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1 Introduction 

Diabetes mellitus is a serious and chronic condition and represents one of the most 

significant global health emergencies of the 21st century. In 2021, 537 million adults 

were estimated to live with diabetes which represents 10.5% of the world’s adult 

population and this number is expected to rise to 643 million (11.3%) by 2030 

(International Diabetes Federation, 2021). 

Despite the existence of a multitude of therapeutical options for the treatment of 

type 2 diabetes, which accounts for about 90% of all diabetes cases, many people 

experience failure in glycaemic control and adverse effects such as weight gain and 

hypoglycaemia (Clar et al., 2012; International Diabetes Federation, 2021). Addi-

tionally, most of the existing treatments are dependent on the insulin production 

and thus often require an increase of the dose as the disease advances and insulin 

production declines (Whaley et al., 2012). Therefore, in recent years, it has become 

apparent that there is a need of new therapeutics with reduced undesirable side ef-

fects and no insulin dependence in order to maximize the patient’s quality of life 

(Bhattacharya et al., 2020; Clar et al., 2012). 

SGLT2 inhibitors are a drug family that have been recently introduced onto the mar-

ket, show a unique mechanism of action and have been mainly used as second-line 

therapeutics for the treatment of type 2 diabetes (Clar et al., 2012). 

The introduction of new drugs to the market is a tedious and costly process which 

involves the investment of up to 1.8 billion US dollars over the course of 10-15 years 

(Macalino et al., 2015; Paul, 2010). In order to reduce costs and time-consuming 

tasks involved in the preliminary stage of drug discovery, computer-aided drug dis-

covery (CADD) has become an essential part of the process (Macalino et al., 2015). 

One of the most-often used tools in CADD has been molecular docking, a structure-

based in silico method which has been successfully implemented for the develop-

ment and improvement of new drugs several times (Sethi et al., 2020). Examples 

include the improvement of inhibitory activity of Aurora Kinase A inhibitors and the 

design of new Cyclooxygenase inhibitors (Park et al. 2018; Dadashpour et al., 2015). 

With this background in mind, the aim of this thesis is to provide an in-silico-based 

method, mainly driven by the use of molecular docking, for the assessment of the 

https://doi.org/10.1136%2Fbmjopen-2012-001007
http://dx.doi.org/10.1136/bmjopen-2012-001007
file:///C:/Users/ajoua/Downloads/Macalino
https://doi.org/10.1038/nrd3078
https://doi.org/10.1007/s12272-015-0640-5
file:///C:/Users/ajoua/Downloads/Park
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activity of potential SGLT2 inhibitors that have not yet been tested in vitro. Further-

more, over the course of this study the methods have been applied to a series of 

compounds with unknown activity with the objective to support the development 

of new SGLT2 inhibitors. 

 

1.1 Diabetes and Sodium-Dependent Glucose Co-Transporters 

(SGLT) 

Diabetes mellitus is characterized by raised levels of blood glucose which is caused 

by a decrease or lack of the production of the hormone insulin or the lack of the 

body’s ability to effectively use the produced insulin (International Diabetes Feder-

ation, 2021). According to the American Diabetes Association (ADA), diabetes can 

be classified into the four following general categories: 

           “ 1. Type 1 diabetes (due to autoimmune β-cell destruction, usually leading to 

absolute insulin deficiency) 

2. Type 2 diabetes (due to a progressive loss of β-cell insulin secretion fre-

quently on the background of insulin resistance) 

3. Gestational diabetes mellitus (GDM) (diabetes diagnosed in the second or 

third trimester of pregnancy that was not clearly overt diabetes prior to ges-

tation) 

4. Specific types of diabetes due to other causes, e.g., monogenic diabetes syn-

dromes (such as neonatal diabetes and maturity-onset diabetes of the young 

[MODY]), diseases of the exocrine pancreas (such as cystic fibrosis and pan-

creatitis), and drug- or chemical-induced diabetes (such as with glucocorti-

coid use, in the treatment of HIV/AIDS, or after organ transplantation).” 

(American Diabetes Association, 2017) 

Among these types of diabetes mellitus, type 2 is the one that accounts for the over-

whelming majority of cases (90%) and is therefore the one which requires the most 

attention (International Diabetes Federation, 2021). Type 2 diabetes is a multisys-

temic and progressive disease and must be treated by using a multifactorial therapy, 

which often involves the combination of multiple drugs at once (Shubrook et al., 

2015). Most of the currently used treatments need insulin production in order to 

https://doi.org/10.2337/dc18-S002
https://doi.org/10.2147%2FDDDT.S69926
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provide therapeutic benefits. In recent years there has been a novel development in 

the field of diabetes type 2 therapy, as the emergence of the kidney as a treatment 

target provided the possibility of avoiding a dependency on insulin production (Clar 

et al., 2012; Shubrook et al., 2015). 

The sodium-dependent glucose transporters (SGLT) are a family of three proteins 

which function either as sugar transporters (SGLT1 and SGLT2) or as a sensor 

(SGLT3) (Scheepers et al., 2004) and are expressed throughout the body, such as the 

intestine, the kidney, and specific regions of the brain (Wright et al., 2011; Shubrook 

et al., 2015). Glucose reabsorption in the kidney is one of the factors involved in 

maintaining a delicate balance keeping a physiologically healthy plasma concentra-

tion (Shubrook et al., 2015). Glucose reabsorption in the kidney is mediated by 

SGLT1 and SGLT2: The majority of this reabsorption is carried out in the first part 

of the proximal tubule where 90% of the filtered glucose is removed from the fil-

trate, while the remaining 10% are reabsorbed by SGLT1 in the later parts of the 

proximal tubule (Wright et al., 2011). 

A naturally occurring mutation of SLC5A2, which is the gene encoding the protein 

SGLT2, leads to a defect protein and significant glycosuria. Thus the kidney, more 

specifically SGLT2 has been introduced as a novel target in the therapy of type 2 

diabetes: SGLT2 inhibitors have been developed to mimic the effect of SLC5A2 mu-

tation and inhibit the reabsorption of glucose (Clar et al., 2012). 

Even though SGLT1 is also involved in the reabsorption of glucose in the kidney, a 

selective inhibition of SGLT2 may be of benefit as it is apparent that patients with 

non-functioning SGLT1 are suffering from gastrointestinal complications like severe 

diarrhoea (Shubrook et al., 2015). 

 

1.2 Proteins and their ligands 

In the following two chapters (1.3 and 1.4) the molecules that are used as SGLT2 

inhibitors (ligands) and the protein SGLT2 itself will be further analysed and de-

scribed. However, in order to achieve a deeper understanding of the underlying 

principles of the discussed topics it is important to have an overview of the behav-

iour of protein-ligand interactions. 

http://dx.doi.org/10.1136/bmjopen-2012-001007
https://doi.org/10.2147%2FDDDT.S69926
https://doi.org/10.1177/0148607104028005364
https://doi.org/10.1152/physrev.00055.2009
https://doi.org/10.2147%2FDDDT.S69926
https://doi.org/10.2147%2FDDDT.S69926
http://dx.doi.org/10.1136/bmjopen-2012-001007
https://doi.org/10.2147%2FDDDT.S69926
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Molecular recognition is the process of ligand interaction with a protein in order to 

form a specific complex and refers to a set of phenomena which may be described 

as being controlled by specific noncovalent interactions of the ligand with the amino 

acids of the protein (Gellman, 1997; Du et al., 2016). Much of the current knowledge 

of this process stems from high-resolution crystal structures and time-resolved 

spectroscopy, which has revealed that molecular recognition is a very dynamic 

event, in which both the ligand and the protein can change their conformation in 

order to bind (Morando et al., 2016). 

The dynamic properties of the protein have been considered in the two currently 

most relevant hypotheses regarding the binding of ligands to their proteins (in-

duced fit hypothesis and conformational selection hypothesis) and have replaced 

the older lock-and-key hypothesis where it is assumed that both the ligand and the 

protein are rigid and that their binding surfaces should match perfectly (Du et al., 

2016). 

Since the protein-ligand-solvent system is a thermodynamic system, the association 

between proteins and ligands is dictated by thermodynamic rules and only occurs 

when the change of Gibbs free energy (ΔG) is negative (Du et al., 2016). As the Gibbs 

free energy can be divided into its enthalpic and its entropic contributions, the rela-

tionship between the binding enthalpy (ΔH) and the Gibbs free energy can be rep-

resented by the following equation: 

 ΔG = ΔH – TΔS (Du et al., 2016) 

The binding enthalpy represents the energy change of a system upon the binding of 

a ligand to a protein. In a non-strict sense, ΔH is usually treated as the changes in 

energy that are resulting from the establishment of above-mentioned noncovalent 

interactions. Examples for such interactions are hydrogen-bonds, ion pairs, pi-pi-

stacking, van der Waals contacts, and polar and apolar interactions (Du et al., 2016). 

 In order to compute the binding affinities of ligand-protein interactions, docking 

programs like Glide, which was employed for this thesis, use scoring functions 

(Friesner et al., 2004). These scoring functions are generally measuring the strength 

of the noncovalent interactions and are usually simplified to allow faster computa-

tional calculations (Du et al., 2016). 

 

https://doi.org/10.1021/cr970328j
https://doi.org/10.3390%2Fijms17020144
https://doi.org/10.1038/srep24439
https://doi.org/10.3390%2Fijms17020144
https://doi.org/10.3390%2Fijms17020144
https://doi.org/10.3390%2Fijms17020144
https://doi.org/10.3390%2Fijms17020144
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1.3 SGLT2 inhibitors 

The history of SGLT2 inhibitors traces back to more than a hundred years ago, when 

phlorizin, which is a member of the chalcone class of organic compounds (figure 1), 

was isolated from the bark of the apple tree and identified to have a glycosuric effect 

(Ehrenkranz et al., 2005). 

However, due to its low selectivity for SGLT2, it was observed that phlorizin admin-

istration led to frequent gastrointestinal side effects. Another limitation that was ap-

parent and prevented its clinical use is its degradation by glucosidase in the intes-

tine, where it is degraded to phloretin (Ehrenkranz et al., 2005). 

The process of searching and finding a potent and selective SGLT2 inhibitor, which 

is not subject to degradation in the intestine, resulted in the development of several 

C-glycoside compounds that were introduced onto the market in the first half of the 

last decade, among them dapagliflozin, canagliflozin and empagliflozin. These inhib-

itors are characterized by a glucose nucleus, a C-glycosidic moiety at position C1 of 

the sugar and two aromatic rings (figure 2) (Bhattacharya et al., 2020; Cai et al., 

2015). 

The overall structure activity relationships of various SGLT2 inhibitors can be sum-

marized as follows: 

• The glucose moiety can only be substituted with different groups at positions 

C4 and C6 without losing activity. Substitutions with oxime at position C6 and 

with a strong electronegative group at C4 show the potential to enhance ac-

tivity. A reversion of the configuration, especially at positions C1 and C5, 

leads to a diminishing of activity. Changing the hexose to a pentose can de-

crease the activity. 

• The proximal benzene ring is essential for activity and the substitution with 

other (hetero)aryl groups may decrease the activity. Ortho and para substi-

tutions may enhance the activity; a chlorine group is the most favourable 

substitution at the para position while an ether group is the most favourable 

substitution at ortho position. 

• The methylene bridge is essential for activity and elongation could lead to 

decreased activity. 

https://doi.org/10.1016/j.ejmech.2020.112523;10.2174/1573406411666150105105529
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• The distal benzene ring is not essential for activity and other aryl groups can 

replace it in order to achieve better activity. Substitutions are only possible 

at para position and a small alkoxy group may enhance activity 

(Bhattacharya et al., 2020). 

 

In recent developments non-selective SGLT inhibitors have also been introduced to 

the market, despite previous concerns about the possibility of gastrointestinal side 

effects. However, long-term studies regarding their efficiency and safety are still 

needed (Tsimihodimos et al., 2018). 

 

1.4 SGLT2 and its binding site 

This thesis focuses on the human sodium-dependent glucose co-transporter 2 and 

the effects of its inhibition. Therefore, it is necessary to understand and analyse the 

Figure 1: Chemical structure of 
Phlorizin which was the lead com-
pound for the development of the 
modern potent SGLT2 inhibitors 
(“Phlorizin”, n.d.). 

Figure 2: Chemical structure of SGLT 
inhibitors, usually characterized by 
their glucose moieties, proximal 
benzene rings substituted at the para 
position and a distal benzene ring 
which may be replaced by different 
heteroaryls (Chrysant, 2017). 

https://doi.org/10.1016/j.ejphar.2018.09.019
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structure of the protein and its binding site. Recently, a cryogenic electron micros-

copy (cryo-EM) structure of SGLT2 co-crystallized with empagliflozin at its binding 

site was published for the first time, which provided a better understanding of the 

structure and the location of its binding site (Niu et al., 2021). 

 

1.4.1 Overall and binding site structure 

In humans, SGLT2 is existing in a complex with the membrane protein MAP17: an 

essential auxiliary subunit of SGLT2 which can enhance the activity of SGLT2 over a 

hundred-fold, and interacts with transmembrane helix 13 (Coady et al., 2016; Niu et 

al., 2021). The presence of MAP17 does not change the amount of expressed SGLT2, 

instead it is hypothesized that the interaction between MAP17 and SGLT2 changes 

the conformation of the co-transporter, allowing it to transport more glucose (Coady 

et al., 2016). 

Overall, the SGLT2 transporter consists of 14 transmembrane helices and possesses 

a core that resembles the core structure of LeuT, which is a procaryotic neurotrans-

mitter sodium transporter. The binding site is formed by amino acids of the trans-

membrane helices TM1, TM2, TM6, and TM10. In the cryo-EM structure it can be 

observed that the glucoside-group of the co-crystallized empagliflozin resides in the 

sugar-binding site where it forms a number of hydrogen bonds (Niu et al., 2021). 

The main structural differences between the established SGLT2 inhibitors are char-

acterized by their long hydrophobic aglycone tail at position C1 of their sugar, which, 

as seen in the co-crystallized structure of empagliflozin, branches from the sugar 

binding site and extends towards the extracellular side where it stays in the external 

vestibule. The two aromatic rings of empagliflozin show stacking with histidine 80 

and phenylalanine 98 (Niu et al., 2021). 

https://doi.org/10.1038/s41586-021-04212-9
file:///C:/Users/ajoua/Downloads/Coady
https://doi.org/10.1038/s41586-021-04212-9
https://doi.org/10.1038/s41586-021-04212-9
https://doi.org/10.1038/s41586-021-04212-9
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1.4.2 Transport mechanism 

The occupation of both the sugar binding site and the outer vestibule by SGLT2 in-

hibitors leads to the lock of SGLT2 in its outward-open conformation which blocks 

the transport mechanism that is hypothesized to work similarly to vSGLT and LeuT 

(Niu et al., 2021). This would be a rocking-bundle alternating access mechanism 

where transported solutes bind to a site in the transporter that can be exposed to 

the other side of the membrane after conformational changes - in this case to the 

cytosolic side (Niu et al., 2021; Forrest & Rudnick, 2009). 

The first step of the transport of glucose to the cytosolic side is characterized by the 

binding of sodium to SGLT2 in order to induce the opening of the outer gate of the 

Figure 3: Overall structure of SGLT2. The 
structure was simplified by reducing it to a 
ribbon representation of the protein back-
bone in order to allow a better overview 
over the 14 transmembrane helices and the 
essential auxiliary transmembrane protein 
MAP17. MAP17 can be seen at the furthest 
right position as a red helix. At the very cen-
tre of the protein, the binding site with em-
pagliflozin is located. This depiction of 
SGLT2 was generated by using Maestro, 
which is part of the Schrödinger Software 
(Schrödinger Release 2021-1: Maestro, 
2021). 
 

Figure 4: Depiction of empagliflozin at 
its binding site and nearby amino acid 
residues. The electron density is shown 
as a blue mesh and empagliflozin is rep-
resented by green sticks (Niu et al., 
2021). 

https://doi.org/10.1038/s41586-021-04212-9
https://doi.org/10.1038/s41586-021-04212-9
https://doi.org/10.1038/s41586-021-04212-9
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protein. Afterwards, the outer gate closes, through which glucose gets “trapped” in-

side the transporter before the inner gate opens and allows sodium and glucose to 

exit into the cytoplasm. After unloading sodium and glucose, the transporter finally 

returns to its outward conformation (figure 5) (Wright, 2020). 

 

Figure 5: Mechanism of sodium-dependent glucose co-transport. The transporter 
starts in its outward position (upper left). After binding of sodium to the transporter, 
the outer gate opens and allows glucose to bind to the sugar binding site (upper mid-
dle). The outer gate closes and “traps” glucose inside (upper right). The inner gate 
opens and allows the exit of both glucose and sodium to the cytoplasm (lower right). 
Finally, the transporter returns to its starting conformation (lower left) (Wright, 
2020). 

As a result, SGLT2 transports one molecule glucose together with one sodium ion 

per transport cycle into the cytoplasm. The presence of sodium is necessary to allow 

the transport of glucose and it has therefore been proposed that there is an ion bind-

ing site at similar position as the Na2 site of LeuT (Niu et al., 2021). The binding of 

sodium leads to the adoption of the outward-open position of SGLT2 and from this 

knowledge it can be deduced that the binding of SGLT2 inhibitors also is only possi-

ble in the presence of sodium (Wright, 2020). However, the only currently available 

cryo-EM structure which captured SGLT2 in an open-outward position with em-

pagliflozin bound to it was not able to find a strong density of sodium at the pro-

posed position. This was explained by the authors as a consequence of the low bind-

ing affinity of SGLT2 to sodium at 0 mV (Niu et al., 2021). 

https://doi.org/10.1007/s00424-020-02448-4
https://doi.org/10.1038/s41586-021-04212-9
https://doi.org/10.1038/s41586-021-04212-9
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2 Methods and Materials 

2.1 Availability and evaluation of protein structures 

In order to evaluate the availability of structures of SGLT2 for the docking process, 

a thorough search was performed. 

The protein data bank (PDB) is a publicly available data bank containing infor-

mation about the 3D shapes of proteins, nucleic acids, and complex assemblies. In 

addition to coordinate data in PDB and mmCIF formats, structure factor files and 

NMR constraint files, PDB entries provide documentation derived data (Berman, 

2000) 

As the 3D structure of SGLT2 was recently solved for the first time by cryogenic elec-

tron microscopy, there was only one structure of the human SGLT2 uploaded to the 

protein data bank, which was resolved with 2.95 Å and co-crystallized with empagli-

flozin at its binding site (Niu et al., 2021). 

As a consequence of the limited availability of structures, the search for alternative 

options for the acquirement of more data for docking purposes led to the examina-

tion of AlphaFold (Jumper et al., 2021). AlphaFold is an AI system developed for the 

prediction of the 3D structure of proteins. It calculates the coordinates of all heavy 

atoms of a protein using the primary amino acid sequence and the aligned sequence 

of homologues as inputs. The predictions computed by AlphaFold are freely availa-

ble and cover the complete human proteome as well as the proteome of 47 other 

organisms (Jumper et al., 2021). Over the course of this thesis, the performance of 

the structure of SGLT2 predicted by AlphaFold was compared to the cryo-EM struc-

ture and its usefulness in docking studies was evaluated. 

 

2.2 Structure alignment and comparison 

As one of the aims of this master thesis is to assess the properties of the AlphaFold 

structure, its differences to the structure obtained from cryo-EM, and its suitability 

for docking, alignments of the overall structures and binding sites of the two pro-

teins proved to be a useful approach. Likewise to the comparison of ligand poses, 

which will be explained in chapter 2.3.4.2, similar protein structures or different 

https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1038/s41586-021-04212-9
https://alphafold.com/
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conformations of the same protein can be compared to each other by making use of 

the root-mean-square deviation (RMSD) (Mechelke & Habeck, 2010). Additionally, 

a visual inspection of the binding site and the contacts and interactions made there 

was performed. 

 

2.2.1 Maestro 

The Protein Structure Alignment panel found in Maestro, which is a graphical user 

interface used for molecular modelling and part of the Schrödinger Software Suite, 

allows the alignment of either multiple proteins or the substructures of these pro-

teins. The default setting, which was used for this task, is to align all the amino acid 

residues of all proteins included in the Maestro Workspace. The additional feature 

of the Protein Structure Alignment panel to perform an alignment based on the bind-

ing site was also used (Schrödinger Release 2021-1: Maestro, 2021; “How do I align 

independent chains in two or more protein structures? | Schrödinger”, 2016). 

 

2.2.2 Molecular Operating Environment (MOE) 

There is a number of options for the alignment of proteins found in the alignment 

function of MOE, which defines itself as an integrated computer-aided molecular de-

sign platform for small molecules, peptides and biologics (Molecular Operating En-

vironment (MOE) 2020.09, 2020). 

For the purpose of this task – and in order to ensure comparability with the results 

from Maestro – the settings were chosen to perform an alignment of only the amino 

acid sequence in the first step and a superposition based on the current alignment 

for all amino acids (called “structure alignment” in Maestro). In addition to the su-

perposition of all amino acids, the same panel includes the option to superpose the 

amino acids of the binding site of the proteins based on the current alignment (Mo-

lecular Operating Environment (MOE) 2020.09, 2020). 

 

https://doi.org/10.1186%2F1471-2105-11-363
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2.3 Molecular docking 

Molecular docking is a widely used computational tool for the study of molecular 

recognition and aims to predict the binding mode and binding affinity resulting from 

the establishment of a complex of two molecules (Huang & Zou, 2010). Protein-lig-

and docking represents one of the most important types of docking as it has become 

a crucial part of drug discovery processes and modern structure-based drug design 

(Du et al., 2016; Huang & Zou, 2010). Molecular docking, especially its use in virtual 

screening studies, has been successfully employed for the development and im-

provement of drugs several times (Sethi et al. 2020; Park et al. 2018; Dadashpour et 

al., 2015). 

The importance of protein-ligand docking has led to the development of a variety of 

software packages using different algorithms for the placement and scoring of lig-

ands. These methods consist of two steps, the first of which is the search algorithm 

responsible for searching through different conformations and orientations (poses) 

of the same ligand. The second step is called the scoring function and is used for the 

estimation of binding affinities and the ranking of different poses and different lig-

ands (Du et al., 2016). 

In theory, the search for protein-ligand binding should include all possible confor-

mations of the protein and the ligand. However, this is not appropriate to be used in 

drug discovery as the computational expense hinders the application to a large num-

ber of compounds, which is often the case in drug discovery settings (Du et al., 

2016). For this reason, usually various simplifications are employed in order to re-

duce computational time. However, the trend for search algorithms is still leaning 

towards the use of flexible-ligand (semi-rigid) or flexible ligand–flexible protein (in-

duced fit) methods instead of the pure rigid-body algorithms (rigid) (Schrödinger 

Release 2021-1: Glide, 2021; Du et al., 2016). 

The use of rigid receptors but flexible ligands is of particular usefulness in virtual 

screenings as it has shown the potential to reduce computational expense while still 

yielding satisfying results (Friesner et al., 2006; Du et al., 2016; Madhavi Sastry et 

al., 2013). In contrast, the use of an induced fit model in docking, which considers 

the flexibility of the protein, may be of usefulness when the binding of the ligand to 

the protein is believed to be dependent on the protein being induced into the correct 

https://doi.org/10.3390%2Fijms11083016
https://doi.org/10.3390%2Fijms17020144
https://doi.org/10.3390%2Fijms11083016
file:///C:/Users/ajoua/Downloads/Park
https://doi.org/10.3390%2Fijms17020144
https://doi.org/10.3390%2Fijms17020144
file:///C:/Users/ajoua/Downloads/Friesner
file:///C:/Users/ajoua/Downloads/Du
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binding conformation for a ligand (Sherman et al., 2005; Madhavi Sastry et al., 

2013). As both methods have shown their successful application and possess their 

respective strengths, both have been examined over the course of this project in or-

der to analyse their abilities to assess the activities of SGLT2 inhibitors (Madhavi 

Sastry et al., 2013). 

The docking protocols in this thesis were all provided by the Schrödinger Software 

Suite and all depictions in this thesis, unless otherwise clarified, were generated us-

ing Maestro, which is part of the Software Suite (Schrödinger Release 2021-1: Maes-

tro, 2021). 

 

2.3.1 Ligand selection for docking 

2.3.1.1 Ligand selection for virtual screening 

Because of the nature of virtual screening workflows and other computational meth-

odologies to provide an in silico prediction that is yet to be proven experimentally, 

there is a need for a validation of the results. This validation can either take place in 

an in vitro, in vivo or in silico setting in order to prove the correctness of the predic-

tions. In silico validation is often performed by screening a set of active compounds 

and a set of inactive compounds in parallel (Gimeno et al., 2019). 

For this reason, it was necessary to obtain a library of compounds with a broad 

range of molecules to divide them into actives an inactives. ChEMBL is a manually 

curated database of bioactive molecules with drug-like properties and provides, 

among other data, the bioactivity data of such molecules. It allows the query of spe-

cific target proteins, on which the molecules that are shown as a result of the search 

have been tested on (Gaulton et al., 2016). 

Therefore, ChEMBL proved to be an invaluable resource for retrieving molecules 

that have been tested on SGLT2. For this purpose, an in-house KNIME workflow 

(Preisach et al., 2008), which was initially created by members of the Pharmacoin-

formatics Research Group of the University of Vienna for retrieving and standardiz-

ing molecules from ChEMBL and internal datasets for machine learning tasks was 

adapted to provide molecules with known activity in an appropriate condition for 

https://doi.org/10.1093/nar/gkw1074
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docking The initial, unchanged workflow has been uploaded to GitHub and is pub-

licly available (Pharmacoinformatics Research Group, 2021). 

This workflow provides a simple way to define the desired target protein and choose 

a threshold of the activity value, which is defined as the pChEMBL value. Above this 

threshold, the compound gets labelled as active by adding a column which holds the 

value 1 (active) or 0 (inactive). The output of the workflow includes a file in the SDF 

format containing the compound structures and their activity values as well as files 

in the CSV format with calculated descriptors, which were used for the machine 

learning tasks in the later parts of this thesis (Pharmacoinformatics Research Group, 

2021). 

After choosing the desired target by uploading an Excel file containing its ChEMBL 

ID to the workflow, compounds with missing pChEMBL values, activity values that 

are 0, and values that are not in an IC50 or Ki unit get excluded. Originally, the new-

est ChEMBL database version that was available for this workflow was set to 

ChEMBL 29. Therefore a few modifications had to be made in order to allow the use 

of the newest version of ChEMBL, which was ChEMBL30 (Gaulton et al., 2016).  

Afterwards, there is an option for the standardization of the compounds. The set-

tings of the node were changed in order to achieve an appropriate output for dock-

ing studies: the stereochemistry was kept as it is and molecules with nonorganic 

atoms were not removed. 

 

Figure 6: Filtering steps in order to retrieve all compounds with a correct pChEMBL 
value (Pharmacoinformatics Research Group, 2021). 

The next step involves the addition of the activity classification (0 or 1) based on the 

chosen threshold for the activity values. During the same step, molecules presenting 

multiple entries because they ran through multiple tests, get merged into one entry 

https://doi.org/10.1093/nar/gkw1074


15 

and filtered according to the properties of all the activity values: If all activity values 

lead to the same activity classification, the compound does not get excluded. If ac-

tivity values lead to different activity classifications, the compound gets filtered out. 

Afterwards, the retrieved molecules get saved as a file in the SDF format, which then 

may be further used to calculate descriptors in the case of using this workflow for 

machine learning tasks (Pharmacoinformatics Research Group, 2021). 

 

2.3.1.2 Ligand selection for individual docking 

Because of the computational expense associated with induced fit docking, which 

takes the flexibility of the protein during the binding of a ligand into account, it is 

not possible to screen a significant number of ligands in order to validate the dock-

ing protocol (Du et al., 2016). Instead, an alternative route for the validation was 

taken: A literature search was performed to find a series of 7 congeneric SGLT2 in-

hibitors with known structure activity relationship, possessing a high difference in 

activity. In the past, this approach has been successfully applied for revealing bind-

ing hypotheses for propafenone type inhibitors of p-glycoprotein (Klepsch, Chiba & 

Ecker, 2011). 

The ligands that were used were analogues of the SGLT2 inhibitor dapagliflozin and 

were utilized instead of empagliflozin and its analogues because of the plethora of 

available data on dapagliflozin and congeneric compounds (Braem et al., 2014; Lee 

et al., 2010; Ng et al., 2017). 

Even though the ligands were obtained from three different publications, it had to 

be made sure to only include activity data from the same assay methodology, which 

was the intracellular accumulation assay of the SGLT2-selective [14C]-alpha-methyl 

glucopyranoside (AMG). It was also ensured that the different assays yielded com-

parable results for dapagliflozin (Braem et al., 2014; Lee et al., 2010; Ng et al., 2017). 

 

2.3.2 Preparation for docking 

In the field of molecular docking, it is generally agreed upon that there is a need for 

proper preparation of the protein crystal structure as well as the ligands and it was 

shown that the neglection of certain preparation steps may lead to a significant drop 

https://doi.org/10.3390%2Fijms17020144
https://doi.org/10.1038/s41598-017-05895-9
https://doi.org/10.1038/s41598-017-05895-9
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in the performance of virtual screening studies (Madhavi Sastry et al., 2013). There-

fore, it was necessary to prepare the protein and the ligands for the docking studies. 

 

2.3.2.1 Ligand preparation 

In the case of ligands, the preparation involves the creation of 3D-geometries, the 

assignment of proper bond orders, and the generation of accessible tautomer and 

ionization states (Madhavi Sastry et al., 2013). 

 

2.3.2.1.1 Virtual Screening Workflow 

The Virtual Screening Workflow, which was used for the step of docking a large li-

brary of molecules with known activities to a rigid protein, is part of the Schrödinger 

Software Suite and provides a ligand preparation option as a part of the workflow. 

The ligand preparation is run as a LigPrep job and mostly uses the default settings 

of the LigPrep process (Schrödinger Release 2021-1: LigPrep, 2021). 

Some of the options from LigPrep can be changed inside the workflow. However, the 

only change that was made in this case was the desalting of the ligands, which is a 

necessary step and is generally performed (Dhanjal et al., 2021; Omer et al., 2022; 

Schrödinger Release 2021-1: LigPrep, 2021). The possible ionization and tautomer-

ization states at a target pH of 7.0 +/- 2.0 were generated using Epik, which uses the 

Hammett and Taft approaches for predicting pKa values. This is necessary because 

the protonation state of a ligand impacts the conformations that get predicted for 

the molecule (Shelley et al., 2007; Madhavi Sastry et al., 2013; Schrödinger Release 

2021-1: LigPrep, 2021). Additionally, Epik calculates an Epik state penalty which 

quantifies the energetic costs that are necessary to generate the states of the mole-

cules. After docking, this penalty is combined with the GlideScore and results in a 

score that is called Docking Score which is used for the final ranking of different 

compounds (Madhavi Sastry et al., 2013). 

At the end of the preparation of the ligands using the standard settings of the Virtual 

Screening Workflow, only 4 stereoisomers are retained, and one low energy ring 

conformation is generated (Schrödinger Release 2021-1: LigPrep, 2021). 

 

https://doi.org/10.1007/s10822-013-9644-8
https://doi.org/10.1007/s10822-013-9644-8
https://doi.org/10.1007/s10822-013-9644-8
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2.3.2.1.2 Redocking/individual docking 

As neither the Ligand Docking panel, which was used for the redocking of empagli-

flozin and the individual docking with the Extra Precision mode, nor the Induced Fit 

Docking panel possess the option to prepare the ligands inside the panel itself, it was 

necessary to pre-process them using the LigPrep panel. The LigPrep panel has the 

same functions as the above described ligand preparation step of the Virtual Screen-

ing Workflow but has some additional setting options. Most of the options were kept 

in the same way as in the Virtual Screening Workflow: The ligands were desalted 

and ionization/tautomerization states were generated at a target pH of 7.0 +/- 2.0 

by using Epik. However, in contrast to the Workflow, the standard setting for the 

maximum number of generated stereoisomers is 32 (Schrödinger Release 2021-1 

LigPrep, 2021). 

 

2.3.2.2 Protein preparation 

Similarly to the above-mentioned case of ligands, the preparation of proteins is a 

necessary step before the docking studies are started. This involves, among other 

steps, the addition of hydrogen atoms, the optimization of hydrogen bonds and the 

removal of atomic clashes (Madhavi Sastry et al., 2013). For this purpose, the Protein 

Preparation Wizard by Schrödinger was used (Schrödinger Release 2021-1: Prime, 

2021). 

As an addition to the default settings, the Protein Preparation Wizard allows to fill 

in missing side chains and loops as well as the capping of termini. These options, 

while not necessary for the AlphaFold structure, were applicable to the case of the 

cryo-EM structure of SGLT2 and were used to minimize the potential problems as 

shown by the View Problems function of the Protein Preparation Wizard panel. Af-

terwards, the structure was further refined by optimizing H-bonds and performing 

a restrained minimization (Schrödinger Release 2021-1: Prime, 2021).  

In the case of redocking, where the Ligand Docking panel was used to perform the 

semi-rigid docking studies, it was necessary to define the binding site by utilizing 

the Receptor Grid Generation panel. The binding site was chosen by manually defin-

ing the co-crystallized ligand while keeping the default settings of the panel 

(Madhavi Sastry et al., 2013, Schrödinger Release 2021-1: Glide, 2021). In contrast, 

https://doi.org/10.1007/s10822-013-9644-8
https://doi.org/10.1007/s10822-013-9644-8
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both the Virtual Screening Workflow and the Induced Fit Docking protocol have an 

integrated option to choose a grid and therefore the binding site of the protein 

(Schrödinger Release 2021-1: Induced Fit Docking protocol; Glide, 2021). 

 

2.3.3 Docking algorithms and workflows utilizing them 

The docking algorithms available in the Schrödinger Software Suite which are not 

based on molecular dynamics simulations can be generally divided into semi-rigid 

and induced fit docking (Schrödinger Release 2021-1: Induced Fit Docking protocol; 

Glide, 2021). For semi-rigid docking, the Glide program is used while the induced fit 

docking uses both Glide and Prime (Friesner et al., 2004; Sherman et al., 2005). 

While semi-rigid methods, where the ligand is considered flexible but the protein is 

not, are a suitable approach for the screening of large ligand libraries (Du et al., 

2016; Schrödinger Release 2021-1: Glide, 2021), induced fit docking takes into ac-

count that the binding of different ligands may induce changes in the protein that 

are not considered in the semi-rigid approach (Du et al., 2016; Madhavi et al., 2013; 

Schrödinger Release 2021-1: Induced Fit Docking protocol; Glide, 2021). 

 

2.3.3.1 Docking and scoring algorithms 

2.3.3.1.1 Semi-rigid docking – Standard Precision (SP) 

Glide uses a docking method which approximates a search of the complete confor-

mational, orientational, and positional space of the docked ligand. Initial rough po-

sitioning, scoring and refinement is followed by a torsionally flexible energy optimi-

zation in the field of the receptor on an OPLS grid and a further refining via Monte 

Carlo sampling (Friesner et al., 2004; Docking and Scoring | Schrödinger, n.d.). 

Glide SP performs an exhaustive sampling, is recommended by Schrödinger as a bal-

ance between speed and accuracy, and takes about 10 seconds per compound 

(Docking and Scoring | Schrödinger, n.d.). 

The different precision methods use different functional forms for the GlideScore 

(Docking and Scoring | Schrödinger, n.d.) and even though they use similar terms, 

they are formulated with different objectives in mind. Glide SP is a “softer” scoring 

https://doi.org/10.3390%2Fijms17020144
file:///C:/Users/ajoua/Downloads/Du
https://doi.org/10.1007/s10822-013-9644-8
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function which allows the identification of ligands with a reasonable potential to 

bind, even in cases of the pose having significant imperfections. Therefore, Glide SP 

is designed to minimize the number of false negatives and is appropriate for many 

database screening applications (Friesner et al., 2004). 

 

 

Figure 7: The docking process in Glide starts with the generation of a set of initial lig-
and conformations. The generated conformations are then roughly positioned, scored, 
and refined (first two steps of the depicted “docking funnel”). A small number of the 
best refined poses (about 400) are then minimized on an OPLS force field. Finally, a 
post docking minimization (PDM) is performed which uses the Monte Carlo sampling 
method to examine nearby torsional minima (Friesner et al., 2004; “Docking and Scor-
ing | Schrödinger”, n.d.). 

 

2.3.3.1.2 Semi-rigid docking – Extra Precision (XP) 

XP Glide sampling starts with the same methodology as the aforementioned SP Glide 

docking algorithm. However, it uses a wider “docking funnel” which provides a 

greater diversity of docked structures. It is necessary that SP produces at least one 

structure with a properly docked key fragment (Friesner et al., 2006). 
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Afterwards XP sampling attempts to build better-scoring poses by assigning various 

fragments of a molecule as anchors and starting from each anchor. The growing of 

sidechains from relevant positions of the anchors are initiated and unsuitable 

sidechains are rejected based on steric clashes, as the anchor fragment is already 

placed in the binding site and the sidechain building takes place there. Additionally, 

a rough scoring function is performed to screen the initial side chain conformations. 

The combination of constant pruning by screening and clustering algorithms leads 

to the creation of a high resolution sampling (Friesner et al., 2006). 

After growing the individual sidechains, candidate structures are selected and min-

imized and a grid-based water addition is performed (Friesner et al., 2006). Finally, 

the scoring function for the GlideScore is computed, which is, compared to the SP 

scoring function, “harder” and applies severe penalties for poses that violate certain 

physical chemistry principles. The objective of the scoring function of XP is to mini-

mize false positives and is recommended to be used in lead optimization or other 

docking studies with a small number of ligands (Friesner et al., 2004; Friesner et al., 

2006). 

 

2.3.3.1.2 Induced fit docking – Standard 

In induced fit docking, not only the ligand, but also the protein is considered flexible. 

In the Schrödinger Software Suite this is realized by iterative combination of rigid 

receptor docking and protein structure prediction using the Glide and the Prime 

software, respectively. The induced fit docking process can be generally described 

by dividing it into four steps (Sherman et al., 2005): 

1. The first step is characterized by docking the ligands into a rigid receptor using a 

softened energy function to allow more leeway for steric clashes. 

2. For each ligand pose generated in the first step, the protein is sampled by side-

chain rearrangements and minimization of the ligand-protein complex to allow for 

minor backbone movement. 

3. Thereafter, a second round of ligand docking is performed into the induced fit 

structures of the previous step while using a hard potential function. 
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4. Finally, scoring is done by accounting for both the docking energy (GlideScore) 

and the receptor strain and solvation terms (Prime energy) (Sherman et al., 2005). 

This results in a scoring term called IFDScore (Schrödinger Release 2021-1: Induced 

Fit Docking protocol; Glide, 2021). 

During the first step of the Standard Sampling method of the Induced Fit Docking 

panel a maximum of 20 poses are retained while using a softened energy function. 

Afterwards, during the third step, which is composed of a second round of docking 

with a hard energy function, it can be decided if an XP or a SP algorithm is used for 

the docking (Schrödinger Release 2021-1: Glide, 2021). 

 

2.3.3.1.3 Induced fit docking – Extended Sampling 

The Extended Sampling method of the Induced Fit Docking protocol follows the 

same general steps as the above-mentioned Standard method. However, it performs 

an initial docking step, which not only involves the use of a softened potential, but 

also the removal of protein sidechains. The removal is decided upon using proper-

ties like solvent accessible surface areas, and up to 80 docking poses are retained 

after multiple docking runs, some of which use a trimmed receptor while others use 

an untrimmed one with softened potentials. The results from the docking runs are 

clustered to obtain representative poses (Schrödinger Release 2021-1: Induced Fit 

Docking protocol; Glide, 2021). 

During the second docking step with a hard energy function, the Extended Sampling 

protocol automatically runs the SP algorithm and, unlike for the Standard Sampling 

method, there exists no option to choose the Extra Precision algorithm (Schrödinger 

Release 2021-1: Induced Fit Docking protocol; Glide, 2021). 

 

2.3.3.2 Workflows and panels 

The Schrödinger Software Suite provides a number of panels and workflows that 

use different algorithms that will be further described in the following part of this 

chapter, which is to provide an overview of these panels and the settings that were 

https://doi.org/10.1021/jm050540c
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utilized during this thesis. The used panels were the Ligand Docking Panel, the Vir-

tual Screening Workflow, and the Induced Fit Docking panel (Schrödinger Release 

2021-1: Induced Fit Docking protocol; Glide, 2021). 

 

2.3.3.2.1 Ligand Docking panel 

The Ligand Docking panel uses the semi-rigid docking methods, where the user can 

decide between a High Throughput Virtual Screening (HTVS) precision, a Standard 

Precision (SP), and an Extra Precision mode. For this thesis, the previously de-

scribed Standard and the Extra Precision modes were used (Schrödinger Release 

2021-1: Glide, 2021; Friesner et al., 2006; Friesner et al., 2004). 

The settings for the Ligand Docking panel provide a number of options, all of which 

were kept at their default, except for the number of poses to report which was set to 

32 in order to allow an overview over the possible ligand poses. This panel was used 

for the redocking step, where both the SP and XP mode were used, as well as the 

individual docking step of this thesis, where the XP mode was used (Schrödinger 

Release 2021-1: Glide, 2021). 

 

2.3.3.2.2 Virtual Screening Workflow 

Similarly to the Ligand Docking panel, the Virtual Screening Workflow provides the 

option to use semi-rigid docking methods, for which it can be decided if HTVS, SP or 

XP modes are used. Additionally, different filtering steps may be applied, where each 

of the filtering modes represents one of the filtering steps (i.e., 10% of the ligands 

with the best Docking Scores of a HTVS run are kept, of those 10% another 10% are 

kept after a SP run and of those 10% another 10% are kept after a XP run). The Vir-

tual Screening Workflow possesses an integrated ligand preparation step as well as 

a binding site selection tool, which are necessary steps for docking (Madhavi Sastry 

et al., 2013; Schrödinger Release 2021-1: Glide, 2021). 

For the purpose of this master thesis, the settings of the Virtual Screening Workflow 

were mainly kept at their default. However, three changes were made: during the 

ligand preparation, the desalting of the ligands was performed, as this is a necessary 

step and usually performed in docking studies (Dhanjal et al., 2005; Omer et al., 

file:///C:/Users/ajoua/Downloads/Friesner
https://doi.org/10.1021/jm0306430
https://doi.org/10.1016/j.bbrep.2022.101225
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2022; Schrödinger Release 2021-1: Prime, 2021). The second change introduced 

was to perform the screening by using the SP mode, which is the recommendation 

for screening purposes because of its property to possess a “softer” and more toler-

ant scoring function (Friesner et al. 2004; Schrödinger Release 2021-1: Glide, 2021). 

Finally, the filtering was disabled to retrieve a complete list of the docked ligands in 

a ranked order after the screening (Schrödinger Release 2021-1: Glide 2021). 

 

2.3.3.2.3 Induced Fit Docking panel 

The Induced Fit Docking panel uses the induced fit protocols, where the protein and 

the ligand are both considered to be flexible, and allows the choice between a Stand-

ard Sampling and an Extended Sampling, which changes the number of reported 

poses (Schrödinger Release 2021-1: Induced Fit Docking protocol; Glide, 2021; 

Docking and Scoring | Schrödinger, n.d.). 

For the Standard mode of the Induced Fit Docking protocol, the settings were kept 

at their default, except for the Glide Redocking option, which is part of the panel and 

was changed to the Extra Precision mode. For the Extended Sampling mode, no 

changes were made to the default parameters (Schrödinger Release 2021-1: In-

duced Fit Docking protocol; Glide, 2021). These settings were used in the following 

steps of this thesis, whenever the Induced Fit Docking panel was employed. 

 

2.3.4 Redocking and its analysis 

2.3.4.1 Redocking 

Prior to any large-scaled docking studies it is important to validate the abilities of a 

docking procedure. One of the methods that have been reported for this purpose is 

to analyse the ability of the program to recreate the original, native pose of the co-

crystallized ligand. The results of a redocking validation can be analysed by compar-

ing the top ranked poses of the docking process to the initial pose of the co-crystal-

lized ligand (Mateev et al., 2022; Cole et al., 2005). 
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For the redocking studies, using both the cryo-EM and, when possible, the AlphaFold 

protein structure, all possible docking algorithms were used: The Standard Preci-

sion and Extra Precision modes using the Ligand Docking panel, and the Standard 

and Extended Sampling using the Induced Fit Docking panel (Schrödinger Release 

2021-1: Induced Fit Docking protocol; Glide, 2021). 

The results of the Ligand Docking panel may be regarded as representative for the 

results of the Virtual Screening Workflow as it mostly uses the same default settings 

and allows the choice between the use of the same precision modes as the ones used 

during the Virtual Screening Workflow (Schrödinger Release 2021-1: Glide, 2021). 

 

2.3.4.2 Analysis of redocking studies 

The first step of a molecular docking study involves the validation of the docking 

accuracy, virtual screening utility, or scoring accuracy. However, there are no estab-

lished standards regarding this critical step in the docking process (Jain, 2007). 

One of the possible solutions consists in measuring the pose-prediction success 

rates of the chosen algorithm to recreate the original pose of a co-crystallized ligand 

(Mateev et al., 2022; Cole et al., 2005). This procedure is called redocking, and a 

common metric used to measure the distances of the predicted pose and the native 

ligand pose is the root-mean-square deviation (RMSD) of a redocked pose to the 

given pose of the co-crystallized ligand (Cole et al., 2005; Bell & Zhang, 2019). 

For the calculation of the RMSD of the docked poses, Schrödinger provides a number 

of options and panels, one of which is the Superposition panel, accessible through 

the Maestro software. By choosing the “Compute without changing structure” op-

tion, the superposition of the structures is done without moving the structures and 

the RMSD is calculated for the current set of atoms in their existing positions. The 

chosen method for the superposition was a superposition based on the ligand sub-

structures (Schrödinger Release 2021-1: Maestro, 2021). 

The RMSD, based on the heavy atoms of the compared ligand conformations (Schrö-

dinger Release 2021-1: Maestro, 2021), is calculated the following way: 

https://doi.org/10.1186/s13321-019-0362-7
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Figure 8: Equation for the calculation of the root-mean-square deviation, where N is 
the number of atoms in the ligand and di is the Euclidean distance between the ith pair 
of corresponding atoms (Bell & Zhang, 2019). 

However, the exclusive use of the RMSD is not recommended, and an additional 

careful interpretation of the resulting numerical measures through interaction-

based measures and visual inspection is seen as necessary. This is needed because 

docking programs may present solutions that have a low RMSD but form interac-

tions with the protein different from the experimentally observed ligand (Cole et al., 

2005). 

The definition of the cut-off for a good result is frequently set at a RMSD of 2 Å and 

a RMSD of 2-3 Å as partial success (Cole et al., 2005). For example, Mateev et al. have 

defined values below 1 Å as excellent, from 1-2 Å as good, from 2-3 Å as moderate, 

and above 3 Å as wrong/incorrect (2022). The choice for these cut-offs is arbitrary 

but has found common use (Cole et al., 2005). 

 

2.3.5 Virtual Screening and its analysis 

In typical drug discovery settings, the main stages include target selection, hit iden-

tification, lead optimization, and preclinical and clinical studies. Two of those steps, 

hit identification and lead optimization, are intertwined with computational model-

ling, which includes structure based virtual screening (Kontoyianni, 2017). The ad-

vantage of virtual screening over in vitro high-throughput screenings is the possibil-

ity to process thousands of compounds in short time and therefore reduce the num-

ber of compounds that are afterwards used for in vitro testing. This procedure re-

duces the costs significantly (Gimeno et al., 2019). 

Virtual screening has seen multiple successes over the past years (Sethi et al., 2020) 

and is based on the idea of docking a library of small compounds into the binding 

pocket of a protein (Kontoyianni, 2017). A fraction of the ranked compounds is then 

https://doi.org/10.1002/prot.20497
http://dx.doi.org/10.13040/IJPSR.0975-8232.13(3).1099-07
https://doi.org/10.1002/prot.20497


26 

moved forward toward hit identification. The underlying principle is the assump-

tion that the virtual screening is able to differentiate between active and inactive 

compounds and to score all actives at the top of the returned list. As the success rates 

of screening methods are low and the goal of them is not to find all hits, but only a 

sufficient number of possible scaffolds for initial discovery efforts, it is necessary to 

reconfirm the results (Kontoyianni, 2017). 

The Virtual Screening Workflow, which was described in the previous chapters 

(2.3.3.2), was used for the assessment of the ability of Glide to provide a potentially 

successful virtual screening framework (Schrödinger Release 2021-1: Glide, 2021). 

This workflow was applied to the protein structure that was obtained by cryo-EM 

experiments (Niu et al., 2021; Schrödinger Release 2021-1: Glide, 2021). 

 

2.3.5.2 Analysis of virtual screening runs 

As previously described, virtual screening workflows consist in computational 

methodologies, which result in predictions as the output of the screenings. These 

predictions need to be validated both in silico and in vitro or in vivo, which is often 

done by screening a library that includes known active molecules as well as known 

inactives (or decoys). Active compounds are compounds that have been reported to 

possess a certain activity towards the target protein. As these in vitro assays are re-

porting a range of activity values, the threshold over which the compounds are con-

sidered to be active is arbitrary. However, compounds are usually considered to be 

active when they fall into a micromolar and nanomolar range: the higher the activity 

threshold for active compounds, the more restrictive the virtual screening. Similarly, 

the inactive compounds are the ones that have been reported to have a low activity 

towards the target protein in in vitro test. (Gimeno et al., 2019). 

Afterwards, a number of statistical measures are calculated in order to assess the 

performance of the virtual screening and its ability to tendentially rank the active 

compounds above the inactives (Gimeno et al., 2019; Schrödinger Release 2021-1: 

Glide, 2021). 

The most important statistical characteristics of a virtual screening that have to be 

inspected in order to judge the performance are called enrichment metrics. Glide 

enables to calculate these metrics by using the Enrichment Calculator Panel, for 

https://doi.org/10.1038/s41586-021-04212-9
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which the output of a screening run, a file containing only the screened active com-

pounds, and the number of decoys/inactive compounds is needed as an input 

(Schrödinger Release 2021-1: Maestro, 2021; Gimeno et al., 2019). 

The enrichment metrics calculated by the Enrichment Calculator Panel are the 

Boltzmann-enhanced Discrimination Receiver Operator Characteristic (BEDROC) 

area under the curve, Receiver Operator Characteristic (ROC) area under the curve, 

Area Under the Accumulation Curve (AUAC), a number of (modified) enrichment 

factors, Efficiency in distinguishing actives from decoys/inactives (Eff), and the av-

erage Fraction of Outranking Decoys (FOD). Additionally, its output includes a plot 

of the ROC curve and a % Screen Plot, which shows the percentage of actives recov-

ered against the percentage of structures screened (Schrödinger Release 2021-1: 

Maestro, 2021). 

The calculations of some of the various enrichment metrics that were used for the 

analysis of the virtual screenings during this thesis are performed as described in 

the following section of this chapter. 

As docking produces a continuous output (Docking Score), different thresholds can 

be applied to the score to produce a discrete (binary) classifier in order to predict 

the class membership of the screened compounds. In this case, the two classes are 

the active compounds and the inactive compounds (Schrödinger Release 2021-1: 

Glide, 2021; Fawcett, 2006).  

The ROC curve is depicted by plotting the false positive rate against the true positive 

rate for various thresholds (Fawcett, 2006) and The ROC area under the curve is 

typically described as the probability of an active appearing before an inactive 

(Schrödinger Release 2021-1: Maestro, 2021; Fawcett, 2006). 

In virtual screening, the ideal case is the ranking of the active compounds at the 

top of the screening output. However, realistically this is never the case (Kontoy-

ianni, 2017). Because of the nature of screening methods of being used to move 

forward a fraction of the top results of a screening run toward hit identification 

(Kontoyianni, 2017), it is necessary to judge the ability of the used method to en-

rich a sufficient number of actives at the top of the output (Truchon & Bayly, 

2007). The key requirement for success is therefore that it must rank actives very 
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early in the larger set of compounds, an ability towards which the ROC metric is 

not sensitive (Truchon & Bayly, 2007). 

For this reason, the Enrichment Factor was chosen as an additional metric for the 

analysis of the results. The Enrichment Factor is a measure of how much the sam-

ple is enriched after a filter or a series of filters is applied and is determining how 

many more actives are found within a defined fraction (for example, the top 10% 

of the screening results) relative to a random distribution (Truchon & Bayly, 

2007; Gimeno et al. 2019). 

The Enrichment Factor is defined as: 

𝐸𝐹 =
𝑎 𝑛⁄

𝐴 𝑁⁄
 

a is the number of actives found in sample size n and A is the total number of 

actives found among the total number of ligands N (Schrödinger Release 2021-1: 

Maestro, 2021). The advantages of this method are its capability to compare the 

enrichment to a random selection of compounds and not to weigh all compounds 

equally. One of the disadvantages is that the Enrichment Factor is weighing all 

compounds within the cut-off equally, which means that it is not able to distin-

guish between algorithms that have an equal Enrichment Factor but different 

rankings within the cut-off (Truchon & Bayly, 2007). 

A different way to illustrate the early enrichment is provided by the Enrichment 

Calculator Panel, which is able to display a plot of the percentage of actives re-

covered against the percentage of structures screened and is therefore a visual 

representation of the Enrichment Factor while not being bound to certain cut-

offs for the weighing of compounds (Schrödinger Release 2021-1: Maestro, 

2021). 

 

2.3.6 Individual docking and its analysis 

Induced fit docking, which considers not only the docked ligand, but also the protein 

as flexible, is associated with a significant computational expense and is therefore 

not suited for the use in virtual screening settings (Du et al., 2016). Similarly, the 

https://doi.org/10.3390%2Fijms17020144
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Extra Precision mode in Glide is computationally more demanding than the Stand-

ard Precision, which was used for the virtual screening tasks of this master’s thesis 

(Friesner et al., 2016). 

Consequently, a solution had to be found in order to be able to evaluate these dock-

ing modes for their use in scoring and enriching in drug discovery of SGLT2 inhibi-

tors. For this purpose, a series of 7 congeneric SGLT2 inhibitors with significant dif-

ferences in their activity were docked by using the above-mentioned docking meth-

ods. 

 

2.3.6.1 MM-GBSA 

As an addition to the scoring functions of the aforementioned docking protocols, 

which are the Docking Score and the IFD scores, the best complexes of the best per-

forming protocol were further minimized using the MM-GBSA methodology. The re-

sulting MMGBSA dG Bind energies may be used to estimate the binding affinities, 

and it is claimed that the ranking based on the calculated binding energies can be 

expected to agree with the ranking based on experimental binding affinity 

(Genheden & Ryde, 2015; Schrödinger Release 2021-1: Prime, 2021; “Can I relate 

MM-GBSA energies to binding affinity? | Schrödinger”, 2015). For this reason, it was 

decided to use the MMGBS dG Bind energies for the analysis of the ranking scores. 

The space surrounding the ligand, within which the minimization is conducted, was 

set at 12 Å, the solvent was defined as water, and the force field was changed into 

the force field used by the IFD protocol, which is OPLS4 (Schrödinger Release, 2021-

1: Prime, 2021; Lu et al., 2021; Grillberger 2022). 

 

2.3.6.2 Interaction fingerprint clustering 

As the validity of the docking pose of ligands is oftentimes not only dependent on 

their binding pose orientation but also on the interactions they form with the pro-

tein, the Interaction Fingerprints Panel by Schrödinger came in as a handy tool (Cole 

et al., 2005; Schrödinger Release 2021-1: Maestro, 2021). All the available interac-

tion types of the ligand with the protein within the possible distances were chosen 

for the calculation of the interaction fingerprint and the settings for the distances 
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were kept at their default parameters. The interaction fingerprints of the ligands 

and their poses were then clustered by using the average linkage method (Grill-

berger, 2022; Schrödinger Release 2021-1: Maestro, 2021). 

 

 2.3.6.3 Rank correlation 

Even though scoring functions resulting from docking studies are not accurate 

enough to predict differences in the binding affinity of compounds that have differ-

ent structures and different predicted binding modes, this may be possible in some 

cases for structurally similar compounds with the same binding mode. This was the 

case for the used SGLT2 inhibitors, which was the reason for an attempt at correlat-

ing the results of the docking runs with their reported activities. (Gimeno et al., 

2019). 

In order to correlate the results of the docking runs with the activity of the ligands, 

it was necessary to convert their activities and their Docking Scores to ranks which 

allows to calculate the Spearman correlation coefficient for ranked data. The Spear-

man correlation is used to determine the correlation between two sets of rankings 

(Myers & Well, 2002). 

The Spearman correlation possesses a number of advantages over correlation cal-

culations between two quantitative variables such as the Pearson correlation coef-

ficient, which is a measure of the extent to which two variables are linearly related, 

while the Spearman correlation is the Pearson correlation applied to ranks. The con-

version of scores to ranks is a reasonable choice if it is not assumed that equal dif-

ferences between the scores necessarily correspond to equal differences in the un-

derlying variable that is measured. Additionally, it is more robust to the effect of 

outliers and was therefore used in this case (Myers & Well, 2002). The Spearman 

rank correlation is calculated in the following way for non-tied ranks: 
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Figure 9: Calculation of the Spearman rank correlation coefficient where n is the num-
ber of pairs of measurement and Di is the difference of ith pair of the rankings (“Spear-
man rank correlation coefficient” n.d.; Myers & Well, 2002). 

The equation in figure 9 should not be used if there are tied ranks, and there exist 

modifications to the equation that can adjust for ties (Myers & Well, 2002). 

 

2.4 Machine learning based QSAR modelling 

If the three-dimensional structure of a target protein is known, the use of structure-

based approaches, some of which have been mentioned during the previous chap-

ters, are recommended for virtual screenings. However, ligand-based approaches 

may also show effectiveness, especially in cases where structure-activity relation-

ship (SAR) studies have been conducted (Gimeno et al., 2019). 

Therefore, the combination of ligand- and structure-based approaches has the po-

tential of being of particular usefulness in identifying compounds which share criti-

cal structural characteristics for the presence of activity with structures with known 

activity, while also taking into account their compatibility with the receptor 

(Gimeno et al., 2019). For this reason, it was decided to use a ligand-based approach 

to inspect and perform the prediction of SGLT2 inhibitors as an addition to the dis-

cussed structure-based approaches. 

Quantitative Structure-Activity Relationship (QSAR) is a popular ligand-based ap-

proach that is employed in order to correlate chemical molecules with their biolog-

ical and pharmaceutical activities based on their chemical structure (Keyvanpour & 

Shirzad, 2021; Shahlaei, 2013). This is done by calculating mathematical descriptors 

which are encoding molecular structures and properties in QSAR studies, like topo-

logical descriptors, constitutional descriptors, or functional groups (Shahlaei, 2013; 

Muratov et al., 2020). These descriptors are used to find a reliable relationship be-

tween the calculated values and the biological activity for a series of compounds 
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(Shahlaei, 2013; Danishuddin & Khan, 2016). This would then result in a model 

which could be used to assess the activity of new chemical entities (Shahlaei, 2013; 

Danishuddin & Khan, 2016). 

Over the years, QSAR modelling has become a tool for virtual screening, used to de-

velop models that are able to screen large databases and find probabilities of the 

molecules having activity against a protein (Barros et al., 2020).  

The use of machine learning and QSAR modelling has been progressively evolving 

over the last decades and are now closely related fields of work. Machine leaning 

methods are a subfield of computer science and have emerged from the study of 

pattern recognition and the theory of computational learning in artificial intelli-

gence. A short definition of machine learning describes it as the study to develop 

algorithms that are able to learn from their errors and to generate predictions about 

data by using a sample input to construct a model (Barros et al., 2020). 

Machine learning models can be categorized by the desired output of the model. 

Classification models are characterized by entries that are divided into two or more 

classes and the produced model is trained by data with known classes. Another type 

of machine learning model are the regression models, for which the outputs are con-

tinuous or discrete. Both of these types are solved by supervised learning (Barros et 

al., 2020). 

There are multiple machine learning algorithms used for QSAR including Random 

Forest, Support Vector Machine, k-nearest Neighbors, Artificial Neural Networks, 

naïve Bayes classifiers and logistic regression (Li et al., 2007; Mitchell, 2014; Barros 

et al., 2020). 

For the purposes of this thesis, two publicly available machine learning-based jupy-

ter notebooks provided by the Pharmacoinformatics Research Group were used to 

build classification models for SGLT2 inhibitors. The notebooks are available on 

Github (Pharmacoinformatics Research Group, 2021; Pharmacoinformatics Re-

search Group 2022) and will respectively be referred to as the Sandbox and the Re-

training notebooks throughout this thesis. The machine learning algorithms that 

were employed in the codes of these two notebooks are Random Forest, Support 

Vector Machine, k-Nearest Neighbors, and Logistic Regression. The used algorithms 

are explained below. 

https://doi.org/10.1007/978-1-0716-0150-1_7
https://doi.org/10.1007/978-1-0716-0150-1_7
file:///C:/Users/ajoua/OneDrive/Documents/Li
https://doi.org/10.1007/978-1-0716-0150-1_7
https://github.com/PharminfoVienna/Retraining_Notebook
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Random Forest 

In Random Forest (RF) algorithms, a large number of decision trees are generated 

and at the end a vote for the most popular case will be held. Decision trees are dia-

grams that allow the representation of problems involving sequential decisions and 

highlighting the risks and results during each decision. The decision trees work from 

top to bottom and choose a variable in each step that best divides the data (Barros 

et al., 2020). 

Support Vector Machine 

In Support Vector Machine (SVM) algorithms, the training data is non-linearly 

mapped to a high-dimension feature space in which a linear decision surface is con-

structed (Cortes & Vapnik, 1995). In short, a SVM model represents the training data 

as points in space in a way that leads to the points of different categories separated 

by a gap as wide as possible. Data with unknown categories will then be mapped in 

the same space and their category will be predicted depending on the side of the gap 

they fall into (Barros et al., 2020). 

k-Nearest Neighbors 

In k-Nearest Neighbors (KNN) algorithms, the output of a classification model is 

classified by a plurality of votes of its nearest k neighbors where k is an integer value 

and positive. So, the object gets assigned to the class which is most common among 

its neighbors with k determining the number of neighbors used for this classification 

(Barros et al., 2020). 

Logistic Regression 

Logistic Regression (LR) is a classification algorithm which assumes the decision 

boundaries to be linear. Each weighted feature vector from the training data is 

mapped to a value between 0 and 1 through the S-shaped logistic function and this 

value is interpreted as the probability of an example belonging to one of the classes. 

The learning algorithm tunes the weights to classify the training data correctly 

(Gudivada et al., 2016). 

 

https://doi.org/10.1007/978-1-0716-0150-1_7
https://doi.org/10.1007/978-1-0716-0150-1_7
https://doi.org/10.1007/978-1-0716-0150-1_7
http://dx.doi.org/10.1016/bs.host.2016.07.010
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2.4.1 Sandbox notebook 

The PharminfoVienna Sandbox is a tool that allows the user to gather data and cal-

culate descriptors by using a KNIME workflow, that has been partially described in 

the ligand selection section of the docking chapter of this thesis (2.3.1.1), and build-

ing classification models by making use of a Jupyter notebook for machine learning 

based QSAR models (Pharmacoinformatics Research Group, 2021). 

The output of the KNIME workflow, which requires the setup of a docker and an 

appropriate Python environment, provides a file in the SDF format with the stand-

ardized molecules and their classification (into actives and inactives) depending on 

their pChEMBL value and if it crosses the set threshold. From this SDF file, the work-

flow calculates a number of RDKit descriptors and adds CSV format files to the out-

put folder. This includes a training and a test set as well as a file for all compounds 

containing the descriptors of the molecules (Pharmacoinformatics Research Group, 

2021). 

The Jupyter Notebook is employed for the model building, using the programming 

language Python, and accessing the notebook also requires the setup of a docker. 

The target list in the Jupyter Notebook has to be modified in order to include the 

desired targets, which was SGLT2 in this case, and the input folder has to include the 

four CSV files provided by the KNIME workflow (Pharmacoinformatics Research 

Group, 2021). 

 

Figure 10: The first step to be done in the Jupyter Notebook requires the selection of 
the desired target by typing the ChEMBL IDs of the targets into the "options"-brackets. 
In this case, this was CHEMBL3884, which is the ChEMBL ID of SGLT2 (Pharmacoin-
formatics Research Group, 2021). 

https://github.com/PharminfoVienna/sandbox
https://github.com/PharminfoVienna/sandbox
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Furthermore, a grid-search for the hyperparameters of the classifiers must be per-

formed, as the default parameters in the notebook are only a trivial example (Phar-

macoinformatics Research Group, 2021). The parameters chosen for the grid-search 

of this thesis were as follows: 

 

For Support Vector Machine:  C: 0.01, 0.1, 1.0, 10.0, 100.0 

     Gamma: 0.01, 0.1, 1.0, 10.0, 100.0 

For Random Forest:   n_estimators: 10, 25, 50, 75, 100, 200, 300 

     max_depth: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 

For k-nearest Neighbors:  n_neighbors: 3, 5, 7, 9, 11, 13, 15, 17, 19 

 

The classifiers used in the notebook are three of the previously discussed classifica-

tion algorithms: Random Forest, Support Vector Machine, and k-nearest Neighbors. 

For the validation and evaluation of the models using the test set, a number of sta-

tistical metrics are provided as well as a Confusion Matrix, a Precision-Recall Curve, 

and a ROC curve. The best performing models from each of the classifiers are auto-

matically chosen, but the other models are also included in the output of the code 

(Pharmacoinformatics Research Group, 2021). 

 

2.4.2 Retraining notebook 

Similarly, the Retraining notebook is a tool that provides the user with the option to 

generate machine learning based models for the classification of compounds by us-

ing a Python coded Jupyter Notebook. Like the Sandbox notebook, this notebook in-

cludes a section for the standardization of molecules and the calculation of de-

scriptors. However, the standardization of the molecules was carried out by using 

the KNIME workflow of the PharminfoVienna Sandbox in order to ensure compara-

bility with the output of the Sandbox notebook (Pharmacoinformactics Research 

Group, 2022). 

Afterwards, the SDF file was used for the creation of a training and a test set by mod-

ifying the Retraining notebook and a number of RDKit descriptors were calculated. 

The activity classification was also provided by the KNIME workflow, although the 

https://github.com/PharminfoVienna/sandbox
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column name had to be changed in order to be used by the notebook (Pharmacoin-

formatics Research Group, 2022). 

For the generation of the models, all four discussed classifiers were used: Random 

Forest, Support Vector Machine, k-nearest Neighbors, and Logistic Regression. Anal-

ogously to the Sandbox notebook, statistical metrics are provided for the evaluation 

of each of the models. Despite the parallels shown between the two notebooks, ad-

ditional modifications had to be made to the script to create comparable outputs 

between them because of certain differences of the two codes (Pharmacoinformat-

ics Research Group, 2022). 

As the Retraining notebook was created for the generation of models for certain 

transporter proteins, the hyperparameters were already pre-selected. However, 

SGLT2 was not among the transporter proteins for which the notebook was created, 

which raised the necessity to modify the notebook for the implementation of a grid-

search. The same parameters for the grid-search of the models were chosen as for 

the grid-search used in the Sandbox notebook (Pharmacoinformatics Research 

Group, 2022). 

 

Figure 11: The Retraining notebook provides pre-selected hyperparameters for 6 
targets. A grid-search had to be implemented, because SGLT2 is not among the targets 
for which the hyperparameters are pre-selected. The figure shows the code which 
realises the grid-search, which was implemented using scikit-learn (Pedregosa et al., 
2011) 

Unlike the Sandbox notebook, the Retraining notebook does not provide a Confusion 

Matrix or a ROC curve for the evaluation of each model, which was also added as a 

modification to the code provided on GitHub (Pharmacoinformatics Research Group 

group, 2022). 

https://github.com/PharminfoVienna/Retraining_Notebook
https://github.com/PharminfoVienna/Retraining_Notebook
https://github.com/PharminfoVienna/Retraining_Notebook
https://github.com/PharminfoVienna/Retraining_Notebook
https://github.com/PharminfoVienna/Retraining_Notebook
https://github.com/PharminfoVienna/Retraining_Notebook
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Figure 12: The Retraining notebook does not provide Confusion Matrices and ROC 
curves in order to allow a visual evaluation of the computed models, which is the rea-
son for the addition of the shown modifications. The figure shows the code for the Con-
fusion matrix of the Support Vector Machine model using scikit-learn and Matplotlib 
(Pedregosa et al., 2011; Hunter, 2007). 

 

2.4.3 Evaluation of the model performances 

Retrospective validation of machine learning models and challenging the potential 

utility of the models for predictions by applying them to data that has not been part 

of the model building process is recommended to be standard practice. This data is 

usually called external test set and the validation is carried out through cross-vali-

dation. Bender et al. recommend computing an array of statistical metrics for the 

validation instead of a single user-defined one and to use them as an ensemble to 

make use of their complementary nature (2022). 

Both notebooks provide multiple metrics: Accuracy, Sensitivity, Specificity, Bal-

anced Accuracy, F1 score, ROC AUC, Precision, Matthews Correlation Coefficient 

(MCC), and Recall were part of the validation sections of the notebooks and their 

overall results were used for the evaluation of the performances over different ac-

tivity thresholds and different classifiers (Pharmacoinformatics Research Group 

2021; Pharmacoinformatics Research Group 2022). 

 

2.5 Ligands with unknown activity 

The aim of this thesis is to assess and provide different methods for the in silico pre-

diction of the activity of ligands with unknown in vitro and in vivo activity. 

https://github.com/PharminfoVienna/sandbox
https://github.com/PharminfoVienna/sandbox
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These methods were then applied to a series of in-house potential inhibitors of 

SGLT2 with unknown activity that were synthesized and designed by the Pharma-

ceutical Chemistry subdivision of the University of Vienna (Kirchweger, Rollinger & 

Kowalska, 2022).  

Overall, 89 compounds had been synthesized, some of which displayed activity 

against the nematode C. elegans. However, C. elegans does not possess the SGLT2 

and it was therefore not possible to deduct the ability to bind to SGLT2 from the 

activity data stemming from tests on C. elegans (Kirchweger, Rollinger & Kowalska, 

2022). 

As the ligands will potentially be patented, it is not possible to present or describe 

their molecular structure in this thesis. However, the ligands will be referred to by 

their codes in order to make the comparison of the results of the different in silico 

methods possible. 
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3 Results 

3.1 Structure alignment 

As one of the aims of this thesis is to evaluate the suitability of the SGLT2 structure 

provided by AlphaFold for docking purposes, the characterization of the binding site 

and its comparison to the binding site provided by the cryo-EM resolved structure 

proved to be a necessary step. This was achieved by carrying out a superposition of 

the two SGLT2 structures, which was performed both by using Schrödinger and 

MOE (Schrödinger Release 2021-1: Maestro, 2021; Molecular Operating Environ-

ment (MOE) 2020.09, 2020). The output was inspected by calculating the RMSD and 

performing visual inspections of the binding site as explained in chapter 2.2. 

 

3.1.1 Superposition and binding site comparison 

The superposition of the two proteins resulted in relatively similar RMSDs in both 

programs, 1.193 Å in Schrödinger and 1.210 Å in MOE, which correlated with a vis-

ual inspection, which allowed to conclude that the backbones of the two structures 

show a high similarity. However, a superposition based on the binding site resulted 

in two very different outcomes for the two programs. While MOE showed a RMSD of 

1.202 Å for a superposition based on the binding site, the superposition panel in 

Schrödinger returned a RMSD of 6.891 Å, which is such a significant difference that 

it prompted a visual inspection of the binding sites regarding possible differences. 

The results of the visual inspection led to the conclusion that, while the protein back-

bone seems to be calculated accurately by AlphaFold, the amino acid orientation at 

the binding site shows considerable differences which could lead to the arising of 

issues during the rigid docking processes. For this reason, the interactions and 

clashes of the co-crystallized empagliflozin with the AlphaFold structure were as-

sessed. This was achieved by superposing the AlphaFold structure with the cryo-EM 

resolved structure and inspecting the residues within 5 Å of the ligand for clashes 

and contacts with the ligand. It became obvious that the differences in the orienta-

tion of the amino acids led to a high number of clashes with empagliflozin, which 

was the case for both programs and for both the overall structure superposition and 
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the superposition based on the biding site. In the following paragraph, an explana-

tion of the observed clashes after performing a superposition based on all amino 

acid residues is presented as an example for the results of both settings and both 

programs. 

As can be seen in figure 13, the co-crystallized empagliflozin shows a number of 

clashes and bad contacts with the AlphaFold structure. One of the amino acids in-

volved in the clashes is aspartic acid 454, which clashes with the tetrahydrofuran 

substructure of empagliflozin. The backbone of phenylalanine 453 also shows 

clashes with the tetrahydrofuran substructure and, in addition to that, its aromatic 

sidechain shows bad and “ugly” contacts with the distal benzene ring of empagli-

flozin. Threonine 87 clashes with the oxygen, which serves as a linker between the 

distal benzene ring and the tetrahydrofuran, and glycine 83 and leucine 84 also 

show contacts with the distal benzene. Histidine 80 shows bad contacts with the 

proximal benzene ring and the carbon linker between the proximal and the distal 

benzene ring. Finally, serine 287, aspartic acid 75, and glutamic acid 457 show 

clashes with the glucose moiety. 
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Figure 13: Empagliflozin in its pose, as elucidated via cryo-EM, inside the binding site 
of the superposed AlphaFold structure. The picture was generated by using Maestro, 
where there is an option to show various interactions by using the interactions panel. 
It can be used to visualize non-covalent bonds, pi interactions, and contacts/clashes. 
In this case, there are no non-covalent bonds or pi interactions, but a number of “bad” 
and “ugly” contacts/clashes, which are indicated by dotted lines (orange = bad and red 
= ugly). Carbon atoms of the ligand are shown as blue, oxygen atoms as red, and chlo-
ride as green (Schrödinger Release 2021-1: Maestro, 2021). 
 

3.2 Redocking 

3.2.1 Characteristics of the binding site 

An overview of the overall- and binding site characteristics of SGLT2 as elucidated 

with the help of cryogenic electron microscopy (Niu et al., 2021) was briefly pre-

sented in the introductory chapter 1.4.1. As the following chapters will include the 

analysis of the redocking of empagliflozin and the docking of various ligands into the 

binding site, the interactions of empagliflozin with SGLT2 at its binding site and the 

pose shown in the cryo-EM structure are introduced here in order to allow a com-

parison with the docking results. 

As can be seen in Figure 14, the ligand shows a number of hydrogen bonds at the 

sugar binding site of SGLT2, where various amino acids make contact with the hy-

droxy groups of the ligand. Additionally, the two benzene rings at the hydrophobic 
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tail of the ligand show pi-pi interactions with two aromatic amino acids. These in-

teractions are usually defined as the attractive interaction between two parallel or 

face-to-face oriented aromatic systems (Fang, 2013). The amino acids involved are 

phenylalanine 98, which interacts with the distal benzene ring, and histidine 80, 

which interacts with the proximal ring. 

The binding of SGLT2 inhibitors involve the binding of sodium, but the sodium bind-

ing site has not been determined yet (Niu et al., 2021). 

 

Figure 14: Interactions of empagliflozin with SGLT2. For this illustration, the Ligand 
Interaction Diagram panel in Maestro was used, which shows the amino acids with 
polar side chains as light blue, the ones with hydrophobic side chains as green, posi-
tively charged side chains as red, negatively charged side chains as blue, and special 
cases like glycine as white. Furthermore, hydrogen bonds are illustrated as violet ar-
rows and pi-pi interactions as green arrows (Schrödinger Release 2021-1: Maestro, 
2021). 

 

3.2.2 Redocking SGLT2 

In order to evaluate the ability of the various docking algorithms to dock ligands in 

a correct and accurate pose into the cryo-EM resolved receptor, the co-crystallized 

https://digitallibrary.tulane.edu/islandora/object/tulane%3A25609/datastream/PDF/view
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empagliflozin was redocked into the SGLT2 binding site (Mateev et al., 2022; Cole et 

al., 2005). The ability to recreate the co-crystallized pose was judged by visual in-

spection as well as RMSD calculation and inspection of the formed interactions (Cole 

et al., 2005).  

For the analysis of the docking accuracy of each docking algorithm, the best ranked 

pose was chosen, using the emodel score to rank the poses, as recommended by 

Schrödinger (Schrödinger Release 2021-1: Glide, 2021). 

 

This was performed with all four available 

docking algorithms, where all four of them 

reached an RMSD that was either in the “ex-

cellent” (below 1 Å) or “good” category (1-2 

Å) as defined by Mateev et al. (2022) 

The results of the redocking studies are sum-

marized in Table1. The Extra Precision mode 

was able to perform best regarding the RMSD 

category and the best ranking pose from this 

mode reached a RMSD of 0.919 Å. 

The properties of the docking results will be 

discussed here by using the results of the Ex-

tra Precision mode, which is a semi-rigid 

docking algorithm, where the ligand is con-

sidered flexible, but the protein is not 

(Schrödinger Release 2021-1: Glide, 2021). 

Even though the pose calculated by the XP 

mode for its top ranking entry shows the 

lowest RMSD compared to the other docking modes, there are still a number of ob-

vious differences regarding the orientation of its tail. 

As can be seen in Figure 15, the orientation of the distal benzene ring is slightly 

twisted in comparison to the co-crystallized pose. This difference can be explained 

by an evaluation of the differences of the simulated interactions of the docking pro-

Figure 15: The co-crystallized pose of 
empagliflozin at the SGLT2 binding 
site is shown (blue) together with the 
top ranked pose of the redocked em-
pagliflozin (violet). The surface of the 
binding site is shown as a grey mesh, 
while the protein backbone is illus-
trated as grey ribbons. 

http://dx.doi.org/10.13040/IJPSR.0975-8232.13(3).1099-07
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cess and the interactions formed by empagliflozin with SGLT2 in their co-crystal-

lized state. Figure 16 shows the interactions formed by the docking process: Unlike 

the co-crystallized pose, the distal benzene ring does not show any interactions here, 

which allows the ring to rotate. In contrast, the co-crystallized pose shows an inter-

action with phenylalanine 98 that can be described as pi-pi-stacking. 

 

Additionally, the tetrahydrofuran located at the distal end of empagliflozin shows a 

slight deviation from the co-crystallized pose. This is explained by its interaction 

with tyrosine 526, which is an interaction computed by the docking algorithm, but 

is not apparent in the co-crystallized pose. 

Similarly, the Standard Precision, the IFD-Standard, and the IFD-Extended Sampling 

modes formed the same interactions at the tetrahydrofuran ring of empagliflozin as 

formed by the Extra Precision mode and showed a deviation from the co-crystallized 

ligand at this position. 

Figure 16: The interactions of the redocked empagliflozin as computed by the Extra 
Precision docking mode in Glide. The distal benzene ring does not form a pi-pi stacking, 
which is the reason for its deviation from the co-crystallized pose. Furthermore, the 
tetrahydrofuran shows an interaction which is not formed in the co-crystallized struc-
ture and leads to another difference in the ligand’s orientation. 
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In contrast, the divergence of the ligand at the distal ring that was shown by the 

Extra Precision docking was not shared by the other docking modes, which were 

able to simulate the pi-pi-stacking of the distal ring with phenylalanine 98. In con-

clusion, all of the docking protocols for the cryo-EM resolved SGLT2 structure met 

the predefined criteria (Mateev et al., 2022) for being considered appropriate for 

further analyses of their ability to dock and score SGLT2 inhibitors. The best perfor-

mance regarding the achievement of a low RMSD was shown by the Extra Precision 

mode, and the methods considering the protein to be rigid performed better in gen-

eral. However, this has to be seen in the context of analysing the properties of the 

formed interactions, where the Extra Precision mode showed a deviation from the 

co-crystallized ligand, which was not shown by the other docking algorithms. Of the 

Induced Fit Docking algorithms, the Extended Sampling method performed worse 

than the Standard Method, which may be explained by the use of the Standard Pre-

cision algorithm during the Extended Sampling protocol of the Induced Fit Docking 

(Schrödinger Release 2021-1: Induced Fit Docking protocol; Glide, 2021). 

 

 

 

 

 

 

 

 

3.2.3 Redocking AlphaFold 

Because of the clashes that the AlphaFold structure displayed with the co-crystal-

lized empagliflozin during the superpositioning tasks, which were explained in 

chapter 3.1, the AlphaFold structure was deemed inappropriate for docking pro-

Docking 
Algorithm 

RMSD (Å) 

Standard 
Precision 

1.135 

Extra 
Precision 

0.919 

IFD – 
Standard 

1.2098 

IFD – 
Extended 

1.2328 

Table 1: The redocking results in the cryo-EM structure of SGLT2. All algorithms per-
formed well and within the predefined bounds, with the Extra Precision mode achiev-
ing the lowest RMSD for its top ranked pose. 

http://dx.doi.org/10.13040/IJPSR.0975-8232.13(3).1099-07
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cesses where the protein is considered to be rigid. However, the possibility of dock-

ing ligands into proteins, for which the protein flexibility is taken into account, made 

it possible to analyse the ability of the AlphaFold structure to serve as a target for 

studies using the Induced Fit Docking protocol (Schrödinger Release 2021-1: In-

duced Fit Docking protocol; Glide, 2021). 

However, the results were not encouraging, and the recreated poses did not resem-

ble the pose that was shown by the co-crystallized empagliflozin. For the Standard 

mode of the Induced Fit Docking protocol, the top ranked pose according to the 

emodel score possessed a RMSD of 9.142 Å to the co-crystallized pose.  

These results from the Standard mode were reflected by the Extended Sampling 

mode, where the recreated pose was also not placed into an accurate orientation 

and conformation, and the RMSD achieved by this protocol was 7.803 Å (figure 17). 

For these reasons, it was decided not to use the AlphaFold structure of SGLT2 for 

any of the following tasks and to regard the cryo-EM structure as more appropriate 

for the purposes of this thesis. 

 

Figure 17: Top ranked pose from the redocking study using the AlphaFold structure 
and the Extended Sampling IFD protocol. The original pose from the cryo-EM structure 
is shown in light blue, while the redocked pose is shown in violet. 
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3.3 Virtual screening 

As mentioned in chapter 3.1 and 3.2, the AlphaFold structure proved to be unsuita-

ble for the purposes of this thesis because of the clashes it showed with the co-crys-

tallized ligand when superimposed with the cryo-EM structure, and the inability of 

the program to redock the ligand into an accurate pose. 

For this reason, the virtual screening was performed by using the cryo-EM structure 

and the Standard Precision mode, as recommended (Friesner et al., 2004). 

 

3.3.1 Ligands 

The number of the ligands that were retrieved from the ChEMBL data base was 1229 

and the activity they showed ranged from a pChEMBL of 4 to slightly below 10. 

The ChEMBL data base provides a standardised value to convey the potency of the 

tested compounds, which is called pChEMBL and is calculated as the negative log 10 

molar of the IC50, XC50, EC50, AC50, Ki, Kd, or potency (Allaway et al., 2018; Gaulton 

et al., 2016). 

The activities and the number of ligands that belonged to certain pChEMBL ranges 

are summarized in Figure 18 in the form of a histogram plot. For the calculation of 

this plot, the ligands that had been tested multiple times, across multiple assays, 

were excluded as their number proved to be insignificant. 

https://doi.org/10.1186/s13321-018-0297-4
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Figure 18: A histogram plot of the retrieved ligands for docking purposes and their 
activities. The x-axis shows the pChEMBL ranges and the y-axis depicts the number of 
compounds belonging to each of the pChEMBL ranges. The plot was created by using 
Matplotlib, which is a visualization tool for the programming language Python 
(Hunter, 2007). 

 

3.3.2 Enrichment calculations 

The choice of a threshold for the classification of ligands with known activity values 

into actives and inactives is arbitrary, but the threshold above which compounds are 

considered to be actives is usually set in the micromolar or nanomolar range 

(Gimeno et al., 2019). As the pChEMBL value is defined as the negative log 10 molar 

of the different activity values, a micromolar value of 1 (= 0.000001) would corre-

spond to a pChEMBL value of 6 and a nanomolar value of 1 (= 0.000000001) would 

correspond to a pChEMBL value of 9. 

An analysis of the SGLT2 inhibitors currently approved for therapeutical use reveals 

that the majority of compounds have an IC50 value ranging from 1 to 10 nM, with 

empagliflozin having an IC50 of 3.1 nM (Grempler et al., 2011), dapagliflozin one of 

1.0 nM (Braem et al., 2014), canagliflozin one of 2.2 nM (Nomura et al., 2010), and 

sotagliflozin one of 1.8 nM (Lapuerta et al., 2015). These activities correspond to 

https://doi.org/10.1007/7355_2014_41
https://doi.org/10.1021/jm100332n
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pChEMBL values which are located between 8 and 9, which can be used for the 

choice of an appropriate activity threshold for the discovery of new potential inhib-

itors and as a basis for the calculation of enrichment metrics. 

In addition to the general agreement of using a micromolar to nanomolar range for 

the activity threshold (Gimeno et al., 2019), other factors influence the choice of an 

appropriate threshold. For the assessment of virtual screening protocols, it is im-

portant to have a reasonable quantitative relationship of the actives and inactives. 

Because of the property of virtual screening to be a method that aims to retrieve a 

significant larger fraction of true positives from a database than a random com-

pound selection, it is necessary to use a database with a large number of inactives 

(Kirchmair et al., 2008). Therefore, it came in handy to select a pChEMBL threshold 

that is restrictive enough to classify the actives and inactives into an appropriate 

quantitative relationship and is located in the range of the activity values of estab-

lished inhibitors (Gimeno et al., 2019; Kirchmair et al., 2008). 

For above-mentioned reasons, the calculation of the enrichment was conducted 

twice, with the threshold set to 8 and 9 for each calculation, respectively. These 

thresholds are in the micromolar or nanomolar range and were restrictive enough 

to ensure an appropriate balance between the inactives and actives. 

The results of both thresholds were comparable to each other and are presented in 

table 2, with the early enrichment of a threshold of pChEMBL 8, which is reflected 

by the Enrichment Factor, and the Receiver Operator Characteristics (ROC) area un-

der the curve being slightly better. The 10% Enrichment Factor for a threshold of 

pChEMBL 8 was 1.5, which means that the fraction of retrieved actives in the first 

ten percent of the virtual screening results was 1.5 times higher than the fraction of 

actives in the whole database (Schrödinger Release 2021-1: Maestro, 2021). The re-

sult of the ROC area under the curve was 0.72 for a threshold of 8 and 0.68 for a 

threshold of 9. The ROC curves and the % Screen Plots of the pChEMBL threshold of 

8 are presented in the figures 19 and 20. 

The sum of the ligands that were included in the output of the Virtual Screening 

Workflow numbered 1147. Out of the 1229 ligands retrieved by the KNIME work-

flow from the ChEMBL data base, the remaining 82 were rejected during the docking 

process and therefore not included in the output of the Virtual Screening Workflow. 
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Figure 19: ROC curve of the virtual screen-
ing results, using a threshold of pChEMBL 
8 for the classification into inactives and 
actives. The ROC curve shows the true 
positive rate (y-axis; Sensitivity) plotted 
against the false positive rate (x-axis; 1-
Specificity) for different Docking Score 
thresholds (Schrödinger Release 2021-1: 
Maestro, 2021; Fawcett, 2006). 

Figure 20: % Screen Plot, which plots 
the percentage of structures screened 
(x-axis; Percent Screen) against the per-
centage of actives recovered up to this 
point (y-axis; Percent Actives Found) 
(Schrödinger Release 2021-1: Maestro, 
2021) 

Table 2: Results of the enrichment calculation. 

 

Threshold (pChEMBL) 8 9 

Enrichment Factor 
(10%) 

1.5 1.3 

Enrichment Factor 
(20%) 

1.5 1.6 

ROC area under the 
curve 

0.72 0.68 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2 Docking Score based classification 

In addition to the already discussed enrichment calculations of the virtual screening 

result provided by the Enrichment Calculator of the Schrödinger software, it was 

decided to create a classification model based on the Docking Score provided by the 

virtual screening output for a better visualization of the results and a basis for later 

appliance of the virtual screening workflow to untested data. 

For this purpose, a kernel density estimation (KDE) of the theoretical distributions 

of the actives and the inactives was calculated in order to visualize the differences 
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between the scoring of the active molecules and the inactive ones, which were clas-

sified by using the slightly better performing threshold of pChEMBL 8. A KDE plot is 

a method for the visualization of distributions and is analogous to a histogram (“sea-

born.kdeplot — seaborn 0.11.2 documentation”, n.d.). Figure 21 shows the theoret-

ical distribution of the molecules. 

The choice of a Docking Score threshold for a predicted classification of ligands into 

actives and inactives is a context-depending process and has to take into account 

practical considerations of the investigator (Hubbard & Bayarri, 2003; Triballeau et 

al., 2005). Nevertheless, using the kernel density estimation allows the calculation 

of a reasonable threshold by finding the intersection point of the two distribution 

functions. This results in the choice of a classification threshold that is the equivalent 

of a point on the upper left part of a ROC curve for various thresholds as shown in 

figure 19 (Kirchmair et al., 2008; Triballeau et al., 2005). 

The choice of a point on the upper left part of the ROC curve is a liberal strategy that 

prefers sensitivity over specificity and possesses a number of advantages over 

choosing a point on the lower left corner of the ROC curve. Choosing a point on the 

lower left corner would result in a more conservative approach that would allow to 

push the majority of inactives aside. In contrast, choosing a point on the upper left 

corner allows to take into account the uncertainty of the model while fewer actives 

would be lost (Triballeau et al., 2005). 

 

Figure 21: Kernel density estimation used for the visualization of the theoretical dis-
tribution of active and inactive ligands based on their Docking Score. Inactive ligands 
(0) are shown in blue, while active ligands (1) are shown in orange. This figure was 
plotted by using Seaborn, which is a Python data visualization library based on Mat-
plotlib (Waskom, 2021; Hunter, 2007). 
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The intersection of the two KDE plots happens to be at a Docking Score of -9.4042, 

which was used to perform a classification of the obtained data. Every ligand that 

obtained a lower Docking Score during the virtual screening was therefore classified 

as an active, and every ligand that obtained a higher Docking Score was classified as 

inactive, which resulted in 482 ligands that were predicted to be active and 665 lig-

ands that were predicted to be inactive. 

The classification based on the Docking Score resulted in a True Positive Rate of 

0.773 (Sensitivity) and a True Negative Rate (Specificity) of 0.578, and the calcula-

tion of the ROC curve, based on the Docking Score, led to an area under the curve 

(AUC) of 0.68. 

 The obtained confusion matrix and the corresponding ROC curve for this classifica-

tion are displayed in figures 21 and 22. Furthermore, a number of metrics for the 

evaluation of classification based models were calculated (table 3) in order to allow 

comparability to the machine learning based classification models, which will be 

presented in chapter 3.5. 

Metrics Results 

Accuracy 0.6661 

Sensitivity 0.7733 

Specificity 0.5785 

Balanced Accuracy 0.6759 

F1 Score 0.6757 

AUC 0.6759 

Precision 0.6000 

Matthews correlation 
coefficient (MCC) 

0.3545 

Recall 0.7733 

 

 

Table 3: Relevant metrics for the evaluation of classification based models. The major-
ity of these metrics were calculated by using scikit-learn, which is a Python module 
integrating machine learning algorithms and providing model evaluation tools, which 
were used for this thesis (Pedregosa et al., 2011),while the sensitivity and specificity 
were calculated manually. 

https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
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Figure 22: Confusion matrix for a Docking Score based classification model of SGLT2 
inhibitors. In this figure, the active class corresponds to the label “1” and the inactive 
class corresponds to the label “0”. The classification resulted in 399 ligands to be cor-
rectly classified as active and 266 ligands to be incorrectly classified as active. At the 
same time 365 ligands were correctly classified as inactive while 117 ligands were in-
correctly classified as inactive. This confusion matrix was computed by using scikit-
learn (Pedregosa et al., 2011). 

 

Figure 23: ROC curve of the Docking Score based classification for a Docking Score 
threshold of -9.402. The False Positive Rate of the classification (0.422) was plotted 
against the True Positive Rate (0.773), and the curve results in an area under the curve 
of 0.68. The dotted line represents the performance of a set of actives and inactives 
with randomly distributed scores (Triballeau et al., 2005; Kirchmair et al., 2008). The 
ROC curve was computed by using scikit-learn (Pedregosa et al., 2011) 

 

3.3.4 Applying the Virtual Screening Workflow 

The results of the evaluation of the Virtual Screening Workflow led to the conclusion 

that the workflow provides a sufficient differentiation between actives and inactives 

to apply it to new, untested ligands in order to provide a basis for further in vitro 
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testing. For this reason, the virtual screening workflow was applied to a series of 

potential inhibitors of SGLT2 with unknown activity that were synthesized by the 

pharmaceutical chemistry subdivision of the University of Vienna (Kirchweger, 

Rollinger & Kowalska, 2022). 

Because of a significant portion of the ligands possessing a reversed configuration 

at the C1 position of their sugar moiety that is known to cause the diminishing of 

activity (Bhattacharya et al., 2020), only ligands with an appropriate configuration 

were considered for the docking study in order to minimize the risk of incorrectly 

ranked ligands and to reduce costs for further in vitro tests. 

After this filtering step, only 42 of the 89 ligands were left for an application of the 

Virtual Screening Workflow and the described docking based classification. As the 

virtual screening is usually applied for finding a few promising compounds as a frac-

tion from a bigger database (Gimeno et al., 2019), the ten best performing com-

pounds and their docking scores are presented in table 4. 

However, the results of the virtual screening are not encouraging. None of the com-

pounds exceed the set threshold of a Docking Score of -9.4042 from the classification 

model of the previous chapter (3.3.2), and when the model is applied to the com-

pounds and their accompanying Docking Scores, all compounds are predicted to be 

inactive. 

Compound Docking Score 
GJB1224 -9.338 
GJB1244 -8.209 
GJB1182 -8.106 
GJB1141 -8.043 
GJB1096 -8.029 
GJB407 -7.811 

GJB1126 -7.697 
GJB392 -7.606 
GJB916 -7.583 
GJB539 -7.530 

 

Table 4: Results of the Virtual Screening Workflow for the compounds with unknown 
activity (Kirchweger, Rollinger & Kowalska, 2022). The left column shows the com-
pound codes to make a comparison with the results from individual docking and the 
machine learning tasks possible and the right column presents the respective Docking 
Scores. None of the synthesized compounds exceeds the set threshold (-9.4042) for the 
prediction as an active. 
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3.4 Individual docking 

As mentioned in chapter 2.3.6, the Extra Precision docking mode and the two In-

duced Fit Docking protocols provided by the Schrödinger Software Suite are not rec-

ommended for the purpose of virtual screening, because of their high computational 

demand (Schrödinger Release 2021-1: Induced Fit Docking protocol; Glide, 2021; 

Friesner et al., 2004; Friesner et al., 2006; Du et al., 2016). 

 

3.4.1 Ligands 

For this reason, a series of congeneric SGLT2 inhibitors with significant differences 

in their activity were docked by using the three above-mentioned docking methods, 

and the ability of the programs to rank them correctly was assessed. 

Even though, the ligands were obtained from three different publications, only ac-

tivity data from comparable assay methodologies was used (Braem et al., 2014; Lee 

et al., 2010; Ng et al., 2017). 

 

Figure 24: The SGLT2 inhibitor dapagliflozin and 6 of its analogues, which possess 
small differences in their structure, but significant differences regarding their activity. 
Their differences are highlighted in yellow. The activity data is taken from three sepa-
rate sources, with dapagliflozin and compounds 1 and 4 taken from Braem et al. 
(2014), compounds 2 and 5 taken from Lee et al. (2010) and compounds 3 and 6 from 
Ng et al. (2017). 

https://doi.org/10.1038/s41598-017-05895-9
https://doi.org/10.1007/7355_2014_41
https://doi.org/10.1038/s41598-017-05895-9
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Compound 1 differs from dapagliflozin regarding its para position of the proximal 

benzene, where no chloride is present, and its para position of distal benzene, where 

a methyl group replaces the ethoxy group of dapagliflozin. Compounds 1 and 4 differ 

only regarding the position of the methyl substitute, which is placed at the ortho 

position in compound 4 and leads to a significant activity drop (Braem et al., 2014).  

Compound 2 possesses a pyrimidine ring instead of the distal benzene of dapagli-

flozin, and its difference to compound 5 is characterized by the para position of the 

pyrimidine ring, which substitutes the ethoxy group with a hydrophobic alkyl chain. 

The added butyl chain leads to an almost two hundred fold difference in activity (Lee 

et al. 2010). 

Compound 3 shows a four hundred fold activity difference to dapagliflozin, which is 

caused by the absence of the oxygen at the sugar moiety, making it a cyclohexane. 

Compound 6 possesses a reversed configuration at position C1 of the cyclohexane, 

rendering the compound essentially inactive with an IC50 of more than 10000 (Ng 

et al., 2017). 

The presented differences in activity caused by relatively subtle differences in the 

molecular structure of the ligands make them an appropriate tool for the assessment 

of the docking protocols. For this reason, the performances of the above-mentioned 

docking algorithms were judged by ranking the ligands according to their obtained 

scores and calculating the Spearman rank correlation of the predicted ranks with 

the ranking created by the in vitro testing. 

 

3.4.2 Docking results 

In addition to the scores provided by the output of the docking runs, the resulting 

best ranked poses according to the emodel score of the docked ligands were as-

sessed by using the MMGBSA dG Bind, which provides an estimation of the binding 

https://doi.org/10.1016/j.bmcl.2010.09.103
https://doi.org/10.1038/s41598-017-05895-9
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energies for the results of the MM-GBSA based refinement (Schrödinger Release 

2021-1: Prime, 2021). The results of the docking runs are presented in table 5. 

As seen in table 5, the best performing scoring function was the Docking Score pro-

vided by the Standard Sampling of the Induced Fit Docking protocol, which was 

therefore used for further docking studies of the novel synthesized ligands (Kirch-

weger, Rollinger & Kowalska, 2022).  

 

3.4.3 Applying the IFD – Standard Sampling 

In parallel to the application of the Virtual Screening Workflow as presented in chap-

ter 3.3.4, 42 of the 89 synthesized compounds (Kirchweger, Rollinger & Kowalska, 

Scores Dapagliflozin 
Com-

pound 1 
Com-

pound 2 
Com-

pound 3 
Com-

pound 4 
Com-

pound 5 
Compound 

6 
Correla-

tion 

Activity IC50 
(nM) 

  
1.0 22 46.9 438 510 8870 > 10000 / 

IFD Standard 
Docking Score  

-14.68 -12.65 -12.89 -11.46 -12.62 -11.73 -12.25 0.7143 

IFD Extended 
Docking Score  

-10.93 -11.455 -11.414 -11.143 -10.742 -10.598 -10.917 0.6786 

IFDscore 
Standard  

-1194.73 -1191.59 -1195.69 -1190.35 -1190.08 -1193.61 -1189.19 0.6429 

XP Docking 
Score 

 
-12.462 

 
-9.902 -9.798 -11.758 -11.164 -9.848 -10.409 0.25 

MMGBSA dG 
bind 

-99.18 -85.62 -94.11 -98.25 -98.05 -109.8 -69.32 0.1429 

IFDscore Ex-
tended  

-23788.84 -23699.57 -23879.87 -23774.51 -23736.62 -23865.92 -23749.48 0.0357 

Table 5: Results of the individual docking studies. The ligand poses of each ligand from 
the output of the docking protocols were ranked by their emodel scores and the best 
scoring poses were then ranked by the displayed scoring functions. As seen in the fur-
thest right column (highlighted in green), the highest Spearman rank correlation co-
efficient was obtained by the Docking Score of the IFD Standard Sampling protocol 
with a coefficient of 0.7143. 
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2022) were tested by using the Induced Fit Docking – Standard Sampling protocol, 

which was the best performing docking approach from the individual docking step. 

The ten best performing ligands can be seen in table 6, which is shown below. 

Compound Docking Score 
Dapagliflozin (comparison) -14.684 

GJB1244 -12.850 
GJB1141 -12.816 

GJB1230 (hydrolysed) -12.230 
GJB1093 -11.999 
GJB407 -11.866 

GJB1098 -11.763 
GJB1224 -11.710 
GJB1097 -11.624 
GJB268 -11.274 

GJB1182 -11.241 
 

As the Docking Scores from the output of the IFD – Standard Sampling protocol are 

based on the Extra Precision scoring function, which uses a different algorithm for 

the scoring of the ligands than the Standard Precision (Friesner et al., 2004), the re-

sults can not be used for the Docking Score based classification model presented in 

chapter 3.3.2. For this reason, dapagliflozin, which is a known active molecule with 

an activity of IC50 (nM) = 1.0 and was used as one of the ligands for the assessment 

of the IFD protocol as discussed in chapters 3.4.1 and 3.4.2, is shown here as a tool 

for the comparison of the Docking Scores achieved by the synthesized compounds 

(Kirchweger, Rollinger & Kowalska, 2022). 

The compounds GJB1244, GJB1141, GJB407, GJB1224, and GJB1182 also appear in 

the top ranks of the Virtual Screening Output and are therefore the most promising 

candidates. However, it has to be considered that none of them were predicted to be 

active when applying the classification model presented in chapter 3.3.2. 

 

Table 6: Results of the Virtual Screening Workflow for the newly synthesized com-
pounds (Kirchweger, Rollinger & Kowalska, 2022). The left column shows the com-
pound codes to make a comparison with the results from individual docking and the 
machine learning tasks possible and the right column presents the respective Docking 
Scores. The compounds highlighted in green are also present in the ten best performing 
compounds of the Virtual Screening Workflow output. 
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3.5 Machine learning 

In addition to the described structure-based methods, a ligand based analysis of the 

SGLT2 inhibitors was conducted. The molecules retrieved and standardised by the 

KNIME workflow, which is part of the PharminfoVienna Sandbox, were used for the 

creation of various QSAR based machine learning models for the classification of 

molecules. For this purpose, the Sandbox and Retraining notebooks, which were de-

scribed in chapter 2.4, were utilized (Pharmacoinformatics Research Group, 2021). 

For the classification of the activity of the ligands from ChEMBL, the thresholds of 7 

and 8 were used and the performances of the thresholds were evaluated by using 

the balanced accuracy metric for each classifier of each notebook. This was done 

because the balanced accuracy is sensitive to class imbalances and can be used to 

deal with imbalanced datasets (Bender et al., 2022; Brodersen et al., 2010).  

For perfectly balanced datasets, the differences between the accuracy and the bal-

anced accuracy should not be substantial, while they could differ for imbalanced da-

tasets with balanced accuracy being lower in the case of applying a biased classifier 

to an imbalanced data set (Brodersen et al., 2010). A threshold of pChEMBL 7 re-

sulted in balanced accuracies that were generally lower than the accuracies, while a 

pChEMBL resulted in balanced accuracies that were virtually equal to the accura-

cies. This was true for all of the models across both notebooks. This assessment of 

the balanced accuracy metric led to the conclusion that a threshold of 8 is more ap-

propriate for this task, which is also the threshold that was chosen for the docking 

score based classification as presented in chapter 3.3.2, allowing a better compara-

bility 

Both notebooks provide a multitude of metrics for the evaluation of the perfor-

mances of the models and, as it is recommended to use an array of metrics for vali-

dation purposes, table 7, which is presented below, includes all of the metrics calcu-

lated for the models. As can be seen in the table, the Random Forest classifier per-

formed the best for both notebooks, with the Sandbox notebook achieving better 

results than the Retraining notebook. 
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 LR(1) SVM(1) RF(1) KNN(1) SVM(2) RF(2) KNN(2) 
Accuracy 0.722 0.743 0.840 0.772 0.85 0.86 0.82 

Sensitivity 0.692 0.760 0.817 0.798 0.87 0.87 0.88 
Specificity 0.744 0.729 0.857 0.752 0.83 0.86 0.78 

Balanced accuracy 0.718 0.744 0.837 0.775 0.85 0.86 0.83 
F1 score 0.686 0.721 0.817 0.755 0.84 0.86 0.82 
ROC AUC 0.718 0.744 0.837 0.775 0.85 0.86 0.83 

Precision score 0.679 0.687 0.817 0.716 0.82 0.84 0.78 
MCC 0.436 0.485 0.674 0.546 0.7 0.72 0.65 

Recall 0.692 0.760 0.817 0.798 0.87 0.87 0.88 
 

 

In addition to the presented metrics in table 7, the performances of the best per-

forming models are visualized in figure 25 where the ROC-curves and the confusion 

matrices are displayed. 

As can be seen in figure 26, the Random Forest model from the Retraining notebook 

classified the test set of the retrieved SGLT2 data the following way: 85 ligands were 

correctly predicted to be active (true positives), 19 ligands were incorrectly pre-

dicted to be active (false positives), 114 were correctly predicted to be inactive (true 

Table 7: Results of the machine learning models when applied to the test sets, shown 
as the metrics that were achieved. The best performing models are highlighted in 
green, which is the Random Forest classifier for both notebooks. Classifiers annotated 
with (1) are part of the Retraining notebook and classifiers annotated with (2) belong 
to the Sandbox notebook. Abbreviations: LR = Logistic Regression, SVM = Support Vec-
tor Machine, RF = Random Forest, KNN = k-nearest Neighbors, ROC AUC = Receiver 
Operator Characteristics area under the curve, MCC = Matthews Correlation Coeffi-
cient. 

Figure 25: ROC curves and the corresponding AUC of the best performing models from 
the Retraining and the Sandbox notebook, respectively. The ROC curve of the Retrain-
ing notebook is displayed in blue on the left side, while the ROC curve of the Sandbox is 
shown in orange on the right side. The ROC curves were computed using scikit-learn 
(Pedregosa et al., 2011)  
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negatives), and 19 were incorrectly predicted to be inactive (false negatives). Simi-

larly, the Sandbox notebook resulted in 98 true positives, 18 false positives, 106 true 

negatives, and 15 false negatives. 

 

 

 

 

 

 

 

 

 

 

3.5.1 Applying the machine learning models 

As the Random Forest models of the two notebooks showed the best performance 

during their application to the test sets, it was decided to apply them to the 42 pre-

viously described molecules with unknown activity (Kirchweger, Rollinger & Kow-

alska, 2022). 

For the preparation of the ligands, the KNIME workflow was utilized, which was also 

used for the standardization of the molecules during the model generation step. The 

implemented RDKit Standardiser, which removes the stereochemistry and filters 

out molecules with nonorganic atoms, was used for the standardization of the lig-

ands. As some of the molecules showed no differences except for their stereochem-

istry, redundant structures were filtered out using the GroupBy node (Pharmacoin-

formatics Research Group, 2021). 

For the application of the Random Forest model created by the Sandbox notebook, 

the preselected descriptors offered by KNIME workflow were chosen and calculated 

using the RDKit Descriptor Calculation node. In contrast, for the application of the 

model created by the Retraining notebook, the descriptor calculation was conducted 

Figure 26: Confusion matrices of the best performing models from the Re-
training and the Sandbox notebook, respectively. The confusion matrix of the 
Retraining notebook is displayed on the left side, while the confusion matrix 
of the Sandbox notebook is shown on the right side. 
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inside the notebook (Pharmacoinformatics Research Group, 2021; Pharmacoinfor-

matics Research Group 2022). 

For both models, all of the synthesized molecules were predicted to be inactive, 

which supports the results found by the docking based classification presented in 

chapter 3.3.2, where none of the ligands achieved a Docking Score high enough to be 

considered active. 

 

4 Conclusion 

The aim of this master’s thesis was to provide an in-silico-based method, mainly 

driven by the use of molecular docking, and QSAR modelling as an additional tool, 

for the analysis of the sodium/glucose co-transporter 2 (SGLT2) and the prediction 

of the activity of its inhibitors. 

In addition to the aforementioned aims of this thesis, one of the objectives was to 

investigate SGLT2 structures adequate for docking based approaches and the as-

sessment of the utility of the structure computed by AlphaFold. It was found that, 

while the SGLT2 structure elucidated through cryo-EM has the potential to serve as 

a powerful tool for drug discovery purposes, the structure provided by AlphaFold is 

not able to recreate the desired poses and is therefore not of utility (Niu et al., 2021; 

Jumper et al., 2021). 

For the assessment of the activity of potential SGLT2 inhibitors that have not yet 

been tested in vitro, multiple classification models were created and the ability of 

various docking algorithms and scoring functions to correctly rank molecules ac-

cording to their activity was analysed.  

Over the course of this study, a docking based classification model and a number of 

QSAR machine learning models were computed. For the docking based classification 

model the Virtual Screening Workflow (Schrödinger Release 2021-1: Glide, 2021) 

was utilized, and a Docking Score threshold of -9.4042 revealed to be the most ap-

propriate for a predicted classification into actives and inactives. The basis for this 

classification was a pChEMBL threshold of 8. 

https://doi.org/10.1038/s41586-021-04212-9
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This approach displayed a number of limitations, one of which was the high number 

of false positives obtained from the classification. This could be explained by the na-

ture of the Standard Precision mode, which was used for this classification model 

and was designed to minimize the number of false negatives (Friesner et al., 2004). 

This necessitates to further validate and inspect any positive result stemming from 

this approach. 

From the machine learning models that were analysed, it was concluded that the 

models utilizing the Random Forest classifier performed the best. 

The docking algorithms that were assessed were the IFD – Standard Sampling, IFD 

– Extended Sampling, Extra Precision, and the Standard Precision modes, which are 

part of the Schrödinger Software Suite (Schrödinger Release 2021-1: Induced Fit 

Docking protocol; Glide, 2021). Their performance was judged by the Spearman 

rank correlation coefficient that they were able to achieve, and which is used for 

correlating two rankings (Myers & Well, 2002). In this case, the rankings of scores 

computed by the docking algorithms were correlated with the ranking of com-

pounds by their activity. It was found that the IFD – Standard Sampling using the 

Docking Score for the ranking was the best performing method. 

This approach was limited by the small number of ligands (7), which was used for 

the docking and the subsequent correlation calculations. The small number of lig-

ands used is caused by the nature of the docking protocols, which is their high com-

putational expense, and by the time as a limiting factor in the docking processes (Du 

et al., 2016; Friesner et al., 2006). For further analyses of the capabilities of the IFD 

– Standard Sampling method, it would be desirable to validate the results through 

docking a larger number of compounds with known activities towards SGLT2. 

Furthermore, the methods that were developed were applied to a series of com-

pounds with unknown activity with the objective to support the development of new 

SGLT2 inhibitors. Out of a dataset of 89 compounds with unknown activities (Kirch-

weger, Rollinger & Kowalska, 2021), 42 molecules were determined to be appropri-

ate (Bhattacharya et al., 2020) for the prediction by the created classification mod-

els. However, none were predicted to be active. 

As the IFD protocol and the Virtual Screening Workflows were found to be appro-

priate tools for the ranking of molecules according to their activity, the top ranked 
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results were analysed and the overlapping molecules of the two methods were de-

termined. This suggested that the compounds GJB1244, GJB1141, GJB407, GJB1224, 

and GJB1182 were the ones with the greatest potential to be active. 

To conclude, despite the discussed limitations, the docking based virtual screening 

and classification, along with the individual docking of a small number of com-

pounds using the induced fit protocols proved to be useful tools for the assessment 

of the activities of potential SGLT2 inhibitors and may play a role in further in silico 

approaches for drug discovery purposes of SGLT2 inhibitors. Additionally, a combi-

nation with ligand based approaches, such as machine learning based QSAR models, 

may serve as a handy tool to further validate the results of the structure based ap-

proaches. 
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Figure 27: Empagliflozin at its 
binding site. The co-crystallized 
pose as elucidated by cryo-EM is 
shown in blue and binding site is 
represented by a grey mesh. 

6 Appendix 

6.1 Complete redocking results 

In addition to the results shown in chapter 3.2, the pose of the co-crystallized Em-

pagliflozin and the resulting pose of the redocking using the Standard Precision 

mode are presented in figures 27 and 28. Furthermore, the interactions as computed 

by the IFD – Standard Sampling, IFD – Extended Sampling and the Standard Preci-

sion modes are presented in the figures 29-31. 

 

  

 

 

  

Figure 28: Redocked pose of Em-
pagliflozin using the Standard 
Precision mode (purple) along-
side the co-crystallized pose 
(blue) 
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Figure 31: Interactions of the redocked empagliflozin with SGLT2 as computed by the 
IFD – Standard Sampling mode. 

Figure 29: Interactions of the redocked empagliflozin with SGLT2 as com-
puted by the Standard Precision mode. 
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Figure 30:  Interactions of the redocked empagliflozin with SGLT2 as com-
puted by the IFD – Extended Sampling mode. 
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Table 8: Results of the In-
duced Fit Docking – Stand-
ard Sampling applied to 
ligands with unknown ac-
tivity 

Table 9: Results of the Vir-
tual Screening Workflow 
using the Standard Preci-
sion mode applied to lig-
ands with unknown activ-
ity 

6.2 Complete docking results 

The complete list of the docked structures with unknown activity (Kirchweger, 

Rollinger & Kowalska, 2022) and their Docking Scores from the IFD run and the VSW 

run are shown in the table below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Virtual Screening Workflow 
Compound Docking Score 
GJB1224 -9.338 
GJB1244 -8.209 
GJB1182 -8.106 
GJB1141 -8.043 
GJB1096 -8.029 
GJB407 -7.811 

GJB1126 -7.697 
GJB392 -7.606 
GJB916 -7.583 
GJB539 -7.53 

GJB1098 -7.527 
GJB1128 -7.476 
GJB431 -7.461 

GJB1099 -7.403 
GJB1117 -7.357 
GJB1097 -7.326 
GJB1231 -7.32 
GJB1093 -7.313 
GJB1101 -7.311 
GJB493 -7.294 
GJB499 -7.248 

GJB1100 -7.248 
GJB406 -7.233 

GJB1201 -7.221 
GJB1248 -7.174 
GJB1129 -7.12 
GJB1127 -7.011 
GJB1023 -6.948 

GJB1230_hy-
drolized 

-6.931 

GJB1177-1 -6.923 
GJB1179 -6.911 
GJB1230 -6.893 
GJB1178 -6.824 
GJB1173 -6.813 
GJB268 -6.782 
GJB426 -6.759 

GJB1225 -6.755 
GJB1231_hy-

drolized 
-6.718 

GJB1172 -6.566 
GJB1167 -6.557 
GJB393 -6.548 
GJB437 -6.032 

Induced Fit Docking - Standard 
Compound Docking Score 
GJB1244 -12.85 
GJB1141 -12.816 

GJB1230_hy-
drolized 

-12.23 

GJB1093 -11.999 
GJB407 -11.866 

GJB1098 -11.763 
GJB1224 -11.71 
GJB1097 -11.624 
GJB268 -11.274 

GJB1182 -11.241 
GJB1179 -11.2 
GJB1099 -11.13 
GJB1096 -11.114 
GJB1126 -11.083 
GJB393 -11.032 

GJB1167 -11.023 
GJB539 -10.984 
GJB406 -10.97 
GJB499 -10.935 
GJB392 -10.89 

GJB1129 -10.811 
GJB916 -10.667 
GJB437 -10.644 
GJB493 -10.598 

GJB1178 -10.587 
GJB1172 -10.49 

GJB1177-1 -10.44 
GJB1023 -10.321 
GJB1248 -10.245 
GJB431 -10.129 

GJB1127 -10.037 
GJB426 -9.588 

GJB1101 -9.542 
GJB1231 -9.526 
GJB1230 -9.521 

GJB1231_hy-
drolized 

-9.446 

GJB1173 -9.236 
GJB1117 -9.079 
GJB1128 -8.875 
GJB1100 -8.582 
GJB1225 -8.478 
GJB1201 -7.785 
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6.3 Complete machine learning results 

In the figures below, the performances of the machine learning models are pre-

sented. The confusion matrices and ROC curves at pChEMBL thresholds of 7 and 8 

were computed using scikit-learn (Pedregosa et al., 2011).  
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6.3.1. Sandbox notebook 

Support Vector Machine – Threshold 7 

 

 

Support Vector Machine – Threshold 8 

 

 

 

 

 

 

 

 

 

 

Figure 33: Confusion matrix and ROC curve of a SVM model, computed with a 
pChEMBL threshold of 7, after application to a test set. 

Figure 34: Confusion matrix and ROC curve of a SVM model, computed with a 
pChEMBL threshold of 8, after application to a test set. 
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Random Forest – Threshold 7 

 

 

 

Random Forest – Threshold 8 

 

Figure 35: Confusion matrix and ROC curve of a RF model, computed with a pChEMBL 
threshold of 7, after application to a test set. 

Figure 36: Confusion matrix and ROC curve of a RF model, computed with a pChEMBL 
threshold of 8, after application to a test set. 
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K-nearest Neighbors – Threshold 7 

 

 

 

K-nearest Neighbors – Threshold 8 

  

Figure 37: Confusion matrix and ROC curve of a KNN model, computed with a 
pChEMBL threshold of 7, after application to a test set. 

Figure 38: Confusion matrix and ROC curve of a KNN model, computed with a 
pChEMBL threshold of 8, after application to a test set. 
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6.3.2 Retraining notebook 

Logistic Regression – Threshold 7 

 

 

 

Logistic Regression – Threshold 8 

 

 

Figure 39: Confusion matrix and ROC curve of a LR model, computed with a pChEMBL 
threshold of 7, after application to a test set. 

Figure 40: Confusion matrix and ROC curve of a LR model, computed with a pChEMBL 
threshold of 8, after application to a test set. 
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Support Vector Machine -Threshold 7 

 

 

 

 

Support Vector Machine – Threshold 8 

  

Figure 41: Confusion matrix and ROC curve of a SVM model, computed with a 
pChEMBL threshold of 7, after application to a test set. 

Figure 42: Confusion matrix and ROC curve of a SVM model, computed with a pChEMBL 
threshold of 8, after application to a test set. 
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Random Forest – Threshold 7 

 

 

 

 

Random Forest – Threshold 8 

 

 

Figure 43: Confusion matrix and ROC curve of a RF model, computed with a pChEMBL 
threshold of 7, after application to a test set. 

Figure 44: Confusion matrix and ROC curve of a RF model, computed with a pChEMBL 
threshold of 8, after application to a test set. 
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K-nearest Neighbors – Threshold 7 

 

 

 

 

K-nearest Neighbors – Threshold 8 

 

 

Figure 45: Confusion matrix and ROC curve of a KNN model, computed with a 
pChEMBL threshold of 8, after application to a test set. 

Figure 46: Confusion matrix and ROC curve of a KNN model, computed with a 
pChEMBL threshold of 8, after application to a test set. 
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6.4 Abstract 

The aim of this master’s thesis is to provide an in-silico-based method, mainly driven 

by the use of molecular docking, and QSAR modelling as an additional tool, for the 

analysis of the sodium/glucose co-transporter 2 (SGLT2) and the prediction of the 

activity of its potential inhibitors, which have been evolving to an important contri-

bution to the treatment of diabetes mellitus. 

To attain this objective, a classification model based on the Docking Scores obtained 

from a docking based virtual screening was created. Furthermore, the ability of var-

ious docking programs and their scoring functions to create compound rankings 

correlating to the ranking by activity was assessed. Finally, as an additional tool for 

the evaluation of results attained by the structure based approaches, a number of 

machine learning based QSAR models for SGLT2 inhibitors were generated and their 

performances were compared. 

The methods developed for the analysis of the activity of potential inhibitors were 

subsequently applied to a number of compounds with unknown activity in order to 

predict their ability to inhibit SGLT2. 
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6.5 Zusammenfassung 

Das Ziel dieser Masterarbeit war die Entwicklung einer in-silico-Methode zur 

Analyse des Natrium/Glucose-Co-Transporter 2 (SGLT2) und Vorraussage der 

Aktivität von potenziellen SGLT2-Inhibitoren, die sich zu einem wichtigen Teil der 

Behandlung von Diabetes Mellitus entwickelt haben. Dieser Prozess wurde 

hauptsächlich durch die Verwendung von Molecular Docking sowie QSAR Modelling 

als ein zusätzliches Werkzeug angetrieben. 

Um dieses Ziel zu erreichen wurde ein Klassifikationsmodell basierend auf den 

Docking Scores eines Virtual Screenings entwickelt. Zusätzlich wurde die Fähigkeit 

der verschiedenen Docking-Programme und deren Scoring-Funktionen analysiert, 

eine Rangfolge für Moleküle zu erschaffen, die mit der Rangfolge korreliert, die von 

den Aktivitäten der Moleküle vorgegeben wurde. Als ein zusätzliches Werkzeug für 

die Evaluierung der Ergebnisse der Strukturbasierten Methoden wurden 

abschließend einige Machine-Learning-basierte QSAR-Modelle für SGLT2-

Inhibitoren entwickelt und verglichen. 

Die entwickelten Methoden für die Analyse der Aktivität von potenziellen 

Inhibitoren wurden anschließend auf einige Verbindungen mit unbekannten 

Aktivitäten angewendet, um deren Fähigkeit, SGLT2 zu hemmen, vorauszusagen. 


