
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

"Adversarial Training with Lookahead"

verfasst von / submitted by

Philip Neuhart, BSc.

angestrebter akademischer Grad / in partial fulfillment of the requirements for the
degree of

Master of Science (MSc)

Wien, 2022 / Vienna 2022

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

UA 066 821

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

Masterstudium Mathematik

Betreut von / Supervisor: Univ.-Prof. Dr. Radu Ioan Boţ

Abstract

Deep learning is applied successfully in more and more security-sensitive areas such
as autonomous driving or face recognition. Thus, the safety aspect of deep learning
algorithms is increasingly getting in the focus of research. One of the most important
discoveries in this regard has been that adversaries can deceive state-of-the-art machine
learning models by inducing small but deliberate perturbations to inputs (e.g: changing
the pixel values of images slightly). The resulting perturbed inputs are called adversarial
examples. Even though adversarial examples are crafted on a specific model, they were
shown to be transferable to other models, i.e., they also fool other models with a high
likelihood. This transferability property of adversarial examples poses major security
threats to the safe deployment of deep learning algorithms in security-sensitive areas. This
gave rise to a new branch of deep learning called adversarial learning which also studies
potential defenses against adversarial attacks. A promising defense strategy, adversarial
training, replaces the unperturbed inputs in the training phase with adversarial examples
in order to strengthen the model’s ability to detect adversarial examples.

In this thesis, we will formally introduce adversarial examples, cover the most impor-
tant adversarial attacks, and discuss established hypotheses regarding the existence of
adversarial examples and their transferability property. Furthermore, we will discuss a
selected list of defenses and analyze adversarial training from the perspective of robust
optimization. In the second part of this thesis, we will introduce and analyze a recently
proposed optimization algorithm called Lookahead which has been shown to be able to
outperform standard optimization algorithms like SGD or Adam in certain optimization
settings. Lastly, we will use Lookahead to adversarially train convolutional neural net-
works in several numerical experiments and benchmark Lookahead against five other
optimization algorithms: SGD, Adam, OGD, ExtraSGD, and ExtraAdam.

iii

Zusammenfassung

Deep Learning wird in immer mehr sicherheitsrelevanten Bereichen wie zum Beispiel für
autonomes Fahren oder in der automatischen Gesichtserkennung erfolgreich eingesetzt.
Daher rückt der Sicherheitsaspekt von Deep Learning Algorithmen zunehmend in den
Fokus der Forschung. Eine der wichtigsten Entdeckungen in diesem Zusammenhang war,
dass Angreifer state-of-the-art Machine Learning Modelle, wie z.B. Deep Convolutional
Neural Networks, täuschen können, indem sie die zu klassifizierenden Objekte mit kleinen,
aber gezielt gesetzten Störungen manipulieren (z.B.: die Pixelwerte eines Bildes leicht
abändern). Die daraus resultierenden manipulierten Objekte werden als Adversarial
Examples bezeichnet. Obwohl Adversarial Examples für ein bestimmtes Modell erstellt
werden, sind sie nachweislich auf andere Modelle übertragbar, d.h. sie täuschen auch
andere Modelle mit hoher Wahrscheinlichkeit. Diese Übertragbarkeitseigenschaft von
Adversarial Examples stellt ein großes Sicherheitsrisiko für den Einsatz von Deep Learning
Algorithmen speziell in sicherheitssensiblen Bereichen dar. Im Zuge dieser Entdeckun-
gen entstand ein neuer Unterbereich von Deep Learning, genannt Adversarial Learning,
welcher sich unter anderem mit potenziellen Verteidigungsstrategien gegenüber Angriffen
auf Deep Learning Modelle mit Hilfe von Adversarial Examples, auch Adversarial Attacks
genannt, befasst. Eine vielversprechende Verteidigungsstrategie, Adversarial Training
genannt, ersetzt die nicht manipulierten Objekte in der Trainingsphase durch Adversar-
ial Examples, um so die Fähigkeit des Klassifizerungsmodells zu stärken, Adversarial
Examples zu erkennen.

In dieser Arbeit werden wir Adversarial Examples formal einführen, die wichtigsten
Adversarial Attacks behandeln und etablierte Hypothesen zur Existenz von Adversarial
Examples sowie deren Übertragbarkeitseigenschaft diskutieren. Darüber hinaus werden
wir eine ausgewählte Liste an Verteidigungsstrategien beschreiben und Adversarial Train-
ing aus der Perspektive der robusten Optimierung analysieren. Im zweiten Teil dieser
Arbeit werden wir Lookahead, einen kürzlich vorgeschlagenen Optimierungsalgorithmus,
vorstellen und analysieren. Es wurde gezeigt, dass Lookahead in der Lage ist, Standard
Optimierungsalgorithmen wie SGD oder Adam unter bestimmten Vorraussetzungen zu
übertreffen. Schließlich werden wir Lookahead verwenden, um Convolutional Neural
Networks in mehreren numerischen Experimenten zu trainieren und die Ergebnisse mit
fünf anderen Optimierungsalgorithmen zu vergleichen: SGD, Adam, OGD, ExtraSGD
und ExtraAdam.

v

Acknowledgement

First of all, I would like to express my sincere gratitude to my supervisor Prof. Dr. Radu
Ioan Bot for his continued support throughout my academic career. I also want to thank
Dr. Axel Böhm for his incredible support and valuable feedback, without which this
thesis would not have been possible.

My biggest thanks go to my parents Christian and Lucia Neuhart whose love seems
endless and who provided me with everything that is needed for a happy and successful
life. In addition, I want to thank my aunt Marion Böck for her continued support over
the past years.

Last but not least, I want to thank Marcel Harrer without whom I would not have been
able to make it past the first semester.

vii

Contents

1 Introduction 1
1.1 Basic Concepts and Notation . 2

1.1.1 Supervised Learning . 2
1.1.2 Neural Networks . 2
1.1.3 Loss function . 4
1.1.4 Other Concepts . 5

2 Adversarial Examples and Attacks 7
2.1 Formal description . 7

2.1.1 Minimal perturbation . 8
2.1.2 Maximal Loss . 9
2.1.3 Threat Model Taxonomy . 9

2.2 Attacks . 11
2.2.1 Overview . 11
2.2.2 L-BFGS attack . 12
2.2.3 Fast Gradient Sign Method (FGSM) 13
2.2.4 Projected Gradient Descent (PGD) 13
2.2.5 Carlini-Wagner . 14
2.2.6 DeepFool . 16
2.2.7 Jacobian-based Saliency Map Attack (JSMA) 18

2.3 Existence of Adversarial Examples . 19
2.3.1 Linearity Hypothesis . 20
2.3.2 Feature Hypothesis . 22

2.4 Transferability . 26

3 Adversarial Training and other Defenses 29
3.1 Defensive Distillation . 29
3.2 Feature Squeezing . 31
3.3 Adversarial Training . 32

3.3.1 Model Capacity . 34

4 Robust Optimization 35
4.1 Introduction to Robust Optimization . 35

4.1.1 Robust Optimization in Adversarial Training 36
4.2 Two-player Minimax Games . 38

ix

Contents

4.3 Algorithms . 38
4.3.1 Gradient Descent Ascent . 38
4.3.2 Extragradient . 39
4.3.3 OGDA . 40

5 Lookahead Optimizer 41
5.1 Algorithm . 41

5.1.1 Computational Complexity . 42
5.1.2 Lookahead-Minmax . 42

5.2 Convergence Statements . 43
5.2.1 Noisy Quadratic Convergence . 43
5.2.2 Non-Convex Convergence . 49
5.2.3 Lookahead Convergence for Minimax Games 58

6 Experiments 61
6.1 Framework . 61

6.1.1 Data sets . 61
6.1.2 Models . 62
6.1.3 Optimizers . 62
6.1.4 Attacks . 62

6.2 Robustness to changes in hyperparameters 63
6.2.1 Model Collapse . 66

6.3 Fast weights vs. Slow weights . 68
6.4 PGD Validation Accuracy . 69

6.4.1 CIFAR-10 . 69
6.4.2 MNIST and FashionMNIST . 70

6.5 Conclusion . 71

7 Appendix 79
7.1 Section A . 79
7.2 Section B . 80

7.2.1 Datasets . 80
7.2.2 Additional Plots . 80
7.2.3 Model . 81
7.2.4 Additional Plots . 81

x

Notation
X ⊆ Rn input space

n dimension of input space
x ∈ X benign/clean input (e.g. images)
x′ ∈ X adversarial example/sample
r ∈ Rn adversarial perturbation
⟨x, z⟩ inner product between x and z
m number of classes/labels

lc ∈ {1, ...,m} correct class/label of input x
lt ∈ {1, ...,m} target class/label

D labeled data distribution
Θ ⊆ Rp parameter space

θ parameter vector
F : X×Θ→ Rm neural network

Z(x) neural network up to the last hidden layer
F (x) output layer
y ∈ Rm output vector

f : X→ {1, ...,m} classifier
L loss function
∥ · ∥p ℓp/Lp-norm
η learning rate
ϵ input variation parameter
xT transpose vector
E Expected value
V Variance
I identity matrix

Table 1: Notations. For details, see Sections 1.1 and 2.1.

1 Introduction

Deep neural networks (DNN) are to achieve superhuman performance in computer vision
tasks [45, 8]. They are also successfully used for speech recognition [19] and many other
applications. However, researchers found that DNNs are vulnerable to attacks. Szegedy
et al. [40] first showed that neural networks trained on object classification tasks are
susceptible to small perturbations of the input which cause them to misclassify the input.
These perturbed inputs are called adversarial examples. Unperturbed inputs are then
referred to as clean or benign inputs. Even though adversarial examples are relatively
easy to generate, they are hard to find by simply sampling randomly. Today, numerous
algorithms for creating adversarial examples exist (see Section 2.2). These algorithms
are also referred to as adversarial attacks. An illustration for an adversarial example is
provided in Figure 1.1. The image on the left depicting the number ’5’ is unperturbed

Figure 1.1: The left image depicting a ’5’ is taken from the MNIST data set[27] and
unperturbed while the image on the right-hand side is an adversarial example
generated by the projected gradient descent algorithm.

and is classified correctly by a neural network classifier. Using the projected gradient
descent attack (see Section 2.2.4), the classifier is misled into predicting the number ’2’
instead. On the other hand, most humans would still be able to recognize the perturbed
version as a ’5’.

1

1 Introduction

1.1 Basic Concepts and Notation

This section is dedicated to introducing the basic concepts and notation used for the rest
of the thesis.

1.1.1 Supervised Learning

The task of assigning labels l ∈ {1, ...,m}, for m ∈ N to inputs x ∈ X ⊆ Rn, for n ∈ N,
is called classification. For example, in the context of a computer vision problem, the
inputs x could represent images of animals to be labeled by the classifier. A data set is a
finite set of input-label pairs (x, lc) drawn from a data distribution D on X× {1, ...,m}.
The learning process consists of using the training data to find a function

f : X→ {1, ...,m}

x 7→ f(x),

called a classifier, among a pool of candidates, called the hypothesis space H, that best
solves the classification task. Data that has not been used in the learning process is
referred to as unseen data or test data.

For a parametric hypothesis space H = {fθ : X×Θ→ {1, ...,m} : θ ∈ Θ}, where Θ ⊆ Rp

is called the parameter space, the learning process consists of using a learning algorithm
to choose parameters θ. For the rest of this thesis we will assume a parametric hypothesis
space.

In the next section, we will formally introduce neural networks which can be used to
define a classifier.

1.1.2 Neural Networks

Definition 1. (Nodes and Layers). A node N is a function

N : Rn → R

x 7→ ϕ(⟨w, x⟩+ b),

where the parameters w ∈ Rn and b ∈ R are called the weight and bias of node N ,
respectively, and ϕ : R→ R is called an activation function.

2

1.1 Basic Concepts and Notation

Furthermore, we define a hidden layer as a function L : Rn → Rm consisting of m nodes:

L(x) =


ϕ(N1(x))

...

ϕ(Nm(x))

 ,

where the same activation function ϕ is applied for each node.

Additionally, we define an output layer as a function

ψ : Rm → Rm

z 7→ ψ(z).

Definition 2. (Neural Networks). A fully connected neural network F : Rn → Rm is
defined as a concatenation of s − 1 hidden layers and a single output layer Ls. More
precisely, for 2 ≤ j ≤ s− 1 the output of node NLj

i of layer Lj of F , is given by:

N
Lj

i (x) = ϕ
(〈
w

Lj

i , Lj−1(Lj−2(· · ·L1(x)))
〉

+ b
Lj

i

)
,

for i ∈ {1, ..., rLj}, and finally, the network’s output is given by:

Fi(x) = ψ


N

Ls−1
1 (Ls−2(· · ·L1(x)))

...

N
Ls−1
m (Ls−2(· · ·L1(x)))


= ψ(Ls−1(Ls−2(· · ·L1(x)))),

for i ∈ {1, ...,m}.

The network without the output layer is denoted by Z, i.e.,

Z(x) = Ls−1(Ls−2(· · ·L1(x))),

which consequently matches the output of the last hidden layer. In matrix-vector notation,
the feed-forward neural network can be written as,

F (x) = ψ(ϕ(W s−1(ϕ(· · ·ϕ(W 1x+ b1))) + bs−1)),

with W j ∈ RrLj
×rLj−1 and bj ∈ RLj , for 1 ≤ j ≤ s−1, where ϕ is applied component-wise.

3

1 Introduction

An illustration is provided in Figure 1.2.

Figure 1.2: Illustration of a typical neural network architecture with three hidden layers.

Definition 3. (Softmax layer). A softmax output layer is a function ψ : Rm → Rm

defined by
ψ(z) =

[
ezi∑m

i=1 e
zi

]
i=1,...,m

. (1.1.1)

In case a neural network is equipped with a softmax output layer, we refer to the
components Zi(x) of the output vector of the last hidden layer as logits.

If not specified otherwise, all neural networks are assumed to have a softmax output
layer for the rest of this thesis.

A corresponding classifier can be defined via f(x) := arg max i Fi(x), where Fi(x) is the
output of the i-th component F .

1.1.3 Loss function

In order to be able to assess how well a classifier performs on a given test set, we need a
way to quantify the classifier’s performance.

Definition 4. (Loss function). For a function g : Rm × {1, ...,m} → R+ and a neural
network Fθ, we define a loss function as a function

L : Θ× X× {1, ...,m} → R+

(θ, x, lc) 7→ g(Fθ(x), lc).

We defined loss functions such that they implicitly depend on the neural network Fθ to
implicitly contain the neural network used for the classification task. Therefore, a loss

4

1.1 Basic Concepts and Notation

function L always corresponds to a neural network Fθ. The loss function L is used to
quantify how far off a classifier is from predicting the correct label of a given input x.
(1.1.2) provides an example of a loss function commonly used in combination with neural
networks. If L is differentiable in θ ∈ Θ, standard optimization algorithms can be used
to minimize the loss.

Definition 5. (One-hot encoding). For a label l ∈ {1, ...,m}, we define its one-hot
encoding as the indicator vector l̂ := (0, .., 0, 1, 0, ..0) ∈ Rm, where the l − th entry is the
only non-zero entry.

Definition 6. (Cross entropy). The cross-entropy of two probability distributions
p, q ∈ Rm is defined by

H(p, q) := −
m∑

i=1
log(pi)qi.

Typically, cross-entropy is used as a loss function in combination with neural networks in
classification settings. The cross-entropy loss takes probability distributions, i.e., vectors
whose entries sum up to 1, as inputs, thus, one-hot encoding of the labels is required. The
cross-entropy loss of a model Fθ for a given input x with true label l̂c = (0, ..., 1, ..., 0)T

is given by
L : Θ× X× {1, ...,m} → R+

(θ, x, lc) 7→ H(Fθ(x), l̂c).
(1.1.2)

Plugging in the definitions for cross entropy and one-hot-encoding, the cross entropy loss
of (x, lc) simplifies to L(θ, x, l̂c) = − log(Fθ,lc(x)), where Fθ,lc is the lc-th entry of Fθ.

1.1.4 Other Concepts

This section is dedicated to introducing some fundamental definitions used throughout
this thesis.

Definition 7. (L-smooth). A function f : Rp → R is called L-smooth if

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rp.

Let f : Rp → R, and let T be a finite training set drawn from a data distribution D , and
let P(T) be the power set of T . Then, consider the following finite sum minimization
problem:

min
θ
f̂(θ) := 1

|T |
∑
t∈T

f(θ, t). (1.1.3)

5

1 Introduction

Definition 8. (Stochastic Gradient). Let D be a distribution on the training set T and
let P(T) be the power set of X. For a finite sum minimization problem as defined in
(1.1.3), we call an estimator g : Rp × P(X)→ R of f̂ a stochastic gradient.

Moreover, two common assumptions made for the stochastic gradient g are that it is
unbiased, i.e., it satisfies, ∀θ ∈ Θ,

ES∼D [g(θ, S)] = ∇f̂(θ),

that g has bounded variance, i.e., for σ ≥ 0,

ES∼D

[
∥g(θ, S)−∇f̂(θ)∥2

]
≤ σ2.

Example. An example of a stochastic gradient is given by

g(θ, {t}) = ∇θf(θ, t),

i.e., the gradient of f evaluated at (θ, t). More generally, in mini-batching, we obtain the
following stochastic gradient

g(θ, Sn) = 1
|Sn|

∑
t∈Sn

∇θf(θ, t),

where Sn is sampled from Ω = {Sn|Sn ⊂ X, |Sn| = n}, for n≪ |X|, instead of P(X).

Two basic concepts of linear algebra, which we will use later, are the following.

Definition 9. (Spectrum of a matrix) Let A ∈ Cn×m be a n×m matrix. The spectrum
σ of A is given by

σ(A) = {λ ∈ C : det(A− λI) = 0}.

Definition 10. (Spectral radius). Let A ∈ Cn × Cm be a n ×m matrix, the spectral
radius ρ of A is defined as

ρ(A) = max
λ
{|λ| : λ ∈ σ(A)}.

6

2 Adversarial Examples and Attacks

Research has shown that adversarial examples do not only pose security threats for systems
operating solely in the digital world but can also be used in the physical world. Kurakin
et al. [26] demonstrated that digitally crafted adversarial samples can be used in the
physical world as well by simply printing them. The classifier still gets fooled with a high
likelihood when it receives pictures of the print-out versions of the original adversarial
examples taken by a cell phone camera as inputs. Eykholt et al. [12] demonstrated
that it is even possible to generate physical perturbations for physical world objects,
such as stickers posted on stop signs, that consistently cause misclassifications. These
observations make adversarial examples a very important phenomenon to study since
security-sensitive areas such as autonomous driving are heavily dependent on the safe
deployment of machine learning algorithms. For example, a self-driving car might not
stop on a crossroad if it does not recognize an adversarially perturbed stop sign as such,
which could lead to accidents.

The rest of this chapter is organized as follows. In Section 2.1, a formal description of the
task of crafting adversarial examples is given. A short introduction to a selected list of
adversarial attacks is provided in Section 2.2. In Section 2.3, hypotheses for the existence
of adversarial examples are presented and discussed. Furthermore, one of the most
important properties of adversarial examples, transferability, is studied in Section 2.4.

2.1 Formal description

To be able to study the phenomenon of adversarial examples, a formal description
of the problem is needed. For the rest of Chapter 2, if not specified otherwise, let
f : X → {1, ...,m} be a classifier mapping inputs x ∈ X ⊆ Rn to a discrete set of
labels {1, ...,m}, for m ∈ N, and let L : Rn × {1, ...,m} → R+ be the corresponding loss
function. Note that in general, both f and L, as defined in Section 1.1, implicitly depend
on parameters θ. For convenience, they will be omitted in the rest of Chapter 2, and

7

2 Adversarial Examples and Attacks

can be viewed as fixed. This is justified by the assumption that attacks happen after the
training phase of a model.

Definition 11. (Adversarial Attack). Broadly speaking, we call an algorithm A gen-
erating adversarial examples x + r from clean pairs (x, lc) for a given classifier f , an
adversarial attack. More precisely, for a specific classification task, i.e., given hypothesis
space H, input space X and number of classes m, let f : X → {1, ...,m} be a classifier
chosen from H and let (x, lc) ∈ X× {1, ...,m} be a (clean) input-label pair drawn from a
data distribution D on X× {1, ...,m}. Then, an adversarial attack corresponds to a map

A : H× X× {1, ...,m} → X

(f, x, lc) 7→ x+ r.

In general, adversarial attacks are applicable for a wide range of different classification
tasks and are therefore not restricted to a specific setting (H, X, m). Usually, attacks
are dependent on multiple parameters as we will see in Section 2.2.

Furthermore, attacks can be either targeted or untargeted. Targeted attacks aim for a
misclassification as a specific label lt, referred to as target label, while untargeted attacks
only strive for a misclassification as any label other than the true label lc(x).

Adversarial attacks usually fit in one of two settings, either the minimal perturbation or
the maximal loss setting. If convergence is guaranteed, attacks in the former guarantee
a misclassification by the victim model but may induce a large distortion. Conversely,
attacks in the latter ensure low distortion of the input but may not produce adversarial
examples that actually will be misclassified by the model under attack.

2.1.1 Minimal perturbation

First formalized by Szegedy et al. [40], an adversary in the minimal perturbation setting
aims at generating an adversarial example x+ r for a given image x ∈ X, a corresponding
label lc(x) and a target label lt ∈ {1, ...,m} \ {lc(x)} while keeping the perturbation r as
small as possible. This corresponds to solving the following optimization problem:

min
r∈Rn

∥r∥

s.t. f(x+ r) = lt

x+ r ∈ X,

(MP)

8

2.1 Formal description

for lt ∈ {1, ...,m} and a classifier f . Note that the solution for (MP) is not necessarily
unique and depends on the choice of the norm. Popular choices are the ℓ∞-norm, the
ℓ2-norm and the ℓ0-norm [15, 6, 33]. However, Sharif et al. [37] show that small distances
under ℓp-norms (p = 0, 2,∞) between benign inputs and corresponding adversarial
examples, in general, do not guarantee perceptual similarity.

The second constraint x+ r ∈ X ensures that the adversarial example is still a valid input,
e.g., the pixel values are within the permitted range. Some authors omit this constraint
since in most cases the adversarial distortions are small enough such that the adversarial
examples are also in the domain of the function.

In the context of an adversarial attack, it is usually assumed that the classifier correctly
predicts the label/class of the clean input x, i.e., f(x) = lc, and that the adversary is
only interested in the non-trivial case of lt ̸= lc. Thus, when solving the optimization
problem one is essentially looking for the smallest perturbation of the input such that
the classifier changes its label prediction from lc to lt. However, in some cases one, is
satisfied with any prediction other than the true label.

2.1.2 Maximal Loss

In contrast, Goodfellow et al. [15] introduced a different approach. Rather than looking
for the smallest distortion of the input that still changes the label prediction, the adversary
is striving for the greatest increase in loss induced by the perturbation. To be precise,
they need to solve the following optimization problem:

max
r∈Rn

L(x+ r, lc)

s.t. ∥r∥ ≤ ϵ,
(ML)

where L is the corresponding loss function and ϵ > 0 is small such that the perturbation
is undetectable or at least not too big. Note that the solution to (ML) is again not
necessarily unique and is also dependent on the choice of the norm.

2.1.3 Threat Model Taxonomy

In adversarial learning, a threat model represents an attack scenario in a predefined
framework. They mainly differ along two dimensions, adversarial capability and adversar-
ial goals. Adversaries can have different levels of access to the target system or knowledge
about its architecture. Additionally, different attackers may have different goals, see

9

2 Adversarial Examples and Attacks

Figure 2.1 for an overview. Confidence reduction means decreasing the confidence of the

Figure 2.1: Threat model taxonomy: Threat models differ in adversarial capability and
adversarial goals [33].

target model when classifying test inputs. On top of that, an adversary could aim for a
misclassification, forcing the model to classify a given test example as any class other
than the true one. Aiming for a targeted misclassification is even more ambitious. The
adversary is able to produce adversarial examples that force the model to label them as
a specific target class. However, the best case scenario for the adversary is source-target
misclassification which would enable the attacker to choose specific inputs from any class
and generate adversarial examples which are classified as a target class of choice.

In practice, more powerful attack goals require more knowledge about the victim, i.e.,
the model under attack. In a black-box scenario, the adversary knows nothing about the
model’s architecture or the data used for training the model. In its weakest form, only
input/output pairs are available. That means the attacker is not able to supply their
own input to gain insight. In the oracle scenario, the adversary has this ability and is
thus capable of modifying inputs to observe the differences in output. Another step up
would be access to the training data and/or the ability to collect a surrogate training set.

10

2.2 Attacks

In the white-box scenario, the attacker has knowledge about the model architecture. In
the case of neural networks, this would include knowledge about the model parameters,
activation functions, and the number of nodes in each layer. Additionally, the adversary
can possess knowledge about the training method, e.g. the number of epochs or the
optimization algorithm used in the training process.

Most attacks today assume that the adversary has full access to the model and knows
its architecture. At first glance, this seems very restricting. If there were no black-box
attacks, a defender would be able to secure their model by just keeping information about
the model secret. However, as described in Section 2.4, a large portion of adversarial
examples transfer, i.e. they are able to deceive models on which they were not crafted.
This allows an adversary to use a white-box attack in a black-box scenario. The attacker
can train their own model and generate adversarial examples on it which are likely to
also fool the target model.

2.2 Attacks

Today, already numerous adversarial attacks have been proposed focusing on different
objectives and applications. Some are specifically designed for neural networks while
others can be used for many different machine learning techniques. There are also attacks
that have been initially developed solely for computer vision tasks but mostly can be
easily adjusted for a wider scope of applications. A short introduction to a selected list
of attacks is provided below. Due to the rapid development of the field, it is difficult to
provide an exhaustive list of attacks or defenses. Interested readers are referred to surveys
of Yuan et al. [49] and of Akhtar and Mian [1] which provide a more comprehensive list
of attacks and defenses.

2.2.1 Overview

The attacks introduced below differ in many ways. In Table 2.1, an overview of these
attacks including their most important characteristics is given.

Additionally, the described algorithms may differ in computational cost and efficiency as
well as in the quality of output. The quality of an algorithm’s output can be measured
in terms of the attack’s success rate in crafting adversarial examples and/or in the size
of the distortions induced by the attack algorithm. Depending on the goal, different
attacks should be used. For example, if one wants to test their model against the

11

2 Adversarial Examples and Attacks

strongest possible adversary and is not constrained by computational power or time, the
Carlini-Wagner attack is likely best suited for this task since its perturbations of the
input have been shown to be very small [5]. Conversely, if computational efficiency is
crucial, the fast gradient sign method is a convincing choice since it is not iterative and
only requires one gradient evaluation.

Attack Setting(∗) Un-/Targeted Iterative Perturbation norm
L-BFGS M.P. Targeted No ℓ2

FGSM M.L. Untargeted No ℓ∞

PGD M.L. Untargeted Yes ℓ∞

Carlini-Wagner M.P. Targeted No ℓ2, ℓ0, ℓ∞
DeepFool M.P. Untargeted Yes ℓ2

JSMA M.P. Targeted Yes ℓ0

Table 2.1: Taxonomy of attacks: (*) M.P. = Minimal Perturbation, M.L. = Maximal
Loss; Attacks are categorized according to their original version

2.2.2 L-BFGS attack

Szegedy et al. [40] introduced the first algorithm for finding adversarial examples. Instead
of trying to directly solve (MP), the authors adapted the optimization problem as follows:

min
r∈Rn

c∥r∥2 + L(x+ r, lt)

s.t. x+ r ∈ X,
(2.2.1)

for c ∈ R, where L is the loss function. The constraint f(x+ r) = lt (MP) is replaced
by adding the loss value L(x + r, lt) of the adversarial example x + r with respect to
the target label lt to the objective function. The parameter c then controls a weigh-off
between the ℓ2-norm of the perturbation and the loss of the adversarial example. Too
small values for c will result in large distortions which should be avoided since we want
them to be imperceptible for humans. Conversely, too large values for c will likely yield
perturbations that will not fool the network, rendering them useless. Therefore, a line
search is performed to find the minimum c > 0 for which the minimizer r of (2.2.1)
satisfies f(x+ r) = lt. In other words, (2.2.1) is solved repeatedly for different values of c
using box constrained L-BFGS, each time updating c with bisection search. Since the
loss function is in general non-convex for neural networks, this method yields only an
approximation of a solution for (MP).

12

2.2 Attacks

2.2.3 Fast Gradient Sign Method (FGSM)

Introduced by Goodfellow et al. [15], the fast gradient sign method algorithm has three
main differences to the L-BFGS attack algorithm. Firstly, it computes an adversarial
example under the ℓ∞ distance, and secondly focuses on computational efficiency instead
of producing very close adversarial examples. Thirdly, in its original version, it is also,
in contrast to the L-BFGS attack, an untargeted attack, i.e., the Fast Gradient Sign
Method only aims for a misclassification rather than a classification as a specific label or
class. The algorithm is motivated by the authors’ hypothesis that it is the linear nature
of neural networks that is causing adversarial examples (see Section 2.3). The algorithm
works by linearizing the objective function in (ML) around the benign input x yielding a
simpler optimization problem,

max
r∈Rn

L(x, lc) +∇xL(x, lc)T r

s.t. ∥r∥∞ ≤ ϵ,

with an optimal ℓ∞-norm solution r = ϵ · sign(∇xL(x, lc)). For a benign input x,
corresponding label lc and ϵ > 0 we obtain the fast gradient sign method:

x′ = x+ ϵ · sign(∇xL(x, lc)). (2.2.2)

It is also possible to perform a targeted FGSM attack. For a benign input x, target label
lt with lt ̸= lc and ϵ > 0, we need to minimize the loss L(x, lt) instead of maximizing
L(x, lc). We now have

x′ = x− ϵ · sign(∇xL(x, lt)). (2.2.3)

Variants of the FGSM attack that use other ℓp-norms instead of the ℓ∞-norm have also
been proposed. For p ̸=∞ in an untargeted setting, the algorithm computes

x′ = x+ ϵ · ∇xL(x, lc)
∥∇xL(x, lc)∥p

.

The attack is then referred to as the fast gradient method (FGM).

2.2.4 Projected Gradient Descent (PGD)

The projected gradient descent (PGD) attack introduced by Kurakin et al. [26] as the
Basic Iterative Method can be seen as an extension of the fast gradient (sign) Method.
For each iteration, a FGM step is performed and the intermediate output is then clipped

13

2 Adversarial Examples and Attacks

to the ϵ-neighborhood around the clean input x. See Algorithm 1 for the pseudocode.
Note that both the FGM step and the clipping depend on the norm. In its original
version, the PGD attack was proposed with the ℓ∞-norm, although other norms like
the ℓ2-norm are also possible. A targeted version of this attack follows directly from
the targeted version of the fast gradient sign Method described in (2.2.3). Moreover,
Kurakin et al. also introduced a special targeted version of the PGD attack which they
referred to as the Iterative Least-Likely Class Method. This approach is designed for
neural networks and uses, for a clean input x, for each iteration a targeted FGM step
with target label lLL = arg min lt p(lt|x), i.e., the least likely class or label according to
the network’s prediction.

Algorithm 1 PGD attack [26]
Require: input x with label lc,

input variation parameter ϵ > 0,
step size α > 0,
number of iterations imax ∈ N

Output: adversarial example x′.
x0 ← x
i← 0
L ← Cross Entropy Loss
for i < imax do

x̃i+1 = xi + α · sign(∇xL(xi, lc))
xi+1 ← Clipx0,ϵ(x̃i+1) ▷ Clip x̃i+1 to ϵ-nbh around the clean input
i← i+ 1

end for

2.2.5 Carlini-Wagner

For this attack let’s assume a neural network F with softmax output layer and a
corresponding classifier f , i.e., f(x) = arg max

i=1,...,m
F (x) = arg max

i=1,...,m
softmax(Z(x)), where

Z(x) = z is the input of the softmax function and referred to as logits.

Originally developed by Carlini and Wagner [6] to overcome the distillation defense
technique (see Section 3.1), the Carlini-Wagner-ℓ2 attack takes a different approach than
the FGSM or L-BFGS attack. Note there also exist ℓ0 and ℓ∞ variants of the attack
which are beyond the scope of this thesis. Trying to avoid the highly non-linear constraint
f(x+ r) = lt in (MP), which makes it hard for optimization algorithms to solve (MP)

14

2.2 Attacks

directly, Carlini et al. introduced an objective function

g(x′) := max(max{Z(x′)i : i ̸= lt} − Z(x′)lt ,−κ),

for κ > 0, such that g satisfies:

g(x+ r) ≤ 0 ⇐⇒ f(x+ r) = lt.

The objective function can be interpreted as a kind of loss function since it is positive
as long as x + r is not classified as lt and only smaller or equal to 0 once the goal is
reached. The confidence with which the adversarial example produced by the algorithm
gets misclassified can be controlled by adjusting the confidence parameter κ, although
its value is usually set to 0. Additionally, the input data is scaled to be within [0, 1]n to
allow for an elegant change of variables. This allows for a reformulation of (MP):

min
r∈Rn

∥r∥2 + c · g(x+ r)

s.t. x+ r ∈ [0, 1]n.
(2.2.4)

The two optimization problems are equivalent in the sense that there exists a c > 0 such
that an optimal solution to (2.2.4) is also an optimal solution to (MP). Carlini et al.
report that, empirically, the best way to choose the constant c is to look via a modified
binary search for the smallest value of c for which the resulting solution x∗ satisfies
g(x∗) ≤ 0. To circumvent the issues arising in the optimization process from clipping
all the coordinates to be within the box, Carlini and Wagner introduced a change of
variables

ri = 1
2(tanh(wi) + 1)− xi.

Because of −1 ≤ tanh(wi) ≤ 1, it follows automatically that 0 ≤ xi + ri ≤ 1, which
ensures the validity of the output. Finally we obtain

min
w∈Rn

∥1
2(tanh(w) + 1)− x∥22 + c · g(1

2(tanh(w) + 1)).

This optimization problem can now be solved efficiently by standard optimization algo-
rithms like Adam [22].

The Carlini-Wagner attack finds adversarial examples with lower distortions than most
other attacks but is computationally expensive and thus slower than others. Let F be
a neural network, x ∈ X an input, and ϵ > 0. To show that it is possible to determine

15

2 Adversarial Examples and Attacks

the existence of an adversarial example within a distance ϵ from an input x, Katz et
al. [21] encoded F and the constraints regarding ϵ as a set of linear equations and
ReLU constraints, and then used the Reluplex algorithm, an extension of the simplex
algorithm [9], a solver for linear programs, to attempt to find an adversarial example
within a distance ϵ. Reluplex either returns a valid adversarial example or responds that
there exists no adversarial example in the ϵ-ball around x. The smallest ϵ such that an
adversarial example exists can be approximated up to a desired precision by applying
bisection search.

Carlini et al. [5] used Reluplex to generate (up to a desired precision) provably minimally-
distorted adversarial examples, i.e., examples that are solutions of (MP). In an experiment
on the MNIST data set, they showed that the adversarial examples generated by the
Carlini-Wagner attack are on average within 11.6% of optimal when using the ℓ∞-norm,
i.e., the distance from the benign input to the minimally-distorted example was 11.6%
lower on average than to the adversarial example found by the Carlini Wagner attack.

2.2.6 DeepFool

The DeepFool method, introduced by Moosavi-Dezfooli et al. [29], is an iterative proce-
dure. It is aiming to solve the following optimization problem for a clean input x with
corresponding true label lc in the ℓ2-norm,

min
r∈Rn

∥r∥2

s.t. f(x+ r) ̸= lc,
(2.2.5)

for a classifier f(x) = arg max
i=1,...,m

Fi(x) mapping inputs x ∈ Rn to a set of labels {1, ...,m}

and a function F : Rn → Rm determined by the machine learning technique in use. Note
that the DeepFool attack is therefore untargeted. Moreover, we can substitute F for f in
(2.2.5) and obtain an equivalent formulation of the problem:

min
r∈Rn

∥r∥2

s.t. ∃lt : Flt(x+ r) ≥ Flc(x+ r).

To cause a misclassification by the classifier, we need to distort x such that the generated
adversarial example crosses one of the zero level sets Γi := {x : Fi(x) − Flc(x) = 0}.
Since solving this optimization problem is hard to solve for optimization algorithms
due to the high non-linearity of the constraint, the authors proposed an approximating

16

2.2 Attacks

iterative procedure instead. Motivated by affine linear classifiers, the algorithm linearizes
each Fi around xj , i.e., Fi(xj) +∇Fi(xj)T r, at each iteration j and projects xj onto the
closest linearized level set Γ̂j

i := {x : Fi(xj) +∇Fi(xj)Tx − Flc(xj) −∇Flc(xj)Tx = 0}
. See Figure 2.2 for an illustration for x0. The full method is given in Algorithm 2.

Figure 2.2: For m = 4, let x0 be an input belonging to class 4 and let Γi := {x :
Fi(x) − F4(x) = 0} be the zero level sets. The corresponding linearized
level sets are shown in dashed lines and the boundaries of the polyhedron
P0 = ⋂4

i=1{x : Fi(x0) +∇Fi(x0)Tx− F4(x0)−∇F4(x0)Tx ≤ 0} in orange.

Adversarial examples generated by DeepFool are widely considered good approximations
of the minimal perturbation [6, 50, 28].

Algorithm 2 DeepFool algorithm [29]
Require: input x with label lc, classifier f = arg max i=1,...,m Fi

Output: Perturbation r.
x0 ← x
i← 0
while f(xi) = lc do

for l ̸= lc do
ωl ← ∇Fl(xi)−∇Flc(xi) ▷ Γ̂i

l = {x : ∆l + ωT
l x = 0}

∆l ← Fl(xi)− Flc(xi)
end for
l̂← arg min l ̸=lc

|∆l|
∥ωl∥2

▷ Select entry with closest linearized level set Γ̂i
l̂

ri ←
|∆l̂|

∥ωl̂∥
2
2
ωl̂ ▷ Project onto Γ̂i

l̂
xi+1 ← xi + ri

i← i+ 1
end while
return r = ∑

i ri

17

2 Adversarial Examples and Attacks

2.2.7 Jacobian-based Saliency Map Attack (JSMA)

The Jacobian-based Saliency Map Attack (JSMA) introduced by Papernot et al. [33] is an
iterative algorithm for finding approximations to solutions of (MP). The algorithm focuses
on keeping the number of perturbed input features as small as possible while still deceiving
the model under attack. Unlike the L-BFGS method or the Carlini-Wagner attack, JSMA
is not using the gradient of the loss. For each iteration, instead of computing the gradient
of the network’s associated loss function for finding descent directions, it computes the
Jacobian JF (x) of the model F itself, where F : Rn → Rm is a neural network mapping
inputs x to output probability vectors y. The Jacobian, also referred to as Forward
Derivative by the authors, is then used to construct a map Sx,l : {1, ..., n} → R,

Sx,lt(i) :=

0 ∂Flt
∂xi

(x) < 0 or ∑j ̸=lt
∂Fj

∂xi
(x) > 0(

∂Flt
∂xi

(x)
)
·
∣∣∣∑j ̸=lt

∂Fj

∂xi
(x)
∣∣∣ otherwise,

(2.2.6)

where lt is the target label. Inspired by Simonyan et al. [38], who used maps Sx,lt(i)
as visualization tools (see Figure 2.3), Papernot et al. refer to them Sx,lt(i) as saliency
maps. High values of Sx,lt(i) indicate that increasing xi will either increase Flt , i.e., the

Figure 2.3: Saliency map of a 784-dimensional input to the LeNet architecture [33]. Input
features with large absolute values signalize high sensitivity to perturbations.

likelihood of target label lt, or decrease the likelihood of the other labels, or both.

18

2.3 Existence of Adversarial Examples

Remark. Other saliency maps are possible, e.g.,

Ŝx,lt(i) :=

0 ∂Flt
∂xi

(x) > 0 or ∑j ̸=lt
∂Fj

∂xi
(x) < 0∣∣∣∂Flt

∂xi
(x)
∣∣∣ · (∑j ̸=lt

∂Fj

∂xi
(x)
)

otherwise.
(2.2.7)

For this choice, high values of Ŝx,lt(i) indicate input features that an adversary should
decrease to achieve misclassification.

In each step, after the computation of the saliency map Sx′,lt , where x′ = x + r is
the current perturbed input, x′ is modified by a parameter η along the input feature
imax = arg max i Sx′,lt(i). The algorithm stops once the target label lt is predicted, i.e.,
lt = arg max j Fj(x) or the maximum distortion, specified by the maximum distortion
parameter ϵ, is reached. The maximum distortion parameter ϵ limits the number of
features changed. The full method is provided in Algorithm 3. It is worth noting that
other variants are possible, e.g., instead of specifying a maximum distortion parameter
one could constrain the number of total iterations. Alternatively, one could also use a
different saliency map.

Algorithm 3 Jacobian-based saliency map attack (JSMA) [33]
Require: input x with target label lt

classifier f = arg max i=1,...,m Fi

η > 0
ϵ > 0

Output: Adversarial sample x′.
x′ ← x
r ← 0
while f(x′) ̸= lt and ∥r∥0 < ϵ do

Compute JF (x)
Compute Sx,lt ▷ saliency map as defined in (2.2.6)
imax ← arg max i Sx,lt(i)
Modify x′

imax
by η

r ← x′ − x
end while

2.3 Existence of Adversarial Examples

The question why adversarial examples exist for neural networks at all generated a lot of
interest and many different possible explanations have been proposed. In this section, we

19

2 Adversarial Examples and Attacks

are going to discuss the most popular hypotheses regarding the existence of adversarial
examples. But before that, we need to introduce some new concepts.

Definition 12. Let f : X→ {1, ...,m} be a classifier and let Dtrain, Dtest ⊂ X×{1, ...,m}
be the training and test set drawn from a data distribution D .

We say that f generalizes, if it, after being trained on Dtrain, scores adequate accuracy
on unseen data, e.g., Dtest, relative to its accuracy on Dtrain. Here, adequate means that
the classifier does not suffer from a significant loss in accuracy on the test data compared
to its performance on the training data.

For ϵ > 0 and p ∈ N ∪ {∞}, define Bϵ(x) := {z : ∥x − z∥p ≤ ϵ}. We say that f shows
ϵ-local generalization around an input x ∈ X with label lc(x), if, for ϵ > 0,

∀
r∈Bϵ(x)

f(x) = lc(x).

In other words, f generalizes ϵ-locally, if for ϵ > 0, f does not change its prediction if x
is perturbed with any r ∈ Rn satisfying ∥r∥p < ϵ.

While neural networks have been shown to generalize well in most cases, Szegedy et al.
found that neural networks do not show ϵ-local generalization around most inputs x for
relatively large values of ϵ > 0. Before that neural networks were believed to generally
exhibit ϵ-local generalization for reasonably large values of ϵ. The belief in this kind of
robustness prior was founded on the empirical evidence that small perturbations typically
had no effect on the model predictions.

2.3.1 Linearity Hypothesis

Goodfellow et al. [15] showed that even primitive linear models are susceptible to
adversarial examples suggesting that it is not the high non-linearity of models or overfitting
that is explaining the existence of these examples. These findings gave rise to the now
popular linearity hypothesis. According to Goodfellow et al. [15], it is their extreme
linear behaviour as a function of their input that renders neural networks susceptible to
adversarial attacks.

For w ∈ Rn and b ∈ R, a separating hyperplane h in Rn is defined as

h : Rn → R

x 7→ wTx+ b,

20

2.3 Existence of Adversarial Examples

and let
f : Rn → {−1, 1}

x 7→ sign(h(x))

be a corresponding two-class linear classifier. An illustration for the case of n = 2 is given
in Figure 2.4. If we perturb a clean input x ∈ R2, with h(x) = c < 0, with r ∈ R2, we can
always cause a misclassification as long as wT r > −c. The smallest possible perturbation
measured under the ℓ2-norm that is sufficient to deceive the classifier is found in direction
w, i.e. the gradient of h(x).

Figure 2.4: Illustration of an adversarial example x + r for a linear classifier f(x) =
sgn(h(x)), where h(x) = wTx+ b is a separating hyperplane.

For a neural network F with corresponding loss function L, let x ∈ Rn be an input
with label lc(x). Warde-Farley et al. [43] argue that if the loss function L(x, lc(x)) of F
is increasing in a roughly linear fashion in a direction d, the linear behaviour alone is
responsible for the existence of adversarial examples. For dT r large enough, the adversarial
example x + r will be misclassified. For a threshold κ ∈ R, the hyperplane dT r = κ

divides the input space Rn into two half-spaces. The linearity hypothesis predicts that
most points that are on the same side of the hyperplane as x will be correctly classified.
Conversely, nearly all points on the opposite side of the hyperplane are misclassified by
the model, according to the hypothesis.

In their work, Warde-Farley et al. [43] provide strong evidence for the existence of half-
spaces, mentioned above, using visualizations of two-dimensional subspaces of the input
space (see Figure 2.5). They referred to the plots as church window plots due to their
resemblance to stained glass windows. The plot shows a two-dimensional cross-section of
the classification function, in the vicinity of a test example. The cross-section is defined
by an adversarial direction specified by the fast gradient sign method and a random

21

2 Adversarial Examples and Attacks

direction. Interested readers are referred to [43] for additional plots of cross-sections
exploring two random orthogonal directions and cross-sections defined by an adversarial
example and a direction defined by the component of the gradient that is orthogonal to
the first direction. Both additional plots support the claim that the linearity hypothesis
holds for deep neural networks.

2.3.2 Feature Hypothesis

Ilyas et al. [20] argued that the linearity hypothesis alone does not fully explain the
existence of adversarial examples. Since classifiers are usually trained to maximize
accuracy, they are incentivized to use any pattern in the training data to do so, even
ones that are imperceptible to humans. This suggests that the existence of adversarial
examples could be strongly tied to properties of the training set.

In order to be able to further explore this hypothesis, we need to introduce some definitions.
Ilyas et al. considered the case of binary classification, where a classifier f : X→ {1,−1}
is trained on input-label pairs (x, lc) ∈ X× {1,−1} drawn from a distribution D .

Definition 13. [20]. A feature is a function g : X→ R mapping from the input space to
the real numbers.

The set of all features is denoted by F = {g : X → R}. We can now introduce the
concept of useful and (non-)robust features:

Definition 14. [20]. Let E(x,lc)∼D [g(x)] = 0 and E(x,lc)∼D [g(x)2] = 1, then g is called

• a ρ-useful feature (ρ>0) if

E(x,lc)∼D [lc · g(x)] ≥ ρ,

i.e., it is correlated with the true label in expectation. The largest ρ for which g is
ρ-useful is denoted by ρD(g). Note that if g is negatively correlated, −g is useful.

• a γ-robustly useful feature if g is ρ-useful for some ρ > 0 and

E(x,lc)∼D

[
inf

r∈S(x)
lc · g(x+ r)

]
≥ γ,

i.e., the feature remains γ-useful even under adversarial perturbation (for some set
of valid perturbations S).

22

2.3 Existence of Adversarial Examples

Figure 2.5: Church window plots applied to a convolutional neural network F , trained
on the CIFAR-10 data set. Each subplot in the 10x10 grid depicts a church
window plot for a different test example. For every test example, each class
is assigned a color with white always being the colour of the true class of the
example. Each pixel, specified by the coordinates (h, v), is coloured according
to the class output f(x+ hu(1) + vu(2)), where u(1) and u(2) are orthogonal
unit vectors spanning a 2-dimensional subspace of Rn. The first unit vector
u(1) is generated with the fast gradient sign method while u(2) is a random
direction orthogonal to u(1). Both the horizontal h and the vertical coordinate
v range from −ϵ to ϵ (ϵ = 0.25), positioning the benign inputs x at the center
of each square. The decision boundaries have mostly roughly linear shapes
dividing the input space in half-spaces of correct and incorrect classifications.
The benign inputs are usually in the correct region but not far from the
decision boundary [43].

23

2 Adversarial Examples and Attacks

• a useful non-robust feature if g is ρ-useful for some ρ > 0 but is not a γ-robust
feature for any γ ≥ 0.

Remark. The definitions stated above can be straightforwardly generalized to multi-class
classification. Let Dlc denote the distribution of input-label pairs fixed label lc. In this
setting, a feature g is called ρ-useful if

∃
lc,l′c∈{1,...,m}

E(x,lc)∼Dlc
[g(x)] ≥ ρ ∧ E(x,l′c)∼Dl′c

[−g(x)] ≥ ρ.

The definition for (non-)robust features is adapted analogously.

In the framework of [20], a binary classifier f can be written as follows.

Definition 15. [20]. Let Gf ⊆ F be a finite set of functions gθ̃ : X → R, where
θ̃ ∈ Rp−|Gf |−1 for p ∈ N. Furthermore, let w ∈ R|Gf | be a weight vector, and b ∈ R a
bias. A binary classifier with parameters (θ̃, w, b) ∈ Rp is defined as

f : Rn → {−1, 1}

x 7→ sign

 ∑
gθ̃∈Gf

wgθ̃
· gθ̃(x) + b

 .
Once the learning phase is completed, the model parameters stay constant and we say
that f has learned the features gθ̃ ∈ Gf . Note that for a neural network F : Rn → R
with associated classifier f(x) = sign(F (x)), the finite set of features Gf learned by f

corresponds to the output of the penultimate layer. For example, a given binary classifier
f with parameters (θ̃, w, b) ∈ Rp and a data set of cat images, cat ears can be encoded as
a feature gear which is learned by f during the learning process. This encoding is both
dependent on the data set (which influences the calibration of the parameters θ̂) and the
model architecture itself. After all, a human perceives ears differently than an artificial
neural network. On the other hand, the ear of a cat in a high-resolution coloured image
looks different from a low-resolution black-and-white copy. Since we will only use trained
models, the dependence of gθ̃ on θ̃ will be omitted in the following.

Ilyas et al. found that most standard machine learning data sets admit highly predictive
but unrecognizable features. They provided empirical evidence that supports their
(feature) hypothesis. They created a robust version of the CIFAR-10 data set by
removing non-robust features. To be precise, Ilyas et al. extracted the features learned
by an adversarially trained (Section 3.3) neural network classifier f and used them as an

24

2.3 Existence of Adversarial Examples

approximation to robust features. They then created a data set serving as a proxy for a
distribution D̂R that satisfies

E(x,lc)∼D̂R
[lc · g(x)] =

E(x,lc)∼D [lc · g(x)] g ∈ Gf

0 otherwise,
(2.3.1)

where Gf corresponds to the set of features learned by f . (2.3.1) ensures that only the
features extracted from the original adversarially trained remain useful in the modified
robust distribution. Interested readers are referred to [20] for more details about the
creation of the robust data set. Ilyas et al. also created a second training set for which
they used a standard non-robust model instead of an adversarially trained model. The
corresponding distribution is denoted by D̂NR.

Finally, Ilyas et al. [20] tested four different model setups, on both standard inputs
and adversarial examples. The first model served as a baseline as it was trained on
the standard CIFAR-10 data set without adversarial training. The second model was
adversarially trained on the standard data set, and the third and fourth model were
trained on the robust and non-robust data set respectively, using the standard training
procedure. See Figure 2.6 for the results of their experiment. The model trained on the
robust data set clearly shows non-trivial adversarial robustness while the model trained
on the non-robust data set shows even less robustness than the baseline model.

Figure 2.6: Standard and adversarial accuracy on the CIFAR-10 test set of models trained
with (i) standard training on the standard CIFAR-10 training set (on D), (ii)
adversarial training (on D), (iii) standard training using the robust data set
(on D̂R), (iv) standard training on the non-robust data set (on D̂NR) [20].

25

2 Adversarial Examples and Attacks

2.4 Transferability

Adversarial examples are generated from an input x using a given network f and an
attack algorithm. One of their most important properties is their transferability, i.e., it
has been shown that there is a high probability that the same adversarial example gets
also misclassified by a different model f ′ [40, 41]. To be precise, Szegedy et al. showed
that adversarial examples generalize across models with different hyper-parameters and
even across models trained on disjoint training sets. This means that f ′ can have a
different architecture or can be trained on a disjoint training set but adversarial examples
crafted on f are still likely to deceive f ′.

This phenomenon poses a threat to the secure deployment of machine learning models as
it enables black-box attacks. Adversaries can train their own local model on a disjoint
training set and still expect to be able to fool the network under attack. For example, if
the goal is to attack a neural network f classifying images of cats and dogs, the attacker
can use their own model without knowing the architecture of f and train it on their
own training set of cat and dog images [32, 33]. Although the success rate of crafting
adversarial examples decreases considerably when a different model is used, it is still
possible to fool the victim networks in most cases.

Intra-technique transferability refers to the phenomenon where models are susceptible to
attacks using adversarial examples crafted on a different model which was trained using
the same machine learning technique. Papernot et al. [31] showed that adversarial attacks
are applicable not only for deep neural networks but for a variety of machine learning
techniques such as logistic regression (LR), k-Nearest Neighbor (kNN), support-vector
machines (SVMs) or decision trees (DT). They demonstrated intra-technique transferabil-
ity for all classifiers mentioned above. For example, logistic regression Classifiers showed
high misclassification rates on adversarial samples crafted by other LR classifiers, whereas
decision trees seem to be more robust to this approach (see [31] Figure 2 for an overview).
The authors also demonstrated that most machine learning techniques are vulnerable to
attacks using adversarial samples generated for other machine learning techniques. For
example, decision trees were easily fooled by adversarial examples crafted for any other
mentioned technique. Deep Neural Networks and kNN classifiers demonstrated more
robustness in this setting (see [31] Figure 3 for an overview).

According to Tramer et al. [41], adversarial examples span a subspace of high dimension-
ality. The authors used the Gradient Aligned Adversarial Subspace (GAAS) technique
to estimate the dimensionality of the subspace under a first-order approximation of

26

2.4 Transferability

the loss function. The technique finds for an input x orthogonal perturbations r with,
∥r∥2 ≤ ϵ, that result in a significant increase in loss, i.e., L(x+ r, lt) ≥ L(x, lt) + γ, for a
γ > 0 and target label lt. To be precise, the goal is to find a maximal set of orthogonal
perturbations/directions r1, r2, ..., rk satisfying ∥ri∥2 ≤ ϵ and

⟨ri,∇xL(x, y)⟩ ≥ γ. (2.4.1)

The restriction of the angle between ri and ∇xL(x, y) in (2.4.1) ensures that the increase
in loss is large enough. See Figure 2.7 for an illustration of GAAS. In an experiment where

Figure 2.7: Illustration of the Gradient Aligned Adversarial Subspace (GAAS). The red
arrow represents a successful FGM attack as it crosses the decision boundary
(green). The black arrows are orthogonal perturbations that form a subspace
of potential adversarial samples [41].

they trained two fully connected neural networks fsrc and ftarget on the MNIST data
set [27], Tramer et al. found that for ∥r∥2 ≤ 5 on average 44.28 orthogonal perturbations
existed for fsrc of which 24.87 directions transferred to model ftarget. By randomly
sampling in the spanned spaces, they were able to fool the source model fsrc in 99% of
cases, and model ftarget in 89% of cases, suggesting that the perturbations span a dense
subspace of adversarial examples. However, Madry et al. [28] observed in experiments that
there exist adversarial perturbations r with a negative inner product with the gradient
of the input, therefore violating (2.4.1), that successfully fool the model. This suggests
that the adversarial subspace view proposed by Tramer et al. is not fully capturing the
phenomenon.

Furthermore, Tramer et al. argue that the similarity of the decision boundaries of source
and target models, i.e., small inter-boundary distance, could be the cause for the existence

27

2 Adversarial Examples and Attacks

of these large transferable adversarial subspaces. The underlying argument behind this
hypothesis is that if compared to the distance to the decision boundary, the distance
between the decision boundaries along the direction of a perturbation is very small,
adversarial examples crafted from the source model fsrc that cross the decision boundary
of fsrc, are also very likely to cross the decision boundary of the target model ftarget. See
Figure 2.8 for an illustration. For a given test example of class 1, the inter-boundary
distance in the direction of an adversarial example is very small. It is thus very likely
that the sample not only crosses the decision boundary of model 1 (source model) but
also that of model 2 (target model), in other words, the adversarial sample transfers. For
a more detailed formal description, the reader is referred to [41]. Tramer et al. observed

Figure 2.8: Illustration of three different directions. Adv: line in direction of an adversarial
example. Leg: line in direction of the closest test point of class 0. Rand:
line in a random direction. The black double-ended arrows represent the
inter-boundary distance of the two models. Model 1 and model 2 represent
the source and target model respectively.

in experiments that the distance to the decision boundary is mostly smaller than the
inter-boundary distance of source and target model corroborating the intuition described
above. Interestingly, the analysis of the experiments also showed that the minimum
distance to the decision boundary was larger in random directions than in direction of test
samples from other classes. This could serve as an explanation for the observation that
random noise perturbations usually do not change the class prediction by the model.

28

3 Adversarial Training and other Defenses

Considering the effectiveness of adversarial attacks, countermeasures have to be developed
in order to be able to safely deploy neural networks in security-sensitive areas, e.g., in
self-driving cars. Many defenses to adversarial attacks have been proposed which at first
offered promising results but were later broken by new or adapted attacks. The search
for better attacks and defenses created an arms race that is still ongoing. So far, the most
promising defense is adversarial training. But before focusing entirely on this defense
strategy for the rest of the thesis, a short introduction to a selected list of other defense
strategies is provided below.

3.1 Defensive Distillation

Distillation was initially introduced as a training procedure that aimed to decrease the
computational complexity of neural network architectures [2, 18]. It works by transferring
knowledge from a, in terms of number of layers and nodes, larger neural network to a
smaller network, which is then called a distilled model.

Defensive distillation suggested by Papernot et al. [34] as a defense technique against
adversarial attacks is a variant of distillation. Most adversarial attacks try to calculate a
sensitivity estimate for each input dimension which is then used to generate a perturbation.
For example, the JSMA method (see Section 2.2.7) directly computes the Jacobian JF (x)
of the network F with respect to its input x ∈ Rn in each iteration, thus obtaining
the gradient ∇xFi for each output dimension i. The gradients are used for computing
sensitivity estimates along each input dimension. Finally, the algorithm modifies the
input along the most sensitive dimensions. Defensive Distillation aims at preventing
attacks from making use of high gradient amplitudes. For this reason, Papernot et al
proposed an adaptation of the softmax output function (1.1.1) for neural networks:

Definition 16. For z ∈ Rm, define the softmax output function at temperature T ∈ R

29

3 Adversarial Training and other Defenses

as

ψT (z) =
[

e
zi
T∑m

i=1 e
zi
T

]
i=1,...,m

. (3.1.1)

The new parameter T ∈ R is called temperature or distillation temperature. Even though
defensive distillation is a procedure that is performed during the training phase, where
model parameters θ are not fixed, the dependence of F on θ will be omitted in the following
for the sake of notation clarity. Let F be a neural network and let Z(x) ∈ Rm denote the
output of the penultimate layer. If F has a softmax output layer at temperature T , it
takes the following form:

F (x) = ψ(Z(x)) =
[

eZi(x)/T∑m
i=1 e

Zi(x)/T

]
i=1,...,m

.

For each input x the neural network outputs a conditional distribution F (x) = p(·|x)
over all labels i ∈ {1, ...,m},i.e., Fi(x) = p(i|x) represents the probability assigned by F
that x has label i. Higher values of T force the network to output a more ambiguous
distribution, i.e., assigning relatively large probabilities for each class. For T →∞, one
obtains a uniform distribution. The reason for introducing T is that more ambiguous
distributions make it harder for an adversary to obtain a good sensitivity estimate as
described above. A model’s small sensitivity to input variations is encoded in its Jacobian
JF (x). Substituting g(x) = ∑m

i=1 e
Zi(x)

T , we obtain for the (i, j)-th component of the
Jacobian of a neural network F : Rn → Rm at temperature T :

∂Fi(x)
∂xj

= ∂

∂xj

 e
Zi(x)

T∑m
l=1 e

Zl(x)
T


= 1
g2(x)

∂eZi(x)
T

∂xj
g(x)− e

Zi(x)
T

∂g(x)
∂xj


= 1
g2(x)

e
Zi(x)

T

T

(
m∑

l=1

∂Zi(x)
∂xj

eZl(x)/T −
m∑

l=1

∂Zl(x)
∂xj

eZl(x)/T

)

= 1
T

e
Zi(x)

T

g2(x)

(
m∑

l=1

(
∂Zi(x)
∂xj

− ∂Zl(x)
∂xj

)
eZl(x)/T

)
.

(3.1.2)

Note that the partial derivatives are inversely proportional to the temperature of the
model and the logits Zi are scaled by T before being exponentiated. It becomes clear
from (3.1.2) that an increasing temperature is reducing gradient amplitudes for each
output dimension and thus decreasing model sensitivity to small input variations.

30

3.2 Feature Squeezing

In the first step of defensive distillation, an initial network is trained on the training
data at a temperature T. The output distributions are then used as (one-hot encoded)
labels to train a second network again at temperature T , which is then referred to as
the distilled network. Figure 3.1 gives an overview of the procedure. After finishing the
training process, the temperature of the softmax output layer of the distilled network is
set back to 1. Papernot et al. reported that defensive distillation is effective against the

Figure 3.1: Illustration of Defensive Distillation [34]. In the first step, the initial larger
neural network (NN) F i is trained on the labeled training data at Temperature
T . The probability vector predictions, i.e., the output of F i, are then used as
labels paired with the initial training inputs for training the distilled neural
network F d. In contrast to standard distillation, usually the same architecture
is used for both models.

Jacobian-based saliency map attack and the fast gradient sign method [34, 30]. However,
Carlini et al. [6] showed that the Carlini-Wagner attack (see Section 2.2.5) is an effective
counter against defensive distillation.

3.2 Feature Squeezing

Feature squeezing, originally proposed by Xu et al. [48], is in contrast to defensive
distillation or adversarial training, a reactive defense, i.e., it is deployed after the training
phase and aims at detecting adversarial examples. The authors proposed two simple
methods for squeezing input features: decreasing the color depth of each pixel and
reducing the differences between individual pixels via spatial smoothing. For black-
and-white images, Xu et al. used a binary filter as an example for the color depth
method. The pixel range is split in half and the pixels of each feature of an image is
set to either 0 (black) or 1 (white) depending on which half the original pixel value is
in. For multi-channel, i.e. coloured, images, the color depth of each pixel is reduced,
e.g., from 8-bit depth (per RGB channel) to 4-bits on the CIFAR-10 [25] data set. The

31

3 Adversarial Training and other Defenses

second method, spatial smoothing, can be divided into two subgroups, local and non-local
smoothing. Both were originally designed to reduce image noise but they differ in their
strategies. Local smoothing replaces each pixel with the mean of the pixels in a predefined
vicinity of it. Non-local means, representing non-local smoothing, is not restricted to a
close neighborhood. For each pixel in a given image, the method replaces it with the
mean over all pixels weighted by a similarity measure. An illustration of the method as
proposed in [48] is provided in Figure 3.2. Copies of the original model with inserted

Figure 3.2: Illustration of feature squeezing: The classification model is supported by two
copies of the original model with a feature squeezing method inserted before
them, in detecting adversarial examples. All three models are evaluated on
the input. If the difference di in one of the predictions between the original
model and one of the squeezer models under the L1-norm exceeds a threshold,
the input is labeled adversarial [48].

feature squeezers are referred to as squeezer models in the following. After feeding the
inputs to both the original model and the squeezer models, the output prediction of
the classifier is compared with the output of each squeezer model. If one of the output
prediction differences under the L1-norm exceed a threshold T > 0, the input is labeled
adversarial and consequently rejected.

Since feature squeezing is not performed during training, the technique is compatible
with defenses like adversarial training. Xu et al. [48] argued that feature squeezing alone
may not be sufficient to provide protection against adversarial attacks but could easily
be used in combination with other defenses due to its low computational cost.

3.3 Adversarial Training

Adversarial training is a defense strategy in which the defender incorporates adversarial
examples into the learning process of the model by either re-training the model on the

32

3.3 Adversarial Training

adversarial examples or training the model solely on them in the first place. Thus,
adversarial training is also, like defensive distillation, a proactive defense, i.e., the model
is robustified against adversarial attacks during the training phase through adaptations
of the learning process.

In their work, Madry et al. propose an optimization view on adversarial robustness, i.e.,
a model’s robustness against adversarial attacks [28]. Let (x, lc) ∈ Rn × {1, ...,m} be
an input/label pair drawn from a data distribution D . Instead of assuming a standard
empirical risk minimization (ERM) setting for the defender, the authors introduce the
following saddle point formulation,

min
θ

E(x,lc)∼D

[
max
r∈S
L(θ, x+ r, lc)

]
, (SP)

for a set of allowed perturbations S ⊆ Rn. This formulation allows for a unifying
perspective on standard ERM and adversarial training. Solving this optimization problem
for a given neural network F with parameters θ ∈ Rp and corresponding loss L would
result in an optimally robustified model against adversarial attacks constrained to S.

At first the saddle point problem in (SP) looks intractable due to the highly non-concave
inner maximization problem. However, Madry et al. provided evidence that it is
indeed tractable by looking at the loss landscape of different models on the MNIST and
CIFAR-10 data sets. Their experiments showed that the loss of local maxima of the
inner maximization problem obtained through projected gradient descent (PGD) are
well-concentrated (see Figure 3.3), despite the distances between local maxima being
distributed close to the expected distance in the ℓ∞-ball, i.e., S = {r : ∥r∥∞ ≤ ϵ}. In
other words, the experiment showed that the loss values of the local maxima are without
any outliers and very well concentrated while the local maxima themselves are distributed
more evenly in the input space. Not surprisingly, the loss values are considerably lower
for adversarially trained networks.

The high concentration of loss values of local maxima obtained through PGD gives rise
to the conjecture that training against the PGD adversary (see Section 2.2.4) is providing
robustness against all first-order adversaries, i.e., adversaries who use only gradients of
the loss function with respect to the input. Moreover, Madry et al. argued that since
most optimization problems in machine learning are solved with first-order methods,
first-order attacks are universal in the current state of deep learning. Therefore, models
trained against PGD adversaries should be robust against all other current attacks.
Indeed, additional experiments on the MNIST and CIFAR-10 data set confirmed the

33

3 Adversarial Training and other Defenses

Figure 3.3: For both data sets, each of the five plots shows two histograms of the loss
of local maxima obtained by repeatedly starting projected gradient descent
(PGD) from 105 uniformly distributed random points in the ℓ∞-ball around an
example from the MNIST and CIFAR-10 evaluation sets. The blue histogram
corresponds to a normally trained neural network and the red histogram to
an adversarially trained network [28].

authors’ hypothesis. PGD-trained neural networks showed significant robustness against
the FGSM, PGD, and even the stronger Carlini-Wagner attack. Carlini et al. [5] also
concluded that adversarial training as described above is effective.

3.3.1 Model Capacity

Another observation Madry et al. made was that model capacity plays a key factor
in adversarial robustness. Small capacity models often failed completely at adversarial
training, resulting in a classifier that always predicts a fixed class. Conversely, as model
capacity increased, the value of (SP) decreased, i.e., the model was better able to fit the
adversarial examples.

34

4 Robust Optimization

4.1 Introduction to Robust Optimization

This section is based on [3].

Robust Optimization (RO) is a field of optimization theory that aims at producing
uncertainty-immune solutions to optimization problems with uncertain data. We will
use linear programs (LP) to further explain the scope of RO. In RO, an uncertain LP is
given by a set of LPs,

{min
x
{cTx : Ax ≤ b} : (c, A, b) ∈ U}, (4.1.1)

where the set U represents the uncertainty set. In this setting, we do not have complete
knowledge about the optimization problem at hand, but rather have to deal with
uncertainty around the problem parameters (A, c, b) induced by U . According to [3],
what it means to solve (4.1.1) is determined by three implicit assumptions regarding the
underlying "decision-making environment":

i) All entries in the decision vector x should get specific numerical values as a result
of solving the problem before the actual data “reveals itself".

ii) The decision maker is fully responsible for consequences of the decisions to be made
when, and only when, the actual data is within the prespecified uncertainty set U .

iii) The decision maker cannot tolerate violations of constraints when the data is in U .

These assumptions arise from a worst-case oriented point of view. For example, a solution
x to (4.1.1) must not violate the constraint Ax ≤ b, for any (c, A, b) ∈ U . This observation
leads to the question: What constitutes a solution to an uncertain problem in robust
optimization? The best possible robust feasible solution, i.e., a solution satisfying (i)-(iii),
is given by

min
x

{
sup

(c,A,b)∈U
cTx : Ax ≤ b,∀(c, A, b) ∈ U

}
,

35

4 Robust Optimization

or equivalently by
min
x,t

{
t : cTx ≤ t : Ax ≤ b,∀(c, A, b) ∈ U

}
.

In stochastic optimization, the uncertain data (c, A, b) obeys a probability distribution P
which is at least in part known in advance. In its simplest form, we have full knowledge
of P . In this case, we obtain the following optimization problem,

min
x,t

{
t : Prob(c,A,b)∼P {cTx ≤ t & Ax ≤ b} ≥ 1− ϵ

}
, (4.1.2)

where ϵ≪ 1 is a given tolerance. In case P is only partially known, i.e., P is restricted
to a family P of probability distributions on the space of the data, we have instead,

min
x,t

{
t : Prob(c,A,b)∼P {cTx ≤ t & Ax ≤ b} ≥ 1− ϵ, ∀P ∈ P

}
. (4.1.3)

Even though these problem formulations of robust optimization and stochastic optimiza-
tion look very similar, they have significant differences in regards to the assumption made
in each setting. SO is less conservative, in other words, violations of assumption (iii)
are permitted for a solution of (4.1.2) or (4.1.3). Additionally, a central assumption in
stochastic optimization is that the uncertain data obeys a probability distribution which
can be (at least partially) identified and used for computation.

RO has found use in many different fields such as decision theory [3] or control theory
[11, 44] but we will mainly focus on its application in machine learning.

4.1.1 Robust Optimization in Adversarial Training

We already introduced adversarial training in Section 3.3 as a defense strategy against
adversarial attacks. In security-sensitive areas, one usually seeks security guarantees
for systems against potential attacks. In the optimal case, an immunity guarantee for
a system against any attack can be given. To obtain such a guarantee, the defender
essentially solves the following constraint satisfaction problem

find θ ∈ Θ

s.t. fθ(x+ r) = fθ(x) , x+ r ∈ X, ∀(x, lc) ∼ D ,∀r ∈ S,
(4.1.4)

for an input space X, a classifier fθ and a set of permitted perturbations S. A solution
of (4.1.4) would guarantee that no attack, satisfying the restrictions imposed by S, could
fool the classifier. Unfortunately, there need not even exist a solution to (4.1.4). But

36

4.1 Introduction to Robust Optimization

even if this was the case, the problem turns out to be intractable in practice, since we do
not know the underlying data distribution D but have only access to a finite training set
X drawn from D . This observation requires a reformulation of the problem.

For the above-mentioned reasons, the model cannot be expected to be immune to attacks
targeting any (x, lc) ∼ D , if only finite amounts of training data are available. A less
ambitious but far more attainable goal is to try to minimize how far off the model is on
average from the correct prediction when classifying inputs x+ r, for any r ∈ S. In this
setting, we have a collection of minimization problems,{

min
θ

{
E(x,lc)∼DL(θ, x+ r, lc) s.t. x+ r ∈ X

}
: r ∈ S

}
,

with a common structure varying in a given set S of allowed adversarial perturbations.
The constraint fθ(x + r) = fθ(x) in (4.1.4) is removed, and instead, we minimize the
expected value of the corresponding loss function L. This allows us to approach this
problem from the perspective of robust optimization and the best possible feasible solution
is given by the solution of

min
θ

{
sup
r∈S

E(x,lc)∼D [L(θ, x+ r, lc)] s.t. x+ r ∈ X,
}
. (4.1.5)

Another implicit assumption that is often made is that the adversarial perturbations r
are small enough that the validity of the adversarial example, i.e., x+ r ∈ X, is ensured
for any x ∈ X. This recovers the saddle point formulation (SP) of adversarial training
introduced by Madry et al. [28].

For the scope of adversarial learning, it is assumed that two agents, the defender and
the adversary, are participating in an arms raise of attacks and defenses. Provided that
the defender is using adversarial training as a defense technique, their goal is to find,
for a given model fθ, optimal weights θ̄ that minimize (4.1.5). On the other hand, the
adversary tries to find the best attack algorithm such that the defenses deployed by the
defender are broken, i.e., generating perturbations r such that (4.1.5) is maximized. We
can therefore treat this process as a two-player zero-sum game, also called a minimax
game, which we are going to introduce in the next section.

37

4 Robust Optimization

4.2 Two-player Minimax Games

Definition 17. (Two-player minimax game). Let f : Θ × Φ → R be called a value
function. In a two-player minimax game or zero-sum game, two players compete against
each other, where one player aims at minimizing f , while the other aims at maximizing
it. To be precise:

min
θ∈Θ

max
φ∈Φ

f(θ, φ).

In the case of adversarial training, we have two players, a defender and an adversary.
The defender tries to minimize the expected value of the loss, while the adversary tries
to maximize it in order to fool the model under attack. More precisely, for a model
parameter space Θ and a set of permitted perturbations S, we obtain a two-player
minimax game,

min
θ∈Θ

max
r∈S

E(x,lc)∼D [L(θ, x+ r, lc)] .

In the following section, we are going to describe optimization algorithms specifically
designed for minimax games which were also used for the experiments presented in
Chapter 6.

4.3 Algorithms

4.3.1 Gradient Descent Ascent

The gradient descent ascent (GDA) algorithm is a straightforward extension of the
gradient descent algorithm to minimax games. For a two-player minimax game as
described in Definition 17, the update rule of GDA is given by

θ(t+1) = θ(t) − η∇θf(θ(t), φ(t))

φ(t+1) = φ(t) + η∇φf(θ(t), φ(t)),

for a learning rate η > 0, if the iterates of players are updated simultaneously. If they
are updated alternatingly, we have

θ(t+1) = θ(t) − η∇θf(θ(t), φ(t))

φ(t+1) = φ(t) + η∇φf(θ(t+1), φ(t)).

For the rest of this section, we are going to assume simultaneous updates. In order to
study the convergence performance of GDA in the minimax setting, we will investigate

38

4.3 Algorithms

its behavior on a very simple form of minimax games called bilinear zero-sum games.

Definition 18. (Bilinear zero-sum games [52]). Bilinear zero-sum games can be formu-
lated as the following minmax-problem:

min
x

max
y

xTAy + bTx+ cT y,

for b ∈ Rp, c ∈ Rn and A ∈ Rp×n invertible.

As it turns out, GDA does not necessarily converge for bilinear games. For example, let
b = 0, c = 0, A = I, then the update rule of GDA becomes

 θ(t+1)

φ(t+1)

 =

 Ip×p −ηIn×n

ηIn×n Ip×p

 θ(t)

φ(t)

 .
Thus, the following identity holds for the norms of the iterates

∥ω(t+1)∥2 = (1 + η2)∥ω(t)∥2,

showing that, for t → ∞, GDA diverges for all choices of η > 0. This observation
motivates the optimization algorithms introduced below.

4.3.2 Extragradient

Originally proposed by Korpelevich [24], the extragradient method is designed to overcome
the convergence issues GDA is facing for minimax games. Extragradient performs an
extrapolation step before updating the weights via GDA. More precisely, we have

Extrapolation :

θ
(t+ 1

2) = θ(t) − η∇θf(θ(t), φ(t))

φ(t+ 1
2) = φ(t) + η∇θf(θ(t), φ(t))

Update :

θ
(t+ 1

2) = θ(t) − η∇θf(θ(t+ 1
2), φ(t+ 1

2))

φ(t+ 1
2) = φ(t) + η∇θf(θ(t+ 1

2), φ(t+ 1
2)).

Korpelevich showed that for minimax games, as defined in Section 4.2, with the additional
assumption that the objective function f(θ, ϕ) is convex in θ and convex in ϕ, and the
partial derivatives of f are Lipschitz continuous, extragradient converges to a saddle
point. In case we use SGD instead of gradient descent in the extrapolation and update
step, we analogously refer to the resulting method as ExtraSGD.

39

4 Robust Optimization

Similarly to extragradient, ExtraAdam, proposed by Gidel et al. [13], performs an
extrapolation step before updating its weights using Adam [22].

Extrapolation :


θ(t+ 1

2) = θ(t) − η m̂θ
t√

v̂θ
t +ϵ

φ(t+ 1
2) = φ(t) + η

m̂φ
t√

v̂φ
t +ϵ

Update :


θ(t+ 1

2) = θ(t) − η
m̂θ

t+ 1
2√

v̂θ

t+ 1
2

+ϵ

φ(t+ 1
2) = φ(t) + η

m̂φ

t+ 1
2√

v̂φ

t+ 1
2

+ϵ
,

where m̂θ
t , m̂

φ
t and v̂θ

t , v̂
φ
t are the bias-corrected estimates of the first and second moment

for both iterates, respectively.

4.3.3 OGDA

Optimistic Gradient Descent Ascent (OGDA), proposed by Rakhlin et al. [35], is an
adaptation of the optimistic gradient descent (OGD) algorithm for zero-sum games. In
contrast to ExtraSGD or ExtraAdam, OGDA requires only one gradient evaluation per
step, while storing the gradient of the previous iteration. The update rules for the iterates
are as follows:θ

(t+1) = θ(t) − η
(
2∇θf(θ(t), φ(t)) +∇θ(θ(t−1), φ(t−1))

)
φ(t+1) = φ(t) − η

(
2∇φf(θ(t), φ(t)) +∇φ(θ(t−1), φ(t−1))

)
Optimistic Gradient Descent Ascent also convergences for bilinear zero-sum games [10].

In the next chapter, we are going to discuss an optimization algorithm introduced by
Zhang et al. [53], referred to as Lookahead, which has been shown to improve performance
over standard optimization algorithms like Adam [22] or stochastic gradient descent
(SGD) in training generative adversarial networks (GANs) [14, 7], which also involve
solving a minmax-problem.

40

5 Lookahead Optimizer

The Lookahead optimizer proposed by Zhang et al. [53] is an optimization algorithm that
has been shown to be able to outperform standard optimization algorithms like SGD
or Adam in machine learning tasks. Intuitively, the optimizer is using a set of weights
obtained from another optimization algorithm, called the fast weights, to ’look ahead’
k steps and then taking a more conservative step in that direction, yielding a second
set of weights, called the ’slow’ weights. In its inner loop, i.e., when looking ahead, any
standard optimizer, including SGD and Adam, can be used. Furthermore, Zhang et al.
reported that the Lookahead algorithm is less dependent on optimal hyperparameters
and therefore requires less hyperparameter tuning in comparison to other optimization
algorithms used in the domain of machine learning.

5.1 Algorithm

This section is based on [53].

Formally, Lookahead (LA) maintains two sets of weights, the fast weights θ and the
slow weights ϕ. In the inner loop, a specified optimization algorithm A updates the fast
weights θ k times. After that, the slow weights ϕ are updated in the direction of the
fast weights through interpolation. In the next iteration, the fast weights are reset to
the current slow weights’ value. The learning rate of the slow weights is denoted by α,
while the learning rate of the fast weights, i.e., the learning rate of the inner optimizer, is
denoted by γ. The synchronization parameter k is also referred to as Lookahead-steps
(LA-steps) parameter. The pseudocode is provided in Algorithm 4.

For an illustration of the trajectories of both fast and slow weights, see Figure 5.1. In
this experiment, SGD displays a rather counterproductive cycling behavior around the
minimum. On the other hand, LA overcomes this issue by updating the slow weights
with a convex combination of the old slow weights and the latest fast weights which
pushes the slow weight trajectory much more in the direction of the minimum.

41

5 Lookahead Optimizer

Algorithm 4 Lookahead Optimizer [53]
Require: initial parameters ϕ0, objective function L

LA-steps k, slow weights step size α, inner optimizer A
for t = 1, 2, ... do

Synchronize parameters θ(t,0) ← ϕ(t−1)

for i=1,2,...,k do
sample minibatch of data d ∼ D
θ(t,i) ← θ(t,i−1) +A(L, θ(t,i−1), d)

end for
Perform outer update ϕ(t) ← ϕ(t−1) + α(θ(t,k) − ϕ(t−1))

end for
Output: parameters ϕ

The fast weights are updated k times within each inner loop according to the following
update rule for a given optimizer A, an objective function L and a current minibatch of
training examples d:

θ(t,i+1) = θ(t,i) +A(L, θ(t,i−1), d).

Note that the slow weight trajectory can be seen as an exponential moving average
(EMA) of the final fast weights of each inner loop. After each inner loop, the slow weights
are updated as follows:

ϕ(t+1) = ϕ(t) + α(θ(t,k) − ϕ(t))

= α[θ(t,k) + (1− α)θ(t−1,k) + ...+ (1− α)t−1θ(0,k)] + (1− α)tϕ0,

for initial slow weights ϕ(0) = ϕ0.

5.1.1 Computational Complexity

The computational complexity of LA is only marginally higher than that of its inner
optimizer A. After k updates with A, a single update step of the outer weights is
performed. In total, LA requires O(k+1

k)-times the number of operations of the inner
optimizer.

5.1.2 Lookahead-Minmax

We can straightforwardly adapt LA for two-player minimax games (see Algorithm 5).
For the sake of clarity in notation, we will denote the slow weights as ξθ and ξφ for both
players, respectively.

42

5.2 Convergence Statements

Figure 5.1: Illustration of Lookahead: CIFAR-100 accuracy surface for a standard deep
neural network trained with the LA optimizer (k = 10) equipped with SGD
for its inner loop. The weights are projected on the plane defined by the first,
middle, and last fast weight in the inner loop. The trajectory of fast and slow
weights are respectively shown in blue and purple. Points that lie on the plane
are drawn solid. The upper right-hand figure shows a continuation of the fast
weight trajectory without the interpolation step. The lower right-hand figure
shows a full second LA iteration [53].

5.2 Convergence Statements

5.2.1 Noisy Quadratic Convergence

For X ⊆ Rn , let Fθ : Θ × X → Rm be a neural network parametrized by θ ∈ Θ ⊆ Rp,
with a corresponding loss function L : Θ× X× {1, ...,m} → R+. The input-label pairs
(x, lc) ∈ X × {1, ...,m} are drawn i.i.d from a data distribution D . In empirical risk
minimization (ERM), the objective is to minimize the expected loss E(x,lc)∼D [L(θ, x, lc)].
Each sample pair (x, lc) contributes a per-sample loss L(θ, x, lc) to the expected loss
E(x,lc)∼D [L(θ, x, lc)].

43

5 Lookahead Optimizer

Algorithm 5 LA-Minmax [7]
Require: Initial weights ξθ

0 , ξ
φ
0 , objective function f

LA steps k, slow weights step size α, inner optimizer A
θ(0,0), φ(0,0) ← ξθ

0 , ξ
φ
0

for t = 1, 2, ..., T − 1 do
Synchronize parameters θ(t,0) ← ξ

(t−1)
θ

Synchronize parameters θ(t,0) ← ξ
(t−1)
φ

for i=1,2,...,k do
sample minibatch of data d ∼ D
θ(t,i) ← θ(t,i−1) +A(f, θ(t,i−1), d)
φ(t,i) ← φ(t,i−1) −A(f, φ(t,i−1), d)

end for
Perform outer update:
ξ(t) ← ξ

(t−1)
θ + α(θ(t,k) − ξ(t−1)

θ)
ξ(t) ← ξ

(t−1)
φ + α(φ(t,k) − ξ(t−1)

φ)
end for

Output: parameters ξ(T)
θ , ξ

(T)
φ

Zhang et al. [53] used a noisy quadratic model as a proxy for empirical risk minimization
to explore the convergence behavior of LA with SGD as its inner optimizer in a non-
deterministic setting. To be precise, the authors used the following model,

L̂(θ) = 1
2(θ − c)TA(θ − c), (5.2.1)

for θ, c ∈ Rp, A ∈ Rp×p positive semi-definite, and c ∼ N (θ∗,Σ) drawn from a normal
distribution with mean value θ∗ ∈ Rp and covariance matrix Σ ∈ Rp×p. This model
serves as a proxy for neural network optimization in a stochastic setting. It is assumed
that the per-sample loss function L(θ, x, lc) is smooth and can be locally approximated
by L̂(θ) (see [36] for further discussion). Instead of sampling input-label pairs from D ,
random vectors c are drawn i.i.d. from a normal distribution. Note that in general A is
dependent on x but for simplicity, A is required to be identical for all samples. For a
positive semi-definite matrix A the per-sample optimum is attained at θ = c and it is
assumed that the per-sample optima are normally distributed.

The iterates of the SGD algorithm and the linear interpolation step performed in the
LA algorithm are both invariant to translations and rotations in the parameter space.
That means that the convergence behavior of SGD and LA is not affected by translations
or rotations (for details see [39, Proposition 6.1]). Therefore, without loss of generality,
the mean value of c is assumed to be zero, i.e., θ∗ = 0, as well as A being diagonal.

44

5.2 Convergence Statements

Furthermore, [53] required Σ to be diagonal which is a non-trivial assumption but common,
see [46, 51]. The diagonal elements of A and Σ are denoted by ai and σi respectively.

We now take the expectation over c instead of (x, lc) and the objective becomes:

min
θ∈Θ

Ec∼N (0,Σ)[L̂(θ)]. (5.2.2)

Using an iterative optimization algorithm like SGD or LA to solve (5.2.2), a new random
vector c(t) is introduced at each iteration t, which is independent of the random vectors
c(j), for 0 ≤ j ≤ t− 1, of the previous iterations. Since for SGD, the iterates θ(t) are a
linear combination of the initial weights θ(0) = θ0 ∈ Rp and the random vectors c(j), for
0 ≤ j ≤ t− 1, the following holds

Cov(θ(t), c(t)) = 0, (5.2.3)

i.e., the iterate θ(t) and the random vector c(t) are uncorrelated. Furthermore, we obtain
for the expected loss at iterate θ(t):

Ec(t)∼N (0,Σ)[L̂(θ(t))] = 1
2Ec(t)∼N (0,Σ)

[∑
i

ai(θ(t)
i − c

(t)
i)2

]

= 1
2
∑

i

aiEc(t)∼N (0,Σ)

[
(θ(t)

i − c
(t)
i)2

]

= 1
2
∑

i

ai

E[(θ(t)
i)2]− 2E[θ(t)

i c
(t)
i]︸ ︷︷ ︸

=0

+E[(c(t)
i)2]


= 1

2
∑

i

ai

(
E[θ(t)

i]2 + V[θ(t)
i] + σ2

i

)
.

(5.2.4)

Before we can proceed to the main result of this section we need to prove the following
Lemma.

Lemma 5.2.1. Let ϕ(t) and θ(t,k) denote the LA slow weights and fast weights, respectively,
after the k-th inner SGD update at the t-th (slow weights) iteration used for minimizing
the noisy quadratic function L̂ defined in (5.2.1). Then, the following holds:

Cov
(
ϕ(t), θ(t,k)

)
= (I − γA)kV

[
ϕ(t)

]
.

Proof. This proof is based on [53, Lemma 1].

45

5 Lookahead Optimizer

Using (5.2.3), we compute recursively for 1 ≤ l ≤ k,

Cov
(
θ(t,l−1), θ(t,l)

)
= Cov

(
θ(t,l−1), (I − γA)θ(t,l−1) + γAc(l−1)

)
= E

[
θ(t,l−1)

(
(I − γA)θ(t,l−1) + γAc(l−1)

)T
]
− E

[
θ(t,l−1)

]
E
[
(I − γA)θ(t,l−1)

]T
= E

[
θ(t,l−1)(θ(t,l−1))T (I − γA)T

]
+ E

[
θ(t,l−1)(c(l−1))T

]
︸ ︷︷ ︸

=0

γA

− (I − γA)E
[
θ(t,l−1)

]
E
[
θ(t,l−1)

]T
= E

[
(I − γA)θ(t,l−1)(θ(t,l−1))T

]
− (I − γA)E

[
θ(t,l−1)

]
E
[
θ(t,l−1)

]T
= (I − γA)

(
E
[
θ(t,l−1)(θ(t,l−1))T

]
− E

[
θ(t,l−1)

]
E
[
θ(t,l−1)

]T)
= (I − γA)V

[
θ(t,l−1)

]
.

Finally, we use that θ(t,0) = ϕ(t) and obtain

Cov
(
ϕ(t), θ(t,k)

)
= (I − γA)kV

[
ϕ(t)

]
.

For SGD and LA with SGD as its inner optimizer, Zhang et al. [53] proved the following
result which we can then use afterwards for a comparison of the convergence behaviour
of SGD and LA in the noisy quadratic setting introduced above.

Proposition 5.2.2. ([53, Proposition 2]). For L = maxi ai, where ai are the diagonal
entries of A in (5.2.1), let 0 < γ < 2/L be the learning rate of both SGD and LA. In
the noisy quadratic model, the expected value of the iterates of SGD and LA (with inner
optimizer SGD) converges to 0 and the variances of the iterates converge to the following
fixed points:

V ∗
SGD := lim

t→∞
V[θ(t)] = γ2A2Σ

I − (I − γA)2

V ∗
LA := lim

t→∞
V[ϕ(t)] = α2(I − (I − γA)2k

α2(I − (I − γA)2k) + 2α(1− α)(I − (I − γA)k
V ∗

SGD.

Proof. This proof is based on [53].

The update rule of SGD is given by

θ(t+1) = θ(t) − γ∇θ(L̂(θ(t))) = θ(t) − γA(θ(t) − c(t)),

46

5.2 Convergence Statements

with θ(0) = θ0 ∈ Rp. Treating the weights θ(t) as random variables, we take the expectation
over c(t) and obtain

E
[
θ(t+1)

]
= (I − γA)E

[
θ(t)
]

= (I − γA)t+1E[θ0]

= (I − γA)t+1θ0.

(5.2.5)

Since |(1− γai)|t+1 < 1, ∀i, we have:

lim
t→∞

E
[
θ(t+1)

]
= lim

t→∞
(I − γA)t+1θ0 = 0.

Using (5.2.3), we obtain for the variance,

V
[
θ(t+1)

]
= V

[
(I − γA)θ(t) + γAc(t)

]
= (I − γA)2V

[
θ(t)
]

+ γ2A2V
[
c(t)
]

+ 2(I − γA)γACov(θ(t), c(t))︸ ︷︷ ︸
=0

= (I − γA)2V
[
θ(t)
]

+ γ2A2Σ.

(5.2.6)

Due to |(1− γai)|t+1 < 1, ∀i, (5.2.6) is a contraction map, and by Banach’s fixed point
theorem, it follows that (5.2.6) has a unique fixed point, which can be be obtained directly
by solving

V ∗
SGD = (I − γA)2V ∗

SGD + γ2A2Σ

=⇒ V ∗
SGD = γ2A2Σ

I − (I − γA)2 .

Now, we can proceed to prove the corresponding statements for LA. Let ϕ(t) denote the
slow weights of LA at iteration t and let α be the slow weights step size parameter.

We make use of our computations in (5.2.5) and, for an initial condition ϕ(0) = ϕ0 ∈ Rp,
obtain for the expected value of the slow weights at iteration t+ 1:

E
[
ϕ(t+1)

]
= (1− α)E

[
ϕ(t)

]
+ αE

[
θ(t,k)

]
= (1− α)E

[
ϕ(t)

]
+ α(I − γA)kE

[
ϕ(t)

]
=
(
1− α+ α(I − γA)k

)
E
[
ϕ(t)

]
=⇒ lim

t→∞
E
[
ϕ(t+1)

]
= lim

t→∞

(
1− α+ α(I − γA)k

)t+1
ϕ0 = 0.

where θ(t,k) represents the fast weights after the k-th inner update at the t-th (slow

47

5 Lookahead Optimizer

weights) iteration. For the variance, we can write

V
[
ϕ(t+1)

]
= (1− α)2V

[
ϕ(t)

]
+ α2V

[
θ(t,k)

]
+ 2α(1− α) Cov

(
ϕ(t), θ(t,k)

)
.

By Lemma 5.2.1, we obtain

V
[
ϕ(t+1)

]
= (1− α)2V

[
ϕ(t)

]
+ α2V

[
θ(t,k)

]
+ 2α(1− α)(I − γA)kV

[
ϕ(t)

]
.

Simplifying the equation and substituting the SGD variance formula from (5.2.6) yields,

V
[
ϕ(t+1)

]
=
(
1− α+ α(I − γA)k

)2
V
[
ϕ(t)

]
+ α2

k−1∑
i=0

(I − γA)2iγ2A2Σ. (5.2.7)

Using the identity, ∑k−1
i=0 x

i = (1−xk)/(1−x), we, analogously to the SGD case, compute
the fixed point of (5.2.7):

V ∗
LA =

(
1− α+ α(I − γA)k

)2
V ∗

LA + α2
k−1∑
i=0

(I − γA)2iγ2A2Σ

=⇒ V ∗
LA = α2∑k−1

i=0 (I − γA)2i

I − (1− α+ α(I − γA)k)2γ
2A2Σ

=⇒ V ∗
LA = α2(I − (I − γA)2k)

I − (1− α+ α(I − γA)k)2
γ2A2Σ

I − (I −A)2

=⇒ V ∗
LA = α2(I − (I − γA)2k

α2(I − (I − γA)2k) + 2α(1− α)(I − (I − γA)k
V ∗

SGD.

(5.2.8)

For α < 1, the fraction term in the final line of (5.2.8) is smaller than 1. Thus, for the
same learning rate γ, LA has a strictly smaller variance fixed point than that of SGD. In
(5.2.4), we decomposed the expected loss of the iterates θ(t) into a linear combination of
the expected value and the variance of θ(t) and the entries σi of the covariance matrix
Σ of the random vectors c(t). Now, if we insert our results from Proposition 5.2.2 into
(5.2.2), we obtain for t→∞, that LA converges to a smaller expected loss than SGD for
the same learning rate. Since we assume a constant learning rate γ, we cannot expect
the variance of the iterates to converge to zero.

Additionally, Zhang et al. [53] also compared the convergence rates of LA and SGD in
experiments. The authors specified the eigenvalues of A and set Σ = −A and computed
the expected loss given in (5.2.2) for learning rates in the range (0, 1) for SGD and LA

48

5.2 Convergence Statements

with α ∈ (0, 1] and k = 5 at time T = 1000. By computing the variance fixed point for
each learning rate under each optimizer, Zhang et al. were able to compute the optimal
loss and plotted the difference between the expected loss at T and the final loss, as a
function of the final loss, see Figure 5.2. This experiment allows us to compare the

Figure 5.2: Comparison of expected optimization progress between SGD and LA for
k = 5 on the noisy quadratic model defined in (5.2.1). Each vertical slice
compares the convergence of optimizers with the same optimal loss values.
For LA, convergence rates for 100 evenly spaced α values in the range (0, 1]
are overlaid [53].

convergence performance of SGD and LA optimization settings which converge to the
same solution. As shown in Figure 5.2, LA outperformed SGD across a broad range of α
values.

5.2.2 Non-Convex Convergence

In the following we are going to analyze the convergence behavior of LA for possibly
non-convex objective functions. The analysis is mainly based on [7, 42].

LA as presented in Algorithm 4 with SGD as its inner optimizer involves two nested
loops but it can also be written in equivalent form with a single loop. In the single loop
case, the fast weights are updated at every iteration l and the slow weights are updated
only when l + 1 mod k = 0. Let θ(l) and ϕ(l) denote the fast weights and slow weights
respectively after l updates and define the parameter matrix Ql = (θ(l), ϕ(l)) ∈ Rp×2 and
the stochastic gradient matrix Gl = (g(θ(l), Sl), 0) ∈ Rp×2, where Sl ⊆ X is the subset

49

5 Lookahead Optimizer

drawn in iteration l. Furthermore, define the model synchronization matrix Pl ∈ R2×2 as

Pl =

µ(1, 1), (l + 1) mod k = 0

I, otherwise,

where µ = (α, 1 − α)T ∈ R2 and α ∈ [0, 1] is the slow weights learning rate. Wang et
al. [42] introduced a single loop update rule for LA:

Ql+1 = (Ql − γlGl)Pl, (SL)

where γl is the learning rate of the fast weights at iteration l. Since (1, 1)µ = 1 and
Iµ = µ, we have Plµ = µ. Therefore, if we multiply both sides of (SL) by µ, we obtain

Ql+1µ = (Ql − γlGl)Plµ

= Qlµ− αγlg(θ(l), Sl)
(5.2.9)

Now, define the sequence ψ(l) := Qlµ = αθ(l) + (1− α)ϕ(l), ∀l ≥ 0 and rewrite (5.2.9):

ψ(l+1) = ψ(l) − αγlg(θ(l), Sl). (5.2.10)

Observe, that for l ≥ 0:

ψ(lk) − θ(lk) = (1− α)(ϕ(lk) − θ(lk)) = 0

ψ(lk) − ϕ(lk) = α(θ(lk) − ϕ(lk)) = 0.

After every k steps, the slow weights, the fast weights and the sequence ψ(l) are equal to
each other. Thus, if ψ(l) converges to a stationary point, then θ(lk) and ϕ(lk) converge to
it as well. This observation motivates the statements below.

Recall the definition of an unbiased stochastic gradient with bounded variance from
Definition 8. We are now ready to prove two theorems about the convergence behavior
of LA given in [42].

Theorem 5.2.3. (Convergence of LA with diminishing learning rate [42]). Suppose the
LA-weights are initialized as θ(0) = ϕ(0) = ψ(0), the loss function L̂ is L-smooth and g is
an unbiased stochastic gradient of L̂ with bounded variance. If the fast learning rate is

50

5.2 Convergence Statements

constant within each inner loop, i.e., ∀t ≥ 0, r ∈ {0, ..., k − 1},

γtk+r = γtk, (5.2.11)

and satisfies
∞∑

t=0
γtk =∞,

∞∑
t=0

γ2
tk <∞,

∞∑
t=0

γ3
tk <∞, (5.2.12)

αγtkL+ (1− α)2γ2
tkL

2k(k − 1) ≤ 1, ∀t ≥ 0, (5.2.13)

then
lim inf

l→∞
E
[
∥∇L̂(ψ(l))∥2

]
= 0

Proof. This proof is based on [42].

Since L̂ is L-smooth, we can apply Lemma 7.1.2(see Appendix) for v = ψ(l+1) and
x = ψ(l):

L̂(ψ(l+1))− L̂(ψ(l)) ≤ ⟨∇L̂(ψ(l)), ψ(l+1) − ψ(l)⟩+ L

2 ∥ψ
(l) − ψ(l+1)∥2.

Substituting the update rule given in (5.2.10), we have,

L̂(ψ(l+1))− L̂(ψ(l)) ≤ −αγl⟨∇L̂(ψ(l)), g(θ(l), Sl)⟩+ α2γ2
l L

2 ∥g(θ(l), Sl)∥2. (5.2.14)

In each iteration l a subset Sl of the training set is drawn i.i.d. from D , creating stochastic
noise in g. Let El[·] denote the conditional expected value ESl∼D [·|Fl], where Fl is the
σ-Algebra of ψ(l) and θ(l) generated by the stochasticity of g up until iteration l. We
then have for the first term on the RHS of (5.2.14),

El

[
⟨∇L(ψ(l)), g(θ(l), Sl)⟩

]
= ⟨∇L(ψ(l)),∇L(θ(l))⟩

=1
2(∥∇L(ψ(l))∥2 + ∥∇L(θ(l))∥2 − ∥∇L(ψ(l))−∇L(θ(l))∥2)

≥1
2(∥∇L(ψ(l))∥2 + ∥∇L(θ(l))∥2 − L2∥ψ(l) − θ(l)∥2)

=1
2(∥∇L(ψ(l))∥2 + ∥∇L(θ(l))∥2 − (1− α)2L2∥θ(l) − ϕ(l)∥2),

where the definition of ψ(l) has been used in the last step. For the second term on the

51

5 Lookahead Optimizer

RHS of (5.2.14), using that g is unbiased and has bounded variance, we find that

El

[
∥ g(θ(l), Sl)∥2

]
≤ ∥∇L̂(θ(l))∥2 + σ2.

Plugging our estimates back into (5.2.14) and taking the total expectation, we obtain

E
[
L̂(ψ(l+1))

]
− E

[
L̂(ψ(l))

]
≤ αγl

2 E
[
∥∇L̂(ψ(l))∥2

]
+ α2γ2

l Lσ
2

2

− αγl

2 (1− αγlL)E
[
∥L̂(θ(l))∥2

]
+ αγl(1− α)2L2

2 E
[
∥θ(l) − ϕ(l)∥2

]
.

(5.2.15)

Without loss of generality, we write the iteration index l as l = tk + r, for the outer loop
iteration index t ≥ 0 and inner loop index 0 ≤ r < k. Since we assumed in (5.2.11) that
γtk+r = γtk, ∀t ≥ 0, 0 ≤ r < k, i.e., the learning rate stays constant within each inner
loop, we can sum both sides of (5.2.15) from l = tk to l = tk + (k − 1) and obtain an
upper bound for the resulting telescoping sum:

E
[
L̂(ψ((t+1)k))

]
− E

[
L̂(ψ(tk))

]
≤− αγtk

2

k−1∑
r=0

E
[∥∥∥∇L̂(ψ(tk+r))

∥∥∥2
]

+ α2γ2
tkLσ

2k

2

− αγtk

2 (1− αγtkL)
k−1∑
r=0

E
[∥∥∥∇L̂(θ(tk+r))

∥∥∥2
]

+ αγtk(1− α)2L2

2

k−1∑
r=0

E
[∥∥∥θ(tk+r) − ϕ(tk+r)

∥∥∥2
]

(5.2.16)
Recalling that θ(tk) = ϕ(tk) = ϕ(tk+r),∀t ≥ 0, r < k and repeatedly using the identity,

52

5.2 Convergence Statements

∥
∑n

i=1 xi∥2 ≤ n
∑n

i=1 ∥xi∥2, allows us to bound the last term in (5.2.16) :

E
[∥∥∥θ(tk+r) − ϕ(tk+r)

∥∥∥2
]

= E
[∥∥∥θ(tk+r) − θ(tk)

∥∥∥2
]

SGD= E


∥∥∥∥∥∥

tk+r−1∑
j=tk

γtkg(θ(j), Sj)

∥∥∥∥∥∥
2
 = γ2

tkE


∥∥∥∥∥∥

tk+r−1∑
j=tk

g(θ(j), Sj)

∥∥∥∥∥∥
2


≤γ2
tk2E


∥∥∥∥∥∥

tk+r−1∑
j=tk

(g(θ(j), Sj)−∇L̂(θ(j)))

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
tk+r−1∑

j=tk

∇L̂(θ(j))

∥∥∥∥∥∥
2


≤γ2
tk

2r
tk+r−1∑

j=tk

E
[∥∥∥(g(θ(j), Sj)−∇L̂(θ(j)))

∥∥∥2
]

+ E


∥∥∥∥∥∥

tk+r−1∑
j=tk

∇L̂(θ(j))

∥∥∥∥∥∥
2



≤γ2
tk

2σ2r + 2E


∥∥∥∥∥∥

tk+r−1∑
j=tk

∇L̂(θ(j))

∥∥∥∥∥∥
2



≤γ2
tk

2σ2r + 2r
tk+r−1∑

j=tk

E
[∥∥∥∇L̂(θ(j))

∥∥∥2
] ,

where for the penultimate step the boundedness of the stochastic gradient g was used.
Summing from r = 0 to r = k − 1 yields,

k−1∑
r=0

E
[∥∥∥θ(tk+r) − ϕ(tk+r)

∥∥∥2
]

≤σ2γ2
tk(k − 1)k + 2γ2

tk

k−1∑
r=0

r
tk+r−1∑

j=tk

E
[∥∥∥∇L̂(θ(j))

∥∥∥2
]

=σ2γ2
tk(k − 1)k + 2γ2

tk

k−2∑
r=0

(
E
[∥∥∥∇L̂(θ(tk+r))

∥∥∥2
] k−1∑

s=r+1
s

)

=σ2γ2
tk(k − 1)k + γ2

tk

k−2∑
r=0

(
E
[∥∥∥∇L̂(θ(tk+r))

∥∥∥2
]

(k + r)(k − 1− r)
)
.

53

5 Lookahead Optimizer

Note that (k + r)(k − 1− r) has its maximum when r = 0. Therefore, we have

k−1∑
r=0

E
[∥∥∥θ(tk+r) − ϕ(tk+r)

∥∥∥2
]

≤ σ2γ2
tk(k − 1)k + γ2

tk(k − 1)k
k−2∑
r=0

E
[∥∥∥∇L̂(θ(tk+r))

∥∥∥2
]

≤ γ2
tk(k − 1)k

[
σ2 +

k−1∑
r=0

E
[∥∥∥∇L̂(θ(tk+r))

∥∥∥2
]]
.

Now we can substitute our upper bound of the last term of (5.2.16) back into (5.2.16)
and obtain

E
[
L̂(ψ((t+1)k))

]
− E

[
L̂(ψ(tk))

]
≤ −αγtk

2

k−1∑
r=0

E
[∥∥∥∇L̂(ψtk+r)

∥∥∥2
]

+ α2γ2
tkLσ

2k

2

+ (1− α)2αγ3
tkL

2σ2k(k − 1)
2 − αγtkC

2

k−1∑
r=0

E
[∥∥∥∇L̂(θ(tk+l))

∥∥∥2
]
,

where C = 1−αγtkL− (1−α)2γ2
tkL

2k(k− 1). Based on the assumption made in (5.2.13),
C is non-negative, i.e., C ≥ 0, and thus,

E
[
L̂(ψ((t+1)k))

]
− E

[
L̂(ψ(tk))

]
≤− αγtk

2

k−1∑
r=0

E
[∥∥∥∇L̂(ψ(tk+1))

∥∥∥2
]

+ α2γ2
tkLσ

2k

2 + (1− α)2αγ3
tkL

2σ2k(k − 1)
2 .

Summing on both sides from t = 0 to t = T − 1 yields the following upper estimate for
the resulting telescoping sum:

E
[
L̂(ψ(T k))− L̂(ψ(0))

]
≤− 1

2

T −1∑
t=0

αγtk

k−1∑
r=0

E
[∥∥∥∇L̂(ψ(tk+r))

∥∥∥2
]

+ α2Lσ2k

2

T −1∑
t=0

γ2
tk + (1− α)2αL2σ2(k − 1)k

2

T −1∑
t=0

γ3
tk.

54

5.2 Convergence Statements

After rearranging, we have

1
YT

T −1∑
t=0

γtk
1
k

k−1∑
r=0

E
[∥∥∥∇L̂(ψ(tk+r))

∥∥∥2
]

≤
2E
[
L̂(ψ(0))− L̂(ψ(T k))

]
αkYT

+ αLσ2
∑T −1

t=0 γ2
tk

YT

+ (1− α)2L2σ2(k − 1)
∑T −1

t=0 γ3
tk

YT

≤2(L̂(ψ(0))− L̂inf)
αkYT

+ αLσ2
∑T −1

t=0 γ2
tk

YT
+ (1− α)2L2σ2(k − 1)

∑T −1
t=0 γ3

tk

YT
,

(5.2.17)

where YT = ∑T −1
t=0 γtk and L̂inf = infθ∈Rp L̂(θ). Recall our assumption made in (5.2.12).

Thus, taking the limit T →∞ on both sides concludes the proof as the RHS tends to 0.

Theorem 5.2.4. (Convergence of LA with fixed learning rate [42]). Suppose the LA-
weights are initialized as θ(0) = ϕ(0) = ψ(0), the loss function L̂ is L-smooth and g is a
stochastic gradient of L̂ with bounded variance. If the fast learning rate is constant within
each inner loop, i.e., ∀t ≥ 0, r ∈ {0, 1, ..., k − 1},

γtk+r = γ,

and satisfies
αγL+ (1− α)2γ2L2k(k − 1) ≤ 1,

then, for K ∈ N:

1
K

K−1∑
l=0

E
[
∥∇L̂(ψ(l))∥2

]
≤2(L̂(ψ(0))− L̂inf)

αγK
+ αγLσ2

+ (1− α)2L2γ2σ2(k − 1),

where L̂inf = infθ∈Rp L̂(θ).

55

5 Lookahead Optimizer

Moreover, if the learning rate is set to γ = 1√
K

, we obtain:

1
K

K−1∑
l=0

E
[
∥∇L̂(ψ(l))∥2

]
≤2(L̂(ψ(0))− L̂inf) + α2Lσ2

α
√
K

+ (1− α)2L2σ2(k − 1)
K

= O
(1√

K

)
.

Proof. This proof is based on [42].

Continuing the proof of Theorem 5.2.3, we fix the fast learning rate, i.e., γtk = γ,∀t ≥ 0.
This changes the upper estimate of (5.2.17) as follows,

1
kT

T −1∑
t=0

k−1∑
l=0

E
[∥∥∥∇L̂(ψ(tk+r))

∥∥∥2
]

= 1
K

K−1∑
l=0

E
[∥∥∥∇L̂(ψ(l))

∥∥∥2
]

≤
2
(
L̂(ψ(0))− L̂inf

)
αγK

+ αγLσ2 + (1− α)2γ2L2σ2(k − 1),

where K = Tk is the total number of iterations. Finally, setting γ = 1/
√
K yields,

1
K

K−1∑
l=0

E
[∥∥∥∇L̂(ψ(l))

∥∥∥2
]
≤

2
[
L̂(ψ(0))− L̂inf

]
+ α2Lσ2

α
√
K

+ (1− α)2L2σ2(k − 1)
K

.

For the proof of the next theorem we need the following result.

Lemma 5.2.5. ([23], Lemma 17). For any parameters r0, b, e, d ≥ 0 there exists constant
step size γ ≤ 1

d such that

r0
γ(T + 1) + bγ + eγ2 ≤ 2

(
br0
T + 1

) 1
2

+ 2e
1
3

(
r0

T + 1

) 2
3

+ dr0
T + 1

Proof. For a proof refer to [23].

Building on the work of [42], Chavdarova et al. [7] improved the convergence guarantees
for LA given in Theorem 5.2.4.

Theorem 5.2.6. (Improved Convergence of LA with fixed learning rate [7]). Suppose
the LA-weights are initialized as θ(0) = ϕ(0) = ψ(0), the loss function L̂ is L-smooth and

56

5.2 Convergence Statements

g is a stochastic gradient L̂ of with bounded variance. If the fast learning rate is constant
within each inner loop, i.e., ∀t ≥ 0, r ∈ {0, 1, ..., k − 1},

γtk+r = γ,

and satisfies
αγL ≤ 1

2 , (1− α)2γ2L2k(k − 1) ≤ 1
2 , (5.2.18)

then LA satisfies E∥∇L(ωout)∥2 ≤ ϵ after at most

O
(
σ2

ϵ2
+ 1
ϵ

+ 1− α
α

(
σ
√
k − 1
ϵ

3
2

+ k

ϵ

))

iterations, where ωout denotes a uniformly at random chosen iterate amongst the set
{ω(0), ..., ω(K−1)} of LA.

Proof. This proof is based on [7].

By (5.2.18), we get that

αLγ + (1− α)2γ2L2k(k − 1) ≤ 1.

Therefore, all assumptions of Theorem 5.2.4 are met. We can directly improve the
convergence rate,

O
(

2(L̂(ψ(0))− L̂inf)
αγK

+ αγLσ2 + (1− α)2L2γ2σ2(k − 1)
)
, (5.2.19)

given in Theorem 5.2.4, by minimizing the rate in (5.2.19) for γ while respecting the
constraint stated in (5.2.18).

Let δ0 = 2(L̂(ψ(0)) − L̂inf). Applying Lemma 5.2.5, for K = T + 1, with r0 = δ0
α ,

b = αLσ2, e = (1− α)2L2σ2(k − 1), and d = max{2αL,
√

2(1− α)Lk}, we have: ∃γ ≤ 1
d :

δ0
αγK

+ αLσ2γ + (1− α)2L2σ2(k − 1)γ2

≤ 2
(
αLσ2δ0
αK

) 1
2

+ 2
(
(1− α)2L2σ2(k − 1)

) 1
3
(
δ0
αK

) 2
3

+ dδ0
αK

.

(5.2.20)

57

5 Lookahead Optimizer

We consider each term of the RHS of (5.2.20) separately. For the first term, we have,

2
(
αLσ2δ0
αK

) 1
2

≤ ϵ ⇐⇒ c1
σ2

ϵ2
≤ K,

for c1 = 4Lδ0. Similarly, for the second term we obtain,

2
(
(1− α)2L2σ2(k − 1)

) 1
3
(
δ0
αK

) 2
3
≤ ϵ ⇐⇒ c2

1− α
α

σ
√
k − 1
ϵ

3
2

≤ K,

for c2 = 2 3
2Lδ0. Lastly, for the third term, we bound d by 2(αL+ (1− α)Lk), and find

that:

dδ0
αK
≤ ϵ ⇐⇒ 2δ0(αL+ (1− α)Lk)

αϵ
≤ K ⇐⇒ c3

(1
ϵ

+ 1− α
α

k

ϵ

)
≤ K,

for c3 = 2δ0L. Plugging our estimates back into (5.2.19) concludes the proof.

5.2.3 Lookahead Convergence for Minimax Games

This section is based on [7].

In Section 4.3.1 we discussed the gradient descent algorithm in its most common form
but we can also define GDA using an operator G : R(p+n) → R(p+n) which performs the
updates of the iterates ω = (θ, φ), i.e., ω(t) = G ◦ ... ◦G(w(0)). For GDA, the operator is
given by G(ω) = ω − ηv(ω), for v(ω) = (∇θf(θ, φ),−∇φf(θ, φ)). The Jacobian of G is
given by JG(ω) = I − ηJv(ω).

Definition 19. (Fixed point). Let G : Rm → Rm, then a point ω∗ is called a fixed point
if G(ω∗) = ω∗. Moreover, a fixed point ω∗ is said to be stable if the spectral radius of
the Jacobian of G at ω = ω∗ satisfies ρ(JG(ω∗)) ≤ 1.

Using Theorem 7.1.1 (see Appendix), we can now prove a convergence criterion for
LA-Minmax.

Theorem 5.2.7. (Convergence of LA-Minmax, given converging inner optimizer [7]).
Suppose the spectral radius of the Jacobian of the operator Gbase of the inner optimizer
satisfies ρ(JGbase(ω∗)) < 1, for a fixed point ω∗, then for ω(0) in a neighborhood of ω∗,
the iterates ω(t) of LA-Minmax converge to ω∗ as t→∞

Proof. Let ω∗ be a stable fixed point of Gbase, i.e., Gbase(ω∗) = ω∗ and ρ(JGbase(ω∗)) < 1.

58

5.2 Convergence Statements

Then, the operator of LA can be written as

GLA(ω) = ω + α((Gbase)k(ω)− ω)

= (1− α)ω + α(Gbase)k(ω),

with α ∈ (0, 1], and k ∈ N, k ≥ 2. Moreover, the Jacobian JGLA of GLA is consequently
given by

JLA
G (ω∗) = (1− α)ω + αJ(Gbase)k(ω∗)

=(1− α)I + αJ(Gbase)k−1(Gbase(ω∗))JGbase(ω∗)
...

=(1− α)I + α(JGbase)k(ω∗),

where Gbase(ω∗) = ω∗ has been used repeatedly.

Now, for λbase ∈ σ(JGbase(ω∗)) arbitrary but fixed and corresponding eigenvector u,
observe that

JLAu = ((1− α)I + α(Jbase)k)(ω∗)u

= ((1− α) + α(λbase)k)u.

It follows that u is also an eigenvector of JGLA with eigenvalue 1− α+ α(λbase)k, and
consequently σ(JGLA) = {1− α+ αλk : λ ∈ σ(JGbase)}.

By assumption, we have ρ(JGbase(ω∗)) < 1. Choose λ̄LA ∈ σ(JGLA) such that |λ̄LA| =
ρ(JGLA(ω∗)), then

∃λbase ∈ σ(JGbase) : |λ̄LA| = |1− α+ (λbase)k|.

Consider the set of points {z ∈ C : α ∈ (0, 1], z = 1 − α + α(λbase)k}, describing a
segment in the complex plane between 1 + 0i and (λbase)k (excluding 1 + 0i). Since
|(λbase)k| = |λbase|k ≤ (σ(JGbase))k < 1, it follows that both ends of the segment are
in the unit circle, and therefore |λ̄LA| = ρ(JGbase(ω∗)) < 1. Applying Theorem 7.1.1
concludes the proof.

dF0
αK
≤ ϵ ⇐⇒ (1− α)k + α

α(1− α)Lk
F0
αϵ
≤ K ⇐⇒ C

(1
ϵ

+ (1− α)
α

k

ϵ

)
≤ K,

for C = F0
α(1−α)Lk .

59

6 Experiments

This chapter is dedicated to the analysis and evaluation of the experiments that were
conducted as part of this thesis1. The main question is, whether LA increases the
effectiveness of adversarial training. This question can be interpreted and tackled in
multiple ways. We will divide the analysis into several parts. First, we are going to
analyze LA’s robustness to changes in its hyperparameters (γ, k, α). Secondly, we are
going to take a closer look at the performance of the slow and fast weights of LA. Lastly,
compare the effectiveness of LA compared to other optimizers.

6.1 Framework

The experiments were performed on three different data sets, MNIST, FashionMNIST,
and CIFAR-10, and were implemented using the Pytorch deep learning library. In each
run of every experiment, batches of 100 inputs have been used to train the models.

6.1.1 Data sets

MNIST

The MNIST data set [27] consists of a training set of 60,000 images of labeled handwritten
digits, and a test set of 10,000 images. The scans of the digits are size-normalized and
centered in a fixed-size image. For details and an illustration see the Appendix.

FashionMNIST

The FashionMNIST data set [47] consists of a training set of 60,000 images of garments
associated with one of 10 classes, and a test set of 10,000 images. Similarly to the MNIST

1The code for the experiments is available at https://github.com/neuhart/Adversarial_Learning_
LA_Alg

61

https://github.com/neuhart/Adversarial_Learning_LA_Alg
https://github.com/neuhart/Adversarial_Learning_LA_Alg

6 Experiments

data set, the scans of the garments are size-normalized and centered in a fixed-size image.
For details and an illustration see the Appendix.

CIFAR-10

The CIFAR-10 data set [25] consists of a training set of 50,000 examples of labeled
colour images of objects and animals, and a test set of 10,000 images. For details and an
illustration see the Appendix.

6.1.2 Models

The model used for the experiments on the MNIST and FashionMNIST data set, which
we will refer to as the MNIST model in the following, is a 5-layer neural network with
three convolutional layers with ReLU activation and two fully connected linear layers
without activation function (see Appendix, Figure 7.3). For the experiments on CIFAR-10
the resnet-18 model, proposed by He et al. [17], was used.

6.1.3 Optimizers

In total, 10 different optimizer settings were used for the experiments: SGD, Adam,
ExtraSGD, ExtraAdam, optimistic gradient descent (OGD), and five instances of LA
each equipped with one of the five previous optimization algorithms as the inner optimizer
(e.g.: LA with inner optimizer Adam). The group of the five optimizers SGD, Adam,
ExtraSGD, ExtraAdam, and OGD will be referred to as the inner optimizers in the
following.

6.1.4 Attacks

For the experiments, we used the PGD attack to adversarially train the models, and
both the FGSM and PGD attack to evaluate the robustness of the trained models. For
both attacks we used the ℓ∞-norm and set ϵ = 0.3, i.e., we set S := {r : ∥r∥∞ ≤ 0.3}
in (SP) (for details see Section 3.3). For PGD, we allowed 40 iterations with step size
α = 0.01. Since we followed the argument of Madry et al. [28] that PGD serves as a
universal attack, we will only analyze the results for PGD2.

2Interested readers are referred to https://github.com/neuhart/Adversarial_Learning_LA_Alg for
the corresponding FGSM results.

62

https://github.com/neuhart/Adversarial_Learning_LA_Alg

6.2 Robustness to changes in hyperparameters

6.2 Robustness to changes in hyperparameters

Zhang et al. [53] claim that Lookahead improves the robustness of the inner optimizer
in regards to changes in the hyperparameters (e.g.: learning rate). Additionally, [53]
reports that LA is fairly robust to different choices of the LA-steps parameter k and
the learning rate of the slow weights α. We are going to test these statements in an
adversarial setting.

In order to analyze the robustness of LA to hyperparameter changes in comparison to
other optimizers, we need to train the models for different choices of parameters. For
CIFAR-10, we trained the resnet-18 model for 25 epochs on 36 different choices of the
parameter triple (γ, k, α) for each of the five LA instances. To be precise, we used the
following settings for the LA grid search,

Ω := {(γ, k, α) :γ ∈ {10−2, 3 · 10−3, 10−3, 3 · 10−4, 10−4, 3 · 10−5},

k ∈ {5, 10}, α ∈ {0.5, 0.75, 0.9}}.

We also trained the model with each of the inner optimizers separately for 6 different
choices of the learning rate γ ∈ Ω̃ := {10−2, 3 · 10−3, 10−3, 3 · 10−4, 10−4, 3 · 10−5}. For
convenience, in the following, we associate each model with the optimizer it was trained.

Analogously, we performed a grid search for the same hyperparameter values on the
MNIST and FashionMNIST model for the same hyperparameter choices. Each model
was trained for 12 epochs in both cases. For all three data sets the whole training set
was used and the model performance was validated on the whole test set for each data
set. The models were trained adversarially, i.e., each element of the training set was
perturbed using the PGD attack to create an adversarial example. Moreover, the models
were validated both on clean inputs and adversarially perturbed inputs using the FGSM
and PGD attack. For convenience, we will refer to the validation accuracy on PGD
(FGSM) perturbed inputs as PGD (FGSM) validation accuracy, and to the standard
validation accuracy on unperturbed inputs as clean validation accuracy.

Does LA improve robustness to hyperparameter changes?

For CIFAR-10, let ϵiLA(γ, k, α) denote the PGD validation accuracy of LA for hyper-
parameters (γ, k, α) ∈ Ω at epoch i ∈ {1, ..., 25}. Similarly, let ϵi(γ) denote the PGD
validation accuracy of the corresponding inner optimizer with learning rate γ ∈ Ω̃ at
epoch i. Averaging the PGD validation results over all hyperparameter choices for each

63

6 Experiments

epoch, i.e., computing the mean, for 1 ≤ i ≤ 25,

ϵ̄iLA = 1
36

∑
(γ,k,α)∈Ω

ϵiLA(γ, k, α)

ϵ̄i = 1
6
∑
γ∈Ω̃

ϵi(γ),

and computing the standard deviations, i.e., for 1 ≤ i ≤ 25,

si
LA = 1

36
∑

(γ,k,α)∈Ω
(ϵiLA(γ, k, α)− ϵ̄iLA)2

si = 1
6
∑
γ∈Ω̃

(ϵi(γ)− ϵ̄i)2,

enables us to compare the variability of the PGD validation accuracy in the training phase
for each epoch separately (see Figure 6.1). Note that the figures for the inner optimizers

(a) Mean PGD validation accuracy of Ex-
traSGD (blue) and LA-ExtraSGD (or-
ange), plotted over 25 epochs.

(b) Mean PGD validation accuracy of Ex-
traAdam (blue) and LA-ExtraAdam (or-
ange), plotted over 25 epochs.

Figure 6.1: The plots show the PGD validation accuracies, i.e., the validation accuracy
of the resnet-18 model on the PGD-perturbed CIFAR-10 test set, averaged
over all hyperparameter settings used in the grid search. The shaded areas
in light blue and light orange represent the accuracies with a maximum
distance of one standard deviation from the mean values of the standalone
inner optimizer and LA equipped with the inner optimizer, respectively.

are obtained by averaging over six different settings since only one hyperparameter, the
learning rate γ, has been tuned, while for LA, we average over 36 different hyperparameter
settings (γ, k, α). As shown in Figure 6.1, Lookahead did not decrease the PGD validation

64

6.2 Robustness to changes in hyperparameters

accuracy variability for every inner optimizer. The standard deviation of the PGD
validation accuracy of the model trained with ExtraAdam is considerably lower than
for its LA counterpart for all epochs. However, in the case of ExtraSGD, the variance
is decreased significantly and the mean PGD validation accuracy is a lot higher when
LA is wrapped around it, i.e., ExtraSGD is used as the inner optimizer of LA. For the
corresponding plots for Adam, SGD and OGD see the Appendix, Figure 7.4.

Robustness in the Training Phase

In order to get a measure of the overall sensitivity to changes in the hyperparameters of
each optimizer during the training phase, i.e., sensitivity to changes in the hyperparame-
ters of the PGD validation accuracy of the corresponding model, we average over the
standard deviations of all 25 epochs, i.e.,

s̄LA = 1
25

25∑
i=1

si
LA

s̄ = 1
25

25∑
i=1

si.

We observe that LA is more sensitive to changes in hyperparameters than every inner
optimizer except ExtraSGD (see Table 6.1). The results suggest that LA is decreasing

in % SGD Adam OGD ExtraSGD ExtraAdam
s̄ 2.1 2.2 2.0 6.6 1.9
s̄LA 2.3 2.5 2.1 2.1 4.0

Table 6.1: Average standard deviation of the PGD validation accuracy for every optimizer
setting (lower is better than higher). The entries of the first row correspond
to the average standard deviation for models trained without LA, and the
entries of the second row correspond to the average standard deviation of the
corresponding LA version.

the variability in PGD validation accuracy during training only for ExtraSGD but not
for the other inner optimizers. For MNIST and FashionMNIST, we obtain similar results.
LA does not provide significant improvements in robustness during the training phase of
the model.

65

6 Experiments

Robustness at test time

To evaluate the robustness of each optimizer at test time, we consider only the mean and
the standard deviation of the PGD validation accuracy after training completion (see
Table 6.2). Again, LA increased the robustness to hyperparameter changes (at test time)

in % SGD Adam OGD ExtraSGD ExtraAdam
ϵ̄25
LA 30.4 ± 2.2 31.3 ± 2.0 30.0 ± 2.0 10.6 ± 7.0 30.7 ± 1.2
ϵ̄25 30.6 ± 1.9 31.7 ± 1.8 30.7 ± 1.9 26.0 ± 3.2 32.5 ± 6.0

Table 6.2: Mean PGD validation accuracy (± one standard deviation) averaged over all
hyperparameter settings (36 for LA, 6 for inner optimizer) after the training
phase.

only for ExtraSGD significantly. Based on these observations, we conclude that using LA
does not necessarily improve the robustness of models to changes in hyperparameters.

Is LA more robust to changes in the fast learning rate?

Additionally to considering the robustness to changes in any hyperparameter of LA,
we will explicitly look at LA’s sensitivity to changes in the fast learning rate γ, i.e.,
the learning rate of the inner optimizer. Assuming that we have tuned the LA steps
parameter k and the slow learning rate α, how robust is LA to changes in γ? For this
reason, we will take a look at the grid search results for LA with k and α fixed. The
values for k and α are taken from the best hyperparameter triple (γ, k, α) of the grid
search. We can then plot the PGD validation accuracy for varying values of γ, and
compare the results with those of the corresponding standalone inner optimizer (see
Figure 6.2). In the case of Adam, LA did not have a stabilizing effect on the performance
of the model in an adversarial setting. This also holds for SGD, OGD, and ExtraAdam in
our experiments. For ExtraAdam, LA seems to induce even higher sensitivity in regards
to hyperparameter changes and higher volatility of the PGD validation accuracy in the
training phase (see the Appendix, Figure 7.7). Conversely, for ExtraSGD, the additional
use of LA had a huge stabilizing effect as also described in the next section. However, in
general, LA does not seem to be more robust to changes in the fast learning rate.

6.2.1 Model Collapse

Can LA prevent model collapse in adversarial training?

Now, given a model trained with LA, if we average only over the LA hyperparameters

66

6.2 Robustness to changes in hyperparameters

Figure 6.2: PGD Validation Accuracy for Adam (LHS) and LA-Adam (RHS) for six
different values of the fast learning rate γ. For LA, we have k = 10 and
α = 0.5. LA-Adam shows no robustness improvements over Adam in regards
to changes of the fast learning rate.

(k, α), we obtain a mean PGD validation accuracy for each learning rate, thus, enabling us
to compare the robustness to changes in the fast learning rate γ of LA (without tuned k
and α) with the robustness of its inner optimizer (see Figure 6.3). Interestingly, LA seems

Figure 6.3: The left-hand side plot shows the PGD validation accuracies for ExtraSGD
obtained in the grid search. The plot on the right depicts the mean (taken
over (k, α)) PGD validation accuracy of LA-ExtraSGD for each fast learning
rate γ separately. The shaded areas in the right-hand side plot represent
the accuracies with a maximum distance of one standard deviation from the
mean values of an inner optimizer and LA equipped with the inner optimizer,
respectively.

to be significantly more robust to changes of the learning of the inner optimizer γ for
ExtraSGD. On CIFAR-10, LA-ExtraSGD did not only prevent model collapse for tuned
k and α but for all values of k and α. Although, it is worth noting that LA-ExtraSGD
did not produce competitive results across all three data sets.

67

6 Experiments

In fact, as mentioned before by Madry et al. [28], in adversarial training, models tend to
collapse onto one class, i.e., they always predict a certain class independent of the input,
when the task of learning to recognize adversarial examples during the training process
is too hard for the model. For example, given a data set with 10 equally distributed
classes, if the model fails to recognize 1

10 of adversarial examples during the training
phase, it tends to collapse onto one class in order to maintain a minimum accuracy of 10%.
This phenomenon can be observed for ExtraSGD, as illustrated in Figure 6.3. For the
corresponding plots for Adam, SGD, OGD, and ExtraAdam see the Appendix, Figure 7.5
and Figure 7.6. While for standalone ExtraSGD, the resnet-18 model collapses for all but
the smallest learning rate γ = 3 · 10−5, we find that training with LA-ExtraSGD instead,
prevents this behaviour for all six fast learning rates γ, and we observe a significantly
higher (average) PGD validation accuracy. We conclude that in the case of ExtraSGD,
which is prone to model collapse in adversarial training, LA can prevent models from
collapsing onto one class.

6.3 Fast weights vs. Slow weights

Are LA slow weights more stable?

To get a better understanding of the performances of the slow and fast weights within
the training process, we plot the PGD validation accuracy of the resnet-18 model with
tuned hyperparameters for the first 100 updates in epoch 15 and 25 (see Figure 6.4).
The models were trained on adversarial examples generated by the PGD attack. For

Figure 6.4: Illustration of inner loop versus outer loop PGD validation accuracy of LA-
OGD for the first 100 iterates for epoch 15 and 25. In each inner loop (blue
lines) the accuracy decreases overall. The accuracy of the iterates in the outer
loop (red dashed line), i.e., the slow weights, is a lot more stable.

68

6.4 PGD Validation Accuracy

OGD, we observe that within each inner loop the accuracy drops but is recovered in the
convex interpolation step of the outer loop. This pattern indicates that the inner loop
exhibits a cycling behavior around a local minimum of the loss function. For the other
inner optimizers, we did not observe such a clear pattern.

6.4 PGD Validation Accuracy

Does LA show improved generalization over inner optimizers?

6.4.1 CIFAR-10

In the next step, we used the tuned hyperparameters to adversarially train the resnet-18
model on the CIFAR-10 data set 10 times each. The results suggest that LA can show
slight performance advantages over standard optimization algorithms like Adam or SGD
in adversarial training but does not yield a significant increase in performance. On the
other hand, in the case of ExtraAdam, on average the resnet-18 model achieves lower
PGD validation accuracy with LA (see Figure 6.5). In other words, the model trained

Figure 6.5: Comparison of the Mean PGD validation accuracy after 25 epochs for both
standalone ExtraAdam and LA with ExtraAdam. For both optimizers tuned
hyperparameters have been used, i.e., γ = 10−3 and (γ = 10−4, k = 5, α =
0.9) for ExtraAdam and LA-ExtraAdam, respectively. In comparison to
ExtraAdam, the capability of the resnet-18 model trained with LA to detect
adversarial examples at test time, was significantly.

with LA detects significantly less adversarial examples than the model trained with

69

6 Experiments

ExtraAdam. Corresponding plots for the other optimizers can be found in the Appendix
(see Figure 7.8).

Table 6.3 provides an overview of the mean PGD validation accuracy for each optimizer
on CIFAR-10. Adam and LA-Adam performed the best with a mean PGD validation
accuracy of 35.5% and 35.6%, respectively.

in % SGD Adam OGD ExtraSGD ExtraAdam
PGD
no LA 34.1 ± 1.0 35.5 ± 0.7 32.9 ± 0.9 28.0 ± 0.7 34.1 ± 0.9

LA 33.7 ± 0.8 35.6 ± 0.7 33.9 ± 1.3 31.1 ± 0.8 30.0 ± 3.2
clean
no LA 57.3 ± 1.0 61.3 ± 0.6 55.9 ± 1.0 42.5 ± 1.7 60.6 ± 0.8

LA 58.3 ± 0.5 61.7 ± 0.6 56.1 ± 1.6 57.0 ± 1.0 36.1 ± 11.4

Table 6.3: Mean PGD validation accuracy and clean validation accuracy (± one standard
deviation) after 25 epochs computed over 10 runs on CIFAR-10.

Note that for LA-ExtraAdam, the average PGD validation accuracy of 30% with tuned
hyperparameters is considerably lower than the average PGD validation accuracy of 32.5%
obtained by averaging over the results of the hyperparameter tuning (see Table 6.2). This
is mainly driven by the instability of LA-ExtraAdam. More precisely, in the case of LA-
ExtraAdam, we observed a large volatility of the PGD validation accuracy between the
epochs during training. This makes it very likely that the best performing hyperparameter
settings of one grid search run do not perform best across multiple runs. Ideally, the
grid search should be executed multiple times, and the best performing hyperparameter
setting across all runs should be considered. However, this was not possible for these
experiments due to lack of computational power.

It is also worth mentioning that training a bigger model did not change the outcome
of our experiments. The resnet-34 model shows similar generalization behavior on the
perturbed CIFAR-10 test set compared to that of resnet-18. For a comparison of the
PGD validation accuracy of ExtraSGD and LA-ExtraSGD see the Appendix, Figure 7.9.

6.4.2 MNIST and FashionMNIST

Again, for the experiments on MNIST and FashionMNIST, we obtain similar results (see
Table 6.4 and Table 6.5. Although, on MNIST, LA-Adam performs significantly better,

70

6.5 Conclusion

scoring more than 1 percentage point above every other optimizer.

in % SGD Adam OGD ExtraSGD ExtraAdam
PGD
no LA 92.1 ± 0.4 94.2 ± 0.3 90.6 ± 3.1 10.2 ± 0.6 94.1 ± 0.4

LA 94.7 ± 0.4 95.8 ± 0.2 92.1 ± 1.7 79.3 ± 1.3 93.8 ± 0.3
clean
no LA 98.4 ± 0.1 98.7 ± 0.1 98.5 ± 0.4 10.2 ± 0.6 96.7 ± 0.1

LA 99.0 ± 0.1 99.0 ± 0.1 98.6 ± 0.2 98.8 ± 0.2 98.7 ± 0.1

Table 6.4: Mean PGD validation accuracy and clean validation accuracy (± one standard
deviation) after 25 epochs computed over 10 runs on MNIST.

in % SGD Adam OGD ExtraSGD ExtraAdam
PGD
no LA 58.5 ± 1.6 68.5 ± 1.1 57.1 ± 2.6 10.0 ± 0.0 69.9 ± 1.6

LA 60.4 ± 7.0 68.2 ± 1.1 45.2 ± 23.1 46.2 ± 1.5 62.1 ± 1.6
clean
no LA 70.8 ± 1.4 75.9 ± 0.6 70.3 ± 1.3 10.0 ± 0.0 76.6 ± 0.6

LA 71.0 ± 1.4 76.3 ± 0.7 52.6 ± 27.9 69.0 ± 0.5 68.2 ± 2.7

Table 6.5: Mean PGD validation accuracy and clean validation accuracy (± one standard
deviation) after 25 epochs computed over 10 runs on FashionMNIST.

On both MNIST and FashionMNIST, LA provides significant improvements in PGD
validation accuracy for models trained with ExtraSGD, mainly due to the fact that models
tend to collapse with ExtraSGD (see Appendix, Figure 7.9). Similarly, LA raises the
mean PGD validation accuracy for SGD but suffers from increased volatility. For Adam,
OGD, and ExtraAdam, LA does not yield better generalizing models. Furthermore,
LA-OGD induces high volatility in accuracy to the model on the FashionMNIST data
set in comparison to OGD.

6.5 Conclusion

In conclusion, for adversarial training, LA only provides significant robustness improve-
ments in regards to changes of the hyperparameters for ExtraSGD but does not do so for
SGD, Adam, OGD or ExtraAdam, both at training time and test time. For ExtraAdam,

71

6 Experiments

LA seems to even have an unfavorable effect in terms of robustness. While our models,
trained on MNIST and FashionMNIST with ExtraSGD, collapsed for each learning rate
used in the grid search, LA-ExtraSGD prevented this behavior for some hyperparameter
settings. Similarly, on CIFAR-10, ExtraSGD caused the model to collapse for all but the
smallest learning rate γ = 3 · 10−5, while LA-ExtraSGD prevented a model collapse for
all hyperparameter settings used in the grid search. We therefore conclude that LA can
successfully prevent model collapse.

Furthermore, our experiments with tuned hyperparameters suggest that LA can generate
better generalizing models than its corresponding inner optimizer, and can even yield
better results than Adam or SGD. However this was not the case for all experiments,
e.g., on FashionMNIST, LA performed worse. Moreover, LA showed negative effects for
ExtraAdam across most experiments. All in all, LA could not produce the expected
performance advantages over other optimizers for adversarial training like for other
optimization setting (e.g: training generative adversarial networks [7]).

72

Bibliography

[1] Naveed Akhtar and Ajmal Mian. “Threat of adversarial attacks on deep learning
in computer vision: A survey”. In: Ieee Access 6 (2018), pp. 14410–14430.

[2] Jimmy Ba and Rich Caruana. “Do deep nets really need to be deep?” In: Advances
in neural information processing systems 27 (2014).

[3] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization.
Vol. 28. Princeton university press, 2009.

[4] Dimitri P Bertsekas. “Nonlinear programming”. In: Journal of the Operational
Research Society 48.3 (1997), pp. 334–334.

[5] Nicholas Carlini, Guy Katz, Clark Barrett, and David L. Dill. Provably Minimally-
Distorted Adversarial Examples. 2017. url: https://arxiv.org/abs/1709.10207.

[6] Nicholas Carlini and David Wagner. “Towards evaluating the robustness of neural
networks”. In: 2017 ieee symposium on security and privacy (sp). IEEE. 2017,
pp. 39–57.

[7] Tatjana Chavdarova, Matteo Pagliardini, Martin Jaggi, Francois Fleuret, and
Sebastian Stich. “Taming GANs with Lookahead-Minmax”. In: (2021). url: https:

//openreview.net/forum?id=ZW0yXJyNmoG.
[8] Dan Ciresan, Ueli Meier, Jonathan Masci, and Jurgen Schmidhuber. “A Committee

of Neural Networks for Traffic Sign Classification”. In: (2011). url: https://

people.idsia.ch/~ciresan/data/ijcnn2011.pdf.
[9] George Dantzig. “Linear programming and extensions”. In: Linear programming

and extensions. Princeton university press, 2016.
[10] Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng.

“Training GANs with Optimism”. In: International Conference on Learning Repre-
sentations. 2018. url: https://openreview.net/forum?id=SJJySbbAZ.

[11] Geir E Dullerud and Fernando Paganini. A course in robust control theory: a convex
approach. Vol. 36. Springer Science & Business Media, 2013.

[12] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei
Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. “Robust physical-world

73

https://arxiv.org/abs/1709.10207
https://openreview.net/forum?id=ZW0yXJyNmoG
https://openreview.net/forum?id=ZW0yXJyNmoG
https://people.idsia.ch/~ciresan/data/ijcnn2011.pdf
https://people.idsia.ch/~ciresan/data/ijcnn2011.pdf
https://openreview.net/forum?id=SJJySbbAZ

Bibliography

attacks on deep learning visual classification”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2018, pp. 1625–1634.

[13] Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vincent, and Simon Lacoste-
Julien. “A variational inequality perspective on generative adversarial networks”.
In: arXiv preprint arXiv:1802.10551 (2018).

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative adversarial nets”.
In: Advances in neural information processing systems 27 (2014).

[15] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Har-
nessing Adversarial Examples. 2014. url: https://arxiv.org/abs/1412.6572.

[16] Robert M Gower. “Convergence theorems for gradient descent”. In: Lecture notes
for Statistical Optimization (2018).

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning
for image recognition”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 770–778.

[18] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. “Distilling the knowledge in a
neural network”. In: arXiv preprint arXiv:1503.02531 2.7 (2015).

[19] Geoffrey Hinton et al. “Deep Neural Networks for Acoustic Modeling in Speech
Recognition”. In: Signal Processing Magazine (2012).

[20] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran,
and Aleksander Madry. “Adversarial examples are not bugs, they are features”. In:
Advances in neural information processing systems 32 (2019).

[21] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochender-
fer. “Reluplex: An efficient SMT solver for verifying deep neural networks”. In:
International conference on computer aided verification. Springer. 2017, pp. 97–117.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2014. url: https://arxiv.org/abs/1412.6980.

[23] Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian
Stich. “A unified theory of decentralized sgd with changing topology and local up-
dates”. In: International Conference on Machine Learning. PMLR. 2020, pp. 5381–
5393.

[24] Galina M Korpelevich. “The extragradient method for finding saddle points and
other problems”. In: Matecon 12 (1976), pp. 747–756.

[25] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features from
tiny images”. In: (2009).

74

https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6980

Bibliography

[26] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. “Adversarial examples in
the physical world”. In: Artificial intelligence safety and security. Chapman and
Hall/CRC, 2018, pp. 99–112.

[27] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten digit database”.
In: ATT Labs [Online]. Available: http://yann. lecun. com/exdb/mnist 2 (2010).

[28] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. “Towards Deep Learning Models Resistant to Adversarial Attacks”.
In: International Conference on Learning Representations. 2018. url: https :

//openreview.net/forum?id=rJzIBfZAb.
[29] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. “Deepfool:

a simple and accurate method to fool deep neural networks”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2016, pp. 2574–2582.

[30] Nicolas Papernot and Patrick McDaniel. “On the effectiveness of defensive distilla-
tion”. In: arXiv preprint arXiv:1607.05113 (2016).

[31] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in Machine
Learning: from Phenomena to Black-Box Attacks using Adversarial Samples. 2016.
url: https://arxiv.org/abs/1605.07277.

[32] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,
and Ananthram Swami. “Practical black-box attacks against machine learning”. In:
Proceedings of the 2017 ACM on Asia conference on computer and communications
security. 2017, pp. 506–519.

[33] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. “The limitations of deep learning in adversarial settings”.
In: 2016 IEEE European symposium on security and privacy (EuroS&P). IEEE.
2016, pp. 372–387.

[34] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.
“Distillation as a defense to adversarial perturbations against deep neural networks”.
In: 2016 IEEE symposium on security and privacy (SP). IEEE. 2016, pp. 582–597.

[35] Alexander Rakhlin and Karthik Sridharan. “Online learning with predictable
sequences”. In: Conference on Learning Theory. PMLR. 2013, pp. 993–1019.

[36] Tom Schaul, Sixin Zhang, and Yann LeCun. “No more pesky learning rates”. In:
International conference on machine learning. PMLR. 2013, pp. 343–351.

[37] Mahmood Sharif, Lujo Bauer, and Michael K Reiter. “On the suitability of lp-
norms for creating and preventing adversarial examples”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2018,
pp. 1605–1613.

75

https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://arxiv.org/abs/1605.07277

Bibliography

[38] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep inside convolu-
tional networks: Visualising image classification models and saliency maps”. In:
arXiv preprint arXiv:1312.6034 (2013).

[39] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. “On the im-
portance of initialization and momentum in deep learning”. In: Proceedings of the
30th International Conference on Machine Learning. Ed. by Sanjoy Dasgupta and
David McAllester. Vol. 28. Proceedings of Machine Learning Research 3. Atlanta,
Georgia, USA: PMLR, 2013, pp. 1139–1147. url: https://proceedings.mlr.

press/v28/sutskever13.html.
[40] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. “Intriguing properties of neural networks”. In:
International Conference on Learning Representations. 2014. url: http://arxiv.

org/abs/1312.6199.
[41] Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick Mc-

Daniel. The Space of Transferable Adversarial Examples. 2017. url: https://

arxiv.org/abs/1704.03453.
[42] Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. “Lookahead

Converges to Stationary Points of Smooth Non-convex Functions”. In: ICASSP 2020
- 2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2020, pp. 8604–8608.

[43] David Warde-Farley and Ian Goodfellow. “11 adversarial perturbations of deep
neural networks”. In: Perturbations, Optimization, and Statistics (2016), pp. 311–
330.

[44] Martin Weiß. “Robust and optimal control : By Kemin Zhou, John C. Doyle and
Keith Glover, Prentice Hall, New Jersey, 1996, ISBN 0-13-456567-3”. In: Autom.
33 (1997), p. 2095.

[45] Tobias Weyand, Ilya Kostrikov, and James Philbin. “PlaNet - Photo Geolocation
with Convolutional Neural Networks”. In: Computer Vision – ECCV 2016. Springer
International Publishing, 2016, pp. 37–55. url: https://doi.org/10.1007%5C%

2F978-3-319-46484-8_3.
[46] Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger B. Grosse. “Understanding Short-

Horizon Bias in Stochastic Meta-Optimization”. In: Proceedings of 6th International
Conference on Learning Representations ICLR. 2018.

[47] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms. Aug. 28, 2017. arXiv:
cs.LG/1708.07747 [cs.LG].

76

https://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.mlr.press/v28/sutskever13.html
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1704.03453
https://arxiv.org/abs/1704.03453
https://doi.org/10.1007%5C%2F978-3-319-46484-8_3
https://doi.org/10.1007%5C%2F978-3-319-46484-8_3
https://arxiv.org/abs/cs.LG/1708.07747

Bibliography

[48] Weilin Xu, David Evans, and Yanjun Qi. “Feature squeezing: Detecting adversarial
examples in deep neural networks”. In: arXiv preprint arXiv:1704.01155 (2017).

[49] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. “Adversarial examples: Attacks
and defenses for deep learning”. In: IEEE transactions on neural networks and
learning systems 30.9 (2019), pp. 2805–2824.

[50] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. “Adversarial examples: Attacks
and defenses for deep learning”. In: IEEE transactions on neural networks and
learning systems 30.9 (2019), pp. 2805–2824.

[51] Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George
E. Dahl, Christopher J. Shallue, and Roger B. Grosse. “Which Algorithmic Choices
Matter at Which Batch Sizes? Insights From a Noisy Quadratic Model”. In: 2019,
pp. 8194–8205.

[52] Guojun Zhang and Yaoliang Yu. “Convergence of Gradient Methods on Bilinear
Zero-Sum Games”. In: International Conference on Learning Representations. 2020.
url: https://openreview.net/forum?id=SJlVY04FwH.

[53] Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. “Lookahead
optimizer: k steps forward, 1 step back”. In: Advances in neural information
processing systems 32 (2019).

77

https://openreview.net/forum?id=SJlVY04FwH

7 Appendix

7.1 Section A

The following result is particularly useful since it shows that an optimization method
converges linearly to a stable fixed point of the corresponding operator G if the weights
are initialized sufficiently close.

Theorem 7.1.1. ([4], Proposition 4.4.1). If the spectral radius ρ(JG(ω∗)) < 1, the fixed
point ω∗ is a point of attraction and for ω(0) in a sufficiently small neighborhood of ω∗,
the distance of ω(t) to the stationary point ω∗ converges at a linear rate.

Proof. For a proof refer to [4].

Lemma 7.1.2. ([16, Lemma 1.3]). Let f : Rp → R, be an L-smooth function. Then,
the following inequality holds

f(v)− f(x) ≤ ⟨∇f(x), v − x⟩+ L

2 ∥x− v∥
2, ∀x, v ∈ Rp.

Proof. Using the Taylor expansion of f at x, we obtain that,

f(v)− f(x) =
∫ 1

0
⟨∇f(x+ t(v − x)), (v − x)⟩dt

= ⟨∇f(x), v − x⟩+
∫ 1

0
⟨∇f(x+ t(v − x))−∇f(x), (v − x)⟩dt

≤ ⟨∇f(x), v − x⟩+
∫ 1

0
∥∇f(x+ t(v − x))−∇f(x)∥∥v − x∥dt

≤ ⟨∇f(x), v − x⟩+ L

∫ 1

0
∥v − x∥2dt

≤ ⟨∇f(x), v − x⟩+ L

2 ∥v − x∥
2.

79

7 Appendix

7.2 Section B

7.2.1 Datasets

7.2.2 Additional Plots

(a) Example of the MNIST data set. Each
example consists of 784 (28x28) pixels
representing a black and white image of
a handwritten digit, from zero through
nine.

(b) Example (T-shirt) of the FashionMNIST
data set. Each example consists of 784
(28x28) pixels representing a black and
white image of ten different types of gar-
ments: T-shirt, Trouser, Pullover, Dress,
Coat, Sandal, Shirt, Sneaker, Bag, and
Ankle boot.

Figure 7.1: For both data sets, each pixel has a value associated with it, representing the
gray scale of the pixel and ranging from 0 to 255.

Figure 7.2: Example (horse) of the CIFAR-10 data set. Each example consists of 1024
(32x32) pixels representing a 3-channel color image of the following ten classes
of objects and animals: airplane, car, bird, cat, deer, dog, frog, horse, ship,
truck.

80

7.2 Section B

7.2.3 Model

Figure 7.3: Architecture of 5-layer CNN used for adversarial training on the MNIST and
FashionMNIST data set.

7.2.4 Additional Plots

(a) Mean PGD validation accuracy of Adam
(blue) and LA-Adam (orange).

(b) Mean PGD validation accuracy of SGD
(blue) and LA-SGD (orange).

(c) Mean PGD validation accuracy of OGD (blue)
and LA-OGD (orange).

Figure 7.4: The plots show the validation accuracies (± one standard deviation) of the
resnet-18 model on the PGD-perturbed CIFAR-10 test set averaged over all
hyperparameter settings used in the grid search.

81

7 Appendix

(a)

(b)

Figure 7.5: The plots on the left depict the PGD validation accuracies for each inner
optimizer obtained in the grid search. The plots on the right show the PGD
validation accuracies, i.e., the validation accuracy of the resnet-18 model on
the PGD-perturbed CIFAR-10 test set, averaged over all values for k and
α used in the grid search. The shaded areas in the right-hand side plots
represent the accuracies with a maximum distance of one standard deviation
from the mean values of an inner optimizer and LA equipped with the inner
optimizer, respectively.

82

7.2 Section B

(a)

(b)

Figure 7.6: The plots on the left depict the PGD validation accuracies for each inner
optimizer obtained in the grid search. The plots on the right show the PGD
validation accuracies, i.e., the validation accuracy of the resnet-18 model on
the PGD-perturbed CIFAR-10 test set, averaged over all values for k and
α used in the grid search. The shaded areas in the right-hand side plots
represent the accuracies with a maximum distance of one standard deviation
from the mean values of an inner optimizer and LA equipped with the inner
optimizer, respectively.

83

7 Appendix

Figure 7.7: PGD Validation Accuracy for ExtraAdam (LHS) and LA-ExtraAdam (RHS)
for six different values of the fast learning rate γ. For LA, we have k = 5 and
α = 0.9. LA seems to have a destabilizing effect on ExtraAdam.

84

7.2 Section B

(a) Tuned hyperparameters: γ = 10−2 for
SGD and (γ, k, α) = (3 · 10−3, 10, 0.75)
for LA-SGD.

(b) Tuned hyperparameters: γ = 3 ·10−3 for
Adam and (γ, k, α) = (3 · 10−3, 10, 0.5)
for LA-Adam.

(c) Tuned hyperparameters: γ = 3 · 10−5 for
ExtraSGD and (γ, k, α) = (10−2, 5, 0.9)
for LA-ExtraSGD.

(d) Tuned hyperparameters: γ = 10−2 for
OGD and (γ, k, α) = (10−2, 5, 0.75) for
LA-OGD.

Figure 7.8: Comparison of the Mean PGD validation accuracy (averaged over 10 runs)
after 25 epochs for both standalone inner optimizer (SGD, Adam, OGD,
ExtraSGD) and LA with inner optimizer. LA does not significantly increase
the capability of the resnet-18 model to detect adversarial examples at test
time.

85

7 Appendix

(a) Comparison of the Mean PGD valida-
tion accuracy after 25 epochs for the
resnet-34 model for both standalone Ex-
traSGD and LA with ExtraSGD. Note
that the same hyperparameter settings
as for resnet-18 (γ = 3 · 10−5 for Ex-
traSGD and (γ, k, α) = (10−2, 5, 0.9)
for LA-ExtraSGD) have been used for
resnet-34.

(b) Comparison of the Mean PGD valida-
tion accuracy on FashionMNIST after
12 epochs for both standalone ExtraSGD
(γ = 10−3)and LA with ExtraSGD (γ =
10−4, k = 5, α = 0.9). LA increased the
capability of the resnet-18 model to de-
tect adversarial examples at test time
significantly. This difference in PGD val-
idation accuracy is mainly driven by the
model collapses for ExtraSGD. In the
grid search, the model collapsed for all
six different learning rates.

Figure 7.9

86

	Introduction
	Basic Concepts and Notation
	Supervised Learning
	Neural Networks
	Loss function
	Other Concepts

	Adversarial Examples and Attacks
	Formal description
	Minimal perturbation
	Maximal Loss
	Threat Model Taxonomy

	Attacks
	Overview
	L-BFGS attack
	Fast Gradient Sign Method (FGSM)
	Projected Gradient Descent (PGD)
	Carlini-Wagner
	DeepFool
	Jacobian-based Saliency Map Attack (JSMA)

	Existence of Adversarial Examples
	Linearity Hypothesis
	Feature Hypothesis

	Transferability

	Adversarial Training and other Defenses
	Defensive Distillation
	Feature Squeezing
	Adversarial Training
	Model Capacity

	Robust Optimization
	Introduction to Robust Optimization
	Robust Optimization in Adversarial Training

	Two-player Minimax Games
	Algorithms
	Gradient Descent Ascent
	Extragradient
	OGDA

	Lookahead Optimizer
	Algorithm
	Computational Complexity
	Lookahead-Minmax

	Convergence Statements
	Noisy Quadratic Convergence
	Non-Convex Convergence
	Lookahead Convergence for Minimax Games

	Experiments
	Framework
	Data sets
	Models
	Optimizers
	Attacks

	Robustness to changes in hyperparameters
	Model Collapse

	Fast weights vs. Slow weights
	PGD Validation Accuracy
	CIFAR-10
	MNIST and FashionMNIST

	Conclusion

	Appendix
	Section A
	Section B
	Datasets
	Additional Plots
	Model
	Additional Plots

