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Abstract

Deep neural networks can achieve excellent performance on various tasks when provided
with enough data. However, large-scale datasets oftentimes contain annotation errors,
which can negatively impact the model quality. To overcome this issue, so-called denoising
methods, which facilitate training on error-prone data, can be applied.

In this thesis, a new denoising strategy based on the concept of "gradient matching"
is presented. The goal of this method is to dynamically filter out or relabel mislabeled
samples during the training process. Compared to some other denoising strategies, our
algorithm is fairly simple and widely applicable, since it does not restrict the choice of the
loss function used for training. Furthermore, the method is also suitable for multi-label
datasets.

In order to evaluate the effectiveness of our denoising strategy, we conduct experiments
on three noisy datasets. The results of the experiments show that the performance of our
method strongly depends on the chosen loss functions and parameters. Moreover, the
algorithm has a tendency to remove many correctly labeled samples from the batches.
Nevertheless, an improvement in performance was observed in many cases.
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Kurzfassung

Tiefe neuronale Netze können für verschiedenste Probleme exzellente Performance er-
reichen, wenn genügend Daten verfügbar sind. In großen Datensätzen finden sich jedoch
häufig Annotationsfehler, welche die Modellqualität negativ beeinflussen können. Um
diesen entgegenzuwirken, können sogenannte "Denoising Methoden", welche das Trainieren
von Modellen auf fehlerbehafteten Daten vereinfachen, verwendet werden.

In dieser Arbeit wird eine neue Denoising Strategie basierend auf dem Prinzip von
"Gradient Matching" vorgestellt. Ziel der Methode ist es, während des Trainingsprozesses
Datenpunkte, welche einer falschen Klasse zugeordnet wurden, herauszufiltern oder zu
korrigieren. Im Vergleich zu manch anderen Denoising Strategien ist unser Algorithmus
relativ simpel und breit anwendbar, da er die Wahl der Verlustfunktion, mit der das
Modell angepasst wird, nicht einschränkt. Darüber hinaus ist unsere Methode auch für
Datensätze, welche mehrere Labels pro Instanz zulassen, geeignet.

Um die Effektivität unserer Denoising Strategie zu evaluieren, führen wir Experimente
auf drei fehlerbehafteten Datensätzen durch. Die Ergebnisse der Experimente zeigen,
dass die Performance unserer Methode stark von den gewählten Verlustfunktionen und
Parametern abhängt. Darüber hinaus weist der Algorithmus eine Tendenz auf, viele
korrekt annotierte Instanzen aus den Batches zu entfernen. Dennoch wurde in vielen
Fällen eine Verbesserung der Performance observiert.
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1. Introduction

The tremendous success of deep learning in recent years can partially be attributed to the
increased availability of enormous labeled datasets, such as ImageNet [1, 2, 3, 4, 5]. As a
result, it seems to be in our best interest to create massive training sets for diverse tasks
and domains on which we can train powerful, parameter-rich models [2, 5]. However,
annotating large-scale classification datasets is challenging. Depending on the size of
the dataset, entrusting domain experts with the labeling process might not be feasible
due to limited resources or time constraints. As a result, more and more datasets are
annotated on the basis of pre-defined labeling functions, which efficiently assign labels to
the training data in an automated fashion [2, 3, 6, 7]. This process is commonly referred
to as weak supervision. The downside of this approach is that the resulting weak labels are
usually error-prone [8, 6]. Labeling errors are however not exclusive to weakly supervised
datasets but can also occur in expert-annotated data collections due to insufficient data
quality or inherent subjectivity of the task [8]. As a result, noisy labels are prevalent in
many widely-used benchmark datasets, such as MNIST [9] or ImageNet [10, 11]. Several
authors have shown that training in the presence of mislabeled samples can negatively
impact the model’s generalization performance [12, 13, 10]. Therefore, so-called denoising
methods, which can limit the negative effects of labeling errors on the training process, are
commonly applied when working with data that presumably contains a large fraction of
mislabeled samples [6]. The main goal of this thesis is to contribute a new, conceptually
simple denoising strategy based on gradient matching [14, 15] which aims to dynamically
filter out or correct likely mislabeled samples during training.

This thesis is divided into five main parts: In Chapter 2, a selection of previous work
on the topic of learning with noisy labels is presented in order to put our approach
into perspective. Moreover, the general concept of gradient matching is explained and
some recent applications of the method are outlined. Chapter 3 provides the intuition
behind the new, gradient-based denoising strategy explored in this thesis as well as
its concrete formulation. In Chapter 4, the effectiveness of the proposed method is
evaluated on two weakly supervised single-label datasets from the WRENCH benchmark
[7], SMS [16, 17] and Youtube [18, 2]. Concretely, the performance of models trained
with and without gradient-based denoising is contrasted. Furthermore, it is assessed
how successful our approach is in identifying mislabeled samples by comparing the label
changes induced by the denoising strategy with the ground-truth annotations provided
by WRENCH [7]. A key benefit of our proposed framework, compared to some other
approaches, is that any loss function can be used to update the model. Therefore, we
also investigate the effects of losses based on smooth approximations of the F1 score,
after Bénédict et al. (2021) [19], on both the baseline performance and our denoising
strategy. Chapter 5 repeats similar experiments on the CheXpert dataset, introduced by
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1. Introduction

Irvin et al. (2019) [20], which consists of chest radiographs annotated with respect to 12
pathologies. Unfortunately, this data collection does not contain expert annotations for
the training set, so no direct comparison to the gold labels is possible. However, observing
the performance achieved by our approach with respect to various multi-label evaluation
metrics still gives valuable insights into the potential benefits and pitfalls of the method.
Lastly, Chapter 6 summarizes the insights gained throughout the thesis and suggests
some possible avenues for future work to further improve our proposed method.

2



2. Background and Related Work

The term "noisy data" generally refers to datasets with corrupted input features and/or
incorrect labels [21]. This thesis solely focuses on label noise in classification tasks.

In the following, some previous studies on the characterization of label noise and its
effect on the resulting model quality will be summarized. Then, a selection of already
existing approaches for training well-performing models despite error-prone labels will be
outlined.

2.1. Sources of Annotation Errors

There are many factors in the data collection process that can lead to incorrect labels,
even when the data is annotated by human domain experts [8]. Frénay and Verleysen
(2014) [8] determined the following main sources of label noise in the strongly supervised
setting, where labels are usually assumed to be correct:

First of all, the input data, that is used to deduce the label, might be of low quality
or lack relevant information [8]. As an example, Brodley and Friedl (1999) [22] mention
missing medical test results which would be needed to confidently diagnose a patient.
Secondly, depending on the task, experts might not reach a consensus on the appropriate
annotation [8]. For example, in medical imaging, doctors might disagree on the diagnosis
and, by extension, the suitable label(s) for the corresponding image [8, 23]. Other
potentially subjective tasks include sentiment analysis and hate speech detection [24].
Lastly, the annotators might misinterpret imprecise instructions and consequently assign
labels according to a wrong definition of the task [8].

In addition to the error sources identified by Frénay and Verleysen (2014) [8], Rus-
sakovsky et al. (2015) [4] observed that annotators had difficulties labeling the ImageNet
classification task due to its high number of classes. For this benchmark, each training
image was assigned to exactly one out of 1000 distinct labels [4]. Choosing the one correct
label from such a large pool can be tricky, especially when classes are closely related or
multiple objects are present in the image [10, 4].

Due to all of the factors mentioned above, labeling errors are prevalent in many widely-
used, human-annotated datasets. Northcutt et al. (2021) [10] identified several incorrectly
labeled samples in ImageNet and MNIST by using their "Confident Learning" framework,
which is oftentimes referred to as Cleanlab due to the corresponding python package.
Systematically finding annotation errors in massive datasets is difficult. Therefore, the
mislabeled samples in the aforementioned data collections previously did not receive much
attention, despite these datasets being popular benchmarks for new methods [10, 11, 4].

Nowadays, more and more datasets are annotated by automated processes, as opposed

3



2. Background and Related Work

to domain experts, in order to satisfy the demand for large-scale training sets [2, 3, 6]. This
labeling strategy is commonly referred to as weak supervision. It allows for time-efficient
annotation of the training data, however, a considerable portion of the resulting labels
might be incorrect [2, 3, 6]. This setting was also mentioned by Frénay and Verleysen
(2014) [8] as a frequent source of label noise.

The next section aims to give a brief overview of the concept of weak supervision, since
automatically labeled data will be used for the experiments conducted in this thesis.

2.1.1. Weak Supervision

Manually annotating huge amounts of data can be very time-consuming and expensive,
especially when domain-specific knowledge is required to assign suitable labels to the
samples, like in the medical domain [20, 25, 26, 27, 6]. However, sufficiently large datasets
are essential for training modern supervised machine learning models, which oftentimes
have millions of learnable parameters [28, 5]. One possible solution to this problem is
annotating datasets with weak supervision [2, 3, 6]: In the weakly supervised setting, the
training data is labeled by automated annotation mechanisms instead of human domain
experts. Commonly, a set of labeling functions, which map the input to a certain label, is
defined [2, 3, 6]. These functions can be designed on the basis of various sources such as
[2, 3, 6]:

• information from external databases ("distant supervision")

• heuristics which aim to represent expert knowledge

• crowd-sourced annotations (e.g. from Amazon Mechanical Turk)

The resulting annotation rules can be simple keyword rules or more intricate rules that
represent patterns with regular expressions [2, 3, 6]. For the task of identifying spam
in the comment section of music videos published on YouTube, Ratner et al. (2020) [2]
defined the following rules1, among others, to label the training data [29].

KEYWORD_SONG → ham (0)

KEYWORD_SUBSCRIBE → spam (1)

The above rules express that if a comment contains the keyword "song", it should be
mapped to the negative label, while if the text contains "subscribe", that is an indication
for a spam comment [29, 2]. Depending on which rules are chosen for the task, the
quality of the resulting labels can vary greatly [2]. Curating a suitable set of labeling
functions is challenging [2, 3, 6]: If the rules have too little coverage, meaning that only
few instances fulfil the condition that the rule expresses, a lot of samples might remain
unlabeled, raising the question how to handle them. On the other hand, a rule with very

1The full set of rules can be found at https://www.snorkel.org/use-cases/01-spam-tutorial, last
accessed 2022-05-20
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2.2. Types of Label Noise

high coverage, that matches almost all samples, might conflict with other rules and fail
to effectively distinguish classes [2, 3, 6]. Moreover, a tie can arise when multiple rules
match for a single example [2, 3, 6]. Consider the two annotation rules mentioned before
[29]: If a comment contains both "song" and "subscribe", which label should be chosen?
Oftentimes, one of the tied labels is randomly assigned to the sample in these cases, which
can easily lead to annotation errors [6]. Even when using a well-designed set of labeling
functions, at least some of the final labels will likely be inaccurate, especially when it
comes to huge datasets [10, 2, 3, 6].

All in all, weak supervision allows to efficiently annotate large amounts of data, however,
the resulting labels might not match the input [2, 3, 6].

The prevalence of labeling errors in both human-annotated and automatically labeled
datasets raises the question whether training a model on noisy labels deteriorates its
generalization performance and if so to which extent. However, the effect of corrupted
labels on the final model performance has largely been studied on datasets with synthetic
label noise, as opposed to naturally error-prone datasets, like those obtained from weak
supervision [12]. The following section therefore gives a short overview of different types
of label noise that are commonly simulated in the literature.

2.2. Types of Label Noise

Previous studies on learning with noisy labels primarily distinguish between uniform,
class-dependent and feature-dependent noise (cf. Algan and Ulusoy 2020, Frénay and
Verleysen 2014) [12, 8].

In the uniform (or symmetric) noise model, the probability of mistaking a sample with
true class y∗ for being of class ˜︁y ̸= y∗ is the same for all combinations of y∗ and ˜︁y. More
precisely, assume that each sample is mislabeled with probability ρ and that there are K
possible labels [12, 8]. Then

P (˜︁y = j|y∗ = k) =

{︃
1− ρ, j = k

ρ
K−1 , j ̸= k

under the assumption of uniform noise (cf. Algan and Ulusoy 2020, Frénay and
Verleysen 2014) [12, 8]. This type of noise is very easy to generate, however, it does not
accurately reflect real-world label noise [12, 8, 13].

The class-dependent (or asymmetric) noise model takes into account that some pairs of
classes are harder to distinguish than others [12, 8]. The resulting probabilities of label
y∗ being confused with ˜︁y are usually represented in a noise transition matrix of the form⎛⎜⎝ P (˜︁y = 1|y∗ = 1) ... P (˜︁y = K|y∗ = 1)

...
. . .

...
P (˜︁y = 1|y∗ = K) ... P (˜︁y = K|y∗ = K)

⎞⎟⎠
where K is again the total number of classes (cf. Algan and Ulusoy 2020, Frénay and

Verleysen 2014) [12, 8]. Note that in this setting, the probability of mislabeling a sample
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2. Background and Related Work

as a certain class only depends on its true label, but not its features, which is not always
realistic [12, 8].

Therefore, this assumption is removed in the feature-dependent setting, where the
probability of assigning an instance to an incorrect class hinges on its features [12, 30, 8].
Intuitively, it makes sense that the probability of mistaking a sample belonging to class y∗

for class ˜︁y would depend on the actual realization of the sample [12]. Algan and Ulusoy
(2020) [12] give the following example:

"some sport cars are more similar to classic cars than others" [12, Introduction]

As a result, these particular sport cars are more likely to be mislabeled as a classic car by
the annotation process than other members of this class [12]. Feature-dependent noise
most closely models real-world label noise, however, compared to the other two settings,
its effect on the model performance has not been studied as thoroughly, since it is harder
to simulate [12, 8].

Several authors have conducted experiments that assess the influence of noisy labels on
the quality of the resulting model. The next section summarizes some interesting findings.

2.3. Effect of Noisy Labels on the Generalization
Performance

Past studies on the effect of error-prone labels on the final model performance have
provided divisive results, depending on the examined noise type and general setup of the
experiment.

According to Rolnick et al. (2018) [27], deep neural networks are naturally robust
to label noise. They showed this by augmenting well-known datasets, such as MNIST,
CIFAR-10 [31] and ImageNet, by large numbers of noisy examples and monitoring the
resulting drop in performance for various deep neural network architectures. Both uniform
and class-dependent noise was examined in their experiments. They found that very
deep-layerd neural networks generally learn the respective task reasonably well, despite
noisy samples outnumbering the clean training examples by a large margin. It should
however be stressed that in their experiments, all original, presumably clean training
samples were preserved and mislabeled samples were simply added on top of the already
existing dataset, which is far removed from the weak supervision setting. Moreover,
Rolnick et al. (2018) [27] stated that a sufficient amount of clean training data is essential
to obtain good performance despite the presence of mislabeled samples. In fact, they
found the removal of clean instances to be more harmful to the generalization performance
than the introduction of additional mislabeled samples [27].

Algan and Ulusoy (2020) [12] took a different approach for assessing the effects of label
noise: Instead of adding noisy samples to the pre-existing dataset, they corrupted 5% to
75% of the original labels and observed the resulting decrease in performance. Moreover,
they also introduced a simulation scheme for feature-dependent label changes, which are
oftentimes neglected in other studies. In essence, the corruption strategy proposed by
Algan and Ulusoy (2020) [12] identifies samples which have similar representations to
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instances of a different class and changes their label accordingly. Algan and Ulusoy (2020)
[12] compared their noise generation algorithm to a method introduced by Inouye et al.
(2017) [13], which simulates locally concentrated noise. To create locally concentrated
noise, Inouye et al. (2017) [13] proposed to sample some instances from the training set
and determine their neighborhoods according to a k-nearest neighbors algorithm. The
labels of all data points in a given neighborhood are then systematically perturbed so that,
in the end, each cluster has a unified noisy label. When comparing the effect of different
noise types on MNIST-Fashion [32], Algan and Ulusoy (2020) [12] found feature-dependent
noise to be more detrimental to the test scores than uniform or class-dependent noise. In
their experiments on CIFAR-100 [31], corruption with locally concentrated noise resulted
in the worst generalization performance, followed by feature-dependent noise generated
according to their simulation strategy [12]. The results obtained by Algan and Ulusoy
(2020) [12] on MNIST-Fashion and CIFAR-100 suggest that real-world label noise might
be more harmful than simulated uniform or class-dependent corruptions.

Northcutt et al. (2021) [10] studied the effects of erroneous annotations in widely-used
benchmark datasets. Using their Cleanlab framework, they identified and removed likely
mislabeled samples in the ImageNet data collection and compared the performance of
a model trained on the original dataset to a classifier fit to the reduced version. They
found that training on the cleaned dataset improved the validation performance. This
result by Northcutt et al. (2021) [10] demonstrates that real-world label noise can indeed
limit the model quality.

All of the results stated above, except for the findings of Rolnick et al. (2018) [27],
suggest that noisy training data can have a significant negative impact on the generaliza-
tion performance. Therefore, it can be highly beneficial to apply denoising methods when
working with imperfect labels [2, 6].

Following Sedova et al. (2021) [6], a denoising method within the context of this thesis
is any method aiming to boost performance when training with error-prone labels [6].
The main contribution of this thesis is the exploration of a novel denoising strategy based
on gradient matching. In order to put this new method into perspective, the next section
shortly outlines some previously proposed approaches for learning with noisy labels.

2.4. Some Existing Denoising Frameworks

There are multiple general strategies for dealing with label noise [10, 6]. Northcutt et
al. (2021) [10] distinguish between two main approaches: The "model-centric" approach
focuses on modifying the model architecture or the loss function to facilitate learning
with noisy data. The "data-centric" approach, on the other hand, tries to identify likely
mislabeled samples and subsequently removes or corrects them before training the final
model on the dataset [10]. In order to clarify these two concepts, representatives of
each approach will briefly be introduced. Please note that what follows is a very narrow
selection of possible methods to handle label noise, aiming to highlight some of the general
directions that have been studied so far.
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2.4.1. Model-centric Approach

Several authors have explored dealing with noisy labels via novel or surrogate loss functions.
Formally, Ghosh et al. (2017) [33] define a loss as noise-tolerant if the classifier that
minimizes the risk with respect to this loss is the same on clean and on corrupted data.
They showed theoretically that the mean absolute error (MAE) loss fulfills this condition
under uniform noise and, if certain assumptions are met, under class-dependent noise.
Empirically, they observed that models trained with the MAE had better generalization
performance than their counterparts fit with the common cross-entropy loss in various
noise settings. However, Ghosh et al. (2017) [33] noticed that training a network solely
with the MAE loss leads to much slower convergence compared to when the standard
cross-entropy loss is used [33].

As a result, instead of using a noise-tolerant loss by itself, some authors alter already
existing loss functions by adding a noise-tolerant term. For example, Wang et al. (2019)
[34] modified the cross-entropy loss, because they observed class bias when training with
this criterion: Some classes are learned much faster than others, leading to over- and
underfitting respectively. They found that noisy labels amplify this effect and therefore
proposed the symmetric cross-entropy loss, which adds a noise-robust term, the reverse
cross-entropy, to the original cross-entropy loss. Combining the two terms is crucial, since
models trained with the stand-alone reverse cross-entropy converged fairly slowly in the
experiments of Wang et al. (2019) [34], which mirrors the results that Ghosh et al. (2017)
[33] obtained with the MAE loss.

Other approaches define losses that encourage the model to reject likely mislabeled
samples during training [1, 35, 36]. For example, the method proposed by by Ziyin et
al. (2020) [36] allows the model to ignore a data point during training if its "uncertainty
score" is too high. This score is predicted by adding an extra output node to network,
representing the option of rejecting a sample, and training this architecture with a special
loss function, called the gambler’s loss [36]. In experiments conducted on MNIST, Ziyin
et al. (2020) [36] showed that the trained model learned to assign higher rejection scores
to mislabeled samples than to correctly labeled samples. While the concrete method
proposed by Ziyin et al. (2020) [36] is vastly different from the one explored in this thesis,
the general idea of dynamically ignoring unreliable samples during training has parallels
to our approach.

Instead of adapting the loss, Sukhbaatar et al. (2014) [37] proposed adding a so-
called "noise layer" after the classification head of convolutional neural networks. The
weights of this additional layer represent an estimate of the noise transition matrix, under
the assumption of asymmetric label noise, that is dynamically learned throughout the
training process [37]. The inclusion of this layer allows to adjust the predicted probabilities
according to the estimated noise distribution before they are passed to the loss [38, 39, 37].

While the previously described approaches consider all samples in the training set
to be potentially noisy, Hendrycks et al. (2018) [40] proposed leveraging a small set of
strongly supervised samples to estimate the noise transition matrix [40, 39]. Akin to the
method proposed by Sukhbaatar et al. (2014) [37], the estimated noise transition matrix
is then multiplied with the model outputs of samples with unverified labels before the
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cross-entropy loss is applied [40, 39, 37].
The approaches outlined above make fairly simple alterations to the loss function or

the model architecture. However, there are also more complex frameworks for learning
with noisy labels that are for example based on ensemble methods or meta-learning
[1, 41, 42, 43].

As is evident from the examples above, a lot of work has gone into developing methods
that handle the presence of noisy labels dynamically during training. In contrast, Northcutt
et al. (2021) [10] propose the Cleanlab framework, which is a strictly data-centric approach
that identifies and removes likely mislabeled samples before the final model is trained.
Unlike the previously described denoising strategies, Cleanlab [10] therefore separates the
denoising process and the training of the final model. As a result, once the dataset was
cleaned by the procedure, any (suitable) model architecture and loss function can be used
to train systems on the data [10]. The following section briefly sketches the Cleanlab
procedure2.

2.4.2. Data-centric Approach

The Cleanlab framework, developed by Northcutt et al. (2021) [10], follows a data-centric
approach. The goal is to identify likely mislabeled samples in a given dataset and provide
a "clean" version of said dataset, which can then be used for training. Cleanlab is
based on the assumption of class-dependent noise as it was described in Section 2.2:
The probability that a sample is wrongly assigned label ˜︁y by the annotation process
only depends on its true (unknown) label y∗ and not on the corresponding input data
[12, 8, 10, 11]. Intuitively, Northcutt et al. (2021) [10] justify this assumption with the
following example:

"a leopard is more likely to be mislabeled jaguar than bathtub" [10, p. 1374]

Under this assumption, the joint distribution between the noisy label ˜︁y and the true
label y∗ can be estimated using only the noisy labels and out-of-sample model outputs
for each data point [10]. Northcutt et al. (2021) [10] recommend using cross-validation
for obtaining these outputs. On the basis of the estimated joint distribution, the total
number of labeling errors in the dataset can be gauged and diverse ranking and pruning
methods can be applied to remove likely mislabeled samples from the dataset. The final
model is then trained on the clean version of the dataset. Using this strategy, Cleanlab
has been successful in finding labeling errors in both the training and the test sets of
popular benchmark data collections such as MNIST and ImageNet [10, 11].

A key benefit of the Cleanlab framework is that the predicted probabilities used
for estimating the joint distribution can be retrieved from any model architecture [10].
However, since the resulting distribution is the method’s main basis for identifying
mislabeled samples, the chosen model should already provide reasonably good outputs
[10]. As a result, the overall effectiveness of the method is to an extent dependent on the
quality of this particular model [10].

2The entire following subsection is based on Northcutt et al. (2021) [10].
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As can be gathered from the last section, there already exist well-performing denoising
frameworks to choose from. However, many representatives of the model-centric approach
dictate the loss that is used for training, while the data-centric approach by Northcutt et al.
(2021) [10] requires training several different models to obtain out-of-sample predictions
for each data point. This thesis contributes the exploration of a novel, comparatively
simple denoising strategy based on gradient matching that dynamically cleans the data
during training and can be used with a variety of loss functions.

Gradient matching in itself is not a new concept but has been studied before in different
contexts, such as domain generalization and dataset condensation [14, 15]. The next
section therefore gives a brief overview of the general idea of gradient matching and some
previous applications of the concept.

2.5. Main Idea of Gradient Matching

Gradient matching (GM) in itself is a fairly simple concept. In principle, gradient matching
compares model gradients that were computed on different parts of the data or on distinct
datasets [14, 15]. Usually, the inner product or the cosine similarity is used to assess the
alignment of the gradients [14, 15].

The general idea of gradient matching recently gained some traction with several papers
utilizing gradient matching being published in 2021 [14, 15]. The following section will
briefly summarize lately proposed applications of gradient matching, demonstrating the
versatility of the method.

2.5.1. Previous Applications of Gradient Matching

Domain Generalization

Shi et al. (2021) [14] successfully made use of gradient matching for domain generalization
on multiple benchmark datasets. The objective of domain generalization is to create
models that achieve good performances on test sets that significantly differ from the
training sets in terms of the nature and/or origin of their instances [14]. Examples of
such datasets can be found on the WILDS benchmark [44]. The CAMELYON17-WILDS
dataset [45, 44] can be used to to assess how well a breast cancer classifier trained
on images from selected hospitals performs on images from different hospitals. Good
generalization is especially important for this application, since in practice, the classifier
would likely be applied in several hospitals and not just in the ones that provided the
training data [44, 14]. Shi et al. (2021) [14] tackled the mismatch of training and test
domains by defining the "inter-domain gradient matching (IDGM) objective", which
promotes the alignment of model gradients obtained from different training domains
by maximizing their inner product. Their core idea was the following: If the gradients
obtained from two parts of the data with different domains are similar, then moving in
the direction of either gradient should increase the performance on both domains. As
a result, the model should learn what Shi et al. (2021) [14] call "invariant features",
namely features that are not affected by the domain change [44, 14]. By optimizing the
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IDGM objective with their computationally efficient Fish algorithm, Shi et al. (2021)
[14] managed to achieve superior results compared to the (previously) best-performing
methods on 4 out of 6 selected datasets from the WILDS benchmark, showcasing that
gradient matching is a powerful tool for domain generalization [44, 14].

Dataset Condensation

Another newly explored application of gradient matching is dataset condensation, where
the goal is to reduce a large dataset to a comparatively small number of representative
samples [15]. Zhao et al. (2021) [15] approached the problem by generating artificial
data instances instead of selecting samples from the original data. They used the fol-
lowing technique [15]: After initializing the examples for the condensed dataset from
real training instances or noise, the samples are updated by comparing the gradients
obtained from training on the fabricated instances to the ones computed on the original
data. In particular, the synthetic samples are altered to increase the cosine similarity of
these gradients [15]. A model trained on the resulting small set of synthetic examples
should then achieve comparable performance and learn similar parameters to a system
of the same architecture trained on the original large dataset [15]. Zhao et al. (2021)
[15] evaluate their method on four image datasets: MNIST, SVHN [46], MNIST-Fashion
and CIFAR-10. On all four data collections, the method managed to outperform popular
coreset methods, such as K-Center. Moreover, on MNIST, the resulting performance was
especially close to the model trained on the entire dataset [15].

The two previous applications of gradient matching outlined above suggest that gradient
comparisons can be a simple, yet powerful tool for tackling complex problems. The recent
success of gradient matching on diverse tasks raises the question whether it is possible to
formulate a denoising method based on gradient matching to boost performance on noisy
datasets. In the next chapter, this thesis’ attempt at formalizing such a method will be
outlined.
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3. Denoising with Gradient Matching

This section gives an overview of the new denoising method proposed in this thesis.
After the basic intuition behind the approach is clarified, the concrete formulation of
the algorithm is provided. Moreover, the method will be contrasted with some of the
approaches outlined in Section 2.4 to emphasize why our method could be a valuable
contribution to the field.

3.1. Intuition

The goal of the developed denoising algorithm is to dynamically filter out or correct likely
mislabeled instances during training. In order to achieve that, in each batch, the individual
model gradients of the samples are computed and compared with an aggregated gradient
from another batch of the data, the so-called "comparison batch" with its "comparison
gradient". Assuming that the overall noise rate in the dataset is not too high and the
batch size is reasonably large, this aggregated gradient could be seen as an expected
weight change on mostly clean data. If the individual gradient of a sample and the
comparison gradient point into opposing directions, this could be an indication that the
sample is mislabeled. There are two options on how to proceed with this sample:

1. remove the sample from the batch so that it does not influence the weight update

2. assign a different label to the sample so that its gradient aligns with the comparison
gradient

Note that, using this method, the mislabeled samples do not have to be decided upon
before training the model, but which samples are removed or corrected can dynamically
change during the training process. This may seem counterintuitive from the standpoint
that each label has only one ground-truth, correct or incorrect. However, this approach
has the advantage that only a single model has to be trained, unlike in the Cleanlab
framework [10]. Moreover, this strategy has an opportunity to "correct its own mistakes":
If one commits to a final, cleaned dataset before starting the training process, missed
labeling errors will affect the entire training procedure and mistakenly removed samples
cannot be reincorporated at any point. Our gradient-based method, on the other hand,
allows to remove samples on the fly, on the basis of the current state of the model, and
can reconsider keeping or ignoring a particular instance in each epoch.

The following section gives some more details on the steps of the algorithm and its
parameters.
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3.2. Method Details

3.2.1. Gradient Comparison

The similarity of the model gradients obtained from the update batch and the comparison
batch will be measured by the cosine similarity, following an implementation1 by Zhao et
al. (2021) [15]. The concrete formula is given by

sim(g(Xt,yt), ˜︁g) = g(Xt,yt) · ˜︁g
||g(Xt,yt)||2 ||˜︁g||2 + 0.000001

(3.1)

where g(Xt,yt) denotes the concatenated model gradients for sample t with feature set
Xt and label yt, while ˜︁g denotes the flattened gradient computed on the comparison
batch (cf. Zhao et al. 2021) [15]. The small constant in the denominator prevents
divisions by 0 and was also added in the implementation by Zhao et al. (2021) [15]. In
the following, sim(g(Xt,yt), ˜︁g) will generally be referred to as the similarity score or the
gradient similarity of sample t.

3.2.2. Parameter Choices

Denoising with gradient matching is a fairly simple and versatile concept. Several design
choices can be made to adapt the algorithm to the specific dataset it should be applied
to. This section briefly summarizes the main input parameters of the proposed algorithm
and their effect on the procedure.

Alternative Label

One of the core decisions is the specification of an alternative label which can be assigned
to a sample if this results in a better gradient similarity, computed according to Equation
3.1, than using the sample’s original annotation. If such a label is not included, an
instance will be ignored if its similarity score is smaller than or equal to a threshold τ .
If an alternative label is specified, the algorithm will compute this similarity with both
labels and

1. keep the original label if this achieves the highest similarity score and the score is
greater than τ

2. change the label of the sample to the alternative label if this gives the best similarity
score and the score is greater than τ

3. ignore the sample if neither similarity score is greater than τ

Which label could make sense as the alternative label depends on the specific dataset.
One possible choice could be a negative label, like "no relation" for the task of relation
extraction or "no finding" for medical imaging [20, 47].

1The code by Zhao et al. (2021) [15] is available at https://github.com/VICO-UoE/DatasetCondens
ation/blob/master/utils.py, last accessed 2022-06-29
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Removal Threshold

The removal threshold τ dictates how small the gradient similarity must at least be in order
for a sample to be ignored for the batch update. Since samples with opposing gradients to
the comparison gradient should be removed, it makes sense to choose τ ∈ (−1, 0], given
Equation 3.1. Low values of τ , close to -1, only remove samples with gradients that are
strongly dissimilar to the comparison gradient. Higher threshold values generally tend to
ignore more samples during training.

Comparison Batch Sampling

Since the same comparison batch is used to evaluate all instances in a given update batch,
it is important to sample it in a way that does not systematically disadvantage examples
of a specific class. For datasets with a fairly even class distribution, randomly drawing
a comparison batch from the training data might be sufficient to get a well-balanced
comparison batch and consequently an aggregated gradient that takes all classes into
account. However, for imbalanced datasets, class-weighted sampling might be beneficial
to ensure a large enough fraction of minority class instances in the comparison batch.

Update and Comparison Loss

Our proposed denoising strategy does not put any restrictions on the used loss functions.
In principle, the loss that is used for computing the compared gradients can differ from
the update criterion. The losses will be referred to as the comparison loss and the update
loss respectively. Whether choosing a different loss function for the gradient comparison
and the update can be beneficial is examined in our experiments.

Now that the main concept of the algorithm was introduced, the next section provides
the concrete formulation of the procedure.

3.3. Algorithm Formulation

The denoising method explored in this thesis can be applied to both single-label and
multi-label problems. Pseudocode for each scenario can be found in this section2. For the
rest of the thesis, the proposed method will be called the GM algorithm for simplicity.

3.3.1. Notation

Table 3.1 summarizes the notation used for describing the GM algorithm throughout the
thesis.

2The formulations of the two algorithms were inspired by Yu et al. (2020) [48]
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Expression Definition

f(·; θ) model with parameter set θ
DT training set
E total number of epochs
M batch size
K number of classes
B original update batch˜︁B comparison batch
B∗ update batch after the changes induced by the GM algorithm
L update loss˜︁L comparison loss
a alternative label that can be assigned by the GM algorithm
i label for samples that should be ignored in the loss computation

g(Xt,yt) flattened model gradient for sample t with feature set Xt and label yt˜︁g flattened comparison gradient

Table 3.1.: Basic Notation for the GM Algorithm

3.3.2. Single-Label Setting

In the single-label case, each sample is associated with exactly one label [49]. In this
setting, the GM algorithm can either ignore a likely mislabeled sample entirely by removing
it from the batch or correct its annotation to an alternative label a.

3.3.3. Multi-Label Setting

In the multi-label setting, each instance can belong to multiple classes [49]. Many real-
world applications allow for multi-label annotations. In tasks like topic, genre, or scene
classification, multiple labels can simultaneously be positive for a single instance [49]. For
example, a movie can incorporate elements of both the "Action" and the "Comedy" genre
[50].

In the formulation of the multi-label version of the GM algorithm (cf. Algorithm 2), yt
is a binary vector of length K. If the k-th entry of this vector, yt,k, is 0, the sample was
not associated with class k by the annotation process, while yt,k = 1 indicates that the
sample presumably belongs to this class. In the multi-label version of the GM algorithm,
the gradient comparison happens between gradients associated with each individual class.
Therefore, individual elements of the K-dimensional label vector can be ignored. The
label-specific gradients will be denoted by

(︁
g(Xt,yt)

)︁
k

and (˜︁g)k, k ∈ {1, ...,K}. For the
experiments in this thesis, the multi-label setting does not feature an alternative label
nor weighted sampling for the comparison batch.
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Input : training set DT ,
initial model f(·; θ),
alternative label a,
removal threshold τ

Output : trained model f(·; θ∗)
for e = 1,...,E do

foreach batch B do
Sample a comparison batch ˜︁B of size M from DT ;
Compute ˜︁g on ˜︁B wrt. ˜︁L;
Set up corrected batch B∗ ← B;
forall (Xt, yt) ∈ B do

Compute g(Xt,yt) wrt. ˜︁L;
Compute sim(g(Xt,yt), ˜︁g) according to Equation 3.1;
if an alternative label a is specified then

Compute g(Xt,a) wrt. ˜︁L;
Compute sim(g(Xt,a), ˜︁g) according to Equation 3.1;
if sim(g(Xt,yt), ˜︁g) ≤ τ and sim(g(Xt,a), ˜︁g) ≤ τ then
B∗ ← B∗ \ {(Xt, yt)}

end
if sim(g(Xt,a), ˜︁g) > τ and sim(g(Xt,a), ˜︁g) ≥ sim(g(Xt,yt), ˜︁g) then
B∗ ← (B∗ \ {(Xt, yt)}) ∪ {(Xt, a)}

end
else

if sim(g(Xt,yt), ˜︁g) ≤ τ then
B∗ ← B∗ \ {(Xt, yt)}

end
end

end
Update θ wrt. L and B∗

end
end

Algorithm 1: GM Algorithm for Single-Label Datasets
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Input : training set DT ,
initial model f(·; θ),
removal threshold τ

Output : trained model f(·; θ∗)
for e = 1,...,E do

foreach batch B do
Sample a comparison batch ˜︁B of size M from DT ;
Compute ˜︁g on ˜︁B wrt. ˜︁L;
Set up corrected batch B∗ ← B;
forall (Xt, yt) ∈ B do

Compute g(Xt,yt) wrt. ˜︁L;
Set up corrected label vector y∗t ← yt;
for k=1,...K do

Compute sim(
(︁
g(Xt,yt)

)︁
k
, (˜︁g)k) according to Equation 3.1;

if sim(
(︁
g(Xt,yt)

)︁
k
, (˜︁g)k) ≤ τ then

y∗t,k ← i

end
end
B∗ ← (B∗ \ {(Xt, yt)}) ∪ {(Xt, y

∗
t )}

end
Update θ wrt. L and B∗;

end
end

Algorithm 2: GM Algorithm for Multi-Label Datasets

3.3.4. Potential Benefits of Denoising with Gradient Matching

The plethora of available denoising approaches might raise the question why the proposed
method is potentially a valuable addition. The following paragraph therefore aims to
outline some desirable characteristics of the GM algorithm.

First of all, as can be gathered from Algorithm 1 and Algorithm 2, the overall procedure
is fairly simple. The entire denoising process happens during the training of a single
model. Furthermore, unlike common model-centric approaches [33, 34, 36], our method
does not put any restrictions on the loss that is used for training. Moreover, our approach
is not based on the assumption of a particular noise type and does not require any gold
annotations. Another key benefit of the method becomes apparent in the context of
weak supervision: Several existing denoising strategies geared towards weakly supervised
data, such as the Snorkel framework by Ratner et al. (2020) [2], require access to the
rule matches for each sample [29]. Our approach does not use any information about
the annotation process; only the resulting weak labels are required. Furthermore, the
method’s applicability to the multi-label setting is crucial for many tasks [49]. If the
GM algorithm achieves good performance, by making reasonable label changes, it could
provide a conceptually simple and widely applicable option for learning with noisy labels.
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In order to assess the effectiveness of the method, it will be evaluated on two single-label
datasets and one multi-label dataset, all of which are weakly supervised. The following
two chapters describe the setup and the results of the respective experiments.
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4. Experiments on Single-Label Datasets

This section evaluates the performance of our proposed denoising method, as described in
Algorithm 1, on two weakly supervised single-label datasets retrieved from the WRENCH
benchmark [7]. The performance of the GM algorithm will be compared against a baseline
trained on the unaltered noisy labels. Moreover, since the WRENCH benchmark provides
gold labels for most datasets [7], it will be assessed how successful gradient matching is in
removing and/or correcting mislabeled samples. Furthermore, the behaviour of the GM
algorithm will be inspected with respect to several design choices, namely the encoding of
the data, the update loss, the comparison loss, the sampling strategy for the comparison
batch, and the the removal threshold τ .

4.1. Data Description

Table 4.1 provides an overview over some characteristics of the two selected single-label
datasets from the WRENCH benchmark1 [7], SMS [16, 17] and Youtube [18, 2].

Data Labels Train Dev. Test Labeling Functions
SMS 2 4571 500 500 73

Youtube 2 1586 120 250 10

Table 4.1.: Overview of Single-Label Datasets2

The following two sections briefly introduce the datasets.

4.1.1. SMS

The SMS dataset [16] is a collection of SMS messages gathered from various sources,
including Grumbletext and already existing corpora. The task for this dataset is to predict
whether a given SMS message is spam or not. The non-spam messages are commonly
referred to as "ham" [16, 7].

Awasthi et al. (2020) [17] created 73 labeling functions for this dataset on the basis of
a small set of strongly supervised examples. For each message, WRENCH provides the
corresponding rule matches, which can be used to assign weak labels to the instances.
Each sample is therefore annotated with a vector of 73 labels in the raw data files3

1The raw data files are available at https://github.com/JieyuZ2/wrench, last accessed 2022-05-23
2Adapted from Zhang et al. 2021 [7], p. 4
3A detailed description of the WRENCH dataset structure can be found at https://github.com/Jie
yuZ2/wrench/wiki/Dataset:-Format-and-Usage, last accessed 2022-07-05
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[17, 7, 51]. If a rule matched the sample, the corresponding entry in this label vector
is either 0 or 1, depending on the class this rule represents [7, 51]. Otherwise, -1 was
assigned to this position in the label vector, indicating that the respective rule did not
match the sample [7, 51]. Following Zhang et al. (2021) [7], the evaluation metric for
this dataset is chosen to be the F1 score of the positive class, because the dataset is
imbalanced, as will be discussed in a later section.

4.1.2. Youtube

The second dataset, Youtube [16], is also a spam detection dataset. However, instead of
SMS messages, it contains texts collected from the Youtube comment section of music
videos by five different artists [18, 7]. In this context, a spam comment is a text unrelated
to the video [18]. Oftentimes, such comments aim to promote the commenter’s own
YouTube channel or links to external websites [18, 29, 2]. Ratner et al. (2020) [2] manually
curated 10 labeling functions4 [29] for this dataset. The corresponding rule matches are
again provided by WRENCH [7]. For this dataset, accuracy will be used as the evaluation
metric, as there is no strong class imbalance.

Since the SMS and the Youtube dataset share the same task, namely spam classification,
the experimental setup and basic data preparation was the same for both datasets.

4.2. Data Preprocessing

For the training samples, WRENCH only provides the rule matches, which the user has to
convert to noisy labels themselves [7]. Therefore, both the raw texts and the annotations
of the two datasets require preprocessing.

For the experiments in this thesis, majority voting was chosen to annotate each instance
in the training set with a weak label. When using majority voting, the class which
corresponds to the most rule matches for a particular text is assigned [6]. The resulting
label distribution can be found in Table 4.2.

Data Ham (0) Spam (1) Not Matched Tied
SMS 1592 252 2719 8

Youtube 627 531 195 233

Table 4.2.: Label Distribution of the Training Set after Majority Voting

For the SMS dataset, many samples remain unlabeled, because none of the 73 rules
matched them (cf. Awasthi et al. 2020) [17, 7]. We decided to remove such samples from
both datasets for the experiments. This approach is likely suboptimal if the aim is to
achieve a competitive performance compared to other published results on these datasets.

4The concrete rules can be found at https://www.snorkel.org/use-cases/01-spam-tutorial, last accessed
2022-05-20
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However, since the primary goal of the following experiments is merely to compare the
proposed denoising method to a simple baseline trained on the same data, this approach
should be sufficient. Following Sedova et al. (2021) [6], ties will be handled by randomly
assigning one of the tied labels. Note that, disregarding the unmatched samples, the
SMS dataset is highly imbalanced, while the Youtube dataset has a comparatively high
number of ties [7].

Since both datasets are text-based, there is a variety of options for encoding the input.
Most prominently, one can choose between using sparse and dense representations of the
texts [52, 53]. Sparse encodings are generally based on bag-of-word features [52]: For
each text, the occurrence of all terms in the vocabulary is counted. These counts are
then used to form a vector, which is of the same size as the vocabulary, to represent
the corresponding text [52]. Since the vocabulary usually contains many more unique
expressions than a single document, the resulting representation will only have few non-
zero entries, hence the term "sparse representations" [52, 54]. Sometimes not the entire
vocabulary is taken into consideration when constructing the embeddings, but only the
most common terms across the training set are selected in order to reduce the sparsity5

[55].
When raw word counts are used for encoding the texts, frequent words, such as stop

words, can overshadow rare terms, which are often crucial for obtaining the correct
prediction [54, 56]. To mitigate this issue, one can opt for TF-IDF (Term Frequency -
Inverse Document Frequency) features, which put lower importance on words that appear
in many texts across the corpus [52, 54]. The concrete formula for the TF-IDF value ft,d
attributed to term t in document d from a collection of D documents is given by

ft,d = tft,d idft

where

idft = log(
D

dft
)

denotes the inverse document frequency of term t, tft,d represents the number of
occurrences of t in d, and dft describes the number of documents in the collection that
contain t (cf. Luan et al. 2021, Schütze et al. 2008, Subakti et al. 2022) [52, 54, 53]. As is
evident from the above formula, ft,d is particularly large when term t appears frequently
in d but only in very few documents across the collection. On the other hand, if the term
t occurs in lots of texts in the corpus, idft will be very low, leading to an overall small
TF-IDF value [54].

Despite TF-IDF features being widely used, especially for information retrieval, they
have some disadvantages compared to more recent embedding methods [52, 54, 53]. Most
notably, the individual TF-IDF values ft,d cannot take advantage of the context of term t
[53].

5cf. the max_features parameter in the scikit-learn implementation https://scikit-learn.org/stabl
e/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html, last accessed
2022-06-23
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Dense representations from pre-trained language models, on the other hand, can allow
for context-dependent representations [53]. The BERT model, introduced by Devlin et
al. (2018) [57], drastically improved performances on popular NLP benchmarks, such
as GLUE [58], by learning "bidirectional representations" that depend on the context
surrounding the word [57, 53]. Devlin et al. (2018) [57] pre-trained BERT on large
amounts of unsupervised text, namely the BooksCorpus [59] and English Wikipedia,
providing a good initialization for downstream tasks. Fine-tuning the model on task-
specific data to further push performance is simple, since only an additional appropriate
output layer is required to apply BERT to various NLP tasks [57]. For classification
tasks, BERT provides a so-called CLS token, which encodes the entire sequence as a
768-dimensional vector [57, 53].

While the BERT model is very powerful, its large size can be impractical [57, 60].
Sanh et al. (2019) [60] therefore introduced DistilBERT, which is a downsized version of
BERT that speeds up the fine-tuning process without substantially degrading the model
performance.

In this thesis, both sparse TF-IDF features and dense representations, extracted from a
fine-tuned DistilBERT model, are explored to assess the performance of the GM algorithm.

For the TF-IDF encodings, the maximum number of features was restricted to 1000, so
only the 1000 most common terms in the training set received a dedicated representation.
Dense representations were created by loading a pre-trained DistilBERT model from the
transformers library [61] and fine-tuning it on the weakly supervised data6. In order to
reduce the influence of randomness on the resulting embeddings, the model was only
fine-tuned on training samples which had a definitive label assigned by majority voting,
meaning 1844 instances for the SMS dataset and 1158 examples for the Youtube data
(cf. Table 4.2) [7]. Due to the performance on the development set, the model was
fine-tuned for one epoch on SMS and for two epochs on Youtube. After fine-tuning, the
CLS representation was extracted for each data point.

4.3. Experimental Setup

In our experiments, the GM algorithm is only used to retrain the classification layer of
the network. When DistilBERT embeddings are used, the parameters of all previous
layers are frozen after fine-tunining. Since both datasets are binary classification tasks
[7], the network has two output nodes; one corresponding to each class.

The output of the classification layer for sample t can be denoted by

zt,1 =

F∑︂
f=1

(wf,1 xt,f ) + b1

6Fine-tuning was performed in PyTorch according to the tutorial https://huggingface.co/transform
ers/v3.2.0/custom_datasets.html, last accessed 2022-06-16
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for the first output node, corresponding to class 0, and

zt,2 =
F∑︂

f=1

(wf,2 xt,f ) + b2

for the second output node, representing class 1 [62]. Here, xt,f denotes the f -th feature
of sample t and F represents the total number of features, which is 1000 for TF-IDF
representations and 768 for DistilBERT embeddings. wf,1 denotes the weight that connects
the f -th input feature to the first output node and b1 represents the bias term of the first
output node. The terms wf,2 and b2 can be interpreted analogously.

In order to compute the loss, a softmax function [63] is applied to the two outputs.
The resulting values will be abbreviated by

st,1 =
ezt,1

ezt,1 + ezt,2

st,2 =
ezt,2

ezt,1 + ezt,2

for the rest of the thesis. For the results presented in this chapter, the class with the
higher softmax value was considered to be the model prediction.

In the following, the term "baseline" will be used to describe a model of the above
architecture that was trained without any form of denoising.

The reported results for all configurations of the GM algorithm and the baseline are
averaged over 10 runs. The training labels might slightly vary across the different runs,
due to the ties being randomly broken. The same 10 seeds are used for the GM algorithm
and the baseline, for both data preparation and training, to make the comparison as
fair as possible. A grid search for the learning rate and the batch size, with the search
space {0.01, 0.001, 0.0001} × {32, 64, 128}, is performed on the development set in each
individual run. The Adam optimizer [64] with default parameters7, except for the learning
rate, is used for updating the model. Each model is trained for 10 epochs and evaluated
on the development set after each epoch. Once the 10 epochs are completed, the model
that achieved the best evaluation score, i.e. F1 for SMS and accuracy for Youtube [7], on
the development set is loaded and evaluated on the test set.

4.3.1. Significance Testing

One of the primary goals of the conducted experiments is to determine whether models
trained with the proposed denoising method can achieve better performances than the
baseline. When comparing the results of two machine learning techniques, significance
testing can be a useful tool to gauge whether the observed difference in performance is
due to a better learning strategy or merely due to chance [65]. However, finding a suitable
statistical test in the context of model comparison can be tricky, since assumptions

7cf. https://pytorch.org/docs/stable/generated/torch.optim.Adam.html, last accessed 2022-06-
30
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made by widely-used parametric tests are oftentimes not fulfilled [65]. As a result, non-
parametric tests and randomization tests, which generally make fewer assumptions about
the data, can be beneficial [66, 65].

Depending on the performance measure, different tests are recommended. When
accuracy is used as the evaluation metric, an exact binomial test can give an indication
whether one learning method truly outperforms the other, according to Salzberg (1997)
[67]. The exact binomial test is a non-parametric test for dichotomous data, where
1 represents a success and 0 a failure. For the two-sided version of the test, the null
hypothesis is that the true success probability p is equal to a pre-specified value p0 [66, 67].
In order to apply this test in the context of model comparison, Salzberg (1997) [67]
proposed the following procedure: First, the predictions of the two methods on the test
DE are dichotomized. A correct prediction is denoted by 1 and a false response is assigned
the value 0. Keeping only the n predictions where one model succeeded while the other
one failed, one can consider the number of times that system A was better than system
B as the number of successes s. Under the null hypothesis, system A and system B are
equally good. Therefore, one can test the null hypothesis H0 : p = 0.5 on the basis of
the n trials and s successes, in order to get an idea whether the performance difference
between the two system is significant or not [67].

For the F1 measure, Yeh (2000) [65] proposed using a randomization test8 to assess
whether the underlying models, that produced the results one wishes to compare, are
really distinct from each other. The null hypothesis of this test is that there is no real
difference between the two models [65].

The basic idea of randomization tests is the following [68, 65]: Given a test statistic
computed on the original data, one can examine how often a random shuffling of datapoints
between the groups achieves a test statistic that is at least as extreme as the original one.
If this number is small, that is an indication that there is a real difference between the
groups [68, 65].

The test proposed by Yeh (2000) [65] for the F1 score goes as follows: Given the
predictions of both systems on the test set, one can compute the initial absolute difference
of the F1 scores achieved by the two models and additionally check for which samples
the two methods gave different results. Each prediction for which model A and model
B disagree is flipped between the systems with a 50% chance. This results in a new
prediction vector for both models. With these new predictions, the absolute difference in
F1 scores can be computed and compared to the difference obtained with the unaltered
predictions. This process is repeated R times. Let r denote the number of times that
the new absolute difference in F1 scores is larger than or equal to the original difference.
The maximum p-value is then given by r+1

R+1 [68, 65]. Note that R should be sufficiently
large; Yeh (2000) [65] proposed R = 1048576. If the number of predictions that can be
flipped is smaller than or equal to 20, Yeh (2000) [65] suggested trying all possible label
reassignments (exact randomization). Pseudocode for the concrete testing procedure is
given in Algorithm 3. For the tests conducted in this thesis, α = 0.05 is chosen.

8An implementation of the test by Dmitry Ustalov can be found at https://gist.github.com/dustal
ov/e6c3b9d3b5b83c81ecd92976e0281d6c, last accessed 2022-06-16
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Input : test predictions of system A: ŷA = (ŷA,1, ..., ŷA,|DE |),
test predictions of system B: ŷB = (ŷB,1, ..., ŷB,|DE |),
number of repetitions R

Output : p-value
Choose a significance level α;
Compute the initial difference in F1 scores t← |F1(ŷA)− F1(ŷB)|;
ŷ∗A ← ŷA;
ŷ∗B ← ŷB;
r ← 0;
for j=1,...,R do

forall ŷA,i ̸= ŷB,i do
With a 50% chance: ŷ∗A,i ← ŷB,i and ŷ∗B,i ← ŷA,i

end
t∗ ← |F1(ŷ

∗
A)− F1(ŷ

∗
B)|;

if t∗ ≥ t then
r ← r + 1

end
end
Compute the approximate p-value r+1

R+1

Algorithm 3: Randomization Test for F1 Score Comparison by Yeh (2000)

4.3.2. Collected Statistics

Throughout each run, several statistics are collected to assess how well the different
configurations of the denoising method can distinguish between correctly labeled and
mislabeled samples. The following abbreviations will be used to describe these statistics.

Expression Definition

CI (Correctly Ignored) number of times a mislabeled sample seen during training was ignored
FI (Falsely Ignored) number of times a correctly labeled sample seen during training was ignored

CK (Correctly Kept) number of times a correctly labeled sample seen during training was kept
FK (Falsely Kept) number of times a mislabeled sample seen during training was kept

CC (Correctly Corrected) number of times a mislabeled sample seen during training was correctly relabeled
FC (Falsely Corrected) number of times a correctly labeled sample seen during training was falsely relabeled

Table 4.3.: Collected Statistics for the GM Algorithm

Note that a given sample can be handled differently in each epoch. For example, a
particular mislabeled sample could be ignored in the first epoch, increasing CI by 1, and
kept in the second epoch, increasing FK by 1. Therefore, it holds that
CI + FI + CK + FK + CC + FC = E∗|DT |, where |DT | is the size of the training set
and E∗ denotes the number of the epoch after which the model performed best on the
development set. Remember that the model state after the completion of this epoch is
loaded for the final evaluation on the test set. For simplicity, E∗|DT | will be denoted by N
for the rest of the thesis. According to the notation in Table 4.3, the total number of times
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a sample was removed from the batch can be written as I = CI+FI, the total number of
correctly labeled samples encountered during training is given by CL = CK + FI + FC
and the number of mislabeled samples that were seen during training can be computed
by FL = CI + FK + CC. Note that if no alternative label is specified, it holds that
CC = 0 and FC = 0.

The previously described expressions can be used to calculate some interesting charac-
teristics of the training process, such as:

• I
N : fraction of times a sample seen during training was removed

• CI
I : fraction of times that the removal of a sample was warranted

• CI
FL : fraction of times a mislabeled sample seen during training was removed

• FI
CL : fraction of times a correctly labeled sample seen during training was removed

• CC
FC+CC : fraction of warranted label changes to the alternative label

Monitoring the above expressions for different settings of the GM algorithm can help
us gauge how successful the method is in dynamically cleaning the data during training.

4.3.3. Examined Loss Functions

An advantage of the GM algorithm is that it can be used with a variety of loss functions,
both for the gradient comparison and the actual update. Therefore, this section gives an
overview of the different losses used in our experiments.

The cross-entropy (CE) loss9 is a frequently used loss function, suitable for both binary
and multi-class classification problems [69, 34]. In the binary setting, the averaged
cross-entropy loss computed on batch B of size M can be written as [69, 34]:

LCE(B) =
1

M

M∑︂
t=1

lt

where

lt = −[log(st,2)yt + log(st,1)(1− yt)] = −[log(st,2)yt + log(1− st,2)(1− yt)].

Despite the effectiveness of the cross-entropy loss in many scenarios, the loss has some
downsides. First of all, there are some indications that the cross-entropy loss is suboptimal
for learning with label noise, as was already mentioned in Section 2.4.1. Wang et al.
(2019) [34] compared the performance of a classifier trained with the cross-entropy loss
on the mostly clean CIFAR-10 dataset to a model trained in the same way on a version
of CIFAR-10 with randomly perturbed labels. They found that the label noise noticeably
impaired the model’s score for several classes on the test set. Specifically, classes that are

9cf. https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html and
https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html, last accessed 2022-06-16
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generally considered challenging to predict seemed to suffer from the label flipping the
most [34].

On another note, Bénédict et al. (2021) [19] point out that the cross-entropy loss does
not directly represent the performance metric one might wish to optimize. However,
directly maximizing evaluation metrics for classification tasks is tricky, since they usually
require thresholding to convert the model outputs to predictions that can be used to
compute the performance score [19]. One example of such a metric is the F1 score, which is
defined as the harmonic mean of precision and recall [70]. The F1 score is frequently used
to evaluate performance on imbalanced datasets, for which high accuracy can oftentimes
be achieved by naively predicting the majority class for each sample [71]. Usually, the
rare minority class samples are however of particular interest, which is why accuracy is a
suboptimal performance metric for such datasets [72].

For binary classification, the concrete formula of the F1 score of the positive class,
computed on the dataset D, is given by

F1 =
2tp

2tp+ fp+ fn

where

tp =

|D|∑︂
t=1

1(st,2≥T )yt

fp =

|D|∑︂
t=1

1(st,2≥T )(1− yt)

fn =

|D|∑︂
t=1

1(st,2<T )yt

and T is the threshold that determines whether a sample is predicted to belong to
the positive class or not (cf. Bénédict et al. 2021) [19, 73, 70]. Bénédict et al. (2021)
[19] note that, due to the thresholding, the F1 score is non-differentiable and therefore
unsuited for gradient-based learning methods. In order to mitigate this problem, Bénédict
et al. (2021) [19] developed a smooth version of the F1 score by replacing the binary
predictions in the F1 formula by the predicted probabilities that are returned by the
model. Their loss was originally developed for the multi-label case, so it uses a sigmoid
activation function to transform the model outputs to probabilities and not a softmax
[19]. However, exchanging the sigmoid with a softmax for the single-label case should
not cause any problems. Therefore, the second loss function that is examined in the
experiments is based on a soft version of the F1 score of the positive class. In each batch
B of size M , its components can be computed as follows (cf. Bénédict et al. 2021) [19].
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ˆ︁tp =
M∑︂
t=1

st,2yt

ˆ︂fp =
M∑︂
t=1

st,2(1− yt)

ˆ︂fn =
M∑︂
t=1

(1− st,2)yt

These expressions could be seen as the "expected" true positives, false positives and
false negatives respectively. If the goal is to maximize the F1 score of the positive class,
the loss function

LF1pos.
(B) = 1− 2ˆ︁tp

2ˆ︁tp+ˆ︂fp+ ˆ︂fn+ ϵ

could be used [19]. The parameter ϵ in the equation above denotes a small stabilizer
that is added to the denominator of the loss term10. It should prevent the denominator of
this loss from getting too close to zero, which can happen for small batches with extreme
prediction values [74]. For the following experiments ϵ = 0.00001 was chosen.

Unlike the cross-entropy loss, LF1pos.
cannot be decomposed into sample-wise contribu-

tions but is computed over the entire batch [19]. Note that this loss has a downside for
highly imbalanced data: If no positively labeled sample is included in a particular batch,
the weights will not be updated, since ˆ︁tp = 0, which causes an all-zero batch gradient
(cf. A.1.1). Therefore, a large batch size is advised when using this loss [19]. A possible
solution could be using a smooth version of the macro-F1 instead, which averages the F1

score of the positive and the negative class [70]. The soft macro-F1 loss for the binary
case takes the form

LF1macro
(B) = 1− 1

2
[

2ˆ︁tp
2ˆ︁tp+ˆ︂fp+ ˆ︂fn+ ϵ

+
2 ˆ︁tn

2 ˆ︁tn+ˆ︂fp+ ˆ︂fn+ ϵ
]

where ˆ︁tn =
M∑︂
t=1

(1− st,2)(1− yt)

as suggested by Bénédict et al. (2021) [19]. In contrast to LF1pos.
, the gradient of LF1macro

does not automatically vanish if ˆ︁tp = 0. The conducted experiments will show whether any
of these two F1-based losses can increase performance compared to standard cross-entropy.
10Its inclusion was inspired by this implementation of a soft macro-F1 loss for multi-label classification

which can be found at https://github.com/ashrefm/multi-label-soft-f1/blob/master/Multi-L
abel%20Image%20Classification%20in%20TensorFlow%202.0.ipynb, last accessed 2022-06-29
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4.3.4. Sampling Strategies for the Comparison Batch

Sampling the comparison batch is an important step in the GM algorithm. Therefore,
two different sampling strategies are explored in the experiments.

The first sampling strategy simply draws random batches from the training data,
without taking the label distribution of the particular dataset into account. This approach
could potentially cause problems on datasets with high class imbalance. In particular,
gradients of samples belonging to rare classes might not match the aggregated gradient
computed almost exclusively on instances assigned to more common labels. As a result,
minority class samples might be ignored or corrected by default, leading to a bad test
performance.

Therefore, opting for class-weighted sampling might prove beneficial. For the experi-
ments, the weight for class k will be computed as

vk =
1

|DT |∑︁
t=1

1(yt=k)

which is simply the inverted number of occurrences of this class in the training set
(cf. Cao et al. 2019) [75]. As a result, samples of common classes are assigned a lower
probability of being included into the comparison batch than instances of rare classes. The
resulting comparison batch should therefore be representative of all classes. The outcomes
of our experiments will indicate whether class-weighted comparison batch sampling can
be beneficial or whether naive random sampling should be sufficient for most datasets.

4.4. Results

This section reports the performances of various settings of the GM algorithm on the
SMS and the Youtube dataset, averaged over 10 runs. Especially interesting cases, with
particularly low or high scores, will be examined in more detail to find out under which
circumstances the algorithm performs well, or fails to do so, and why.

4.4.1. SMS

This segment summarizes the results achieved on the SMS dataset. Due to the large
number of scenarios to investigate, regarding data preparation and the parameters of
the denoising algorithm, the results and their discussion will be broken up into smaller
sections.

As mentioned before, for all following experiments, samples without a single rule match
were removed, reducing the size of the SMS training set to 1852 instances (cf. Table
4.2, Zhang et al. 2021) [76]. A comparison with the gold labels provided by WRENCH
suggests that the average error rate of the weak labels across the 10 runs was around
2.94%.
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Sparse Embeddings

Table 4.4 contains the results achieved on the SMS dataset by models trained with the
GM algorithm using the cross-entropy loss and TF-IDF representations of the messages.
All scores in columns whose headers contain "(Dev.)" are computed on the development
set. The remaining columns contain the test performances. In order to keep the table
concise, the removal threshold τ was set to 0 for all configurations. The effect of τ will be
investigated in more detail in a later section. In accordance with the notation established
in Table 3.1, the alternative label will be denoted by a. A slash (/) in the corresponding
column will be used to signal that, in the respective configuration, no alternative label
is used. In this case, the algorithm can only ignore samples, but not relabel them. The
averaged performance of the baseline models is included as the last line of the table,
separated from the other results by a horizontal line. As mentioned before, these baseline
models were fit to the noisy data without any sort of correction. The standard deviations
of the scores are reported in parentheses, next to the averaged performance metric.

Method a Weighted Sampling Avg. F1 (Dev.) Avg. F1 Avg. Precision Avg. Recall
GM / No 0.84122(0.01822) 0.83353(0.00942) 0.96718(0.01924) 0.73284(0.0192)
GM / Yes 0.90467(0.00613) 0.87567(0.01532) 0.93356(0.02869) 0.82537(0.02442)
GM 0 No 0.79231(0.01873) 0.78973(0.03043) 0.94142(0.01947) 0.68209(0.04978)
GM 0 Yes 0.89381(0.00677) 0.86742(0.017) 0.92252(0.03445) 0.8194(0.02045)

Baseline / / 0.82025(0.00573) 0.81617(0.01583) 0.9791(0.00068) 0.7(0.02274)

Table 4.4.: Performance on SMS (TF-IDF, CE Loss, τ = 0)

The baseline is outperformed, in terms of F1 score, by all configurations of the GM
algorithm listed in Table 4.4, except for the setting where an alternative label is included
and the sampling of the comparison batch disregards the class imbalance. In particular,
this selection of parameters results in a comparatively bad recall score for the positive
class. On the contrary, not including an alternative label and using weighted sampling
for the comparison batch results in a large performance gap over the baseline, in terms of
F1, due to much better recall. Overall, the most important factor for the performance of
the GM algorithm in this scenario seems to be the sampling strategy. While specifying
an alternative label is viable when weighted comparison batch sampling is used, it still
degrades the performance for this specific dataset. It will be interesting to see whether
these observations also hold for the dense representations as well as the Youtube dataset.

The next two sections take a closer look at the parameter combinations that resulted
in the best and worst performance of the GM algorithm.

Worst GM Configuration The following paragraph aims to provide some intuition as to
why the setting "no weighted sampling, a = 0" results in a large drop in performance,
both compared to the baseline and other configurations of the denoising method.

The explicit formulas for the model gradients, computed with respect to the cross-
entropy loss, give some insights into what might be the reason for the bad results. Let
yt denote the (weak) label of sample t and xt,f the f -th input feature of that sample.
Moreover, let st,k denote the value of the predicted probability that sample t belongs to
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class k. The gradients of the individual model weights and biases with respect to sample
t are then given by

∂lt
∂wf,1

= (1− st,2)xt,fyt − st,2xt,f (1− yt)

∂lt
∂wf,2

= (st,2 − 1)xt,fyt + st,2xt,f (1− yt)

∂lt
∂b1

= (1− st,2)yt − st,2(1− yt)

∂lt
∂b2

= (st,2 − 1)yt + st,2(1− yt)

(4.1)

for the neural network used in the experiments (cf. A.1.1, Wang et al. 2019) [34].
Notice that the gradients corresponding to the weights and biases connected to output
node 1 and output node 2 are exactly the same, except for a flipped sign. Moreover,
when TF-IDF features are used, the inputs xt,1, ..., xt,F are all non-negative [54]. As a
result, if yt = 0, it holds that ∂lt

∂wf,1
≤ 0 and ∂lt

∂b1
≤ 0, while ∂lt

∂wf,2
≥ 0 and ∂lt

∂b2
≥ 0. On the

other hand, if yt = 1, then ∂lt
∂wf,1

≥ 0 and ∂lt
∂b1
≥ 0, while ∂lt

∂wf,2
≤ 0 and lt

∂b2
≤ 0. Without

class-weighted sampling, the comparison batch is likely to be dominated by instances
with label 0, because roughly 86% of the samples in the SMS training set belong to this
class (cf. Table 4.2) [17, 7]. Since gradients corresponding to samples with label 1 by
default have a different orientation than gradients corresponding to samples from the
majority class, there presumably is a high chance that the GM algorithm will correct
them to label 0 in order to better match the comparison gradient. A look at the label
changes during training, provided in Figure 4.1, affirms this intuition.

The left component of Figure 4.1 depicts the label changes performed by the GM
algorithm before each batch update for an exemplary run of the setting "no weighted
sampling, a = 0, τ = 0". Due to the results of the grid search that was performed for
collecting the results in Table 4.4, learning rate 0.01 and batch size 32 was chosen for
creating this plot. The x-axis represents the number of the update while the y-axis shows
how the labels were changed before performing the corresponding optimization step. In
particular, the depicted lines show the percentage of samples in the batch which were

• originally assigned label 0 and kept this way (blue line)

• originally assigned label 0 and ignored (orange line)

• originally assigned label 1 and kept this way (green line)

• originally assigned label 1 and changed to label 0 (red line)

• originally assigned label 1 and ignored (purple line)

As a result, for a given batch number, the corresponding values on the y-axis sum up
to one. Note that only the label changes up to the chosen epoch E∗ are depicted.
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Figure 4.1.: Label Changes during Training for SMS
(TF-IDF, CE/CE, No Weighted Sampling, a = 0, τ = 0)

In order to make the figure more easily readable, the statistics were smoothed over 10
batches, which is why the x-axis is slightly shortened.

Figure 4.1 confirms that most samples that were originally labeled as spam got reassigned
to class 0 by the GM algorithm during training. On the other hand, the majority of
instances labeled as ham by the weak supervision process are kept for most batch updates.
Note that in this setting, positive labels cannot be ignored due to the gradient of the
cross-entropy loss, given by the set of equations 4.1, and the formula chosen to compute
the gradient similarity defined in Equation 3.1. If a sample with label 1 has a negative
similarity score, changing its label to 0 will always result in a positive score, causing the
sample to be relabeled for the update. As a result, positively labeled samples have to be
either kept or reassigned to label 0.

Since the WRENCH benchmark provides gold labels for the SMS training set, it can be
assessed whether the label changes made by the GM algorithm align with the ground-truth
labels [7]. This comparison is provided in the right plot of Figure 4.1. The plot depicts
the percentage of samples which were

• correctly ignored (blue line)

• falsely ignored (orange line)

• correctly kept (green line)

• falsely kept (red line)

• correctly corrected to the alternative label (purple line)
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• falsely corrected to the alternative label (brown line)

For a given batch, the values depicted on the y-axis again sum up to one.
Judging from Figure 4.1, the vast majority of label changes from class 1 to class 0 were

unwarranted. Looking at some statistics collected throughout the 10 runs, it turns out
that, on average, only 3.83% of the label changes from class 1 to class 0 were actually
correct. Moreover, the fraction of samples that were ignored despite being correctly
labeled is concerningly high for many batches (cf. Figure 4.1). Across the 10 runs, around
24.70% of correctly labeled samples encountered during training were falsely removed
from the batch. Lowering the removal threshold τ could potentially help mitigate this
issue.

Figure 4.2.: Effect of Removal Threshold Value for SMS
(TF-IDF, CE/CE, No Weighted Sampling, a = 0)

The left plot in Figure 4.2 demonstrates the effects of varying values of τ on the develop-
ment and test performance while the right component gives insights into the corresponding
label changes. The values in the plots are averaged over three runs of the GM algorithm for
the specific threshold value. A grid search for the value of the learning rate and the batch
size, with search space {0.01, 0.001, 0.0001} × {32, 64, 128}, was performed in each run.
The inspected thresholds are τ = 0,−0.1,−0.2,−0.3,−0.4,−0.5,−0.6,−0.7,−0.8,−0.9.

As expected, the percentage of falsely ignored samples diminishes with decreasing
values of τ and the portion of correctly kept samples rises. However, this comes at the
cost of keeping more of the mislabeled samples. Since the value of the removal threshold
naturally influences the dynamics of the label changes, it seems reasonable that the final
performance is affected by the value of τ . Judging from Figure 4.2, τ ≥ −0.6 worked
best in this scenario, but the resulting performance is not up to par with the other
configurations, regardless of the threshold value.
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Apparently, the high number of falsely ignored samples, as depicted in Figure 4.1, is
not the primary cause for the bad performance of this setting. It seems likely that the
unwarranted label changes, that are fairly prevalent at any threshold value, may be at
fault. This seems reasonable, since the already small number of crucial minority class
samples is further reduced.

Best GM Configuration The largest improvement over the baseline was achieved by
adding no alternative label and using weighted sampling for the comparison batch. Figure
4.3 shows the label changes during an exemplary run of the GM algorithm with these
parameters, learning rate 0.01, and batch size 64. The depicted statistics were not
smoothed over several batches. The color coding of the lines is the same as in Figure 4.1.

Figure 4.3.: Label Changes during Training for SMS
(TF-IDF, CE/CE, Weighted Sampling, No Alternative Label, τ = 0)

The label dynamics for this scenario look fairly different from those presented in Figure
4.1. Surprisingly, in this configuration, a large portion of the minority class samples
is ignored, despite the use of weighted sampling for the comparison batch. Moreover,
several "pure" update batches, consisting either entirely of samples with weak labels 0 or
1, are created. A comparison with the gold labels can give some insight on how well this
version of the GM algorithm can distinguish between mislabeled and correctly annotated
samples. Interestingly, despite the improvement over the baseline, the share of falsely
ignored samples per batch is quite high for many updates. Judging from Figure 4.3, the
best-performing configuration of the GM algorithm found in Table 4.4 does not seem to
be very effective in identifying mislabeled samples. The statistics collected throughout
the 10 runs of the experiment reveal that, on average, only around 3.23% of ignored
samples were actually mislabeled. Moreover, around 50.71% of the mislabeled instances
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seen during training were ignored, while this percentage is only slightly lower for correctly
labeled samples (45.95%).

Since a large fraction of correctly labeled samples is ignored in this scenario, decreasing
the removal threshold τ might help to improve the performance further.

Figure 4.4.: Effect of Removal Threshold Value for SMS
(TF-IDF, CE/CE, Weighted Sampling, No Alternative Label)

The left plot in Figure 4.4 shows that, for this combination of parameters, the value
of τ seems to have a similar but slightly more significant effect than in the previously
explored setting. In particular, choosing a threshold value lower than -0.6 noticeably
degrades the performance for the depicted set of experiments. This is reflected in the
right plot, as the jump from τ = −0.6 to τ = −0.7 has a very strong impact on the label
dynamics. With decreasing removal threshold, this setting generally becomes more and
more similar to the baseline, as less samples are ignored. Therefore, the score drop at
low threshold values matches observation that the baseline performed worse than this
particular configuration of the denoising method. If we focus purely on performance,
choosing τ = 0 seems sufficient in this case. Overall, the dynamics depicted in Figure
4.4 could indicate that keeping a larger portion of the mislabeled samples can be more
harmful than ignoring large numbers of correctly labeled samples.

Significance of Results From all configurations examined in Table 4.4, the setting
"weighted comparison batch sampling, no alternative label" achieved the best performance
on the development set. Since the observed performance gap between this configuration
of the GM algorithm and the baseline is fairly high, a randomization test at significance
level α = 0.05 will be conducted in order to assess whether there is a significant difference
between the methods. Remember that the randomization test compares two particular
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models and not the average performance scores reported in Table 4.4 (cf. Yeh 2000) [65].
Therefore, the best-scoring model on the development set found during the collection
of Table 4.4 is retrieved for the baseline and the aforementioned GM configuration
respectively. The number of disagreeing predictions of these two systems on the test set
was smaller than 20, hence exact randomization was performed, as suggested by Yeh
(2000) [65].

The test returned a p-value of 0.07213, which is higher than the significance level α.
As a result, the null hypothesis, that there is no true performance difference between
the two systems [65], is not rejected. This result can be seen as an indication that the
performance gap observed in Table 4.4 might just be due to chance.

Now that that the results obtained by solely using the cross-entropy loss were ana-
lyzed, it will be investigated whether the performance of the baseline or the GM algorithm
can be further pushed by making use of either LF1pos.

or LF1macro
as defined in Section

4.3.3.
First, the baseline performance using the two loss functions will be examined in order

to assess whether additional experiments with these losses might be fruitful.

Method Update Loss Avg. F1 (Dev.) Avg. F1 Avg. Precision Avg. Recall
Baseline F1 0.89189(0.01632) 0.87598(0.01447) 0.97286(0.01212) 0.79701(0.02355)
Baseline Macro-F1 0.82986(0.01239) 0.82973(0.00591) 0.98571(0.00986) 0.71642(0.00704)
Baseline CE 0.82025(0.00573) 0.81617(0.01583) 0.9791(0.00068) 0.7(0.02274)

Table 4.5.: Baseline Performance on SMS (TF-IDF, F1-Based Losses)

The results listed in Table 4.5 show that using LF1pos.
to directly optimize the F1 score

of the positive class can indeed boost the performance. In particular, the recall score
improves, while the precision ever so slightly decreases compared to the cross-entropy
baseline. LF1macro

generally yields better results than the cross-entropy loss, however, the
F1 scores do not come close to the performance achieved with LF1pos.

. This is somewhat
intuitive, since LF1macro

optimizes the macro-F1 score, while the chosen evaluation metric
is the F1 score of the positive class.

Table 4.6 summarizes the effects of the two F1-based losses on the performance of the
GM algorithm. Note that in the settings where an F1-based loss is used as the comparison
loss, no other class label is specified, since changing the label of one sample would affect
the gradients of all other instances in the batch (cf. A.1.1).
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Update/Comp. Loss a Weighted Sampling Avg. F1 (Dev.) Avg. F1 Avg. Precision Avg. Recall
F1/CE / No 0.19171(0.06908) 0.19712(0.08256) 0.1518(0.05382) 0.4403(0.25671)
F1/CE / Yes 0.53371(0.14888) 0.54079(0.13555) 0.41122(0.14428) 0.90597(0.14709)
F1/CE 0 No 0.19171(0.06908) 0.19712(0.08256) 0.1518(0.05382) 0.4403(0.25671)
F1/CE 0 Yes 0.5139(0.16703) 0.51787(0.15805) 0.39677(0.16624) 0.8791(0.15818)

Macro-F1/CE / No 0.86711(0.01355) 0.84997(0.01617) 0.97511(0.01263) 0.75373(0.02561)
Macro-F1/CE / Yes 0.90731(0.00764) 0.88115(0.00968) 0.93261(0.02223) 0.83582(0.02225)
Macro-F1/CE 0 No 0.85153(0.1157) 0.83752(0.01708) 0.95964(0.01375) 0.74328(0.02417)
Macro-F1/CE 0 Yes 0.90398(0.00855) 0.8764(0.01403) 0.94846(0.02286) 0.81493(0.01888)

F1/F1 / No 0.33299(0.06895) 0.34852(0.07875) 0.22837(0.06701) 0.89254(0.20786)
F1/F1 / Yes 0.27641(0.03135) 0.27718(0.02719) 0.1785(0.0505) 0.80448(0.21066)

Macro-F1/Macro-F1 / No 0.85074(0.0177) 0.84605(0.01367) 0.98249(0.01083) 0.74328(0.02312)
Macro-F1/Macro-F1 / Yes 0.91048(0.00928) 0.88249(0.00986) 0.95082(0.02247) 0.82388(0.01835)

Table 4.6.: GM Performance on SMS (TF-IDF, F1-Based Losses, τ = 0)

Interestingly, updating with LF1pos.
drastically deteriorates the performance of the GM

algorithm. Using LF1macro
for the update results in much better scores, even though the

loss is based on a different evaluation metric. This is in contrast to the baseline results
and likely has its roots in the label changes induced by the denoising algorithm. The
following section aims to find a possible explanation for the poor performance of LF1pos.

as an update loss for the GM algorithm.

Worst GM Configuration The worst average F1 score recorded in Table 4.6 was obtained
by using LF1pos.

to perform the update and LCE to compute the compared gradients.
Using weighted sampling for the comparison batch improves the results for this loss
combination, however, the final average score is still much lower than the one obtained
by updating with the cross-entropy loss. Figure 4.5 gives insights into the label changes
induced by this loss combination when no alternative label is specified. Learning rate
0.01 and batch size 32 was selected for the run with uniform comparison batch sampling.
For the setting that makes use of weighted comparison batch sampling, learning rate 0.01
and batch size 128 was chosen by the grid search. In both cases, the statistics were not
smoothed over several batches, since the plots were already nicely readable.
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(a) F1/CE, No Weighted Sampling, No Alternative Label, LR=0.01, M = 32

(b) F1/CE, Weighted Sampling, No Alternative Label, LR=0.01, M = 128

Figure 4.5.: Label Changes during Training for SMS
(TF-IDF, F1/CE, τ = 0)

Figure 4.5 (a) reveals that, without weighted comparison batch sampling, all minority
class instances are ignored, at least in the depicted run. As a result, no updates are
conducted, since when using LF1pos.

, all gradient entries are zero when the expected
number of true positives in the update batch is zero (cf. A.1.1). Therefore, the resulting
system is still equal to the randomly initialized model, which explains its poor performance.

Modifying the removal threshold could potentially help mitigate this issue. Figure 4.6
examines whether this intuition is correct.
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Figure 4.6.: Effect of Removal Threshold Value for SMS
(TF-IDF, F1/CE, No Weighted Sampling, No Alternative Label)

As expected, decreasing the threshold τ "forces" the algorithm to keep some minority
class samples, despite them having a negative similarity score with the comparison batch.
Performance rapidly increases when τ ≤ −0.6 is chosen. This result shows that the
"default" removal threshold, τ = 0, is not always optimal, and therefore, tuning the value
of τ can prove beneficial.

Figure 4.5 (b) indicates that, surprisingly, almost all minority class samples are ignored
by the denoising method, even when weighted comparison batch sampling is used. This
behaviour of the GM algorithm is highly undesirable, since simply ignoring the minority
class is not an effective way to diminish label noise. At first glance, it is a bit perplexing
that the label dynamics depicted in Figure 4.5 (b) are so vastly different from those
observed when the basic cross-entropy loss was to update (cf. Figure 4.3). After all,
the only difference between the two settings is the update loss, while the formulas for
computing the comparison gradient and the individual sample gradients are the same.
However, it is important to remember that the predicted probabilities of the current
model directly influence the gradients and by extension the similarity score of each sample.
Even with weighted comparison batch sampling, a model trained with LF1pos.

rarely
keeps positive samples, and therefore seldomly updates (cf. Figure 4.3). Therefore, it
likely produces very different outputs than a model that is "properly" trained with the
cross-entropy loss, which possibly explains the observed difference in the label dynamics.

In conclusion, training with LF1pos.
should be handled with care when the GM algorithm

is used for denoising, since it cannot be guaranteed that there will be positive samples in
the resulting update batch. Tuning the removal threshold is a possible solution to this
problem, however, it might be more efficient to simply choose a different loss instead. For
example, updating with LF1macro

worked well, even for τ = 0, according to the results in
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Table 4.6. The following segment therefore explores the effects of training with LF1macro
.

Best GM Configuration Figure 4.7 presents analogous plots to those provided in Figure
4.5 for the the setting where LF1macro

is chosen as both the update loss and the comparison
loss. This loss assignment achieved the best development and test performance in Table 4.6
when combined with weighted sampling for the comparison batch. For better readability,
the depicted statistics in Figure 4.7 (a) and (b) were smoothed over five batches.

(a) Macro-F1/Macro−F1, No Weighted Sampling, No Alternative Label, LR=0.01,
M = 32

(b) Macro-F1/Macro−F1, Weighted Sampling, No Alternative Label, LR=0.01, M = 128

Figure 4.7.: Label Changes during Training for SMS
(TF-IDF, Macro-F1/Macro-F1, τ = 0)

The training dynamics of the two scenarios depicted in Figure 4.7 seem fairly similar for
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the first few updates, however, the model utilizing weighted comparison batch sampling
reached its best development performance in a much earlier epoch than the other con-
figuration. Despite the good results achieved by using the soft macro-F1 loss for both
the gradient comparison and the update, the label dynamics still do not suggest that the
method is effectively distinguishing between mislabeled and correctly labeled samples.
Judging from the statistics collected over 10 runs, the average fraction of mislabeled
samples that are ignored is around 54.76% when weighted sampling for the comparison
batch is used (cf. Figure 4.7 (b)). For correctly labeled samples, the percentage is only
slightly lower at 48.07%.

To summarize, the experiments conducted on sparse TF-IDF representations of the
SMS dataset showed that applying Algorithm 1 can ameliorate performance compared to
training on unaltered noisy labels. However, the resulting difference in test scores was not
significant for the setting with the largest performance gap. Moreover, the performance
of the GM algorithm highly depends on the chosen loss functions and parameters. In
particular, using weighted sampling for the comparison batch seems to be crucial for
achieving a high F1 score with the denoising method on this specific dataset. Comparing
the label changes conducted by the GM algorithm with the ground-truth labels provided
by WRENCH showed no indication that the method can discern between mislabeled and
correctly labeled samples, at least for TF-IDF encodings of the input texts. The next
section explores whether the observations outlined above also hold when dense embeddings
are used.

Dense Embeddings

In this segment, the previous experiments are recreated with embeddings extracted from
a fine-tuned DistilBERT model. The main differences to the previous experiments with
TF-IDF encodings are that the features can also be negative and that the gradients now
generally have a larger number of non-zero entries.

Table 4.7 summarizes the results obtained by solely using the cross-entropy loss, akin
to Table 4.4.

Method a Weighted Sampling Avg. F1 (Dev.) Avg. F1 Avg. Precision Avg. Recall
GM / No 0.91817(0.00656) 0.91328(0.02093) 0.95444(0.00691) 0.87612(0.03659)
GM / Yes 0.9136(0.00527) 0.89912(0.01064) 0.9517(0.00496) 0.85224(0.0192)
GM 0 No 0.91778(0.00513) 0.91147(0.01968) 0.95719(0.0118) 0.87015(0.02819)
GM 0 Yes 0.91494(0.00415) 0.90086(0.00933) 0.95187(0.00487) 0.85522(0.01731)

Baseline / / 0.91469(0.00321) 0.89396(0.006) 0.95121(0.00506) 0.84328(0.01055)

Table 4.7.: Performance on SMS (DistilBERT, CE Loss, τ = 0)

The performances in Table 4.7 show that training on embeddings extracted from
DistilBERT generally results in better F1 scores than using simple TF-IDF features
(cf. Table 4.4). The recall is however still much lower than the precision. The baseline
is consistently outperformed by the GM algorithm, in terms of average test F1 score.
However, the performance gap is much smaller compared to the results listed in Table 4.4.
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Moreover, looking at the standard deviations, the test F1 scores achieved by models trained
with the GM algorithm are more volatile than the corresponding baseline performances.

Since the results are very close and the standard deviations are fairly high, picking a
designated "best" and "worst" parameter combination for this set of experiments does
not seem sensible. However, it is interesting to see that the effects of the parameters on
the final performance are vastly different in this setting compared to the experiments
conducted on sparse features (cf. Table 4.4). Surprisingly, making use of weighted sampling
for the comparison batch did not seem to affect the final performance much, despite it
being crucial in the TF-IDF setting. Furthermore, for sparse features, setting a = 0 and
using uniformly sampled comparison batches resulted in a considerable performance drop
compared to the baseline. However, this does not seem to be the case when DistilBERT
embeddings are used.

Comparing the label changes conducted over the 10 runs with the ground-truth labels
reveals that the proposed denoising method seems to be more capable of distinguishing
between mislabeled and correctly labeled samples when dense features are used. This
could be due to a better representation of the samples compared to TF-IDF features, or the
fact, that the sample-wise gradients are not sparse anymore. Moreover, the possibility of
having negative features could play into this observation. The following table summarizes
the statistics collected throughout the 10 runs for each configuration of the GM algorithm
listed in Table 4.7. The notation introduced in Section 4.3.2 (cf. Table 4.3) was used for
creating the column names.

a Weighted Sampling I
N

CI
FL

FI
CL

CC
CC+FC

/ No 0.24211(0.06421) 0.5709(0.04293) 0.23218(0.06522) /
/ Yes 0.31888(0.17403) 0.70844(0.04682) 0.30713(0.17818) /
0 No 0.17779(0.04339) 0.60751(0.03493) 0.16478(0.04483) 0.10698(0.02117)
0 Yes 0.24408(0.12023) 0.68904(0.04844) 0.23065(0.12242) 0.21198(0.16726)

Table 4.8.: Statistics of Label Changes on SMS (DistilBERT, CE Loss, τ = 0)

Judging from Table 4.8, the GM algorithm generally ignored less samples than in the
TF-IDF setting. The average fraction of correctly labeled samples that are ignored during
training ( FI

CL) is however still fairly high for each parameter combination. Nevertheless, it
is significantly lower than the percentage of mislabeled samples that are removed ( CI

FL),
which indicates that the method is potentially able to discriminate between correct and
noisy samples with this encoding. However, when allowing for an alternative label, the
fraction of correct label changes ( CC

CC+FC ) is still fairly low, especially without weighted
comparison batch sampling.

In the following, the effect of τ on the four scenarios presented in Table 4.7 is analyzed,
to see if tuning the removal threshold could improve the performance further.
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(a) No Weighted Sampling, No Alternative Label

(b) Weighted Sampling, No Alternative Label

(c) No Weighted Sampling, a = 0

(d) Weighted Sampling, a = 0

Figure 4.8.: Effect of Removal Threshold Value for SMS
(DistilBERT, CE/CE)
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Figure 4.8 shows that the value of the removal threshold does not seem to strongly
affect the performance on the development set. At first glance, the harsh "spikes" in the
label dynamics in Figure 4.8 (b) and (d) seem odd, as one would expect a more smooth
decay of the fraction of falsely ignored samples per batch as τ decreases. However, a look
at the non-averaged statistics reveal that even for a given threshold, the dynamics can
vary greatly depending on the seed, especially when weighted comparison batch sampling
is used. This observation, combined with the fact that only three runs per threshold were
averaged for creating Figure 4.8, could explain the unstable behaviour. For all scenarios
depicted in Figure 4.8, choosing τ = 0 seems sufficient.

Next, the effects of using F1-based losses with dense representations for the SMS dataset
are explored.

First, akin to Table 4.5, the performance of the baseline models trained with LF1pos.

and LF1macro
is assessed in Table 4.9.

Method Update Loss Avg. F1 (Dev.) Avg. F1 Avg. Precision Avg. Recall
Baseline F1 0.90686(0.00498) 0.90088(0.01059) 0.95179(0.00547) 0.85522(0.01581)
Baseline Macro-F1 0.90486(0.00657) 0.90785(0.01129) 0.95096(0.00107) 0.86866(0.01965)
Baseline CE 0.9136(0.00527) 0.89396(0.006) 0.95121(0.00506) 0.84328(0.01055)

Table 4.9.: Baseline Performance on SMS (DistilBERT, F1-Based Losses)

Surprisingly, neither F1 loss makes a large impact on the final performance. In fact, on
the development set, the scores are even slightly worse compared to the cross-entropy loss.
Nevertheless, it will be interesting to see whether updating with LF1pos.

also degrades the
performance of models trained with the GM algorithm when dense embeddings are used.

Table 4.10 summarizes the results for the GM algorithm applied to dense embeddings
with various combinations of loss functions.

Update/Comp. Loss a Weighted Sampling Avg. F1 (Dev.) Avg. F1 Avg. Precision Avg. Recall
F1/CE / No 0.89933(0.00758) 0.92714(0.01888) 0.9488(0.00849) 0.90746(0.0403)
F1/CE / Yes 0.89798(0.00708) 0.94143(0.01112) 0.94472(0.0087) 0.93881(0.02854)
F1/CE 0 No 0.89961(0.00793) 0.92522(0.01922) 0.95158(0.00925) 0.90149(0.04291)
F1/CE 0 Yes 0.8986(0.0071) 0.9349(0.01345) 0.94543(0.00894) 0.92537(0.03224)

Macro-F1/CE / No 0.91591(0.00204) 0.89464(0.0081) 0.95284(0.00673) 0.84328(0.0145)
Macro-F1/CE / Yes 0.90806(0.00474) 0.90359(0.01072) 0.95056(0.00102) 0.86119(0.01868)
Macro-F1/CE 0 No 0.91135(0.00366) 0.89884(0.00875) 0.95487(0.01087) 0.84925(0.01643)
Macro-F1/CE 0 Yes 0.90836(0.00537) 0.89995(0.01222) 0.95178(0.00496) 0.85373(0.02203)

F1/F1 / No 0.89846(0.00695) 0.93312(0.01191) 0.948(0.00893) 0.9194(0.03002)
F1/F1 / Yes 0.89996(0.00759) 0.9289(0.02088) 0.94623(0.00877) 0.91343(0.04439)

Macro-F1/Macro-F1 / No 0.89928(0.00884) 0.9292(0.0121) 0.94609(0.00633) 0.91343(0.02797)
Macro-F1/Macro-F1 / Yes 0.90014(0.00802) 0.92487(0.01952) 0.94572(0.00558) 0.90597(0.04165)

Table 4.10.: Test Performance on SMS (DistilBERT and F1-Based Losses)

The different settings do not affect the performance as drastically as when sparse
encodings were used (cf. Table 4.6). Interestingly, choosing LF1pos.

as the update loss
and LCE as the comparison loss turns out to be the best-performing configuration on the
test set when DistilBERT embeddings are used, due to a comparatively high recall score.
When the data was encoded with TF-IDF, this setting ignored almost all minority class
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samples, even when weighted sampling for the comparison batch was used (cf. Figure
4.5), and therefore resulted in a very bad performance (cf. Table 4.10). Figure 4.9 reveals
that this is not the case anymore when dense embeddings are chosen. Even without
class-weighted comparison batch sampling, at least some positive samples are kept per
batch, causing the model to properly update. However, the high fraction of falsely ignored
samples is concerning. It is very interesting that the performance is not negatively affected
by the removal of this many data points, especially considering the small size of the
training set.

(a) F1/CE, No Weighted Sampling, No Alternative Label, LR=0.01, M = 32

(b) F1/CE, Weighted Sampling, No Alternative Label, LR=0.01, M = 64

Figure 4.9.: Label Changes during Training for SMS
(DistilBERT, F1/CE, No Alternative Label, τ = 0)

While the results on the SMS dataset already gave some valuable insights into the
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potential benefits and shortcomings of the proposed denoising method, evaluating its
performance on only one dataset can be misleading. Therefore, the following segment
repeats the experiments conducted on the SMS data on the Youtube dataset. The main
difference between these two data collections is that the Youtube dataset does not have a
strong class imbalance, unlike the SMS data. Note that the results for the Youtube data
therefore will be measured in accuracy instead of F1, following Zhang et al. (2021) [7].

4.4.2. Youtube

Akin to the experiments on the SMS dataset, examples which were not covered by any of
the labeling functions were removed from the dataset. This design choice reduces the size
of the Youtube training set to 1391 instances (cf. Table 4.2, Zhang et al. 2021) [7]. The
average noise rate of the training labels across the 10 runs was around 13.85%, which is
much higher than the fraction of labeling errors in the SMS data. An important factor for
the comparatively large amount of incorrect annotations is the high number of ties in the
Youtube dataset: 233 out of 1391 samples received the same number of votes for label 0
and 1 and are therefore assigned random labels in the data preparation phase. Removing
the ties reduces the noise rate to 6.65%. For the experiments presented in this theses, the
ties are however kept in the dataset, since it will be interesting to see how well the GM
algorithm performs in comparison to the baseline on data with substantial label noise.

Sparse Embeddings

Table 4.11 was collected equivalently to Table 4.4.

Method a Weighted Sampling Avg. Accuracy (Dev.) Avg. Accuracy
GM / No 0.8425(0.02952) 0.8936(0.01635)
GM / Yes 0.89333(0.01459) 0.9156(0.00479)
GM 0 No 0.84(0.01703) 0.8988(0.01677)
GM 0 Yes 0.8575(0.0127) 0.898(0.02446)

Baseline / / 0.83417(0.02132) 0.8804(0.01918)

Table 4.11.: Performance on Youtube (TF-IDF, CE Loss, τ = 0)

Table 4.11 summarizes results obtained by training with the cross-entropy loss, averaged
over 10 runs. Every configuration of the denoising method outperforms the baseline. This
may be due to the higher noise rate in the dataset or the absence of strong class imbalance
which (presumably) ran some parameter configurations uncompetitive on the SMS data.
However, the test performance gap between the baseline and the best configuration of
the denoising method is not as high as on the SMS dataset (cf. Table 4.4). Figure 4.10
examines whether the above results can be further improved by decreasing the removal
threshold τ .
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(a) No Weighted Sampling, No Alternative Label

(b) Weighted Sampling, No Alternative Label

(c) No Weighted Sampling, a = 0

(d) Weighted Sampling, a = 0

Figure 4.10.: Effect of Removal Threshold Value for Youtube
(TF-IDF, CE/CE)

49



4. Experiments on Single-Label Datasets

Generally, the influence of τ seems to depend on the setting. When no alternative
label is specified and uniform comparison batch sampling is chosen, the value of τ barely
influences the performance, despite the corresponding label dynamics changing drastically.
For the remaining settings, there seems to be a downwards trend in performance as τ
decreases. Subfigures (c) and (d), which correspond to the settings incorporating an
alternative label, reveal that the fraction of falsely corrected samples is fairly high, even
when weighted comparison batch sampling is used. It is interesting that these incorrect
label reassignments do not seem to hurt the test performance much compared to the
settings without an alternative label, namely (a) and (b).

Significance of Results Considering all of the results collected in Table 4.11 , the
GM setting "weighted sampling, no alternative label" achieved the best development
performance across the 10 runs with a mean accuracy of around 0.89333. An exact
binomial test, as described by Salzberg (1997) [67], is conducted to determine whether the
resulting improvement over the baseline on the test set is significant. The test compares
the test predictions of the best-performing models, with respect to the development
accuracy, found for the baseline and the GM algorithm. The significance level is chosen
as α = 0.05. The test resulted in a p-value of 0.3323, which is higher than the significance
level. Therefore, the null hypothesis is not rejected. The observed performance difference
between the two models might be due to chance.

While the performance measure for this dataset is accuracy and not F1, it could still
prove beneficial to examine how well LF1pos.

and LF1macro
perform on this dataset. In

particular, it will be interesting to see whether the main observation from Tables 4.5 and
4.6, namely that LF1pos.

works well as an update loss for the baseline but not for the GM
algorithm in the case of TF-IDF features, also holds for the more balanced Youtube data.

Method Update/Comp. Loss a Weighted Sampling Avg. Accuracy (Dev.) Avg. Accuracy
GM F1/CE / No 0.74667(0.0448) 0.7248(0.05596)
GM F1/CE / Yes 0.71833(0.06768) 0.7052(0.0604)
GM F1/CE 0 No 0.71917(0.0557) 0.6924(0.05398)
GM F1/CE 0 Yes 0.70917(0.07822) 0.6936(0.06856)
GM Macro-F1/CE / No 0.83667(0.02612) 0.8984(0.1103)
GM Macro-F1/CE / Yes 0.88417(0.01942) 0.9104(0.00965)
GM Macro-F1/CE 0 No 0.82417(0.02272) 0.8796(0.02162)
GM Macro-F1/CE 0 Yes 0.85333(0.01532) 0.8988(0.00844)
GM F1/F1 / No 0.60333(0.05882) 0.5876(0.05162)
GM F1/F1 / Yes 0.6025(0.05919) 0.592(0.04688)
GM Macro-F1/Macro-F1 / No 0.835(0.02772) 0.8904(0.01388)
GM Macro-F1/Macro-F1 / Yes 0.89083(0.01732) 0.9124(0.00717)

Baseline F1 / / 0.8875(0.00708) 0.9372(0.00755)
Baseline Macro-F1 / / 0.845(0.002194) 0.8916(0.01712)
Baseline CE / / 0.83417(0.02132) 0.8804(0.01918)

Table 4.12.: Performance on Youtube (TF-IDF, F1-Based Losses, τ = 0)
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Table 4.12 affirms the observation that LF1pos.
performs poorly as an update loss for

the GM algorithm, at least for sparse encodings. Its negative effect is however not as
drastic as on the SMS data, which is likely due to the more balanced class distribution in
the training set. Interestingly, LF1pos.

noticeably boosts the performance of the baseline
models, compared to the standard cross-entropy loss, despite optimizing the F1 score of
the positive class and not the accuracy.

Dense Embeddings

Lastly, the previous experiments are repeated with embeddings extracted from a fine-tuned
DistilBERT model.

Method a Weighted Sampling Avg. Accuracy (Dev.) Avg. Accuracy
GM / No 0.92667(0.01165) 0.9476(0.0081)
GM / Yes 0.92833(0.01125) 0.9472(0.00559)
GM 0 No 0.935(0.00766) 0.9484(0.0058)
GM 0 Yes 0.93583(0.01043) 0.9464(0.0043)

Baseline / / 0.9225(0.01245) 0.946(0.00712)

Table 4.13.: Performance on Youtube (DistilBERT, CE Loss, τ = 0)

Just as with the SMS data, the overall performance increases when using DistilBERT
embeddings instead of TF-IDF encodings. All configurations of the GM algorithm
included in Table 4.13 have similar test accuracies that are very close to the baseline
performance. Potentially, this could mean that barely any samples are ignored or relabeled
by the denoising method. However, this is apparently not the case. The following table
summarizes the observed label dynamics for each setting.

a Weighted Sampling I
N

CI
FL

FI
CL

CC
CC+FC

/ No 0.27066(0.1506) 0.58888(0.0413)8 0.21845(0.17738) /
/ Yes 0.26677(0.14463) 0.58132(0.003305) 0.21572(0.16721) /
0 No 0.19049(0.03943) 0.56941(0.01467) 0.12955(0.04523) 0.05707(0.05552)
0 Yes 0.18375(0.05307) 0.57588(0.05285) 0.12061(0.05864) 0.08998(0.13788)

Table 4.14.: Statistics of Label Changes on Youtube (DistilBERT, CE Loss, τ = 0)

The denoising method removes a considerable share of the encountered samples in
each setting. For this dataset and encoding, the GM algorithm seems fairly capable of
separating mislabeled samples from correctly annotated instances. However, the inclusion
of an alternative label seems to be unsuccessful once again, since only very few of the
conducted label changes are actually warranted. These observations align with the results
obtained on the SMS dataset (cf. Table 4.8).

Lastly, the impact of the F1-based losses on the performance will be analyzed.
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Method Update/Comp. Loss a Weighted Sampling Avg. Accuracy (Dev.) Avg. Accuracy
GM F1/CE / No 0.945(0.00583) 0.9496(0.0043)
GM F1/CE / Yes 0.94417(0.00562) 0.9508(0.00379)
GM F1/CE 0 No 0.94417(0.00562) 0.95(0.00471)
GM F1/CE 0 Yes 0.94417(0.00686) 0.95(0.00432)
GM Macro-F1/CE / No 0.92833(0.01125) 0.9524(0.0035)
GM Macro-F1/CE / Yes 0.93(0.01054) 0.952(0.00377)
GM Macro-F1/CE 0 No 0.92593(0.01329) 0.9524(0.00398)
GM Macro-F1/CE 0 Yes 0.9275(0.01115) 0.952(0.00377)
GM F1/F1 / No 0.94417(0.00562) 0.9516(0.0035)
GM F1/F1 / Yes 0.94417(0.00562) 0.9512(0.00368)
GM Macro-F1/Macro-F1 / No 0.93667(0.00583) 0.9516(0.00398)
GM Macro-F1/Macro-F1 / Yes 0.9375(0.00589) 0.9512(0.00368)

Baseline F1 / / 0.94(0.008861) 0.9548(0.00329)
Baseline Macro-F1 / / 0.9341/(0.0073) 0.9504(0.00572)
Baseline CE / / 0.9225(0.01245) 0.946(0.00712)

Table 4.15.: Performance on Youtube (DistilBERT, F1-Based Losses, τ = 0)

Overall, the variation of the scores collected in Table 4.15 is fairly small. On the test
set, a simple baseline trained with LF1pos.

performed the best. Table 4.15 once again
suggests, that choosing LF1pos.

as the update loss for the GM algorithm is viable for dense
representations of the data. This table concludes our experiments on single-label datasets.

4.4.3. Summary

A lot of results were presented in this chapter, therefore, this section aims to briefly
summarize the main observations.
Dense representations generally resulted in better performances than sparse encodings.
While the absolute performance gap to the baseline was larger when using TF-IDF features,
as opposed to DistilBERT features, the denoising method was more successful in distin-
guishing between mislabeled and correctly labeled samples when dense representations
were chosen.

The F1-based losses can boost performance, both for the GM algorithm and the baseline.
However, for the GM algorithm, updating with LF1pos.

requires special care when sparse
features are used. In particular, LF1pos.

needs at least one positively labeled sample in
the update batch in order to yield a non-zero batch gradient. This cannot be guaranteed,
especially when the denoising method removes samples from the batch. One possible
approach for dealing with this problem is tuning the removal threshold τ , as low values
of τ will only remove samples with strongly negative gradient similarities from the batch.

This concludes the experiments on single-label datasets. The next chapter explores
the multi-label setting.

52



5. Experiments on CheXpert

This section assesses the performance of the GM denoising algorithm on the CheXpert
dataset which was introduced by Irvin et al. (2019) [20]. The CheXpert dataset is a
multi-label medical imaging dataset provided by Stanford University1 [20]. The CheXpert
training set was annotated by a rule-based labeler, hence this dataset is weakly supervised
and likely contains annotation errors [20]. Therefore, applying our proposed denoising
strategy might boost performance on this dataset. The next section gives some more
details about the CheXpert data collection based on the information provided in the
original CheXpert paper [20] and the corresponding data sheet by Garbin et al. (2021)
[77].

5.1. Data Description

The CheXpert dataset [20] is composed of chest radiographs from studies conducted at
Stanford Hospital between October 2002 and July 2017. The images in the dataset are
annotated with respect to 12 pathologies as well as the observations Support Devices
and No Finding [77, 20]. Furthermore, the instances in the data collection are grouped
by patient and by study. A study contains at least one image from the specific patient
[77, 20].

The original CheXpert dataset was split into 3 parts: training, development and test
[77, 20]. However, the test set is not publicly available since it is used as the evaluation
set for the CheXpert competition [77, 20]. Therefore, following Giacomello et al. (2021)
[78], the development set will be used as the test set in this thesis. Table 5.1 summarizes
the number of observations of the original training and development set (cf. Garbin et al.
2021) [77, 20].

Split Patients Studies Images
Train 64540 187641 223414
Dev. 200 200 234

Table 5.1.: Statistics of the Original CheXpert Split2

While the studies in the development and test set were hand-labeled by radiologists,

1The registration form for obtaining the data can be found at https://stanfordmlgroup.github.io/
competitions/chexpert/, last accessed 2022-06-16

2Adapted from Garbin et al. 2021 [77], Table I
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the annotations for the training set were generated by the "CheXpert labeler"3, which
was applied to the corresponding radiology reports [77, 20]. These reports are however
not provided by Stanford University; only the chest radiographs are available [77, 20].
Since the corresponding report is based on the entire study, all of the chest radiographs
contained in a particular study are annotated with the same labels [77, 20]. The CheXpert
labeler performs three different steps to assign 14 labels to each study: mention extraction,
mention classification and mention aggregation (cf. Irvin et al. 2019) [77, 20].

In the mention extraction phase, the labeler uses keyword lists, provided by radiologists,
to find text segments mentioning one of the 14 observations in the report’s Impression
section, which is a short summary of its main findings [77, 20]. These extracted phrases
are then matched against three other sets of rules in the mention classification stage in
order to determine whether they express the presence or the absence of said observation,
or potentially uncertainty about the observation [77, 20]. A mention can be classified as
"uncertain" due to vagueness in the report or explicitly expressed uncertainty about the
diagnosis by the radiologist [77, 20]. Irvin et al. (2019) [20] give the following examples
for uncertainty:

"heart size is stable" [20, p. 591]

"diffuse reticular pattern may represent mild interstitial pulmonary edema"
[20, p. 591]

In the last stage, a single label is assigned to each of the 14 observations [77, 20]. Irvin
et al. (2019) [20] describe the phase as follows:

"Observations with at least one mention that is positively classified in the
report is assigned a positive (1) label. An observation is assigned an uncertain
(u) label if it has no positively classified mentions and at least one uncertain
mention, and a negative label if there is at least one negatively classified
mention. We assign (blank) if there is no mention of an observation." [20, p.
592]

Note that in the raw data files, the uncertainty label is represented by -1 instead of "u"
[77, 20]. To summarize, for training instances, four different labels can be assigned to
each of the 14 observations, namely [77, 20]:

• 1: observation is present

• 0: observation is not present

• -1: it is uncertain whether the observation is present

• blank: the given observation was not mentioned in the Impression section

3The code for the labeler is available in this repository provided by Stanford University at https:
//github.com/stanfordmlgroup/chexpert-labeler, last accessed 2022-06-17
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An exception is the "No Finding" class, which can only take a positive or a blank
label [77, 20]. It is assigned label 1 if no pathology was labeled positive or uncertain and
remains blank otherwise [77, 20]. Note that more pathologies than the 12 that correspond
to dedicated classes in the dataset are taken into consideration for the "No Finding"
label [77]. Therefore, it can happen that the "No Finding" label is blank despite there
being no positive or uncertainty labels for a particular instance [77, 20]. The images in
the development and test set were annotated by radiologists and contain no blank or
uncertainty labels [77, 20]. There are no additional manual annotations for the CheXpert
training set [77, 20], so the label changes made by the GM algorithm unfortunately cannot
be compared to ground-truth labels.

In the context of this thesis, the inspected performance measures for this dataset were
chosen to be macro-F1, micro-F1 and AUROC. Each performance measure gives different
insights into the behaviour of the classifier [79, 70, 80]: The macro-F1 score averages
the individual F1 scores of all labels. As a result, the performance on rare classes has a
comparatively high impact on this evaluation metric, since the F1 score of a seldomly
appearing label contributes to the macro-F1 just as much as the F1 score of a frequently
observed class [70]. The micro-F1 measure on the other hand aggregates true positives,
false negatives and false positives over all classes and computes a single F1 score based
on these accumulated values [70, 81, 82]. Therefore, rare classes have less impact on the
micro-F1 score than on the macro-F1 value [70, 81, 82]. Note that for computing any
type of F1 measure, decision thresholds that indicate the minimum prediction value that
is required to assign a positive label to an observation have to be defined [70, 81, 82]. On
the contrary, the AUROC (Area Under the Receiver Operating Characteristics) score does
not require setting a threshold [79]. The ROC curve of a binary classifier plots the false
positive rate against the true positive rate achieved by the system for varying thresholds
[79]. The AUROC metric measures the size of the area under the resulting curve [79].
AUROC values are defined on the interval [0, 1], where 0.5 is the score achieved by random
guessing [79, 20, 80]. Since the original CheXpert paper [20] computed class-wise AUROC
scores, the macro-averaged AUROC scores will be reported to keep tables concise [80].

5.2. Data Preparation

The CheXpert dataset allows for several design choices regarding the data preprocessing.
This section explains how the images and labels were prepared for the experiments in
this thesis.

5.2.1. Label Preparation

For the following experiments, the uncertainty labels are mapped to label 1 and blank
labels are assigned the value 0. For the blank labels, this reassignment is somewhat
intuitive, since not every radiographic report will mention all 12 pathologies. If an
observation is not even mentioned in the study report, there likely are no indications for
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it in the corresponding images [77, 20]. Several approaches for handling the uncertainty
labels were explored by Irvin et al. (2019) [20], including turning them to either 0 or
1, ignoring them, or keeping them as a separate class. Since the goal of the following
experiments is not to achieve the best possible performance on CheXpert but to compare
the multi-label version of the GM algorithm (i.e. Algorithm 2) to a baseline that is
trained on the same labels, the rather simple option of assigning a positive label to all
uncertain observations was chosen. Better overall performances could likely be achieved
by using a more refined reassignment strategy [77, 20]. Moreover, only the labels for the
12 pathologies were used for training and evaluation.

5.2.2. Image Embeddings

For further simplification, the images in the dataset were considered independently, dis-
regarding the structure provided by the studies. Since the original CheXpert development
set will be used as the test set, observations of 7000 patients were split off from the
training set to be used as a validation set. There are a total of 22815 chest radiographs
in this new development set, which reduces the training set size to 200599 [77, 20]. The
concrete label distribution for the training and validation data can be found below.

Pathology Label 0 (Train) Label 1 (Train) Label 0 (Dev.) Label 1 (Dev.)
Enlarged Cardiomediastinum 179690 20909 20523 2292

Cardiomegaly 168878 31721 19449 3366
Lung Opacity 100767 99832 11468 11347
Lung Lesion 191018 9581 21722 1093

Edema 142145 58454 16039 6776
Consolidation 162297 38302 18592 4223
Pneumonia 178254 22345 20351 2464
Atelectasis 140120 60479 16179 6636

Pneumothorax 180402 20197 20419 2396
Pleural Effusion 112905 87694 12694 10121
Pleural Other 195044 5555 22194 621

Fracture 191946 8653 21786 1029

Table 5.2.: Label Distribution in "New" Training and Development Set

The original CheXpert development set is relatively small with only 234 examples
[77, 20]. As a result, for Lung Lesion and Pleural Other, there is only one positive
observation, while Fracture was never marked as positive [77, 20]. These three classes are
therefore excluded when reporting the performance metrics, since especially the macro-F1

score could be greatly affected by them [70]. The concrete label distribution in our test
set can be found in Table 5.3.
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Pathology Label 0 (Test) Label 1 (Test)
Enlarged Cardiomediastinum 125 109

Cardiomegaly 166 68
Lung Opacity 108 126
Lung Lesion 233 1

Edema 189 45
Consolidation 201 33
Pneumonia 226 8
Atelectasis 154 80

Pneumothorax 226 8
Pleural Effusion 167 67
Pleural Other 233 1

Fracture 234 0

Table 5.3.: Label Distribution in "New" Test Set (i.e. the Original Development Set)4

In order to use the CheXpert images with a simple model architecture, the chest
radiographs first need to be encoded [78]. Giacomello et al. (2021) [78] found that using
fine-tuned convolutional neural networks (CNNs) as feature extractors and training a
separate classifier with the obtained image embeddings can result in a good performance
on the CheXpert data. Therefore, this approach was adopted in this thesis’ experiments.

Image embeddings are low-dimensional representations that map each image to a single
vector [78]. Such encodings can be created by removing the classification layer of a
particular CNN and retrieving the output of this modified architecture for each image, as
was done in the experiments by Giacomello et al. (2021) [78]. There is a large selection
of CNN architectures that could be used to extract these encodings. For the experiments
in this thesis, a pre-trained EfficientNet-B0 [83] from the torchvision library was chosen5.

The EfficientNet models, proposed by Tan et al. (2019) [83], achieve comparable
performance to other families of CNNs, such as ResNets [84] or DenseNets [85], while
using much fewer parameters. Tan et al. (2019) [83] accomplished this by developing a new
strategy for adjusting the size of a CNN depending on how many resources are available.
To improve the performance of a particular CNN architecture, usually, either the number
of layers, the width of the network or the resolution of the input images is increased
[83]. Tan et al. (2019) [83] suggested adjusting all three of these aspects simultaneously,
instead of only one, by using their compound scaling method. Their smallest network,
EfficientNet-B0, was developed by balancing performance with the number of floating
point operations. The remaining EfficientNet models, B1 to B7, were constructed from
this baseline by using compound scaling [83]. On ImageNet, EfficientNet-B1 showed a 1%
top-1 accuracy improvement over ResNet-152 despite using only 7.8 million parameters
as opposed to 60 million. Similar observations were made for the other variants of
EfficientNet, indicating their effectiveness for learning with low computational resources

4Adapted from Garbin et al. 2021 [77], Table V
5https://pytorch.org/vision/0.8/models.html, last accessed 2022-06-20
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[83].
The torchvision implementation of EfficientNet-B0 used for the experiments in this thesis

was pre-trained on ImageNet. While the images contained in ImageNet greatly differ from
chest radiographs, the pre-training still gives good intialization as was shown by Ke et al.
(2021) [86]. EfficientNet-B0 requires input images of size 224x224 [83]. Moreover, in order
to use the pre-trained version provided by torchvision, the images should be normalized
with the mean and standard deviation from ImageNet [87]. Therefore, appropriate
transformations were applied to all chest radiographs in the CheXpert dataset. The
EfficientNet was fine-tuned on the training data for two epochs, using Adam optimizer with
learning rate 0.0001 and batch size 16, which are the hyperparameters used in the original
CheXpert paper [20]. Once the fine-tuning was completed, embeddings were extracted
from the penultimate layer of the network. The classification layer of EfficientNet-B0
takes 1280 inputs, therefore, the resulting image embeddings are 1280-dimensional vectors
[83].

5.3. Experimental Setup

Just like in the single-label case, only the classification head of the CNN is re-trained
with the proposed denoising method, while the remaining parameters are frozen after
the EfficientNet was fine-tuned for two epochs. The number of input nodes for the
classification layer is equal to the embedding size, namely 1280, and each of the 12
pathologies is represented by an output node. The 12 model outputs for a sample t can
therefore be written as indicated below [62]. The same notation as in the single-label case
is used.

zt,1 =
F∑︂

f=1

(wf,1xt,f ) + b1

zt,2 =

F∑︂
f=1

(wf,2xt,f ) + b2

...

zt,12 =
F∑︂

f=1

(wf,12xt,f ) + b12

Here, F = 1280. Since the CheXpert data is significantly larger than both SMS and
Youtube [20, 7], the number of runs per setting is reduced to 3. Moreover, the batch size
will be fixed to 128 and the learning rate is set to 0.001 for all experiments. Each model
is trained for 5 epochs. The best state of the model, measured by the validation loss, is
loaded after these 5 epochs and evaluated on the test set. Note that this is a slightly
different procedure than in the single-label setting, where the actual performance metric,
namely F1 or accuracy, was used to determine the best epoch. This change was made
since now three different metrics are analyzed.
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5.3.1. Examined Loss Functions

Akin to the experiments on single-label datasets, different loss functions are examined,
namely binary cross-entropy (BCE) as well as a soft macro-F1 loss and a soft micro-F1

loss, based on Bénédict et al. (2021) [19]. The main difference to the single-label losses
is that now a sigmoid activation is applied to the output, instead of a softmax, since
multiple classes can be positive for a single instance [19].

BCE Loss

The BCE loss computed on batch B, with batch size M and K labels per instance, takes
the form6

L∗BCE =
1

MK

M∑︂
t=1

K∑︂
k=1

l∗t,k

where

l∗t,k = −[log(σ(zt,k))yt,k + log(1− σ(zt,k))(1− yt,k)]

and σ(zt,k) =
1

1+e
−zt,k

[88, 89].
Note that this loss is decomposable with respect to the individual samples and labels

[89]. The loss follows a so-called "one-vs-all" approach, which simplifies the multi-label
problem to several binary classification tasks, ignoring dependencies between the classes
[19, 89].

The proposed denoising method, as described in Algorithm 2, should allow to ignore
individual labels yt,k for the update. If, for example, the last label of sample t, yt,K ,
should be ignored, all components of the sample gradient corresponding to the weights and
biases connected to label K need to be zeroed out. Therefore, the matrices representing
the instance-specific gradients of sample t with respect to the learnable parameters should
look like the following expressions, given the network architecture used in the experiments
(cf. A.1.2) [90, 89].

⎡⎢⎢⎢⎣
(σ(zt,1)− 1)xt,1yt,1 + σ(zt,1)xt,1(1− yt,1) ... (σ(zt,1)− 1)xt,F yt,1 + σ(zt,1)xt,F (1− yt,1)

...
(σ(zt,K−1)− 1)xt,1yt,K−1 + σ(zt,K−1)xt,1(1− yt,K−1) ... (σ(zt,K−1)− 1)xt,F yt,K−1 + σ(zt,K−1)xt,F (1− yt,K−1)

0 ... 0

⎤⎥⎥⎥⎦
for weights and ⎡⎢⎢⎢⎣

(σ(zt,1)− 1)yt,1 + σ(zt,1)(1− yt,1)
...

(σ(zt,K−1)− 1)yt,K−1 + σ(zt,K−1)(1− yt,K−1)
0

⎤⎥⎥⎥⎦
6Formula from https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html,

last accessed 2022-06-24
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for biases. In order to achieve this, a masked version of L∗BCE , which can be used as
the update loss for the GM algorithm, is defined in the following.

Let ˜︂Mk be the number of samples in the batch, for which the label for class k was
not ignored. Moreover, let ˜︁yt,k denote the value of label k of sample t after the label
reassignment. Since in the multi-label setting, no alternative label is used, ˜︁yt,k is either
the original label, yt,k, or the label i, which signals that this particular label should be
ignored for the update. The masked BCE loss used in the experiments can be written as7

L∗BCE(B) =
1

K

K∑︂
k=1

1˜︂Mk

M∑︂
t=1

−[log(σ(zt,k))yt,k + log(1− σ(zt,k))(1− yt,k)]1(˜︁yt,k ̸=i)

Using this formulation, if ˜︁yt,k = i, sample t does not contribute to the loss associated
with label k. Moreover, the sample-specific gradients for weights and biases connected to
label k will be 0 for sample t.

Soft Macro-F1 Loss

Another examined loss function is a soft macro-F1 loss8, as described by Bénédict et
al. (2021) [19]. It has the theoretical advantage over the BCE loss that it directly
approximates a multi-label performance measure [19]. The loss can be defined as follows
(cf. Bénédict et al. 2020) [19].

L∗F1macro
(B) = 1− 1

K

K∑︂
k=1

2˜︁tpk
2˜︁tpk + ˜︂fnk +

˜︂fpk + ϵ

where

˜︁tpk =
M∑︂
t=1

yt,kσ(zt,k)

˜︂fpk =

M∑︂
t=1

(1− yt,k)σ(zt,k)

˜︂fnk =

M∑︂
t=1

yt,k(1− σ(zt,k))

This formulation is very similar to LF1macro
, as defined in Section 4.3.3, but here a

sigmoid activation is used as opposed to the softmax.
If this soft macro-F1 loss should be used for the model update, a masked version is

again needed. The masked loss can be defined by adapting the estimated confusion matrix
values to not take ignored labels into account and subsequently plugging them into the

7Formulation inspired by Irvin et al. (2019) [20]
8An implementation of this loss can be found at https://github.com/ashrefm/multi-label-soft-
f1/blob/master/Multi-Label%20Image%20Classification%20in%20TensorFlow%202.0.ipynb, last
accessed 2022-06-21
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formula for L∗F1macro
. For the experiments in this theses, the masked confusion matrix

estimates were computed as indicated below.

tpk =
M∑︂
t=1

yt,kσ(zt,k)1(˜︁yt,k ̸=i)

fpk =
M∑︂
t=1

(1− yt,k)σ(zt,k)1(˜︁yt,k ̸=i)

fnk =
M∑︂
t=1

yt,k(1− σ(zt,k))1(˜︁yt,k ̸=i)

Soft Micro-F1 Loss

While Bénédict et al. (2021) [19] describe a label-wise soft F1 loss, it should be possible
to formulate a micro-averaged version by aggregating the estimated confusion matrix
entries over all labels as indicated below.

˜︁tp =

M∑︂
t=1

K∑︂
k=1

yt,kσ(zt,k)

˜︂fp =
M∑︂
t=1

K∑︂
k=1

(1− yt,k)σ(zt,k)

˜︂fn =

M∑︂
t=1

K∑︂
k=1

yt,k(1− σ(zt,k))

L∗F1micro
(B) = 1− 2˜︁tp

2˜︁tp+ ˜︂fn+˜︂fp+ ϵ

A masked version of the micro-F1 loss can be constructed analogously to the macro-F1.
The reduced estimated confusion matrix entries in this case are given by the following
expressions.

tp =

M∑︂
t=1

K∑︂
k=1

yt,kσ(zt,k)1(˜︁yt,k ̸=i)

fp =
M∑︂
t=1

K∑︂
k=1

(1− yt,k)σ(zt,k)1(˜︁yt,k ̸=i)

fn =

M∑︂
t=1

K∑︂
k=1

yt,k(1− σ(zt,k))1(˜︁yt,k ̸=i)
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5.3.2. Tuning of Decision Thresholds

In the multi-label setting, multiple classes can be assigned a positive label per instance [49].
Therefore, each class requires a threshold, which dictates the predicted probability that
needs to be exceeded for the corresponding label to be marked as positive [19, 70, 81, 82].
This threshold can either be constant across all classes or class-specific [19]. In the
following experiments, the threshold for each of the 12 pathologies is tuned on the
development set.

For optimizing the macro-F1 score, the threshold of each class can be tuned individually,
since the F1 scores for each class are simply averaged in this case [70, 81, 82]. Therefore,
the macro-F1 score is optimized when all class-wise F1 scores are maximized [70, 81, 82].
In the experiments, we evaluate decision thresholds ranging from 0 to 1 with a step size
of 0.04. For each class, the threshold that gives the best F1 score on the development set
is chosen. The resulting thresholds will be used for the evaluation of the macro-F1 score
on the test set.

Tuning the thresholds to maximize the micro-F1 score is more complicated, since
it cannot be decomposed into class-wise contributions [91, 70, 81, 82]. Therefore, the
"best" threshold value for one class depends on the current thresholds of the other labels
[91, 70, 81, 82]. While some papers simply recycle the optimized thresholds with respect to
the macro-F1 for evaluating the micro-F1 [81], Pillai et al. (2012, 2013) [81, 82] developed
an algorithm for selecting class-specific thresholds on the development set that specifically
maximize the micro-F1 score. Their procedure goes as follows9 [81, 82]: In each iteration,
the algorithm selects the best threshold for each class, with respect to the micro-F1

score, from a pre-defined set of thresholds while keeping the remaining thresholds fixed.
This process is repeated until the chosen thresholds do not change anymore [81, 82].
Algorithm 4 gives the concrete formulation after Pillai et al. (2012, 2013) [81, 82]. In the
algorithm below, F1micro(ŷ1, ..., ŷ|DV |; t1, ..., tK) denotes the micro-F1 score with respect
to the predicted probabilities ŷ1, ..., ŷ|DV | on the validation set DV and the class-wise
thresholds t1, ..., tK . Note that in the multi-label setting, ŷ1, ..., ŷ|DV | are K-dimensional
vectors.

9The original formulation of the algorithm can be found as Algorithm 1 in
"F-Measure Optimisation in Multi-Label Classifiers" (Pillai et al. (2012)) [81]
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Input : prediction scores ŷ1, ..., ŷ|DV |,
set of possible threshold values

Output : optimized per-class thresholds
Initialize t1, ..., tK as the smallest possible threshold values;
while True do

changes← 0;
for k=1,...,K do

if tk ̸= argmax
T≥tk

F1micro(ŷ1, ..., ŷ|DV |; t1, ...tk−1, T, tk+1, ...tK) then

tk ← argmax
T≥tk

F1micro(ŷ1, ..., ŷ|DV |; t1, ...tk−1, T, tk+1, ...tK);

changes← changes+ 1
end

end
if changes = 0 then

end procedure
end

end
return optimized thresholds t1, ..., tK

Algorithm 4: Tuning of the Prediction Thresholds for Micro-F1 Score
after Pillai et al. (2012, 2013)

In the experiments, the set of possible thresholds defined for the optimization of the
micro-F1 score is the same as for the macro-F1 score, namely {0, 0.04, 0.08, ..., 0.96, 1}.

Note that, according to Bénédict et al. (2021) [19], updating with the soft macro-F1

loss naturally pushes the predicted probabilities towards 0 and 1. As a result, a simple 0.5
threshold across all classes should be sufficient to achieve good F1 scores10 [19, 74]. For
the models trained with either the soft macro- or micro-F1 loss, the results will therefore
be reported for both the tuned thresholds and a constant 0.5 threshold across classes. For
the settings that update with the BCE loss, only the performance achieved by using the
tuned thresholds will be reported.

Now that the overall experimental setup was clarified, the following section presents
the results achieved on the CheXpert data. Due to space restrictions, only the perform-
ances on the test set are reported. The corresponding scores on the development set can
be found in the Appendix (cf. A.2).

10cf. https://towardsdatascience.com/the-unknown-benefits-of-using-a-soft-f1-loss-in-cla
ssification-systems-753902c0105d, last accessed 2022-06-30
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5.4. Results

5.4.1. BCE Loss

Table 5.4 summarizes the results obtained on the CheXpert dataset by solely using the
BCE loss for the baseline models and the GM algorithm. The default removal threshold,
τ = 0, was used for creating the table. As mentioned before, the table reports average
scores acquired over three runs with different seeds. Like in the single-label case, the
standard deviations of the scores are given in parentheses. All reported values were
computed on the test set. Please consult the appendix for the corresponding development
performances.

Method Update/Comp. Loss Threshold Tuning Avg. Macro-F1 Avg. Micro-F1 Avg. AUROC
GM BCE/BCE Yes 0.54932(0.00608) 0.62326(0.00166) 0.821(0.00708)

Baseline BCE Yes 0.55214(0.00613) 0.62481(0.00327) 0.82435(0.00456)

Table 5.4.: Test Performance on CheXpert (BCE Loss, τ = 0)

Judging from Table 5.4, there does not seem to be a large performance difference between
models trained with and without gradient matching. The baseline slightly outperforms the
models trained with the GM algorithm with respect to all three performance measures.

Taking a look at the per-class test AUROC scores might give insights on how denoising
with the GM algorithm affects the performance on the individual classes. Therefore, the
individual AUROC scores per class are provided below.

Pathology Avg. AUROC (Baseline) Avg. AUROC (GM)
Enlarged Cardiomediastinum 0.47251(0.02828) 0.46642(0.02285)
Cardiomegaly 0.80558(0.01090) 0.80079(0.00674)
Lung Opacity 0.91155(0.00427) 0.91165(0.00338)
Edema 0.92914(0.00177) 0.92702(0.00124)
Consolidation 0.89879(0.00645) 0.88894(0.00289)
Pneumonia 0.81158(0.01986) 0.82098(0.05164)
Atelectasis 0.81859(0.00534) 0.80384(0.01044)
Pneumothorax 0.83684(0.01435) 0.83499(0.00470)
Pleural Effusion 0.93455(0.00537) 0.93437(0.00069)

Table 5.5.: Test AUROC per Class (BCE Loss, τ = 0)

All classes, except for Enlarged Cardiomediastinum, have decent AUROC values. Many
papers unfortunately only report the individual AUROC scores on the five classes evaluated
in the CheXpert competition, namely Atelectasis, Cardiomegaly, Consolidation, Edema
and Pleural Effusion [77, 20]. Wei and Jethani (2019) [92], however, present their
AUROC scores for all classes. They also achieved worse performance on Enlarged
Cardiomediastinum compared to the other pathologies, which matches our observations.

For most pathologies, the average AUROC value achieved by baseline models is mar-
ginally better than the scores attained by applying our denoising strategy. The only class
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that noticeably benefited from the denoising method is Pneumonia, but the improvement
over the baseline is very small and could just be due to chance or the low number of runs.

Unfortunately, it is not possible to check how the label changes relate to the gold labels
on the CheXpert data. However, taking a look at the label dynamics in an exemplary run
of the algorithm can nevertheless be insightful. Figure 5.1 therefore provides an overview
of the conducted label changes in a single run of the GM algorithm. Akin to the plots
provided in Chapter 2, the depicted values sum up to one for a given batch. The displayed
statistics were smoothed over 10 batches in order to facilitate the interpretation of the
figure.

Figure 5.1.: Label Changes during Training for CheXpert
(BCE/BCE, τ = 0)

Interestingly, the label dynamics stay fairly constant throughout the training process.
Moreover, negative labels seem to have a higher change of being kept than the less frequent
positive labels. Assuming that the denoising method is indeed capable of finding labeling
errors, this seems sensible: Since all uncertainty labels were mapped to the positive label
in the data preparation phase, the resulting number of positive labels is likely inflated
compared to the ground-truth.

As mentioned before, for all results collected in Table 5.4, τ = 0 was used. Adjusting
τ could potentially slightly improve the performance of the GM algorithm. Figure 5.2
therefore shows how the performance measures and label changes are affected by the
value of τ . Due to the increased data size compared to SMS and Youtube [7], this plot
only depicts a single run of the denoising algorithm per threshold. The learning rate was
kept fixed at 0.001 for the creation of this figure and the batch size was 128.
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Figure 5.2.: Effect of Removal Threshold Value for CheXpert
(BCE/BCE)

None of the performance metrics seem to be strongly affected by the value of τ . This
observation matches the fact that the results were already very close to the baseline for
τ = 0, which is the value that tends to remove the most samples. Since the threshold
tuning did not boost the performance of the GM algorithm, it seems that our denoising
method is not useful for this dataset when solely the BCE loss is used.

The next section explores whether changing the loss function, for either the model
update or the gradient comparison, results in a more noticeable performance difference
between the GM algorithm and the baseline.

5.4.2. F1-Based Losses

Macro

The following table reports the results obtained by using the soft macro-F1 loss. For
models that update with this loss, the performances are reported for tuned thresholds
and a simple 0.5 threshold across all classes. The average scores for the baseline models
fit with cross-entropy are again included in this table as a reference.

Method Update/Comp. Loss Threshold Tuning Avg. Macro-F1 Avg. Micro-F1 Avg. AUROC
GM Macro-F1/Macro-F1 No 0.53751(0.00456) 0.59423(0.00555) 0.76981(0.00749)
GM Macro-F1/Macro-F1 Yes 0.54366(0.00571) 0.58187(0.00342) 0.76981(0.00749)
GM BCE/Macro-F1 Yes 0.56447(0.00336) 0.62866(0.00303) 0.83652(0.01103)

Baseline Macro-F1 No 0.55879( 0.00075) 0.63613(0.00029) 0.82446(0.00089)
Baseline Macro-F1 Yes 0.55508(0.00395) 0.61586( 0.00477) 0.82446(0.00089)
Baseline BCE Yes 0.55214(0.00613) 0.62481(0.00327) 0.82435(0.00456)

Table 5.6.: Test Performance on CheXpert (Macro-F1 Loss, τ = 0)

Looking at the baseline scores, using the soft macro-F1 loss results in very similar
performances compared to the cross-entropy loss, even when the thresholds are not tuned.
This observation indicates that using the soft macro-F1 loss to update the baseline models
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can potentially be a viable alternative to threshold tuning, which could prove to be
very time-efficient on data collections with even larger development sets11 [19, 74]. Note
that tuning the thresholds does not necessarily improve the test performance, since the
optimization happens on the development set [81].

For the models trained with the GM algorithm, all scores noticeably decrease when the
macro-F1 loss is used to update. This reflects some results found in the single-label case,
suggesting that F1-based losses may not be a good choice for the update loss when the
GM algorithm is applied. Keeping the BCE loss as the update loss and merely using the
macro-F1-based loss to conduct the gradient comparison yields much better test scores.
In fact, this setting gives the best performance in terms of macro-F1 and AUROC seen in
the experiments so far. This result demonstrates that even unsuitable update losses for
the GM algorithm can be leveraged by using them as the comparison loss.

The individual test AUROC values per class are presented in Table 5.7 to give some
further insights into the poor performance of L∗F1macro

as an update loss for the GM
algorithm.

Pathology Avg. AUROC (Baseline) Avg. AUROC (GM, Macro-F1/MacroF1) Avg. AUROC (GM, BCE/Macro-F1)
Enlarged Cardiomediastinum 0.48132(0.00331) 0.4781(0.034842) 0.5062(0.048)
Cardiomegaly 0.79595(0.00174) 0.79613(0.01276) 0.81423(0.00416)
Lung Opacity 0.90888(0.00095) 0.3833(0.00869) 0.92203(0.00087)
Edema 0.93059(0.00127) 0.93208(0.00162) 0.93255(0.00034)
Consolidation 0.8804(0.00308) 0.88944(0.00139) 0.90507(0.01108)
Pneumonia 0.82172(0.00526) 0.85371(0.02644) 0.83776(0.03523)
Atelectasis 0.81307(0.00575) 0.82275(0.00316) 0.8342(0.00241)
Pneumothorax 0.8549(0.00169) 0.842(0.01559) 0.84329(0.01439)
Pleural Effusion 0.93334(0.00053) 0.9308(0.00048) 0.93339(0.00083)

Table 5.7.: Test AUROC per Class (Macro-F1 Loss, τ = 0)

Interestingly, Table 5.7 reveals that the subpar averaged scores achieved by updating
with L∗F1macro

seem to primarily hinge on one class, Lung Opacity. It turns out that the
predicted probability for this class is very close 1 for all test samples, which explains the
low AUROC score. It will be interesting to see how well models trained with L∗F1micro

perform on this particular class in comparison.

11Note that this result was also observed in this blog post https://towardsdatascience.com/the-u
nknown-benefits-of-using-a-soft-f1-loss-in-classification-systems-753902c0105d, last
accessed 2022-06-30
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Micro

Lastly, the results obtained by using the soft micro-F1 loss are reported.

Method Update/Comp. Loss Threshold Tuning Avg. Macro-F1 Avg. Micro-F1 Avg. AUROC
GM Micro-F1/Micro-F1 No 0.45795(0.0063) 0.58933(0.00481) 0.76094(0.00405)
GM Micro-F1/Micro-F1 Yes 0.55018(0.00298) 0.58933(0.00176) 0.76094(0.00405)
GM BCE/Micro-F1 Yes 0.56445(0.01992) 0.63121(0.00332) 0.83582(0.00541)

Baseline Micro-F1 No 0.51225( 0.01492) 0.62351(0.0051) 0.8412(0.00565)
Baseline Micro-F1 Yes 0.59003(0.00499) 0.62129(0.00214) 0.8412(0.00565)
Baseline BCE Yes 0.55214(0.00613) 0.62481(0.00327) 0.82435(0.00456)

Table 5.8.: Test Performance on CheXpert (Micro-F1 Loss, τ = 0)

Interestingly, training the baseline models with this loss achieves the best average
macro-F1 and AUROC score seen so far, but does not improve the value of the micro-F1

compared to the BCE loss. This seems counterintuitive, but there are a lot of factors
that could play into this result, like the small size of the test set or the relatively coarse
threshold tuning. Moreover, the thresholds are tuned on the noisy development set, so
the chosen threshold values might not generalize well to the test set. For the models
trained with gradient matching, the BCE loss again seems to be the preferable update
loss. The best micro-F1 recorded in Table 5.8 was achieved by making use of gradient
matching and updating the model with the BCE loss, while computing the compared
gradients with respect to L∗F1micro

.
The individual AUROC values are given below.

Pathology Avg. AUROC (Baseline) Avg. AUROC (GM, Micro-F1/Micro-F1) Avg. AUROC (GM, BCE/Micro-F1)
Enlarged Cardiomediastinum 0.62613(0.03188) 0.58982(0.01061) 0.50092(0.0639)
Cardiomegaly 0.78792(0.00583) 0.79066(0.00882) 0.81302(0.00553)
Lung Opacity 0.90631(0.00197) 0.39627(0.00966) 0.92308(0.00037)
Edema 0.9293(0.00073) 0.93135(0.00038) 0.93416(0.00071)
Consolidation 0.88427(0.00738) 0.87266(0.00571) 0.89015(0.01317)
Pneumonia 0.83555(0.01302) 0.69358(0.00561) 0.85490(0.0366)
Atelectasis 0.81489(0.00169) 0.80835(0.00427) 0.82944(0.00719)
Pneumothorax 0.8549(0.00787) 0.83499(0.01391) 0.84255(0.00546)
Pleural Effusion 0.93155(0.00191) 0.9308(0.00125) 0.93419(0.00121)

Table 5.9.: Test AUROC per Class (Micro-F1 Loss, τ = 0)

Updating with the micro-F1 loss noticeably boosted the performance on Enlarged
Cardiomediastinum, which is the hardest class to predict, compared to the other loss
functions examined so far. This effect is particularly noticeable for the baseline. On
the other hand, the class Lung Opacity suffers from updating with the soft micro-F1

loss when gradient matching is applied, which reflects the results achieved with the
macro-averaged version of the loss. A look at the label changes performed during training
reveals that negative labels are mostly ignored for this class, which possibly explains why
the predictions for this class are so heavily pushed towards 1. Why this class in particular
suffers from this phenomenon is however not entirely clear, since the class has a fairly
even distribution of positive and negative labels in both the training and the test set.
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To wrap up the experiments, Table 5.10 compares the label dynamics for all explored
settings of the gradient matching algorithm. Note that the values in each row sum up to
one as they were computed equivalently to the lines depicted in Figure 5.1.

Update/Comp. Loss Label 0 Ignored Label 1 Ignored Label 0 Kept Label 1 Kept
BCE/BCE 0.23394(0.00043) 0.117799(0.00022) 0.57342(0.00043) 0.07485(0.00022)

Macro-F1/Macro-F1 0.21076(0.00228) 0.1115(0.00415) 0.5966(0.00228) 0.08114(0.00415)
BCE/Macro-F1 0.39843(0.00132) 0.05407(0.00034) 0.40893(0.00132) 0.13857(0.00034)

Micro-F1/Micro-F1 0.26526(0.00102) 0.0893(0.00198) 0.5421(0.00102) 0.10344(0.00198)
BCE/Micro-F1 0.21507(0.00038) 0.07002(0.00014) 0.59229(0.00038) 0.12262(0.00014)

Table 5.10.: Label Dynamics on CheXpert (All Loss Combinations, τ = 0)

Judging from Table 5.10, using either the BCE loss or the Macro-F1 loss for both
the update and the gradient comparison results in more positive labels being ignored
than in the other settings. Exploring whether this effect is specific to this dataset or
whether a theoretically founded explanation for this phenomenon can be found could be
an interesting avenue for future work.

5.4.3. Summary

All in all, no strong conclusions can be drawn about the effectiveness of the GM algorithm
in the multi-label setting from the results presented in this chapter. However, the
experiments affirmed that F1-based loss functions tend to be suboptimal update losses
when the GM algorithm is applied, at least at the default removal threshold τ = 0.
Moreover, the obtained results show that it can be beneficial to choose different loss
functions for the update and the computation of the compared gradients. For the baseline
models, updating with the F1-based losses generally worked well, which mirrors the results
found in the single-label case.

This concludes the experiments conducted in this thesis. The next chapter aims to
summarize the main insights gained throughout the thesis and outlines some possibilities
for future work.
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The results obtained in Chapters 4 and 5 give some interesting insights into denoising
with gradient matching but also leave some unanswered questions. The next section aims
to shortly summarize the main takeaways from the conducted experiments.

6.1. Main Observations

On single-label datasets, we observed fairly large improvements in performance over the
baseline when sparse TF-IDF features were used and the model was updated with the
regular cross-entropy loss. In particular, weighted comparison batch sampling proved
useful in this scenario, both on the imbalanced SMS dataset and the Youtube dataset,
which has a more even class distribution. Despite the performance gain over the baseline,
a large fraction of the correctly labeled samples seen during training was ignored on both
datasets. When DistilBERT embeddings were used instead of TF-IDF representations, the
GM algorithm was generally more successful in distinguishing between correctly labeled
and mislabeled samples. However, for dense features, the improvements in performance
over the baseline scores were generally small, which is surprising considering that the
algorithm cleaned the data more effectively than in the TF-IDF setting.

The experiments on the single-label datasets further revealed that updating with LF1pos.
,

which aims to directly optimize the F1 score of the positive class, can generally boost
performance but needs to be handled with care when the GM algorithm is applied to
sparse encodings. While the default removal threshold τ = 0 worked well for most settings
investigated throughout the thesis, using this threshold value on the SMS dataset resulted
in very poor scores when the update was conducted with LF1pos.

on sparse features (cf.
Table 4.6, Figure 4.2). Tuning the removal threshold was crucial in this particular scenario.
Intuitively, it makes sense that F1-based update losses can be problematic when the GM
algorithm is applied, since they cannot be decomposed into sample-wise contributions
and strongly depend on the label distribution in the update batch [19]. Changing the
annotations with gradient matching can drastically alter the label distribution in the
update batch and, in extreme cases, lead to scenarios where the model is not properly
updated. Nevertheless, LF1pos.

worked well as an update loss for the GM algorithm when
the texts were represented by dense DistilBERT features.

The experiments on the CheXpert dataset unfortunately did not reveal much about
the effectiveness of our method in the multi-label setting. However, the results affirmed
that the F1-based losses can be suboptimal update losses for the GM algorithm, at least
at the default removal threshold. Nevertheless, the soft F1 losses proved to be suitable
comparison losses for the GM algorithm. Moreover, the baseline results on CheXpert
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confirmed that models trained with the soft macro-F1 loss, as suggested by Bénédict et
al. (2021) [19], perform well at a simple 0.5 decision threshold across all classes, which
potentially eliminates the need for decision threshold tuning.

To summarize, in most cases, applying the GM algorithm lead to test scores which were
similar to or slightly better than the baseline performance. However, for sparse features,
the algorithm did not effectively distinguish between mislabeled and correctly labeled
samples, even when comparatively large performance gaps were achieved.

6.2. Potential Relation to Other Topics

The observations summarized above indicate that our proposed approach is not particularly
successful in its goal of removing or correcting mislabeled samples. However, the conducted
experiments show that the method could still be a useful addition to the training process.
After all, at least a small improvement in performance was achieved compared to the
baseline models in most scenarios. Our experiments showed that removing large numbers
of correctly labeled samples from the batches generally did not have a negative impact on
the model performance. The GM algorithm could therefore potentially be interpreted
as a method that constructs effective update batches by removing samples that have
unusual gradients, mislabeled or not. The observed performance gains might be due to
the method only keeping the samples in a given batch that are currently beneficial for
the learning process.

Potentially, the method could also be linked to outlier detection. Gradient-based
methods have already been shown to be successful for anomaly detection by Kwon et al.
(2020) [93]. They argued that "abnormal samples" cause more extreme changes to the
model weights during training than regular instances, since the model has not learned
them yet. Therefore, anomalies can be identified by their gradients [93]. This line of
thought has parallels to our approach. By keeping only samples whose gradients align
with the weight update computed on a large portion of the data, instances with atypical
gradients are filtered out. These samples could be seen as outliers with respect to the
comparison batch at the current model state.

6.3. Future Work

While the experiments in this thesis give some insights into potential advantages and
pitfalls of the proposed method, the number of considered datasets is too low to draw any
definitive conclusions. Moreover, only binary classification tasks were examined in this
thesis, however, the method should be applicable to the multi-class setting without further
modifications. Exploring the behaviour of the method when applied to a multi-class
problem could provide some further intuition regarding the approach.

Furthermore, in our experiments, the denoising method was only used to train the
classification layer. Directly incorporating the denoising method into the fine-tuning
process of more complex models, such as CNNs or BERT, could potentially make the
method more competitive. In theory, that should be possible, at least for the single-label
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case, since gradient similarities were already computed for CNNs by Shi et al. (2021) [14].
The multi-label version of our method, as described by Algorithm 2, might need to be
slightly adapted when learnable hidden layers are added, since the weights corresponding
to each class are not clearly separated anymore, except for the weights of the final
classification layer. One possible solution could be ignoring the entire sample instead
of individual labels, like in the single-label case. Alternatively, the gradient comparison
could be performed solely with respect to the output layer, like in the current formulation.

Lastly, it would be beneficial to directly compare the GM algorithm to related ap-
proaches, such as Cleanlab [10] or the gambler’s loss by Ziyin et al. (2020) [36]. Cleanlab
has a similar goal to our method, namely cleaning the training data, but tackles the task
fairly differently. While Cleanlab removes likely mislabeled samples before the training
process of the final model is started, we attempt to exclude or correct mislabeled samples
during training. The approach by Ziyin et al. (2020) [36] has strong parallels to our
method, since it also aims to dynamically identify labeling errors while the model is
trained. In particular, it would be interesting to see whether samples that get assigned
high uncertainty scores by their method are filtered out or relabeled by ours.

To conclude, the performance gains observed when applying the GM algorithm were
likely not due to the method filtering out or relabeling mislabeled samples in particular.
Investigating the method on more datasets might reveal the true cause of the improved
scores.
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A. Appendix

A.1. Explicit Gradient Formulas

Since the gradient computation is an integral part of the GM algorithm, the theoretical
gradient formulas for the investigated loss functions in this thesis are given in the following.
Note that some of them were already mentioned in the main part of the thesis to gain a
better understanding for the label changes made by the method. The gradients are given
per sample. For the cross-entropy-based losses, the aggregated gradient is the mean of the
individual gradients, while for the F1 losses, the gradients are accumulated by taking the
sum. The same notation as in the main part of the thesis is used. The F1-based losses
were inspired by Bénédict et al. (2021) [19] and Ashref Maiza (2019) [74].

A.1.1. Single-label Losses

Remember that in the main part of the thesis, the model outputs were denoted by the
following expressions.

zt,1 =

F∑︂
f=1

(wf,1 xt,f ) + b1

zt,2 =
F∑︂

f=1

(wf,2 xt,f ) + b2

Moreover, note that the general derivative of the softmax function is given by the
following expression (cf. Wang et al. 2019) [34].

∂st,k
∂zt,j

=

{︃
st,k(1− st,k), j = k
−st,kst,j , j ̸= k

With this information, one can determine the sample-wise gradients of all single-label
loss functions used throughout the thesis.
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CE Loss

LCE(B) =
1

M

M∑︂
t=1

lt

where

lt = −[log(st,2)yt + log(st,1)(1− yt)] = −[log(st,2)yt + log(1− st,2)(1− yt)]

∂lt
∂wf,1

= (1− st,2)xt,fyt − st,2xt,f (1− yt)

∂lt
∂wf,2

= (st,2 − 1)xt,fyt + st,2xt,f (1− yt)

∂lt
∂b1

= (1− st,2)yt − st,2(1− yt)

∂lt
∂b2

= (st,2 − 1)yt + st,2(1− yt)

F1 Loss (Positive Class)

LF1pos.
(B) = 1− 2ˆ︁tp

2ˆ︁tp+ˆ︂fp+ ˆ︂fn+ ϵ(︄
∂LF1pos.

(B)
∂wf,1

)︄
t

= 2
(︁ytst,2(1− st,2)xt,f (2ˆ︁tp+ˆ︂fp+ ˆ︂fn+ ϵ)

(2ˆ︁tp+ˆ︂fp+ ˆ︂fn+ ϵ)2
−

−
(ytst,2(1− st,2)xt,f + (1− yt)st,2(1− st,2)xt,f )ˆ︁tp

(2ˆ︁tp+ˆ︂fp+ ˆ︂fn+ ϵ)2

)︁
(︄
∂LF1pos.

(B)
∂wf,2

)︄
t

= −2
(︁ytst,2(1− st,2)xt,f (2ˆ︁tp+ˆ︂fp+ ˆ︂fn+ ϵ)

(2ˆ︁tp+ˆ︂fp+ ˆ︂fn+ ϵ)2
−

−
(ytst,2(1− st,2)xt,f + (1− yt)st,2(1− st,2)xt,f )ˆ︁tp

(2ˆ︁tp+ˆ︂fp+ ˆ︂fn+ ϵ)2

)︁
(︄
∂LF1pos.

(B)
∂b1

)︄
t

= 2
(︁ytst,2(1− st,2)(2ˆ︁tp+ˆ︂fp+ ˆ︂fn+ ϵ)

(2ˆ︁tp+ˆ︂fp+ ˆ︂fn+ ϵ)2
−

− (ytst,2(1− st,2) + (1− yt)st,2(1− st,2))ˆ︁tp
(2ˆ︁tp+ˆ︂fp+ ˆ︂fn+ ϵ)2

)︁
(︄
∂LF1pos.

(B)
∂b2

)︄
t

= −2
(︁ytst,2(1− st,2)(2ˆ︁tp+ˆ︂fp+ ˆ︂fn+ ϵ)

(2ˆ︁tp+ˆ︂fp+ ˆ︂fn+ ϵ)2
−

− (ytst,2(1− st,2) + (1− yt)st,2(1− st,2))ˆ︁tp
(2ˆ︁tp+ˆ︂fp+ ˆ︂fn+ ϵ)2

)︁
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A.1. Explicit Gradient Formulas

Macro-F1 Loss

LF1macro
(B) = 1− 1

2
[

2ˆ︁tp
2ˆ︁tp+ˆ︂fp+ ˆ︂fn+ ϵ

+
2 ˆ︁tn

2 ˆ︁tn+ˆ︂fp+ ˆ︂fn+ ϵ
]

(︃
∂LF1macro

(B)
∂wf,1

)︃
t

=
1

2
[

(︄
∂LF1pos.

(B)
∂wf,1

)︄
t

+

+ 2
(︁−(1− yt)st,2(1− st,2)xt,f (2 ˆ︁tn+ˆ︂fp+ ˆ︂fn+ ϵ)

(2 ˆ︁tn+ˆ︂fp+ ˆ︂fn+ ϵ)2
−

−
(−(1− yt)(1− st,2)xt,f − ytst,2(1− st,2)xt,f ) ˆ︁tn

(2 ˆ︁tn+ˆ︂fp+ ˆ︂fn+ ϵ)2

)︁
](︃

∂LF1macro
(B)

∂wf,2

)︃
t

=
1

2
[

(︄
∂LF1pos.

(B)
∂wf,2

)︄
t

−

− 2
(︁−(1− yt)st,2(1− st,2)xt,f (2 ˆ︁tn+ˆ︂fp+ ˆ︂fn+ ϵ)

(2 ˆ︁tn+ˆ︂fp+ ˆ︂fn+ ϵ)2
−

−
(−(1− yt)(1− st,2)xt,f − ytst,2(1− st,2)xt,f ) ˆ︁tn

(2 ˆ︁tn+ˆ︂fp+ ˆ︂fn+ ϵ)2

)︁
](︃

∂LF1macro
(B)

∂b1

)︃
t

=
1

2
[

(︄
∂LF1pos.

(B)
∂b1

)︄
t

+

+ 2
(︁−(1− yt)st,2(1− st,2)(2 ˆ︁tn+ˆ︂fp+ ˆ︂fn+ ϵ)

(2 ˆ︁tn+ˆ︂fp+ ˆ︂fn+ ϵ)2
−

− (−(1− yt)(1− st,2)− ytst,2(1− st,2)) ˆ︁tn
(2 ˆ︁tn+ˆ︂fp+ ˆ︂fn+ ϵ)2

)︁
](︃

∂LF1macro
(B)

∂b2

)︃
t

=
1

2
[

(︄
∂LF1pos.

(B)
∂b2

)︄
t

−

− 2
(︁−(1− yt)st,2(1− st,2)(2 ˆ︁tn+ˆ︂fp+ ˆ︂fn+ ϵ)

(2 ˆ︁tn+ˆ︂fp+ ˆ︂fn+ ϵ)2
−

− (−(1− yt)(1− st,2)− ytst,2(1− st,2)) ˆ︁tn
(2 ˆ︁tn+ˆ︂fp+ ˆ︂fn+ ϵ)2

)︁
]

A.1.2. Multi-Label Losses

The multi-label losses examined in this thesis use a sigmoid activation. The derivative of
this function is given by [90]:

∂σ(zt,k)

∂zt,k
= σ(zt,k)(1− σ(zt,k))
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BCE Loss

L∗BCE =
1

MK

M∑︂
t=1

K∑︂
k=1

l∗t,k

where

l∗t,k = −[log(σ(zt,k))yt,k + log(1− σ(zt,k))(1− yt,k)]

∂l∗t,k
∂wf,k

= (σ(zt,k)− 1)xt,fyt,k + σ(zt,k)xt,f (1− yt,k)

∂l∗t,k
∂bk

= (σ(zt,k)− 1)yt,k + σ(zt,k)(1− yt,k)

Macro-F1 Loss

L∗F1macro
(B) = 1− 1

K

K∑︂
k=1

2˜︁tpk
2˜︁tpk + ˜︂fnk +

˜︂fpk + ϵ

(︃
∂L∗F1macro

(B)
∂wf,k

)︃
t

= − 2

K

(︁yt,kσ(zt,k)(1− σ(zt,k))xt,f (2ˆ︁tpk +ˆ︂fpk + ˆ︂fnk + ϵ)

(2ˆ︁tpk +ˆ︂fpk + ˆ︂fnk + ϵ)2
−

−
(ytσ(zt,k)(1− σ(zt,k))xt,f + (1− yt,k)σ(zt,k)(1− σ(zt,k))xt,f )ˆ︁tpk

(2ˆ︁tpk +ˆ︂fpk + ˆ︂fnk + ϵ)2

)︁
(︃
∂L∗F1macro

(B)
∂bk

)︃
t

= − 2

K

(︁yt,kσ(zt,k)(1− σ(zt,k))(2ˆ︁tpk +ˆ︂fpk + ˆ︂fnk + ϵ)

(2ˆ︁tpk +ˆ︂fpk + ˆ︂fnk + ϵ
−

−
(ytσ(zt,k)(1− σ(zt,k)) + (1− yt,k)σ(zt,k)(1− σ(zt,k)))ˆ︁tpk

(2ˆ︁tpk +ˆ︂fpk + ˆ︂fnk + ϵ)2

)︁
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Micro-F1 Loss

L∗F1micro
(B) = 1− 2˜︁tp

2˜︁tp+ ˜︂fn+˜︂fp+ ϵ

(︃
∂L∗F1micro

(B)
∂wf,k

)︃
t

= − 2

K

(︁yt,kσ(zt,k)(1− σ(zt,k))xt,f (2ˆ︁tp+ˆ︂fp+ ˆ︂fn+ ϵ)

(2ˆ︁tp+ˆ︂fp+ ˆ︂fn+ ϵ)2
−

−
(ytσ(zt,k)(1− σ(zt,k))xt,f + (1− yt,k)σ(zt,k)(1− σ(zt,k))xt,f )ˆ︁tp

(2ˆ︁tp+ˆ︂fp+ ˆ︂fn+ ϵ)2

)︁
(︃
∂L∗F1micro

(B)
∂bk

)︃
t

= − 2

K

(︁yt,kσ(zt,k)(1− σ(zt,k))(2ˆ︁tp+ˆ︂fp+ ˆ︂fn+ ϵ)

(2ˆ︁tp+ˆ︂fp+ ˆ︂fn+ ϵ)2
−

−
(ytσ(zt,k)(1− σ(zt,k)) + (1− yt,k)σ(zt,k)(1− σ(zt,k)))ˆ︁tp

(2ˆ︁tp+ˆ︂fp+ ˆ︂fn+ ϵ)2

)︁

A.2. CheXpert Development Performance

This section provides the central results on the development set created for CheXpert,
which were omitted in the main part of the thesis due to space constraints.

A.2.1. BCE Loss

Method Update/Comp. Loss Threshold Tuning Avg. Macro-F1 Avg. Micro-F1 Avg. AUROC
GM BCE/BCE Yes 0.52569(0.00018) 0.61748(0.00014) 0.77399(0.00067)

Baseline BCE Yes 0.52685(0.000507) 0.61783(0.00102) 0.77471(0.00327)

Table A.1.: Dev. Performance on CheXpert (BCE Loss, τ = 0)

A.2.2. Macro-F1 Loss

Method Update/Comp. Loss Threshold Tuning Avg. Macro-F1 Avg. Micro-F1 Avg. AUROC
GM Macro-F1/Macro-F1 No 0.50823(0.0041) 0.53927(0.00078) 0.73917(0.00073)
GM Macro-F1/Macro-F1 Yes 0.51799(0.00146) 0.60082(0.00034) 0.73917(0.00073)
GM BCE/Macro-F1 Yes 0.52689(0.00018) 0.61649(0.00038) 0.77274(0.0003)

Baseline Macro-F1 No 0.52709(0.00038) 0.59024(0.00222) 0.77427(0.00019)
Baseline Macro-F1 Yes 0.52855(0.00043) 0.61409(0.00102) 0.77427(0.00019)

Table A.2.: Dev. Performance on CheXpert (Macro-F1 Loss, τ = 0)
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A.2.3. Micro-F1 Loss

Method Update/Comp. Loss Threshold Tuning Avg. Macro-F1 Avg. Micro-F1 Avg. AUROC
GM Micro-F1/Micro-F1 No 0.44321(0.002461) 0.60384(0.00034) 0.71781(0.00117)
GM Micro-F1/Micro-F1 Yes 0.49529(0.0007) 0.60484(0.00038) 0.71781(0.00117)
GM BCE/Micro-F1 Yes 0.52366(0.00245) 0.61794(0.00037) 0.77229(0.00025)

Baseline Micro-F1 No 0.49024(0.00143) 0.61747(0.00051) 0.77025(0.00022)
Baseline Micro-F1 Yes 0.51621(0.00135) 0.61888(0.00031) 0.77025(0.00022)

Table A.3.: Dev. Performance on CheXpert (Micro-F1 Loss, τ = 0)
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