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Abstract

The notion of variable bandwidth stems from the observation that it makes sense in time-
frequency analysis to assign different local bandwidths to different segments of a signal.
However, the problem in defining such a concept lies in the fact that bandwidth is a
global property of a signal, and hence the idea of local bandwidth violates the uncertainty
principle. In an attempt to formalize this concept, several definitions of variable band-
width were presented by a number of mathematicians and engineers. In this thesis, we
adopt the definition of spaces of functions of variable bandwidth as spectral subspaces of a
Sturm-Liouville operator on the real line associated to a chosen bandwidth-parametrizing
function. In particular, we study such spaces associated to piecewise constant parametriz-
ing functions. As opposed to arbitrary parametrizing functions, with piecewise constant
functions we obtain an explicit formula for the fundamental set of solutions of the cor-
responding Sturm-Liouville eigenvalue problem. From this the spectral measure of the
operator can be derived, which in principle allows a direct evaluation of the reproducing
kernel of spectral subspaces. Furthermore, the computation of the reproducing kernel is
demonstrated in the case when the parametrizing function has two and three constant
components. Afterwards, necessary density conditions for sets of sampling and interpola-
tion and the reconstruction of functions of variable bandwidth are derived. The theory is
confirmed by numerical simulations. The reconstruction algorithms are based on frame
theory and regularization (since direct algorithms have stability problems). Notably,
functions of variable bandwidth are much better approximated within this model than by
classical bandlimited functions.
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Zusammenfassung

Der Begriff der variablen Bandbreite beruht auf der Beobachtung, daß man verschiedenen
Abschnitten eines Signals verschiedene Bandbreiten zuordnen kann. Das Problem dabei
ist jedoch, daß Bandbreite eine globale Eigenschaft eines Signals ist und daher die Idee
einer lokalen Bandbreite das Unschärfeprinzip verletzt. Der Versuch, diesen Begriff zu
formalisieren, hat zu mehreren möglichen Definitionen von variabler Bandbreite durch
Mathematiker und Ingenieure geführt. In dieser Arbeit benützen wir als Definition von
Räumen variabler Bandbreite die spektralen Teilräume eines Sturm-Liouville-Operators
auf der reellen Achse bezüglich einer geeigneten Parametrisierungsfunktion. Insbesondere
untersuchen wir solche Räume, die einer stückweise konstanten Parametrisierungsfunkti-
on zugeordnet sind. Im Gegensatz zu beliebigen Parametrisierungsfunktionen erhält man
für stückweise konstante Funktionen explizite Formeln für die Fundamentallösungen des
entsprechenden Sturm-Liouville-Problems. Daraus läßt sich das Spektralmaß des Opera-
tors ableiten, was im Prinzip eine direkte Auswertung des reproduzierenden Kerns der
spektralen Teilräume erlaubt. Im weiteren wird gezeigt, wie der reproduzierende Kern im
Fall von zwei und drei konstanten Komponenten der Parametrisierungsfunktion berechnet
wird. Danach werden notwendige Dichtebedingungen für Abtast- und Interpolationsmen-
gen und die Rekonstruktion von Funktionen variabler Bandbreite abgeleitet. Die Theorie
wird durch numerische Simulationen bestätigt. Die Rekonstruktionsalgorithmen basieren
auf Frame-Theorie und Regularisierung (da die direkten Algorithmen Stabilitätsprobleme
haben). Insbesondere werden Funktionen variabler Bandbreite innerhalb dieses Models
viel besser approximiert als durch klassische bandbegrenzte Funktionen.
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1. Introduction

1.1. Motivation

The recovery of a continuous-time signal f from its samples {f(xn)}n∈Z is one of the
central problems in signal processing. Without additional assumptions, this problem is
ill-posed. For ω-bandlimited signals, i.e., signals whose Fourier transform

Ff(ξ) = f̂(ξ) =

∫
R
f(t)e−iξt dt

vanishes outside the interval [−ω, ω], perfect reconstruction is possible. Indeed, the uni-
form sampling theorem (see [49]) stipulates that ω-bandlimited signals can be perfectly
recovered from its uniformly spaced samples

{
f(nπ

ω
)
}
n∈Z. An explicit reconstruction is

given by the interpolation formula

f(x) =
∑
n∈Z

f
(nπ
ω

)
sinc(ωx− nπ) =

∑
n∈Z

f
(nπ
ω

) sin(ωx− nπ)

(ωx− nπ)
, x ∈ R

which converges absolutely in L2(R). This means that by taking sufficiently many uni-
form samples, any continuous-time bandlimited signal can be encoded as a discrete-time
signal without loss of information. These ω-bandlimited functions form the so-called
Paley-Wiener spaces PWω(R) and have been extensively studied due to its wide range of
applications in various fields such as audio and image processing [36, 71, 74, 84], telecom-
munications [17, 51], medical and geophysical imaging [21, 58], etc.
An efficient sampling method is one that captures the essential features of a signal using

a minimal number of samples. Furthermore, reconstruction algorithms should yield an
output that is a faithful representation of these information. If a signal, particularly the
non-bandlimited ones, consists of several bursts or pulses of varying duration, intensity and
frequency, then uniform sampling and reconstruction methods may not be effective. Thus,
it may be helpful to use alternative sampling strategies that make good use of additional
information on the signal and develop reconstruction algorithms that use functions that
share some of the signal’s distinctive features.
Techniques in classical Fourier analysis are best suited for time-stationary signals, i.e.,

those whose range of frequencies, commonly known as its spectrum, does not change over
time. For time-varying signals, techniques in time-frequency analysis are often used to
depict a two-dimensional description that encodes temporal and spectral information of
the given signal. One such description is the short-time Fourier transform Vgf of f with
respect to a fixed nonzero function g ̸= 0, called a window, given by

Vgf(x, ξ) =

∫
R
f(t)g(t− x)e−iξt dt, x, ξ ∈ R.

13



1. Introduction

If g is smooth, symmetric at the origin, and has compact support, then Vgf(x, ·) is the
Fourier transform of a smoothly tapered segment of f on a neighborhood of x and can
be interpreted as the “local frequency content” of f around x. We can also form time-
frequency representations of the signal from discrete samples of Vgf using the theory of
Gabor frames (see [22, 38] for a thorough discussion) and use them either as intermediate
reconstructions of f or to derive from f other signals with certain desirable properties.

With information provided by time-frequency analytic methods it makes sense to assign
“local bandwidths” to different segments of a signal. Signals with different local band-
widths are called functions of variable bandwidth, while bandlimited functions may also
be called functions of constant bandwidth. Such functions may be sampled according to
local bandwidth, i.e., high sampling rates on segments with large local bandwidths, low
sampling rates on segments with small local bandwidths. With sufficiently many of these
samples we may be able to perfectly recover the signal using reconstruction algorithms
similar to those in [37].

Unfortunately, this intuitive approach of assigning local bandwidths violates the un-
certainty principle (see [27]), which says that a nonzero signal cannot be simultaneously
concentrated in time and frequency. This is exactly the same issue that we encounter in an
attempt to define “instantaneous bandwidth” in time-frequency analysis (see [24, 67, 73]
for further reading). It is now our task to find a satisfactory definition of variable band-
width and exhibit concrete examples of functions of variable bandwidth. We also investi-
gate some of its properties and prove relevant results that are comparable to fundamental
results in Paley-Wiener spaces. Finally, we develop methods of sampling and reconstruc-
tion of functions of variable bandwidth.

1.2. Defining variable bandwidth

We are now confronted with the question: what exactly is local or variable bandwidth?
Several approaches to define this concept already exist in the literature.

(i) In [78], D. Wei and A.V. Oppenheim intuitively defined local bandwidth as the rate
at which a signal varies locally. Two potential models for local bandwidth were
proposed. The first is to consider locally bandlimited signals as being generated by
a linear time-varying filter with additional properties. The second is based on the
notion of time-warping (applying an invertible transformation on time) of bandlim-
ited signals. Methods of sampling and reconstruction of signals according to local
bandwidth are then developed. This is closely related to the work of [23] as well as
other related papers [19, 43, 49, 64, 86] tackling problems related to time-varying
systems.

(ii) The papers [2, 3] of R. Aceska and H.G. Feichtinger define the space of functions of
variable bandwidth as a weighted modulation space defined by a so-called variable
bandwidth weight.

(iii) The recent work [56] of R.T.W. Martin and A. Kempf generalizes the uniform sam-
pling theory using self-adjoint extensions of regular simple symmetric operators with
deficiency indices (1, 1). Using techniques in spectral theory they were able to for-

14



1.2. Defining variable bandwidth

mulate a notion of time-varying bandwidth and subsequently construct the so-called
local bandlimit spaces whose properties resemble those of Paley-Wiener spaces.

In this thesis, we consider another definition of variable bandwidth proposed by K. Gröchenig
and A. Klotz in their paper [39]. This definition can be seen in the context of I. Pesenson
and A.I. Zayed’s work on abstract Paley-Wiener spaces [45, 66]. The idea is based on
the fact that the L2(R)-Fourier transform F unitarily diagonalizes the differential opera-
tor −D2. More precisely, it is known from the spectral theory of self-adjoint unbounded
operators that in some dense subspace of D of L2(R), the equation

−FD2F−1f(ξ) = ξ2f(ξ), f ∈ D (1.2.1)

holds. By restricting the multiplier ξ2 in (1.2.1) so that 0 ≤ ξ2 ≤ ω2, we get an orthogonal
projection Pω onto the spectral subspace

E[0,ω2] = {φ ∈ L2(R) : supp(φ) ⊆ [−ω, ω]}

corresponding to the spectral set [0, ω2], i.e., Pω is essentially multiplication by the charac-
teristic function χ[−ω,ω]. The orthogonal projection onto the Paley-Wiener space PWω(R)
is therefore described by the operator f 7→ (F−1PωF)f , and

PWω(R) = F−1PωF(L2(R)).

The transition to variable bandwidth spaces starts by replacing −D2 by an elliptic dif-
ferential operator τp of the form τp = −D(pD), where p > 0 is the so-called bandwidth-
parametrizing function. As an unbounded operator, we take an appropriate dense sub-
space D(τp) of L2(R) so that τp has a self-adjoint realization Ap. Consequently, we can
find a unitary operator FAp , referred to as the spectral Fourier transform in [45, 66], that
unitarily diagonalizes Ap, i.e.,

−F−1
Ap

ApFApg(λ) = λg(λ), g ∈ D(τp).

In the same spirit, the Paley-Wiener space PWΛ(Ap) with respect to Ap and spectral set
Λ ⊂ R+

0 is given by

PWΛ(Ap) = F−1
Ap

PΛFAp(L
2(R)),

where PΛ is the orthogonal projection onto the spectral subspace EΛ (so that λ ∈ Λ)
consisting of functions in L2(R) whose support is contained in Λ. This is the proposed
definition of a space of functions of variable bandwidth. We refer the reader to Section
2.2 for a guided discussion of the relevant spectral theory and Chapter 3 on the complete
derivation of the Paley-Wiener space PWΛ(Ap).

It turns out that this definition and the resulting theory capture three key features
inherent to bandlimited functions in the form of sampling theorems, necessary density
conditions, particularly on the existence of a critical density, and analyticity similar to
the Paley-Wiener theorem [39]. A detailed comparison of all the existing notions of
variable bandwidth is given in [39, Sec. 1.2].

15



1. Introduction

1.3. Piecewise constant parametrizing functions

The ultimate goal of studying spaces of functions of variable bandwidth is to show that
numerical signal reconstruction can be performed in these spaces. A sampling inequality
based on local bandwidth was proved in [39, Thm. 5.2] and sufficient conditions for a set
to yield stable reconstructions were identified. Among these conditions is the maximum
gap condition

δ = sup
j∈Z

xj+1 − xj

infx∈[xj ,xj+1]

√
p(x)

<
π

Ω1/2
, Λ ⊆ [0,Ω]

on a set X which highlights the role of the parametrizing function p in variable bandwidth
sampling. Consequently, we can formulate a number of algorithms (see e.g. [37]) on the
recovery of a function of variable bandwidth given only its non-uniform point samples.
It was noted in [39, Sec. 8] that prior knowledge of the reproducing kernel kΛ of

PWΛ(Ap) is necessary to perform numerical reconstructions. For arbitrary parametrizing
functions p, finding an explicit formula for kΛ seems impossible. Nevertheless, it was
demonstrated in [39, Sec. 4] that for Λ = [0,Ω] and

p(x) =

{
p−, x ≤ 0,

p+, x > 0,
p−, p+ > 0,

an explicit formula for kΛ can be derived. This gives us a hint that the computability
of the reproducing kernel may be possible for any piecewise constant p. If this is indeed
the case, then sampling and reconstruction is numerically feasible. It is for this reason
that we focus our attention to spaces of functions of variable bandwidth parametrized by
piecewise constant functions.

1.4. Main results and overview

This dissertation is a systematic study of the space of functions of variable bandwidth
parametrized by a piecewise constant function. We demonstrate how such spaces can be
constructed by identifying its reproducing kernel, prove a number of interesting proper-
ties, and compare theoretical results to known ones in Paley-Wiener spaces of constant
bandwidth. We then present a regularized reconstruction method for functions of variable
bandwidth and use it to perform a number of numerical simulations.
The thesis is structured as follows:

Chapter 2 is a review of the theory of unbounded operators with focus on the operator-
theoretic aspects of Sturm-Liouville differential equations. We study self-adjoint realiza-
tions of Sturm-Liouville operators and derive some of their fundamental properties. We
state the spectral representation theorem for Sturm-Liouville operators where the spectral
transform, the spectral matrix measure, and the spectral projection are introduced. We
then demonstrate that the Paley-Wiener space of bandlimited functions can be expressed
as the range of a spectral projection. This observation motivates the definition of variable
bandwidth in the next chapter.
Chapter 3 is a collection of some results from [39] on the general properties of Paley-

Wiener spaces of variable bandwidth functions. We mention relevant facts about repro-
ducing kernel Hilbert spaces and give a brief overview of necessary density conditions for
sampling and interpolation as well as non-uniform sampling in PWΛ(Ap).
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1.4. Main results and overview

Chapter 4 is an extensive study of the fundamental aspects of functions of variable
bandwidth parametrized by piecewise constant function. We prove several new results
and draw a number of observations regarding the computability of important quantities.

• Section 4.1 gives a precise definition of the piecewise constant parametrizing function
used in this thesis. We also prove some properties of the self-adjoint realization Ap

of τp for such a choice of p.

• In Section 4.2, we show that for a piecewise constant p, the fundamental solutions
Φ(z, ·) = (Φ+(z, ·),Φ−(z, ·)) of (τp − z)f = 0, z ∈ C \ (−∞, 0] are completely de-
termined by Λ and p. Theorem 4.2.2 presents an iterative, matrix-based procedure
that solves the given differential equation locally on intervals Ik determined by the
transition points (knots) of p. An explicit form of Φ is obtained by computing
the “connection coefficients” a±k , b

±
k that continuously piece together all the local

solutions of (τp − z)f = 0 based on some continuity conditions. This direct com-
putability of Φ is what makes piecewise constant functions a suitable choice for a
parametrizing function.

• In Section 4.3, we prove a number of identities relating the quantities a±k , b
±
k using

Wronskian determinants on each Ik. Together with methods on the spectral theory
of Sturm-Liouville operators, these identities are used to prove an important result,
Theorem 4.3.3, that gives an explicit form of the spectral matrix measure dµ for
Ap. Such a result is a consequence of having explicit formulas for Φ, and it further
justifies our point of choosing piecewise constant parametrizing functions.

• In Section 4.4, we discuss the computability of the reproducing kernel kΛ of PWΛ(Ap)
for piecewise constant p. By the computability of both Φ and dµ, we show in
Theorem 4.4.1 that kΛ can be expressed as an integral whose integrand is completely
determined by Λ and p. Previous results indicate that calculability of evaluations of
kΛ at any point is equivalent to the computability of an oscillatory parameter integral
J(s) for any s ∈ R. We then study elementary properties of J and enumerate
quadrature methods as well as numerical routines in Matlab and Mathematica
that are useful in computing J(s) numerically. Issues on the accuracy of such
numerical methods are then identified.

Chapter 5 demonstrates the computability of kΛ when p has two or three piecewise
constant components. First, the necessary quantities are directly computed using Theo-
rems 4.2.2 and 4.3.3. Then, we show that J can be evaluated at any point using (i) an
explicit formula when p has two piecewise components, and (ii) an infinite series (in
terms of the cardinal sine functions) with geometric convergence when p has three piece-
wise components. Unlike the numerical methods mentioned in Chapter 4, in both cases
we have an accurate and robust numerical evaluation of J , hence kΛ, at any point.

• In Section 5.1, we consider the so-called toy example (two-component piecewise
constant p, knot at 0) from [39, Sec. 4] and reproduce their computation of kΛ in
Theorem 5.1.1.

• In Section 5.2, we perform the same procedure to compute kΛ when p is a three-
component piecewise constant function whose knots are symmetric at the origin.
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Here, we illustrate the sudden increase in difficulty when the number of piecewise
parameters of p is increased. In Theorem 5.2.3, we express J as a series expansion
involving cardinal sine functions. We also show that for any s ∈ R, the partial sums
JM(s), M ∈ N of this expansion converge to J(s) at a geometric rate. We then use
this expansion to express the nine piecewise components of kΛ in Theorem 5.2.5. We
also show that degenerate forms of the resulting kernel are precisely the translates
of the reproducing kernel in Section 5.1.

Chapter 6 is a discussion on the necessary density conditions for sampling and in-
terpolation in PWΛ(Ap). We show that the natural assumptions on the geometry (i.e.,
continuity of metric, finiteness and non-degeneracy of balls, and weak annular decay) as
well as the reproducing kernel (i.e., boundedness of diagonal, weak localization and ho-
mogeneous approximation properties) needed to apply the main result in [31] are indeed
satisfied by PWΛ(Ap) with piecewise constant p. We also mention that in contrast to [39],
our contributions do not require scattering theory to derive asymptotic estimates of the
reproducing kernel.

• In Section 6.2, we prove in Lemma 6.2.1 that the measure µp generated by a piece-
wise constant p is equivalent to the Lebesgue measure, implying that the geometric
assumptions are automatically satisfied.

• In Section 6.3, we prove that kΛ satisfies the required kernel assumptions. First,
we show in Theorem 6.3.2 that kΛ has bounded diagonal. Next, Theorem 6.3.4
allows us to estimate averaged traces tr± in terms of the averaged integral of the
diagonal, and in turn yields an exact value of the critical density. Then, Lemma
6.3.5 states that for spectral sets that are compact intervals, kΛ exhibits off-diagonal
decay. Consequently, we prove the weak localization (Lemma 6.3.6) and homoge-
neous approximation (Lemma 6.3.8) for spectral sets that are compact intervals. A
more general version of these properties are proved in Appendix C. In order to use
the results in [31], Proposition 6.3.1 translates the above properties of kΛ to the
reproducing kernel of the correct space.

• In Section 6.4, we summarize our results and finally prove the density theorem in
PWΛ(Ap) in Theorem 6.4.1.

Chapter 7 is concerned with the numerical aspects of sampling and reconstruction of
function of variable bandwidth as well as the numerical implementation of reconstruction
algorithms.

• In Section 7.1, we follow the discussion in [4, 5] and present frame-theoretic results
on the numerical approximation of a function in some reproducing kernel Hilbert
space. Given only point samples of a function we introduce a finite-dimensional
regularized reconstruction method that is based on least squares approximation
combined with truncation of singular values of finite sections of the Gramian. We
also have a note on choosing an appropriate tolerance value for the regularization
procedure.

• In Section 7.2, we generate sets of stable sampling that will be used in the forth-
coming simulations. We mainly use uniform samples as well as perturbations of
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uniform samples in our experiments. We also have an algorithm that generates a
set of stable sampling that has uniform Beurling density and has almost uniform
sampling on local intervals.

• In Section 7.3, we perform a number of simulations to test our theoretical results as
well as to investigate from a numerical perspective a number of relevant problems in
variable bandwidth. We restrict our experiments to the two- and three-component
piecewise functions as we already have necessary quantities in Chapter 5 at our
disposal. Our main point is to demonstrate that for functions where local bandwidth
is present, approximation by functions of variable bandwidth performs better than
approximation by bandlimited functions. We also take a look at how the quality of
reconstruction is influenced by the parametrizing function as well as the density of
sampling sets.

The Appendix contains calculations, theoretical results, as well as Matlab codes and
plots that serve as supplementary material to Chapters 5, 6, and 7, respectively.

• In Appendix A we collect some of the important routines used in the numerical sim-
ulations in Chapter 7 as well as plots showing the performance of the reconstruction
as the piecewise parametrizing function varies.

• In Appendix B we show using complex analytic methods that for a special case
of a three-component piecewise p, J can be expressed as a piecewise function that
involves special functions. Such a formula serves as an alternative to a special case
of Theorem 5.2.3 where we have an infinite series expansion to compute J(s) for
any s ∈ R up to desired accuracy.

• In Appendix C we present rather lengthy proofs of the weak localization and ho-
mogeneous approximation properties of the reproducing kernel of kΛ when Λ is a
bounded Borel set. These results are used in Theorem 6.4.1 as it allows us to extend
the theorem to bounded spectral sets. The proofs are almost identical to the ones
given in [39, Sec. 7] but with some adjustments.
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2. Preliminaries

We have seen from Section 1.2 that the Paley-Wiener space PWω(R) of ω-bandlimited
functions is the range of an orthogonal projection defined using the Fourier transform
operator F . Moreover, F unitarily diagonalizes −D2, i.e., equation (1.2.1) holds on some
dense subspace of L2(R). This idea can be extended to differential operators −D(pD)
for some positive function p. Our goal is to find an operator which unitarily diagonalizes
−D(pD) and use it to construct an orthogonal projection whose range is then called a
Paley-Wiener space of variable bandwidth functions. The spectral theory of self-adjoint
Sturm-Liouville operators naturally comes as our main tool to solve the given problem.

In this chapter, we provide the necessary notation, definitions and some results that
we shall use throughout the dissertation. These can be found in standard references on
reproducing kernel Hilbert spaces, Fourier analysis, time-frequency analysis and frame
theory (e.g. [10, 22, 38, 42, 75]), and on functional analysis with topics on unbounded
operators (e.g. [20, 28, 59, 65, 68, 69, 77, 79, 81]), specifically on Sturm-Liouville operators
(e.g. [50, 80, 82]). General results on the spectral theory of self-adjoint Sturm-Liouville
operators are stated in the context of the operator −D(pD). In particular, we apply the
spectral representation theorem for self-adjoint Sturm-Liouville operators to a self-adjoint
operator associated to −D(pD) to derive the sought-after unitary operator. With this
unitary operator we can precisely define the Paley-Wiener space of variable bandwidth
functions corresponding to a choice of p.

The reader is assumed to be familiar with linear operators in Hilbert spaces, elementary
differential equations, and complex analysis. Most proofs will be omitted and we refer
the reader to the above references and cited literature for a detailed discussion.

We denote by H a Hilbert space with the inner product ⟨·, ·⟩H and norm ∥ · ∥H (or
just ⟨·, ·⟩, ∥ · ∥ if H is clear from the context). We assume that H is separable, and the
inner product is linear in the first argument and conjugate linear in the second. Unless
otherwise stated, operators between Hilbert spaces are assumed to be linear.

The following notations for known function spaces will be used throughout the manuscript.

(i) For 1 ≤ r ≤ ∞ and E a Lebesgue measurable set, the space Lr(E) is the collection
of (equivalence classes of) Lebesgue measurable functions f : E → C for which the
norm

∥f∥r =


(∫

E

|f(x)|r dx
) 1

r

, 1 ≤ r < ∞

ess sup
x∈E

|f(x)|, r = ∞

is finite. We denote by χE the characteristic function of E and |E| = ∥χE∥1 the
Lebesgue measure of E.

(ii) For 1 ≤ r ≤ ∞, and X a non-empty set, the space ℓr(X) is the set of all complex-
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2. Preliminaries

valued sequences s = {s(x)}x∈X for which the norm (by abuse of notation)

∥s∥r =


(∑

x∈X

|s(x)|r
) 1

r

, 1 ≤ r < ∞

ess sup
x∈X

|s(x)|, r = ∞

is finite.

(iii) The set of all locally p-integrable functions, denoted Lp
loc(E), is given by

Lp
loc(E) = {f : E → C measurable : f↾K ∈ Lp(K) ∀K ⊂ E,K compact} .

(iv) Let (a, b) ⊆ R be an open interval. A function f : (a, b) → C is said to be abso-
lutely continuous on (a, b) if there exists another function g ∈ L1

loc(a, b) (uniquely
determined a.e.) such that the fundamental theorem of calculus holds, i.e., there
exists c ∈ (a, b) such that

f(x) = f(c) +

∫ x

c

g(t) dt

for a.e. x ∈ (a, b). We refer to g as the (weak) derivative of f , and we write g =
Df = f ′, with D as the differentiation operator. The vector space of absolutely
continuous functions on (a, b) is denoted by AC(a, b). For a compact interval [a, b],

AC[a, b] = {f ∈ AC(a, b) : f ′ ∈ L1(a, b)}.

(v) The set of locally absolutely continuous functions on R, denoted ACloc(R), is the
collection

ACloc(R) = {f : R → C : f ∈ AC[c, d] for all [c, d] ⊂ R} .

2.1. Review of unbounded operators

We briefly review some notations and terminologies on unbounded operators. We follow
parts of the discussion in [20, Chap. 6]. An (unbounded) operator in a Hilbert space H
is a pair (A,D(A)), where the domain D(A) ⊂ H is a linear subspace and A : D(A) → H
is a linear map. For convenience, we may use the shorthand notation A to mean (A,D(A))
but with the constant reminder that a domain D(A) is always implicitly meant to be
defined alongside A. An operator A is densely defined if D(A) is dense in H. We also
say that A is closed if its graph

graph(A) = {(x,Ax) : x ∈ D(A)}

is a closed linear subspace of H ×H with respect to the product topology. An operator
(A2,D(A2)) is an extension of (A1,D(A1)) if

D(A1) ⊂ D(A2) and A1x = A2x for all x ∈ D(A1).
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2.1. Review of unbounded operators

Put in another perspective, we say that A1 is the restriction of the map A2 : D(A2) → H
onto D(A1). We use the notation A1 ⊂ A2 to denote such relation. The operators A1 and
A2 are equal if A1 ⊂ A2 and A2 ⊂ A1, and we denote this equality by A1 = A2.
Perhaps the most important concept that will be used here is the adjoint of an operator.

Let A be a densely defined operator on H. The adjoint operator (A∗,D(A∗)) (or simply
A∗) of A, where D(A∗) ⊂ H, A∗ : D(A∗) → H, is defined as follows. The domain D(A∗)
is the linear subspace

D(A∗) = {y ∈ H : there exists c > 0 such that |⟨y, Ax⟩| ≤ c∥x∥ for all x ∈ D(A)} ,

and for y ∈ D(A∗), A∗y ∈ H is the unique element1 of H for which

⟨A∗y, x⟩ = ⟨y, Ax⟩

for all x ∈ D(A). For adjoints of extensions, it can be shown that if A1 ⊂ A2, then
A∗

2 ⊂ A∗
1.

We also consider classes of unbounded operators defined using the adjoint. A densely
defined operator A on H is called symmetric (or Hermitian) if A ⊂ A∗. This is
equivalent to saying that

⟨Ay, x⟩ = ⟨y, Ax⟩

for all x, y ∈ D(A). Further classification of symmetric operators is as follows. We say
that a symmetric operator A is

(i) positive if ⟨Ax, x⟩ ≥ 0 for all x ∈ D(A),

(ii) self-adjoint if A = A∗

Next, we define resolvents and spectrum for closed unbounded operators. Let A be a
closed operator on H. The resolvent set ρ(A) ⊂ C of A is given by

ρ(A) = {z ∈ C : A− z is bijective and (A− z)−1 is bounded}.

By A−z we mean A−z · idH : D(A) → H, where idH(u) = u for all u ∈ H. For z ∈ ρ(A),
we call Rz(A) = (A − z)−1 the resolvent of A at z. The complement σ(A) = C \ ρ(A)
of the resolvent set ρ(A) in C is called the spectrum of A. Elements of the spectrum
include (if it has any) the eigenvalues of A, i.e., λ ∈ σ(A) is an eigenvalue of A if there
exists a nonzero f ∈ D(A) such that Af = λf . We list the following relevant facts.

(i) The resolvent set ρ(A) is an open subset of C, hence the spectrum σ(A) is a closed
subset of C [79, Thm. 5.14].

(ii) Self-adjoint operators are maximal in the sense that they do not have any proper
self-adjoint extensions.

(iii) If A is self-adjoint, then σ(A) ⊆ R [79, Thm. 5.23].

1This means that A∗ is well-defined and is a consequence of D(A) being dense and the Riesz repre-
sentation theorem.
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(iv) A self-adjoint operator A is positive if and only if σ(A) ⊆ [0,∞) [59, Thm. 10.38a].

Example 2.1.1. Let (X, E , µ) be a measure space and g : X → C a measurable function.
The (maximal) multiplication operator (Mg,D(Mg)) is defined as

D(Mg) = {φ ∈ L2(X,µ) : gφ ∈ L2(X,µ)},
Mgφ = gφ, φ ∈ D(Mg).

It follows that M∗
g = Mg. In particular, Mg is self-adjoint if and only if g is real-valued

a.e., and for a self-adjoint Mg, the spectrum is

σ(Mg) = {x ∈ R : µ(g−1((x− ϵ, x+ ϵ))) > 0 for all ϵ > 0}.

For additional facts on multiplication operators, see e.g. [65, Sec. 5.1]. △

The main fact about unbounded self-adjoint operators is the spectral theorem. This
result can be seen as the generalization of the well-known unitary diagonalizability of
Hermitian matrices [44, Thm. 2.5.6]. Several formulations of the spectral theorem exist in
the literature, see for instance the versions found in [69, Sec. VIII]. One of the statements
assert that self-adjoint operators are unitarily equivalent to a multiplication operator. We
state a more precise statement of this result [81, Thm. 8.17].

Theorem 2.1.2. Let (A,D(A)) be a self-adjoint operator in a separable Hilbert space H.
Then there exists a σ-finite measure space (X, E , µ), a µ-measurable function g : X → R,
and a unitary map U : H → L2(X,µ) such that UAU−1 = Mg.

We now see that self-adjoint operators associated to the operator −D2 lead to the
motivating observation (1.2.1). Since the procedure in defining Paley-Wiener spaces of
variable bandwidth functions involves a transition from −D2 to −D(pD), it would be
useful if we can get more information on the unitary map U corresponding to −D(pD).
Fortunately, there is the so-called spectral representation theorem for self-adjoint opera-
tors. This spectral representation takes the multiplier g of Mg to be the identity function
in a certain Lebesgue space of square-integrable functions. We introduce this concept
given in [81, Sec. 8.1]. Let A be a self-adjoint operator in H. A unitary operator

U : H →
⊕
j∈J

L2(R, µj) =

{
(fj)j∈J ∈

∏
j∈J

L2(R, dµj) :
∑
j∈J

∥fj∥2L2(R,µj)
< ∞

}
with J an at most countably infinite index set and {µj}j∈J a family of Borel measures on
R is called a spectral representation of A if UAU−1 = Mid, where id is the identity
function in

⊕
j∈J L

2(R, µj). We call U an ordered spectral representation of A if

additionally, µj+1 is absolutely continuous2 with respect to µj for all j ∈ J .
We end this section by stating the following important result [81, Thm. 8.16].

Theorem 2.1.3 (Spectral representation theorem). Every self-adjoint operator A in a
separable Hilbert space has an (ordered) spectral representation U of A.

For self-adjoint operators associated to differential operators, there is a straightforward
method to derive the corresponding spectral representation. This will be tackled in the
next section.

2Given two measures µ and ν on a measure space (X, E), we say µ is absolutely continuous with
respect to ν, denoted µ ≪ ν, if µ(E) = 0 for every measurable set E ∈ E satisfying ν(E) = 0.
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2.2. Spectral theory of some self-adjoint Sturm-Liouville
operators

We now discuss relevant aspects of the spectral theory of self-adjoint Sturm-Liouville
operators. Our main references are [28, 77, 80, 82]. The formal3 second-order differential
operator

(τf)(x) = −(pf ′)′(x) + q(x)f(x)

defined for a.e. x ∈ (a, b) ⊆ R and some real-valued functions p and q on (a, b) is called
a (formal) Sturm-Liouville operator. Throughout the manuscript we only consider
Sturm-Liouville operators on (a, b) = R of the form

(τpf)(x) = −(pf ′)′(x),

where p > 0 a.e. and 1
p
∈ L1

loc(R). We also have for a.e. x ∈ R and z ∈ C the Sturm-
Liouville equation corresponding to τp given by

(τpf)(x) = zf(x), (2.2.1)

which we write as (τp − z)f = 0 on R.
With regularity conditions on p, (e.g. p, p′ ∈ ACloc(R)), a Sturm-Liouville operator may

be transformed into a corresponding Schrödinger operator τ̃qu = −u′′+qu for some q. Op-
erators generated by τ̃q admit properties similar to those of τp via unitary transformation
(see some of the relevant properties in [39, Lem. 6.7]).
In the present work, we stick to τp since we will later consider a p where such a trans-

formation cannot be applied. This distinguishes part of our work from [39]. It is for
this reason that we state applications of general results for Sturm-Liouville operators
exclusively to operators τp.
Functions that satisfy (2.2.1) play a crucial role in determining spectral representations

of self-adjoint Sturm-Liouville operators. Let z ∈ C. A solution of (τp−z)f = 0 on R is a
function ϕ such that ϕ, pϕ′ ∈ ACloc(R) and satisfies (τp−z)ϕ = 0 a.e. For Sturm-Liouville
initial value problems, we have the classical result on the existence and uniqueness of
solutions [82, Cor. 13.3]. See also [77, Thm. 9.1], where an additional conclusion that the
solutions are entire in z is added. The standard procedure in solving the homogeneous
equation (τp − z)f = 0 analytically is as follows. Since τp is a differential expression of
order two, the set of solutions of (τp − z)f = 0, z ∈ C fixed, forms a two-dimensional
complex vector space of complex-valued functions. Among the solutions, we select two
solutions uz and vz of (τp−z)f = 0 such that the (modified) Wronskian determinant

Wx(uz, vz) =

∣∣∣∣ uz(x) vz(x)
p(x)u′

z(x) p(x)v′z(x)

∣∣∣∣ = uz(x)(pv
′
z)(x)− vz(x)(pu

′
z)(x) (2.2.2)

is nonzero for some x ∈ R. This is a necessary and sufficient condition for uz and vz to
be linearly independent [77, Thm. 9.1], [80, Thm. 5.1]. With these linearly independent
solutions the general solution yz of (τp − z)f = 0 takes the form

yz(x) = c1uz(x) + c2vz(x) for a.e. x ∈ R,

where c1, c2 ∈ C can be chosen arbitrarily.

3In the sense that we have not specified a dense domain on which the operator is well-defined and
square-integrable.
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Remark 2.2.1. The Wronskian determinant of solutions of (2.2.1) is independent of x.
Indeed, let z ∈ C be fixed. If uz and vz are solutions of (τp − z)f = 0, differentiating
Wx(uz, vz) with respect to x yields

∂
∂x
Wx(uz, vz) = uz(x)(pv

′
z)

′(x)− vz(x)(pu
′
z)

′(x) = 0

for a.e. x ∈ R. This means that for a fixed z ∈ C, Wx(uz, vz) is constant in x. Hence, we
may drop the variable x and simply write Wx(uz, vz) as W (uz, vz).

For z ∈ C, any set {uz, vz} of solutions of (τp − z)f = 0 for which Wx(uz, vz) ̸= 0
for some (hence for all by Remark 2.2.1) x ∈ R is called a fundamental system (or
fundamental set of solutions) of (τp − z)f = 0. In later discussions we conveniently
denote a fundamental system {uz, vz} by an ordered pair (uz, vz). Most of the results
stated later will assume that we have a fundamental system with continuous or analytic
dependence in z.
We now go to relevant operator-theoretic aspects of Sturm-Liouville theory. To a given

τp corresponds the maximal operator (Ap,D(Ap)) given by

D(Ap) = {f ∈ L2(R) : f, pf ′ ∈ ACloc(R) and τpf ∈ L2(R)},
Apf = τpf, f ∈ D(Ap).

It was proved in [80, Thm. 3.7] that Ap is densely defined. We can think of the maximal
operator Ap of τp as essentially the same τp defined on the largest subset of L2(R) for
which τpf is well-defined and whose range is contained in L2(R).
In the succeeding discussions, we seek self-adjoint operators associated to τp. These

operators are called self-adjoint realizations of τp and are restrictions of the maximal
operator onto dense subspaces of D(Ap). See [80, Chap. 3] for an in-depth discussion.
In particular, we investigate conditions for which the maximal operator Ap of τp is self-
adjoint, i.e., Ap is the unique self-adjoint realization of τp. To this end, we introduce
the following notions [82, Sec. 13.3], cf. [77, Sec. 9]. A Lebesgue measurable function
f : R → C lies right in L2(R) if f ∈ L2(c,∞) for some c ∈ R. Correspondingly,
we say f lies left in L2(R) if f ∈ L2(−∞, c) for some c ∈ R. An application of [80,
Thm. 5.6], [82, Thm. 13.18] characterizes τp in terms of the behavior of the solutions of
(τp − z)f = 0, z ∈ C near ±∞

Theorem 2.2.2 (Weyl alternative). Given the formal Sturm-Liouville operator τp, exactly
one of the following must hold:

(i) for every z ∈ C, all solutions ϕz of (τp − z)f = 0 lie right in L2(R), or

(ii) for every z ∈ C, there exists at least one solution ϕz of (τp − z)f = 0 which does
not lie right in L2(R). In this case, we have that for every z ∈ C \ R, there exists
a unique (up to a constant factor) solution ϕz of (τp − z)f = 0 which lies right in
L2(R).

The same result holds for “lies left in L2(R)”.

We can now use the following terminologies, first introduced by H. Weyl in his paper
[83]. We say that τp is in the limit circle case at ∞ if (i) of the Weyl alternative holds.
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Otherwise, if (ii) holds, τp is in the limit point case at∞. The limit circle and limit point
cases at −∞ are defined analogously. The notions of limit circle and limit point at the
endpoints allow us to classify τp in terms of its admissible self-adjoint realizations. In this
thesis, only Sturm-Liouville operators in the limit point case at ±∞ will be considered.
For this particular case, we have the following theorem [82, Thm. 13.21(a)] applied to τp.

Theorem 2.2.3. If τp is in the limit point case at ±∞, then Ap is the only self-adjoint
realization of τp.

While it certainly is not straightforward to determine whether τp is in the limit circle
or limit point case at an endpoint, we can use the so-called limit point-limit circle
criteria that enumerates sufficient conditions for which τp is in the limit circle or limit
point at an endpoint [82, Sec. 13.4]. For our purpose, we appeal to [82, Thm. 13.24,
Cor. 13.25] applied to τp as well as Theorem 2.2.3 to derive the following criterion.

Theorem 2.2.4. Let p be a function such that p > 0 a.e. and 1
p
∈ L1

loc(R). Define for
x ∈ R the function

g(x) =

∫ x

0

1

p(t)
dt.

If g ̸∈ L2(0,∞) and g ̸∈ L2(−∞, 0), then τp is in the limit point case at ±∞. Conse-
quently, Ap is self-adjoint.

For instance, if p > 0 a.e. and is eventually constant (referred to as the model case in
[39]), i.e.,

p(x) =

{
p−, x < −R,

p+, x > R
(2.2.3)

for some p+, p−, R > 0, then τp is in the limit point case at ±∞. Indeed, we know from
the local integrability of 1

p
that for x ≥ R,

g(x) =
1

p+
(x+ c), c =

∫ R

0

1

p(t)
dt− R

p+
∈ R.

Consequently, g ̸∈ L2(0,∞) since∫ ∞

0

|g(x)|2 dx ≥ 1

p2+

∫ ∞

R

(x+ c)2 dx = ∞.

A similar proof can be done to prove the other non-membership.
It is possible to draw conclusions on the spectrum σ(Ap) of Ap if p satisfies additional

conditions. We know that since Ap is positive, σ(Ap) ⊆ [0,∞). An application of a
theorem [80, Thm. 15.1] to τp in the limit point case at ±∞ gives a sufficient condition
for the reverse inclusion, hence set equality, to be true.

Theorem 2.2.5. Let Ap be the self-adjoint realization of τp in the limit point case at ±∞.
If there exist C1, C2 > 0 such that

lim inf
L→∞

1

L

∫ L

0

∣∣∣∣1− C1

p(u)

∣∣∣∣ du = 0 = lim inf
L→∞

1

L

∫ 0

−L

∣∣∣∣1− C2

p(u)

∣∣∣∣ du,
then σ(Ap) = [0,∞).
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Now that the necessary results to establish self-adjointness of the maximal operator Ap

are in place, we now discuss the spectral representation theorem for self-adjoint Sturm-
Liouville operators. To state the theorem, we need the notion of square-integrable func-
tions with respect to a matrix-valued measure. We adopt the definition in [28, Sec. XIII.5].
A family µ = {µjl}nj,l=1 of complex-valued set functions defined on bounded Borel subsets
of R is called an n× n positive matrix measure if

(i) for every bounded Borel subset E of R, the complex matrix [µjl(E)]nj,l=1 is Hermitian
and positive semi-definite, and

(ii) for each sequence {Em}∞m=1 of disjoint, bounded Borel subsets of R with bounded
union, we have

µjl

(
∞⋃

m=1

Em

)
=

∞∑
m=1

µjl(Em) for 1 ≤ j, l ≤ n.

In this thesis, it is enough to consider 2× 2 positive matrix measures µ and the function
space L2(R, dµ) of C2–valued measurable functions F = (F1, F2), F1, F2 : R → C for
which

∥F∥L2(R,dµ) =

{
2∑

j,l=1

∫
R
Fj(λ)Fl(λ) dµij(λ)

}1/2

< ∞.

This space is endowed with the inner product

⟨F,G⟩L2(R,dµ) =

∫
R
F (λ) ·G(λ)dµ(λ) =

2∑
j,l=1

∫
R
Fj(λ)Gl(λ)dµjl(λ)

for F = (F1, F2), G = (G1, G2) ∈ L2(R, dµ). Of particular interest are 2 × 2 positive
matrix measures µ whose components µjl are absolutely continuous with respect to the
Lebesgue measure. In this case, we say that µ is absolutely continuous with respect to
the Lebesgue measure. By the Radon-Nikodym Theorem, we can find positive Lebesgue
measurable functions {Mjl}2j,l=1 such that for every bounded Borel subset E of R,

µjl(E) =

∫
E

Mjl(λ) dλ, 1 ≤ j, l ≤ 2.

Thus, we can write dµ as the matrix of densities

dµ = M dλ =

[
M11 M12

M21 M22

]
dλ. (2.2.4)

Moreover, the matrix M is positive semi-definite a.e. [28, Lem. XIII.5.7].
We are now ready to state the spectral representation theorem for Sturm-Liouville

operators. The statements in [77, Lem. 9.13], [82, Thm. 14.1] are direct applications of
the spectral representation theorem in Theorem 2.1.3. However, instead of working on a
direct sum of Hilbert spaces, the space L2(R, dµ) constructed using matrix measures as
above will be used. In [80, Sec. 8] the notion of spectral representation of a self-adjoint
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operator has been extended to the case where the spectral representation is a unitary
operator of the form

U : L2(R) → L2(R, dµ)
with µ a positive matrix measure. See for instance [28, Thm. XIII.5.23], [77, Lem. 9.28],
[79, Thm. 8.7], [82, Thm. 14.3] for the construction. We will adopt the following version
[39, Thm. 2.3] of the spectral representation theorem for self-adjoint Sturm-Liouville op-
erators below. The statement includes a Borel functional calculus that gives meaning to
applying bounded Borel functions to self-adjoint operators.

Theorem 2.2.6. Let Ap be the self-adjoint realization of τp in the limit point case at ±∞.
Suppose

Φ(λ, x) = (Φ1(λ, x),Φ2(λ, x)), λ, x ∈ R
is a fundamental system of (τp − λ)u = 0 that continuously depends on λ. Then there
exists a 2× 2 positive matrix measure µ such that the map

FAp : L
2(R) → L2(R, dµ), FApf(λ) =

∫
R
f(x)Φ(λ, x) dx (2.2.5)

is a spectral representation of Ap, i.e., FApApF−1
Ap

G(λ) = λG(λ) for all G ∈ L2(R, dµ).
The inverse F−1

Ap
has the form

F−1
Ap

G(x) =

∫
R
G(λ) · Φ(λ, x) dµ(λ) =

2∑
j,l=1

∫
R
Gj(λ)Φl(λ, x)dµjl(λ), G ∈ L2(R, dµ).

Moreover, for any bounded Borel function g on R,

g(Ap)f(x) =

∫
R
g(λ)FApf(λ) · Φ(λ, x) dµ(λ), f ∈ L2(R). (2.2.6)

All integrals are assumed to be the L2(R)–limit of integrals lim β→∞
α→−∞

∫ β

α
. Equation

(2.2.6) with g = χΛ for some Borel set Λ ⊆ R+
0 yields the expression

χΛ(Ap)f(x) =

∫
Λ

FApf(λ) · Φ(λ, x) dµ(λ) = F−1
Ap

(χΛFApf)(x), (2.2.7)

called the spectral projection from L2(R) onto the spectral subspace corresponding to
spectral values in Λ. We refer the reader to [77, Chap. 9], [80, Chap. 8] on the fine details.
It is possible to use a fundamental system Φ(z, ·) = (Φ1(z, ·),Φ2(z, ·)) of (τp − z)f = 0

that is not defined in the entire complex plane. If the above fundamental system depends
continuously in z in a neighborhood Q of an interval I ⊂ R, then the map

FAp : L
2(R) → L2(I, dµ), FApf(λ) =

∫
R
f(x)Φ(λ, x) dx

can be loosely described as a spectral representation of the part of Ap corresponding
to spectral values4 in I. Here, L2(I, dµ) can be viewed as isometrically embedded to

4Such a statement can be made precise by a thorough discussion of projection-valued measures as
well as resolution of the identity (spectral families on Hilbert spaces). We refer the reader to [77, Sec. 3]
and [79, Sec. 7.2].
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L2(R, dµ) by considering functions in L2(I, dµ) as functions in L2(R, dµ) whose compo-
nents vanish outside I. For a proof, see [28, Sec. XIII.5.12], [80, Thm. 9.7].
Following [45], we may refer to the spectral representation FAp as the spectral (Fourier)

transform of Ap. We refer to µ in the above theorem as the spectral matrix5 measure
of Ap.
At this point, we already know how to form the spectral representation FAp from a

fundamental system {u1(z, ·), u2(z, ·)}. We now look for possible means to compute the
matrix representation dµ as in (2.2.4). We apply the methods of [80, Chap. 9] (see also
[28, Sec. XIII.5]) in our derivation. It turns out that two explicit forms of the resolvent
Rz(Ap) of Ap are the key tools in the derivation of µ. We now present two theorems which
will be frequently used in Chapter 4.
The first theorem [80, Thm. 7.8] says that the resolvent can be expressed in terms of

two solutions, one of which lies left and the other lies right in L2(R) in the case of τp in
the limit point case at ±∞. We refer the reader to [82, Thm. 13.21] for a discussion in a
broader setting.

Theorem 2.2.7. Let Ap be the self-adjoint realization of of τp in the limit point case at
±∞. Suppose z ∈ ρ(Ap). Then there exist unique (up to a constant factor) solutions
u1(z, ·) and u2(z, ·) of (τp − z)f = 0 which lie right and lie left in L2(R), respectively.
Moreover, the resolvent Rz(Ap) = (Ap − z)−1 is given by

Rz(Ap)g(x) =
1

W (u1(z, ·), u2(z, ·))

{
u1(z, x)

∫ x

−∞
u2(z, y)g(y) dy + u2(z, x)

∫ ∞

x

u1(z, y)g(y) dy

}
.

We also define the resolvent kernel (or Green’s function)

rz(x, y) =
1

W (u1(z, ·), u2(z, ·))

{
u1(z, x)u2(z, y), y ≤ x,

u2(z, x)u1(z, y), y > x
(2.2.8)

for all x, y ∈ R, so that Rz(Ap) can be expressed as the integral operator

Rz(Ap)g(x) =

∫
R
rz(x, y)g(y) dy.

The next theorem [80, Thm. 7.7a] gives an alternative form of (2.2.8) and will later be
used to describe the spectral matrix measure of Ap.

Theorem 2.2.8. Let Ap be the self-adjoint realization of τp in the limit point case at ±∞
and z ∈ ρ(Ap). Suppose {u1(z, ·), u2(z, ·)} and {v1(z, ·), v2(z, ·)} are fundamental systems
of (τp − z)f = 0 and (τp − z)f = 0, respectively. Then there exist complex numbers
m±

jl(z), 1 ≤ j ≤ n, z ∈ C\R such that

rz(x, y) =



2∑
j,l=1

m+
jl(z) vj(z, x)ul(z, y), y ≤ x

2∑
j,l=1

m−
jl(z) vj(z, x)ul(z, y), y > x

for all x, y ∈ R.
5This is to distinguish it from the spectral measure generated by a spectral family. See [79, Sec. 7.2]

for more details.
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Let (α, β) ⊂ R+
0 and Q ⊂ C a neighborhood of (α, β). Suppose that {u1(z, ·), u2(z, ·)}

is a fundamental system of (τp − z)f = 0 that continuously depends on z in Q. A
straightforward choice for a fundamental system for (τp − z)f = 0 is {u1(z, ·), u2(z, ·)}.
For z ∈ Q ∩ ρ(Ap), the resolvent kernel in Theorem 2.2.8 can be rewritten as

rz(x, y) =



2∑
j,l=1

m+
jl(z)uj(z, x)ul(z, y), y ≤ x

2∑
j,l=1

m−
jl(z)uj(z, x)ul(z, y), y > x

(2.2.9)

for all x, y ∈ R. Thus, using a single fundamental system, we can derive the 2×2 complex
matrix functions m±(z) = [m±

jl(z)] ∈ C2×2 for z ∈ C \ R.
We now take a look at the interaction between Theorem 2.2.7 and (2.2.9). Observe

that since τp has real coefficients,

(τp − z)f = (τp − z)f

holds. This means that if {u1(z, ·), u2(z, ·)} is a fundamental system of (τp−z)f = 0 which

continuously depends on z, {u1(z, ·), u2(z, ·)} is also a fundamental system of (τp−z)f = 0.

Hence, we can write u1(z, x) and u2(z, x) as a linear combination of u1(z, x) and u2(z, x),
say

uj(z, x) = cj(z)u1(z, x) + dj(z)u2(z, x), j = 1, 2.

for some functions cj, dj, j = 1, 2. Upon substituting the above quantities to corresponding
factors in (2.2.8), we have for instance

rz(x, y) =

{
c1(z)u1(z, x)u2(z, y) + d1(z)u2(z, x)u2(z, y), y ≤ x

c2(z)u1(z, x)u1(z, y) + d2(z)u2(z, x)u1(z, y), y > x.

This yields the matrices

m+(z) =

[
0 c1(z)
0 d1(z)

]
, m−(z) =

[
c2(z) 0
d2(z) 0

]
.

The final step is to find a connection between the spectral measure µ and the matrices
m±. We have the following result [82, Thm. 14.5], cf. [28, Thm. XIII.5.18], [80, Thm. 9.4].

Theorem 2.2.9 (Weyl-Titchmarsh-Kodaira Formula). Let (α, β) ⊆ R+
0 , Q ⊂ C a neigh-

borhood of (α, β), and {u1(z, ·), u2(z, ·)} a fundamental system of (τp − z)f = 0 that
depends continuously on z ∈ Q. With the normalization µ(γ) = 0 for some γ ∈ (α, β),
the equation

µjl((γ, λ]) =
1

2πi
lim
δ↓0

lim
ϵ↓0

∫ λ+δ

γ+δ

(m±
jl(t+ iϵ)−m±

jl(t− iϵ)) dt

holds for all λ ∈ (α, β), j, l = 1, 2.
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This means that we can derive the matrix measure µ = {µij}2j,l=1 using either m+(z)−
m+(z) or m−(z) −m−(z) for Imz > 0. In our computations, we prefer using the matrix
m+. If the fundamental system is further assumed to be analytically dependent on z ∈ Q,
the entries of m± are analytic in Q ∩ ρ(Ap) [28, Thm. XIII.5.18]. If µ is absolutely
continuous with respect to the Lebesgue measure, the matrix M of densities in (2.2.4) is
precisely

M(λ) = lim
ϵ↓0

1

2πi
(m±(λ+ ϵi)−m±(λ− ϵi)).

We note here that one has to be careful when deriving the matrices m±(z) for Imz > 0
and Imz < 0; it can happen that the properties “lies left” and “lies right” of the respective
solutions are swapped when Imz > 0 is changed to Imz < 0.
What remains as far as the spectral matrix measure µ is concerned is to guarantee that

it is in fact absolutely continuous with respect to the Lebesgue measure. We can uniquely
decompose the Borel measure µ as a sum (see [70, Sec. 18.4], [77, Secs. 3, A.7]) of three
mutually singular6 measures

µ = µpp + µsc + µac

defined as follows:

• µpp, the pure point part of µ, is a discrete measure, i.e., there exists a sequence
{aj}j∈I indexed by an at most countably infinite set I such that µpp(R\{aj}j∈I) = 0.
In other words, µpp is supported7 on {aj}j∈I .

• µsc, the singular continuous part of µ, is the part of µ that is supported on a set of
Lebesgue measure zero and satisfies µsc({a}) = 0 for all a ∈ R.

• µac, the absolutely continuous part of µ, is absolutely continuous with respect to
Lebesgue measure, i.e., dµ can be written as (2.2.4).

For the spectral matrix measure µ obtained from the spectral representation of Ap, we
have in [82, Ex. 12.5] the decomposition of L2(R, dµ) as

L2(R, dµ) = L2(R, dµpp)⊕ L2(R, dµsc)⊕ L2(R, dµac),

and the spectrum of Ap can be decomposed [69, Sec. VII.2] as

σ(Ap) = σpp(Ap) ∪ σsc(Ap) ∪ σac(Ap),

where σpp(Ap) is the set of all eigenvalues of Ap, while σsc(Ap) and σac(Ap) are the supports
of µsc and µac, respectively. Thus, to prove µ = µac, we show µpp = 0, i.e., Ap has no
eigenvalues, and µsc = 0. To this end, an application of [80, Thm. 10.14] to τp provides a
sufficient condition on the absence of singular continuous spectrum.

6Two measures µ and ν on a measure space (X, E) are said to be mutually singular if there exists a
measurable set N ∈ E such that µ(E) = 0 and ν(X \ E) = 0. We denote this relation by µ ⊥ ν.

7A support for a measure µ in a measure space (X, E) is a set E ∈ E such that µ(X \ E) = 0. If X
is a topological space and E is the Borel σ-algebra, then the (topological) support of µ is the set of all
points x ∈ X such that µ(Ex) > 0 for every open neighborhood Ex ∈ E of x. The topological support of
µ is closed. See [77, Sec. A.1] for more details.
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Theorem 2.2.10. Let Ap be the self-adjoint realization of τp. Let (α, β) ⊂ R and Q ⊂ C
an open neighborhood of (α, β). Assume that for z ∈ Q there exist solutions u1(z, ·) and
u2(z, ·) of (τp − z)f = 0 analytically dependent on z such that for z ∈ Q+ = {z ∈ Q :
Imz > 0}, u1(z, ·) and u2(z, ·) lies right and lies left in L2(R), respectively. Then σpp(Ap)
has no accumulation point in (α, β) and σsc(Ap) ∩ (α, β) = ∅.

To illustrate the whole procedure, we give an example on the derivation of the spectral
representation and spectral measure of a simple differential operator. Some parts of the
calculations can be found on [77, Secs. 7.2, 9.3], [82, Ex. 14.9]

Example 2.2.11. Let p ≡ 1 a.e. so that τp = −D2 on R. We first note some preliminary
observations.

(i) By Theorem 2.2.4, τp is in the limit point case at ±∞. Hence, by Theorem 2.2.3, τp
has a unique self-adjoint realization Ap which is nothing but its maximal operator,
i.e.,

D(Ap) = {f ∈ L2(R) : f, f ′ ∈ ACloc(R), f ′′ ∈ L2(R)}, Apf = −f ′′.

(ii) Ap is a positive operator with σ(Ap) = [0,∞) by Theorem 2.2.5.

Next, we see that the solutions of the equation −u′′ − zu = 0, z ∈ C \ (−∞, 0] are
completely determined by linear combinations of

u1(z, x) = ei
√
zx and u2(z, x) = e−i

√
zx

since W (u1(z, ·), u2(z, ·)) = −2i
√
z ̸= 0 for all z ∈ C \ (−∞, 0]. Here,

√
z is conveniently

defined to have the branch cut at (−∞, 0] so that
√
z is analytic with Imz · Im

√
z ≥ 0 for

all z ∈ C\ (−∞, 0]. Thus, for z ∈ C\ (−∞, 0], u1(z, ·) and u1(z, ·) are analytic and form a
fundamental system of −u′′− zu = 0. Moreover, Ap has no eigenvalues in [0,∞). Indeed,
if λ ∈ (0,∞), then any nontrivial linear combination of u1(λ, ·) and u2(λ, ·) cannot be in
L2(R). The case λ = 0 shares a similar fate, since a fundamental system of −f ′′ = 0 is
{1, x}. Therefore, µpp = 0.
For the spectral matrix measure µ of Ap, we proceed as follows.

• If Imz > 0, u1(z, ·) lies right and u2(z, ·) lies left in L2(R). Moreover, we have
u1(z, ·) = u2(z, ·) and u2(z, ·) = u1(z, ·). Equation (2.2.8) becomes

rz(x, y) = − 1

2i
√
z
u1(z, x)u2(z, y) =

1

2i
√
z
u2(z, x)u2(z, y), y ≤ x.

• If Imz < 0, u2(z, ·) lies right and u1(z, ·) lies left in L2(R). Equation (2.2.8) becomes

rz(x, y) =
1

2i
√
z
u2(z, x)u1(z, y) =

1

2i
√
z
u1(z, x)u1(z, y), y ≤ x.

From (2.2.9), we have the matrices

m+(z) =
1

2i

[
0 0
0 − 1√

z

]
, Imz > 0 and m+(z) =

1

2i

[ 1√
z

0

0 0

]
, Imz < 0.
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By Theorem 2.2.10, σsc(Ap) ∩ (0,∞) = ∅ and consequently, (0,∞) ⊆ σac(Ap). Since
µsc cannot be supported on {0}, it follows that σ(Ap) = σac(Ap) = [0,∞). Hence, µ is
absolutely continuous with respect to the Lebesgue measure on [0,∞). In turn, Theorem
2.2.9 (Weyl-Titchmarsh-Kodaira formula) yields the matrix of densities

dµ = M(λ)dλ =
1

4π

[
1√
λ

0

0 1√
λ

]
dλ.

Finally, by Theorem 2.2.6, the spectral representation FAp : L2(R) → L2([0,∞), dµ) can
be expressed as the column vector

FApf(λ) =

[∫
R e

−i
√
λxf(x) dx∫

R e
i
√
λxf(x) dx

]
, λ ∈ σ(Ap) = [0,∞).

On the other hand, for G ∈ L2([0,∞), dµ),

F−1
Ap

G(x) =
1

4π

∫ ∞

0

1√
λ
(G1(λ)e

i
√
λx +G2(λ)e

−i
√
λx) dλ

=
1

2π

∫ ∞

0

(
G1(ξ

2)eiξx +G2(ξ
2)e−iξx

)
dξ, ξ =

√
λ. (2.2.10)

△

Now that most of the technical details needed from Sturm-Liouville theory are estab-
lished, we can now demonstrate how the Paley-Wiener space of bandlimited functions can
be derived via the spectral transform of the self-adjoint realization of −D2 on R. This
procedure will be used to define Paley-Wiener spaces of variable bandwidth functions as a
generalization of the classical Paley-Wiener spaces of bandlimited functions. The Fourier
transform Ff = f̂ of f ∈ L2(R) is defined as the L2(R)-limit

Ff(ξ) = f̂(ξ) =

∫
R
f(x)e−iξx dx = lim

N→∞

∫ N

−N

f(x)e−iξx dx, for a.e. ξ ∈ R.

Its inverse F−1, called the inverse Fourier transform, is given by

F−1φ(x) =
1

2π
φ̂(−x) =

1

2π

∫
R
φ(ξ)eiξx dξ = lim

N→∞

1

2π

∫ N

−N

φ(ξ)eiξx dξ, for a.e. x ∈ R.

The support of a function f : R → C, denoted supp(f), is the smallest closed subset of
R for which f does not vanish, i.e.,

supp(f) = {x ∈ R : f(x) ̸= 0}.

Fix ω > 0. The Paley-Wiener space of ω-bandlimited functions (or Paley-Wiener
space of constant bandwidth functions), denoted PWω(R), is the closed subspace of
L2(R) given by

PWω(R) = {f ∈ L2(R) : supp(f̂) ⊆ [−ω, ω]}.
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Using the orthogonal projection Pω : L2(R) → PWω(R) defined as Pωf = χ[−ω,ω]f , we
have that

PWω(R) = F−1PωF(L2(R)).

We claim that PWω(R) can also be written using FA of the self-adjoint realization A
(= Ap, p ≡ 1) of −D2 on R via the spectral projection χ[0,ω2](A) given in (2.2.7). More
precisely,

PWω(R) = χ[0,ω2](A)(L
2(R)) = F−1

A (χ[0,ω2]FA)(L
2(R)). (2.2.11)

Indeed, direct computation of (2.2.6) with g = χ[0,ω2] and mimicking the derivation of
(2.2.10) with G = χ[0,ω2] · FAf for f ∈ L2(R) yields (note FAf(ξ

2) = (Ff(ξ),Ff(−ξ)))

F−1
A (χ[0,ω2]FAf)(x) =

1

2π

∫ ∞

0

χ[0,ω2](ξ
2)
(
Ff(ξ)eiξx + Ff(−ξ)e−iξx

)
dξ

=
1

2π

∫ ω

−ω

Ff(ξ)eiξx dξ, χ[0,ω2](ξ
2) = χ[−ω,ω](ξ)

= (F−1PωFf)(x)

for a.e. x ∈ R. We also have the freedom to use any nonempty subset of R to define other
Paley-Wiener spaces with various supports as above.
It is clear that the standard Paley-Wiener spaces can be derived from Theorem 2.2.6.

We can now extend this procedure to the operator τp to define Paley-Wiener spaces of
variable bandwidth functions.
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In this chapter we formally introduce the notion of variable bandwidth given in [39].
Using formulas for the spectral transform FAp and its inverse F−1

Ap
from Theorem 2.2.6,

we can use the Borel functional calculus (2.2.6) to compute spectral projections onto
spectral subspaces. Let Λ ⊂ R+

0 be a Borel set of finite measure and Ap the self-adjoint
realization of τp in the limit point case at ±∞. We recall from (2.2.7) the spectral
projection χΛ(Ap) : L

2(R) → L2(R) corresponding to the spectral set Λ given by

χΛ(Ap)f(x) =

∫
Λ

FApf(λ) · Φ(λ, x) dµ(λ) = F−1
Ap

(χΛFApf)(x) (3.0.1)

for all f ∈ L2(R). With such a projection operator we define the following.

Definition 3.0.1. Let Ap be the self-adjoint realization of τp in the limit point case at ±∞
and Λ ⊂ R+

0 be of finite measure. The Paley-Wiener space of variable bandwidth
functions (or Λ-bandlimited functions with respect to Ap), denoted PWΛ(Ap), is
the range of the spectral projection χΛ(Ap), i.e.,

PWΛ(Ap) = χΛ(Ap)(L
2(R)).

We refer to Λ as the spectral set and the a.e. positive function p the bandwidth-
parametrizing function. Equivalently, a function f ∈ L2(R) belongs to PWΛ(Ap) if
f = χΛ(Ap)f .

We have seen at the end of Section 2.2 in conjunction with Example 2.2.11 that the
classical Paley-Wiener space of ω-bandlimited functions PWω(R) can be expressed in
the above form. Definition 3.0.1 falls under the abstract notion of bandlimited vectors
introduced by I. Pesenson and A. Zayed in [45, 66]. We appeal to the result [39, Prop. 3.2]
that enumerates basic properties of variable bandwidth functions that resemble those of
bandlimited functions.

Proposition 3.0.2. Let Λ ⊂ R+
0 be of finite measure and Ap the self-adjoint realization

of τp in the limit point case at ±∞. Let µ and FAp be the spectral matrix measure and
spectral transform of Ap, respectively. The following are equivalent:

(i) f ∈ PWΛ(Ap),

(ii) supp FApf ⊆ Λ,

(iii) there exists a function F ∈ L2(R, dµ) such that

f(x) =

∫
Λ

F (λ) · Φ(λ, x) dµ(λ) for a.e. x ∈ R.

37



3. Functions of variable bandwidth

If additionally, Λ = [0,Ω], the following conditions are equivalent to the first three:

(iv)
∣∣∣∣Ak

pf
∣∣∣∣ ≤ Ωk ||f || for all k ∈ N,

(v) for all g ∈ L2(R), the function z 7→ ⟨ezApf, g⟩ is an entire function of exponential
type Ω, i.e., for any ϵ > 0, there exists Cϵ > 0 such that

|⟨ezApf, g⟩| ≤ Cϵe
(Ω+ϵ)|Imz|, z ∈ C.

3.1. Reproducing kernel Hilbert spaces

The central theme of this thesis revolves around a particular class of Hilbert spaces. Let
E be a non-empty set. A function k : E ×E → C is a reproducing kernel of a Hilbert
space H of functions from E to C if

(i) for every x ∈ E, k(x, ·) ∈ H, and

(ii) for every x ∈ E and for every φ ∈ H, φ(x) = ⟨φ, k(x, ·)⟩.

It follows from the above conditions that

k(x, y) = ⟨k(x, ·), k(y, ·)⟩

for all x, y ∈ E. A Hilbert space of complex functions that possesses a reproducing kernel
is called a reproducing kernel Hilbert space. The following result [10, Thm. 1] is an
elementary characterization of reproducing kernel Hilbert spaces. For an extensive study,
consult [8, 10].

Theorem 3.1.1. A Hilbert space of functions from E to C is a reproducing kernel Hilbert
space if and only if for every x ∈ E, the evaluation functional f 7→ f(x), f ∈ H is
continuous.

As a consequence, norm convergence of a sequence of functions in a reproducing kernel
Hilbert space implies pointwise convergence [10, Cor. 1]. Moreover, it was proved in [60,
Prop. 3.1] that boundedness of the so-called diagonal k(x, x), x ∈ R of k implies uniform
convergence.

The next proposition ([39, Prop. 3.3], see also [28, Thm. VIII.5.14(ii)] for the case of
compact spectral sets) asserts that Paley-Wiener spaces of variable bandwidth functions
are reproducing kernel Hilbert spaces.

Proposition 3.1.2. Let Λ ⊂ R+
0 be of finite measure and Ap the self-adjoint realization

of τp in the limit point case at ±∞. Let Φ(λ, ·) = (Φ1(λ, ·),Φ2(λ, ·)) be a fundamental
system of (τp − λ)f = 0 which continuously depends on λ. Then the following holds:

(i) The Paley-Wiener space PWΛ(Ap) is a closed subspace of L2(R) and every function
in PWΛ(Ap) is continuous.
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3.2. Necessary density conditions for sampling and interpolation

(ii) If Λ is compact, then PWΛ(Ap) is a reproducing kernel Hilbert space with kernel

kΛ(x, y) =

∫
Λ

Φ(λ, x) · Φ(λ, y) dµ(λ) =
2∑

j,l=1

∫
Λ

Φj(λ, x)Φl(λ, y) dµjl(λ). (3.1.1)

Moreover, kΛ is the integral kernel of the spectral projection χΛ(Ap) from L2(R) onto
PWΛ(Ap).

Finally, we mention the local behavior of functions in PW[0,Ω](Ap). The Bernstein
space BΩ consists of all functions whose distributional Fourier transforms are supported
in [−Ω,Ω]. See [62] for further reading. The following theorem claims that functions in
PW[0,Ω](Ap) behave locally like functions in some Bernstein space.

Proposition 3.1.3. If p(x) = p0 for all x on an open interval I, then on I every f ∈
PW[0,Ω](Ap) coincides with a function in B√

Ω/p0
restricted to I.

This proposition serves as one of our motivations in choosing a particular class of
parametrizing functions. We defer the discussion on this matter until Chapter 4.

3.2. Necessary density conditions for sampling and
interpolation

Let H be a reproducing kernel Hilbert space of functions from R to C and X ⊂ R be
at most countably infinite. We say X is a set of stable sampling for H if there exist
C1, C2 > 0 such that

C1 ||f ||2H ≤
∑
x∈X

|f(x)|2 ≤ C2 ||f ||2H

for all f ∈ H. The above inequality implies an element of H is uniquely determined by its
samples on X, and a small error in sample values corresponds to a small reconstruction
error. On the other hand, X is a set of interpolation for H if for every c ∈ ℓ2(X) there
exists f ∈ H such that f(x) = cx for all x ∈ X.
If H = PWS(R) with S ⊂ R a single interval, Beurling [12, 13] characterized sets of

stable sampling and sets of interpolation using the concept of upper and lower uniform
densities. Shortly after, Landau [52] extended the necessary implications of Beurling’s
results to higher dimensions and general bandwidths. For our purpose, we consider a
measurable set S ⊂ R and the space

H = PWS(R) = {f ∈ L2(R) : supp f̂ ⊆ S}.

The one-dimensional version of Landau’s necessary conditions is as follows [52, Thms. 3,4].

(i) Let S ⊂ R and X a set of stable sampling for PWS(R). Then

D−(X) = lim inf
r→∞

inf
x∈R

#(X ∩Br(x))

2r
≥ |S|

2π
.
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3. Functions of variable bandwidth

(ii) Let S ⊂ R be bounded and X a set of interpolation for PWS(R). Then

D+(X) = lim sup
r→∞

sup
x∈R

#(X ∩Br(x))

2r
≤ |S|

2π
.

The quantities D−(X) and D+(X) are called lower and upper Beurling densities of

X, respectively, and the critical density |S|
2π

separates sets of stable sampling from sets
of interpolation. In particular, for signals bandlimited to S = [−ω, ω] for some ω > 0, the
critical density is precisely the Nyquist rate ω

π
, i.e., the minimum sampling rate at which

a bandlimited signal in PWω(R) must be sampled for stable reconstruction to happen.
The Nyquist rate is also the maximum transmission rate at which a sequence may be
represented as the samples of a bandlimited signal in PWω(R). Further discussion on
Beurling densities and the Nyquist rate can be found in [53].
Landau’s necessary conditions form the so-called “density theorem” for sampling and

interpolation of functions of exponential type. Several mathematicians also proved ver-
sions of the density theorem to other function spaces as well. Some of these spaces are the
bandlimited functions [40, 52, 53] (see also [1] for a Hankel transform version), de Branges
spaces [57], and Bargmann-Fock spaces [72, 87], to name a few. In essence, the theorem
states that sets of stable sampling must be sufficiently dense, while sets of interpolation
must be sufficiently sparse. We can use the density theorem as a rough guide to determine
which sets may be used for stable sampling and reconstruction and which ones are for
interpolation.
In the style of Landau, we present a density theorem for sampling and interpolation

in PWΛ(Ap) for a certain choice of p as discussed in [39, Sec. 6.1]. We introduce a new
measure, namely

µp(I) =

∫
I

dx√
p(x)

, I ⊆ R measurable

generated by a parametrizing function p. The rationale behind this came from the obser-
vation that if p is a constant pj on some interval Ij, then the required number of samples
to reconstruct f ∈ PW[0,Ω](Ap) in Ij, viewed as an element of the Bernstein space B√

Ω/pj

by Proposition 3.1.3, is roughly

#(X ∩ Ij)

|Ij|
∼

√
Ω

pj
. (3.2.1)

Hence, the quantity |Ij|p−1/2
j may be viewed as a way to measure the length of Ij. With

this measure, we define the concept of Beurling density for PWΛ(Ap). Suppose p−1/2 ∈
L1
loc(R) and X ⊆ R is µp-separated, i.e.,

inf{µp([x, z]) : x, z ∈ X, x < z} > 0.

The upper and lower Ap-Beurling densitiesD+
p (X) andD−

p (X) are defined as follows:

D+
p (X) = lim sup

r→∞
sup

µp(I)=r

{#(X ∩ I) : I ⊂ R closed interval}
r

(3.2.2)

D−
p (X) = lim inf

r→∞
inf

µp(I)=r

{#(X ∩ I) : I ⊂ R closed interval}
r

. (3.2.3)
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3.3. Non-uniform sampling

With the additional assumption that p is the model case (2.2.3) and p, p′ ∈ ACloc(R), the
following necessary density conditions for sampling and interpolation hold [39, Thms. 6.2,
6.3].

Theorem 3.2.1. Let Λ ⊂ R+
0 be of finite Lebesgue measure. Suppose p is the model case

p(x) =

{
p−, x < −R,

p+, x > R

for some R > 0 such that p, p′ ∈ ACloc(R) and Ap the self-adjoint realization of τp in the
limit point case at ±∞.

• If X is a set of stable sampling for PWΛ(Ap), then D−
p (X) ≥ |Λ1/2|

π
.

• If X is a set of interpolation for PWΛ(Ap), then D+
p (X) ≤ |Λ1/2|

π
.

In this thesis, we will prove an analogue of the above density theorem for a particular
choice of p that does not satisfy p, p′ ∈ ACloc(R), i.e., Theorem 3.2.1 does not apply. This
will be the main theme of Chapter 6.

3.3. Non-uniform sampling

We present a sampling theorem for PWΛ(Ap) where Λ ⊆ [0,Ω] ⊂ R that is consistent
with our observation in (3.2.1). Let X = {xj}j∈Z ⊂ R be a non-uniform, increasingly
ordered sampling set and define the maximum gap

δ(X, p) = sup
j∈Z

xj+1 − xj

infx∈[xj ,xj+1]

√
p(x)

.

The following theorem is a weighted sampling inequality [39, Thm. 5.2] for PWΛ(Ap). We
made minor corrections in the original statement by adding boundedness of xj+1 − xj for
j ∈ Z.

Theorem 3.3.1. Let Λ ⊆ [0,Ω] ⊂ R+
0 and assume infx∈R p(x) > 0. If δ = δ(X, p) <

π/Ω1/2, then for all f ∈ PWΛ(Ap), we have(
1− δΩ1/2

π

)2

∥f∥2 ≤
∑
j∈Z

xj+1 − xj−1

2
|f(xj)|2 ≤

(
1 +

δΩ1/2

π

)2

∥f∥2.

If, in addition, there exist γ1, γ2 > 0 such that γ1 ≤ xj+1 − xj ≤ γ2 for all j ∈ Z, then

X is a set of stable sampling for PWΛ(Ap) with lower and upper bounds γ−1
2

(
1− δΩ1/2

π

)2
and γ−1

1

(
1 + δΩ1/2

π

)2
, respectively.

With the above sampling inequality, one can formulate several reconstruction algorithms
to recover f ∈ PWΛ(Ap) from its samples. We refer the reader to [39, Thm. 5.3] for a
projection-based iterative reconstruction algorithm. However, as mentioned in [39, Sec. 8],
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3. Functions of variable bandwidth

any reconstruction procedure requires the knowledge of the reproducing kernel. For special
parametrizing functions such as

p(x) =

{
p−, x ≤ 0,

p+, x > 0

with p−, p+ > 0, an explicit formula for the reproducing kernel was derived in [39, Sec. 4].
It is then natural to ask if the derivation can be extended to piecewise constant functions
of the form

p(x) =



p0, x ∈ (−∞, t1],

p1, x ∈ (t1, t2],
...

...

pn−1, x ∈ (tn−1, tn],

pn, x ∈ (tn,∞),

for some n ∈ N, {pk}nk=0 ⊂ (0,∞) and −∞ < t1 ≤ t2 ≤ . . . ≤ tn < ∞. This will be
thoroughly discussed in the next chapter.
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4. The space PWΛ(Ap) with piecewise
constant p

Among all possible parametrizing functions, piecewise constant functions offer a straight-
forward and practical approach of assigning local bandwidths to segments of a signal. Let
n ∈ N and Ω > 0. Consider a finite partition {Ik}nk=0 of subintervals of R and a finite se-
quence {pk}nk=0 ⊂ (0,∞). Now, define the piecewise function p : R → (0,∞) by p(x) = pk
if x ∈ Ik, for k = 0, . . . , n. If Ap is the self-adjoint realization of τp = −D(pD) on R in the
limit point case at ±∞, Proposition 3.1.3 asserts that every f ∈ PW[0,Ω](Ap) coincides
with a function in B(Ω/pk)1/2

on the interior of Ik for all k. This means that for each k,

p prescribes the local bandwidth (Ω/pk)
1/2 on the interior of Ik. Hence, PW[0,Ω](Ap) can

be viewed as the space of functions with different local bandwidths determined by p and
whose spectral Fourier transform has support contained in [0,Ω].
One of the main goals of this thesis is to show that numerical signal reconstruction can

be performed in some class of variable bandwidth spaces. As observed in [39, Sec. 8],
any reconstruction procedure requires the knowledge of the reproducing kernel kΛ of
PWΛ(Ap). For general parametrizing functions, finding kΛ is an arduous task. Indeed,
evaluating kΛ(x, y) for any x, y ∈ R using formula (3.1.1) demands explicit formulas
of the fundamental system Φ(z, ·) = (Φ1(z, ·),Φ2(z, ·)) of (τp − z)f = 0 as well as the
spectral measure µ, both of which are difficult to compute in general. The use of piecewise
constant parametrizing functions is motivated by the hope that if p is such a function,
direct evaluations of kΛ can in principle be performed. We draw inspiration from the
so-called toy example [39, Sec. 4], where Λ = [0,Ω] and p is of the form

p(x) =

{
p−, x ≤ 0

p+, x > 0,
p−, p+ > 0.

With this p, a closed-form expression of the fundamental system of (τp − z)f = 0 as well
as the spectral matrix measure were derived (see [39, Sec. 4, Appx. A] for a sketch of
the calculations), and consequently, an explicit form of kΛ was computed. This gave us
an insight that for a general piecewise constant functions, the corresponding reproducing
kernel might also be directly computable.
In this chapter, we discuss the fundamental aspects of functions of variable bandwidth

parametrized by piecewise constant functions. The theory revolves around the Sturm-
Liouville operator τp with p a piecewise constant function. More precisely, we consider
its self-adjoint realization Ap to define the abstract Paley-Wiener space PWΛ(Ap) with
spectral set Λ ⊂ R+

0 . Following the model case (2.2.3), all parametrizing functions in the
subsequent discussions are always assumed to be positive and eventually constant. This
assumption is convenient as p can only have a finite number of piecewise components,
and thus computations require only a finite number of steps. We shall shortly see that for
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4. The space PWΛ(Ap) with piecewise constant p

piecewise constant parametrizing functions, calculations starting from the construction
of solutions up to finding the reproducing kernel can be made explicit. This observa-
tion brings us closer to our goal of using variable bandwidth spaces for numerical signal
reconstruction.

4.1. Piecewise constant parametrizing functions

Definition 4.1.1. Fix n ∈ N. Let {tk}nk=1 ⊂ R be strictly increasing and {pk}nk=0 ⊂
(0,∞). Set I0 = (−∞, t1], In = (tn,∞), Ik = (tk, tk+1] for 1 ≤ k ≤ n − 1 and χk the
characteristic function of Ik for 0 ≤ k ≤ n. An (n+1)-component piecewise constant
function p is a function of the form

p(x) =
n∑

k=0

pkχk(x), x ∈ R.

We call {tk}nk=1 and {pk}nk=0 the knots and components of p, respectively.

If the number of components of p is immaterial in the discussion, we will refer to p as
a piecewise constant function.

p0

t1

p1

t2

p2

t3

p3

t4

p4

Figure 4.1.: A five-component piecewise constant function

With only the piecewise constant assumption on p, we can instantly deduce some prop-
erties of τp as well as its self-adjoint realization Ap.

Proposition 4.1.2. Let p be a piecewise constant function. Then the following statements
hold.

(i) The Sturm-Liouville operator τp = −D(pD) on R is in the limit point case at ±∞.
Moreover, τp has a unique self-adjoint realization Ap given by

D(Ap) = {f ∈ L2(R) : f, pf ′ ∈ ACloc(R) and − (pf ′)′ ∈ L2(R)},
Apf = −(pf ′)′.

(ii) The spectrum of Ap is σ(Ap) = [0,∞).

Proof. Let n ∈ N and p an (n+ 1)-component piecewise constant function.

(i) We have τp in the limit point case at ±∞ by applying Theorem 2.2.4 at both
endpoints ±∞. By Theorem 2.2.3, τp has a unique self-adjoint realization Ap which
is equal to the maximal operator of τp.

44



4.2. Construction of fundamental solutions

(ii) Suppose tn ≥ 0. With C1 = pn, we have

lim inf
L→∞

1

L

∫ L

0

∣∣∣∣1− C1

p(u)

∣∣∣∣ du = lim inf
L→∞

1

L

∫ tn

0

∣∣∣∣1− C1

p(u)

∣∣∣∣ du = 0

as the integral is independent of L. On the other hand, if tn < 0, then [0, L] ⊂ In
and the integrand is trivially zero. Analogously, taking C2 = p0 proves that

lim inf
L→∞

1

L

∫ 0

−L

∣∣∣∣1− C2

p(u)

∣∣∣∣ du = 0.

Therefore, σ(Ap) = [0,∞) by Theorem 2.2.5.

4.2. Construction of fundamental solutions

Recall from Theorem 2.2.6 that the spectral representation FAp defined in (2.2.5) requires
the knowledge of a fundamental system Φ(z, x) = (Φ1(z, x),Φ2(z, x)) of (τp − z)f = 0
for z ∈ C, x ∈ R. While finding analytic expressions of a fundamental system may be
difficult, if not impossible, for arbitrary parametrizing functions, we shall see that in
the case of a piecewise constant p, a closed-form expression for Φ can be derived and is
completely determined by p. The derivation of solutions of (τp − z)f = 0 is similar to the
construction of splines where continuity conditions on the knots are prescribed.
In this section, we find an explicit formula for the general solutions of (τp − z)f = 0,

z ∈ C \ (−∞, 0] for piecewise constant functions p. We know from Theorem 2.2.2 (Weyl
alternative) and Proposition 4.1.2 that for Imz ̸= 0, we can find a unique (up to a
constant factor) pair of solutions, one of which lies left and the other lies right in L2(R).
A particular pair will be used to form the spectral transform FAp and will be derived in
the next section.
We now briefly discuss the strategy to find a fundamental system of (τp − z)f = 0. Let

n ∈ N and assume p is an (n + 1)-piecewise constant function and Ap the self-adjoint
realization of τp = −D(pD). By solving the n+ 1 equations

(−pkD
2 − z)f = 0, x ∈ Ik, 0 ≤ k ≤ n

for fixed z ∈ C \ (−∞, 0], we obtain n+ 1 local general solutions of the form

ake
i
√

z/pkx + bke
−i
√

z/pkx, x ∈ Ik

for some ak, bk ∈ C, 0 ≤ k ≤ n, i.e., these functions solve the original equation (τp−z)f = 0
restricted to x ∈ Ik. We conveniently take the branch cut on the nonpositive real axis of
the complex plane so that the principal square root8

√
z of z ∈ C\ (−∞, 0] is well-defined

and satisfies Imz · Im
√
z ≥ 0. By carefully choosing the coefficients ak, bk, out of these

local solutions we can form global solutions that solve the original equation (τp − z)f = 0
on R.

8If z = reiθ ∈ C \ (−∞, 0] with r > 0 and −π < θ < π,
√
z =

√
reiθ/2 is the principal square root of

z.
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4. The space PWΛ(Ap) with piecewise constant p

From this point onward, we will always assume p is a piecewise constant function as in
Definition 4.1.1 and Ap the self-adjoint realization of τp. Since the components {pk}nk=0

of p will appear frequently as denominators in most of the computations, we set

qk = p
−1/2
k , 0 ≤ k ≤ n. (4.2.1)

This notation will be used throughout the entire manuscript. We also define for 1 ≤ k ≤ n,
z ∈ C \ (−∞, 0] the matrices

Lk(z) =
1

2

(1 + qk
qk−1

)
eitk(qk−1−qk)

√
z
(
1− qk

qk−1

)
e−itk(qk−1+qk)

√
z(

1− qk
qk−1

)
eitk(qk−1+qk)

√
z
(
1 + qk

qk−1

)
e−itk(qk−1−qk)

√
z

 (4.2.2)

Rk(z) = L−1
k (z)

=
1

2

(1 + qk−1

qk

)
e−itk(qk−1−qk)

√
z
(
1− qk−1

qk

)
e−itk(qk−1+qk)

√
z(

1− qk−1

qk

)
eitk(qk−1+qk)

√
z

(
1 + qk−1

qk

)
eitk(qk−1−qk)

√
z

 (4.2.3)

which will be used to generate solutions of (τp − z)f = 0. It may also be convenient to
rewrite Lk and Rk as follows. Define for 1 ≤ k ≤ n the quantities

γ−1
k = ( qk

qk−1
)1/2, ηk = tk(qk−1 − qk) and θk = tk(qk−1 + qk).

We can then express (4.2.2) as

Lk(z) = γ−1
k

[
γk+γ−1

k

2
eiηk

√
z γk−γ−1

k

2
e−iθk

√
z

γk−γ−1
k

2
eiθk

√
z γk+γ−1

k

2
e−iηk

√
z

]
, detLk(z) = γ−2

k (4.2.4)

and (4.2.3) as

Rk(z) = γk

[
γk+γ−1

k

2
e−iηk

√
z −γk−γ−1

k

2
e−iθk

√
z

−γk−γ−1
k

2
eiθk

√
z γk+γ−1

k

2
eiηk

√
z

]
, detRk(z) = γ2

k. (4.2.5)

Lemma 4.2.1. Let n ∈ N and assume p is an (n+ 1)-piecewise constant function. Then
for z ∈ C \ (−∞, 0], the piecewise function φ(z, ·) : R → C of the form

φ(z, x) = ake
iqk

√
zx + bke

−iqk
√
zx, x ∈ Ik, qk = p

−1/2
k

for some coefficients ak, bk ∈ C, 0 ≤ k ≤ n solves (τp − z)f = 0 on R if and only if[
ak
bk

]
= Lk(z)

[
ak−1

bk−1

]
(4.2.6)

holds for 1 ≤ k ≤ n.

Proof. Fix z ∈ C \ (−∞, 0]. We start with the local solutions of (τp − z)f = 0. Let
0 ≤ k ≤ n. Since τpf = −pkf

′′ on Ik, we know that the functions

uk(z, x) = ei
√

z/pkx = eiqk
√
zx, vk(z, x) = e−i

√
z/pkx = e−iqk

√
zx, qk = p

−1/2
k (4.2.7)
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4.2. Construction of fundamental solutions

solve−pkf
′′−zf = − 1

q2k
f ′′−zf = 0 for x ∈ Ik. Moreover, theWronskianW (uk(z, ·), vk(z, ·))

in (2.2.2) computed on Ik is

W (uk(z, ·), vk(z, ·)) = det

[
eiqk

√
zx e−iqk

√
zx

i
√
z

qk
eiqk

√
zx −i

√
z

qk
e−iqk

√
zx

]
= −2i

√
z

qk
̸= 0. (4.2.8)

Thus, uk(z, x) and vk(z, x) form a fundamental system of −pkf
′′ − zf = 0 on Ik. Hence,

the local solutions φk(z, ·) of (τp − z)f = 0 on Ik take the form

φk(z, x) = akuk(z, x) + bkvk(z, x) = ake
iqk

√
zx + bke

−iqk
√
zx, x ∈ Ik (4.2.9)

for some constants ak, bk ∈ C, 0 ≤ k ≤ n.
Now, since the collection {Ik}nk=0 is a disjoint partition of R, consider the piecewise

function φ(z, ·) : R → C defined as

φ(z, x) = φk(z, x), x ∈ Ik

for some choice of scalars ak, bk ∈ C, 0 ≤ k ≤ n in (4.2.9). Then φ(z, ·), p(·)φ′(z, ·) ∈
ACloc(R) if and only if both are continuous at each knot tk. This condition can be
expressed in matrix form (in conjunction with p(tk) = pk−1 =

1
q2k−1

, lim
x↓tk

p(x) = pk =
1
q2k
) as[

φk−1(z, tk)
1

q2k−1
φ′
k−1(z, tk)

]
=

[
φ(z, tk)

p(tk)φ
′(z, tk)

]
= lim

x↓tk

[
φ(z, x)

p(x)φ′(z, x)

]
=

[
φk(z, tk)
1
q2k
φ′
k(z, tk)

]
[

eiqk−1
√
ztk eiqk−1

√
ztk

i
√
z

qk−1
eiqk−1

√
ztk −i

√
z

qk−1
eiqk−1

√
ztk

][
ak−1

bk−1

]
=

[
eiqk

√
ztk eiqk

√
ztk

i
√
z

qk
eiqk

√
ztk −i

√
z

qk
eiqk

√
ztk

][
ak
bk

]
.

For 1 ≤ k ≤ n, z ∈ C \ (−∞, 0], set

Lk(z) =

[
eiqk

√
ztk eiqk

√
ztk

i
√
z

qk
eiqk

√
ztk −i

√
z

qk
eiqk

√
ztk

]−1 [
eiqk

√
ztk eiqk

√
ztk

i
√
z

qk
eiqk

√
ztk −i

√
z

qk
eiqk

√
ztk

]
.

A straightforward computation of Lk yields

Lk(z) =
qk

2i
√
z

[
i
√
z

qk
e−iqk

√
ztk e−iqk

√
ztk

i
√
z

qk
eiqk

√
ztk −eiqk

√
ztk

][
eiqk−1

√
ztk e−iqk−1

√
ztk

i
√
z

qk−1
eiqk−1

√
ztk −i

√
z

qk−1
e−iqk−1

√
ztk

]

=
qk
2

 ( 1
qk−1

+ 1
qk

)
eitk(qk−1−qk)

√
z

(
− 1

qk−1
+ 1

qk

)
e−itk(qk−1+qk)

√
z(

− 1
qk−1

+ 1
qk

)
eitk(qk−1+qk)

√
z

(
1

qk−1
+ 1

qk

)
e−itk(qk−1−qk)

√
z


which equals (4.2.2). By construction, φ(z, ·) is a solution of (τp − z)f = 0 on R if and
only if (4.2.6) holds.

Although there are 2(n+1) constants involved in forming the above solutions, only two
of them can be arbitrarily chosen. In fact, for a fixed z ∈ C \ (−∞, 0] one can construct a
plethora of solutions of (τp − z)f = 0 by setting arbitrary constants c1, c2 ∈ C as ak and
bk on a chosen interval Ik. The remaining coefficients are obtained from Lemma 4.2.1 by
either forward or backward iterative calculation. We summarize below how exactly the
solutions of (τp − z)f = 0 are generated.
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4. The space PWΛ(Ap) with piecewise constant p

• Starting from the leftmost interval I0 with a0 = c1, b0 = c2, we have[
aj
bj

]
= Lj(z)Lj−1(z) · · ·L1(z)

[
c1
c2

]
, 1 ≤ j ≤ n. (4.2.10)

• Starting from the rightmost interval In with an = c1, bn = c2, we left-multiply the
inverse Rk(z) of Lk(z) on both sides of (4.2.6) to obtain[

al
bl

]
= Rl+1(z)Rl(z) · · ·Rn(z)

[
c1
c2

]
, 0 ≤ l ≤ n− 1. (4.2.11)

• We start from one of the middle intervals Ik, 0 < k < n and ak = c1, bk = c2 and
then take a combination of the two procedures above, i.e.,

[
ar
br

]
=


Lr(z)Lr−1(z) · · ·Lk+1(z)

[
c1
c2

]
, k + 1 ≤ r ≤ n,

Rr+1(z)Rr(z) · · ·Rk(z)

[
c1
c2

]
, 0 ≤ r ≤ k − 1.

(4.2.12)

By writing

[
c1
c2

]
as c1

[
1
0

]
+c2

[
0
1

]
, (4.2.10), (4.2.11) and (4.2.12) are equivalent to taking

linear combinations (cf. (4.2.7))

c1φ
+(z, ·) + c2φ

−(z, ·), c1, c2 ∈ R, 0 ≤ k ≤ n,

where φ±(z, x) = e±iqk
√
zx for x ∈ Ik and extended to the whole of R via Lemma 4.2.1. By

construction, {φ+, φ−} is a fundamental system of (τp−z)f = 0 on R and thus all solutions
of (τp − z)f = 0 are formed by way of Lemma 4.2.1. In the forthcoming discussions, we
only generate solutions using formulas (4.2.10) and (4.2.11). Formula (4.2.12) is useful
in some situations (cf. the proof of [39, Prop. 3.5]) but will not be used anywhere in this
thesis.
As τp is in the limit point case at ±∞, Theorem 2.2.2(ii) (Weyl alternative) and Propo-

sition 4.1.2 state that for all z ∈ C \ R we can always find two unique (up to a constant
factor) solutions of (τp − z)f = 0, one of which lies left and the other lies right in L2(R).
With the help of (4.2.10) and (4.2.11), we can determine the exact form of such a pair of
solutions.

Theorem 4.2.2. Let p be an (n+ 1)-component piecewise constant function. Define the
functions a+l , b

+
l , a

−
j , b

−
j , 0 ≤ l ≤ n− 1, 1 ≤ j ≤ n from C \ (−∞, 0] to C by[

a+l (z)
b+l (z)

]
= Rl+1(z)Rl(z) · · ·Rn(z)

[
1
0

]
, 0 ≤ l ≤ n− 1 (4.2.13)[

a−j (z)
b−j (z)

]
= Lj(z)Lj−1(z) · · ·L1(z)

[
0
1

]
, 1 ≤ j ≤ n. (4.2.14)

Then the functions Φ(z, ·) = (Φ+(z, ·),Φ−(z, ·)) given by

Φ+(z, x) =

{
a+l (z)e

iql
√
zx + b+l (z)e

−iql
√
zx, x ∈ Il, 0 ≤ l ≤ n− 1

eiqn
√
zx, x ∈ In

(4.2.15)

Φ−(z, x) =

{
e−iq0

√
zx, x ∈ I0

a−j (z)e
iqj

√
zx + b−j (z)e

−iqj
√
zx, x ∈ Ij, 1 ≤ j ≤ n

(4.2.16)
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4.2. Construction of fundamental solutions

are solutions of (τp − z)f = 0 for all z ∈ C \ (−∞, 0] that are analytic in z. Furthermore,

• if Imz > 0, then Φ(z, ·) = (Φ+(z, ·),Φ−(z, ·)) is a fundamental system of (τp−z)f =
0 satisfying

Φ−(z, ·) ∈ L2(−∞, c) and Φ+(z, ·) ∈ L2(c,∞)

for all c ∈ R

• if Imz < 0, then Φ(z, ·) = (Φ+(z, ·),Φ−(z, ·)) is a fundamental system of (τp−z)f =
0 satisfying

Φ−(z, ·) ∈ L2(−∞, c) and Φ+(z, ·) ∈ L2(c,∞)

for all c ∈ R.

Proof. By construction, we have from Lemma 4.2.1 as well as (4.2.10) and (4.2.11) that
Φ±(z, ·) are solutions of (τp − z)f = 0 for all z ∈ C \ (−∞, 0]. Since p is real-valued,

Φ±(z, ·) are solutions of (τp−z)f = 0 as well. Since z 7→ e±iqk
√
zx is analytic for all x ∈ R,

it follows that the entries of Lj and Rl for 0 ≤ l ≤ n − 1, 1 ≤ j ≤ n, the coefficients
a±k , b

±
k for 0 ≤ k ≤ n, and ultimately the fundamental solutions Φ±(·, x) for all x ∈ R, are

analytic as well. We next prove the second conclusion of the theorem. Observe that

|e±iq
√
zx| = e∓qIm

√
zx, x ∈ R, q > 0, z ∈ C \ (−∞, 0]. (4.2.17)

Note the following.

• If Imz > 0, then Im
√
z > 0. By (4.2.17), we have Φ−(z, x) = e−iq0

√
zx ∈ L2(I0) and

Φ+(z, x) = eiqn
√
zx ∈ L2(In). Thus, Φ

−(z, ·) lies left and Φ+(z, ·) lies right in L2(R).

• If Imz < 0, then Im
√
z < 0. Since

√
z =

√
z for all z ∈ C\ (−∞, 0], (4.2.17) implies

|e±iq
√
zx| = |e±iq

√
zx| = e±qIm

√
zx, x ∈ R, q > 0, z ∈ C \ (−∞, 0].

Hence Φ−(z, ·) lies left and Φ+(z, ·) lies right in L2(R).

Now, suppose there exists z0 ∈ C \ (−∞, 0] with Imz0 > 0 such that Φ(z0, ·) is linearly
dependent, i.e., Φ+(z0, ·) is a scalar multiple of Φ−(z0, ·). Then (τp − z0)f = 0 has a
nontrivial solution in D(Ap) ⊂ L2(R), i.e., an eigenvector corresponding to the eigenvalue
z0. Thus, z0 ∈ σ(Ap) = [0,∞) by Proposition 4.1.2, which is a contradiction. Therefore,
Φ(z, ·) is linearly independent for all z ∈ C \ (−∞, 0] with Imz > 0. The same proof
works for Φ(z, ·), Imz < 0.

Remark 4.2.3. For z ∈ (0,∞) and 1 ≤ k ≤ n, γkLk(z) and γ−1
k Rk(z) are elements of

the group

SU(1, 1) =

{[
a b
b a

]
: a, b ∈ C and |a|2 − |b|2 = 1

}
with group multiplication given by matrix multiplication. This follows from the fact that
eiz = e−iz if and only if z ∈ R. Hence,

γjLj(z) · . . . · γ1L1(z) =

(
j∏

k=1

γk

)[
b−j (z) a−j (z)

a−j (z) b−j (z)

]
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4. The space PWΛ(Ap) with piecewise constant p

and therefore

Lj(z) · . . . · L1(z) =

[
b−j (z) a−j (z)

a−j (z) b−j (z)

]
, 1 ≤ j ≤ n. (4.2.18)

By the same token, it can be shown that

Rl+1(z) · . . . ·Rn(z) =

[
a+l (z) b+l (z)

b+l (z) a+l (z)

]
, 0 ≤ l ≤ n− 1. (4.2.19)

In spite of a group structure, the left-hand side of (4.2.18) and (4.2.19) cannot be simplified
further, even with the help of known matrix product decompositions.

We can now prove that the spectrum of Ap is purely absolutely continuous.

Lemma 4.2.4. Let p be a piecewise constant function and Ap the self-adjoint realization
of τp in the limit point case at ±∞. Then Ap has purely absolutely continuous spectrum,
i.e.,

σ(Ap) = σac(Ap) = [0,∞), σpp(Ap) = σsc(Ap) = ∅.

Proof. Recall from Proposition 4.1.2 that σ(Ap) = [0,∞). First, we prove that σpp(Ap) =
∅, i.e., Ap has no eigenvalues. Let p be an (n+1)-component piecewise constant function
for some n ∈ N. Fix λ ∈ (0,∞). By Lemma 4.2.1, the solutions φ(λ, ·) : R → C of
(τp − λ)f = 0 are of the form

φ(λ, x) = ake
iqk

√
λx + bke

−iqk
√
λx, x ∈ Ik, qk = p

−1/2
k ,

where the coefficients ak, bk ∈ C, 0 ≤ k ≤ n satisfy (4.2.6). Observe that φ(λ, ·) ∈ L2(R) if
and only if φ(λ, ·)↾I0 ∈ L2(I0) and φ(λ, ·)↾In ∈ L2(In). Since I0 is unbounded, φ(λ, ·)↾I0 is

periodic on I0, and eiqk
√
λx and e−iqk

√
λx are linearly independent, it follows that φ(λ, ·)↾I0 ∈

L2(I0) if and only if a0 = b0 = 0. Consequently, (4.2.6) implies ak = bk = 0 for 0 ≤ k ≤ n,
i.e., φ(λ, ·) = 0. Hence, λ cannot be an eigenvalue. We obtain the same conclusion if we
instead start from In.
On the other hand, if λ = 0, it can be shown as in the proof of Lemma 4.2.1 that all

solutions of τpf = (τp − 0)f = 0 are piecewise functions φ(0, ·) : R → C of the form

φ(0, x) = ak + bkx, x ∈ Ik,

where the coefficients ak, bk ∈ C, 1 ≤ k ≤ n satisfy[
ak
bk

]
=

1

pk

[
pk tk(pk − pk−1)
0 pk−1

] [
ak−1

bk−1

]
.

It is clear that τpf = 0 has no nontrivial solution in L2(R), hence 0 is not an eigenvalue
of Ap. Thus, σpp(Ap) = ∅.
Finally, by Theorem 2.2.10 and Theorem 4.2.2, σsc(Ap) ∩ (0,∞) = ∅. Therefore,

(0,∞) ⊆ σac(Ap). Since σsc(Ap) cannot be supported on {0}, we conclude that σsc(Ap) = ∅
and σac(Ap) = [0,∞).
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4.2. Construction of fundamental solutions

We refer to the analytic functions a±k and b±k defined in (4.2.13) and (4.2.14) with
initial conditions a+n (z) = b−0 (z) = 1, a−0 (z) = b+n (z) = 0 for all z ∈ C \ (−∞, 0] as the
connection coefficients of Φ. These functions are defined to continuously piece together
local solutions of (τp− z)f = 0 on Ik to form the global solutions Φ±(z, ·) of (τp− z)f = 0
on R.
With the more neat expressions (4.2.4) and (4.2.5) for Lk and Rk, respectively, it is

clear that the connection coefficients a±k and b±k can be written as a finite sum
∑

k αke
iβk

√
z

for some αk ∈ C, βk ∈ R. Such functions are called almost periodic polynomials (in
our case, in

√
z). These functions belong to a larger class of functions, called almost

periodic functions and was first studied by H. Bohr [18] and later generalized by other
mathematicians. See e.g. [6, 11] for further reading on almost periodic functions.

Lemma 4.2.5. The analytic functions a−j , b
−
j , a

+
l , b

+
l defined as in (4.2.13) and (4.2.14)

are almost periodic polynomials in
√
z with real coefficients.

Proof. This follows from the definition of a−j , b
−
j , a

+
l , b

+
l together with the fact that the

space of almost periodic polynomials is an algebra over R.

The iterative procedure presented in the proof of Lemma 4.2.5 is best programmed
using matrix operations. We have Algorithm 1 for the routine that computes all the
connection coefficients a±k , b

±
k .

Algorithm 1 Computing the connection coefficients a±k (λ), b
±
k (λ)

Input: Components p =
[
p0 p1 · · · pn

]
and knots t =

[
t1 t2 · · · tn

]
Output: Matrices C+(λ) and C−(λ) of connection coefficients a±k (λ), b

±
k (λ)

1: function ConnCoeff(t, p)
2: Set symbolic variable λ
3: Assign n =length(t)
4: Let C−(λ) = 02×(n+1) = C+(λ) ▷ C− for a−k , b

−
k , C

+ for a+k , b
+
k

5: Set C−
2,1(λ) = 1 = C+

1,n+1(λ) ▷ Initial conditions
6: for k = 1 to n do
7: Compute Lk(λ) and Rn−k+1(λ)
8: C−

:,k+1(λ) = Lk(λ)C
−
:,k(λ) ▷ Forward iteration

9: C+
:,n−k+1(λ) = Rn−k+1(λ)C

+
:,n−k+2(λ) ▷ Backward iteration

10: end for
11: return

[
C+(λ) C−(λ)

]
12: end function

The connection coefficients a±k , b
±
k , 0 ≤ k ≤ n are computed and stored in matrices

C±(λ) =

[
a±0 (λ) a±1 (λ) . . . a±n (λ)
b±0 (λ) b±1 (λ) . . . b±n (λ)

]
.
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4. The space PWΛ(Ap) with piecewise constant p

Hence, each piecewise component of Φ±(λ, x) can be quickly retrieved as

Φ±(λ, x) = a±k (λ)e
iqk

√
λx + b±k (λ)e

−iqk
√
λx, x ∈ Ik, 0 ≤ k ≤ n

=
[
eiqk

√
λx e−iqk

√
λx
] [a±k (λ)

b±k (λ)

]
=
[
eiqk

√
λx e−iqk

√
λx
]
C±

:,k+1(λ). (4.2.20)

We end this section by stating the following result. As a consequence of the com-
putability of the connection coefficients a±k and b±k via (4.2.13) and (4.2.14), we can prove
uniform boundedness of Φ in R+ × R.

Lemma 4.2.6. Let Φ = (Φ+,Φ−) be defined as in Theorem 4.2.2. Then Φ is uniformly
bounded on R+ × R.

Proof. It is clear from the definition of Φ that for 0 ≤ k ≤ n and (λ, x) ∈ R+ × Ik,

|Φ±(λ, x)| ≤ |a±k (λ)|+ |b±k (λ)| =
∣∣∣∣∣∣[a+k (λ) b+k (λ)

]T ∣∣∣∣∣∣
1
.

Define |||·|||1 to be the matrix norm subordinate to the vector norm ∥·∥1. From (4.2.13)
and (4.2.14), we have that for (λ, x) ∈ R+ × R,

|Φ+(λ, x)| ≤ max
0≤k≤n

∣∣∣∣∣∣[a+k (λ) b+k (λ)
]T ∣∣∣∣∣∣

1
≤ max

{
max
1≤k≤n

|||RkRk−1 · · ·Rn|||1, 1
}

|Φ−(λ, x)| ≤ max
0≤k≤n

∣∣∣∣∣∣[a−k (λ) b−k (λ)
]T ∣∣∣∣∣∣

1
≤ max

{
1, max

1≤k≤n
|||LkLk−1 · · ·L1|||1

}
.

Since |||·|||1 is submultiplicative, i.e., |||AB|||1 ≤ |||A|||1|||B|||1 for A,B ∈ C2×2, we obtain

|Φ+(λ, x)| ≤ max

{
max
1≤k≤n

{|||Rk|||1|||Rk−1|||1 · · · |||Rn|||1}, 1
}

|Φ−(λ, x)| ≤ max

{
1, max

1≤k≤n
{|||Lk|||1|||Lk−1||| · · · |||L1|||1}

}
.

From (4.2.2) and (4.2.3), we have for 1 ≤ k ≤ n that

|||Lk|||1 =
1

2

(∣∣∣∣1 + qk
qk−1

∣∣∣∣+ ∣∣∣∣1− qk
qk−1

∣∣∣∣) ≤ 1 +
qk
qk−1

|||Rk|||1 =
1

2

(∣∣∣∣1 + qk−1

qk

∣∣∣∣+ ∣∣∣∣1− qk−1

qk

∣∣∣∣) ≤ 1 +
qk−1

qk
.

Finally, since both upper bounds above are always at least one, we conclude that for every
(λ, x) ∈ R+ × R,

|Φ±(λ, x)| ≤ max

{
n∏

k=1

(
1 +

qk−1

qk

)
,

n∏
k=1

(
1 +

qk
qk−1

)}
,

proving uniform boundedness of Φ on R+ × R.
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4.3. Wronskian determinants, resolvents and spectral
matrix measure

We establish a number of identities on the connection coefficients a±k (z) and b±k (z) of
Φ(z, ·) = (Φ+(z, ·),Φ−(z, ·)) for z ∈ C \ (−∞, 0]. This is done by evaluating at each
interval Ik the Wronskian determinant of pairs of solutions of (τp − z)f = 0 derived from
Φ(z, ·). Since the Wronskian determinant of solutions of (τp − z)f = 0 is independent
of x by Remark 2.2.1, all Wronskian determinants evaluated on the local intervals Ik are
equal. We then use some of these identities on the resolvent kernels rz(x, y) to extract
from (2.2.9) the matrices m±(z), which in turn yields the spectral matrix measure µ via
Theorem 2.2.9 (Weyl-Titchmarsh-Kodaira formula) via limiting procedure.

We start with the identities arising from independence of the Wronskian determinant
on x.

Lemma 4.3.1. Let n ∈ N and a±k , b
±
k , 0 ≤ k ≤ n be defined as in (4.2.13) and (4.2.14).

Then the following identities hold.

(i) If z ∈ C \ (−∞, 0], then

a+0 (z)

q0
=

1

q1

(
a+1 (z)b

−
1 (z)− a−1 (z)b

+
1 (z)

)
= . . .

=
1

qn−1

(
a+n−1(z)b

−
n−1(z)− a−n−1(z)b

+
n−1(z)

)
=

b−n (z)

qn
. (4.3.1)

(ii) If λ ∈ (0,∞), then for all 0 ≤ k ≤ n,

|b−k (λ)|
2 − |a−k (λ)|

2 =
qk
q0

(4.3.2)

|a+k (λ)|
2 − |b+k (λ)|

2 =
qk
qn

. (4.3.3)

Consequently,

|a+k (λ)|2

q0
+

|a−k (λ)|2

qn
=

|b+k (λ)|2

q0
+

|b−k (λ)|2

qn
. (4.3.4)

(iii) If λ ∈ (0,∞), then

b+0 (λ)

q0
=

1

q1

(
b+1 (λ)b

−
1 (λ)− a+1 (λ)a

−
1 (λ)

)
= . . .

=
1

qn−1

(
b+n−1(λ)b

−
n−1(λ)− a+n−1(λ)a

−
n−1(λ)

)
= −a−n (λ)

qn
. (4.3.5)

Proof. We prove the three statements by evaluating the Wronskian determinant of pairs of
solutions derived from Φ = (Φ+,Φ−) of Theorem 4.2.2 on each subinterval Ik. Equalities
are then established by the constancy of the Wronskian determinant in x.
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4. The space PWΛ(Ap) with piecewise constant p

(i) Let z ∈ C \ (−∞, 0]. Then for x ∈ Ik, 0 ≤ k ≤ n,

W
(
Φ+(z, x),Φ−(z, x)

)
= W

(
a+k (z)e

iqk
√
zx + b+k (z)e

−iqk
√
zx, a−k (z)e

iqk
√
zx + b−k (z)e

−iqk
√
zx
)

= a+k (z)b
−
k (z)W

(
eiqk

√
zx, e−iqk

√
zx
)
+ b+k (z)a

−
k (z)W

(
e−iqk

√
zx, eiqk

√
zx
)

= −2i
√
z

qk

(
a+k (z)b

−
k (z)− a−k (z)b

+
k (z)

)
. (4.3.6)

On the unbounded intervals I0 and In, (4.3.6) reduces to

W
(
Φ+(z, x),Φ−(z, x)

)
= −2i

√
z

q0
a+0 (z) (k = 0 : a−0 (z) = 0, b−0 (z) = 1) (4.3.7)

W
(
Φ+(z, x),Φ−(z, x)

)
= −2i

√
z

qn
b−n (z) (k = n : a+n (z) = 1, b+n (z) = 0). (4.3.8)

Equating (4.3.6), (4.3.7) and (4.3.8) yields (4.3.1) for all z ∈ C \ (−∞, 0].

(ii) Let λ ∈ (0,∞). We can infer from p being real-valued that (Φ+(λ, ·),Φ+(λ, ·)) and
(Φ−(λ, ·),Φ−(λ, ·)) are pairs of solutions of (τp − λ)f = 0. For x ∈ Ik, 0 ≤ k ≤ n
and doing a similar computation as in the previous case,

W
(
Φ±(λ, x),Φ±(λ, x)

)
= W

(
a±k (λ)e

iqk
√
λx + b±k (λ)e

−iqk
√
λx, a±k (λ)e

−iqk
√
λx + b±k (λ)e

iqk
√
λx
)

= |a±k (z)|
2W (eiqk

√
λx, e−iqk

√
λx) + |b±k (z)|

2W (e−iqk
√
λx, eiqk

√
λx)

= 2i
√
λ

qk

(
|b±k (λ)|

2 − |a±k (λ)|
2
)
.

Hence, using the initial conditions a+n (λ) = b−0 (λ) = 1, a−0 (λ) = b+n (λ) = 0, we
obtain for a−k (λ) and b−k (λ) the equations

0 ̸= 2i
√
λ

q0
= 2i

√
λ

q1

(
|b−1 (λ)|2 − |a−1 (λ)|2

)
= . . .

= 2i
√
λ

qk

(
|b−k (λ)|

2 − |a−k (λ)|
2
)
= . . . = 2i

√
λ

qn

(
|b−n (λ)|2 − |a−n (λ)|2

)
,

while for a+k (λ) and b+k (λ), we have

0 ̸= −2i
√
λ

qn
= 2i

√
λ

qn−1

(
|b+n−1(λ)|2 − |a+n−1(λ)|2

)
= . . .

= 2i
√
λ

qk

(
|b+k (λ)|

2 − |a+k (λ)|
2
)
= . . . = 2i

√
λ

q0

(
|b+0 (λ)|2 − |a+0 (λ)|2

)
.

The above computations imply (4.3.2) and (4.3.3), respectively. Moreover, solving
for qk yields

q0
(
|b−k (λ)|

2 − |a−k (λ)|
2
)
= qk = qn

(
|a+k (λ)|

2 − |b+k (λ)|
2
)
.

Dividing both sides by q0qn and rearranging the terms give (4.3.4).

(iii) Let λ ∈ (0,∞). We now consider the pair (Φ+(λ, ·),Φ−(λ, ·)) of solutions of (τp −
λ)f = 0. Then for x ∈ Ik, 0 ≤ k ≤ n,

W
(
Φ+(λ, x),Φ−(λ, x)

)
= W

(
a+k (λ)e

iqk
√
λx + b+k (λ)e

−iqk
√
λx, a−k (λ)e

−iqk
√
λx + b−k (λ)e

iqk
√
λx
)

= a+k (λ)a
−
k (λ)W (eiqk

√
λx, e−iqk

√
λx) + b+k (λ)b

−
k (λ)W (e−iqk

√
λx, eiqk

√
λx)

= 2i
√
λ

qk

(
b+k (λ)b

−
k (λ)− a+k (λ)a

−
k (λ)

)
which finally yields the last identity (4.3.5).
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4.3. Wronskian determinants, resolvents and spectral matrix measure

A shorter proof of (4.3.2) and (4.3.3) is possible using Remark 4.2.3. Let z ∈ (0,∞).
If k = 0, then a−0 (z) = 0, b−0 (z) = 1 and (4.3.2) trivially holds. Now, suppose 1 ≤ k ≤ n.
By taking the determinant of both sides of (4.2.18) and with j = k, we derive

|b−k (z)|
2 − |a−k (z)|

2 = γ−2
k · . . . · γ−2

1 =
qk
q0
,

proving (4.3.2). Identity (4.3.3) is analogously proved from (4.2.19).

An immediate consequence of the previous theorem is that |a+0 | and |b−n | are bounded
below on (0,∞).

Corollary 4.3.2. Let n ∈ N and p an (n + 1)-component piecewise constant function.
Suppose λ ∈ (0,∞) and Φ(λ, ·) = (Φ+(λ, ·),Φ−(λ, ·)) is defined as in Theorem 4.2.2 with
connection coefficients a±k (λ), b

±
k (λ), 0 ≤ k ≤ n. Then for all λ ∈ (0,∞),

|b+0 (λ)|2

q20
+

1

q0qn
=

|a+0 (λ)|2

q20
=

|b−n (λ)|2

q2n
=

1

q0qn
+

|a−n (λ)|2

q2n
.

Proof. Let λ ∈ (0,∞). Taking the squared moduli of the leftmost and rightmost sides of
(4.3.1) gives the innermost equation

|a+0 (λ)|2

q20
=

|b−n (λ)|2

q2n
.

On the other hand, for k = 0 and k = n, (4.3.4) becomes

|a+0 (λ)|2

q0
=

|b+0 (λ)|2

q0
+

1

qn
, (k = 0 : a−0 (λ) = 0, b−0 (λ) = 1), (4.3.9)

|b−n (λ)|2

qn
=

1

q0
+

|a−n (λ)|2

qn
, (k = n : a+n (λ) = 1, b+n (λ) = 0). (4.3.10)

Multiplying (4.3.9) by 1
q0

and (4.3.10) by 1
qn

proves the assertion.

With all the necessary identities in place, we are now ready to derive the spectral
transform FAp and spectral matrix measure µ of the self-adjoint realization Ap of τp with
p a piecewise constant function. Recall from Theorem 4.2.2 that for Imz > 0, Φ+(z, ·) and
Φ−(z, ·) lies right and lies left in L2(R), respectively, and form a fundamental system of
(τp−z)f = 0. In the same way, for Imz < 0, Φ+(z, ·) and Φ−(z, ·) lies right and lies left in
L2(R), respectively, and also form a fundamental system of (τp − z)f = 0. Using (2.2.8)
and (2.2.9), we can then derive expressions for the resolvent kernel rz(x, y), x, y ∈ R for
Imz > 0 and Imz < 0, and the spectral matrix measure µ can be described by a matrix
of densities that are computed via Theorem 2.2.9 (Weyl-Titchmarsh-Kodaira formula).

The following theorem is a restatement of Theorem 2.2.6 in the context of piecewise
constant parametrizing functions as well as an explicit form of the spectral matrix mea-
sure.
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4. The space PWΛ(Ap) with piecewise constant p

Theorem 4.3.3. Let n ∈ N and p an (n + 1)-component piecewise constant function.
Suppose Φ = (Φ+,Φ−) is defined as in Theorem 4.2.2 with connection coefficients a±k , b

±
k ,

0 ≤ k ≤ n. Then the 2× 2 positive matrix measure µ given by

dµ(λ) =
1

4πκ(
√
λ)

[ 1
q0

0

0 1
qn

]
dλ√
λ
, κ(

√
λ) =

|a+0 (λ)|2

q20
=

|b−n (λ)|2

q2n
≥ 1

q0qn
(4.3.11)

yields the spectral transform

FAp : L
2(R) −→ L2([0,∞), dµ), FApf(λ) =

∫
R
f(x)Φ(λ, x) dx (4.3.12)

which is a spectral representation of Ap. The inverse F−1
Ap

takes the form

F−1
Ap

G(x) =

∫ ∞

0

G(λ) · Φ(λ, x) dµ(λ)

=
1

4π

∫ ∞

0

1
q0
G1(λ)Φ

+(λ, x) + 1
qn
G2(λ)Φ

−(λ, x)

κ(
√
λ)

dλ√
λ

(4.3.13)

for all G = (G1, G2) ∈ L2([0,∞), dµ).

Proof. The result is an application of Theorem 2.2.6, but as Φ is explicitly given in
Theorem 4.2.2, together with Theorem 4.3.1 we can proceed one step further to compute
the spectral matrix measure µ. The succeeding calculations closely follow some of the
computable examples in [80, Chap. 17] and [82, Sec. 23.2].
Without loss of generality, let z ∈ C \ (−∞, 0] such that Imz > 0. By Theorem 4.2.2,

Φ(z, ·) = (Φ+(z, ·),Φ−(z, ·)) is a fundamental system of (τp − z)f = 0, where Φ+(z, ·) lies
right and Φ−(z, ·) lies left in L2(R), respectively. By (2.2.8) and (4.3.7)

rz(x, y) =
1

W (Φ+(z, ·),Φ−(z, ·))

{
Φ+(z, x)Φ−(z, y), y ≤ x,

Φ−(z, x)Φ+(z, y), y > x

=
iq0

2a+0 (z)
√
z

{
Φ+(z, x)Φ−(z, y), y ≤ x,

Φ−(z, x)Φ+(z, y), y > x.
(4.3.14)

On the other hand, since Imz < 0, Φ(z, ·) = (Φ+(z, ·),Φ−(z, ·)) is a fundamental system
of (τp − z)f = 0 where Φ+(z, ·) lies right and Φ−(z, ·) lies left in L2(R), respectively.
Moreover, by (2.2.8) and (4.3.8),

rz(x, y) =
1

W
(
Φ+(z, ·),Φ−(z, ·)

) {Φ+(z, x)Φ−(z, y), y ≤ x

Φ−(z, x)Φ+(z, y), y > x

=
−iqn

2b−n (z)
√
z

{
Φ+(z, x)Φ−(z, y), y ≤ x

Φ−(z, x)Φ+(z, y), y > x
(4.3.15)

= rz(x, y).

By the piecewise nature of Φ, there are (n+1)2 possible expressions for rz(x, y) depending
on where x and y are located. We choose the unbounded intervals I0 and In in the
succeeding computations as the expressions for Φ±(z, x) are simpler compared to those
found in the finite intervals Ik, 1 ≤ k ≤ n− 1.
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4.3. Wronskian determinants, resolvents and spectral matrix measure

• For x ∈ I0, we observe that

Φ+(z, x) = a+0 (z)e
iq0

√
zx + b+0 (z)e

−iq0
√
zx, Φ−(z, x) = e−iq0

√
zx.

Thus,

Φ−(z, x) = e−iq0
√
z = eiq0

√
zx =

1

a+0 (z)
Φ+(z, x)− b+0 (z)

a+0 (z)
Φ−(z, x), x ∈ I0. (4.3.16)

• Similarly, for x ∈ In, we get

Φ+(z, x) = e−iqn
√
zx, Φ−(z, x) = a−n (z)e

−iqn
√
zx + b−n (z)e

iqn
√
zx

and consequently,

Φ+(z, x) = eiqn
√
zx =

1

b−n (z)
Φ−(z, x)− a−n (z)

b−n (z)
Φ+(z, x), x ∈ In. (4.3.17)

Therefore, for Im z > 0, substituting (4.3.16) to (4.3.15) and (4.3.17) to (4.3.14) yields

rz(x, y) =
iq0

2a+0 (z)b
−
n (z)

√
z

{
Φ−(z, x)− a−n (z) Φ

+(z, x)
}
Φ−(z, y) (4.3.18)

for x ∈ In, y ≤ x and

rz(x, y) =
−iqn

2a+0 (z)b
−
n (z)

√
z
Φ+(z, x)

{
Φ+(z, y)− b+0 (z)Φ

−(z, y)
}

(4.3.19)

for x ∈ I0, y ≤ x, respectively. Recall that for Imz > 0, the resolvent kernel rz(x, y) has
the expression (2.2.9) which can be written as (we use here Φ1 = Φ+,Φ2 = Φ−)

rz(x, y) =
2∑

j,l=1

m+
jl(z)Φj(z, x)Φl(z, y), y ≤ x,

rz(x, y) =
2∑

j,l=1

m+
jl(z)Φj(z, x)Φl(z, y), y ≤ x,

where each m+
jl is independent of x and y. One sees from (4.3.18) and (4.3.19) that for

Imz > 0, m+ takes the form

m+(z) =
iq0

2a+0 (z)b
−
n (z)

√
z

[
0 −a−n (z)
0 1

]
,

m+(z) =
−iqn

2a+0 (z)b
−
n (z)

√
z

[
1 −b+0 (z)
0 0

]
.

Hence, for Imz > 0,

m+(z)−m+(z) =


iqn

2a+0 (z)b
−
n (z)

√
z

−iq0a−n (z)

2a+0 (z)b
−
n (z)

√
z
− iqnb

+
0 (z)

2a+0 (z)b
−
n (z)

√
z

0
iq0

2a+0 (z)b
−
n (z)

√
z

 . (4.3.20)
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4. The space PWΛ(Ap) with piecewise constant p

By Lemma 4.2.4, µ is absolutely continuous with respect to the Lebesgue measure on
[0,∞). Consequently, by Theorem 2.2.9 (Weyl-Titchmarsh-Kodaira), the matrix M of
densities has entries

Mjl(λ) =
dµjl

dλ
= lim

ϵ↓0

1

2πi

(
m+

jk(λ+ iϵ)−m+
jk(λ− iϵ)

)
.

Applying (4.3.1), (4.3.5) and Corollary 4.3.2 to (4.3.20) with z = λ+ iϵ, ϵ ↓ 0 yields

dµ11

dλ
=

qn

4π
√
λa+0 (λ)b

−
n (λ)

=
q0

4π
√
λ|a+0 (λ)|2

,

dµ22

dλ
=

q0

4π
√
λa+0 (λ)b

−
n (λ)

=
qn

4π
√
λ|b−n (λ)|2

=
q0
qn

dµ11

dλ
,

dµ12

dλ
= 0,

dµ21

dλ
= −

q0qn

(
1
qn
a−n (λ) +

1
q0
b+0 (λ)

)
4πa+0 (λ)b

−
n (λ)

√
λ

= 0.

By definition of κ and by Corollary 4.3.2, κ(
√
λ) ≥ 1

q0qn
> 0 for all λ ∈ (0,∞) and

dµ(λ) = M(λ) dλ =
1

4πκ(
√
λ)

[ 1
q0

0

0 1
qn

]
dλ√
λ
.

The expression for FAp now follows.

The argument
√
λ of κ in (4.3.11) is intentional as we will be employing the change of

variables λ = u2 when we go to the actual computations. We also define

Λ1/2 = {ω ≥ 0 : ω2 ∈ Λ}.

With this prescribed substitution, (4.3.11) and (4.3.13) read as

dµ(u2) =
1

2πκ(u)

[ 1
q0

0

0 1
qn

]
du, (4.3.21)

F−1
Ap

G(x) =
1

2π

∫ ∞

0

1
q0
G1(u

2)Φ+(u2, x) + 1
qn
G2(u

2)Φ−(u2, x)

κ(u)
du. (4.3.22)

We see that the entries of dµ(u2) are bounded on (0,∞). In addition, the spectral pro-
jection χΛ(Ap) : L

2(R) → PWΛ(Ap) can be written as

χΛ(Ap)f(x) =
1

2π

∫
Λ1/2

1
q0
F1(u

2)Φ+(u2, x) + 1
qn
F2(u

2)Φ−(u2, x)

κ(u)
du, (4.3.23)

where F = (F1, F2) = FApf.

Remark 4.3.4. It follows from Lemma 4.2.5 and upon expanding the formula for κ in
(4.3.11) that there exist r ∈ N (that increases as the number of piecewise components of
p increases) and c0, . . . , cr, λ1, . . . , λr ∈ R such that

κ(u) = c0 +
r∑

j=1

cj cos(λju), u ∈ (0,∞).
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4.4. Computing the reproducing kernel

In summary, Theorem 4.3.3 asserts that piecewise constant parametrizing functions
yield explicit spectral matrix measures determined by the components {pk}nk=0 of p. How-
ever, one clearly sees from (4.2.13) and (4.2.14) that the expression for κ becomes more
complicated as n increases. This presents the problem of how integrals involving the spec-
tral measure µ can be calculated. In particular, we wish to know how the reproducing
kernel kΛ of PWΛ(Ap) are computed, at least numerically. We shall deal with this main
obstacle in the next section.

4.4. Computing the reproducing kernel

Recall from Definition 3.0.1 that for a spectral set Λ ⊂ R+
0 of finite measure, the Paley-

Wiener space PWΛ(Ap) of variable bandwidth functions with spectral set Λ is the range
of the spectral projection χΛ(Ap), i.e., the space

PWΛ(Ap) = χΛ(Ap)(L
2(R))

which consists of functions f ∈ L2(R) given by

f(x) = χΛ(Ap)f(x) =

∫
Λ

FApf(λ) · Φ(λ, x) dµ(λ), x ∈ R. (4.4.1)

Moreover, Proposition 3.1.2 shows that for compact spectral sets, PWΛ(Ap) is a repro-
ducing kernel Hilbert space with reproducing kernel

kΛ(x, y) =

∫
Λ

Φ(λ, x) · Φ(λ, y) dµ(λ), x, y ∈ R. (4.4.2)

Theorem 4.2.2 shows that if p is a piecewise constant function, explicit forms of the
fundamental solutions Φ(z, ·) = (Φ+(z, ·),Φ−(z, ·)) of (τp − z)f = 0, z ∈ C \ (−∞, 0]
can be derived. Consequently, in Theorem 4.3.3 these expressions were used to directly
compute both the spectral representation FAp of the self-adjoint realization Ap of τp and
the 2 × 2 positive matrix measure µ as stated in Theorem 4.3.3. Putting all these facts
together, we now have the following result (cf. Proposition 3.1.2 and its proof in [39,
Prop. 3.3]).

Theorem 4.4.1. Let n ∈ N and Λ ⊂ R+
0 be of finite measure. Suppose p is an (n + 1)-

component piecewise constant function. Then PWΛ(Ap) is a closed subspace of L2(R)
whose elements are continuous. Moreover, if Φ = (Φ+,Φ−) is defined as in Theorem
4.2.2 with connection coefficients a±j , b

±
j , 0 ≤ j ≤ n and κ is given by (4.3.11), then

PWΛ(Ap) is a reproducing kernel Hilbert space with kernel

kΛ(x, y) =
1

4π

∫
Λ

(
q0Φ+(λ, x)Φ+(λ, y)

|a+0 (λ)|2
+

qnΦ−(λ, x)Φ−(λ, y)

|b−n (λ)|2

)
dλ√
λ

(4.4.3)

=
1

2π

∫
Λ1/2

1
q0
· Φ+(u2, x)Φ+(u2, y) + 1

qn
· Φ−(u2, x)Φ−(u2, y)

κ(u)
du, (4.4.4)

for every x, y ∈ R.
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4. The space PWΛ(Ap) with piecewise constant p

Proof. We first claim that the set {∥Φ(·, x)∥L2(Λ,dµ)}x∈R is bounded. Indeed, Theorem
4.3.3 implies that for all x ∈ R,

∥Φ(·, x)∥L2(Λ,dµ) =

{
1

2π

∫
Λ1/2

1
q0
|Φ+(u2, x)|2 + 1

qn
|Φ−(u2, x)|2

κ(u)
du

}1/2

≤ ess sup
u∈Λ1/2

|Φ±(u2, x)|
{

1

2π

∫
Λ1/2

q0 + qn
q0qnκ(u)

du

}1/2

.

By (4.3.11), κ(u) ≥ 1
q0qn

for u ∈ (0,∞), so that

∥Φ(·, x)∥L2(Λ,dµ) ≤ ess sup
u∈Λ1/2

|Φ±(u2, x)|
(
q0 + qn
2π

)1/2

|Λ1/2|1/2.

Thus, by Lemma 4.2.6 and by assumption, there exists C > 0 such that ∥Φ(·, x)∥L2(Λ,dµ) ≤
C for all x ∈ R.
We now prove the first assertion. Observe that

• for all x ∈ R, FApf(·) · Φ(·, x) ∈ L1(Λ, dµ) by Cauchy-Schwartz inequality and the
claim,

• for almost every λ ∈ Λ, FApf(λ) ·Φ(λ, ·) is continuous on R by Theorem 4.2.2, and

• for all x ∈ R, |FApf(·) ·Φ(·, x)| ≤ C ′|FApf | ∈ L1(Λ, dµ) for some C ′ > 0 by Lemma
4.2.6.

By a standard result on continuity of parameter integrals (see e.g. [25, Thm. 14.3.1] and
[29, Thm. 5.6]), we conclude that functions f ∈ PWΛ(Ap) defined in (4.4.1) are continuous.
That PWΛ(Ap) is closed also follows from (4.4.1) and the unitarity of FAp . To prove the
second assertion, let x ∈ R. By the claim and by unitarity of FAp ,

|f(x)| ≤ ∥Φ(·, x)∥L2(Λ,dµ)∥FApf∥L2(Λ,dµ) = ∥Φ(·, x)∥L2(Λ,dµ)∥f∥2 ≤ C∥f∥2

for all f ∈ PWΛ(Ap). Hence, for every x ∈ R, the evaluation map f 7→ f(x) for f ∈
PWΛ(Ap) is continuous. By Theorem 3.1.1, PWΛ(Ap) is a reproducing kernel Hilbert
space. The formula for the reproducing kernel kΛ is exactly (4.4.2) and is derived as
follows (see [28, Thm. XIII.5.24]). Let f ∈ PWΛ(Ap). Then for x ∈ R,

f(x) = (χΛ(Ap)f)(x) =

∫
Λ

FApf(λ) · Φ(λ, x) dµ(λ)

=

∫
Λ

∫
R
f(y)Φ(λ, y) · Φ(λ, x) dy dµ(λ)

=

∫
R
f(y)

∫
Λ

Φ(λ, y) · Φ(λ, x) dµ(λ) dy

=

∫
R
f(y)kΛ(x, y) dy.

The interchange of integrals is justified by Fubini-Tonelli Theorem (see e.g. [15, Thm. 18.3]
and [26, Thms. 14.1, 14.2]). Formulas (4.4.3) and (4.4.4) now follow from the computable
expressions of the spectral matrix measure (4.3.11) and (4.3.21), respectively.
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4.4. Computing the reproducing kernel

What we have above is a description of PWΛ(Ap) with piecewise constant p as a repro-
ducing kernel Hilbert space with kernel kΛ. Constructing PWΛ(Ap) from kΛ can also be
done via the Moore-Aronszajn Theorem [8, Thm. 3]: PWΛ(Ap) is the completion of the
pre-Hilbert space

H0 = span{kΛ(x, ·) : x ∈ R}

with inner product

⟨f, g⟩H0 =
r∑

l=1

m∑
j=1

αlβjkΛ(yl, xj),

where f =
∑r

l=1 αlkΛ(yl, ·), g =
∑m

j=1 βjkΛ(xj, ·) ∈ H0.
In Chapter 7, our numerical reconstruction method is based on approximating a func-

tion by elements of finite-dimensional subspaces of PWΛ(Ap) spanned by kΛ(xj, ·) with
finitely many j. Hence, we can translate the reconstruction procedure into a linear algebra
problem that can be implemented in Matlab.

4.4.1. Strategy for computing kΛ(x, y) numerically

The computability of the reproducing kernel kΛ at any point translates to feasibility of
numerical reconstruction methods in variable bandwidth spaces. We now explore how to
numerically evaluate kΛ(x, y) for any x, y ∈ R. Algorithm 1 shows that we can compute
the connection coefficients a±k , b

±
k as well as the local solutions

Φ±(u2, x) = a±k (u
2)eiqkux + b±k (u

2)e−iqkux,

where u > 0, x ∈ Ik, and qk = p
−1/2
k , 0 ≤ k ≤ n. For convenience, we adopt the notation

ϑ(u, x, y) =
1

q0
Φ+(u2, x)Φ+(u2, y) +

1

qn
Φ−(u2, x)Φ−(u2, y), (4.4.5)

so that (4.4.4) can be compactly written as

kΛ(x, y) =
1

2π

∫
Λ1/2

ϑ(u, x, y)

κ(u)
du, x, y ∈ R. (4.4.6)

By expanding ϑ, we can try possible methods to calculate the reproducing kernel. Fix
x, y ∈ R. By Lemma 4.2.5, there exist a positive integer m(x, y) and real numbers
αk(x, y), βk(x, y), 1 ≤ k ≤ m(x, y) such that

ϑ(u, x, y) =

m(x,y)∑
k=1

αk(x, y)e
iβk(x,y)u. (4.4.7)

Remark 4.4.2. By looking at the matrices (4.2.2) and (4.2.3) as well as the iterative
expressions (4.2.13) and (4.2.14), the nonzero coefficients αk(x, y), x ∈ Ij, y ∈ Il for
0 ≤ j, l ≤ n are obtained by taking products of some of the expressions

1

q0
,
1

qn
, 1± qr

qr−1

, 1± qs+1

qs
, 1 ≤ r ≤ j and l ≤ s ≤ n− 1.
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4. The space PWΛ(Ap) with piecewise constant p

For out-of-range index values, i.e., j = 0 or l = n, we take 1 as the factor. We see here that
each αk(x, y) does not directly depend on the values of x and y, but rather on the intervals
Ij and Il in which x and y are located. Hence, for 0 ≤ j, l ≤ n fixed, the coefficients
αk(x, y), x ∈ Ij, y ∈ Il are merely constants. Similarly, if algebraic simplifications are
skipped, we have for 0 ≤ j, l ≤ n fixed that m(x, y), x ∈ Ij, y ∈ Il is also a fixed natural
number. In contrast, the exponents βk(x, y), x ∈ Ij, y ∈ Il are of the form

ck ± qjx± qly, (4.4.8)

where the scalars ck ∈ R are dependent on {tr}nr=1 and {qr}nr=0. Such statements are
best illustrated by examples in Chapter 5 where we derive computable formulas for the
reproducing kernel when n = 1 and n = 2.

Meanwhile, since κ is bounded below on (0,∞) and Λ has finite Lebesgue measure, the
integral

J(s) =
1

2π

∫
Λ1/2

eisu

κ(u)
du, s ∈ R (4.4.9)

is well-defined. By (4.4.6) and (4.4.7), we can write the reproducing kernel kΛ as

kΛ(x, y) =
1

2π

m(x,y)∑
k=1

αk(x, y)

∫
Λ1/2

eiβk(x,y)u

κ(u)
du

=

m(x,y)∑
k=1

αk(x, y)J(βk(x, y)). (4.4.10)

Thus, an important step in the numerical evaluation of the reproducing kernel is the
numerical evaluation of J . Ideally, we want an explicit formula for J . However, the
potentially complicated form of κ as mentioned in Remark 4.3.4 renders J difficult to
calculate using standard techniques of integration. Assuming we have a separate routine
to calculate J(s) for any s ∈ R, we have in Algorithm 2 a pseudocode that computes
kΛ(x, y) for any x, y ∈ R.
We now investigate the integral J . First, we observe some of its basic properties.

Lemma 4.4.3. Let Λ ⊂ R+
0 be of finite measure and define

J(s) =
1

2π

∫
Λ1/2

eisu

κ(u)
du, s ∈ R.

Then the following hold.

(i) J(−s) = J(s) for all s ∈ R.

(ii) suppFJ = Λ1/2.

(iii) If Λ is a compact interval, then there exists M > 0 such that |J(s)| ≤ M |s|−1 for
all s ̸= 0.

Proof. Let Λ ⊂ R+
0 be of finite measure.
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Algorithm 2 Calculating kΛ(x, y) for any x, y ∈ R.
Input: Components p =

[
p0 p1 · · · pn

]
and knots t =

[
t1 t2 · · · tn

]
Spectral set Λ ⊂ R+

0 and points x, y ∈ R
Output: Evaluation kΛ(x, y)

1: function VBRepKer(t, p,Λ, x, y)
2: Assign n =length(t).

3: Set qk = p
−1/2
k , 0 ≤ k ≤ n.

4: Let 0 ≤ j, l ≤ n such that (x, y) ∈ Ij × Il.
5: Compute

[
C+(u2) C−(u2)

]
= ConnCoeff(t, p). ▷ Algorithm 1

6: Compute κ(u) =
|a+0 (u2)|2

q20
=

|C+
1,1(u

2)|2

q20
. ▷ Formula (4.3.11)

7: Calculate Φ+(u2, x) =
[
eiqjux e−iqjux

]
C+

:,j+1(u
2). ▷ Using (4.2.20)

8: Calculate Φ−(u2, y) =
[
eiqluy e−iqluy

]
C−

:,l+1(u
2). ▷ Using (4.2.20)

9: Evaluate ϑ(u, x, y) = 1
q0
Φ+(u2, x)Φ+(u2, y) + 1

qn
Φ−(u2, x)Φ−(u2, y).

10: Write ϑ(u, x, y) as
m∑
k=1

αke
iβku for some positive integer m = m(x, y) and real

constants αk = αk(x, y), βk = βk(x, y). ▷ As in (4.4.7)
11: Extract the coefficient-exponent pairs

[
αk βk

]m
k=1

∈ Cm×2.

12: Compute kΛ(x, y) =
1

2π

m∑
k=1

αk

∫
Λ1/2

eiβku

κ(u)
du =

m∑
k=1

αkJ(βk) ▷ As in (4.4.10).

13: return kΛ(x, y)
14: end function

(i) This follows from the property of integration of functions of a real variable.

(ii) By definition, J = F−1
(
χΛ1/2 · 1

κ

)
, which means suppFJ = Λ1/2.

(iii) Without loss of generality, assume Λ = [0,Ω] for some Ω > 0. By Remark 4.3.4, κ
is (infinitely) differentiable on (0,∞) with bounded derivatives and 0 < 1

κ(u)
≤ q0qn

for all u ∈ (0,∞). Consequently, integration by parts yields

J(s) =
1

2πis

(
eisΩ

1/2

κ(Ω1/2)
− 1

κ(0+)

)
+

1

2πis

∫ Ω1/2

0

κ′(u)

(κ(u))2
eisu (4.4.11)

|J(s)| ≤ 1

2π|s|

{
1

|κ(Ω1/2)|
+

1

|κ(0+)|
+

∫ Ω1/2

0

|κ′(u)|
(κ(u))2

du

}
,

where κ(0+) = limu↓0 κ(u). Therefore, for all s ̸= 0,

|J(s)| ≤ q0qn
2π|s|

(
2 + q0qnΩ

1/2 ess sup
0≤u≤Ω1/2

|κ′(u)|

)
.

If explicit formulas for J are not available, we settle for approximations of J(s) with
satisfactory error bounds for any s ∈ R. Such an approximation can potentially be derived
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4. The space PWΛ(Ap) with piecewise constant p

by applying integration by parts several times to (4.4.11). Let g = 1
κ
. Then for m ∈ N

and s ̸= 0,

J(s) =
1

2π

m−1∑
k=0

(−1)k

(is)k
(g(k)(Ω1/2)eisu − g(k)(0+)) +

(−1)m

2π(is)m

∫ Ω1/2

0

g(m)(u)eisu du.

Assuming we have access to derivatives

g(k)(0+) = lim
u↓0

g(k)(u) and g(k)(Ω1/2), k = 0, . . . ,m− 1,

define the mth approximation Jm of J as

Jm(s) =
1

2π

m−1∑
k=0

(−1)k

(is)k
(g(k)(Ω1/2)eisu − g(k)(0+)).

Then the error Em(s), s ̸= 0 is computed as

Em(s) = |J(s)− Jm(s)| ≤
1

2π|s|m

∫ Ω1/2

0

g(m)(u)eisu du ≤ Ω1/2

2π|s|m
ess sup
0≤u≤Ω1/2

|g(m)(u)| < ∞.

Clearly, the accuracy of the proposed approximation improves as we take larger |s| and
use higher order derivatives. However, for small to moderate values of s, the errors may
be large. Alternatively, we can evaluate J(s) for any s ∈ R using efficient quadrature
methods for oscillatory integrals, i.e., integrals of the form∫ b

a

f(u)eisg(u) du,

where −∞ < a < b < ∞, both f (the amplitude function) and g (the phase function;
eisg(u) is the oscillatory term) are sufficiently smooth functions, and s ∈ R. Several
methods and software packages are available for such computations. We list the basic
ones below. We refer the reader to [30, 46, 47, 54, 55] for an introductory study of
numerical quadratures on evaluating oscillatory integrals.

• Matlab’s integral (essentially the same as quadgk) command uses high-order
adaptive quadrature and can handle small to moderate values of |s|, but fails to
correctly approximate J(s) for large |s|.

• The Filon quadrature [30, 46, 48] is a numerical integration method specifically
designed to calculate highly oscillatory integrals, i.e., when |s| is large. We ap-
proximate 1

κ
by an interpolating polynomial PF of degree at most m − 1 using

interpolation nodes c1, . . . , cm ∈ [a, b] and compute

QF (s) =
1

2π

∫ b

a

PF (u)e
isu du.

This only requires computing the moments∫ b

a

xjeisu, du, j = 0, . . . , degPF .

A complete error analysis of the Filon method for the non-oscillatory, mildly oscil-
latory, and highly oscillatory cases can be found in [47, Sec. 3].
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4.4. Computing the reproducing kernel

• Mathematica’s NIntegrate9 command uses the OscillatorySelection preproces-
sor to select the most appropriate method to evaluate highly oscillatory integrals.
For small to moderate values of |s|, NIntegrate can evaluate J(s) with ease. For
large |s|, it uses the LevinRule that is based on the Levin collocation method
[54, 85]. Let s ∈ R. The idea is if there exists a function ϕ such that

ϕ′(u) + isϕ(u) =
1

κ(u)
, a ≤ u ≤ b,

then with Λ = [a, b] ⊂ R+
0 ,

J(s) =
1

2π

∫ b

a

(ϕ′(u) + isϕ(u))eisu du =
1

2π
(ϕ(b)eisb − ϕ(a)eisa).

Instead of finding such ϕ, we choose interpolation nodes c1, . . . , cm ∈ [a, b] for some
m ∈ N to find an interpolating polynomial PL of degree at most m−1 which satisfies

P ′
L(cj) + isPL(cj) =

1

κ(cj)
, j = 1, . . . ,m.

Then the quantity

QL(s) =
1

2π

∫ b

a

(P ′
L(u) + isPL(u))e

isu du =
1

2π
(PL(b)e

isb − PL(a)e
isa)

is an approximation of J(s). In a more general context, it was proved in [55,
Thm. 3.1] that the accuracy of the approximation increases as |s| increases. It also
follows as a special case of [85, Thms. 2.1, 2.2] that for s ∈ R and with the same m
interpolating nodes, QL(s) = QF (s) and with the same error bound

E(s) ≤
3(1 +m)∥Dm 1

κ
∥∞(b− a)m

|s|m!
.

It should be noted as in [54, 55] that the above quadrature methods for oscillatory integrals
are effective when s is large and the amplitude function is not highly oscillatory, which
by Remark 4.3.4 may not be true for 1

κ
. We can still use these methods by forcing

software packages to identify eisu as the only oscillatory term of J . However, if 1
κ
oscillates

much faster than |s|, then we may get incorrect values. This is because the interpolating
polynomials PF and PL may fail to capture the true oscillatory behavior of 1

κ
. We can

interpolate 1
κ
using a preferred class of orthogonal polynomials (e.g. Hermite, Chebyshev,

Legendre) and, if necessary, add more or choose special interpolation nodes to improve
the approximation at the cost of increased computational effort.
In the next chapter, we investigate the cases n = 1 (two-component p) and n = 2

(three-component p) where the resulting κ has a simple formula. We show that for n = 1,
we can find an explicit formula for J , while for n = 2, we give a series expansion of J(s)
for any s ∈ R and whose partial sums converge geometrically to the correct value. These

9More information on NIntegrate integration rules can be found on Wolfram’s web page: https:

//reference.wolfram.com/language/tutorial/NIntegrateIntegrationRules.html.
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4. The space PWΛ(Ap) with piecewise constant p

formulas save effort in demonstrating the accuracy of actual numerical computations in
Chapter 7 and avoid complications that may arise from using any numerical quadrature
for oscillatory integrals. Consequently, for n = 1 we have an exact formula for kΛ and a
computable formula for kΛ for the case n = 2. In Appendix B, we will use the theory of
residues to investigate the integral J for a rather special case of parameters.
As a final note, we see that the aforementioned numerical quadrature methods may

be useful in the case n > 2 (p has at least four piecewise components) where there
is absolute necessity to perform all symbolic calculations (i.e., computing Φ±, κ and
dµ) using a computer. Nonetheless, additional work is needed here to show accuracy of
computational results. This case is computationally intensive and is beyond the scope of
this thesis.
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A key ingredient in the computation of the reproducing kernel kΛ of PWΛ(Ap) with an
(n+ 1)-component piecewise constant p is the evaluation the integral

J(s) =
1

2π

∫
Λ1/2

eisu

κ(u)
du.

Remark 4.3.4 pointed out the complexity of the form of κ, hence the difficulty in calculat-
ing J(s) for any s ∈ R. In this chapter, we take a look at the following concrete examples
where evaluations of J can be accurately computed. Assume that Λ = [0,Ω] for some
Ω > 0.

• When n = 1 and p is the function

p(x) =

{
p0, x ≤ 0,

p1, x > 0,
p0, p1 > 0,

we show that κ is a constant. Hence, J(s) is a constant multiple of the Fourier transform
of χΛ1/2 = χ[0,Ω1/2] evaluated at −s, and therefore can be expressed in terms of cardinal
sine functions. Using the general theory of Chapter 4, we reproduce the result in [39,
Sec. 4] where an exact formula for the corresponding kΛ was derived.

• When n = 2 and p is the function

p(x) =


p0, x ∈ (−∞,−T

2
],

p1, x ∈ (−T
2
, T
2
],

p2, x ∈ (T
2
,∞),

p0, p1, p2, T > 0,

we prove that κ(s) = C +K cos ζs, where C,K and ζ are constants determined by p.
Using series expansions, we show that

J(s) =
1

2π

∫
Λ1/2

eisu

C +K cos ζs
du

can be written as an infinite series of cardinal sine functions. Moreover, for any s ∈ R,
the corresponding sequence of partial sums evaluated at s converges to J(s) at a geo-
metric rate. We then partially compute the piecewise components of the corresponding
kΛ in terms of J . Note that such a series expansion for J allows us to numerically
evaluate kΛ(x, y) at any point (x, y) ∈ R2 up to desired accuracy.

To aid us with the computations, we recall from (4.4.5) the notation

ϑ(u, x, y) =
1

q0
Φ+(u2, x)Φ+(u2, y) +

1

qn
Φ−(u2, x)Φ−(u2, y), x, y ∈ R
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so that the reproducing kernel kΛ in (4.4.4) reads as

kΛ(x, y) =
1

2π

∫
Λ1/2

ϑ(u, x, y)

κ(u)
du, x, y ∈ R.

We will see shortly that upon expanding ϑ and applying identities from Lemma 4.3.1,
most of its terms are of the form

eisu + e−isu = 2 cos(su), s ∈ R.

Thus, when computing for kΛ, we mainly use the real (also even) part Jreal of J given by

Jreal(s) =
J(s) + J(−s)

2
=

1

2π

∫
Λ1/2

cos(su)

κ(u)
du.

5.1. Case n = 1: the toy example

We consider the simplest case of a two-component piecewise constant p having the origin
as its only knot. This is called a toy example in [39, Sec. 4]. We then rederive the
reproducing kernel as part of the general theory of Chapter 4.

Theorem 5.1.1. Let Ω, p0, p1 > 0. Set Λ = [0,Ω]. Define p to be the piecewise constant
function

p(x) =

{
p0, x ≤ 0,

p1, x > 0

and the constants qk = p
−1/2
k , k = 0, 1. Then the reproducing kernel of PWΛ(Ap) is given

by

kΛ(x, y) =



q0Ω1/2

π

(
sinc q0Ω

1/2(x− y)− q0−q1
q0+q1

sinc q0Ω
1/2(x+ y)

)
, x, y ≤ 0,

q1Ω1/2

π

(
sinc q1Ω

1/2(x− y) + q0−q1
q0+q1

sinc q1Ω
1/2(x+ y)

)
, x, y > 0,

2q0q1Ω1/2

π(q0+q1)
sincΩ1/2 (q0x− q1y) , x ≤ 0, y > 0,

2q0q1Ω1/2

π(q0+q1)
sincΩ1/2 (q1x− q0y) , x > 0, y ≤ 0.

The above formula for kΛ is equivalent to the one given in [39, Sec. 4] if written purely
in terms of p0 and p1. We reproduce this result.

Proof. We first prepare the necessary quantities for quick reference. By Theorem 4.2.2,
the fundamental system Φ(u2, ·) = (Φ+(u2, ·),Φ−(u2, ·)), u ∈ (0,∞) is of the form (using

n = 1, t1 = 0, q0 = p
−1/2
0 , q1 = p

−1/2
1 )

Φ+(u2, x) =

{
a+0 (u

2)eiq0xu + b+0 (u
2)e−iq0xu, x ≤ 0,

eiq1xu, x > 0,

Φ−(u2, x) =

{
e−iq0xu, x ≤ 0,

a−1 (u
2)eiq1xu + b−1 (u

2)e−iq1xu, x > 0.
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We now need L1(u
2) and R1(u

2) to compute a−1 (u
2), b−1 (u

2) and a+0 (u
2), b+0 (u

2). By (4.2.4)
and (4.2.5),

L1(u
2) =

1

2

[
1 + q1

q0
1− q1

q0

1− q1
q0

1 + q1
q0

]
and R1(u

2) =
1

2

[
1 + q0

q1
1− q0

q1

1− q0
q1

1 + q0
q1

]
.

Thus, [
a−1 (u

2)
b−1 (u

2)

]
=

1

2

[
1 + q1

q0
1− q1

q0

1− q1
q0

1 + q1
q0

] [
0
1

]
=

1

2

[
1− q1

q0

1 + q1
q0

]
, (5.1.1)[

a+0 (u
2)

b+0 (u
2)

]
=

1

2

[
1 + q0

q1
1− q0

q1

1− q0
q1

1 + q0
q1

] [
1
0

]
=

1

2

[
1 + q0

q1

1− q0
q1

]
. (5.1.2)

By Theorem 4.3.3 and (4.3.21),

κ(u) =
|a+0 (u2)|2

q20
=

|b−1 (u2)|2

q21
=

(q0 + q1)
2

4q20q
2
1

, dµ(u2) =
2q0q1

π(q0 + q1)2

[
q1 0
0 q0

]
du. (5.1.3)

Hence, with Λ = [0,Ω], the integral J can be expressed as

J(s) =
1

2π

∫
Λ1/2

eisu

κ(u)
du =

2q20q
2
1

π(q0 + q1)2

∫ Ω1/2

0

eisu du =
2q20q

2
1

π(q0 + q1)2
eiΩ

1/2s − 1

is

=
2q20q

2
1Ω

1/2ei
Ω1/2s

2

π(q0 + q1)2
sinc

(
Ω1/2s

2

)
, s ∈ R. (5.1.4)

The real part Jreal of J is

Jreal(s) =
2q20q

2
1

π(q0 + q1)2

∫ Ω1/2

0

cos(su) du =
2q20q

2
1Ω

1/2

π(q0 + q1)2
sincΩ1/2s, s ∈ R. (5.1.5)

We now compute the piecewise components of kΛ. We partition R as the union of intervals
I0 = (−∞, 0] and I1 = (0,∞).

• Suppose x, y ≤ 0. Then x, y ∈ I0, i.e., j = l = 0 and

ϑ(u, x, y) =
1

q0
Φ+(u2, x)Φ+(u2, y) +

1

qn
Φ−(u2, x)Φ−(u2, y)

=
1

q0
(a+0 (u

2)e−iq0xu + b+0 (u
2)eiq0xu)(a+0 (u

2)eiq0yu + b+0 (u
2)e−iq0yu)

+
1

q1
eiq0xue−iq0yu.

From (5.1.1) and (5.1.2), we have

ϑ(u, x, y) =
1

4q0

{(
1− q20

q21

)
(eiq0(x+y)u + e−iq0(x+y)u) +

(
1 +

q0
q1

)2

e−iq0(x−y)u

+

[(
1− q0

q1

)2

+
4q0
q1

]
eiq0(x−y)u

}

=
1

2q0

{(
1− q20

q21

)
cos(q0(x+ y)u) +

(
1 +

q0
q1

)2

cos(q0(x− y)u)

}
.
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Dividing both sides of the above equation by 2πκ(u) in (5.1.3) and integrating with
respect to u over the interval [0,Ω1/2] yields

kΛ(x, y) =
1

2π

∫ Ω1/2

0

ϑ(u, x, y)

κ(u)
du

=
1

2q0

(
1− q20

q21

)
·
∫ Ω1/2

0

cos(q0(x+ y)u)

κ(u)
du+

1

2q0

(
1 +

q0
q1

)2

·
∫ Ω1/2

0

cos(q0(x− y)u)

κ(u)
du

=
1

2q0

(
1− q20

q21

)
Jreal(q0(x+ y)) +

1

2q0

(
1 +

q0
q1

)2

Jreal(q0(x− y)).

By (5.1.5),

1

2q0

(
1− q20

q21

)
Jreal(q0(x+ y)) =

1

2q0

(
1− q20

q21

)
2q20q

2
1Ω

1/2

π(q0 + q1)2
sinc(q0Ω

1/2(x+ y))

=
q0Ω

1/2

π

q1 − q0
q0 + q1

sinc(q0Ω
1/2(x+ y)),

1

2q0

(
1 +

q0
q1

)2

Jreal(q0(x− y)) =
1

2q0

(
1 +

q0
q1

)2
2q20q

2
1Ω

1/2

π(q0 + q1)2
sinc(q0Ω

1/2(x− y))

=
q0Ω

1/2

π
sinc(q0Ω

1/2(x− y)).

Therefore,

kΛ(x, y) =
q0Ω

1/2

π

(
sinc(q0Ω

1/2(x− y))− q0 − q1
q0 + q1

sinc(q0Ω
1/2(x+ y))

)
, x, y ≤ 0.

• Suppose x, y > 0. Then x, y ∈ I1, i.e., j = l = 1 and

ϑ(u, x, y) =
1

q0
e−iq1xueiq1yu

+
1

q1
(a−1 (u

2)e−iq1xu + b−1 (u
2)eiq1xu)(a−1 (u

2)eiq1yu + b−1 (u
2)e−iq1yu).

Performing the same procedure as in the previous case yields the similar formula

kΛ(x, y) =
q0Ω

1/2

π

(
sinc(q0Ω

1/2(x− y)) +
q0 − q1
q0 + q1

sinc(q0Ω
1/2(x+ y))

)
, x, y > 0.

• Suppose x ≤ 0, y > 0. Then x ∈ I0, y ∈ I1, i.e., j = 0, l = 1 and

ϑ(u, x, y) =
1

q0
(a+0 (u

2)e−iq0xu + b+0 (u
2)eiq0xu)eiq1yu

+
1

q1
eiq0xu(a−1 (u

2)eiq1yu + b−1 (u
2)e−iq1yu).
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5.2. Case n = 2: three-component p

Again, by (5.1.1) and (5.1.2) we get

ϑ(u, x, y) =

(
1

2q0

(
1− q0

q1

)
+

1

2q1

(
1− q1

q0

))
ei(q0x+q1y)u

+
1

2q1

(
1 +

q1
q0

)
ei(q0x−q1y)u +

1

2q0

(
1 +

q0
q1

)
e−i(q0x−q1y)u

=
q0 + q1
q0q1

cos((q0x− q1y)u).

Hence, by (5.1.5),

kΛ(x, y) =
q0 + q1
q0q1

Jreal(q0x− q1y) =
2q0q1Ω

1/2

π(q0 + q1)
sinc(Ω1/2(q0x− q1y)), x ≤ 0, y > 0.

• Suppose x > 0, y ≤ 0. Then x ∈ I1, y ∈ I0, i.e., j = 1, l = 0. By the previous case,

kΛ(x, y) = kΛ(y, x) =
2q0q1Ω1/2

π(q0 + q1)
sinc(Ω1/2(q0y − q1x))

=
2q0q1Ω

1/2

π(q0 + q1)
sinc(Ω1/2(q1x− q0y)), x > 0, y ≤ 0.

By inspection, all four cases match the formula for kΛ in Theorem 5.1.1.

If p0 = p1 (q0 = q1), the reproducing kernel kΛ reduces to

kΛ(x, y) =
q0Ω

1/2

π
sinc(q0Ω

1/2(x− y)), x, y ∈ R

which we know as the reproducing kernel for the Paley-Wiener space PWq0Ω1/2(R) of

q0Ω
1/2-bandlimited functions.

The previous computations demonstrate that complete derivation the reproducing ker-
nel kΛ is possible if we know an explicit formula for J . We shall see in the next example
that finding a formula for J becomes more difficult as n ≥ 2. We illustrate the case n = 2
in the next section where we only have a series expansion for J .

5.2. Case n = 2: three-component p

We consider a three-component piecewise function p where the middle interval I1 is cen-
tered at the origin. Unlike the toy example where we have an explicit formula for J , we
settle for a series expansion as the computations are more complicated.

Lemma 5.2.1. Let p0, p1, p2, T > 0 and Λ ⊂ R+
0 be of finite measure. Define p by

p(x) =


p0, x ∈ (−∞,−T

2
],

p1, x ∈ (−T
2
, T
2
],

p2, x ∈ (T
2
,∞),

71



5. Concrete Examples

the constants qk = p
−1/2
k , k = 0, 1, 2,

C =
1

16q20

[(
1 +

q0
q1

)2(
1 +

q1
q2

)2

+

(
1− q0

q1

)2(
1− q1

q2

)2
]
, (5.2.1)

K =
1

8q20

(
1− q20

q21

)(
1− q21

q22

)
, (5.2.2)

and ζ = 2q1T . Then

J(s) =
1

2π

∫
Λ1/2

eisu

C +K cos ζu
du, s ∈ R.

Proof. We proceed as in the toy example. By Theorem 4.2.2, the fundamental system
Φ(u2, ·) = (Φ+(u2, ·),Φ−(u2, ·)), u ∈ (0,∞) is of the form

Φ+(u2, x) =


a+0 (u

2)eiq0xu + b+0 (u
2)e−iq0xu, x ∈ (−∞,−T

2
]

a+1 (u
2)eiq1xu + b+1 (u

2)e−iq1xu, x ∈ (−T
2
, T
2
]

eiq2xu, x ∈ (T
2
,∞)

Φ−(u2, x) =


e−iq0xu, x ∈ (−∞,−T

2
]

a−1 (u
2)eiq1xu + b−1 (u

2)e−iq1xu, x ∈ (−T
2
, T
2
]

a−2 (u
2)eiq2xu + b−2 (u

2)e−iq2xu, x ∈ (T
2
,∞).

To obtain the rest of the connection coefficients, we need the matrices

L1(u
2) =

1

2

(1 + q1
q0

)
e−iT

2
(q0−q1)u

(
1− q1

q0

)
ei

T
2
(q0+q1)u(

1− q1
q0

)
e−iT

2
(q0+q1)u

(
1 + q1

q0

)
ei

T
2
(q0−q1)u

 ,

L2(u
2) =

1

2

(1 + q2
q1

)
ei

T
2
(q1−q2)u

(
1− q2

q1

)
e−iT

2
(q1+q2)u(

1− q2
q1

)
ei

T
2
(q1+q2)u

(
1 + q2

q1

)
e−iT

2
(q1−q2)u

 ,

R1(u
2) =

1

2

 (1 + q0
q1

)
ei

T
2
(q0−q1)u

(
1− q0

q1

)
ei

T
2
(q0+q1)u(

1− q0
q1

)
e−iT

2
(q0+q1)u

(
1 + q0

q1

)
e−iT

2
(q0−q1)u

 ,

R2(u
2) =

1

2

(1 + q1
q2

)
e−iT

2
(q1−q2)u

(
1− q1

q2

)
e−iT

2
(q1+q2)u(

1− q1
q2

)
ei

T
2
(q1+q2)u

(
1 + q1

q2

)
ei

T
2
(q1−q2)u

 .

Now, by Theorem 4.2.2, we have[
a+1 (u

2)
b+1 (u

2)

]
= R2(u

2)

[
1
0

]
,

[
a+0 (u

2)
b+0 (u

2)

]
= R1(u

2)R2(u
2)

[
1
0

]
= R1(u

2)

[
a+1 (u

2)
b+1 (u

2)

]
,[

a−1 (u
2)

b−1 (u
2)

]
= L1(u

2)

[
0
1

]
,

[
a−2 (u

2)
b−2 (u

2)

]
= L2(u

2)L1(u
2)

[
0
1

]
= L2(u

2)

[
a−1 (u

2)
b−1 (u

2)

]
.

Therefore,
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5.2. Case n = 2: three-component p

•
[
a−0 (u

2)
b−0 (u

2)

]
=

[
0
1

]
,

[
a+2 (u

2)
b+2 (u

2)

]
=

[
1
0

]
,

•
[
a−1 (u

2)
b−1 (u

2)

]
=

1

2

(1− q1
q0

)
ei

T
2
(q0+q1)u(

1 + q1
q0

)
ei

T
2
(q0−q1)u

 ,

[
a+1 (u

2)
b+1 (u

2)

]
=

1

2

(1 + q1
q2

)
e−iT

2
(q1−q2)u(

1− q1
q2

)
ei

T
2
(q1+q2)u

 ,

•
[
a−2 (u

2)
b−2 (u

2)

]
=

1

4

(1− q1
q0

)(
1 + q2

q1

)
ei

T
2
(q0+2q1−q2)u +

(
1 + q1

q0

)(
1− q2

q1

)
ei

T
2
(q0−2q1−q2)u(

1− q1
q0

)(
1− q2

q1

)
ei

T
2
(q0+2q1+q2)u +

(
1 + q1

q0

)(
1 + q2

q1

)
ei

T
2
(q0−2q1+q2)u

 ,

[
a+0 (u

2)
b+0 (u

2)

]
=

1

4

 (
1 + q0

q1

)(
1 + q1

q2

)
ei

T
2
(q0−2q1+q2)u +

(
1− q0

q1

)(
1− q1

q2

)
ei

T
2
(q0+2q1+q2)u(

1− q0
q1

)(
1 + q1

q2

)
ei

T
2
(−q0−2q1+q2)u +

(
1 + q0

q1

)(
1− q1

q2

)
ei

T
2
(−q0+2q1+q2)u

 .

Using the constants C and K as in (5.2.1) and (5.2.2), we can write κ(u) as

κ(u) =
|a+0 (u2)|2

q20
=

1

16q20

{(
1 +

q0
q1

)2(
1 +

q1
q2

)2

+

(
1− q0

q1

)2(
1− q1

q2

)2

+2

(
1− q20

q21

)(
1− q21

q22

)
cos (2Tq1u)

}
= C +K cos ζu.

Therefore,

J(s) =
1

2π

∫
Λ1/2

eisu

C +K cos ζu
du

for any s ∈ R.

According to Theorem 4.3.3, one can also use κ(u) =
|b−2 (u2)|2

q22
to compute κ. Indeed, in

this simple case we see from the similarity of the expressions a+0 (u
2) and b−2 (u

2) that

κ(u) =
|b−2 (u2)|2

q22
=

1

16q22

{(
1 +

q1
q0

)2(
1 +

q2
q1

)2

+

(
1− q1

q0

)2(
1− q2

q1

)2

+ 2

(
1− q21

q20

)(
1− q22

q21

)
cos ζu

}
.

By distributing 1
q22

and factoring out 1
q20
, we arrive at the same expression for κ.

Remark 5.2.2. We have the following observations.

(i) It is clear that C > 0 and

C ±K =
1

16q20

[(
1 +

q0
q1

)(
1 +

q1
q2

)
±
(
1− q0

q1

)(
1− q1

q2

)]2
≥ 0.

Moreover, C = K if and only if q21 + q0q2 = 0 and C = −K if and only if q0+ q2 = 0.
Since both conditions cannot happen as q1, q2, q3 > 0, we conclude that C > |K|,
which also confirms for n = 2 that κ(u) does not vanish for u ∈ (0,∞), cf. Corollary
4.3.2.
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(ii) We can also take a look at degenerate forms of n = 2 where consecutive components
of p are equal. If Λ = [0,Ω] and p1 = p2 (q1 = q2), i.e., the only knot is at t1 = −T

2
,

then C = (q0+q1)2

4q20q
2
1

and K = 0. Hence,

J(s) =
1

2π

∫ Ω1/2

0

eisu

C
du =

2q20q
2
1

π(q0 + q1)2

∫ Ω1/2

0

eisu du =
2q20q

2
1Ω

1/2ei
Ω1/2s

2

π(q0 + q1)2
sinc Ω1/2s

2

and

Jreal(s) =
2q20q

2
1Ω

1/2

π(q0 + q1)2
sincΩ1/2s. (5.2.3)

Analogously, if p0 = p1 (q0 = q1), i.e., the only knot is at t2 =
T
2
, then C = (q1+q2)2

4q21q
2
2

and K = 0. Therefore

J(s) =
1

2π

∫ Ω1/2

0

eisu

C
du =

2q21q
2
2

π(q1 + q2)2

∫ Ω1/2

0

eisu du =
2q21q

2
2Ω

1/2ei
Ω1/2s

2

π(q1 + q2)2
sinc Ω1/2s

2

and

Jreal(s) =
2q21q

2
2Ω

1/2

π(q1 + q2)2
sincΩ1/2s. (5.2.4)

Up to a shift by T
2
, these formulas coincide with the closed-form expressions for J

and Jreal in (5.1.4) and (5.1.5), respectively. If it turns out in both cases above (even
including the toy example) that p0 = p1 = p2 (q0 = q1 = q2), then for s ∈ R,

J(s) =
q20Ω

1/2

2π
ei

Ω1/2s
2 sinc Ω1/2s

2
, Jreal(s) =

q20Ω
1/2

2π
sincΩ1/2s.

5.2.1. Evaluating J : Series expansions

To our knowledge, J in Lemma 5.2.1 does not belong to any class of special functions. We
first discuss a series expansion that will be used in Chapter 7 for the numerical evaluation
of J .

Theorem 5.2.3. Let Ω, T, q0, q1, q2 > 0. Set Λ = [0,Ω] and the constants

C =
1

16q20

[(
1 +

q1
q2

)2(
1 +

q0
q1

)2

+

(
1− q1

q2

)2(
1− q0

q1

)2
]
,

K =
1

8q20

(
1− q21

q22

)(
1− q20

q21

)
,

ζ = 2q1T and r = K
C
. Then for s ∈ R,

J(s) =
1

2π

∫
Λ1/2

eisu

C +K cos ζu
du

=
1

2Cπ

∞∑
m=0

(
m∑
l=0

(
−r

2

)m(m
l

)
ei(s+(m−2l)ζ)Ω1/2 − 1

i(s+ (m− 2l)ζ)

)

=
Ω1/2

2Cπ

∞∑
m=0

m∑
l=0

(
−r

2

)m(m
l

)
ei

Ω1/2

2
(s+(m−2l)ζ) sinc

(
Ω1/2

2
(s+ (m− 2l)ζ)

)
.
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Moreover, if JM is the M th partial sum of J , then

|J(s)− JM(s)| ≤ Ω1/2

2Cπ

|r|M+1

1− |r|
, s ∈ R.

Proof. By Remark 5.2.2, |r| < 1. By Lemma 5.2.1, we have that for s ∈ R,

J(s) =
1

2Cπ

∫ Ω1/2

0

eisu

1− (−r cos ζu)
du =

1

2Cπ

∫ Ω1/2

0

∞∑
m=0

(−r)m eisu cosm ζu du

=
1

2Cπ

∞∑
m=0

(−r)m
∫ Ω1/2

0

eisu cosm ζu du. (5.2.5)

For m ∈ N0, define the bandlimited function

Fm(s) =

∫ Ω1/2

0

eisu cosm ζu du, s ∈ R

so that J = 1
2πC

∑∞
m=0 (−r)m Fm. To compute Fm, we write cosine using complex expo-

nentials:

Fm(s) =

∫ Ω1/2

0

eisu cosm ζu du =

∫ Ω1/2

0

eisu ·
(
eiζu + e−iζu

2

)m

du

=
1

2m

m∑
l=0

(
m

l

)∫ Ω1/2

0

eisuei(m−l)ζu · e−ilζu du

=
1

2m

m∑
l=0

(
m

l

)∫ Ω1/2

0

ei(s+(m−2l)ζ)u du.

Since ∫ Ω1/2

0

ei(s+(m−2l)ζ)u du =
eiΩ

1/2(s+(m−2l)ζ) − 1

i(s+ (m− 2l)ζ)

= Ω1/2ei
Ω1/2

2
(s+(m−2l)ζ) sinc

(
Ω1/2

2
(s+ (m− 2l)ζ)

)
for any s ∈ R, we have

Fm(s) =
1

2m

m∑
l=0

(
m

l

)
eiΩ

1/2(s+(m−2l)ζ) − 1

i(s+ (m− 2l)ζ)
(5.2.6)

=
Ω1/2

2m

m∑
l=0

(
m

l

)
ei

Ω1/2

2
(s+(m−2l)ζ) sinc

(
Ω1/2

2
(s+ (m− 2l)ζ)

)
. (5.2.7)

Substituting either (5.2.6) or (5.2.7) to (5.2.5) gives the first conclusion. Now, since
|Fm(s)| ≤ Ω1/2 for all m ∈ N0, then for M ∈ N0,

|J(s)− JM(s)| = 1

2Cπ

∣∣∣∣∣
∞∑

m=M+1

(−r)mFm(s)

∣∣∣∣∣ ≤ Ω1/2

2Cπ

∞∑
m=M+1

|r|m =
Ω1/2

2Cπ

|r|M+1

1− |r|
, s ∈ R.

This completes the proof.
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For bounded spectral sets, we replace [0,Ω] by Λ in (5.2.5). However, expressions for
F−1(χΛ1/2 cosm ζu) without integrals for all m ∈ N0 may be difficult to derive.
The real part Jreal of J is given by

Jreal(s) =
J(s) + J(−s)

2

=
Ω1/2

2Cπ

∞∑
m=0

m∑
l=0

(
−r

2

)m(m
l

)
cos
(

Ω1/2

2
(s+ (m− 2l)ζ)

)
sinc

(
Ω1/2

2
(s+ (m− 2l)ζ)

)
.

Observe that for θ ∈ R,

cos θ
2
sinc θ

2
= cos θ

2
·
sin θ

2
θ
2

=
2 sin θ

2
cos θ

2

θ
=

sin θ

θ
= sinc θ.

Taking θ = Ω1/2(s+ (m− 2l)ζ) yields

Jreal(s) =
Ω1/2

2Cπ

∞∑
m=0

m∑
l=0

(
−r

2

)m(m
l

)
sinc

(
Ω1/2(s+ (m− 2l)ζ)

)
, s ∈ R.

Remark 5.2.4. An alternative expansion for Jreal can be derived using the connection
between binomial coefficients and Pascal’s triangle. Writing the first few terms of Jreal in
the above series expansion yields

Jreal(s) =
Ω1/2

2Cπ

sinc(Ω1/2s)︸ ︷︷ ︸
m=0

−r

2

(
sinc(Ω1/2(s− ζ)) + sinc(Ω1/2(s+ ζ))

)
︸ ︷︷ ︸

m=1

+
r2

4

(
sinc(Ω1/2(s− 2ζ)) + 2 sinc(Ω1/2s) + sinc(Ω1/2(s+ 2ζ))

)
︸ ︷︷ ︸

m=2

− . . .

 .

Considering the sum of entries found in the kth column of Pascal’s triangle we define

ck =
Ω1/2

2Cπ

∞∑
j=0

(
2j + |k|

j

)(
−r

2

)2j+|k|
, k ∈ Z, (5.2.8)

so that

Jreal(s) =
∞∑

k=−∞

ck sinc(Ω
1/2(s− kζ)).

In Appendix B we give a special case where we get an explicit formula for J using the
theory of residues as well as special functions.

5.2.2. Piecewise Components of kΛ

We now partially compute the piecewise components of the reproducing kernel kΛ for
n = 2. Since we do not have a formula for J in this case, the best we can do to compute kΛ
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5.2. Case n = 2: three-component p

is to manually expand ϑ(u, x, y) for any x, y ∈ R. Afterwards, we express the components
of kΛ in terms of J . Instead of considering all nine possible expressions for kΛ, we appeal
to the symmetry kΛ(x, y) = kΛ(y, x) for all x, y ∈ R to reduce the number of components
to compute. Once these partial computations are performed, we use Theorem 5.2.3 to
accurately evaluate J at any point.

Theorem 5.2.5. Let Ω, p0, p1, p2, T > 0 and set Λ = [0,Ω]. Let I0 = (−∞,−T
2
], I1 =

(−T
2
, T
2
], I2 = (T

2
,∞) and χj = χIj the characteristic function on Ij, j = 0, 1, 2. Define p

by

p(x) =
2∑

j=0

pjχj(x) =


p0, x ∈ I0,

p1, x ∈ I1,

p2, x ∈ I2,

the constants qk = p
−1/2
k , 0 ≤ k ≤ 2, and the real part Jreal of J by

Jreal(s) =
Ω1/2

2Cπ

∞∑
m=0

m∑
l=0

(
−r

2

)m(m
l

)
sinc

(
Ω1/2(s+ (m− 2l)ζ)

)
, s ∈ R. (5.2.9)

Furthermore, we define the functions kΛ,jl, 0 ≤ j, l ≤ 2 by

kΛ,00(x, y) =
q0Ω

1/2

π
sinc(q0Ω

1/2(x− y)) +
1

4q0

(
1− q20

q21

)(
1 +

q21
q22

)
Jreal(q0(x+ y + T ))

+
1

8q0

(
1− q0

q1

)2(
1− q21

q22

)
Jreal(q0(x+ y + T ) + 2q1T )

+
1

8q0

(
1 +

q0
q1

)2(
1− q21

q22

)
Jreal(q0(x+ y + T )− 2q1T ),

kΛ,11(x, y) =
1

2

[
1

q0

(
1 +

q21
q22

)
+

1

q2

(
1 +

q21
q20

)]
Jreal(q1(x− y))

+
1

2q0

(
1− q21

q22

)
Jreal(q1(x+ y − T )) +

1

2q2

(
1− q21

q20

)
Jreal(q1(x+ y + T )),

kΛ,22(x, y) =
q2Ω

1/2

π
sinc(q2Ω

1/2(x− y)) +
1

4q2

(
1 +

q21
q20

)(
1− q22

q21

)
Jreal(q2(x+ y − T ))

+
1

8q2

(
1− q21

q20

)(
1− q2

q1

)2

Jreal(q2(x+ y − T )− 2q1T )

+
1

8q2

(
1− q21

q20

)(
1 +

q2
q1

)2

Jreal(q2(x+ y − T ) + 2q1T ),

kΛ,01(x, y) = kΛ,10(y, x)

=
1

4q0

(
1 +

q0
q1

)(
1 +

q1
q2

)2
Jreal(q0(x+ T

2
)− q1(y +

T
2
))

+
1

4q0

(
1− q0

q1

)(
1− q1

q2

)2
Jreal(q0(x+ T

2
) + q1(y +

T
2
))

+
1

4q0

(
1 +

q0
q1

)(
1− q21

q22

)
Jreal(q0(x+ T

2
) + q1(y − 3T

2
))
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+
1

4q0

(
1− q0

q1

)(
1− q21

q22

)
Jreal(q0(x+ T

2
)− q1(y − 3T

2
)),

kΛ,02(x, y) = kΛ,20(y, x)

=
1

2q0

(
1− q0

q1

)(
1− q1

q2

)
Jreal(q0(x+ T

2
) + q1T − q2(y − T

2
))

+
1

2q0

(
1 +

q0
q1

)(
1 +

q1
q2

)
Jreal(q0(x+ T

2
)− q1T − q2(y − T

2
)),

kΛ,12(x, y) = kΛ,21(y, x)

=
1

4q2

(
1 +

q1
q0

)2(
1 +

q2
q1

)
Jreal(q1(x− T

2
)− q2(y − T

2
))

+
1

4q2

(
1− q1

q0

)2(
1− q2

q1

)
Jreal(q1(x− T

2
) + q2(y − T

2
))

+
1

4q2

(
1− q21

q20

)(
1 +

q2
q1

)
Jreal(q1(x+ 3T

2
) + q2(y − T

2
))

+
1

4q2

(
1− q21

q20

)(
1− q2

q1

)
Jreal(q1(x+ 3T

2
)− q2(y − T

2
)).

Then the reproducing kernel of PW[0,Ω](Ap) is

kΛ(x, y) =
2∑

j,l=0

kΛ,jl(x, y)χj(x)χl(y), x, y ∈ R.

Proof. Initially, we have nine cases to consider:

(j, l) ∈ {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}.

By the symmetry kΛ(x, y) = kΛ(y, x) for all x, y ∈ R, (1, 0) follows from (0, 1), (2, 0)
follows from (0, 2), and (2, 1) follows from (1, 2). Furthermore, since the knots of p are
symmetric at the origin, (2, 2) follows from (0, 0) and (1, 2) follows from (0, 1) by applying
the replacement rule (x, y, T, q0, q1, q2) → (y, x,−T, q2, q1, q0). Therefore, it suffices to take
the four cases

(j, l) ∈ {(0, 0), (0, 1), (0, 2), (1, 1)}.

• Suppose x, y ≤ −T
2
, i.e., (j, l) = (0, 0). Then

ϑ(u, x, y) =
1

q0
Φ+(u2, x)Φ+(u2, y) +

1

qn
Φ−(u2, x)Φ−(u2, y)

=
1

q0
(a+0 (u

2)e−iq0xu + b+0 (u
2)eiq0xu)(a+0 (u

2)eiq0yu + b+0 (u
2)e−iq0yu)

+
1

q2
eiq0xue−iq0yu

=
|a+0 (u2)|2

q0
e−iq0(x−y)u +

(
1

q2
+

|b+0 (u2)|2

q0

)
eiq0(x−y)u

+
1

q0

(
a+0 (u

2)b+0 (u
2)eiq0(x+y)u + a+0 (u

2)b+0 (u
2)e−iq0(x+y)u

)
. (5.2.10)
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5.2. Case n = 2: three-component p

By Corollary 4.3.2 and by definition of κ in Theorem 4.3.3,

1

q2
+

|b+0 (u2)|2

q0
=

|a+0 (u2)|2

q0
= q0κ(u).

Consequently, the sum of the first two terms equals 2q0κ(u) cos(q0(x − y)u). Upon
expanding the remaining connection coefficients using the values computed in the proof
of Lemma 5.2.1, we get

ϑ(u, x, y) = 2q0κ(u) cos(q0(x− y)u) +
1

4q0

(
1 +

q21
q22

)(
1− q20

q21

)
cos(q0(x+ y + T )u)

+
1

8q0

(
1− q21

q22

)(
1− q0

q1

)2

cos((q0(x+ y + T ) + 2q1T )u)

+
1

8q0

(
1− q21

q22

)(
1 +

q0
q1

)2

cos((q0(x+ y + T )− 2q1T )u).

Hence,

kΛ(x, y) =
1

2π

∫
Λ1/2

ϑ(u, x, y)

κ(u)
du

=
q0Ω

1/2

π
sinc(q0Ω

1/2(x− y)) +
1

4q0

(
1 +

q21
q22

)(
1− q20

q21

)
Jreal(q0(x+ y + T ))

+
1

8q0

(
1− q21

q22

)(
1− q0

q1

)2

Jreal(q0(x+ y + T ) + 2q1T )

+
1

8q0

(
1− q21

q22

)(
1 +

q0
q1

)2

Jreal(q0(x+ y + T )− 2q1T )

= kΛ,00(x, y).

• Suppose x ≤ −T
2
,−T

2
< y ≤ T

2
, i.e., (j, l) = (0, 1). Then

ϑ(u, x, y) =
1

q0
(a+0 (u

2)e−iq0xu + b+0 (u
2)eiq0xu)(a+1 (u

2)eiq1yu + b+1 (u
2)e−iq1yu)

+
1

q2
eiq0xu(a−1 (u

2)eiq1yu + b−1 (u
2)e−iq1yu)

=
a+0 (u

2)a+1 (u
2)

q0
e−i(q0x−q1y)u +

a+0 (u
2)b+1 (u

2)

q0
e−i(q0x+q1y)u

+

(
b+0 (u

2)b+1 (u
2)

q0
+

b−1 (u
2)

q2

)
ei(q0x−q1y)u +

(
b+0 (u

2)a+1 (u
2)

q0
+

a−1 (u
2)

q2

)
ei(q0x+q1y)u.
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5. Concrete Examples

The coefficients are as follows:

a+0 (u
2)a+1 (u

2)

q0
=

1

8q0

[(
1 +

q1
q2

)2(
1 +

q0
q1

)
e−iT

2
(q0−q1)u +

(
1− q21

q22

)(
1− q0

q1

)
e−iT

2
(q0+3q1)u

]
,

a+0 (u
2)b+1 (u

2)

q0
=

1

8q0

[(
1− q21

q22

)(
1 +

q0
q1

)
e−iT

2
(q0−3q1)u +

(
1− q1

q2

)2(
1− q0

q1

)
e−iT

2
(q0+q1)u

]
,

b+0 (u
2)b+1 (u

2)

q0
+

b−1 (u
2)

q2
=

1

8q0

[(
1− q21

q22

)(
1− q0

q1

)
ei

T
2
(q0+3q1)u +

(
1 +

q1
q2

)2(
1 +

q0
q1

)
ei

T
2
(q0−q1)u

]
,

b+0 (u
2)a+1 (u

2)

q0
+

a−1 (u
2)

q2
=

1

8q0

[(
1− q21

q22

)(
1 +

q0
q1

)
ei

T
2
(q0−3q1)u +

(
1− q1

q2

)2(
1− q0

q1

)
ei

T
2
(q0+q1)u

]
.

Careful expansion and combining relevant terms eventually give

ϑ(u, x, y) =
1

4q0

(
1 +

q1
q2

)2(
1 +

q0
q1

)
cos((q0(x+ T

2
)− q1(y +

T
2
))u)

+
1

4q0

(
1− q1

q2

)2(
1− q0

q1

)
cos((q0(x+ T

2
) + q1(y +

T
2
))u)

+
1

4q0

(
1− q21

q22

)(
1 +

q0
q1

)
cos((q0(x+ T

2
) + q1(y − 3T

2
))u)

+
1

4q0

(
1− q21

q22

)(
1− q0

q1

)
cos((q0(x+ T

2
)− q1(y − 3T

2
))u).

Consequently,

kΛ(x, y) =
1

4q0

(
1 +

q1
q2

)2(
1 +

q0
q1

)
Jreal(q0(x+ T

2
)− q1(y +

T
2
))

+
1

4q0

(
1− q1

q2

)2(
1− q0

q1

)
Jreal(q0(x+ T

2
) + q1(y +

T
2
))

+
1

4q0

(
1− q21

q22

)(
1 +

q0
q1

)
Jreal(q0(x+ T

2
) + q1(y − 3T

2
))

+
1

4q0

(
1− q21

q22

)(
1− q0

q1

)
Jreal(q0(x+ T

2
)− q1(y − 3T

2
))

= kΛ,01(x, y).

• Suppose x ≤ −T
2
, y > T

2
, i.e., (j, l) = (0, 2). Then

ϑ(u, x, y) =
1

q0
(a+0 (u

2)e−iq0xu + b+0 (u
2)eiq0xu)eiq2yu +

1

q2
eiq0xu(a−2 (u

2)eiq2yu + b−2 (u
2)e−iq2yu)

=

(
b+0 (u

2)

q0
+

a−2 (u
2)

q2

)
ei(q0x+q2y)u +

a+0 (u
2)

q0
e−i(q0x−q2y)u +

b−2 (u
2)

q2
ei(q0x−q2y)u

=
a+0 (u

2)

q0
e−i(q0x−q2y)u +

a+0 (u
2)

q0
ei(q0x−q2y)u (5.2.11)
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5.2. Case n = 2: three-component p

by identities (4.3.1) and (4.3.5). Therefore,

ϑ(u, x, y) =
1

2q0

(
1− q1

q2

)(
1− q0

q1

)
cos((q0(x+ T

2
) + q1T − q2(y − T

2
))u)

+
1

2q0

(
1 +

q1
q2

)(
1 +

q0
q1

)
cos((q0(x+ T

2
)− q1T − q2(y − T

2
))u)

which implies

kΛ(x, y) =
1

2q0

(
1− q1

q2

)(
1− q0

q1

)
Jreal(q0(x+ T

2
) + q1T − q2(y − T

2
))

+
1

2q0

(
1 +

q1
q2

)(
1 +

q0
q1

)
Jreal(q0(x+ T

2
)− q1T − q2(y − T

2
))

= kΛ,02(x, y).

• Finally, suppose −T
2
< x, y ≤ T

2
, i.e., (j, l) = (1, 1). Then

ϑ(u, x, y) =
1

q0
(a+1 (u

2)e−iq1xu + b+1 (u
2)eiq1xu)(a+1 (u

2)eiq1yu + b+1 (u
2)e−iq1yu)

+
1

q2
(a−1 (u

2)e−iq1xu + b−1 (u
2)eiq1xu)(a−1 (u

2)eiq1yu + b−1 (u
2)e−iq1yu)

=

(
|a+1 (u2)|2

q0
+

|a−1 (u2)|2

q2

)
e−iq1(x−y)u +

(
|b+1 (u2)|2

q0
+

|b−1 (u2)|2

q2

)
eiq1(x−y)u

+

(
a+1 (u

2)b+1 (u
2)

q0
+

a−1 (u
2)b−1 (u

2)

q2

)
eiq1(x+y)u

+

(
a+1 (u

2)b+1 (u
2)

q0
+

a−1 (u
2)b−1 (u

2)

q2

)
e−iq1(x+y)u.

Upon substituting the corresponding values of the connection coefficients, we have

|a+1 (u2)|2

q0
+

|a−1 (u2)|2

q2
=

1

4

[
1

q0

(
1 +

q1
q2

)2

+
1

q2

(
1− q1

q0

)2
]

=
1

4

[
1

q0

(
1 +

q21
q22

)
+

1

q2

(
1 +

q21
q20

)]
,

|b+1 (u2)|2

q0
+

|b−1 (u2)|2

q2
=

1

4

[
1

q0

(
1− q1

q2

)2

+
1

q2

(
1 +

q1
q0

)2
]

=
1

4

[
1

q0

(
1 +

q21
q22

)
+

1

q2

(
1 +

q21
q20

)]
,

a+1 (u
2)b+1 (u

2)

q0
+

a−1 (u
2)b−1 (u

2)

q2
=

1

4

[
1

q0

(
1− q21

q22

)
e−iq1Tu +

1

q2

(
1− q21

q20

)
eiq1Tu

]
.

Therefore,

ϑ(u, x, y) =
1

2

[
1

q0

(
1 +

q21
q22

)
+

1

q2

(
1 +

q21
q20

)]
cos(q1(x− y)u)

+
1

2q0

(
1− q21

q22

)
cos(q1(x+ y − T )u) +

1

2q2

(
1− q21

q20

)
cos(q1(x+ y + T )u),

81



5. Concrete Examples

which means that

kΛ(x, y) =
1

2

[
1

q0

(
1 +

q21
q22

)
+

1

q2

(
1 +

q21
q20

)]
Jreal(q1(x− y))

+
1

2q0

(
1− q21

q22

)
Jreal(q1(x+ y − T )) +

1

2q2

(
1− q21

q20

)
Jreal(q1(x+ y + T ))

= kΛ,11(x, y).

The remaining piecewise components follow from the symmetry kΛ(x, y) = kΛ(y, x) for
all x, y ∈ R as well as the aforementioned replacement rules, and so we are done.

(a) Λ = [0, π2], p0 = 1, p1 =
1
4 (b) Λ = [0, π2], p0 = 1, p1 =

1
4 , p2 = 1, T = 6

Figure 5.1.: Graph of the reproducing kernel kΛ(0, ·) when p has (a) two components, and
(b) three components.

Plots of the reproducing kernels are shown in Figure 5.1. We also note the symmetry
of the graph in (b) with respect to the y-axis. Theorem 5.2.5 also includes the following
degenerate cases:

• If p1 = p2 (q1 = q2) and T > 0, then p reduces to

p(x) =

{
p0, x ≤ −T

2
,

p1, x > −T
2
.

Using the formula (5.2.3) for Jreal,

kΛ,00(x, y) =
q0Ω

1/2

π
sinc(q0Ω

1/2(x− y)) +
1

2q0

(
1− q20

q21

)
Jreal(q0(x+ y + T ))

=
q0Ω

1/2

π
sinc(q0Ω

1/2(x− y)) +
q21 − q20
2q0q21

· 2q20q
2
1Ω

1/2

π(q0 + q1)2
sinc q0Ω

1/2(x+ y + T )

=
q0Ω

1/2

π

(
sinc(q0Ω

1/2(x− y))− q0 − q1
q0 + q1

sinc q0Ω
1/2(x+ y + T )

)
.

By performing similar computations on the remaining piecewise components kΛ,jl
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of kΛ, one can verify that

kΛ(x, y) =



q0Ω1/2

π

(
sinc q0Ω

1/2(x− y)− q0−q1
q0+q1

sinc q0Ω
1/2(x+ y + T )

)
, x, y ≤ −T

2
,

q1Ω1/2

π

(
sinc q1Ω

1/2(x− y) + q0−q1
q0+q1

sinc q1Ω
1/2(x+ y + T )

)
, x, y > −T

2
,

2q0q1Ω1/2

π(q0+q1)
sincΩ1/2

(
q0(x+ T

2
)− q1(y +

T
2
)
)
, x ≤ −T

2
, y > −T

2
,

2q0q1Ω1/2

π(q0+q1)
sincΩ1/2

(
q1(x+ T

2
)− q0(y +

T
2
)
)
, x > −T

2
, y ≤ −T

2
.

This is precisely the toy example with shifts x 7→ x+ T
2
, y 7→ y + T

2
.

• If p0 = p1 (q0 = q1) and T > 0, then p reduces to

p(x) =

{
p1, x ≤ T

2
,

p2, x > T
2
.

Using the formula (5.2.4) for Jreal, we analogously obtain

kΛ(x, y) =



q1Ω1/2

π

(
sinc q1Ω

1/2(x− y)− q1−q2
q1+q2

sinc q1Ω
1/2(x+ y − T )

)
, x, y ≤ T

2
,

q2Ω1/2

π

(
sinc q2Ω

1/2(x− y) + q1−q2
q1+q2

sinc q2Ω
1/2(x+ y − T )

)
, x, y > T

2
,

2q1q2Ω1/2

π(q1+q2)
sincΩ1/2

(
q1(x− T

2
)− q2(y − T

2
)
)
, x ≤ T

2
, y > T

2
,

2q1q2Ω1/2

π(q1+q2)
sincΩ1/2

(
q2(x− T

2
)− q1(y − T

2
)
)
, x > T

2
, y ≤ T

2
.

This is the toy example with shifts x 7→ x− T
2
, y 7→ y − T

2
.

• If p0 = p1 = p2 (q0 = q1 = q2), then all the terms of kΛ collapse to

kΛ(x, y) =
q0Ω

1/2

π
sinc(q0Ω

1/2(x− y)), x, y ∈ R.

Again, this agrees to the well-known reproducing kernel of PWq0Ω1/2(R) and is con-
sistent with the degenerate case of n = 1.

In summary, we have shown that for two-component piecewise constant functions with
an arbitrary knot, explicit formulas for the reproducing kernel kΛ of PWΛ(Ap) can be
derived. This follows from the fact that the integral J can be expressed using a cardinal
sine function. Moreover, the reproducing kernel of PW[0,Ω](Ap) is given by a shifted
version of the toy example. On the other hand, for three-component piecewise constant
functions with symmetric knots, we were able to write J as an infinite sum that converges
at a geometric rate. We can then use such a formula to numerically compute J(s) for
any s ∈ R up to any degree of accuracy. Hence, this evaluation method is better than
the numerical quadratures for oscillatory integrals where high accuracy is only guaranteed
in the highly oscillatory case. In turn, numerical calculations involving the reproducing
kernel are now feasible and, more importantly, accurate up to tolerance.
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6. Density theorems in PWΛ(Ap)

In this chapter, we derive density conditions for sampling and interpolation in PWΛ(Ap)
with piecewise constant p using techniques in [31]. Beurling and Landau’s fundamental
ideas on the density theorem can be adapted to many situations, particularly in the Hilbert
space setting. It was observed in [31] that in a number of density theorems found in the
literature, the proofs are rather similar and the common approach is to treat function
spaces under study as reproducing kernel Hilbert spaces. These observations led the
authors to investigate conditions for which a universal density theorem in reproducing
kernel Hilbert spaces can be formulated. They presented an abstract approach to a
general density theorem by showing that with natural conditions on both the geometry
of the space and the reproducing kernel, necessary density conditions on sets of stable
sampling and sets of interpolation can be derived. Moreover, a precise definition of a
critical density and its existence were established. In the case of PWΛ(Ap) with piecewise
constant p, we show that the natural conditions are indeed satisfied and an exact value
for the critical density can be calculated. A density theorem for such variable bandwidth
spaces immediately follows.

6.1. Density theorems for sampling and interpolation in
reproducing kernel Hilbert spaces - variable
bandwidth version

We first collect the aforementioned natural conditions in [31], stated in a form that is
applicable for our purpose.

• Assumptions on the metric and measure: Let (R, d, µp) be the metric measure
space where d : R× R → [0,∞) is the standard metric d(x, y) = |x− y|, x, y ∈ R and
µp is the positive measure

µp(I) =

∫
I

dx√
p(x)

(6.1.1)

defined on the Borel σ-algebra of R. The assumptions on the geometry of (R, d, µp) are
as follows:

(a) Open balls have finite µp-measure: The metric d is µp ⊗ µp-measurable and the
open balls

Br(x) = {y ∈ R : d(x, y) < r}

have finite µp-measure for all x ∈ R, r > 0.

(b) Non-degeneracy of balls: There exists r > 0 such that infx∈R µp(Br(x)) > 0.

85



6. Density theorems in PWΛ(Ap)

(c) Weak annular decay property: Spherical shells have smaller volumes compared to
open balls, i.e.,

lim
r→∞

sup
x∈R

µp(Br(x) \Br−1(x))

µp(Br(x))
= 0.

• Assumptions on the reproducing kernel: We consider a reproducing kernel Hilbert
space H ⊆ L2(R, µp) with inner product ⟨·, ·⟩H and reproducing kernel k(x, y), i.e., for
each x ∈ R,

f(x) =

∫
R
f(y)k(x, y) dµp(y) = ⟨f, kx⟩H

where kx(y) = k(x, y) = k(y, x) for all y ∈ R. Assume k satisfies the following proper-
ties:

(d) Boundedness of diagonal: There exist constants C1, C2 > 0 such that

C1 ≤ k(x, x) ≤ C2

for all x ∈ R.
(e) Weak localization property: For every ϵ > 0, there exists r(ϵ) > 0 such that

sup
x∈R

∫
R\Br(ϵ)(x)

|k(x, y)|2 dµp(y) < ϵ2.

(f) Homogeneous approximation property: Let X ⊆ R such that {k(x, ·) : x ∈ X} is
a Bessel sequence for H, i.e., for some C > 0,∑

x∈X

|f(x)|2 ≤ C ||f ||2H

for all f ∈ H. Then for every ϵ > 0 there exists r(ϵ) > 0 such that

sup
y∈R

∑
x∈X

|x−y|>r(ϵ)

|k(x, y)|2 < ϵ2.

We also define the upper, resp. lower Beurling densities10

D+
p (X) = lim sup

r→∞
sup
x∈R

#(X ∩Br(x))

µp(Br(x))
, D−

p (X) = lim inf
r→∞

inf
x∈R

#(X ∩Br(x))

µp(Br(x))
(6.1.2)

of a discrete set X with respect to µp as well as the upper, resp. lower averaged
traces of k given by

tr+ = lim sup
r→∞

sup
x∈R

1

µp(Br(x))

∫
Br(x)

k(y, y) dµp(y),

tr− = lim inf
r→∞

inf
x∈R

1

µp(Br(x))

∫
Br(x)

k(y, y) dµp(y).

The following special case of [31, Thm. 2.2] will be used to derive the desired density
theorems in PWΛ(Ap) with piecewise constant p.

10This definition of D±
p (X) is equivalent to the ones given in (3.2.2) and (3.2.3).
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Theorem 6.1.1. Let p be a piecewise constant function. Assume H ⊆ L2(R, µp) is a
reproducing kernel Hilbert space with reproducing kernel k and satisfies conditions (a)-
(f).

(i) If X is a set of stable sampling for H, then

D−
p (X) ≥ tr− and D+

p (X) ≥ tr+.

(ii) If X is a set of interpolation for H, then

D−
p (X) ≤ tr− and D+

p (X) ≤ tr+.

This result saves time and effort in deriving a density theorem in the reproducing
kernel Hilbert space H since we only need to verify six conditions as well as estimate the
critical density using averaged traces. We shall see that we obtain the same conclusions
as in Theorem 3.2.1 but with notable differences in the proofs. In particular, we do not
transform τp into its Schrödinger form τ̃q given at the beginning of Section 2.2 since we
cannot do so for a piecewise constant p.

6.2. Conditions on the geometry of (R, d, µp)

For a piecewise constant p, the geometric assumptions (a), (b) and (c) are immediate
consequences of the equivalence11 of µp and the Lebesgue measure.

Lemma 6.2.1. Let p be a piecewise constant function. Then the metric measure space
(R, d, µp) with standard metric d and measure µp in (6.1.1) satisfies (a), (b) and (c).

Proof. Let p be an (n + 1)-component piecewise function for some n ∈ N. Since p takes

only finitely many values {pk}nk=0, it follows that with qk = p
−1/2
k ,

min
0≤k≤n

qk|E| ≤ µp(E) ≤ max
0≤k≤n

qk|E| (6.2.1)

for any Borel set E ⊆ R. The three geometric properties now follow.

(i) The continuity of d in R2 implies d is µp⊗µp-measurable. Moreover, it is immediate
from the right-hand inequality of (6.2.1) that µp(Br(x)) < ∞ for all x ∈ R, r > 0.

(ii) Non-degeneracy of balls holds for any r > 0 from the left-hand inequality of (6.2.1).

(iii) For any r > 0,

0 ≤ sup
x∈R

µp(Br(x) \Br−1(x))

µp(Br(x))
≤ max

0≤j,k≤n

qj
qk

sup
x∈R

|Br(x) \Br−1(x)|
|Br(x)|

=
1

r
max

0≤j,k≤n

qj
qk
.

Taking the limit as r → ∞ proves the weak annular decay property.

In fact, Lemma 6.2.1 applies to any parametrizing function p that is bounded and
bounded away from zero. Certainly, such a p implies that the Radon-Nikodym derivative
dµp

dm
= p−1/2 of µp with respect to the Lebesgue measure m is bounded and bounded away

from zero.
11We say two σ-finite measures µ and ν on a measurable space (X, E) are equivalent if µ ≪ ν and

ν ≪ µ. In other words, µ and ν have the same collection of null sets. Moreover, it can be shown that
dµ
dν · dν

dµ = 1 a.e.
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6. Density theorems in PWΛ(Ap)

6.3. Properties of the reproducing kernel of PWΛ(Ap)

We now go to assumptions (d), (e) and (f) on the reproducing kernel. Observe that we
cannot directly apply Theorem 6.1.1 to PWΛ(Ap) ⊆ L2(R) since the assumptions require
H ⊆ L2(R, µp). Again, the equivalence of µp and the Lebesgue measure ensures that this
will not be an issue.

Proposition 6.3.1. Let Λ ⊂ R+
0 and p a piecewise constant function. Then there exists an

isometric isomorphism Ψ : L2(R) → L2(R, dµp) such that Ψ(PWΛ(Ap)) is a reproducing
kernel Hilbert space. Moreover, if kΛ is the reproducing kernel of PWΛ(Ap), then

kΨ (x, y) =
4
√

p(x)p(y)kΛ(x, y), x, y ∈ R

is the reproducing kernel of Ψ(PWΛ(Ap)) and satisfies conditions (d), (e) and (f) if and
only if kΛ does.

Proof. Consider the map

Ψ : L2(R) → L2(R, dµp), Ψf = 4
√
pf, f ∈ L2(R)

induced by the Radon-Nikodym derivative dm
dµp

=
√
p of the Lebesgue measure m with

respect to µp. Then Ψ is an isometric isomorphism between L2(R) and L2(R, dµp), since
for f, g ∈ L2(R),

⟨Ψf, Ψg⟩L2(R,dµp) =

∫
R

4
√

p(x)f(x) 4
√

p(x)g(x)dµp(x) =

∫
R
f(x)g(x) dx = ⟨f, g⟩L2(R).

We can then identify PWΛ(Ap) as the subspace Ψ(PWΛ(Ap)) of L2(R, dµp). Moreover,
Ψ(PWΛ(Ap)) is a reproducing kernel Hilbert space whose reproducing kernel kΨ we shall
derive as in [31, Sec. 3.2]. If f ∈ PWΛ(Ap), then for all x ∈ R,

Ψf(x) = 4
√

p(x)f(x) = 4
√

p(x)⟨f, kΛ(x, ·)⟩L2(R) =
4
√
p(x)⟨Ψf, ΨkΛ(x, ·)⟩L2(R,dµp).

Thus, Ψ(PWΛ(Ap)) is a reproducing kernel Hilbert space with

kΨ (x, y) =
4
√

p(x)p(y)kΛ(x, y), x, y ∈ R

as its reproducing kernel. As a consequence, we can rewrite the following expressions of
kΨ in terms of kΛ:

(i) The diagonal of kΨ is

kΨ(x, x) =
√
p(x)kΛ(x, x).

Moreover, for any Borel set I ⊆ R,∫
I

kΛ(y, y) dy =

∫
I

kΨ (y, y) dµp(y). (6.3.1)

(ii) For the weak localization property,∫
|x−y|>r(ϵ)

|kΨ (x, y)|2 dµp(y) =
√
p(x)

∫
|x−y|>r(ϵ)

|kΛ(x, y)|2 dy.
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6.3. Properties of the reproducing kernel of PWΛ(Ap)

(iii) For the homogeneous approximation property,∑
x∈X

|x−y|>r(ϵ)

|kΨ (x, y)|2 =
√

p(y)
∑
x∈X

|x−y|>r(ϵ)

√
p(x)|kΛ(x, y)|2.

Since p is bounded and bounded away from zero, we conclude that kΨ satisfies the kernel
properties (d), (e) and (f) if and only if kΛ does.

It is now clear that H = Ψ(PWΛ(Ap)) ⊆ L2(R, dµp) is the correct space to apply
Theorem 6.1.1. In addition, Proposition 6.3.1 implies that we can still exclusively use
the more convenient reproducing kernel kΛ in subsequent calculations since we have the
isometric isomorphism Ψ to correctly translate the results to kΨ .

6.3.1. The diagonal and averaged traces

In axiomatic approach the diagonal kΛ(x, x), x ∈ R of the reproducing kernel plays a
major role in deriving the necessary density conditions. A few results can be derived
immediately from Chapter 4.

Lemma 6.3.2 (Boundedness of the diagonal). Let Λ ⊂ R+
0 be of finite measure, p a

piecewise constant function and kΛ the reproducing kernel for PWΛ(Ap). Then there exist
constants C1, C2 > 0 such that

C1 ≤ kΛ(x, x) ≤ C2

for all x ∈ R.

Proof. The uniform boundedness of kΛ in R2 (hence the existence of C2) follows from
the uniform boundedness of solutions by Lemma 4.2.6 and the reproducing kernel kΛ in
Theorem 4.4.1. On the other hand, the lower bound C1 can be obtained using formula
(4.4.4) for kΛ:

kΛ(x, x) =
1

2π

∫
Λ1/2

1
q0
|Φ+(u2, x)|2 + 1

qn
|Φ−(u2, x)|2

κ(u)
du

≥ 1

2πq0

∫
Λ1/2

|Φ+(u2, x)|2

κ(u)
du

≥ min
0≤j≤n

inf
x∈Ij

1

2πq0

∫
Λ1/2

|a+j (u2)eiqjxu + b+j (u
2)e−iqjxu|2

κ(u)
du

≥ min
0≤j≤n

1

2πq0

∫
Λ1/2

∣∣|a+j (u2)| − |b+j (u2)|
∣∣2

κ(u)
du = C1.

Since for all u ∈ (0,∞), |a+j (u2)| ≠ |b+j (u2)| by (4.3.3) and κ(u) ≥ 1
q0qn

> 0 by (4.3.11),
we conclude that C1 > 0.
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6. Density theorems in PWΛ(Ap)

Next, recall from Theorem 6.1.1 that the critical density can be derived or estimated
using the upper and lower averaged traces

tr+ = lim sup
r→∞

sup
x∈R

1

µp(Br(x))

∫
Br(x)

kΨ (y, y) dµp(y),

tr− = lim inf
r→∞

inf
x∈R

1

µp(Br(x))

∫
Br(x)

kΨ (y, y) dµp(y)

of kΨ , respectively, which are invariants of Ψ(PWΛ(Ap)). By (6.3.1), the averaged traces
can be calculated using kΛ, i.e.,

tr+ = lim sup
r→∞

sup
x∈R

1

µp(Br(x))

∫
Br(x)

kΛ(y, y) dy, (6.3.2)

tr− = lim inf
r→∞

inf
x∈R

1

µp(Br(x))

∫
Br(x)

kΛ(y, y) dy. (6.3.3)

We first prepare the known expression (4.4.4) to evaluate the diagonal of kΛ. Fix y ∈ R.
Then there exists 0 ≤ j ≤ n such that y ∈ Ij. Recall the notation

ϑ(u, x, y) =
1

q0
Φ+(u2, x)Φ+(u2, y) +

1

qn
Φ−(u2, x)Φ−(u2, y), x, y ∈ R.

Setting x = y in ϑ yields

ϑ(u, y, y) =
1

q0
|Φ+(u2, y)|2 + 1

qn
|Φ−(u2, y)|2

=
1

q0
|a+j (u2)eiuqjy + b+j (u

2)e−iuqjy|2 + 1

qn
|a−j (u2)eiuqjy + b−j (u

2)e−iuqjy|2

=

(
|a+j (u2)|

q0
+

|b+j (u2)|
q0

)
+

(
|a−j (u2)|

qn
+

|b−j (u2)|
qn

)

+ 2Re

[(
a+j (u

2)b+j (u
2)

q0
+

a−j (u
2)b−j (u

2)

qn

)
e−2iuqjy

]
.

By (4.3.4),

ϑ(u, y, y) = 2

(
|a+j (u2)|

q0
+

|a−j (u2)|
qn

)
+ 2Re

[(
a+j (u

2)b+j (u
2)

q0
+

a−j (u
2)b−j (u

2)

qn

)
e−2iuqjy

]
.

Define for 0 ≤ j ≤ n and u ∈ (0,∞) the auxiliary functions

h
(1)
j (u) =

|a+j (u2)|
q0

+
|a−j (u2)|

qn

h
(2)
j (u) =

a+j (u
2)b+j (u

2)

q0
+

a−j (u
2)b−j (u

2)

qn
,

As a consequence of Lemma 4.2.5, h
(1)
j and h

(2)
j are bounded on (0,∞) for 0 ≤ j ≤ n. By

(4.3.11), the integrals

∥h(r)
j /κ∥L1(Λ1/2) =

∫
Λ1/2

|h(r)
j (u)|
κ(u)

du, 0 ≤ j ≤ n, r = 1, 2

are finite. We now have the following expression for the diagonal of kΛ.
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6.3. Properties of the reproducing kernel of PWΛ(Ap)

Lemma 6.3.3. Let Λ ⊂ R+
0 be of finite measure, p an (n+1)-piecewise constant function

for some n ∈ N, and kΛ the reproducing kernel for PWΛ(Ap). If y ∈ Ij for some 0 ≤ j ≤ n,
then

kΛ(y, y) =
1

π

∫
Λ1/2

h
(1)
j (u)

κ(u)
du+

1

π
ReF

(
h
(2)
j

κ
· χΛ1/2

)
(2qjy). (6.3.4)

Proof. Fix y ∈ Ij for some 0 ≤ j ≤ n. Then for u ∈ (0,∞),

ϑ(u, y, y) = 2h
(1)
j (u) + 2Re(h

(2)
j (u)e−2iqjyu).

Using the formula (4.4.6) for kΛ, we have for fixed y ∈ Ij, 0 ≤ j ≤ n,

kΛ(y, y) =
1

2π

∫
Λ1/2

ϑ(u, y, y)

κ(u)
du

=
1

π

∫
Λ1/2

h
(1)
j (u)

κ(u)
du+

1

π

∫
Λ1/2

Re(h
(2)
j (u)e−2iqjyu)

κ(u)
du

=
1

π

∫
Λ1/2

h
(1)
j (u)

κ(u)
du+

1

π
Re

(∫
Λ1/2

h
(2)
j (u)e−2iqjyu

κ(u)
du

)

=
1

π

∫
Λ1/2

h
(1)
j (u)

κ(u)
du+

1

π
ReF

(
h
(2)
j

κ
· χΛ1/2

)
(2qjy)

as claimed.

Finally, if p is an (n+ 1)-piecewise constant function for some n ∈ N with components
{pk}nk=0, the measure µp(E) of a Borel set E ⊆ R is given by

µp(E) =
n∑

k=0

qk|E ∩ Ik|, qk = p
−1/2
k .

The following theorem will be our main tool to compute the critical density in the next
section.

Theorem 6.3.4. Let Λ ⊂ R+
0 be of finite measure, p a piecewise constant function and

kΛ the reproducing kernel of PWΛ(Ap). Suppose I is a large interval such that I ̸⊂ [t1, tn].
Then there exists C ≥ 0 independent of I such that∣∣∣∣ 1

µp(I)

∫
I

kΛ(y, y) dy −
|Λ1/2|
π

∣∣∣∣ ≤ C√
µp(I)

.

In particular,

tr± =
|Λ1/2|
π

.

Proof. Let p be an (n + 1)-component piecewise constant function for some n ∈ N with
knots {tk}nk=1. Since µp is equivalent to the Lebesgue measure, it suffices to consider
a large, closed interval I = [α, β], −∞ < α < β < ∞ such that I ̸⊂ [t1, tn]. Then
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6. Density theorems in PWΛ(Ap)

I ∩ (I0 ∪ In) ̸= ∅, i.e., I intersects I0 or In. As the following computations contain several
terms, most of which are irrelevant, we use Ck ∈ R to denote some constants in the course
of the proof. First, consider the case when I intersects both I0 and In, i.e., [t1, tn] ⊂ I.
Then the µp-measure of I is

µp(I) = [q0(t1 − α) + qn(β − tn)] +
n−1∑
j=1

qj(tj+1 − tj)

= [q0(t1 − α) + qn(β − tn)] + C0.

It is clear from (6.2.1) that µp(I) is large if and only if |I| is large. We start from Lemma
6.3.3 by working on the terms of kΛ separately. Integrating the first term of kΛ(y, y)
(which is independent of y but dependent on Ij) in (6.3.4) with respect to y over the
whole interval I yields

T̃1(I) =
1

π

n∑
j=0

∫
[α,β]∩Ij

∫
Λ1/2

h
(1)
j (u)

κ(u)
du dy

=
t1 − α

π

∫
Λ1/2

h
(1)
0 (u)

κ(u)
du+

β − tn
π

∫
Λ1/2

h
(1)
n (u)

κ(u)
du+ C1.

Observe that

h
(1)
0 (u) =

|a+0 (u2)|2

q0
+

|a−0 (u2)|2

qn

and by identity (4.3.4) with j = n,

h(1)
n (u) =

|a+n (u2)|2

q0
+

|a−n (u2)|2

qn
=

|b+n (u2)|2

q0
+

|b−n (u2)|2

qn
.

From the initial conditions a−0 = b+n = 0, a+n = b−0 = 1, we see that

h
(1)
0 (u) =

|a+0 (u2)|2

q0
, h(1)

n (u) =
|b−n (u2)|2

qn

and hence, by definition of κ in (4.3.11), we have

h
(1)
0 (u) = q0κ(u), h(1)

n (u) = qnκ(u).

Thus,

T̃1(I) = [q0(t1 − α) + qn(β − tn)]
|Λ1/2|
π

+ C1 = µp(I)
|Λ1/2|
π

− C0
|Λ1/2|
π

+ C1

which in turn gives the estimate

T1(I) =

∣∣∣∣∣ T̃1(I)

µp(I)
− |Λ1/2|

π

∣∣∣∣∣ = 1

µp(I)

∣∣∣∣ |Λ1/2|
π

C0 − C1

∣∣∣∣ ≤ C2√
µp(I)

. (6.3.5)
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For the second term, we make a similar computation. Let

T̃2(I) =
1

π

n∑
j=1

∫
[α,β]∩Ij

ReF

(
h
(2)
j

κ
· χΛ1/2

)
(2qjy) dy

=
1

π
Re

(∫ t1

α

∫
Λ1/2

h
(2)
0 (u)e−2iq0yu

κ(u)
du dy +

∫ β

tn

∫
Λ1/2

h
(2)
n (u)e−2iqnyu

κ(u)
du dy

)
+ C3.

By interchanging the order of integration and performing the innermost integral on each
of these integrals, we have

T̃2(I) =
1

π
Re

∫
Λ1/2

h
(2)
0 (u)e−2iq0(t1+α)u

κ(u)
· sin(q0(t1 − α)u)

q0u
du

+
1

π
Re

∫
Λ1/2

h
(2)
n (u)e−2iqn(β+tn)u

κ(u)
· sin(qn(β − tn)u)

qnu
du+ C3.

Considering integrals of the form

Ij =

∫
Λ1/2

h
(2)
j (u)e−2iq(b+a)u

κ(u)
· sin(q(b− a)u)

qu
du

for 0 < a < b and 0 ≤ j ≤ n, the following estimate follows from Cauchy-Schwarz
inequality:

|Ij| ≤ ∥h(2)
j /κ∥L2(Λ1/2) ·

(
b− a

q

∫
q(b−a)Λ1/2

sin2 ω

ω2
dω

)1/2

≤
(
(b− a)π

q

)1/2

∥h(2)
j /κ∥L2(Λ1/2).

Therefore, as the norms above are finite, we have

|T̃2(I)| ≤
1√
π

{(
t1 − α

q0

)1/2

∥h(2)
0 /κ∥L2(Λ1/2) +

(
β − tn
qn

)1/2

∥h(2)
n /κ∥L2(Λ1/2)

}
+ C3

≤ C4

√
µp(I).

Consequently, a straightforward estimate is obtained:

T2(I) =
|T̃2(I)|
µp(I)

≤ C4√
µp(I)

. (6.3.6)

Finally, (6.3.5) and (6.3.6) with C = C2 + C4 ≥ 0 independent of I yields∣∣∣∣ 1

µp(I)

∫
I

kΛ(y, y) dy −
|Λ1/2|
π

∣∣∣∣ ≤ T1(I) + T2(I) ≤
C√
µp(I)

(6.3.7)

for every large, closed interval I with [t1, tn] ⊂ I.
Meanwhile, if I intersects exactly one of I0 and In, then some of the terms of T1(I) and

T2(I) will be absent, but estimate (6.3.7) still holds since a term containing either t1 − α
(computations inside I0) or β − tn (computations inside In) is always present.
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For the second assertion, note that with I = Br(x) for some x ∈ R and r > 0 sufficiently
large, there exists C ≥ 0 independent of x and r such that∣∣∣∣ 1

µp(Br(x))

∫
Br(x)

kΛ(y, y) dy −
|Λ1/2|
π

∣∣∣∣ ≤ C√
µp(Br(x))

.

By (6.2.1),

2r min
0≤k≤n

qk ≤ µp(Br(x)) ≤ 2r max
0≤k≤n

qk, qk = p
−1/2
k , 0 ≤ k ≤ n.

Therefore, from (6.3.2),

tr+ = lim sup
r→∞

sup
x∈R

1

µp(Br(x))

∫
Br(x)

k(y, y) dy

≤ |Λ1/2|
π

+ lim sup
r→∞

sup
x∈R

C√
µp(Br(x))

≤ |Λ1/2|
π

+ lim sup
r→∞

C√
2r min

0≤k≤n
qk

=
|Λ1/2|
π

.

Analogously, we prove from (6.3.3) that tr− ≥ |Λ1/2|
π

. The inequalities

|Λ1/2|
π

≤ tr− ≤ tr+ ≤ |Λ1/2|
π

imply tr± =
|Λ1/2|
π

and we are done.

6.3.2. Localization and approximation properties

Now that the necessary preparations are in place, we are ready to prove the remaining
weak localization and homogeneous approximation properties of kΛ. A version of the
forthcoming lemmas was proved in [39, Sec. 7] in the context of variable bandwidth
spaces PWΛ(Ap) where p, p′ ∈ ACloc(R) and p is eventually constant. In this setting,
one can apply a Liouville transformation [39, Prop. 6.6] to convert Ap into a Schrödinger
operator Bq = −D2+ q, where q has compact support contained on some interval [−a, a].
This paved way to use some scattering theory (see [82, Chap. 21]) to ultimately prove the
lemmas. In our setting, however, we cannot apply these results directly since a piecewise
constant p is not locally absolutely continuous on R.
In this section it is instructive to consider spectral sets that are compact intervals,

particularly Λ = [0,Ω] for some Ω > 0 as most of the work has already been done in Section
4.4.1. In addition, kΛ possesses off-diagonal decay with respect to the standard metric
d, and as observed in [31, Sec. 4.1], assumptions (e) and (f) easy to verify. For general
spectral sets, the proofs of the aforementioned properties of kΛ are given in Appendix C.
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6.3. Properties of the reproducing kernel of PWΛ(Ap)

Proposition 6.3.5. Let Λ = [0,Ω] for some Ω > 0, p a piecewise constant function and
kΛ the reproducing kernel for PW[0,Ω](Ap). Then there exists b, C > 0 such that for all
x, y ∈ R satisfying |x− y| > b,

|kΛ(x, y)| ≤
C

1 + |x− y|
. (6.3.8)

Proof. Let p be an (n + 1)-piecewise constant function for some n ∈ N. Recall from
Section 4.4.1 the integral

J(s) =
1

2π

∫
Λ1/2

eisu

κ(u)
du, s ∈ R

as well as the expression

kΛ(x, y) =

m(x,y)∑
k=1

αk(x, y)J(βk(x, y)), m(x, y) ∈ N, αk(x, y), βk(x, y) ∈ R, 1 ≤ k ≤ m(x, y)

for the reproducing kernel of PWΛ(Ap) in terms of J . By Remark 4.4.2, we prove (6.3.8)
by showing that each J(βk(x, y)) in the above expansion for kΛ satisfies

J(βk(x, y)) ≤
Nk

1 + |x− y|

for some Nk, rk > 0 and for all x, y ∈ R satisfying |x− y| > rk.
We proceed as follows: let a > 0 such that the knots {tk}nk=1 of p are contained in

[−a, a]. Consider cases where x and y take values on the intervals

(−∞,−a) ⊂ I0, [−a, a] ⊃ I1 ∪ . . . In−1, (a,∞) ⊂ In

with |x − y| large. To reduce the number of cases to take, we apply the symmetry
kΛ(x, y) = kΛ(y, x) for all x, y ∈ R.

• Suppose x and y belong to the same unbounded interval, i.e., x, y < −a or x, y > a. It
suffices to consider x, y < −a as the other subcase is treated similarly. As observed in
(4.4.8),

J(βk(x, y)) = J(ck ± q0(x± y))

for ck ∈ R, 1 ≤ k ≤ m(x, y). We also know that |x + y| = |x| + |y| ≥ |x − y|, and so
|x± y| ≥ |x− y|. By Lemma 4.4.3(iii), there exists Mk > 0 such that

|J(ck ± q0(x± y))| ≤ Mk

|ck ± q0(x± y)|
≤ Mk

−|ck|+ q0|x− y|
.

Choose Nk >
Mk

q0
and rk =

Mk+Nk|ck|
q0Nk−Mk

> 0. Then the inequality

|J(ck ± q0(x± y))| ≤ Mk

−|ck|+ q0|x− y|
≤ Nk

1 + |x− y|
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holds for |x− y| ≥ rk. Now, take the constants

b1 > max
1≤k≤m(x,y)

rk, C1 =
∑

1≤k≤m(x,y)

|αk(x, y)|Nk.

Thus,

|kΛ(x, y)| ≤
C1

1 + |x− y|
for all x, y < −a satisfying |x− y| > b1.

• Suppose x ∈ R and |y| ≤ a. Without loss of generality, fix x ∈ Ij, y ∈ Il ∩ [−a, a] for
some 0 ≤ j, l ≤ n. Then by (4.4.8),

J(βk(x, y)) = J(ck ± qjx± qly)

for ck ∈ R, 1 ≤ k ≤ m(x, y). We also have

|qjx± qly| ≥ qj|x− y| − |qj ± ql| |y|
≥ qj|x− y| − a|qj ± ql|.

By Lemma 4.4.3(iii), there exists Mk > 0 such that

|J(ck ± qjx± qly)| ≤
Mk

|ck ± qjx± qly|
≤ Mk

−(|ck|+ a|qj + ql|) + qj|x− y|
.

Following the remaining arguments as in the first case, there exist b2, C2 > 0 such that

|kΛ(x, y)| ≤
C2

1 + |x− y|

for all x ∈ Ij, y ∈ Il ∩ [−a, a] satisfying |x− y| > b2.

• Suppose x and y are on distinct infinite intervals, i.e., x < −a and y > a. Then
|q0x+ qny| may not be large when |x− y| is large, and (6.3.8) may not hold. We then
turn our attention to the original formulation of kΛ. From (4.2.15) and (4.2.16), write
the components of Φ(u2, ·) = (Φ+(u2, ·),Φ−(u2, ·)) as

Φ(u2, x) =

[
Φ+(u2, x)
Φ−(u2, x)

]
=

[
a+0 (u

2)eiq0ux + b+0 (u
2)e−iq0ux

e−iq0ux

]
Φ(u2, y) =

[
Φ+(u2, y)
Φ−(u2, y)

]
=

[
eiqnuy

a−n (u
2)eiqnuy + b−n (u

2)e−iqnuy

]
.

As in the computations in (5.2.11), we have

ϑ(u, x, y) =
1

q0
Φ+(u2, x)Φ+(u2, y) +

1

qn
Φ−(u2, x)Φ−(u2, y)

=
a+0 (u

2)

q0
e−i(q0x−qny)u +

a+0 (u
2)

q0
ei(q0x−qny)u.

Hence, there are no exponential terms of the form βk(x, y) = ck ± (qjx + qly). Now,
observe that |q0x− qny| = −q0x+ qny, and consider two sub-cases:
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(i) If q0 ≥ qn, then

|q0x− qny| = −qn(x− y)− (q0 − qn)x ≥ qn|x− y|+ a(q0 − qn) ≥ qn|x− y|.

(ii) Otherwise, if qn ≥ q0, we have instead

|q0x− qny| = −q0(x− y) + (qn − q0)y ≥ q0|x− y|+ a(qn − q0) ≥ q0|x− y|.

By Lemma 4.4.3, there exists Mk ∈ R such that

|J(ck ± (q0x− qny))| ≤
Mk

|ck ± (q0x− qny)|
≤ Mk

−|ck|+min{q0, qn}|x− y|
.

From the rest of the arguments of the first case, we conclude that there exist b3, C3 > 0
such that

|kΛ(x, y)| ≤
C3

1 + |x− y|
for all x < −a, y > a satisfying |x− y| > b3.

Finally, with b ≥ max{b1, b2, b3} and C ≥ max{C1, C2, C3}, we conclude that for all
x, y ∈ R satisfying |x− y| > b,

|kΛ(x, y)| ≤
C

1 + |x− y|
as we have claimed.

Lemma 6.3.5 shows that kΛ exhibits off-diagonal decay with respect to the standard
metric d, which by Proposition 6.3.1 is equivalent to off-diagonal decay of kΨ with respect
to d whenever p is bounded and bounded away from zero. Moreover, one can show
as a special case of [31, Sec. 4.1] that assumptions (d), (e) and (f) can be proved from
assumptions (a), (b) and (c) on the geometry of (R, d, µp) together with off-diagonal decay
assumption on kΛ.

Lemma 6.3.6 (Weak localization). Let Λ = [0,Ω] for some Ω > 0, p be a piecewise
constant function and kΛ the reproducing kernel for PW[0,Ω](Ap). Then for every ϵ > 0,
there exists r(ϵ) > 0 such that

sup
x∈R

∫
|x−y|>r(ϵ)

|kΛ(x, y)|2 dy < ϵ2. (6.3.9)

Proof. By Lemma 6.3.5, we can find b, C > 0 such that for all x, y ∈ R satisfying |x−y| >
b,

|kΛ(x, y)| ≤
C

1 + |x− y|
.

Let ϵ > 0 and take r(ϵ) > max{b, 4C2

ϵ2
− 1}. Then for a fixed x ∈ R,∫

|x−y|>r(ϵ)

|kΛ(x, y)|2 dy ≤
∫
|x−y|>r(ϵ)

C2

(1 + |x− y|)2
dy =

∫ ∞

r(ϵ)

2C2

(1 + z)2
dz

=
2C2

1 + r(ϵ)
<

ϵ2

2
.

Taking the supremum over all x ∈ R proves (6.3.9).
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For the proof of the homogeneous approximation property, we use an elementary ap-
proach. We recall some terminologies on sets. A set X ⊂ R is said to be separated with
separation δ > 0 (or uniformly discrete) if

inf{|x− x′| : x, x ∈ X, x ̸= x′} = δ.

A set is relatively separated if it is a finite union of separated sets. Relatively separated
sets cannot have an accumulation point, hence a point may only be repeated a finite
number of times. Moreover, for a relatively separated set X, the relative separation
constant

rel(X) = max
x∈R

#(X ∩ [x, x+ 1]) (6.3.10)

is always finite. The following lemma [31, Lem. 3.7] can be used to prove that a set is
relatively separated. This will be used again in Section C.2.

Lemma 6.3.7. Let H be a reproducing kernel Hilbert space of functions from R to C with
kernel k. Suppose X ⊂ R such that {k(x, ·) : x ∈ X} is a Bessel sequence in H. Then X
is relatively separated.

We are now ready to prove the homogeneous approximation property.

Lemma 6.3.8 (Homogeneous approximation). Let Λ = [0,Ω] for some Ω > 0, p a
piecewise constant function and kΛ the reproducing kernel for PW[0,Ω](Ap). Suppose X ⊂
R such that {kΛ(x, ·) : x ∈ X} is a Bessel sequence in PW[0,Ω](Ap). Then for every ϵ > 0,
there exists r(ϵ) > 0 such that

sup
y∈R

∑
x∈X

|x−y|>r(ϵ)

|kΛ(x, y)|2 < ϵ2. (6.3.11)

Proof. Fix y ∈ R. By Lemma 6.3.5, there exists r, C > 0 such that∑
x∈X

|x−y|>r

|kΛ(x, y)|2 ≤
∑
x∈X

|x−y|>r

C2

1 + |x− y|2
.

Let ϵ > 0. Since
∑

n∈Z
1

1+(n−1)2
is a convergent series, we can find r′(ϵ) > 0 sufficiently

large such that ∑
n∈Z:|n|>r′(ϵ)−1

1

1 + (n− 1)2
<

ϵ2

2C2
. (6.3.12)

Take r(ϵ) > max{r, r′(ϵ)}. If X is separated with separation δ = 1, then each unit length
interval contains at most one point x − y for some x ∈ X. Thus, x − y = nx + sx
for some unique nx ∈ Z and sx ∈ [0, 1). Since for all x ∈ X, |nx + sx| > r(ϵ) implies
|nx| > |nx + sx| − |sx| > r(ϵ)− 1, we get∑

x∈X
|x−y|>r(ϵ)

1

1 + |x− y|2
≤

∑
x∈X

|nx+sx|>r(ϵ)

1

1 + |nx + sx|2
≤

∑
x∈X

|nx+sx|>r(ϵ)

1

1 + (|nx| − 1)2

≤
∑
x∈X

|nx|>r(ϵ)−1

1

1 + (|nx| − 1)2
≤

∑
n∈Z:|n|>r(ϵ)−1

1

1 + (n− 1)2
.
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Taking the supremum over all y ∈ R, we have

sup
y∈R

∑
x∈X

|x−y|>r(ϵ)

|kΛ(x, y)|2 ≤
ϵ2

2
< ϵ2 (6.3.13)

which is precisely (6.3.11). Now, by Lemma 6.3.7, X is relatively separated. Hence, with
the relative separation constant rel(X) defined in (6.3.10) we replace ϵ2

2C2 in (6.3.12) by
ϵ2

2C2rel(X)
so that (6.3.13) still holds.

For spectral sets that are not compact intervals, Proposition 6.3.5 does not hold, and
therefore the proofs of Lemmas 6.3.6 and 6.3.8 will not work for general spectral sets.
We prove in Appendix C the following general versions of the weak localization and
homogeneous approximation properties of kΛ:

Lemma 6.3.9 (Weak localization). Let Λ ⊂ R+
0 be a Borel set of finite measure. Let p

be a piecewise constant function and kΛ be the reproducing kernel for PWΛ(Ap). Then for
every ϵ > 0, there exists r(ϵ) > 0 such that

sup
x∈R

∫
|x−y|>r(ϵ)

|kΛ(x, y)|2 dy < ϵ2.

Lemma 6.3.10 (Homogeneous approximation). Let Λ ⊂ R+
0 be a bounded Borel set, p be

a piecewise constant function and kΛ be the reproducing kernel for PWΛ(Ap). Suppose X
is a set of stable sampling for PWΛ(Ap). Then for every ϵ > 0, there exists r(ϵ) > 0 such
that

sup
y∈R

∑
x∈X

|x−y|>r(ϵ)

|kΛ(x, y)|2 < ϵ2.

As in the case of bandlimited functions (see discussion in [31, Sec. 5.1]), the homoge-
neous approximation property of kΛ does not hold for unbounded spectral sets.

6.4. Necessary density conditions for sampling and
interpolation

In Section 6.2, we verified that the metric measure space (R, d, µp) satisfies finiteness
of µp-measure of balls, non-degeneracy of balls and weak annular decay property. On
the other hand, in Section 6.3 we proved that kΛ has bounded diagonal, and when Λ is
a compact interval, kΛ satisfies the weak localization and homogeneous approximation
properties. We also mentioned a version of these properties for general spectral sets. We
are now ready to collect all these results and finally derive necessary density conditions
for sampling and interpolation in PWΛ(Ap).

Theorem 6.4.1 (Density theorem in PWΛ(Ap)). Let Λ ⊆ R+
0 be a Borel set of finite

measure and p a piecewise constant function.

(i) If X is a set of stable sampling for PWΛ(Ap), then D−
p (X) ≥ |Λ1/2|

π
.
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(ii) If X is a set of interpolation for PWΛ(Ap), then D+
p (X) ≤ |Λ1/2|

π
.

Proof. Let p be a piecewise constant function. By Lemma 6.2.1, (R, d, µp) satisfies con-
ditions (a), (b) and (c). On the other hand, kΛ satisfies (d) by Lemma 6.3.2. We now
proceed by cases.

• Case 1: Suppose Λ ⊆ R+
0 is bounded. Then by Lemmas 6.3.9 and 6.3.10, kΛ satisfies

(e) and (f). By Theorem 6.3.4, tr± = |Λ1/2|
π

. The density theorem for PWΛ(Ap) now
follows from Theorem 6.1.1.

• Case 2: Suppose Λ ⊂ R+
0 is unbounded. To prove (i), consider the bounded spectral

set ΛΩ = Λ ∩ [0,Ω] ⊆ Λ. Then PWΛΩ
(Ap) is a closed subspace of PWΛ(Ap). Moreover,

if X is a set of stable sampling for PWΛ(Ap), then X is a set of stable sampling for
PWΛΩ

(Ap). By the density theorem for PWΛΩ
(Ap) we have

D−
p (X) ≥ |Λ1/2

Ω |
π

=
|Λ1/2 ∩ [0,Ω1/2]|

π
.

Since Ω is arbitrary, we conclude that D−
p (X) ≥ |Λ1/2|

π
. To prove (ii), fix x ∈ R.

Following the proof in [39, Sec. 6.4(A)] (cf. [31, Rem. 4.3]) one can show that for all
ϵ > 0 sufficiently small we can choose r > r(ϵ) as in Lemma 6.3.9 and C ′ > 0 such that

1

µp(Br(x))

∫
Br(x)

kΛ(y, y) dy ≥ (1− C ′ϵ)
#(X ∩Br(x))

µp(Br(x))
.

By Theorem 6.3.4, there exists C ≥ 0 independent of x such that

#(X ∩Br(x))

µp(Br(x))
≤ (1− C ′ϵ)−1

(
|Λ1/2|
π

+
C√

µp(Br(x))

)
.

Finally, taking the supremum over all x ∈ R and the limit superior as r → ∞ gives us

D+
p (X) ≤ (1− C ′ϵ)−1 |Λ1/2|

π
. Since ϵ is arbitrary, we conclude that D+

p (X) ≤ |Λ1/2|
π

.
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7. Numerical implementation and
simulations

In this chapter, we consider the problem of reconstructing a function from its point samples
in the space of functions variable bandwidth via least squares approximation. Our goal is
to show that for functions that behave locally as bandlimited functions, approximation by
variable bandwidth functions with appropriately chosen piecewise constant parametrizing
function performs significantly better than approximation by bandlimited functions. We
adopt a finite-dimensional numerical reconstruction algorithm as in [4, 5] that is based
on frames, oversampling, and regularization. Oversampling allows the number of point
samples to exceed the number of reconstruction vectors spanning a finite-dimensional sub-
space of functions of variable bandwidth, which leads to least squares approximation. On
the other hand, the inherent redundancy of frames offers flexibility in terms of function
representation at the cost of ill-conditioning. By regularization we mean thresholding on
the singular values of the corresponding finite-dimensional least squares problem. The re-
sulting algorithm then produces a variable bandwidth reconstruction whose representation
has bounded12 norm coefficients and are thus computable in floating point arithmetic.
A crucial part of the aforementioned reconstruction algorithm is a robust and accurate

evaluation of the reproducing kernel of a variable bandwidth space at any point. Due
to computational limitations, we limit our discussion to variable bandwidth spaces with
either two-component or three-component piecewise constant functions. Hence, all the
necessary calculations involving the reproducing kernel can be carried out directly using
the results in Chapter 5. In particular, we have Theorem 5.1.1 (toy example) for the
two-component case, while the reproducing kernel for the three-component case with
symmetric knots can be computed numerically via Theorem 5.2.5 and the formula (5.2.9)
for Jreal.
A summary of the numerical simulations is as follows. We show experimentally that

bandlimited functions can be reasonably reconstructed in a variable bandwidth space
whose local bandwidths are sufficiently close to the bandwidth of the function. For func-
tions that locally behave like bandlimited functions, an approximation in some reasonably
chosen variable bandwidth space performs significantly better than approximation by ban-
dlimited functions. In the case of uniform sampling, any numerical reconstruction using
the Shannon sampling theorem is expected to interpolate uniform samples of a function
within machine precision. However, it is observed that with a finer grid, notable errors
are present as we get close to the transition points where the abrupt changes in oscillatory
behavior occur. We shall see that if said points are the knots of a parametrizing function
p with appropriately chosen piecewise constant components, we obtain a more accurate
approximation in the corresponding variable bandwidth space. Next, we investigate exper-
imentally how the parametrizing function affects the accuracy of reconstructing a function

12In [4, 5], the authors also used the term small norm coefficients.

101



7. Numerical implementation and simulations

in some space of variable bandwidth. This is done by performing reconstruction in several
variable bandwidth spaces and take the (local) bandwidth(s) of the function to be recon-
structed as our reference (local) bandwidth(s). It is expected that if the parametrizing
functions of these variable spaces are taken so that the corresponding local bandwidths
approach the reference bandwidth, then the reconstruction improves. We also take a look
at reconstructing functions from samples of varying Beurling densities, particularly when
the lower Beurling density approaches the critical density.
Lastly, we expressly note that the experiments done in this chapter are proofs of concept

of our notion of variable bandwidth. Hence, there are no attempts to optimize sampling
and reconstruction algorithms and no large examples were considered.

7.1. General reconstruction theory

We present relevant theory on numerical approximation of functions using frames [4, 5].
More precisely, given reproducing kernel Hilbert subspaces H1,H2 of L2(R), we consider
the problem of reconstructing a function f ∈ H1 by elements of H2 given its point samples
{f(xj)}j∈Z. We also recall some notations. Let H and K be Hilbert spaces. Given an
operator T : H → K, we define its kernel (or nullspace) NT by

NT = {x ∈ H : Tx = 0}

and its range RT by

RT = {Tx : x ∈ H}.

We also define the pseudoinverse of T as follows [9, Def. 5.1], [22, Sec. 2.5]. Suppose
T : H → K is a bounded operator with closed range. The pseudoinverse of T is the
unique bounded operator T † : K → H satisfying

NT † = R⊥
T , RT † = N⊥

T , and TT †x = x, x ∈ RT .

The following lemma shows that pseudoinverses can be used to find minimal norm least
squares solutions of linear systems [14, Cor. 1.1].

Lemma 7.1.1. Let T : H → K be a bounded operator with closed range and b ∈ K. Then
x̃ = T †b is the unique minimal norm solution of the least squares problem minx∈H ∥Tx−
b∥K.

We now formulate the reconstruction problem. Let H1 and H2 be reproducing kernel
Hilbert spaces13 with reproducing kernels k1 and k2, respectively. Suppose we are given
samples

dj = ⟨f, k1(xj, ·)⟩H1 = f(xj), j ∈ Z
of an unknown function f ∈ H1 at fixed, possibly non-uniform sampling points X =
{xj}j∈Z ⊂ R. We wish to approximate f by an element of H2. A reconstruction f̃ ∈ H2

of f can be obtained by means of a least squares problem, i.e.,

f̃ = argmin
g∈H2

∑
j∈Z

|⟨g, k2(xj, ·)⟩H1 − dj|2 = argmin
g∈H2

∑
j∈Z

|g(xj)− dj|2. (7.1.1)

13In general, H1 may be taken as a dense subspace of a Hilbert space where pointwise evaluations are
well defined. See [5, Sec. 1.2] for details.
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In the literature, we refer to H1 as the sampling space and H2 the reconstruction
space.
In this study, we assume that d = {dj}j∈Z ∈ ℓ2(Z). This holds precisely if {k1(xj, ·)}j∈Z

is a Bessel sequence for H1. Furthermore, we also assume that there exist constants
A,B > 0 such that

A ||g||22 ≤
∑
j∈Z

|g(xj)|2 ≤ B ||g||22 (7.1.2)

for all g ∈ H2, i.e., X is a set of stable sampling for H2. Hence,

H2 = span{k2(xj, ·)}j∈Z.

Let T : ℓ2(Z) → H2 be the synthesis operator defined as

Tc =
∑
j∈Z

cjk2(xj, ·), c = {cj}j∈Z ∈ ℓ2(Z).

By (7.1.2), T is well-defined and bounded. The analysis operator T ∗ : H2 → ℓ2(Z) is
given by

T ∗g = {⟨g, k2(xj, ·)⟩H2}j∈Z = {g(xj)}j∈Z, g ∈ H2.

Assuming (7.1.2) holds, (7.1.1) can be rephrased as follows. Since RT = H2, there exists
c̃ ∈ ℓ2(Z) such that f̃ = T c̃ and satisfies

c̃ ∈ argmin
c∈ℓ2(Z)

∑
j∈Z

∣∣∣∣∣∑
l∈Z

clk2(xl, xj)− dj

∣∣∣∣∣
2

. (7.1.3)

Define the Gramian G : ℓ2(Z) → ℓ2(Z) by G = T ∗T , i.e.,

Gc = T ∗Tc =

{∑
l∈Z

clk2(xl, xj)

}
j∈Z

, c = {cl}l∈Z.

Thus, (7.1.3) can be written as

c̃ ∈ argmin
c∈ℓ2(Z)

∥Gc− d∥22, d = {dj}j∈Z ∈ ℓ2(Z).

Moreover, G is bounded andRG = RT ∗T = RT ∗ is closed. Therefore, Lemma 7.1.1 applies.
Among all possible coefficient sequences satisfying (7.1.3), we form the reconstruction
f̃ ∈ H2 using the unique minimal norm coefficient vector ĉ = G†d. Finally, we define the
reconstruction operator Q : ℓ2(Z) → H2 by

f̃ = Qd = TG†d =
∑
l∈Z

ĉlk2(xl, ·). (7.1.4)

Let us now compare this reconstruction method to the best approximation of f ∈ H1 in
H2 obtained via the orthogonal projection.
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Theorem 7.1.2. Let H1,H2 ⊂ L2(R) be reproducing kernel Hilbert spaces. Suppose
f ∈ H1 and X = {xj}j∈Z ⊂ R such that

(i) d = {f(xj)}j∈Z ∈ ℓ2(Z), and

(ii) X is a set of stable sampling for H2 with lower bound A.

Let Q : ℓ2(Z) → H2 be the reconstruction operator given in (7.1.4) and f̃ = Qd. Then

∥f − f̃∥2 ≤ inf
g∈H2

||f − g||2 +
1√
A

{∑
j∈Z

|g(xj)− f̃(xj)|2
}1/2

 . (7.1.5)

In particular, if T ∗ is the analysis operator, PH2 : L
2(R) → H2 is the orthogonal projection

onto H2 and k2 the reproducing kernel for H2, then

∥f − f̃∥2 ≤ ||f − PH2f ||2 +
1√
A
∥T ∗f̃ − d∥2 +

1√
A

{∑
j∈Z

|⟨f, k2(xj, ·)⟩ − dj|2
}1/2

. (7.1.6)

Proof. For any g ∈ H2, inequality (7.1.2) implies

∥f − f̃∥2 ≤ ∥f − g∥2 + ∥g − f̃∥2

= ∥f − g∥2 +
1√
A

{∑
j∈Z

|g(xj)− f̃(xj)|2
}1/2

.

Taking the infimum over all g ∈ H2 yields (7.1.5). Now, write f = PH2f + h, where
h ∈ H⊥

2 . Then for any x ∈ R, k2(x, ·) ∈ H2 and

⟨f, k2(x, ·)⟩ = ⟨PH2f, k2(x, ·)⟩ = PH2f(x).

Choosing g = PH2f in (7.1.5) yields

∥f − f̃∥2 ≤ ||f − PH2f ||2 +
1√
A

{∑
j∈Z

|⟨f, k2(xj, ·)⟩ − f̃(xj)|2
}1/2

≤ ||f − PH2f ||2 +
1√
A

{∑
j∈Z

|f̃(xj)− dj|2
}1/2

+
1√
A

{∑
j∈Z

|⟨f, k2(xj, ·)⟩ − dj|2
}1/2

.

The second term can be expressed using the analysis operator T ∗.

We see that the error in approximating f by f̃ is bounded by three quantities: the first
term of (7.1.6) takes care of the part of f outside of H2, the second term is the minimal
residual of the least squares problem by (7.1.3), and the third term is the discrepancy
between the point samples dj = f(xj) and sampling f via inner products with k2(xj, ·).
In the case where {k1(xj, ·)}j∈Z is indeed a Bessel sequence, we can analogously define

the synthesis and analysis operators

L : ℓ2(Z) → H1, Lc =
∑
j∈Z

cjk1(xj, ·),

L∗ : H1 → ℓ2(Z), L∗g = {⟨g, k1(xj, ·)}j∈Z = {g(xj)}j∈Z
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respectively. Hence, the mapping F : H1 → H2 given by

F (f) = f̃ = TG†L∗f, f ∈ H1

is bounded. Moreover, by Theorem 7.1.2,

∥f − F (f)∥2 ≤ ||f − PH2f ||2 +
1√
A
∥T ∗F (f)− L∗f∥2 +

1√
A
∥T ∗f − L∗f∥2.

In particular, if f ∈ H1 ∩H2, then F (f) = f .

7.1.1. Finite-dimensional reconstruction algorithm

In practice, we only have access to a finite number of point samples of f ∈ H1. We
adopt the reconstruction procedure in [5] on best approximations with regularization using
oversampling. We shall shortly see that this choice of numerical reconstruction gives us
some control over the ill-conditioning of the resulting linear system. Let m,n ∈ N with
m ≥ n. From 2m+ 1 samples

dj = ⟨f, k1(xj, ·)⟩ = f(xj), j = −m, . . . ,m,

we define the reconstruction f̃ [m,n] of f in the finite-dimensional subspace

Tn = span{k2(xl, ·) : l = −n, . . . , n}

of H2 as

f̃ [m,n] = argmin
g∈Tn

m∑
j=−m

|g(xj)− dj|2.

As in the infinite-dimensional case, this reconstruction vector can be written as

f̃ [m,n] =
n∑

l=−n

c
[m,n]
l k2(xl, ·),

where c[m,n] ∈ C2n+1 satisfies

c[m,n] ∈ argmin
c∈C2n+1

m∑
j=−m

∣∣∣∣∣
n∑

l=−n

clk2(xl, xj)− dj

∣∣∣∣∣
2

. (7.1.7)

For r ∈ N, define the synthesis operator T [r] : C2r+1 → Tr as

T [r]c =
r∑

l=−r

clk2(xl, ·), c = {cl}rl=−r ∈ C2r+1

and the analysis operator (T [r])∗ : Tr → C2r+1 by

(T [r])∗g = {⟨g, k2(xl, ·)⟩}rl=−r, g ∈ Tr.
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Now, with m ≥ n, set G[m,n] ∈ C(2m+1)×(2n+1) to be the matrix whose entries are

G[m,n](j, l) = k2(xl, xj), j = −m, . . . ,m, l = −n, . . . , n. (7.1.8)

In other words,
G[m,n] = (T [m])∗T [n].

We call G[m,n] an uneven section of G if m ̸= n. If m = n, G[n,n] is called a finite
section of G. Set d[m] ∈ C2m+1 to be the vector of samples

d
[m]
j = f(xj), j = −m, . . . ,m.

It is now evident from (7.1.7) that c[m,n] is a least squares solution of the linear system

G[m,n]c = d[m]. (7.1.9)

Overcomplete frames have the advantage of flexibility over orthonormal bases due to
redundant representations. However, corresponding linear systems are in general ill-
conditioned. It was shown in [5, Rem. 3.4] that whenever G[n,n] is ill-conditioned for
some n, G[m,n] inherits this ill-conditioning for large m. Moreover, norms of solutions
of (7.1.9) may also grow arbitrarily large as we take larger uneven sections of G. This
causes computations in floating point arithmetic to be impossible (see also [4, Sec. 5.1]).
In order to control the growth of solutions of (7.1.9), we use a variant of the singular value
decomposition (SVD), called the truncated SVD [41, 61]. This yields a reconstruction of
f whose representation has bounded norm coefficients.
We briefly recall the singular value decomposition for rectangular matrices. For a

thorough review, consult [16, Thm. 1.2.1], [22, Cor. 1.6.4], or [35, Thm. 2.4.1].

Theorem 7.1.3 (Singular value decomposition). Let m ≥ n. If A ∈ Cm×n and rank(A) =
r, then there exist unitary matrices U ∈ Cm×m, V ∈ Cn×n and n nonnegative real numbers
σ1 ≥ . . . ≥ σr > σr+1 = . . . = σn = 0 such that

A = UΣV ∗, Σ = diag(σ1, . . . , σr, 0, . . . , 0) ∈ Cm×n.

The numbers σi, i = 1, . . . , n are called the singular values of A. The columns of
U are the left singular vectors of A and the columns of V are the right singular
vectors of A. If we write U and V in terms of their column vectors as U = [u1| . . . |um]
and V = [v1| . . . |vn], these vectors satisfy [35, Cor. 2.4.2]

Avi = σiui, A∗ui = σivi, i = 1, . . . , n.

Consequently, the nonzero singular values are the square roots of the eigenvalues of A∗A
(same as the nonzero eigenvalues of AA∗, including multiplicities). Moreover, A can be
expressed as

A =
r∑

i=1

σiuiv
∗
i , r = rank(A).

The SVD provides information on the rank as well as the kernel and range of a matrix
[35, Cor. 2.4.6], and the above representation of A is commonly used to construct low-
rank approximations of A [35, Thm. 2.4.8]. Furthermore, the decomposition yields a
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straightforward computation of the pseudoinverse A† of A [35, Sec. 5.5.2]: given A =
UΣV ∗ as above, we have

A† = V Σ†U∗ =
r∑

i=1

1

σi

viu
∗
i , r = rank(A), (7.1.10)

where

Σ† = diag

(
1

σ1

, . . . ,
1

σr

, 0, . . . , 0

)
∈ Cn×n.

We now apply the SVD to uneven sections of the Gramian. SupposeG[m,n] ∈ C(2m+1)×(2n+1)

has SVD
G[m,n] = U [m]Σ[m,n](V [n])∗

for some unitary matrices U [m] ∈ C(2m+1)×(2m+1), V [n] ∈ C(2n+1)×(2n+1) and matrix of
singular values

∑[m,n] ∈ C(2m+1)×(2n+1) of G[m,n]. The truncated SVD is computed as
follows. Given a threshold ϵ > 0, we form the matrix

G[m,n]
ϵ = U [m]Σ[m,n]

ϵ (V [n])∗,

where Σ
[m,n]
ϵ ∈ C(2m+1)×(2n+1) is obtained by replacing all the diagonal entries of Σ[m,n]

below ϵ by zero. This corresponds to a possibly low-rank approximation of G[m,n]. The
so-called regularized reconstruction f̃

[m,n]
ϵ ∈ Tn of f is given by

f̃ [m,n]
ϵ =

n∑
l=−n

(c̃[m,n]
ϵ )lk2(xl, ·),

where c̃
[m,n]
ϵ ∈ C2n+1 satisfies

c̃[m,n]
ϵ ∈ argmin

c∈C2n+1

m∑
j=−m

∣∣∣∣∣
n∑

l=−n

clG
[m,n]
ϵ (j, l)− dj

∣∣∣∣∣
2

. (7.1.11)

Among all possible coefficient vectors satisfying (7.1.11), we choose the minimal norm
solution

ĉ[m,n]
ϵ = (G[m,n]

ϵ )†d[m] = V [m](Σ[m,n]
ϵ )†(U [n])∗d[m]. (7.1.12)

Hence, the regularized reconstruction operator Q[m,n]
ϵ : C2m+1 → Tn is defined as

f̃ [m,n]
ϵ = Q[m,n]

ϵ d[m] = T [n](G[m,n]
ϵ )†d[m] =

n∑
l=−n

(ĉ[m,n]
ϵ )lk2(xl, ·). (7.1.13)

We can also express the above reconstruction using the singular vectors of G[m,n]. Write
U [m] = [u

[m]
1 | . . . |u[m]

m ] and V [n] = [v
[n]
1 | . . . |v[n]n ]. By (7.1.10),

ĉ[m,n]
ϵ =

∑
i :σi≥ϵ

⟨u[m]
i , d[m]⟩
σi

v
[n]
i . (7.1.14)
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Applying T [n] yields

f̃ [m,n]
ϵ =

∑
i :σi≥ϵ

⟨u[m]
i , d[m]⟩
σi

T [n]v
[n]
i .

Therefore, f̃
[m,n]
ϵ can be thought of as a reconstruction of f in the (possibly proper)

subspace {T [n]v
[n]
i : σi ≥ ϵ} of Tn. Furthermore, f̃

[m,n]
ϵ is formed using bounded norm

coefficients (7.1.14). Indeed, by orthonormality of columns of unitary matrices, we have

∥ĉ[m,n]
ϵ ∥22 =

∑
i :σi≥ϵ

|⟨u[m]
i , d[m]⟩|2

σ2
i

≤ ϵ−2
∑

i :σi≥ϵ

|⟨u[m]
i , d[m]⟩|2 ≤ ϵ−2∥d[m]∥22.

This yields an upper bound estimate

∥ĉ[m,n]
ϵ ∥2 ≤ ϵ−1∥d[m]∥2. (7.1.15)

In contrast, without regularization, i.e., ϵ = 0, the norm ∥ĉ[m,n]
ϵ ∥2 may grow without bound

as n increases (m also increases since we always assume m ≥ n) due to the presence of
arbitrarily small singular values.
For further discussion on the approximation error, growth of coefficients as well as

stable sampling rate, we refer the reader to [5, Sec. 3].

7.1.2. A note on selecting the regularization parameter

An important aspect of the regularized reconstruction is choosing a reasonable value for
the tolerance ϵ. To this end, we mention a relevant result in [61, Secs. 4, 6] and [76,
Sec. 2.1]. Let A ∈ Cm×n and b ∈ Cm. In solving the ill-conditioned system Ax = b, one
needs additional information in order to obtain a satisfactory solution. One possibility is
to qualitatively describe the so-called “smoothness” of a solution. For linear systems, we
consider for r ∈ N the smoothing matrix

S =

{
(A∗A)r/2, r even,

(A∗A)(r−1)/2A∗, r odd.

Typically, it suffices to take r = 1 or r = 2. As a consequence of results in [61, Thm. 4.1,
Sec. 6], we assert the following. Let δ > 0 and bδ a perturbation of b such that ∥b− bδ∥2 ≤
δ∥b∥2 . Suppose

x = Sz, ∥Ax− bδ∥2 ≤ ∆∥z∥2 (7.1.16)

for some r ∈ N defining S, ∆ > 0 and vector z (in Cn if r is even, in Cm if r is odd. In
any case, x ∈ Cn). Then the optimal threshold ϵopt for the truncated SVD is given by

ϵopt =

(
∆

r

)1/(r+1)

.

108



7.2. Generating sets of stable sampling

It is generally observed that in estimate (7.1.16), z is not known and ∆ may be difficult
to estimate [61, Sec. 7]. If one is eager to find the optimal threshold, one may naively use
estimates involving b and δ instead. Together with an additional crude assumption

∆∥z∥2 ≤ δ∥b∥2, (7.1.17)

we see that for 0 < δ < 1
2
,

∥b∥2 ≤ ∥b− bδ∥2 + ∥Ax− bδ∥2 + ∥Ax∥2 ≤ 2δ∥b∥2 + ∥Ax∥2.

Thus,

∥b∥2 ≤
∥Ax∥2
1− 2δ

=
∥ASz∥2
1− 2δ

≤ ∥A∥r+1
2 ∥z∥2

1− 2δ
.

Consequently,

∆ ≤ δ∥A∥r+1
2

1− 2δ
and ϵopt ≤ ∥A∥2

(
δ

r(1− 2δ)

)1/(r+1)

. (7.1.18)

We now apply (7.1.18) in the setting of G[m,n]c = d[m]. Let B be an upper frame bound
for the frame {k2(xl, ·) : l ∈ Z}. Then ∥G[m,n]∥2 ≤ B for all m,n ∈ N with m ≥ n. By
setting r = 1 and r = 2, we may take the values

B

(
δ

1− 2δ

)1/2

≤ ϵ ≤ B

(
δ

2(1− 2δ)

)1/3

.

In particular, using the machine precision δ = 10−16, we have approximately

1.0000× 10−8 ≤ ϵ

B
≤ 3.6840× 10−6.

With the knowledge of an upper frame bound B, the above estimate can be used as a
guide in choosing singular value tolerances. In the forthcoming simulations, we do not
know if (7.1.17) is realized, but in view of the above arguments, we fix a uniform value
ϵ = 10−8 as tolerance across all numerical experiments.

7.2. Generating sets of stable sampling

In order to perform reconstruction methods, we need to carefully choose our sampling
set. In the forthcoming numerical simulations, we use sets of stable sampling for our re-
construction algorithms. Theorem 3.3.1 provides sufficient conditions for X = {xj}j∈Z to
be a set of stable sampling. For piecewise constant parametrizing functions, boundedness
away from zero is automatically satisfied. We have the following corollary.

Corollary 7.2.1. Let Ω > 0 and p a piecewise constant function. If X = {xj}j∈Z ⊂ R
such that

δ(X, p) = sup
j∈Z

xj+1 − xj

inf
x∈[xj ,xj+1]

√
p(x)

<
π

Ω1/2
(7.2.1)
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and in addition, there exist γ1, γ2 > 0 satisfying

γ1 ≤ xj+1 − xj ≤ γ2, for all j ∈ Z, (7.2.2)

then X is a set of stable sampling for PW[0,Ω](Ap) with lower and upper bounds γ
−1
2

(
1− δΩ1/2

π

)2
and γ−1

1

(
1 + δΩ1/2

π

)2
, respectively.

In our reconstruction simulations, we consider two specific sampling sets: for γ > 0, we
either take

• uniform samples Xγ = γZ, or

• perturbed samples X̃γ,η = {γj+ηj}j∈Z, where each ηj is chosen uniformly at random
on the interval (−η

2
, η
2
) for some η > 0.

In reference to (7.2.2), we have γ1 = γ2 = γ for Xγ. On the other hand, if η < γ, then
γ1 = γ− η, γ2 = γ+ η for X̃γ,η. Moreover, if p is an (n+1)-component piecewise function
for some n ∈ N, then the maximum gaps are

δ(Xγ, p) <
π

Ω1/2
, if γ <

πmin1≤j≤n
√
pj

Ω1/2
(7.2.3)

and

δ(X̃γ,η, p) <
π

Ω1/2
, if 0 < η < γ ≤

πmin1≤j≤n
√
pj

2Ω1/2
. (7.2.4)

Consequently, (7.2.3) and (7.2.4) respectively imply Xγ and X̃γ,η are sets of stable sam-
pling for PW[0,Ω](Ap) by Corollary 7.2.1.

7.2.1. Sets of prescribed Beurling density

In another experiment, we investigate the behavior of the reconstruction algorithm as
we take a family of sets of stable sampling whose lower Beurling densities approach the
critical density. First, we mention a result in [39, Prop. 6.5] that relates the maximum
gap and the lower Beurling density of a set.

Theorem 7.2.2. Let X = {xj}j∈Z ⊂ R such that xj < xj+1 for all j ∈ Z and limj→∞ xj =
±∞. If δ(X, p) = η for some η > 0, then D−

p (X) ≥ η−1.

With an (n + 1)-component piecewise constant p, we give an algorithm to generate
a discrete set Y with prescribed maximum gap δ(Y, p) = η and lower Beurling density
D±

p (Y ) = η−1. The construction can be thought of as semi-uniform sampling: for a fixed
η > 0 and for each j = 1, . . . ,≤ n− 1, we start from the right endpoint of Ij = (tj, tj+1]
and generate uniformly spaced points

Yj = {tj+1 − kη
√
pj}∞k=0 ∩ Ij, 1 ≤ j ≤ n− 1.

Additionally, if the pair of points tj and y∗j = min{y : y ∈ Yj} satisfy

y∗j − tj > ηmin{√pj−1,
√
pj},
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we append another point wj ∈ (tj, y
∗
j ) ⊂ Yj given by

wj = tj + ηmin{√pj−1,
√
pj}. (7.2.5)

Meanwhile, on unbounded intervals I0 and In we take the points

Y0 = {t1 − kη
√
p0}∞k=0 ⊂ I0, Yn = {tn + kη

√
pn}∞k=1 ⊂ In.

By construction, the set Y = Y0 ∪ . . . ∪ Yn = {yj}j∈Z satisfies δ(Y, p) = η. Now, suppose
r > tn−t1

2
. We take a look at the following configurations:

• If x ∈ R such that [t1, tn] ⊂ Br(x), then

#(Y ∩Br(x))

µp(Br(x))
=

∑n−1
k=1 #(Y ∩ Ik ∩Br(x)) +

⌊
t1−(x−r)
η
√
p0

⌋
+
⌊
(x+r)−tn
η
√
pn

⌋
∑n−1

k=1
|Ik∩Br(x)|√

pk
+ t1−(x−r)√

p0
+ (x+r)−tn√

pn

.

• Otherwise, we know by our choice of r that Br(x)∩(I0∪In) ̸= ∅ for all x ∈ R. Hence,
terms corresponding to either k = 0 or k = n (but not both) found in the numerator
and denominator are absent. For the extreme cases Br(x) ⊂ I0 or Br(x) ⊂ In, one
has

#(Y ∩Br(x))

µp(Br(x))
=

⌊
2r

η
√
pk

⌋
2r√
pk

, k = 0 or n.

In any case, since the number of consecutive points where local uniform spacing may not
occur (i.e., the points tj, y

∗
j and a possible additional point wj in (7.2.5)) is finite and

only occurs at finite intervals Ik, k = 1, . . . , n− 1, we get from (6.1.2) that D±
p (Y ) = η−1.

It is also clear that

0 < η min
0≤k≤n

√
pk ≤ yj+1 − yj ≤ η max

0≤k≤n

√
pk, j ∈ Z.

Finally, if 0 < η < π
Ω1/2 , Corollary 7.2.1 implies that Y is a set of stable sampling for

PW[0,Ω](Ap) with lower frame bound

1

ηmax0≤k≤n
√
pk

(
1− Ω1/2η

π

)2

↓ 0 as η ↑ π

Ω1/2
.

Take note that this is not the optimal lower frame bound; in fact, we show in a forthcoming
experiment that the condition number of the Gramian even improves as we get close to
the critical density Ω1/2

π
.

We summarize the above construction of Y in the following routine.
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Algorithm 3 Constructing semi-uniform sampling sets with prescribed maximum gap

Input: positive parameters p = [p0, p1, . . . , pn] and knots t = [t1, t2, . . . , tn]
L > 0 for the local interval [−L

2
, L
2
], assume [t1, tn] ⊂ [−L

2
, L
2
]

Prescribed maximum gap η
Output: Set Y with maximum gap η and density η−1.

1: function SemiRegSamp(p, t, η, L)
2: Y0 = {t1 − kη

√
p0}∞k=0 ∩ [−L

2
, t1]

3: for j = 1 to n− 1 do
4: Yj = {tj+1 − kη

√
pj}∞k=0 ∩ (tj, tj+1]

5: Let y∗j = minYj

6: if y∗j − tj > ηmin{√pj−1,
√
pj} then

7: Yj = Yj ∪ {tj + ηmin{√pj−1,
√
pj}}

8: end if
9: end for

10: Yn = {t1 + kη
√
pn}k=0 ∩ (tn,

L
2
]

11: end function

7.3. Numerical simulations

In this section, we take a closer look at some aspects of approximation by variable band-
width functions by means of numerical simulations. The piecewise constant nature of the
parametrizing function suggests that variable bandwidth spaces are good candidates as
reconstruction spaces for functions formed by continuously splicing bandlimited functions
of different bandwidths. Our main point is to show experimentally that for such func-
tions where distinct, local bandwidths are observed, reconstruction by variable bandwidth
functions performs better than reconstruction by bandlimited functions.
We have the following pseudocode that encapsulates the general numerical procedure

in Section 7.1.1.

Algorithm 4 Regularized reconstruction in PW[0,Ω](Ap)

Input: Piecewise constant function p and singular value threshold ϵ > 0
Numbers m,n ∈ N with m ≥ n, and sampling points {xj}mj=−m

Noiseless measurements d[m] = [f(xj)]
T ∈ C2m+1 of f

Output: Regularized reconstruction f̃
[m,n]
ϵ of f

1: Let k be the reproducing kernel for PW[0,Ω](Ap).
2: Build the Gramian G[m,n] = [k(xl, xj)]j,l ∈ C(2m+1)×(2n+1).
3: Write G[m,n] = U [m]Σ[m,n](V [n])∗ using SVD.

4: Replace Σ[m,n] by Σ
[m,n]
ϵ by thresholding on the singular values.

5: Compute ĉ
[m,n]
ϵ = V [n](Σ

[m,n]
ϵ )†(U [m])∗d[m] ∈ C2n+1.

6: return f̃
[m,n]
ϵ =

∑n
l=−n(ĉ

[m,n]
ϵ )lk(xl, ·).

We then apply this finite-dimensional reconstruction procedure using variable band-
width spaces as reconstruction spaces. The reconstruction is computed by regularized
least squares fit as described in (7.1.12) and (7.1.13) using sets of stable sampling as
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discussed in Section 7.2. In our simulations, we mostly consider m = 2n (linear over-
sampling) and ϵ = 10−8. When we study the influence of the sampling rate 2m+1

2n+1
on the

performance of the algorithm, we take m = ⌊ςn⌋, 1 < ς < 2, so that the sampling rate
is approximately ς for large n. Since Step 3 involves evaluating the reproducing kernel
at sampling points, we only consider the case of two-component and three-component
piecewise constant p. We also remind the reader that in Step 4, thresholding is performed
by replacing singular values of G[m,n] that are less than ϵ by zero. The coefficient solution
in Step 5 is precisely the minimal-norm least squares solution of the regularized linear sys-
tem G

[m,n]
ϵ c = d[m]. In Step 6, we can form the regularized reconstruction by resampling:

we plot f̃
[m,n]
ϵ using a uniform grid {hj}j∈Z with fixed h > 0 as

f̃ [m,n]
ϵ (hj) =

n∑
l=−n

(ĉ[m,n]
ϵ )lk(xl, hj) = [k(xl, hj)]j,l ĉ

[m,n]
ϵ .

Ideally, we choose a sufficiently small h so that the plot of f̃
[m,n]
ϵ is visually smooth on

a plot window. Alternatively, by defining f̃
[m,n]
ϵ as a function handle, Matlab’s fplot

command will automatically generate a smooth plot of f̃
[m,n]
ϵ .

One can measure the accuracy of any finite-dimensional reconstruction f̃ of f by com-
puting from finite sampling points {xj}mj=−m the approximation errors

E2
samp =

{ ∑
−m≤j≤m

|f̃(xj)− f(xj)|2
}1/2

, E∞
samp = max

−m≤j≤m
|f̃(xj)− f(xj)|. (7.3.1)

The empirical errors in (7.3.1) can be thought of a measure of how good the reconstruction
interpolates the finite data f(xj). However, these errors may not reflect the quality of the
reconstruction in between samples. Since in our artificial examples we know the original
function f beforehand, it is more insightful to look at the discretized errors in a uniform
grid {hl}l∈Z on a fixed interval [−L

2
, L
2
], L > 0 given by

E2
grid =

 ∑
−L

2
≤hl≤L

2

|f̃(hl)− f(hl)|2


1/2

, E∞
grid = max

−L
2
≤hl≤L

2

|f̃(hl)− f(hl)|. (7.3.2)

We will mainly use (7.3.2) to measure the quality of regularized reconstructions together

with the growth of ∥ĉ[2n,n]ϵ ∥2 as n increases.
Lastly, we mention that all simulations are performed usingMatlab R2021a (Academic

Use - Individual) installed on a laptop computer with the following technical specifications:

Operating system Windows 10 Home 64-Bit

Processor Intel Core i7-7700HQ
Memory 32768 MB
Storage Samsung SSD 870 EVO 1TB

In Appendix A we list important Matlab routines used in all our simulations14.

14The Matlab Codes folder containing all the routines used in this dissertation can be downloaded via
the link https://www.dropbox.com/sh/57utba39ytkh0yf/AADK8upEumLqKaGhop489VKpa?dl=1. Some
parts of the discussion refer to a number of files in this downloadable folder.
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7. Numerical implementation and simulations

7.3.1. Simulations for two-component piecewise constant p

In this section, we perform some experiments on reconstructing functions in some variable
bandwidth space corresponding to a two-component piecewise constant p. Without loss
of generality, it is enough to consider the reconstruction space PW[0,Ω](Ap) where p is a
two-component piecewise function of the form

p(x) =

{
p0, x ≤ 0,

p1, x > 0

for some p0, p1 > 0. We recall the notation qk = p
−1/2
k , k = 0, 1 and from Theorem 5.1.1

the formula

kΛ(x, y) =



q0Ω1/2

π

(
sinc q0Ω

1/2(x− y)− q0−q1
q0+q1

sinc q0Ω
1/2(x+ y)

)
, x, y ≤ 0,

q1Ω1/2

π

(
sinc q1Ω

1/2(x− y) + q0−q1
q0+q1

sinc q1Ω
1/2(x+ y)

)
, x, y > 0,

2q0q1Ω1/2

π(q0+q1)
sincΩ1/2 (q0x− q1y) , x ≤ 0, y > 0,

2q0q1Ω1/2

π(q0+q1)
sincΩ1/2 (q1x− q0y) , x > 0, y ≤ 0

for the reproducing kernel kΛ of PW[0,Ω](Ap). In particular,

kΛ(0, x) =

{
2q0q1Ω1/2

π(q0+q1)
sinc(q0Ω

1/2x), x ≤ 0,
2q0q1Ω1/2

π(q0+q1)
sinc(q1Ω

1/2x), x > 0
(7.3.3)

is an element of PW[0,Ω](Ap). For nonzero knots, we can use the reproducing kernels found
below Figure 5.1. Algorithm 4 is used to approximate a function from its point samples
taken on some interval of interest.
In the forthcoming experiments, we study a number of problems from a numerical

perspective.

(i) Is a bandlimited function perfectly reconstructible in a variable bandwidth space
whose local bandwidths are greater than or equal to the bandwidth of the func-
tion? Analogously, is a function of variable bandwidth perfectly reconstructible in
a variable bandwidth space whose local bandwidths are greater than or equal to the
respective local bandwidths of the function?

(ii) If f is a π√
c
-bandlimited function for some c > 0 and p is a piecewise constant

function, is the error in reconstructing f in the space PW[0,π](Ap) commensurate to
∥p− c∥∞? Similarly, let p and p̃ be piecewise constant, positive functions with the
same set of knots. Is the error in reconstructing a function g ∈ PW[0,π](Ap) in the
space PW[0,π](Ap̃) commensurate to ∥p− p̃∥∞?

(iii) If a function is formed by continuously joining two bandlimited functions with dis-
tinct bandwidths, can variable bandwidth spaces outperform Paley-Wiener spaces
of constant bandwidth in terms of reconstructing the function?

(iv) What happens to the quality of reconstruction of a function of variable bandwidth as
we take sets of stable sampling whose lower Beurling densities approach the critical
density Ω1/2

π
?

With these guiding questions we now proceed to the simulations.
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7.3.1.1. Reconstructing bandlimited functions in PWΛ(Ap)

Our first set of simulations deal with reconstructing bandlimited functions in PWΛ(Ap)
and provides some insights into answering problems (i) and (ii). Our focus is not on
finding optimal Λ and p so that a bandlimited function is perfectly reconstructed in
PWΛ(Ap), but rather on the interplay of the parametrizing function and the regularized
reconstruction. To this end, let Λ = [0, π2] and consider the π-bandlimited function

f(x) = sincπx =
sin πx

πx
, f ∈ PWπ(R).

We wish to find the regularized reconstruction of f in the space PW[0,π2](Ap) with

p(x) =

{
1, x ≤ 0,

p1, x > 0
(7.3.4)

as p1 approaches 1 in both directions and observe how the quality of reconstruction
behaves.
By Proposition 3.1.3, functions in PW[0,π2](Ap) can locally be viewed as elements of Bπ

for x < 0 and Bπ/
√
p1 for x > 0. Since PW[0,π2](Ap) = PWπ(R) when p1 = 1, we expect

that the reconstruction improves as p1 ↓ 1, i.e., E2
grid and E∞

grid decrease as p1 ↓ 1. On the
other hand, since p1 ↑ 1 means we have local bandwidth π/

√
p1 > π on I1 = (0,∞), it is

natural to think that perfect reconstruction of f occurs. However, elements of PWπ(R) are
analytic functions, while the piecewise nature of p implies that elements of PW[0,π2](Ap) are
not analytic. This means that a reconstruction of f in PW[0,π2](Ap) may be distorted due
to Gibbs phenomenon, i.e., oscillations near the knots of p, and hence the reconstruction
may be far from perfect. Therefore, as p1 tends to 1 in both directions the best we can
expect is that E2

grid and E∞
grid decrease.

The numerical setup starts by taking values

p1 ∈ {4, 2, 1.1, 1.0001, 1.0000001, 1.00000001, 1.000000001, 1}, (7.3.5)

p1 ∈ {0.25, 0.5, 0.9, 0.9999, 0.9999999, 0.99999999, 0.999999999, 1} (7.3.6)

to simulate the limiting processes p1 ↓ 1 and p1 ↑ 1, respectively. Uniformly-spaced
sampling points

X 1
4
= 1

4
Z =

{
j
4

}
j∈Z

are used so that for all choices of p1 in (7.3.5) and (7.3.6), δ(X 1
4
, p) < 1 and X 1

4
is a set of

stable sampling for PW[0,π2](Ap) by (7.2.3). For n ∈ N, we take 4n+1 (m = 2n) noiseless
samples

d
[2n]
j = f

(
j
4

)
= sinc πj

4
, j = −2n, . . . , 2n (7.3.7)

of f and reconstruction space

Tn = span{kΛ( l
4
, ·) : l = −n, . . . , n}

of dimension at most 2n + 1. With ϵ = 10−8, we apply Algorithm 4 to calculate the
regularized reconstruction f̃

[2n,n]
ϵ of f as

f̃ [2n,n]
ϵ (x) =

n∑
l=−n

(ĉ[2n,n]ϵ )lkΛ
(
l
4
, x
)
,
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where the coefficient vector ĉ
[2n,n]
ϵ ∈ C2n+1 is computed as

ĉ[2n,n]ϵ = (G[2n,n]
ϵ )†d[2n].

To assess how the reconstruction performs as we approach the correct constant bandwidth
π when p1 = 1, we use the discretized errors E2

grid and E∞
grid as well as the norm ∥c[2n,n]ϵ ∥2 of

the coefficients of the regularized reconstruction on a uniform grid on the interval [−25, 25]
with 105 + 1 points, i.e., L = 50 and h = 0.0005. We refer the reader to attached file
Trend2pBL.m on the implementation of Algorithm 4 in Matlab.
With minor modifications, we can perform the above numerical setup using the per-

turbed sampling set

X̃ 1
4
, 1
8
=
{

j
4
+ ηj, ηj ∈

(
− 1

16
, 1
16

)
uniformly random

}
j∈Z .

By (7.2.4), X̃ 1
4
, 1
8
also a set of stable sampling for all choices of p1 in (7.3.5) and (7.3.6).

Noisy measurements

d̃
[2n]
j = f

(
j
4
+ ηj

)
+ θj, |ηj| ≤ 1

16
, j = −2n, . . . , 2n

are then used instead of (7.3.7), where each θj is chosen uniformly at random and satisfies
|θj| ≤ θ for some θ > 0 small.

In Figure 7.1 we display plots of E2
grid, E

∞
grid, and ∥ĉ[2n,n]ϵ ∥2 for n = 5, 6, . . . , 100 using

the uniform sampling set X 1
4
, while in Figure 7.2 we show plots of the same quantities

using the perturbed sampling set X̃ 1
4
, 1
8
and noise bound θ = 10−8. Upon inspecting both

figures, using X̃ 1
4
, 1
8
with noisy samples produces slightly higher errors than using X 1

4
with

noiseless samples, particularly when p1 is very close to 1. Some remarkable findings from
Figure 7.1 are as follows:

• For each p1 ̸= 1 in (7.3.5) and (7.3.6), the discretized errors E2
grid and E∞

grid decrease
as n increases and then eventually stabilize to their respective constant values. For
p1 = 1, E2

grid and E∞
grid fluctuate close to 10−8 and 10−10, respectively. The norms

∥c[2n,n]ϵ ∥2 exhibit significant decrease as p1 approaches 1 in both directions and do
not exceed ϵ−1 = 108 as we know from (7.1.15).

• As p1 ↓ 1, the local bandwidth π/
√
p1 < π on I2 = (0,∞) increasingly approaches

π. This behavior is reflected by the steady decrease in E2
grid, E

∞
grid and ∥ĉ[2n,n]ϵ ∥2 as

p1 ↓ 1.

• As p1 ↑ 1, π/
√
p1 > π and decreasingly approaches π. It is evident from both figures

that taking local bandwidths, no matter how large or close to π, does not guarantee
perfect or even reasonable reconstruction in the corresponding variable bandwidth
space. This is counter-intuitive to perfect recovery of bandlimited functions in Paley-
Wiener spaces of larger constant bandwidth.

Viewing f as a π√
c
-bandlimited function with c = 1, the experiments suggest that the

quantity ||p− c||∞ is commensurate to the discretized errors E2
grid and E∞

grid, and is a
rough representation of the model mismatch between f and the reconstruction space
PW[0,π2](Ap).
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Figure 7.1.: Plots of E2
grid (col 1), E∞

grid (col 2), and ∥ĉ[2n,n]ϵ ∥2 (col 3) using the uniform
sampling set X 1

4
and different values of p1 approaching p1 = 1.

Figure 7.2.: Plots of E2
grid (col 1), E∞

grid (col 2), and ∥ĉ[2n,n]ϵ ∥2 (col 3) using the perturbed

sampling set X̃ 1
4
, 1
8
and noisy samples as well as different values of p1 approach-

ing p1 = 1.
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Interestingly, Figure 7.3 below shows that the reconstruction algorithm seems to per-
form stably even with decreasing sampling rates. We performed the same simulation from
Figure 7.1 but replaced m = 2n by m = ⌊ςn⌋, where ς = 2, 1.75, 1.5, 1.25, in that order.
We only considered p1 ↓ 1 but the same can be said for p1 ↑ 1. The reader may consult
Trend2pRedund.m for additional simulations.

Figure 7.3.: Plots of E2
grid (col 1), E∞

grid (col 2), and ∥ĉ[2n,n]ϵ ∥2 (col 3) using the uniform
sampling set X 1

4
, sampling rates ς = 2 (row 1), ς = 1.75 (row 2), ς = 1.5 (row

3), ς = 1.25 (row 4), and p1 ↓ 1.
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A slight improvement in the numerical reconstruction can be achieved by replacing
the Matlab command pinv by lsqminnorm in Routine A.6. Since lsqminnorm is based
on complete orthogonal decompositions (a form of rank-revealing QR decomposition, see
[16, Secs. 1.3.1, 2.7.6] for details), it is more computationally efficient15 than pinv when
computing minimum norm least square solutions. Figure A.1 shows that E2

grid and E∞
grid

fluctuate close to 10−10 and 10−12, respectively, which better reflect perfect recovery of f
when p1 = 1. The rest of the plots are visually unchanged.
The reader might have expected that for p1 = 1, the discretized errors are within

machine precision. Unfortunately, the errors in Figures 7.1, 7.2, and A.1 show signifi-
cantly higher values, particularly with E∞

grid around 10−10 using pinv (and 10−12 using
lsqminnorm). To some extent, this occurrence may be attributed to ill-conditioning and
rank-deficiency of uneven sections of the Gramian. One way to further improve the errors
is to generate reconstruction vectors using the following result [39, Thm. 4.1]:

Theorem 7.3.1. Let p be a two-component piecewise constant function with components
p0, p1 > 0. Fix the sampling set

Sonb = {sl}l∈Z, sl =

{
πl
√
p0

Ω1/2 , l ≤ 0,
πl
√
p1

Ω1/2 , l > 0
(7.3.8)

for some Ω > 0 and the weights

wl =


√
p0, l < 0,

1
2
(
√
p0 +

√
p1), l = 0,

√
p1, l > 0.

Then the set {√
πwl

Ω1/2
kΛ(sl, ·) : l ∈ Z

}
is an orthonormal basis for PW[0,Ω](Ap) with reproducing kernel kΛ. The orthogonal ex-
pansion

f(x) =
π

Ω1/2

∑
l∈Z

wlf(sl)kΛ(sl, x)

converges in L2(R) and uniformly for every f ∈ PW[0,Ω](Ap).

In particular, taking Ω = π2 and p given in (7.3.4) implies the set

Sonb = {sl}l∈Z, sl =

{
πl

Ω1/2 , l ≤ 0,
πl
√
p1

Ω1/2 , l > 0

15This tip is mentioned in the lsqminnorm documentation available at https://www.mathworks.

com/help/matlab/ref/lsqminnorm.html. In theory, both methods yield the same minimum-norm least
square solution but may have different numerical results in Matlab.
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generates an orthogonal system {kΛ(sl, ·) : l ∈ Z} for PW[0,π2](Ap). In turn, we have for
n ∈ N the invertible matrix G[n,n] ∈ C(2n+1)×(2n+1) given by

G[n,n](j, l) = kΛ(sl, sj) =


1, j = l < 0,

2
1+

√
p1
, j = l = 0,

1√
p1
, j = l > 0,

0, j ̸= l,

G[n,n] =

In 2
1+

√
p1

1√
p1
In


for j, l = −n, . . . , n. Figure A.2 confirms the error values obtained in Figure 7.1 for p1 ̸= 1,
perfect reconstruction of f is achieved as E2

grid is around 10−14 and E∞
grid is within machine

precision, and the norm of coefficients converges to 1 as p1 approaches 1.
In summary, we observe that the closer the local bandwidths of the reconstruction space

PW[0,π2](Ap) to π, the smaller the discretized errors of regularized reconstructions of f .
Surprisingly, variable bandwidth spaces with arbitrarily large local bandwidths may not
contain a satisfactory reconstruction of f .
We also mention that variations of this simulation can be done by replacing (7.3.4) by

a different family of parametrizing functions. For instance, we can take

p(x) =

{
p0, x ≤ 0,

p1, x > 0

where p0 ↑ 1 and p1 ↓ 1, i.e., the local bandwidths on (−∞, 0) and (0,∞) approach
π from above, resp. from below. We performed an independent simulation16 with this
family of parametrizing functions and the observations are no different from what are
stated previously. Lastly, it is natural to ask if these observations still hold if f is a
function of variable bandwidth. It can analogously be shown as an example that the
regularized reconstruction of

f(x) =

{
sinc π

3
x, x ≤ 0,

sinc πx, x > 0

in the space PW[0,π2](Ap), where

p(x) =

{
9, x ≤ 0,

p1, x > 0

and p approaches 1 in both directions, behaves in a similar fashion17.
What we have seen so far from the experiments is that if one of the local bandwidths

is fixed and we let the other vary, then the corresponding regularized reconstruction
worsens as we deviate from the correct bandwidth. What we have not tested yet is the
reconstruction of a function f ∈ PWΛ(Ap) in another variable bandwidth space PWΛ(Ap̃),
where p̃ = c−2p for some c > 0. The following theorem states that if p is a piecewise
constant function and Λ is an interval of the form [0,Ω], then there is a subspace inclusion
between variable bandwidth spaces generated by p and p̃.

16See further instructions in Trend2pBL.m to run this simulation.
17See Trend2pVB.m.
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Theorem 7.3.2. Let Λ ⊂ R+
0 and p a piecewise constant function. Then

PWΛ(Ac−2p) = PWc2Λ(Ap).

In particular, if Λ = [0,Ω] for some Ω > 0, then PW[0,Ω](Ac−2p) ⊆ PW[0,Ω](Ap) for all
0 < c ≤ 1.

Proof. Let p̃ = c−2p for some 0 < c ≤ 1. Then by definition,

Ap̃ = −D(c−2pD) = c2(−D(pD)) = c−2Ap.

We can verify using results from Chapter 4 the following adjustments when p is replaced
by p̃:

Quantity p p 7→ p̃ = c−2p Reference

dµ dµ(λ) dµ(c2λ) (4.3.11)
FAp FApf(λ) FApf(c

2λ) (4.3.12)
χΛ(Ap) χΛ(Ap)f χc2Λ(Ap)f (2.2.7)

As a consequence, the spectral projection χΛ(Ap̃) : L
2(R) → PWΛ(Ap̃) amounts to pro-

jecting f ∈ L2(R) onto the variable bandwidth space generated by p but with a scaled
spectral set c2Λ. In particular, if Λ = [0,Ω] for some Ω > 0, then c2Λ ⊆ Λ and so
PW[0,Ω](Ac−2p) = PW[0,c2Ω](Ap) is a closed subspace of PW[0,Ω](Ap).

As a special case, if Λ = [0, ω2] and p ≡ 1, then from (2.2.11) we have for 0 < c ≤ 1 the
known fact that

PWcω(R) = PW[0,c2ω2](Ap) ⊆ PW[0,ω2](Ap) = PWω(R).
We now check if we can further support the above theorem using numerical simulations.
Let

p(x) =

{
1
16
, x ≤ 0,

1, x > 0

and consider the regularized reconstruction of

f(x) =

{
sincπx, x ≤ 0,

sinc π
4
x, x > 0

∈ PW[0,π2](A16p)

in the spaces

PW[0,π2](A16p) ⊆ PW[0,π2](A8p) ⊆ PW[0,π2](A4p) ⊆ PW[0,π2](A2p) ⊆ PW[0,π2](Ap).

These nested inclusions are guaranteed by Theorem 7.3.2 with c = 2−1/2 for each inclu-
sion. The reconstruction of f in these three spaces must be perfect, at least in theory.
In the following experiment we use orthogonal reconstruction vectors generated via The-
orem 7.3.1 and singular value threshold ϵ = 10−8 to compute f̃

[n,n]
ϵ for n = 5, . . . , 200 via

Algorithm 4. Figure 7.4 shows that perfect reconstruction is evident with the parametriz-
ing function 16p. On the other hand, there is an observable but surprisingly very slow
downward trend for both E2

grid and E∞
grid for the remaining parametrizing functions. By

(7.3.3), the correct coefficient is 5
2
and is attained only when we use 16p. We encourage

the reader to use PerfRec2pVB.m as well as adjust the parameters to verify the results for
even larger values of n. This may take a few hours to complete but the discretized errors
are expected to display a consistent downward trend. The reconstructions in the above
spaces have virtually overlapping graphs.
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Figure 7.4.: Plots of E2
grid (col 1), E∞

grid (col 2), and ∥ĉ[n,n]ϵ ∥2 (col 3) using orthogonal
reconstruction vectors and using multiples of a fixed parametrizing function.

7.3.1.2. Reconstructing non-bandlimited functions in PWΛ(Ap)

Perhaps the most important simulation in this section is to show that given point samples
as data, some functions are better reconstructed by functions of variable bandwidth than
by functions of constant bandwidth. Define the continuous function

g(x) =

{
sinc πx, x ≤ 0,

sinc π
10
x, x > 0.

While the piecewise component functions of g are in itself bandlimited, g is not ban-
dlimited since it is not smooth at x = 0. This is due to the Paley-Wiener Theorem [63,
Thm. X]. Indeed, since sinca x = sinc ax, a > 0 has the Taylor series expansion

sincax =
∞∑
k=0

(−1)k(ax)2k

(2k + 1)!
, x ∈ R,

we have the even-order derivatives

sinc(2k)a (0) =
(−1)ka2k

2k + 1
, k ∈ N0

while all odd-order derivatives are zero. Since we have a = π on the left part of g and
a = π

10
on the right, D2g(0) does not exist as the left and right derivatives at x = 0 are not

equal. Upon closer inspection, we see from (7.3.3) that with Ω = π2 and parametrizing
function

p(x) =

{
1, x ≤ 0,

100, x > 0,
(7.3.9)

we have

g(x) =
11

2
kΛ(0, x), x ∈ R. (7.3.10)

Hence, g can be perfectly reconstructed in PW[0,π2](Ap) with this p.
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In order to provide a proper comparison between reconstructing g in variable bandwidth
spaces and in Paley-Wiener spaces of constant bandwidth, we propose the following mod-
ified setup for the regularized reconstruction. Consider the uniform sampling sets

Xγ = {γj}j∈Z , γ = 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 0.999, 0.9999. (7.3.11)

By (7.2.3), Xγ is a set of stable sampling for PW[0,π2](Ap), where (i) p is given by (7.3.9),
and (ii) p ≡ 1, i.e., PW[0,π2](Ap) = PWπ(R). Now, we slightly modify how we build the
Gramian in (7.1.8). For each n ∈ N, we take the middle 4n+1 (m = 2n) sampling points

{xj}2nj=−2n = {γj}2nj=−2n

in Xγ and form the (2n+ 1)-dimensional reconstruction subspace

Tn ={kΛ(sl, ·) : l = −n, . . . , n}

where sl is given in (7.3.8). As a result, for each n ∈ N we can form the cross-Gramian
G̃[2n,n] ∈ C(4n+1)×(2n+1) with entries

G̃[2n,n](j, l) = kΛ(sl, xj), j = −2n, . . . , 2n, l = −n, . . . , n.

We then compute the regularized reconstruction g̃
[2n,n]
ϵ for n = 5, 6 . . . , 100 via Algorithm

4 with singular value threshold ϵ = 10−8 and the Gramian in Step 2 replaced by the cross-
Gramian above. Taking p as in (7.3.9) corresponds to reconstructing g in PW[0,π2](Ap)
while taking p ≡ 1 corresponds to reconstructing g in PWπ(R). The increasing uniform
sampling width γ in (7.3.11) simulates a steady decrease in sampling density, which per-
mits us to observe if taking fewer samples has consequential effects on the regularized
reconstruction of g.
Before we discuss the results, we emphasize that in both reconstructions we used a

fixed spectral set Λ = [0, π2], the same set of stable sampling, the same dimension for the
reconstruction subspaces, and the same regularized reconstruction procedure. The only
difference is the reproducing kernel kΛ used to form elements of the finite-dimensional
reconstruction subspaces since kΛ is dependent on the choice of p.
Figure 7.5 displays the trends of E2

grid, E
∞
grid, and ∥ĉ[2n,n]ϵ ∥2 of the proposed reconstruction

method for two different reconstruction spaces for n = 5, 6, . . . , 100. We also have on the
left of Figure 7.6 the graphs of g̃

[2n,n]
ϵ with n = 100 in the reconstruction space PWπ(R)

using the sampling set Xγ given in (7.3.11). On the right we have a magnified version of
the same plots to understand how the reconstructions behave near the point x = 0.
Our findings from Figure 7.5 are as follows:

• In the first row we have the regularized reconstruction procedure using PW[0,π2](Ap)
with p in (7.3.9) as reconstruction space. We see as expected that the orthogonal
system results in small discretized errors E2

grid and E2
grid around 10−10 and 10−12,

respectively. In addition, the norms ∥ĉ[2n,n]ϵ ∥2 are steady at 11
2

which is consistent
with the original expansion of g in (7.3.10). The decreasing density of the sampling
set has no observable effect on the discretized errors and is a direct consequence of
using an orthogonal system to form finite-dimensional reconstruction spaces.
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7. Numerical implementation and simulations

Figure 7.5.: Plots of E2
grid (col 1), E

∞
grid (col 2), and ∥ĉ[2n,n]ϵ ∥2 (col 3) when g is reconstructed

in PW[0,π2](Ap) (row 1) and PWπ(R) (row 2) using uniform sampling sets Xγ

with increasing γ and Matlab command pinv.

Figure 7.6.: (Left) Plot of g and its regularized reconstructions g̃
[200,100]
ϵ using uniform

sampling sets Xγ with increasing γ. (Right) A closer look at the reconstruc-
tions near x = 0.
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7.3. Numerical simulations

• In the second row we perform the same reconstruction setup with PWπ(R) as re-
construction space. Although the local bandwidths π and π

10
are less than or equal

to π, we always have significant reconstruction error due to Gibbs phenomenon (see
Figure 7.6) that does not resolve as n increases. The plots suggest that for all values

of γ in (7.3.11), the reconstruction g̃
[200,100]
ϵ attempts to minimize the errors near

x = 0 at the cost of substantial errors on other parts of the reconstruction. In
this case, the compensatory behavior is mostly on the left side of the graphs of the
reconstructions.

We now have verified numerically that the regularized reconstruction of g in the correct
variable bandwidth space outperforms the regularized reconstruction of g in PWπ(R).

7.3.1.3. On the quality of regularized reconstruction on sets of stable sampling
with near-critical densities

The last simulation deals with the behavior of the reconstruction as we take sets of
stable sampling whose lower Beurling densities approach the critical density. Section 7.2.1
includes a method to generate such sets. Let p be a two-component piecewise constant
function. By Theorem 6.4.1, we have the critical density Ω1/2

π
for PW[0,Ω](Ap). Fix r > 1.

By Algorithm 3, we can generate a sequence of semi-uniform sampling sets {Sr,k}∞k=0 such
that

δ(Sr,k, p) =
π

Ω1/2

(
1

1 + r−k

)
and D±

p (Sr,k) =
Ω1/2

π

(
1 + r−k

)
. (7.3.12)

By construction, {Sr,k}∞k=0 is a sequence of sets of stable sampling for PW[0,Ω](Ap) such

that D±
p (Sr,k) → Ω1/2

π
as k → ∞.

With the above construction we consider the following setup: let Ω = π2 and take the
previously defined function

g(x) =

{
sincπx, x ≤ 0,

sinc π
10
x, x > 0

∈ PW[0,π2](Ap), p(x) =

{
1, x ≤ 0,

100, x > 0.

As before, we examine E2
grid, E

∞
grid and ∥ĉ[⌊100ς⌋,100]ϵ ∥2 using the sets S 4

3
,k, k = 0, . . . , 30

satisfying (7.3.12) and taking sampling rates ς = 2, 1.75, 1.5, 1.25. We see from Figure
7.7 that E2

grid and E∞
grid display a downward trend, and for k ≥ 12 there is a noticeable

drop to 10−13 and 10−15, respectively. In addition, the norms ∥ĉ[⌊100ς⌋,n]ϵ ∥2 abruptly jump
and stabilize to 11

2
, while D±

p (S 4
3
,k) steadily decreases and approaches 1 but does not

seem to improve that much beyond k = 12. Figure 7.8 shows that the condition number
κ(G[⌊100ς⌋,100]) of the Gramian drastically improves for k ≥ 8, hence the reconstruction
procedure becomes more well-conditioned as k increases. Such observations are not sur-
prising since with a two-component piecewise constant p and k → ∞, S 4

3
,k is the same as

Sonb in (7.3.8) with the exception of possibly one point added by Step 7 of Algorithm 3.
In conclusion, this experiment shows that g can be perfectly reconstructed from Sr,k

(with r fixed) and with decreasing Beurling densities, so long as these densities do not fall
below the critical density 1. The decreasing sampling rates do not present any significant
effect on E2

grid, E
∞
grid, ∥ĉ

[⌊100ς⌋,100]
ϵ ∥2, and κ(G[⌊100ς⌋,100]).
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7. Numerical implementation and simulations

Figure 7.7.: Plots of E2
grid, E∞

grid, ∥ĉ[⌊100ς⌋,100]ϵ ∥2, and D±
p (S 4

3
,k) when g is reconstructed

from sampling sets S 4
3
,k, k = 0, . . . , 20 whose Beurling densities approach the

critical density 1 and taking decreasing sampling rates ς = 2, 1.75, 1.5, 1.25.

Figure 7.8.: Plot of κ(G[⌊100ς⌋,100]) when g is reconstructed from sampling sets S 4
3
,k, k =

0, . . . , 20 whose Beurling densities approach the critical density 1 and taking
decreasing sampling rates ς = 2, 1.75, 1.5, 1.25.
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7.3. Numerical simulations

7.3.2. Numerical implementation for three-component piecewise
constant p

The previous simulations for two-component piecewise constant p answer some of the
basic questions on reconstructing functions in variable bandwidth spaces from a numerical
perspective. In this section, our focus is to demonstrate actual numerical computability
of necessary quantities to perform sampling and reconstruction in PWΛ(Ap) with a three-
component piecewise constant p. We consider the reconstruction space PW[0,Ω](Ap) where
p is the three-component piecewise function

p(x) =


p0, x ∈ (−∞,−T

2
],

p1, x ∈ (−T
2
, T
2
],

p2, x ∈ (T
2
,∞)

for some T, p0, p1, p2 > 0. As before, we use the notation qk = p
−1/2
k , k = 0, 1, 2 and recall

the constants

C =
1

16q20

[(
1 +

q0
q1

)2(
1 +

q1
q2

)2

+

(
1− q0

q1

)2(
1− q1

q2

)2
]
,

K =
1

8q20

(
1− q20

q21

)(
1− q21

q22

)
,

ζ = 2q1T , and r = K
C
. By Lemma 5.2.1 and Theorem 5.2.3, we know that for any s ∈ R,

J(s) =
1

2π

∫
Λ1/2

eisu

C +K cos ζu
du

=
Ω1/2

2Cπ

∞∑
m=0

m∑
l=0

(
−r

2

)m(m
l

)
ei

Ω1/2

2
(s+(m−2l)ζ) sinc

(
Ω1/2

2
(s+ (m− 2l)ζ)

)
.

For M ∈ N0, the M th partial sum JM of J satisfies the error estimate

|J(s)− JM(s)| ≤ Ω1/2

2Cπ

|r|M+1

1− |r|

for any s ∈ R. Finally, Theorem 5.2.5 states explicit formulas for each piecewise compo-
nent of the reproducing kernel kΛ in terms of the real part

Jreal(s) =
Ω1/2

2Cπ

∞∑
m=0

m∑
l=0

(
−r

2

)m(m
l

)
sinc

(
Ω1/2(s+ (m− 2l)ζ)

)
of J . Figure 7.9 shows the graph of y = Jreal(x) on the interval [−50, 50] for a given set
of parameters. We used Routine A.5 with accuracy set to machine precision to plot the
graph below. Routine A.4 is an auxiliary code used to compute 1

2m

(
m
l

)
via floating point

arithmetic and to avoid warnings when M is large. As observed in Remark 5.2.4, the
graph of Jreal resembles that of sinc aside from the occasional spikes at s = kζ, k ∈ Z that
degrade as |s| → ∞. In Figure 7.9 we see the spikes occur at s = 24k, k ∈ Z and the
zeros at any other integer points.
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7. Numerical implementation and simulations

Figure 7.9.: Graph of Jreal for Ω = π2, T = 6, p0 = p2 = 1 and p1 = 1
4
on the interval

[−50, 50].

To demonstrate that the numerical calculations are indeed functioning, we apply Algo-
rithm 4 to calculate the regularized reconstruction g

[2n,n]
ϵ of

g(x) = kΛ(0, x) ∈ PW[0,π2](Ap), p(x) =


1, x ∈ (−∞,−15],
1
4
, x ∈ (−15, 15],

1, x ∈ (15,∞)

from point samples in the uniform sampling set X 1
8
, i.e.,

d
[2n]
j = g

(
j
8

)
= kΛ(0,

πj
8
), j = −2n, . . . , 2n. (7.3.13)

We consider the reconstruction spaces PW[0,π2](Ap̃) where

p̃(x) =


1, x ∈ (−∞,−15],

p1, x ∈ (−15, 15],

1, x ∈ (15,∞)

, p1 =
1

2
,
1

4
,
1

8
.

With the above values of p1, X 1
8
is a set of stable sampling by (7.2.3). As before, we set

ϵ = 10−8 and plot the discretized errors E2
grid and E∞

grid on a uniform grid on the interval

[−25, 25] with 104 + 1 points, i.e., L = 50 and h = 0.005, as well as the norms ∥ĉ[2n,n]ϵ ∥2
for n = 5, . . . , 100. Clearly, perfect reconstruction should occur for p1 = 1

4
. Figure 7.10

displays the trends of E2
grid, E

∞
grid and ∥ĉ[2n,n]ϵ ∥2. Plots of the reconstruction show that

the blue and yellow ones nearly overlap. We observe that deviating from the correct
reconstruction space still yields significant reconstruction errors and the expansion has
coefficients of norm bounded above by 108. As noted previously, this is counter-intuitive
from perfect recovery of bandlimited functions in Paley-Wiener spaces of larger constant
bandwidths.
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7.3. Numerical simulations

Figure 7.10.: Plots of E2
grid (col 1), E∞

grid (col 2), ∥c[2n,n]ϵ ∥2 (col 3) and the reconstructions
(row 2) when g is reconstructed using the uniform sampling set X 1

8
and

different values of p1.

Figure 7.11.: Plots of E2
grid (col 1), E∞

grid (col 2), ∥c[2n,n]ϵ ∥2 (col 3), and the reconstructions
(row 2) when g is reconstructed using the uniform sampling set X 1

8
and

multiples of a fixed p.
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7. Numerical implementation and simulations

The reader may consult Trend3p.m and explore other values of parameters to see how the
reconstruction performs given different configurations. We end this chapter by looking at
a numerical simulation related to Theorem 7.3.2 for the three-component case. Consider
the same g as above and reconstruction spaces

PW[0,π2](Ap) ⊆ PW[0,π2](A 1
2
p) ⊆ PW[0,π2](A 1

4
p).

With the same numerical setup as above, Figure 7.11 shows that the reconstructions
visually overlap on the middle interval [−15, 15] while some noticeable errors occur near
the knots x = ±15 of p. Perfect reconstruction is not observed for the multiples 1

2
p and 1

4
p,

although we see that the three plots mostly virtually overlap. Astonishingly, a downward
trend of E2

grid and E∞
grid is not observed. This may be due to the errors that occur near

the knots. We invite the reader to again use Trend3p.m and check that in the case of 1
4
p,

the plot of the reconstruction slightly improves as we take even larger values of n (at the
cost of longer computation time and higher memory usage). In contrast, reconstructions
corresponding to 1

2
p occasionally produce high spikes at the knots.
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8. Summary and outlook

In this dissertation we studied the theoretical and computational aspects of sampling and
reconstruction in spaces of functions of variable bandwidth parametrized by a piecewise
constant function.
In Chapter 4 we showed that in contrast to arbitrary parametrizing functions, piecewise

constant parametrizing functions offer a direct approach to assigning local bandwidths
of a signal. Moreover, the quantities needed to compute the reproducing kernel of the
resulting variable bandwidth space are directly computable from the spectral set Λ and the
piecewise components of p. In Chapter 5 we derived explicit formulas for the reproducing
kernel when p has two or three piecewise components.
In Chapter 6 we derived necessary density conditions for sampling and interpolation

in variable bandwidths spaces with piecewise constant parametrizing functions. We then
used this as a guide to generate sets of stable sampling and consequently performed numer-
ical simulations on approximating functions by functions of variable bandwidth. Chapter
7 tackles most of the numerical aspects of the reconstruction problem and provided some
insights on how the parametrizing function influences the quality of reconstruction as well
as the feasibility of performing numerical approximation in variable bandwidth spaces.
While we tried to cover the important details on variable bandwidth spaces with piece-

wise constant parametrizing functions, there are still some open problems for future re-
search. We enumerate some of these questions and describe our preliminary approach to
answer them.

8.1. Constructing orthonormal bases for PW[0,Ω](Ap)

Theorem 7.3.1 is an explicit construction of orthonormal bases for PW[0,Ω](Ap) with p
a two-component piecewise constant function with knot at t1 = 0. By translation, this
result can be extended to arbitrary nonzero knots. The heart of the proof lies on care-
fully choosing points {sj}j∈Z so that the reproducing kernel kΛ of PW[0,Ω](Ap) satisfies
kΛ(sj, sl) = 0 for j ̸= l. This is precisely achieved by the choice (7.3.8) that is easy to
derive since we have an explicit formula for kΛ in terms of the cardinal sine function.
It is then natural to ask if such an orthonormal basis construction can be extended

to arbitrary number of piecewise components. In the case of three-component piecewise
constant functions with symmetric knots, the piecewise components of kΛ are written
in terms of Jreal in Theorem 5.2.3. Inspired by the proof of Theorem 7.3.1, a possible
construction of an orthogonal system in PW[0,Ω](Ap) involves finding the zeros of Jreal,
some of which are identified by Remark 5.2.4 as the points

s ∈
( π

Ω1/2
Z+ ζZ

)
\ζZ.

One has to figure out how to choose a sequence of points {sj}j∈Z so that kΛ(sj, sl) = 0
for j ̸= l holds.
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8. Summary and outlook

If orthonormal bases are out of reach, the next best thing is to find Riesz bases for
PW[0,Ω](Ap). We still do not have an idea how to generate such a family, and we are open
to discussions and future work on this topic.

8.2. Subspace relations between variable bandwidth
spaces

Theorem 7.3.2 states that if the spectral set Λ is an interval, then any piecewise constant
function p generates a nested sequence {PWΛ(Ac−2p)}0<c≤1 of variable bandwidth spaces.
We are interested to know if there are other subspace relations that can be derived in
the case of piecewise constant parametrizing functions. Another related problem is to
derive relations between PWΛ(Ap) and PWΛ(Ap̃) if p and p̃ are close with respect to some
norm, say ∥ · ∥∞. So far, our simulation in Section 7.3.1.1 only suggests that the error
in reconstructing a function f ∈ PWΛ(Ap) in the space PWΛ(Ap̃) is commensurate to
∥p− p̃∥∞. We wish to know if there is indeed some general truth behind this observation.

One possible general approach in deriving subspace relations that may not require
additional assumptions on the spectral set is to relate the reproducing kernels of two
variable bandwidth spaces. We describe this method in detail. Let Λ ⊂ R+

0 be of finite
measure. Suppose p and p̃ are piecewise constant functions. We wish to find conditions
for which the inclusion

PWΛ(Ap) ⊆ PWΛ(Ap̃)

holds. It turns out that it is possible to derive such conditions using the reproducing
kernels of these spaces. We introduce the following notion. Let K be the reproducing
kernel for the reproducing kernel Hilbert space H. Then K is positive definite (or a kernel
function), i.e.,

n∑
j,l=1

ξlξjK(xl, xj) ≥ 0

for all {xj}nj=1 ⊂ R, {ξj}nj=1 ⊂ C and for all n ∈ N. In other words, for any finite collection
{xj}nj=1 of points in R, the matrix [K(xl, xj)]

n
j,l=1 ∈ Cn×n is positive semidefinite. Now,

given two kernel functions K1 and K2, we write K1 ≪ K2 if K2 −K1 is positive definite.
The following result [8, Thms. I,II] establishes subspace inclusion between reproducing
kernel Hilbert spaces based on this relation.

Theorem 8.2.1. Let K1 and K2 be reproducing kernels for H1 and H2, respectively. Then
K1 ≪ K2 if and only if H1 ⊆ H2 and ∥f∥H2 ≤ ∥f∥H1 for all f ∈ H1.

When Λ = [0,Ω] for some Ω > 0, Theorem 7.3.2 follows from the above theorem. To
see this, fix a piecewise constant function p and 0 < c < 1. Let K1 and K2 be the
reproducing kernels of PWΛ(Ac−2p) and PWΛ(Ap), respectively. By (4.4.2) and the table
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8.3. Reconstructions using other sets of stable sampling

found in proof of Theorem 7.3.2, we have

K(xl, xj) = K2(xl, xj)−K1(xl, xj)

=

∫
Λ

Φ(λ, xl) · Φ(λ, xj) dµ(λ)−
∫
Λ

Φ(c2λ, xl) · Φ(c2λ, xj) dµ(c
2λ)

=

∫
Λ\c2Λ

Φ(λ, xl) · Φ(λ, xj) dµ(λ)

for all n ∈ N and {xj}nj=1 ⊂ R. Thus, for all {ξj}nj=1 ⊂ C,

n∑
j,l=1

ξlξjK(xl, xj) =

〈
n∑

j=1

ξjΦ(·, xj),
n∑

l=1

ξlΦ(·, xl)

〉
L2(Λ\c2Λ,dµ)

≥ 0,

i.e., K1 ≪ K2. Therefore, PWΛ(Ac−2p) ⊆ PWΛ(Ap) by Theorem 8.2.1. Other subspace re-
lations can potentially be proved using this method but may require additional knowledge
of the reproducing kernel. We also refer the reader to [10, Sec. 4.5] on other equivalent
conditions related to subspace inclusions between reproducing kernel Hilbert spaces.

8.3. Reconstructions using other sets of stable sampling

In classical Paley-Wiener spaces of dimension one, a result of Beurling [12] asserts that
if D−(X) > 1, then X is a set of stable sampling for the Paley-Wiener space. This
suggests that such a result might also hold in certain spaces of variable bandwidth. We
conjecture that if Dp(X) > Ω1/2

π
, then X is a set of stable sampling for PW[0,Ω](Ap).

Several experiments confirm this conjecture when p is a piecewise constant function.
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A. Matlab codes and additional plots

The following Matlab codes are simplified versions of routines used used in the numerical
simulations in Section 7.3. The complete collection can be downloaded from the Dropbox
folder https://www.dropbox.com/sh/57utba39ytkh0yf/AADK8upEumLqKaGhop489VKpa?
dl=1.

Routine A.1: Computing the reproducing kernel for two-component piecewise constant p
from vector inputs as well as forming uneven sections of the Gramian

1 function z = Ker2p(p,Omega,u,v)
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %Computes the reproducing kernel k(u,v) for the two-component piecewise
4 %constant p with knot at t = 0 and spectral set [0,Omega]. Accepts row
5 %vectors u and v whose lengths may be different. If u has length n and
6 %v has length m, the output is an mxn matrix whose entries are
7 %k(u(j),v(i)). This way, the output can also be treated as the uneven mxn
8 %section of the Gramian G(i,j) = <k(u(j), .), k(v(i), .)>.
9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10 q = sqrt(1./p);
11 Y = meshgrid(v,u)';
12 z = zeros(size(Y));
13

14 [r1, c1] = find((Y ≤ 0 & u ≤ 0) == 1);
15 [r2, c2] = find((Y > 0 & u > 0) == 1);
16 [r3, c3] = find((Y > 0 & u ≤ 0) == 1);
17 [r4, c4] = find((Y ≤ 0 & u > 0) == 1);
18

19 a = q(1)*sqrt(Omega)/pi;
20 b = ((q(2) - q(1))/(q(1) + q(2)));
21 z(sub2ind(size(z),r1,c1)) = ...

a*(sinc(q(1)*sqrt(Omega)*(u(c1)-v(r1))/pi) + ...
b*sinc(q(1)*sqrt(Omega)*(u(c1)+v(r1))/pi));

22

23 c = q(2)*sqrt(Omega)/pi;
24 z(sub2ind(size(z),r2,c2)) = ...

c*(sinc(q(2)*sqrt(Omega)*(u(c2)-v(r2))/pi) - ...
b*sinc(q(2)*sqrt(Omega)*(u(c2)+v(r2))/pi));

25

26 g = 2*q(1)*q(2)*sqrt(Omega)/(pi*(q(1) + q(2)));
27 z(sub2ind(size(z),r3,c3)) = g*sinc(sqrt(Omega)*(q(1)*u(c3) - ...

q(2)*v(r3))/pi);
28 z(sub2ind(size(z),r4,c4)) = g*sinc(sqrt(Omega)*(q(2)*u(c4) - ...

q(1)*v(r4))/pi);
29 end

To form uneven sections of the Gramian, take u as the row vector of points generating
the frame elements and v as the row vector of sampling points.
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A. Matlab codes and additional plots

Routine A.2: Truncated SVD with threshold tol

1 function G = tsvd(A,tol)
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %Performs singular value thresholding on A, i.e., replaces all singular
4 %values of A below the threshold tol by zero. The output is the matrix
5 %G with the same left/right singular vectors as that of A but whose
6 %nonzero singular values are the singular values of A with value at
7 %least tol.
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 [U,S,V] = svd(A);

10 d = diag(S);
11 [m,n] = size(A);
12

13 i = 1;
14 while i ≤ length(d) && d(i) ≥ tol
15 i = i+1;
16 end
17 if i ≤ min(m,n)
18 for j = i:min(m,n)
19 S(j,j) = 0;
20 end
21 end
22 G = U*S*V';
23 end

This routine is only used when pinv is replaced by lsqminnorm. Alternatively, one can
use pinv(pinv(A,tol)) to obtain G. However, for large, rank-deficient matrices A, it is
often the case that norm(tsvd(A,tol) - pinv(pinv,tol)) is small (around 10−12) but
is not within machine precision.

Routine A.3: Constructing points generating an orthogonal system for two-component
piecewise constant p

1 function samp = ONB2p(p,Omega,N)
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 d = pi*sqrt(p)/sqrt(Omega);
4 samp = [flip(-d(1):-d(1):-N*d(1)) 0:d(2):N*d(2)]; %sampling
5 end

These points are precisely the middle 2N +1 elements (with center at the origin) of Xonb

in (7.3.8).
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Routine A.4: Alternative way to compute 2−n
(
n
k

)
in floating point arithmetic and without

warning messages

1 function y = modnchoosek(n,k)
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %Computes binom(n,k)/2ˆn using floating point arithmetic
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 if k == 0
6 y = 2ˆ-n;
7 return
8 elseif 2*k > n
9 k = n-k; %reduce number of iterative multiplications

10 end
11 y = 2ˆ(k-n);
12 for i = 1:k
13 y = y*(n-k+i)/(2*i);
14 end
15 end

Routine A.5: Approximating Jreal(s) for any s ∈ R up to machine precision

1 function J = Jreal(Omega,p,T,s)
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %Computes the partial sum of the the real part of J(s) given a
4 %three-component piecewise p with knots at -T/2 and T/2. The truncation
5 %is determined as the least M such that geometric error estimate is
6 %within machine precision. Once M is determined, the routine computes the
7 %output as directed.
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 q = sqrt(1./p);

10 zeta = 2*q(2)*T;
11 C = ((1+q(1)/q(2))ˆ2*(1+q(2)/q(3))ˆ2 + ...

(1-q(1)/q(2))ˆ2*(1-q(2)/q(3))ˆ2)/(16*q(1)ˆ2);
12 K = (1-q(1)ˆ2/q(2)ˆ2)*(1-q(2)ˆ2/q(3)ˆ2)/(8*q(1)ˆ2);
13 r = K/C;
14 fac = sqrt(Omega)/(2*C*pi);
15 M = 0; %determines the truncation level
16 Err = fac*abs(r)ˆ(M+1)/(1-r); %geometric error estimate
17 while Err ≥ eps %machine precision accuracy
18 Err = Err*abs(r);
19 M = M+1;
20 end
21 J=0;
22 for m = 1:M+1
23 increm = 0;
24 for l = 1:m
25 increm = increm + ...

modnchoosek(m-1,l-1)*sinc((s+(m-2*l+1)*zeta)*sqrt(Omega)/pi);
26 end
27 J = J+(-r)ˆ(m-1)*fac*increm;
28 end
29 end
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A. Matlab codes and additional plots

Routine A.6: Reconstruction routine for two- and three-component piecewise constant p

1 function [Recf, lsqgrid,supgrid,coef] = ...
Rec(f,p,t,Omega,gamma,tol,div,N,s,a,b,inp,eta,bnd,pars)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %Trend of the least squares error (grid), supremum norm error (grid),
4 %and growth of coefficient solutions of the regularized reconstruction
5 %with SVD threshold tol as n ranges from s to N on the interval [a,b].
6 %Several options for the sampling set are offered. The sampling rate eta
7 %can also be adjusted and plotting the reconstruction is also possible.
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 lsqgrid = zeros(1,N);

10 supgrid = zeros(1,N);
11 coef = zeros(1,N);
12

13 M = floor(eta*N); %sampling rate eta
14 %Prompt 1: unif., pinv 2: unif., lsqminnorm, 3: perturbed, noisy, 4: ONB
15 samp = -M*gamma:gamma:M*gamma; %uniform by default
16 if inp == 3
17 samp = samp - gamma/4 + gamma/2*rand(1,length(samp)); %perturbed ...

samples
18 else
19 samp = ONB2p(p,Omega,M); %orthogonal
20 end
21

22 %Quantities needed to compute the reconstruction
23 frames = samp(M-N+1:M+N+1); %frame elements
24 y = f(samp).'; %noiseless samples of f
25 if inp == 3
26 y = y - bnd + 2*bnd*rand(length(y),1);
27 end
28

29 %Plotting the reconstruction on a uniform grid
30 mesh = a:(b-a)/div:b;
31 fgrid = f(mesh);
32 G = zeros(length(y),length(frames)+2);
33 gridG = zeros(length(mesh),length(frames)+2);
34 if pars == 2 %two-component
35 G(:, 2:end-1) = Ker2p(p,Omega,frames,samp); %Gramian
36 gridG(:, 2:end-1) = Ker2p(p,Omega,frames,mesh); %Resampling
37 else %three-component
38 G(:, 2:end-1) = Ker3p(p,t,Omega,frames,samp); %Gramian
39 gridG(:, 2:end-1) = Ker3p(p,t,Omega,frames,mesh); %Resampling
40 end
41

42 mset = M;
43 for n = N:-1:s
44 G = G(:, 2:end-1);
45 mn = floor(eta*n);
46 if mn < mset
47 r = mset - mn;
48 y = y(1+r:end-r);
49 G = G(1+r:end-r,:);
50 mset = mn;
51 end
52 if inp == 2
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53 regG = tsvd(G, tol);
54 xn = lsqminnorm(regG, y);
55 else
56 xn = pinv(G, tol)*y;
57 end
58 gridG = gridG(:,2:end-1);
59 recf = (gridG*xn).';
60 if n == N
61 Recf = recf;
62 end
63 lsqgrid(n) = norm(recf - fgrid);
64 supgrid(n) = norm(recf - fgrid, inf);
65 coef(n) = norm(xn);
66 end
67 end
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A. Matlab codes and additional plots

Figure A.1.: Plots of E2
grid (col. 1), E∞

grid (col. 2), and ∥c[2n,n]ϵ ∥2 (col. 3) using the uniform
sampling set X 1

4
with different values of p1 approaching p1 = 1 and Matlab

command lsqminnorm

Figure A.2.: Plots of E2
grid (col. 1), E∞

grid (col. 2), and ∥c[n,n]ϵ ∥2 (col. 3) using the sampling
set Xonb and different values of p1 approaching p1 = 1.
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B. Evaluating J : complex analysis

In this section, we consider a special case of a three-component piecewise constant p with
symmetric knots and derive an alternative formula for the parameter integral J using
complex analysis and special functions. Recall from Theorem 5.2.3 that evaluations of J
can be computed using a series expansion. Moreover, the formula works for any choice of
parameters p0, p1, p2 and T . It only assumes that the spectral set is Λ = [0,Ω] for some
Ω > 0, but it actually applies to arbitrary Borel sets of finite measure as long as one can
compute F−1(χΛ1/2)(ω) for any ω ∈ R. For any s ∈ R, the partial sums JM(s), M ∈ N of
the series expansion also converge to J(s) at a geometric rate, hence one can use a finite
number of terms to approximate J(s) up to desired accuracy.
With additional assumptions on the three-component piecewise p, a closed-form ex-

pression for J may be obtained using contour integrals. We review some fundamental
concepts (see [32, Chap. VII]). A point z0 ∈ C is an isolated singularity of a function
f if f is analytic on some punctured disc

{z ∈ C : 0 < |z − z0| < R}.

If f is analytic on the open annulus

Br,R(z0) = {z ∈ C : r < |z − z0| < R}

for some 0 ≤ r < R, then f has the Laurent series expansion

f(z) =
∞∑

j=−∞

aj(z − z0)
k, r < |z − z0| < R

that converges absolutely at each point in Br,R(z0) and uniformly on every closed suban-

nular domain Bs,S(z0) where r ≤ s < S ≤ R [32, Chap. VI]. The residue Res(f, z0) of f
at an isolated singularity z0 is defined as

Res(f, z0) = a−1 =
1

2πi

∮
|z−z0|=r

f(z) dz

for any fixed 0 < r < R. Instead of computing the Laurent series or the above contour
integral, we can use the following rule in computing residues [32, Chap. VII, Rule 3]: if f
and g are analytic at z0 and g has a simple zero at z0, i.e., g(z) = (z − z0)g̃(z) for some
analytic g̃ with g̃(z0) ̸= 0, then

Res

(
f

g
, z0

)
=

f(z0)

g′(z0)
. (B.0.1)

With the above terminologies we can now state our main computational tool.
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B. Evaluating J : complex analysis

Theorem B.0.1 (Residue Theorem). Let U be a bounded domain in the complex plane
with piecewise smooth boundary ∂U . Suppose that f is analytic in an open set containing
U ∪ ∂U except for a finite number of isolated singularities z1, z2, . . . , zm ∈ U. Then∫

∂U

f(z) dz = 2πi
m∑
j=1

Res(f, zj).

We will also need a few formulas for special functions. For k ∈ N and q ∈ R, the
quantity (q)k denotes the Pochhammer symbol or the rising factorial given by

(q)k =

{
q(q + 1) · · · (q + k − 1), k ∈ N
1, k = 0.

The Gaussian hypergeometric function F2 1 with parameters a, b, c ∈ R is the power
series

F2 1 (a, b, c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, |z| < 1. (B.0.2)

It is known that the sum in (B.0.2) converges absolutely for all |z| < 1 as well as for
|z| = 1 if a+ b− c > 0 [34]. We refer the reader to [33] on topics in basic hypergeometric
series. For our purpose, the following lemmas will suffice.

Lemma B.0.2. Let α < 1 and c > 0 . Then

H(α, c) =

∫ 1

0

u−α

u+ c
du =

F2 1

(
1, 1, 2− α; 1

1+c

)
(1− α)(1 + c)

.

Proof. Let β = 1 − α > 0. Observe that for |1 − u| < 1 + c, we have the convergent
expansion

u−α

u+ c
=

1

1 + c
· uβ−1

1− 1−u
1+c

=
1

1 + c

∞∑
k=0

uβ−1(1− u)k
(

1

1 + c

)k

.

Recalling the beta function

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt, Re x,Re y > 0,

we get ∫ 1

0

u−α

u+ c
du =

1

1 + c

∞∑
k=0

B(β, k + 1)

(
1

1 + c

)k

.

Repeated application of the identity B(x, y+1) = y
x+y

B(x, y) and B(β, 1) = 1
β
yields the

formula

B(β, k + 1) =
k!

β(1 + β)k
, k ∈ N0.

Consequently, by rewriting k! = (1)k, we have from (B.0.2) that∫ 1

0

u−α

u+ c
du =

1

β(1 + c)

∞∑
k=0

(k!)2

(1 + β)k

1

k!

(
1

1 + c

)k

=
F2 1

(
1, 1, 1 + β; 1

1+c

)
β(1 + c)

and the proof is complete.
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Next, we recall from Section 5.2 the constants qk = p
−1/2
k , k = 0, 1, 2 and

C =
1

16q20

[(
1 +

q0
q1

)2(
1 +

q1
q2

)2

+

(
1− q0

q1

)2(
1− q1

q2

)2
]
,

K =
1

8q20

(
1− q20

q21

)(
1− q21

q22

)
.

With the above lemma, the following parameter integrals can be directly computed.

Lemma B.0.3. Let α < 1 and suppose c± = C
K
±
√

C2

K2 − 1 > 0. Then∫ ∞

1

rα

Kr2 + 2Cr +K
dr =

H(α, c−)−H(α, c+)

2
√
C2 −K2

.

Proof. For α < 1, the substitution u = r−1 yields∫ ∞

1

rα

Kr2 + 2Cr +K
dr =

∫ 1

0

u−α

Ku2 + 2Cu+K
du

=
1

2
√
C2 −K2

∫ 1

0

(
u−α

u+ c−
− u−α

u+ c+

)
du.

Applying Lemma B.0.2 proves the assertion.

We now show by means of special functions that for a special case of parameters, we
can derive a formula for J(s) for any s ∈ R. Consider the following simplified setup. Let
Ω = π2 and p0, p1, p2 > 0 such that either p0 > p1 > p2 or p0 < p1 < p2. Suppose we are
given the piecewise constant function

p(x) =


p0, x ∈ (−∞,−T

2
],

p1, x ∈ (−T
2
, T
2
],

p2, x ∈ (T
2
,∞),

where T =
√
p1. Then ζ = 2q1T = 2. By Theorem 5.2.3, J takes the form

J(s) =
1

2π

∫ π

0

eius

C +K cos 2u
du =

1

π

∫ π

0

eiu(s+2)

Ke4ui + 2Ce2ui +K
du. (B.0.3)

Basically, we have chosen p so that Λ1/2 = [0, π] covers exactly one period of κ(u) =
C + K cos 2u. We apply the residue theorem and Lemma B.0.2 to the integral (B.0.3),
and the following result is a formula for J(s) for any s ∈ R.

Theorem B.0.4. Let Λ = [0, π2], p a monotone piecewise constant function, and c± =
C
K
±
√

C2

K2 − 1. Then J in (B.0.3) is given by

J(s) =



ei
s
2
πe

s
2
Argcosh C

K

2
√
C2 −K2

− i

4π

1− eπis√
C2 −K2

(H( s
2
, c−)−H( s

2
, c+)), s < 2,

− e−Argcosh C
K

2
√
C2 −K2

, s = 2,

ei
s
2
πe−

s
2
Argcosh C

K

2
√
C2 −K2

+
i

4π

1− eπis√
C2 −K2

(
H(− s

2
, c−)−H(− s

2
, c+)

)
, s > 2.
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B. Evaluating J : complex analysis

This is the closest that we can get to deriving a formula for J , though admittedly,
one has every right to feel somewhat deceived by the appearance of a special function
that is defined using a convergent series. Nonetheless, hypergeometric functions are fre-
quently used in number theory and combinatorics, and mathematical computing software
such as Matlab and Mathematica have build-in commands for numeric and symbolic
computations involving special functions.

Proof. For s ∈ R, we take the above integrand as a complex function, i.e.,

Fs(z) =
eiz(s+2)

Ke4iz + 2Ce2iz +K
.

As regards to the poles, we solve for the zeros of the denominator.

0 = Ke4iz + 2Ce2iz +K → e2iz = −C

K
±

√(
C

K

)2

− 1

Since the components of p are strictly monotone, K > 0 and consequently e2iz = −c∓ < 0.
Hence, the poles {zm}m∈Z of Fs are

z±m =
(2m+ 1)π

2
± i

2
ln

C

K
+

√(
C

K

)2

− 1


=

(2m+ 1)π

2
± i

2
ln c+ =

(2m+ 1)π

2
± i

2
Argcosh

C

K
,

utilizing the function Argcoshx = ln(x+
√
x2 − 1) for x ≥ 1. Now, for m ∈ Z, define

h±
m(z) =

∞∑
n=1

2C(2i)ne2iz
±
m +K(4i)ne4iz

±
m

n!
(z − z±m)

n−1.

Then h±
m is analytic, and for m ∈ Z,

h±
m(z

±
m) = 4ie2iz

±
m(Ke2iz

±
m + C) ̸= 0.

We see that writing the denominator of Fs as a power series centered at each pole z±m
yields

Ke4iz + 2Ce2iz +K = K +
∞∑
n=0

2C(2i)ne2iz
±
m +K(4i)ne4iz

±
m

n!
(z − z±m)

n

= (z − z±m)
∞∑
n=1

2C(2i)ne2iz
±
m +K(4i)ne4iz

±
m

n!
(z − z±m)

n−1

= (z − z±m)h
±
m(z).

Thus, all poles {z±m}m∈Z of Fs are simple and lie on the parallel lines

ℓ± =

{
z ∈ C : Imz =

1

2
Argcosh

C

K

}
.
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By (B.0.1), the residue of Fs at z
±
m is

Res(Fs, z
±
m) =

ei(s+2)z±m

4ie2iz
±
m(Ke2iz

±
m + C)

=
eisz

±
m

4i(Ke2iz
±
m + C)

= ± eisz
±
m

4i
√
C2 −K2

, m ∈ Z.

We now derive J using contour integrals. Let L > 0 be large. Referring to Figure B.1, let
γ+ be the blue rectangular contour with vertices (0, 0), (π, 0), (π, L) and (0, L), oriented
in the counter-clockwise direction. Similarly, let γ− be the orange contour with vertices
(0, 0), (0,−L), (π,−L) and (π, 0), also oriented counter-clockwise. Observe that γ+ and

0

L

−L

γ+

γ−

π

ℓ+

ℓ−z−0

z+0

Figure B.1.: Contours γ+ (in blue) and γ− (in orange) enclosing the poles z±0 of Fs.

γ− encloses the poles

z+0 =
π

2
+

i

2
Argcosh

C

K
, z−0 =

π

2
− i

2
Argcosh

C

K
,

respectively. By the residue theorem, we have

∫
γ

Fs(z) dz =


πei

π
2
se−

s
2
Argcosh

C
K

2
√
C2 −K2

, γ = γ+,

−πei
π
2
se

s
2
Argcosh

C
K

2
√
C2 −K2

, γ = γ−.

(B.0.4)

We next have to deal with the contour integrals, which we have to consider by cases.

• Case 1: s > 2. We appropriately choose γ+ as our contour and write

γ+ = γ+
1 ∪ γ+

2 ∪ γ+
3 ∪ γ+

4 ,

as shown in Figure B.2 and with the counter-clockwise orientation. We also list down
the computations on the line integrals for each subcontour.

γ+
1 :

∫
γ+
1

Fs(z) dz = πJ(s).
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B. Evaluating J : complex analysis

0

L
γ+

π

z+0

γ+
1

γ+
2

γ+
3

γ+
4

Figure B.2.: Contour γ+ split into four oriented segments and the pole z+0 of Fs (in red
dots) in the upper half-plane enclosed by γ+.

γ+
2 : with z(t) = π + it, 0 ≤ t ≤ L, we obtain∫

γ+
2

Fs(z) dz = ieπis
∫ L

0

e−(s+2)t

Ke−4t + 2Ce−2t +K

= ieπis
∫ L

0

e−(s−2)t

Ke4t + 2Ce2t +K
dt

=
ieπis

2

∫ e2L

1

r−s/2

Kr2 + 2Cr +K
dr.

γ+
3 : with γ̃3

+ : z(t) = t+ iL, 0 ≤ t ≤ π and γ+
3 = −γ̃3

+, we observe that∫
γ+
3

Fs(z) dz = −e−(s+2)L

∫ π

0

ei(s+2)t

Ke4ite−4L + 2Ce2ite−2L +K
dt

= −e−(s−2)L

∫ π

0

ei(s+2)t

Ke4it + 2Ce2ite2L +Ke4L
dt.

As L is large, we have∣∣∣∣∣
∫
γ+
3

Fs(z) dz

∣∣∣∣∣ ≤ πe−(s−2)L

e2L(Ke2L − 2C −Ke−2L)
.

γ+
4 : similar approach to γ+

2 but with reversal of orientation and without the exponential
factors involving π. We get∫

γ+
4

Fs(z) dz = − i

2

∫ e2L

1

r−s/2

Kr2 + 2Cr +K
dr.

Summing all four contours and letting L → ∞, we obtain∫
γ+

Fs(z) dz = πJ(s) +
i

2

(
eπis − 1

) ∫ ∞

1

r−s/2

Kr2 + 2Cr +K
dr.

By (B.0.4) and the residue theorem, we have for s > 2 that

J(s) =
ei

s
2
πe−

s
2
Argcosh C

K

2
√
C2 −K2

+
i

2π

(
1− eπis

) ∫ ∞

1

r−s/2

Kr2 + 2Cr +K
dr.
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By Lemma B.0.3, we finally obtain

J(s) =
ei

s
2
πe−

s
2
Argcosh C

K

2
√
C2 −K2

+
i

4π

1− eπis√
C2 −K2

(
H(− s

2
, c−)−H(− s

2
, c+)

)
, s > 2.

• Case 2: s < 2. In this case, we use γ−. Similar to the previous case, we take

γ− = γ−
1 ∪ γ−

2 ∪ γ−
3 ∪ γ−

4

as shown in the Figure B.3, but is now oriented clockwise. We propose to keep this
clockwise orientation as to preserve the correct orientation for the real integral, and
afterwards introduce a negative sign on the sum of the residues once we use the residue
theorem.

0

−L
γ−

Ω1/2

z−0

γ−
1

γ−
2

γ−
3

γ−
4

Figure B.3.: Contour γ− split into four oriented segments and the poles z−0 of F (in red
dots) in the lower half-plane enclosed by γ−.

We obtain the following computations on the line integrals for each subcontour.

γ−
1 :

∫
γ−
1

Fs(z) dz = πJ(s).

γ−
2 : with z(t) = Ω1/2 − it, 0 ≤ t ≤ L, we obtain∫

γ−
2

Fs(z) dz = −ieπis
∫ L

0

e(s+2)t

Ke4t + 2Ce2t +K
dt = −ieπis

2

∫ e2L

1

rs/2

Kr2 + 2Cr +K
dr.

γ−
3 : with γ̃3

− : z(t) = t− iL, 0 ≤ t ≤ π and γ−
3 = −γ̃3

−, we observe that∫
γ−
3

Fs(z) dz = −e(s+2)L

∫ π

0

ei(s+2)t

Ke4ite4L + 2Ce2ite2L +K
dt

= −e(s−2)L

∫ π

0

ei(s+2)t

Ke4it + 2Ce2ite−2L +Ke−4L
dt.

Again, if L is sufficiently large so that K > 2Ce−2L +Ke−4L, then∣∣∣∣∣
∫
γ−
3

Fs(z) dz

∣∣∣∣∣ ≤ πe(s−2)L

K − 2Ce−2L −Ke−4L
.
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B. Evaluating J : complex analysis

γ−
4 : with z(t) = it,−L ≤ t ≤ 0, we have∫

γ−
4

Fs(z) dz = i

∫ 0

−L

e−(s+2)t

Ke−4t + 2Ce−2t +K
dt =

i

2

∫ e2L

1

rs/2

Kr2 + 2Cr +K
dr.

Summing all four contours and letting L → ∞, we obtain∫
γ−

Fs(z) dz = πJ(s)− i

2

(
eπis − 1

) ∫ ∞

1

rs/2

Kr2 + 2Cr +K
dr.

As in the previous case, we have by the residue theorem (with negative sign) that for
s < 2,

J(s) =
ei

s
2
πe

s
2
Argcosh C

K

2
√
C2 −K2

− i

2π

(
1− eπis

) ∫ ∞

1

rs/2

Kr2 + 2Cr +K
dr.

Analogously, Lemma B.0.3 yields

J(s) =
ei

s
2
πe

s
2
Argcosh C

K

2
√
C2 −K2

− i

4π

1− eπis√
C2 −K2

(H( s
2
, c−)−H( s

2
, c+)), s < 2.

• Case 3: s = 2. It is straightforward to apply Weierstrass substitution to compute the
real and imaginary parts of J(2). Alternatively, we have

J(2) =
1

2π

∫ π

0

cos 2u

C +K cos 2u
du+

i

2π

∫ π

0

sin 2u

C +K cos 2u
du

=
1

2πK

∫ π

0

(
1− C

C +K cos 2u

)
du+

i

4π

∫ 2π

0

sin t

C +K cos t
dt

=
1− 2CJ(0)

2K
− i

4πK
ln |C +K cos t|

∣∣∣2π
0

= − 1

2
√
C2 −K2

C

K
−

√(
C

K

)2

− 1


= − c−

2
√
C2 −K2

= − e−Argcosh
C
K

2
√
C2 −K2

and we are done.

It is also possible to generalize Theorem B.0.4 for a class of parametrizing functions.
Let Ω, p0, p1, p2 > 0 such that either p0 > p1 > p2 or p0 < p1 < p2. Define

p(x) =


p0, x ∈ (−∞,−T

2
],

p1, x ∈ (−T
2
, T
2
],

p2, x ∈ (T
2
,∞),
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where T = nπ
(
p1
Ω

)1/2
for some n ∈ N. Then C and K stay the same, while ζ = 2nπ

Ω1/2 . By
construction, there are exactly n complete cycles of κ(u) = C +K cos ζu on the interval
Λ1/2 = [0,Ω1/2]. The resulting J is now

J(s) =
1

2π

∫ Ω1/2

0

eius

C +K cos ζu
du =

1

π

∫ Ω1/2

0

eiu(s+ζ)

Ke2ζui + 2Ceζui +K
du.

We present the following theorem without proof.

Theorem B.0.5. Let Λ = [0,Ω2] for some Ω > 0, p a monotone piecewise constant

function, c± = C
K
±
√

C2

K2 − 1, and ζ = 2nπ
Ω1/2 for some n ∈ N. Define

Θn(s) =
∑

0≤j≤n−1

e(2j+1)πi s
ζ = eπi

s
ζ

∑
0≤j≤n−1

e2jπi
s
ζ .

Then

J(s) =



Θn(s)e
s
ζ
Argcosh C

K

ζ
√
C2 −K2

− i

2π

1− eiΩ
1/2s

ζ
√
C2 −K2

(
H( s

ζ
, c−)−H( s

ζ
, c+)

)
, s < ζ,

−ne−Argcosh C
K

ζ
√
C2 −K2

, s = ζ,

Θn(s)e
− s

ζ
Argcosh C

K

ζ
√
C2 −K2

+
i

2π

1− eiΩ
1/2s

ζ
√
C2 −K2

(
H(− s

ζ
, c−)−H(− s

ζ
, c+)

)
, s > ζ.

Theorem B.0.4 is a special case of Theorem B.0.5, where the values Ω = π2, n = 1 and
ζ = 2 were used. Aside from additional poles as well as minor computational adjustments,
the proofs of both theorems are the same. It is also possible to derive a similar theorem
as above for the case where the components p1, p2 and p3 are not monotone. However,
this requires delicate work as one needs to compute principal value integrals.
We end this section to mention that the connection between J and hypergeometric

functions is no coincidence. A power series
∑

ajz
j is a Gaussian hypergeometric function

if and only if a0 = 1 and

aj+1

aj
=

(j + a)(j + b)

(j + c)(j + 1)
· α, j ∈ N0

for some a, b, c ∈ R and α ̸= 0 (cf. [33]). By induction,
∞∑
j=0

ajz
j = F2 1 (a, b, c;αz). Now,

consider the power series
∞∑
j=0

(
2j + |k|

j

)
xj, k ∈ Z. (B.0.5)

Note that with aj =
(
2j+|k|

j

)
, j ∈ N0, we get a0 = 1 and

aj+1

aj
=

(
2(j+1)+|k|

j+1

)(
2j+|k|

j

) =
(2j + 2 + |k|)(2j + 1 + |k|)

(j + 1 + |k|)(j + 1)

=

(
j + |k|

2
+ 1
)(

j + |k|
2
+ 1

2

)
(j + |k|+ 1)(j + 1)

· 4.
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B. Evaluating J : complex analysis

Therefore, (B.0.5) can be computed as

∞∑
j=0

(
2j + |k|

j

)
xj = F2 1

(
|k|
2

+ 1,
|k|
2

+
1

2
, |k|+ 1; 4x

)
, k ∈ Z.

Consequently,

Jreal(s) =
∞∑

k=−∞

ck sinc(Ω
1/2(s− kζ)),

where the coefficients previously defined in (5.2.8) is given by

ck =
Ω1/2

2Cπ

∞∑
j=0

(
2j + |k|

j

)(
−r

2

)2j+|k|

=
Ω1/2

2Cπ

(
−r

2

)|k|
F2 1

(
|k|
2

+ 1,
|k|
2

+
1

2
, |k|+ 1; r2

)
, k ∈ Z.
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C. Localization and approximation
lemmas for general spectral sets

In this section, we prove that the reproducing kernel kΛ satisfies the weak localization
property when Λ is a Borel set of finite measure, as well as the homogeneous approximation
property when Λ is a bounded Borel set. The reason for the distinction between compact
intervals and sets of finite measure/bounded sets is that that estimates such as Lemma
6.3.5 may not be true for spectral sets that are not compact intervals. The proof closely
follows the proof in [39, Sec. 7] but with key differences. In the course of the proofs we
will repeatedly use the spectral projection formula (4.3.23) corresponding to the spectral
set Λ given by

χΛ(Ap)f(x) =

∫
Λ

FApf(λ) · Φ(λ, x) dµ(λ)

=
1

2π

∫
Λ1/2

1
q0
F1(u

2)Φ+(u2, x) + 1
qn
F2(u

2)Φ−(u2, x)

κ(u)
du, (C.0.1)

where f ∈ L2(R) and F = (F1, F2) = FApf ∈ L2(R, dµ). In particular, f = χΛ(Ap)f for
f ∈ PWΛ(Ap). We also recall the following notation used in Chapter 5. We define as in
(4.4.5) the function

ϑ(u, x, y) =
1

q0
Φ+(u2, x)Φ+(u2, y) +

1

qn
Φ−(u2, x)Φ−(u2, y), x, y ∈ R

so that the reproducing kernel kΛ in (4.4.4) reads

kΛ(x, y) =
1

2π

∫
Λ1/2

ϑ(u, x, y)

κ(u)
du, x, y ∈ R. (C.0.2)

Parts of the proof of Theorem 5.2.5 turn out to be useful here as they can be generalized
to piecewise constant functions p with arbitrary number of components.

C.1. Weak localization property

Before we start with the statement and proof of the weak localization lemma, we first
recall the following. A subset M of a metric space X is said to be totally bounded
or precompact if M admits a finite ϵ-cover for each ϵ > 0, i.e., for every ϵ > 0 there
exists nϵ ∈ N and a collection {Mk}nϵ

k=1 of subsets of X with diameter at most ϵ such that
M ⊆ ∪nϵ

k=1Mk. For the proof, we shall use a special case of [41, Thm. 1].

Theorem C.1.1 (Kolmogorov-Riesz-Sudakov). A set M ⊆ L2(R) is totally bounded if
and only if
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C. Localization and approximation lemmas for general spectral sets

(a) for every ϵ > 0, there exists bϵ > 0 such that

sup
f∈M

∫
|y|>bϵ

|f(y)|2 dy < ϵ2,

(b) for every ϵ > 0, there exists bϵ > 0 such that for |y0| < bϵ,

sup
f∈M

∫
R
|f(y + y0)− f(y)|2 dy < ϵ2.

For the proof of the weak localization lemma, we only need the first part of Theorem
C.1.1.

Lemma C.1.2 (Weak localization). Let Λ ⊂ R+
0 be a Borel set of finite measure. Let p

be a piecewise constant function and kΛ be the reproducing kernel for PWΛ(Ap). Then for
every ϵ > 0, there exists r(ϵ) > 0 such that

sup
x∈R

∫
|x−y|>r(ϵ)

|kΛ(x, y)|2 dy < ϵ2.

Proof. We show that for every ϵ > 0, there exists r(ϵ) > 0 such that∫
|x−y|>r(ϵ)

|kΛ(x, y)|2 dy <
3ϵ2

4
(C.1.1)

holds for all x ∈ R. Let p be an (n+ 1)-component piecewise constant function for some
n ∈ N. Fix a > 0 sufficiently large so that {tk}nk=1 ⊂ [−a, a] and work on three cases:
x < −a, |x| ≤ a, and x > a.

(i) Case 1: |x| ≤ a. Consider the map x 7→ kΛ(x, ·) from [−a, a] to PWΛ(Ap) ⊆ L2(R).
We claim that this map is continuous, i.e., for any ϵ > 0 there exists δ > 0 such that if
x1, x2 ∈ [−a, a] satisfy |x1 − x2| < δ, then

||kΛ(x1, ·)− kΛ(x2, ·)||2 < ϵ.

Indeed, observe that for all x1, x2 ∈ [−a, a], we have

||kΛ(x1, ·)− kΛ(x2, ·)||2 = sup
f∈PWΛ(Ap),||f ||2≤1

|⟨f, kΛ(x1, ·)− kΛ(x2, ·)⟩|

= sup
f∈PWΛ(Ap),||f ||2≤1

|f(x1)− f(x2)|. (C.1.2)

We then work on the right-hand side of (C.1.2). Let f ∈ PWΛ(Ap) with ||f ||2 ≤ 1. By
(4.3.21) and (C.0.1),

f(x) =

∫
Λ

FApf(λ) · Φ(λ, x) dµ(λ)

=

∫
Λ\[0,λ2

0]

FApf(λ) · Φ(λ, x) dµ(λ) +
∫
Λ∩[0,λ2

0]

FApf(λ) · Φ(λ, x) dµ(λ)

= χΛ\[0,λ2
0]
f(x) + χΛ∩[0,λ2

0]
f(x) (C.1.3)
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C.1. Weak localization property

for a.e. x ∈ R and every λ0 ≥ 0. We inspect the above summands one at a time. Observe
that for x1, x2 ∈ [−a, a],

|χΛ\[0,λ2
0]
f(x1)− χΛ\[0,λ2

0]
f(x2)| ≤

∫
Λ\[0,λ2

0]

∣∣FApf(λ) · (Φ(λ, x1)− Φ(λ, x2))
∣∣ dµ(λ)

≤
∣∣∣∣FApf

∣∣∣∣
L1(Λ\[0,λ2

0],dµ)
||Φ(·, x1)− Φ(·, x2)||L∞(Λ\[0,λ2

0],dµ)
.

By Lemma 4.2.6, there exists CΦ > 0 such that

||Φ(·, x1)− Φ(·, x2)||L∞([0,∞),dµ) ≤ CΦ.

Now, let ϵ > 0. Choose λ0 > 0 such that

|Λ1/2 \ [0, λ0]| <
πϵ2

8C2
Φ(q0 + qn)

.

Using the fact from (4.3.11) that κ(u) ≥ 1
q0qn

for all u ∈ (0,∞) and FAp is unitary, we
have

∣∣∣∣FApf
∣∣∣∣

L1(Λ\[0,λ2
0],dµ)

≤

(
1

2π

∫
Λ1/2\[0,λ0]

1
q0
+ 1

qn

κ(u)
du

)1/2

·
∣∣∣∣FApf

∣∣∣∣
L2(Λ\[0,λ2

0],dµ)

≤
(
q0 + qn
2π

)1/2

|Λ1/2\[0, λ0]|1/2
∣∣∣∣FApf

∣∣∣∣
L2(Λ,dµ)

<
ϵ

4CΦ

||f ||2 <
ϵ

4CΦ

.

Hence,

|χΛ\[0,λ2
0]
f(x1)− χΛ\[0,λ2

0]
f(x2)| <

ϵ

4
. (C.1.4)

Meanwhile, using the same λ0 we similarly obtain

|χΛ∩[0,λ2
0]
f(x1)− χΛ∩[0,λ2

0]
f(x2)| ≤

∣∣∣∣FApf
∣∣∣∣
L1(Λ∩[0,λ2

0],dµ)
||Φ(·, x1)− Φ(·, x2)||L∞(Λ∩[0,λ2

0],dµ)
.

The functions Φ± are uniformly continuous on the compact set [0, λ2
0] × [−a, a]. Thus,

with the same ϵ there exists δ > 0 such that for u ∈ [0, λ2
0] and for all x1, x2 ∈ [−a, a]

with |x1 − x2| < δ,

||Φ(·, x1)− Φ(·, x2)||L∞([0,λ2
0],dµ)

<
ϵ

2
√
2

(
π

λ0(q0 + qn)

)1/2

.

We also see that

∣∣∣∣FApf
∣∣∣∣

L1(Λ1/2∩[0,λ2
0],dµ)

≤

(
1

2π

∫
Λ∩[0,λ0]

1
q0
+ 1

qn

κ(u)
du

)1/2

·
∣∣∣∣FApf

∣∣∣∣
L2(Λ∩[0,λ2

0],dµ)

≤
(
q0 + qn
2π

)1/2

|Λ1/2 ∩ [0, λ0]|1/2
∣∣∣∣FApf

∣∣∣∣
L2(Λ,dµ)

<

(
λ0(q0 + qn)

2π

)1/2

.
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C. Localization and approximation lemmas for general spectral sets

Thus, as δ is independent of f ,

|χΛ∩[0,λ2
0]
f(x1)− χΛ∩[0,λ2

0]
f(x2)| <

ϵ

4
. (C.1.5)

It is clear from (C.1.3), (C.1.4) and (C.1.5) that for every ϵ > 0 there exists δ > 0 such
that for all f ∈ PWΛ(Ap) with ||f ||2 ≤ 1,

|f(x1)− f(x2)| < |χΛ\[0,λ2
0]
f(x1)− χΛ\[0,λ2

0]
f(x2)|+ |χΛ∩[0,λ2

0]
f(x1)− χΛ∩[0,λ2

0]
f(x2)| <

ϵ

2
.

We finally conclude from (C.1.2) that for every ϵ > 0 there exists δ > 0 such that

||kΛ(x1, ·)− kΛ(x2, ·)||2 ≤
ϵ

2
< ϵ.

Now that the continuity of x 7→ kΛ(x, ·) is proved, the desired result follows almost
instantly. The claim implies that the set {kΛ(x, ·) : |x| ≤ a} is compact in PWΛ(Ap),
hence totally bounded. By Theorem C.1.1, with the above ϵ > 0 there exists bϵ > 0 such
that

sup
x∈[−a,a]

∫
|y|>bϵ

|kΛ(x, y)|2 dy <
ϵ2

2
.

Since |x| ≤ a and |x− y| > a+ bϵ imply |y| ≥ |x− y| − |x| > bϵ, we conclude that

sup
x∈[−a,a]

∫
|x−y|>a+bϵ

|kΛ(x, y)|2 dy ≤ sup
x∈[−a,a]

∫
|y|>bϵ

|kΛ(x, y)|2 dy <
ϵ2

2
. (C.1.6)

For later reference, let us take r1(ϵ) = a+ bϵ.

(ii) Case 2: x > a. We use the form (C.0.2) of kΛ(x, y) and split the integral of kΛ(x, y)
over |x− y| > b for some b > 0 into three parts:∫

|x−y|>b

|kΛ(x, y)|2 dy =

∫
|x−y|>b
y<−a

|kΛ(x, y)|2 dy

︸ ︷︷ ︸
A

+

∫
|x−y|>b

y>a

|kΛ(x, y)|2 dy

︸ ︷︷ ︸
B

+

∫
|x−y|>b

|y|≤a

|kΛ(x, y)|2 dy

︸ ︷︷ ︸
C

.

Then we make some estimates accordingly. In the following subcases we let ϵ > 0.

• Integral A: We take a similar approach as in the last part of the proof of Lemma 6.3.5.
From (4.2.15) and (4.2.16), we write Φ(u2, ·) = (Φ+(u2, ·),Φ−(u2, ·)) as a column vector.
Since x > a and y < −a, i.e., x ∈ In and y ∈ I0, we get

Φ(u2, x) =

[
Φ+(u2, x)
Φ−(u2, x)

]
=

[
eiqnux

a−n (u
2)eiqnux + b−n (u

2)e−iqnux

]
Φ(u2, y) =

[
Φ+(u2, y)
Φ−(u2, y)

]
=

[
a+0 (u

2)eiq0uy + b+0 (u
2)e−iq0uy

e−iq0uy

]
.

Performing similar calculations as in (5.2.11) yields

ϑ(u, x, y) =
1

q0
Φ+(u2, x)Φ+(u2, y) +

1

qn
Φ−(u2, x)Φ−(u2, y)

=
a+0 (u

2)

q0
e−i(qnx−q0y)u +

a+0 (u
2)

q0
ei(qnx−q0y)u,
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C.1. Weak localization property

where the vanishing of eiu(−q0x−qny) follows from identity (4.3.5). Therefore, (C.0.2) can
be interpreted as

kΛ(x, y) =
1

2π

∫
Λ1/2

ϑ(u, x, y)

κ(u)
du (C.1.7)

= F
(
a+0 (·2)
2q0πκ

χΛ1/2

)
︸ ︷︷ ︸

f1

(−qnx+ q0y) + F

(
a+0 (·2)
2q0πκ

χΛ1/2

)
︸ ︷︷ ︸

f1

(qnx− q0y)

= Ff1(−qnx+ q0y) + Ff1(−qnx+ q0y) = 2ReFf1(−qnx+ q0y). (C.1.8)

In addition, a0 is an almost periodic polynomial by Lemma 4.2.5, Λ has finite measure,
and κ is bounded below. Thus, f1 ∈ L2(R) and consequently Ff1 ∈ L2(R). Hence,
there exists b′1 > 0 such that ∫

|z|>b′1

|Ff1(z)|2 dz <
ϵ2q0
16

(C.1.9)

Now, choose b1 > 0 such that

b1min{q0, qn}+ a|qn − q0| > b′1.

Recall the assumptions x > a and y < −a. We consider two cases:

(i) Suppose qn ≥ q0. If x− y > b1,

qnx− q0y > qnx+ q0(b1 − x) = x(qn − q0) + b1q0

> b1min{q0, qn}+ a(qn − q0) > b′1.

Otherwise, if x− y < −b1, then

qnx− q0y < qn(y − b1)− q0y = (qn − q0)y − b1qn

< −b1min{q0, qn} − a(qn − q0) < −b′1.

(ii) Suppose qn < q0. If x− y > b1,

qnx− q0y > qn(b1 + y)− q0y = (q0 − qn)(−y) + b1qn

> b1min{q0, qn}+ a(q0 − qn) > b′1.

Otherwise, if x− y < −b1

qnx− q0y < qnx+ q0(−b1 − x) = (q0 − qn)(−x)− b1q0

< −b1min{q0, qn} − a(q0 − qn) < −b′1.

Therefore, the conditions x > a, y < −a and |x − y| > b1 imply |qnx − q0y| > b′1. In
turn, the substitution z = −qnx+ q0y implies∫

|x−y|>b1
y<−a

|kΛ(x, y)|2 dy =

∫
|x−y|>b1

y<−a

|2ReFf1(−qnx+ q0y)|2 dy

≤ 4

q0

∫
|z|>b′1

|Ff1(z)|2 dz <
ϵ2

4
. (C.1.10)
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C. Localization and approximation lemmas for general spectral sets

• Integral B: This one is similar to Integral A, but now we have x, y > a, i.e., x, y ∈ In.
We have

Φ(u2, x) =

[
eiqnux

a−n (u
2)eiqnux + b−n (u

2)e−iqnux

]
Φ(u2, y) =

[
eiqnuy

a−n (u
2)eiqnuy + b−n (u

2)e−iqnuy

]
.

By mimicking (5.2.10) and applying Corollary 4.3.2, we get

ϑ(u, x, y) = qnκ(u)(e
qn(x−y)u + e−qn(x−y)u)

+
1

qn

(
a−n (u

2)b−n (u
2)eiqn(x+y)u + a−n (u

2)b−n (u
2)e−iqn(x+y)u

)
.

Hence,

kΛ(x, y) = F
( q0
2π

χΛ1/2

)
︸ ︷︷ ︸

f2

(qn(x− y)) + F
( q0
2π

χΛ1/2

)
(−qn(x− y))

+ F

(
a−n (·2)b−n (·2)

2qnπκ
χΛ1/2

)
︸ ︷︷ ︸

f3

(qn(x+ y)) + F

(
a−n (·2)b−n (·2)

2qnπκ
χΛ1/2

)
︸ ︷︷ ︸

f3

(−qn(x+ y))

= Ff2(qn(x− y)) + Ff2(−qn(x− y)) + Ff3(qn(x+ y)) + Ff3(qn(x+ y))

= 2ReFf2(qn(x− y)) + 2ReFf3(qn(x+ y)) (C.1.11)

since f2 is real-valued. Moreover, f2, f3 ∈ L2(R), implies Ff2,Ff3 ∈ L2(R). Therefore,
there exists b2 > 0 such that∫

|z|>b2

|Ff2(−qnz)|2 dz <
ϵ2

64
and

∫
|z|>b2

|Ff3(qnz)|2 dz <
ϵ2

64
. (C.1.12)

We also know that with x, y > a and |x−y| ≥ b2, we obtain x+y ≥ |x−y| ≥ b2. Thus,
from (C.1.12) and using the fact that ||u+ v||22 ≤ 2 ||u||22 + 2 ||v||22 ,∫

|x−y|>b2
y>a

|kΛ(x, y)|2 dy ≤ 8

∫
|z|>b2

|Ff2(−qnz)|2 dz + 8

∫
|z|>b2

|Ff3(qnz)|2 dz <
ϵ2

4
, (C.1.13)

where for the first integral we have the substitution z = y − x and z = x + y for the
second.

• Integral C: Using the more general form (3.1.1) of kΛ, we have∫
|y|≤a

|kΛ(x, y)|2dy =

∫
|y|≤a

[∫
Λ

Φ(λ, x) · Φ(λ, y) dµ(λ)
∫
Λ

Φ(ω, x) · Φ(ω, y) dµ(ω)
]
dy

=

∫
|y|≤a

∫
Λ×Λ

Φ(λ, x) · Φ(λ, y)Φ(ω, x) · Φ(ω, y) d(µ⊗ µ)(λ, ω) dy,
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C.1. Weak localization property

where µ⊗µ is the product measure18 of µ with itself. Define for λ, ω ∈ Λ the functions

Zjl(λ, ω) =

∫
|y|≤a

Φj(λ, y)Φl(ω, y) dy, j, l = 1, 2, (C.1.14)

where we used (Φ1,Φ2) = (Φ+,Φ−) for ease of representation. By interchanging the
order of integration and applying change of variables, we get that∫

|y|≤a

|kΛ(x, y)|2dy =
2∑

j,l=1

∫
Λ1/2×Λ1/2

Zjl(u
2, ω2)·Φj(u2, x)Φl(ω

2, x)dµjj(u
2)dµll(ω

2)

=
2∑

j,l=1

∫
Λ1/2×Λ1/2

cjl
Zjl(u

2, ω2)

κ(u)κ(ω)
·Φj(u2, x)Φl(ω

2, x) du dω, (C.1.15)

where

C = [cjl]j,l=1,2 =
1

4π2q20q
2
n

[
q2n q0qn
q0qn q20

]
(C.1.16)

is obtained from (4.3.21). By Lemma 4.2.5, each Φj(u2, x)Φl(ω
2, x), x > a for j, l = 1, 2

is an almost periodic polynomial of the form

Φj(u2, x)Φl(ω
2, x) = Ajl(u, ω)e

iqn(u+ω)x +Bjl(u, ω)e
iqn(u−ω)x

+ Cjl(u, ω)e
−iqn(u+ω)x +Djl(u, ω)e

−iqn(u−ω)x,

where each Ajl, Bjl, Cjl, Djl are functions in u and ω formed by some products of
a±n (u

2), b±n (u
2) and a±n (ω

2), b±n (ω
2) including their complex conjugates. Thus, for a fixed

x > a, (C.1.15) may be viewed as a linear combination of two-dimensional Fourier
transforms of finitely many functions

ei(αu+βω)Zjl(u
2, ω2)

κ(u)κ(ω)
χΛ1/2×Λ1/2(u, ω) ∈ L1(Λ1/2 × Λ1/2), α, β ∈ R, j, l = 1, 2

with evaluations occurring at (±qnx,±qnx). By the Riemann-Lebesgue lemma,

lim
|x|→∞

∫
|y|≤a

|kΛ(x, y)|2dy = 0.

In particular, there exists b′3 > 0 such that for |x| > b′3∫
|y|≤a

|kΛ(x, y)|2dy <
ϵ2

4
. (C.1.17)

Choose b3 = b′3 + a > 0. Then as in Case 1, |y| ≤ a and |x − y| > b3 imply |x| ≥
|x− y| − |y| > b′3, and so (C.1.17) can be applied. Thus,∫

|x−y|>b3
|y|≤a

|kΛ(x, y)|2dy ≤ sup
|x|>b′3

∫
|y|≤a

|kΛ(x, y)|2dy ≤ ϵ2

4
. (C.1.18)

18If µ1 and µ2 are measures on respective measure spaces (X1, E1) and (X2, E2), the product measure
µ1⊗µ2 is a measure on the measure space (X1×X2, E1⊗E2) (tensor product σ-algebra) with the property
that for all E1 ∈ E1, E2 ∈ E2, we have (µ1 ⊗ µ2)(E1, E2) = µ1(E1)µ2(E2).
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Lastly, combining the estimates (C.1.10), (C.1.13) and (C.1.18) for A, B and C, respec-
tively, the choice r2(ϵ) = max{b1, b2, b3} yields∫

|x−y|>r2(ϵ)

|kΛ(x, y)|2 dy <
3ϵ2

4
, x > a. (C.1.19)

(iii) Case 3: x < −a: The proof of this case is similar to Case 2, and we can conclude
that there exists r3(ϵ) > 0 such that∫

|x−y|>r3(ϵ)

|kΛ(x, y)|2 dy <
3ϵ2

4
, x < −a. (C.1.20)

In summary, we have shown from (C.1.6), (C.1.19) and (C.1.20) that for any ϵ > 0,
choosing r(ϵ) > max{r1(ϵ), r2(ϵ), r3(ϵ)} works so that (C.1.1) holds for all x ∈ R. Taking
the supremum over all x ∈ R, we get

sup
x∈R

∫
|x−y|>r(ϵ)

|kΛ(x, y)|2 dy ≤ 3ϵ2

4
< ϵ2

which is exactly what we wish to prove.

We now comment on key differences between the above proof of the weak localization
lemma and the proof of the same lemma in [39, Sec. 7].

(i) In our proof, the estimates in Case 2 were computed using the original spectral
measure µ. In [39, Sec. 6.3], the authors used fundamental solutions Φ = (Φ+,Φ−)
of (τ̃q − ω2)f = 0, τ̃q = −D2 + q with supp(q) ⊆ [−a, a] of the form

Φ+(ω, x) =

{
eiωx +R1(ω)e

−iωx, x < −a,

T (ω)eiωx, x > a,

Φ−(ω, x) =

{
T (ω)e−iωx, x < −a,

R2(ω)e
iωx + e−iωx, x > a,

where T,R1 and R2 are analytic in C \ (−∞, 0]. They also formed the so-called
scattering matrix S given by the unitary matrix

S(ω) =

[
T (ω) R1(ω)
R2(ω) T (ω)

]
.

With this fundamental system and using scattering theory (see [82, Chap. 21]), the
corresponding spectral matrix measure reduces to an identity matrix multiplied by
the Lebesgue measure [39, Prop. 6.9], which then simplified most of their work. Our
proof does not require knowledge of the scattering theory, though the reader may see
some resemblance on how some identities similar to those on the scattering matrix
S were used. For instance, a crucial part of the proof of Integral A is the vanishing
of eiu(−qnx−q0y) (which by symmetry is similar to the vanishing of eiu(q0x+qny) as in
(5.2.11) with n = 2) and is a consequence of single identity.

(ii) Because the solutions found at the infinite intervals may have different frequencies,
we had to be very careful in dealing with terms such as qnx− q0y in order to prove
our estimates. Nonetheless, the train of thought is the same as the proof of the
same lemma in [39, Sec. 7].
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C.2. Homogeneous approximation property

We now move on to the proof of the homogeneous approximation property for bounded
spectral sets. For the proof, we will apply two results. The first one is a version of
Theorem C.1.1 applied to ℓ2(X) (see [7, Thm. 3.4]) and restated for our purpose.

Theorem C.2.1. A subset M ⊆ ℓ2(X) is totally bounded if and only if M is uniformly
bounded and for every ϵ > 0, there exists bϵ > 0 such that

sup
f∈M

∑
x∈X:|x|>bϵ

|f(x)|2 < ϵ2.

The second one is the following one-dimensional version of a result in [40, Lem. 1]
extended to relatively separated sets.

Lemma C.2.2. Let f#(x) = sup|x−y|≤1 |f(y)|. If f ∈ L2(R) is bandlimited with supp f̂ ⊆
[−Ω,Ω], then f# ∈ L2(R) and

∣∣∣∣f#
∣∣∣∣
2
≤ C ||f ||2 for some C > 0. Moreover, if X ⊆ R is

relatively separated, then there exists δ, Cδ > 0 such that∑
x∈X:|x|≥R

|f(x)|2 ≤ Cδ

∫
|x|≤R−δ

|f#(x)|2 dx

for all R > 0.

The constant δ is determined by writing X as a finite union of separated sets with
separation at least δ, while Cδ depends on δ as well as the relative separation constant
rel(X) defined in (6.3.10).
We now restate and prove the homogeneous approximation property.

Lemma C.2.3 (Homogeneous approximation). Let Λ ⊂ R+
0 be a bounded Borel set, p be

a piecewise constant function and kΛ be the reproducing kernel for PWΛ(Ap). Suppose X
is a set of stable sampling for PWΛ(Ap). Then for every ϵ > 0, there exists r(ϵ) > 0 such
that

sup
y∈R

∑
x∈X

|x−y|>r(ϵ)

|kΛ(x, y)|2 < ϵ2.

Proof. This is the discrete analogue of Lemma 6.3.6 and is proved almost exactly the same
way. Therefore, some details may be omitted. We fix a sufficiently large a > 0 such that
{tk}nk=1 ⊆ [−a, a] and work again by cases, but now on the variable y: we have y < −a,
|y| ≤ a and y > a. This choice is taken so that the index x is naturally assigned to the
indexing set X.

(i) Case 1: |y| ≤ a. Case 1 of the proof of Lemma C.1.2 shows that the map y 7→
kΛ(·, y) from [−a, a] to PWΛ(Ap) is compact, since kΛ is symmetric. Now, if X is a set of
stable sampling for PWΛ(Ap), the map f 7→ {f(x)}x∈X from PWΛ(Ap) to ℓ2(X) is also
continuous. Hence, the set of sequences {{kΛ(x, y)}x∈X : |y| ≤ a} is compact in ℓ2(X),
thus totally bounded. By Theorem C.2.1, we conclude that for any ϵ > 0, there exists
bϵ > 0 such that

sup
y∈[−a,a]

∑
x∈X:|x|>bϵ

|kΛ(x, y)|2 <
ϵ2

2
.

159



C. Localization and approximation lemmas for general spectral sets

Taking again r1(ϵ) = a+bϵ, we have |x−y| > r1(ϵ) and |y| ≤ a imply |x| ≥ |x−y|−|y| > bϵ.
Consequently,

sup
y∈[−a,a]

∑
x∈X

|x−y|>r1(ϵ)

|kΛ(x, y)|2 ≤ sup
y∈[−a,a]

∑
x∈X:|x|>bϵ

|kΛ(x, y)|2 ≤
ϵ2

2
. (C.2.1)

(ii) Case 2: y > a. The sum is split again into three parts.∑
x∈X

|x−y|>b

|kΛ(x, y)|2 =
∑

x∈X:x<−a
|x−y|>b

|kΛ(x, y)|2

︸ ︷︷ ︸
A

+
∑

x∈X:x>a
|x−y|>b

|kΛ(x, y)|2

︸ ︷︷ ︸
B

+
∑

x∈X:|x|≤a
|x−y|>b

|kΛ(x, y)|2

︸ ︷︷ ︸
C

.

• Sum A: We perform the same calculations as in (C.1.8), but instead, we write
kΛ(x, y), x < −a, y > a in terms of F−1. If x < −a and y > a, i.e., x ∈ I0 and
y ∈ In, then the same calculations yield the expression

ϑ(u, x, y) =
a+0 (u

2)

q0
e−i(q0x−qny)u +

a+0 (u
2)

q0
ei(q0x−qny)u.

Hence, for x < −a, y > a,

kΛ(x, y) = F−1

(
a+0 (·2)
q0κ

χΛ1/2

)
︸ ︷︷ ︸

g1

(q0x− qny) + F−1

(
a+0 (·2)
q0κ

χΛ1/2

)
︸ ︷︷ ︸

g̃2

(−q0x+ qny)

= g1(q0x− qny) + g2(q0x− qny), g2(x) = g̃2(−x).

By definition, g1, g2 ∈ L2(R) are bandlimited functions with bandwidth

max{ω : ω2 ∈ Λ} < ∞

due to the boundedness of Λ. Applying Lemma C.2.2 to gj, j = 1, 2, we have

g#j ∈ L2(R) for j = 1, 2. Moreover, since X is a set of stable sampling for PWΛ(Ap),
X is relatively separated by Lemma 6.3.7. Hence, the collection of sets

Zy = −qny + q0X = {q0x− qny : x ∈ X}, y > a

is a family of relatively separated sets with rel(Zy) = rel(q0X) for all y > a. By the
second conclusion of Lemma C.2.2, there exist δ, Cδ > 0 such that∑

z∈Zy :|z|≥R

|gj(z)|2 ≤ Cδ

∫
|z|≥R−δ

|g#j (z)|2 dz j = 1, 2 (C.2.2)

for all R > 0 and for all y > a. As each g#j is square-integrable, we have that for
every ϵ > 0, there exists b′1 > 0 such that∫

|z|≥b′1−δ

|g#j (z)|2 dz <
ϵ2

16Cδ

j = 1, 2. (C.2.3)
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In particular, if we take R = b′1, (C.2.2) and (C.2.3) combined become∑
z∈Zy :|z|≥b′1

|gj(z)|2 <
ϵ2

16
, j = 1, 2.

Again, if we choose b1 > 0 such that

b1min{q0, qn}+ a|qn − q0| > b′1,

we recall from the arguments of (C.1.8) that x < −a, y > a and |x − y| > b1 imply
|q0x− qny| > b′1. Hence, setting z = q0x− qny gives∑

x∈X:x<−a
|x−y|>b1

|kΛ(x, y)|2 ≤ 2
∑
x∈X

|q0x−qny|>b′1

(
|g1(q0x− qny)|2 + |g2(q0x− qny)|2

)

≤ 2
∑

z∈Zy :|z|>b′1

(
|g1(z)|2 + |g2(z)|2

)
<

ϵ2

4
(C.2.4)

for all y > a.

• Sum B: By a similar approach as in Sum A applied to the functions analogous to f2
and f3 in (C.1.11), we can work our way to conclude that there exists b2 > 0 such
that ∑

x∈X:x>a
|x−y|>b2

|kΛ(x, y)|2 <
ϵ2

4
(C.2.5)

for all y > a.

• Sum C: We replace the integrals in Integral C by sums and with the appropriate
index as well. As in (C.1.14), define for λ, ω ∈ Λ the function

Wjl(λ, ω) =
∑

x∈X:|x|≤a

Φj(λ, x)Φl(ω, x) dy, j, l = 1, 2.

Since X is relatively separated, Wjl has a finite number of terms, each of which
is continuous and uniformly bounded on R+ × R by Lemma 4.2.6. The additional
assumption that Λ is a bounded Borel set implies Wjl is continuous and bounded in
Λ× Λ. By proceeding exactly as what we did in Integral C, we have from (C.1.15)
that∑

x∈X:|x|≤a

|kΛ(x, y)|2dy =
∑
|x|≤a

∫
Λ

Φ(λ, x) · Φ(λ, y) dµ(λ)
∫
Λ

Φ(ω, x) · Φ(ω, y) dµ(ω)

=
2∑

j,l=1

∫
Λ1/2×Λ1/2

Wjl(u
2, ω2)·Φj(u2, y)Φl(ω

2, y)dµjj(u
2)dµll(ω

2)

=
2∑

j,l=1

∫
Λ1/2×Λ1/2

cjl
Wjl(u

2, ω2)

κ(u)κ(ω)
Φj(u2, y)Φl(ω

2, y) du dω, (C.2.6)
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with cjl defined exactly as in (C.1.16). Since y > a, (C.2.6) is also a linear combina-
tion of two-dimensional Fourier transforms of finitely many continuous functions

ei(αu+βω)Wjl(u
2, ω2)

κ(u)κ(ω)
χΛ1/2×Λ1/2(u, ω), α, β ∈ R, j, l = 1, 2

with evaluations occurring at (±qny,±qny). By the Riemann-Lebesgue lemma,

lim
|y|→∞

∑
x∈X:|x|≤a

|kΛ(x, y)|2 = 0

and by following the same arguments in Integral C, we conclude that there exists
b3 > 0 so that ∑

x∈X:|x|≤a
|x−y|>b3

|kΛ(x, y)|2 <
ϵ2

4
. (C.2.7)

Finally, taking r2(ϵ) > max{b1, b2, b3}, we get from (C.2.4), (C.2.5) and (C.2.7) that

sup
y>a

∑
x∈X

|x−y|>r2(ϵ)

|kΛ(x, y)|2 ≤
3ϵ2

4
. (C.2.8)

(iii) Case 3: y < −a. Using the same arguments as in Case 2, we find r3(ϵ) > 0 such that

sup
y<−a

∑
x∈X

|x−y|>r3(ϵ)

|kΛ(x, y)|2 ≤
3ϵ2

4
. (C.2.9)

In view of the estimates (C.2.1), (C.2.8) and (C.2.9), r(ϵ) > max{r1(ϵ), r2(ϵ), r3(ϵ)} does
the job and yields the desired result.
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