
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

“Automated Deduction for Intuitionistic Logic

via Embedding into Classical Logic”

verfasst von / submitted by

Alexander Pluska, BSc

angestrebter akademischer Grad / in partial fulfillment of the requirements for the degree of

Master of Science (MSc)

Wien, 2022 / Vienna, 2022

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

UA 066 821

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

Masterstudium Mathematik

Betreut von / Supervisor: Univ.-Prof. Matthias Aschenbrenner, PhD

Abstract

The famous double negation translation [16, 18] establishes an embedding from classical

into intuitionistic logic. Curiously, the reverse direction has not been covered in litera-

ture. We present an effective embedding from intuitionistic into classical logic, both in

the propositional and first-order case, as well as an effective embedding of intuitionistic

propositional logic into quantified boolean formulas.

Furthermore, we implement a system that takes intuitionistic first-order problems in

the tptp file format as an input and performs our transformation. This allows the use

of classical theorem provers for checking intuitionistic validity. We benchmark our imple-

mentation using the Vampire theorem prover [21] on the ILTP problem set [4].

Finally, we discuss how the generated classical proofs of the transformed problem

can be translated back into intuitionistic proofs of the original problem. All in all, this

establishes a novel approach to theorem proving for intuitionistic logic and provides a first

proof of concept.

Acknowledgements

I want to thank Matthias for accommodating my particular interests by agreeing to

supervise a thesis which lies outside his main area of research and bearing with the orga-

nizational difficulties.

I sincerely appreciate Florian’s guidance, who graciously agreed to co-supervise a thesis

at a different university. He has provided me with a fascinating topic as well as plenty of

his time, expertise and thorough feedback.

Finally, I am incredibly grateful to my family, in particular my parents Stefania and

Cezary, who have instilled in me the joy of learning, provided all the love and help I could

ask for and invariably supported me along my journey.

Contents

1 Introduction 1

2 Overview 3
2.1 Embedding intuitionistic into classical logic 3
2.2 Implementation . 5
2.3 Translation of counter-models and proofs 5

3 Preliminaries 7
3.1 Syntax . 7

3.1.1 Propositional logic . 7
3.1.2 Predicate logic . 7

3.2 Semantics . 9
3.2.1 Propositional Logic . 9
3.2.2 Predicate Logic . 11

3.3 Skolemization and Herbrandization . 14
3.4 Proof theory . 16

4 Embedding intuitionistic into classical logic 19
4.1 Propositional logic . 19

4.1.1 IPC to CQC . 19
4.1.2 Normal form transformation . 21
4.1.3 IPC to simplified CQC . 23
4.1.4 IPC to CPC . 24

4.2 IPC to QBF . 27
4.3 CQC to IQC . 29

4.3.1 Encoding Kripke Semantics . 31
4.3.2 Reducing the encoding . 34

5 Implementation 37
5.1 Installation . 37
5.2 Usage . 38
5.3 Benchmarking . 38

6 Translation of counter-models and proofs 40
6.1 Translation of counter-models . 40
6.2 Proof translation . 40

7 Conclusion 45

A Deutscher Abstract 46

B Zusammenfassung auf Deutsch 47

C Complete Benchmark Results 49

References 55

Chapter 1

Introduction

Constructive mathematics refers to a flavour of mathematics in which the existence of

an object can only be established by explicit construction, as opposed to classical math-

ematics where existence can be shown implicitly, e.g. by assuming non-existence and

deriving a contradiction. The formalism usually associated with constructive mathe-

matics is intuitionistic logic, which essentially differentiates itself from classical logic

by the fact that the law of excluded middle A ∨ ¬A and the double negation shift

∀x¬¬P (x)→ ¬¬∀xP (x) are not valid. Besides philosophical considerations, most promi-

nently advocated by Brouwer [11] and Bishop [10], there is a particular motivation for

studying constructive mathematics from the perspective of computer science in that proofs

in intuitionistic logic directly correspond to computer programs — as expressed in the

Curry-Howard correspondence [19].

The interest in intuitionistic logic has led to the development of a number of automated

theorem proving systems for propositional as well as for predicate logic and a collection

of benchmark problems (see e.g. the ILTP library website [4]). However, progress in

automated theorem proving for intuitionistic logic has been slow, whereas reasoners for

classical logic have made tremendous progress, see e.g. the TPTP [1] and SAT [3] compe-

titions. This difference can be partially explained by fundamental differences between the

logics. Foremost, determining intuitionistic validity is computationally harder, i.e. in the

propositional case intuitionistic validity is PSPACE-complete [25] whereas classical validity

is coNP-complete [12]. A further advantage of classical logic is the existence of calculi

that are particularly suitable for automation such as superposition [8], which rely on the

existence of convenient normal forms such as CNF, and the duality between validity and

satisfiability, i.e. to show the validity of a formula it suffices to show the unsatisfiability

of the negated formula. While some (albeit more complex) normal forms also exist for

intuitionistic logic, crucially the duality between validity and satisfiability of the negation

does not hold. Therefore, most dedicated intuitionistic theorem provers [23, 26] use the

naive inverse method, i.e. direct search for a cut-free proof by applying the rules from

some proof calculus inversely, enhanced by search strategies such as focussing and polar-

1

ization. This approach generally leads to a much more complex search and is therefore

difficult to implement efficiently. Finally, we add that in contrast to intuitionistic provers

a tremendous amount of work has been put into optimizing provers for classical logic, in

particular for the propositional case, i.e. SAT-solvers.

With this work we want to propose a novel approach for intuitionistic theorem proving

that leverages the progress in classical theorem proving, that is for each formula ϕ:

� Give a formula ϕ# that is classically valid if and only if ϕ is intuitionistically valid.

� Use a state-of-the-art classical prover to establish the validity/invalidity of ϕ#.

� Transform the generated proof/counter-model of ϕ# to one of ϕ.

The most challenging part of this approach is giving the translation of ϕ to ϕ#. In-

terestingly, the reverse direction, the famous double-negation translation, has long been

established and goes back to Glivenko [16] in the propositional case, and to Gödel [18] and

Gentzen [15] in the first-order case. In the propositional case, it is particularly simple: ϕ

is classically valid if and only if ¬¬ϕ is intuitionistically valid. Intuitively, the translation

collapses for each subformula ψ of ϕ the truth values of ψ and ¬¬ψ, which are classically

but not intuitionistically equivalent. This gives us a first idea why the reverse direction

is perhaps more difficult: We need to expand the truth values of ψ and ¬¬ψ, i.e. if

they both occur in ϕ, we must have a way to (classically) assign different truth values

to their respective counterparts in ϕ#. In particular, this necessitates the introduction of

new propositional variables in our procedure, which already marks a big difference to the

double negation translation.

While establishing the translation of formulas we also perform an effective translation

of counter-models, i.e. for each intuitionistic counter-model of ϕ we effectively construct

a classical counter-model of ϕ# and vice versa. We note that the existence of counter-

models is a key notion that forms a proper dual to validity — whereas the satisfiability

of the negation is not necessary for invalidity (in contrast to classical logic, where it is a

proper dual to validity). Transforming and reducing counter-models to a normal form is

also what ultimately enables our translation. Apart from a translation of counter-models

in the final chapter, we also explicitly describe how to equivalently transform classical

proofs of ϕ# to intuitionistic proofs of ϕ.

As a final contribution, we implement our translation in the Rust programming lan-

guage. Our implementation transforms a first-order problem in the tptp format [6] and

outputs the translated problem in the same format. The code is published on GitHub [2].

We then benchmark our implementation using the ILTP problem set [4], i.e. we translate

all problems in the set and then run the Vampire theorem prover [22] on the translated

problems. Our approach performs on par with existing approaches for intuitionistic the-

orem proving, but comes short of the state-of-the art. As there is still a lot of room for

optimization, this is a hopeful first sign.

2

Chapter 2

Overview

The main content is organized in chapters 3 to 6. Chapter 3 collects prerequisite defini-

tions and serves to fix our notation and recall some important facts. Chapter 4 is the meat

of this thesis. In particular, it features a complete description of our embedding of intu-

itionistic into classical logic as well as proving its correctness. In chapter 5 we present the

implementation of the embedding and the results of our benchmark. Finally, in chapter 6

we explicitly describe how to translate the generated proofs and counter-models which in

principle directly follows from the results of section 4. We shall now for each chapter give

an overview of our main results and highlight the key arguments.

2.1 Embedding intuitionistic into classical logic

Recall that our goal in this chapter is to give an effective translation procedure that, for a

given formula ϕ, yields a formula ϕ#, such that ϕ is intuitionistically valid if and only if

ϕ# is classically valid. We start with the propositional case. The key arguments are the

same as in the first-order case, while it is technically simpler and less cluttered.

Before our main transformation we employ a preprocessing step akin to the Tseytin

transformation [28], which is a popular pre-processing step in classical automated reason-

ing: It gives an equisatisfiable sentence (over an extended set of propositions) in conjunc-

tive normal form. Eliminating all implications, however, is not possible in intuitionistic

logic since A→ B is not equivalent to ¬A∨B. Still, we propose a similar transformation.

A notable feature of our transformation is that all non-classical content is encapsulated

in formulas of type (A → B) → C, i.e. if there are no such formulas in the transformed

formula then the classical validity of the transformed formula immediately implies intu-

itionistic validity and no further processing is needed.

Theorem 2.1.1. For every propositional formula ϕ there effectively are an atom P and

a set of S of formulas (over an extended set of propositions) of one of the forms

A→ (B ∧ C), (A ∧B)→ C,A→ (B ∨ C), (A ∨B)→ C, (A→ B)→ C,

3

for atomic A,B,C, such that ϕ is intuitionistically valid if and only if
∧
S → P is in-

tuitionistically valid. The time complexity of the transformation is linear in the input

size.

The main transformation then proceeds in three steps: 1) We encode as a first-order

sentence that the considered formula holds for every Kripke frame. Since Kripke frames

for propositional logic over a fixed alphabet of propositional variables form a first-order

theory, this step is rather straightforward. 2) Next we eliminate some quantifiers via

Herbrandization. The only quantifiers eliminated occur in formulas derived from formulas

of type (A → B) → C. 3) We can then argue that if there is a counter-model for the

resulting formula, then there is a counter-model with a certain Kripke frame of bounded

size completely determined by the number of formulas of type (A→ B)→ C. This allows

us to eliminate the remaining quantifiers by simply enumerating the worlds in that Kripke

frame.

Summarizing, we obtain the following result:

Theorem 2.1.2. Let S be as in Theorem 2.1.1 and F→ ⊆ S denote the subset of formulas

of the form (A→ B)→ C and Λ denote the set of sequences without repetition over F→.

For each atom A and k ∈ Λ consider a new atom Ak. Obtain S# by including the following

formulas:

� Ak → Akψ for each atom A occurring in S, k ∈ Λ and ψ ∈ F→ not occurring in k.

� Ak → (Bk ◦ Ck) for each ◦ ∈ {∧,∨}, A→ (B ◦ C) ∈ S, k ∈ Λ.

� (Ak ◦Bk)→ Ck for each ◦ ∈ {∧,∨}, A→ (B ◦ C) ∈ S, k ∈ Λ.

� (Akψ → Bkψ)→ Ck for ψ = (A→ B)→ C ∈ S, k ∈ Λ if ψ does not occur in k.

Then,
∧
S → P is intuitionistically valid iff

∧
S# → P ε is classically valid, where ε denotes

the empty sequence. The size of S# is in O(|S| · 2|F→|·log(|F→|)). Furthermore, there is an

effective procedure for translating counter-models between the sentences.

Instead of explicitly enumerating the worlds of a counter-example of bounded size (as

in the reduction stated in the above theorem), we can also do this enumeration implicitly

with a quantified boolean formula (QBF). We can show that this QBF is satisfiable iff

there exists a counter-model for our original formula:

Theorem 2.1.3. Let S be as in Theorem ?? and F→ ⊆ S denote the subset of formulas of

the form (A→ B)→ C. There is an effective procedure that produces a QBF ϕQ of size

O(|S|·|F→|+|F→|3) with 2·|F→|−1 quantifier alternations such that ϕ is intuitionistically

valid if and only if ϕQ is not satisfiable. For fixed N ∈ N, deciding intuitionistic validity

for formulas
∧
S → P where S is as above and |F→| = N is therefore in Σ2N−1.

4

We then move to the first-order case. Here the construction is a bit more involved,

but the underlying approach is the same. Again, we first perform a Tseytin-like transfor-

mation. Here the non-classical content is encapsulated by formulas of type (A→ B)→ C

and ∀xA→ B. The details of this translation are given in Section 4.1.2. We then proceed

similarly to the propositional case. Note however that one difficulty arises from the fact

that our (classical) domain will now contain on the one hand worlds in the Kripke frame,

but on the other hand also proper domain elements. We resolve this apparent conflict

by introducing a special binary predicate E, inspired by [20], encoding which domain ele-

ments exists at which world. The main transformation then again proceeds in three steps:

Step 1) and 2) are analogous to the propositional case. The real difference arises in step

3): While we can also establish the existence of a canonic counter-model whose frame only

depends on formulas of type (A→ B)→ C and ∀xA→ B, the size of this counter-model

is countably infinite in general. This is not surprising, since certain intuitionistically in-

valid formulas like the double negation shift ∀x¬¬A(x) → ¬¬∀xA(x) don’t have finite

counter-models. Therefore, we are not able to eliminate the ∀-quantifiers associated with

the Kripke semantics. However, since our translation targets first-order logic, we believe

that the introduction of these quantifiers is acceptable.

Summarizing, we obtain the following result:

Theorem 2.1.4. There exists a linear-time procedure that gives for every first-order

formula ϕ a formula ϕ# such that ϕ is intuitionistically valid if and only if ϕ# is classically

valid. The size of ϕ# is in linear in the size of ϕ, however, for each n-ary relation symbol

in ϕ there is a corresponding n+1-ary relation symbol in ϕ#, and ϕ contains a new binary

predicate E as well as a number of new function symbols. Furthermore, there is an effective

translation between intuitionistic counter-models of ϕ and classical counter-models of ϕ#.

A more detailed account of Theorem 2.1.4 is given in Theorem 4.3.1.

2.2 Implementation

In this section, we describe our system that implements the translation from the previous

section. The rust source code can be found online [2]. We then elaborate our benchmarking

process, which utilizes the ILTP problem set [4] and the Vampire theorem prover [22].

Our implementation performs similar to existing dedicated provers for intuitionistic

logic, but falls short of the state-of-the-art. Since there is still a lot of possible optimizations

left for our translation, this is a hopeful first sign.

2.3 Translation of counter-models and proofs

In the final section, we give an explicit mechanism how to transform the proofs and

counter-models for translated formula ϕ# into intuitionistic proofs/counter-models of the

5

AGT ALG COM CSR GEO GRA GRP HAL
Proven 5 170 0 0 58 3 4 2

Disproven 0 0 0 0 0 0 0
Timeout 47 29 3 29 107 74 1 16

KRS LCL MGT MSC NLP NUM PLA PUZ
Proven 0 0 30 1 9 1 9 2

Disproven 0 0 0 0 12 0 0 0
Timeout 5 9 128 3 69 1 237 82

SET SWC SWV SYN TOP GEJ GPJ SYJ
Proven 0 5 27 1 64 65 54 1

Disproven 6 1 297 423 154 108 298 2

Figure 2.1: Performance on problem sections of the ILTP set.

original formula ϕ. The existence of these transformations is clear from the methodology

of chapter 4, however, they are hidden in the proofs and here we make them explicit. The

two main results are as follows:

Theorem 2.3.1. There exists an effective procedure that converts any classical counter-

model for a translated formula ϕ# into an intuitionistic counter-model for the original

formula ϕ.

Theorem 2.3.2. There exists an effective procedure that converts any classical proof of

a translated formula ϕ# into a intuitionistic proof of the original formula ϕ.

Given the arguments of Chapter 4 the translation of counter-models is more or less

just a compilation of proofs. On the other hand, the explicit translation of proofs does

require some work, since to that point all arguments were semantic and this requires a

syntactic viewpoint.

6

Chapter 3

Preliminaries

First, let us recapitulate the most important definitions and some facts about them. This

will serve to fix our notation as well.

3.1 Syntax

3.1.1 Propositional logic

Let us fix some countably infinite set of propositional variables A,B,C

Definition 3.1.1. A formula and subformula is defined inductively via the following rules:

� every propositional variable as well as a special symbol ⊥ is a formula, such a formula

is called atomic and A,B,C, . . . and ⊥ are called atoms.

� if ϕ and ψ are formulas then ϕ ◦ ψ is a formula for ◦ ∈ {∧,∨,→}.

� every formula is a subformula of itself.

� for a formula χ = ϕ ◦ ψ every subformula of ϕ and ψ is also a subformula of χ.

We write ¬ϕ for ϕ→ ⊥.

3.1.2 Predicate logic

The analogon for predicate logic is much more involved as we need to define terms.

Definition 3.1.2. A signature consists of

� a finite set Sf of function symbols f1, . . . , fn

� a finite set SR of relation symbols R1, . . . , Rm

� a function ar: Sf ∪ SR → N assigning to each symbol its arity (possibly 0).

7

Usually the signature will be left implicit. If explicitly stated we denote it by

{f1/ar(f1), . . . , fn/ar(fn), R1/ar(R1). . . . , Rm/ar(Rm)}.

Fix a countably infinite collection of free variables a, b, c . . . and bound variables x, y, z

Note that the following definitions could be simplified by not distinguishing between bound

and free variables. However, this has some other drawbacks and in particular when defining

a sequent calculus for first-order logic having disjoint sets of bound and free variables is

convenient.

Definition 3.1.3. A semiterm is defined inductively via the following rules

� each variable is a term

� if t1, . . . , tn are terms and f a n-ary function symbol then f(t1, . . . , tn) is a term.

A term is a semiterm in which each occurring variable is a free variable. Every term is a

semiterm. Analogously to the definition of subformulas we can define subsemiterms and

subterms.

Definition 3.1.4. A Substitution is a function σ from free variables to semiterms. For a

semiterm t we define tσ as follows:

� xσ = x if x is bound.

� aσ = σ(a) if a is free.

� f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ).

Definition 3.1.5. A formula is defined inductively via the following rules

� ⊥ is a formula.

� if t1, . . . , tn are terms and R and an n-ary relation symbol then R(t1, . . . , tn) is a

formula.

� if s, t are terms then s = t is a formula.

Formulas formed by the above rules are called atomic.

� If ϕ and ψ are formulas then ϕ ◦ ψ is a formula for ◦ ∈ {∧,∨,→}.

� If ϕ is a formula and a is a free variable occurring in ϕ and x is a bound variable not

occurring in ϕ then Qx(ϕ[x/a]) is a formula for Q ∈ {∃, ∀} where the substitution

ϕσ is defined inductively via

– ⊥σ = ⊥

8

– R(t1, . . . , tn)σ = R(t1σ, . . . , tnσ)

– (s = t)σ = (sσ = tσ)

– (ϕ ◦ ψ)σ = ϕσ ◦ ψσ for ◦ ∈ {∧,∨,→}.

– (Qyϕ)σ = Qy(ϕσ) for Q ∈ {∃, ∀}.

� A formula containing no free variables is a sentence.

3.2 Semantics

Classical and intuitionistic semantics give (different) meaning to formulas.

3.2.1 Propositional Logic

Classical Semantics

Definition 3.2.1. A valuation v is a function that assigns to each propositional variable

A a truth value v(A) ∈ {0, 1}. We define a model relation |= between valuations v and

formulas:

� v 6|= ⊥

� v |= A iff v(A) = 1 for each propositional variable A.

� v |= ϕ ∧ ψ iff v |= ϕ and v |= ψ.

� v |= ϕ ∨ ψ iff v |= ϕ or v |= ψ.

� v |= ϕ→ ψ iff v 6|= ϕ or v |= ψ.

v is a model for ϕ if v |= ϕ. ϕ is satisfiable if there exists a valuation which is a model. It is

valid if every valuation is a model, and we write |= ϕ. We denote the set of valid formulas

with CPC. We can furthermore define an entailment relation between sets of clauses, that

is S |=C T if for every valuation v with v |=
∧
S we have v |=

∨
T .

One notable property of classical logic is that a formula ϕ is valid iff its negation, i.e.

¬ϕ is not satisfiable. The same does not hold true for intuitionistic logic, as we shall see.

Intuitionistic Semantics

Definition 3.2.2. A Kripke structure K = (W, (vw)w∈W) consists of a partially ordered set

W of nodes an a family of valuations (vw)w∈W such that for u ≤ w we have vu(A) ≤ vu(A)

for every propositional variable A, this is called the persistency condition. In this case, we

define a model relation between worlds u and formulas. It is slightly different in the case

of implications, i.e. have

9

� u 6|= ⊥

� u |= A iff vu(A) = 1 for each propositional variable A.

� u |= ϕ ∧ ψ iff v |= ϕ and v |= ψ.

� u |= ϕ ∨ ψ iff v |= ϕ or v |= ψ.

� u |= ϕ→ ψ if for all w ≥ u we have w 6|= ϕ or w |= ψ.

We say that ϕ is satisfied at a node u if u |= ϕ. If a formula is satisfied at every node,

then K is a model for ϕ, and we write K |= ϕ. ϕ is satisfiable if there exists a Kripke

structure, which is a model. It is valid if every Kripke structure is a model and we write

|= ϕ. We denote the set of valid formulas with IPC. As before, we define an entailment

relation |=I between sets of formulas.

There are many classical tautologies which are not intuitionistically valid

Example 3.2.3. Consider the famous law of excluded middle A∨¬A. As a counter model

consider a Kripke structure with two nodes u ≤ w and vu(A) = 0, vw(A) = 1. Then u 6|= A

and u 6|= ¬A, i.e. u 6|= A ∨ ¬A.

The following is a famous and important result due to Glivenko [17]

Theorem 3.2.4 (Glivenko’s theorem). A propositional formula ϕ is classically valid iff

¬¬ϕ is intuitionistically valid.

Note however that this difference between classical and intuitionistic logic is not reflected

in satisfiability, only in validity:

Lemma 3.2.5. A propositional formula ϕ is intuitionistically satisfiable if and only if it

is classically satisfiable.

Proof. Every classical model can be viewed as a Kripke model with a single node. There-

fore, classical satisfiability trivially implies intuitionistic satisfiability. On the other hand,

in every Kripke structure that is a model every node is a classical model so intuitionistic

satisfiability implies intuitionistic satisfiability.

In classical logic, a proven strategy for showing that a formula valid is to consider its

negation and show that it is not satisfiable. Due to the previous lemma, this is insufficient

for intuitionistic logic. There are formulas like A ∨ ¬A which are not an intuitionistic

tautology, while their negation is not satisfiable either. This serves to motivate the con-

sideration of equivalidity in the following chapters. In the context of classical logic it can

be fully explained via equisatisfiability and is therefore neglected, but for intuitionistic

logic it is more fundamental.

Finally, let us note the complexities of these various decision problems, which play a

fundamental role in all of theoretical computer science.

10

Theorem 3.2.6. Satisfiability for classical and intuitionistic propositional logic is NP-

complete.

For classical logic this is the famous Cook-Levin theorem first published in Cook’s

seminal paper [12]. Of course, we have seen that the intuitionistic case is the same decision

problem.

Corollary 3.2.7. Validity for classical logic is co-NP-complete

This is clear, since validity is just the complementary problem to satisfiability of the

negated formula. However, in intuitionistic logic unfortunately validity is really harder

than satisfiability as first shown by Statman [25].

Theorem 3.2.8. Validity for intuitionistic logic in PSPACE-complete.

One thing to note is that in contrast to predicate logic, all these problems are decidable.

3.2.2 Predicate Logic

We now give account of the more involved semantics of first-order logic

Classical Semantics

Definition 3.2.9. Let Σ be a signature. A Σ-structure M consists of a non-empty set

M , the domain of M, and a function I that assigns

� to each n-ary function symbol f a n-ary function f I : Mn →M .

� to each n-ary relation symbol R a n-ary relation RI ⊆Mn.

A variable assignment v is a function that assigns to each free variable an element m ∈M .

For each free variable a and m ∈M we define

v[m/a](b) =

m if b = a

v(b) otherwise

Then terms are interpreted as follows:

� aI,v = v(a) for each free variable a.

� f(t1, . . . , tn)I,v = f I(tI,v1 , . . . , tI,vn).

We define a model relation between pairs M, v and formulas ϕ as follows

� M, v 6|= ⊥.

� M, v |= R(t1, . . . , tn) iff (tI,v1 , . . . , tI,vn) ∈ RI .

11

� M, v |= s = t iff sI,v = tI,v.

� M, v |= ϕ ∧ ψ iff M, v |= ϕ and M, v |= ψ.

� M, v |= ϕ ∨ ψ iff M, v |= ϕ or M, v |= ψ.

� M, v |= ϕ→ ψ iff M, v 6|= ϕ or M, v |= ψ.

� M, v |= ∃xϕ iff there exists m ∈M such that M, v[m/a] |= ϕ[a/x] where a is a free

variable that does not occur in ϕ.

� M, v |= ∀xϕ iff for all m ∈M we haveM, v[m/a] |= ϕ[a/x] where a is a free variable

that does not occur in ϕ.

ϕ is satisfiable if for some M, v we have M, v |= ϕ. It is valid if for all M, v we have

M, v |= ϕ. We write M |= ϕ if for every v we have M, v |= ϕ. We denote the set of valid

formulas with CQC. As before define an entailment relation |=C between sets of formulas.

Intuitionistic Semantics

Definition 3.2.10. A Σ-Kripke structure K is a partially ordered set W and a family of

Σ-structures (Mw)w∈W such that for u ≤ w

� Mu ⊆Mw.

� f Iw |Mu = f Iu .1

� RIw |Mu = RIu .

Then we define a model relation between worlds u ∈ W and variable assignments v

(targeting Mu) and formulas ϕ as follows:

� u, v 6|= ⊥

� u, v |= R(t1, . . . , tn) iff (tIu,v1 , . . . , tIu,vn) ∈ RIu .

� u, v |= s = t iff sIu,v = tIu,v.

� u, v |= ϕ ∧ ψ iff u, v |= ϕ and u, v |= ψ.

� u, v |= ϕ ∨ ψ iff u, v |= ϕ or u, v |= ψ.

� u, v |= ϕ→ ψ iff for every w ≥ u we have w, v 6|= ϕ or w, v |= ψ.

� u, v |= ∃xϕ iff there exists m ∈ Mu such that u, v[m/a] |= ϕ[a/x] where a is a free

variable that does not occur in ϕ.

1Here f |M denotes the restriction of f to M .

12

� u, v |= ∀xϕ iff for every w ≥ u and m ∈Mw we have w, v[m/a] |= ϕ[a/x] where a is

a free variable that does not occur in ϕ.

We say that K satisfies ϕ if u, v |= ϕ holds for every world u and variable assignment

v and write K |= ϕ. As always, a formula is satisfiable if it is satisfied by some Kripke

structure, and it is valid if it is satisfied in every Kripke structure. We denote the set

of valid formulas with IQC. As before, define an entailment relation |=I between sets of

formulas.

In addition to the propositional tautologies, there are now sentences involving quan-

tifiers, which are classically valid but not intuitionistically. Consider for instance the

classical tautology ϕ

¬∀xA(x)→ ∃x¬A(x)

We exhibit an intuitionistic counter model. Consider the Kripke structure with two nodes

u ≤ w with Mu = {0},Mw = {0, 1} and AIu = AIw = {0}. Then u, v 6|= ϕ: First

note that w, v 6|= ∀xA(x) and u, v 6|= ∀xA(x) for any valuation v since w, v[1/a] 6|= A(a),

i.e. u, v |= ¬∀xA(x) and also w, v |= ¬∀xA(x). Furthermore, u, v[0/a] 6|= ¬A(a) and

w, v[0/a] 6|= ¬A(a) so u, v 6|= ∃x¬A(x) for any valuation v (note however that this is not

true at w!). Therefore, u, v 6|= ϕ.

Intuitively, the problem is that the existential quantifier at u does not “see” the ele-

ments at w, i.e. it must ”choose” between the elements at u. As in the propositional case,

there are well-known negative translations of classical logic into intuitionistic logic going

back to Gödel [18] and Gentzen [15].

Definition 3.2.11. For a predicate formula ϕ define inductively ϕN as follows:

� ϕN = ϕ if ϕ is atomic

� (ϕ ∧ ψ)N = ϕN ∧ ψN

� (ϕ ∨ ψ)N = ¬(¬ϕN ∧ ¬ϕN)

� (ϕ→ ψ)N = ϕN → ψN

� (∀xϕ)N = ∀xϕN

� (∃xϕ)N = ¬∀x¬ϕN

Theorem 3.2.12. A Σ-formula ϕ is classically valid if and only if ϕN is intuitionistically

valid.

But again this is not reflected in satisfiability, i.e. with a completely analogous argu-

ment to 3.2.5 we obtain

Lemma 3.2.13. Any Σ-formula ϕ is classically satisfiable if and only if it is intuitionis-

tically satisfiable.

13

3.3 Skolemization and Herbrandization

An important step in the embedding will be the elimination of quantifiers via Herbrandiza-

tion. In this process, we introduce fresh variables and add additional function symbols to

the signature. A fresh variable is any variable that does not occur in any of the considered

formulas. Whenever we add a function symbol, we implicitly extend the signature by some

not previously contained symbol.

Definition 3.3.1. For formulas ϕ we define the Skolemization ϕSZ and Herbrandization

ϕHZ with respect to Z by simultaneous induction as follows:

� ASZ = AHZ = A for each atomic A.

� (ϕ ◦ ψ)XZ = ϕXZ ◦ ψXZ for ◦ ∈ {∧,∨}, X ∈ {S,H}.

� (ϕ→ ψ)SZ = ϕHZ → ψSZ
(ϕ→ ψ)HZ = ϕSZ → ψHZ .

� (∀xϕ)SZ = ∀x(ϕ[a/x]SZ∪{a}[x/a]) where a is a new free variable

(∀xϕ)HZ = ϕ[s(z1, . . . , zn)/x]HZ where s is a new function, {z1 . . . zn} = Z.

� (∃xϕ)SZ = ϕ[s(z1, . . . , zn)/x]SZ where s is a new function, {z1 . . . zn} = Z

(∃xϕ)HZ = ∃x(ϕ[a/x]HZ∪{a}[x/a]) where a is a new free variable.

Let ϕS = (∃x1 . . . ∃xnϕ[x1/a1 . . . xn/an])S∅ and ϕH = (∀x1 . . . ∀xnϕ[x1/a1 . . . xn/an])H∅
where a1, . . . , an are the free variables occurring in ϕ.

Theorem 3.3.2. For every formula ϕ

� ϕ and ϕS are classically equisatisfiable.

� ϕ and ϕH are classically equivalid.

which follows from the following two Lemmata:

Lemma 3.3.3. Let χ be a formula and let {z1 . . . zn} = Z contain all free variables in χ,

then for every structureM = (M, I) there existsMχ = (M, Iχ) such that pIχ = pI for all

function and relation symbols p occurring in χ and for all variable assignments v we have

� if M,v |= χ then Mχ, v |= χST .

� if M, v 6|= χ then Mχ, v 6|= χHT .

Proof. We proceed by simultaneous induction on the formula height.

For atomic χ the claims are clear.

Otherwise, there are 3 cases:

1. χ = ϕ ◦ ψ for ◦ ∈ {∧,∨,→}. By induction hypothesis there exist Mϕ,v = (M, Iϕ,v)

andMψ,v = (M, Iψ,v) for ϕ,ψ as stated in the lemma. Then we can define Iχ,v as follows:

14

For every symbol p that occurs in ϕSZ or ϕHZ but not ψSZ , ψ
H
Z , we set pIχ,v = pIϕ,v . For

every symbol p that occurs in ψSZ or ψHZ but not ϕSZ , ϕ
H
Z , we set pIχ,v = pIψ,v . Otherwise,

p already occurs in ϕ so have pIχ,v = pI .

Let ◦ = →. Suppose M, v |= χ. Then M, v 6|= ϕ or M |= ψ and therefore Mχ 6|= ϕSZ
or Mχ |= ψHZ , i.e. Mχ |= χSZ . On the other hand, suppose M, v 6|= χ. Then M, v |= ϕ

and M, v 6|= ψ and therefore Mχ, v |= ϕSZ and Mχ, v 6|= ψSZ , i.e. Mχ 6|= χHZ . Analogous

arguments work for ◦ ∈ {∧,∨}.
2. χ = ∀xϕ. Choose sIχ : Mn → M such that sIχ(x1, . . . , xn) = m if there exists

m ∈ M such that M, v[x1/z1 . . . xn/zn,m/a] 6|= ϕ[a/x] for all v and arbitrary otherwise.

Since Z contains all free variables occurring in χ this is a well-defined function.

By induction hypothesis there exists a structure Mϕ[a/x] as is the Lemma. Let pIχ =

pIϕ[a/x] for all symbols occurring in χ and

pIχ(x1 . . . xi−1, xi+1 . . . xm) = pIϕ[a/x](x1 . . . xi−1, s
Iχ(x1 . . . xn), xi+1 . . . xm)

for all symbols p occurring in ϕ[a/x]SZ∪a or ϕ[a/x]HZ∪a but not in χ where xi is the argument

corresponding to the free variable a.

Suppose M, v |= χ. Then, for all m ∈ M we have that M, v[m/a] |= ϕ[a/x]

and therefore Mχ, v[m/a] |= ϕ[a/x]SZ∪{a} and thus Mχ, v |= ∀xϕ([a/x]SZ∪{a}[x/a]), i.e.

Mχ, v |= χSZ . On the other hand, suppose M, v 6|= χ. Then there exists m ∈ M such

that M, v[m/a] 6|= ϕ[a/x] and therefore Mχ, v[m/a] 6|= ϕ[a/x]HZ∪{a} and so by definition

Mχ, v 6|= ϕ[s(z1, . . . zn)/x]HZ , i.e. Mχ, v 6|= (∀xϕ)HZ .

3. χ = ∃xϕ. The argument runs dually to 2. Choose sIχ : Mn → M such that

sIχ(x1, . . . , xn) = m if there existsm ∈M such that for all v we haveM, v[x1/z1 . . . xn/zn,m/a] |=
ϕ[a/x] and arbitrary otherwise. Since Z contains all free variables occurring in χ this is a

well-defined function.

By induction hypothesis there exists a structure Mϕ[a/x] as is the Lemma. Let pIχ =

pIϕ[a/x] for all symbols occurring in χ and

pIχ(x1 . . . xi−1, xi+1 . . . xm) = pIϕ[a/x](x1 . . . xi−1, s
Iχ(x1 . . . xn), xi+1 . . . xm)

for all symbols p occurring in ϕ[a/x]SZ∪a or ϕ[a/x]HZ∪a but not in χ where xi is the argument

corresponding to the free variable a.

Then as in 2 fromM, v |= χ followsMχ, v |= χSZ and fromM, v 6|= χ followsMχ, v 6|=
χHZ .

Lemma 3.3.4. For every structureM and {z1 . . . zn} = Z that contains all free variables

in χ and variable assignment v

� if M, v |= ϕSZ then M, v |= ϕ

� if M, v 6|= ϕHZ then M, v 6|= ϕ.

15

Proof. Again, we proceed by simultaneous induction on the formula height.

For atoms the claims are clear. We distinguish 5 cases.

1. χ = ϕ → ψ. Suppose M, v |= χSZ , i.e. M, v 6|= ϕHZ or M, v |= ψSZ . By induction

hypothesis, M, v 6|= ϕ or M, v |= ψ, i.e. M, v |= χ. On the other hand, suppose M, v 6|=
χHZ , i.e. M, v |= ϕST and M, v 6|= ϕHZ . Again, by induction hypothesis M, v |= ϕ and

M, v 6|= ϕ, so M, v 6|= χ.

2. + 3. Conjunctions and Disjunctions are dealt with analogously.

4. χ = ∀xϕ. SupposeM, v |= χSZ , i.e. for all m ∈M we haveM, v[m/a] |= χ[a/x]SZ∪{a}
and, by induction hypothesis, M, v[m/a] |= χ[a/x]. Then it follows, that M, v |= ϕ. On

the other hand, suppose M, v 6|= χHZ , i.e. there exists m ∈ M such that M, v[m/a] 6|=
χ[a/x]HZ∪{a}, then by induction hypothesis M, v[m/a] 6|= χ[a/x], i.e. M, v 6|= ∀xχ.

5. χ = ∃xϕ. The argument runs dually to 4.

3.4 Proof theory

Logical truth can also be approached via syntax rather than semantics. This gives rise

to proof theory, which will be especially important in the final chapter when we establish

proof translations.

Definition 3.4.1. Pairs of multisets of formulas A = {A1, . . . , An}, B = {B1, . . . , Bm}
form a Sequent A ⇒ B. Usually, we will write A1, . . . , An ⇒ B1, . . . , Bm, note however

that A and B are not to be interpreted as sequences but as multisets.

We define sequent calculi as in [27, p.77]. Have following inferences

Ax (P atomic)
P,Γ⇒ ∆, P

L⊥⊥,Γ⇒ ∆

A,B,Γ⇒ ∆
L∧

A ∧B,Γ⇒ ∆

Γ⇒ ∆, A Γ⇒ ∆, B
R∧

Γ⇒ ∆, A ∧B

A,Γ⇒ ∆ B,Γ⇒ ∆
L∨

A ∨B,Γ⇒ ∆

Γ⇒ ∆, A,B
R∨

Γ⇒ ∆, A ∨B

Γ⇒ ∆, A B,Γ⇒ ∆
L→

A→ B,Γ⇒ ∆

A,Γ⇒ ∆, B
R→

Γ⇒ ∆, A→ B

A[t/x],Γ⇒ ∆
L∀∀xA,Γ⇒ ∆

Γ⇒ ∆, A[a/x]
R∀

Γ⇒ ∆, ∀xA

A[a/x],Γ⇒ ∆
L∃∃xA,Γ⇒ ∆

Γ⇒ ∆, A[t/x]
R∃

Γ⇒ ∆,∃xA

16

where in R∀ and L∃ a is a free variable not occurring in the sequent otherwise.

The above inferences make up the calculus for classical logic called Gc. It corresponds

to G3c= from [27]. Similarly, we can define a calculus Gi for intuitionistic logic corre-

sponding to m-G3i=:

Ax (P atomic)
P,Γ⇒ ∆, P

L⊥⊥,Γ⇒ ∆

A,B,Γ⇒ ∆
L∧

A ∧B,Γ⇒ ∆

Γ⇒ ∆, A Γ⇒ ∆, B
R∧

Γ⇒ ∆, A ∧B

A,Γ⇒ ∆ B,Γ⇒ ∆
L∨

A ∨B,Γ⇒ ∆

Γ⇒ ∆, A,B
R∨

Γ⇒ ∆, A ∨B

A→ B,Γ⇒ ∆, A B,Γ⇒ ∆
L→

A→ B,Γ⇒ ∆

A,Γ⇒ B
R→

Γ⇒ ∆, A→ B

A[t/x],Γ⇒ ∆
L∀∀xA,Γ⇒ ∆

Γ⇒ A[a/x]
R∀

Γ⇒ ∀xA

A[a/x],Γ⇒ ∆
L∃∃xA,Γ⇒ ∆

Γ⇒ ∆, A[t/x]
R∃

Γ⇒ ∆,∃xA

The differences are found in L→, R→ and R∀. Note how in particular the rules for

R→ and R∀ allow only a single formula in the succedent.

Definition 3.4.2. A Derivation is a rooted finite labelled tree, in which each leaf is

labelled with one of the two axiom rules and each other label is derived from the labels

of the successor nodes in accordance to the rules above. All formulas not in Γ or ∆ are

the active formulas of the rule. The label of the root is called head. A formula that is the

head of a derivation is said to be derivable.

The following is one of the fundamental results of first-order Logic:

Theorem 3.4.3 (Completeness theorem). A sequent Φ ⇒ ϕ is derivable if and only if

Φ |= ϕ.

A further important property of the above calculi is the subformula property. While

it is typically used to prove soundness of propositional logic, it is also a useful tool for

proving many other results.

Theorem 3.4.4 (Subformula Property). Let ϕ be a formula that occurs in a derivation

of ∆⇒ Γ. Then ϕ is a subformula of some formula in ∆ ∪ Γ.

A direct consequence of this result is the soundness of propositional logic:

17

Theorem 3.4.5 (Soundness of propositional logic).

The empty sequent is not derivable in Gc and Gi.

Example 3.4.6. The following is a Gc derivation of the law of excluded middle.

Ax
A⇒ ⊥, A

R→⇒ A,A→ ⊥
R∨⇒ A ∨ (A→ ⊥)

Note how this derivation is invalid in Gi since R→ is not applied correctly. However

it is possible to prove its double negation in Gi:

Ax
(A ∨ (A→ ⊥))→ ⊥, A⇒ A, (A→ ⊥),⊥

R∨
(A ∨ (A→ ⊥))→ ⊥, A⇒ A ∨ (A→ ⊥),⊥ L⊥⊥ ⇒

L→
(A ∨ (A→ ⊥))→ ⊥, A⇒ ⊥

R→
(A ∨ (A→ ⊥))→ ⊥⇒ A,A→ ⊥

R∨
(A ∨ (A→ ⊥))→ ⊥⇒ A ∨ (A→ ⊥)

L⊥⊥ ⇒
L→

(A ∨ (A→ ⊥))→ ⊥⇒

18

Chapter 4

Embedding intuitionistic into

classical logic

The goal of this section is to give a complete embedding of intuitionistic into classical logic.

We shall start with the simpler case of propositional formulas. The process will be divided

into three steps. The first is a first-order encoding of intuitionistic semantics, which gives

an obvious but unsatisfactory embedding of propositional intuitionistic logic into classical

logic. We then discuss how some of the quantifiers can be eliminated via Herbrandization.

As a third part, we give a certain normal form that then finally allows us to realize that

all quantifiers can be indeed eliminated from the translated formula, and we end up with

a propositional formula. As a quick aside, we also give an embedding form IPC to QBF.

For predicate formulas, the process is a bit more involved in that we also need to respect

the constructive content of quantifiers. For this, we use a special existence predicate E

inspired by the work in [20]. This allows us to utilize a quite similar process as in the first

section, even though it is a bit more involved.

4.1 Propositional logic

As mentioned before, we proceed by first giving an embedding into classical predicate

logic, transforming that embedding and finally arguing that all the quantifiers can be

eliminated, by showing that if a counter-model exists than there exists a bounded one.

4.1.1 IPC to CQC

The most obvious approach to embedding intuitionistic into classical logic is to express

intuitionistic semantics, i.e. Kripke frames, as a first-order theory. For every propositional

variable A consider a unary predicate A of the same name where A(u) expresses that A

is true at some world u. We can then naively encode formulas as follows:

Definition 4.1.1. Let ϕ be a propositional formula. Define ϕu inductively as follows:

19

� Au = A(u) for every propositional variable A.

� ⊥u = ⊥.

� (ϕ ◦ ψ)u = ϕu ◦ ψu for ◦ ∈ {∧,∨}.

� (ϕ→ ψ)u = ∀w(u � w → ϕw → ψw) where w is some new variable.

Let K(ϕ) encode the theory of Kripke structures, i.e.

K(ϕ) = PartialOrder(�) ∧ ∀u∀w(u � w → Persistent(u,w))

with e.g.

PartialOrder(�) = ∀u(u � u) ∧ ∀u∀w(u � w → w � u→ u = w)∧

∀u∀v∀w(u � v → v � w → u � w)

Persistent(u,w) =
∧
{A(u)→ A(w) | A is a propositional variable that occurs in ϕ}

Then define

ϕC = K(ϕ)→ ϕu

where u is some free variable.

As all we have done is modelling Kripke frames as a first-order theory, we directly obtain:

Lemma 4.1.2. ϕ is intuitionistically valid if and only if ϕC is classically valid.

Example 4.1.3. Consider the law of excluded middle

ϕ = (A→ ⊥) ∨A,

which is not intuitionistically valid. Then

ϕC = K(ϕ)→ ((A→ ⊥) ∨A)u

= K(ϕ)→ (A→ ⊥)u ∨Au

= K(ϕ)→ (∀u′(u � u′ → Au
′ → ⊥u′) ∨A(u))

= K(ϕ)→ (∀u′(u � u′ → A(u′)→ ⊥) ∨A(u))

and indeed ϕC admits a counter model with domain {u, u′}, where u � u′, A(u) =

0, A(u′) = 1.

Note how this counter model corresponds exactly to the intuitionistic counter model

presented in example 3.2.3. We can make this correspondence explicit.

Definition 4.1.4. Let K = (W, (vw)v∈W) be a propositional Kripke structure. Define

M(K) = (M, I) as follows:

20

� As a domain take M = W .

� Have u ∈ AI iff u, vu |= A.

� Interpret � as the partial order on W .

By definition, we then have

Lemma 4.1.5. K |= ϕ iff M(K) |= ϕC .

Similarly, for every Σ-structureM withM |= K(ϕ) we could construct a Kripke Frame

K(M) such that M |= ϕC iff K(M) |= ϕ.

4.1.2 Normal form transformation

Of course, transforming a propositional formula into a predicate formula is somewhat

unsatisfying. As a first step towards obtaining a propositional formula, we want to apply

Herbrandization. Now, trying to apply it to arbitrary formulas presents us with quite a leap

in complexity, leading to nested expressions that will make arguments more complicated.

We therefore propose a Tseytin-like transformation that produces a formula of a more

manageable syntactic form. In fact, our translation is often presented as the first step

in the Tseytin transformation, after which the individual formulas are then converted to

CNF. Hence, the propositional case of our translation is well known, but we are not aware

of any work that uses just this step as a stand-alone. A similar translation for intuitionistic

propositional logic was also proposed in [25].

Definition 4.1.6. Let ϕ be some formula. For each subformula ψ of ϕ, consider some

new n-ary relation symbol Pψ, where n is the number of variables occurring in ψ that is

not quantified within ψ. We denote those variables with ~zψ in some arbitrary but fixed

order. We inductively define clause sets S+(ϕ) and S−(ϕ) as follows:

� For every atomic formula A:

S+(A) = {PA(~zA)→ A}
S−(A) = {A→ PA(~zA)}

� For every conjunction or disjunction ϕ ◦ ψ with ◦ ∈ {∧,∨}:
S+(ϕ ◦ ψ) = {Pϕ◦ψ(~zϕ◦ψ)→ Pϕ(~zϕ) ◦ Pψ(~zψ)} ∪ S+(ϕ) ∪ S+(ψ)

S−(ϕ ◦ ψ) = {Pϕ(~zϕ) ◦ Pψ(~zψ)→ Pϕ◦ψ(~zϕ◦ψ)} ∪ S−(ϕ) ∪ S−(ψ)

� For every implication ϕ→ ψ:

S+(ϕ→ ψ) = {(Pϕ→ψ(~zϕ→ψ) ∧ Pϕ(~zϕ))→ Pψ(~zψ)} ∪ S−(ϕ) ∪ S+(ψ)

S−(ϕ→ ψ) = {(Pϕ(~zϕ)→ Pψ(~zψ))→ Pϕ→ψ(~zϕ→ψ)} ∪ S+(ϕ) ∪ S−(ψ)

� For quantified formulas Qxϕ(x) with Q ∈ {∀, ∃}:
S+(Qxϕ(x)) = {PQxϕ(~zQxϕ)→ QxPϕ(~zϕ)} ∪ {∀xψ | ψ ∈ S+(ϕ)}
S−(Qxϕ(x)) = {QxPϕ(~zϕ)→ PQxϕ(~zQxϕ)} ∪ {∀xψ | ψ ∈ S−(ϕ)}

21

The following lemma can be directly obtained by induction on the formula height:

Lemma 4.1.7.
∧
S+(ϕ)∧Pϕ(~zϕ)→ ϕ and

∧
S−(ϕ)∧ϕ→ Pϕ(~zϕ) are valid both classically

and intuitionistically.

It is straight-forward to extend structures to the additional symbols such that the

formulas S+(ϕ) ∪ S−(ϕ) are satisfied.

Definition 4.1.8. For every classical and intuitionistic structure M define a structure

S(M, ϕ) that agrees with M on everything except the interpretation(s) of atoms of the

form Pψ. By slight abuse of notation, we denote with ~zψ elements of the domain instead

of variables. In the classical case, we set

P IA(~zA) :⇔ AI(~zA)

P Iϕ∧ψ(~zϕ∧ψ) :⇔ P Iϕ(~zϕ) ∧ P Iψ(~zψ)

P Iϕ∨ψ(~zϕ∨ψ) :⇔ P Iϕ(~zϕ) ∨ P Iψ((~zψ))

P Iϕ→ψ(~zϕ→ψ) :⇔ (¬P Iϕ(~zϕ)) ∨ P Iψ(~zψ)

P I∀xϕ(~z∀xϕ) :⇔ {~z | P Iϕ(~zϕ) for all x ∈M}

P I∃xϕ(~z∃xϕ) :⇔ {~z | P Iϕ(~zϕ) for some x ∈M},

and for intuitionistic logic and each world u, we set

P IuA (~zA) :⇔ AIu(~zA)

P Iuϕ∧ψ(~zϕ∧ψ) :⇔ P Iuϕ (~zϕ) ∧ P Iuψ (~zψ)

P Iuϕ∨ψ(~zϕ∨ψ) :⇔ P Iuϕ (~zϕ) ∨ P Iuψ ((~zψ))

P Iuϕ→ψ(~zϕ→ψ) :⇔ (¬P Iwϕ (~zϕ)) ∨ P Iwψ (~zψ) for all w ≥ u

P Iu∀xϕ(~z∀xϕ) :⇔ P Iwϕ (~zϕ) for all w ≥ u, x ∈Mw

P Iu∃xϕ(~z∃xϕ) :⇔ P Iuϕ (~zϕ) for some x ∈Mu.

From this definition, we directly obtain the following Lemmata by induction on the

formula height.

Lemma 4.1.9. For every formula ϕ, structure M, we have S(M, ϕ) |= S+(ϕ) ∪ S−(ϕ).

Lemma 4.1.10. M |= ϕ if and only if S(M, ϕ) |= Pϕ(~zϕ).

Then from the previous three Lemmata we get:

Corollary 4.1.11. In both intuitionistic and classical logic,

� ϕ is satisfiable iff
∧
S+(ϕ) ∧ Pϕ(~zϕ) is, and

� ϕ is valid iff
∧
S−(ϕ)→ Pϕ(~zϕ) is.

22

Example 4.1.12. Consider ϕ = ¬∀xA(x)→ ∃x¬A(x). Then

S+(ϕ) ={(Pϕ ∧ P¬∀xA(x))→ P∃x¬A(x), (P∀xA(x) → ⊥)→ P¬∀xA(x)}

∪ {∀xPA(x)(x)→ P∀xA(x), ∀x(PA(x)(x)→ A(x))}

∪ {P∃x¬A(x) → ∃xP¬A(x)(x), ∀x(P¬A(x)(x)→ PA(x)(x)→ ⊥)}

∪ {∀x(A(x)→ PA(a)(x))}

S−(ϕ) ={(P¬∀xA(x) → P∃x¬A(x))→ Pϕ, (P¬∀xA(x) ∧ P∀xA(x))→ ⊥}

∪ {P∀xA(x) → ∀xPA(x)(x),∀x(A(x)→ PA(x)(x))}

∪ {∃xP¬A(x)(x)→ P∃x¬A(x), ∀x((PA(x)(x)→ ⊥)→ P¬A(x)(x))}

∪ {∀x(PA(a)(x)→ A(x))}

4.1.3 IPC to simplified CQC

We are now ready to combine the previously presented reductions. Let ϕ be some propo-

sitional formula. As a first step we perform the normalization from the last section, i.e.

instead of ϕ we consider

ϕ′ =
∧
S−(ϕ)→ Pϕ.

Recall that since ϕ is quantifier-free, each formula ψ ∈ S−(ϕ) is of one of the forms

A→ (B ∧ C), (A ∧B)→ C,A→ (B ∨ C), (A ∨B)→ C, (A→ B)→ C,

where we can treat A → B as a special case A → (B ∧ B). We then apply the transfor-

mation to CQC, leading to a formula

ϕ′′ = K(ϕ′)→
∧
S → Pϕ(u),

where u is some new free variable and each ψ ∈ S is of one of the forms

∀k(u � k → A(k)→ (B(k) ∧ C(k))) ∀k(u � k → (A(k) ∧ (B(k))→ C(k)))

∀k(u � k → A(k)→ (B(k) ∨ C(k))) ∀k(u � k → (A(k) ∨B(k))→ C(k))

∀k(u � k → (∀l(k � l→ A(l)→ B(l)))→ C(k)),

with each P (x) possibly being ⊥. Applying Herbrandization, we obtain a formula

ϕ′′′ = K(ϕ′)→
∧
S ′ → Pϕ(s),

where s is some new constant term and each ψ ∈ S ′ is of one of the forms

∀k(s � k → A(k)→ (B(k) ∧ C(k))) ∀k(s � k → (A(k) ∧ (B(k))→ C(k)))

∀k(s � k → A(k)→ (B(k) ∨ C(k))) ∀k(s � k → (A(k) ∨ (B(k))→ C(k)))

∀k(s � k → (k � fψ(k)→ A(fψ(k))→ B(fψ(k)))→ C(k)),

23

and fψ is a new function symbol for each introduced formula of that form. Now if (M, I) is

a counter-model, then we have a counter-model (M ′, I ′) where M ′ = {m ∈M |s � m} and

f I
′
ψ (u) = f Iψ(u) iff u � f Iψ(u), and f I

′
ψ (u) = u, else. That is, where s is the least element

and the fψ increase their argument. Therefore, instead of ϕ′′′ we may consider a formula

ϕ◦ = ∀k(s � k)→
∧
{∀k(k � fψ(k)) | ψ ∈ F→} → K(ϕ′)→

∧
S◦ → Pϕ(s)

where each formula ψ ∈ S◦ is of one of the forms

∀k(A(k)→ (B(k) ∧ C(k))) ∀k((A(k) ∧B(k))→ C(k))

∀k(A(k)→ (B(k) ∨ C(k))) ∀k((A(k) ∨Bψ(k))→ C(k))

∀k((A(fψ(k))→ B(fψ(k)))→ C(k)),

and F→ denotes the set of formulas of the last kind.

4.1.4 IPC to CPC

We now argue that if a counter-model exists for ϕ◦, then a bounded counter-model exists,

allowing us to return to the propositional case.

Definition 4.1.13. Suppose we are given a counter-model M = (M, I) for ϕ◦. We say

ψ ∈ F→ is fulfilled at u ∈ M iff AIψ(u) → BI
ψ(u) is false or CIψ(u) is true. For ψ ∈ F→

define

gψ : M →M,u 7→

u, if ψ is fulfilled in u,

f Iψ(u), else.

Define a model MT = (MT , IT) as follows:

� MT is the set of sequences without repetition on F→.

� Interpret � as the prefix-order.

� We set

f ITψ (ψ1 . . . ψn) =

ψ1 . . . ψn, if ψ occurs in ψ1 . . . ψn,

ψ1 . . . ψnψ, else.

� For propositional variables P , we set

P IT (ψ1 . . . ψn) = P I(gψn(. . . (gψ1(sI)) . . .)).

Lemma 4.1.14. Let M = (M, I) be a counter-model to ϕ◦.

1. ψ is fulfilled at f Iψ(u) for all u ∈M,ψ ∈ F→.

2. If ψ is fulfilled at some u ∈M then ψ is fulfilled at all w � u.

24

Proof. 1. If CI(u) is true then we are done due to persistency. Otherwise CI(u) is false.

Because (AI(f Iψ(u))→ BI(f Iψ(u)))→ CI(u) holds, then AI(f Iψ(u))→ BI(f Iψ(u)) must be

false.

2. Let w be some element with w ≥ u. If CI(w) is true, we are done. Otherwise CI(w)

is false. Due to persistency CI(u) is also false. Because ψ is fulfilled at u, AI(u)→ BI(u)

must be false, i.e. AI(u) is true and BI(u) is false. Then AI(w) and AI(f Iψ(w)) are also

true due to persistency. Because (AI(f Iψ(w)) → BI(f Iψ(w))) → CI(w) holds, we now get

that BI(f I(w)) must be false. But then due to persistency so is BI(w) and we have that

ψ is fulfilled at w.

B,CA,D

Figure 4.1: Counter-model
∧
S → E.

(Example 4.1.16.)

Essentially, what this tells us is that for

every u at which ψ is fulfilled, in particu-

lar for each u in the image of fψ, we may

add the assumption that fψ(w) = w for

all w ≥ u without changing the validity

of ψ. With this lemma in hand, showing

that (MT , IT) is a counter-model to ϕ◦ is a

straightforward check of definitions.

Corollary 4.1.15. If M is a counter-model to ϕ◦ then so is MT .

Example 4.1.16. Consider

S = {(A→ B)→ C, (B → A)→ D, (A ∧B)→ ⊥, (C ∨D)→ E}

B,C

B,C

A,D

A,D

fψ1 fψ2

fψ2 fψ1

fψ1 fψ2

fψ1 , fψ2 fψ1 , fψ2

Figure 4.2: MT

and ϕ =
∧
S → E which has

the Kripke counter-model depicted in 4.1

where at each node the true propositions

are indicated.

There is a corresponding classical

counter-model M = (M, I) to ϕ◦ with

M = {u, ul, ur}, AI(l) = DI(l) = BI(r) =

CI(r) = 1 and 0 else. Denoting ψ1 :=

(A → B) → C and ψ2 := (B → A) → D,

this corresponds to a transformed counter-

model MT = (MT , IT) of ϕ◦ and interpre-

tation as presented in 4.2.

Remark 4.1.17. It is well known that Kripke frames which are trees are complete with

regard to intuitionistic logic. Our contribution is giving an explicit geometry that depends

only on the structure of the considered formula.

25

So we know that ϕ◦ is valid if and only if it is valid for structures that have as a domain

the sequences without repetition over F→, ordered by the prefix-relation and

sI = ε, f Iψ(x) =

x, if ψ occurs in x,

xψ, otherwise.

Now we can replace every ∀-quantifier by enumerating all the ground terms, and then

replace all distinct ground instances of relations by new propositional variables yielding a

propositional formula. This gives us the following theorem.

Theorem 4.1.18. Let S be a set of formulas of the form

(A ∧B)→ C, (A ∨B)→ C,A→ (B ∧ C), A→ (B ∨ C), (A→ B)→ C

and F→ ⊆ S denote the subset of formulas of the form (A → B) → C and Λ denote the

set of sequences without repetition over F→. For each atom A and k ∈ Λ consider a new

atom Ak. Obtain S# by including the following formulas:

� Ak → Akψ for each atom A occurring in S, k ∈ Λ and ψ ∈ F→ not occurring in k.

� Ak → (Bk ◦ Ck) for each ◦ ∈ {∧,∨}, A→ (B ◦ C) ∈ S, k ∈ Λ.

� (Ak ◦Bk)→ Ck for each ◦ ∈ {∧,∨}, A→ (B ◦ C) ∈ S, k ∈ Λ.

� (Akψ → Bkψ)→ Ck for ψ = (A→ B)→ C ∈ S, k ∈ Λ if ψ does not occurr in k.

Then,
∧
S → P is intuitionistically valid iff

∧
S# → P ε is classically valid, where ε denotes

the empty sequence. The size of S# is in O(|S| · 2|F→|·log(|F→|)). Furthermore, there is an

effective procedure for translating counter-models between the sentences.

Example 4.1.19. Let us consider the law of excluded middle ϕ = A ∨ ¬A. Then we get

S−(ϕ) = {(PA ∨ P¬A)→ Pϕ, A→ PA, (A→ ⊥)→ P¬A},

and we know that ϕ is valid iff
∧
S−(ϕ)→ Pϕ is valid. Applying the above it is intuition-

istically valid iff
∧
S# → P ∅ϕ is classically valid, where, setting ψ = (A→ ⊥)→ P¬A,

S# ={P εϕ → Pψϕ , P
ε
A → PψA , P

ε
¬A → Pψ¬A, A

ε → Aψ, (P εA ∨ P ε¬A)→ P εϕ, (P
ψ
A ∨ P

ψ
¬A)→ Pψϕ }∪

{Aε → P εA, P
ψ
A → PψA , (A

ψ → ⊥)→ P ε¬A, (A
ψ → ⊥)→ Pψ¬A}.

We now note that P εϕ = P εA = P ε¬A = Aε = 0, Pψϕ = PψA = Pψ¬A = Aψ = 1 defines a

counter-model.

26

4.2 IPC to QBF

It is known that a polynomial time translation between QBF and IPC must exist, since

both problems are PSPACE complete [14, 25]. However, giving an explicit translation

from IPC to QBF still promises to be useful, allowing to leverage the progress in QBF

solving. The translation from the last section will serve as starting point for developing

the translation in this section. We do not define the semantics of QBF and refer the reader

to standard sources e.g. [9].

Fix some set S of formulas of the form

A→ (B ∧ C), (A ∧B)→ C,A→ (B ∨ C), (A ∨B)→ C, (A→ B)→ C

and

ϕ =
∧
S → P,

and denote with F→ the set of formulas of the form (A→ B)→ C. We will now formulate

a QBF that expresses that ϕ has an intuitionistic counter-model. The idea how to get

a polynomially-sized formula is: Instead of expressing validity at every node of MT —

which was done in the CPC translation — we express that on each path inMT the nodes

satisfy all conditions for MT being a counter-model. The universally quantified variables

Fψ in the next definition handle the branching, i.e. express which path is considered.

Definition 4.2.1. For every propositional variable X occurring in S and non-negative

integer n consider a new atom Xn and for every formula ψ ∈ F→ consider a new atom

Fnψ . Let ~Xn range over all propositional variables Xn and ~Fn range over all Fnψ . Define

� Valid(n), which encodes that ~Fnψ represents a valid next element of a sequence with-

out repetition, i.e. if we interpret the ~F i as bit-vectors, then ~Fn has exactly one bit

set to 1, indicating the formula at the n-th position of the sequence, and it is at a

position that is 0 in
∑
{~F i | i < n}.

� Persistent(n), which encodes that the persistency condition holds.

� SatS(n), encoding that the formulas in S \ F→ hold at the n-th world of the path.

� SatF→(n), encoding that the formula in F→ that is represented by ~Fn−1 holds.

Have k = |F→| and define

ϕQi = ∃ ~Xi∀~F i
(

Persistent(i) ∧ SatS(i) ∧ SatF→(i) ∧
(

Valid(i)→ ϕQi+1

))
for 0 < i < k, as well as the special cases

ϕQk = ∃ ~Xk (Persistent(k) ∧ SatS(k) ∧ SatF→(k))

27

for leafs, and

ϕQ = ϕQ0 = ∃ ~X0∀~F 0
(
¬P 0 ∧ SatS(0) ∧ (Valid(0)→ ϕQ1)

)
for the root. Example encodings of the above formulas are:

Valid(n) =
(∨
{Fnψ | ψ ∈ F→}

)
∧
(∧
{¬(Fnψ1

∧ Fnψ1
) | ψ1 6= ψ2 ∈ F→}

)
∧(∧{∧

{F iψ → ¬Fnψ | i < n} | ψ ∈ F→
})

Persistent(n) =
∧
{Xn−1 → Xn |X prop. variable with Xn−1 ∈ ~Xn−1, Xn ∈ ~Xn}

SatS(n) =
∧
{(An ◦Bn)→ Cn | (A ◦B)→ C ∈ S \ F→}∧∧
{An → (Bn ◦ Cn) |A→ (B ◦ C) ∈ S \ F→}

SatF→(n) =
∧
{Fn−1ψ → (An → Bn)→ Cn−1 | ψ = (A→ B)→ C ∈ F→}

Example 4.2.2. With the previous encoding for the double negation elimination

ϕ = ((A→ ⊥)→ ⊥)→ A

we have

ϕQ = ∃A0∀F 0
(
¬A0 ∧

(
F 0 → ∃A1

(
(A0 → A1) ∧ (F0 → (A1 → ⊥)→ ⊥)

)))
,

which is a satisfiable QBF since A0 = 0, A1 = 1 satisfies it for any F 0.

Lemma 4.2.3. ϕ is not intuitionistically valid iff ϕQ is a satisfiable QBF.

Proof. Suppose ϕ is not intuitionistically valid. Then,
∧
S → P has an intuitionistic

counter-model. Then, by the previous section there exists a classical counter-modelM for∧
S# → P ε. We now define a QBF model iteratively. For each atom A interpret A0 such

as M interprets Aε. Suppose we are given interpretations of all atoms Ai for i < n and

a sequence with no repetitions ψ1 . . . ψn−1 over F→ such that ψi is exactly the ψ ∈ F→
for which F iψ is true and Ai is interpreted as Aψ1...ψi in M. Let the Fnψ be arbitrarily

interpreted (since they are ∀-quantified). If not exactly one of the Fnψ is interpreted as true,

then valid(n) fails and the remaining propositions can be chosen arbitrarily. If F iψn = 1

for some i < n, then valid(n) also fails and the remaining propositions can be chosen

arbitrarily. So we may assume that ψ1 . . . ψn is a sequence with no repetitions. Interpret

the atoms An as M interprets Aψ1...ψn . Continue this construction until n = |F→|. Then

from M being a counter-example to S# → P it directly follows that this interpretation

satisfies ϕQ.

On the other hand, suppose ϕQ is satisfiable. We construct a counter-example to ϕ#.

Again, we proceed iteratively. Interpret Aε such as A0 is interpreted in some satisfying

interpretation of ϕQ. Suppose we are given a sequence ψ1 . . . ψn−1 such that for i < n

28

having Ai = Aψ0...ψn−1 is part of a satisfying interpretation of ϕQ, in which F iψ is chosen

true iff ψ = ψi. Let ψn ∈ F→. Consider some interpretation of the An that are part of

a satisfying assignment where Fnψ is true iff ψ = ψn and all variables quantified above

are chosen as before. Have Aψ0...ψn = An for each propositional variable A. From the

definitions it directly follows that construction yields a counter-model for ϕ#.

A simple counting argument shows that for each n < |F→| we have |Valid(n)| ∈
O(|F→|2), |Persistent(n)|, |SatS(n)| ∈ O(|ϕ|) and |SatF→(n)| ∈ O(|F→|) so overall we get:

Lemma 4.2.4. The size of ϕQ is in O(|ϕ| · |F→|+ |F→|3).

Note that the last set of universally quantified variables can be avoided because there

is only one assignment that has the chance to falsify ϕQ, namely the assignment that

assigns 1 to the single Fnψ such that F iψ = 0 for all i < n. Hence, in our final formula we

can replace every Fnψ with
∧
{¬F iψ | i < n} and remove that quantification over Fnψ . With

that we get the following:

Corollary 4.2.5. Let N -IntInvalid be the problem of deciding if a formula
∧
S → P

as above with |F→| ≤ N is not intuitionistically valid. Then N -IntInvalid is in ΣP
2N−1.

The dual problem N -IntValid is in ΠP
2N−1.

4.3 CQC to IQC

We now give an analogous transformation for first order logic. Our trick of lifting the

sentence to first-order logic to encode the Kripke semantics no longer works in such a

straightforward manner, since we already are in first-order logic. However, we do it

nonetheless! The domain of our classical model will feature on the one hand elements

representing worlds in a Kripke frame and on the other hand the domain-elements from

the Kripke model. We reconcile these notions by introducing a special binary predicate

E, first considered in [7] and expanded onto in [20], where E(x, u) encodes that x is an

element of the domain of the world u. We fix some signature Σ for this section. To encode

that some n-ary relation A holds at a world u we replace each n-ary relation symbol A with

a n+ 1-ary relation symbol A#, interpreting A#(~x, u) as “A(~x) holds at u”. Furthermore

we write ~E(~x, u) for
∧
{E(xi, u) | xi ∈ ~x}.

First of all recall, that due to Lemma 4.1.11 it is sufficient to consider sentences of the

form
∧
S → P where all formulas in S are of one of the forms

∀~z(A(~a)→ (B(~b) ∧ C(~c))) ∀~z((A(~a) ∧B(~b))→ C(~c)) ∀~z(A(~a)→ (B(~b) ∨ C(~c)))

∀~z((A(~a) ∨B(~b))→ C(~c)) ∀~z((A(~a)→ B(~b))→ C(~c)) ∀~z(∀xA(~a)→ B(~b))

∀~z(A(~a)→ ∀xB(~b)) ∀~z(∃xA(~a)→ B(~b)) ∀~z(A(~a)→ ∃xB(b)).

The complete result that we will show is as follows:

29

Theorem 4.3.1. Let S be as above and F→ ⊆ S contain the formulas of the form

∀~t((A(~zA) → B(~zB)) → C(~zC)) and F∀ ⊆ S the formulas of the form ∀~z(∀xA(~zA) →
B(~zB)). Let F = F→ ∪ F∀. For every n-ary atomic relation R define a new n + 1-ary

relation R#. For every ψ ∈ F define a new function symbol fψ. Consider a new binary

relation symbol E and define ~E(~x, u) :=
∧
{E(x, u) | x ∈ ~x}. Obtain S# by including

formulas as follows:

� ∀~z∀u(~E(~z, u)→ (A#(~a, u)→ (B#(~b, u) ◦ C#(~c, u))))

for each ◦ ∈ {∧,∨}, ψ = ∀~z(A(~a)→ (B(~b) ◦ C(~c))) ∈ S

� ∀~z∀u(~E(~z, u)→ (A#(~a, u) ◦B#(~b, u))→ C#(~c, u))

for each ◦ ∈ {∧,∨}, ψ = ∀~z((A(~a) ◦B(~b))→ C(~c)) ∈ S

� ∀~z∀u(~E(~z, u)→ (A#(~a, fψ(~z, u))→ B#(~b, fψ(~z, u)))→ C#(~c, u))

for each ψ = ∀~z((A(~a)→ B(~b))→ C(~c)) ∈ S

� ∀~z∀u(~E(~z, u)→ ∀x(E(x, fψ(~z, u))→ A#(~a, fψ(~z, u)))→ B#(~b, u))

for each ψ = ∀~z(∀xA(~a)→ B(~tB)) ∈ S.

� ∀~z∀u(~E(~z, u)→ A#(~a, u)→ ∀x(E(x, u)→ B#(~b, u)))

for each ∀~t(A(~a)→ ∀xB(~b)) ∈ S.

� ∀~z∀u(~E(~z, u)→ ∃x(E(x, u) ∧A#(~z, u))→ B#(~b))

for each ∀~z(∃xA(~a)→ B(~b)) ∈ S

� ∀~z∀u(~E(~z, u)→ A#(~b)→ ∃x(E(x, u) ∧B#(~b, u)))

for each ∀~z(A(~a)→ ∃xB(~b)) ∈ S

Then
∧
S → P is intuitionistically iff ∃xE(x, s) → K →

∧
S# → P#(s) is classically

valid, where s is a new constant symbol, Σ is the original signature and

K :=
∧
{∀~z∀x∀u((E(x, u)→ E(x, fψ(~z, u))) | ψ ∈ F}∧

∀u
(
∃xE(x, u)→

∧
{∀~z(~E(~z, u)→ E(f(~z), u)) | f is a function symbol in Σ}

)
∧∧

{∀~z1∀~z2∀u(A#(~z1, u)→ A#(~z1, fψ(~z2, u))) | ψ ∈ F , A is a relation symbol in Σ}.

The size of the obtained formula is linear in the input. However |F| + 1 new function

symbols and the new binary predicate E were introduced and each n-ary relation symbol

has been extended to a n+ 1-ary relation symbol.

Example 4.3.2. Consider the classical tautology ϕ := ¬∀x¬A(x) → ∃xA(x). Setting

30

ψ := ∀x¬A(x) we have

S#(ϕ) ={∀u((P#
¬ψ(fϕ(u))→ P#

∃xA(x)(fϕ(u)))→ P#
ϕ (u))}∪

{∀u(∃x(E(x, u) ∧A#(x, u))→ P#
∃xA(x)(u)),∀u((P#

¬ψ(u) ∧ P#
ψ (u))→ ⊥)}∪

{∀u(∀x(E#(x, fψ(u))→ P#
¬A(x)(x, fψ(u)))→ P#

ψ (u))}∪

{∀x∀u(E(x, u)→ (A#(x, f¬A(x)(u))→ ⊥)→ P#
¬A(x)(x, u))}

And as one might expect we can indeed define a counter-model for

∃xE(x, s)→ K →
∧
S# → P#(s),

namely take as a domain M = {m, v,w} where u,w represent worlds, and m representing

a single domain element. Have f Iϕ(x) = f Iψ(x) = f I¬A(x)(x) = w for all x ∈ M , EI(x, y) if

and only if x = m and y ∈ {u, v} and finally A#(x, y) iff x = m and y = w.

It is not possible to completely eliminate worlds from the domain as in the propositional

case, since counter-models can possibly be infinite (as we will see in more detail later).

4.3.1 Encoding Kripke Semantics

As in the propositional case we must encode the Kripke Semantics, this time not only the

relation �, but also E has to be axiomatized. For that we use the following predicates:

� PartialOrder(�), encoding that � is a partial order.

� DomainSubset(u,w), encoding that the domain at u is a subset of that at w.

� World(u), encoding that u represents a world.

� DomainClosed(u), which encodes that at u the domain is closed under functions,

e.g. contains all interpretations of constants.

� Persistent(u,w), which encodes that persistency is satisfied between u and w, i.e.

for all predicates A and domain elements x with A(x), at u we have A(x) at w.

Then, analogously to the propositional case, we define:

K(ϕ) = PartialOrder(�) ∧ ∀u∀w(u � w → DomainSubset(u,w))∧

∀u(World(u)→ DomainClosed(u)) ∧ ∀u∀w(u � w → Persistent(u,w)).

31

Example encodings of these formulas are as follows:

PartialOrder(�) = ∀u(u � u) ∧ ∀u∀w(u � w → w � u→ u = w)∧

∀u∀v∀w(u � v → v � w → u � w)

DomainSubset(u,w) = ∀z(E(z, u)→ E(z, w))

World(u) = ∃xE(x, u)

DomainClosed(u) =
∧
{∀~z(~E(~z, u)→ E(f(~z), u)) | f ∈ Σ is a function symbol}

Pesistent(u,w) =
∧
{∀~z(~A#(~z, u)→ A#(~z, w)) |A ∈ Σ is a relation symbol}

Using E, we then obtain S ′ analogously to the predicate case by including formulas:

� ∀~z∀u(s � u→ ~E(~z, u)→ (A#(~a, u)→ (B#(~b, u) ◦ C#(~c, u))))

for each ◦ ∈ {∧,∨}, ψ = ∀~z(A(~a)→ (B(~b) ◦ C(~c))) ∈ S

� ∀~z∀u(s � u→ ~E(~z, u)→ (A#(~a, u) ◦B#(~b, u))→ C#(~c, u))

for each ◦ ∈ {∧,∨}, ψ = ∀~z((A(~a) ◦B(~b))→ C(~c)) ∈ S

� ∀~z∀u(s � u→ ~E(~z, u)→ ∀w(u � w → A#(~a,w)→ B#(~b, w))→ C#(~c, u))

for each ψ = ∀~z((A(~a)→ B(~b))→ C(~c)) ∈ S

� ∀~z∀u(s � u→ ~E(~z, u)→ ∀w(u � w → ∀x(E(x,w)→ A#(~a,w)))→ B#(~b, u))

for each ∀~z(∀xA(~a)→ B(~tB)) ∈ S.

� ∀~z∀u(s � u→ ~E(~z, u)→ A#(~a, u)→ ∀x(E(x, u)→ B#(~b, u)))

for each ∀~t(A(~a)→ ∀xB(~b)) ∈ S.

� ∀~z∀u(s � u→ ~E(~z, u)→ ∃x(E(x, u) ∧A#(~z, u))→ B#(~b, u))

for each ∀~z(∃xA(~a)→ B(~b)) ∈ S

� ∀~z∀u(s � u→ ~E(~z, u)→ A#(~b, u)→ ∃x(E(x, u) ∧B#(~b, u)))

for each ∀~z(A(~a)→ ∃xB(~b)) ∈ S

Then ϕ =
∧
S → P is intuitionistically valid if and only if

ϕ′ = World(s)→ K(ϕ)→
∧
S′ → P#(s)

is classically valid, where s is a new constant symbol. This was obvious in the propositional

case but here it is more nuanced.

Proof. We proceed by translation of counter-examples. Suppose first we have a counter-

exampleM = (M, I) to ϕ′. As a Kripke frame (W,≤) take all W = {m ∈M | WorldI(m)}
let ≤ be �I restricted to W . Then let Mu = {m ∈M |E(m,u)} and let f Iu be f I restricted

to Mu and AIu(~x) :⇔ A#(~x, u). It is then a straightforward check of definitions that this

defines a Kripke counter-model to ϕ.

32

The other direction is a bit more involved. Suppose we have a Kripke counter-model

to ϕ with frame (W,�) and family of Σ-structures (Mw, Iw)w∈W . In particular, since it

is a counter-model there exists w0 ∈ W with w0 6|= ϕ. Let W0 = {w ∈ W | w ≥ w0}
and define an equivalence relation ∼ on {(x, u) | u ∈ W0, x ∈ Mu} via (x, u) ∼ (y, w) iff

x = y and there exists v ∈W0 comparable with both u,w such that x ∈ v and denote the

equivalence class of (x, u) with [x, u]. Let M = W0 ∪ {[x, u] | u ∈W0, x ∈Mu}. Now have

� sI = w0.

� EI(m,w) iff w ∈W0 and m ∼ [x,w] for some x ∈Mw.

� f I(m1 . . .mn) =

f Iu(x1 . . . xn), if there are u ∈W0, xi ∈Mu with mi ∼ [xi, u] for all i,

w0, otherwise.

� A#I(m1 . . .mn, u)⇔

AIu(x1 . . . xn), if u ∈W0 and ∃xi ∈Mu w. mi ∼ [xi, u] for all i,

>, otherwise.

One easily verifies that these are well-defined. Let us now briefly check that this indeed

defines a counter-model. First of all P#I(sI) is false since P Iw0 is. Clearly World(w0)

holds and K(ϕ) is also easily verified. All that remains to show is M, I |=
∧
S ′. Consider

e.g. the case where ψ ∈ S is of the form

∀~z((A(~a)→ B(~b))→ C(~c))

We have to show that

M, I |= ∀~z∀u(~E(t, u)→ ∀w(u � w → A#(~a,w)→ B#(~b, w))→ C#(~c, u))

holds. Suppose towards contradiction that it does not, i.e. there are u, ~z ∈ M such that

for all w ∈M

~EI(~z, u)→ (u � w → A#I(~a,w)→ B#I(~b, w))→ C#I(~c, u)

is false. For that C#I(~c, u) must be false and in particular u ∈ W0. Futhermore ~EI(~z, u)

must be true and we can write ~z = [z1, u] . . . [zn, u] for some zi ∈Wu. Note that the above

is false in particular for w ∈M0 with u � w. But this would imply

((AIu(~a)→ BIu(~b))→ CIu(~c))[~z/z1 . . . zn]

in our original Kripke counter-model. The other cases are analogous.

33

4.3.2 Reducing the encoding

As in the predicate case, we now show the existence of a canonical counter-model (in case

such a counter-model exists). Denote the set of formulas ψ ∈ S of the form ∀~z((A(~a) →
B(~b))→ C(~c)) with F→ and of the form ∀~z(∀xA(~a)→ B(~b)) with F∀. Let F = F→ ∪F∀.
For each ψ ∈ F consider a new function symbol fψ. As before we may assume that s is a

least element and we can avoid the quantification over w by considering the formulas

� ∀~z∀u(~E(~z, u)→ (A#(~a, fψ(~z, u))→ B#(~b, fψ(~z, u)))→ C#(~c, u))

instead of ∀~z∀u(s � u → ~E(~z, u) → ∀w(u � w → A#(~a,w) → B#(~b, w)) →
C#(~c, u)),

� ∀~z∀u(~E(~z, u)→ (∀x(E(x, fψ(~z, u))→ A#(~a, fψ(~z, u))))→ B#(~b, u))

instead of ∀~z∀u(s � u → ~E(~z, u) → ∀w(u � w → ∀x(E(x,w) → A#(~a,w))) →
B#(~b, u)),

and by removing removing the s � u for the remaining formulas in S ′. We denote the

resulting set of formulas by S#. Then, the previous formulas are equivalid to

ϕ◦ = ∀u(s � u)→
∧
{∀~t∀u(u � f(~z, u)) | ψ ∈ F} → K(ϕ)→

∧
S# → P#(s).

As in the previous section we can define a tree counter-model for this.

Definition 4.3.3. Suppose we are given a counter-model M = (M, I) for ϕ◦. Define

MT = (MT , IT) as follows:

� MT are the sequences on {(~z, ψ) | ψ ∈ F , ~z ∈Mn}.

� We interpret � as the prefix-order.

� We set

f ITψ (~z, (~z1, ψ1) . . . (~zn, ψn)) = (~z1, ψ1) . . . (~zn, ψn)(~z, ψ).

� For relation symbols R#, we set

R#IT (~z, (~z1, ψ1) . . . (~zn, ψn)) = R#I(~z, fψn(~zn, . . . (fψ1(~z1, s
I)) . . .)).

Lemma 4.3.4. If M is a counter-model to ϕ◦ then so is MT .

Even if we don’t have the finiteness property of the propositional case, we have still

managed to reduce the complexity of possible counter-models because we know that con-

sidering worlds of the form

fψ1(~z1, fψ2(~z2, . . . fψn(~zn, s) . . .))

34

is sufficient. In particular, this allows us to completely eliminate � from the formula,

that is we remove the PartialOrder(�) from K(ϕ) and adjust DomainSubset(u,w) and

Persistent(u,w), e.g. remove quantification over w and the precondition u � w from K(ϕ)

and replace DomainSubset(u,w) with∧
{∀~z∀u∀x(E(x, u)→ E(x, fψ(~z, u))) | ψ ∈ F→}

and Persistent(u,w) with∧
{∀~z1∀~z2∀u(A(~z1, u)→ A(~z1, fψ(~z2, u))) | ψ ∈ F→, A ∈ Σ is a relation symbol}.

We set

ϕ# = K →
∧
S# → P#.

Then, we obtain the following result:

Theorem 4.3.5. ϕ is intuitionistically valid iff ϕ# is classically valid.

The complete translation is summarised in Theorem 4.3.1 (stated earlier). Let us

understand why a further reduction as in the propositional case is impossible. In this case

this is not such an issue, because as we started in predicate logic it is not so troublesome

that we introduce some additional predicates, however it is still interesting to understand

why it is required.

Definition 4.3.6. Suppose we are given a counter-model M = (M, I) for ϕ◦. For ψ =

∀~zψ′ ∈ F→ we say it is fulfilled at u ∈ M with ~m ∈ Mn iff (AIψ(~a, u) → BI
ψ(~b, u))[~m/~z]

is false or CIψ(~c, u)[~m/~z] is true. For ψ = ∀~zψ′ ∈ F∀ we say it is fulfilled at u ∈ M with

~m ∈Mn iff there is m ∈M with EI(m,u) such that A
I[m/x]
ψ (~a)[~m/~z] is false or BI

ψ(~b)[~m/~z]

is true.

We get an analogous result to Lemma 4.1.14:

Lemma 4.3.7. Let M = (M, I) be a counter-model to ϕ◦.

1. ψ is fulfilled at f Iψ(~a, u) with ~a for all u ∈M,ψ ∈ F , ~a ∈Mn.

2. If ψ ∈ F→ is fulfilled at u ∈M with ~a then ψ is fulfilled at all w ≥ u with ~a.

However part 2 of Lemma 4.3.7 fails for ψ ∈ F∀, because even if for all x with E(x, v),

we have A(x, v), there could be some term y with ¬E(y, v) and w with v � w such that

E(y, w) and ¬A(y, w). This is why we must consider sequences that have repetitions:

35

11

1, 21, 2

1, 2, 31, 2, 3

...
...

Figure 4.3: Counter-model to ϕ.

Example 4.3.8. Consider ϕ = ¬(¬∀xA(x) ∨
¬∀xB(x)). There is a counter-model as shown in

Figure 4.3, where we indicate at each world the el-

ements that exist at it. For black numbers n, both

A(n) and B(n) hold at that world, for red ones only

A(n), for blue ones only B(n). The arrows indicate

the order. ¬∀xA(x) is not fulfilled at worlds in the

left column and ¬∀xB(x) is not fulfilled at worlds

in the right column. In particular applying f¬∀xA(x)

we must always reach the right column and apply-

ing f¬∀xB(x) we must always reach the left column.

Therefore applying f¬∀xA(x) ◦f¬∀xB(x) we cannot re-

main stationary.

Let us add that Lemma 4.3.7 still equips us with

additional information that can be used to guide

proof search: We could add additional axioms that restrict the interpretation of functions.

That is, we may assume that fψ(w) = w, if ∃u(w = fψ(u)) for all ψ ∈ F∀ (i.e. that fψ is

idempotent), and fψ(w) = w, if ∃u(w ≥ fψ(u)) for all ψ ∈ F→ (which is even stronger than

idempotence). And indeed in our implementation we will add the first kind of additional

axiom, which can be stated without the reference to the already eliminated ≥.

36

Chapter 5

Implementation

In this chapter we shall give an overview over our implementation of translation defined

in the previous chapter. We have chosen to write our system in Rust. Rust was a good

fit for this endeavour because:

� There is a great package for parsing files in tptp format [24] written by Michael

Rawson that was tremendously helpful.

� Static typing reduced bugs induced by the many syntactically similar expressions

that require different translation.

� Rust is blazingly fast.

The implementation spans over 3000 lines of code across the files

normalized_formula.rs, encoding.rs, translation.rs, main.rs.

normalized_formula.rs contains internal data structures representing the atomic formu-

las as well as normalized formulas as in S in Theorem 4.3.1. encoding.rs defines a visitor

that traverses the structure of the input file and gives for each encountered subformula

the corresponding encoding as in Definition 4.1.6. translation.rs handles additional

included files. Finally main.rs puts it all together to define a complete translation.

5.1 Installation

Currently, the only available installation option is building the binary from source. The

cargo rust complier [5] is required for this purpose. The source can be downloaded from

github https://github.com/lexpk/Proofs-as-Programs-in-Classical-Logic/tree/

main/Implementation/eiicl [2]. To build the binary go to the eiicl folder and run

cargo build --bin eiicl

The binary can be then found under

eiicl/target/debug/eiicl

37

https://github.com/lexpk/Proofs-as-Programs-in-Classical-Logic/tree/main/Implementation/eiicl
https://github.com/lexpk/Proofs-as-Programs-in-Classical-Logic/tree/main/Implementation/eiicl

5.2 Usage

The binary is to be used from the command line. It takes one or two arguments:

� The location of the tptp file that is to be translated.

� (Optionally) a file directory that contains all additional files which are to be included,

per default the current directory.

Example 5.2.1. Suppose the eiicl binary is in the $PATH and the current directory

contains a file example.p containing (besides a conjecture and axioms)

include(’ax1.p’).

as well as a folder ax containing a single file ax1.p. Then running the command

eiicl example.p axioms/

will output the correct translation according to the previous chapter.

Currently the translation does not support free variables, i.e. all free variables are expected

to be explicitly quantified.

5.3 Benchmarking

AGT ALG COM CSR GEO GRA GRP HAL
Proven 5 170 0 0 58 3 4 2

Disproven 0 0 0 0 0 0 0
Timeout 47 29 3 29 107 74 1 16

KRS LCL MGT MSC NLP NUM PLA PUZ
Proven 0 0 30 1 9 1 9 2

Disproven 0 0 0 0 12 0 0 0
Timeout 5 9 128 3 69 1 237 82

SET SWC SWV SYN TOP GEJ GPJ SYJ
Proven 0 5 27 1 64 65 54 1

Disproven 6 1 297 423 154 108 298 2

Figure 5.1: Performance on problem sections of the ILTP set.

The program was benchmarked on the ILTP problem set [4], which contains 2480

problems from the TPTP problem set [6], which is commonly used to benchmark clas-

sical provers. The problem SYN007+1.014 was removed from the set as our translation

mechanism would generate > 214 formulas. For the purpose of the benchmark, we report

timeout for this problem. Since SYN007+1.014 is rather artificial, this is not a big issue

for us. For the classical proving part of our benchmark, we use the Vampire theorem

38

prover [22], which is a state-of-the-art prover as evidenced by the CASC competition [1].

Then for each problem our system transforms the described transformation and feeds the

result to Vampire with a time limit of 30 seconds which then reports validity, satisfiability

of the negation or a timeout. The benchmark was run on an Intel Core i5-8400 CPU.

Out of the 2480 problems 511 were proven, 30 were refuted and 2128 resulted in a

timeout, which corresponds to frequencies of 19.1%, 1.1% and 79.7% respectively. Out

of the provers on the ILTP website this only puts it behind ileanCoP which managed

to resolve 690 or 27.1% of the problems with a proof or refutation and ahead of five

other provers. A caveat is that the ILTP benchmarks were run on a slightly less powerful

machine but with a timelimit of 600s, which suggests that our result could be even better

when run under the same conditions.

The ILTP problem set is divided into 24 separate sections consisting of different kinds

of problems, e.g. ALG which contains problems tjat are primarily algebraic in nature.

The performance on the individual sections can be seen it table 5.1. More detailed results

for the individual problems can be found in Appendix C.

39

Chapter 6

Translation of counter-models and

proofs

Finally, we elaborate on how generated proofs and counter-models for ϕ# can explicitly

be translated in the first-order case.

6.1 Translation of counter-models

We will merely have to summarize results here.

Definition 6.1.1. Let M = (M, I) be a counter-model to ϕ#. Then define the Kripke

structure K(M) = (W, (Mw, Iw))u∈W) as follows:

� As the set of worlds W take the term algebra over s and {f~z := u 7→ f(~z, u) | f ∈
F , ~z ∈M}. Let the partial order be induced by the subterm relation.

� At each world u define the universe Mu := {m ∈ M | EI(m,uI)} where f~z(t)
I :=

f I(~z, tI).

� For each function symbol f have f Iu := f I |Mu .

� For each relation symbol R have RIu(~t) :⇔ R#I(~t, uI)

Theorem 6.1.2. If M 6|= ϕ#, then K(M) 6|= ϕ.

This follows directly from the proofs in section 4.3.

6.2 Proof translation

We want to transform Resolution proof for ϕ# as given by Vampire into a Gi proof for ϕ.

While the results of this section are also clear in principle, there is some additional work

to be done in the details. Since syntax is of crucial importance here it might be useful to

40

recall preliminary section 3.4. We will focus on how to obtain a Gi proof for ϕ from a Gc

proof of ϕ#, which is a much closer calculus. To obtain one from a resolution proof one

might first use a standard method, e.g. as given in [13], to translate the resolution proof

into a Gc proof and then obtain a Gi proof via our method.

Recall that ϕ# is of the form K →
∧
S# → P#(s), which is equivalent to K,S# ⇒

P#(s) where each ψ ∈ S# is of one of the forms

∀~z∀u(~E(~z, u)→ (A#(~a, u)→ (B#(~b, u) ∧ C#(~c, u))))

∀~z∀u(~E(~z, u)→ (A#(~a, u) ∧B#(~b, u))→ C#(~c, u))

∀~z∀u(~E(~z, u)→ (A#(~a, u)→ (B#(~b, u) ∨ C#(~c, u))))

∀~z∀u(~E(~z, u)→ (A#(~a, u) ∨B#(~b, u))→ C#(~c, u))

∀~z∀u(~E(~z, u)→ (A#(~a, fψ(~z, u))→ B#(~b, fψ(~z, u)))→ C#(~c, u))

∀~z∀u(∀x(E(x, fψ(~z, u))→ A#(~a, fψ(~z, u)))→ B#(~b, u))

∀~z∀u(~E(~z, u)→ (A#(~a, u)→ ∀x(E(x, u)→ B#(~b, u))))

∀~z∀u(~E(~z, u)→ (∃x(E(x, u) ∧A#(~a, u))→ B#(~b, u))

∀~z∀u(~E(~z, u)→ (A#(~a, u)→ ∃x(E(x, u) ∧B#(b, u))))).

Suppose now we have a Gc proof P of ϕ#. Without loss of generality, suppose that

the rules introducing the left ∀ quantifiers are at the end of the proof, i.e. each atom

occurring until then will have ground terms in place of ~z/~a/~b/~c and u. This can be

achieved by permutation of rules.

We can then split the proof into two parts A and B, where in A the left ∀ quantifiers

have not yet been introduced. We can then associate with each formula ψ occurring in A

a world u(ψ) which is the ground term that is in the end substituted for u. We say that

a rule R features a world u if u is a subformula of u(ψ) for some active formulas ψ.

Due to the subformula property, we can achieve by another permutation argument

that each rule R→ and R∀ is followed by its associated L→ rule, i.e. all rules R→ and R∀
occur as

A#(~a, fψ(~z, w)),Γ⇒ ∆, B#(~b, fψ(~z, w))
R→

Γ⇒ ∆, A#(~a, fψ(~z, w))→ B#(~b, fψ(~z, w)) C#(~c, w),Γ⇒ ∆
L→

A#(~a, fψ(~z, w))→ B#(~b, fψ(~z, w))→ C#(~c, w),Γ⇒ ∆

E(x, fψ(~z, w)),Γ⇒ ∆, A#(~b, fψ(~z, w))
R→

Γ⇒ ∆, E(x, fψ(~z, w))→ B#(~a, fψ(~z, w))
R∀

Γ⇒ ∆, ∀x(E(x, fψ(~z, w))→ A#(~a, fψ(~z, w))) B#(~b, w),Γ⇒ ∆
L→

∀x(E(x, fψ(~z, w))→ A#(~a, fψ(~z, w)))→ B#(~b, w),Γ⇒ ∆

for some ground term w. By another permutation argument we can move all these rule

sequences to the bottom of the proof.

We will now show that A can be transformed into an intuitionistically valid proof by

induction on the number of such rule sequences.

41

Consider the last rule R→. We must have ∆ = P#(s). W.l.o.g. assume we are in

the first case. Now consider the (possibly invalid) subproof above this rule R→ consisting

only of formulas that contain fψ(~z, w) and rules that feature fψ(~z, w).

� If this proof contains a valid proof of

A#(~a, fψ(~z, w)),Γ⇒ B#(~b, fψ(~z, w))

then, substituting s for fψ(~z, w), using the induction hypothesis we obtain an intu-

itionistic proof. But then applying the induction hypothesis also on the right branch

of L→ above we directly obtain an intuitionistic proof of

(A#(~a, fψ(~z, w))→ B#(~b, fψ(~z, w)))→ C#(~c, w),Γ⇒ ∆.

� On the other hand suppose the subproof does not contain a valid proof of

A#(~a, fψ(~z, w)),Γ⇒ B#(~b, fψ(~z, w)).

Then removing all formulas containing fψ(~z, w) and all rules featuring it and then

adding missing redundant formulas in the axioms yields a valid classical proof of

(A#(~a, fψ(~z, w))→ B#(~b, fψ(~z, w)))→ C#(~c, w),Γ⇒ ∆.

But then, since we removed one R→ formula, we obtain an intuitionistic proof of

the original claim via the induction hypothesis.

This gives us the following result

Theorem 6.2.1. There is an effective procedure that transforms a classical proof of ϕ#

into a intuitionistic proof of ϕ.

Example 6.2.2. Consider the intuitionistic theorem

ϕ =
∧
{(A→ A)→ B, (A→ B)→ B} → B.

which is translated to

ϕ# = ∃xE(x, s)→
∧


∀z∀u(E(z, u)→ (E(z, f(u)) ∧ E(z, g(u))))

∀u(A#(u)→ (A#(f(u)) ∧A#(g(u))))

∀z∀u(P#(z, u)→ (P#(z, f(u)) ∧ P#(z, g(u))))

∀u((A#(f(u))→ A#(f(u)))→ B#(u))

∀u(A#(g(u))→ B#(x, g(u)))→ B#(u))


→ B#(s)

42

For this example, we shall consider the simplified but still valid alternative

ϕ# =
∧{

∀u((A#(f(u))→ A#(f(u)))→ B#(u))

∀u(A#(g(u))→ B#(g(u)))→ B#(u))

}
→ B#(s)

For this, we obtain the following proof:

Ax
A#(g(s)),

A#(f(s))
⇒ B#(g(s))),

B#(s),A#(f(s))
R→

A#(s, g(s))⇒ B#(g(s))),B#(s),

A#(f(s))→A#(f(s))

Ax
B#(s), A#(g(s))⇒ B#(g(s))),

B#(s)
L→

(A#(f(s))→ A#(f(s)))→ B#(s), A#(g(s))⇒ B#(g(s)), B#(s)
L∀

∀u((A#(f(u))→ A#(f(u)))→ B#(u)), A#(g(s))⇒ B#(g(s)), B#(s)
R→

∀u((A#(f(u))→ A#(f(u)))→ B#(u))⇒ A#(g(s))→ B#(g(s)), B#(s)
...

L→∀u((A#(f(u))→A#(f(u)))→B#(u))

A#(g(s))→B#(g(s)))→B#(s)
⇒ B#(s)

L∀∀u((A#(f(u))→A#(f(u)))→B#(u))

∀u(∀x(A#(g(u))→B#(g(u)))→B#(u))
⇒ B#(s)

First, we push all the L∀ rules to the bottom and group L→ with R→/R∀:
Ax

A#(g(s)),

A#(f(s))
⇒ B#(g(s))),

B#(s),A#(f(s))
R→

A#(s, g(s))⇒ B#(g(s))),B#(s),

A#(f(s))→A#(f(s))

Ax
B#(s), A#(g(s))⇒ B#(g(s))),

B#(s)
L→

(A#(f(s))→ A#(f(s))→ B#(s)), A#(g(s))⇒ B#(g(s)), B#(s)
R→

(A#(f(s))→ A#(f(s))→ B#(s))⇒ A#(g(s))→ B#(g(s)), B#(s)
...

L→
(A#(f(s))→A#(f(s))→B#(s))

A#(g(s))→B#(s,g(s)))→B#(s)
⇒ B#(s)

L∀
(A#(f(s))→A#(f(s))→B#(s))

A#(g(s))→B#(g(s)))→B#(s)
⇒ B#(s)

L∀∀u((A#(f(u))→A#(f(u)))→B#(u))

∀u(∀x(A#(g(u))→B#(g(u)))→B#(u))
⇒ B#(s)

Next, we examine the last R→ rule and consider the subproof spanned by formulas

containing g(s) and rules featuring g(s) above the last R→ rule. But there are no rules

featuring g(s), i.e. we obtain an invalid proof.

A#(g(s))⇒ B#(g(s))

Therefore we remove all formulas and rules featuring g(s):

Ax
A#(f(s))⇒ B#(s), A#(f(s))

R→
⇒ B#(s), A#(f(s))→ A#(f(s))

Ax
B#(s)⇒ B#(s)

L→
(A#(f(s))→ A#(f(s))→ B#(s))⇒ B#(s)

L∀
∀u((A#(f(u))→ A#(f(u)))→ B#(u))⇒ B#(s)

Then, we add the superfluous formulas back in the axioms:

43

Ax
A#(f(s)),

∀u(∀x(A#(g(u))→B#(g(u)))→B#(u))
⇒ B#(s), A#(f(s))

R→
∀u(∀x(A#(g(u))→ B#(g(u)))→ B#(u))⇒ B#(s), A#(f(s))→ A#(f(s))

Ax
...

L→
(A#(f(s))→A#(f(s))→B#(s)),

∀u(∀x(A#(g(u))→B#(g(u)))→B#(u))
⇒ B#(s)

L∀∀u((A#(f(u))→A#(f(u)))→B#(u))

∀u(∀x(A#(g(u))→B#(g(u)))→B#(u))
⇒ B#(s)

We then inductively proceed by examining the new last R→ rule, i.e. we consider the

subproof spanned by formulas containing f(s) and rules featuring f(s) above the last R→
rule.

Ax
A#(f(s))⇒ A#(f(s))

This time however the subproof is completely valid. We then proceed inductively by

transforming this subproof. Since it does not contain any more R→ or R∀ formulas we

are done and can insert it back into the original proof and add the remaining formulas in

the axioms, yielding an intuitionistically valid proof:

Ax
A#(f(s))→A#(f(s))→B#(s),A#(f(s)),

A#(f(s))→A#(f(s))→B#(s)
⇒ A#(f(s))

R→
A#(f(s))→A#(f(s))→B#(s),A#(f(s)),

∀u(∀x(A#(g(u))→B#(g(u)))→B#(u))
⇒ B#(s), A#(f(s))→ A#(f(s))

Ax
...

L→
A#(f(s))→A#(f(s))→B#(s),

∀u(∀x(A#(g(u))→B#(g(u)))→B#(u))
⇒ B#(s)

L∀∀u((A#(f(u))→A#(f(u)))→B#(u))

∀u(∀x(A#(g(u))→B#(g(u)))→B#(u))
⇒ B#(s)

44

Chapter 7

Conclusion

We have presented embeddings of intuitionistic into classical logic for the propositional

and the predicate case. The transformation saw an exponential blow-up parameterized by

|F→| in the propositional case and a complexity increase reflected by an arity-increase of

one for all relations and the introduction of new function symbols in the predicate case. A

key motivation for our work was a new approach for automated deduction for intuitionistic

logic leveraging classical provers.

We have tested this approach on the ILTP problem set using the Vampire theorem

provers. 20.2% of the benchmark problems were resolved, which is a decent result but falls

short of the state-of-the-art. Nonetheless, this is a hopeful sign and proof that the used

concept has merit.

So far, our translation is very straightforward and while this was conceptually very

helpful, we expect that better results can be achieved by more elaborate mechanisms. We

plan to establish better bounds in future work by utilizing structural properties of the

input formula, in particular we plan to reduce the space of Kripke Frames that need to

be considered by ascertaining that certain subformulas can be examined independently of

each other and utilizing additional information about the functions in F .

On the theoretical side, we also hope to give a new translation from QBF to IPC that

improves our understanding of the relationship between intuitionistic propositional logic

and the polynomial hierarchy.

45

Appendix A

Deutscher Abstract

Die berühmte Double Negation Translation stellt eine Einbettung von klassischer in in-

tuitionistische Logik dar. Interessanterweise ist die umgekehrte Richtung in der Liter-

atur noch nicht behandelt worden. Wir präsentieren eine effektive Einbettung von intu-

itionistischer in klassische Logik, sowohl im Fall der Aussagenlogik als auch im Fall der

Prädikatenlogik, sowie eine effektive Einbettung von intuitionistischer Aussagenlogik in

quantifizierte boolesche Formeln.

Darüber hinaus implementieren wir ein System, das intuitionistische Probleme der

Prädikatenlogik im tptp-Dateiformat als Input nimmt und die Transformation durchführt.

Dies ermöglicht die Verwendung von klassischen Beweissystemen zur Überprüfung in-

tuitionistischer Gültigkeit. Wir testen unsere Implementierung mithilfe des Vampire-

Beweissystems an der ILTP-Datenbank.

Schließlich diskutieren wir, wie die generierten klassischen Beweise des transformierten

Problems in intuitionistische Beweise des ursprünglichen Problems zurückübersetzt werden

können. Insgesamt wird damit ein neuartiger Ansatz zum automatisiertem Theorembeweis

für intuitionistische Logik etabliert und ein erster Proof of Concept erbracht.

46

Appendix B

Zusammenfassung auf Deutsch

Mathematischer Konstruktivismus bezeichnet einen Ansatz, in dem die Existenz eines

Objekts nur durch eine explizite Konstruktion nachgewiesen werden kann, im Gegensatz

zur klassischen Mathematik, bei der die Existenz implizit nachgewiesen werden kann,

z. B. durch die Annahme der Nichtexistenz und die Ableitung eines Widerspruchs.

Der üblicherweise mit Konstruktivismus assoziierte Formalismus ist die intuitionistische

Logik, die sich von der klassischen Logik im Wesentlichen dadurch unterscheidet, dass

der Satz vom ausgeschlossenen Dritten A ∨ ¬A und der sogennante Double Negation

Shift ∀x¬¬P (x) → ¬¬∀xP (x) nicht gültig sind. Neben philosophischen Überlegungen

gibt es eine besondere Motivation für das Studium der konstruktiven Mathematik aus der

Perspektive der Informatik, da Beweise in der intuitionistischen Logik direkt Computer-

programmen entsprechen — wie in der Curry-Howard-Korrespondenz [19] ausgedrückt.

Das Interesse an intuitionistischer Logik hat zur Entwicklung von automatisierten Be-

weissystemen geführt. Die Fortschritte beim automatisierten Beweisen für intuitionistis-

che Logik sind jedoch langsam, während Systeme für klassische Logik enorme Fortschritte

gemacht haben, siehe z. B. die Wettbewerbe TPTP [1] und SAT [3]. Dies kann teil-

weise durch grundlegende Unterschiede zwischen den Logiken erklärt werden. Zunächst

einmal ist die Bestimmung der intuitionistischen Gültigkeit rechnerisch komplexer: In

der Aussagenlogik ist intuitionistische Gültigkeit PSPACE-vollständig [25] während klas-

sische Gültigkeit coNP-vollständig [12] ist. Ein weiterer Vorteil der klassischen Logik

ist die Existenz von Kalkülen, die sich besonders gut für Automatisierung eignen, wie

z.B. Superposition [8], die sich auf Normalformen wie CNF und die Dualität zwischen

Gültigkeit und Erfüllbarkeit stützt. Zwar gibt es auch für intuitionistische Logik einige

(wenn auch komplexere) Normalformen, doch ist die Dualität zwischen Gültigkeit und

Erfüllbarkeit der Negation nicht gegeben. Daher verwenden die meisten dedizierten intu-

itionistischen Beweissysteme [23, 26] eine direkte Suche nach einem schnittfreien Beweis

durch die umgekehrte Anwendung der Regeln eines Beweiskalküls. Dieser Ansatz führt

im Allgemeinen zu einer viel komplexeren Suche und ist daher nur schwer effizient zu

implementieren. Schließlich fügen wir hinzu, dass im Gegensatz zu intuitionistischen Be-

47

weissystemen eine enorme Menge an Arbeit in die Optimierung von Beweissystemen für

klassische Logik, insbesondere in der Aussagenlogik, d.h. SAT-Solver, investiert wurde.

Mit dieser Arbeit wollen wir einen neuen Ansatz für das intuitionistische Theorembe-

weisen vorschlagen, der den Fortschritt im klassischen Theorembeweisen nutzt:

� Für jede Formel ϕ geben wir eine Formel ϕ# an, die genau dann klassisch gültig ist,

wenn ϕ intuitionistisch gültig ist.

� Wir prüfen die Gültigkeit/Gültigkeit von ϕ# mit einem klassischen Beweissystem.

� Wir transformieren den erzeugte Beweis/das Gegenmodell von ϕ# zu einem von ϕ.

Der schwierigste Teil dieses Ansatzes besteht darin, die Übersetzung von ϕ in ϕ# zu

geben. Interessanterweise ist die umgekehrte Richtung, die berühmte Double-Negation

Translation, seit langem bekannt und geht der Aussagenlogik auf Glivenko [16] und der

Prädikatenlogik auf Gödel [18] und Gentzen [15] zurück. Im propositionalen Fall ist sie

besonders einfach: ϕ ist klassisch gültig, genau dann wenn ¬¬ϕ intuitionistisch gültig

ist. Intuitiv kollabiert die Übersetzung für jede Teilformel ψ von ϕ die Wahrheitswerte

von ψ und ¬¬ψ, die klassisch, aber nicht intuitionistisch äquivalent sind. Dies gibt uns

eine erste Idee, warum die umgekehrte Richtung vielleicht schwieriger ist: Wir müssen

die Wahrheitswerte von ψ und ¬¬ψ disambiguieren, d.h. wenn sie beide in ϕ vorkom-

men, müssen wir eine Möglichkeit haben, ihrem jeweiligen Gegenstücken in ϕ# (klassisch)

unterschiedliche Wahrheitswerte zuzuordnen. Dies erfordert insbesondere die Einführung

neuer Variablen in unserem Verfahren.

Während wir die Übersetzung von Formeln etablieren, führen wir auch eine effektive

Übersetzung von Gegenmodellen durch, d. h. für jedes intuitionistische Gegenmodell

von ϕ konstruieren wir effektiv ein klassisches Gegenmodell von ϕ# und vice versa. Wir

stellen fest, dass die Existenz von Gegenmodellen ein Schlüsselkonzept ist, das ein Dual zur

Gültigkeit bildet. Die Transformation und Reduktion von Gegenmodellen auf eine Normal-

form ist auch das, was letztlich unsere Übersetzung ermöglicht. Neben einer Übersetzung

von Gegenmodellen beschreiben wir im letzten Kapitel auch explizit, wie man klassische

Beweise von ϕ# in intuitionistische Beweise von ϕ transformiert.

Als letzten Beitrag implementieren wir unsere Übersetzung in der Programmiersprache

Rust. Unsere Implementierung transformiert ein Problem der Prädikatenlogik im tptp-

Format [6] und gibt das übersetzte Problem in demselben Format aus. Der Code ist auf

Github [2] veröffentlicht. Anschließend testen wir unsere Implementierung an der ILTP-

Datenbank [4], d.h. wir übersetzen alle Probleme in der Datenbank und lassen dann das

Vampire-Beweissystem [22] auf den übersetzten Problemen laufen. Unser Ansatz kann

mit bestehenden Ansätzen für das intuitionistische Theorembeweisen mithalten aber die

Spitzenreiter nicht erreichen. Da es noch viel Raum für Optimierungen gibt, ist dies ein

vielversprechendes erstes Zeichen.

48

Appendix C

Complete Benchmark Results

All benchmarks that are not listed ended with timeout.

Problem Result Time
AGT001+1.p Proven 0.054s
AGT001+2.p Proven 0.085s
AGT002+1.p Proven 0.059s
AGT002+2.p Proven 0.066s
AGT017+2.p Proven 4.868s
ALG014+1.p Proven 0.386s
ALG015+1.p Proven 0.749s
ALG016+1.p Proven 0.405s
ALG017+1.p Proven 0.043s
ALG020+1.p Proven 0.205s
ALG021+1.p Proven 0.457s
ALG022+1.p Proven 0.493s
ALG023+1.p Proven 0.713s
ALG024+1.p Proven 1.059s
ALG025+1.p Proven 2.532s
ALG026+1.p Proven 1.316s
ALG027+1.p Proven 5.175s
ALG028+1.p Proven 0.355s
ALG031+1.p Proven 0.375s
ALG032+1.p Proven 1.275s
ALG033+1.p Proven 1.182s
ALG034+1.p Proven 9.518s
ALG035+1.p Proven 9.285s
ALG036+1.p Proven 0.302s
ALG037+1.p Proven 1.004s
ALG038+1.p Proven 0.762s
ALG039+1.p Proven 0.042s
ALG042+1.p Proven 0.202s
ALG043+1.p Proven 0.196s
ALG044+1.p Proven 0.249s
ALG045+1.p Proven 0.571s
ALG046+1.p Proven 0.832s

Problem Result Time
ALG048+1.p Proven 1.586s
ALG049+1.p Proven 2.467s
ALG050+1.p Proven 2.347s
ALG051+1.p Proven 1.639s
ALG052+1.p Proven 3.164s
ALG053+1.p Proven 2.168s
ALG054+1.p Proven 0.169s
ALG055+1.p Proven 0.899s
ALG056+1.p Proven 0.892s
ALG057+1.p Proven 1.005s
ALG058+1.p Proven 0.673s
ALG059+1.p Proven 0.976s
ALG060+1.p Proven 1.346s
ALG061+1.p Proven 0.594s
ALG062+1.p Proven 0.440s
ALG063+1.p Proven 0.456s
ALG064+1.p Proven 0.782s
ALG065+1.p Proven 0.528s
ALG066+1.p Proven 0.553s
ALG067+1.p Proven 0.574s
ALG068+1.p Proven 0.962s
ALG075+1.p Proven 0.135s
ALG076+1.p Proven 0.266s
ALG077+1.p Proven 0.200s
ALG078+1.p Proven 0.190s
ALG079+1.p Proven 0.203s
ALG080+1.p Proven 0.334s
ALG081+1.p Proven 0.196s
ALG082+1.p Proven 0.228s
ALG083+1.p Proven 0.168s
ALG084+1.p Proven 0.211s
ALG085+1.p Proven 0.206s

49

Problem Result Time
ALG086+1.p Proven 0.273s
ALG087+1.p Proven 0.305s
ALG088+1.p Proven 0.195s
ALG089+1.p Proven 0.293s
ALG090+1.p Proven 0.270s
ALG091+1.p Proven 0.466s
ALG092+1.p Proven 21.681s
ALG093+1.p Proven 0.551s
ALG094+1.p Proven 0.280s
ALG095+1.p Proven 0.358s
ALG096+1.p Proven 1.859s
ALG097+1.p Proven 1.531s
ALG098+1.p Proven 2.604s
ALG099+1.p Proven 3.372s
ALG100+1.p Proven 2.517s
ALG101+1.p Proven 3.101s
ALG104+1.p Proven 2.526s
ALG105+1.p Proven 0.765s
ALG106+1.p Proven 2.808s
ALG107+1.p Proven 1.168s
ALG108+1.p Proven 2.324s
ALG109+1.p Proven 1.958s
ALG110+1.p Proven 1.049s
ALG111+1.p Proven 0.960s
ALG112+1.p Proven 1.348s
ALG113+1.p Proven 0.846s
ALG114+1.p Proven 0.889s
ALG115+1.p Proven 1.004s
ALG116+1.p Proven 1.253s
ALG117+1.p Proven 1.121s
ALG118+1.p Proven 1.133s
ALG119+1.p Proven 1.539s
ALG120+1.p Proven 1.905s
ALG121+1.p Proven 0.962s
ALG122+1.p Proven 2.674s
ALG123+1.p Proven 1.099s
ALG124+1.p Proven 1.390s
ALG125+1.p Proven 1.243s
ALG126+1.p Proven 2.903s
ALG127+1.p Proven 2.391s
ALG128+1.p Proven 6.782s
ALG130+1.p Proven 0.548s
ALG131+1.p Proven 7.478s
ALG132+1.p Proven 1.040s
ALG133+1.p Proven 7.531s
ALG134+1.p Proven 1.663s
ALG135+1.p Proven 0.914s
ALG136+1.p Proven 1.122s

Problem Result Time
ALG137+1.p Proven 1.047s
ALG138+1.p Proven 0.208s
ALG139+1.p Proven 0.998s
ALG140+1.p Proven 1.416s
ALG141+1.p Proven 0.958s
ALG142+1.p Proven 0.910s
ALG143+1.p Proven 1.345s
ALG145+1.p Proven 1.407s
ALG146+1.p Proven 1.061s
ALG147+1.p Proven 6.912s
ALG148+1.p Proven 1.260s
ALG149+1.p Proven 1.434s
ALG150+1.p Proven 1.175s
ALG151+1.p Proven 29.674s
ALG152+1.p Proven 3.644s
ALG153+1.p Proven 26.962s
ALG157+1.p Proven 2.262s
ALG158+1.p Proven 4.045s
ALG159+1.p Proven 14.128s
ALG161+1.p Proven 1.952s
ALG162+1.p Proven 2.372s
ALG164+1.p Proven 1.593s
ALG165+1.p Proven 1.910s
ALG166+1.p Proven 1.755s
ALG167+1.p Proven 1.744s
ALG168+1.p Proven 0.963s
ALG169+1.p Proven 0.947s
ALG170+1.p Proven 0.746s
ALG171+1.p Proven 0.080s
ALG172+1.p Proven 0.076s
ALG173+1.p Proven 0.085s
ALG174+1.p Proven 0.080s
ALG175+1.p Proven 0.088s
ALG180+1.p Proven 0.225s
ALG181+1.p Proven 0.143s
ALG182+1.p Proven 0.135s
ALG183+1.p Proven 0.138s
ALG184+1.p Proven 0.142s
ALG185+1.p Proven 0.499s
ALG186+1.p Proven 0.391s
ALG187+1.p Proven 0.430s
ALG188+1.p Proven 0.445s
ALG189+1.p Proven 0.508s
ALG190+1.p Proven 2.462s
ALG191+1.p Proven 2.207s
ALG192+1.p Proven 0.648s
ALG193+1.p Proven 0.584s
ALG194+1.p Proven 28.952s

50

Problem Result Time
ALG195+1.p Proven 4.695s
ALG196+1.p Proven 7.115s
ALG197+1.p Proven 4.805s
ALG198+1.p Proven 0.127s
ALG199+1.p Proven 1.533s
ALG200+1.p Proven 0.263s
ALG203+1.p Proven 26.932s
ALG204+1.p Proven 0.242s
ALG205+1.p Proven 0.320s
ALG206+1.p Proven 0.274s
ALG207+1.p Proven 0.823s
ALG208+1.p Proven 0.703s
ALG209+1.p Proven 0.783s
ALG210+2.p Proven 6.846s
ALG211+1.p Proven 0.327s
GEJ002+1.p Proven 7.672s
GEJ002+2.p Proven 0.030s
GEJ004+3.p Proven 23.293s
GEJ007+2.p Proven 0.156s
GEJ007+4.p Proven 0.098s
GEJ009+1.p Proven 0.487s
GEJ009+2.p Proven 0.054s
GEJ009+3.p Proven 0.338s
GEJ009+4.p Proven 0.046s
GEJ010+1.p Proven 2.915s
GEJ010+2.p Proven 7.168s
GEJ010+3.p Proven 1.635s
GEJ038+1.p Proven 0.029s
GEJ038+2.p Proven 0.028s
GEJ042+1.p Proven 0.057s
GEJ042+2.p Proven 0.055s
GEJ043+2.p Proven 17.815s
GEJ044+2.p Proven 29.105s
GEJ051+1.p Proven 0.030s
GEJ051+2.p Proven 0.030s
GEJ060+1.p Proven 0.082s
GEJ061+1.p Proven 0.153s
GEJ062+1.p Proven 0.036s
GEJ063+1.p Proven 0.085s
GEJ064+1.p Proven 0.093s
GEJ065+1.p Proven 0.062s
GEJ066+1.p Proven 0.078s
GEJ067+1.p Proven 0.080s
GEJ068+1.p Proven 0.071s
GEJ069+1.p Proven 0.073s
GEJ070+1.p Proven 0.111s
GEJ071+1.p Proven 0.117s
GEJ072+1.p Proven 0.103s

Problem Result Time
GEJ073+1.p Proven 0.106s
GEJ074+1.p Proven 0.102s
GEJ075+1.p Proven 0.106s
GEJ076+1.p Proven 0.091s
GEJ077+1.p Proven 0.093s
GEJ078+1.p Proven 0.090s
GEJ079+1.p Proven 0.095s
GEJ080+1.p Proven 0.120s
GEJ081+1.p Proven 0.063s
GEJ082+1.p Proven 0.071s
GEJ083+1.p Proven 0.082s
GEJ084+1.p Proven 0.088s
GEJ085+1.p Proven 0.074s
GEJ086+1.p Proven 0.083s
GEJ087+1.p Proven 0.108s
GEJ088+1.p Proven 0.108s
GEJ089+1.p Proven 0.121s
GEJ090+1.p Proven 0.125s
GEJ091+1.p Proven 0.102s
GEJ092+1.p Proven 0.110s
GEJ093+1.p Proven 0.106s
GEJ094+1.p Proven 0.117s
GEJ095+1.p Proven 0.113s
GEJ096+1.p Proven 0.119s
GEJ097+1.p Proven 0.091s
GEO080+1.p Proven 0.227s
GEO085+1.p Proven 0.266s
GEO086+1.p Proven 0.697s
GPJ001+1.p Proven 13.428s
GPJ001+2.p Proven 0.187s
GPJ002+1.p Proven 0.067s
GPJ003+1.p Proven 0.077s
GRA010+1.p Proven 0.038s
GRA010+2.p Proven 0.038s
KRS065+1.p Proven 0.039s
KRS130+1.p Proven 0.097s
KRS134+1.p Proven 0.052s
KRS135+1.p Proven 0.049s
KRS136+1.p Proven 0.031s
KRS137+1.p Proven 0.074s
KRS139+1.p Proven 0.128s
KRS141+1.p Proven 0.083s
KRS142+1.p Proven 0.096s
KRS143+1.p Proven 0.084s
KRS144+1.p Proven 0.105s
KRS145+1.p Proven 0.090s
KRS146+1.p Proven 1.792s
KRS148+1.p Proven 0.331s

51

Problem Result Time
KRS149+1.p Proven 0.493s
KRS150+1.p Proven 0.247s
KRS152+1.p Proven 0.090s
KRS154+1.p Proven 0.788s
KRS156+1.p Proven 0.539s
KRS157+1.p Proven 1.134s
KRS158+1.p Proven 0.184s
KRS160+1.p Proven 0.102s
KRS163+1.p Proven 0.065s
KRS164+1.p Proven 0.072s
KRS165+1.p Proven 0.045s
KRS166+1.p Proven 0.047s
KRS167+1.p Proven 0.170s
KRS169+1.p Proven 1.030s
KRS170+1.p Proven 0.048s
KRS171+1.p Proven 0.055s
LCL414+1.p Proven 0.880s
MGT003+1.p Proven 3.148s
MGT006+1.p Proven 27.800s
MGT009+1.p Proven 28.410s
MGT013+1.p Proven 10.306s
MGT014+1.p Proven 10.485s
MGT036+3.p Proven 0.087s
MGT045+1.p Proven 0.077s
MGT049+1.p Proven 0.059s
MGT052+1.p Proven 0.086s
MSC010+1.p Proven 0.038s
NLP001+1.p Proven 0.237s
NLP002+1.p Refuted 14.428s
NLP003+1.p Refuted 14.224s
NLP004+1.p Proven 4.340s
NLP007+1.p Proven 4.476s
NLP009+1.p Proven 4.150s
NLP011+1.p Proven 4.546s
NLP104+1.p Refuted 1.138s
NLP105+1.p Refuted 1.216s
NLP106+1.p Refuted 1.216s
NLP107+1.p Refuted 1.241s
NLP108+1.p Refuted 1.088s
NLP109+1.p Refuted 1.178s
NLP110+1.p Refuted 1.068s
NLP111+1.p Refuted 1.095s
NLP112+1.p Refuted 1.112s
NLP113+1.p Refuted 1.380s
NLP117+1.p Proven 0.304s
NLP122+1.p Proven 0.302s
NLP204+1.p Proven 3.293s
NLP208+1.p Proven 3.487s

Problem Result Time
NUM304+1.p Proven 2.448s
NUM333+1.p Proven 27.096s
PUZ001+1.p Proven 0.215s
PUZ031+1.p Proven 0.252s
PUZ047+1.p Proven 0.248s
PUZ060+1.p Proven 0.113s
PUZ061+1.p Proven 0.104s
SET002+3.p Proven 0.050s
SET019+4.p Proven 0.051s
SET047+1.p Proven 0.656s
SET054+1.p Proven 0.833s
SET055+1.p Proven 0.041s
SET061+1.p Proven 1.388s
SET062+3.p Proven 0.127s
SET062+4.p Proven 0.197s
SET063+3.p Proven 6.494s
SET148+3.p Proven 0.052s
SET194+3.p Proven 1.440s
SET366+4.p Proven 0.215s
SET574+3.p Proven 0.096s
SET575+3.p Proven 0.035s
SET583+3.p Proven 0.036s
SET585+3.p Proven 4.499s
SET589+3.p Proven 0.155s
SET590+3.p Proven 29.211s
SET602+3.p Proven 0.494s
SET604+3.p Proven 0.216s
SET618+3.p Proven 17.657s
SET627+3.p Proven 0.401s
SET631+3.p Proven 0.306s
SET639+3.p Proven 13.976s
SET658+3.p Proven 0.873s
SET687+4.p Proven 0.223s
SET705+4.p Proven 0.240s
SWC128+1.p Proven 0.086s
SWV011+1.p Proven 0.053s
SWV014+1.p Proven 0.281s
SWV016+1.p Refuted 0.879s
SWV018+1.p Refuted 0.973s
SWV022+1.p Proven 0.054s
SWV023+1.p Proven 0.050s
SWV043+1.p Proven 0.039s
SWV045+1.p Proven 0.041s
SWV047+1.p Proven 0.042s
SWV054+1.p Proven 0.042s
SWV057+1.p Proven 0.039s
SWV058+1.p Proven 0.042s
SWV059+1.p Proven 0.065s

52

Problem Result Time
SWV060+1.p Proven 0.041s
SWV061+1.p Proven 0.046s
SWV062+1.p Proven 0.039s
SWV063+1.p Proven 0.054s
SWV064+1.p Proven 0.161s
SWV065+1.p Proven 0.140s
SWV066+1.p Proven 0.044s
SWV068+1.p Proven 0.040s
SWV069+1.p Proven 12.016s
SWV070+1.p Proven 0.040s
SWV071+1.p Proven 0.054s
SWV072+1.p Proven 0.043s
SWV073+1.p Proven 0.053s
SWV074+1.p Proven 0.049s
SWV075+1.p Proven 0.057s
SWV076+1.p Proven 0.045s
SWV077+1.p Proven 17.571s
SWV078+1.p Proven 2.419s
SWV080+1.p Proven 0.051s
SWV081+1.p Proven 0.043s
SWV082+1.p Proven 0.043s
SWV083+1.p Proven 0.051s
SWV084+1.p Proven 0.045s
SWV085+1.p Proven 0.041s
SWV086+1.p Proven 0.040s
SWV087+1.p Proven 0.044s
SWV088+1.p Proven 0.041s
SWV105+1.p Proven 0.043s
SWV106+1.p Proven 0.040s
SWV107+1.p Proven 0.049s
SWV119+1.p Proven 0.042s
SWV121+1.p Proven 0.038s
SWV123+1.p Proven 0.050s
SWV126+1.p Proven 0.038s
SWV128+1.p Proven 0.040s
SWV131+1.p Proven 0.051s
SWV132+1.p Proven 0.052s
SWV145+1.p Proven 0.161s
SWV146+1.p Proven 0.229s
SWV147+1.p Proven 0.141s
SWV148+1.p Proven 0.138s
SWV149+1.p Proven 0.139s
SWV150+1.p Proven 0.137s
SWV169+1.p Proven 0.266s
SWV171+1.p Proven 0.388s
SWV172+1.p Proven 0.447s
SWV179+1.p Proven 0.324s
SWV180+1.p Proven 0.362s

Problem Result Time
SWV192+1.p Proven 0.394s
SWV193+1.p Proven 0.510s
SWV194+1.p Proven 0.520s
SWV195+1.p Proven 0.457s
SWV196+1.p Proven 0.387s

SYJ001+1.001.p Proven 0.030s
SYJ002+1.001.p Proven 0.033s
SYJ004+1.001.p Proven 0.052s
SYJ004+1.002.p Proven 0.053s
SYJ004+1.003.p Proven 0.055s
SYJ004+1.004.p Proven 0.085s
SYJ004+1.005.p Proven 0.078s
SYJ004+1.006.p Proven 0.079s
SYJ004+1.007.p Proven 0.073s
SYJ004+1.008.p Proven 0.070s
SYJ004+1.009.p Proven 0.096s
SYJ004+1.010.p Proven 0.078s
SYJ004+1.011.p Proven 0.101s
SYJ004+1.012.p Proven 0.091s
SYJ004+1.013.p Proven 0.104s
SYJ004+1.014.p Proven 0.096s
SYJ004+1.015.p Proven 0.082s
SYJ004+1.016.p Proven 0.098s
SYJ004+1.017.p Proven 0.092s
SYJ004+1.018.p Proven 0.099s
SYJ004+1.019.p Proven 0.097s
SYJ004+1.020.p Proven 0.100s

SYJ013+1.p Proven 0.057s
SYJ014+1.p Proven 0.048s
SYJ015+1.p Proven 0.050s
SYJ025+1.p Proven 0.065s
SYJ026+1.p Proven 0.047s
SYJ027+1.p Proven 0.047s
SYJ028+1.p Proven 0.068s
SYJ031+1.p Proven 0.090s
SYJ033+1.p Proven 0.099s
SYJ034+1.p Proven 0.135s
SYJ035+1.p Proven 1.537s
SYJ038+1.p Proven 0.049s
SYJ039+1.p Proven 0.086s
SYJ101+1.p Proven 0.028s
SYJ102+1.p Proven 0.032s
SYJ103+1.p Proven 0.032s
SYJ104+1.p Proven 0.030s

SYJ107+1.001.p Proven 0.035s
SYJ107+1.002.p Proven 0.047s
SYJ107+1.003.p Proven 0.057s
SYJ107+1.004.p Proven 0.068s

53

Problem Result Time
SYJ108+1.p Proven 0.026s
SYJ109+1.p Proven 0.036s
SYJ111+1.p Proven 0.049s
SYJ112+1.p Proven 0.036s
SYJ114+1.p Proven 0.046s
SYJ115+1.p Proven 0.045s

SYJ116+1.001.p Proven 0.058s
SYJ116+1.002.p Proven 1.048s

SYJ117+1.p Proven 0.048s
SYJ118+1.p Proven 0.073s
SYJ119+1.p Proven 0.052s
SYJ120+1.p Proven 0.052s
SYJ121+1.p Proven 0.057s
SYJ122+1.p Proven 0.072s
SYJ123+1.p Proven 0.059s
SYJ124+1.p Proven 0.062s

SYJ202+1.002.p Proven 0.056s
SYJ202+1.006.p Proven 0.956s
SYJ204+1.002.p Proven 0.037s
SYJ204+1.006.p Proven 0.052s
SYJ204+1.010.p Proven 0.073s
SYJ206+1.002.p Proven 0.035s
SYJ210+1.002.p Refuted 0.037s
SYJ210+1.006.p Refuted 0.050s
SYJ210+1.010.p Refuted 0.064s

SYN044+1.p Proven 0.045s
SYN045+1.p Proven 0.048s
SYN054+1.p Refuted 0.089s
SYN055+1.p Proven 0.061s
SYN057+1.p Proven 0.104s
SYN058+1.p Proven 0.096s
SYN061+1.p Proven 0.057s
SYN062+1.p Proven 0.052s
SYN065+1.p Proven 0.066s
SYN066+1.p Proven 0.086s
SYN071+1.p Proven 0.059s
SYN072+1.p Proven 0.089s
SYN079+1.p Proven 0.056s
SYN080+1.p Proven 0.218s
SYN082+1.p Proven 0.101s
SYN323+1.p Proven 0.066s
SYN346+1.p Proven 0.061s
SYN356+1.p Proven 0.076s
SYN357+1.p Proven 0.041s
SYN358+1.p Proven 0.048s
SYN359+1.p Proven 0.060s
SYN379+1.p Proven 0.062s
SYN387+1.p Refuted 0.029s

Problem Result time
SYN390+1.p Proven 0.035s
SYN401+1.p Proven 0.045s
SYN402+1.p Proven 0.044s
SYN404+1.p Proven 0.045s
SYN405+1.p Proven 0.049s
SYN406+1.p Proven 0.060s
SYN410+1.p Proven 0.044s
SYN490+1.p Refuted 13.282s
SYN491+1.p Refuted 20.030s
SYN495+1.p Refuted 5.038s
SYN497+1.p Refuted 25.937s
SYN516+1.p Refuted 3.231s
SYN517+1.p Refuted 1.989s
SYN523+1.p Refuted 1.218s
SYN527+1.p Refuted 8.835s
SYN532+1.p Refuted 3.138s
SYN533+1.p Refuted 23.206s
SYN721+1.p Proven 0.078s
SYN722+1.p Proven 0.105s
SYN733+1.p Proven 0.073s
SYN915+1.p Proven 0.034s
SYN916+1.p Refuted 0.030s
SYN924+1.p Proven 0.059s
SYN926+1.p Proven 0.039s
SYN927+1.p Proven 0.050s
SYN928+1.p Proven 0.034s
SYN931+1.p Proven 0.053s
SYN932+1.p Proven 0.045s
SYN943+1.p Proven 1.681s
SYN944+1.p Proven 0.115s
SYN948+1.p Proven 0.053s
SYN949+1.p Proven 0.078s
SYN952+1.p Proven 0.051s
SYN958+1.p Proven 0.044s
SYN959+1.p Proven 0.040s
SYN960+1.p Proven 0.050s
SYN961+1.p Proven 0.054s
SYN963+1.p Proven 0.056s
SYN964+1.p Proven 0.043s
SYN973+1.p Proven 0.034s
SYN974+1.p Proven 0.045s
SYN976+1.p Proven 0.140s
SYN979+1.p Proven 0.074s
SYN980+1.p Proven 0.127s
TOP022+1.p Proven 0.153s

54

Bibliography

[1] The cade atp system competition (casc). https://www.tptp.org/CASC/28/. Ac-
cessed: 2022-07-14.

[2] Implementation of the embedding. https://github.com/lexpk/

Proofs-as-Programs-in-Classical-Logic/tree/main/Implementation/eiicl.
Accessed: 2022-8-15.

[3] The international sat competition. http://www.satcompetition.org/. Accessed:
2022-07-15.

[4] The intuitionistic logic theorem proving (iltp) library. http://iltp.de/results.

html. Accessed: 2022-07-14.

[5] The rust programming language. https://www.rust-lang.org/. Accessed: 2022-
10-14.

[6] The tptp problem library. https://www.tptp.org/TPTP/TR/TPTPTR.shtml. Ac-
cessed: 2022-08-15.

[7] Matthias Baaz and Rosalie Iemhoff. The skolemization of existential quantifiers in
intuitionistic logic. Annals of Pure and Applied Logic, 142(1-3):269–295, 2006.

[8] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. Handbook of
automated reasoning, 1(02), 2001.

[9] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS
Press, 2009.

[10] Errett Bishop. Foundations of constructive analysis. 1967.

[11] Luitzen Egbertus Jan Brouwer. Over de grondslagen der wiskunde. Maas & van
Suchtelen, 1907.

[12] Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings of
the third annual ACM symposium on Theory of computing, pages 151–158, 1971.

[13] Hans de Nivelle. Translation of resolution proofs into short first-order proofs without
choice axioms. Information and Computation, 199(1-2):24–54, 2005.

[14] Michael R Garey and David S Johnson. Computers and intractability, volume 174.
freeman San Francisco, 1979.

55

https://www.tptp.org/CASC/28/
https://github.com/lexpk/Proofs-as-Programs-in-Classical-Logic/tree/main/Implementation/eiicl
https://github.com/lexpk/Proofs-as-Programs-in-Classical-Logic/tree/main/Implementation/eiicl
http://www.satcompetition.org/
http://iltp.de/results.html
http://iltp.de/results.html
https://www.rust-lang.org/
https://www.tptp.org/TPTP/TR/TPTPTR.shtml

[15] Gerhard Gentzen. Die widerspruchsfreiheit der reinen zahlentheorie. Mathematische
annalen, 112(1):493–565, 1936.

[16] Valery Glivenko. Sur quelques points de la logique de m. brouwer. Bulletins de la
classe des sciences, 15(5):183–188, 1929.

[17] Valery Glivenko. Sur quelques points de la logique de m. brouwer. Bulletins de la
classe des sciences, 15(5):183–188, 1929.

[18] Kurt Gödel. Zur intuitionistischen arithmetik und zahlentheorie. Ergebnisse eines
mathematischen Kolloquiums, 4(1933):34–38, 1933.

[19] William A Howard. The formulae-as-types notion of construction. To HB Curry:
essays on combinatory logic, lambda calculus and formalism, 44:479–490, 1980.

[20] Rosalie Iemhoff. The eskolemization of universal quantifiers. Annals of Pure and
Applied Logic, 162(3):201–212, 2010.

[21] Laura Kovács and Andrei Voronkov. First-order theorem proving and vampire. In
International Conference on Computer Aided Verification, pages 1–35. Springer, 2013.

[22] Laura Kovács and Andrei Voronkov. First-order theorem proving and vampire. In
Computer Aided Verification, pages 1–35. Springer Berlin Heidelberg, 2013.

[23] Sean McLaughlin and Frank Pfenning. Efficient intuitionistic theorem proving with
the polarized inverse method. In International Conference on Automated Deduction,
pages 230–244. Springer, 2009.

[24] Michael Rawson. tptp crate. https://github.com/MichaelRawson/tptp. Accessed:
2022-10-14.

[25] Richard Statman. Intuitionistic propositional logic is polynomial-space complete.
Theoretical Computer Science, 9(1):67–72, 1979.

[26] Tanel Tammet. A resolution theorem prover for intuitionistic logic. In International
Conference on Automated Deduction, pages 2–16. Springer, 1996.

[27] Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic proof theory. Number 43.
Cambridge University Press, 2000.

[28] Grigori S Tseitin. On the complexity of derivation in propositional calculus. In
Automation of reasoning, pages 466–483. Springer, 1983.

56

https://github.com/MichaelRawson/tptp

	Introduction
	Overview
	Embedding intuitionistic into classical logic
	Implementation
	Translation of counter-models and proofs

	Preliminaries
	Syntax
	Propositional logic
	Predicate logic

	Semantics
	Propositional Logic
	Predicate Logic

	Skolemization and Herbrandization
	Proof theory

	Embedding intuitionistic into classical logic
	Propositional logic
	IPC to CQC
	Normal form transformation
	IPC to simplified CQC
	IPC to CPC

	IPC to QBF
	CQC to IQC
	Encoding Kripke Semantics
	Reducing the encoding

	Implementation
	Installation
	Usage
	Benchmarking

	Translation of counter-models and proofs
	Translation of counter-models
	Proof translation

	Conclusion
	Deutscher Abstract
	Zusammenfassung auf Deutsch
	Complete Benchmark Results
	References

