree to another using the mentioned technologies.

The user can upload an order file to define the circular order of the trees.

The whole application Phylo-Movies is depicted in Fig. 4.12. The jumping taxa are highlighted with the

colour red (see Fig. 4.11). We can see in Fig. 4.11 branches leading to the jumping taxa are also highlighted

in red. The user can mark specific taxa and the branches leading to them, marked in blue, as it can be

seen Fig. 4.12. Chapter 3 explains the highlighting algorithm. In combination with colouring the possible

jumping taxa, the animation help track the change between two trees.

To move to the trees of interest, rewinding and starting the animation, we developed a user interface

inspired by the old VHS player’s design (see Fig. 4.13). The user can move between the intermediate steps

and move between full trees. The rewinding of the intermediate steps allows the user to rewind the animation

until one comprehends the difference. So the ability to stop, start and rewind to focus on specific parts and

actions allow reinspection of specific transitions in the trees.

We will shortly describe which utilities are built in the bar on the left side, which can be seen in Fig.4.12.

We provide a line chart showing the Robinson-Foulds distance and scale so that the user can detect regions

in the tree sequence that might indicate recombinations (see Fig. 4.14). On the left corner Fig. 4.12h is the

Robinson-Foulds chart, and also one can switch to the scale chart with the option input (Fig. 4.12e). Above

(Fig. 4.12h) then, we can see the scale of the current tree and the maximum scale in the sequence of trees.
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One level above, we see a checkbox where we can ignore the given branch lengths, to only analyse the tree

topology(Fig. 4.12g). Then aside from the checkbox (Fig. 4.12g), we can a see slider for changing the size of

the labels. One level above, we can see the Button-Bar (Fig. 4.12f) and as discussed before and explained

in Fig. 4.13. Then we have deactivated input boxes to see the given window size and step, which the user

before defined (Fig. 4.12d). Furthermore, we see the genome region that a user-generated the tree from.

Then there is an input box labelled with the position (Fig. 4.12b). The user will use this input to hop to a

specific position in the tree sequence. We display at (Fig. 4.12a) which kind of intermediate or full tree we

are displaying, and we show the position of the trees in the sequence.

The next chapter will examine whether the method we have built works on different data sets to find

interesting changes in a sequence of trees.
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Chapter 5

Analysing Tree Sequences with

Phylo-Movies

We have explained the steps of how Phylo-Movies creates and visualises trees. We want to apply the method

built on different data sets and see if there are no animation problems or if the highlighting algorithms

higlights false candidates. Such flaws could disturb the whole process of watching the animation or using the

features such as going backwards or forwards in the animation or taking a snapshot of a coloured highlighted

phylogenetic tree. In addition, we want to see if we can identify some known changes in the topologies of

phylogenetic trees with different backgrounds. At first, we focus on a simulated data set. Heiko Schmidt

provided the simulated data.

Then we proceed to a section where we try to find some indications of recombinations in the HIV-1 data

set provided by Abecasis et al., 2007. At last, we are going to focus on a sequence of trees obtained from

the heuristic tree search algorithm in IQ-Tree (Nguyen et al., 2014). We visualise and see if the operations

such as NNIs are traceable in our visualisation of the generated tree sequences.

It is hard to incorporate animations in a written work, except using flipbooks (see Wells, 2013, Chapter 1),

which we did not consider. Hence we describe what is happening in a transition from one tree to another and

provide static pictures depicting the full tree before and the transition, with taxa highlighted our topology

highlighting algorithm (Chapter 3.3). As a reminder, our algorithm suggests taxa which might have caused

the topological changes like the for example taxon X in Fig. 5.3). We will also highlight the branches leading

from the root to the jumping taxa for easier detection.

5.1 Simulated Scenario with Overlapping Recombinations

5.1.1 Introduction and Description of the Simulated Dataset

The dataset was a product of the unpublished study, which focused on developing a tool called Visrec.

Using the information obtained from initial phylogenetic reconstructions from sliding windows to reveal

recombinants and recombination breakpoints (Schmidt et al., 2013). The simulated dataset was provided by

Heiko A. Schmidt.

The alignment sequences had been simulated using seq-gen (Rambaut and Grassly, 1997). The simulated

alignment has the length of 7000 base pairs and eleven genomes (A1, A2, B1, B2, C1, C2, D1, D2, O1, O2,
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Figure 5.1: Visualisation of the relation of a simulated data set with genomes A1 - X. (a): Tree of the
alignment with markings where changes happen (dotted lines). (b) Alignment of the genomes, the blue and
red fragments show the relation of X to other genomes. (c) Alignment of the genomes, the blue and cyan
fragments show the relation of B1 and B2 to other genomes. *A1 and A2 have switched patterns. (Adapted
from Fig. 1.1 that was provided by H.A.Schmidt)

X). Fig. 5.1 shows the structure of the simulation along the alignment (Figs. are taken from the (Schmidt

et al., 2013)), while Fig 5.2 shows the detailed evolutionary histories along the sequences. In the first 500

base pair of the sequences, the evolutionary rates are 50-fold increased with respect to the regions 501-6500,

while last 500 base pair have a 50-fold reduced evolutionary rate. Due to the high 50 fold mutation rates in

the first 500 base pair and the low mutation rates in the last 500 base pair, we ignore these regions for our

further analysis (see Fig. 5.7b). Some branch lengths of the phylogenetic trees, which depict evolutionary

rate, generated from the first 500 base pair are too long compared to the other branches. Hence, it is

impossible to detect differences, whereas, in the last 500 base pair, some of them are about zero, indicating

recombinations might lead to wrong conclusions. This also can be seen in the line chart depicting the scale
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Figure 5.2: Evolutionary history of the simulated data set (courtesy of H.A.Schmidt)
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Figure 5.3: The tree pairs are from the simulated dataset. Trees we are from the Tree 79 (region 1825-2124)
on the left side; Tree 80 (region 1850 - 2149) on the right side; Highlighted Taxon X jumping into the
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Figure 5.4: The tree pairs are from the simulated dataset. Tree 81 (region 1875-2174) on the left side; Tree
82 (region 1900-2199) on the right side; Highlighted Taxon X jumping into {A1}

of each tree, which is provided by the Phylo-Movies. The line-chart is in the bottom left corner of the

application. Remember that the scale of each tree is the branch length of the longest branch leading from

the root to a leaf.

The data set contains with the recombinant sequence X. Moreover we have four groups {A1, A2},
{B1, B2}, {C1, C2}, {D1, D2} and an outgroup {O1, O2}. Group {B1, B2} is also recombinant. Taxon X

clusters with C1 in fragment ”a” (1-2000bp) (Fig. 5.1b), while it clusters with A2 (2001-7000bp). {B1, B2}
group shares a common history with {A1, A2} in fragment ”a”, ”b”, ”d” (1-3500bp and 5001-7000bp) and

with D2 in fragment ”c” (3501-5000bp) (Fig. 5.1c).

The trees of the analysed sequence were reconstructed with overlapping sliding windows using IQ-

Tree (Nguyen et al., 2014) with a window size of 300 and step size of 25. The file containing 280 trees

in Newick file format is referred to as alltrees.tree and provided by Heiko Schmidt (Fig 5.1). The Newick file

format is discussed in Section.2.1.1.

We analyse the sequence of trees and look at pairs of trees where the Robinson-Foulds distance is high

between a pair of trees (see for example Figs. 5.3-5.6). At first, we are checking the pair of trees where

the trees have a high Robinson-Foulds distance, indicating that there are big changes between the trees

potentially signalling a recombination event (Fig. 5.7b). Phylo-Movies provides a diagram of the Robinson-

Foulds distance for all input trees, which is located in the bottom-left corner on the web interface as mentioned

in Section 4.8.

We know that the sequences are grouped based on some prior knowledge {A1, A2}, {B1, B2}, {C1, C2},
{D1, D2} and {O1, O2} (see Fig 5.1). There are peaks in the Robinson-Foulds distance plot for the trees at
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Figure 5.5: The tree pairs are from the simulated dataset. Full Tree 140 (region 3350-3649) on the left side;
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side; Tree 201 (region 4875-5174) on the right side; Highlighted Taxa {A1, A2, XD1}. Here we can that
the highlighted taxa are misleading. These highlighted taxa can lead to a false assumption Fig. 5.1 the
evolutionary history shows in fragment ”d” that {B1, B2} are recombination of {A1, A2}. We assumed that
taxa {B1, B2} would be highlighted but instead we see here that these are not the ones.

the position 79 (region 1825 - 2124) to 80 (region 1850 - 2149), then 81 (region 1900 - 2199) to 82 (region

1925 - 2224), 140 (region 3350 - 3649) to 141 (region 3375 - 3674). At last we will focus on the the tree

200 (region 4850 - 5149) to 201 (region 4875 - 5174) (see Fig. 5.7a). These candidate positions are further

investigated for additional evidence of recombination.

5.1.2 Observations Made in the Simulated Dataset with Phylo-Movies

In Fig 5.3 taxon X is highlighted and clusters with {C1, C2} tree 79 (region 1825-2124). From tree 80 to 81

(region 1900-2199) taxon X jumps to {B1, B2} and {A1, A2}. In the transition to tree 82 taxon X (region

1900-2199) forms a subtree with A1. This corresponds to taxon X being a recombinant of A1.

Next we observe trees 140 (region 3350 - 3649) and 141 (region 3375-3674), taxa {B1, B2} jumps from

subtree {X,A1, A2} to D2. In Fig. 5.5 we can see that Phylo-Movies highlighted taxa {B1, B2} and the

branches leading to them. The detailed representation can be see in Fig. 5.5, where on the left the highlighted

red subtree {B1, B2} clusters with {A1, A2, X} and then on the right it jumps into the group with {D1, D2}.
Later from tree 200 (region 4850-5149) to 201 (region 4875 - 5174) the subtree {B1, B2} jumps from

D1 to A2. This corresponds to {B1, B2} being a recombinant of {A1, A2, X} and D1, while {C1, C2}
moves toward the root, possibly due to the conflicting signal in the window. In Fig. 5.6 we can see the

taxa {A1, A2, X,D1} being highlighted. Because the highlighting algorithm indicate that D1 jumps into

D2, repairing the subtree with taxa {D1, D2}. Then it indicates a second jump, which is that the subtree
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Figure 5.7: The top plot depicts of Robinson-Foulds distances along the sequence of trees. At (a) the x-axis,
the first number denotes the position of the tree, the numbers in the bracket denote the genome region. The
last (b) represents the scales for each tree. The scales represent for each tree the highest distance between a
leaf and the root. There are peaks in the Robinson-Foulds distance plot at the pair of trees at the position 79
(region 1825-2124) to 80 (region 1850-2149), then 81 (region 1875- 2174) to 82 (region 1900-2199), 140 (region
3350-3649) to 141 (region 3375-3674) and the tree at the position 200 (region 4850-5149) to 201 (region 4850-
5149). These candidate positions are further investigated for additional evidence of recombination events,
which we want to detect.

{A1, A2, X} jumps to {B1, B2}.

5.1.3 Discussing the Observations Made on Simulated Dataset

We have identified three major topological changes of the simulated scenario in Fig 5.2. The first was

detected at tree 79 (region 1825-2124)-80 (region 1900-2199) , 81 (region 1900-2199) - 82 (region 1925-2224),

140 (region 3350-3649) - 141 (region 3375-3674) and 200 (region 4850-5149) - 201 (region 4875 - 5174). Phylo-

Movies has marked that taxon X as a recombinant of A1 and {C1, C2} and that {B1, B2} are recombinant

of {D1, D2} and {A1, A2}.
The recombination events that we detected are coinciding with recombination breakpoints that we can

see in Fig. 1.1. In Figs. 5.3 -5.4 coincides with the recombination breakpoint in Fig. 1.1b from fragment ”a”

to ”b”. Then we can see that the recombination breakpoints in Fig. 1.1c in fragment ”c” coincides with the

recombination events detected with Phylo-Movies depicted at Fig 5.5. Fig. 5.6 depicts the recombination
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breakpoint in Fig. 1.1c from fragment ”c” to ”d”.

At the transition from tree 200 to 201 the highlighting of the algorithm is counter intuitive. Because in

case of changes of topologies there can be several different solutions, reasoning change of topologies. We can

see in our depiction that the taxa {A1, A2, X,D1} are highlighted. These highlighted taxa can lead to a

false assumption Fig. 5.1 the evolutionary history shows in fragment ”d” that {B1, B2} are recombination of

{A1, A2}. We assumed that taxa {B1, B2} would be highlighted but instead we see in Fig. 5.6 that these are

not the ones. But except the case at the trees at the position of 200 and 201 the taxa which are recombinants

depicted in the fragments ”a”,”b”,”c” of Fig. 5.1 were highlighted.

Therefore along the sequence from 78 (region 1800-2099) until the region of 82 (region 1925-2224), we

saw that potential recombinations could be found in two ways. Either one big jump with a huge spike in

the Robinson-Foulds distance chart (Fig. 5.7a) indicates a big jump in which the recombinant taxa directly

jump, or we see multiple little jumps. In this case, the recombinant jumps at first to the most recent common

ancestor of the taxa that he inherited his traits from and then in the later by moving forward, it jumps to

a taxon or taxa. Hence, intermediate states are visible because of the underlying principle of the sliding

window approach. This is because the sliding window approach does not accurately detect the breakpoint

in the genome where recombination occurs. One of the methods that could help in accurate region detection

would be to generate trees with smaller window sizes, resulting in more trees that would be much more time

consuming to observe. Thus, an important task in region detection would be to find the optimal size of the

sliding window so that the accuracy of the alignment is accurate enough. But when the windows size is too

small, the sequence of trees becomes so long that it is feasible to observe all the trees.

As we have seen in in our results chapter 5 the analysis of multiple sequence alignment using a overlapping

sliding window, then animating this sequences of trees and highlighting the jumping taxa led to the fact that

we could detect most of the recombinations. Except in the case of the transition at tree 200 to 201, here

we are seeing misleading candidates because the highlighting algorithm takes other solutions as valid for the

reasoning of the topological change.

But all in all, we can say that the animation and the recognition of recombination, in this case, seemed

very easy to us. Finding the interesting position of the recombination was also easy with the help of the

Robinson-Foulds distance, and the graph showing the maximum branch length for each tree helped us to

know which region of trees did not pay off to analyse.

5.2 Analysing a Biological HIV Dataset

Next, we want to analyse a sequence of trees generated along an alignment of HIV-1 genomes. HIV-1 is

genetically diverse and is classified mostly in three groups, namely M , N , and O (D. L. Robertson et al.,

1999). Group M is responsible for the global HIV-1 pandemic (Van Heuverswyn and Peeters, 2007). This

group can be classified into subtypes A, B, C, D, F, G, H, J, and K, then in subsubtypes, and several

circulating recombinant forms (CRFs) (D. L. Robertson et al., 1999).

The analysed dataset is based on the sequences used by Abecasis et al., 2007, where they discuss that

the subtype G is a circulating recombinant form. Based on the sequence accession numbers the genome

alignment was retrieved from the Los Alamos HIV database (Kuiken et al., 2003, https://hiv.lanl.gov).

The dataset used here contained 82 taxa. The tree sequence was generated by Heiko A. Schmidt using

RecDetec (Kutmon, 2008) to split the alignment into overlapping windows of size 500 and step size of 25

from these trees which have been reconstructed using IQ-Tree 2 (Minh et al., 2020) with the GTR model
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Figure 5.8: The plot shows the Robinson-Foulds distance for the trees generated from the Abecasis et al.,
2007 dataset. On the x-axis, the first number denotes the tree position, the numbers in the brackets denote
the genome region.

and default parameters.

The leaf labels in the trees show the subtypes A1, A2, B, C, D, F1, F2, G, H, J, K and O1 and O2. O1

and O2 denote CRF01 01AG and CRF01 02AG respectively.

Abecasis et al., 2007 discuses that two plausible hypotheses could explain the origin of CRF02 AG and

subtype G. The first hypothesis is that subtype G is a recombinant of A/J. The second hypothesis is that

subtype G is recombinant of CRF02 AG/J, and CRF02 AG is actually a pure non-recombinant parental

strain. We will be focusing on the second hypothesis in on our analysis.

It was shown in the work of Abecasis et al., 2007 that G is clustering with the subtype A in the regions

from 4316 to 5162. G clustered significantly with subtype J, in the regions from 5577 to 6083. Therefore,

we will try to find evidence about the recombination event of about J clustering with the subtype G. We

provide a Robinson-Foulds chart, to see regions where high topological changes are (Fig5.8).

5.2.1 Discussion and Observations on the HIV-1 Dataset with Phylo-Movies

Now we will describe the results of the analysis of the sequence of trees.

We begin our analysis at tree 219. In tree 219 (region 5225-5724) the subtype J is not clustering with

any other subtype but rather toward the root of the tree Figs. 5.9-5.10. Subtype G is clustering with O1.

Then in the transition from 219 to 220 (region 5250-5749) the subtype J moves to and forms a subtree with

subtype G (Figs. 5.9-5.10), whereas the recombinant forms O1 are jumping outside of G. As it can be seen

in Figs 5.9-5.10 the subtype G and J is highlighted in red by the highlighting algorithm, indicating the

changes in the subtrees. Other taxa are also highlighted because of the changes in the topologies underlying

the conflicting signals in the alignment and the construction of the trees. Hence we see the same relations

55



B_AF042100

B_K03455

B_M17449

B_AJ271445

B_S61nnB_AF086817

B_K02007

B_AY970947

B_U34604

D_AJ320484

D_AY253311

D
_
A
Y
3
2
2
1
8
9

D_AY773338

D_AY773341

D_K03454

D_M27323
D_M22639

D_
AJ
48
89
27

D
_
A
Y
3
7
1
1
5
7

D
_
U
8
8
8
2
2

F
1
A
F
0
0
5
4
9
4F

1
A
F
0
7
5
7
0
3

F
1
A
Y
1
7
3
9
5
7

F
1
A
Y
1
7
3
9
5
8

F
1
A
J
2
4
9
2
3
8

F1
AF
07
73
36

F2
AF
37
79
56

F2
AY
37
11
58

F2
AJ
24
92
37

F2
AJ
24
92
36

K_
AJ
24
92
35

K_
AJ
24
92
39

C_
AB
02
38
04

C_
AY
04
97
08

C_A
F44

307
5C_A

Y16
222

3C_AY
2285

57
C_AY2

28556
C_AF286

225

C_AF286228

C_AY727525

C_AF443074

C_
AF
28
62
35

H_AF005496

H_AF190128

H_AF190127

G_AF061640

G_AY772535

G_AF061642

G_AY371121

G_U88826

G_DQ168576
G_DQ168579

G_AF423760

G_AF450098

G_AF377956

A
2
A
F
2
8
6
2
3
7

A
2
A
F
2
8
6
2
3
8

0
2
A
B
0
4
9
8
1
1

0
2
A
F
0
6
3
2
2
4

0
2
A
F
1
0
7
7
7
0

0
2
A
Y
3
7
1
1
2
2

02
AJ
25
10
57

02
AF
37
79
54

02
AY
44
48
11

02
AY
37
11
41

02
AY
44
48
100
2
L
3
9
1
0
6

A1
AF
19
32
75

A1
AF
41
39
87

A1
AY
50
03
93

A1
AF
36
18
73

A1
AF
48
44
93

A1A
F06

967
0

A1AY
3221

84A1A
Y71

340
6

01GU564221

0
1
G
Q
4
7
7
4
4
1

01
U5
47
71

J_AF0
82394

J_AF082
395

J_EF614151

Figure 5.9: Trees from the HIV-1 dataset: Full Tree 219 (region 5225-5724) on the top. The first two letters
denote the HIV subtype, followed by the accession number.
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Figure 5.10: Trees from the HIV-1 dataset: Full Tree 220 (region 5250-5749). The first two letters denote
the HIV subtype, followed by the accession number.
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Figure 5.11: Trees from the HIV-1 dataset: Full Tree 32 (region 550-1049) The first two letters denote the
HIV subtype, which is followed by the accession number.
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Figure 5.12: Trees from the HIV-1 dataset: Full Tree 33 (region 575-1074) on the top side; The first two
letters denote the HIV subtype, which is followed by the accession number.
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with G and J seen by Abecasis et al., 2007 at regions 5577 to 6083 but we see the jump of subtype J to G

at the region at the position of 5225-5724.

Our strategy was to focus on the regions described in Abecasis et al., 2007 and to see if we could find

the same relations that were mentioned. The rewind function, where we can move back and forth between

trees, made it easier to see the detailed differences. The analysis of the HIV dataset has been difficult due

to a large number of changes in the topology of the trees, along the genomes. However, we were able to

find regions of interest that are also described in Abecasis et al., 2007. It is known that there are a lot of

recombination and mutations of HIV (Fischer et al., 2021), leading to unstable backbones of the trees due

to conflicting and missing signals. These conflicting signals are leading our highlighting algorithm to detect

more changes than we would have expected.

Furthermore, we will focus on a pair of trees with subtle changes. As we can see in tree Figs. 5.11-5.12

at tree 32 (region 550-104) the taxa C AB023804, C AF443075 and C AF286235 is highlighted. From tree

32 (region 550-1049) to 33 (region 575-1074) we can see some rearrangements in the subtypes C. We wanted

to show that small changes in subtrees can be traced and analysed, which can also play an important role

in analysing such sequences of trees.

Thus, Phylo-Movies should be tested more even in real data to see whether the detection of the jumping

taxa also lead to truthful statements in these cases.

5.3 Analysing a Sequence Generated by a Tree Search Algorithm

Here we will analyse another source of tree sequences. Generating phylogenetic trees by likelihood (ML)

is a well-known tool in bioinformatics (Felsenstein, 2004). In this method, the branch lengths and tree

topology will be estimated (Nguyen et al., 2014). Likelihood tree searches apply different types of local

tree rearrangements such as Nearest Neighbour Interchange (NNI), subtree pruning and regrafting (SPR),

or tree bisection and reconnection (TBR) to improve the current tree (Felsenstein, 2004). IQ-Tree (Nguyen

et al., 2014) combines methods such as hill-climbing and stochastic NNIs to find the optimal tree. NNIs is

an operation for rearranging two subtrees across an internal branch (Felsenstein, 2004). In addition, IQ-Tree

uses Fast NNI, which means it applies several NNI at once to improve the likelihood. But only NNIs will

be taken into account, which is not contradicting each other concerning the topology. The hill-climbing

algorithm optimises the likelihood by applying NNIs that improve the likelihood.

We plotted the likelihood of a sequence of trees generated by a tree search done by IQ-Tree Fig. 5.13a

and the relative Robinson Foulds distance along the sequence of trees in Fig. 5.13b.

Where the likelihood in Fig. 5.13a raises, IQ-Tree used hill-climbing algorithms. The hill-climbing al-

gorithm can get stuck in a local optimum. Hence applying a set of random NNIs on the current best tree

candidates allow the escape from local optima. As a consequence, there will be a drop of the likelihood,

where afterwards the hill-climbing algorithm will operate on the current trees to generate a new, improved

tree topology Fig. 5.13a, which might have better likelihoods than the previous ones.

For analyses of visualising tree search sequences, we used phylogenetic reconstruction from the mtDNA.phy

provided by Lemey et al., 2009, Chapter 6. The alignment consists of mitochondrial DNA sequences from

birds, reptiles, several mammals and three sequences from lungfish sequences. A sequence of trees is generated

during the tree search, which Phylo-Movies can analyse. We started the tree search, setting the candidate set

to be kept to 1. Along with this tree search, IQ-Tree generated 370 trees. In this analysis of the sequence of

trees, we will be looking at pair of trees concerning their likelihood values and the Robinson-Foulds distance.
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Figure 5.13: Here we can see (a) the Robinson-Foulds distance for each tree pair and (b) the likelihoods
of the trees generated during the tree search. In (a) the log likelihoods for each tree is shown, while (b)
shows the relative Robinson-Foulds distance for the tree at that position in the tree search and its successor.
The likelihoods are obtained from IQ-Tree while the relative Robinson-Foulds distance were calculated by
Phylo-Movies. Improvements of trees show increasing likelihoods. The decline in likelihood shows moving
to a worse tree caused by the application of random NNIs. The red curls are indicting the position we are
focusing on.

At first, we focus on regions where the likelihood of a tree is high, and the likelihood of the following

neighbouring tree remains almost the same. In this case, we assume that in this tree pair, the changes in the

tree will be small. So we will focus on regions where the Robinson-Foulds distance is low, and the likelihood

remains almost the same.

Afterwards, we will focus on a sequence of trees, where we will observe the change in the trees generated

from a hill-climbing NNI to a random perturbation NNI. So we focus on positions in the sequence where the

likelihood of a tree is high and the likelihood of the successor is low. We assume that the Robinson-Foulds

distance correlates with the likelihood values (Fig. 5.13a and Fig. 5.13b). So when the likelihood rises a

bit, we assume that a tree’s topology will also not be affected by a hill-climbing NNI. Whereas when the

likelihood drops caused, for instance, by a random NNI, then the Robinson-Foulds distance will also be high.
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5.3.1 Observations Made on the Tree Search Sequence

We will look at the transition from the pair of the tree at the position of 6 (Likelihood: -21181.12125) and

7 (Likelihood: -21158.16664). We also assume that if the likelihood and the corresponding Robinson-Foulds

distance is small, it might indicate small topology changes, reasoned by a hill-climbing NNI. Then we focus

on the sequence of trees, where we can observe the change from the hill-climbing NNI to a random NNI.

First we focus on pair of trees focusing at positions 6 − 7. This pair, as we can see in Fig. 5.13a, has a

slight difference in likelihood, so we assume that the change will be small and that the changing factor was

a hill-climbing NNI. So in Fig. 5.14 we can see that the taxon {Sphenodon} is highlighted as clustering with

the taxon {Turtle}. So taxon {Sphenodon} jumps out of the cluster changes the position with the subtree

{Bird, Crocodile}. In tree at the position 7 {Bird, Crocodile} clusters with {Turtle}.

Now we focus on a sequence of trees where a hill-climbing NNI and a random NNI took place. At the trees

160 (Likelihood: -21163.03595) - 161 (Likelihood: -21161.40692), we can in see in Fig. 5.13a a slight rise in

the likelihoods happens. At first, we assume that we will be seeing small topological changes because of the

low Robinson-Foulds distances. The likelihood values rise slightly because of the hill-climbing NNIs trying

to optimise trees while stuck in local optima. Then it is followed by a significant drop of the likelihood values

at the trees at the position 161 (Likelihood: -21161.40692) - 162 (Likelihood: -21895.2775). We assume that

the topology of the successor will be different from the following tree because of the random NNI. Then we

see a rise in the likelihood and at positions 162 (Likelihood: -21895.2775) to 163 (Likelihood: -21358.8747).

So we know that here a hill-climbing NNI took place.

The sequence begins at the trees 160-161. We assume that at first a hill-climbing NNIs took place because

it seems that IQ-Tree was stuck in a local optimum. After all, the changes are small. Also, our assumption

is led by the small differences between likelihoods and the small Robinson-Foulds distance. As we can see

in Fig. 5.15, the taxon {Sphenodon} is highlighted. The taxon {Sphenodon} interchanges with {Lizard}.
So that {Lizard} clusters with {Bird, Crocodile}. This cannot be seen because of small branch lengths, but

when we ignore the branch lengths, we can see the topological changes, which is reasoned of the hill-climbing

NNI (Fig. 5.15).

The next step is the transition from 161 to 162 (Fig. 5.16), where can we see that the topological

differences between trees are high. When we look at the Robinson-Foulds distance (Fig. 5.13a) we can see

that there is a peak between the distance of these trees. Fig. 5.13a, we can see that the likelihood of tree

162 is low.

So from trees 161 to 162, we can see that a random NNI took place. Here we can also say the change

cannot be described easily, and we have to compare the trees as in (Fig. 5.16) to see differences. Twelve taxa

from seventeen {Turtle, LngfishSA, Frog, Rat, Whale, LngfishAu, Mouse, Human, Crocodile, Seal, Cow,

Bird} are highlighted. The highlighting algorithm operates on the non-existent branches, which are a lot

because the topologies of trees are so different, as can also be seen in the high Robinson-Foulds distance.

Therefore, the algorithm recognises these eleven from seventeen as jumping taxa.

Then in tree transition from tree 162 to 163 (Fig. 5.17), we assume that a hill-climbing NNI took place.

We observe that the likelihood of value of tree 162 is in a pit, whereas at position 163, it rises. So here we

can say that a hill-climbing NNI took place, optimising the tree.
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Figure 5.14: Tree Pair from the tree search dataset. Full Tree 6 in the sequence on the top (Likelihood value:
-21181.12125); Full Tree in the position 7 on the bottom (Likelihood value: -21158.16664); Highlighted
taxon: Sphenodon. The second tree was generated by a hill-climbing NNI. Sphenodon exchanges with
{Bird, Crocodile};
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Figure 5.15: Tree Pair from the tree search dataset. Full Tree 160 (Likelihood: -21163.03595) on the top ;
Full Tree 161 (Likelihood: -21161.40692) on the bottom. Highlighted taxon: Sphenodon; The second tree
was generated by a hill-climbing NNI. Spendon exchanges with Lizard
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Figure 5.16: Tree Pair from the tree search dataset. Full Tree 161 on the top (Likelihood: -21161.40692);
Full Tree 162 (Likelihood: -21895.2775) on the bottom, Highlighted taxa: Opossum, LngfishSA, Turtle,
LngfishAu, Crocodile, Platypus, Seal, Bird; The second tree (tree at the position 162) on the bottom was
generated by a Random NNI
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Figure 5.17: Tree Pair from the tree search dataset. Full Tree 162 (Likelihood: -21895.2775) on the top; Full
Tree 163 (Likelihood: -21358.8747) on the bottom, Highlighted taxa: Turtle, LngfishSA, Frog, Rat, Whale,
LngfishAu, Mouse, Human, Crocodile, Seal, Cow, Bird; The second tree (tree at the position 162) on the
bottom was generated by a random NNI
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5.3.2 Discussing Observation on the Tree Search Sequence

Our conjecture that the difference in the topology of the two trees is significantly high when the likelihood

of these are different has proven to be true. The assumption that when the likelihood of a tree’s successor

remains almost the same and the Robinson-Foulds distance is small, we will see small hill-climbing NNI is

true. The detection of small topology changes, as in the hill-climbing NNI, becomes easy with Phylo-Movies.

These small changes can be easily found when the likelihood increases slightly in the predecessor than in the

successor. When a random disturbance happens, the difference between the trees is difficult to detect. Also,

the difference between the trees is difficult to detect when a hill-climbing NNI has happened where the trees

have a small likelihood value, whereas the successor has a higher one. We also discovered that in the cases

of the transition as from tree 6 to 7 (Fig. 5.14), we recognise that only one taxon is marked, which makes

the recognition easier. However, it would be better if Phylo-Movies highlighted both interchanging taxa and

their branches leading to them. Also, in the more extensive transitions, like in 161 to 162, we can see that

the highlighting only helps to a limited extent.

Our analyses in the context of the sequence of phylogenetic trees, using the calculation of the absolute

distance of likelihood values of trees with the combination of the Robinson-Foulds distance, led us to inter-

esting conclusions. So in the scenario of finding changes in topologies in sequences generated by the tree

search of IQ-Tree, we can say that, in retro perspective, also the distance between the likelihood for each

pair in the sequence of trees should be taken into account for finding indication where hill-climbing NNI

happened and where random perturbations took place.
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Chapter 6

Discussion

In our analysis, we can claim that no major disturbances appeared, and the animations ran fluidly. We

still have to claim that our tool needs to be tested on more real data to get more insight into animating

trees’ behaviour to develop more improvements. In the section on further development, we will give more

suggestions to make it easier for users.

Some other tools were developed for the comparison of trees. One of them known as Compare2Trees (Nye

et al., 2005) and Phylo.io (O. Robinson et al., 2016). Both of them are not animating the transition of

trees, but they were developed to compare them statically. As we did it in our Results section for example

Fig. 5.5. Compare2Trees can annotate nodes and has as Phylo-Movies a novel approach to compare tree

structures. Compare2Trees, is as Phylo-Movies a web-based tool, but because of the underlying technology,

it can be tedious to use in modern web browsers (O. Robinson et al., 2016). Phylo.io is also a web-based

software, based as Phylo-Movie on CSS, HTML, JavaScript and D3, for side-by-side comparison. Phylo.io

indicates similarities and differences by applying colour schemes to them. Both of these tools don’t allow an

analysis of a sequence of trees. If one wanted to compare a sequence of trees, it would be feasible because

one would need to upload a pair of trees and then analyse it and redo the process with the next tree and its

successor.

But in some cases, it is sometimes easier to detect changes by comparing trees not by animation but

rather by depicting the first tree on the right and the second one on the left side. This kind of comparison

sometimes gives users more possibilities to see the difference. The two previously mentioned tools make this

form of static comparison.

Therefore, it would be a consideration to include this form of comparison in Phylo-Movies to gain a more

integrative understanding of the difference of topologies of phylogenetic trees. We can say that Phylo-Movies,

allows a user to view a sequence of trees and see their differences. For example, it would be interesting to

apply Phylo-Movies to other sequences of phylogenetic tree search algorithms and compare them with each

other.

6.1 Further Development

We will now discuss various ideas that could be interesting to further develop and improve Phylo-Movies.

One features missing is that Phylo-Movies can only display rooted trees, limiting the use. An essential

extension would be to offer the possibility of visualising the non-rooted trees either by midpoint rooting on
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by enabling the display of unrooted trees.

Another consideration that has already been discussed is the display in different layouts, such as rectan-

gular phylogenetic trees or phylograms.

In addition, it would be of further relevance that the weighted Robinson-Foulds distance is also displayed

in the lower right margin of the application, but other distance function should also be considered. An

explanation on different distance functions can be found in Kupczok, 2010 and Felsenstein, 2004, Chapter 3.

Currently, only the Relative Robinson-Foulds Distance is displayed.

The individual colourisation of subtypes could lead to a better contribution for having a better overview

of the recombinations of several subtypes.

Mike Bostock, the developer of D3, has an excellent example of the Tree Of Life (D. Wu et al., 2009), where

he divides the group of bacteria, eukaryotes and archaea by using different colours https://observablehq.com/

@d3/tree-of-life. The classification into groups could be done by placing a certain substring in front of the

different taxa.

If a taxon is marked as jumping several times in several s-edge, it would also be interesting to mark the

taxa marked as jumping several times in other colours. The more often a taxon is identified as jumping, the

darker it could be coloured, creating a gradient that makes it possible to spot the difference at first glance.

Last but not least, it would be interesting to offer the possibility for the user to record certain parts

in video formats as MP4 or GIFS that are played in Phylo-Movies, so that they can be integrated into

presentations.

6.2 Conclusion

In this thesis, we have explained how Phylo-Movies can visualise sequences of phylogenetic trees and where

one can apply Phylo-Movies. It has been shown that the differences between neighbouring trees are essen-

tial, as it has been from sequences generated from reconstructing trees for sliding windows along genomic

alignments, e.g., to detect recombination events. Another source might be the sequence of trees found during

a tree search during phylogenetic analysis. After obtaining such a sequence of trees, we have shown that it

is no longer tedious to manually analyse neighbouring pairs of trees and detect major transitions, changes,

or recombination events. Because it is hard to see differences between the two trees, we found ways to

highlight changes in the tree topologies so that the user can easily recognise the significant changes. So we

developed a highlighting algorithm that detects jumping taxa reasoning the topological changes. With the

combination of colourisation and the intermediate steps, it is easier for the eyes to see apparent differences

and transitions. The following properties have been achieved: The tools are easy to use, and visualisations

are high fidelity. Because we have built Phylo-Movies as a browser application, it is more accessible to the

scientific community, especially experimentalists with limited computational resources. Also, an essential

requirement for the tool had high animation quality. We have seen that the animation quality provides

enough resolution to detect changes in topologies.
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Appendix A

Test Cases for the Highlighting

Approaches

First, all the case examples and their results for the Initial Approach are shown, followed by the same

examples, except that this time the results of the Final Approach are shown. The pictures were generated

with ETE3 (Huerta-Cepas, François Serra, et al., 2016a). All cases are numbered and can be recognised

either by their numbering. First, we have examples where a taxon jumps Section A.2, two taxa exchange

Section A.1, and a small example where a taxon jumps in a subtree Section A.3. After that, we see a

case where two subtrees exchange Section A.4. Then we have a case where two different s-edges appear

Section A.5. Then we have a case where a subtree move toward the root Section A.6. Then we have two

cases where subtrees dissolves into a multifurication and where the subtree swapping position (Section A.7

and Section A.8). It is a representative subset of cases the approaches where tested on to develop a better

understanding.
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A.1 Case 1: One Taxon jumps

A.1.1 Result: Initial Approach

A

B

C

D

E

F

A

B

C

D

E

F

Left side Full Tree 1; Right Side Full Tree 2

Description: One Taxon Jumps or Two Taxa Jump

Algorithm Worked: True

Possible solutions: {‘D’},{‘C’},{‘F’, ‘E’}

Yielded Solution: {‘D’}

A.1.2 Result for the Final Approach

A

B

C

D

E

F

A

B

C

D

E

F

Left side Full Tree 1; Right Side Full Tree 2

Description: One Taxon Jumps or Two Taxa Jump

Algorithm Worked: True

Possible solutions: {‘D’},{‘C’},{‘F’, ‘E’}

Yielded Solution: {‘C’}
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A.2 Case 2: Small Change in subtree

A.2.1 Result for the Initial Approach

A

B

C D

E

D

B

C A

E

Left side Full Tree 1; Right Side Full Tree 2

Description: Taxa A and D exchange or Taxa E and B exchange

Algorithm Worked: True

Possible solutions: {‘A’, ‘D’},{‘B’, ‘E’}

Yielded Solution: {‘A’, ‘D’}

A.2.2 Result for the Final Approach

A

B

C D

E

D

B

C A

E

Left side Full Tree 1; Right Side Full Tree 2

Description: Taxa A and D exchange or Taxa E and B exchange

Algorithm Worked: True

Possible solutions: {‘A’, ‘D’},{‘B’, ‘E’}

Yielded Solution: {‘A’, ‘D’}
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A.3 Case 3: Small Change in subtree

A.3.1 Result for the Initial Approach
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E

H

Left side Full Tree 1; Right Side Full Tree 2

Description: Taxon E jumps into G

Algorithm Worked: True

Possible solutions: {‘E’}

Yielded Solution: {‘E’}

A.3.2 Result for the Final Approach
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Left side Full Tree 1; Right Side Full Tree 2

Description: Taxon E jumps into G

Algorithm Worked: True

Possible solutions: {‘E’}

Yielded Solution: {‘E’}
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A.4 Case 4: Two Groups

A.4.1 Result for the Initial Approach
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Left side Full Tree 1; Right Side Full Tree 2

Description: The group {C1 C2} jumps into A2, the group {E1, E2} jumps into
the ancestor of {F1, F2}

Algorithm Worked: True

Possible solutions: {‘C1’, ‘C2’, ‘E1’, ‘E2’}

Yielded Solution: {‘C1’, ‘C2’, ‘E1’, ‘E2’}

A.4.2 Result for the Final Approach
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Left side Full Tree 1; Right Side Full Tree 2

Description: The group {C1 C2} jumps into A2, the group {E1, E2} jumps into
the ancestor of {F1, F2}

Algorithm Worked: True

Possible solutions: {‘C1’, ‘C2’, ‘E1’, ‘E2’}

Yielded Solution: {‘C1’, ‘C2’, ‘E1’, ‘E2’}
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A.5 Case 5: Two s-edges

A.5.1 Result for the Initial Approach

A1

A2

A
3

B
1

B
2

C

D1
E

D2

F1

F
2

F
3

O
1

O2

A1

B1

B
2

A
2

A
3

C

D1

D2
F1

E

F
2

F
3

O
1

O2

Left side Full Tree 1; Right Side Full Tree 2

Description: The group {B1, B2} jumps to A2, E jumps into F1

Algorithm Worked: False

Possible solutions: {‘A1’, ‘B2’, ‘E’, ‘B1’},{‘A3’, ‘B2’, ‘E’, ‘B1’}

Yielded Solution: {‘E’}

A.5.2 Result for the Final Approach

A1

A2

A
3

B
1

B
2

C

D1
E

D2

F1

F
2

F
3

O
1

O2

A1

B1

B
2

A
2

A
3

C

D1

D2
F1

E

F
2

F
3

O
1

O2

Left side Full Tree 1; Right Side Full Tree 2

Description: The group {B1, B2} jumps to A2, E jumps into F1

Algorithm Worked: True

Possible solutions: {‘A1’, ‘B2’, ‘E’, ‘B1’},{‘A3’, ‘B2’, ‘E’, ‘B1’}

Yielded Solution: {‘A1’, ‘B2’, ‘E’, ‘B1’}
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A.6 Case 6: Subtree moving towards the root

A.6.1 Result for the Initial Approach
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Left side Full Tree 1; Right Side Full Tree 2

Description: Subtree {X1, X2} is moving is jumping downwards

Algorithm Worked: False

Possible solutions: {‘X2’, ‘X1’}

Yielded Solution: {‘A3’, ‘A2’}

A.6.2 Result for the Final Approach
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Left side Full Tree 1; Right Side Full Tree 2

Description: Subtree {X1, X2} is moving is jumping downwards

Algorithm Worked: True

Possible solutions: {‘X2’, ‘X1’}

Yielded Solution: {‘X2’, ‘X1’}
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A.7 Case 7: Subtree moving towards the root

A.7.1 Result for the Initial Approach
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Left side Full Tree 1; Right Side Full Tree 2

Description: B1 or B2 jumps to his ancestor and B3 or B4 jumps to his ancestor

Algorithm Worked: False

Possible solutions: {‘b3’, ‘b1’},{‘b4’, ‘b1’},{‘b2’, ‘b3’},{‘b2’, ‘b4’}

Yielded Solution: set()

A.7.2 Result for the Final Approach
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Left side Full Tree 1; Right Side Full Tree 2

Description: B1 or B2 jumps to his ancestor and B3 or B4 jumps to his ancestor

Algorithm Worked: True

Possible solutions: {‘b3’, ‘b1’},{‘b4’, ‘b1’},{‘b2’, ‘b3’},{‘b2’, ‘b4’}

Yielded Solution: {‘b3’, ‘b1’}
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A.8 Case 8: Two exchanging subtrees

A.8.1 Result for the Initial Approach
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Left side Full Tree 1; Right Side Full Tree 2

Description: Subtree (X1, X2) and (X3, X4) or taxa 0 and 4 exchange

Algorithm Worked: True

Possible solutions: {‘X2’, ‘X1’, ‘X3’, ‘X4’},{‘0’, ‘4’}

Yielded Solution: {‘X2’, ‘X1’, ‘X3’, ‘X4’}

A.8.2 Result for the Final Approach
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Left side Full Tree 1; Right Side Full Tree 2

Description: Subtree (X1, X2) and (X3, X4) or taxa 0 and 4 exchange

Algorithm Worked: True

Possible solutions: {‘X2’, ‘X1’, ‘X3’, ‘X4’},{‘0’, ‘4’}

Yielded Solution: {‘X2’, ‘X1’, ‘X3’, ‘X4’}
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Appendix B

Backend Requirements

Here are the python requirements listed for the backend of Phylo-Movies.

package version Useage URL

ete3 3.1.2 Tree Manipulation http://etetoolkit.org/

Werkzeug 2.0.1 Request Handling https://werkzeug.palletsprojects.com/en/2.0.x/

Flask 2.0.1 Web Framework https://flask.palletsprojects.com/en/2.0.x/

gunicorn 20.1.0 WSGI https://gunicorn.org/

Jinja2 3.0.1 Template Language https://jinja.palletsprojects.com/en/3.0.x/

numpy 1.19.5 Array Handling https://numpy.org/

pandas 1.3.0 Table Handling https://pandas.pydata.org/

biopython 1.79 Nexus Parser https://biopython.org/
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