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ABSTRACT 

 

The heterogeneous superfamily of solute carriers represents the largest group of 

membrane transporters and enables the transport of a large number of 

substances across plasma membranes. The importance of SLCs stems from their 

involvement in a variety of physiological but also pathological processes, 

whereby also their pharmacological relevance, for example by influencing the 

pharmacokinetics of drugs, is noteworthy. However, although individual family 

members are well described today and there has been increased interest in 

researching this transport protein family on a broader basis, especially in recent 

years, the functions and properties of a large number of SLC transporters are 

still unclear.  

On the one hand, the work presented here aims to uncover previously unknown 

associations between changes in metabolite levels, diseases and SLC transporters 

by combining data on metabolite signatures of diseases with data on SLC-disease 

relationships. On the other hand, an attempt is made to describe possible new 

SLC substrates using the same approach. For the implementation of this idea an 

appropriate workflow was created with the data analytics platform KNIME.  

The data set resulting from this integration shows associations between diseases 

and SLCs, which have already been described in different studies. This indicates 

that the other results may also contain relevant, not yet described correlations. 

Also the second resulting data set describing possible new substrates of SLCs 

provides reasonable, if not really surprising, results. 
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ZUSAMMENFASSUNG 

 

Die heterogene Superfamilie der Solute Carrier bildet die größte Gruppe unter 

den Membrantransportern und ermöglicht die Passage einer großen Anzahl von 

Substanzen durch Plasmamembranen. Bedeutend sind SLCs dabei aufgrund 

ihrer Beteiligung an einer Vielzahl physiologischer, aber auch pathologischer 

Prozesse, wobei auch ihre Relevanz in pharmakologischen Fragestellungen, 

beispielsweise durch eine mögliche Beeinflussung der Pharmakokinetik von 

Wirkstoffen, beachtenswert ist. Obwohl einzelne SLC-Transporter bereits gut 

beschrieben sind und das Interesse an einer umfangreichen Erforschung der 

ganzen Familie gerade in den letzten Jahren gestiegen ist, bleiben die Funktionen 

und Eigenschaften vieler SLCs weiter unklar.  

Die hier vorgestellte Arbeit zielt zum einen darauf ab, bisher unbekannte 

Zusammenhänge zwischen Änderungen von Metabolitenspiegeln, Krankheiten 

und SLC-Transportern aufzudecken. Dafür werden Daten zu krankheitsbedingt 

veränderten Metabolitenkonzentrationen mit Daten über Beziehungen zwischen 

SLCs und Krankheiten kombiniert. Andererseits wird im selben Ansatz auch 

versucht potentielle unbekannte Substrate von SLC-Transportern zu 

beschreiben. Um diesen Plan umzusetzen, wurde mit der Datenanalyseplattform 

KNIME ein entsprechender Workflow geschaffen.  

Der aus dieser Integration resultierende Datensatz zeigt bereits bekannte 

Assoziationen zwischen Krankheiten und SLCs, die bereits in unterschiedlichen 

Studien beschrieben wurden. Dies deutet darauf hin, dass auch in den anderen 

erhaltenen Ergebnissen relevante, noch nicht beschriebene Zusammenhänge 

enthalten sein könnten. Auch der zweite resultierende Datensatz, der potentielle 

neue Substrate von SLC-Transportern beschreibt, liefert vernünftige, wenn auch 

nicht unbedingt überraschende Ergebnisse. 
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1 INTRODUCTION 

 

The first chapter is intended to give an insight into the huge family of solute 

carriers and their fundamental importance in physiological and pathological 

processes. Section 1.1 first gives a short overview on the characteristics of solute 

carriers and their essential role in membrane transport. After that, section 1.2 

briefly illustrates the relevance of this superfamily of transporters in the 

occurrence of diseases, their use as drug targets and their important role as parts 

of pharmacokinetic pathways, based on some significant examples. Following to 

that, section 1.3 highlights the importance of systematic research on solute 

carriers, before section 1.4 clarifies why metabolite-disease associations were 

used as the starting point for this work. 

 

 

1.1 SOLUTE CARRIERS AND MEMBRANE TRANSPORT 

 

A fundamental concept of life is that cells need to be separated from the 

extracellular space via biological membranes. These membranes function as 

physical barriers controlling the cellular uptake and release of compounds. 

Moreover, such barriers also exist in the intracellular space where they are 

required for the creation of intracellular compartments. Since the exchange of 

compounds through passive diffusion (a concept that has not yet been finally 

confirmed) is assumed to be restricted to rather small molecules with high 

lipophilicity, the transfer of most molecules relies on transmembrane proteins 

that mediate their transport. [1] 

Such membrane transporters can be classified and grouped into different 

families on the basis of their function or sequence. The solute carrier (SLC) 

superfamily represents the largest family of membrane transporters as it 

currently comprises about 460 members classified into 65 families. [2] Other 

important groups of membrane transporters include the ATP-binding cassette 

(ABC) transporters, ion channels and ATPases. Transporters that are included 
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in an SLC family have a sequence similarity of over 20% in relation to at least 

one other transporter of the family, [3] while SLC families among each other 

often do not share a relevant homology in terms of their amino acid sequence. 

The membership of a transporter family in the SLC superfamily is based on the 

functional similarity of transporter proteins rather than their pylogenetic origin. 

[4] Because of this, the SLC superfamily represents a highly diverse class of 

membrane transporters, which means that their members differ in many of their 

features such as their structure, localisation, substrates, etc. 

For the transport of molecules across biological membranes, SLCs use different 

so-called energy-coupling mechanisms, the most prominent of which, namely 

the facilitative transport and the secondary active transport, are discussed here. 

[5] In facilitative transport the electrochemical gradient of the compound itself 

is used to drive the transport, making it a passive transport. Carriers, in contrast 

to ion channels, which also use the electrochemical gradient of their substrates 

to facilitate their transportation, have specific binding sites and transport their 

substrates with a fixed stoichiometry in each transportation cycle. The transport 

capacity of channels is delimited by their open state probability but several 

dimensions higher than the capacity of carriers. [3] Besides that, SLCs also use 

secondary active transport, where substrates can be moved against their 

concentration gradient using the free energy provided by the simultaneous 

gradient-dependent transport of so-called coupled compounds. These are in 

most cases ions whose electrochemical gradient is generated by ATPases. [3] 

Secondary active transporters either carry their substrates in the same direction 

(symporters) or in the opposite direction (antiporters). [1] In contrast to 

transporters classified to the SLC superfamily, members of the other main group 

of membrane transporters, the ABC superfamily, mediate the efflux of 

compounds through primary active transport, which is directly powered by ATP 

hydrolysis. [6] 

As mentioned before, membrane transporters do not only occur on the cell 

membrane but also on plasma membranes that create intracellular 

compartments. According to the paper “A substrate-based ontology for human 

solute carriers” by Meixner et al. where the authors describe the creation of a 

manually curated annotation of human SLCs, the most common localisation of 

annotated SLCs was the cell membrane with an occurrence of almost two thirds. 
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In regard to localisation on intracellular compartments mitochondria was found 

as most frequent. [7] Looking at the expression of SLCs in different tissues, there 

apparently is some kind of redundancy, meaning that a majority of SLCs can be 

found in a wide range of different tissues, whereas some other SLCs are highly 

limited to specific cell types. [8] The SLC6 and SLC18 families are a concrete 

example for this kind of tissue specificity since their occurrence is restricted to 

neurons where they control the levels of various neurotransmitters in the 

synaptic cleft. [2] 

The spectrum of substrates transported by SLCs is quite diverse, including 

essential nutrients like amino acids, sugars and vitamins, as well as inorganic and 

organic ions, metabolites, drugs and more. [2] In their paper, Meixner et al. also 

depict the distribution of experimentally confirmed substrates of SLCs to 

different classes of compounds, showing that the transportation of ions and 

amino acids were the most common for annotated SLCs. [7] Another interesting 

point to consider is that SLC transporters obviously vary in their substrate 

specificity. While some SLCs mediate the transport of just a narrow range of 

substrates, such as for instance the amino acid transporters of the SLC7 family, 

or even are specific for only one specific substrate, others transport broad ranges 

of compounds from different chemical classes, like the transporters of the SLCO 

family (OATs). [6] 

Despite their vital role in cellular functioning, due to their importance in 

regulating the transmembrane influx and efflux of compounds, the majority of 

SLCs remains chronically understudied. In fact, a substantial portion of 28% are 

considered as functional orphans given that they do not have any confirmed 

substrates. [7] Likewise to our in many cases limited knowledge of associated 

substrates, also other features of many SLCs are still unclear. An overview of the 

occurrences of unknown SLC characteristics can be found in Figure 1 which 

originates from the paper “A substrate-based ontology for human solute 

carriers” by Meixner et al. [7] 
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FIGURE 1: Frequencies of unknown annotations for 446 SLCs [7] 



13 
 

1.2 THE THERAPEUTIC RELEVANCE OF SLCs 

 

Due to their crucial role in a large variety of physiological processes, it is not 

surprising that dysfunctions of solute carriers lead to imbalances in the 

disposition of their substrates and thereby contribute or even lead to a diverse 

spectrum of diseases. The relevance of this connection is clearly emphasized by 

the fact that mutations of around 190 SLC genes have been connected to human 

diseases in the Online Mendelian Inheritance in Man (OMIM) database up to 

now. [2] 

 

 

1.2.1 SLCs in Mendelian and complex disorders 

 

Mendelian diseases are defined as disorders that are caused by a single-gene 

mutation, with conspicuous familial inheritance patterns being typical of such 

monogenic diseases. In comparison to that, in the development of complex 

diseases, multiple genes and often also environmental factors are involved. 

Prominent examples of Mendelian diseases include Huntington’s disease, sickle 

cell anemia and cystic fibrosis. Although monogenic diseases are numerous, 

most of them are comparatively rare. [9,10] 

Interestingly, a considerable number of mutations in SLC genes that lead to 

dysfunctions or a deficient expression of the corresponding transporter have 

been verified to be causal for monogenic diseases. Such genotypic mutations are 

primarily induced by loss of function mutations of SLC transporters with very 

specific functions and a limited number of substrates. The resulting phenotypes 

of such mutations are highly diverse and can affect nearly every organic system. 

Some of them are harmless, whereas others have severe consequences for the 

individual. In their review “SLC Transporters as Therapeutic Targets: Emerging 

Opportunities” by Lin et al, the authors present a tabular overview of 84 SLCs 

whose mutations are associated with a total of 100 Mendelian diseases (see 

Supplementary Table S1 of the review), which was used in the validation of this 

work’s results (see Discussion). [6] 
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Because the pathologic effects of Mendelian diseases are caused by specific 

alterations in the distribution of defined endogenous compounds these diseases 

provide distinct cause-effect relationships. By uncovering these connections 

between diseases and a changed handling of certain compounds, the generation 

of deeper insights into pathophysiological processes and also the development 

of new therapies could be promoted. [6] 

As an example where a known SLC gene mutation has aided the development 

of a whole new class of drugs, the story of SGLT2-inhibitors can be mentioned. 

In familial renal glucosuria (aka diabetes renalis) glucose is excreted through the 

urine, although there are no increased blood levels of glucose. The cause for this 

rather benign trait, that usually does not lead to serious consequences, are 

mutations in the sodium-dependent glucose cotransporter (SGLT2 or SLC5A2) 

which is located in the proximal tubule and mediates the uptake of glucose from 

the primary urine. Evidence from the observation of patients with this disorder 

was an important argument to promote research efforts on the development of 

potent inhibitors of SGLT2. In their paper “Familial Renal Glucosuria and 

SGLT2: From a Mendelian Trait to a Therapeutic Target” [11] Santer and Calado 

refer to the phenotypic effects of the mutations that cause familial renal 

glucosuria as a “natural analogy” to the drug-induced inhibition of SGLT2. Both 

cases result in an increased excretion of glucose due to a reduced renal 

resorption, on the one hand caused by the reversible pharmacological effect of 

a drug that can be dosed, and on the other hand by a life-long reduced or even 

loss of function mutation of the transporter. Dapagliflozin was the first member 

of the family to be licensed for the treatment of diabetes in 2012 by the 

European Medicines Agency (EMA). Meanwhile SGLT2 inhibitors represent an 

important extension in the field of oral antidiabetics. Furthermore, several 

members of the family are now also applied in the treatment of heart failure and 

chronic kidney disease. [11,12] 

As a matter of course, deficient SLC transporters, which are causal for 

monogenic diseases, would themselves be possible targets for the treatment of 

the disease. One possible approach could be the use of high-throughput 

screening methods to find compounds able to activate the transporter activity. 

Taking into account that most Mendelian diseases are rare (so-called orphan 

diseases), which is a major barrier in drug development, also drug repurposing 
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might be a reasonable approach to face the higher economical and logistical 

difficulties. [6] 

Another important aspect to consider when talking about the variability of SLC-

expressing genes are the population specific prevalences for different mutations. 

Schaller and Lauschke, who analyzed the genetic variability of SLC genes in 

different ethnic groups state in their paper “The genetic landscape of the human 

solute carrier (SLC) transporter superfamily”, that they found an enormous share 

of 83% of all variants that were predicted to impact the SLC function had a 

certain amount of population specificity. This confirms that genetic variability is 

population-specific to a large extent, highlighting the relevance that ethnicity has 

in the predisposition of Mendelian diseases. Furthermore, also the efficacy and 

toxicity of drugs can be affected, due to the fact that an altered transporter 

function may have significant influence on the pharmacokinetics of a drug (see 

section 1.2.3 SLCs and pharmacokinetics). [13] 

Besides their connection to a variety of monogenic diseases, numerous SLCs 

were linked to the appearance of a spectrum of common multicausal diseases. 

To identify associations between particular SLC variants and the development 

of such complex diseases, genome-wide association studies (GWAS) are an 

important tool. Techniques like this led to the discovery of a number of SLC 

transporter risk loci, whose polymorphisms may play a role as one among other 

multifactorial causes to contribute in the genesis of various diseases, including 

metabolic diseases like type 2 diabetes and gout, neurological diseases like 

depression and Alzheimer’s disease, disorders connected with the immune 

system (e.g. asthma and inflammatory bowel disease) as well as cardiovascular 

diseases (e.g. high blood pressure) and cancer. [14] Table 1, adapted from the 

review “The SLC transporter in nutrient and metabolic sensing, regulation and 

drug development” by Zhang et al. presents links between SLC transporters and 

common diseases, which were used to validate the resulting associations from 

this work (see Discussion). 
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SLC Human disease Known substrates Reference 

SLC2A2 T2DM, Insulin resistance Facilitated glucose transporter [15] 
SLC16A11 T2DM Pyruvate [16] 
SLC30A8 T2DM, Insulin resistance Zinc transporter 8 [15] 
SLC6A1 Anxiety disorders GABA transporter [17] 
SLC6A12 Schizophrenia GABA transporter [18] 
SLC6A15 Depression Branched-chain amino acids, 

particularly leucine, valine, isoleucine, 
and methionine 

[19] 

SLC30A10 Neurologic, hepatic, and 
hematologic disturbances 

Manganese [20] 

SLC24A4 Alzheimer’s disease Calcium [21] 
SLC2A9 Gout Urate [22,23] 
SLC16A9 Gout Urate [23,24] 
SLC17A1 Gout Sodium-dependent phosphate 

transporter 1 (uric acid) 
[23,25,26] 

SLC17A3 Gout Urate [22] 
SLC22A11 Gout Organic anion transporter 4 [24,27] 
SLC22A12 Gout Urate transporter 1 [23,26,27] 
SLC4A7 Elevated blood pressure Electroneutral Na+/HCO3 − 

cotransporter NBCn1 
[28–31] 

SLC6A13 Elevated blood pressure, 
chronic kidney disease (CKD) 

GABA transporter [32–34] 

SLC8A1 Elevated blood pressure Sodium-calcium exchanger 1 [35] 
SLC12A1 Blood pressure variation Kidney-specific sodium–potassium–

chloride cotransporter 
[36] 

SLC12A3 Blood pressure variation Renal thiazide-sensitive sodium-
chloride cotransporter 

[36] 

SLC14A2 Elevated blood pressure Urea transporter [35] 
SLC22A4/5 Elevated blood pressure Gothioneine and carnitine [37] 
SLC24A3 Elevated blood pressure K+-dependent Na+/Ca2+ exchanger 3 [35] 
SLC35F1 Elevated blood pressure - [35] 
SLC39A8 Elevated blood pressure Zinc [29] 
SLC39A13 Elevated blood pressure Zinc [29] 
SLC25A32 Blood pressure - [38] 
SLC7A9 CKD Cystine and neutral and dibasic amino 

acids 
[33] 

SLC34A1 CKD Sodium–phosphate cotransporter [33] 
SLC22A2 CKD Metformin, cisplatin, and lamivudine [33,34] 
SLC22A5 Asthma Carnitine transporter [39,40] 
SLC30A8 Asthma Zinc transporter 8 [41] 
SLC22A23 Bronchodilator 

responsiveness in asthma 
- [42] 

SLC25A15 Bronchodilator 
responsiveness in asthma 

- [43] 

 

 

  

TABLE 1: Links of SLC transporters to common human diseases [14] 
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1.2.2 SLCs as drug targets 

 

On account of the evident importance of SLC transporters in a variety of 

common diseases, especially in metabolic disorders, there are examples of 

approved drugs that exert their effects through an action on SLC transporters. 

According to the paper “A Call for Systematic Research on Solute Carriers” by 

César-Razquin et al. in 2015, there were 12 FDA-approved drug classes whose 

primary functional mechanism was an effect on SLC transporters. An overview 

of these approved drugs and further drugs in clinical development can be found 

in Table 1 of this paper. Furthermore, numerous other drugs interact with SLCs 

beyond their primary effect on a different target. Although, in many cases it is 

not entirely clear if these additional effects are of relevance for the 

pharmacological effect or potential side effects of the drug. [44] 

Famous approved drug classes whose therapeutic effect is based on the 

inhibition of SLC transporters are important for various therapeutic areas. For 

example, the highly active class of loop diuretics works through an inhibition of 

Na+K+2Cl- symporters (aka SLC12A1) in the loop of Henle, whereas thiazides 

inhibit the Na+Cl- symporter (aka SLC12A3). For both classes this results in a 

decreased reabsorption of sodium and thus an elevated diuresis, making them 

important drugs in the management of high blood pressure and oedema caused 

by heart failure. The antagonism on members of the SLC6 transporter family 

represents another case for SLC transporters being targets of high importance 

for modern pharmaceutical treatment. NET (SLC6A2), DAT (SLC6A3) and 

SERT (SLC6A4) mediate the uptake of the monoamine neurotransmitters 

noradrenaline, dopamine and serotonin out of the synaptic cleft. These transport 

proteins serve as the primary targets of drugs like selective serotonin reuptake 

inhibitors (SSRI), serotonin-noradrenaline reuptake inhibitors (SNRI) and 

tricyclic antidepressants (TCA) that are used to treat depression and other 

neuropsychiatric disorders. SGLT2-Inhibitors used as oral antidiabetics, which 

were mentioned before, and inhibitors of urate transporter 1 (URAT1 aka 

SLC22A12), that are used for lowering uric acid levels due to their functionality 

to impede the reuptake of uric acid in the kidney, are further examples for SLC 

targeting drugs. [6] 
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1.2.3 SLCs and pharmacokinetics 

 

Since a relevant number of SLCs has drugs among their substrates, they often 

play central roles in the absorption, distribution, and elimination of drugs by 

mediating the permeation across often poorly permeable cell barriers. Examples 

for such passages, where the transition through carriers is of importance are the 

transport across the blood-brain barrier, the hepatic uptake and biliary excretion 

as well as the tubular secretion in the kidneys. SLC-mediated transport is also 

important for the absorption of certain drugs in the intestine. Here it must be 

taken into account, however, that for many drugs passive membrane diffusion 

may also play a significant role for the permeation into the intestinal epithelium. 

[45] 

Since the therapeutic effect of drugs highly depends on pharmacokinetic 

processes, changes in the functionality of SLC transporters can also influence 

the success of a therapy. These changes can be caused by polymorphisms or also 

by allosteric inhibitory or activatory effects. Thus, carrier-mediated transport can 

also entail drug-drug or nutrient-drug-interactions. A suitable example for an 

interaction of clinical relevance is the inhibition of OATP1B1 (aka SLCO1B1), 

which mediates the uptake of several commonly used drugs into hepatocytes. 

Some popular drugs, like for instance cyclosporin, act as inhibitors of this 

transporter and thereby induce elevated plasma concentrations of OATP1B1 

substrates. Given that statins are important substrates of OATP1B1, their 

reduced hepatic uptake increases the risk of serious side effects like myopathy 

or even rhabdomyolysis. [46] As previously described, also polymorphisms may 

influence the pharmacokinetic functions of SLCs. Such polymorphisms have 

also been found for OATP1B1, leading to higher exposures of different drugs, 

including statins. Although these specific genomic features might be relatively 

rare, quite a number of patients could be affected, considering the high 

prevalence of a medication with statins. [47] 

Another relevant example concerns metformin, the most frequently used 

substance to treat type 2 diabetes. The organic anion transporter 1 (OCT1 or 

SLC22A1) is known to take part in the absorption of metformin from the 

intestine, in its elimination through mediating the uptake of metformin into 
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hepatocytes, and for its renal excretion. A relevant proportion of patients 

medicated with metformin develops sometimes severe gastrointestinal side 

effects, which affect the adherence to the therapy. Several studies were able to 

confirm polymorphisms of SLC22A1, which lead to a reduced function of the 

transporter, as predisposing conditions for metformin intolerance. Moreover, 

some commonly used drugs (e.g. verapamil) operate as OCT1 inhibitors and 

increase the probability for an intolerance in addition. [48] 

Because many therapeutic compounds have been identified as substrates or 

affect the activity of transporters in general, and polypharmacy is an increasingly 

important issue in aging societies, the possibility of drug-drug interactions must 

be considered. For this reason the FDA emphasises the high relevance of 

screening for transporter-mediated interactions during drug-development in 

their recent guidelines. [49] 

 

  



20 
 

1.3 SYSTEMATIC RESEARCH ON SLCs 

 

As discussed in chapter 1.2, the family of solute carriers is of high prominence 

not only in physiological processes, but also in the formation and further 

development of diseases. Although some important drug classes that use SLCs 

as their targets have been developed, the therapeutic potential of this wide range 

of possible drug targets does not seem to be utilized adequately at present, 

especially when comparing SLCs with other membrane protein superfamilies 

like for instance the G-protein coupled receptors (GPCR), for which broader 

approaches in research have been realised. The thesis that the low number of 

SLCs to be intentionally targeted by approved drugs is above all caused by an 

underexploration of the superfamily is also supported by the fact that small-

molecule inhibitors have been identified for most of the SLC transporters that 

have been investigated properly, making solute carriers a family with a good 

druggability in general. [44] 

One principal problem when talking about the progress that has been achieved 

in SLC research, is that a majority of publications deals with a relatively small 

proportion of all SLC transporters. César-Razquin et al. took a closer look at this 

issue in their paper “A Call for Systematic Research on Solute Carriers” and 

found that SLCs bear by far the greatest asymmetry in the number of 

publications for single proteins compared to other gene families. Some members 

of the superfamily are explored to a high extent, while most others did not 

receive much research attention yet. [44] 

Now why does a systematic approach in SLC research make sense and what 

findings can be expected? First of all, the similarities between SLCs that could 

be determined in expansive deorphanisation attempts may indicate relations 

between the characteristics of different SLCs, as for example in their transport 

mechanism or in their substrate specificity. [50] Another point is that through 

studying whole families of proteins, the acquired knowledge on one transporter 

and developed tools for its characterization could promote the research 

prospects on other members of the family. This approach has already been 

rewarding when it was applied to other gene families, leading to an elucidation 

of their structure and accessibility as potential drug targets. [44] 
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There seem to be different reasons why whole-scale research efforts on SLCs 

were rather restrained for a long time. First, investigation is often hindered due 

to a lack of applicable research tools like functional assays. A second problem: 

There are repositories on the basic properties of SLC transporters, but such 

collections for other data such as information on expression profiles, 

connections between gene variants and diseases or collections of reagents have 

long been missing. Although the SLC gene nomenclature system was introduced 

by Hediger in the 1990s, the use of multiple nomenclatures also still poses a 

problem. Furthermore, the holistic effects of SLC transporters in human 

physiology and a substrate specificity that is often low contributed to the 

supposed unsuitability of SLCs as drug targets. [50,51] 

In order to enhance the systematic research on SLCs and to increase the 

utilisation of this transporter superfamily as drug targets, the RESOLUTE 

(Research Empowerment on Solute Carriers) consortium was founded. 

Different members from academia and pharmaceutical industry participate in 

the project that is funded by the European Innovative Medicines Initiative (IMI), 

the European Federation of Pharmaceutical Industries and Associations 

(EFPIA) and the EU. [52] The key intentions of this venture are to enable 

scientific investigation via providing research tools to deorphanise SLCs in a 

systematic approach, to establish a reliable source for assured information of 

SLC transporters and to generate functional assays for prioritized SLCs to 

further clarify their biological roles. In the 5 year term of this project that started 

in 2018, all the results and also methods are made openly accessible for the 

scientific community in order to boost the progress in SLC research. [50] 
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1.4 METABOLITE-DISEASE ASSOCIATIONS - 

A PROMISING STARTING POINT 

 

One considerable problem with SLC transporter research is that the focus is 

often just placed on their activities in the transportation of drugs. Although it is 

understandable to address concerns over the safety of drugs that might arise 

from their interaction with SLC transporters, clarifying their endogenous roles 

must not be forgotten. A better understanding of the physiological function of 

SLCs might open new insights into the mechanisms of various diseases and also 

on adverse drug reactions, given that a relevant number of side effects is caused 

by interactions of drugs with SLC transported metabolites. [53] 

Now what exactly is meant by “metabolites” in this context? The term refers to 

small molecules that are either transformed or generated in metabolic processes 

in order to produce energy from nutrients or to build up proteins, lipids, nucleic 

acids and carbohydrates. All of which are compounds needed to retain correct 

functioning of single cells as well as the whole organism. In the wide field of 

metabolic processes, the transport of substances inside and outside of cells has 

a crucial role to maintain an accurate functionality. The high relevance of SLCs 

in metabolism, owing to their function to transport a broad spectrum of 

metabolites, is further affirmed by their expression profiles, as SLC transporters 

can be found in metabolic organs like the liver, kidney, intestine and also the 

brain in particularly high levels. [54,55] 

A fundamental condition for this work is that the presence of certain metabolites 

and their accumulation or reduction can be associated with the occurrence of 

specific diseases, respectively. Very quickly we associate diseases like cancer with 

an altered metabolism, but in fact it can be assumed that every disease is 

connected with dysregulations of metabolic pathways, resulting in an alteration 

of metabolite levels. Because these changes in the concentrations of metabolites 

can be seen as signatures of diseases, Cheng et al. collected the information on 

metabolite-disease associations and created “MetSigDis”, which should provide 

a comprehensive resource for relationships between diseases and related 

metabolites (see section 2.1.1 for further information on “MetSigDis”). [56] 
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In this work the data from “MetSigDis”, which depicts a variety of disease 

associated alterations of metabolites, is combined with the SLC transporters that 

are associated with these diseases and besides from that also exhibit transporting 

activity for the corresponding metabolites. Figure 2 gives a graphic overview of 

the described combination and the main data sources that are used. To realize 

the integration of data from different sources the KNIME analytics platform, an 

open source data analytics tool, was used to create a workflow capable of this 

task.  

There were two basic objectives for this work. The first aim was to gain 

information on previously unknown associations between metabolites, diseases 

and SLC transporters from their connection, which was done via two different 

approaches. The second aim addressed in this work was whether an integration 

of data from metabolites whose alterations are associated with corresponding 

diseases and disease-SLC data could also be considered as a source for potential 

new substrates of the covered SLC transporters. The implementation of this idea 

via a similarity search is based on the assumption that molecules that are 

structurally similar to confirmed substrates may also be transported by the SLC 

transporter. 

 

  

FIGURE 2: Combination of disease associated alterations 
of metabolites with corresponding SLC transporters 
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2 METHODS 

 

In this chapter the methods used to achieve the objectives of this work, above 

all the goal of linking disease-related changes in metabolite levels with SLC 

transporters, are outlined. First, section 2.1 provides an overview and brief 

description of the data sources and tools used in this work. Then, in section 2.2, 

the construction and functionality of the workflow is explained in more detail. 

 

 

2.1 DATABASES AND TOOLS 

 

2.1.1 MetSigDis 

 

MetSigDis is a manually curated resource that covers metabolic signatures for 

various diseases and thereby forms the starting point for this work. According 

to the authors of the paper in which this library was introduced [56], MetSigDis 

contains 6849 manually curated relationships between 2420 metabolites that 

correlate with 129 diseases. Included information derives from reviewed 

PubMed literature about metabolomic assays which identified certain 

metabolites as signatures for specific diseases. Besides the information on 

metabolite-disease associations, every entry comprises the observed species (in 

a large part Homo sapiens), the analytical platform used in the metabolomic 

study (in most cases NMR, GC-MS or LC-MS), the tissue as well as the 

metabolite alteration (if increased or decreased) and a reference to the original 

paper. A great benefit for the utilization of this data set in the workflow was that 

besides the disease and metabolite names also the codes of standardised 

vocabularies are included (e.g. Disease Ontology IDs (DOIDs) and Human 

Metabolome Database (HMDB) codes). This eases both the analysis of the 

MetSigDis data and also the connection with other data sets substantially. [56] 

The relationships contained in MetSigDis are freely available and can be 

downloaded from their webpage (http://www.bio-annotation.cn/MetSigDis/). 

http://www.bio-annotation.cn/MetSigDis/
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Furthermore, the web interface also provides interactive visualisations of the 

metabolite disease network (MDN) and the human disease network (HDN) that 

the authors created using the collected data. In addition, a search engine is also 

provided from which the detailed information on each covered metabolite-

disease association can be retrieved. [57] For this work, the data set was 

downloaded on the 13.10.2021, but unfortunately it did not contain all the 

information that was promised in the paper. For further information on that 

issue see the data limitations section in the discussion part. 

 

 

2.1.2 DisGeNET 

 

The DisGeNET platform contains associations of genes and variants to human 

diseases. DisGeNET v7.0, which is the current version of the platform (accessed 

on 28.10.2021), covers over 1.1 million gene-disease associations between 21 671 

genes and 30 170 diseases or other abnormalities. The contained gene disease 

associations (GDA) and variant disease associations (VDA) derive from 

different types of source databases and include data from expert curated 

repositories, animal models, as well as from GWAS catalogues. For detailed 

information on the original data sources see their webpage 

(https://www.disgenet.org/dbinfo/). [58] For the application in this work, only 

curated GDAs are used, which originate from UniProt [59], the Comparative 

Toxicogenomics Database (CTD) [60], Orphanet [61], the Clinical Genome 

Resource (ClinGen) [62], the Genomics England PanelApp [63], the Cancer 

Genome Interpreter (CGI) [64] and PsyGeNET [65]. 

DisGeNET was used to retrieve the associated genes for the diseases covered in 

the data table from MetSigDis. There are multiple ways to access the information 

of this database, for the purpose of this work the accession through the 

DisGeNET REST API was chosen (see section 2.2.2). 
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2.1.3 SLC substrates list 

 

For the pivotal task to compare the metabolites with confirmed SLC substrates 

the SLC Substrates Structure Tool is used. The data set derives from the 

KNIME workflow SLC_substrates of Catrin Gabrail [66], which was edited by 

Daniela Digles (unpublished work). The workflow automatedly collects 

annotated SLC substrates from several databases and creates a table containing 

substrates for the respective SLC transporters. The sources from which the 

substrates information is obtained are the Metrabase [67], Bioparadigms [3,68], 

TCDB [69], CeMM [70], UCSF-FDA [71], ChEMBL [72] and the 

IUPHAR/BPS Guide to Pharmacology [73]. 

In order to make the workflow compatible with mine, it was necessary to make 

some adjustments to this workflow. One change that was made was to remove 

some unclear designations of substrates and on the other hand to separate rows 

that contained several substrates together in one cell into individual rows. These 

changes were made in the databases area of the workflow and affected for 

instance the sources TCDB and IUPHAR/BPS Guide to Pharmacology. 

Furthermore, I created a table with InChI codes that were missing for numerous 

substrates of the data set (see Supplementary Table 3 in the appendix) and then 

connected it to the resulting data set of the SLC_substrates workflow. Since the 

stereochemistry was relevant for the application in my workflow, I changed the 

settings of the Standardizer_RDKit_Component, created by Jennifer 

Hemmerich [74], so that the stereochemistry is not removed, but only cleaned. 

 

 

2.1.4 Metabolite Structures data set 

 

The Metabolite Structures data set used to add SDF-formatted chemical 

structures and identifiers (e.g. InChI codes) to the respective metabolites derives 

from the Human Metabolome Database (HMDB). The HMDB contains 

comprehensive metabolomic data about human metabolites and covers their 

biological roles, concentrations, associations with the metabolic pathways of 
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diseases, reference spectra et cetera. The data is available to the public and can 

also be searched on their web page. Data sets with different emphases are 

provided on the HMDB download page. For the purposes of this work the 

Metabolite Structures data set version 4.0 was used. [75] 

 

 

2.1.5 RESOLUTE SLC list 

 

This data set, which derives from the RESOLUTE project, contains a collection 

of 446 SLC transporters and provides several identifiers (e.g. HGNC ID, Entrez 

Gene ID, UniProt accession number etc.) as well as their protein sequence, 

known isoforms and some other information. In this work, the RESOLUTE 

SLC list is used to filter out all metabolite-disease associations that are not related 

to SLC transporters. 

 

 

2.1.6 KNIME Analytics Platform 

 

KNIME [76] is a freely available and open-source data analytics workflow 

system. One major advantage of the platform is its graphical user interface, 

which enables even users without programming knowledge to create their own 

workflows. Such a workflow consists of assembled nodes that perform specific 

functionalities and whose settings can be adapted to the respective use case. 

These single code units can be linked through a connection line in order to carry 

data or models from one node to the next. Instead of running the whole 

workflow, nodes can also be executed selectively and intermediate results can be 

checked for each step. For a better understanding of the structural organisation 

of complex workflows, the use of metanodes and components, which 

encapsulate separate workflow-steps, is extremely helpful. [77,78] Because of the 

visual representation and the intelligible way to set up workflows through 

knitting together preimplemented nodes, KNIME workflows are relatively easy 
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to understand and to construct. Furthermore, the open-source philosophy 

allows researchers and programmers to develop and provide their own 

extensions to the scientific community and due to that, a multitude of extensions 

for a variety of research interests is available. [78,79] 

This work was developed using KNIME version 4.5.0. The requirements to run 

the workflow are KNIME Distance Matrix, KNIME Javasnippet, MOE 

Extensions for KNIME, KNIME REST Client Extension, KNIME JSON-

Processing, RDKit Nodes Feature, KNIME Base Chemistry Types & Nodes, 

BioSolveIT Interfaces, KNIME Excel Support, KNIME-CDK, KNIME Quick 

Forms, Schrödinger Extensions for KNIME, Vernalis KNIME Nodes and 

KNIME Python Integration. 
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2.2 THE WORKFLOW 

 

In order to create a better overview, the workflow can be divided into different 

steps (graphically depicted in Figure 3), which are described in more detail in the 

following sections. The first two steps are about obtaining the required data from 

MetSigDis and DisGeNET. After adding structural information and excluding 

irrelevant information in step 3, two different approaches are taken to connect 

the gained information on metabolite-disease associations and disease-gene 

associations with the SLC substrates list in order to accomplish the wanted 

interconnection of metabolites, diseases and SLC transporters. One way to 

realise this objective was to use similarity search, this approach is covered in  

step 4. The alternative approach, which is illustrated in step 5, uses joining to 

achieve the corresponding goal. 

 

 

 

 

  

FIGURE 3: Schematic overview of the workflow and its subdivision into the individual steps 
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2.2.1 Step 1: Download and processing of MetSigDis data 

 

The easiest way to get data into a KNIME workflow is to read the data from 

files that are located on a local file system. Different kinds of reader nodes are 

available for the respective file formats. As mentioned before, the data from 

MetSigDis can easily be downloaded from the webpage, which was done in this 

case. After that, the data is then imported into the workflow using a CSV Reader 

node. Since it is useful to be able to share the workflow together with the data 

sets included, the settings of the reader node under the “Read from” item are set 

to “Relative to Current workflow data area”. 

Now that the data is available in the workflow, some simple data processing 

steps are taken, including the exclusion of data rows that contain information on 

non-human organisms like drosophila or mouse, using the basic Row Filter node. 

In the next step, irrelevant columns of the data table are excluded by applying 

the Column Filter node. Because some cells of the DOID column and the disease 

name column contain multiple disease IDs and names, which would hinder a 

correct attribution in the following step 2 of the REST API call, these cells need 

to be split, which is done using Cell Splitter nodes and an Ungroup node. In a further 

step, the disease IDs, which all have the prefix “DOID:”, are standardized with 

the String Manipulation node so that they only consist of the digits. Rows with 

DOID column cells containing the value “NA” are excluded. The nodes for 

executing all these data processing steps are shown in Figure 4, while the 

organization of the resulting table can be seen in Figure 5. 

 

 

 

FIGURE 4: Data processing steps after reading the MetSigDis data into the workflow 
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2.2.2 Step 2: Accessing DisGeNET through its REST API 

 

To access information from DisGeNET, the library offers several ways. One 

way is that required data can be downloaded from the websites download-

section, which was also done in an earlier attempt while developing this 

workflow. But since working with the downloaded data set has some 

disadvantages, such as the point that the data set consists mainly of information 

irrelevant for this use case, this approach was abandoned and the more accurate 

way of simply retrieving the desired data via REST API calls was chosen. 

In a nutshell, what exactly is a REST API call? Basically, an Application 

Programming Interface (API) allows users to interact with a web service that 

provides programmatic access. By using API calls, specific data can be retrieved 

from a database without having to use the graphical interface or to download 

the whole data set. Many of these APIs conform to the constraints of the 

Representational State Transfer (REST) architecture style, which consists of 

rules that describe how web sources are defined and addressed. To perform API 

calls and to receive the required information, it is important to maintain a correct 

syntax in the HTTP request. KNIME offers the opportunity to perform data 

FIGURE 5: Extract from the resulting table after processing the MetSigDis data. From left to right: The 
tissue where the metabolite levels were measured, the altered metabolite with its HMDB code and the 
DOID plus the disease in which the metabolite level is changed 
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retrievals through an API directly in the workflow, using the REST Web Service 

nodes. [80,81] In case of this workflow, the GET Request node was used. 

 

 

 

The tasks described in the following paragraphs can also be viewed in Figure 6, 

which depicts the structural organisation of the workflow step 2. 

In order to perform an API call only once, even if the disease (represented by 

its DOID) is mentioned several times in the table, the first step is to group the 

data table on the DOID column and keep all the other columns as lists. After 

that, the String Manipulation node is used to create the required URLs,  

consisting out of the base URL of the DisGeNET API server 

(https://www.disgenet.org/api/), the part for requesting the gene-disease 

associations through using the disease ontology identification 

(gda/disease/do/), the DOID itself (xxxx) and the requirement to obtain just 

information from curated sources (source=CURATED). All the information 

how to access the wanted data from DisGeNETs REST API with the correct 

URL syntax is provided in a clear manner on the databases platform. [82]  

In the next step, the GET Request node is used to access the REST API of 

DisGeNET with the created URLs. Therefore, some settings of the node need 

to be adjusted in its configuration window. In the connections settings tab, the 

URL column is chosen and the timeout(s) are raised from the very low default 

setting, which increases the probability that a request will be successful. 

Furthermore, respective request headers are added to provide the necessary 

information for the API to tailor the response. After running the GET Request 

node, a new column including the HTTP response codes “200” for a successful 

FIGURE 6: Accessing DisGeNET through its REST API and transforming the JSON formatted 
data into separated readable columns 
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request and “404” for no found result appears in the output table. The retrieved 

information is presented in JSON format and contained in another column  

(see Figure 7). 

 

 

 

In the subsequent step, all rows with DOIDs for which no results were found 

are filtered out, using the Row Splitter node. Following to that, the new data needs 

to be transformed into a readable table, therefore JSON Path nodes are used.  

Because there are multiple genes that are associated with a single disease, the 

resulting output column contains the JSON-formatted information about 

multiple genes for each requested disease. Therefore, an intermediate step is 

necessary to separate the acquired gene-disease associations. After ungrouping 

all other rows that were previously grouped, another String Manipulation node is 

used to return from the URLs to the plain DOIDs. Afterwards, not needed 

columns are filtered out. The organization of the resulting table can be seen in 

Figure 8. 

 

FIGURE 7: Output table after executing GET Request node. From left to right: The URL for each API 

call, the listed content columns, the response status and the retrieved data in JSON format can be seen. 
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2.2.3 Step 3: Adding metabolite structure and identifiers 

 

With the intention to make the MetSigDis-derived metabolites comparable to 

the SLC substrates list, standardised structural information for these molecules 

has to be introduced to the data set. For this purpose, the data set is joined with 

the Metabolite Structures data set (see Figure 9), which was downloaded from 

the Human Metabolome Database (HMDB) and read into the workflow with a 

SDF reader node. After adjusting the HMDB codes of the two data sets to the 

same number of digits (using String Manipulation node), the two tables are then 

joined via the HMDB codes (Inner Join – to get all matching rows). 

 

FIGURE 9: Adding metabolite structure and identifiers 

FIGURE 8: Kept new columns from DisGeNET: GeneID, Gene Symbol, UniprotID, 
DiseaseID and Disease Name 
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After joining and filtering, the resulting table now includes several new columns 

covering molecular characteristics and identifiers for the metabolites, such as an 

SDF depiction of the molecule, its molecular formula, InChI code and InChI 

key. For a representation of the resulting table see Figure 10, which shows an 

extract from the output after step 3. 

Subsequent to this step of adding structural information for the metabolites, the 

quite large data set should be reduced. Information which is not of interest for 

the objectives of this work should therefore be removed. For this purpose, the 

data is joined (via Entrez Gene ID) with the RESOLUTE SLC list, which 

generates a downsized data table that only consists of metabolite-disease rows 

that contain SLC transporters. 

 

 

 

 

2.2.4 Step 4: Similarity Search 

 

After the creation of this output table, which is now used in the following 

analysis steps, the actual core step of the workflow follows. In the process of the 

similarity search a set of molecules, the query table, is compared with a reference 

table of molecules. In fact, not the molecules themselves, but their molecular 

FIGURE 10: Extract of the resulting table containing metabolite columns, 
disease columns and SLC columns 
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fingerprints that comprise the structural information of each molecule encoded 

as a series of bits are used. The course of the process is that for each row of the 

query table, the reference table is searched for rows that meet the similarity 

criteria. As a result the user then gets the information if a similar molecule has 

been found and, if so, the number of the found row as well as the degree of 

similarity are shown in separate columns. The similarity value can range from 0 

to 1, with a similarity value of 1 indicating that the two molecules are identical. 

 

 

 

In case of this workflow, the two data tables to be compared are on the one side 

the table that descends from the MetSigDis data set and on the other side the 

data table from the SLC substrates list. Figure 11 shows how the steps of 

preparation, similarity search and the following processing steps are organised. 

For the actual search the Similarity Search node takes each single row from the SLC 

substrates list with the verified substrates and searches the MetSigDis-

descending table. But before this similarity search can be run, some preparation 

steps have to be completed (see Figure 12). First of all, both tables are grouped 

over the molecule columns, while all other columns are bundled up into lists. 

This step ensures that the subsequent search runs more efficiently and therefore 

faster, leading to a data table that does not get out of hand in terms of size. 

FIGURE 11: Organisation of step 4: Creation of RDKit molecules, translation into Morgan fingerprints, 
actual similarity search (Dice and Tanimoto similarity), postprocessing steps, splitting the results after 
manually analysing them. 
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Following to that, the Molecule Type Cast node is then used to change the InChI 

code column from type string to type InChI, which is necessary for the RDKit 

From InChI node to create RDKit molecules out of the InChI codes. In the 

settings window of this node the options of sanitizing the molecule and 

removing hydrogens are checked in order to achieve a certain level of 

standardisation before performing the similarity search. 

 

 

 

 

 

 

Subsequently to that, the structural information of the RDKit molecules from 

both tables has to be converted into bit-based fingerprints so that the Similarity 

Search nodes can process the presented information. For this purpose, the RDKit 

Fingerprint node is the means of choice. The settings of this node offer the 

possibility to choose between several types of fingerprints, for this work the 

choice fell on Morgan fingerprints. [83] In general, fingerprints provide a 

computational representation of chemical structures that consists of single bits 

which encode chemical and molecular features of the molecule. Each bit stands 

for a molecular feature and holds the information if the defined feature is present 

“1” or absent “0”. [84] Morgan fingerprints are circular fingerprints that use the 

Morgan algorithm to give each molecule a unique sequential numbering. The 

neighborhood of each atom is taken into account, whereby the selected radius is 

decisive, as this in turn determines the size of the encoded fragments. [85] 

Although the use of MACCS fingerprints was also tried out in earlier attempts, 

Morgan fingerprints obviously outperformed them in terms of delivering correct 

results. 

 

 

FIGURE 12: Preparation steps before the similarity search performed for both 
the metabolites and the substrates data set 
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For the actual step of the similarity search, the corresponding node offers some 

setting options (see Figure 13). On the one hand, in the distance selection, the 

user can choose between different algorithms for calculating the molecular 

similarity between the individual fingerprints. Both chosen methods for the 

calculation, the Dice similarity coefficient and the Tanimoto algorithm have 

proven to be very suitable for this kind of analysis. How the coefficients are 

calculated can be seen from the formulas in Figure 14. [86] In the search option 

settings it is selected for this use case that the similarity and not the distance 

should be calculated, in the neighbor selection the option nearest (most similar) 

is chosen. A range filter is used to reduce useless output and to get only relevant 

results with a similarity between 0.90 and 1.00. The neighbor count must be set 

higher than in the default setting (=1) to enable multiple results being obtained 

for single queries. 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 13: Settings of the Similarity Search node 
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The results from the Dice and the Tanimoto calculation are then combined 

through joining via the substrates InChI codes (see Figure 15). Since the results 

of the two searches differ in part, the Column Aggregator node is in the next step 

used to identify differences in the row IDs found, whereby the two row ID 

columns are displayed in the output in form of unique concatenate and unique 

count. After that, all cells containing two row IDs are split (Cell Splitter node) and 

then ungrouped into new rows. Query rows that do not match to any row of the 

reference table are excluded (see Figure 16). 

FIGURE 15: Joined results after similarity search with columns containing the row ID of rows from the 
MetSigDis-derived table with a similarity ranging from 0.90 to 1.00 

FIGURE 14: Formulas for the calculation of the Tanimoto 
and Dice coefficients [86] 
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It should be noted that the Morgan fingerprints used in the similarity search are 

sometimes not able to distinguish between different molecules. However, in 

order to realize the previously defined first goal of searching for metabolite-

disease-SLC associations, it is necessary to find identical molecules between the 

two datasets. A manual check is therefore necessary to ensure this. Before 

performing this manual control step, the data table is divided into three different 

parts (see Figure 17). The first and largest part consists of all rows exhibiting the 

similarity value 1 for both Tanimoto and Dice similarity, most of the results are 

correct in this part. The second part includes all rows that have a Tanimoto 

similarity value of 1, but a Dice similarity value below 1. A reverse case does not 

appear in the results. The third part then contains all rows with a score of less 

than 1 for both similarity values. After manually controlling the results of all 

three tables, they are separated into two appropriate outputs. After that, these 

split results are then concatenated into one table containing all the rows that 

carry associations of identical molecules and another table containing all the 

results that were not identical but at least similar. 

 

FIGURE 17: Separating rows with identical molecule matches from rows with non-identical matches 

FIGURE 16: Editing the results from similarity search 
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Matches of non-identical molecules occur more frequently, for example, when 

the properties of a molecule highly depends on its stereochemistry or when the 

molecule bears long carbon chains. For a more detailed explanation of the results 

that were filtered out, see the results and discussion chapters. 

The idea was that the results with a similarity of less than 1 or incorrect 

associations of molecules with a similarity of 1, which are all combined in the 

lower output table, could serve as a source for possible new substrates for the 

corresponding SLC transporters. For this purpose, relevant columns from the 

metabolites data set, which were previously excluded in the similarity search, are 

added by joining via the corresponding row ID. Since a large part of the SLCs is 

represented in the SLC substrates list with several substrates and in the similarity 

search each row of the query table is compared to each row of the reference 

table, it follows that the present table also contains data rows in which the two 

compared molecules are indeed not identical, but the molecules are nevertheless 

substrates of the corresponding transporters. In the subsequent step, known 

SLC substrate combinations are therefore filtered out through joining it with the 

correct similarity search results via the SLCs and the InChI codes. After that, the 

table is grouped over the SLC and InChI columns to get a clearer arrangement 

of the data. Figure 18 shows all these processing steps to get to the possible new 

substrates output table. A different attempt that was made was to filter the 

resulting data set in such a way that only data rows remain whose columns refer 

to the same SLC. Therefore, the Rule-based Row Splitter node was used to exclude 

rows that do not contain the same SLC in the respective columns deriving from 

the metabolites and the substrates table. However, the output was greatly 

reduced by this additional step (see the results part). 

FIGURE 18: Processing of the possible new substrates data table 



42 
 

As far as the table with the correct results is concerned, the procedure of adding 

the columns from the metabolites data set is quite similar (see Figure 19). 

However, in addition to joining via the corresponding row ID, a Rule-based Row 

Splitter node (see Figure 20) is then used for filtering in such a way that the 

resulting data set only contains rows that have the same SLCs for the columns 

derived from the metabolites table and those that descend from the substrates 

table. Thus, the desired goal to interconnect metabolites, diseases and SLC 

transporters can be achieved. For specific information on the resulting data of 

these two outputs see the results and discussion part. 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 20: Settings of the Rule-based Row Splitter 

FIGURE 19: Processing of the metabolite-disease-SLC associations data table 
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2.2.5 Step 5: Alternative way: Joining 

 

In this alternative approach to combine the metabolites data set with the 

substrates data set, the two tables are simply joined over their InChI codes, 

instead of performing the similarity search step. However, the great advantage 

of this method that only molecules which have the exact same InChI code can 

be joined also has the disadvantage that little differences in the structural 

representation, like for instance concerning hydrogens, charges or an 

inconsistent stereochemistry result in the structures not being recognized as 

equal. Due to that it is crucial for the outcome of this approach to use the exact 

same structure standardisation for both of the data sets. 

To achieve this requirement, the metabolites data set is normalised using the 

Standardiser_RDKit_Component created by Jennifer Hemmerich [74], which was 

also used in the SLC_substrates workflow from which the SLC substrates list 

derives. All the settings of the component are also adopted from this workflow 

(for the settings of the component see Figure 22). After performing the structure 

standardisation step, both the metabolites table and the substrates table are 

grouped over the InChI and SLC columns, before they are then joined over the 

standardised InChI codes and the SLCs. Following to that, the table is then 

edited and columns that were previously aggregated as lists are ungrouped (see 

Figure 21). 

FIGURE 21: Overview of the joining approach: First the structure standardisation of the metabolite 
structures, then the same grouping step for both the metabolites table and the substrates table, followed 
by the joining via InChI codes and SLCs. 
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FIGURE 22: Settings of the Standardiser_RDKit_Component 
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3 RESULTS 

 

The MetSigDis data set, which was used as the starting point for this work, 

contains 4651 metabolite-disease associations between 92 different diseases 

(counted as DOIDs) and 724 metabolites (counted as HMDB codes) after 

carrying out the processing steps. When the DisGeNET database was 

subsequently queried, 71 of the 92 diseases (as DOIDs) were found to have 

associations with a total of 5032 proteins. Accordingly, all data rows from the 21 

queries for which there was no successful response are excluded from the further 

analysis. Furthermore, also in the step of adding the structure information data 

rows are lost, namely all those that do not contain a HMDB code. This joining 

step reduces the size of the data table from previously 911 292 rows to 646 027 

rows (a reduction of almost 30 percent) containing 625 different metabolites. 

After data rows that do not relate to SLC transporters are then removed, which 

reduces the data set to a relatively compact table of 14 282 rows containing  

132 SLCs, the workflow divides into two paths in order to link the received data 

table with the SLC Substrate list. The results of the workflow finally derive from 

the similarity search and from the alternative joining way. 

 

 

3.1 METABOLITE-DISEASE-SLC ASSOCIATIONS: 

RESULTS FROM SIMILARITY SEARCH 

 

After filtering all non-identical molecular matches, which are of interest as 

possible new substrates, but not for this approach, the similarity search path 

results in a data set of 1957 rows including 220 different SLCs and a total of 175 

substrates. After that, it is now also necessary to connect the data tables via the 

SLCs. Through this step the desired goal of linking disease-associated alterations 

of metabolites with SLC transporters can be achieved. The end result is a table 

with 1404 rows containing associations between 47 different SLCs, 52 

metabolites and 39 diseases. For more clarity, the resulting data set is given in 

the appendix (Supplementary Table 1) in such a way that the individual 
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metabolites are collected in the form unique concatenate. This reduces the data 

table to a total of 450 rows. 

 

 

3.2 METABOLITE-DISEASE-SLC ASSOCIATIONS: 

RESULTS FROM JOINING PATH 

 

In this alternative way, joining via InChI codes and SLCs results in a data set 

that includes 119 rows, which incorporate correlations between 37 SLCs, 38 

substrates and 17 diseases. A comparison of the two approaches shows that the 

similarity search method delivers more results (manually controlled and with a 

similarity = 1) than this alternative approach, which is displayed in Figure 23. 

 

 

 

 

 

 

 

 

 

 

An essential step to improve the performance of the joiner path was to update 

the SLC substrates list by manually adding missing InChI codes via a search in 

CHEBI and PubChem. For this purpose, an Excel table consisting of 479 rows 

with InChI codes that were missing for numerous substrates of the data set was 

created. After including this data table into the workflow from which the SLC 

substrates list derives from, the resulting new data set was saved and then 

FIGURE 23: Results from the similarity search versus 
the results from the alternative joiner approach 
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integrated into this work’s workflow. The second decisive step, as described in 

more detail in the methods section, was to implement the same structure 

standardization for both, the substrates table and the metabolites table, which 

was done by using the Standardiser_RDKit_Component. Through this and 

furthermore through the enhancement of the substrates data set it was possible 

to significantly improve the output of the joining approach. The results increased 

from originally 18 SLCs, 12 substrates and 8 diseases to 37 SLCs, 38 substrates 

and 17 diseases. Of course the addition of missing information to the substrates 

list also led to an improvement of the similarity search results. 

 

 

3.3 RESULTS: POSSIBLE NEW SUBSTRATES 

 

The second output table derived from the similarity search with the name 

“possible new substrates” contains on the one hand all those data rows with 

similarity values below 1 (similarity: 0.90 <= x < 1.00) and on the other hand all 

data rows that, despite a calculated similarity value of 1, only provide similar and 

not identical molecules. The final output of this approach is a table of 267 rows 

containing 57 different molecules that might be possible new substrates for the 

85 included SLC transporters. The output data set is given in the appendix as 

Supplementary Table 2. As for the attempt to additionally relate the resulting 

data set to the same SLCs, the output was greatly reduced to a table of 58 rows 

containing information on only 6 SLCs and 5 substances. 
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4 DISCUSSION 

 

4.1 SIMILARITY SEARCH VERSUS JOINING PATH 

 

As one could already see in Figure 23, the similarity search approach yielded 

more results (manually controlled and with similarity = 1) for the connection of 

metabolites, diseases and SLC transporters. But how can this difference be 

explained and what are the actual advantages and disadvantages of each 

approach? On the one hand, joining via InChI codes, is quite prone to overlook 

identical molecules. This can happen due to an inconsistent structure 

standardisation, which leads to the problem that the same molecule can provide 

different chemical identifiers, depending on whether the molecule is protonated, 

charged or represented with its stereochemistry, for example. This is also the 

reason why it can be difficult to merge data sets from different origins, since 

different chemical databases usually implement different structure 

standardisation processes and for this reason often supply different identifiers 

for the same molecule. [80] Apparently, in some cases these differences cannot 

be completely compensated by using the Standardiser_RDKit_Component, which 

would be a reason for the different extent of results from the two approaches. 

Here lies the main advantage of the similarity search approach, namely that the 

structure of a molecule itself is searched to meet the defined similarity or distance 

criteria of another molecule. The threshold value can be changed in such a way 

that molecules with different similarity values can be identified, which also offers 

the possibility to realise the approach of describing potential new substrates. 

However, there is of course the disadvantage here that a manual check of the 

results is necessary, which can be carried out relatively easy for this volume of 

data, but is associated with an ever-increasing effort in the case of extensive data 

sets. One limitation due to this manual check arises for the repeated 

implementation of the workflow with changed data sets. The difficulty lies in the 

step of filtering out incorrect matches from the similarity search, since this 

exclusion is done for manually selected rows. This is also the most obvious 

advantage of the joiner path, which immediately delivers correct results without 

the need for manual intervention. 
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In general, the similarity search delivers quite good results but certain chemical 

properties such as stereochemistry and long carbohydrate chains are not taken 

into account, or only to a limited extent, which is why the manual check is 

necessary. The problem that stereochemistry is not recognised arises not from 

the similarity search step itself, but from the use of fingerprints like Morgan or 

MACCS, since they are 2D molecular descriptors, which means that they cannot 

encode three-dimensional structures of molecules. [84] 

In order to find out to what extent different stereoisomers like for instance 

sugars are distinguished, I did a try-out with a data set consisting of diverse 

monosaccharides. It turned out that the similarity search step cannot 

differentiate between particular stereoisomers like the members of the 

aldohexoses group. For example: Glucose is, besides others, recognized as 

mannose or galactose and vice versa. Furthermore, no distinction can be made 

between D- and L-isomers. However, the similarity search step is able to 

distinguish between pyranose and furanose forms. Of course, this also raises the 

question of the extent to which SLCs themselves distinguish between different 

sugars at all. 

 

FIGURE 24: Selected examples of wrong matches with both Dice and Tanimoto similarity of 1 
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In reviewing the similarity search results manually, there were some aspects that 

appeared. On the one hand, that all those rows that erroneously show a Dice 

and Tanimoto similarity of 1 are errors due to not recognising stereochemistry 

or errors due to a lacking differentiation of long carbohydrate chains. It is 

therefore not surprising that the faulty molecules are mainly fatty acids and 

monosaccharides or substrates that contain sugars in their structure. Figure 24 

provides representative examples of such wrong matches. 

In terms of the proportion of false results, a total of 86 of the 512 rows that have 

a Dice and Tanimoto similarity of 1 give false positive matching molecules. As 

for rows with a Tanimoto similarity equal to 1 and a Dice similarity below 1, 

there are just non-identical molecule pairings, indicating that Dice similarity has 

more stringent requirements and hence fewer false results. 

Another detail to consider is which fingerprints should be used to describe the 

molecular structures of the metabolites and substrates. In the development of 

this workflow Morgan and MACCS fingerprints were tried out. Here, the 

Morgan fingerprints clearly outperformed the MACCS fingerprints, producing 

fewer false results. In concrete terms, the similarity search using MACCS 

fingerprints resulted in 1200 rows with a similarity of 1 for the Tanimoto 

calculation method and 961 rows for the Dice similarity search. On the other 

hand, the search with Morgan fingerprints resulted in a number of 573 rows with 

a similarity of 1 for the Tanimoto similarity search and 538 rows for the Dice 

similarity. The resulting rows from the Morgan fingerprint searches overlapped 

the results from the searches with MACCS fingerprints. A manual inspection 

revealed that there were no correct results among the additional output rows 

from the MACCS fingerprint searches. 
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4.2 METABOLITE-DISEASE-SLC ASSOCIATIONS: 

INTERPRETATION 

 

The first objective was to link the disease-altered metabolites to the SLC 

transporters responsible for their transport. This goal could be achieved with the 

methods described above and resulted in Supplementary Table 2 which contains 

the found associations between metabolites, diseases and SLC transporters. 

A comparison with a table from the review “The SLC transporter in nutrient 

and metabolic sensing, regulation and drug development” by Zhang et al. (also 

see section 1.2.1), which provides a representative summary of SLC transporters 

relevant in human diseases [14], shows that at least 5 of the presented 

associations between SLC transporters and diseases also appear in the results of 

this work. An example for such a finding is the association between SLC2A2 

and type 2 diabetes mellitus. This connection found is affirmed by an earlier 

GWAS study that found SLC2A2 as one of several gene loci for insulin 

resistance and type 2 diabetes mellitus. [15] Other such results for which there 

is supporting evidence from research include the association of SLC6A12 with 

schizophrenia [18], SLC6A15 as a gene locus associated with a risk of major 

depression [19] and a connection of the SLC5A8 and SLC2A1 expression with 

different kinds of cancer [87,88]. Results like these suggest that further relevant 

associations of metabolite transporting SLCs with human diseases may be 

included in the output of this work.  

A comparison with the table of Mendelian diseases associated with SLC 

transporters from the paper “SLC Transporters as Therapeutic Targets: 

Emerging Opportunities“ by Lin et al. [6] (also see section 1.2.1) did not reveal 

any overlaps with the results of this work. However, this is primarily due to the 

fact that the initial data set from MetSigDis contains only very few Mendelian 

diseases. 
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4.3 POSSIBLE NEW SUBSTRATES: INTERPRETATION 

 

The second objective to describe possible new substrates for SLC transporters 

was realised by searching the metabolites table resulting from step 3 for 

molecules with a relative high similarity to already identified substrates. 

Supplementary Table 3, which results from this approach, contains the possible 

new substrates for the respective SLC transporters. Most of these resulting data 

rows describe molecules from the structural groups of monosaccharides (mainly 

aldohexoses), amino acids (proteinogenic and non-proteinogenic), fatty acids 

and other carboxylic acids. Moreover, the output table also contains 

oligopeptides, nucleotides or nucleosides and other structures that cannot be 

assigned to the mentioned groups. For an overview on the distribution of the 

group membership of the possible new substrates, see Figure 24. 

 

 

 

 

 

 

 

 

 

 

The results found are quite reasonable, since SLCs often transport molecules 

which are very similar to each other. As an example, SLC2A3 (aka GLUT3) 

mediates the transport of different monosaccharides like for instance glucose, 

galactose or xylose. Other molecules that are similar to these already established 

ones (e.g. ribose and arabinose) are then found as possible new substrates for 

this transporter. At the same time, the fact that only similar molecules are 

identified is also a major disadvantage of this approach. As a matter of fact, there 

FIGURE 25: Distribution of the metabolites from the 267 resulting 
rows on different structural groups 
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won’t appear any unexpected candidates as possible new substrates of SLCs, 

which of course would be more exciting for a further analytic elucidation, since 

such exceptional compounds may not have been tested yet. For further analyses, 

a possible adaptation would be to lower the similarity range (currently: 0.90 <= 

x <= 1.00), for example to a similarity of >= 0.80. 

A promising prospective idea would be to link my workflow to metabolomics 

data from the RESOLUTE project. The data obtained from targeted and 

untargeted metabolomics studies, which presents relations between the 

expression of SLC transporters and changes in the concentration of metabolites 

in the intra- or extracellular space of specific cell lines, could serve as starting 

data for the search of new substrates. Similar to the data used in the current 

approach for finding potential substrates, the metabolomics data also does not 

provide distinct evidence whether the detected metabolite itself is transported 

by the SLC or whether the concentration change is caused by coupled processes. 

However, as recent examples such as the deorphanization of SLC16A9 and 

SLC22A24 using metabolomic GWAS [89,90] show, metabolomics data 

generally provides a promising source for the identification of possible new SLC 

substrates. 
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4.4 DATA LIMITATIONS 

 

A central point for the creation of this work was the publical availability of data. 

However, some problems appeared in the use of some of the databases 

mentioned in the databases and tools section. One issue that already arose at the 

very beginning in the development of this work was that after downloading the 

data file from the MetSigDis webpage it turned out that the table did not contain 

the full MetSigDis data set. In fact, it only included 5567 rows instead of the 

6849 metabolite-disease relationships as stated in the paper and on the webpage. 

An attempt to contact the authors was unsuccessful because the e-mail addresses 

given in the contact section no longer existed. It appears as if this resource was 

left unmanaged since it was created. 

One further limitation and a point for possible adaptations is provided in step 3. 

After adding the molecular structures and identifiers, all rows are filtered out for 

which the data cannot be added due to missing HMDB codes. It is important to 

consider that through filtering out a relevant number of rows relevant 

information might be lost. In fact, nearly thirty percent of the metabolite rows 

are eliminated, although it has to be noted that the rows that are excluded mostly 

contain ambiguous metabolite notations or designate whole metabolite classes. 

Examples for such designations would be “NTP” (nucleoside triphosphate) or 

“total cholines”, which would anyway deliver rather inconclusive results. But 

since the metabolites without HMDB codes are not only unassignable 

designations (in some cases there are also distinct names), the loss could be 

partially compensated by manually adding missing HMDB codes to the 

MetSigDis data set beforehand. 

Another point for a potential adaptation lies in a further improvement of the 

substrates list. Although many InChI codes for respective substrates have 

already been added, which led to a significant enhancement of the results, the 

extensive SLC substrates list still offers a potential for improvements. 
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In conclusion, it can be said that the chosen approaches are suitable for 

achieving the objectives defined at the beginning of this work. The first aim, to 

gain insights on associations between metabolites, diseases and SLCs is mainly 

achieved through the similarity search approach. As it turned out, already known 

correlations appear in the results, which indicates that more relevant associations 

could be contained in the rest of the output. The second aim of finding new 

potential substrates for SLCs was also achieved using the similarity search 

approach. Since SLCs often transport molecules that are similar to each other, 

the results obtained are quite reasonable, although not surprising. 
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5 APPENDIX 

 

 

  

FIGURE 26: Workflow for the connection of disease associated alterations of metabolites with corresponding SLC transporters 
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SUPPLEMENTARY TABLE 1: Output table: Altered levels of SLC-transported metabolites in corresponding tissues as a result of given diseases. 
For more clarity, the metabolites were collected in the form unique concatenate and some columns were filtered. 

 

 

SLC Metabolites Metabolite Alteration Tissue Disease 

FLVCR1 D-Glucose Increased urine hepatocellular carcinoma 
SFXN1 alanine Decreased breast cancer cell lines breast cancer 
SFXN1 Alanine, alanine Decreased serum colorectal cancer 
SFXN1 glycine Decreased Plasma congestive heart failure 
SFXN1 Alanine, Cysteine Decreased Serum esophagus squamous cell carcinoma 
SFXN1 alanine Decreased blood plasma lung cancer 
SFXN1 Glycine Decreased frozen tissue samples lung cancer 
SFXN1 Glycine Decreased urine obesity 
SFXN1 alanine Decreased Serum primary biliary cirrhosis 
SFXN1 Glycine Decreased cell lines prostate cancer 
SFXN1 alanine Decreased prostate cancer cell lines prostate cancer 
SFXN1 alanine Decreased cerebrospinal fluid schizophrenia 
SFXN1 Alanine Difference Serum Alzheimer's disease 
SFXN1 glycine, alanine Difference Serum cancer 
SFXN1 glycine, alanine Difference glioma malignant glioma 
SFXN1 Alanine Increased bladder Bladder Cancer 
SFXN1 glycine Increased urine Parkinson's disease 
SFXN1 alanine Increased Colon Cancer Initiating Cells colon cancer 
SFXN1 glycine Increased blood colorectal cancer 
SFXN1 Glycine, Cysteine Increased colorectal cancer and adjacent normal controls colorectal cancer 
SFXN1 Cysteine Increased Blood esophageal cancer 
SFXN1 Alanine Increased Plasma esophageal cancer 
SFXN1 Alanine Increased urine obesity 
SFXN1 Alanine Increased visceral and subcutaneous adipose tissue obesity 
SFXN1 alanine Increased Prostate cell lines prostate cancer 
SFXN1 Alanine Increased cell lines prostate cancer 
SFXN1 Glycine, glycine, Alanine Increased prostate tissues prostate cancer 
SFXN1 glycine, alanine Increased plasma schizophrenia 
SFXN1 Alanine Increased Lung tissue squamous cell carcinoma 
SFXN1 Alanine Increased serum squamous cell carcinoma 
SFXN1 Glycine Increased serum type 1 diabetes mellitus 
SFXN1 alanine Increased Blood type 2 diabetes mellitus 
SLC16A1 Pyruvate, Lactate Decreased urine Celiac disease 
SLC16A1 glycolate, acetoacetate Decreased Colon Cancer Initiating Cells colon cancer 
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SLC16A1 Pyruvate, Lactate Decreased serum colorectal cancer 
SLC16A1 Pyruvate Decreased urine esophageal cancer 
SLC16A1 Lactate Decreased urine obesity 
SLC16A1 lactate Decreased Serum primary biliary cirrhosis 
SLC16A1 Lactate Decreased cell lines prostate cancer 
SLC16A1 lactate Decreased cerebrospinal fluid schizophrenia 
SLC16A1 acetoacetate, 3-hydroxybutyrate Decreased plasma schizophrenia 
SLC16A1 Pyruvate Decreased serum type 1 diabetes mellitus 
SLC16A1 lactate Difference 1st trimester pregnant woman plasma Down syndrome 
SLC16A1 Pyruvate, Lactate Difference renal cell kidney cancer 
SLC16A1 3-hydroxybutyrate Difference plasma mental depression 
SLC16A1 lactate Difference Brain schizophrenia 
SLC16A1 lactate Increased Brain bipolar disorder 
SLC16A1 Lactate Increased breast cancer cell lines breast cancer 
SLC16A1 lactate Increased blood colorectal cancer 
SLC16A1 Lactate Increased colorectal cancer and adjacent normal controls colorectal cancer 
SLC16A1 3-hydroxybutyrate Increased serum colorectal cancer 
SLC16A1 glycolate, lactate Increased blood congestive heart failure 
SLC16A1 Lactate Increased Blood esophageal cancer 
SLC16A1 Lactate Increased Plasma esophageal cancer 
SLC16A1 Lactate Increased intestinal epithelial cells inflammatory bowel disease 
SLC16A1 lactate Increased Lung Cancer Tissue lung cancer 
SLC16A1 lactate Increased blood plasma lung cancer 
SLC16A1 Lactate Increased frozen tissue samples lung cancer 
SLC16A1 3-hydroxybutyrate Increased Serum primary biliary cirrhosis 
SLC16A1 Lactate Increased prostate cancer cell lines prostate cancer 
SLC16A1 lactate Increased plasma schizophrenia 
SLC16A1 Lactate Increased Lung tissue squamous cell carcinoma 
SLC16A3 Lactate Decreased urine Celiac disease 
SLC16A3 Lactate Decreased serum colorectal cancer 
SLC16A3 Lactate Decreased urine obesity 
SLC16A3 Lactate Decreased cell lines prostate cancer 
SLC16A3 Lactate Difference renal cell kidney cancer 
SLC16A3 Lactate Increased breast cancer cell lines breast cancer 
SLC16A3 Lactate Increased colorectal cancer and adjacent normal controls colorectal cancer 
SLC16A3 Lactate Increased Blood esophageal cancer 
SLC16A3 Lactate Increased Plasma esophageal cancer 
SLC16A3 Lactate Increased intestinal epithelial cells inflammatory bowel disease 
SLC16A3 Lactate Increased frozen tissue samples lung cancer 
SLC16A3 Lactate Increased prostate cancer cell lines prostate cancer 
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SLC16A3 Lactate Increased Lung tissue squamous cell carcinoma 
SLC16A7 Lactate Decreased urine Celiac disease 
SLC16A7 Lactate Decreased serum colorectal cancer 
SLC16A7 Lactate Decreased urine obesity 
SLC16A7 Lactate Decreased cell lines prostate cancer 
SLC16A7 Lactate Difference renal cell kidney cancer 
SLC16A7 Lactate Increased breast cancer cell lines breast cancer 
SLC16A7 Lactate Increased colorectal cancer and adjacent normal controls colorectal cancer 
SLC16A7 Lactate Increased Blood esophageal cancer 
SLC16A7 Lactate Increased Plasma esophageal cancer 
SLC16A7 Lactate Increased intestinal epithelial cells inflammatory bowel disease 
SLC16A7 Lactate Increased frozen tissue samples lung cancer 
SLC16A7 Lactate Increased prostate cancer cell lines prostate cancer 
SLC16A7 Lactate Increased Lung tissue squamous cell carcinoma 
SLC17A6 glutamate Decreased breast and blood breast cancer 
SLC17A6 glutamate Decreased serum colorectal cancer 
SLC17A6 glutamate Difference Serum cancer 
SLC17A6 glutamate Difference Brain schizophrenia 
SLC17A6 glutamate Increased Brain bipolar disorder 
SLC17A6 glutamate Increased Plasma congestive heart failure 
SLC17A6 glutamate Increased cell non-small cell lung carcinoma 
SLC17A7 glutamate Decreased breast and blood breast cancer 
SLC17A7 glutamate Decreased serum colorectal cancer 
SLC17A7 glutamate Difference Serum cancer 
SLC17A7 glutamate Difference Brain schizophrenia 
SLC17A7 glutamate Increased Brain bipolar disorder 
SLC17A7 glutamate Increased Plasma congestive heart failure 
SLC17A7 glutamate Increased cell non-small cell lung carcinoma 
SLC18A1 5-HT Decreased Blood schizophrenia 
SLC18A2 5-HT Decreased Blood schizophrenia 
SLC18A2 Serotonin Increased Plasma alcohol abuse 
SLC19A1 folate Decreased Colon Cancer Initiating Cells colon cancer 
SLC1A1 Asparagine Decreased urine Celiac disease 
SLC1A1 Asparagine Decreased the plasma amino acids autistic disorder 
SLC1A1 glutamate Decreased breast and blood breast cancer 
SLC1A1 glutamate Decreased serum colorectal cancer 
SLC1A1 glutamate Difference Serum cancer 
SLC1A1 glutamate Difference Brain schizophrenia 
SLC1A1 Asparagine Increased bladder Bladder Cancer 
SLC1A1 glutamate Increased Brain bipolar disorder 
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SLC1A1 Asparagine Increased colorectal cancer and adjacent normal controls colorectal cancer 
SLC1A1 glutamate Increased Plasma congestive heart failure 
SLC1A1 glutamate Increased cell non-small cell lung carcinoma 
SLC1A2 glutamate Decreased breast and blood breast cancer 
SLC1A2 glutamate Decreased serum colorectal cancer 
SLC1A2 glutamate Difference Serum cancer 
SLC1A2 glutamate Difference Brain schizophrenia 
SLC1A2 L-Asparagine Increased Plasma alcohol abuse 
SLC1A2 glutamate Increased Brain bipolar disorder 
SLC1A2 glutamate Increased Plasma congestive heart failure 
SLC1A2 glutamate Increased cell non-small cell lung carcinoma 
SLC1A3 Asparagine Decreased urine Celiac disease 
SLC1A3 Asparagine Decreased the plasma amino acids autistic disorder 
SLC1A3 glutamate Decreased breast and blood breast cancer 
SLC1A3 glutamate Decreased serum colorectal cancer 
SLC1A3 glutamate Difference Serum cancer 
SLC1A3 glutamate Difference Brain schizophrenia 
SLC1A3 Asparagine Increased bladder Bladder Cancer 
SLC1A3 glutamate Increased Brain bipolar disorder 
SLC1A3 Asparagine Increased colorectal cancer and adjacent normal controls colorectal cancer 
SLC1A3 glutamate Increased Plasma congestive heart failure 
SLC1A3 glutamate Increased cell non-small cell lung carcinoma 
SLC1A6 glutamate Decreased breast and blood breast cancer 
SLC1A6 glutamate Decreased serum colorectal cancer 
SLC1A6 glutamate Difference Serum cancer 
SLC1A6 glutamate Difference Brain schizophrenia 
SLC1A6 glutamate Increased Brain bipolar disorder 
SLC1A6 glutamate Increased Plasma congestive heart failure 
SLC1A6 glutamate Increased cell non-small cell lung carcinoma 
SLC1A7 Asparagine Decreased urine Celiac disease 
SLC1A7 Asparagine Decreased the plasma amino acids autistic disorder 
SLC1A7 glutamate Decreased breast and blood breast cancer 
SLC1A7 glutamate Decreased serum colorectal cancer 
SLC1A7 Glutamate Decreased urine esophageal cancer 
SLC1A7 Aspartate, Glutamate Decreased intestinal epithelial cells inflammatory bowel disease 
SLC1A7 Aspartate, Glutamate Decreased cell lines prostate cancer 
SLC1A7 glutamate Difference Serum cancer 
SLC1A7 glutamate Difference Brain schizophrenia 
SLC1A7 Asparagine, Glutamate Increased bladder Bladder Cancer 
SLC1A7 glutamate Increased Brain bipolar disorder 
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SLC1A7 Aspartate, Asparagine, Glutamate Increased colorectal cancer and adjacent normal controls colorectal cancer 
SLC1A7 glutamate Increased Plasma congestive heart failure 
SLC1A7 Aspartate, Glutamate Increased Blood esophageal cancer 
SLC1A7 glutamate Increased cell non-small cell lung carcinoma 
SLC1A7 Glutamate Increased prostate tissues prostate cancer 
SLC1A7 Glutamate Increased Lung tissue squamous cell carcinoma 
SLC1A7 Glutamate Increased serum type 1 diabetes mellitus 
SLC22A1 Spermidine Increased colorectal cancer and adjacent normal controls colorectal cancer 
SLC22A2 L-carnitine Increased Serum obesity 
SLC22A3 norepinephrine Decreased cerebrospinal fluid Alzheimer's disease 
SLC22A3 norepinephrine Decreased Prostate cell lines prostate cancer 
SLC22A8 4-Aminohippuric acid Difference Serum fatty liver disease 
SLC22A8 4-Aminohippuric acid Difference Serum type 2 diabetes mellitus 
SLC28A1 cytidine Decreased breast and blood breast cancer 
SLC28A1 Uridine, Cytidine Decreased cell lines breast cancer 
SLC28A1 Adenosine Decreased Lung Cancer Tissue lung cancer 
SLC28A1 Uridine, Cytidine Difference Serum fatty liver disease 
SLC28A1 Uridine, Cytidine Difference Serum hypertension 
SLC28A1 Uridine, Cytidine Difference Serum type 2 diabetes mellitus 
SLC28A1 Adenosine Increased cell lines breast cancer 
SLC28A1 Adenosine Increased intestinal epithelial cells inflammatory bowel disease 
SLC29A1 Hypoxanthine Decreased Urine cocaine dependence 
SLC29A1 Hypoxanthine Difference Serum hypertension 
SLC29A1 Hypoxanthine Difference Serum type 2 diabetes mellitus 
SLC29A1 Hypoxanthine Increased bladder Bladder Cancer 
SLC29A1 Hypoxanthine Increased Plasma alcohol abuse 
SLC29A1 Uracil, Hypoxanthine Increased colorectal cancer and adjacent normal controls colorectal cancer 
SLC29A1 Hypoxanthine Increased urine hepatocellular carcinoma 
SLC29A1 Uracil Increased renal cell renal cell carcinoma 
SLC2A1 Glucose Decreased urine Down syndrome 
SLC2A1 galactose, glucose Decreased breast and blood breast cancer 
SLC2A1 Glucose Decreased colorectal cancer and adjacent normal controls colorectal cancer 
SLC2A1 Glucose Decreased Serum esophagus squamous cell carcinoma 
SLC2A1 glucose Decreased Lung Cancer Tissue lung cancer 
SLC2A1 glucose Decreased blood plasma lung cancer 
SLC2A1 Glucose Decreased frozen tissue samples lung cancer 
SLC2A1 glucose Decreased prostate tissues prostate cancer 
SLC2A1 glucose Decreased plasma schizophrenia 
SLC2A1 Glucose Decreased Lung tissue squamous cell carcinoma 
SLC2A1 glucose Difference Plasma cardiovascular system disease 
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SLC2A1 Galactose, Glucose Difference renal cell kidney cancer 
SLC2A1 glucose Difference cerebrospinal fluid schizophrenia 
SLC2A1 Glucose Increased urine Celiac disease 
SLC2A1 glucose Increased gray matter amyotrophic lateral sclerosis 
SLC2A1 Galactose Increased colorectal cancer and adjacent normal controls colorectal cancer 
SLC2A1 D-Galactose, D-Mannose, D-

Glucose 
Increased urine hepatocellular carcinoma 

SLC2A1 Glucose Increased urine obesity 
SLC2A10 galactose, glucose Decreased breast and blood breast cancer 
SLC2A10 glucose Decreased Lung Cancer Tissue lung cancer 
SLC2A10 glucose Decreased blood plasma lung cancer 
SLC2A10 glucose Decreased prostate tissues prostate cancer 
SLC2A10 glucose Decreased plasma schizophrenia 
SLC2A10 glucose Difference Plasma cardiovascular system disease 
SLC2A10 glucose Difference cerebrospinal fluid schizophrenia 
SLC2A10 glucose Increased gray matter amyotrophic lateral sclerosis 
SLC2A2 galactose, glucose Decreased breast and blood breast cancer 
SLC2A2 glucose Decreased Lung Cancer Tissue lung cancer 
SLC2A2 glucose Decreased blood plasma lung cancer 
SLC2A2 glucose, fructose Decreased prostate tissues prostate cancer 
SLC2A2 glucose Decreased plasma schizophrenia 
SLC2A2 glucose, fructose Difference Plasma cardiovascular system disease 
SLC2A2 glucose Difference cerebrospinal fluid schizophrenia 
SLC2A2 glucose Increased gray matter amyotrophic lateral sclerosis 
SLC2A2 D-Galactose, D-Mannose, D-

Glucose 
Increased urine hepatocellular carcinoma 

SLC2A2 fructose Increased Blood type 2 diabetes mellitus 
SLC2A5 glucose Decreased breast and blood breast cancer 
SLC2A5 glucose Decreased Lung Cancer Tissue lung cancer 
SLC2A5 glucose Decreased blood plasma lung cancer 
SLC2A5 glucose Decreased prostate tissues prostate cancer 
SLC2A5 glucose Decreased plasma schizophrenia 
SLC2A5 glucose Difference Plasma cardiovascular system disease 
SLC2A5 glucose Difference cerebrospinal fluid schizophrenia 
SLC2A5 glucose Increased gray matter amyotrophic lateral sclerosis 
SLC38A2 alanine Decreased breast cancer cell lines breast cancer 
SLC38A2 alanine Decreased serum colorectal cancer 
SLC38A2 glycine, glutamine Decreased Plasma congestive heart failure 
SLC38A2 alanine, glutamine Decreased blood plasma lung cancer 
SLC38A2 alanine Decreased Serum primary biliary cirrhosis 
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SLC38A2 alanine Decreased prostate cancer cell lines prostate cancer 
SLC38A2 alanine, glutamine Decreased cerebrospinal fluid schizophrenia 
SLC38A2 glutamine Decreased gastric stomach cancer 
SLC38A2 glycine, alanine Difference Serum cancer 
SLC38A2 glycine, alanine Difference glioma malignant glioma 
SLC38A2 glutamine Difference Brain schizophrenia 
SLC38A2 glycine Increased urine Parkinson's disease 
SLC38A2 alanine Increased Colon Cancer Initiating Cells colon cancer 
SLC38A2 glycine Increased blood colorectal cancer 
SLC38A2 glutamine Increased Cerebrospinal Fluid malignant glioma 
SLC38A2 alanine Increased Prostate cell lines prostate cancer 
SLC38A2 glycine Increased prostate tissues prostate cancer 
SLC38A2 glycine, alanine Increased plasma schizophrenia 
SLC38A2 alanine, glutamine Increased Blood type 2 diabetes mellitus 
SLC38A9 Tyrosine Decreased serum colorectal cancer 
SLC38A9 Tyrosine Decreased Blood esophageal cancer 
SLC38A9 Tyrosine Decreased urine esophageal cancer 
SLC38A9 Tyrosine Increased bladder Bladder Cancer 
SLC38A9 Tyrosine Increased the plasma amino acids autistic disorder 
SLC38A9 Tyrosine Increased urine hepatocellular carcinoma 
SLC38A9 Tyrosine Increased urine obesity 
SLC45A2 Glucose Decreased urine Down syndrome 
SLC45A2 Glucose Decreased colorectal cancer and adjacent normal controls colorectal cancer 
SLC45A2 Glucose Decreased Serum esophagus squamous cell carcinoma 
SLC45A2 Glucose Decreased frozen tissue samples lung cancer 
SLC45A2 Glucose Decreased Lung tissue squamous cell carcinoma 
SLC45A2 Glucose Difference renal cell kidney cancer 
SLC45A2 Glucose Increased urine Celiac disease 
SLC45A2 Glucose Increased urine obesity 
SLC51A dehydroisoandrosterone sulfate Decreased Serum primary biliary cirrhosis 
SLC51A taurocholate Increased Serum primary biliary cirrhosis 
SLC51B dehydroisoandrosterone sulfate Decreased Serum primary biliary cirrhosis 
SLC51B taurocholate Increased Serum primary biliary cirrhosis 
SLC5A3 myo-inositol Decreased frozen tissue samples lung cancer 
SLC5A3 myoinositol Decreased renal cell renal cell carcinoma 
SLC5A3 myo-inositol Decreased Brain schizophrenia 
SLC5A3 myo-inositol Difference glioma malignant glioma 
SLC5A3 myo-inositol Increased Brain bipolar disorder 
SLC5A3 myo-inositol Increased renal cell kidney cancer 
SLC5A3 myo-inositol Increased Cerebrospinal Fluid malignant glioma 
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SLC5A8 Pyruvate, Lactate Decreased urine Celiac disease 
SLC5A8 acetoacetate, Pyroglutamic acid Decreased Colon Cancer Initiating Cells colon cancer 
SLC5A8 Pyruvate, Lactate Decreased serum colorectal cancer 
SLC5A8 Acetate Decreased Blood esophageal cancer 
SLC5A8 Acetate Decreased esophagus esophageal cancer 
SLC5A8 Pyruvate Decreased urine esophageal cancer 
SLC5A8 Acetate Decreased frozen tissue samples lung cancer 
SLC5A8 Lactate Decreased urine obesity 
SLC5A8 lactate Decreased Serum primary biliary cirrhosis 
SLC5A8 Lactate Decreased cell lines prostate cancer 
SLC5A8 lactate Decreased cerebrospinal fluid schizophrenia 
SLC5A8 acetoacetate, 3-hydroxybutyrate Decreased plasma schizophrenia 
SLC5A8 Pyruvate Decreased serum type 1 diabetes mellitus 
SLC5A8 lactate Difference 1st trimester pregnant woman plasma Down syndrome 
SLC5A8 Pyruvate, Lactate Difference renal cell kidney cancer 
SLC5A8 3-hydroxybutyrate Difference plasma mental depression 
SLC5A8 lactate Difference Brain schizophrenia 
SLC5A8 lactate Increased Brain bipolar disorder 
SLC5A8 Lactate Increased breast cancer cell lines breast cancer 
SLC5A8 lactate Increased blood colorectal cancer 
SLC5A8 Lactate, 5-Oxoproline Increased colorectal cancer and adjacent normal controls colorectal cancer 
SLC5A8 Acetate, 3-hydroxybutyrate Increased serum colorectal cancer 
SLC5A8 lactate Increased blood congestive heart failure 
SLC5A8 Lactate Increased Blood esophageal cancer 
SLC5A8 Acetate, Lactate Increased Plasma esophageal cancer 
SLC5A8 Pyroglutamic acid Increased urine hepatocellular carcinoma 
SLC5A8 Lactate Increased intestinal epithelial cells inflammatory bowel disease 
SLC5A8 lactate Increased Lung Cancer Tissue lung cancer 
SLC5A8 lactate Increased blood plasma lung cancer 
SLC5A8 Lactate Increased frozen tissue samples lung cancer 
SLC5A8 3-hydroxybutyrate Increased Serum primary biliary cirrhosis 
SLC5A8 Lactate Increased prostate cancer cell lines prostate cancer 
SLC5A8 lactate Increased plasma schizophrenia 
SLC5A8 Lactate Increased Lung tissue squamous cell carcinoma 
SLC5A8 5-Oxoproline Increased serum type 1 diabetes mellitus 
SLC6A1 GABA Decreased plasma mental depression 
SLC6A1 gamma-aminobutyric acid Decreased Brain schizophrenia 
SLC6A11 gamma-aminobutyric acid Decreased Brain schizophrenia 
SLC6A12 glycine Decreased Plasma congestive heart failure 
SLC6A12 gamma-aminobutyric acid Decreased Brain schizophrenia 
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SLC6A12 glycine Difference Serum cancer 
SLC6A12 glycine Difference glioma malignant glioma 
SLC6A12 glycine Increased urine Parkinson's disease 
SLC6A12 glycine Increased blood colorectal cancer 
SLC6A12 glycine Increased prostate tissues prostate cancer 
SLC6A12 glycine Increased plasma schizophrenia 
SLC6A13 GABA Decreased plasma mental depression 
SLC6A14 Asparagine, Valine, Methionine, 

Proline, Isoleucine, Leucine 
Decreased urine Celiac disease 

SLC6A14 Asparagine, Valine, Leucine Decreased the plasma amino acids autistic disorder 
SLC6A14 Valine, Leucine Decreased serum colorectal cancer 
SLC6A14 Isoleucine Decreased Plasma congestive heart failure 
SLC6A14 Methionine Decreased Blood esophageal cancer 
SLC6A14 Leucine Decreased esophagus esophageal cancer 
SLC6A14 Valine, Leucine Decreased Serum esophagus squamous cell carcinoma 
SLC6A14 Methionine Decreased intestinal epithelial cells inflammatory bowel disease 
SLC6A14 Methionine Decreased frozen tissue samples lung cancer 
SLC6A14 Valine, Proline, Leucine Decreased serum squamous cell carcinoma 
SLC6A14 Proline, Leucine Difference Serum fatty liver disease 
SLC6A14 Valine, Proline, Leucine Difference Serum hypertension 
SLC6A14 Valine, Proline, Leucine Difference Serum type 2 diabetes mellitus 
SLC6A14 Asparagine, Valine, Isoleucine, 

Leucine 
Increased bladder Bladder Cancer 

SLC6A14 Methionine, Isoleucine Increased the plasma amino acids autistic disorder 
SLC6A14 Asparagine Increased colorectal cancer and adjacent normal controls colorectal cancer 
SLC6A14 Proline Increased serum colorectal cancer 
SLC6A14 Leucine Increased Blood esophageal cancer 
SLC6A14 Valine, Isoleucine, Leucine Increased Plasma esophageal cancer 
SLC6A14 Valine, Isoleucine, Leucine Increased urine obesity 
SLC6A14 Methionine, Leucine Increased visceral and subcutaneous adipose tissue obesity 
SLC6A14 Valine Increased prostate tissues prostate cancer 
SLC6A14 Isoleucine Increased Blood type 2 diabetes mellitus 
SLC6A15 methionine Decreased 1st trimester pregnant woman plasma Down syndrome 
SLC6A15 methionine Decreased serum colorectal cancer 
SLC6A15 methionine Difference cerebrospinal fluid Alzheimer's disease 
SLC6A15 methionine Difference Serum cancer 
SLC6A15 methionine Increased cerebrospinal fluid major depressive disorder 
SLC6A15 methionine Increased Cerebrospinal Fluid malignant glioma 
SLC6A18 Valine, Leucine Decreased urine Celiac disease 
SLC6A18 Valine, Leucine Decreased the plasma amino acids autistic disorder 
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SLC6A18 Valine, Leucine Decreased serum colorectal cancer 
SLC6A18 Leucine Decreased esophagus esophageal cancer 
SLC6A18 Phenylalanine Decreased urine esophageal cancer 
SLC6A18 Valine, Leucine Decreased Serum esophagus squamous cell carcinoma 
SLC6A18 Valine, Leucine, Phenylalanine Decreased serum squamous cell carcinoma 
SLC6A18 Alpha-alanine, Serine, Leucine, 

Phenylalanine 
Difference Serum fatty liver disease 

SLC6A18 Alpha-alanine, Serine, Valine, 
Leucine, Phenylalanine 

Difference Serum hypertension 

SLC6A18 Alpha-alanine, Serine, Valine, 
Leucine, Phenylalanine 

Difference Serum type 2 diabetes mellitus 

SLC6A18 Valine, Leucine, Phenylalanine Increased bladder Bladder Cancer 
SLC6A18 Phenylalanine Increased the plasma amino acids autistic disorder 
SLC6A18 Leucine, Phenylalanine Increased Blood esophageal cancer 
SLC6A18 Valine, Leucine Increased Plasma esophageal cancer 
SLC6A18 Valine, Leucine, Phenylalanine Increased urine obesity 
SLC6A18 Serine, Leucine Increased visceral and subcutaneous adipose tissue obesity 
SLC6A18 Valine Increased prostate tissues prostate cancer 
SLC6A18 Serine Increased serum type 1 diabetes mellitus 
SLC6A4 5-HT Decreased Blood schizophrenia 
SLC6A4 Serotonin Increased Plasma alcohol abuse 
SLC6A5 glycine Decreased Plasma congestive heart failure 
SLC6A5 glycine Difference Serum cancer 
SLC6A5 glycine Difference glioma malignant glioma 
SLC6A5 glycine Increased urine Parkinson's disease 
SLC6A5 glycine Increased blood colorectal cancer 
SLC6A5 glycine Increased prostate tissues prostate cancer 
SLC6A5 glycine Increased plasma schizophrenia 
SLC6A6 Taurine Decreased urine Down syndrome 
SLC6A6 Taurine Decreased intestinal epithelial cells inflammatory bowel disease 
SLC6A6 Taurine Difference Serum fatty liver disease 
SLC6A6 Taurine Difference Serum hypertension 
SLC6A6 Taurine Difference Serum type 2 diabetes mellitus 
SLC6A6 Taurine Increased frozen tissue samples lung cancer 
SLC6A9 glycine Decreased Plasma congestive heart failure 
SLC6A9 glycine Difference Serum cancer 
SLC6A9 glycine Difference glioma malignant glioma 
SLC6A9 glycine Increased urine Parkinson's disease 
SLC6A9 glycine Increased blood colorectal cancer 
SLC6A9 glycine Increased prostate tissues prostate cancer 
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SLC6A9 glycine Increased plasma schizophrenia 
SLC7A1 lysine Decreased Serum primary biliary cirrhosis 
SLC7A1 lysine, arginine, Histidine Decreased Prostate cell lines prostate cancer 
SLC7A1 lysine Difference Plasma Alzheimer's disease 
SLC7A1 arginine Difference Serum cancer 
SLC7A1 Histidine Difference Serum fatty liver disease 
SLC7A1 Histidine Difference Serum hypertension 
SLC7A1 lysine Difference glioma malignant glioma 
SLC7A1 Histidine Difference Serum type 2 diabetes mellitus 
SLC7A1 Histidine Increased bladder Bladder Cancer 
SLC7A1 Histidine Increased the plasma amino acids autistic disorder 
SLC7A1 lysine Increased Cerebrospinal Fluid malignant glioma 
SLC7A1 Histidine Increased urine obesity 
SLC7A1 Histidine Increased prostate tissues prostate cancer 
SLC7A10 valine Decreased Plasma Huntington's disease 
SLC7A10 alanine Decreased breast cancer cell lines breast cancer 
SLC7A10 alanine Decreased serum colorectal cancer 
SLC7A10 glycine Decreased Plasma congestive heart failure 
SLC7A10 alanine, valine Decreased blood plasma lung cancer 
SLC7A10 alanine Decreased Serum primary biliary cirrhosis 
SLC7A10 alanine Decreased prostate cancer cell lines prostate cancer 
SLC7A10 alanine Decreased cerebrospinal fluid schizophrenia 
SLC7A10 glycine, alanine Difference Serum cancer 
SLC7A10 glycine, alanine Difference glioma malignant glioma 
SLC7A10 valine Increased CSF Alzheimer's disease 
SLC7A10 glycine Increased urine Parkinson's disease 
SLC7A10 alanine Increased Colon Cancer Initiating Cells colon cancer 
SLC7A10 glycine Increased blood colorectal cancer 
SLC7A10 alanine Increased Prostate cell lines prostate cancer 
SLC7A10 glycine Increased prostate tissues prostate cancer 
SLC7A10 glycine, alanine Increased plasma schizophrenia 
SLC7A10 valine Increased urine schizophrenia 
SLC7A10 alanine, valine Increased Blood type 2 diabetes mellitus 
SLCO2A1 Lactate Decreased urine Celiac disease 
SLCO2A1 Lactate Decreased serum colorectal cancer 
SLCO2A1 Lactate Decreased urine obesity 
SLCO2A1 lactate Decreased Serum primary biliary cirrhosis 
SLCO2A1 Lactate Decreased cell lines prostate cancer 
SLCO2A1 lactate Decreased cerebrospinal fluid schizophrenia 
SLCO2A1 lactate Difference 1st trimester pregnant woman plasma Down syndrome 
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SLCO2A1 Lactate Difference renal cell kidney cancer 
SLCO2A1 lactate Difference Brain schizophrenia 
SLCO2A1 lactate Increased Brain bipolar disorder 
SLCO2A1 Lactate Increased breast cancer cell lines breast cancer 
SLCO2A1 lactate Increased blood colorectal cancer 
SLCO2A1 Lactate Increased colorectal cancer and adjacent normal controls colorectal cancer 
SLCO2A1 lactate Increased blood congestive heart failure 
SLCO2A1 Lactate Increased Blood esophageal cancer 
SLCO2A1 Lactate Increased Plasma esophageal cancer 
SLCO2A1 Lactate Increased intestinal epithelial cells inflammatory bowel disease 
SLCO2A1 lactate Increased Lung Cancer Tissue lung cancer 
SLCO2A1 lactate Increased blood plasma lung cancer 
SLCO2A1 Lactate Increased frozen tissue samples lung cancer 
SLCO2A1 Lactate Increased prostate cancer cell lines prostate cancer 
SLCO2A1 lactate Increased plasma schizophrenia 
SLCO2A1 Lactate Increased Lung tissue squamous cell carcinoma 
SLCO2B1 glutamate Decreased breast and blood breast cancer 
SLCO2B1 glutamate Decreased serum colorectal cancer 
SLCO2B1 glutamate Difference Serum cancer 
SLCO2B1 glutamate Difference Brain schizophrenia 
SLCO2B1 glutamate Increased Brain bipolar disorder 
SLCO2B1 glutamate Increased Plasma congestive heart failure 
SLCO2B1 glutamate Increased cell non-small cell lung carcinoma 
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SLC UniProt ID Possible new substrate 
MetaboliteID 
(Possible new substrates) 

Confirmed substrates 

FLVCR1 Q9Y5Y0 D-Galactose HMDB0000143 D-glucose, glucose, Glucose 
FLVCR1 Q9Y5Y0 D-Mannose HMDB0000169 D-glucose, glucose, Glucose 
FLVCR1 Q9Y5Y0 D-Ribose HMDB0000283 D-glucose, glucose, Glucose 
FLVCR1 Q9Y5Y0 b-glucose HMDB0000516 D-glucose, glucose, Glucose 
MFSD4B Q5TF39 D-Galactose HMDB0000143 D-glucose, glucose, Glucose 
MFSD4B Q5TF39 D-Mannose HMDB0000169 D-glucose, glucose, Glucose 
MFSD4B Q5TF39 D-Ribose HMDB0000283 alpha-Me-glucose 
MFSD4B Q5TF39 b-glucose HMDB0000516 D-glucose, glucose, Glucose 
SLC15A1 P46059 phenylalanyltryptophan HMDB0029006 Trp-Trp-Trp 
SLC15A1 P46059 tryptophylglutamate HMDB0029082 Trp-Glu-Asp 
SLC15A1 P46059 glutamyltyrosine HMDB0028831 Glu-Phe-Tyr 
SLC15A1 P46059 gamma-glutamylphenylalanine HMDB0029156 Glu-Phe-Tyr 
SLC15A1 P46059 homocarnosine HMDB0000745 Carnosine, POLAPREZINC, carnosine 
SLC15A4 Q8N697 homocarnosine HMDB0000745 Carnosine, POLAPREZINC, carnosine 
SLC17A5 Q9NRA2 Ribonic acid HMDB0000867 gluconate, Gluconic acid 
SLC17A5 Q9NRA2 D-(+)-Galacturonic acid 1 HMDB0002545 glucuronic acid, D-glucuronic acid 
SLC17A9 Q9BYT1 ADP-ribose HMDB0001178 ADP 
SLC1A4 P43007 Pipecolate HMDB0000070 Proline, L-proline, proline 
SLC22A1 O15245 spermine HMDB0001256 spermidine, Spermidine 
SLC22A1 O15245 Cytidine HMDB0000089 Cytarabine, cytarabine 
SLC22A11 Q9NSA0 cholic acid HMDB0000619 bile salts 
SLC22A16 Q86VW1 spermine HMDB0001256 spermidine, Spermidine 
SLC22A4 Q9H015 Cytidine HMDB0000089 Cytarabine, cytarabine 
SLC25A15 Q9Y619 Homoarginine HMDB0000670 Arginine, L-arginine, arginine 
SLC25A15 Q9Y619 Ornithine HMDB0003374 Lysine, L-lysine, lysine 
SLC25A16 P16260 Heptadecanoic acid HMDB0006497 CoA, CoA and congeners, Coenzyme A 
SLC25A17 O43808 ADP-ribose HMDB0001178 NAD+ 
SLC25A17 O43808 Riboflavin HMDB0001520 ADP 
SLC25A17 O43808 Heptadecanoic acid HMDB0006497 FMN 
SLC25A2 Q9BXI2 Homoarginine HMDB0000670 CoA, CoA and congeners, Coenzyme A 
SLC25A21 Q9BQT8 azelaic acid HMDB0000784 Arginine, L-arginine, arginine 
SLC25A21 Q9BQT8 tetradecanedioate HMDB0000872 Pimelate 
SLC25A23 Q9BV35 ADP-ribose HMDB0001178 Pimelate 
SLC25A24 Q6NUK1 ADP-ribose HMDB0001178 ADP 
SLC25A25 Q6KCM7 ADP-ribose HMDB0001178 ADP 
SLC25A25 Q6KCM7 ADP HMDB0001341 ATP, ATP-Mg2+ 

SUPPLEMENTARY TABLE 2: Possible new substrates for respective SLC transporters and confirmed substrates of the corresponding SLC 
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SLC25A29 Q8N8R3 Ornithine HMDB0003374 ATP, ATP-Mg2+ 
SLC25A31 Q9H0C2 ADP-ribose HMDB0001178 Lysine, L-lysine, lysine 
SLC25A33 Q9BSK2 UTP HMDB0000285 ADP 
SLC25A36 Q96CQ1 inosinic acid HMDB0000175 UDP 
SLC25A36 Q96CQ1 UTP HMDB0000285 IDP 
SLC25A4 P12235 ADP-ribose HMDB0001178 UDP 
SLC25A42 Q86VD7 ADP-ribose HMDB0001178 ADP 
SLC25A42 Q86VD7 Heptadecanoic acid HMDB0006497 ADP 
SLC25A5 P05141 ADP-ribose HMDB0001178 CoA, CoA and congeners, Coenzyme A 
SLC25A6 P12236 ADP-ribose HMDB0001178 ADP 
SLC27A2 O14975 Stearate HMDB0000827 ADP 
SLC27A2 O14975 Palmitelaidic acid HMDB0012328 Palmitate 
SLC27A2 O14975 Pelargonic acid HMDB0000847 Oleate 
SLC27A2 O14975 Myristoleate (14:1n5) HMDB0002000 Palmitate 
SLC27A2 O14975 n-Eicosanoic acid HMDB0002212 Oleate 
SLC27A2 O14975 margarate HMDB0002259 Palmitate 
SLC27A2 O14975 Palmitoleate HMDB0003229 Palmitate 
SLC27A2 O14975 mead acid HMDB0010378 Oleate 
SLC27A2 O14975 Docosadienoate (22:2n6) HMDB0061714 Linoleate 

SLC27A2 O14975 
1-dihomo-linoleoylglycerophosphocholine 
(20:2n6) HMDB0061864 Linoleate 

SLC27A2 O14975 5-dodecenoate (12:1n7) HMDB0000529 Oleate 
SLC27A2 O14975 arachidonic acid HMDB0001043 Oleate 
SLC27A2 O14975 Capric acid HMDB0000511 Linoleate 
SLC27A2 O14975 caproate HMDB0000535 Palmitate 
SLC27A2 O14975 10-nonadecenoate (19:1n9) HMDB0013622 Palmitate 
SLC27A2 O14975 Adrenic acid HMDB0002226 Oleate 
SLC27A2 O14975 eicosenoate HMDB0002231 Linoleate 
SLC27A2 O14975 cis-vaccenate (18:1n7) HMDB0003231 Oleate 
SLC27A2 O14975 Laurate HMDB0000638 Oleate 
SLC27A2 O14975 docosapentaenoate (n6 DPA; 22:5n6) HMDB0001976 Palmitate 
SLC27A2 O14975 Myristate HMDB0000806 Linoleate 
SLC27A2 O14975 nonadecanoate HMDB0000772 Palmitate 
SLC27A2 O14975 Pentadecanoic acid HMDB0000826 Palmitate 
SLC27A4 Q6P1M0 Stearate HMDB0000827 Palmitate 
SLC27A4 Q6P1M0 Palmitelaidic acid HMDB0012328 Palmitate 
SLC27A4 Q6P1M0 Pelargonic acid HMDB0000847 Oleate 
SLC27A4 Q6P1M0 Myristoleate (14:1n5) HMDB0002000 Palmitate 
SLC27A4 Q6P1M0 n-Eicosanoic acid HMDB0002212 Oleate 
SLC27A4 Q6P1M0 margarate HMDB0002259 Palmitate 
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SLC27A4 Q6P1M0 Palmitoleate HMDB0003229 Palmitate 
SLC27A4 Q6P1M0 Docosadienoate (22:2n6) HMDB0061714 Oleate 

SLC27A4 Q6P1M0 
1-dihomo-linoleoylglycerophosphocholine 
(20:2n6) HMDB0061864 Oleate 

SLC27A4 Q6P1M0 5-dodecenoate (12:1n7) HMDB0000529 Oleate 
SLC27A4 Q6P1M0 Capric acid HMDB0000511 Oleate 
SLC27A4 Q6P1M0 caproate HMDB0000535 Palmitate 
SLC27A4 Q6P1M0 10-nonadecenoate (19:1n9) HMDB0013622 Palmitate 
SLC27A4 Q6P1M0 Adrenic acid HMDB0002226 Oleate 
SLC27A4 Q6P1M0 eicosenoate HMDB0002231 Oleate 
SLC27A4 Q6P1M0 cis-vaccenate (18:1n7) HMDB0003231 Oleate 
SLC27A4 Q6P1M0 Laurate HMDB0000638 Oleate 
SLC27A4 Q6P1M0 Linoleic acid HMDB0000673 Palmitate 
SLC27A4 Q6P1M0 Myristate HMDB0000806 Oleate 
SLC27A4 Q6P1M0 nonadecanoate HMDB0000772 Palmitate 
SLC27A4 Q6P1M0 Pentadecanoic acid HMDB0000826 Palmitate 
SLC27A6 Q9Y2P4 Stearate HMDB0000827 Palmitate 
SLC27A6 Q9Y2P4 Palmitelaidic acid HMDB0012328 Palmitate 
SLC27A6 Q9Y2P4 Pelargonic acid HMDB0000847 Oleate 
SLC27A6 Q9Y2P4 Myristoleate (14:1n5) HMDB0002000 Palmitate 
SLC27A6 Q9Y2P4 n-Eicosanoic acid HMDB0002212 Oleate 
SLC27A6 Q9Y2P4 margarate HMDB0002259 Palmitate 
SLC27A6 Q9Y2P4 Palmitoleate HMDB0003229 Palmitate 
SLC27A6 Q9Y2P4 mead acid HMDB0010378 Oleate 
SLC27A6 Q9Y2P4 Docosadienoate (22:2n6) HMDB0061714 Linoleate 

SLC27A6 Q9Y2P4 
1-dihomo-linoleoylglycerophosphocholine 
(20:2n6) HMDB0061864 Linoleate 

SLC27A6 Q9Y2P4 5-dodecenoate (12:1n7) HMDB0000529 Oleate 
SLC27A6 Q9Y2P4 arachidonic acid HMDB0001043 Oleate 
SLC27A6 Q9Y2P4 Capric acid HMDB0000511 Linoleate 
SLC27A6 Q9Y2P4 caproate HMDB0000535 Palmitate 
SLC27A6 Q9Y2P4 10-nonadecenoate (19:1n9) HMDB0013622 Palmitate 
SLC27A6 Q9Y2P4 Adrenic acid HMDB0002226 Oleate 
SLC27A6 Q9Y2P4 eicosenoate HMDB0002231 Linoleate 
SLC27A6 Q9Y2P4 cis-vaccenate (18:1n7) HMDB0003231 Oleate 
SLC27A6 Q9Y2P4 Laurate HMDB0000638 Oleate 
SLC27A6 Q9Y2P4 docosapentaenoate (n6 DPA; 22:5n6) HMDB0001976 Palmitate 
SLC27A6 Q9Y2P4 Myristate HMDB0000806 Linoleate 
SLC27A6 Q9Y2P4 nonadecanoate HMDB0000772 Palmitate 
SLC27A6 Q9Y2P4 Pentadecanoic acid HMDB0000826 Palmitate 
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SLC29A1 Q99808 Cytidine HMDB0000089 Palmitate 
SLC29A2 Q14542 Cytidine HMDB0000089 Cytarabine, cytarabine 
SLC29A3 Q9BZD2 ADP-ribose HMDB0001178 Cytarabine, cytarabine 
SLC29A3 Q9BZD2 ADP HMDB0001341 ATP, ATP-Mg2+ 
SLC2A1 P11166 D-Galactose HMDB0000143 ATP, ATP-Mg2+ 
SLC2A1 P11166 D-Ribose HMDB0000283 mannose, D-mannose, Mannose 
SLC2A1 P11166 b-glucose HMDB0000516 galactose, Galactose 
SLC2A10 O95528 D-Galactose HMDB0000143 galactose, Galactose 
SLC2A10 O95528 D-Mannose HMDB0000169 D-glucose, glucose, Glucose 
SLC2A10 O95528 D-Ribose HMDB0000283 galactose, Galactose 
SLC2A10 O95528 b-glucose HMDB0000516 galactose, Galactose 
SLC2A11 Q9BYW1 D-Tagatose HMDB0003418 galactose, Galactose 
SLC2A11 Q9BYW1 D-Galactose HMDB0000143 D-fructose, fructose, Fructose 
SLC2A11 Q9BYW1 D-Mannose HMDB0000169 D-glucose, glucose, Glucose 
SLC2A11 Q9BYW1 arabinose HMDB0029942 D-glucose, glucose, Glucose 
SLC2A11 Q9BYW1 D-Ribose HMDB0000283 Hexoses 
SLC2A11 Q9BYW1 b-glucose HMDB0000516 D-glucose, glucose, Glucose 
SLC2A12 Q8TD20 D-Galactose HMDB0000143 D-glucose, glucose, Glucose 
SLC2A12 Q8TD20 D-Mannose HMDB0000169 D-glucose, glucose, Glucose 
SLC2A12 Q8TD20 D-Ribose HMDB0000283 D-glucose, glucose, Glucose 
SLC2A12 Q8TD20 b-glucose HMDB0000516 D-glucose, glucose, Glucose 
SLC2A14 Q8TDB8 D-Galactose HMDB0000143 D-glucose, glucose, Glucose 
SLC2A14 Q8TDB8 D-Mannose HMDB0000169 D-glucose, glucose, Glucose 
SLC2A14 Q8TDB8 D-Ribose HMDB0000283 D-glucose, glucose, Glucose 
SLC2A14 Q8TDB8 b-glucose HMDB0000516 D-glucose, glucose, Glucose 
SLC2A2 P11168 D-Tagatose HMDB0003418 D-glucose, glucose, Glucose 
SLC2A2 P11168 D-Galactose HMDB0000143 D-fructose, fructose, Fructose 
SLC2A2 P11168 D-Ribose HMDB0000283 mannose, D-mannose, Mannose 
SLC2A2 P11168 b-glucose HMDB0000516 galactose, Galactose 
SLC2A3 P11169 D-Galactose HMDB0000143 galactose, Galactose 
SLC2A3 P11169 arabinose HMDB0029942 mannose, D-mannose, Mannose 
SLC2A3 P11169 D-Ribose HMDB0000283 xylose, Xylose 
SLC2A3 P11169 b-glucose HMDB0000516 galactose, Galactose 
SLC2A4 P14672 D-Galactose HMDB0000143 galactose, Galactose 
SLC2A4 P14672 D-Mannose HMDB0000169 D-glucose, glucose, Glucose 
SLC2A4 P14672 D-Ribose HMDB0000283 D-glucose, glucose, Glucose 
SLC2A4 P14672 b-glucose HMDB0000516 D-glucose, glucose, Glucose 
SLC2A5 P22732 D-Tagatose HMDB0003418 D-glucose, glucose, Glucose 
SLC2A5 P22732 D-Galactose HMDB0000143 D-fructose, fructose, Fructose 
SLC2A5 P22732 D-Mannose HMDB0000169 D-glucose, glucose, Glucose 
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SLC2A5 P22732 D-Ribose HMDB0000283 D-glucose, glucose, Glucose 
SLC2A5 P22732 b-glucose HMDB0000516 D-glucose, glucose, Glucose 
SLC2A6 Q9UGQ3 D-Galactose HMDB0000143 D-glucose, glucose, Glucose 
SLC2A6 Q9UGQ3 D-Mannose HMDB0000169 D-glucose, glucose, Glucose 
SLC2A6 Q9UGQ3 D-Ribose HMDB0000283 D-glucose, glucose, Glucose 
SLC2A6 Q9UGQ3 b-glucose HMDB0000516 D-glucose, glucose, Glucose 
SLC2A7 Q6PXP3 D-Tagatose HMDB0003418 D-glucose, glucose, Glucose 
SLC2A7 Q6PXP3 D-Galactose HMDB0000143 D-fructose, fructose, Fructose 
SLC2A7 Q6PXP3 D-Mannose HMDB0000169 D-glucose, glucose, Glucose 
SLC2A7 Q6PXP3 D-Ribose HMDB0000283 D-glucose, glucose, Glucose 
SLC2A7 Q6PXP3 b-glucose HMDB0000516 D-glucose, glucose, Glucose 
SLC2A8 Q9NY64 D-Tagatose HMDB0003418 D-glucose, glucose, Glucose 
SLC2A8 Q9NY64 D-Galactose HMDB0000143 D-fructose, fructose, Fructose 
SLC2A8 Q9NY64 D-Mannose HMDB0000169 D-glucose, glucose, Glucose 
SLC2A8 Q9NY64 D-Ribose HMDB0000283 galactose, Galactose 
SLC2A8 Q9NY64 b-glucose HMDB0000516 galactose, Galactose 
SLC2A9 Q9NRM0 D-Tagatose HMDB0003418 galactose, Galactose 
SLC2A9 Q9NRM0 D-Galactose HMDB0000143 D-fructose, fructose, Fructose 
SLC2A9 Q9NRM0 D-Mannose HMDB0000169 D-glucose, glucose, Glucose 
SLC2A9 Q9NRM0 D-Ribose HMDB0000283 D-glucose, glucose, Glucose 
SLC2A9 Q9NRM0 b-glucose HMDB0000516 D-glucose, glucose, Glucose 
SLC33A1 O00400 Heptadecanoic acid HMDB0006497 D-glucose, glucose, Glucose 
SLC35B1 P78383 ADP-ribose HMDB0001178 CoA, CoA and congeners, Coenzyme A 
SLC35B1 P78383 ADP HMDB0001341 ATP, ATP-Mg2+ 
SLC35D1 Q9NTN3 UDP-N-acetyl-glucosamine HMDB0000290 ATP, ATP-Mg2+ 
SLC36A1 Q7Z2H8 Pipecolate HMDB0000070 UDP-N-acetyl-D-galactosamine, UDP-GlcNAc 
SLC36A2 Q495M3 Pipecolate HMDB0000070 Proline, L-proline, proline 
SLC36A4 Q6YBV0 Pipecolate HMDB0000070 Proline, L-proline, proline 
SLC37A1 P57057 D-Galactose HMDB0000143 Proline, L-proline, proline 
SLC37A1 P57057 D-Mannose HMDB0000169 D-glucose, glucose, Glucose 
SLC37A1 P57057 mannose-6-phosphate HMDB0001078 D-glucose, glucose, Glucose 
SLC37A1 P57057 D-Ribose HMDB0000283 glucose 6-phosphate 
SLC37A1 P57057 b-glucose HMDB0000516 D-glucose, glucose, Glucose 
SLC37A2 Q8TED4 mannose-6-phosphate HMDB0001078 D-glucose, glucose, Glucose 
SLC37A4 O43826 mannose-6-phosphate HMDB0001078 glucose 6-phosphate 
SLC38A2 Q96QD8 Pipecolate HMDB0000070 glucose 6-phosphate 
SLC38A4 Q969I6 Pipecolate HMDB0000070 Proline, L-proline, proline 
SLC38A4 Q969I6 Homoarginine HMDB0000670 Proline, L-proline, proline 
SLC38A4 Q969I6 Ornithine HMDB0003374 Arginine, L-arginine, arginine 
SLC38A9 Q8NBW4 Pipecolate HMDB0000070 Lysine, L-lysine, lysine 
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SLC38A9 Q8NBW4 Homoarginine HMDB0000670 Proline, L-proline, proline 
SLC38A9 Q8NBW4 Ornithine HMDB0003374 Arginine, L-arginine, arginine 
SLC45A1 Q9Y2W3 D-Galactose HMDB0000143 Lysine, L-lysine, lysine 
SLC45A1 Q9Y2W3 D-Mannose HMDB0000169 D-glucose, glucose, Glucose 
SLC45A1 Q9Y2W3 arabinose HMDB0029942 galactose, Galactose 
SLC45A1 Q9Y2W3 D-Ribose HMDB0000283 L-glucose 
SLC45A1 Q9Y2W3 b-glucose HMDB0000516 galactose, Galactose 
SLC45A2 Q9UMX9 D-Tagatose HMDB0003418 galactose, Galactose 
SLC45A2 Q9UMX9 D-Galactose HMDB0000143 D-fructose, fructose, Fructose 
SLC45A2 Q9UMX9 D-Mannose HMDB0000169 D-glucose, glucose, Glucose 
SLC45A2 Q9UMX9 D-Ribose HMDB0000283 D-glucose, glucose, Glucose 
SLC45A2 Q9UMX9 b-glucose HMDB0000516 D-glucose, glucose, Glucose 
SLC45A3 Q96JT2 D-Tagatose HMDB0003418 D-glucose, glucose, Glucose 
SLC45A3 Q96JT2 D-Galactose HMDB0000143 D-fructose, fructose, Fructose 
SLC45A3 Q96JT2 D-Mannose HMDB0000169 D-glucose, glucose, Glucose 
SLC45A3 Q96JT2 D-Ribose HMDB0000283 D-glucose, glucose, Glucose 
SLC45A3 Q96JT2 b-glucose HMDB0000516 D-glucose, glucose, Glucose 
SLC45A4 Q5BKX6 D-Tagatose HMDB0003418 D-glucose, glucose, Glucose 
SLC45A4 Q5BKX6 D-Galactose HMDB0000143 D-fructose, fructose, Fructose 
SLC45A4 Q5BKX6 D-Mannose HMDB0000169 D-glucose, glucose, Glucose 
SLC45A4 Q5BKX6 D-Ribose HMDB0000283 D-glucose, glucose, Glucose 
SLC45A4 Q5BKX6 b-glucose HMDB0000516 D-glucose, glucose, Glucose 
SLC50A1 Q9BRV3 D-Galactose HMDB0000143 D-glucose, glucose, Glucose 
SLC50A1 Q9BRV3 D-Mannose HMDB0000169 D-glucose, glucose, Glucose 
SLC50A1 Q9BRV3 D-Ribose HMDB0000283 D-glucose, glucose, Glucose 
SLC50A1 Q9BRV3 b-glucose HMDB0000516 D-glucose, glucose, Glucose 
SLC5A1 P13866 D-Mannose HMDB0000169 D-glucose, glucose, Glucose 
SLC5A1 P13866 D-Ribose HMDB0000283 D-galactose 
SLC5A1 P13866 Rhamnose HMDB0000849 D-galactose 
SLC5A1 P13866 b-glucose HMDB0000516 Fucose 
SLC5A10 A0PJK1 D-Tagatose HMDB0003418 D-galactose 
SLC5A10 A0PJK1 D-Ribose HMDB0000283 D-fructose, fructose, Fructose 
SLC5A10 A0PJK1 b-glucose HMDB0000516 D-galactose 
SLC5A2 P31639 D-Galactose HMDB0000143 D-galactose 
SLC5A2 P31639 D-Mannose HMDB0000169 D-glucose, glucose, Glucose 
SLC5A2 P31639 D-Ribose HMDB0000283 galactose, Galactose 
SLC5A2 P31639 b-glucose HMDB0000516 galactose, Galactose 
SLC5A3 P53794 D-Galactose HMDB0000143 galactose, Galactose 
SLC5A3 P53794 D-Mannose HMDB0000169 D-glucose, glucose, Glucose 
SLC5A3 P53794 D-Ribose HMDB0000283 D-glucose, glucose, Glucose 
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SLC5A3 P53794 b-glucose HMDB0000516 D-glucose, glucose, Glucose 
SLC5A4 Q9NY91 D-Galactose HMDB0000143 D-glucose, glucose, Glucose 
SLC5A4 Q9NY91 D-Mannose HMDB0000169 D-glucose, glucose, Glucose 
SLC5A4 Q9NY91 D-Ribose HMDB0000283 D-glucose, glucose, Glucose 
SLC5A4 Q9NY91 b-glucose HMDB0000516 D-glucose, glucose, Glucose 
SLC5A9 Q2M3M2 D-Tagatose HMDB0003418 D-glucose, glucose, Glucose 
SLC5A9 Q2M3M2 D-Galactose HMDB0000143 D-fructose, fructose, Fructose 
SLC5A9 Q2M3M2 D-Ribose HMDB0000283 mannose, D-mannose, Mannose 
SLC5A9 Q2M3M2 b-glucose HMDB0000516 mannose, D-mannose, Mannose 
SLC66A1  Homoarginine HMDB0000670 mannose, D-mannose, Mannose 
SLC66A1  Ornithine HMDB0003374 Arginine, L-arginine, arginine 
SLC6A12 P48065 Pipecolate HMDB0000070 Lysine, L-lysine, lysine 
SLC6A14 Q9UN76 Pipecolate HMDB0000070 Proline, L-proline, proline 
SLC6A15 Q9H2J7 Pipecolate HMDB0000070 Proline, L-proline, proline 
SLC6A18 Q96N87 Homoarginine HMDB0000670 Proline, L-proline, proline 
SLC6A7 Q99884 Pipecolate HMDB0000070 Arginine, L-arginine, arginine 
SLC7A1 P30825 Homoarginine HMDB0000670 Proline, L-proline, proline 
SLC7A1 P30825 Ornithine HMDB0003374 Arginine, L-arginine, arginine 
SLC7A2 P52569 Homoarginine HMDB0000670 Lysine, L-lysine, lysine 
SLC7A2 P52569 Ornithine HMDB0003374 Arginine, L-arginine, arginine 
SLC7A3 Q8WY07 Homoarginine HMDB0000670 Lysine, L-lysine, lysine 
SLC7A3 Q8WY07 Ornithine HMDB0003374 Arginine, L-arginine, arginine 
SLC7A6 Q92536 Homoarginine HMDB0000670 Lysine, L-lysine, lysine 
SLC7A7 Q9UM01 Homoarginine HMDB0000670 Arginine, L-arginine, arginine 
SLC7A8 Q9UHI5 Pipecolate HMDB0000070 Arginine, L-arginine, arginine 
SLC7A8 Q9UHI5 Homoarginine HMDB0000670 Proline, L-proline, proline 
SLC7A9 P82251 Homoarginine HMDB0000670 Arginine, L-arginine, arginine 
SLC7A9 P82251 Ornithine HMDB0003374 Arginine, L-arginine, arginine 
SLCO4A1 Q96BD0 cholic acid HMDB0000619 Lysine, L-lysine, lysine 
SLCO4C1 Q6ZQN7 Arginine HMDB0000517 bile salts 
SV2A Q7L0J3 D-Mannose HMDB0000169 Homoarginine, L-homoarginine 
SV2A Q7L0J3 D-Ribose HMDB0000283 galactose, Galactose 
SV2A Q7L0J3 D-Glucose HMDB0000122 galactose, Galactose 
SV2A Q7L0J3 b-glucose HMDB0000516 galactose, Galactose 
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SLC Substrate InChI code Source 

ANKH Pyrophosphate InChI=1S/H4O7P2/c1-8(2,3)7-9(4,5)6/h(H2,1,2,3)(H2,4,5,6)/p-4 Bioparadigms 
ANKH Pyrophosphate InChI=1S/H4O7P2/c1-8(2,3)7-9(4,5)6/h(H2,1,2,3)(H2,4,5,6)/p-4 GtoPdb 
ANKH pyrophosphate InChI=1S/H4O7P2/c1-8(2,3)7-9(4,5)6/h(H2,1,2,3)(H2,4,5,6)/p-4 TCDB 
FLVCR1 arsenite InChI=1S/AsH3O3/c2-1(3)4/h2-4H TCDB 
LETM1 Ca2+ InChI=1S/Ca/q+2 GtoPdb 
LETM1 Gd3+ InChI=1S/Gd/q+3 TCDB 
LETM1 K+ InChI=1S/K/q+1 GtoPdb 
LETM1 H+ InChI=1S/p+1 GtoPdb 
MFSD4B alpha-Me-glucose InChI=1S/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2 GtoPdb 
MFSD4B α-Me-glucose InChI=1S/C7H14O6/c1-12-7-6(11)5(10)4(9)3(2-8)13-7/h3-11H,2H2,1H3/t3-,4-,5+,6-,7+/m1/s1 Bioparadigms 
MFSD4B D-glucose InChI=1S/C7H14O6/c1-12-7-6(11)5(10)4(9)3(2-8)13-7/h3-11H,2H2,1H3/t3-,4-,5+,6-,7+/m1/s1 GtoPdb 
MFSD5 Molybdate InChI=1S/Mo.4O/q;;;2*-1 Bioparadigms 
MFSD5 molybdate InChI=1S/Mo.4O/q;;;2*-1 GtoPdb 
NIPA1 Co2+ InChI=1S/Co/q+2 GtoPdb 
NIPA1 Fe2+ InChI=1S/Fe/q+2 GtoPdb 
NIPA1 Sr2+ InChI=1S/Sr/q+2 GtoPdb 
NIPAL1 Ba2+ InChI=1S/Ba/q+2 GtoPdb 
NIPAL1 Cu2+ InChI=1S/Cu/q+2 GtoPdb 
NIPAL1 Fe2+ InChI=1S/Fe/q+2 GtoPdb 
NIPAL1 Mg2+ InChI=1S/Mg/q+2 GtoPdb 
NIPAL1 Sr2+ InChI=1S/Sr/q+2 GtoPdb 
NIPAL2 Ba2+ InChI=1S/Ba/q+2 GtoPdb 
NIPAL2 Mg2+ InChI=1S/Mg/q+2 GtoPdb 
NIPAL2 Sr2+ InChI=1S/Sr/q+2 GtoPdb 
SLC10A1 ESTRONE SULFURIC ACID InChI=1S/C18H22O5S/c1-18-9-8-14-13-5-3-12(23-24(20,21)22)10-11(13)2-4-15(14)16(18)6-7-

17(18)19/h3,5,10,14-16H,2,4,6-9H2,1H3,(H,20,21,22)/t14-,15-,16+,18+/m1/s1 
ChEMBL 

SLC11A2 V3+ InChI=1S/V/q+3 CeMM 
SLC12A1 Cl- InChI=1S/ClH/h1H/p-1 TCDB 
SLC12A1 Cl- InChI=1S/ClH/h1H/p-1 TCDB 
SLC12A1 K+ InChI=1S/K/q+1 TCDB 
SLC12A1 Na+ InChI=1S/Na/q+1 TCDB 
SLC13A1 thiosulfate InChI=1S/H2O3S2/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 Bioparadigms 
SLC13A1 S2O32- InChI=1S/H2O3S2/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 GtoPdb 
SLC13A1 Thiosulfate InChI=1S/H2O3S2/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 TCDB 
SLC13A1 sulfate InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 Bioparadigms 
SLC13A1 SO42- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 CeMM 
SLC13A1 SO42- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 GtoPdb 
SLC13A1 Sulfate InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 TCDB 
SLC13A1 selenate InChI=1S/H2O4Se/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 Bioparadigms 
SLC13A1 SeO42- InChI=1S/H2O4Se/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 GtoPdb 
SLC13A3 Fumarate InChI=1S/C4H4O4/c5-3(6)1-2-4(7)8/h1-2H,(H,5,6)(H,7,8)/b2-1+ CeMM 

SUPPLEMENTARY TABLE 3: Table for updating the SLC substrates list with InChI codes that were missing 



77 
 

SLC13A4 Thiosulfate InChI=1S/H2O3S2/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 TCDB 
SLC13A4 sulfate InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 Bioparadigms 
SLC13A4 SO42- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 CeMM 
SLC13A4 SO42- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 GtoPdb 
SLC13A4 Sulfate InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 TCDB 
SLC13A4 Selenate InChI=1S/H2O4Se/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 TCDB 
SLC15A1 protons InChI=1S/p+1 Bioparadigms 
SLC15A1 protons InChI=1S/p+1 GtoPdb 
SLC15A2 protons InChI=1S/p+1 Bioparadigms 
SLC15A2 protons InChI=1S/p+1 GtoPdb 
SLC15A3 Tri-DAP InChI=1S/C15H26N4O8/c1-7(16)12(21)19-10(15(26)27)5-6-11(20)18-9(14(24)25)4-2-3-8(17)13(22)23/h7-

10H,2-6,16-17H2,1H3,(H,18,20)(H,19,21)(H,22,23)(H,24,25)(H,26,27)/t7-,8+,9-,10+/m0/s1 
GtoPdb 

SLC15A3 protons InChI=1S/p+1 Bioparadigms 
SLC15A3 protons InChI=1S/p+1 GtoPdb 
SLC15A4 Tri-DAP InChI=1S/C15H26N4O8/c1-7(16)12(21)19-10(15(26)27)5-6-11(20)18-9(14(24)25)4-2-3-8(17)13(22)23/h7-

10H,2-6,16-17H2,1H3,(H,18,20)(H,19,21)(H,22,23)(H,24,25)(H,26,27)/t7-,8+,9-,10+/m0/s1 
CeMM 

SLC15A4 Tri-DAP InChI=1S/C15H26N4O8/c1-7(16)12(21)19-10(15(26)27)5-6-11(20)18-9(14(24)25)4-2-3-8(17)13(22)23/h7-
10H,2-6,16-17H2,1H3,(H,18,20)(H,19,21)(H,22,23)(H,24,25)(H,26,27)/t7-,8+,9-,10+/m0/s1 

GtoPdb 

SLC15A4 protons InChI=1S/p+1 Bioparadigms 
SLC16A10 Thyroxine (T4) InChI=1S/C15H11I4NO4/c16-8-4-7(5-9(17)13(8)21)24-14-10(18)1-6(2-11(14)19)3-12(20)15(22)23/h1-2,4-

5,12,21H,3,20H2,(H,22,23) 
CeMM 

SLC16A2 Thyroxine (T4) InChI=1S/C15H11I4NO4/c16-8-4-7(5-9(17)13(8)21)24-14-10(18)1-6(2-11(14)19)3-12(20)15(22)23/h1-2,4-
5,12,21H,3,20H2,(H,22,23) 

CeMM 

SLC16A2 3,3',5'-triiodothyronine (rT3) InChI=1S/C15H12I3NO4/c16-9-3-7(4-12(19)15(21)22)1-2-13(9)23-8-5-10(17)14(20)11(18)6-8/h1-3,5-
6,12,20H,4,19H2,(H,21,22) 

CeMM 

SLC16A2 Diiodothyronine (T2) InChI=1S/C15H13I2NO4/c16-10-7-9(2-3-13(10)19)22-14-4-1-8(5-11(14)17)6-12(18)15(20)21/h1-
5,7,12,19H,6,18H2,(H,20,21) 

CeMM 

SLC16A3 Acetate InChI=1S/C2H4O2/c1-2(3)4/h1H3,(H,3,4) CeMM 
SLC17A1 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 Bioparadigms 
SLC17A1 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 GtoPdb 
SLC17A1 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 TCDB 
SLC17A3 Estradiol-17-beta-glucuronide InChI=1S/C24H32O8/c1-24-9-8-14-13-5-3-12(25)10-11(13)2-4-15(14)16(24)6-7-17(24)31-23-

20(28)18(26)19(27)21(32-23)22(29)30/h3,5,10,14-21,23,25-28H,2,4,6-9H2,1H3,(H,29,30)/t14-,15-
,16+,17+,18+,19+,20-,21+,23-,24+/m1/s1 

CeMM 

SLC17A3 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 TCDB 
SLC17A4 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 TCDB 
SLC17A5 NO3- InChI=1S/NO3/c2-1(3)4/q-1 CeMM 
SLC17A6 PO43- InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 CeMM 
SLC17A6 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 TCDB 
SLC17A7 PO43- InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 CeMM 
SLC17A7 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 TCDB 
SLC18B1 CDg16 InChI=1S/C27H23N5O3/c1-17-2-4-18(5-3-17)15-32(27(34)25-10-11-29-35-25)16-26(33)30-22-9-7-20-12-19-

6-8-21(28)13-23(19)31-24(20)14-22/h2-14H,15-16,28H2,1H3,(H,30,33) 
CeMM 

SLC1A1 D/L-Asp InChI=1S/C4H8N2O3/c5-2(4(8)9)1-3(6)7/h2H,1,5H2,(H2,6,7)(H,8,9) Bioparadigms 
SLC1A2 D/L-Asp InChI=1S/C4H8N2O3/c5-2(4(8)9)1-3(6)7/h2H,1,5H2,(H2,6,7)(H,8,9) Bioparadigms 
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SLC1A3 D/L-Asp InChI=1S/C4H8N2O3/c5-2(4(8)9)1-3(6)7/h2H,1,5H2,(H2,6,7)(H,8,9) Bioparadigms 
SLC1A6 D/L-Asp InChI=1S/C4H8N2O3/c5-2(4(8)9)1-3(6)7/h2H,1,5H2,(H2,6,7)(H,8,9) Bioparadigms 
SLC1A7 D/L-Asp InChI=1S/C4H8N2O3/c5-2(4(8)9)1-3(6)7/h2H,1,5H2,(H2,6,7)(H,8,9) Bioparadigms 
SLC20A1 AsO43- InChI=1S/AsH3O4/c2-1(3,4)5/h(H3,2,3,4,5) GtoPdb 
SLC20A1 PO43- InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 CeMM 
SLC20A1 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 GtoPdb 
SLC20A1 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 TCDB 
SLC20A2 PO43- InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 CeMM 
SLC20A2 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 GtoPdb 
SLC20A2 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 TCDB 
SLC22A1 Cisplatin InChI=1S/2ClH.2H3N.Pt/h2*1H;2*1H3;/q;;;;+2/p-2 Metrabase 
SLC22A1 1-methyl-4-phenylpyridinium (MPP+) InChI=1S/C12H12N/c1-13-9-7-12(8-10-13)11-5-3-2-4-6-11/h2-10H,1H3/q+1 CeMM 
SLC22A1 4-(4-dimethylamino)styryl-N-

methylpyridinium  
InChI=1S/C16H19N2/c1-17(2)16-8-6-14(7-9-16)4-5-15-10-12-18(3)13-11-15/h4-13H,1-3H3/q+1 UCSF-FDA 

SLC22A1 Tetraethylammonium (TEA) InChI=1S/C8H20N/c1-5-9(6-2,7-3)8-4/h5-8H2,1-4H3/q+1 CeMM 
SLC22A11 ESTRONE SULFURIC ACID InChI=1S/C18H22O5S/c1-18-9-8-14-13-5-3-12(23-24(20,21)22)10-11(13)2-4-15(14)16(18)6-7-

17(18)19/h3,5,10,14-16H,2,4,6-9H2,1H3,(H,20,21,22)/t14-,15-,16+,18+/m1/s1 
ChEMBL 

SLC22A2 cisplatin InChI=1S/2ClH.2H3N.Pt/h2*1H;2*1H3;/q;;;;+2/p-2 GtoPdb 
SLC22A2 1-methyl-4-phenylpyridinium (MPP+) InChI=1S/C12H12N/c1-13-9-7-12(8-10-13)11-5-3-2-4-6-11/h2-10H,1H3/q+1 CeMM 
SLC22A2 4-(4-dimethylaminostyryl-N-

methylpyridinium) (ASP+) 
InChI=1S/C16H19N2/c1-17(2)16-8-6-14(7-9-16)4-5-15-10-12-18(3)13-11-15/h4-13H,1-3H3/q+1 CeMM 

SLC22A2 4-(4-dimethylamino)styryl-N-
methylpyridinium  

InChI=1S/C16H19N2/c1-17(2)16-8-6-14(7-9-16)4-5-15-10-12-18(3)13-11-15/h4-13H,1-3H3/q+1 UCSF-FDA 

SLC22A2 Tetraethylammonium (TEA) InChI=1S/C8H20N/c1-5-9(6-2,7-3)8-4/h5-8H2,1-4H3/q+1 CeMM 
SLC22A24 Estradiol-17-beta-glucuronide InChI=1S/C24H32O8/c1-24-9-8-14-13-5-3-12(25)10-11(13)2-4-15(14)16(24)6-7-17(24)31-23-

20(28)18(26)19(27)21(32-23)22(29)30/h3,5,10,14-21,23,25-28H,2,4,6-9H2,1H3,(H,29,30)/t14-,15-
,16+,17+,18+,19+,20-,21+,23-,24+/m1/s1 

CeMM 

SLC22A24 Androstanediol glucuronide InChI=1S/C25H40O8/c1-24-9-7-13(32-23-20(29)18(27)19(28)21(33-23)22(30)31)11-12(24)3-4-14-15-5-6-
17(26)25(15,2)10-8-16(14)24/h12-21,23,26-29H,3-11H2,1-2H3,(H,30,31)/t12-,13+,14-,15-,16-,17-,18-,19-
,20+,21-,23+,24-,25-/m0/s1 

CeMM 

SLC22A3 Cisplatin InChI=1S/2ClH.2H3N.Pt/h2*1H;2*1H3;/q;;;;+2/p-2 CeMM 
SLC22A3 1-methyl-4-phenylpyridinium (MPP+) InChI=1S/C12H12N/c1-13-9-7-12(8-10-13)11-5-3-2-4-6-11/h2-10H,1H3/q+1 CeMM 
SLC22A4 Tetraethylammonium (TEA) InChI=1S/C8H20N/c1-5-9(6-2,7-3)8-4/h5-8H2,1-4H3/q+1 CeMM 
SLC22A5 Gamma-butryo-betaine InChI=1S/C7H15NO2/c1-8(2,3)6-4-5-7(9)10/h4-6H2,1-3H3 TCDB 
SLC22A5 Tetraethylammonium (TEA) InChI=1S/C8H20N/c1-5-9(6-2,7-3)8-4/h5-8H2,1-4H3/q+1 CeMM 
SLC22A6 3'-azido-3'-deoxythymidine (AZT) InChI=1S/C10H13N5O4/c1-5-3-15(10(18)12-9(5)17)8-2-6(13-14-11)7(4-16)19-8/h3,6-

8,16H,2,4H2,1H3,(H,12,17,18)/t6-,7+,8+/m0/s1 
CeMM 

SLC22A6 N-acetyl glutamate (NAG) InChI=1S/C7H11NO5/c1-4(9)8-5(7(12)13)2-3-6(10)11/h5H,2-3H2,1H3,(H,8,9)(H,10,11)(H,12,13)/p-2/t5-
/m0/s1 

CeMM 

SLC22A6 9-(2-Phosphonylmethoxyethyl) 
diaminopurine (PMEDAP) 

InChI=1S/C8H12N5O4P/c9-7-6-8(11-3-10-7)13(4-12-6)1-2-17-5-18(14,15)16/h3-4H,1-
2,5H2,(H2,9,10,11)(H2,14,15,16) 

CeMM 

SLC22A6 9-(2-Phosphonylmethoxy-
oxyethyl)guanidine (PMEG) 

InChI=1S/C8H12N5O5P/c9-8-11-6-5(7(14)12-8)10-3-13(6)1-2-18-4-19(15,16)17/h3H,1-
2,4H2,(H2,15,16,17)(H3,9,11,12,14) 

CeMM 

SLC22A6 Tetrahydrobiopterin (BH4) InChI=1S/C9H15N5O3/c1-3(15)6(16)4-2-11-7-5(12-4)8(17)14-9(10)13-7/h3-4,6,12,15-
16H,2H2,1H3,(H4,10,11,13,14,17) 

CeMM 
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SLC22A8 Edavarone sulfate InChI=1S/C10H10N2O4S/c1-8-7-10(16-17(13,14)15)12(11-8)9-5-3-2-4-6-9/h2-7H,1H3,(H,13,14,15) CeMM 
SLC22A8 ESTRONE SULFURIC ACID InChI=1S/C18H22O5S/c1-18-9-8-14-13-5-3-12(23-24(20,21)22)10-11(13)2-4-15(14)16(18)6-7-

17(18)19/h3,5,10,14-16H,2,4,6-9H2,1H3,(H,20,21,22)/t14-,15-,16+,18+/m1/s1 
ChEMBL 

SLC22A9 SO42- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 CeMM 
SLC25A10 thiosulphate InChI=1S/H2O3S2/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 Bioparadigms 
SLC25A10 S2O32- InChI=1S/H2O3S2/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 GtoPdb 
SLC25A10 Thiosulfate InChI=1S/H2O3S2/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 TCDB 
SLC25A10 sulphate InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 Bioparadigms 
SLC25A10 SO42- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 GtoPdb 
SLC25A10 Sulfate InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 TCDB 
SLC25A10 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 Bioparadigms 
SLC25A10 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 GtoPdb 
SLC25A10 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 TCDB 
SLC25A16 CoA and congeners InChI=1S/C21H36N7O16P3S/c1-21(2,16(31)19(32)24-4-3-12(29)23-5-6-48)8-41-47(38,39)44-46(36,37)40-7-

11-15(43-45(33,34)35)14(30)20(42-11)28-10-27-13-17(22)25-9-26-18(13)28/h9-11,14-16,20,30-31,48H,3-
8H2,1-2H3,(H,23,29)(H,24,32)(H,36,37)(H,38,39)(H2,22,25,26)(H2,33,34,35)/t11-,14-,15-,16+,20-/m1/s1 

GtoPdb 

SLC25A17 dPCoA InChI=1S/C21H35N7O13P2S/c1-21(2,16(32)19(33)24-4-3-12(29)23-5-6-44)8-39-43(36,37)41-42(34,35)38-7-
11-14(30)15(31)20(40-11)28-10-27-13-17(22)25-9-26-18(13)28/h9-11,14-16,20,30-32,44H,3-8H2,1-
2H3,(H,23,29)(H,24,33)(H,34,35)(H,36,37)(H2,22,25,26)/t11-,14-,15-,16+,20-/m1/s1 

Bioparadigms 

SLC25A21 2-amino adipate InChI=1S/C6H11NO4/c7-4(6(10)11)2-1-3-5(8)9/h4H,1-3,7H2,(H,8,9)(H,10,11)/t4-/m0/s1 TCDB 
SLC25A23 ATP-Mg2+ InChI=1S/C10H16N5O13P3.Mg/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(26-10)1-25-30(21,22)28-

31(23,24)27-29(18,19)20;/h2-4,6-7,10,16-17H,1H2,(H,21,22)(H,23,24)(H2,11,12,13)(H2,18,19,20);/q;+2/p-
4/t4-,6-,7-,10-;/m1./s1 

Bioparadigms 

SLC25A23 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 TCDB 
SLC25A24 ATP-Mg2+ InChI=1S/C10H16N5O13P3.Mg/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(26-10)1-25-30(21,22)28-

31(23,24)27-29(18,19)20;/h2-4,6-7,10,16-17H,1H2,(H,21,22)(H,23,24)(H2,11,12,13)(H2,18,19,20);/q;+2/p-
4/t4-,6-,7-,10-;/m1./s1 

Bioparadigms 

SLC25A24 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 TCDB 
SLC25A24 Mg 2+ InChI=1S/Mg/q+2 TCDB 
SLC25A25 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 TCDB 
SLC25A25 Mg 2+ InChI=1S/Mg/q+2 TCDB 
SLC25A3 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 Bioparadigms 
SLC25A3 PO43- InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 CeMM 
SLC25A3 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 TCDB 
SLC25A30 SO32- InChI=1S/H2O3S/c1-4(2)3/h(H2,1,2,3)/p-2 CeMM 
SLC25A30 S2O32- InChI=1S/H2O3S2/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 CeMM 
SLC25A30 SO42- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 CeMM 
SLC25A30 PO43- InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 CeMM 
SLC25A42 dPCoA InChI=1S/C21H35N7O13P2S/c1-21(2,16(32)19(33)24-4-3-12(29)23-5-6-44)8-39-43(36,37)41-42(34,35)38-7-

11-14(30)15(31)20(40-11)28-10-27-13-17(22)25-9-26-18(13)28/h9-11,14-16,20,30-32,44H,3-8H2,1-
2H3,(H,23,29)(H,24,33)(H,34,35)(H,36,37)(H2,22,25,26)/t11-,14-,15-,16+,20-/m1/s1 

Bioparadigms 

SLC26A1 oxalate InChI=1S/C2H2O4/c3-1(4)2(5)6/h(H,3,4)(H,5,6) Bioparadigms 
SLC26A1 Oxalate InChI=1S/C2H2O4/c3-1(4)2(5)6/h(H,3,4)(H,5,6) CeMM 
SLC26A1 oxalate InChI=1S/C2H2O4/c3-1(4)2(5)6/h(H,3,4)(H,5,6) GtoPdb 
SLC26A1 Oxalate InChI=1S/C2H2O4/c3-1(4)2(5)6/h(H,3,4)(H,5,6) TCDB 
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SLC26A1 SO42- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 Bioparadigms 
SLC26A1 SO42- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 CeMM 
SLC26A1 SO42- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 GtoPdb 
SLC26A1 Sulfate InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 TCDB 
SLC26A11 oxalate InChI=1S/C2H2O4/c3-1(4)2(5)6/h(H,3,4)(H,5,6) Bioparadigms 
SLC26A11 HSO4- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-1 GtoPdb 
SLC26A11 SO42- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 Bioparadigms 
SLC26A11 SO42- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 CeMM 
SLC26A2 oxalate InChI=1S/C2H2O4/c3-1(4)2(5)6/h(H,3,4)(H,5,6) Bioparadigms 
SLC26A2 SO42- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 Bioparadigms 
SLC26A2 SO42- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 CeMM 
SLC26A2 SO42- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 GtoPdb 
SLC26A2 Sulfate InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 TCDB 
SLC26A3 oxalate InChI=1S/C2H2O4/c3-1(4)2(5)6/h(H,3,4)(H,5,6) Bioparadigms 
SLC26A5 oxalate InChI=1S/C2H2O4/c3-1(4)2(5)6/h(H,3,4)(H,5,6) Bioparadigms 
SLC26A5 SO42- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 Bioparadigms 
SLC26A6 oxalate InChI=1S/C2H2O4/c3-1(4)2(5)6/h(H,3,4)(H,5,6) Bioparadigms 
SLC26A6 Oxalate InChI=1S/C2H2O4/c3-1(4)2(5)6/h(H,3,4)(H,5,6) CeMM 
SLC26A6 oxalate InChI=1S/C2H2O4/c3-1(4)2(5)6/h(H,3,4)(H,5,6) GtoPdb 
SLC26A6 Oxalate InChI=1S/C2H2O4/c3-1(4)2(5)6/h(H,3,4)(H,5,6) TCDB 
SLC26A6 Hydrogen sulfate InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-1 TCDB 
SLC26A6 SO42- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 CeMM 
SLC26A6 SO42- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 GtoPdb 
SLC26A6 Sulfate InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 TCDB 
SLC26A7 Oxalate InChI=1S/C2H2O4/c3-1(4)2(5)6/h(H,3,4)(H,5,6) TCDB 
SLC26A7 SO42- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 Bioparadigms 
SLC26A7 Sulfate InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 TCDB 
SLC26A7 nitrate InChI=1S/NO3/c2-1(3)4/q-1 TCDB 
SLC26A8 Oxalate InChI=1S/C2H2O4/c3-1(4)2(5)6/h(H,3,4)(H,5,6) CeMM 
SLC26A8 oxalate InChI=1S/C2H2O4/c3-1(4)2(5)6/h(H,3,4)(H,5,6) GtoPdb 
SLC26A8 SO42- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 CeMM 
SLC26A8 SO42- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 GtoPdb 
SLC26A9 Oxalate InChI=1S/C2H2O4/c3-1(4)2(5)6/h(H,3,4)(H,5,6) CeMM 
SLC26A9 SO42- InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 CeMM 
SLC27A4 Bodipy-palmitate InChI=1S/C28H43BF2N2O2/c1-21-19-23(3)32-27(21)25(28-22(2)20-24(4)33(28)29(32,30)31)17-15-13-11-9-

7-5-6-8-10-12-14-16-18-26(34)35/h19-20H,5-18H2,1-4H3,(H,34,35) 
CeMM 

SLC28A1 3'-azido-3'-deoxythymidine (AZT) InChI=1S/C10H13N5O4/c1-5-3-15(10(18)12-9(5)17)8-2-6(13-14-11)7(4-16)19-8/h3,6-
8,16H,2,4H2,1H3,(H,12,17,18)/t6-,7+,8+/m0/s1 

CeMM 

SLC28A2 cladribrine InChI=1S/C10H12ClN5O3/c11-10-14-8(12)7-9(15-10)16(3-13-7)6-1-4(18)5(2-17)19-6/h3-6,17-18H,1-
2H2,(H2,12,14,15)/t4-,5+,6+/m0/s1 

TCDB 

SLC28A2 2'3'dideoxyinosine InChI=1S/C10H12N4O3/c15-3-6-1-2-7(17-6)14-5-13-8-9(14)11-4-12-10(8)16/h4-7,15H,1-
3H2,(H,11,12,16)/t6-,7+/m0/s1 

TCDB 

SLC29A4 Adenosine analogs InChI=1S/C10H13N5O4/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(18)6(17)4(1-16)19-10/h2-4,6-7,10,16-
18H,1H2,(H2,11,12,13)/t4-,6-,7-,10-/m1/s1 

CeMM 

SLC29A4 1-methyl-4-phenylpyridinium (MPP+) InChI=1S/C12H12N/c1-13-9-7-12(8-10-13)11-5-3-2-4-6-11/h2-10H,1H3/q+1 CeMM 
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SLC29A4 1-methyl-4-phenylpyridinium (MPP+) 
analogs 

InChI=1S/C12H12N/c1-13-9-7-12(8-10-13)11-5-3-2-4-6-11/h2-10H,1H3/q+1 CeMM 

SLC29A4 1-methyl-4-phenylpyridinium (MPP) InChI=1S/C12H12N/c1-13-9-7-12(8-10-13)11-5-3-2-4-6-11/h2-10H,1H3/q+1 TCDB 
SLC2A1 arsenite InChI=1S/AsH3O3/c2-1(3)4/h2-4H TCDB 
SLC31A1 cisplatin InChI=1S/2ClH.2H3N.Pt/h2*1H;2*1H3;/q;;;;+2/p-2 Bioparadigms 
SLC31A1 Cisplatin InChI=1S/2ClH.2H3N.Pt/h2*1H;2*1H3;/q;;;;+2/p-2 CeMM 
SLC31A1 cisplatin InChI=1S/2ClH.2H3N.Pt/h2*1H;2*1H3;/q;;;;+2/p-2 GtoPdb 
SLC31A2 cisplatin InChI=1S/2ClH.2H3N.Pt/h2*1H;2*1H3;/q;;;;+2/p-2 Bioparadigms 
SLC31A2 Cisplatin InChI=1S/2ClH.2H3N.Pt/h2*1H;2*1H3;/q;;;;+2/p-2 CeMM 
SLC31A2 cisplatin InChI=1S/2ClH.2H3N.Pt/h2*1H;2*1H3;/q;;;;+2/p-2 GtoPdb 
SLC32A1 Glycine InChI=1S/C2H5NO2/c3-1-2(4)5/h1,3H2,(H,4,5) Bioparadigms 
SLC32A1 GABA InChI=1S/C4H9NO2/c5-3-1-2-4(6)7/h1-3,5H2,(H,6,7) Bioparadigms 
SLC34A1 PO43- InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 CeMM 
SLC34A1 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 TCDB 
SLC34A2 PO43- InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 CeMM 
SLC34A2 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 TCDB 
SLC34A3 PO43- InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 CeMM 
SLC34A3 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 TCDB 
SLC35B2 Adenosine 3'-phosphate 5'-phosphate InChI=1S/C10H15N5O10P2/c11-8-5-9(13-2-12-8)15(3-14-5)10-6(16)7(25-27(20,21)22)4(24-10)1-23-

26(17,18)19/h2-4,6-7,10,16H,1H2,(H2,11,12,13)(H2,17,18,19)(H2,20,21,22)/t4-,6-,7-,10-/m1/s1 
TCDB 

SLC35B2 3'-Phosphoadenosine-5'-phosphosulfate 
(PAPS) 

InChI=1S/C10H15N5O13P2S/c11-8-5-9(13-2-12-8)15(3-14-5)10-6(16)7(27-29(17,18)19)4(26-10)1-25-
30(20,21)28-31(22,23)24/h2-4,6-7,10,16H,1H2,(H,20,21)(H2,11,12,13)(H2,17,18,19)(H,22,23,24)/t4-,6-,7-,10-
/m1/s1 

CeMM 

SLC35B3 3'-Phosphoadenosine-5'-phosphosulfate 
(PAPS) 

InChI=1S/C10H15N5O13P2S/c11-8-5-9(13-2-12-8)15(3-14-5)10-6(16)7(27-29(17,18)19)4(26-10)1-25-
30(20,21)28-31(22,23)24/h2-4,6-7,10,16H,1H2,(H,20,21)(H2,11,12,13)(H2,17,18,19)(H,22,23,24)/t4-,6-,7-,10-
/m1/s1 

CeMM 

SLC37A1 phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 TCDB 
SLC39A8 Se2+ InChI=1S/Se/q+2 CeMM 
SLC46A1 N5-methyltetrafolate InChI=1S/C20H25N7O6/c1-27-12(9-23-16-15(27)18(31)26-20(21)25-16)8-22-11-4-2-10(3-5-11)17(30)24-

13(19(32)33)6-7-14(28)29/h2-5,12-13,22H,6-9H2,1H3,(H,24,30)(H,28,29)(H,32,33)(H4,21,23,25,26,31)/t12-
,13-/m0/s1 

GtoPdb 

SLC47A1 Cisplatin InChI=1S/2ClH.2H3N.Pt/h2*1H;2*1H3;/q;;;;+2/p-2 TCDB 
SLC47A1 1-methyl-4-phenylpyridinium (MPP+) InChI=1S/C12H12N/c1-13-9-7-12(8-10-13)11-5-3-2-4-6-11/h2-10H,1H3/q+1 CeMM 
SLC47A1 N-dimethyl-4-4'-bipiridinium InChI=1S/C12H14N2/c1-13-7-3-11(4-8-13)12-5-9-14(2)10-6-12/h3-10H,1-2H3/q+2 TCDB 
SLC47A1 Tetraethylammonium (TEA) InChI=1S/C8H20N/c1-5-9(6-2,7-3)8-4/h5-8H2,1-4H3/q+1 CeMM 
SLC47A2 1-methyl-4-phenylpyridinium (MPP+) InChI=1S/C12H12N/c1-13-9-7-12(8-10-13)11-5-3-2-4-6-11/h2-10H,1H3/q+1 CeMM 
SLC47A2 Tetraethylammonium (TEA) InChI=1S/C8H20N/c1-5-9(6-2,7-3)8-4/h5-8H2,1-4H3/q+1 CeMM 
SLC4A10 NaHCO3- InChI=1S/CH2O3.Na/c2-1(3)4;/h(H2,2,3,4);/q;+1/p-1 GtoPdb 
SLC4A11 Boride InChI=1S/B/q-3 TCDB 
SLC4A11 B(OH)4- InChI=1S/BH4O4/c2-1(3,4)5/h2-5H/q-1 CeMM 
SLC4A11 borate InChI=1S/BO3/c2-1(3)4/q-3 Bioparadigms 
SLC4A11 NaHCO3- InChI=1S/CH2O3.Na/c2-1(3)4;/h(H2,2,3,4);/q;+1/p-1 GtoPdb 
SLC4A4 NaHCO3- InChI=1S/CH2O3.Na/c2-1(3)4;/h(H2,2,3,4);/q;+1/p-1 GtoPdb 
SLC4A5 NaHCO3- InChI=1S/CH2O3.Na/c2-1(3)4;/h(H2,2,3,4);/q;+1/p-1 GtoPdb 
SLC4A7 NaHCO3- InChI=1S/CH2O3.Na/c2-1(3)4;/h(H2,2,3,4);/q;+1/p-1 TCDB 
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SLC4A8 NaHCO3- InChI=1S/CH2O3.Na/c2-1(3)4;/h(H2,2,3,4);/q;+1/p-1 GtoPdb 
SLC51A ESTRONE SULFURIC ACID InChI=1S/C18H22O5S/c1-18-9-8-14-13-5-3-12(23-24(20,21)22)10-11(13)2-4-15(14)16(18)6-7-

17(18)19/h3,5,10,14-16H,2,4,6-9H2,1H3,(H,20,21,22)/t14-,15-,16+,18+/m1/s1 
ChEMBL 

SLC51A Sulfate InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 TCDB 
SLC51A Sulfate InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 TCDB 
SLC51B Sulfate InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2 TCDB 
SLC5A12 Pyrazionate InChI=1S/C5H4N2O2/c8-5(9)4-3-6-1-2-7-4/h1-3H,(H,8,9) CeMM 
SLC5A5 Tetrafluoroborate InChI=1S/BF4/c2-1(3,4)5/q-1 TCDB 
SLC5A5 Bromate InChI=1S/BrHO3/c2-1(3)4/h(H,2,3,4)/p-1 TCDB 
SLC5A5 SeCN- InChI=1S/CHNSe/c2-1-3/h3H/p-1 CeMM 
SLC5A5 ClO3- InChI=1S/ClHO3/c2-1(3)4/h(H,2,3,4)/p-1 CeMM 
SLC5A5 Chlorate InChI=1S/ClHO3/c2-1(3)4/h(H,2,3,4)/p-1 TCDB 
SLC5A5 ClO4- InChI=1S/ClHO4/c2-1(3,4)5/h(H,2,3,4,5)/p-1 Bioparadigms 
SLC5A5 ClO4- InChI=1S/ClHO4/c2-1(3,4)5/h(H,2,3,4,5)/p-1 GtoPdb 
SLC5A5 pertechnetate InChI=1S/H2O.3O.Tc/h1H2;;;;/q;;;;+1/p-1 GtoPdb 
SLC5A5 I- InChI=1S/HI/h1H/p-1 TCDB 
SLC5A5 Periodate InChI=1S/HIO4/c2-1(3,4)5/h(H,2,3,4,5)/p-1 TCDB 
SLC5A5 Na+ InChI=1S/Na/q+1 TCDB 
SLC5A5 NO3- InChI=1S/NO3/c2-1(3)4/q-1 Bioparadigms 
SLC5A5 NO3- InChI=1S/NO3/c2-1(3)4/q-1 CeMM 
SLC5A5 NO3- InChI=1S/NO3/c2-1(3)4/q-1 GtoPdb 
SLC5A5 nitrate InChI=1S/NO3/c2-1(3)4/q-1 TCDB 
SLC5A6 lipoate InChI=1S/C8H14O2S2/c9-8(10)4-2-1-3-7-5-6-11-12-7/h7H,1-6H2,(H,9,10) Bioparadigms 
SLC5A6 pantothenate InChI=1S/C9H17NO5/c1-9(2,5-11)7(14)8(15)10-4-3-6(12)13/h7,11,14H,3-5H2,1-2H3,(H,10,15)(H,12,13) Bioparadigms 
SLC5A6 Panthothenate InChI=1S/C9H17NO5/c1-9(2,5-11)7(14)8(15)10-4-3-6(12)13/h7,11,14H,3-5H2,1-2H3,(H,10,15)(H,12,13) CeMM 
SLC5A8 Acetate InChI=1S/C2H4O2/c1-2(3)4/h1H3,(H,3,4) CeMM 
SLC5A8 acetic acid InChI=1S/C2H4O2/c1-2(3)4/h1H3,(H,3,4) GtoPdb 
SLC5A8 Acetate InChI=1S/C2H4O2/c1-2(3)4/h1H3,(H,3,4) TCDB 
SLC5A8 Proprionate InChI=1S/C3H6O2/c1-2-3(4)5/h2H2,1H3,(H,4,5) CeMM 
SLC6A1 gamma-aminobutyric acid (GABA) InChI=1S/C4H9NO2/c5-3-1-2-4(6)7/h1-3,5H2,(H,6,7) TCDB 
SLC7A11 cystine anionic form InChI=1S/C6H12N2O4S2/c7-3(5(9)10)1-13-14-2-4(8)6(11)12/h3-4H,1-2,7-8H2,(H,9,10)(H,11,12)/p-2/t3-

,4-/m0/s1 
Bioparadigms 

SLCO1A2 ESTRONE SULFURIC ACID InChI=1S/C18H22O5S/c1-18-9-8-14-13-5-3-12(23-24(20,21)22)10-11(13)2-4-15(14)16(18)6-7-
17(18)19/h3,5,10,14-16H,2,4,6-9H2,1H3,(H,20,21,22)/t14-,15-,16+,18+/m1/s1 

ChEMBL 

SLCO1B1 Arsenite InChI=1S/AsH3O3/c2-1(3)4/h2-4H Metrabase 
SLCO1B1 arsenate InChI=1S/AsH3O4/c2-1(3,4)5/h(H3,2,3,4,5) Metrabase 
SLCO1B1 ESTRONE SULFURIC ACID InChI=1S/C18H22O5S/c1-18-9-8-14-13-5-3-12(23-24(20,21)22)10-11(13)2-4-15(14)16(18)6-7-

17(18)19/h3,5,10,14-16H,2,4,6-9H2,1H3,(H,20,21,22)/t14-,15-,16+,18+/m1/s1 
ChEMBL 

SLCO1B1 TROGLITAZONE SULFATE InChI=1S/C24H27NO8S2.H3N/c1-13-14(2)21-18(15(3)20(13)33-35(28,29)30)9-10-24(4,32-21)12-31-17-7-5-
16(6-8-17)11-19-22(26)25-23(27)34-19;/h5-8,19H,9-12H2,1-4H3,(H,25,26,27)(H,28,29,30);1H3 

ChEMBL 

SLCO1B1 Estradiol-17 beta-D-glucuronide InChI=1S/C24H32O8/c1-24-9-8-14-13-5-3-12(25)10-11(13)2-4-15(14)16(24)6-7-17(24)31-23-
20(28)18(26)19(27)21(32-23)22(29)30/h3,5,10,14-21,23,25-28H,2,4,6-9H2,1H3,(H,29,30)/t14-,15-
,16+,17+,18+,19+,20-,21+,23-,24+/m1/s1 

TCDB 

SLCO1B1 Monoglucuronosyl bilirubin InChI=1S/C39H44N4O12/c1-7-20-19(6)36(50)43-27(20)14-25-18(5)23(10-12-31(46)54-39-
34(49)32(47)33(48)35(55-39)38(52)53)29(41-25)15-28-22(9-11-30(44)45)17(4)24(40-28)13-26-16(3)21(8-

TCDB 
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2)37(51)42-26/h7-8,13-14,32-35,39-41,47-49H,1-2,9-12,15H2,3-
6H3,(H,42,51)(H,43,50)(H,44,45)(H,52,53)/b26-13+,27-14+/t32-,33-,34+,35-,39+/m0/s1 

SLCO1B1 Rifampicin InChI=1S/C43H58N4O12/c1-21-12-11-13-22(2)42(55)45-33-28(20-44-47-17-15-46(9)16-18-47)37(52)30-
31(38(33)53)36(51)26(6)40-32(30)41(54)43(8,59-40)57-19-14-29(56-10)23(3)39(58-
27(7)48)25(5)35(50)24(4)34(21)49/h11-14,19-21,23-25,29,34-35,39,49-53H,15-18H2,1-10H3,(H,45,55)/b12-
11+,19-14+,22-13-,44-20+/t21-,23+,24+,25+,29-,34-,35+,39+,43-/m0/s1 

UCSF-FDA 

SLCO1B1 Bisglucuronosyl bilirubin InChI=1S/C45H52N4O18/c1-7-20-19(6)40(58)49-27(20)14-25-18(5)23(10-12-31(51)65-45-
37(57)33(53)35(55)39(67-45)43(62)63)29(47-25)15-28-22(17(4)24(46-28)13-26-16(3)21(8-2)41(59)48-26)9-11-
30(50)64-44-36(56)32(52)34(54)38(66-44)42(60)61/h7-8,13-14,32-39,44-47,52-57H,1-2,9-12,15H2,3-
6H3,(H,48,59)(H,49,58)(H,60,61)(H,62,63)/b26-13+,27-14+/t32-,33-,34-,35-,36+,37+,38-,39-
,44+,45+/m0/s1 

TCDB 

SLCO1B3 ESTRONE SULFURIC ACID InChI=1S/C18H22O5S/c1-18-9-8-14-13-5-3-12(23-24(20,21)22)10-11(13)2-4-15(14)16(18)6-7-
17(18)19/h3,5,10,14-16H,2,4,6-9H2,1H3,(H,20,21,22)/t14-,15-,16+,18+/m1/s1 

ChEMBL 

SLCO1B3 17-beta-glucuronosyl estradiol InChI=1S/C24H32O8/c1-24-9-8-14-13-5-3-12(25)10-11(13)2-4-15(14)16(24)6-7-17(24)31-23-
20(28)18(26)19(27)21(32-23)22(29)30/h3,5,10,14-21,23,25-28H,2,4,6-9H2,1H3,(H,29,30)/t14-,15-
,16+,17+,18+,19+,20-,21+,23-,24+/m1/s1 

CeMM 

SLCO1B3 Rifampicin InChI=1S/C43H58N4O12/c1-21-12-11-13-22(2)42(55)45-33-28(20-44-47-17-15-46(9)16-18-47)37(52)30-
31(38(33)53)36(51)26(6)40-32(30)41(54)43(8,59-40)57-19-14-29(56-10)23(3)39(58-
27(7)48)25(5)35(50)24(4)34(21)49/h11-14,19-21,23-25,29,34-35,39,49-53H,15-18H2,1-10H3,(H,45,55)/b12-
11+,19-14+,22-13-,44-20+/t21-,23+,24+,25+,29-,34-,35+,39+,43-/m0/s1 

UCSF-FDA 

SLCO1B7 Estradiol-17-beta-glucuronide InChI=1S/C24H32O8/c1-24-9-8-14-13-5-3-12(25)10-11(13)2-4-15(14)16(24)6-7-17(24)31-23-
20(28)18(26)19(27)21(32-23)22(29)30/h3,5,10,14-21,23,25-28H,2,4,6-9H2,1H3,(H,29,30)/t14-,15-
,16+,17+,18+,19+,20-,21+,23-,24+/m1/s1 

CeMM 

SLCO1C1 ESTRONE SULFURIC ACID InChI=1S/C18H22O5S/c1-18-9-8-14-13-5-3-12(23-24(20,21)22)10-11(13)2-4-15(14)16(18)6-7-
17(18)19/h3,5,10,14-16H,2,4,6-9H2,1H3,(H,20,21,22)/t14-,15-,16+,18+/m1/s1 

ChEMBL 

SLCO1C1 Estradiol-17-beta-glucuronide InChI=1S/C24H32O8/c1-24-9-8-14-13-5-3-12(25)10-11(13)2-4-15(14)16(24)6-7-17(24)31-23-
20(28)18(26)19(27)21(32-23)22(29)30/h3,5,10,14-21,23,25-28H,2,4,6-9H2,1H3,(H,29,30)/t14-,15-
,16+,17+,18+,19+,20-,21+,23-,24+/m1/s1 

CeMM 

SLCO2B1 ESTRONE SULFURIC ACID InChI=1S/C18H22O5S/c1-18-9-8-14-13-5-3-12(23-24(20,21)22)10-11(13)2-4-15(14)16(18)6-7-
17(18)19/h3,5,10,14-16H,2,4,6-9H2,1H3,(H,20,21,22)/t14-,15-,16+,18+/m1/s1 

ChEMBL 

SLCO2B1 Thyroxine 4-O-beta-D-glucuronide InChI=1S/C21H19I4NO10/c22-8-1-6(3-12(26)19(30)31)2-9(23)16(8)34-7-4-10(24)17(11(25)5-7)35-21-
15(29)13(27)14(28)18(36-21)20(32)33/h1-2,4-5,12-15,18,21,27-29H,3,26H2,(H,30,31)(H,32,33)/t12-,13-,14-
,15+,18-,21?/m0/s1 

CeMM 

SLCO3A1 ESTRONE SULFURIC ACID InChI=1S/C18H22O5S/c1-18-9-8-14-13-5-3-12(23-24(20,21)22)10-11(13)2-4-15(14)16(18)6-7-
17(18)19/h3,5,10,14-16H,2,4,6-9H2,1H3,(H,20,21,22)/t14-,15-,16+,18+/m1/s1 

ChEMBL 

SLCO4A1 ESTRONE SULFURIC ACID InChI=1S/C18H22O5S/c1-18-9-8-14-13-5-3-12(23-24(20,21)22)10-11(13)2-4-15(14)16(18)6-7-
17(18)19/h3,5,10,14-16H,2,4,6-9H2,1H3,(H,20,21,22)/t14-,15-,16+,18+/m1/s1 

ChEMBL 

SLCO4C1 Asymmetrical dimethylarginine InChI=1S/C8H18N4O2/c1-12(2)8(10)11-5-3-4-6(9)7(13)14/h6H,3-5,9H2,1-2H3,(H2,10,11)(H,13,14)/t6-
/m0/s1 

CeMM 

SPNS2 C17-S1P InChI=1S/C17H36NO5P/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-17(19)16(18)15-23-24(20,21)22/h13-14,16-
17,19H,2-12,15,18H2,1H3,(H2,20,21,22)/b14-13+/t16-,17+/m0/s1 

Bioparadigms 

SPNS2 C17-S1P InChI=1S/C17H36NO5P/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-17(19)16(18)15-23-24(20,21)22/h13-14,16-
17,19H,2-12,15,18H2,1H3,(H2,20,21,22)/b14-13+/t16-,17+/m0/s1 

GtoPdb 

SPNS2 Sphingosine 1-phosphate (S1P) InChI=1S/C18H38NO5P/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-18(20)17(19)16-24-25(21,22)23/h14-15,17-
18,20H,2-13,16,19H2,1H3,(H2,21,22,23)/b15-14+/t17-,18+/m0/s1 

CeMM 
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SPNS2 Sphingosine-1-phosphate (S1P) InChI=1S/C18H38NO5P/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-18(20)17(19)16-24-25(21,22)23/h14-15,17-
18,20H,2-13,16,19H2,1H3,(H2,21,22,23)/b15-14+/t17-,18+/m0/s1 

GtoPdb 

SPNS2 dihydrosphingosine-1-phosphate (DH-
S1P) 

InChI=1S/C18H40NO5P/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-18(20)17(19)16-24-25(21,22)23/h17-
18,20H,2-16,19H2,1H3,(H2,21,22,23)/t17-,18+/m0/s1/i14T,15T/t14?,15?,17-,18+ 

GtoPdb 

SPNS2 phyto-S1P InChI=1S/C18H40NO6P/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-17(20)18(21)16(19)15-25-26(22,23)24/h16-
18,20-21H,2-15,19H2,1H3,(H2,22,23,24)/t16-,17+,18-/m0/s1 

Bioparadigms 

SPNS2 phyto-S1P InChI=1S/C18H40NO6P/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-17(20)18(21)16(19)15-25-26(22,23)24/h16-
18,20-21H,2-15,19H2,1H3,(H2,22,23,24)/t16-,17+,18-/m0/s1 

GtoPdb 

SPNS2 phosphorylated Fingolimod InChI=1S/C19H34NO5P/c1-2-3-4-5-6-7-8-17-9-11-18(12-10-17)13-14-19(20,15-21)16-25-26(22,23)24/h9-
12,21H,2-8,13-16,20H2,1H3,(H2,22,23,24) 

Bioparadigms 

SPNS2 Phosphorylated fingolimod (FTY720-P) InChI=1S/C19H34NO5P/c1-2-3-4-5-6-7-8-17-9-11-18(12-10-17)13-14-19(20,15-21)16-25-26(22,23)24/h9-
12,21H,2-8,13-16,20H2,1H3,(H2,22,23,24) 

GtoPdb 

SV2A selectracetam InChI=1S/C10H14F2N2O2/c1-2-7(10(13)16)14-5-6(3-8(11)12)4-9(14)15/h3,6-7H,2,4-
5H2,1H3,(H2,13,16)/t6-,7+/m1/s1 

Bioparadigms 

TMEM165 Ca2+ InChI=1S/Ca/q+2 GtoPdb 
TMEM165 H+ InChI=1S/p+1 GtoPdb 
TMEM165 protons InChI=1S/p+1 TCDB 
TUSC3 Cu2+ InChI=1S/Cu/q+2 GtoPdb 
TUSC3 Fe2+ InChI=1S/Fe/q+2 GtoPdb 
TUSC3 Mg2+ InChI=1S/Mg/q+2 GtoPdb 
TUSC3 Mn2+ InChI=1S/Mn/q+2 GtoPdb 
XPR1 Phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 Bioparadigms 
XPR1 PO43- InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 CeMM 
XPR1 Phosphate InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)/p-3 GtoPdb 
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