
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

„Computational analysis of arginine in saline solution
via dielectric spectroscopy“

verfasst von / submitted by

Christian Fellinger, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2022 / Vienna, 2022

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

UA 066 862

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

Masterstudium Chemie

Betreut von / Supervisor: Univ.-Prof. Dipl.-Chem. Dr. Christian Schröder

Danksagung

Hiermit möchte ich all denjenigen danken, die es mir ermöglicht haben, diese Arbeit zu schreiben
und in meinem Leben zu diesem Punkt zu kommen.

Zuallererst würde ich mich gerne bei meinem Betreuer Univ.-Prof. Dipl.-Chem. Dr. Christian
Schröder für die Möglichkeit bei ihm das Projekt zu bearbeiten und seine tatkräftige Unterstützung
dabei bedanken. Außerdem möchte ich mich bei der gesamten Arbeitsgruppe bedanken und dabei
namentlich Andras Szabadi B.Sc. M.Sc., Florian Jörg B.Sc. M.Sc. und Johannes Karwounopoulos
B.Sc. M.Sc. hervorheben. Jeder Einzelne von ihnen ist mir nicht nur mit Rat und Tat zur Seite
gestanden, sondern hat mir auch das Gefühl gegeben, ein vollwertiger Teil dieser Arbeitsgruppe zu
sein. Ebenso wichtig zu erwähnen ist die ganze Vorarbeit, die Marion Sappl B.Sc. geleistet hat.
Ohne diese wäre die Masterarbeit nicht möglich gewesen. Des Weiteren will ich mich auch für die
familiäre Atmosphäre und etlichen Spieleabende außerhalb der Arbeitszeit bedanken. Diese haben
die Zeit als Teil dieser Arbeitsgruppe zu einem wahren Genuss gemacht, auf den ich noch lange
freudig zurückblicken werde.

Im fachlichen Zusammenhang muss ich mich auch bei Mag. Peter Jandrisits bedanken, da
er, nach meinem ständigen Zweifeln, ob Chemie als Fach das Richtige für mich ist und ob ich
fähig bin dem nachzugehen, mich in meinem Maturajahr davon überzeugt hat und mir erneut die
Begeisterung für die Chemie nähergebracht hat.

Als Nächstes würde ich gerne meinem Vater Ing. Alois Fellinger MA danken. Er hat, als ich
ein kleines Kind war, mein naturwissenschaftliches Interesse mehr gefördert als jeder andere und
mit mir einige der härtesten Zeiten meines Lebens durchgestanden. Ohne ihn hätte ich nie die
Option gehabt, bis zu diesem Punkt zu kommen. Bei dieser Gelegenheit möchte ich mich gleich
auch bei meiner Tante Eveline Lechner bedanken. Vor allem seit dem Tod meines Vaters steht sie
mir fast so tatkräftig zur Seite wie einst er.

Abschließend will ich noch all denjenigen Freunden und Freundinnen Danke sagen, die mir bis
heute in meinem Privatleben Rückhalt geben. Denjenigen, die man mitten in der Nacht anrufen
kann, wenn katastrophale Dinge passieren und einem beistehen, aber auch denjenigen, mit denen
man einfach gemeinsam seinen Interessen nachgehen kann. Ohne diesen Rückhalt hätte ich nie so
weit kommen können und gerade als jemand, der das in seiner Schulzeit größtenteils vermisst hat,
bin ich unendlich dankbar dafür.

1

2

Contents

1 Introduction 5
1.1 Molecule under investigation . 5

2 Theory 7
2.1 Hofmeister series . 7

2.1.1 Salting-in and salting-out . 7
2.1.2 Chaotropic and kosmotropic ions . 8

2.2 Molecular Dynamics Simulations . 9
2.2.1 Basic Idea . 9
2.2.2 Force Fields . 11
2.2.3 Periodic boundary conditions . 15

2.3 Dielectric spectroscopy . 18
2.3.1 Computational dielectric spectroscopy . 19

3 Methods 23
3.1 Preliminary data generation . 24
3.2 Removal of Clusters . 25
3.3 Setting up a simulation . 26

3.3.1 Generation of Molecules . 26
3.3.2 Packing of the simulation box . 26
3.3.3 Minimization of internal energy . 29

3.4 Running a Simulation . 29
3.5 Dielectric spectrum calculation . 30

3.5.1 Calculating trends . 30

4 Results and discussion 33
4.1 Preliminary results . 33
4.2 Removed clusters . 36

4.2.1 Straight forward removal of clustered molecules 36
4.2.2 Scaling of intramolecular potentials . 38

4.3 Verification of the fit . 40
4.4 Dielectric spectra . 41

4.4.1 Potassium bromide . 42

3

4 CONTENTS

4.4.2 Potassium chloride . 44
4.4.3 Potassium iodide . 46
4.4.4 Lithium chloride . 48
4.4.5 Sodium chloride . 50

4.5 Trends . 52
4.5.1 Better statistics . 54

5 Conclusion and outlook 57

6 Bibliography 59

6 Appendix 63
6.1 Abstract . 63

6.1.1 English . 63
6.1.2 German . 63

6.2 Straight forward cluster removal . 64
6.3 Stream file for s = 1.1 . 67
6.4 Packing of the simulation box . 69
6.5 Write psf & crd . 70
6.6 Running the simulation . 72
6.7 From simulation to spectrum . 76

6.7.1 Fitting the autocorrelation function . 76
6.7.2 Using GENDICON . 82
6.7.3 Plotting the spectra . 86

6.8 Automatisation . 91
6.9 Spectra of all replica . 93

6.9.1 Potassium bromide . 93
6.9.2 Potassium chloride . 99
6.9.3 Potassium iodide . 105
6.9.4 Lithium chloride . 111
6.9.5 Sodium chloride . 117

1 | Introduction

Franz Hofmeister was one of the first to thoroughly describe the ion specific effects of different salts
on the precipitation of egg white protein [1–3]. One could order the different ions according to
these effects. The resulting Hofmeister series found widespread use in the precipitation of proteins.
However, this series is sadly no exact model with predictive capability, but rather an empiric
ordering of a specific protein mix. To improve and quantify the description of the interaction of
salt with protein and the resulting precipitation, many attempts were made [4–8], although with
moderate success.

This Master’s thesis tries to improve the understanding by breaking the system down into
smaller parts. It is known that proteins consist of many amino acids and that the secondary and
tertiary structure of said proteins are heavily influenced by the ordering of these amino acids and
their side chains [9–12]. Thus, the idea was born to investigate the precipitation of proteins by
studying the ion specific interactions of salt with single amino acids in solution. The groups of Dr.
Johannes Hunger of the Max Planck Institute for Polymer Research in Mainz and Dr. Vasileios
Balos of the Fritz Haber Institute of the Max Planck Society in Berlin chose to investigate these
interactions by using dielectric spectroscopy and were kind enough to provide their experimental
results. This thesis aims to replicate their results via molecular dynamics simulation and therefore
help their research by interpreting them. There was already some preliminary work done by
Marion Sappl B.Sc. to see if the resulting spectra match the experimental ones. Unfortunately,
these spectra still needed some improvement.

1.1 Molecule under investigation

The experimental results revealed that arginine showed the strongest trends of all the investigated
amino acids. Therefore, this thesis will focus on the interaction of arginine with different kinds of
salt. Arginine was assumed to be at its isoelectric point throughout this work. The corresponding
structure can be seen in Figure 1.1.

Arginine or more specific L-arginine is an essential amino acid for birds, carnivores, and young
(arguably also adult) mammals. It is the precursor in many metabolic cycles, and it is used directly
as well [14]. Figure 1.2 shows the main sources and destinations of arginine.

For the purposes of this thesis, the only relevant metabolic fate is the incorporation of arginine
into proteins. The frequency in which arginine is represented in side chains in protein is unusually
high [15, 16], which is another reason why it makes sense to start the investigation of these effects

5

6 CHAPTER 1. INTRODUCTION

Figure 1.1: Structure of arginine at its isoelectric point

Figure 1.2: Arginine in a schematic metabolism. Arrows pointing towards arginine symbolize
metabolic sources, whereas arrows pointing away from arginine symbolize metabolic fates. Taken
from [13] (modified).

with arginine.

To investigate the ion specific effects, salts are required, of course. The following five simple
salts were used to that end:

• Potassium bromide (KBr)

• Potassium chloride (KCl)

• Potassium iodide (KI)

• Lithium chloride (LiCl)

• Sodium chloride (NaCl)

To make any meaningful comparison between specific ions, the counter ion needs to be the
same in all compared cases. Another option would be to look at trends of specific salts. In this
case, one can only look at a single salt compared with, e.g., different concentrations of itself.

2 | Theory

2.1 Hofmeister series

The Hofmeister series was originally the empirical ordering of the minimum concentration of salts
needed to cause precipitation of egg white protein in aqueous solution. This ranking was created
in 1888 [1–3] as part of a general investigation of several effects of different salts and provided a
new scale for the solution properties of ions. There were multiple revisions of this series and one
of these results is shown here. The following anions and cations are ordered from most to least
precipitating, of course assuming they have the same counterion [17, 18].

SO2−
4 > HPO4 > CH3COO− > Cl− > Br− > I− > SCN− (2.1)

(CH3)4N
+ > Rb+ > K+ > Na+ > Li+ > Mg2+ > Ca2+ (2.2)

This series is still being used in the lab quite frequently to determine which salt to use for
protein precipitation. However, there are some major problems with the ordering. This series can
change quite rapidly depending on the hydrophobicity, charge, or chemical structure of the protein.
This change can even go so far that the term reverse Hofmeister series was coined [17–21].

With the rapid advancements in Biochemistry and Biotech comes the necessity to quantify
different empirical concepts to improve reliability and general understanding. This section will
give a short introduction to some relevant concepts concerning protein precipitation.

2.1.1 Salting-in and salting-out

In Layman’s terms, one can simply state that increasing the salt concentration in a protein solution
normally leads to precipitation of the protein. Even though this is completely correct, there is
more nuance in that. The solubility of a protein as a function of salt concentration is depicted in
Figure 2.1. The increase in solubility at low salt concentrations is called salting-in. With higher
salt concentration, the solubility decreases to a point where the protein is close to insoluble and
precipitates. This process is called salting-out [22].

It is postulated that the salt is reducing the electrostatic interactions between protein molecules
at low concentrations. Another way to think about the ions is as a “bridge” between the surface of
the protein and water. Some ions will interact strongly with the surface of the protein and, since
they are charged, with water as well. Of course, this competes with the ion-water interactions but,

7

8 CHAPTER 2. THEORY

Figure 2.1: Solubility of a protein as a function of salt concentration of the solution. Taken from
reference [22].

especially at low concentrations, the bulk water interactions are not relevant for the precipitation
of the protein. This concept is explained further in the following subsection.

2.1.2 Chaotropic and kosmotropic ions

The ionic impact on protein solubility is not only attributed to the interaction between the interface
of the protein and the solvent, but also to the modification of the structure of bulk water and
therefore the protein hydration.

Ions that have a strong interaction with water are called “kosmotropic” from the Greek “kosmos”
meaning order. Another way to describe them is “structure-making”. These ions create additional
structure in the water and therefore precipitate the protein without changing the structure of the
protein itself. The opposite is true for “chaotropic” ions. They have weak interactions with water
and the name comes from the Greek “chaos” meaning disorder and can be described as “structure-
breaking”. Of course, this also means that the structure of the protein doesn’t remain in the natural
state when precipitated with a “chaotropic” salt [17].

“Structure making/breaking” on larger dimensions was disproven by thermodynamic considera-
tions [23] and spectroscopy [24], by showing that the influence of the central ion on the surrounding
water was limited to the first hydration shell since the effect on further shells was quite small. Even
so, the degree of hydration and hydrogen bonding in the direct vicinity of the ions may have con-
sequences for the solvent properties and therefore for protein precipitation.

2.2. MOLECULAR DYNAMICS SIMULATIONS 9

2.2 Molecular Dynamics Simulations

Since the inception of Molecular Dynamics (MD) simulations, more specifically force field based MD
simulations, a constant pull in the direction of biologically relevant systems and big biomolecules
could be observed [25–27].

This is caused by the ability to simulate big systems on a timescale of nano- or even microsec-
onds within reasonable computing time. The aforementioned ability is inherent in the design
philosophy of MD simulations. By simplifying real world systems quite a bit, in contrary to theo-
retically exact Quantum Mechanics (QM) calculations, better statistics can be achieved. This will
be explained in more detail in the following subsections. One more vital advantage is its flexibility.
One can use a plethora of different solutes and solvents, ranging from water, over various organic
solvents, to even highly complex solvents like ionic liquids.

There are many MD force field packages and engines. Some of the more common ones are
CHARMM (Chemistry at HARvard Macromolecular Mechanics) [28], AMBER (Assisted Model
Building with Energy Refinement) [29], GROMACS (GROningen MAchine for Chemical Simula-
tions) [30, 31], and in more recent years, the fully Python compatible and open source, OpenMM
(Open Molecular Mechanics) [32]. OpenMM is the only one on this list that is only an MD en-
gine and has no own force field. There are of course some quirks to each one of them, but all of
them work on the same theoretical principles. This section aims to give a basic overview of these
principles.

2.2.1 Basic Idea

MD simulations follow the evolution over time of a system containing multiple atoms. This is
approximated by Newtonian mechanics and creates a molecular movie called trajectory. One can
start simple with Newtons second law of motion,

F⃗i = mi · a⃗i (2.3)

where F⃗i is the force acting on an atom i, mi is the mass of this atom, and a⃗i is the acceleration
of the same atom. Therefore, by knowing the force that acts on an atom and its mass, one
can calculate the acceleration. To understand the underlying connections for calculating a full
trajectory, one needs the connection between momentum and velocity,

dr⃗i
dt

= v⃗i =
p⃗i
mi

(2.4)

where dr⃗i
dt

is the change of the atom coordinates r⃗i with time t, which naturally equals the
velocity of that atom v⃗i. The mass of the atom is once again represented as mi and the momentum
of the same atom is p⃗i. The atom coordinates ri are described as a Cartesian vector containing a
value for the x-coordinate, the y-coordinate, and the z-coordinate of the three-dimensional system.

By combining Equation 2.3 and Equation 2.4 and by taking the QM nature of the system into
account, one may correctly obtain Equation 2.5.

10 CHAPTER 2. THEORY

d⟨p⃗i⟩
dt

= ⟨F⃗i⟩ (2.5)

The angle brackets symbolize expectation values, which means one has to deal with QM. To
simulate time dependent properties out of these expectation values, one can use the Ehrenfest
theorem. But since it is necessary to solve the Schrödinger Equation for every time step, only very
small systems with just a few atoms are computationally viable.

To overcome this limitation, one can introduce the Born-Oppenheimer approximation. The
approximation recognizes one important fact: The large difference in electron mass and atomic
nuclei mass, and therefore their difference in timescales. It is possible to look at that difference
from two sides. From the point of view of the electrons, the atomic nucleus moves extremely slowly,
so slow in fact that it can be seen as static. This is paramount for the reduction of calculation
time of most QM based methods. On the other hand, one can also look at the whole system from
the point of view of the atomic nucleus. Here, the electrons move so much faster that they change
their position instantaneously with the movement of the atomic nucleus. This means that one can
describe the movement of the whole system with the movement of the atomic nucleus. Therefore,
one can handle the electrons implicitly and only take the forces acting on the atomic nuclei into
account. This difference in mass also leads to the assumption that an atom can be treated as a
point particle whose movement can be calculated by classical Newtonian mechanics. With that in
mind, one looses the expectation values from Equation 2.5 and gets Equation 2.6.

dp⃗i
dt

= F⃗i (2.6)

This is already a big step in the direction of viable MD simulations. But of course to compute
a force, one needs to model the interactions between different atoms. Traditionally, pair potentials
are used to that end. One general example of this can be seen in Equation 2.7.

U(r⃗1...r⃗N) ≈
N−1∑
i=1

N∑
j=i+1

uij(rij) (2.7)

Where uij describes the pair potentials between atoms i and j and U the total potential energy
of the system. Furthermore rij, the distance between two atoms, can be described as r⃗ij = |r⃗i− r⃗j|.

Now all the basic building blocks needed for an MD simulation are there, one just needs to
connect the force and the energy somehow. Thankfully this is relatively straightforward since the
force, that is acting on one atom, is the negative gradient of the potential energy of that atom.
This can be seen in Equation 2.8.

F⃗i = −∂U

∂r⃗i
= −

(
∂U

∂xi

,
∂U

∂yi
,
∂U

∂zi

)
(2.8)

To get a trajectory out of these natural laws, one needs to calculate the forces for every atom
by numerically integrating Newton’s equations of motion for discrete time steps. With that, new
atomic positions and velocities are generated for every time step. To capture the fast movement
of hydrogen in different molecules, one has to keep these time steps at the femtosecond (fs) range.

2.2. MOLECULAR DYNAMICS SIMULATIONS 11

This has been studied and validated extensively by spectroscopy [33]. There are a few established
algorithms. Two of the most common examples are the “leapfrog” scheme and the velocity Verlet
algorithm [34].

2.2.2 Force Fields

To describe the interactions between atoms in classical MD simulations, potentials are used. Of
course, not every necessary interaction can be described by simple pair potentials. In general one
can differentiate between bonded and non-bonded interactions, therefore the total potential energy
can be written as:

Utotal = Ubonded + Unonbonded (2.9)

This can be further divided into:

Ubonded = Ubond + Uangle + Udihedral (+Uimproper) (2.10)

Unonbonded = Uelectrostatic + UvanderWaals (2.11)

It is possible to run a complete MD simulation with a combination of these five (excluding
Uimproper) potentials. The term force field refers to a package where all these potentials are defined.
Depending on the distribution, these descriptions can be slightly different [35]. Uimproper is only
necessary to preserve specific geometries, e.g., planar aromatics or tetrahedral methane. Therefore,
it is not strictly required in all simulations and can even be modeled by other potentials.

Bonded Interactions

Ubond describes the chemical bonds between different atoms, more precisely their stretching and
compressing. This is most accurately described by a Morse potential. But since the computation
of a Morse potential is not very efficient, one uses a harmonic oscillator, based on Hooke’s law,
instead. This approximation holds true for small deviations from the equilibrium bond length,
which is enough for MD simulations. This approximation is shown graphically in Figure 2.2.

The approximation via Hooke’s law reads as follows:

Ubond =
∑
bonds

kb(r − req)
2 (2.12)

Where kb describes the force constant for the bond, r describes the actual bond length and req

describes the bond length at equilibrium.
One also uses a harmonic potential for the description of Uangle. Therefore, Equation 2.12 and

Equation 2.13 look the same except that the bond length is switched with the angle θ:

Uangle =
∑
angles

kθ(θ − θeq)
2 (2.13)

12 CHAPTER 2. THEORY

Figure 2.2: The blue line represents the asymmetric Morse potential with its asymptotic tail at
large atom distances. The orange line shows the approximation via Hooke’s law. The approxi-
mated values are close to the original values of the Morse potential at atom distances close to the
equilibrium bond length req.

It is expected, that the force constant for angles (kθ) is smaller than the force constant for
bonds (kb).

Regarding the dihedral angle interaction, things get a bit more complex. Different conforma-
tions of, e.g., butane are only distinguishable through differences in dihedral angle. By altering
that angle, a free energy curve can be generated as illustrated in Figure 2.3.

This interaction requires a full rotation around one axis. Therefore, a harmonic potential is
not sufficient anymore. Thus, Equation 2.14 is used to model the dihedral angles.

Udihedral =
∑

dihedrals

kϕ[1 + cos(nϕ+ δ)] (2.14)

Where kϕ describes the energy barrier between different conformations, n describes the period-
icity of the system, ϕ describes the dihedral angle, and δ describes the phase shift at a specified
time. If one looks at the periodicity for the methyl groups shown in Figure 2.3 it would be three. If
one starts at 0° high energy is observed, the same is true for 120° and 240° and naturally the same
state is reached at 360°. Therefore, there are three high energy states, and it has a periodicity
of three. The force constant kϕ has typically the smallest value of the already mentioned force
constants.

Uimproper is once again very similar to, Uangle just that this time the angle in question is the
so-called improper angle (ω). One can think of this angle as the angle between the atom in question
and an imaginary plane that is formed by three other atoms. One of the smallest possible systems

2.2. MOLECULAR DYNAMICS SIMULATIONS 13

Figure 2.3: Free energy curve as a function of dihedral angle, applied to the example butane.
Taken from reference [36].

to imagine something like that would be the structure of an Ammonia molecule. The imaginary
plane would be between the nitrogen atom and two of its hydrogen atoms. And the improper
angle would be between the remaining hydrogen atom and this plane. This can be useful to, e.g.,
describe the planarity of sp2 hybridized carbon atoms. Equation 2.15 describes this potential.

Uimproper =
∑

impr. angles

kω(ω − ωeq)
2 (2.15)

All previously defined parameters are components of a force field. The value for them is
predefined for different elements, hybridization states and chemical vicinity and is necessary for
every MD simulation.

Nonbonded Interactions

Uelectrostatic is based on the Coulomb law. The simplest form of the Coulomb energy can be written
as,

Uelectrostatic = Ucoulomb =
N−1∑
i

N∑
j>i

qiqj
4πϵ0

1

rij
(2.16)

where q represents the point charge of atom i or j respectively, which is usually obtained by
quantum mechanical methods, ϵ0 is the electric constant and rij is the distance between these
atoms.

It is important to note, that Coulomb interactions are relatively long ranged, since they are
decaying with r−1. This is computationally expensive and a big problem for the existing periodic
boundary conditions. Section 2.2.3 will explain this problem extensively.

UvanderWaals can be described through the Lennard-Jones potential. This potential consists of

14 CHAPTER 2. THEORY

Figure 2.4: Lennard-Jones potential as a function of interatomic distance. ϵ describes the depth
of the potential well and therefore the energy gain at the ideal distance. σ describes the distance
where the potential changes from repulsive to attractive.

an attractive and repulsive part. The repulsive part models the impossibility to completely overlap
two atoms by being strongest at very short distances. The attractive part also decreases with the
distance, but this happens way slower than with the repulsive part. Therefore, an ideal distance
can be found. Figure 2.4 shows the potential in a familiar picture.

Mathematically, this can be described by Equation 2.17,

UvanderWaals = ULJ =
∑
i

∑
j>i

4ϵij

{(
σij

rij

)12

−
(
σij

rij

)6
}

(2.17)

where the repulsive r−12 term describes the Pauli repulsion and the attractive r−6 term describes
the Keesom, Debye and London dispersion forces.

Lorentz-Berthelot mixing rules

As mentioned at the end of section 2.2.2 every atom has its own parameters, but for Equation 2.17
one needs parameters for a “mixture” of two atoms. That is where the Lorentz-Berthelot mixing
rules come into play. For σij one uses the Lorenz rule:

σij =
σii + σjj

2
(2.18)

Where σ describes the added radius of the particle indicated by the index i or j. Therefore,
one uses the regular arithmetic mean to describe the interaction between i and j. This distance

2.2. MOLECULAR DYNAMICS SIMULATIONS 15

is the effective radius between two particles where the repulsive interactions become severe. The
underlying assumption is that the atoms in the system are described by hard spheres.

To approximate ϵ one uses the Berthelot rule:

ϵij =
√
ϵiiϵjj (2.19)

Where ϵ can be seen as the induced dipole interaction between two particles. Using the geo-
metric mean, one can get the induced dipole interaction between two different particles.

2.2.3 Periodic boundary conditions

Everything that was discussed until now was assuming a single simulation box. Naively, one could
just forbid the molecules to leave the predefined box. This leads to unnatural behavior since the
size and surface effects would dominate the whole simulation. To circumvent that problem without
allocating unfeasible amounts of computational resources, one uses periodic boundary conditions
(PBC). One can imagine them as identical replicas around the simulation box where additional
replicas (so-called images) are added around them, repeated to infinity. A graphical representation
of this concept in two dimensions can be seen in Figure 2.5.

Figure 2.5: Periodic boundary conditions in two dimensions.

Since every simulation box is an exact replica of the original one, every box has the same
dynamics (and therefore forces acting upon the particles) and atomic positions, therefore only one

16 CHAPTER 2. THEORY

box needs to be calculated. A particle that moves out of the box just moves into the next box,
but since every box is the same, another equivalent particle moves into the original box from the
other side. If one looks at a singular box, the particles seem to “teleport” from one side to the
other, thus keeping the number of particles constant during the simulation. Since all the With this
approach, the description of bulk like properties becomes possible.

Bonded interactions are compatible with PBC quite easily, but non-bonded interactions are
affected drastically by PBC. The reason for that is their long range. It is paramount that a
particle cannot interact with itself in these simulations, which means that after at most half a box
length, potentials (non-bonded or otherwise) should be neglected.

The van der Waals potential decreases with the sixth power of the distance as seen in Equation
2.17, therefore this long range needs to be truncated in some way. There are three basic options
to archive this, two of them are seen in Figure 2.6.

Figure 2.6: The thick blue line shows the unmodified van der Waals potential, the thin blue line
shows the result after applying a switching function, and the green line shows the result after
applying a shifting function. The vertical black line shows the cut-off point. Taken from reference
[37] (modified).

Just cutting off the potential would be a possibility, but this leads to discontinuity, and therefore
switching or shifting functions are employed to turn off the Lennard-Jones potential smoothly after
a certain distance. Shifting functions leave the shape of the curve mostly intact, but the depth
of the potential well changes quite a bit. On the contrary, switching functions leave the depth of
the potential well intact, but change the van der Waals interactions right before the cut-off point
significantly. Both options have their own disadvantages, but normally a combination of both
functions is used to change the original potential as little as possible.

In case of Coulomb interactions, the situation is more complex since it decreases linearly with

2.2. MOLECULAR DYNAMICS SIMULATIONS 17

the distance as seen in Equation 2.16. Therefore, the calculation of these interactions is the most
expensive and tricky part of any MD simulation. To stay as true as possible to the description
of charges, an idea developed for adequately summing up the electrostatic interactions in ionic
crystals is employed. The so-called particle mesh Ewald summation, which was first proposed by
Ewald in 1921 [38]. Here the periodicity of the simulation box is taken into account by introducing
a lattice vector n used to calculate the (infinite) sum (the lattice sum) as seen in Equation 2.20.

Uperiodic
electrostatic =

1

2

∑
n

′∑
j

∑
i

qiqj
|rij + n|

(2.20)

This lattice vector n is pointing to all periodic images. It is defined as n = n1a1 + n2a2 + n3a3,
where a1, a2 and a3 are scaling factors that translate from one box of the lattice to another. For
the central box, where n = 0, the case i = j is ignored. This is indicated by the prime after the first
sum. Unfortunately, Uperiodic

electrostatic has the mathematical property of being conditionally convergent.
This means that its value depends on the order of the summation, additionally the convergence is
very slow [39].

The Ewald summation modifies this lattice sum to accelerate the convergence. On top of
that, the conditional convergence is circumvented by avoiding the singularity of the Coulomb
interactions. To achieve that, the sum in Equation 2.20 is split into two sums, as shown in
Equation 2.21.

1

r
=

erfc(κr)

r︸ ︷︷ ︸
real

+
erf(κr)

r︸ ︷︷ ︸
reciprocal

(2.21)

Where erfc and erf are the error and complementary error functions, respectively. They are of
the form erfc(x) = 1−erf(x) = 2√

π

∫∞
x

e−t2dt with the error function being erf(x) = 2√
π

∫ x

0
e−t2dt. κ

represents a positive number that is chosen so that the calculation converges quickly. It originates
from a Gaussian charge distribution of the form ρ = κ3π− 3

2 e−κ2r2 [40]. The first term in this
Equation is short ranged enough to only affect the primary simulation box for a sensible choice in
κ. erfc(x) can be imagined as acting as the “shifting function” bringing the long ranged potential
rapidly to zero. Therefore, the term labelled real can be used to calculate the real space sum of
electrostatic interactions, as seen in Equation 2.22.

U real
elec =

1

2

(
N∑
i=1

N∑
j=1̸=i

qiqj
erfc(κr)

rij

)
(2.22)

The term labelled reciprocal is long ranged and would have to run over all lattice vectors
n. But one can use a trick to avoid that, by summing these up in reciprocal space and using
a Fourier transform. There, the reciprocal term becomes a rapidly converging sum, which is
referred to as “k-sum” or “reciprocal sum”. To further increase calculation speed, this k-sum is
not calculated for all atomic positions, but instead for fixed positions in a predefined grid. With
this, the Ewald summation becomes the particle mesh Ewald summation (PME). This allows the
computer to pre-compute a lot of necessary steps and to use fast Fourier transforms (FFT) to

18 CHAPTER 2. THEORY

speed the calculations up considerably. The atomic charges are distributed over the grid points,
the potentials are calculated, and they are transformed back to their atomic positions by using
Fourier transform and B-splines. The forces can be calculated directly by differentiating these
splines.

2.3 Dielectric spectroscopy

In general, dielectric spectroscopy measures the dielectric properties of a medium as a function of
frequency [41–43]. To be more precise, it measures the interaction of an external electric field with
the electric dipole moment of the sample. This measurement is often expressed by permittivity,
but the actual measured parameter is the impedance. Impedance stands in opposition to the flow
of alternating current (AC) in a passive complex electrical system. These systems consist of both
energy dissipater (resistor) and energy storage (capacitor) elements. For less complex systems that
have no capacitor elements, this opposition is simply resistance. A schematic visualization of the
experimental setup can be seen in Figure 2.7.

Figure 2.7: Schematic representation of dielectric spectroscopy of water.

This visualization shows just a short snapshot of the experiment. Since one works with AC,
the electric field changes directions constantly with the experimental frequency, ν which can be
translated to the pulsatance ω by ω = 2πν. But in every moment of the experiment, every neutral
molecule with an electric dipole moment tries to align it to the electric field by rotation, whereas
any charged particle moves to the side with opposite charge by translation. Of course, the rotation
takes time depending on the bulkiness of the molecule. Looking at a more practical example:
one assumes a sample consisting of neutral α-helices with an electric dipole moment and water
molecules. At low frequencies both the α-helices and water molecules are able to align with the
electric field quite easily, but as the frequency increases the α-helices are not able to align in time
for the next change, whereas the water molecules are still able to. The frequency will at some point

2.3. DIELECTRIC SPECTROSCOPY 19

increase to the point where the water molecules are also not able to align in time. This resistance
to align in the time given by the frequency of the electric field leads to peaks for every species
with an electric dipole moment, usually seen in dielectric spectra. Figure 2.8 shows the resulting
spectrum of Figure 2.7 once again schematically.

Figure 2.8: Schematic dielectric spectrum resulting from a system similar to Figure 2.7. The black
line represents the real part of the spectrum and the orange line represents the imaginary part of
the spectrum.

This Figure shows the permittivity as a function of frequency. Here, it is important to note,
that the impedance can be transformed directly into permittivity. Additionally, the real part of the
spectrum can be transformed into the imaginary part quite easily. The x-axis is furthermore chosen
to be in logarithmic scale, since the size of the frequency range is unusually large for spectroscopic
methods [44]. To make these concepts more tangible, one can imagine the real part of the spectrum
as a measure of polarization and the imaginary part as a measure of the dissipation of energy.

As briefly mentioned before, singular charged particles only experience translatory motion, but
they influence the rotation of every species with an electric dipole moment. In Layman’s terms, the
rotation of the electric dipole moment tries to “follow” the movement of the charged particle. This
influence is called kinetic depolarization [45]. Of course, these are weak interactions and strongly
dependent on the charged particle.

2.3.1 Computational dielectric spectroscopy

To calculate dielectric spectra of the previously generated trajectory, one has to calculate the
frequency-dependent generalized dielectric constant (GDC)

∑
(ω). This GDC is the susceptibility

which relates the dielectric polarization to the strength of the Maxwell field E⃗. This may be
expressed by Equation 2.23, where the left side refers to the constitutive relation using the Maxwell

20 CHAPTER 2. THEORY

field E⃗ and the right side originates from the application of linear response theory leading to
susceptibility by using the applied external field E⃗ext [46].

∑
(ω) =

∑
∗(ω)− (ϵ∞ − 1) =

4π

3V kbT
L
[
− d

dt
⟨M⃗tot(0)M⃗tot(t)⟩eq

]
(2.23)

Where M⃗tot is the equilibrium total dipole moment of the sample, and ⟨M⃗tot(0)M⃗tot(t)⟩ is the
corresponding time correlation function. This time correlation function is treated to a Fourier-
Laplace transform. Technically one has to include the electric field factor E⃗

E⃗ext
as well, but the

aforementioned strongly depends on the boundary conditions of the simulation box and for PME
this equals unity. These were explained in detail in section 2.2.3.

The collective dipole moment M⃗tot is described by Equation 2.24.

M⃗tot(t) =
∑
i

∑
α

qi,α · r⃗i,α(t) (2.24)

Where qi,α is the partial charge, and r⃗i,α the coordinates of the atom α and the molecule i. This
total dipole moment can be decomposed into a translational part M⃗J(t) as described in Equation
2.25 and a rotational part M⃗D(t) as described in Equation 2.26. [47]

M⃗J(t) =
∑
i

∑
α

qi,α · r⃗cm,i(t) =
∑
i

qi · r⃗cm,i(t) (2.25)

M⃗D(t) = M⃗tot(t)− M⃗J(t) =
∑
i

∑
α

qi,α · (r⃗i,α(t)− r⃗cm,i(t)) (2.26)

Where r⃗cm,i is the center of mass of the molecule i, and qi is its charge. It is quite clear to
see from the definition of M⃗J(t), that all atoms α with their partial charges qi,α were merged to
a single molecule i. This molecule has a charge of qi =

∑
α

qi,α and is represented by its center

of mass r⃗cm,i. Thus, only charged species contribute to the collective translational motion M⃗J(t),
whereas M⃗D(t) includes all nontranslational motions of charged and neutral molecules.

To get the necessary information out of the MD Simulation, one has to employ time correlation
functions [48]. To get a time correlation function, one needs to investigate a time dependent
property. For the sake of dielectric spectra, this property is the total collective dipole moment.
⟨M⃗tot(0)M⃗tot(t)⟩ is the corresponding time correlation function. Where t represents a time range
that is way smaller than the total time of the simulation. This range can be shifted by t over the
total time and averaged over all possible shifts. Since ⟨M⃗tot(0)M⃗tot(t)⟩ is split into the rotational
part and the translational part, so is the corresponding time correlation function. This is seen in
Equation 2.27 [49].

Φtot(t) = ΦD(t) + ΦJ(t) (2.27)

Where Φtot is the total time correlation function of the total collective dipole moment, ΦD

represents the rotational part and ΦJ the translational part. Equation 2.28 & 2.29 define the
individual parts.

2.3. DIELECTRIC SPECTROSCOPY 21

ΦD(t) = ⟨M⃗D(0) · M⃗D(t)⟩+ ⟨M⃗D(0) · M⃗J(t)⟩ (2.28)

ΦJ(t) = ⟨M⃗J(0) · M⃗J(t)⟩+ ⟨M⃗D(0) · M⃗J(t)⟩ (2.29)

Where the first term is an autocorrelation function (a property that interacts with itself) and
the second term a cross correlation function (a property that interacts with a different prop-
erty). This split is represented graphically in Figure 2.9. One can immediately see, that the
rotational part ⟨M⃗D(0)M⃗D(t)⟩ (orange) resides in a lower frequency regime than the translational
part ⟨M⃗J(0)M⃗J(t)⟩ (black), but there is a region where these two parts overlap. The rotational-
translational coupling ⟨M⃗D(0)M⃗J(t)⟩ has a similar frequency range as the translational part. Due
to PBC charged particles may be re-entering the simulation box at the opposite site. This causes
significant jumps in M⃗J(t) and consequently ΦJ(T). To circumvent this problem, one can transfer
them to functions containing the electric current J⃗(t) = d

dt
M⃗J(t). This transformation is relatively

straight forward, since the translational movement of charged particles can be seen as electric
current.

Figure 2.9: Decomposition of the autocorrelation function of the total collective dipole moment
⟨M⃗tot(0)M⃗tot(t)⟩. Orange represents the rotational part ϕD and black represents the translational
part ϕJ . Vectors are represented by bold letters. Taken from reference [46].

A side effect of this split is also that when one looks at species that are not charged, one can
neglect the translational term ⟨M⃗J(0)M⃗J(t)⟩ since it becomes zero, as well as the cross correlation
term ⟨M⃗D(0)M⃗J(t)⟩ due to its intensity.

22 CHAPTER 2. THEORY

3 | Methods

This chapter aims to provide a general, mostly chronological workflow of the methods used in this
Master’s Thesis. As briefly mentioned in section 1, some preliminary simulations had already been
done. Figure 3.1 shows a mind map of the steps taken throughout this thesis.

Figure 3.1: Rough workflow of this Master’s Thesis. Blue symbolizes steps that went as planned,
red symbolizes a dead end, and yellow symbolizes that more work needs to be done in the future.

23

24 CHAPTER 3. METHODS

3.1 Preliminary data generation

Once again it needs to be stated that these preliminary simulations were set up and run by my
colleague Marion Sappl B.Sc., and that big parts of the rest of this work are based on the results
of these preliminary simulations. Table 3.1 shows the composition of the packed boxes, the size
after a 5 ns npT equilibration run, as well as a comparison between the expected and the actual
concentration contained in the simulation box.

Table 3.1: Numbers of molecules, xtl and resulting concentration of the preliminary simulations.

System anticip. c(salt)
[
mol
L

]
N(arg) N(water) N(salt) xtl

[
Å
]

c(arg)
[
mol
L

]
c(salt)

[
mol
L

]
No salt, TIP3P 0 59 6804 0 59.7 0.46 0
KCl, TIP3P 0.25 59 6719 33 59.6 0.46 0.26

0.5 59 6634 65 59.5 0.46 0.51
0.75 59 6549 98 59.3 0.47 0.78
1 59 6464 130 59.3 0.47 1.0

KI, TIP3P 0.25 59 6708 33 59.6 0.46 0.26
0.5 59 6613 65 59.4 0.46 0.52
0.75 59 6518 98 59.4 0.46 0.77
1 59 6422 130 59.3 0.47 1.0

LiCl, TIP3P 0.25 59 6767 33 59.6 0.46 0.25
0.5 59 6730 65 59.7 0.46 0.51
0.75 59 6693 98 59.7 0.46 0.76
1 59 6656 130 59.5 0.46 1.0

No salt, SPC/E 0 59 6804 0 59.9 0.46 0
KCl, SPC/E 0.25 59 6719 33 59.7 0.46 0.25

0.5 59 6634 65 59.7 0.46 0.51
0.75 59 6549 98 59.6 0.46 0.77
1 59 6464 130 59.4 0.46 1.0

KI, SPC/E 0.25 59 6708 33 59.8 0.46 0.25
0.5 59 6613 65 59.7 0.46 0.51
0.75 59 6518 98 59.7 0.46 0.76
1 59 6422 130 59.5 0.46 1.0

LiCl, SPC/E 0.25 59 6767 33 59.9 0.45 0.25
0.5 59 6730 65 59.9 0.45 0.50
0.75 59 6693 98 59.9 0.46 0.75
1 59 6656 130 59.9 0.45 1.0

The result of these simulations will be discussed in section 4.1. Similarly, the different molecular
models used and the general workflow of getting a working simulation and running it will be
discussed in section 3.3 and 3.4 respectively.

3.2. REMOVAL OF CLUSTERS 25

3.2 Removal of Clusters

Without wanting to anticipate too much about the interpretation of the preliminary results, two
things are important to state in order to understand the decisions made in this section. Foremost,
the calculated arginine peak had a weak agreement of the experimental peak. Secondly, this
peak seemed to be the result of two subpeaks where one of them had a good agreement with
the experimental data except for the intensity. The other subpeak had a shift towards lower
frequencies. Out of these observations, the hypothesis of arginine clustering was born. Since
arginine in a cluster has a higher moment of inertia, the frequency shift could be explained this
way.

Two options were tried to remove the clusters. The first approach was to remove all arginine
molecules that were part of the cluster and to only calculate the spectrum from the remaining
ones. The challenge here is to decide when an arginine molecule is defined as being in a cluster. In
this work, being in a cluster was defined by adjacency of multiple arginine molecules over a longer
period of time. The adjacency was determined by Voronoi tessellation [50]. Therefore, to count as
a cluster arginine it needed to be adjacent to another arginine which is once again adjacent to an
arginine and so on. If this adjacency construct is bigger than ten molecules for over 50% of the
calculated time steps, these clustered arginine were removed. To do that, a self written python
script was employed. The results of the removal will be discussed in section 4.2.

The second approach was to increase the solubility of arginine in the simulation. To that
end, the Lorentz-Berthelot mixing rules as explained in section 2.2.2 were employed to scale the
interactions between the oxygen of the SPC/E water and the atoms of arginine. ϵij was multiplied
by 1.1 for all this atom pairs respectively and σij was left untouched. To make the following
sections more readable, the scaling factor s is introduced according to Equation 3.1.

ϵnewij = ϵoldij · sij

sij =

1.1, if i Arg atom and j H2O oxygen

1, else

(3.1)

The same process was also tried with s = 1.2 afterwards.

26 CHAPTER 3. METHODS

3.3 Setting up a simulation

To run a classical MD simulation, one has to first set up a simulation box. Generally speaking,
molecular models are needed to put in this box, a way to pack this box, and a way to minimize
the internal energy of the box before starting an MD Simulation.

3.3.1 Generation of Molecules

The structures of all necessary cations and anions were taken from the website of the CHARMM-
GUI Archive Small Molecule Library (CSML) [51]. As for the water models, TIP3P [52] and
SPC/E [53] were used. The arginine model was generated via the program GaussView [54]. Ge-
ometry optimization was done using the hybrid functional B3LYP/G-31G(d) to get a realistic
three-dimensional structure as seen in Figure 3.2.

Figure 3.2: 3D optimized structure of arginine visualized in VMD [55].

This structure was uploaded to the servers of https://www.paramchem.org/ and through
CGenFF (Charmm General Force Field) [28] topological and parameter files could be generated.

3.3.2 Packing of the simulation box

All boxes used in this thesis and in the preliminary simulations were packed with a side length of
60Å. The program PACKMOL [56] was used to build this simulation box. Firstly, structures of
each species and the amount to pack are needed. The packing is then treated as a mathematical
packing problem, where two molecules are not allowed to get too close to each other.

Table 3.1 shows the amount and type of molecules that were used for preliminary simulations,
and Table 3.2 shows the same for all other simulations. TIP3P was discarded as a water model
and only SPC/E was used for further simulations since the agreement with the experimental data
was much higher. Figure 3.3 shows an exemplary box packed with PACKMOL.

3.3. SETTING UP A SIMULATION 27

Figure 3.3: A cubic simulation box containing arginine, potassium ions, bromide ions and water.

28 CHAPTER 3. METHODS

Table 3.2: Numbers of molecules

SPC/E c(salt)
[
mol
L

]
N(arg) N(water) N(salt)

No salt 0 59 6804 0

KBr 0.15 59 6754 20
0.30 59 6710 39
0.45 59 6661 59
0.60 59 6617 78
0.75 59 6570 98
0.90 59 6524 117

KCl 0.15 59 6750 20
0.30 59 6702 39
0.45 59 6648 59
0.60 59 6600 78
0.75 59 6549 98
0.90 59 6498 117

LiCl 0.15 59 6779 20
0.30 59 6760 39
0.45 59 6734 59
0.60 59 6715 78
0.75 59 6693 98
0.90 59 6671 117

KI 0.15 59 6743 20
0.30 59 6689 39
0.45 59 6629 59
0.60 59 6575 78
0.75 59 6518 98
0.90 59 6460 117

NaCl 0.15 59 6772 20
0.30 59 6745 39
0.45 59 6713 59
0.60 59 6687 78
0.75 59 6658 98
0.90 59 6629 117

3.4. RUNNING A SIMULATION 29

3.3.3 Minimization of internal energy

After getting a complete simulation box, one has to minimize the internal energy. While packing
the box, the orientation of the used molecules was chosen at random and therefore the internal
energy is very high. So high in fact that a reasonable MD simulation is not possible in most cases.
Therefore, CHARMM was used to change that. There the derivative of the potential energy and
sometimes the second derivative is calculated and this information is used to adjust the coordinates
to find a lower energy in an iterative process. For these systems, the steepest descent (SD) method
was used. The coordinates get adjusted in the negative direction of the gradient with a changing
step size. This step size increases by 20% if the energy drops to accelerate the convergence. If the
energy is higher than before, the step size is halved, since a minimum was overshot [51]. After
convergence, the internal energy of the simulation box should be more realistic and ready to start
a classical MD simulation.

3.4 Running a Simulation

In general, the run of a simulation can be split into two parts. Firstly the equilibration run and
secondly the production run. The equilibration run was done via OpenMM [32] and a CHARMM
[57] force field as an npT simulation, which means that the amount of particles (as seen in Table
3.2), the pressure (1 atm) and the temperature (300K) were held constant. These simulations
were run for 5 ns in time steps of 2 fs, but only every 500th step was saved since a vast amount of
unnecessary data would have been created. After the 5 ns equilibration run, the final volume of
the box and therefore the final box length (xtl) was clear. These were needed as an input for the
production run and can be seen in Table 3.3.

The production run was once again done with OpenMM using a CHARMM type force field. It
was a nVT simulation with the same particle number and temperature as in the equilibrium simu-
lation and a fixed box length, and therefore volume, given in Table 3.3. This time the simulations
were run for 100 ns in time steps of 2 fs and every 500th step was saved.

30 CHAPTER 3. METHODS

Table 3.3: Equilibrated xtl and resulting concentrations for s = 1.1 and s = 1.2.

anticip. c (salt)
[
mol
L

]
xtl(1.1 ϵArg−H2O) [Å] c (salt)

[
mol
L

]
xtl(1.2 ϵArg−H2O) [Å] c (salt)

[
mol
L

]
0 59.7 0 59.7 0

KBr 0.15 59.8 0.15 59.9 0.15
0.30 59.9 0.30 59.8 0.30
0.45 59.8 0.45 59.8 0.45
0.60 59.9 0.60 59.8 0.60
0.75 59.8 0.76 59.8 0.76
0.90 59.9 0.90 5.97 0.90

KCl 0.15 59.8 0.15 59.8 0.15
0.30 59.8 0.30 59.8 0.30
0.45 59.7 0.46 59.6 0.46
0.60 59.6 0.61 59.7 0.61
0.75 59.5 0.77 59.5 0.77
0.90 59.5 0.92 59.3 0.92

LiCl 0.15 60 0.15 59.9 0.15
0.30 59.9 0.30 59.8 0.30
0.45 59.9 0.45 59.9 0.45
0.60 59.8 0.61 59.9 0.61
0.75 59.9 0.75 59.9 0.75
0.90 59.9 0.90 59.9 0.90

KI 0.15 59.8 0.15 59.9 0.15
0.30 59.9 0.30 59.7 0.30
0.45 59.8 0.45 59.8 0.45
0.60 59.7 0.61 59.7 0.61
0.75 59.7 0.76 59.7 0.76
0.90 59.7 0.91 59.6 0.91

NaCl 0.15 59.8 0.15 59.9 0.15
0.30 59.8 0.30 59.8 0.30
0.45 59.8 0.45 59.8 0.45
0.60 59.8 0.61 59.7 0.61
0.75 59.8 0.76 59.7 0.76
0.90 59.8 0.91 59.7 0.91

3.5 Dielectric spectrum calculation

At first, a python script was used to extract the autocorrelation function of the total collective
dipole moment (due to neglection of the other terms just ⟨M⃗D(0)M⃗D(t)⟩). Another python script
was used to train a triexponential fit on the extracted data. For the training, only the autocorre-
lation function until it reaches zero for the first time was used. Then the program GENDICON
[46] employed this to calculate the dielectric spectrum. The fit leads to smoother and more re-
alistic spectra, this effect was additionally increased by setting the option “bspline” to 10 which
also improves the spectrum at higher frequencies. This program calculates the real as well as the
imaginary part of the spectrum.

3.5.1 Calculating trends

Additionally, the concentration dependent trend of the dielectric strength (Sj) was calculated. One
can calculate this according to

∑
j Sj = ϵs − ϵ∞, where ϵs is the first value of the real part of the

3.5. DIELECTRIC SPECTRUM CALCULATION 31

dielectric spectrum and ϵ∞ is the value after infinite frequency. Of course, infinite frequency can
not be reached experimentally or computationally. For experiments the last measured value is
chosen, for this work ϵ∞ = 1 was chosen.

Improving statistics

To enhance the quality of the predictions, the underlying statistics needed to be improved. To that
end, every system was recalculated four times. To make sure that these systems were different,
three non-identical randomness seeds were chosen while packing the simulation box via PACKMOL.
The number of replica could be increased from three to four by packing two boxes with the same
random seed and then equilibrating them separately, since the standard OpenMM distribution
uses a Monte Carlo barostat. This barostat incorporates randomness into the equilibration and
the resulting replica are therefore different from each other. Hence, a total of four replicas could
be used to get more accurate results. This process is shown schematically in Figure 3.4.

Figure 3.4: Schematic representation of the process of equilibrating the boxes to start a new
production run.

32 CHAPTER 3. METHODS

4 | Results and discussion

This chapter aims to show and discuss the results of this Master’s thesis. Once again, the ordering
will be mostly chronological.

4.1 Preliminary results

All shown spectra in this section are visualizations of the data created by Marion Sappl B.Sc.
Figure 4.1 shows a comparison of the imaginary part of the dielectric spectrum of TIP3P and
SPC/E water on three different systems. The shown systems are all at a salt concentration of
0.75 mol

L
and the salts are KCl, KI, and LiCl respectively. The red line shows the spectrum for

TIP3P water, the blue line for SPC/E water, and the black line shows the experimental result.
The smaller peak at lower frequencies originates from arginine, and the larger peak at higher
frequencies comes from water. It is visible that the SPC/E water fits the experimental spectrum
slightly better. Figure 4.2 shows the calculated spectra for SPC/E water of the same systems in
more detail. The contribution of arginine is marked with a dotted line, water is shown in bright
orange, the total spectrum in darker orange and the experimental spectrum in dark gray. There
seems to exist a trend towards a better fit from KCl over KI to LiCl. If one looks at the arginine
contribution in Figure 4.2 b) and especially 4.2 a), one can see that this peak seems to stem from
two different contributions. Out of this, the hypothesis was born that these two peaks are clustered
arginine (lower frequency peak) and free arginine (higher frequency peak). Interestingly, the free
arginine peak seems to be in the same frequency range as the experimental peak for arginine. One
possible explanation would be that the arginine clusters are too stable in the simulation.

33

34 CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.1: Comparison between systems in TIP3P (red) and SPC/E (blue) water with the exper-
imental peak (black) for a system with arginine, SPC/E water and 0.75 mol

L
KCl (a), KI (b) and

LiCl (c).

4.1. PRELIMINARY RESULTS 35

Figure 4.2: Dielectric spectrum of a system with arginine, SPC/E water and 0.75 mol
L

KCl (a), KI
(b) and LiCl (c).

36 CHAPTER 4. RESULTS AND DISCUSSION

4.2 Removed clusters

As a consequence of the results shown in section 4.1 a way was needed to deal with arginine
clusters. As already mentioned in section 4.2 two options were chosen: The straight forward
removal of clustered molecules and the scaling of intramolecular potentials.

4.2.1 Straight forward removal of clustered molecules

To remove clustered molecules, one has to define when a molecule counts as clustered or as free.
All straight forward removals were done on the preliminary data set described in section 3.1. An
arginine molecule was counted as free if it was not in a cluster that was bigger than ten molecules
for at least 50% of the calculated time steps. Arginine in small clusters for the whole time or in
big clusters for a short time, is still counted as free. The results of these calculations can be seen
in Table 4.1.

Table 4.1: Free arginine molecules after cluster removal.

0,1 mol
L 0,25 mol

L 0,375 mol
L 0,5 mol

L 0,75 mol
L 1 mol

L

T
IP

3P

KCl 0 0 0 0 0 0
KI 0 0 0 1 1 0
LiCl 1 4 7 31 48 54

SP
C

/E KCl - 23 - 7 11 24
KI - 13 - 18 12 23
LiCl - 22 - 33 54 59

A few things are worth to mention. First, all or nearly all arginine molecules were removed
in some systems. Secondly, this clustering seems to affect TIP3P water much more than SPC/E
water. Thirdly, there seems to be a trend from KCl with high clustering over KI to LiCl with low
clustering. This would also explain why Figure 4.2 c) fits the experimental data way better than
Figure 4.2 a) or 4.2 b).

Figure 4.3 shows the resulting dielectric spectra after only using free arginine molecules. The
systems with only free arginine molecules are abbreviated as NC (for non-cluster). The orange
line shows once again the imaginary dielectric spectrum of the unmodified system. The dark blue
line shows the total imaginary dielectric spectrum of the NC systems, and the dotted blue line
shows the arginine contribution of this spectrum. Two things are apparent by comparing these two
spectra. Foremost, the peak shifts to higher frequencies in Figure 4.3 a) and 4.3 b) but stays the
same in Figure 4.3 c). This makes sense considering that for the system with LiCl most arginine
molecules were already free in the first place. Secondly, the intensity of the peak changes. It
decreases strongly in Figure 4.3 a) and 4.3 b) but increases in Figure 4.3 c). This is also a side
effect of the cluster removal. Since the intensity of a peak is correlated with the total collective
dipole moment, the direction of a dipole moment of a molecule is paramount. The resulting peak
is most likely composed of parallel and antiparallel contributions. If only a few molecules are
removed and these have an antiparallel contribution, the peak can have a higher intensity than

4.2. REMOVED CLUSTERS 37

before. If more molecules are removed, the probability for all of them (or at least most of them) to
have an antiparallel contribution shrinks drastically and the peaks are way too small. Therefore,
another way had to be chosen to remove the clusters.

Figure 4.3: Dielectric spectrum of a system with free arginine, SPC/E water and 0.75 mol
L

KCl (a),
KI (b) and LiCl (c) in comparison to the regular system.

38 CHAPTER 4. RESULTS AND DISCUSSION

4.2.2 Scaling of intramolecular potentials

The other option was to increase the solubility of the arginine molecules. Hence, the van der Waals
interactions between the oxygen of water and all atoms of arginine were scaled by 1.1 and new
simulations were done. The resulting spectra can be seen in Figure 4.4. Dark orange represents the
spectrum with just free arginine from before, dotted orange represents the arginine contribution.
Dark blue and dotted blue represent the same parts for simulations with s = 1.1. The trends once
again look similar to Figure 4.3. The peak is shifted slightly back to lower frequencies, most likely
since some arginine molecules are still in a cluster. Also, the intensity of the arginine peak of the
spectrum of the scaled simulations increases in Figures 4.4 a) and 4.4 b) and decreases in Figure
4.4 c). Therefore, these spectra fit the experimental results better, and are used for further studies,
than the spectra of the unscaled simulations.

Figure 4.4: Dielectric spectrum of a system with s = 1.1, arginine, SPC/E water and 0.75 mol
L

KCl
(a), KI (b) and LiCl (c) in comparison to the spectrum of free arginine.

4.2. REMOVED CLUSTERS 39

Stronger scaling

Since the scaling factor seemed to work quite well but not completely, new simulations with an
increased scaling factor of 1.2 were started. The comparison between the resulting spectra and
the previous scaled spectra are shown in Figure 4.5. The blue lines represent the simulations with
a scaling factor of 1.1 and the orange lines represent the simulations with a scaling factor of 1.2.
The dotted lines represent the arginine contribution, whereas the darker lines represent the total
spectrum. None of these Figures show a big frequency change between the two scaling factors,
therefore a scaling factor of 1.1 seems sufficient.

Figure 4.5: Comparison between dielectric spectra of systems with s = 1.1 or 1.2 respectively. The
system contained arginine, SPC/E water and 0.75 mol

L
KCl (a), KI (b) and LiCl (c).

40 CHAPTER 4. RESULTS AND DISCUSSION

4.3 Verification of the fit

To verify the quality of the fit, a numerical integration of the autocorrelation function was done to
get the dielectric spectrum. Figure 4.6 shows a comparison between the fit (blue) and the numerical
integration (orange). The numerical integration oscillates around the fit, which indicates that the
fit leads to reasonable results. The numerical integration fails to give realistic results at high
frequencies. The frequency is connected to the time interval of the created data, therefore one
needs a small time interval to gain realistic results at high frequencies. At some point, decreasing
this interval is not reasonable anymore due to the amount of generated data.

Figure 4.6: The system contained arginine, SPC/E water and 0.75 mol
L

KCl (a), KI (b) and LiCl
(c).

4.4. DIELECTRIC SPECTRA 41

4.4 Dielectric spectra

This section shows the spectra of all simulated systems. The gray line shows the experimental
spectrum, the dark blue line the total calculated spectrum, the dotted blue line the arginine
contribution and the bright blue line the water contribution. This color scheme is used for all
spectra in this section. All subsections are set up the same way and are split into the differently
scaled simulations. For example, in section 4.4.1 the used salt is KBr. The concentration rises
from Figure 4.7 a) to Figure 4.7 f) in the scheme 0.15 mol

L
, 0.3 mol

L
, 0.45 mol

L
, 0.6 mol

L
, 0.75 mol

L
and

0.9 mol
L

from top left to bottom right. All of these spectra are done with a scaling factor s = 1.1.
Figure 4.8 a) through 4.8 f) show the same concentration scheme as before, but have a scaling
factor of s = 1.2. Figure 4.9 and 4.10 show the same structure for KCl. The same is true for
Figure 4.11 and 4.12 for KI, Figure 4.13 and 4.14 for LiCl and Figure 4.15 and 4.16 for NaCl.

Looking at all spectra with s = 1.1, one might realize that sometimes the arginine contribution
still seems like it is a double peak. Good examples for that would be Figures 4.7 a), 4.13 c) and
4.15 a). In all these corresponding cases of s = 1.2 spectra shown in Figures 4.8 a), 4.14 c) and
4.16 a) an improvement can be seen. Therefore, s = 1.2 seems better at a first glance, but looking
at all spectra reveals that there are also counter examples. The pairs 4.7 c) & 4.8 c), 4.9 b) & 4.10
b) and 4.13 e) & 4.14 e) all show a worsening with higher scaling. Therefore, it seems that higher
scaling does not lead to improved spectra in general. Additionally, there seems to be a big range
of quality of the fit depending on the type of salt.

42 CHAPTER 4. RESULTS AND DISCUSSION

4.4.1 Potassium bromide

s = 1.1

Figure 4.7: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) KBr.

4.4. DIELECTRIC SPECTRA 43

s = 1.2

Figure 4.8: System containing arginine, SPC/E water and 00.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) KBr.

44 CHAPTER 4. RESULTS AND DISCUSSION

4.4.2 Potassium chloride

s = 1.1

Figure 4.9: System containing arginine, SPC/E water and 00.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) KCl.

4.4. DIELECTRIC SPECTRA 45

s = 1.2

Figure 4.10: System containing arginine, SPC/E water and 00.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c),
0.6 mol

L
d), 0.75 mol

L
e), 0.9 mol

L
f) KCl.

46 CHAPTER 4. RESULTS AND DISCUSSION

4.4.3 Potassium iodide

s = 1.1

Figure 4.11: System containing arginine, SPC/E water and 00.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c),
0.6 mol

L
d), 0.75 mol

L
e), 0.9 mol

L
f) KI.

4.4. DIELECTRIC SPECTRA 47

s = 1.2

Figure 4.12: System containing arginine, SPC/E water and 00.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c),
0.6 mol

L
d), 0.75 mol

L
e), 0.9 mol

L
f) KI.

48 CHAPTER 4. RESULTS AND DISCUSSION

4.4.4 Lithium chloride

s = 1.1

Figure 4.13: System containing arginine, SPC/E water and 00.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c),
0.6 mol

L
d), 0.75 mol

L
e), 0.9 mol

L
f) LiCl.

4.4. DIELECTRIC SPECTRA 49

s = 1.2

Figure 4.14: System containing arginine, SPC/E water and 00.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c),
0.6 mol

L
d), 0.75 mol

L
e), 0.9 mol

L
f) LiCl.

50 CHAPTER 4. RESULTS AND DISCUSSION

4.4.5 Sodium chloride

s = 1.1

Figure 4.15: System containing arginine, SPC/E water and 00.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c),
0.6 mol

L
d), 0.75 mol

L
e), 0.9 mol

L
f) NaCl.

4.4. DIELECTRIC SPECTRA 51

s = 1.2

Figure 4.16: System containing arginine, SPC/E water and 00.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c),
0.6 mol

L
d), 0.75 mol

L
e), 0.9 mol

L
f) NaCl.

52 CHAPTER 4. RESULTS AND DISCUSSION

4.5 Trends

Figure 4.17 shows the experimental results of the working groups of Dr. Johannes Hunger of the
Max Planck Institute for Polymer Research in Mainz and Dr. Vasileios Balos of the Fritz Haber
Institute of the Max Planck Society in Berlin. It illustrates the dielectric strength of arginine as a
function of the salt concentration of different salts. Some linear trends are clearly visible and are
used as a baseline to compare the simulation results to.

Figure 4.17: Measured dielectric strength of arginine as a function of salt concentration for different
salts [58].

Figure 4.18 shows the same results for the simulations with a scaling factor of 1.1 and 1.2
respectively. A linear fit was used to visualize the resulting trends. The calculated values are
strongly scattered.

Figure 4.18: Computed dielectric strength of arginine as a function of salt concentration for dif-
ferent salts, with s = 1.1 and s = 1.2 respectively.

4.5. TRENDS 53

These two graphs only used the arginine contribution to calculate the dielectric strength. The
trends were recalculated by subtracting the pure water contribution from the total spectrum, to
check if some small cross correlations between water and arginine could be of value. The resulting
trends can be seen in Figure 4.19.

Figure 4.19: Computed dielectric strength of arginine as a function of salt concentration for dif-
ferent salts with with s = 1.1 and s = 1.2 including cross correlations.

It is obvious that including the cross correlation does not make a big difference. Figure 4.18 and
4.19 show qualitative agreement and only slight quantitative shifts. Table 4.2 tries to visualize the
qualitative agreements between the calculated values and the experimental ones. If the gradient
for a single salt of both the calculated and experimental line matches qualitatively a ✓-symbol is
used, if both disagree qualitatively a ✗-symbol is used, and if both are disagreeing qualitatively
but are still somehow similar a ∼-symbol is used.

Table 4.2: Qualitative agreement of calculated and observed trends in the dielectric strength of
arginine.

single simulation KBr KCl KI LiCl NaCl

Trends 1.1 ✓ ∼ ✓ ✗ ∼
Trends 1.2 ✗ ∼ ✓ ✓ ✗

Due to the scattering of the calculated values, not much can be said about the agreement of the
trends. Except that the scaling factor of 1.1 seems to have slightly better agreement. Therefore,
statistics needed to be improved quite a bit.

54 CHAPTER 4. RESULTS AND DISCUSSION

4.5.1 Better statistics

Figure 4.20 shows the new calculated trends after improving statistics as described in section 3.5.1.
All corresponding spectra can be found in the appendix section 6.9. The error bars indicate the
standard deviation, and the cross shows the arithmetic average of the used data.

Figure 4.20: Computed dielectric strength of arginine with improved statistics as a function of salt
concentration for different salts with s = 1.1 and s = 1.2.

Once again, these two graphs only used the arginine contribution to calculate the dielectric
strength. If one includes the cross correlations once more, one gets Figure 4.21.

Figure 4.21: Computed dielectric strength of arginine with improved statistics as a function of salt
concentration for different salts with s = 1.1 and s = 1.2 including cross correlation.

Figure 4.20 (s = 1.1) & 4.21 (s = 1.1) and Figure 4.20 (s = 1.2) & 4.21 (s = 1.2) look even more
similar to each other than the ones with less statistical backing. Table 4.3 once again visualizes

4.5. TRENDS 55

the qualitative agreements between experiment and calculations. The scaling factor of 1.1 is once
again in better agreement with the experiment.

Table 4.3: Qualitative agreement of calculated and observed trends, with better statistics in the
dielectric strength of arginine.

quadruple simulations KBr KCl KI LiCl NaCl

Trends 1.1 ✓ ✓ ✓ ✗ ✓

Trends 1.2 ∼ ∼ ✓ ✗ ✗

Even though some improvement is apparent when comparing Figure 4.18 (or Table 4.2) to
Figure 4.20 (or Table 4.3) it has to be taken with a grain of salt. In spite of this improvement, one
could take a closer look at the pink linear fit in Figure 4.20 a) (which has the steepest ascend).
It is possible to change the ascent to a flat line without leaving the error bars. Therefore, there
seems to be an argument that better statistics is able to help the trends, but the scale has to be
even higher. Due to time restraints, this wasn’t possible as a part of this Master’s thesis.

56 CHAPTER 4. RESULTS AND DISCUSSION

5 | Conclusion and outlook

To optimize the calculated dielectric spectra, two different methods of cluster removal were em-
ployed. The straight forward removal of clustered arginine molecules was problematic in nature,
but the scaling of intramolecular potentials seemed promising.

With the help of the scaled van der Waals interactions, more realistic spectra could be calcu-
lated. These spectra were created using a triexponential fit, which was checked for its sensibility
by computing the spectra numerically as well. They were used to calculate trends in the dielectric
strength of arginine, and these were once again compared to the experimental data. The scattering
of the determined points was way too high, therefore four replicas were done to improve statistics.
With improved statistics, most qualitative trends could be reproduced, but no quantitative state-
ment could be made. Still, these qualitative trends should follow the Hofmeister series, but they do
not. The first instinct of our experimental contributors was that something is potentially wrong
with the data, but since the trends were reproduced without changing much on the simulation
system, it seems as there is something worth exploring further. On top of that, the trends and
spectra could be reproduced across the board. For some systems, the quality of the fit was better
than for others, but even the ones with the worst fit gave reasonable and reproducible results. For
this reason, there could be a problem with the Hofmeister series in general.

The initial step to continue this work should be to improve statistics way further to confirm
the validity of the qualitative trends. Additionally, it would make sense to expand the calculation
of these trends to different amino acids, e.g., lysine, valine, and serine. There also needs to be a
stronger connection between the dielectric strength, the Hofmeister series and the precipitation of
proteins. Nevertheless, the simulations in this work seem to support the generated experimental
data and therefore questions the validity of the Hofmeister series to make quantitative or qualitative
predictions on the precipitation of proteins.

57

58 CHAPTER 5. CONCLUSION AND OUTLOOK

Bibliography

[1] F. Hofmeister, Arch. exp. Pathol. Phar. 24, 1 (1887).

[2] F. Hofmeister, Arch. exp. Pathol. Phar. 24, 247 (1888).

[3] F. Hofmeister, Arch. exp. Pathol. Phar. 25, 1 (1888).

[4] R. Curtis and L. Lue, Chem. Eng. Sci. 61, 907 (2006), ISSN 0009-2509, biomol. Eng., URL
https://www.sciencedirect.com/science/article/pii/S000925090500299X.

[5] A. S. Parmar and M. Muschol, Biophys. J. 97, 590 (2009), ISSN 0006-3495, URL https:

//www.sciencedirect.com/science/article/pii/S0006349509009151.

[6] N. K. D. Kella and J. E. Kinsella, Int. J. Pept. Prot. Res. 32, 396 (1988).

[7] W. H. Sawyer and J. Puckridge, J. Biol. Chem. 248, 8429 (1973).

[8] M. T. Zafarani-Moattar and S. Hamzehzadeh, J.Chem. Eng. Data 55, 1598 (2010).

[9] F. E. Cohen, M. J. Sternberg, and W. R. Taylor, J. Mol. Biol. 148, 253 (1981), ISSN 0022-
2836, URL https://www.sciencedirect.com/science/article/pii/0022283681905386.

[10] M. Xie and R. L. Schowen, J. Pharm. Sci. 88, 8 (1999), https://onlinelibrary.

wiley.com/doi/pdf/10.1021/js9802493, URL https://onlinelibrary.wiley.com/doi/

abs/10.1021/js9802493.

[11] S. M. King and W. C. Johnson, Proteins: Struct. Funct. Genet. 35, 313 (1999),
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0134%

2819990515%2935%3A3%3C313%3A%3AAID-PROT5%3E3.0.CO%3B2-1.

[12] J. Meiler and D. Baker, Proc. Natl. Acad. Sci. U.S.A. 100, 12105 (2003), https:

//www.pnas.org/doi/pdf/10.1073/pnas.1831973100, URL https://www.pnas.org/doi/

abs/10.1073/pnas.1831973100.

[13] J. Morris, Sidney M, Am. J. Clin. Nutr. 83, 508S (2006), ISSN 0002-9165, https://academic.
oup.com/ajcn/article-pdf/83/2/508S/23889802/ajc0020600s508.pdf, URL https://

doi.org/10.1093/ajcn/83.2.508S.

59

https://www.sciencedirect.com/science/article/pii/S000925090500299X
https://www.sciencedirect.com/science/article/pii/S0006349509009151
https://www.sciencedirect.com/science/article/pii/S0006349509009151
https://www.sciencedirect.com/science/article/pii/0022283681905386
https://onlinelibrary.wiley.com/doi/pdf/10.1021/js9802493
https://onlinelibrary.wiley.com/doi/pdf/10.1021/js9802493
https://onlinelibrary.wiley.com/doi/abs/10.1021/js9802493
https://onlinelibrary.wiley.com/doi/abs/10.1021/js9802493
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0134%2819990515%2935%3A3%3C313%3A%3AAID-PROT5%3E3.0.CO%3B2-1
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0134%2819990515%2935%3A3%3C313%3A%3AAID-PROT5%3E3.0.CO%3B2-1
https://www.pnas.org/doi/pdf/10.1073/pnas.1831973100
https://www.pnas.org/doi/pdf/10.1073/pnas.1831973100
https://www.pnas.org/doi/abs/10.1073/pnas.1831973100
https://www.pnas.org/doi/abs/10.1073/pnas.1831973100
https://academic.oup.com/ajcn/article-pdf/83/2/508S/23889802/ajc0020600s508.pdf
https://academic.oup.com/ajcn/article-pdf/83/2/508S/23889802/ajc0020600s508.pdf
https://doi.org/10.1093/ajcn/83.2.508S
https://doi.org/10.1093/ajcn/83.2.508S

60 BIBLIOGRAPHY

[14] H. Tapiero, G. Mathé, P. Couvreur, and K. Tew, Biomed. Pharmacother 56, 439
(2002), ISSN 0753-3322, URL https://www.sciencedirect.com/science/article/pii/

S0753332202002846.

[15] M. M. Flocco and S. L. Mowbray, J. Mol. Biol. 235, 709 (1994).

[16] C. T. Armstrong, P. E. Mason, J. Anderson, and C. E. Dempsey, Sci. Rep. 6, 1 (2016).

[17] C. Schröder, Proteins in Ionic Liquids: Current Status of Experiments and Simulations
(Springer International Publishing, Cham, 2018), pp. 127–152, ISBN 978-3-319-89794-3, URL
https://doi.org/10.1007/978-3-319-89794-3_5.

[18] A. Salis and B. W. Ninham, Chem. Soc. Rev. 43, 7358 (2014), URL http://dx.doi.org/

10.1039/C4CS00144C.

[19] H. Zhao, J. Chem. Technol. Biotechnol. 91, 25 (2016), URL https://onlinelibrary.wiley.

com/doi/abs/10.1002/jctb.4837.

[20] A. M. Hyde, S. L. Zultanski, J. H. Waldman, Y.-L. Zhong, M. Shevlin, and F. Peng, Org.
Process Res. Dev. 21, 1355 (2017).

[21] N. Schwierz, D. Horinek, U. Sivan, and R. R. Netz, Curr. Opin. Colloid Interface Sci. 23,
10 (2016), ISSN 1359-0294, URL https://www.sciencedirect.com/science/article/pii/

S1359029416300474.

[22] P. Flatt, Biochemistry – Defining Life at the Molecular Level (Western Ore-
gon University, Monmouth, 2019), URL https://wou.edu/chemistry/courses/

online-chemistry-textbooks/ch103-allied-health-chemistry/.

[23] J. D. Batchelor, A. Olteanu, A. Tripathy, and G. J. Pielak, J. Am. Chem. Soc. 126, 1958
(2004), URL https://doi.org/10.1021/ja039335h.

[24] A. W. Omta, M. F. Kropman, S. Woutersen, and H. j. Bakker, Science 301, 347 (2003).

[25] C. M. Baker, Comput. Mol. Sci. 5, 241 (2015), URL https://wires.onlinelibrary.wiley.

com/doi/abs/10.1002/wcms.1215.

[26] G. Lamoureux, E. Harder, I. V. Vorobyov, B. Roux, and A. D. MacKerell, Chem. Phys.
Lett. 418, 245 (2006), ISSN 0009-2614, URL https://www.sciencedirect.com/science/

article/pii/S0009261405017069.

[27] A.-h. Wang, Z.-c. Zhang, and G.-h. Li, Chinese J. Chem. Phys. 32, 277 (2019), URL https:

//doi.org/10.1063/1674-0068/cjcp1905091.

[28] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Gu-
vench, P. Lopes, I. Vorobyov, et al., J. Comput. Chem. 31, 671 (2010).

https://www.sciencedirect.com/science/article/pii/S0753332202002846
https://www.sciencedirect.com/science/article/pii/S0753332202002846
https://doi.org/10.1007/978-3-319-89794-3_5
http://dx.doi.org/10.1039/C4CS00144C
http://dx.doi.org/10.1039/C4CS00144C
https://onlinelibrary.wiley.com/doi/abs/10.1002/jctb.4837
https://onlinelibrary.wiley.com/doi/abs/10.1002/jctb.4837
https://www.sciencedirect.com/science/article/pii/S1359029416300474
https://www.sciencedirect.com/science/article/pii/S1359029416300474
https://wou.edu/chemistry/courses/online-chemistry-textbooks/ch103-allied-health-chemistry/
https://wou.edu/chemistry/courses/online-chemistry-textbooks/ch103-allied-health-chemistry/
https://doi.org/10.1021/ja039335h
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1215
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1215
https://www.sciencedirect.com/science/article/pii/S0009261405017069
https://www.sciencedirect.com/science/article/pii/S0009261405017069
https://doi.org/10.1063/1674-0068/cjcp1905091
https://doi.org/10.1063/1674-0068/cjcp1905091

BIBLIOGRAPHY 61

[29] R. Salomon-Ferrer, D. A. Case, and R. C. Walker, Wiley Interdiscip. Rev. Comput. Mol. Sci.
3, 198 (2013).

[30] S. Páll, A. Zhmurov, P. Bauer, M. Abraham, M. Lundborg, A. Gray, B. Hess, and E. Lindahl,
J. Chem. Phys. 153, 134110 (2020), https://doi.org/10.1063/5.0018516, URL https:

//doi.org/10.1063/5.0018516.

[31] A. D. MacKerell and L. Nilsson, Curr. Opin. Struct. Biol. 18, 194 (2008), ISSN 0959-440X,
theory and simulation / Macromolecular assemblages, URL https://www.sciencedirect.

com/science/article/pii/S0959440X0800002X.

[32] P. Eastman, J. Swails, J. D. Chodera, R. T. McGibbon, Y. Zhao, K. A. Beauchamp, L.-P.
Wang, A. C. Simmonett, M. P. Harrigan, C. D. Stern, et al., PLoS Comput. Biol. 13, e1005659
(2017).

[33] G. M. Gale, G. Gallot, F. Hache, N. Lascoux, S. Bratos, and J.-C. Leicknam, Phys. Rev. Lett.
82, 1068 (1999), URL https://link.aps.org/doi/10.1103/PhysRevLett.82.1068.

[34] L. Verlet, Phys. Rev. 159, 98 (1967), URL https://link.aps.org/doi/10.1103/PhysRev.

159.98.

[35] W. Damm, A. Frontera, J. Tirado–Rives, and W. L. Jorgensen, J. Comput. Chem.
18, 1955 (1997), URL https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%

291096-987X%28199712%2918%3A16%3C1955%3A%3AAID-JCC1%3E3.0.CO%3B2-L.

[36] Mr.Holmium, Free energy diagram of butane as a function of dihedral angle. (2013), URL
https://commons.wikimedia.org/wiki/File:Butane_conformations.jpg.

[37] Z. Cournia, Ph.D. thesis, Heidelberg University (2006).

[38] P. P. Ewald, Ann. Phys. 369, 253 (1921), URL https://onlinelibrary.wiley.com/doi/

abs/10.1002/andp.19213690304.

[39] Tim, Ewald summation and pme for dummies (2016), URL https://www.charmm.org/wiki/

/index.php?title=The_Energy_Function&oldid=992.

[40] A. Szabadi, Master’s thesis, University of Vienna (2020).

[41] F. Kremer and A. Schönhals, Broadband dielectric spectroscopy (Springer Science & Business
Media, 2002).

[42] D. E. Gavrila, J. Mater. Sci. Eng. A 4, 18 (2014).

[43] A. Von Hippel, IEEE Trans. Dielectr. Electr. Insul. 23, 801 (1988).

[44] A. Likhtman, in Polymer Science: A Comprehensive Reference, edited by K. Matyjaszewski
and M. Möller (Elsevier, Amsterdam, 2012), pp. 133–179, ISBN 978-0-08-087862-1, URL
https://www.sciencedirect.com/science/article/pii/B978044453349400008X.

https://doi.org/10.1063/5.0018516
https://doi.org/10.1063/5.0018516
https://doi.org/10.1063/5.0018516
https://www.sciencedirect.com/science/article/pii/S0959440X0800002X
https://www.sciencedirect.com/science/article/pii/S0959440X0800002X
https://link.aps.org/doi/10.1103/PhysRevLett.82.1068
https://link.aps.org/doi/10.1103/PhysRev.159.98
https://link.aps.org/doi/10.1103/PhysRev.159.98
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-987X%28199712%2918%3A16%3C1955%3A%3AAID-JCC1%3E3.0.CO%3B2-L
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-987X%28199712%2918%3A16%3C1955%3A%3AAID-JCC1%3E3.0.CO%3B2-L
https://commons.wikimedia.org/wiki/File:Butane_conformations.jpg
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19213690304
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19213690304
https://www.charmm.org/wiki//index.php?title=The_Energy_Function&oldid=992
https://www.charmm.org/wiki//index.php?title=The_Energy_Function&oldid=992
https://www.sciencedirect.com/science/article/pii/B978044453349400008X

62 BIBLIOGRAPHY

[45] U. Kaatze, Phys. Med. Biol. 35, 1663 (1990), URL https://doi.org/10.1088/0031-9155/

35/12/006.

[46] C. Schröder and O. Steinhauser, J. Chem. Phys. 132, 244109 (2010), https://doi.org/10.
1063/1.3432620, URL https://doi.org/10.1063/1.3432620.

[47] C. Schröder, J. Hunger, A. Stoppa, R. Buchner, and O. Steinhauser, J. Chem. Phys. 129,
184501 (2008).

[48] J.-P. Hansen and I. R. McDonald, Theory of simple liquids: with applications to soft matter
(Academic press, 2013).

[49] T. Rudas, C. Schröder, S. Boresch, and O. Steinhauser, J. Chem. Phys. 124, 234908 (2006).

[50] A. Poupon, Curr. Opin. Struct. Biol. 14, 233 (2004), ISSN 0959-440X, URL https://www.

sciencedirect.com/science/article/pii/S0959440X04000442.

[51] S. Jo, T. Kim, V. G. Iyer, and W. Im, J. Comput. Chem. 29, 1859 (2008), https://

onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.20945, URL https://onlinelibrary.

wiley.com/doi/abs/10.1002/jcc.20945.

[52] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem.
Phys. 79, 926 (1983), https://doi.org/10.1063/1.445869, URL https://doi.org/10.

1063/1.445869.

[53] H. Berendsen, J. Grigera, and T. Straatsma, J. Phys. Chem. 91, 6269 (1987).

[54] R. Dennington, T. A. Keith, and J. M. Millam, Gaussview Version 5.0.9 (2019), semichem
Inc. Shawnee Mission KS.

[55] W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. 14, 33 (1996).

[56] L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, J. Comput. Chem. 30, 2157
(2009).

[57] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. a. Swaminathan, and
M. Karplus, J. Comput. Chem. 4, 187 (1983).

[58] J. Hunger and V. Balos, Dielectric strength of arginine as a function of salt concentration for
different salts, personal communications.

https://doi.org/10.1088/0031-9155/35/12/006
https://doi.org/10.1088/0031-9155/35/12/006
https://doi.org/10.1063/1.3432620
https://doi.org/10.1063/1.3432620
https://doi.org/10.1063/1.3432620
https://www.sciencedirect.com/science/article/pii/S0959440X04000442
https://www.sciencedirect.com/science/article/pii/S0959440X04000442
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.20945
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.20945
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20945
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20945
https://doi.org/10.1063/1.445869
https://doi.org/10.1063/1.445869
https://doi.org/10.1063/1.445869

6 | Appendix

6.1 Abstract

6.1.1 English

Since the inception of the Hofmeister series in the 19th century, it gained more and more importance
for the precipitation of proteins. It provided evidence for the ion-specific effects of different salts
and a way to somewhat quantify an order of precipitating salts.

This ordering is unfortunately purely empiric, and not much is known about the underlying
reasons for that ordering. This work aims to take one of the first steps of quantifying these
interactions by using classical Molecular Dynamics (MD) Simulations and dielectric spectra. To
approximate the effects on a protein, the common side chain amino acid arginine was used in
the simulations. The calculated spectra were compared to and optimized on experimental data
to make sure that the calculations were realistic. After this optimization, trends in the dielectric
strength of arginine were calculated and once again compared to the experiments.

6.1.2 German

Seit der Entstehung der Hofmeister-Reihe im 19ten Jahrhundert wurde diese Reihe immer wichtiger
um Aussagen über die Fällung von Proteinen zu tätigen. Sie hat Indizien für ionenspezifische
Effekte, sowie eine Art und Weise wie man diese Salze einigermaßen quantitativ ordnen kann,
geliefert.

Diese Ordnung wurde allerdings bedauerlicherweise rein empirisch bestimmt und es ist nicht viel
über die zugrunde liegenden Ursachen bekannt. Diese Arbeit zielt darauf ab, die ersten Schritte zu
bieten, um jene Ordnung zu quantifizieren. Dies wurde mit Hilfe der Verwendung von klassischen
Molekulardynamischen (MD) Simulationen und dielektrischen Spektren angestrebt. Um die Effekte
auf Proteine abschätzen zu können, wurde die Aminosäure Arginin verwendet, da diese häufig in
Protein-Seitenketten vorkommt. Die berechneten Spektren wurden mit den experimentellen Daten
verglichen, und daraufhin auf sie optimiert, um sicher zu gehen, dass die Berechnungen realistisch
sind. Danach wurden Trends in der dielektrischen Stärke von Arginin berechnet und erneut mit
experimentellen Daten verglichen.

63

64 CHAPTER 6. APPENDIX

6.2 Straight forward cluster removal

from __future__ import print_function1

import MDAnalysis2

from newanalysis.functions import atomsPerResidue , calcTessellation3

import numpy as np4

import os5

import time6

import sys7

from sys import exit8

from pathlib import Path9

10

#--11

neighbor tree12

#--13

def addNeighbors(i, matrix , cluster , todo):14

neighbors = set(np.where(matrix[i ,:]==1) [0])15

new_neighbors = neighbors.difference(cluster [-1])16

cluster [-1] = cluster [-1]. union(neighbors)17

for j in new_neighbors:18

todo.remove(j)19

todo = addNeighbors(j, matrix , cluster , todo)20

return todo21

22

#--23

cluster size24

#--25

def calcCluster(matrix):26

notdone = True27

cluster = []28

todo = list(np.arange(len(matrix),dtype=np.int64))29

30

while notdone:31

try:32

i = todo.pop (0)33

except:34

notdone = False35

break36

cluster.append ({i})37

todo = addNeighbors(i, matrix , cluster , todo)38

return cluster39

40

#--41

Setup trajectories42

#--43

firstfile =144

lastfile =10045

skip = 100046

47

path = Path ("/ site" + "/raid3" + "/chris" + "/ arg_project" + "/spce" + "/kcl" + "/ kcl075" + "/48

better_sol_1 .1") #defined directory to get the Data from49

50

try:51

psf_generator = path.glob ("*. psf")52

psf = list(psf_generator)[0]53

print ("PSF file:", psf)54

except:55

print ("Error , no psf found")56

try:57

dcd_path = Path.joinpath(path / "traj/nvt_")58

6.2. STRAIGHT FORWARD CLUSTER REMOVAL 65

print(" DCD_path:", dcd_path)59

dcd = ["%s%d.dcd" % (dcd_path ,i) for i in range(firstfile ,lastfile +1)]60

except:61

print("Error , no dcd found")62

63

u=MDAnalysis.Universe(psf , dcd)64

boxl=round(u.coord.dimensions [0] ,4)65

dt=round(u.trajectory.dt ,4)66

n = int(u.trajectory.n_frames/skip)67

if u.trajectory.n_frames%skip != 0:68

n+=169

ctr=070

71

print("PSF = ",psf)72

print("Box length = ",boxl)73

print("Time step = ",dt*skip)74

75

#--76

Molecular information77

#--78

sel = u.select_atoms ("all")79

sel_cat = u.select_atoms (" resname ARG")80

#sel_an = u.select_atoms (" resname CL")81

nion = sel_cat.n_residues82

nresidues = sel.n_residues83

print(f"{nion =}")84

print(f"{ nresidues =}")85

86

if(u.trajectory.n_frames%skip != 0):87

print (" ERROR: " + str(int(u.trajectory.n_frames)) + "/" + str(skip) + " != 0 ")88

exit (0)89

90

ctr=091

92

avg_cs = np.zeros(n)93

94

shell_max = 195

96

#--97

Reading trajectories modified98

#--99

cluster_cutoff_size = 10 #from which cluster size to start remove molecules100

#cluster_allowed_timesteps = 49 #defining the ammount of removed residues (~half the101

timesteps)102

cluster_allowed_timesteps = 0.5*(((lastfile -(firstfile -1))*10000)/skip)103

104

start=time.time()105

print ("")106

107

f=open(" voronoi_clustering.dat","w")108

109

not_in_cluster = [res for res in range(nion)]110

print(not_in_cluster)111

print(len(not_in_cluster))112

113

help_vector = np.zeros(len(not_in_cluster)) # vector to store the times were a residue was in a114

cluster115

116

for ts in u.trajectory [:: skip]:117

print ("\033[1 AFrame %d of %d" % (ts.frame ,u.trajectory.n_frames), "\ tElapsed time: %.2f hours"118

% ((time.time()-start)/3600))119

120

66 CHAPTER 6. APPENDIX

delaunay_shells = calcTessellation(sel_cat , maxshell=shell_max) # nxn matrix with n being the121

total number of residues in the box , but only those lines corresponding to the residue122

numbers of the residues in sel will be filled (cf. the output of sel.f2c(),123

meaning fine2coarse -- atom number -> residue number).124

125

print(delaunay_shells [:nion ,:nion])126

print(delaunay_shells [:nion ,:nion]. shape)127

128

cluster = calcCluster(delaunay_shells [:nion ,:nion]) # list of sets with residue numbers129

130

for sub_cluster in cluster:131

if len(sub_cluster) > cluster_cutoff_size: #from which cluster size to start remove132

molecules133

for res in sub_cluster:134

help_vector[res] = help_vector[res] + 1135

136

print(help_vector)137

138

tmp = np.asarray ([len(c) for c in cluster])139

avg_cs[ctr] = tmp.mean()140

141

hist = np.histogram(tmp ,bins=np.arange(nion +2),density=False)142

143

ctr +=1144

145

f.close()146

147

print(not_in_cluster)148

149

res_of_help_vector = []150

151

for i in range(len(help_vector)):152

if help_vector[i] > cluster_allowed_timesteps: #defining the ammount of removed residues (~153

half the timesteps)154

res_of_help_vector.append(i)155

156

for i in range(len(res_of_help_vector)):157

not_in_cluster.remove(res_of_help_vector[i])158

159

print(not_in_cluster)160

print (" There are", len(not_in_cluster), "Molecules left after Removing the Clusters ")161

162

np.savetxt (" non_cluster_voro.dat", not_in_cluster)163

6.3. STREAM FILE FOR S = 1.1 67

6.3 Stream file for s = 1.1

* spce1

*2

3

READ RTF CARD APPEND4

99 15

6

MASS -1 HTS 1.00800 H ! SPCE WATER HYDROGEN7

MASS -1 OTS 15.99940 O ! SPCE WATER OXYGEN8

9

AUTOGENERATE ANGLE DIHEDRAL10

11

RESI SPCE 0.000 ! spce water model , generate using noangle nodihedral12

GROUP13

ATOM OH2 OTS -0.84814

ATOM H1 HTS 0.42415

ATOM H2 HTS 0.42416

BOND OH2 H1 OH2 H2 H1 H2 ! the last bond is needed for shake17

ANGLE H1 OH2 H2 ! required18

DONOR H1 OH219

DONOR H2 OH220

ACCEPTOR OH221

PATCHING FIRS NONE LAST NONE22

23

END24

25

READ PARA CARD FLEX APPEND26

ATOMS27

MASS -1 HTS 1.00800 H ! SPCE WATER HYDROGEN28

MASS -1 OTS 15.99940 O ! SPCE WATER OXYGEN29

30

BONDS31

32

HTS HTS 0.0 1.632980862 ! spce (for SHAKE w/PARAM)33

HTS OTS 450.0 1.0000 ! spce34

35

ANGLES36

37

HTS OTS HTS 55.0 109.4667 ! spce angle38

39

40

DIHEDRALS41

42

IMPROPERS43

44

NONBONDED NBXMOD 5 atom cdiel fshift vatom vdistance vfswitch -45

cutnb 14.0 ctofnb 12.0 ctonnb 10.0 eps 1.0 e14fac 0.5 wmin 1.546

47

HTS 0.0 -0.0000 0.000048

OTS 0.0 -0.15210 1.7770049

50

!own nbfixes51

NBFIX52

! arg and h2o oxygen for better solvation (factor 1.1)53

OTS CG321 -0.1015 3.78754

OTS CG311 -0.0767 3.77755

OTS CG203 -0.1135 3.77756

OTS OG2D2 -0.1486 3.47757

OTS NG321 -0.1051 3.76758

68 CHAPTER 6. APPENDIX

OTS CG324 -0.1006 3.95259

OTS NG2P1 -0.1919 3.62760

OTS CG2N1 -0.1423 3.77761

OTS HGA2 -0.0803 3.11762

OTS HGA1 -0.0910 3.11763

OTS HGPAM2 -0.0429 2.65264

OTS HGP2 -0.0920 2.00265

END66

6.4. PACKING OF THE SIMULATION BOX 69

6.4 Packing of the simulation box

tolerance 2.01

seed -12

3

4

filetype pdb5

output arg_59_kcl_98_wat_6549_init.pdb6

7

structure ../../../../../ structures/arginine.pdb8

number 599

inside box -30. -30. -30. 30. 30. 30.10

end structure11

12

structure ../../../../../ structures/pot.pdb13

number 9814

inside box -30. -30. -30. 30. 30. 30.15

end structure16

17

structure ../../../../../ structures/cla.pdb18

number 9819

inside box -30. -30. -30. 30. 30. 30.20

end structure21

22

structure ../../../../../ structures/spce.pdb23

number 654924

inside box -30. -30. -30. 30. 30. 30.25

end structure26

70 CHAPTER 6. APPENDIX

6.5 Write psf & crd

*~~~1

*~ Minimization of PACKMOL structure2

*~~~3

*4

ioformat extended5

set FILENAME arg_59_kbr_20_wat_67546

!===7

! Force field8

!===9

! protein topology and parameter10

open read card unit 10 name ../../../../../ toppar/top_all36_prot.rtf11

read rtf card unit 1012

open read card unit 20 name ../../../../../ toppar/par_all36m_prot.prm13

read para card unit 20 flex14

15

! nucleic acids16

open read card unit 10 name ../../../../../ toppar/top_all36_na.rtf17

read rtf card unit 10 append18

open read card unit 20 name ../../../../../ toppar/par_all36_na.prm19

read para card unit 20 append flex20

21

! carbohydrates22

open read card unit 10 name ../../../../../ toppar/top_all36_carb.rtf23

read rtf card unit 10 append24

open read card unit 20 name ../../../../../ toppar/par_all36_carb.prm25

read para card unit 20 append flex26

27

! CGENFF28

open read card unit 10 name ../../../../../ toppar/top_all36_cgenff.rtf29

read rtf card unit 10 append30

BOMLEV -131

open read card unit 20 name ../../../../../ toppar/par_all36_cgenff.prm32

read para card unit 20 append flex33

BOMLEV -134

35

!read rtf card name ../../../../../ toppar/top_all36_cgenff.rtf36

!BOMLEV -237

!read para card flex name ../../../../../ toppar/par_all36_cgenff.prm38

!BOMLEV 039

read rtf card append name ../../../../../ toppar/arg.rtf40

read para card append flex name ../../../../../ toppar/arg.prm41

stream ../../../../../ toppar/toppar_water_ions.str42

stream ../../../../../ toppar/spce_mod.str43

44

read sequence arg 5945

generate arg setup warn46

47

read sequence POT 2048

generate POT setup warn49

50

read sequence BRO 2051

generate BRO setup warn52

53

read sequence SPCE 675454

generate SPCE setup warn noang nodihe55

56

!===57

! Coordinates58

6.5. WRITE PSF & CRD 71

!===59

open unit 10 read form name ./ @FILENAME_init.crd60

read unit 10 coor card61

close unit 1062

63

!coor sdrude !gives cordinates to drudes64

!coor shake !gives cordinates to lonepairs65

66

set XTL = 60.067

calc XTL2 = @xtl/268

set GRID = 6069

70

crystal define cubic @XTL @XTL @XTL 90.0 90.0 90.071

crystal build cutoff @XTL2 noperations 072

image byresidue select ALL end73

74

energy bycb atom vatom cdiel ewal pmew vswitch -75

ctonnb 10 -76

ctofnb 11 -77

cutnb 14 -78

cutim 14 -79

kappa 0.41 -80

fftx @GRID -81

ffty @GRID -82

fftz @GRID -83

spli order 6 -84

qcor 0 -85

wmin 1.5 -86

inbfrq -1 -87

imgfrq -188

89

shake bonh param tol 1.0e-9 nofast -90

select (.not. type D*) end -91

select (.not. type D*) end92

93

!===94

! Minimization95

!===96

mini sd nstep 20097

!mini abnr nstep 300098

99

!print para used100

101

open unit 10 write form name ./ @FILENAME.crd102

write unit 10 coor card103

close unit 10104

105

open unit 10 write form name ./ @FILENAME.psf106

write unit 10 psf xplor card107

close unit 10108

109

stop110

72 CHAPTER 6. APPENDIX

6.6 Running the simulation

#!/ bin/bash1

2

#SBATCH -p lgpu3

#SBATCH --gres=gpu4

#SBATCH --exclude n00 [01 -05]5

6

source /home/chris/anaconda3/bin/activate openmm7

8

inp_file ="npt.py"9

job_name =" kbr015"10

last=511

12

python3 $inp_file $113

14

ret_val=$?15

16

if [$ret_val -eq 0 -a $1 -lt $last] ; then17

let next=$1+118

sbatch -J ${job_name}_$next -o out/npt_$next.out run_npt.sh $next19

elif [! $ret_val -eq 0] ; then20

echo "Error in run $1 .." >> out/error.log21

fi22

This script was generated by OpenMM -Setup on 2021 -07 -22.1

2

import sys3

from simtk.openmm import *4

from simtk.openmm.app import *5

from simtk.unit import *6

7

cnt = int(sys.argv [1])8

pcnt = cnt -19

10

if cnt > 1:11

rst = f’traj/npt_{pcnt}.rst ’12

13

Input Files14

15

file_base = "arg_59_kbr_20_wat_6754"16

psf = CharmmPsfFile(f"{ file_base }.psf")17

crd = CharmmCrdFile(f"{ file_base }.crd")18

para_files = [" top_all36_cgenff.rtf", "par_all36_cgenff.prm", "arg.rtf", "arg.prm", "19

toppar_water_ions.str", "spce_mod.str"]20

params = CharmmParameterSet (*[f"../../../../../ toppar /{ para_file }" for para_file in para_files])21

22

System Configuration23

24

nonbondedMethod = PME25

nonbondedCutoff = 1.2* nanometers26

ewaldErrorTolerance = 0.000527

constraints = HBonds28

rigidWater = True29

constraintTolerance = 0.00000130

31

Integration Options32

33

dt = 0.002* picoseconds34

temperature = 300* kelvin35

6.6. RUNNING THE SIMULATION 73

coll_freq = 10.0/ picosecond #????36

pressure = 1.0* atmospheres37

barostatInterval = 2538

39

Simulation Options40

41

platform = Platform.getPlatformByName(’CUDA ’)42

platformProperties = {’Precision ’: ’mixed ’}43

44

xtl = 60.0* angstroms45

psf.setBox(xtl ,xtl ,xtl)46

topology = psf.topology47

positions = crd.positions48

system = psf.createSystem(params , nonbondedMethod=nonbondedMethod , nonbondedCutoff=nonbondedCutoff49

,50

constraints=constraints , rigidWater=rigidWater , ewaldErrorTolerance=ewaldErrorTolerance)51

52

#Barostat for npt53

system.addForce(MonteCarloBarostat(pressure , temperature , barostatInterval))54

55

Nose Hoover integrator56

integrator = NoseHooverIntegrator(temperature , coll_freq , dt)57

integrator.setConstraintTolerance(constraintTolerance)58

59

Prepare the Simulation60

simulation = Simulation(topology , system , integrator , platform , platformProperties)61

simulation.context.setPositions(positions)62

63

print(’Building system ...’)64

65

if cnt > 1:66

with open(rst , ’r’) as f:67

simulation.context.setState(XmlSerializer.deserialize(f.read()))68

69

if cnt == 1: #minimize70

print(’Performing energy minimization ...’)71

simulation.minimizeEnergy ()72

print(simulation.context.getState(getEnergy=True).getPotentialEnergy ())73

print (" Saving minimized pdb ...")74

positions = simulation.context.getState(getPositions=True).getPositions ()75

PDBFile.writeFile(simulation.topology , positions , open("mini.pdb",’w’))76

77

simulate78

79

steps = 50000080

dcdReporter = DCDReporter(f’traj/npt_{cnt}.dcd ’, 500)81

dataReporter = StateDataReporter(f’out/npt_{cnt}.out ’, 500, totalSteps=steps ,step=True , progress=82

True , time=True , potentialEnergy=True , kineticEnergy=True , totalEnergy=True , temperature=True ,83

volume=True , density=True , separator =’\t’)84

print(’Simulating ...’)85

simulation.reporters.append(dcdReporter)86

simulation.reporters.append(dataReporter)87

simulation.step(steps)88

89

90

#write restart file91

92

state = simulation.context.getState(getPositions=True , getVelocities=True)93

with open(f’traj/npt_{cnt}.rst ’, ’w’) as f:94

f.write(XmlSerializer.serialize(state))95

96

#crd = simulation.context.getState(getPositions=True).getPositions ()97

74 CHAPTER 6. APPENDIX

#PDBFile.writeFile(psf.topology , crd , open(’trans_equil.pdb ’, ’w’))98

#!/ bin/bash1

2

#SBATCH -p lgpu3

#SBATCH --gres=gpu4

#SBATCH --exclude n00 [01 -05]5

6

source /home/student5/anaconda3/bin/activate openmm7

8

inp_file ="nvt.py"9

job_name =" kbr015v"10

last =10011

12

python3 $inp_file $113

14

ret_val=$?15

16

if [$ret_val -eq 0 -a $1 -lt $last] ; then17

let next=$1+118

sbatch -J ${job_name}_$next -o out/nvt_$next.out run_nvt.sh $next19

elif [! $ret_val -eq 0] ; then20

echo "Error in run $1 .." >> out/error.log21

fi22

This script was generated by OpenMM -Setup on 2021 -07 -22.1

2

import sys3

4

from simtk.openmm import *5

from simtk.openmm.app import *6

from simtk.unit import *7

8

cnt = int(sys.argv [1])9

pcnt = cnt -110

11

if cnt == 1:12

rst = f"traj/npt_5.rst"13

if cnt > 1:14

rst = f"traj/nvt_{pcnt}.rst"15

16

Input Files17

18

file_base = "arg_59_kbr_20_wat_6754"19

psf = CharmmPsfFile(f"{ file_base }.psf")20

crd = CharmmCrdFile(f"{ file_base }.crd")21

para_files = [" top_all36_cgenff.rtf", "par_all36_cgenff.prm", "arg.rtf", "arg.prm", "22

toppar_water_ions.str", "spce_mod.str"]23

params = CharmmParameterSet (*[f"../../../../../ toppar /{ para_file }" for para_file in para_files])24

25

System Configuration26

27

nonbondedMethod = PME28

nonbondedCutoff = 1.2* nanometers29

ewaldErrorTolerance = 0.000530

constraints = HBonds31

rigidWater = True32

constraintTolerance = 0.00000133

34

Integration Options35

36

dt = 0.002* picoseconds37

6.6. RUNNING THE SIMULATION 75

temperature = 300* kelvin38

coll_freq = 10.0/ picosecond #????39

pressure = 1.0* atmospheres40

41

Simulation Options42

43

platform = Platform.getPlatformByName(’OpenCL ’)44

platformProperties = {’Precision ’: ’mixed ’}45

46

xtl = 60.0* angstroms47

psf.setBox(xtl ,xtl ,xtl)48

topology = psf.topology49

positions = crd.positions50

system = psf.createSystem(params , nonbondedMethod=nonbondedMethod , nonbondedCutoff=nonbondedCutoff51

,52

constraints=constraints , rigidWater=rigidWater , ewaldErrorTolerance=ewaldErrorTolerance)53

54

Nose Hoover integrator55

integrator = NoseHooverIntegrator(temperature , coll_freq , dt)56

integrator.setConstraintTolerance(constraintTolerance)57

58

Prepare the Simulation59

simulation = Simulation(topology , system , integrator , platform , platformProperties)60

simulation.context.setPositions(positions)61

62

print(’Building system ...’)63

64

with open(rst , ’r’) as f:65

simulation.context.setState(XmlSerializer.deserialize(f.read()))66

67

simulate68

69

steps = 50000070

dcdReporter = DCDReporter(f’traj/nvt_{cnt}.dcd ’, 50)71

dataReporter = StateDataReporter(f’out/nvt_{cnt}.out ’, 50, totalSteps=steps ,step=True , progress=72

True , time=True , potentialEnergy=True , kineticEnergy=True , totalEnergy=True , temperature=True ,73

volume=True , density=True , separator =’\t’)74

print(’Simulating ...’)75

simulation.reporters.append(dcdReporter)76

simulation.reporters.append(dataReporter)77

simulation.step(steps)78

79

80

#write restart file81

82

state = simulation.context.getState(getPositions=True , getVelocities=True)83

with open(f’traj/nvt_{cnt}.rst ’, ’w’) as f:84

f.write(XmlSerializer.serialize(state))85

86

#crd = simulation.context.getState(getPositions=True).getPositions ()87

#PDBFile.writeFile(psf.topology , crd , open(’trans_equil.pdb ’, ’w’))88

76 CHAPTER 6. APPENDIX

6.7 From simulation to spectrum

6.7.1 Fitting the autocorrelation function

import subprocess1

import os2

import numpy as np3

import matplotlib.pyplot as plt4

import matplotlib.cm5

import json6

from pathlib import Path7

8

molecules = ["arg", "spce", "all"]9

10

fit = True11

plot = False12

show_plots = False13

14

fitfunctions = {}15

maxtimes = []16

17

for molecule in molecules:18

fname = f"md0mdt_{molecule.lower()}.dat"19

orig_data = np.loadtxt(fname)20

fitfunctions[molecule] = [orig_data]21

maxtime = float(os.popen(f"grep -m 1 -B 1 ’-’ {fname} | head -n1 ").read().split()[0])22

#maxtime = 100023

maxtimes.append(maxtime)24

fitname = f"md0mdt_{molecule.lower()}_fit_{maxtime }.dat"25

print(f"{ maxtime =}")26

if fit:27

newfile = f"MDMD_fit_{molecule.lower()}_{maxtime }.json"28

#copy input json29

os.system(f"cp MDMD_fit.json {newfile }")30

replace input file name31

replace_string = f’s~"data ":.*~" data": "{ fname}",~’32

os.system(f"sed -i ’{replace_string}’ {newfile }")33

replace fit filename34

replace_string = f’s~" residuals ":.*~" residuals ": "{ fitname}",~’35

os.system(f"sed -i ’{replace_string}’ {newfile }")36

replace maxtime37

replace_string = f’s~" maxtime ":.*~" maxtime ": {maxtime},~’38

os.system(f"sed -i ’{replace_string}’ {newfile }")39

40

output = subprocess.check_output(f"python MDMD_fit.py {newfile}", shell=True , text=True)41

42

fit_data = np.loadtxt(fitname) #[:-4] + f"_{maxtime }.dat")43

fitfunctions[molecule]. append(fit_data)44

45

with open(" maxtimes.dat", "w") as f:46

for maxtime in maxtimes:47

f.write(f"{str(maxtime)}\n")48

49

if plot:50

savedir = "."51

Path(savedir).mkdir(parents=True , exist_ok=True)52

53

one endtime , different fits54

for molecule in molecules:55

6.7. FROM SIMULATION TO SPECTRUM 77

plt.plot(fitfunctions[molecule][0][: ,0] , fitfunctions[molecule][0][: ,1] , "r", label=f"{56

molecule}, orig", linewidth =1.0)57

plt.axis ([0 ,10000 , -50, 100])58

plt.plot(fitfunctions[molecule][0][0: len(fitfunctions[molecule][1][: ,2]) ,0],fitfunctions[59

molecule][1][: ,2] , label=f"{ molecule}, fit", linewidth =0.5)60

plt.xlim(left =-50)61

plt.ylabel (" md0mdt ")62

plt.xlabel ("time ps")63

plt.legend ()64

65

fig = plt.gcf()66

if show_plots:67

plt.show()68

fig.savefig(f"{ savedir }/ plot_{molecule }.pdf")69

plt.close()70

from lmfit import Minimizer , Parameters1

from lmfit.printfuncs import report_fit2

import numpy as np3

import sys4

import json5

import copy6

7

print (’~ ’*120)8

print(’MDMD_fit.py ’),9

print (’~ ’*120)10

11

###12

class InputClass:13

###14

def __init__(self):15

self.infile = ’’16

self.outfile = ’’17

self.maxtime = 018

19

self.fit_model = ’lestsq ’20

#self.fit_model = ’ampgo ’21

self.initialexp = []22

self.exp = []23

self.number_of_exp = 024

25

def info(self):26

print(’< Json Input:’)27

print(’\tdata = ’,self.infile)28

print(’\ tresiduals = ’,self.outfile)29

print(’\tmaximal time = ’,self.maxtime)30

print(’\n\texp:’)31

for i in self.exp:32

i.info()33

print(’\tFit model = ’,self.fit_model)34

35

def fromJson(self ,data):36

if "data" in data:37

self.infile = data["data"]38

if "residuals" in data:39

self.outfile = data[" residuals "]40

if "maxtime" in data:41

self.maxtime = data[" maxtime "]42

if "exp" in data:43

for i in data["exp "]:44

tmp = ExpClass ()45

tmp.fromJson(i)46

78 CHAPTER 6. APPENDIX

self.exp.append(tmp)47

self.number_of_exp = len(self.exp)48

self.initialexp = copy.deepcopy(self.exp)49

if "fit_model" in data:50

self.fit_model = data[" fit_model "]51

52

def toJson(self ,JsonFile):53

print(’>\t Writing Json File ’,JsonFile)54

f = open(JsonFile ,’w’)55

f.write(’{\n’)56

f.write(’\t"data": "%s", \n’%self.infile)57

f.write(’\t"residuals ": "%s",\n’%self.outfile)58

f.write(’\t"maxtime ": %s,\n\n’%self.maxtime)59

60

if len(self.initialexp) >0:61

f.write(’\t"initialexp ":\n’)62

f.write(’\t[\n’)63

for ctr ,i in enumerate(self.initialexp):64

if i.a_vary:65

f.write(’\t\t{ "a": {"value ": %10.5f, "vary": %s}, ’%(i.a,’true ’))66

else:67

f.write(’\t\t{ "a": {"value ": %10.5f, "vary": %s}, ’%(i.a,’false ’))68

if i.tau_vary:69

f.write(’"tau": {"value ": %10.5f, "vary": %s} }’ %(i.tau ,’true ’))70

else:71

f.write(’"tau": {"value ": %10.5f, "vary": %s} }’ %(i.tau ,’false ’))72

if not ctr == self.number_of_exp -1:73

f.write(’,’)74

f.write(’\n’)75

f.write(’\t],\n\n’)76

f.write(’\t"exp":\n’)77

f.write(’\t[\n’)78

79

for ctr ,i in enumerate(self.exp):80

if i.a_vary:81

f.write(’\t\t{ "a": {"value ": %10.5f, "vary": %s}, ’%(i.a,’true ’))82

else:83

f.write(’\t\t{ "a": {"value ": %10.5f, "vary": %s}, ’%(i.a,’false ’))84

if i.tau_vary:85

f.write(’"tau": {"value ": %10.5f, "vary": %s} }’ %(i.tau ,’true ’))86

else:87

f.write(’"tau": {"value ": %10.5f, "vary": %s} }’ %(i.tau ,’false ’))88

if not ctr == self.number_of_exp -1:89

f.write(’,’)90

f.write(’\n’)91

f.write(’\t]\n’)92

f.write(’}\n’)93

f.close()94

95

def ExampleInput(self):96

JsonFile = "fit_example.json"97

self.infile = "md0mdt.dat"98

self.outfile = "md0mdt_fit.dat"99

self.maxtime = 5000100

101

example tri exponential fit102

tmp = ExpClass ()103

tmp.a = 20.0104

tmp.a_vary = True105

tmp.tau = 0.2106

tmp_tau_vary = True107

self.exp.append(tmp)108

6.7. FROM SIMULATION TO SPECTRUM 79

109

tmp = ExpClass ()110

tmp.a = 50.0111

tmp.a_vary = True112

tmp.tau = 50.0113

tmp_tau_vary = True114

self.exp.append(tmp)115

116

tmp = ExpClass ()117

tmp.a = 200.0118

tmp.a_vary = True119

tmp.tau = 200.0120

tmp_tau_vary = True121

self.exp.append(tmp)122

self.number_of_exp = len(self.exp)123

self.toJson(JsonFile)124

125

###126

class ExpClass:127

###128

def __init__(self):129

self.a = 0.0130

self.a_vary = True131

132

self.tau = 1.0133

self.tau_vary = True134

135

def info(self):136

if self.a_vary:137

print(’\t\ta = %10.5f ’%self.a, end=’’)138

else:139

print(’\t\ta = %10.5f (fixed)’%self.a, end=’’)140

141

if self.tau_vary:142

print(’\ttau = %10.5f ’%self.tau)143

else:144

print(’\ttau = %10.5f (fixed)’%self.tau)145

146

def fromJson(self ,data):147

self.a = data["a"][" value "]148

self.a_vary = data["a"][" vary"]149

self.tau = data["tau "][" value"]150

self.tau_vary = data["tau "][" vary"]151

152

def fromFit(self ,i,result):153

self.a = abs(result.params[’a’+str(i+1)]. value)154

self.tau = abs(result.params[’tau ’+str(i+1)].value)155

156

###157

class DataClass:158

###159

def __init__(self):160

self.time = []161

self.f = []162

self.derivative = []163

164

def fromFile(self ,filename ,maxtime):165

try:166

infile = open(filename ,’r’)167

except FileNotFoundError:168

print(’\n! Error!’)169

print(’\t data file %s not found!’%filename)170

80 CHAPTER 6. APPENDIX

sys.exit()171

172

tmp_time = []173

tmp_f = []174

for line in infile:175

line_element = line.split()176

current_time = float(line_element [0])177

if current_time > maxtime:178

break179

if len(line) >1:180

tmp_time.append(current_time)181

tmp_f.append(float(line_element [1]))182

self.time = np.asarray(tmp_time)183

self.f = np.asarray(tmp_f)184

185

def compute_derivative(self):186

###187

"Numerische Methoden" J. Douglas Faiers / R.L. Burden , p. 168188

###189

print(’\n> Computing derivative of the time series ...’)190

h = self.time [1] - self.time [0]191

tmp_derivative = []192

193

end point calculation of the first two values of d/dt self.f194

tmp = -2.0833333* self.f[0]+4.0* self.f[1] -3.0* self.f[2]+1.3333333* self.f[3] -0.25* self.f[4]195

tmp_derivative.append(tmp/h)196

197

tmp = -0.25* self.f[0] -0.8333333* self.f[1]+1.5* self.f[2] -0.5* self.f[3]+0.08333333* self.f[4]198

tmp_derivative.append(tmp/h)199

200

mid point calculation of d/dt self.f201

lenf = len(self.f)202

for i in range(lenf -5):203

tmp = 0.0833333* self.f[i] -0.666666* self.f[i+1]+0.666666* self.f[i+3] -0.0833333* self.f[i204

+4]205

tmp_derivative.append(tmp/h)206

207

end point calculation of the last values of d/dt self.f208

tmp = -0.0833333* self.f[i]+0.5* self.f[i+1] -1.5* self.f[i+2]+0.8333333* self.f[i+3]+0.25* self209

.f[i+4]210

tmp_derivative.append(tmp/h)211

212

tmp = 0.25* self.f[i] -1.333333* self.f[i+1]+3.0* self.f[i+2] -4.0* self.f[i+3]+2.08333333* self.213

f[i+4]214

tmp_derivative.append(tmp/h)215

tmp_derivative.append (0.0)216

self.derivative = np.asarray(tmp_derivative)217

218

###219

Fit model220

###221

def residual(parfit , t, fdata=None , ddata = None):222

model1 = 0.0223

model2 = 0.0224

for i in range(input.number_of_exp):225

tmp_a = parfit[’a’+str(i+1)].value226

tmp_tau = parfit[’tau ’+str(i+1)].value227

228

correlation function229

model1 += abs(tmp_a) * np.exp(-t/abs(tmp_tau))230

231

its derivative232

6.7. FROM SIMULATION TO SPECTRUM 81

model2 -= abs(tmp_a) / abs(tmp_tau) * np.exp(-t/abs(tmp_tau))233

234

if fdata is None:235

resid1 = model1236

else:237

resid1 = model1 - fdata238

239

if ddata is None:240

resid2 = model2241

else:242

resid2 = model2 - ddata243

return np.concatenate ((resid1 , resid2))244

245

246

247

###248

Main program249

###250

251

Generating input object252

input = InputClass ()253

try:254

JsonFile = sys.argv [1]255

with open(JsonFile) as infile:256

data = json.load(infile)257

input.fromJson(data)258

input.info()259

except IndexError:260

print(’\n! Error!’)261

print(’!\t Json input file is missing: python3 mdmd_fit.py ___.json. ’)262

print(’!\t Writing example input fit_example.json ’)263

input.ExampleInput ()264

sys.exit()265

except FileNotFoundError:266

print(’\n! Error!’)267

print(’!\t Json input file %s not found!’%JsonFile)268

sys.exit()269

270

Generating data object271

data = DataClass ()272

data.fromFile(input.infile ,input.maxtime)273

data.compute_derivative ()274

275

Generating fit model276

print(’\n> Fitting ...’)277

278

print(’\t Setting up fit model ...’)279

parfit = Parameters ()280

for i,exp in enumerate(input.exp):281

parfit.add(’a’+str(i+1), value = exp.a, vary = exp.a_vary , min = 0.05* data.f[0], max = data.f282

[0])283

284

if i>0:285

min_tau = parfit[’tau ’+str(i)]*2.0286

else:287

min_tau = 0.1288

289

max_tau = 0.5* float ((i+1)/input.number_of_exp)*data.time[-1]290

parfit.add(’tau ’+str(i+1), value = exp.tau , vary = exp.tau_vary , min = min_tau , max = max_tau)291

292

293

print(’\t Fitting data , minimizing residuals ...\n’)294

82 CHAPTER 6. APPENDIX

myfit = Minimizer(residual , parfit ,fcn_args =(data.time ,), fcn_kws={’fdata ’: data.f, ’ddata ’:data.295

derivative}, scale_covar=True)296

result = myfit.minimize(input.fit_model)297

fit = residual(result.params , data.time)298

resids = residual(result.params , data.time , data.f, data.derivative)299

report_fit(result)300

print(’\n’)301

302

update exp section in Json303

for i,exp in enumerate(input.exp):304

exp.fromFit(i,result)305

input.toJson(JsonFile)306

307

print(’\n>\t Writing residual file = ’,input.outfile)308

f = open(input.outfile ,’w’)309

fitlen = int(len(fit)/2)310

for i in range(fitlen):311

f.write ("%10.5f "%data.time[i])312

f.write ("%10.5f "%data.f[i])313

f.write ("%10.5f "%fit[i])314

f.write ("%10.5f "% resids[i])315

f.write ("%10.5f "%data.derivative[i])316

f.write ("%10.5f "%fit[i+fitlen])317

f.write ("%10.5f "% resids[i+fitlen])318

f.write ("\n")319

{1

"data": "md0mdt_im1h_avg.dat",2

"residuals ": "md0mdt_im1h_fit_2688 .75. dat",3

"maxtime ": 2688.75 ,4

5

"initialexp ":6

[7

{ "a": {" value": 14.15406 , "vary": true}, "tau": {" value": 0.17804 , "vary":8

true} },9

{ "a": {" value": 3.21456 , "vary": true}, "tau": {" value": 6.44233 , "vary":10

true} },11

{ "a": {" value": 28.78433 , "vary": true}, "tau": {" value": 1021.28872 , "vary":12

true} }13

],14

15

"exp":16

[17

{ "a": {" value": 1.21455 , "vary": true}, "tau": {" value": 1.44160 , "vary":18

true} },19

{ "a": {" value": 3.21455 , "vary": true}, "tau": {" value": 6.44160 , "vary":20

true} },21

{ "a": {" value": 28.78434 , "vary": true}, "tau": {" value": 1021.27942 , "vary":22

true} }23

]24

}25

6.7.2 Using GENDICON

import json1

2

number = "1"3

outfile = f"GDC_inp_test_{number }.json"4

molecules = ["arg", "spce"]5

boxl= 59.824 #Angstrom6

#molecules = ["all"]7

6.7. FROM SIMULATION TO SPECTRUM 83

maxtimes = []8

with open ("../ mdmd/maxtimes.dat", "r") as f:9

for line in f.readlines ():10

maxtimes.append(line.strip ())11

12

out = {}13

out[" correlations "] = {}14

15

#md0mdt16

out[" correlations "][" mdmd"] = []17

for pos , residue in enumerate(molecules):18

#read necessary info from fit file19

path = f"../ mdmd/MDMD_fit_{residue}_{maxtimes[pos]}. json"20

with open(path) as infile:21

data = json.load(infile)22

maxtime = float(data[" maxtime "])23

fits = []24

for exp in data["exp"]:25

fits.append ({"id": "exp", "a": float(exp["a"][" value "]),26

"tau": float(exp["tau "][" value "]),27

"a0": 0.0})28

29

build output json file30

molecule = {}31

molecule ["key"] = str(residue)32

molecule ["file"] = []33

molecule ["file "]. append ({"in": f"../ mdmd/md0mdt_{residue }.dat",34

"out": f"mdmd_{residue}_{number }.dat",35

"residuals ": False ,36

"bspline ": 10,37

"maxtime ": maxtime , "expdamping ": 0.2 })38

molecule [" fitfunction "] = fits39

40

out[" correlations "][" mdmd "]. append(molecule)41

42

43

#spectrum44

out[" spectrum "] = {}45

out[" spectrum "][" prefactor "] = [{" temperature ": 300, "boxlength ":boxl , "boxtype ": "cubic "}]46

out[" spectrum "][" frequency "] = [{" type": "nue", "unit": "THz", "Min": 0.00001 , "Max": 50.0, "47

logscale ": True}]48

epsilon = []49

for residue in molecules:50

epsilon.append ({ "key": residue ,51

"out": f"epsilon_{residue}_{number }.dat",52

"mdmd ":[f"{ residue }"],53

"smoothing ": True })54

epsilon.append ({"key": "all",55

"out": f"epsilon_all_{number }.dat",56

"mdmd": molecules ,57

"smoothing ": True })58

out[" spectrum "][" epsilon "] = epsilon59

60

61

out[" spectrum "][" gendicon "] = [62

{ "key": "all",63

"out": f"gd_all_{number }.dat",64

"smoothing ": True}]65

66

67

with open(outfile , "w") as outf:68

json.dump(out , outf , indent =4)69

84 CHAPTER 6. APPENDIX

{1

"correlations ": {2

"mdmd": [3

{4

"key": "arg",5

"file": [6

{7

"in": "../ mdmd/md0mdt_arg.dat",8

"out": "mdmd_arg_1.dat",9

"residuals ": false ,10

"bspline ": 10,11

"maxtime ": 2863.0 ,12

"expdamping ": 0.213

}14

],15

"fitfunction ": [16

{17

"id": "exp",18

"a": 898.61816 ,19

"tau": 187.74437 ,20

"a0": 0.021

},22

{23

"id": "exp",24

"a": 109.37386 ,25

"tau": 2.8832 ,26

"a0": 0.027

},28

{29

"id": "exp",30

"a": 1275.59485 ,31

"tau": 1259.51243 ,32

"a0": 0.033

}34

]35

},36

{37

"key": "spce",38

"file": [39

{40

"in": "../ mdmd/md0mdt_spce.dat",41

"out": "mdmd_spce_1.dat",42

"residuals ": false ,43

"bspline ": 10,44

"maxtime ": 441.0 ,45

"expdamping ": 0.246

}47

],48

"fitfunction ": [49

{50

"id": "exp",51

"a": 288.45439 ,52

"tau": 0.70782 ,53

"a0": 0.054

},55

{56

"id": "exp",57

"a": 5181.75159 ,58

"tau": 12.49919 ,59

"a0": 0.060

},61

{62

6.7. FROM SIMULATION TO SPECTRUM 85

"id": "exp",63

"a": 314.02767 ,64

"tau": 220.5 ,65

"a0": 0.066

}67

]68

}69

]70

},71

"spectrum ": {72

"prefactor ": [73

{74

"temperature ": 300,75

"boxlength ": 59.824 ,76

"boxtype ": "cubic"77

}78

],79

"frequency ": [80

{81

"type": "nue",82

"unit": "THz",83

"Min": 1e-05,84

"Max": 50.0,85

"logscale ": true86

}87

],88

"epsilon ": [89

{90

"key": "arg",91

"out": "epsilon_arg_1.dat",92

"mdmd": [93

"arg"94

],95

"smoothing ": true96

},97

{98

"key": "spce",99

"out": "epsilon_spce_1.dat",100

"mdmd": [101

"spce"102

],103

"smoothing ": true104

},105

{106

"key": "all",107

"out": "epsilon_all_1.dat",108

"mdmd": [109

"arg",110

"spce"111

],112

"smoothing ": true113

}114

],115

"gendicon ": [116

{117

"key": "all",118

"out": "gd_all_1.dat",119

"smoothing ": true120

}121

]122

}123

}124

86 CHAPTER 6. APPENDIX

6.7.3 Plotting the spectra

import matplotlib1

import matplotlib.pyplot as plt2

import numpy as np3

4

plt.rcParams.update({’font.size ’: 14})5

6

#colors of uni vienna7

colordict = {8

1 : ’#0063a6 ’ , # blue9

11 : ’#0063a655 ’, # blue 66% noch da(55) (eher 33% noch da und beim unteren 66%, genau10

umgekehrt als in gnuplot)11

12 : ’#0063a6AA ’, # blue 33% noch da (AA -> 66% von 255(fully transparent) in hex)12

2 : ’#dd4814 ’ , # orange13

21 : ’#dd481455 ’, # orange 66%14

22 : ’#dd4814AA ’, # orange 33%15

3 : ’#a71c49 ’ , # dark red/bordeaux16

31 : ’#a71c4955 ’, # dark red 66%17

32 : ’#a71c49AA ’, # dark red 33%18

4 : ’#94c154 ’ , # green19

41 : ’#94c15455 ’, # green 66%20

42 : ’#94c154AA ’, # green 33%21

5 : ’#666666’ , # gray22

6 : ’#f6a800 ’ , # yellow23

61 : ’#f6a80055 ’, # yellow 66%24

62 : ’#f6a800AA ’, # yellow 33%25

7 : ’#11897a’ , # mint26

71 : ’#11897a55 ’, # mint 66%27

72 : ’#11897aAA ’, # mint 33% noch da (AA -> 66% von 255(fully transparent) in hex)28

8 : ’#000000’ , # black29

81 : ’#000000AA’, # black 33%30

}31

32

concentrations = ["015" ,"03" ,"045" ,"06" ,"075" ,"09"]33

scaling = ["1.1" ,"1.2"]34

replica = ["rep1","rep2","rep3","rep4"]35

36

37

38

for rep in replica:39

for sca in scaling:40

fig , axs = plt.subplots(3, 2, sharex=True , sharey=True)41

axs [2 ,0]. set_xlabel(r"ν /GHz")42

axs [2 ,1]. set_xlabel(r"ν /GHz")43

l =["a)", "b)", "c)","d)", "e)", "f)"]44

for n, conc in enumerate(concentrations):45

###########################46

#data47

###########################48

49

freq_better_lig , re_better_lig , im_better_lig = np.loadtxt(f"/site/raid3/chris/50

arg_project/spce/kbr/kbr{conc}/ better_sol_{sca }/{ rep}/gdc/gd_all_1.dat", unpack=51

True)52

freq_e_better_lig , re_e_better_lig , im_e_better_lig = np.loadtxt(f"/site/raid3/53

chris/arg_project/spce/kbr/kbr{conc}/ better_sol_{sca}/{ rep}/gdc/epsilon_arg_1.dat54

", unpack=True)55

freq_e_better_spce , re_e_better_spce , im_e_better_spce = np.loadtxt(f"/site/raid356

/chris/arg_project/spce/kbr/kbr{conc}/ better_sol_{sca }/{ rep}/gdc/epsilon_spce_1.57

dat", unpack=True)58

59

6.7. FROM SIMULATION TO SPECTRUM 87

if conc == "015":60

freq_exp , re_exp , im_exp = np.loadtxt(f"/site/raid3/chris/arg_project/experiment/61

Arginine_cond_subtr/ab{conc}_condretr.dat", unpack=True)62

elif conc == "045":63

freq_exp , re_exp , im_exp = np.loadtxt(f"/site/raid3/chris/arg_project/experiment/64

Arginine_cond_subtr/ab{conc}_condretr.dat", unpack=True)65

elif conc == "075":66

freq_exp , re_exp , im_exp = np.loadtxt(f"/site/raid3/chris/arg_project/experiment/67

Arginine_cond_subtr/ab{conc}_condretr.dat", unpack=True)68

else:69

freq_exp , re_exp , im_exp = np.loadtxt(f"/site/raid3/chris/arg_project/experiment/70

Arginine_cond_subtr/ab{conc}0 _condretr.dat", unpack=True)71

72

##73

#spectrum74

##75

76

if n == 0:77

axs [0 ,0]. plot(freq_better_lig *1000, im_better_lig , label=fr"total spectrum {sca}",78

color=colordict [1])79

axs [0 ,0]. plot(freq_e_better_lig *1000 , im_e_better_lig , label=fr"ε arg80

{sca}", color=colordict [1],ls=’:’)81

axs [0 ,0]. plot(freq_e_better_spce *1000, im_e_better_spce , label=fr"ε82

spce {sca}", color=colordict [11])83

84

axs [0 ,0]. plot(freq_exp /1000000000 , im_exp , label=r"total spectrum exp", color=85

colordict [5])86

n_sys = (0,0)87

axs[n_sys]. set_ylabel(r"$\Sigma_0\:’’ $")88

elif n == 1:89

axs [0 ,1]. plot(freq_better_lig *1000, im_better_lig , label=fr"total spectrum {sca}",90

color=colordict [1])91

axs [0 ,1]. plot(freq_e_better_lig *1000 , im_e_better_lig , label=fr"ε arg92

{sca}", color=colordict [1],ls=’:’)93

axs [0 ,1]. plot(freq_e_better_spce *1000, im_e_better_spce , label=fr"ε94

spce {sca}", color=colordict [11])95

96

axs [0 ,1]. plot(freq_exp /1000000000 , im_exp , label=r"total spectrum exp", color=97

colordict [5])98

n_sys = (0,1)99

elif n == 2:100

axs [1 ,0]. plot(freq_better_lig *1000, im_better_lig , label=fr"total spectrum {sca}",101

color=colordict [1])102

axs [1 ,0]. plot(freq_e_better_lig *1000 , im_e_better_lig , label=fr"ε arg103

{sca}", color=colordict [1],ls=’:’)104

axs [1 ,0]. plot(freq_e_better_spce *1000, im_e_better_spce , label=fr"ε105

spce {sca}", color=colordict [11])106

107

axs [1 ,0]. plot(freq_exp /1000000000 , im_exp , label=r"total spectrum exp", color=108

colordict [5])109

n_sys = (1,0)110

axs[n_sys]. set_ylabel(r"$\Sigma_0\:’’ $")111

elif n == 3:112

axs [1 ,1]. plot(freq_better_lig *1000, im_better_lig , label=fr"total spectrum {sca}",113

color=colordict [1])114

axs [1 ,1]. plot(freq_e_better_lig *1000 , im_e_better_lig , label=fr"ε arg115

{sca}", color=colordict [1],ls=’:’)116

axs [1 ,1]. plot(freq_e_better_spce *1000, im_e_better_spce , label=fr"ε117

spce {sca}", color=colordict [11])118

119

axs [1 ,1]. plot(freq_exp /1000000000 , im_exp , label=r"total spectrum exp", color=120

colordict [5])121

88 CHAPTER 6. APPENDIX

n_sys = (1,1)122

elif n == 4:123

axs [2 ,0]. plot(freq_better_lig *1000, im_better_lig , label=fr"total spectrum {sca}",124

color=colordict [1])125

axs [2 ,0]. plot(freq_e_better_lig *1000 , im_e_better_lig , label=fr"ε arg126

{sca}", color=colordict [1],ls=’:’)127

axs [2 ,0]. plot(freq_e_better_spce *1000, im_e_better_spce , label=fr"ε128

spce {sca}", color=colordict [11])129

130

axs [2 ,0]. plot(freq_exp /1000000000 , im_exp , label=r"total spectrum exp", color=131

colordict [5])132

n_sys = (2,0)133

axs[n_sys]. set_ylabel(r"$\Sigma_0\:’’ $")134

elif n == 5:135

axs [2 ,1]. plot(freq_better_lig *1000, im_better_lig , label=fr"total spectrum {sca}",136

color=colordict [1])137

axs [2 ,1]. plot(freq_e_better_lig *1000 , im_e_better_lig , label=fr"ε arg138

{sca}", color=colordict [1],ls=’:’)139

axs [2 ,1]. plot(freq_e_better_spce *1000, im_e_better_spce , label=fr"ε140

spce {sca}", color=colordict [11])141

142

axs [2 ,1]. plot(freq_exp /1000000000 , im_exp , label=r"total spectrum exp", color=143

colordict [5])144

n_sys = (2,1)145

146

formatter = matplotlib.ticker.FuncFormatter(lambda y, _: ’{:.16g}’.format(y))147

axs[n_sys]. set_xscale ("log")148

axs[n_sys]. xaxis.set_major_formatter(formatter)149

axs[n_sys]. set_xlim (0.01 ,5000)150

axs[n_sys]. set_ylim (-1,39)151

axs[n_sys]. legend ()152

axs[n_sys].text (0.9,0.9 , l[n], transform=axs[n_sys]. transAxes)153

fig.tight_layout ()154

fig.subplots_adjust(wspace =0)155

fig.subplots_adjust(hspace =0)156

fig.set_size_inches (16 ,20)157

fig.savefig(f"fig_gdc_kbr_{sca}_{rep}.png", dpi=600, bbox_inches=’tight ’)158

plt.close()159

import matplotlib.pyplot as plt1

import numpy as np2

from collections import defaultdict3

from scipy import stats4

from statistics import stdev5

6

plt.rcParams.update({’font.size ’: 14})7

8

#colors of uni vienna plus extra9

colordict = {10

1 : ’#0063a6 ’ , # blue11

11 : ’#0063a655 ’, # blue 66% noch da(55) (eher 33% noch da und beim unteren 66%, genau12

umgekehrt als in gnuplot)13

12 : ’#0063a6AA ’, # blue 33% noch da (AA -> 66% von 255(fully transparent) in hex)14

2 : ’#dd4814 ’ , # orange15

21 : ’#dd481455 ’, # orange 66%16

22 : ’#dd4814AA ’, # orange 33%17

3 : ’#a71c49 ’ , # dark red/bordeaux18

31 : ’#a71c4955 ’, # dark red 66%19

32 : ’#a71c49AA ’, # dark red 33%20

4 : ’#94c154 ’ , # green21

41 : ’#94c15455 ’, # green 66%22

42 : ’#94c154AA ’, # green 33%23

6.7. FROM SIMULATION TO SPECTRUM 89

5 : ’#666666’ , # gray24

6 : ’#f6a800 ’ , # yellow25

61 : ’#f6a80055 ’, # yellow 66%26

62 : ’#f6a800AA ’, # yellow 33%27

7 : ’#11897a’ , # mint28

71 : ’#11897a55 ’, # mint 66%29

72 : ’#11897aAA ’, # mint 33% noch da (AA -> 66% von 255(fully transparent) in hex)30

8 : ’#000000’ , # black31

81 : ’#000000AA’, # black 33%32

9 : ’#f014e5 ’ , # pink33

91 : ’#f014e5AA ’, # pink 33%34

10 : ’#069c0e ’ , # green35

101 : ’#069c0eAA ’, # green 33%36

}37

###########################38

#data39

###########################40

#freq_exp , im_exp = np.loadtxt ("/ site/raid2/florian/conductivity/plots/MImHOAcim.csv", unpack=True41

)42

43

chris_path = "/site/raid3/chris/arg_project/spce"44

konzs = ["015" ,"03" ,"045" ,"06" ,"075" ,"09"] #attention: should be sorted !!!45

colors = [colordict [9], colordict [8], colordict [1], colordict [10], colordict [3]]46

systems = ["kbr","kcl","ki","licl","nacl"]47

#residues = ["all", "arg", "spce"]48

residues = ["arg"]49

replica =[" rep1", "rep2", "rep3", "rep4"]50

data = {}51

data_nocross = {}52

scaling = ["1.1" , "1.2"]53

54

for system in systems:55

for konz in konzs:56

for residue in residues:57

for rep in replica:58

for sca in scaling:59

try:60

data[system+konz+residue+rep+sca] = np.loadtxt(f"{ chris_path }/{ system }/{61

system }{konz}/ better_sol_{sca }/{ rep}/gdc/epsilon_{residue}_1.dat")62

except Exception:63

print(f"Error loading file: {system }{konz}/ analysis/gdc/epsilon_{residue}64

_1.dat")65

66

67

68

################69

Amplituden70

#################71

e_inf = 172

konzentrations = [0.15, 0.3, 0.45, 0.6, 0.75, 0.9]73

74

e0s = defaultdict(list)75

fig , axs = plt.subplots (1,2, sharey=True)76

for n_sca , sca in enumerate(scaling):77

for n_sys , system in enumerate(systems):78

for n_res , residue in enumerate(residues):79

for konz in konzs:80

real_list = []81

for rep in replica:82

real_list.append(data[system+konz+residue+rep+sca][: ,1][0] - data[system+konz+83

residue+rep+sca][: , -1][0])84

e0s[system+residue+sca]. append(real_list)85

90 CHAPTER 6. APPENDIX

x = konzentrations86

87

y = []88

e = []89

for quadruplet in e0s[system+residue+sca]:90

y.append(sum(quadruplet)/len(quadruplet))91

e.append(stdev(quadruplet))92

y = np.asarray(y)93

e = np.asarray(e)94

95

slope , intercept , r_value , p_value , std_err = stats.linregress(x,y)96

poly1d_fn = np.poly1d ([slope ,intercept])97

98

axs[n_sca]. set_title(f"L-Arginine (s = {sca})")99

axs[n_sca]. errorbar(x, y, e, ls="", marker ="x", color=colors[n_sys])100

axs[n_sca].plot(x, poly1d_fn(x), ls="--", label=f"{ system }" if n_res == 0 else "",101

color=colors[n_sys])102

axs[n_sca]. set_xlabel ("c (Salt) [mol/L]")103

axs [0]. set_ylabel ("S (Arginine)")104

105

for n_konz , konz in enumerate(konzs):106

e0s[system +"cross "]. append(e0s[system +"all"][n_konz] - e0s[system +"arg"][n_konz] - e0s[107

system +"spce "][n_konz])108

109

axs[n_sca]. legend ()110

fig.tight_layout ()111

fig.subplots_adjust(wspace =0)112

fig.set_size_inches (14,6)113

fig.savefig (" Arginine_S_trend_quart.png", dpi=600, bbox_inches=’tight ’)114

115

with open(" e0_data_better_sol_1 .1.dat", "w") as f:116

print(e0s , file=f)117

6.8. AUTOMATISATION 91

6.8 Automatisation

#!/ bin/bash1

2

for salt in kbr kcl ki licl nacl3

do4

for conc in 015 03 045 06 075 095

do6

cd ${salt}/${salt}${conc}/ better_sol_1 .2/ mdmd/7

cp ../../ better_sol_1 .1/ mdmd /*.py .8

cp ../../ better_sol_1 .1/ mdmd/MDMD_fit.json .9

find ./ -type f -exec sed -i ’s/better_sol_1 .1/ better_sol_1 .2/g’ {} \;10

python run_mdmd_fit.py11

cd ..12

mkdir gdc13

cd gdc14

cp ../../ better_sol_1 .1/gdc/write_gdc_inp_file.py .15

cp ../../ better_sol_1 .1/gdc/plot_gdc.py .16

find ./ -type f -exec sed -i ’s/better_sol_1 .1/ better_sol_1 .2/g’ {} \;17

python write_gdc_inp_file.py18

gendicon GDC_inp_test_1.json19

python plot_gdc.py20

cd ../../../../21

done22

done23

#!/ bin/bash1

2

STR ="../../../../"3

NEWSTR ="../../../../../"4

5

for salt in kbr kcl ki licl nacl6

do7

for conc in 015 03 045 06 075 098

do9

cd ${salt}/${salt}${conc}/ better_sol_1 .1/10

echo "${salt}${conc} step 1 of 21 done"11

mkdir rep112

echo "${salt}${conc} step 2 of 21 done"13

mv * rep1/.14

echo "${salt}${conc} step 3 of 21 done"15

mkdir rep216

echo "${salt}${conc} step 4 of 21 done"17

mkdir rep318

echo "${salt}${conc} step 5 of 21 done"19

cd rep120

echo "${salt}${conc} step 6 of 21 done"21

sed -i "s#../../../../#../../../../../#g" packmol.inp22

sed -i "s#../../../../#../../../../../#g" write_psf_crd.inp23

sed -i "s#../../../../#../../../../../#g" npt.py24

sed -i "s#../../../../#../../../../../#g" nvt.py25

echo "${salt}${conc} step 7 of 21 done"26

cd ..27

echo "${salt}${conc} step 8 of 21 done"28

cd rep229

echo "${salt}${conc} step 9 of 21 done"30

cp ../ rep1/* .31

echo "${salt}${conc} step 10 of 21 done"32

sed -i "s/seed -1/seed 69/g" packmol.inp33

echo "${salt}${conc} step 11 of 21 done"34

92 CHAPTER 6. APPENDIX

sh initialize.sh35

echo "${salt}${conc} step 12 of 21 done"36

mkdir out37

echo "${salt}${conc} step 13 of 21 done"38

mkdir traj39

echo "${salt}${conc} step 14 of 21 done"40

cd ../ rep341

echo "${salt}${conc} step 15 of 21 done"42

cp ../ rep1/* .43

echo "${salt}${conc} step 16 of 21 done"44

sed -i "s/seed -1/seed 69/g" packmol.inp45

echo "${salt}${conc} step 17 of 21 done"46

sh initialize.sh47

echo "${salt}${conc} step 18 of 21 done"48

mkdir out49

echo "${salt}${conc} step 19 of 21 done"50

mkdir traj51

echo "${salt}${conc} step 20 of 21 done"52

cd ../../../../53

echo "${salt}${conc} step 21 of 21 done"54

done55

done56

#!/ bin/bash1

2

for salt in kbr kcl ki licl nacl3

do4

for conc in 015 03 045 06 075 095

do6

cd ${salt}/${salt}${conc}/ better_sol_1 .2/ rep27

sbatch -J rep2_${salt}${conc}_1 -o out/nvt_1.out run_nvt.sh 18

cd ../ rep39

sbatch -J rep3_${salt}${conc}_1 -o out/nvt_1.out run_nvt.sh 110

cd ../../../../11

done12

done13

6.9. SPECTRA OF ALL REPLICA 93

6.9 Spectra of all replica

6.9.1 Potassium bromide

s = 1.1

Figure 6.1: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) KBr.

94 CHAPTER 6. APPENDIX

Figure 6.2: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) KBr.

6.9. SPECTRA OF ALL REPLICA 95

Figure 6.3: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) KBr.

96 CHAPTER 6. APPENDIX

s = 1.2

Figure 6.4: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) KBr.

6.9. SPECTRA OF ALL REPLICA 97

Figure 6.5: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) KBr.

98 CHAPTER 6. APPENDIX

Figure 6.6: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) KBr.

6.9. SPECTRA OF ALL REPLICA 99

6.9.2 Potassium chloride

s = 1.1

Figure 6.7: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) KCl.

100 CHAPTER 6. APPENDIX

Figure 6.8: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) KCl.

6.9. SPECTRA OF ALL REPLICA 101

Figure 6.9: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) KCl.

102 CHAPTER 6. APPENDIX

s = 1.2

Figure 6.10: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) KCl.

6.9. SPECTRA OF ALL REPLICA 103

Figure 6.11: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) KCl.

104 CHAPTER 6. APPENDIX

Figure 6.12: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) KCl.

6.9. SPECTRA OF ALL REPLICA 105

6.9.3 Potassium iodide

s = 1.1

Figure 6.13: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) KI.

106 CHAPTER 6. APPENDIX

Figure 6.14: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) KI.

6.9. SPECTRA OF ALL REPLICA 107

Figure 6.15: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) KI.

108 CHAPTER 6. APPENDIX

s = 1.2

Figure 6.16: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) KI.

6.9. SPECTRA OF ALL REPLICA 109

Figure 6.17: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) KI.

110 CHAPTER 6. APPENDIX

Figure 6.18: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) KI.

6.9. SPECTRA OF ALL REPLICA 111

6.9.4 Lithium chloride

s = 1.1

Figure 6.19: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) LiCl.

112 CHAPTER 6. APPENDIX

Figure 6.20: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) LiCl.

6.9. SPECTRA OF ALL REPLICA 113

Figure 6.21: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) LiCl.

114 CHAPTER 6. APPENDIX

s = 1.2

Figure 6.22: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) LiCl.

6.9. SPECTRA OF ALL REPLICA 115

Figure 6.23: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) LiCl.

116 CHAPTER 6. APPENDIX

Figure 6.24: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) LiCl.

6.9. SPECTRA OF ALL REPLICA 117

6.9.5 Sodium chloride

s = 1.1

Figure 6.25: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) NaCl.

118 CHAPTER 6. APPENDIX

Figure 6.26: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) NaCl.

6.9. SPECTRA OF ALL REPLICA 119

Figure 6.27: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) NaCl.

120 CHAPTER 6. APPENDIX

s = 1.2

Figure 6.28: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) NaCl.

6.9. SPECTRA OF ALL REPLICA 121

Figure 6.29: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) NaCl.

122 CHAPTER 6. APPENDIX

Figure 6.30: System containing arginine, SPC/E water and 0.15 mol
L

a), 0.3 mol
L

b), 0.45 mol
L

c), 0.6
mol
L

d), 0.75 mol
L

e), 0.9 mol
L

f) NaCl.

	Introduction
	Molecule under investigation

	Theory
	Hofmeister series
	Salting-in and salting-out
	Chaotropic and kosmotropic ions

	Molecular Dynamics Simulations
	Basic Idea
	Force Fields
	Periodic boundary conditions

	Dielectric spectroscopy
	Computational dielectric spectroscopy

	Methods
	Preliminary data generation
	Removal of Clusters
	Setting up a simulation
	Generation of Molecules
	Packing of the simulation box
	Minimization of internal energy

	Running a Simulation
	Dielectric spectrum calculation
	Calculating trends

	Results and discussion
	Preliminary results
	Removed clusters
	Straight forward removal of clustered molecules
	Scaling of intramolecular potentials

	Verification of the fit
	Dielectric spectra
	Potassium bromide
	Potassium chloride
	Potassium iodide
	Lithium chloride
	Sodium chloride

	Trends
	Better statistics

	Conclusion and outlook
	6 Bibliography
	Appendix
	Abstract
	English
	German

	Straight forward cluster removal
	Stream file for s = 1.1
	Packing of the simulation box
	Write psf & crd
	Running the simulation
	From simulation to spectrum
	Fitting the autocorrelation function
	Using GENDICON
	Plotting the spectra

	Automatisation
	Spectra of all replica
	Potassium bromide
	Potassium chloride
	Potassium iodide
	Lithium chloride
	Sodium chloride

