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Abstract

The COSMO-D2 EPS is the very high resolution, limited-area ensemble prediction
system (L-EPS) maintained at the German Weather Service (DWD) and has an
horizontal resolution of 2.2 km. At such spatial scales, which lie at the lower end of
the mesoscale, deep convection does not need to be parametrized and can instead
be resolved directly in the model. At the same time, the development of innovative
parameters which combine synoptic scale forcings and intra-cloud physics, like the
Lightning Potential Index (LPI), significantly increased the potential accuracy when
forecasting heavy showers and thunderstorms. However, such improvements in
spatial resolution and modeling also need a proper verification approach in order to
put into perspective grid-point related issues such as the double-penalty effect. The
probabilistic approach of an EPS applied to high resolution models could nonetheless
help increasing the accuracy and the predictability also in case of very localized
convective phenomena. The first part of this work is dedicated to the analysis of the
two datasets used (the LPI from the COSMO-D2 EPS and the observed lightning
activity from the LINET observation network). A preliminary verification based on
a conventional measure such as the Symmetric Extremal Dependence Index (SEDI)
has also been conducted. In the second part, fuzzy and object based verification
methods such as the dispersion Fractions Skill Score (dFSS) and the ensemble-
SAL (eSAL) has been used to analyze the COSMO-D2 EPS forecasts of the LPI.
This second part is focused on better understanding the spread-errpr relationship
in the model, thus investigating possible positive effects on the predictability of
convection. In general, the COSMO-D2 EPS tends to generate too little dispersion
in its members if compared to the actual model error. Specifically, the ensemble
mean generates useful lightning activity forecasts at a spatial scale of around 200
km for the afternoon hours, while the spatial spread of the ensemble members lies
at more or less 100 km.
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Kurzfassung

Das COSMO-D2 EPS ist das operationelle, kilometerskalige Ensemble Vorhersage
System (L-EPS) des Deutschen Wetterdienstes (DWD) und hat eine horizontale
Auflösung von etwa 2.2 km. Dieser Gitterpunktabstand erlaubt es, großräumige,
hochreichende konvektive Prozesse wie Gewitter oder kräftige Schauer explizit und
ohne physikalische Parametrisierung zu modellieren. Spezielle Indizes, die sowohl
die Mikrophysik der Wolken als auch die für den Auftrieb vorhandene Energie
einbeziehen - wie z. B. der Lightning Potential Index (LPI) - wurden ebenfalls
entwickelt, um die Vorhersage hochreichender Konvektion und damit auch der
Blitzaktivität auf eine neue Ebene der räumlichen Genauigkeit zu bringen. Mit
solch hochaufgelösten Vorhersagen geht jedoch auch ein höheres Fehlerpotential
einher, zumindest bei der Gitterpunktverifikation. Die Verwendung eines sehr
hochaufgelösten Gitters in einem Ensemble-Vorhersagesystem könnte jedoch enorme
Vorteile in Bezug auf Genauigkeit und Vorhersagbarkeit bringen. Der erste Teil
dieser Arbeit ist der Analyse der beiden verwendeten Datensätze gewidmet (der
LPI aus dem COSMO-D2 EPS und die beobachteten Blitze aus dem LINET-
Blitzortungssystem). Eine erste Verifikation mit Hilfe des Symmetric Extremal
Dependence Index (SEDI) wurde ebenfalls durchgeführt. Im zweiten Teil wurden
innovative Verifikationsansätze wie der Dispersion Fractions Skill Score (dFSS) und
der Ensemble-SAL (eSAL) auf den LPI im COSMO-D2 EPS angewendet. Das
Hauptziel dieses zweiten Teils ist es, die Beziehung zwischen dem Prognosefehler
und dem Ensemble-Spread auf verschiedenen räumlichen Skalen zu bewerten. Für
die Sommermonate 2019 zeigt das COSMO-D2 EPS eine allgemeine Tendenz zur
Überschätzung der Vorhersagbarkeit der Blitzaktivität. Die Spread-Error Beziehung
für verschiedene Vorhersagezeiten variiert aber stark. Mit Hilfe des dFSS kann man
zudem untersuchen, wie sich diese Beziehung für sich ändernde räumliche Skalen
entwickelt. Im Durchschnitt liefert das System in den Nachmittagsstunden eine
brauchbare Blitz-Vorhersage für horizontale Skalen von etwa 200 km. Anhand der
Analyse der Ensemble-Streuung kann man aber zeigen, dass das System im Schnitt
schon bei rund 100 km die Prognose als "brauchbar" bewerten würde.
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1 Introduction

Forecasting showers and thunderstorms with a high level of accuracy is still a
challenge even for very high resolution models. Convection involves various scales
in both time and space and is also significantly influenced by smaller scale phenom-
ena such as turbulence and intra-cloud processes. Furthermore, the showery and
thundery activity is often triggered and driven by synoptic scale features, such as
fronts or troughs and can in return modify the future path and development of
such bigger scale processes. This very broad spectrum of scales involved and the
complex interactions and energy exchanges between them is the main source of
unpredictability when it comes to deep convection in general and lightning activity
in particular. Thunderstorms are typically classified as mesoscale phenomena, but
are influenced by – and can also significantly influence – both the microscale and
the synoptic scale. The uncertainties involved can therefore lead to significant errors
in the forecast at various scales.

On the other hand, convective processes can often lead to significant damages for
both people and properties. Large hail, high rain rates and strong convective wind
gusts are the main source of such human and economic losses. Moreover, the process
that separate the electrical charges inside the cumulonimbus clouds (Saunders, 2008),
which involves the impacts of liquid water and ice particles in the up- and downdrafts
of the convective cell, is responsible for lightning strikes. The lightning discharge is
the defining phenomenon when studying convection and is itself a significant source
of risk for objects, animals and of course also human beings. Hence, both the society
and the economy would greatly benefit from weather models being able to forecast
such types of severe weather with a good level of accuracy. Nonetheless, for a very
long time the spatial resolution of most weather models has not been high enough
to resolve convection explicitly and various types of parametrization were needed.
Only towards the end of the 20th century and especially during the last couple of
decades mesoscale-resolving, local area models with horizontal resolutions in the
kilometer range began to flourish. Thus, at least larger-scale convective processes
started to be modeled without the usage of predefined parametrization modules.

Following the increasing spatial resolution, during the 21st century the first
algorithms and parameters specifically dedicated to the forecast of lightning activity
emerged (McCaul et al., 2009). The Lightning Potential Index (LPI) (Lynn and Yair,
2010; Lynn et al., 2012) has been among the first ones, being developed and tuned
using one of the very first high resolution local area models, the Weather Research
and Forecasting model (WRF). At the same time, with further improvements in
the capacity of supercomputers, the first attempts at creating very high resolution,
convection resolving ensemble prediction systems (EPS) were also made. For what
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1 Introduction

concerns Europe, one of the earliest examples in this field was the COSMO-LEPS
system (Montani et al., 2003), the high resolution EPS developed in the framework
of the COSMO-Consortium (https://www.cosmo-model.org/) already at the
beginning of the 21st century.

During the last few years, high resolution EPS with the ability to explicitly resolve
convective processes have emerged in many countries. One of the first examples of
this new approach has been the German COSMO-DE EPS (Gebhardt et al., 2011),
later called COSMO-D2 EPS and nowadays finally named ICON-D2 EPS. With 20
ensemble members and an average horizontal grid spacing of around 2.2 km, the
system has been included in the operative processes of the German Weather Service
(DWD) for more than a decade now. Moreover, since 2015 the COSMO-D2-EPS
calculates an adapted version of the LPI (Blahak, 2015) which tries to provide a high
resolution, probabilistic forecast of the potential for lightning strikes. The adapted
LPI in use at the DWD interestingly puts together parameters at very different
scales. Intra-cloud properties related to the state of water in the updraft are filtered
with larger scales convective indices in an effort to deliver a very precise outlook of
the risk for electrical discharges in the atmosphere. The fact that this approach is
being applied to an high resolution EPS leads to a very promising framework in
terms of skill and predictability, which however needs to be verified.

1.1 Motivation

Despite such innovations in forecasting convection with high resolution ensemble
systems, until now only limited efforts have been made to assess the performance of
this approach. This work, conducted in cooperation with the DWD, is a preliminary
verification of the forecast of lightning flashes in an high resolution ensemble model.
This is done with a special focus on the spread-error relationship of the system,
aiming at investigating also the predictability of this very localized atmospheric
phenomenon. Therefore, the study applies both a conventional, grid-point based
verification index — the Symmetric Extremal Dependence Index (SEDI) (Ferro
and Stephenson, 2011) — and also some measures which are designed to minimize
possible double penalty effects using object-based and neighborhood verification
approaches such as the Fractions Skill Score, or FSS (Roberts and Lean, 2008)
and the Structure-Amplitude-Location, or SAL (Wernli et al., 2008). These last
two methods can also be slightly transformed and applied to the ensemble in a
more probabilistic form, in order to evaluate the relationship between the ensemble
dispersion and the ensemble error. The adapted, probabilistic forms of the two scores
are referred to as the dispersion FSS, or dFSS (Dey et al., 2014) and the ensemble
SAL, or eSAL (Radanovics et al., 2018). This analysis aims at investigating two
key scientific questions:

(a) Quantifying the benefits — if any — brought by the high resolution, probabil-
istic approach of a L-EPS in forecasting convection in general and lightning
activity in particular;
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1.1 Motivation

(b) Verifying if the proposed verification metrics — especially the dFSS and the
eSAL — are able to give detailed insights and information about the quality
of the forecast for lightning activity;
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2 Theoretical background

This analysis makes use of the COSMO-D2-EPS LPI output fields, verified against
observed lightning activity from the Lightning detection NETwork (LINET). The
verification methods applied to the data are the Symmetric Extremal Dependence
Index (SEDI), the Fractions Skill Score (FSS) and the Structure-Amplitude-Location
(SAL). A brief theoretical description of all the systems and methods is provided
below.

2.1 COSMO-D2 Ensemble prediction system

The COSMO-D2 EPS datasets being analyzed in this study originate from the
DWD model framework of 2019. A deterministic (ICON) and probabilistic (ICON
EPS) model generates outputs at 13 and 40 km, respectively, horizontal resolution
for the whole globe. For the European continent, which is object of this study, a
finer grid spacing of 6.5 and 20 km, respectively is used (ICON-EU and ICON-EU
EPS). Furthermore, a very high resolution model named COSMO-D2 is nested
in the European domain and covers the whole of Germany and the alpine region
as well as their surroundings with a 2.2 km horizontal grid spacing. Further
insights in the COSMO model and the COSMO Consortium can be found at:
https://www.cosmo-model.org/.

Figure 2.1: ICON-EU and ICON-EU-EPS Model domain and orography. Source:
(Reinert et al., 2022)
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2 Theoretical background

The very high resolution model, COSMO-D2, can directly resolve larger scale, deep
convective processes using 65 terrain following vertical levels. However, phenomena
taking place at smaller scales such as shallow convection of intra-cloud processes still
need sub-grid parametrization. The cloud microphysics scheme used in COSMO-D2
for example uses a 6-classes closure that comprises the class "graupel". Both the
ICON model chain and the COSMO-D2 are thoroughly described on the DWD’s
website (Baldauf et al., 2018; Reinert et al., 2022) as well as on the website of the
COSMO Consortium at https://www.cosmo-model.org/content/model/docume
ntation/core/default.htm.

Figure 2.2: COSMO-D2 Model domain and orography in Summer 2019. The domain
indicated with the red line is that of the former COSMO-DE model,
discontinued in 2017. Source: https://www.cosmo-model.org/

The deterministic COSMO-D2 model has also a probabilistic twin, named
COSMO-D2 EPS. The latter has the same horizontal and vertical resolution of the
COSMO-D2 and it does not differ in the physical properties from its deterministic
twin. The boundary conditions come from the european probabilistic model, ICON-
EU EPS. The ICON-EU EPS provides 40 different perturbed members and the first
20 members are used to feed the correspondent 20 members of the COSMO-D2 EPS.
The Kilometre-scale ENsemble Data Assimilation (KENDA) system, which takes
its origins from the Local ensemble Transformed Kalman Filter (LTKF) and has
been optimized in the framework of the COSMO Consortium (Schraff et al., 2016;
Hunt et al., 2007) provides the initial conditions to the 20 different members of the
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2.2 COSMO-D2 Lightning Potential Index - LPI

ensemble. On top of this, random perturbation methods bring more dispersion to
some basic physical modules of the model, including deep convection. COSMO-
D2-EPS provides 8 runs per day at main UTC times (00, 03, 06, 09, 12, 15, 18,
21) with 27 hours forecast. The output fields are made available to the users with
15 minutes steps. Table 2.1 summarizes the most important characteristics of the
probabilistic model chain over Europe.

Characteristic COSMO-D2-EPS ICON-EU-EPS
Horizontal grid spacing 2.2 km 20 km
Vertical levels 65 90
Ensemble members 20 40
Model runs per day 8 8
Forecast range (main runs) 27 h 120 h
Boundary conditions ICON-EU-EPS ICON-EPS
Initial conditions KENDA LTKF

Table 2.1: Some of the key characteristics of COSMO-D2-EPS and its parent model,
ICON-EU-EPS.

2.2 COSMO-D2 Lightning Potential Index - LPI

The Lightning Potential Index or LPI (Lynn and Yair, 2010; Lynn et al., 2012; Salmi
et al., 2022) estimates the fraction of energy of the convective updraft which is
potentially useful for charge separation inside the cumulonimbus cloud. Accordingly
to this definition, the LPI is provided in J · kg−1. The equation 2.1 that describes
the general version of the LPI for a model unit volume V is based on the convective
updraft velocity w and the liquid water to ice water ratio in the most important layer
of the cumulonimbus cloud where charge separation and therefore also electrification
occurs, i.e. between the height of the 0 °C isotherm H(0◦C) and the height of the
-20 °C isotherm H(−20◦C).

LPI =
1

V

∫︂∫︂∫︂ H(−20◦C)

H(0◦C)

ϵ w2 dz dy dx (2.1)

ϵ is a dimensionless function that varies from 0 to 1 and is defined as follows:

ϵ =
2 · (Ql ·Qs)

0.5

Ql +Qs

(2.2)

In equation 2.2, Ql and Qs are the total liquid water mass mixing ratio and the
ice fractional mixing ratio, respectively. Bot are expressed in kg · kg−1 and Qs takes
into account also snow, hail and graupel. Following equation 2.2, ϵ approaches 1
only in those cloud layers where the liquid water and the ice water mixing ratios are
very close in absolute terms. If one of the two prevails, then the function will tend to
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2 Theoretical background

0. The mixture of supercooled liquid water droplets, snow, hail and graupel particles
creates the best environment for electrification to occur, thanks to charge separation
processes. Through ϵ, such microphysical characteristics of the cumulonimbus cloud
enters the LPI algorithm and helps estimating the risk of electrical discharges in
the analyzed convective cloud.
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Figure 2.3: Visualization of the ϵ function as described in Eq. 2.2.

The DWD has slightly modified the original LPI formula shown in equation
2.1 and in 2015 developed an improved algorithm which has been included in the
COSMO-D2 EPS ever since. The adapted LPI formula is shown in equation 2.3
(Blahak, 2015) and comprises three additional boolean filtering functions f1, f2 and
g(w), described below after equation 2.3.

LPI = f1 · f2 ·
1

H(−20◦C) −H(0◦C)

·
∫︂ H(−20◦C)

H(0◦C)

ϵ · w2 · g(w) · dz (2.3)

Specifically, the boolean function f1 analyzes the highest updraft velocity w,
determined from all the vertical layers in the model. f1 equals 0 if the maximum
updraft velocity is less than wmax,0 = 1.1 m · s−1 for more than half of the model
grid points in a square of 10 km around a specific point. This prevents false alarms
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2.3 Lightning detection system - LINET

in case of relatively weak convection over a determined area. When the updrafts
are strong enough to support significant convection, then f1 is set to 1.

f1 =

{︃
1 : a ⩾ 0.5
0 : a < 0.5

(2.4)

with

a =

∫︁∫︁ {︃
1 : max[w(z)] ⩾ wmax,0

0 : max[w(z)] < wmax,0
dx dy∫︁∫︁

dx dy
, wmax,0 = 1.1 m · s−1 (2.5)

In a similar way, f2 investigates the mean available convective energy determined
from parcel theory — with virtual temperature Tv and surface pressure ps — over a
20 km square surrounding a grid point. The boolean function takes the value 0 if
the calculated, mean buoyancy term BML fails to get to a predetermined threshold
B0 and equals 1 if the forecasted buoyancy is strong and widespread enough.

f2 =

{︃
1 : BML ⩾ B0

0 : BML < B0
, B0 = −1500 J · kg−1 (2.6)

with

BML =

∫︁∫︁ ∫︁ ps−550hPa

ps−50hPa
Rd(Tv,parcel − Tv,env) d(ln p) dx dy∫︁∫︁

dx dy
(2.7)

Both f1 and f2 boolean functions have been included with the purpose of minim-
izing false alarms in the LPI. If convection is modeled to be weak, isolated and/or
shallow, then only showers or single-celled, short-lived thunderstorms are usually
expected. This brings a much lower risk for electrical discharges to occur.

Finally, g(w) is a relatively simple boolean function that excludes (i.e. takes the
value 0) all the vertical layers in the model where the updraft velocity w is less than
0.5 m · s−1. In all other cases the function equals 1 and does not interfere with the
overall algorithm.

g =

{︃
1 : w ⩾ 0.5 m · s−1

0 : w < 0.5 m · s−1 (2.8)

This retains only the vertical levels that provide significant lifting, which paired
with the right mixing of ice and liquid water particles leads to ideal charge separation
conditions.

2.3 Lightning detection system - LINET

The LPI forecasts will be compared to the observed lightning flashes detected by
the Lightning detection NETwork (LINET). LINET is a ground based Low to Very

9



2 Theoretical background

Low Frequency (VLF/LF) lightning detection system that has been developed at
the University of Munich during the late 2000s (Betz et al., 2004, 2009).

Figure 2.4: Distribution of the LINET sensors across Europe during Summer 2019.
Grey squares are active sensors, red squares are temporarily unavailable
sensors. Property of nowcast GmbH.

The LINET sensors detect the magnetic emissions of a stroke with extremely
high precision in time (ns) and locate its position through an optimised Time
Of Arrival (TOA) algorithm. Working in the VLF/LF range (∼ 10 kHz), the
distance between each sensor can be up to 200 km without degrading the precision
of the detection algorithm. Compared to conventional VLF detections systems, the
LINET network is able to detect weaker lightning below 5 kA, can better distinguish
between cloud-to-ground lightning (CG) and intra-cloud lightning (IC) and has
an horizontal precision of around 150 m (Karagiannidis et al., 2019), provided of
course a sufficiently high density of sensors. This is one order of magnitude higher
than the COSMO-D2 horizontal grid spacing and is therefore more than suitable
for the purpose of this study. The network also provides an estimation of the height
of the discharged electricity, giving a true third dimension to the observed data.
However, this feature is not relevant for the analysis conducted in this work. LINET
mostly covered just a portion of central Europe in the early stages, but expanded
significantly during the last decade, reaching a truly global scale. For the purposes
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2.4 Predictability analysis and verification

of this work, it is important to state that the LINET network has its highest sensor
density in and around Germany (see Figure 2.4) and that soon after its release it
became the official lightning detection network of the DWD.

2.4 Predictability analysis and verification

Verifying lightning activity in the framework of a high resolution EPS comes with
two main problematic aspects from a statistical point of view.

The first and basic issue is that lightning strikes are rare phenomena. The
datasets are therefore going to show a very low base rate. This makes common
verification methods based on contingency tables — such as the hit rate or the
false alarm rate — not adequate to express the quality of the forecast, as they
degrade very fast to trivial values when it comes to rare events (Ferro, 2007). In
order to solve this issue, some new verification methods designed for extreme and/or
rare events have emerged during the last decades (Ferro and Stephenson, 2011).
The Extremal Dependence Index (EDI) and its complement symmetric twin, the
Symmetric Extremal Dependence Index (SEDI) specifically address this problematic.

The second problem is known as double-penalty effect (Mass et al., 2002; Rossa
et al., 2008) and affects grid-point verification when the horizontal resolution of a
weather model is very high. Suppose the COSMO-D2-EPS is showing very high
probabilities for lightning strikes at a certain grid point in the domain at 14:15 UTC
on a certain day. At 13:30 UTC on the same day, a thunderstorm causes lightning
activity in the grid cell next to the forecasted one. This would not only lead to a
false alarm in the contingency table, but would also count as a miss, penalizing the
forecast twice. Furthermore, from an operational point of view, a spacial error of
around 5 km and a time offset of 45 minutes are mostly considered a very good
performance in case of convective activity. As this issue arose with the first high
resolution models a couple of decades ago, there have been already several attempts
at addressing this problematic. One possible way is adding another dimension to
the verification scheme: the spatial scale. This is the concept behind so–called fuzzy
verification methods, which verify the skill of the forecasts for different spatial scales.
One of the most used scores in this field is the Fractions Skill Score (FSS)(Roberts
and Lean, 2008). A different, but equally effective approach is the one applied in
object–based verification methods such as the Structure-Amplitude-Location (SAL)
(Wernli et al., 2008). In this case, the areas with contiguous lightning activity
are considered as one single object and the verification is done by comparing the
position and the intensity of the forecasted and the observed objects.

All three approaches (SEDI, FSS and SAL) have been included in this study in
order to asses the performance of the COSMO-D2 EPS LPI forecasts and will be
briefly described in the following sections. Furthermore, for the FSS and the SAL a
so called "probabilistic" version of the verification method is discussed, with the
goal of analyzing the spread-error relationship of the high resolution ensemble. This
way, one can investigate the ability of the ensemble in modeling the predictability of

11



2 Theoretical background

a specific variable (in this case the lightning activity) and if the system is capable
of correctly assessing the actual uncertainty in the forecast.

2.4.1 Symmetric Extremal Dependence Index – SEDI

The SEDI has been developed by Ferro and Stephenson (2011). It is based on the
categories obtained from a usual contingency table such as the one shown in Table
2.2 for binary events. A binary event is defined applying a specific threshold q
to a field, as show in Eq. (2.17). The SEDI is a refinement of other verification
measures such as the Symmetric Extreme Dependency Score (SEDS) or the Extremal
Dependence Index (EDI). These methods came up during the 2000s and are focused
on providing a statistically significant and stable verification analysis even when it
comes to extremely rare phenomena.

Observed Not observed
Forecasted a b a+b
Not forecasted c d c+d

a+c b+d n

Table 2.2: Generalized contingency table for observed and forecasted events.

In order to make the score base–rate–independent, which is crucial for rare events
as the base rate f0 =

a+c
n

would tend to zero, the SEDI is only dependent from the
Hit rate H and the False alarm rate F and is defined as follows:

SEDI =
log(F )− log(H)− log(1− F ) + log(1−H)

log(F ) + log(H) + log(1− F ) + log(1−H)
(2.9)

with H being the Hit rate and F being the False alarm rate:

H =
a

a+ c
(2.10)

F =
b

b+ d
(2.11)

The SEDI can take values between -1 and +1. When H tends to 0 and F tends
to 1, the SEDI gets close to -1 and the verified forecast has the worst skill possible.
For a very good forecast, the SEDI tends to +1 as H tends to 1 and F tends to
zero. A SEDI value of 0 is equal to the skill of a random forecast.

2.4.2 Dispersions Fractions Skill Score – dFSS

The benefits of high resolution weather forecasts are undoubted, especially if the
focus lies on convective processes. High resolution prediction systems are a much
more accurate representation of reality compared to coarse ones, which plays a role
in many different ways. From a better representation of topography and land use to

12



2.4 Predictability analysis and verification

the importance of being able to handle smaller-scale processes by resolving their
correspondent physical equations rather than using predetermined parametrization
schemes. Nonetheless, this improved resolution does not necessarily lead to a
correspondent increase in accuracy, at least for grid-point verification. As previously
discussed, double-penalty effects and possible forecast errors in global models being
passed over to nested systems usually affect high resolution models, lowering the
accuracy especially when it comes to very localized and rare events, such as lightning
strikes. In recent years, such issues have been addressed in a number of ways, with
so called fuzzy verification methods probably being the most effective and intuitive
solution. One of the most used and studied example of fuzzy verification is the
Fractions Skill Score, or FSS (Roberts and Lean, 2008). The FSS expresses the
ratio between the actual Mean Square Error (MSE) and the highest possible MSE
(MSE(ref)) for a specific subset of the model domain with dimension n. In order to
neutralize possible double penalty effects, n can increase from 1 gridpoint to several
hundreds gridpoints. Rather than verifying the forecast for a specific location, the
FSS is therefore able to verify the fields at different spatial scales as n increases.

FSSn = 1− MSEn

MSEn(ref)

(2.12)

and for each sub-domain n with a Nx ·Ny grid:

MSE(n) =
1

Nx ·Ny

·
Ny∑︂
i=1

Nx∑︂
j=1

(A(n)ij −B(n)ij)
2 (2.13)

MSE(n)ref =
1

Nx ·Ny

·
Ny∑︂
i=1

Nx∑︂
j=1

(A2
(n)ij −B2

(n)ij) (2.14)

The fields A(n)ij and B(n)ij are the derived fractions of the original, binary fields
A and B for a specific square — or rectangular, but in our case Nx = Ny — window
n and are defined as follows:

A(n)ij =
1

Nx ·Ny

·
Ny∑︂
k=1

Nx∑︂
l=1

A

[︃
i+ k − 1− (n− 1)

2
, j + l − 1− (n− 1)

2

]︃
(2.15)

B(n)ij =
1

Nx ·Ny

·
Ny∑︂
k=1

Nx∑︂
l=1

B

[︃
i+ k − 1− (n− 1)

2
, j + l − 1− (n− 1)

2

]︃
(2.16)

As the datasets used in this work are considerably big in size, the two fractions
fields A(n)ij and B(n)ij have been calculated using the summed area table or integral
image method. This approach, very common in the field of digital image processing,
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2 Theoretical background

Figure 2.5: Example of calculated fractions for the COSMO-D2 EPS ensemble mean
( a), c), e), threshold 0.3 J/kg) and the LINET observed lightning flashes
( b), d), f), threshold 1 flash) for different values of the neighborhood
size n.

has also been thoroughly described specifically for the FSS case (Faggian et al.,
2015).

The two data fields A and B that are used for the calculation of the FSS has to
be binary fields. Typically, A and B express a forecasted dataset and an observed
dataset which exceed a fixed threshold q, as shown below.

A =

{︃
1 : Ai,j ⩾ q
0 : Ai,j < q

and B =

{︃
1 : Bi,j ⩾ q
0 : Bi,j < q

(2.17)

When the forecast being verified has a very good skill, the FSS approaches
+1, while a completely useless forecast would lead to FSS values close to 0. In
general, the verified forecast is considered skillful at a specific spatial scale n when
FSSn ≥ 0.5 + f0

2
, with f0 being the base rate (Roberts and Lean, 2008).

Shifting the focus to probabilistic forecasts, there are two different ways of making
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2.4 Predictability analysis and verification

use of the FSS. First, there is the more conventional one, where the FSS is obtained
by analyzing observational data A with a significant product of the ensemble —
such as the ensemble mean — B. This study refers to this version of the FSS as
"error" FSS or eFSS. The eFSS can be seen as a measure that defines the spatial
skill of the EPS. When working with large datasets, the average eFSS over a season
will be the mean of all the eFSS values calculated for each timestamp. The second
way of interpreting the FSS for EPSs is to compare two members of the same
ensemble system rather than observations and forecasts. In this case, A and B are
two forecast fields coming from two different members of the ensemble. In other
words, this method gives a spatial measure of how much the two ensemble members
diverge one from the other. If the whole set of ensemble members is analyzed with
this approach and then averaged, the resulting measure can be used as a mean for
expressing the ensemble dispersion in space (or spatial spread). For this reason, this
study refers to it as "dispersion" FSS or dFSS (Dey et al., 2014). Using the same
approach as for the eFSS, for larger datasets the seasonal dFSS is the averaged
dFSS computed over several timestamps for each couple of ensemble members. In
this study, the single components of the FSS are summed before performing the
averages, even if newer studies state that this might not always be the best solution
depending on each specific case (Mittermaier, 2021). Given the fact that the spatial
spread (dFSS) is calculated and obtained in an analogous way as for the spatial
skill (eFSS), the two measures can be directly compared for different spatial scales
n. Therefore, thanks to the comparison between the eFSS and the dFSS at different
scales, the conventional spread-error relationship gains an additional dimension: the
spatial scale.

2.4.3 Ensemble Structure-Amplitude-Location – eSAL

A second approach that targets the problematic effects of grid-point verification for
high resolution forecasts is the Structure-Amplitude-Location, or SAL (Wernli et al.,
2008). The SAL is classified as an object-based verification method and it is based
on the recognition of contiguous features or "objects" in a forecast field, for example
large precipitation bands or, considering this study, areas with widespread potential
for lightning activity. These objects are then verified against an analogous observed
field in terms of their intensity and positioning within the domain. As the name
already suggests, the SAL is made of three different components: the Structure
S, the Amplitude A and the Location L. S compares the volumetric structure of
the detected features from two different fields. A investigates the overall intensity
or amplitude of the two fields, regardless of the object-based analysis. Finally, L
performs a center of mass analysis over the whole domain as well as a center of
mass analysis for each single pair of features within the domain and is therefore a
measure for spatial skill.

The S and A components are constrained between -2 and +2, with 0 meaning a
perfect match between the two fields for what concerns the shape of the identified
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features and the domain-wide intensity of the parameter being verified. If S tends to
positive values, then the system is forecasting features that are either too stretched
horizontally and/or have much higher peaks in magnitude compared to the observed
objects. A on the other side can be seen as a bias measure of the whole field: if
A is positive then the forecast has a positive bias compared to the observations.
The Location component L is obtained by summing two different parts L1 and L2.
L1 expresses the difference between the center of masses of the two fields being
compared, calculated over the whole domain regardless of the single objects. L2

compares the two fields in terms of the average distance of the center of masses
of all the identified features from the center of mass of the whole domain. L1 and
L2 can range from 0 to +1 and L can therefore vary from 0 to +2. If all the L
components are 0, then the fields being compared show absolutely no discrepancies
for what concerns the center of masses of all the identified features and the detected
domain-wide center of mass.

The single components A, L1, L2 and S are defined as follows (Wernli et al.,
2008):

A =
C −D

0.5 · (C +D)
(2.18)

with C and D being the domain-wide average of two fields (either observation
against forecast or forecast against forecast).

L = L1 + L2 (2.19)

with

L1 =
|x(C)− x(D)|

d
(2.20)

L2 = 2 ·

[︄⃓⃓⃓⃓
⃓∑︂

M

∑︁
obj (C · |x(C)− xobj(C)|)∑︁

obj C
−
∑︂
M

∑︁
obj (D · |x(D)− xobj(D)|)∑︁

obj D

⃓⃓⃓⃓
⃓ · 1d

]︄
(2.21)

d is the largest distance reachable in the considered domain. x() is the center of
mass of the whole field, while xobj() is the center of mass of each identified object
in the domain.

∑︁
M is the sum over the list of M detected objects in the domain,

while
∑︁

obj is the sum of the values in each grid point inside a single object.
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(2.22)

S =

⎛⎝∑︂
M

∑︁
obj

(︂
C · C

Cmax

)︂
∑︁

obj C
−
∑︂
M

∑︁
obj

(︂
D · D

Dmax

)︂
∑︁

obj D

⎞⎠
·

⎡⎣0.5 ·
⎛⎝∑︂

M

∑︁
obj

(︂
C · C

Cmax

)︂
∑︁

obj C
+
∑︂
M

∑︁
obj

(︂
D · D

Dmax

)︂
∑︁

obj D

⎞⎠⎤⎦−1

Again,
∑︁

M is the sum over the whole list of M detected objects in the domain,
while

∑︁
obj is the sum of the values for each grid point inside each object. Cmax and

Dmax are the maximum values inside a single object for the two fields.

During the last decade, SAL has already been applied in a number of stud-
ies, mostly related to high resolution precipitation forecasts (Wernli et al., 2009;
Wittmann et al., 2010; Schneider et al., 2019; Zhaoye et al., 2022), but also to radar
reflectivity fields (Lawson and Gallus Jr, 2016) or volcanic ash forecasts (Wilkins
et al., 2016). The object-based approach presented in SAL is therefore very effective
when it comes to precipitation fields. Given the fact that lightning activity often
matches areas with convective precipitation, SAL could deliver insightful information
also in the verification of lightning flashes. Furthermore, in recent years also the first
papers focusing on converting SAL to be used on ensemble forecasts for precipitation
fields already emerged (Radanovics et al., 2018; Marsigli et al., 2019). Nevertheless,
in this study two inherently different fields with different units — the observed
lightning activity and the LPI — have to be compared. This fact leads to necessary
considerations and adjustments to be made prior to the verification process. These
are thoroughly investigated in Chapter 4, Sections 4.2 and 4.4. Otherwise, the
approach used for the probabilistic version of the SAL is similar to the one described
in the previous Section for the dFSS. On the one hand, in a more conventional way,
the fields C and D can be for example the ensemble mean forecast verified against
the observed dataset. On the other hand, C and D can also represent two forecast
fields of two different ensemble members which can be compared with the goal of
measuring the spread of the EPS. In the following chapters, this probabilistic version
of the SAL will be referenced as eSAL. The total eSAL will then be the average SAL
calculated over all the possible pairs of members of the ensemble. An example of
eSAL for precipitation fields is documented in Radanovics et al. (2018). Compared
to this example, in this study only the Structure component S is obtained in a
different way. When considering two ensemble members C and D, the conventional
version of Eq. (2.22) has been applied and the results for each pair of the ensemble
have then been averaged over the whole EPS. Apart from this, for calculating the
eSAL Eq. (2.18), (2.19), (2.20), (2.21) and (2.22) are modified only for the fact that
an ensemble average SAL — i.e. the mean of 190 SAL values resulting from the
comparison of all the possible couples of the 20 members of the EPS — for each
model run is being calculated, as described in Radanovics et al. (2018).
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3 Datasets

Both the COSMO-D2 EPS fields and the LINET observed lightning flashes have
been made available from April 2019 until September 2019. As discussed in Chapter
4, Section 4.1, this analysis has been conducted using only data from the summer
season (June, July and August, or JJA).

3.1 Observations - LINET

The LINET data have been extracted from the DWD database for central Europe
from April 2019 until September 2019. They are provided as a list of observed
flashes with latitude (deg), longitude (deg), time of observation (s), altitude (m) and
amplitude (A), though the last two characteristics are not relevant for this study.

COSMO D2 EPS Domain (Gridpoints: 4.66e+05) & LINET Data Domain

LINET data coverage
COSMO D2 Gridpoints

Figure 3.1: Coverage of the LINET data (red dashed line) compared to the COSMO-
D2 EPS domain (blue area). From Salmi et al.(2022).

The raw dataset covers large parts of Europe, including of course the whole
COSMO-D2 EPS domain. As the data have been provided as validated, no further
quality check is applied.
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3.2 Forecasts - COSMO-D2 EPS LPI

The COSMO-D2 EPS LPI forecast fields are provided as NetCDF files for the
same time window of 2019 with the highest space and time resolution possible, i.e.
around 2.2 km grid spacing on average, one forecast step every 15 minutes. The
dataset includes all 20 members of the ensemble. Given the significant amount of
data involved, only the 00 UTC run for each day with forecasts up to 24 hours is
considered in the study. Figure 3.2 shows an example of the EPS product, with
overnight convection and significant potential for lightning activity expected in
northern Germany at different locations from the EPS members.

Figure 3.2: Example of LPI output fields from all the 20 members of the high
resolution ensemble (contours for LPI > 1 J · kg−1). COSMO-D2 EPS
00 UTC run from June, 6th 2019, valid for June, 6th 2019 at 03 UTC.
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3.3 Data homogenization

3.3 Data homogenization

As shown in Figure 3.1, the LINET dataset is covering a slightly bigger area
compared to the COSMO-D2 EPS domain. Furthermore, the lightning data are
sparse geographical points in space, while the LPI forecasts are linked to a regular, 2–
D mesh grid. Thus, in order to perform the verification, the LINET dataset needs to
be trimmed and brought onto the COSMO-D2 EPS mesh grid. This homogenization
process in space has been done using a linear nearest neighbor algorithm. The
observed lightning flashes have been assigned to the nearest COSMO-D2 EPS grid
point, while LINET data falling outside of the COSMO-D2 EPS domain have been
rejected.
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Reshaping and reorganizing data in time

Figure 3.3: Schematic view of the applied procedure to aggregate both datasets in
time.

A similar homogenization process is also necessary for the time dimension. The
lightning data are sparse points along the time axis, while the LPI dataset has
regular time steps every 15 minutes. However, verifying the forecast with such an
high frequency would have required a significantly higher computational capacity.
Another positive aspect of integrating in time is also the fact that rapid variations
in the fields will be filtered out. Therefore, as this work is intended as a preliminary
study of the skillfull scale and predictability of convective forecasts, all data have
been aggregated using an hourly frequency. The LINET observed flashes have
been summed up on an hourly basis, while the maximum LPI value for each hour
has been computed. The process is schematized in Figure 3.3. This approach can
be considered as an upscaling in time, thus partly neutralizing time offsets in the
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model’s forecast of convection. This aspect needs to be taken into account when
proceeding to the actual verification process.

The resulting, homogenized datasets that will be used for the analysis are therefore
gridded fields of number of observed lightning flashes and forecasted LPI values
in J/kg, available with an hourly frequency and a spatial resolution of 2.2 km, on
average.
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4 Methodology

As described in the previous Section, this study has been conducted using hourly
fields of observed LINET flashes and forecasted LPI fields. Given the fact that con-
vection is often strongly correlated to daytime heating and that model performances
tend to degrade with increasing forecast lead time, an analysis that differentiates
between hourly forecast steps is the most appropriate choice. Therefore, all the
verification scores shown in the following chapters are aggregated based on the
forecast lead time from the start of the model run (00 UTC). Furthermore, as only
the 00 UTC COSMO-D2 EPS model runs are taken into account with a maximum
forecast lead time of +24 hours, the forecast steps in UTC being verified coincide
with the solar time in Central Europe, +1 hour (solar time = CEST -1 hour = UTC
+1 hour). This plays a central role when looking at the verification outputs, as
most of the convective activity will be concentrated in the afternoon hours. Finally,
to asses the skill of the EPS, the ensemble mean has been taken as the reference
forecast for the SEDI, the eFSS and the SAL.

4.1 Data filtering

The raw data are available for a period from April to September 2019. Table
4.1 shows the distribution of the monthly observed lightning activity and the
corresponding percentage of total lightning in the whole time window. Convection
is known to be a summer topic for mid-latitudes and therefore there is no surprise
in counting around 92% of the observed lightning flashes in June, July and August.
As April, May and September accounts for just 8% of the total lightning activity,
this study focuses only on the three summer months.

Month Number of observed flashes Percent of total
April 2019 0.4 x 106 2%
May 2019 0.8 x 106 4%
June 2019 6.4 x 106 34%
July 2019 6.5 x 106 35%
August 2019 4.2 x 106 23%
September 2019 0.4 x 106 2%
Total 18.7 x 106 100%

Table 4.1: Distribution of LINET observed lightning flashes in dataset per month.
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Furthermore, another filtering method has been applied in order to focus the
study only on truly active convective days. For achieving this, a simple formula
based on the fraction of domain with observed lightning flashes for each hourly
forecast step has been used. If the fraction of domain with lightning activity —
i.e. the number of gridpoints with at least one observed lightning divided by the
total number of gridpoints in the domain — is less than one third of the summer
average fraction for that specific forecast step, then the day is discarded. The one
third threshold has been chosen in order to maximize the ratio between retained
lightning activity and discarded days in the dataset. By doing this, the number of
days retained in the study are on average 60% of the total 92 days for the summer
season 2019 and at the same time most of the observed lightning activity is also
still included in the datasets.
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Figure 4.1: Amount of days (bar plot) in dataset and singular gridpoints (lines)
being retained after the filtering process compared to the unfiltered
datasets. The "main timesteps" are the forecast steps that have been
investigated in details during the verification process (see Chapter 5).

Of course, by applying an observations-based filtering method the risk of underes-
timating the false alarms and therefore of adding a bias to the study is very much
given. However, as after the filtering process more than 90% of both the observed
and the forecasted lightning activity is retained — as shown in Figure 4.1 — this
method is not affecting the analysis in a decisive way, especially during the main
convective window in the afternoon hours. This hypothesis is supported by the
statistics of the False Alarm Ratio (FAR) for the filtered and unfiltered datasets.
Based on the same contingency table described in Table 2.2, the FAR is defined as
follows:

FAR =
b

a+ b
(4.1)

24



4.2 Choosing thresholds

As shown in Figure 4.2, the FAR is very high in both the filtered and the unfiltered
dataset, with changes in the range 0.1 to 1% of the FAR. For better reference, also
FAR values for simple upscalings in space are also shown.
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Figure 4.2: False Alarm Ratio (FAR) for the filtered and unfiltered datasets.

Finally, a third filtering approach has been introduced only for the SAL analysis.
As the SAL is inherently an object-oriented measure, large portions of the domain
without lightning activity might distort the final results. Therefore, on top of the
previously described filtering approaches also a geographical zooming algorithm has
been applied prior to the SAL analysis. For each day, the maximum and minimum
point values (i,j) of the mesh grid with observed lightning flashes have been identified,
defining a rectangular area where the lightning activity is occurring. In order to
discard large inactive regions and after allowing for a safety buffer of 20 gridpoints
(around 45 km) in every direction, the SAL analysis has been conducted only on
this zoomed rectangular area. This way, the domain of the analysis changes for each
day in the dataset, but as the discarded area does not include lightning activity this
has no influence on the quality of the verification.

4.2 Choosing thresholds

Some of the verification measures discussed so far (the SEDI and the FSS) need
binary fields to compare the LINET observed flashes to the COSMO-D2 EPS LPI
forecasts. For the SAL, a more complex process is needed, as described in Section
4.4. In order to obtain binary fields from the original datasets, specific thresholds
need to be defined. The choice has been made by looking at the FSS score for
different combinations of thresholds for both the observations and the forecasts.
The results are shown in Figure 4.3. For the observed flashes the solution that
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maximizes the FSS for most of the forecast steps is obtained by considering more
than one flash per hour in one grid point (around 2 km2) as a proper threshold to
set the binary field to 1. For the LPI the decision is not so straight forward, but
the threshold that performs best throughout the investigated forecast steps is the
one set at more than 1 J/kg.
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Figure 4.3: FSS scores obtained by applying different thresholds to the LPI fields
(0.2, 0.5, 1.0, 2.0 J/kg) and the LINET observed fields (1 and 2 lightning
flashes in gridpoint) for the selected forecast steps +2h (a), +8h (b),
+13h (c) and +16h (d).

Therefore, the thresholds used for creating binary fields for the SEDI and the
FSS as well as for the identification of the objects in the SAL method in this study
are set to:

LPI > 1 J · kg−1 and LINET flashes > 1 (4.2)
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4.3 SEDI spatial upscale

4.3 SEDI spatial upscale

The FSS is known for allowing users to investigate the skillful scale of a forecast,
i.e. the spatial scale at which the forecast becomes useful. In order to introduce a
spatial scale to the verification process already from the SEDI analysis, a simple
upscale process has been applied to both the observations and the forecasts prior to
the SEDI calculation. Besides the original grid spacing (around 2 km), significant
upscales at 4, 8, 16, 32, 64 and 128 km have been chosen. The LINET observed
flashes have been summed up for all the gridpoints included in the upscale size,
while for the LPI the maximum value in the upscaling window has been taken. The
result is a simplified version of the fuzzy verification approach that can be evaluated
at best with the FSS analysis.

4.4 LPI - LINET Statistical relationship

As partially discussed in previous chapters, the two datasets being compared in this
study are similar from an operational point of view in a forecasting environment,
but are two clearly separate physical quantities that are measured with different
units. In this section, a brief description of the statistical characteristics of the
datasets is shown, with a particular focus on the relationship between the two in
order to provide homogeneous fields for the SAL analysis.
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Figure 4.4: Cumulative Distribution Function (CDF) for the LINET observed flashes
and the LPI fields. Significant LINET thresholds (number of flashes in
gridpoint) and the corresponding are also shown for better reference.

The cumulative distribution functions (or CDF) for the LPI dataset using the
ensemble mean and the LINET dataset is shown in Figure 4.4. As both datasets are
known to be positive if lightning activity is observed or expected, only non-zero LPI

27



4 Methodology

and LINET gridpoints have been included in the analysis. Several considerations
can be made by looking at the two distributions, but the most important one is
that both functions are very similar. This is expected, as the LPI is intended to be
a forecasting parameter for the occurrence of lightning flashes. Lightning flashes
are relatively rare phenomena and even if the CDF plot shown in Figure 4.4 only
considers non-zero values in the distribution, this is reflected in the function. In
fact, the majority of the gridpoints in the database (60 to 70% of the non-zero
gridpoints) take values below 5 flashes per hour or 2.5 J/kg maximum LPI in an
area of around 2 km2. However, there are also extreme events with up to several
hundreds flashes per hour with similar LPI maximum values. It is interesting to
note that by comparing the two distributions, the threshold LINET > 2 flashes
corresponds to LINET > 0.9 J · kg−1, which is not exactly the threshold which
maximizes the FSS as discussed in Section 4.2. Also, the total amount of gridpoints
in the whole dataset (i.e. including all the gridpoints in the domain for all the
available days and forecast steps) is approximately 109. As shown on the y-axes
in Figure 4.4, the gridpoints with at least one observed flash are around 106, while
the ones with non-zero LPI values around 107. This leads to two considerations:
first, that the vast majority of the gridpoints in the datasets (> 99%) prior to the
filtering processes described in section 4.1 show no lightning activity and second
that the LPI is non-zero for a significantly larger number of gridpoints compared to
the observed lightning flashes.
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Figure 4.5: Statistical relation between the LPI fields and the LINET dataset based
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season as well as for the single summer months.
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4.4 LPI - LINET Statistical relationship

While for the SEDI and the FSS the usage of binary fields with fixed thresholds
automatically remove the issue of comparing two quantities having different units,
for the calculation of the SAL components one more step is needed. In fact, the
magnitude of the fields does play a role when it comes to the SAL analysis and this
implies that the two fields being compared must have the same unit. Therefore, a
fitting model needs to be applied to the LPI fields in order to express them in terms
of number of lightning flashes. By looking at the percentiles of the two distributions,
shown in Figure 4.5, the relation between the two quantities does seem almost
linear, though not symmetric. Furthermore, the differences between each month
are negligible and the Summer season can be treated as a whole. However, if the
analysis is performed for each single forecast step in the dataset — as shown in
Figure 4.6 — then some significant discrepancies emerge and the relation is not
always linear. As this study is being performed for each forecast step separately,
different fitting parameters will be applied for different forecast lead time.
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Figure 4.6: Relation between the LPI fields and the LINET dataset based on sig-
nificant percentiles of both distribution for the whole Summer season
focused on each of the 24 forecast steps.

In order to find the best fitting for all the 24 forecast steps while using the same
process, an exponential function of the form:

a · x · exp(b · x) + c (4.3)

has been used. The parameters a, b and c leading to the best curve fitting
results have been found for each forecast step by applying a non-linear least squares
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4 Methodology

regression analysis. Ideally, a different dataset should be used to train the fitting
model. However, as no further data were available for previous Summer seasons,
the same dataset being analyzed has been used for training purposes. By looking
at the intra-month and intra-season variability of the relation as already shown in
Figure 4.5, the statistical relationship between the two datasets does seem to be
pretty consistent throughout the whole season.
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Figure 4.7: Relation between the LPI fields and the LINET dataset based on sig-
nificant percentiles of both distribution for the whole Summer season
focused on each of the 24 forecast steps.

The result of the curve fitting process for each forecast step is shown in Figure
4.7. Using this relation, the LPI fields have been translated into number of lightning
flashes and can be used in the SAL analysis. When the LPI values get close to zero,

30



4.4 LPI - LINET Statistical relationship

the relation can significantly vary from time step to time step and might not always
be consistent for what concerns the threshold of one flash in gridpoint. For this
reason and in order to comply with the same thresholds used for the SEDI and the
FSS analysis defined in Equation (4.2), LPI values falling below 1 J/kg have been
forced to get a value of 0 lightning flashes in the translated fields, regardless of the
fitting process.
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5 Verification outcomes

In Chapter 4, the importance of the time of the day in this analysis has already
been discussed. Before showing the detailed verification results of this study it is
important to briefly analyze the distribution of the lightning activity throughout
the 24 considered forecast steps (Figure 5.1). By considering only the 00 UTC
model runs up to 24 hours lead time, each forecast step always coincide with the
same solar hour of the day +1 hour. This leads to significant differences in the
distribution of the lightning activity. The first forecast steps corresponding to the
morning hours are 5 to 6 time less active compared to the afternoon hours, when
the diurnal convection reaches its peak.

+1 +2 +3 +4 +5 +6 +7 +8 +9
+10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24

Forecast step [h]

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Av
er

ag
e 

of
 m

as
ke

d 
fie

ld
s

LINET
LPI
LPI ±2

Hourly distribution of averaged COSMO ENS-Mean and LINET flashes

Main timesteps

Figure 5.1: Fraction of the domain with observed (LINET) and forecasted (LPI)
lightning activity throughout the 24 forecast steps. The calculation
is based on the binary (masked) fields that have been then used for
the SEDI and the FSS algorithms. For the LPI, half of the standard
deviation of the EPS is also shown. Four main forecast steps at +2h,
+8h, +13h and +16h have been chosen at significant frames of the daily
convective cycle and the model’s forecast lead time. For better reference:
in this study, the forecast steps coincide with the solar time for Central
Europe +1 hour.

Furthermore, Figure 5.1 already shows some interesting peculiarities. First,
the LPI distribution seems to show higher potential for lightning activity at the
beginning of the model run and in general during nighttime compared to the LINET
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5 Verification outcomes

distribution. This might be lied to elevated, overnight convection being considered
too strong and also to some data assimilation issues for what concerns the convective
available potential energy (CAPE) at the beginning of the run. Another interesting
feature is the evident offset in time for the start of the convective cycle between
+9h and +15h. According to the observation, the lightning activity starts increasing
on average at around +10h (11:00 solar time) and reaches the peak at +16h (i.e.
in the late afternoon). The LPI distribution does model this behavior very well
in terms of magnitude, but there is a clear offset in time, with the curve starting
to increase at around +11h and reaching the maximum at +17h. The fact that
convection resolving, high resolution models can show a slight delay in triggering
diurnal convection is well documented (Ban et al., 2014). Finally, in order to provide
some more detailed verification outcomes, 4 main timesteps have been identified:
One at the beginning of the model run (+2h), one right before the start of the
diurnal convection (+8h), one when daytime convection is rapidly increasing (+13h)
and one at the peak of the daily cycle (+16h). For these timesteps, specific charts
have been produced in the following Sections.

5.1 Symmetric Extremal Dependence Index -
SEDI

In Figure 5.2 the results of the SEDI analysis for the 24 forecast steps and for the
spatial upscalings from the original grid spacing of the model (around 2 km) up to
128 km are shown.
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Figure 5.2: SEDI for all the 24 forecast steps and for selected spatial upscales.

The COSMO-D2 EPS produces useful information (SEDI > 0) throughout the 24
hours lead time. By looking at the 2 km resolution, the forecast skill is very good
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5.2 Dispersion Fractions Skill Score - dFSS

at the beginning of the model run (SEDI values between 0.6 and 0.7) and drops
to values around 0.35 during the main convective window in the afternoon hours.
This is somehow expected as two main effects come into play. On the one hand
there is the typical skill degradation with increasing forecast lead time: small errors
in the initial conditions and the intrinsic chaotic nature of the atmosphere lead to
a gradual decay of the model performance as the forecast evolves. This aspect is
however not predominant in this study and would be better analyzed if the datasets
used would comprise all the available model runs, in addition to the one starting
at 00 UTC. Most importantly, on the other hand the diurnal convection itself is a
source of uncertainty as it transfers significant amounts of energy to different scales,
some of which are not resolved explicitly in the model and rely on approximated
parametrization schemes. Nevertheless, the SEDI score at the original resolution of 2
km can already be considered useful in forecasting the potential for lightning activity.
For larger spatial scales, the SEDI score gets significantly better and reaches values
around 0.75 for the 128 km upscale. At this scale, the LPI forecast has a very good
ratio between the hit rate and false alarm rate and provides reliable information on
the risk of lightning activity. It is interesting to note that, for many of the upscales
considered in this study, the worst skill according to the SEDI is reached at +11h
from the beginning of the model run. This is again linked to the time offset of the
COSMO-D2 EPS in triggering the diurnal convective cycle that has already been
discussed in the opening Section of this Chapter. This aspect will be investigated
further with the help of the FSS in the following Section.

5.2 Dispersion Fractions Skill Score - dFSS

Figure 5.3 shows the results of the analysis for the eFSS (b) and the dFSS (c) at
varying spatial scales for the 24 forecast steps included in the study. The different
spatial scales are defined by the neighborhood square window of side n, which goes
from 1 gridpoint (correspondent to the original resolution of 2.2 km) up to 500
gridpoints (which is equal to a square window of approximately 1100 · 1100 km2).
As discussed in Section 2.4.2, a forecast is considered skillful if FSS ≥ 0.5 + f0

2
.

However, the base rate f0 of the datasets used in this study is very low and close to
zero for all the forecast steps that are being analyzed. For this reason, a white line
has been added in Figure 5.3 where the FSS is equal to the value of 0.5, as in this
case this is approximately the threshold at which the LPI forecast reaches a useful
skill. The study of the relationship between the eFSS and dFSS provides many in
depth information. At many scales, the dFSS is showing higher values compared to
those of the eFSS. At this stage it is worth remembering the fact that the dFSS
is a measure of the ensemble spread and that the higher the dFSS, the lower the
spread between the members. So a dFSS/eFSS ratio larger than 1 implies that
the ensemble members are not diverging enough in order to fully cover the actual
uncertainty that is being observed in the forecast. For better clarity, the dFSS/eFSS
ratio is shown in Figure 5.4. Interestingly, a clear pattern can be recognized. At
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Figure 5.3: (b) Error Fractions Skill Score (eFSS) for 24 forecast steps and neigh-
borhood sizes up to 500 grid points. (c) Dispersion Fractions Skill Score
(dFSS) for 24 hourly forecast steps and neighborhood sizes up to 500
grid points. For COSMO-D2, 1 grid mesh equals 2.2 ·2.2 km2. For better
reference, (a) is showing the average of all the masked fields used for the
study (i.e., the average fraction of the domain with observed/forecasted
lightning activity), with a clear maximum of the convective activity
during the afternoon and evening hours. From (Salmi et al., 2022).

smaller scales the EPS is showing an overdispersive behavior, while the ratio is
inverted at larger scales. This implies that — at least for single convective cells or
single convective systems — the members of the ensemble are providing solutions
that are too different from member to member compared to the performance of the
ensemble average (which of course is relatively poor at this scale). On the contrary,
when it comes to large scale convective features the members are diverging too
little compared to the actual performance of the ensemble mean. In general, the
discrepancies are larger at the beginning of the model run and tend to diminish
during the main convective window. As every ensemble does need some spin up time
in order to let the disturbances in the different members grow, this is an expected
behavior from the COSMO-D2 EPS.

Another notable feature in Figure 5.3 is the minimum in performance between
+10h and +12h, with the eFSS struggling to reach values of 0.5 also for extremely
large spatial scales. The EPS is providing forecasts with very low skill also for
neighborhood sizes up to 500 gridpoints, which implies that for these forecast
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Figure 5.4: dFSS/eFSS ratio for all the forecast steps and the neighborhood sizes.
Positive values identify areas where the ensemble is underdispersive,
while negative values implies a higher spread than necessary in the EPS.
A ratio of one (thick black line in the plot) indicates the perfect ensemble
spread.

steps a strong bias is present in the model. This is the same signal that has
already been discussed in the opening Section of this Chapter and that emerged
also in the SEDI analysis, with an evident, delayed start of the diurnal convective
cycle in the COSMO-D2 EPS compared to the observations. The model wrongly
delays the triggering of the first convective cells of about one hour, but once the
convective processes have been triggered, the forecast skill rapidly returns to more
than acceptable eFSS values also at smaller scales. At this point the FSS analysis
can provide further in depth details about the behavior of the EPS. In fact, by
looking at the dFSS distribution the same feature corresponding to the same forecast
step can be recognized. The dFSS minimum is not so pronounced and is less intense
compared to the one visible on the eFSS chart, but the signal is evident. This
means that the EPS is succeeding in modeling this sudden deterioration in the
predictability and that the ensemble members are diverging a little bit more in
correspondence of this singularity. In other words, the COSMO-D2 EPS is able
to partly cover the average time offset that is present in its mean: some ensemble
members correctly signal the possibility of an earlier triggering of the convective
cycle. A dedicated, in depth analysis focusing on this specific issue might be needed
to confirm such hypotheses.

Finally, for what concerns the scale at which the COSMO-D2 EPS forecast is
considered skillful (identified by the white line denoting the 0.5 eFSS values in
Figure 5.3), it is important to underline that this lies at around 200 km — or slightly
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Figure 5.5: Summer average of the eFSS and dFSS for the selected time steps +2h
(a), +8h (b), +13h (c) and +16h (d). The skillful threshold 0.5 + f0
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is highlighted. 20th and 80th percentiles of the datasets leading to the
eFSS/dFSS are shaded. For the eFSS, the whole dataset is composed
by single daily values. For the dFSS a total of 190 daily values — one
for each couple of ensemble members — have been processed. (Salmi
et al., 2022).

less than 100 gridpoints — during the main convective window, in the afternoon
hours. This is almost twice as much if compared with the results in the dFSS chart,
where the 0.5 line is located close to 50 gridpoints for the same time window. This
leads to the conclusion that the COSMO-D2 EPS is producing a forecast that is
on average deemed skillful and useful already at a scale of around 100 km, while
the ensemble mean is actually skillful at around 200 km. The ensemble is therefore
spatially too optimistic and overconfident.

When looking at the data presented so far, it has to be noted that the eFSS and
dFSS scores for each forecast step are mean values for the whole summer season. In
fact, for the eFSS, one value per day — for the number of days shown in Figure 4.1
— is actually being calculated and for the dFSS a total of 190 values for each of these
days — one for each pair of ensemble members — are available. For this reason, the
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5.3 Ensemble Structure-Amplitude-Location - eSAL

internal variability of both datasets is also of interest as this can provide further
details regarding the capability of the ensemble spread to cover the full spectrum of
daily error values. In order to achieve this, four main timesteps have been chosen, as
previously described and for these four forecast steps (+2h, +8h, +13h, +16h) also
the 20th and the 80th percentiles of both the eFSS and the dFSS distributions are
calculated. Figure 5.5 shows the results of this analysis. Even looking at the whole
distribution, it is clear that especially at higher neighborhood sizes the COSMO-D2
EPS produces too little spread if compared with the full spectrum of error values
that have been observed. However, from these charts as well it is evident that the
ratio between the dFSS and the eFSS gets better at smaller scales.

5.3 Ensemble Structure-Amplitude-Location -
eSAL

Figure 5.6 shows the results of the analysis for all the three components of the
SAL using the modified (i.e. translated into number of flashes) LPI fields. The
conventional SAL calculated by comparing the observations and the ensemble mean
forecasts is shown with the blue thick line. The dashed red line is referring to the
eSAL, which is intended to be a measure of the ensemble spread. One of the key
facts that can be immediately inferred from the chart is that the ensemble spread for
the Structure and Amplitude components is almost non existent. In fact the eSAL
for the panels (a) and (b) is constantly close to zero. This behavior does not come
as a surprise, as the S and A components only investigate the form, volume and
magnitude of the areas with lightning activity. These characteristics are strongly
tied to the way the model physics treats convective processes and also directly
depend on the way the LPI algorithm works and are on the other end much less
dependent on larger scale processes. The random perturbations applied to the deep
convective processes in the COSMO-D2 EPS does not seem to create significant
dispersion between the members when it comes to the intensity and shape of the
convective cells or systems leading to lightning activity. For this reason, when
computing the average among all the members, any random discrepancies tend to
compensate each other. Nevertheless, considering the fact that the adapted SAL for
ensembles has only been applied to precipitation fields in the current literature, there
is also the hypothesis that the S and A components are simply not ideal quantities
to describe the probabilistic spread-error relationship in an EPS when it comes
to lightning activity and should be investigated further. After this long premise,
the standard SAL analysis for the ensemble mean does convey important details
also for the Structure and Amplitude components. By looking at the S plot (a),
the COSMO-D2 EPS LPI produces areas with potential for lightning activity that
are on average clearly too large and intense if compared with the observations. Of
course, this aspect is strongly dependent on the thresholds which can be arbitrarily
chosen to define a SAL-object in the LPI fields. Furthermore, the LPI — as the
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name suggests — expresses the potential for lightning activity. In this study it has
been treated as (or translated to) a direct forecast of the occurrence of lightning
flashes only for verification purposes. This leads to the hypothesis that the index
itself might have been calibrated this way (i.e. more sensitive, identifying larger
areas with the potential for lightning activity) on purpose. For what concerns the
Amplitude component shown in panel (b), the ensemble average clearly overdoes the
actual lightning activity during the nighttime hours and in the morning (forecast
steps from +1h to +10h and from +19h to +24h). This result is coherent with the
difference between the general distribution of the observations and the one of the
forecasts already shown and discussed in Figure 5.1. As the Amplitude component
is a simple measure of the magnitude of the fields over the whole domain and the
thresholds applied are the same, the two plots are completely equivalent.
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Figure 5.6: (a) Structure, (b) Amplitude and (c) Location components of SAL for
24 forecast steps for the ensemble mean. The eSAL (or spread) has been
calculated between all ensemble members. (Salmi et al., 2022).

On the other end, the Location component is for sure the most informative part
of the SAL study for what concerns the spread-error relationship as in this case the
COSMO-D2 EPS is clearly able to generate a certain amount of dispersion between
its members. However, the standard SAL computed with the ensemble average
(representing the ensemble error) is slightly higher for most of the forecast steps if
compared with the eSAL (which gives a measure of the ensemble spread). Therefore,
the SAL analysis for the Location component points at a general, slight lack of
ensemble spread if compared with the average predictability of the phenomenon. In
other words, the EPS is underestimating the actual ensemble mean error. This is
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5.3 Ensemble Structure-Amplitude-Location - eSAL

coherent with the FSS analysis, at least for spatial scales above 10 gridpoints, or
20 km. At this point, it is important to remember the fact that the SAL Location
component does not work with fixed spatial scales, but rather averages over several
different spatial scales, depending on the scale of each identified object in the domain.
Therefore, a direct comparison with the results from the FSS analysis would not be
appropriate. During the time of the day with the highest convective activity, both
the SAL and the eSAL distributions reach a secondary minimum. This aspect might
be lied to the fact that the lightning activity is more sparse and less organized for
the morning and the nighttime hours, which could introduce some more sources of
error in the forecast. On the contrary, during the main convective window stronger,
more organized convective systems might lead to larger objects and therefore also to
larger spatial scales. This could result in a better performance in locating them from
the model. Overall, the ratio between eSAL and SAL (or the spread-error ratio)
is slightly better in comparison to the dFSS/eFSS ratio discussed in the previous
section. One hypothesis for this is that the Location component of the SAL is
only verifying the displacement of the objects in the two fields, leaving possible
magnitude bias to the Structure and the Amplitude components. For what concerns
the SAL analysis, in general it can be stated that the COSMO-D2 EPS is delivering
a very good performance in terms of locating the areas with lightning activity and
assessing the uncertainty connected to this forecast. The performance is not as good
when it comes to the intensity and the shape of the single features that are being
forecasted.

Finally, the same approach used for the FSS analysis has been applied to the
SAL. Therefore, the overall results presented so far are averaged over the whole
time period and for the eSAL also over the ensemble members. In a similar way
as for Figure 5.5, a detailed analysis about the total variance of both datasets can
be performed by plotting all the available SAL and eSAL values. As previously
discussed, the only SAL component that shows a significant ensemble spread is
the Location, while a further spread-error analysis for S and A would not add
any valuable information to this study. Furthermore, as L is actually composed
by the sum of L1 and L2 (see Equations 2.20 and 2.21), a L1/L2 scatterplot for
all the available data of SAL and eSAL seems the optimal choice to visualize the
results. In Figure 5.7 the resulting scatterplots for L1 and L2 for the same selected
forecast steps as for the FSS analysis are shown. It can be inferred that L1 and
L2 contributes on average with the same amount to the total Location component
and also the spread-error relationship of the two component is very similar for
all the investigated forecast steps. Another important point to note is that the
distributions of the daily SAL (blue dots) and eSAL (red dots) values in the L1/L2
space are different, with the daily ensemble spread not covering the whole spectrum
of the verified ensemble mean error. However, when looking at the daily member-
to-member variability of the eSAL (orange dots), it can be seen that this covers
large parts of the overall mean error dataset. In general, the COSMO-D2 EPS is
therefore capable of generating sufficient dispersion between its members when it
comes to assess the spatial predictability of the lightning activity.
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5 Verification outcomes

Figure 5.7: Summer average of the L1 and L2 components for the classical SAL
(mean error) and for the ensemble SAL (eSAL or spread) for the selected
time steps +2h (a), +8h (b), +13h (c) and +16h (d). The single daily
values of the SAL that compose the overall summer averages are plotted
as well. For the eSAL (or spread), both the daily averages calculated
from the 190 daily values for each couple of ensemble members and every
single values available in the dataset are shown.
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6 Conclusion and outlook

In this study, some well established verification measures have been adapted and used
to asses the performance of the high resolution COSMO-D2 EPS Lightning Potential
Index (LPI) forecasts during the summer months of 2019. The Symmetric Extremal
Dependence Index (SEDI), the Fractions Skill Score (FSS) and the Structure
Amplitude Location (SAL) have been applied to the ensemble mean forecast, showing
an overall good performance of the EPS in localizing areas with lightning activity.
With the help of a probabilistic version of the FSS and the SAL, the relationship
between the ensemble spread and the ensemble mean error has also been investigated,
showing an overall lack of dispersion in the ensemble forecasts compared to the
mean skill. In general, this means that the EPS suffers a slight underestimation of
the low predictability of the lightning activity. Interestingly, when analyzed using
the FSS approach, this lack of spread is particularly present at larger spatial scales,
while for features located at the lower end of the mesoscale the generated ensemble
spread seems to be enough or even slightly too large. It has been also shown that
the EPS is at least partly correctly catching some of the uncertainty in the forecast
deriving from the often delayed onset of the daily convective cycle in the model.
Furthermore, using the FSS, an average skillful scale for the ensemble mean of
around 200 km has been determined during the main convective window, in the
afternoon hours. On the other hand, the same analysis conducted on the ensemble
spread shows that the EPS would see the forecast as skillful already at a spatial
scale of 100 km. Finally, most of the study focused on the spatial performance of the
LPI forecasts and not on the magnitude of the fields. This is mainly due to the fact
that the LPI is in fact a completely different measure with different units compared
to the observed lightning flashes. However, using a statistical model, a SAL analysis
also on the intensity of the fields has been conducted with controversial results. If
the COSMO-D2 EPS performance in locating areas with lightning activity is good,
some more concerns are present for possible biases in the magnitude of the signal.

As this was a preliminary verification of a very high resolution, convection-resolving
EPS in forecasting lightning activity, there are many branches of this analysis which
could be expanded further. First of all, the study has been conducted only on the
00 UTC model runs for 24 forecast steps. This leads to strong discrepancies in
the dataset between each forecast step, as convection (and therefore also lightning
flashes) mostly occur during the afternoon hours. In order to decouple the forecast
lead time from the daily convective cycle, all the available model runs (one every
3 hours) should be included in future analysis. By doing this, a cleaner view on
the variation of the spread-error relationship with the advancing forecast lead time
would be obtained. Furthermore, this would also enable an in-depth investigation
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6 Conclusion and outlook

of possible benefits coming from data assimilation during the morning hours, before
the start of the convective cycle. Given the interesting results obtained with the
dFSS/eFSS analysis, which shows discrepancies in the spread-error relationship
depending on the spatial scale, a further probabilistic investigation focusing on the
mesoscale might also be worthy.

In this analysis the fields have been aggregated on an hourly basis, although a
maximum frequency of 15 minutes could be possible. For this reason, one possible
further step would be to increase the frequency of the analysis as this could for
example provide further insights concerning the time delay in the model at the
start of the daily convective cycle. Nevertheless, it has already been documented
as such a significant increase in the frequency of the verification could lead to an
overall worse performance also for lightning activity (Mittermaier et al., 2022a,b).
Another possible evolution of this study would be a differentiated verification
of sub-domains based on specific topographical characteristics (for example the
lowlands in northern Germany, the hilly central Germany and the Alpine region), as
topography plays a central role in triggering convection. Also, a comparison between
the LPI and other indexes that are relevant for lightning activity (either using
parcel theory or considering the cloud microphysics) would be beneficial in order
to put this performance in relation to similar and also not so similar forecasting
approaches. Finally, also the observation dataset could be different, as the LPI is
not a direct forecast of the number of lightning flashes. The usage of innovative
pattern recognition algorithms on satellite or radar data to detect deep convection
might for example also provide an interesting observational database.
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