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Abstract

Optical levitation of nanoparticles in high vacuum systems enables the generation of

macroscopic quantum states at masses in the order of m = 108 amu and above. Pres-

sures below 10−10 mBar enable collision-free times in the order of milliseconds, thus

limiting environmental decoherence as a key constraint. Another important prerequis-

ite is the ability to control optical potentials at high speed and precision.

This thesis presents and quantifies a programmable control system for the light-field

protocol of such an experiment. Based on Sinara and ARTIQ (Advanced Real-Time

Infrastructure for Quantum physics), it enables the design of optical pulse sequences

with timing at nanosecond resolution, scalable to multiple separate modulators while

keeping high synchronicity among its outputs. After studying permissible deviations

of optimized parameters for an experimental implementation of the protocol, the per-

formance of the proposed system will be discussed with dedicated measurements.

Zusammenfassung

Optische Levitation von Nanoteilchen in Hochvakuum Systemen ermöglich die Erzeu-

gung makroskopischer Quantenzustäde für Massen im Bereich von 108 amu und mehr.

Drücke unter 10−10 mBar erlauben kollisionsfreie Zeiten von Millisekunden-Dauer, was

die durch die Umgebung verursachte Dekohärenz als eine wichtige Einschränkung sol-

cher Experimente verringert. Eine andere wichtige Voraussetzung ist die hochpräzise

und schnelle Kontrolle optischer Potentiale.

In dieser These wird ein programmierbares Kontrollsystem für das Lichtfeld-Protokoll

eines solchen Experiments präsentiert und quantifiziert. Aufbauend auf Sinara und

ARTIQ (Advanced Real-Time Infrastructure for Quantum physics - Moderne Echtzeit

Infrastruktur für Quantenphysik), ermöglicht das System das Design von Puls Se-
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quenzen mit einer Auflösung von Nanosekunden und ist hochsynchron erweiterbar auf

mehrere separate optische Modulatoren. Nachdem die erlaubten Abweichungen von

optimierten Zahlen für das experimentelle Protokoll ausgearbeitet wurden, wird die

Leistungsfähigkeit auf Basis der zugehörigen Messungen diskutiert.
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Introduction

The quest for an understanding of light dates back to the origin of science itself. Already

in ancient times, natural philosophers like Aristotle and Euclid reflected on different

theories of light. In the 18th century, Isaac Newton had a formative influence on the

corpuscular theory of light. Due to the authority of Newton’s name at the time and

the precise answers it provided, backed by his principles of mechanics, it was not until

a century later that an undulatory theory of light, mainly elaborated by Christiaan

Huygens and Augustin Fresnel, was taken into serious consideration [1].

Another century later in 1905, Einstein with his discovery of the photoelectric effect

postulated the existence of photons as quanta of light, starting the debate on a wave-

particle duality [2]. As an advance of Max Planck’s previous work on black-body

radiation [3], this marked the start of modern quantum physics. About two decades

later, Louis de Broglie picked up Einstein’s idea and generalized it to all moving mat-

ter, at the time mainly focused on electrons [4, 5]. In 1928, the first experimental

confirmations with Thomson’s thin metal diffraction experiment and the Davisson and

Germer experiment followed [6, 7]. Experiments on quantum effects of larger and larger

objects proceeded, from atoms [8, 9] to complex molecules [10, 11].

An increase in mass and size of the tested objects is of interest for testing the bounds

of the principles of quantum theory [12]. Levitated nanoparticles are considered a

suitable platform for controlling quantum states of macroscopic objects at masses of

m = 108 amu and above [14, 15, 16, 17]. Assets of optical levitation are the clean mode

structure, the excellent isolation from the environment, and the spatiotemporal control

of the mechanical system via the light field. This is the core of the project this thesis

is contributed to: It aims at the first control of the quantum state of a nanoparticle

with a non-linear potential in a well-timed protocol.
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This thesis presents and characterizes a programmable control system designed for a

protocol aiming to prepare a non-Gaussian quantum state via pulsed interaction with

cubic and unstable potentials [18]. With this system, we can perform arbitrary pulse

sequences at nanosecond timing resolution. It is scalable and modular and easily ad-

aptable beyond the presented application and to withstand complex challenges. The

underlying technology is ARTIQ (Advanced Real-Time Infrastructure for Quantum

physics), a Python based control system for quantum information experiments, ex-

ecuted on the Sinara hardware.

In the first chapter, we introduce a recently designed protocol for the optical prepara-

tion and detection of a non-Gaussian state of a nanoparticle with mass m ≥ 108 amu

[18].

The second chapter provides a short description of the envisioned complete experi-

mental implementation of the scheme and defines the relevant experimental parameters

along with acceptable deviations to determine the requirements on our control system.

The third chapter elaborates on the designed programmable control system for the re-

quired pulses and quantifies its performance by measurements in regards to the earlier

defined benchmarks. Based on our results, we conclude that the overall approach is

feasible and discuss the final steps to conclude the verification of the optical control

system.
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Chapter 1

Preparation of a Non-Gaussian

Quantum State

Given an optically levitated and ground-state cooled nanoparticle, can we create in-

terference fringes by letting it evolve in a non-linear potential? This question was

recently answered positively [18]. As we will see, it can be achieved with a fast and

precise control of optical potentials. This chapter explores the theory of the particle-

light interaction for a protocol creating a detectable fringe size. To give some context,

it starts with a short introduction to trapped nanoparticles as quantum harmonic os-

cillators and Gaussian quantum states.
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1.1 Initial Gaussian State Preparation

A dielectric nanoparticle trapped in an optical potential can in general be treated as a

harmonic oscillator experiencing a restoring force along its displacement axis for small

displacements from the trap center [25, 26, 34]:

F (x) = mω2
mx (1.1)

where m is the effective mass of the particle, ωm the mechanical frequency of the trap

(where ω2
m ∝ P , with P the optical power), and k = mω2

m the spring constant of the

system.

(a) (b)

Figure 1.1: 1D Quantum Harmonic Oscillator: a) A levitated nanoparticle can be
described as a harmonic oscillator experiencing a restoring force along a displacement
x with a spring constant k. b) When the particle motion is cooled towards low energy
states, it can be treated as a quantum harmonic oscillator. The first few orders of
solutions of the energy eigenstates ψn for the quantum harmonic oscillator as given in
Equation 1.4 for a particle in a potential V (x) with the corresponding energy levels are
shown.

If the particle’s motional energy is E ∼ ℏωm, it can be treated as a quantum harmonic

oscillator. In this case, the Hamiltonian of the system is given by:

Ĥ =
p̂2

2m
+

1

2
kx̂2 =

p̂2

2m
+

1

2
mω2

mx̂
2 (1.2)
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Here the first part describes the kinetic part and the second the potential energy and

x̂ and p̂ are the position and momentum operators [24]. Solving the time-independent

Schrödinger equation for this Hamiltonian for a wavefunction ψ(x) = ⟨x|ψ⟩:

Ĥ |ψ⟩ = E |ψ⟩ (1.3)

the solutions are the Hermite functions with the Hermite polynomials Hn(x):

ψn(x) =
1√
2nn!

(mωm

πℏ

)1/4

e−
mω2

m
2ℏ x2

Hn

(√
mωm

ℏ
x

)
(1.4)

with En = ℏωm(n + 1/2) being the corresponding energy levels and xzpf =
√

ℏ
2mωm

the zero-point fluctuations of the oscillator. This is illustrated in Figure 1.1. One

finds the ground-state wavefunction ψ0 to be a Gaussian. The experimental cooling

of a levitated nanoparticle to its ground-state, challenging high mass and thus a small

wavefunction, has recently been achieved in three different experiments [20, 22, 23].

1.2 Laser Pulses in the Protocol

Letting a Gaussian evolve in a non-linear potential can create interference fringes in the

particle wavefunction. We will show that with the necessary particle-light interactions

in the form of a protocol it is possible to create detectable fringes in the particle

wavefunction in position space. We divide the section into the necessary steps of

the protocol: It starts with investigating the mechanics of short pulses, including a

harmonic x2 potential and a short non-linear cubic x3 pulse for creating visible fringes

in momentum space. After that, the effect of a long pulse of an inverted harmonic −x2

potential for expanding the fringe spacing to a detectable size is explored.

Applying Short Laser Pulses to a Quantum Wavefunction

We start with presenting the mechanics of short laser pulses to introduce general pulse

properties utilized for the protocol. We consider a pulse ”short”, when the time evol-

ution in regards to the kinetic energy p2

2m
of the particle satisfies e−(i/ℏ)p2t/(2m) ≈ 1

and thus σ2
p/(2mℏ)t ≪ 1 with σp being the width in momentum space and t the

pulse duration. In other words, the state keeps its shape in position space during the
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short interaction. The kinetic part can then be neglected and the Hamiltonian can be

approximated as the optical potential [19]:

H ≈ V (x) (1.5)

Thus the time evolution of an initial wavefunction Ψ(x, 0) during such a short pulse

reads:

Ψ(x, t) ≈ e−
i
h
V (x)tΨ(x, 0) (1.6)

In order to see the time evolution in momentum space, a Fourier transform, denoted

as FT ( ), is done on the position space wavefunction. Using the convolution theorem

denoted by ∗, one finds:

Ψ(p, t) ≈ 1√
2πℏ

FT
(
e−

i
ℏV (x)t

)
∗ Ψ(p, 0) (1.7)

where the first part before ∗ is the momentum space propagator K(p, t).

For multiple potentials applied at the same time, the initial wavefunction is convoluted

with the corresponding additional propagators of each potential. Due to a convolution

being commutative and associative, this is equal to doing a sequence of pulses with

different potentials at different times. Thus also the order of the pulses doesn’t matter.

Short laser pulses are susceptible in regards to their form since e.g. the rising- and

falling edges can represent a relevant part of the pulse. For a time-dependent potential

V (x, t) the time evolution of the initial wavefunction becomes:

Ψ(x, t) = e−
i
ℏ
∫ t
0 dt′V (x,t′)Ψ(x, 0) (1.8)

As
∫ t

0
dt′V (x, t′) ∝

∫ t

0
dt′I(t′) is the pulse area with I(t) being the time-dependent

intensity of the pulse, it follows that the pulse shape doesn’t matter, but only the pulse

area.

Short Cubic Pulse

The fringes in the particle wavefunction are created by a short non-linear cubic pulse.

Considering a non-linear cubic potential V3(x) = u3x
3, the momentum space propag-
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ator results in:

K3 =
1√
2πℏ

FT
(
e−

i
ℏu3x3t

)
=

1

p0(t)
Airy

[
p

p0(t)

]
(1.9)

with p0(t) = 3
√

3ℏ2u3t and Airy[ ] being the Airy function.

(a) Airy(p) (b) |Airy(p)|2

Figure 1.2: Shape of the Airy Funtion: The momentum space propagator for a
short cubic pulse features an Airy function. In order to see the fringes of the Airy
function in the momentum space wavefunction after convolution with the propagator,
the initial momentum space uncertainty must satisfy σp ≪ ∆p(t).

To calculate the momentum-space wavefunction after a cubic pulse, the propagator

has to be convoluted with the wavefunction before the pulse as in Equation 1.7. Since

the first two zeros of the Airy[p] function are p1 ≈ −2.33 and p2 ≈ −4.08, the fringe

spacing is:

∆p(t) ≈ 1.75p0(t) ∝ (Φ)1/3 (1.10)

where Φ =
∫ t

0
I(t)dt is the pulse area. This does not depend on the particle wavefunc-

tion but on the properties of the pulse. In the case of σp ≫ ∆p(t), where the momentum

space uncertainty of the initial wavefunction is much larger than the achieved fringe

spacing, the fringes would get washed out. Thus it is necessary for a visible fringe

spacing to prepare the initial state such that σp ≪ ∆p(t).

Short Quadratic Pulse

To satisfy σp ≪ ∆p(t), the wavefunction has to be prepared correspondingly. After

the ground-state preparation, a free evolution of duration tf with V (x) = 0 is done

to increase the position uncertainty linearly in time while keeping the momentum

7



uncertainty constant at pzpf =
√

ℏmω0

2
, where ω0 is the initial trapping and cooling

frequency. This allows an increase of the initially small wavepacket size in position

space. If now a quadratic pulse in the form of V (x) = ±u2x2 with the propagator:

K2,±(p, t) =
1√
2πℏ

FT
(
e∓

i
ℏu2x2t

)
=

1√
4πℏtu2

e
± ip2

4ℏtu2 (1.11)

is applied to the wavefunction after the free evolution, we obtain for u2 = mω2
2/2 the

following condition:

σ2
p(t)

p2zp
=

(
1 + ∓2ω2

2tf t+ t2fω
4
2t

2
f +

ω2
2

ω2
0

ω2
2t

)
(1.12)

This shows that an inverted potential leads to an increase of σp independent of t, while

a short harmonic x2 pulse on the other hand results in a momentum space squeezing

for short t. For minimal width at tmin, the momentum space wavefunction can be

compressed down to the Heisenberg limit:

σx(tf ) · σp(tmin) = xzpfpzpf (1.13)

with σ2
x(tf ) = x2zpf (1 + ω2

0t
2
f ). Thus by choosing an appropriate tf , it is possible to

create a momentum space uncertainty satisfying σp ≪ ∆p(t). Since the order of the

pulses doesn’t matter, the harmonic and the cubic pulse can be done simultaneously.

Long Inverted Quadratic Pulse

The fringes in momentum space are mapped into position space in the far-field using

another free evolution of duration tm. This implies a linear increase in the spatial

size of the fringes due to the expansion of the wavepacket. To further enlarge the

fringes to a detectable size, a longer inverted harmonic −x2 pulse proves useful: The

position space propagator for an inverted harmonic oscillator at frequency ω4 assuming

ω4t4 ≫ 1 reads:

K(x, x′, t) ∝ e
i

4x2
zpf

(ω4)
(x2+x′2−4xx′e−ω4t4 )

(1.14)
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Compensating the x′2 term with an earlier short x2 pulse, this turns into a exponentially

rescaled Fourier transform. The resulting wavefunction becomes:

Ψ(x, t4) = e
ix2

4x2
zpf

(ω4)

∫
dx′Ψ0(x

′)e
− i

x2
zpf

(ω4)
xx′e−ω4t4

(1.15)

Thus, with the long −x2 pulse, the spatial features are exponentially magnified with

eω4t4 , dependent on the choice of intensity and duration of the pulse.

1.3 Implementation of the Pulses

The experimental realization of the previously mentioned potential landscapes (quad-

ratic, inverted, and cubic) is implemented by a trapping scheme for nanoparticles based

on a standing wave, whose phase can be changed in time. Here we discuss the cor-

responding implementation. Then we will show a working protocol implementing the

pulses.

1.3.1 Standing Wave Potential

In general, the potential energy V (x) of a particle with dipole moment p = αE(x) in an

electromagnetic field E(x) with x being the axial position around an arbitrary center

x0 can be described as [28]:

V (x) = −p · E(x) = −α
2
E(x)2 (1.16)

where α = α′ + iα′′ is the polarizability of the particle. For a standing wave with

E(x) = E0cos(kx) at wavelength λ with wavenumber k = 2π/λ and a mechanical

trapping frequency [34]:

ωm =

(
6k2I0
ρc

Re
ϵ− 1

ϵ+ 2

) 1
2

(1.17)

where I0 is the intensity of the laser beam, ρ is the mass density of the particle with

mass m, c is the speed of light and ϵ is the electric permittivity, it is possible to express

the standing wave potential as:

V (x) = −mω
2
m

2k2
cos2(kx) = −mω

2
m

2k2

∑
n

un(x0)(x− x0)
n (1.18)

9



Figure 1.3: Potential Landscapes: They are obtained by evaluating Equation 1.19
for a) at the anti-node kx0 = 0, b) between the node and anti-node at kx0 = 0.05π,
and c) the node at kx0 = π/2 as in [18]. The evaluation is done for the parameters
described in Section 2.2.1 and thus ω0 = 2π · 100 kHz, ω2 = 2π · 2.8 kHz, ω3 = 2π · 2.7
kHz, ω4 = 2π · 10 kHz, λ = 1550 nm, and m = 7.7 · 108 amu.

The right part of the equation is an expansion around some point x0 with un(x) =

(1/n!)(d/dx)ncos2(kx)|x→x0. Since for a particle with a wavefunction Ψ(x) of width σx

the contribution of order n to the total potential energy ⟨Ψ|V (x) |Ψ⟩ is proportional

to (σx/λ)n and usually σx ≪ λ, it is assumed that all orders above n = 3 are strongly

suppressed. Furthermore a configuration is implemented where the linear term is can-

celed by an appropriate electric field. Thus only terms proportional to x2 and x3 are

considered. This leads to the following potential:

V (x) ≈ v2x
2 + v3x

3 (1.19)

where vn = −mω2
m

2k2
un(x0).

For trapping and cooling, the particle is positioned at the anti-node kx0 = 0. As we

will in Section 2.1, we will however not use a standing wave trap for the preparation

of the ground-state. To create the potential landscape for the long inverted pulse, the

particle has to be positioned at a node kx0 = π/2. For the nonlinear pulse, however, the

10



particle has to be positioned in between a node and an anti-node, leaning towards the

anti-node to ensure a positive sign for the x2 term. The resulting potential landscapes

and the required phase shift for the pulses are illustrated in Figure 1.3.

1.3.2 Full Protocol

A protocol for detectable interference fringes consists of applying the sequence of pulses

described in the previous sections:

1. Start with a ground state cooled particle (Gaussian wavepacket)

2. Free evolution with duration tf

3. Short nonlinear pulse with t3, ω2,3 and kx0 = 0.05π

4. Free evolution with duration tm

5. Exponential inflation with t4 and ω4 and kx0 = π/2

The full protocol is shown in Figure 1.4.

In order to illustrate these steps and find the final probability distribution, one can do

a full calculation starting from a ground-state cooled particle wavefunction:

Ψ(x, 0) = e−x2/4 (1.20)

where x is written in terms of xzpf (ω0) with ω0 being the initial trapping and cooling

frequency. All normalization constants and any consideration of decoherence effects

are left out for clarity.

1. Free Evolution with Duration tf

Starting with the first free expansion using the corresponding propagator ei(x−x′)2/(4tfω0)

the initial wavefunction becomes:

Ψ(x, tf ) = e−bx2+ibfx
2

(1.21)

with b = 1/(4σ2
x), bf = (tfω0)/(4σ

2
x) and σx = 1 + ω2

0t
2
f .
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ω

t
Trapping/Cooling

1. Free
Evolution

2. Free
Evolution

Nonlinearity

Exponential
Inflation

Next Run

Detection

ω0

ω2,3

ω4

tf tm

t3

t4

tcool

Figure 1.4: Light Field Protocol: Each repetition of the protocol begins with the
initial ground-state cooling of the particle, at a frequency ω0 for a duration tcool. After
the 1. free evolution with a duration tf , the short nonlinear pulse follows with a
frequency ω2,3 for a time t3. After another free evolution with duration tm, the longer
inverted pulse with a frequency ω4 and duration t4 follows. Right after the inverted
pulse, the position of the particle is detected and the particle immediately cooled again
to prepare for the next protocol run.

2. Short Nonlinearity with t3 and ω2, ω3

After the first free expansion, the short nonlinear pulse is applied. Propagating the

wavefunction of Equation 1.21 with eiax
3−(i/4)(ω2

2/ω0)t3 leads to:

Ψ(x, t3) = eiax
3−bx2+ibix

2

(1.22)

where

a =
1

6
kxzpf (ω0)

(
ω2
3

ω0

)
t3 and bi =

tfω0

4σ2
x

− ω2
2t3

4ω0

(1.23)

For simplicity and experimental purposes, the separate frequencies ω2, ω3 of this pulse

will later be expressed as a combined ω2,3, following from Equation 1.19.
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3. and 4. Free Evolution with tm and Exponential Inflation with t4 and ω4

Using the propagator of a free expansion and the propagator of the long inverted pulse

from Equation 1.14 leads to:

Ψ(x, t4) =

∫
dx1dx2Ψ(x1, t3)e

i
(x2−x1)

2

4tmω0 e
i
4

ω4
ω0

(x2+x2
2−4xx2e−ω4t4 )

(1.24)

For an appropriate choice of the protocol parameters, one can express the final wave-

function in the simple form:

Ψ(x, t4) ∝ e
− x2

4σx(t4)
2 ∗ Airy

( x

∆x

)
(1.25)

with

∆x =
3
√

3a

(
ω0

ω4

+ tmω0

)
eω4t4 (1.26)

Here, ∆x is proportional to the fringe distance.

The position probability distribution at the end of the protocol then reads:

P (x) ∝
[
e
− x2

4σx(t4)
2 ∗ Airy

( x

∆x

)]2
(1.27)

Now that the fundamentals of the pulse interactions and the sequence of the protocol

are explained, we will work towards experimental benchmarks for the required modu-

lation of the light field.
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Chapter 2

Light Field Protocol and

Requirements

In the first chapter, we introduced the theory of a light field protocol that creates

interference fringes in a ground-state cooled levitated nanoparticle. But what are

parameters that produce a detectable fringe pattern and how can these parameters

deviate without washing it out? Also, why do these deviations occur?

In this chapter, we provide an overview of the currently planned setup for an experi-

mental implementation in regard to the light field. We will introduce concrete numbers

and conditions for the protocol to work. We will explain possible experimental obstacles

that introduce instability in the parameters of the protocol and thus lead to a change

in the final probability distribution. From there we define the benchmarks necessary

for the proposed control system to keep the non-Gaussian fringe pattern intact.
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2.1 Experimental Implementation

This Section aims to provide an overview of the planned experimental implementation

(Figure 2.1). The light field protocol itself has already been illustrated earlier and can

be seen in Figure 1.4.

Phase
Shifter

UHV Chamber

Optical
Trap

Dichroic Mirror

Trapping
Beam

50:50
BS

Dark-PortBright-Port

Ring-
Electrodes

EO
M

Figure 2.1: Optical Setup for an Experimental Implementation: The state
preparation and trapping of the particle are done with a separate tweezer setup as
in [21] (blue beam) that is integrated via dichroic mirrors. The non-linearity and
the exponential inflation are implemented as pulses created by EOMs via a standing
wave in a Sagnac interferometer (green and orange beam), where a birefringent crystal
introduces a phase shift. The beam preparation is further explained in Figure 2.2 and
Section 3.1. The light that is back-scattered from the particle into the interferometer
mode will leave at the dark port, while the light transmitted light leaves at the bright
port [29]. The optical trap is situated within a UHV chamber. Ring-electrodes control
the electric field along the beam direction.

For the trapping and cooling of the particle, a single-sided tweezer configuration is

introduced (blue beam) at a wavelength of λ = 1064 nm. Although this implies a

single-beam gradient force trap instead of a standing wave trap, nothing changes in

regards to the necessary light field modulation. We use the back-scattered light from

the particle for position read-out. A complete description of the intended scheme can

be found in [21, 31]. The optical trap is placed inside a UHV chamber with an expected

vacuum of 10−10 mbar. A loading scheme using hollow-core photonic-crystal fibers is
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currently under development [29, 30, 27].

The standing wave optical trap for the nonlinearity and the exponential inflation is cre-

ated by two counterpropagating beams (green and orange) at a wavelength of λ = 1550

nm inside a Sagnac interferometer, integrated via dichroic mirrors, and focused in the

same tweezer as used for trapping and cooling. In such an interferometer, the incoming

light beam is split by a 50:50 beamsplitter into two separate arms. Two mirrors then

overlap the beams at the initial beamsplitter. If well aligned, this leads to constructive

interference towards the input mode of the interferometer, referred to as the bright

port. If some object able to back-reflect light into the interferometer modes is situated

within the Sagnac interferometer, it essentially becomes a Michelson interferometer

and the back-reflected light will interfere towards the dark port. The architecture of

the Sagnac inherently features high phase stability in its center position [29, 32, 33].

We use orthogonal polarizations H and V for the pulses of the nonlinearity and the

exponential inflation. The required phase shift for the potential landscapes is intro-

duced by adding a birefringent crystal, i.e. Ytterbium Vanadate, on one side of the

interferometer. Such a birefringent material has different refractive indices for different

transmitted polarizations, thus causing a phase difference dependent on its thickness.

Together with the inherent phase stability of the Sagnac interferometer, this has the

advantage of avoiding active phase shifting. We use ring-electrodes attached to the

lenses to cancel the linear term of the standing wave potential (see Section 1.3.1) and

for feedback cooling [29].

Initially, two separate light beams are prepared in arbitrary linear polarizations and

modulated with EOMs in the form of square pulses. After leaving the optical modu-

lators the beams are recombined at a PBS (Figure 2.2). While the vertically polarized

light will be reflected, the horizontally polarized light will transmit. To ensure max-

imum overlap of the two beams towards the bright-port of the Sagnac interferometer,

a mode-matching fiber configuration is placed at the second output mode of the PBS.

By rotating the polarization in front of the PBS, the light can be adjusted for going

towards either output mode. Maximizing the coupling of both beams into the mode-

matching fiber results in a maximum overlap of the beams also towards the Sagnac

bright-port. As follows, the initial polarization of the pulses doesn’t matter for pulse

modulation.
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Mode Matching
FiberαH + βV

H/V

PBS

λ/2
λ/4

αH + βV

Figure 2.2: Beam Overlap with a Mode Matching Fiber: Both beams are sep-
arately prepared in an arbitrary polarization and modulated as required. On a PBS
where H-polarized light is transmitted and V-polarized light is reflected, the beams
overlap. To ensure a maximum overlap, the light is coupled into a mode-matching
fiber at the opposite output mode of the PBS. The desired output mode can be adjus-
ted by rotating λ/2 and λ/4 waveplates.

2.2 Protocol Requirements

2.2.1 Concrete Example

The parameters of the protocol have been optimized for a silica nano-sphere of r = 50

nm and a mass density ρ = 2450 kg/m3 [18] (Table 2.1).

ω0 tf ω2,3 t3 ω4 t4 tm
2π · 100 kHz 1.34 ms 2π · 2.5 kHz 10 µs 2π · 10 kHz 90 µs 0.66 ms

Table 2.1: Parameters for the Pulse Sequence: ω0 is the initial trapping and
cooling frequency, tf is the duration of the first free expansion, ω2,3 and t3 the frequency
and duration of the short nonlinear pulse, ω4 and t4 the frequency and duration of the
long inverted quadratic pulse and tm the duration of the second free expansion.

We assume an initial phonon occupation of n̄x ≈ 0.5 at ω0 = 2π · 100 kHz as achieved

with the intended cooling setup [21]. We choose a feasible pressure of 10−10 mbar to

ensure 90 % of experimental runs to be free of gas-particle collisions which would de-

cohere the quantum state. Further sources of decoherence are noted in the simulation:

While during the light pulses recoil scattering from the laser beam is predominant,

localization from black-body radiation is relevant during the free expansions.

The predicted position distribution of the wavefunction at the end of the protocol is

shown in Figure 2.3. There we identify the interference visibility as v = (h2−m1)/(h2+
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m1) = 0.23, where h2 and m1 are the height of the second maxima and the first minima

of the fringe pattern respectively, and a fringe spacing, defined as the distance between

the first two peaks, of ∆x ≈ 2.9 nm.

∆x

Figure 2.3: Probability Distribution: This plot shows the probability distribution
for the parameters in Table 2.1 in terms of x/∆x, exhibiting a visibility of v = 0.23
and a fringe spacing of ∆x = 2.9 nm.

2.2.2 Precision Requirements on the Experimental Paramet-

ers

The EOMs creating the optical pulses, in our case square pulses, are controlled by an

electronic drive signal. The targeted pulses are, however, imperfect. Figure 2.4 shows a

comparison of an ideal square pulse with a realistic pulse in terms of optical power over

time. While the ideal pulse represents an ideal square instantly going from absolute

zero power to the desired maximum power and back, the real pulse shows deviations.

We see, that the minimum power is not zero, but a finite value Plow. By comparing

this to the maximum power Phigh, we specify the extinction ratio of the signal Rext =

Plow/Phigh. The maximum power is also noisy. This can be caused by the background

noise of the electronic drive, e.g. Johnson-Nyquist noise from the circuit or ground

noise, and intensity noise of the laser source and leads to an uncertainty of the power
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Figure 2.4: Pulse Properties: Comparing a realistic optical pulse (orange) to an ideal
pulse (green) shows several deviations. The realistic optical pulse does not reach the
zero power level, but some light Plow remains. Comparing this to the high power level
Phigh yields the extinction ratio of the signal. Furthermore, it shows a constant jitter
in its intensity, causing a certain width in power ∆Pn. Slower fluctuations in power
also lead to a change in the mean peak level of the pulse ∆P over many repetitions.
The edges of the pulse have a limited rise and fall time between the 10 % and 90 %
power level denoted by trise and tfall. The width of the pulse twidth, defined as the time
from 50 % to 50 % of the peak level, can also deviate in time with ∆twidth. The same
is true for a space between pulses tspace.

maximum ∆Pn, where n denotes a single pulse. Furthermore, if the electronic drive, as

well as the laser source, also have power fluctuations at lower frequencies compared to

the pulse frequency, the mean of the maximum power level of a sequence of pulses will

also fluctuate over time with ∆P . An overshoot in the rise or an undershoot in the fall,

caused by an impedance mismatch, followed by ringing until a constant power level

settles, is also typical for electronic pulse signals. Often this is designed on purpose to

achieve a faster rise- and fall time.

Regarding the time scale, the realistic pulse shows finite rise and fall times trise and

tfall, characterized as the required time to rise or fall between 10 % and 90% of the

pulse peak level. This is limited by the response time of the optical modulator due to

its capacitance and by the circuit of the driving signal due to stray capacitance and

inductance [39]. The width of the pulse twidth, measured as the duration from 50 % to

50 % of the peak level, can also vary in time as ∆twidth. This is caused by phase noise
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and jitter of the clock of the electronic circuit and is likewise true for the deviation of

the space between two pulses ∆tspace.

t

tf ± ∆tf tm ± ∆tm

A3 ± ∆A3

ω4t4 ± ∆(ω4t4)

Rext

ω

ω0±∆ω0

Figure 2.5: Light Field Benchmarks: The fluctuations of the pulse power contribute
to errors ω0 ± ∆ω0 and ω4t4 ± ∆(ω4t4). ∆twidth also contributes to ∆(ω4t4). The
fluctuations in ∆tspace lead to errors on tf±∆tf and tm±∆tm. Regarding the nonlinear
pulse, only the pulse area matters with A3 ± ∆A3. The minimum achievable power
Plow and the maximum power Phigh yield the extinction ratio Rext.

These imperfections have consequences for the desired protocol. The fluctuations in

power ∆P and ∆Pn lead to a deviation of ω0, ω2,3, and ω4. For the trapping we thus

have an uncertainty ω0 ± ∆ω0. Similarly, the ∆twidth and ∆tspace of the pulses lead to

deviations of the time durations in the protocol tf , tm, t3, and t4. The additional jitter

and noise as well as possible over- and undershoots or ringing further contribute to

deviations in the energy of the pulse, given by the integrated power and thus the area

of the pulse. This is relevant for the short nonlinearity with A3 ± ∆A3. As the final

probability distribution in Equation 1.27 shows, the effect of the exponential inflation

is dependent on the product of ω4t4 and thus we find ω4t4 ± ∆(ω4t4) to be relevant.

All affected parameters are illustrated in Figure 2.5.

The protocol has to be repeated many times to acquire statistics to reconstruct the

probability distribution. As a change in the parameters of the protocol leads to a

change in the probability distribution, it needs to be ensured that a certain precision is

kept along a sufficient number of repetitions to guarantee an overlap of the fringes. If
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the pattern is varying too much, the fringes would become indistinct and the visibility

drops. We will now investigate the necessary benchmarks for successful detection.

Extinction Ratio

While in theory, a free expansion assumes no interaction of the particle with any light

leading to a free evolution of the wavepacket, this is not necessarily the case in an

experimental environment. Usually, optical modulators have some leftover light in

their minimum possible throughput. This can e.g. be caused by stray light from

scattering effects.

Assuming that there is still some light in the standing wave during a free expansion for

an initial frequency ωi, it is possible to investigate whether this has a notable effect.

The remaining light represents a weak oscillator with some frequency ωff = ωi

√
Rext

that acts for the time of the free expansion. If during this time ωff tf,m ≪ 1, the effect

is negligible as the propagator for the harmonic oscillator can then be approximated

with the free particle propagator. We choose ωff tf,m < 0.05 taking into account an

approximation error of 5 %. This fulfilled for ω0 = 2π · 100 kHz at an extinction ratio

of Rext ≤ 3 · 10−9.

Pulse Area of the Short Pulse

The short nonlinearity is the most sensitive part of the protocol. This is because a

change in the momentum kick p0 of the pulse will result in a change in the fringe

spacing. As a measure of the energy of the pulse, only the pulse area A3 matters. The

pulse area is not only influenced by ∆P and ∆twidth, but all possible noise effects as

shown in Figure 2.4. To ensure that the fringes don’t get washed out, the standard

deviation of the momentum kick σp0 , which is proportional to the pulse area, should

be at least 5 times smaller than the fringe spacing:

p =
σp0
p0

<
(3a)1/3

5p0
≈ 0.7 · 10−5 (2.1)

where

p0 =
1

k2xzp(ω0)

ω2
mt3
ω0

u1(x0) (2.2)
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Thus we set our benchmark for the relative uncertainty on the area at ∆A3/A3 ≤ 0.7 ·

10−5. Assuming the above precondition together with a negligible Rext fulfilled and thus

the initial fringe spacing deviating by less than 20 %, we choose the allowed deviations

for the remaining parameters ∆ω0, ∆tf , ∆tm, and ∆(ω4t4) such that it doesn’t cause a

further significant impact on the final probability distribution. For finding the required

precisions, we present a simulation provided by Lukas Neumeier that allows us to plot

and characterize the overlap of a deviated with the initial probability distribution

by calculating the fidelity. The simulation assumes absolute zero power during free

expansions as well as a constant ∆A3 = 0. It includes all considerations in [18].

The overlap of two quantum states can be quantified using the fidelity F , where in

general for F = 1 the states are identical, and for F = 0 the states are certainly

distinct. For two states ρ and σ the fidelity reads [43]:

F (ρ, σ) =

(
tr
√√

ρσ
√
ρ

)2

(2.3)

If we now compare two normalized probability distributions P1(x) and P2(x), where

one has a deviated parameter set in regards of ∆ω0, ∆tf , ∆tm, and ∆(ω4t4), we can

calculate the fidelity of the two in some finite region x1 → x2 as:

F (P1, P2) =

(∫ x2

x1

√
P1(x)P2(x)

)2

(2.4)

We limit the region to ±15 in units of x/∆x, since this contains the main visible

features.

Initial Trapping and Cooling

A change in ω0 mainly affects the amplitude of the fringe maxima. While an increase in

ω0 shifts the amplitude distribution towards the left and thus in general lowers the first

two peaks, a decrease in ω0 shifts the amplitude towards the first peaks at the right

but at the same time lowers the visibility of the fringes. This is because for low ω0 the

momentum space squeezing is reduced. Choosing a relative error of ∆ω0/ω0 ≤ 5 · 10−2

leads to only a barely visible change in the distribution by slightly shifting the first

peak up or down and keeps a fidelity of F = 0.99998, both for an increase or decrease

of ω0.
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Timing Precision on tf and tm

A shift in time duration ∆tf of the first free expansion has a similar effect on the

final density function as a change of ω0 as can be reasoned by Equation 1.21. While

an increase of tf lowers the first peaks, a decrease leads to higher peaks but lowers

the visibility. A change in the duration of the second free expansion shows slightly

different behavior. A change of tm shows similarities to a change in tf , but additionally,

an increase of tm shifts the fringes away from the first maximum while a decrease

of tm compresses them towards the first maxima. In comparison to the first free

expansion, the second free expansion already acts on the fringe pattern resulting from

the non-linear interaction. A change in duration changes the expansion of the features.

Choosing a ∆tm = ∆tf = 1 ns keeps the fidelity above F = 0.99999, both for an

increase or decrease of tf and tm.

The timing precision only matters during a single protocol run. This means that only

the timing of events related to the start of one protocol, at the moment the cooling

is turned off and the first free expansion starts, is investigated. Whether the total

duration of thousands of repetitions is repeatable doesn’t change the measurement

outcome. At the end of every single run, the position of the particle is measured and

the information stored. After that, the protocol starts again once the cooling is turned

off.

Precision on the Exponential Inflation

Equations 1.15 and 1.26 show that the exponential inflation of the long inverted −x2

pulse is scaling with ω4t4. An increase or decrease of this product generally leads to a

weaker or stronger exponential magnification of the fringe pattern. Choosing a relative

error ∆(ω4t4)/(ω4t4) ≤ 3 · 10−3 keeps the fidelity above F = 0.9995. This implies both

a possible increase or decrease of ω4t4.

Interplay of ∆ω0, ∆tf , ∆tm and ∆(ω4t4)

What happens now if ∆ω0, ∆tf , ∆tm, and ∆(ω4t4) are deviating simultaneously?

Staying within the previously set benchmarks, the fidelity stays above F = 0.9995 for

an increase or decrease of the parameters respectively. A plot of a simulation comparing

corresponding deviated probability distributions with the initial one is shown in Figure
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2.6. We find the fringe spacing to deviate with ±0.08 nm.

Figure 2.6: Simulated Deviated Probability Distributions: The two blue lines
show the deviated probability distributions in regards of the defined benchmarks, both
for an increase and decrease of the parameters. This represents both extreme cases of
drifts of the fringes within: A relative error ∆ω0/ω0 ≤ 1·10−2, ∆tf = ±1 ns, ∆tm = ±1
ns, and a relative error ∆(ω4t4)/(ω4t4) ≤ 1 ·10−3, while Rext is neglected and ∆A3 = 0.
The red line shows the initial distribution as in Figure 2.3. This leads to a deviation
of ≈ ±0.08 nm for the fringe spacing.

Summary of the Chapter

In conclusion, we presented an overview of the experimental implementation of the pro-

tocol. The control of the light field is a core element of the scheme. It can be analyzed

independently. We introduced concrete parameters for the light control and investig-

ated possible experimental deviations and fluctuations caused by the pulse modulation

with an EOM and the required electronic drive. By studying the effects of these de-

viations, we defined benchmarks for the deviations of the parameters that ensure the

detection of interference. We find that the necessary precision on the experimental

parameters are: Rext = 3 · 10−9, ∆A3/A3 ≤ 0.7 · 10−5, ∆ω0/ω0 ≤ 1 · 10−2, ∆t = 1 ns,

and ∆(ω4t4)/(ω4t4) ≤ 1 · 10−3.

In the next chapter, we will present and characterize a control system and test the

performance against these benchmarks.
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Chapter 3

Programmable High-Precision

Control of the Light Field

In the previous chapter, a brief overview of our planned experiment on nonlinear

quantum dynamics was given. From this, we identified a set of parameters specifically

concerning the control of the light fields that are crucial to the successful implement-

ation. We discussed benchmarks for allowed deviations from these parameters that

will leave the final signature of a successful experiment, i.e. the interference fringes,

intact. In this chapter, we show that a configuration of an AOM, EOM, and a state-

of-the-art electronic control board (Sinara) allows for reaching most of the necessary

specifications. We will present measurements testing the relevant parameters discussed

in section 2.2.2: Rext, ∆ω0/ω0, ∆tf,m, ∆A3/A3, and ∆(ω4t4)/(ω4t4). We will conclude

by discussing strategies to improve on these results to meet our benchmarks.
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3.1 Electro-Optic Implementation: Test Setup

Electro-Optic Modulators

The working principle of electro-optic modulators, in our case Mach-Zehnder type

intensity modulators, is based on the electro-optic effect. By applying a voltage or

voltage modulation to a port of the EOM, the refractive index of the internal LiNbO3-

crystal is changed, and thus the speed of light traveling through it. This leads to

a difference in phase in the internal interferometer paths which in turn changes the

output intensity. This can be described mathematically as [35]:

Iout(t) = Tmod
Iin
2

[
1 + cos

(
π

Vπ
V (t) − Φ

)]
(3.1)

where Iin, Iout is the in-/output intensity, Tmod is the optical transmission of the device,

Vπ is the half-wave π-voltage and Φ a phase term.

EOMs usually feature two different ports. One is a coaxial RF-port that is used for

applying the desired modulation signal. The second is a bias port that is used for com-

pensating possible drifts of the EOM due to environmental changes, e.g. temperature

or humidity. This can be accomplished by manually adjusting the applied voltage such

that the optical output power is locked to a chosen setpoint or by implementing an

automatic feedback system. The setpoint can for example be minimum or maximum

output power as the reference from which the signal is modulated at the RF-port.

Two different EOMs are used for later measurements. EOM 1 is an iXblue MXAN-

LN-20-00-P-P-FA-FA-HOP, a custom production 1550 nm 20 GHz intensity modulator

that allows high optical input powers up to 500 mW. Since it has an insertion loss of

about 3.5 dB according to its datasheet, the maximum guaranteed output is reduced to

220 mW. The second EOM is a standard iXblue 1550 nm 10 GHz MX-LN-10, limited

to a guaranteed output of 45 mW. EOM 2 will only be used to measure the timing

precision of two separate EOMs.

Optical Setup

For measuring the required parameters, an optical setup with light modulators is used.

The basic configuration is displayed in Figure 3.1.
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Figure 3.1: Optical Setup for Characterizing the Light Field Control: The
setup uses a 1550 nm laser as a source that is power-monitored using a 50:50 BS. The
signal path first passes a free-space AOM before it is coupled into the optical fiber of
an EOM. The signal of both detectors is recorded with an oscilloscope.

The laser source of the setup is a 1550 nm ”Koheras Adjustik E15” seeder by NKT

photonics, amplified by a ”Koheras Boostik HPA” fiber amplifier of the same manu-

facturer. This is the same laser planned to be used for the full experiment. The waist

at the laser’s output is 2 mm. We build a 4:1 telescope to decrease it to 0.5 mm, the

recommended diameter for the AOM. Right after the telescope, a 50:50 beamsplitter

splits the light into two different arms. The reflected arm will be used for monitor-

ing the optical input power. A mirror and a fixed-focus collimation package couple

the light into a single-mode fiber going to a photodetector (Thorlabs DET08CFC/M).

The output of the detector is linked to a Picoscope 5444D serving as the oscilloscope

for read-out. For some measurements, a faster Teledyne LeCroy Wavepro 760-ZI is

used instead where mentioned explicitly. An appropriate 50 Ohm BNC feedthrough

terminator (Thorlabs T4119) ensures the maximum signal bandwidth of 5 GHz of the

detector.

The signal arm is transmitted at the beamsplitter and passes through an AOM which

is one type of optical modulators that will be used. The power in the first-order mode
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is proportional to the RF driving power but will saturate towards its maximum of 36

dBm. Note that at no applied drive, the signal does not vanish due to scattering. The

AOM in the setup is a custom 1550 nm Gooch & Housego AOM (3080-197) with a

center frequency of 80 MHz.

After the AOM, the beam is coupled into a fiber-based EOM. Since it has PM fibers,

waveplates are used to adjust the polarization. The output fiber of the EOM is con-

nected to a second Thorlabs DET08CFC/M detector that goes to the oscilloscope.

3.2 Electronic Circuit

The optical modulators in the setup are controlled by electronic signals. The signal

chain from the source to the devices follows three main steps. The main source and

control basis is the Sinara/ARTIQ ecosystem, claiming nanosecond timing resolution

and high synchronicity among its outputs. ARTIQ is the software environment where

the desired signals and their logic are programmed and Sinara is the hardware output-

ting them. After the Sinara, the created signals follow an electronic circuit necessary

to appropriately drive the modulators.

3.2.1 Signal Processing in Sinara

Sinara is an open modular hardware project integrated into the ARTIQ ecosystem

(see Section 3.2.3). All related information including schematics and detailed technical

specifications can be found in detail on the Sinara Github page [36]. The Sinara used

for the measurements in this thesis consists of several different modules. A photo of

the front panel of the device is shown in Figure 3.2.

The base module acting as the ARTIQ master is called Kasli. Kasli is an FPGA

carrier capable of controlling up to 12 different Eurocard-extension-modules (EEM). It

is connected to a computer via a Netgear GS110TUP gigabit ethernet switch using the

SPF-0 port on the front panel. The remaining SPF ports can be used for connections

in a master/slave configuration, allowing the system to be expanded above the limits

of one Kasli.

For coordination of actions in the device, the Clocker module distributes a low jitter

clock signal up to 1 GHz among the cards. It features an input for using an external
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Figure 3.2: Frontpanel of the Sinara and its Modules: From left to right: Kasli
FPGA-carrier, 3x DIO-SMA, Clocker, 2x Urukul, Sampler ADC, Fastino DAC, and its
corresponding IDC-SMA and IDC-BNC adapter.

reference clock and 10 outputs including 4 externally accessible SMA outputs that can

be used for synchronizing additional external devices to the Sinara.

Urukul is a 4-channel 1 GS/s DDS-based frequency synthesizer in the EEM form factor.

Our version is based on the AD9912, featuring a 47-bit down to 8µHz frequency and

14-bit phase-offset resolution at an output of 1-400 Mhz. A digital step-attenuator

with a range of 0 to -31.5 dB and 0.5 dB steps can be used for adjusting the output

amplitude. In our case, the Urukul is used for driving and controlling the AOMs.

The digital input-output DIO-SMA cards with selectable direction and termination

can supply valid TTL levels into 50 Ohm with a minimum pulse width of 5 ns. Thus it

can be used with any TTL- or CMOS-logic compatible devices. Each card has overall

2 banks with 4 channels each. In our case, it is used for the control of all devices

compatible with TTL logic. The DIO-SMA will control the logic of the EOM pulses.

Moreover, the Fastino is a fast 32-channel, 3 MS/s per channel, 16-bit DAC EEM card

with a ±10 V output range. By using additional IDC-SMA and IDC-BNC adapter

cards, the outputs can be accessed via SMA and BNC ports. Due to its quick update

rate of 1 µs, it can for example be used in servo applications in combination with an

ADC such as the Sampler.
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The Sampler module is an 8-channel 16-bit ADC EEM with an update rate of up to

1.5 MS/s.

3.2.2 Signal Chain

Driving our AOM requires up to 36 dBm power while the Urukul only provides a

maximum of 10 dBm. We thus amplify the Urukul signal for AOM driving by an

additional Mini-Circuits ZHL-2W-1+ amplifier. The modulation of the AOM output

in the first-order diffraction is accomplished by modulating the amplitude of the driving

signal. This can be done either by changing the output attenuation of the Urukul or

by just simply turning the output on and off for modulating down to the minimum.

Both are limited to a glitch time of 100 ns by internal components of Urukul such as

the RF switch HMC349ALP4CE with a rise and fall time of 60 ns. Using an external

Mini-Circuits ZASWA-2-50DR+ switch that has an on-/off switching performance of

20 ns did not improve the rise-/fall time of the AOM any further and was thus left out

for simplicity of the circuit and for avoiding potential additional noise. The full signal

chain is shown in Figure 3.3.

Figure 3.3: Signal Chain from Sinara to the AOM and EOM: Left: The Urukul
output is amplified by a Mini-Circuits ZHL-2W-1+ before it reaches the AOM. Right:
The Pulsemaster receives two different voltage levels. A zero-voltage V1 and a higher
voltage V2. Controlled by TTL-logic of the Sinara DIO-SMA, a QS3253 multiplexer
switches between these voltages creating a pulse signal for the EOM.

The EOMs on the other hand require direct electronic pulse signals to create pulses in

the light field. To retain compatibility with Sinara and ARTIQ and for easy accessibility

of the degrees of freedom, a highspeed CMOS/TTL quick-switch QS3253 multiplexer

by Renesas is used for this purpose. While the Sinara TTL output from the DIO-SMA

module serves as the switching control logic, the applied voltages at the inputs can
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easily be adjusted, even in ARTIQ when using the output of the Fastino DAC. While

the QS3253 is a 4:1 multiplexer, a QS3251 would even feature 8:1, making it possible to

switch between 8 different inputs ranging from -0.5 V to 7 V, enough to cover the full

modulation depth of the EOM. For the measurements in this thesis, only two inputs

are necessary since only on-/off pulses are recorded. For this purpose, the QS3253 is

mounted in a case with SMA and BNC connectors as shown in Figure 3.4, called the

Pulsemaster.

Figure 3.4: The Pulsemaster: It features two separate QS3253 multiplexers of which
only two inputs are used in each, making it a two-channel TTL-controlled pulse-
generator. While on one side there are BNC connectors for applying the DC-levels
one intends to switch, the other side has SMA connectors that feature an output port
and a logic control input for each channel (see Figure 3.3).

For the bias control of the EOM, an automated system MBC-DG-LAB by iXblue was

not able to find a more stable setpoint for the optical output power compared to a

manual adjustment for the timescales of the measurements. Thus the bias voltage was

manually adjusted for the measurements by setting an appropriate DC level at the

EOM bias port with a Tektronix AFG3152C waveform generator. The chosen bias

setpoint for our pulse application is minimum optical output. This enables modulation

starting from the optical power minimum, beneficial for a high extinction ratio.
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3.2.3 Logic Protocol and Coding in ARTIQ

ARTIQ (Advanced Real-Time Infrastructure for Quantum physics) is an open-source

control system designed for quantum information experiments maintained and de-

veloped by M-Labs. It is well suited for our purpose since we need high timing precision

with the ability to keep this precision synchronously along with multiple different sig-

nals. ARTIQ features a high-level programming language based on Python, reaching

nanosecond timing resolution and sub-microsecond latency on dedicated FPGA hard-

ware such as the Kasli in the Sinara [37].

The experimental protocol is executed in form of a python program as an ARTIQ

”kernel” on the core device Kasli. After initializing the desired channels of the Sinara

modules and setting parameters, any protocol using the functions of the modules can

be built with a timing resolution in units as small as 1 ns.

To illustrate the programming of the protocols used in this thesis, a few short examples

are given. The first example for a short 10 µs TTL pulse of channel 0 of the DIO-SMA

is:

ttl0.output () #Set DIO Channel 0 as output

ttl0.on() #Set DIO Channel 0 to high

delay(10*us) #Delay of 10 us

ttl0.off() #Set DIO Channel 0 to low

In combination with the Pulsemaster, this causes a switch from low to high voltage and

back to low after 10 µs. It can also be simplified to a single command if an advance of

the time cursor is appropriate during the pulse:

ttl0.output () #Set DIO Channel 0 as output

ttl0.pulse(10*us) #Chanel 0 10 us pulse

Similarly, it is possible to control the output of the Urukul module used for driving the

AOM. A 10 µs pulse after setting the initial frequency, phase and attenuation could

look like this:

self.urukul0_ch0.init() #Initialize Channel 0

freq = 80*MHz #Set parameters

attenuation = 2.0

self.urukul0_ch0.set_att(attenuation)

self.urukul0_ch0.set(freq , phase = 0.0)
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self.urukul0_ch0.sw.on() #Channel on

delay(10*us) #Delay of 10 us

self.urukul0_ch0.sw.off() #Channel off

The advance of the time cursor does not allow simultaneous actions. It will wait until

the specified pulse is done.

Since ARTIQ is based on Python, it is possible to now use features like loops for

multiple repetitions. If for example it is required to have 1000 10 µs TTL pulses with

1 ms space in between, one can write:

ttl0.output ()

for i in range(1000): #Repeat for 1000 times

ttl0.pulse(10*us) #Channel 0 10 us pulse

delay(1*ms) #Delay for 1 ms

In this way, it is possible to configure any desired pulse protocol. Further reference on

ARTIQ, its specifications, working principle, and language can be found in the ARTIQ

manual [38].

3.3 Measurements

3.3.1 Preliminary Measurements

Detector Calibration and Pulse Behavior

In advance of performing any measurements, a power calibration is done for the given

DET08CFC/M Thorlabs detector in combination with a Picoscope 5444D serving as

the oscilloscope. This is important for a conversion of the measured detector output

voltage into optical power as the desired unit to be displayed. The calibration factor

is attained by measuring several different optical input powers and comparing them to

the measured detector output voltage. The obtained linear regression of the acquired

data (Figure 3.5) yields the calibration factor in its slope, together with an offset.

Secondly, very small optical powers down to the order of 30 µW are required for the

short pulses, but the detector together with the minimum range of the oscilloscope (±10

mV) requires higher optical powers to show a significant signal. A measurement is done

to investigate whether different pulse power levels scale linearly. For this purpose, the
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Figure 3.5: Calibration of the Detector Output Voltage to the Optical Input
Power: A linear regression yields the corresponding calibration factor and offset. From
this, the recorded detector voltage (mV) can be converted into optical power (mW).

(a) Pulse Height Scaling (b) Attenuation Scaling

Figure 3.6: Power Scaling: a) Recording pulses at different powers shows a linear
behavior with a mean squared error of 0.00013 (mW )2. b) Adding density filters for
attenuation in the free-space part before the coupler also suggests linear behavior with
a mean squared error of 0.03 (mW )2. Thus it is assumed that it is valid to record pulses
at higher powers and make conclusions on lower powers. This will be relevant when
recording at optical powers that would, without attenuation, saturate the detector, as
for ω0, or when investigating pulses that would, due to their required low powers, only
be barely visible with the given detector and oscilloscope.

same pulse is recorded at different optical input powers and the scaling is investigated.

This is only done for detector 2 which is used for later measurements of these pulses,

while detector 1 will only be needed for measuring the timing precision of pulses from
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separate optical modulators and for power monitoring. The obtained graph is displayed

in Figure 3.6.

Similarly, a measurement is done at even higher optical input powers, measured with

a power meter, with a series of density filters (Thorlabs ND03A, NENIR02A, ND04A,

NE05A) before the detector. The filters are placed in front of the coupler and in sum

have an optical density of 1.4 and thus a transmission of 4 %. This is to investigate

changes in the linearity of the power. This is done with detector 2 only as well. The

measurements suggest that the power shows a linear behavior in both cases. Thus we

estimate the real power given a measurement of higher power. Furthermore, we assume

that the timing of pulses is independent of power.

Vπ and Extinction Ratio of the EOM’s

When working with EOMs, it is useful to characterize the Vπ (Equation 3.1). It is the

maximum required voltage for any accessible output power. In such a measurement it

is possible to read out the maximum possible extinction ratio of the EOM as well.

A 50 kHz, ±5V triangular wave is applied to the RF port of the EOM. This causes

a sinusoidal output of the EOM as shown by Equation 3.1. From fitting the resulting

optical power it is now possible to acquire the applied voltage difference necessary to

go from minimum to maximum intensity (Figure 3.7), that is Vπ. For each EOM, 200

single measurements were taken over a period of 10 seconds and the mean and its

deviation were calculated for both the π-voltage and the extinction ratio. The results

are shown in Table 3.1.

For the measured extinction ratio of (1.3 ± 0.3) · 10−3 of EOM 1, an initial trapping

and cooling frequency of ω0 = 2π · 100 kHz with a relative deviation of ∆ω0 = 5 · 10−2

at a free expansion time of tm = 1.34 ms still corresponds to 30 ± 7 oscillations and

thus doesn’t satisfy the criteria of ωff tf,m < 0.05 introduced in Section 2.2.2.

EOM 1 EOM 2
π-Voltage (V) 5.332 ± 0.009 5.653 ± 0.013
Extinction Ratio min/max 0.0013 ± 0.0003 0.0008 ± 0.0003

Table 3.1: Measurement results for Vπ and the extinction ratio of the EOM’s:
Both EOM’s feature an extinction ratio in the order of 10−3 and a π−Voltage in the
order of 5-6 V. This is compatible with the voltage range of the Pulsemaster that will
drive the EOMs.
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Figure 3.7: Pi-Voltage Measurement: Orange: The applied voltage at the RF port
of the EOM. Blue: The resulting optical intensity change of the EOM output. By
extracting the optical power minima and maxima from a fit and comparing it to the
applied voltage difference, one finds Vπ of the EOM. The extinction ratio of the EOM
follows from comparing the minimum to the maximum optical output power.

Extinction Ratio of the AOM

By using an additional AOM in front of an EOM the aim is to improve the limited

extinction ratio of the EOM. The overall possible extinction ratio is then the product

of each respectively. Since very low powers close to zero need to be measured for Plow,

the measurement is split into two parts, a low optical power measurement to find Phigh

and a high optical power one with additional attenuation of the AOM drive signal for

Plow. The latter is then refactored by the increase in optical power c (Figure 3.8).

An on/off power protocol was recorded using the on/off switch command of the Urukul

module with an off-time of 0.6 ms. For recording Phigh (AOM drive on), the attenuation

of the AOM driving signal was set low to 5.0 dB in ARTIQ. This results in maximum

diffraction efficiency and thus higher optical throughput. The optical input power is

set to 7.0 ± 0.2 mW. To measure Plow (AOM drive off), the optical power before the

AOM was increased to 700±2 mW and the attenuation in ARTIQ set to 31.0 dB. The

measured power minimum is then refactored by the increase of optical power c = 100.

200 such ratios were measured and the mean and its deviation were calculated. The
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final acquired maximum extinction ratio of the AOM is Rext = (8.46 ± 0.07) · 10−4.

Together with the extinction ratio of the EOM, this leads to a decrease of the optical

power from maximum to the minimum at full modulation depth of Rext(1.1±0.3)·10−6.

This doesn’t fulfill the benchmark of Rext ≤ 3 · 10−9.

P

t

Phigh

Detector
Saturation

cPlow

0

Figure 3.8: AOM Extinction Ratio Measurement: Green: Low optical input
power but maximum modulation depth of the AOM. The mean of the top level is
Phigh. Orange: High optical input power but less modulation depth to stay within
the detector’s range. The dashed line illustrates the higher optical power which would
saturate the detector for full modulation depth. The now higher power minimum,
which is the mean of the lower level, is refactored by the increase of optical power to
get Plow before calculating the extinction Plow/Phigh.

For ω0 = 2π ·100 kHz with a relative deviation of ∆ω0/ω0 = 5·10−2 as measured in later

chapters, this is equal to 0.9 ± 0.2 oscillations for tm = 1.34 ms. For ω4 = 2π · 10 kHz

and assuming the same deviation, this equals 0.09± 0.02 oscillations for tm = 1.34 ms.

For ω2,3 = 2.5 kHz we find 0.022 ± 0.006 oscillations for tm = 1.34 ms. For tf = 0.66

ms, it is reduced by a factor of 2.

The extinction ratio of the AOM can still be improved. The attenuation for the meas-

urement of Phigh is kept at 5.0 dB since at this power the Mini-Circuits ZHL-2W-1+

amplifier already reaches its maximum input power and starts to saturate. The dif-

fraction efficiency for this driving power was measured to be 73± 2 % with a Thorlabs

optical power sensor. Using a Moglabs Agile RF synthesizer with higher driving power,

the diffraction efficiency was measured to be 88 ± 2 %. This increase of 21 ± 4 % for
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Phigh would decrease the extinction ratio by 21 ± 8 % which is not sufficient to reach

the benchmarks for all beam lines. We conclude that while for ω2,3 the extinction ratio

fulfills the benchmark of ωff tf,m < 0.05, it will require an improvement of 0.28 ± 0.08

for ω4 and (2.7 ± 0.7) · 10−3 for ω0 in regard to Rext. A possibility for lowering the

extinction ratio further without adding an additional modulator would be to use the

AOM in a double-pass configuration as in [40].

3.3.2 Characterization of the Pulse Performance

Deviation of the Initial Trapping and Cooling Frequency

We measure the deviation on the initial trapping frequency ω0 by recording pulses at

optical powers in the order of 102 mW as in [29]. Attenuation in the form of density

filters avoids saturation or damage to the detector. We estimate that the results of the

measurement are applicable to lower powers as well as reasoned in Section 3.3.1. Since

the necessary cooling time is in the order of a few ms [18], 3 ms pulses are evaluated.

The pulses were characterized for an AOM, second for an EOM, and third for the

combination of both.

Power P in mW ∆Pn

AOM only 319.9 ± 0.6 (4.85 ± 0.06) · 10−3

EOM only 201.0 ± 0.4 (4.85 ± 0.06) · 10−3

AOM+EOM 195.1 ± 0.5 (5.83 ± 0.07) · 10−3

Table 3.2: Power Fluctuations of High Power Pulses: We find the relative uncer-
tainty ∆Pn as a measure for the width of the pulse power to have no significant impact
on ∆P . For the combination of AOM+EOM we find a ∆ω0 = (5.1 ± 1.7) · 10−2.

We evaluated samples of 100 pulses over a period of 15 s at 14-bit resolution and a

sampling rate of 62.5 MS/s (Table 3.2). The mean of the power for all modulators

during the last 10 oscillations, representative of an initial trapping frequency ω0 of the

protocol, fluctuates by a relative uncertainty ∆P/P < 3 · 10−3 for all modulators. For

the combination AOM+EOM we find ∆P/P = (2.6 ± 0.3) · 10−3. This corresponds to

a ∆ω0/ω0 = (5.1± 1.7) · 10−2 and is close to the benchmark of ∆ω0/ω0 = 5 · 10−2. The

width of the power for a single pulse during the last 10 oscillations is for all modulators

at ∆Pn < 6 · 10−3. This is so small that it doesn’t have a significant effect on ∆ω0/ω0

38



in the error propagation. The corresponding power distribution shows a Gaussian form

(Figure 3.9).

As a measurement of rise- and fall times of the pulses in the next section shows (Table

3.3), the falling edge of an AOM+EOM makes up ω0tfall = 0.0084±0.0001 oscillations

of ω0. This has no significant impact on ∆ω0/ω0.

Figure 3.9: Distribution of the Pulse Power: This is the power distribution during
the last 10 oscillations for ω0 = 2π · 100 kHz of a single long AOM+EOM pulse. It
shows a Gaussian form with µ = 194.1 mW and σ = 1.1 mW.

Timing Precision

ARTIQ has an internal timing resolution down to units of 1 ns. Thus when program-

ming a protocol, the actions are executed with nanosecond timing. Whether this is also

true for the control of the proposed electronics and the optical modulators remains to

be shown. The measurements in this chapter have been done with the internal meas-

urement functions of a Teledyne LeCroy Wavepro 760-ZI oscilloscope at a sampling

rate of 40 GS/s. This enables a resolution down to 25 ps and is thus sufficiently fast

to resolve twidth and trise/tfall.

The first measurement, described in Figure 3.10, shows that the mean pulse length of

both the EOM with ±0.03 ns as well as the AOM with ±0.05 ns follow the ARTIQ
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(a) Delay precision of the EOM (b) Delay precision of the AOM

Figure 3.10: Precision of the Modulator Response to ARTIQ Delays: The
measurements show that the mean pulse width of the optical signal of both a) the
EOM at ±0.03 ns and b) the AOM at ±0.05 ns follow the time delay in ARTIQ at its
smallest time unit of 1 ns. This implies that time durations in the light field protocol
can be adjusted in 1 ns steps as desired.

delay in steps of 1 ns. A bias drift of the EOM can influence the pulse length when

using the 50 % definition. This is because the bias drift causes a change in peak height

and shifts the 50 % point in time since the TTL control of the Sinara is independent

of the EOM. For the duration of ≈ 10 min of the above measurement, this was not

relevant. For longer times, however, it might become relevant. The remaining devi-

ations could either be caused by deviations in the measurement of the Sinara or by

very small bias drifts. The much higher imprecision of the AOM pulses is possibly

caused by fluctuations of the rise/fall of the internal RF switch of Urukul and thus the

electronic drive or by an irregular response of the crystal. On average, however, the

mean is almost as close to its target as for the EOM. Both Urukul for the AOM as well

as the DIO-SMA module for the EOM are controlled by the same FPGA carrier and

are synchronized to the same clock. Since nanosecond timing is possible for both the

AOM and the EOM, it is in principle also possible for the combination of both.

Furthermore, measurements on the pulse performance were done, also specifically for

the combination of an AOM and an EOM. This includes a measurement of the pulse

length precision, rise- and fall times of the edges for 10 % / 90 % of the pulse max-

imum, and a measurement of the precision of space between pulses, corresponding to

free expansions. The latter measurement is also done for separate EOMs to show that

also for separate optical arms it is possible to achieve a similar precision (Figure 3.11).
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Figure 3.11: Two Separate EOMs : EOM 2 creates long 1 ms pulses while EOM 1
creates short 10 µs pulses. The timing precision between these pulses tspace is measured
by looking at the distance between the two pulses at the 50 % level as indicated with
black arrows. When taking a closer look, one sees that for this recording an AOM was
placed in front of the EOMs. This is visible when looking at the edges of the zero-power
parts as they are further lowered towards zero during off-times. As illustrated earlier
in Figure 2.1 and 2.2 showing the planned experimental implementation, the pulses
will be created by separate modulators in separate optical arms.

AOM EOM AOM+EOM
Pulse Length (ns) ±0.8 ±0.1 ±0.4
Rise (ns) 103.0 ± 0.8 17.4 ± 0.2 13.3 ± 0.2
Fall (ns) 95.0 ± 0.9 15.40 ± 0.15 12.2 ± 0.3
Pulse Space (ns) ±0.8 ±0.1 ±0.4
For Separate EOM’s (ns) - ±0.2 ±0.5

Table 3.3: Characterization of the Pulse Timing Performance: The EOM in
general shows by far the fastest response and precision while the AOM is generally
slower. The pulse space of separate EOMs (Figure 3.11) are timed almost as fast as
pulses of a single EOM. All measurements show a ∆t < 1 ns.

Since it has already been proven that the duration of the implied operations can be

adjusted as desired, only the measured time precision is listed, except for rise- and fall

times. All pulses and spaces were set with an ARTIQ delay of 10 µs to measure at the

highest sampling rate of 40 GS/s. Recording longer pulses and pulse spaces at a delay
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of 600 µs is restricted to 2.5 GS/s and the corresponding deviations showed to be re-

stricted by the corresponding resolution. The results are given in Table 3.3. The EOM

shows the fastest performance while the AOM is in general slower. All measurements

yield a ∆t < 1 ns and thus satisfy the goal of ∆t = 1 ns.

Area of the Pulse for the Nonlinearity

We measure the pulse area by integrating over the data points of short 10 µs pulses as

proposed for the protocol. Assuming linearity of the power (see Section 3.3.1), higher

powers up to 2 mW than the required ≈ 30 µW are used to exploit the full detector

and oscilloscope range for maximum resolution on the relative uncertainty ∆A33.

AOM EOM AOM+EOM
∆A3/A3 (9 ± 1) · 10−4 (3.8 ± 0.6) · 10−3 (2.2 ± 0.7) · 10−3

Normalized (7 ± 2) · 10−4 (5.3 ± 0.2) · 10−4 (1.6 ± 0.6) · 10−3

∆P/P (9 ± 1) · 10−4 (3.8 ± 0.6) · 10−3 (2.2 ± 0.6) · 10−3

Normalized (7 ± 2) · 10−4 (5.3 ± 0.2) · 10−4 (1.6 ± 0.6) · 10−3

Double Pulse (1.13 ± 0.03) · 10−4 (3.1 ± 1.6) · 10−4 (1.39 ± 0.04) · 10−4

Monitor (1.14 ± 0.06) · 10−4 (4.2 ± 0.5) · 10−4 (1.19 ± 0.02) · 10−4

Table 3.4: Deviation of the Pulse Area: The upper four lines show the relative
uncertainties ∆A3 and ∆P before and after normalization with the monitored power.
While the normalization leads to an improvement, ∆A3/A3 is still missing the bench-
mark of ∆A3/A3 ≤ 0.7 · 10−5 by a factor of (4.4 ± 1.6) · 10−3 for AOM+EOM.
The double pulse precision is evaluated by comparing the mean pulse area of the first
and second pulse of a sample. The monitor does the same for the mean power during
the time of the pulses. Considering the deviations, no difference is visible.

To be able to measure the precision of the benchmark ∆A3/A3 ≤ 0.7 · 10−5, it is ne-

cessary to have a measurement device of sufficient resolution. The measurements were

taken at 15-bit vertical resolution and a sampling rate of 125 MS/s. This enables a

relative vertical resolution of 6 · 10−5 on the pulse height for a filled oscilloscope range

and a horizontal resolution of ∆t = 16 ns on the pulse length. Modeling the pulse

as a square, the area of a 10 µs pulse filling the oscilloscope range can approximately

be measured with a relative uncertainty of ∆A/A = 1.6 · 10−3. This is calculated by

Gaussian error propagation. It is dominated by the lack of horizontal resolution.

Since separate measurements were already done on the timing precision of such pulses,

showing that the precision on the pulse length as well as the rise and fall behavior is

in general ∆t < 1 ns, it is possible to infer a higher precision of the pulses. In this
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order of timing, the theoretical bound of the square pulse approximation is lowered to

at least ∆A/A = 1 · 10−4.

Evaluating sets of 500 10 µs pulses in a measurement of 15 s by integrating the data

points shows that all modulators stay above this limit, where the AOM performs better

than the EOM and the combination AOM+EOM (Table 3.4). A measurement of 1500

AOM pulses in 1 s indicates that there is a strong correlation of the pulse area with

the pulse height with a Pearson’s correlation coefficient of rP = 0.9996 (Figure 3.12).

In conclusion, the measurements were taken with additional monitoring of the optical

input power to see whether incoming power fluctuations are the reason. This is done

with the monitor arm for the AOM and the combination AOM+EOM as illustrated in

Figure 3.1. For the EOM the light in the signal path is coupled into a 50:50 fiber BS

where one output is connected to the EOM input and the other serves as the power

monitor.

Figure 3.12: Correlation of Pulse Height and Area: Evaluating the height and
area of 1500 short 10 µs pulses in about 1 s shows that the area is strongly correlated
to the pulse height with a correlation of rP = 0.9996. This suggests that optical power
fluctuations are the main contributor to the deviation of the area.

After norming the pulse area and pulse height with the monitored input power to

decouple the two effects, the precision improves, in the case of the EOM even by

a full order of magnitude. Only for the AOM+EOM combination it stays above

∆A3/A3 = 1 · 10−3. A possible reason is that while in this case, the monitor arm
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can improve the power fluctuations as for the AOM, it is not able to counteract the

fluctuations of the additional EOM as well as the fiber BS does.

Further study of the power monitoring shows that while for the EOM the monitoring

with a 50:50 fiber BS very well correlates to the pulse signal with a correlation coeffi-

cient of rP = 0.997 and improves the signal stability after normalization by 89 ± 4 %,

the monitoring with a separate coupler in the monitor arm performs much worse at

a Pearson’s coefficient of rP = 0.39 and is less reliable at an average improvement of

32±17 %. The reason for the worse performance is found in a measurement comparing

the fiber-detected optical power in the monitor arm to the signal arm, removing the

modulators. Normalizing the signal arm to the monitor arm yields an improvement

in the same order as with pulse modulation (Figure 3.13). A possible reason lies in

the optical elements and the coupling into the fibers. Optimizing the coupling into

the fibers with an additional telescope to adjust the beam size did not lead to an im-

provement. In opposite, the telescope introduced more coupling noise. This behavior

suggests beam pointing instabilities.

(a) Monitor Arm vs Signal Arm (b) Fiber BS Monitor vs. EOM Pulse Area

Figure 3.13: Power Monitoring along 15 s: a) Monitor Arm vs Signal Arm. The
measurement shows that even without any modulator in the signal path the monitor
arm does not very well correlate with the signal arm at a Pearson’s coefficient of rP =
0.39. This prevents an efficient normalization of the pulse power and suggests unstable
optics with beam pointing issues. b) Fiber BS Monitor vs. Area. In comparison,
monitoring the power for the EOM with a fiber BS results in a much better correlation
with rP = 0.997 is visible.

While fluctuations of the optical input power are one possible source of deviation in

the pulse area, the modulators themselves and the electronic drive are another. To

investigate whether there is an influence of the latter, the areas of 10 µs double-pulses

44



with short gaps of 5 µs are compared to each other to avoid the much slower input

power fluctuations. The same is done with the monitor power during the time of these

pulses. Higher fluctuations of the pulse areas compared to the monitored power would

indicate additional noise coming from the modulation itself. The results are listed in

the two bottom lines of Table 3.4.

As for the AOM and the combination of AOM+EOM, the pulse areas are about equal

to each other within the same order as the monitor power and thus no relevant noise

coming from electronics or the modulators is visible. The slightly higher error on

the AOM+EOM pulses compared to the monitor arm might indicate some additional

noise in the signal arm caused by the EOM, but a more likely explanation is the more

sensitive PM fiber of the EOM. The EOM with the fiber BS monitor shows much

higher fluctuations in general. Still, the precision of the pulse areas and the monitor

overlap, indicating that also here no electronic/modulator noise is visible. Comparing

the EOM and the AOM+EOM measurement further indicates that more stability is

reached when directly coupling into the PM fiber of the EOM instead of butt coupling

with a mating sleeve from the single-mode fiber BS output.

(a) Distribution of the Area (b) Distribution of Area1/Area2

Figure 3.14: Pulse Area Distributions: Histograms of the data on the pulse area
along ≈ 15 s show a gaussian normal distribution. a) Distribution of the pulse area
of 10 µs pulses with µ = 19.7 mWs and σ = 0.007 mWs. The pulses are created
by an EOM and normalized with the monitored input power. b) Distribution of the
precision on Area1/Area2 of 10 µs double-pulses with a 5 µs gap created by an EOM
with µ = 1.00001 and σ = 0.00017.

In conclusion, the relative precision on the pulse area for AOM+EOM does so far not

meet the necessary benchmark by a factor of (3 ± 1) · 10−3. The data shows that
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the main contributor to the pulse area fluctuations in the current setup is fluctuations

in power. While some part originates from coupling issues that might be caused by

beam pointing and non-ideal optical elements, the intensity of the laser source itself

contributes to the fluctuations as well. Normalizing the pulse area to the monitored

input power does lead to an improvement of ∆A3/A3, especially for the EOM where

the power is monitored with a fiber BS. Furthermore, investigating double-pulses with

short gaps and thus avoiding power fluctuations to some degree shows that the pulse

area does in general fluctuate in the same order as the monitored input power. This

proves that to the degree of the resolvable precision in the measurement, noise from

the electronic drive or the modulators themselves is not visible.

It will be required for future investigations to have a more precise, possibly direct

measurement device for the pulse area. When the necessary measurement precision

is provided, investigations on feedback mechanisms for stabilizing the energy of the

pulses will have to be done. The conclusion we can draw from this data is, however,

that power stability is the main limiting factor for achieving the benchmark, and would

require further active stabilization. Possible solutions for improving power stability are

provided in [41, 42].

Figure 3.15: Exemplary Short Pulse: This graph exemplary shows 10 µs pulses
created by an AOM for illustration of the pulse shape and edges. 150 recordings over
a time of about 15 s were taken for this plot.
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Precision of the Exponential Inflation Pulse

Measurements of 150 90 µs pulses in 15 s show that the earlier defined precision of

∆(ω4t4)/(ω4t4) ≤ 3 · 10−3 is not achieved (Table 3.5). While the timing of the pulses is

already characterized in Section 3.3.2, we use the measurements only to find the power

fluctuations. While the timing would allow reaching the benchmark, the current devi-

ation is dominated by fluctuations in power. A power stabilization technique reducing

the fluctuations by a factor of (2.5± 0.3) · 10−3, similar to the nonlinearity, is required.

AOM EOM AOM+EOM
P in mW 1.660 ± 0.003 1.231 ± 0.004 1.405 ± 0.006
∆(ω4t4) (4.2 ± 1.4) · 10−2 (5.7 ± 1.7) · 10−2 (6 ± 2) · 10−2

Table 3.5: Results for the Exponential Inflation: The relative uncertainty ∆(ω4t4)
is limited by power fluctuations. It will require a relative improvement of power stability
of (2.5 ± 0.3) · 10−3 in order to reach the benchmark of ∆(ω4t4)/(ω4t4) ≤ 3 · 10−3

3.3.3 Discussion of the Measurement Results

The proposed experimental setup for controlling the light field in terms of the earlier

defined protocol yet only partly meets the necessary benchmarks set in Section 2.2.2 for

a successful reconstruction of the fringe pattern. The measurement results compared

to the goals are displayed in 3.6.

Target Result
Rext ≤ 3 · 10−9 (1.1 ± 0.3) · 10−6

∆ω0/ω0 ≤ 5 · 10−2 (5.1 ± 1.7) · 10−2

∆tf,m ≤ ±1 ns < ±1 ns
∆A3/A3 ≤ 0.7 · 10−5 (2.2 ± 0.7) · 10−3

∆(ω4t4)/(ω4t4) ≤ 3 · 10−3 (6 ± 2) · 10−2

Table 3.6: Measurement Results: Comparing the measurement results to the
defined goals in section 2.2.2 shows that only ∆tf,m and ∆ω0/ω0 satisfy the required
benchmarks. The extinction ratioRext will have to be improved by a factor of 0.28±0.08
for ω4 and (2.7 ± 0.7) · 10−3 for ω0. The Area ∆A3/A3 will need an improvement of
(3±1) ·10−3 and ∆(ω4t4)/(ω4t4) will require a relative improvement of (2.5±0.3) ·10−3,
both in regard to power stability.

A single EOM doesn’t show a sufficient extinction ratio. However, measurements of
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both an AOM and EOM in combination show that the extinction ratio will still require

an improvement of (2.7 ± 0.7) · 10−3 for the trapping beam at ω0 = 2π · 100 kHz and

an improvement of 0.28 ± 0.08 for ω4 = 2π · 10 kHz.

The measurements on the initial trapping and cooling power show that the combination

of an AOM+EOM satisfies the benchmark with ∆ω0/ω0 = (5.1 ± 1.7) · 10−2. For the

timing of the pulses, it was shown that the resulting optical pulses can be adjusted at

the resolution limit of 1 ns of ARTIQ. Both the pulse length and space between pulses

show a precision below 1 ns and thus meet the goal of ∆tf,m ≤ 1 ns. The AOM is

slower in the rise and fall of its pulse edges and also less precise in timing compared to

the EOM.

The pulse area does not meet the defined benchmark of ∆A3/A3 ≤ 0.7 · 10−5. The

combination of AOM+EOM performs on average at ∆A3/A3 = (2.2±0.7) ·10−3. Thus

it will require an improvement of a factor (3 ± 1) · 10−3. The measurements showed

that the main limiting factor is fluctuations in power. At the available measurement

precision, neither electronic noise in the driving signal nor noise from the modulator

themselves is visible, but fluctuations of the laser power. Similarly, the benchmark of a

relative ∆(ω4t4) ≤ 1 · 10−3 was not met with power fluctuations as the limiting factor.

It will require an improvement by a factor of (2.5±0.3) ·10−3 to meet the defined goal.

3.4 Conclusion and Outlook

We presented an experimental realization of a protocol aiming to prepare a non-

Gaussian quantum state with an interferometric standing wave scheme and light pulses.

Necessary for the implementation of the light-field protocol, we suggested a realization

of the electronic control for realizing such a protocol with light modulation using the

Sinara hardware and ARTIQ software as the core system. This included:

1. A study of the benchmarks of the relevant parameters of the electronic

and optic control: Based on possible noise and deviations of realistic optical

pulses, we investigated how this affects the parameters of the protocol. The

benchmarks were chosen such that the effect of deviations of the parameters are

assumed to be negligible in regards to the deviation of the energy of the short

non-linearity as the most sensitive part of the protocol. This retains the standard
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deviation of the fringe spacing below 20 %, keeping the expected non-Gaussian

fringe-pattern intact.

2. We experimentally investigated to what extent the benchmarks are

fulfilled in a test setup: The electronic control fulfills our demands in regards

to the timing of the pulses. However, the main limiting factor currently is devi-

ations in the energy of the non-linearity, mainly caused by fluctuations in laser

power, requiring an improvement of (3± 1) · 10−3. The exponential inflation will

require improvement on power fluctuations in a similar order of (2.5± 0.3) · 10−3.

This will need power stabilization and can be achieved with feedback mechanisms

as in [41, 42]. Also, the extinction ratio of the modulators will require an im-

provement of (2.7±0.7) ·10−3. A possible solution would be to use a double-pass

configuration as in [40].

The next steps toward the implementation of our method will be to characterize the

possible extinction ratio when using the AOMs in a double-pass configuration. Fur-

thermore, requiring the main focus to ensure the protocol works will be to develop a

stabilization technique for the energy of the non-linearity. This will include the devel-

opment of a reliable measurement device enabling a measurement precision of the pulse

energy on the order of 10−6. This will enable the necessary insight into any possible

roadblocks for achieving a relative precision ≤ 0.7 · 10−5 for the pulse area, also in

regards to possible electronic noise not yet visible. It may be necessary to design a

sufficient power stabilization technique. Furthermore, the control of the electric field

will have to be implemented in the system.

Once the current roadblocks are solved, the fast control of optical potentials is suc-

cessfully conquered. The proposed method can then be implemented in the setup,

promising the nonlinear optical control of a wavepacket of a particle with ≈ 108 amu

mass.
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