
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

„Extending equivariant message passing neural networks for
excited states“

verfasst von / submitted by

Sascha Mausenberger, BSc.

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2023 / Vienna, 2023

Studienkennzahl lt. Studienblatt / UA 066 862
degree programme code as it appears on
the student record sheet:

Studienrichtung lt. Studienblatt / Masterstudium Chemie
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Priv.-Doz. Dr. Philipp Marquetand

Acknowledgements

I want to thank Philipp Marquetand for his great machine learning lecture, which was the
reason for my decision to write my thesis in this field of research, and for supporting me
throughout the time. I also want to thank Julia Westermayr for helping me understand
how SchNarc works, and Michael Gastegger for his explanations of the SchNetPack 2.0
internals. Next, I want to thank the ViRAPID team (Brigitta, Madlen and Max) for the
welcoming atmosphere in the office. Further, I want to thank Leticia González for her
bachelors lecture in theoretical chemistry, that initially got me hooked, and Markus Oppel
for always finding the time to explain to me how the IT infrastructure of the institute
works. And last but not least, I want to thank my girlfriend Gabriele and my family for
supporting me during my study.

i

Abstract

It has been shown that excited-state molecular dynamics simulations can be accelerated
with reasonable accuracy by predicting molecular properties with an invariant message
passing neural network (MPNN) instead of expensive quantum chemical computations.
Even though this method produces accurate results for the selected test systems, equivari-
ant properties like the non-adiabatic couplings (NACs), which determine the hopping
probability between different states, are predicted poorly compared to invariant prop-
erties like the energies. This is an intrinsic problem which can not be solved, because
invariant representations cannot directly predict equivariant properties. In this work,
the invariant MPNN was replaced with an equivariant MPNN which is able to predict
all molecular properties with significantly improved accuracy. The previous method,
called SchNarc, combines the invariant MPNN SchNet included in the machine learning
framework SchNetPack and the trajectory surface hopping molecular dynamics package
SHARC (Surface Hopping including Arbitrary Couplings). For the new approach, the
equivariant MPNN PaiNN (Polarizable Atom Interaction Neural Network), included in
SchNetPack 2.0, was combined with SHARC and is called SPaiNN.

iii

Kurzfassung

Es wurde gezeigt, dass molekulardynamische Simulationen für angeregte Zustände mit hin-
reichender Genauigkeit beschleunigt werden können, indem man molekulare Eigenschaften
mit invarianten neuronalen Netzen vorhersagt, anstatt teure quantenmechanische Berech-
nungen zu verwenden. Obwohl diese Methode für ausgewählte Testsysteme gute Ergebnisse
erzielt, können equivariante Eigenschaften wie die nicht adiabatischen Kopplungen, welche
für die Ermittlung der Übergangswahrscheinlichkeit zwischen zwei Zuständen gebraucht
werden, nur sehr schlecht vorhergesagt werden verglichen mit invarianten Eigenschaften
wie den Energien. Dies stellt ein intrinsisches Problem dar, welches nicht gelöst werden
kann, da invariante neuronale Netze equivariante Eigenschaften nicht direkt vorhersagen
können. In dieser Arbeit wurde das invariante neuronale Netzwerk durch ein equivariantes
neuronales Netzwerk ersetzt, welches in der Lage ist jegliche molekulare Eigenschaft mit
viel höherer Genauigkeit vorherzusagen. Der frühere Ansatz, genannt SchNarc, kombiniert
das invariante neuronale Netz SchNet aus dem machine learning framework SchNetPack
mit dem trajectory surface hopping Paket SHARC (Surface Hopping including Arbit-
rary Couplings). Im neuen Ansatz, genannt SPaiNN, wird das equivariante neuronale
Netz PaiNN (Polarizable Atom Interaction Neural Network) aus dem machine learning
framework SchNetPack 2.0 mit SHARC kombiniert.

v

Contents

Acknowledgements i

Abstract iii

Kurzfassung v

1 Introduction 1

2 Theory 5
2.1 Quantum Chemistry for Electronic Excited States 5

2.1.1 Multi-Reference Configuration Interaction 5
2.1.2 Phase of the Wave Function . 6

2.2 Surface Hopping . 6
2.3 Machine Learning in Quantum Chemistry 7

2.3.1 Neural Networks . 7
2.3.2 Message Passing Neural Networks 9

2.3.2.1 Equivariant MPNN . 9

3 Algorithmic Development 11
3.1 Phase-less Loss . 11
3.2 Smooth NACs . 12
3.3 Switching from SchNetPack 1.0 to SchNetPack 2.0 13

4 Computational Details 15
4.1 Training Parameters . 15
4.2 Surface Hopping Parameters . 16

5 Results and Discussion 19
5.1 Training with CH2NH2

+ . 20
5.1.1 Excited-State Dynamics . 21

5.2 Training with ethylene . 22
5.2.1 Excited-State Dynamics . 24

5.3 Performance of Phase-less Loss Implementations 24

6 Conclusion and Outlook 27

List of Tables 29

List of Figures 31

vii

Contents

Bibliography 33

viii

1 Introduction

In the last few years, machine learning has made huge progress. Whether it is translation
and generation of texts [1], image generation [2], face recognition [3], prediction of chemical
properties [4], generation of new molecular structures with desired properties [5] or folding
proteins [6], machine learning has made it into everyday life. In some areas machine
learning models are already superior to humans, and achieved things that were once
believed to be impossible for machines [7, 8]. Advances have also been made in theoretical
chemistry, where machine learning models are able to predict spectra [9], thermodynamic
[10] and quantum mechanical properties [11] in a fraction of a second.

This work focuses on accelerating excited-state dynamic simulations using a neural
network to predict molecular properties instead of using expensive quantum chemical
calculations. Excited-state dynamic simulations are used to theoretically describe photo-
chemical processes in molecules, like charge transfer, energy transfer and excition dissoti-
ation [12]. Understanding this processes can help for example with the development of
new light-emitting or photovoltaic materials. Molecular dynamics particularly benefits
from fast machine learning predictions since a single trajectory cannot be parallelized
because the geometries of each time-step are unknown at the beginning of the simulation.
Thus, longer simulation times are possible in a reasonable amount of time. Using machine
learning to simulate non-adiabatic excited-state dynamics is a relatively new field of
research but great successes were achieved in the past few years [13]. Many different
approaches with kernel ridge regression or neural networks have been proposed to predict
the needed properties (energies, forces, NACs, ...) either direct or indirect by predicting
wave functions or electronic densities [13]. One promising solution, SchNarc [14], which
combines the machine learning framework SchNetPack 1.0 [15] and the molecular dynam-
ics program SHARC (Surface Hopping including Arbitrary Couplings) [16], was used as
a blueprint for this work. SchNarc [14] uses the invariant representation SchNet [17] to
predict energies, forces, non-adiabatic couplings (NACs), spin orbit couplings (SOCs) and
(transition) dipole moments for a target configuration of a molecule. These properties are
then passed to SHARC, which handles the rest of the simulation. In this work, SchNarc
was build from scratch with up-to date python libraries and SchNetPack 2.0 [4], which
includes the equivariant representation PaiNN (Polarizable Atom Interaction Neural
Network) [18]. Rewriting the code instead of adapting the existing was unavoidable
since SchNetPack 2.0 [4] is a major rewrite of SchNetPack 1.0 [15] without backward
compatibility.

1

1 Introduction

(a) energy (invariant) (b) dipole moment (equivariant)

Figure 1.1: Illustration of equivariant and invariant molecular properties.

Using PaiNN [18] instead of SchNet [17] improves the prediction accuracy of equivariant
properties like NACs and (transition) dipole moments. An illustration of the difference
between equivariant and invariant properties is shown in fig. 1.1. The energy as an
example for an invariant property, shown on the left side is represented as blue circle. If
the molecule is turned upside down the amount of energy stays the same and it stays
the same no matter how the molecule is rotated in space. In contrast an equivariant
property like the dipole moment, represented as green arrow on the right side, changes
with rotation.

Input

SchNet PaiNN

NACs

"virtual"
NACs

Figure 1.2: Illustration of the differences in predicting NACs with equivariant and invariant
representations.

The major advantage of equivariant representations is that equivariant properties
can be predicted directly, whereas invariant representations can only predict invariant
properties. To overcome this limitation the prediction of the invariant representation has
to be post-processed to become equivariant. An example of how this is done in SchNarc
[14] for the NACs is shown in fig. 1.2. A so-called "virtual" property is predicted which

2

is then post-processed by taking the derivative with respect to the nuclear coordinates
R. Besides the additional computational effort another drawback of taking derivatives of
predictions is that small errors in the prediction lead to larger errors in the derivative.

The focus of this work will be the recreation of SchNarc [14] with the equivariant
representation PaiNN [18] and the investigation of the effect on excited-state dynamics. As
test systems the methlyenimmonium cation CH2NH2

+ and ethylene were chosen because
of their small size, their fast excited-state dynamics and because the training data already
existed. The training data for CH2NH2

+ was generated with MR-CISD(6,4)/aug-cc-pVDZ
level of theory (from ref. [14]) and the ethylene data with SA(3)-CASSCF(2/2)/6-31G*
level of theory (from ref. [19]).

3

2 Theory

2.1 Quantum Chemistry for Electronic Excited States

2.1.1 Multi-Reference Configuration Interaction

MRCI is a method that can treat electron correlation by constructing reference configura-
tions and exciting electrons in these configurations. The electronic Schrödinger equation
is then solved by variationally minimizing the energy in the configuration space [20].

|Ψα⟩ =
NCI∑︂
k=1

cαk |Φk⟩ (2.1)

The general concept of CI is to compute the many-electron wave function of an electronic
state as linear combination of basis functions. |Φk⟩ are the basis functions representing
electronic configurations, |Ψα⟩ is the wave function of state α and cαk are the CI coefficients
[20].

Ĥ |Ψα⟩ = Eα |Ψα⟩ (2.2)

Starting from the Schrödinger equation (eq. 2.2), with Ĥ as the electronic Hamiltonian
operator and Eα as the energy of state α, inserting eq. 2.1 into eq. 2.2 leads to

NCI∑︂
k=1

cαk Ĥ |Φk⟩ =
NCI∑︂
k=1

cαkE
α |Φk⟩ (2.3)

After left multiplication with ⟨Φl|, the following equation is obtained.
NCI∑︂
k=1

cαk ⟨Φl|Ĥ|Φk⟩ =
NCI∑︂
k=1

cαkE
α ⟨Φl|Φk⟩ (2.4)

Assuming the many-electron basis functions are orthonormal, ⟨Φl|Φk⟩ = δlk and define a
CI-matrix H with elements Hlk = ⟨Φl|Ĥ|Φk⟩ leads to

NCI∑︂
k=1

Hlkc
α
k = Eαcαl (2.5)

Eq. 2.5 can also be written in matrix form and is the main equation of CI [20].

Hcα = Eαcα (2.6)

With eq. 2.6 it is also possible to calculate excited states, where the ground state is the
lowest eigenvalue of H and the higher eigenvalues correspond to excited states [20].

5

2 Theory

2.1.2 Phase of the Wave Function

The arbitrariness of the phase of wave functions is an important effect that has to
be considered in molecular dynamics if the nuclear motion is also treated quantum
mechanically. This also affects the training of quantum mechanical properties in machine
learning because changes in the phase convention lead to jumps in the training data that
are hard to fit. There are two independent factors that are responsible for the change of
the wave function phase, the Berry phase, also called geometric phase, and the dynamic
phase. When the Hamiltonian Ĥ(R(t)) of a quantum mechanical system is varied by the
parameter R(t) from t = 0 to t = T on a round closed path C, so that R(T) = R(0),
then the system returns to the initial state, apart from a phase factor [21]. The temporal
evolution of a quantum mechanical system can be described by the Schrödinger equation

Ĥ(R(t)) |ψ(t)⟩ = ih̄
d

dt
|ψ(t)⟩ (2.7)

At any time t, the system consists of the eigenstates |n(R)⟩, with the energies En(R)
(R(t) = R)

Ĥ(R) |n(R)⟩ = En(R) |n(R)⟩ (2.8)

This equation defines no relationship between the phases of |n(R)⟩ at different R and the
phase can be chosen arbitrarily [21].

A system in one of the states |n(R(0))⟩ is adiabatically evolved with Ĥ to the state
|n(R(t))⟩ at time t. Then |ψ⟩ can be written as

|ψ(t)⟩ = exp

(︃
−i
h̄

)︃∫︂ t

0
dt′En(R(t′)) exp (iγn(t)) |n(R(t))⟩ (2.9)

The first exponential is the dynamical phase factor and γn(t) is the non-integrable
geometric phase factor. The geometric phase factor is not a function of R and is not
single-valued around a closed circuit, γn(T) ̸= γn(0) [21]. In general, the arbitrariness of
the wave function phases can be mitigated by tracking the wave function overlaps between
the time steps and adjusting the phases in a way that the overlap is maximized [22].

2.2 Surface Hopping

Surface hopping is a mixed quantum-classical method to study molecular dynamics that
separates the adiabatic and nonadiabatic processes. The adiabatic dynamics of the nuclei
are treated classically and the nonadiabatic effects of branching electronic population
are introduced through a stochastic algorithm, resulting in semiclassical trajectories that
can exchange electronic states. The statistical nature of the wave packet propagation is
captured by preparing an ensemble of these trajectories.[23]

Assuming the nuclei move along a trajectory Rc(t), the time-dependent wave function
for the electrons can be written as

φ(r,Rc, t) =
∑︂
j

cj(t)Φj(r;R
c(t)) (2.10)

6

2.3 Machine Learning in Quantum Chemistry

with r being the electronic coordinates, the superscript c indicates that the nuclei positions
are fixed Rc(t) at time t.

(︃
ih̄
∂

∂t
−He

)︃
φ(r,R, t) = 0 (2.11)

Substituting eq. 2.10 into the time-dependent Schrödinger equation (eq. 2.11) leads to
the following set of equations

ih̄
dck
dt

+
∑︂
j

(−Hc
kj + ih̄Fc

kj · vc)cj = 0 (2.12)

with Fc
kj being the nonadiabatic coupling vector between states j and k,Hc

kj = ⟨Φk|He|Φj⟩r
and vc is the nuclear velocity [23]. The hopping probability between state j and k is
given by [24]

Pj→k =

(︃
1− |cj(t+∆t)|2

|cj(t)|2

)︃ R
[︂
ck(t+∆t)e−i(Hc

kj+Fc
kj)∆tc∗j (t)

]︂
|cj(t)|2 −R

[︂
cj(t+∆t)e−i(Hc

jj+Fc
jj)∆tc∗j (t)

]︂ (2.13)

where R is the real part.

2.3 Machine Learning in Quantum Chemistry

2.3.1 Neural Networks

Neural networks are a computational model inspired by biology. Artificial neurons are
connected with coefficients, which form the structure of the neural network. The smallest
unit of a neural network, the neuron, can perform simple information processing, but the
computational power of neural networks comes from many neurons connected to large
networks [25].

7

2 Theory

Input
layer

Hidden
layers

Output
layer

Figure 2.1: Illustration of a feed-forward neural network with an input layer, two hidden
layers and an output layer. Neurons are represented as colored circles, the
layers are connected by weights represented as black lines.

A typical neural network consists of an input layer, one or more hidden layer(s) and
an output layer (see fig. 2.1). Each layer is built with a variable number of neurons,
which are not connected to each other. The number of neurons in the input and output
layers specify the number of input values that need to be fed into the network or how
many output values are generated respectively. Each neuron of a layer is connected to
each neuron of the adjacent layers with a numerical value that is being optimized in the
training process.

x1

x2

x3

y

w1

w2

w3
activation

Figure 2.2: Illustration of a single neuron. Inputs xi are multiplied with the corresponding
weights wi and are passed with another trainable parameter to an activation
function which determines the output value y.

y = f

(︄
b+

∑︂
i

xi · wi

)︄
(2.14)

In fig. 2.2 is shown how a single neuron produces an output based on the arriving inputs.
The inputs xi multiplied by the corresponding weights wi are summed up and get passed

8

2.3 Machine Learning in Quantum Chemistry

with another trainable parameter, the bias b, to some nonlinear activation function f (see
eq. 2.14). The weights and biases of all nodes are iteratively updated in the training
process by minimizing the loss between the predicted outputs and the expected outputs
until the parameters converged to a minimum of the loss function [13, 25].

2.3.2 Message Passing Neural Networks

Graph neural networks (GNNs) are a powerful way for describing molecules, since every
molecule can be represented as a graph [26]. Message Passing Neural Networks are a
type of GNNs that have a forward pass that consists of two phases. In the first phase,
the message passing phase, the nodes within the graph repeatedly exchange messages
followed by updates. In the second phase, the readout phase, an aggregation function
collects the node states and transforms them into an embedding [18, 26].

mt+1
v =

∑︂
w∈N(v)

Mt(h
t
v, h

t
w, evw) (2.15)

ht+1
v = Ut(h

t
v,m

t+1
v) (2.16)

In the message passing phase, hidden states htv (eq. 2.16) at each node v are updated
based on the messages mt+1

v (eq. 2.15). Where N(v) represents the neighbours of v and
evw is the edge that connects the nodes v and w in the graph G. The message passing
phase is repeated T times.

ŷ = R({hTv |v ∈ G}) (2.17)

In the readout phase the feature vector ŷ (eq. 2.17) of the graph is computed with some
readout function R that aggregates the initial and final states and transforms them into
a graph embedding [27].

2.3.2.1 Equivariant MPNN

To obtain better representations for predicting vectorial properties of local environments,
neurons can be geometric objects like vectors and tensors. Such a message pass can be
written as

m⃗t+1
v =

∑︂
M⃗ t(h⃗

t

v, h⃗
t

w, e⃗vw) (2.18)

Rf⃗(x⃗) = f⃗(Rx⃗) (2.19)

The message function M⃗ t and the update function U⃗ t have to fulfill eq. 2.19 for any
rotation matrix R to be equivariant.[18]

9

3 Algorithmic Development

3.1 Phase-less Loss

Besides correcting the phases in the data set with tracking the overlaps of the references,
another option to overcome the phase problem (see section 2.1.2) is using a phase-less
loss. The basic idea of phase-less loss is to generate all possible phase combinations of
the prediction and find the one that has the lowest error compared to the target. Since
the first phase element can be chosen to be either 1 or -1, the number of possible phase
combinations is 2n−1 with n couplings. To illustrate the previously established approach
[14], an example of the phase-less loss with three couplings is shown below.

Φ =

⎛⎝C01

C12

C02

⎞⎠⊗

⎛⎝ 1 1 1 1
1 1 −1 −1
1 −1 1 −1

⎞⎠ =

⎛⎝ C01 C01 C01 C01

C12 C12 −C12 −C12

C02 −C02 C02 −C02

⎞⎠ (3.1)

Lphaseless = min
(︁
L(Φ∗,j , C

target)
)︁

(3.2)

In SchNarc [14] the phase-less loss is implemented like in (eq. 3.1). First all possible phase
vectors are generated (22 = 4 for three couplings), then the prediction C is multiplied
element-wise with the phase matrix. Then, the loss L (e.g. MSE, MAE, ...) of each
column from the resulting matrix to the target is calculated and the lowest value is the
minimal phase-less Loss Lphaseless (eq. 3.2). The latter is minimized as it is commonly
done in ML with a variant of stochastic gradient descent (AdamW [28]) to yield the
corrected coupling vectors. With this method, the data set gets smoothed since it removes
sudden jumps that would make it difficult for a machine learning model to fit the data.
It is important to note that the phase conventions of two models can differ, which plays
a role if two or more models are used for making predictions. This algorithm scales
exponentially O(2n) with the number of couplings and the memory consumption scales
with O(n ·m), with n being the number of couplings and m being the number of possible
phase vectors.

Since this loss function gets called multiple times per epoch exponential scaling is
highly unfavorable and restricts this method to a low number of couplings. Looking at
the resulting phase matrix in (eq.3.1) there are quite a few redundant calculations that
could be avoided. The first coupling C01 gets multiplied four times with 1 while the other
two couplings C12 and C02 get multiplied two times with 1 and two times with -1.

11

3 Algorithmic Development

Lphaseless
01 = min(L(C01, C

target
01),L(−C01, C

target
01))

Lphaseless
12 = min(L(C12, C

target
12),L(−C12, C

target
12))

Lphaseless
02 = min(L(C02, C

target
02),L(−C02, C

target
02)) (3.3)

Lphaseless =
∑︂
i

Lphaseless
i (3.4)

To avoid these redundancies a new approach was developed. Instead of trying to find
the correct phase convention for all couplings at once with the corresponding 2n−1

combinations, each coupling is treated individually like in (eq. 3.3). First, each coupling
is multiplied with 1 and -1 then the lowest loss L to the corresponding coupling from the
target gets returned. The sum of the errors of each coupling (eq. 3.4) results in the same
loss as in (eq. 3.2). This algorithm scales linearly with the number of couplings O(n) and
the memory consumption scales with O(2 · n). Further improvement would be possible
with using the fact that the phase of the first coupling can be chosen freely. Since the
extra code needed would make the function less readable and would add some overhead
in form of reshaping and slicing the input and output tensors, an implementation of this
feature was not attempted.

3.2 Smooth NACs

Learning NACs directly is quite a hard task for machine learning models due to the shape
of the couplings that is hard to fit with all the containing singularities and cusps. One
way of smoothing these sharp peaks is to use the relation between NACs and the energy
difference between the two corresponding states (see fig. 3.1).

12

3.3 Switching from SchNetPack 1.0 to SchNetPack 2.0

Figure 3.1: Illustration of the distribution of NAC values (norm of the summed atom
contributions), normal and smoothed, compared to corresponding energies in
a two state system along some arbitrary reaction coordinate.

CNAC
ij ≈ ⟨Ψi|

∂

∂R
|Ψj⟩ =

1

Ei − Ej
C̃ij for i ̸= j (3.5)

C̃ij = ⟨Ψi|
∂Ĥel

∂R
|Ψj⟩ (3.6)

In SchNarc [14], the NACs are smoothed by training C̃ij (eq. 3.6) which can be obtained
by multiplying the NACs with the corresponding energy gap.

C̃ij = CNAC
ij ·∆Eij (3.7)

The same approach was used in this project with some minor differences. Instead of
calculating C̃ij on the fly during training, this property was precalculated and added to
the database used for training. This approach avoids doing the same calculations over
and over again at the cost of slightly increased disk usage for the database if the smooth
NACs are stored in addition the the NACs. However, the original NAC data could be
omitted since it is not needed for training smooth NACs anyway. While SchNarc [14]
uses the NAC data without preprocessing, in this project the NAC data was normalized
before training. Normalizing data ensures that all features of the data have similar scaling
which helps the model to make better predictions.

3.3 Switching from SchNetPack 1.0 to SchNetPack 2.0

Using the latest SchNetPack version is crucial since the equivariant representation PaiNN
was first implemented in SchNetPack 2.0 [4]. Although it would be possible to implement

13

3 Algorithmic Development

PaiNN in SchNetPack 1.0 [15], which would ensure compatibility with SchNarc [14], this
was not attempted. As the latest version uses up-to date libraries, improved algorithms,
new features and active development, building SchNarc [14] from scratch was favored.

The most important difference between SchNetPack 1.0 [15] and SchNetPack 2.0 [4] is
the new data pipeline. The new data pipeline is now fully sparse, thus, padding atomic
environments with a varying number of neighbours with zeros is no longer needed [4].

T1.0 =

[︃
a1 a2 a3 a4
b1 b2 0 0

]︃
(3.8)

T2.0 =
[︁
a1 a2 a3 a4 b1 b2

]︁
(3.9)

To illustrate this, an example with two systems A and B batched together into a tensor T
is shown. System A includes four entries {a1, a2, a3, a4} and system B includes two entries
{b1, b2}. In SchNetPack 1.0 [15] both systems are concatenated, adding an additional
dimension to the tensor (eq. 3.8). If one system is larger than the other, the size difference
has to be padded with zeros. SchNetPack 2.0 [4] avoids padding with concatenating
the systems by extending the first dimension of the tensor instead of adding additional
dimensions (eq. 3.9).

With the new pipeline some changes in the data set structure (see tab. 3.1) have to be
done to make use of the improved pipeline.

Table 3.1: Structure of the tensors for each property in comparison between SchNarc [14]
and SPaiNN. R are the x,y,z components of the vectors.

Property SchNarc SPaiNN
Energy [Energy] [1,Energy]
Forces [State,Atom,R] [Atom,State,R]
NACs [Coupling,Atom,R] [Atom,Coupling,R]

Dipoles [Coupling,R] [1,Coupling,R]

The structures of the properties in SchNarc [14] were not chosen arbitrarily, they are in
the shape as SHARC prints them in the output file of the quantum mechanical calculation.
And this structure has to be reestablished when passing predictions to SHARC, which
requires reshaping the tensors back to the SchNarc [14] format (see tab. 3.1).

14

4 Computational Details

4.1 Training Parameters

Most of the parameters used for training were the same as used in SchNarc[14] to train
the methylenimmonium cation (see tab. 4.1). No hyperparameters were optimized, since
the goal of this project was to compare the performance of different representations. Only
the weightings of the loss from the trained properties were adapted since the algorithmic
optimizations changed the value range of the NAC loss several orders of magnitude. Also
there were no weightings for the (transition)dipoles since they were not included in the
SchNarc[14] paper (see tab. 4.2). The splittings of the data sets into test, training and
validation data is described in tab. 4.3.

Table 4.1: Hyperparameters used in all trainings.
Parameter Value
Batch size 50
Features 256
Interactions 6
Smooth NACs Yes
LR 0.0001
LR decay 0.8
Minimum LR 1e-6
LR patience 50
Epochs 3000
Number of Layers 3
Number of Gaussians 50
Cutoff 20
Precision FP64

Table 4.2: Used loss function for each trained property and contributions to the total loss.
Property Loss function Weight
Energy MSE 1.0
Forces MSE 1.0
NACs Phase-less MSE 1.0
Dipoles Phase-less MSE 0.1

15

4 Computational Details

Table 4.3: Size of the splits used in training for each data set.
Data set train data validation data test data

CH2NH2
+ 3000 300 700

ethylene 4000 400 689

4.2 Surface Hopping Parameters

The initial geometries, velocities and parameters for all 3846 CH2NH2
+ trajectories were

used "as is" from the SchNarc[14] paper (see tab.4.4). The initial geometries, velocities
and parameters for all 1000 ethylene trajectories were used as is from "A molecular
perspective on Tully models for nonadiabatic dynamics"[19] (see tab.4.5).

Table 4.4: Parameters used in the input files of all CH2NH2
+ trajectories. Not included,

rngseed which is different for each file.
Parameter Value

veloc external
nstates 3 0 0

actstates 3 0 0
state 3 mch
coeff auto
ezero -94.7095344465
tmax 100

stepsize 0.5
nsubsteps 25

surf diagonal
coupling nacdr

gradcorrect True
ekincorrect parallel_nac

reflect_frustrated none
decoherence_scheme edc
decoherence_param 0.1
hopping_procedure sharc

grad_all True
nac_all True

nospinorbit True

16

4.2 Surface Hopping Parameters

Table 4.5: Parameters used in the input files of all ethylene trajectories. Not included,
rngseed which is different for each file.

Parameter Value
veloc external

nstates 2
actstates 2

state 3 mch
coeff auto
ezero 0
tmax 80

stepsize 0.5
nsubsteps 25

surf diagonal
coupling nacdr

gradcorrect True
ekincorrect parallel_vel

reflect_frustrated none
decoherence_scheme edc
decoherence_param 0.1
hopping_procedure sharc

grad_select True
nac_all True
eselect 0.001

nospinorbit True

17

5 Results and Discussion

In this project, SchNarc [14] was recreated from scratch with improved algorithms and
improved usability. This was necessary since migrating from SchNetPack 1.0 [15] to
SchNetPack 2.0 [4], in order to use the equivariant representation PaiNN, required
fundamental adaptions to the original code base. Throughout the rest of the thesis
the recreated version of SchNarc [14] will be referenced as SchNarc 2.0, when using the
invariant representation SchNet. If the equivariant representation PaiNN was used, it will
be referenced as SPaiNN.

SPaiNN has huge advantages compared to SchNarc 2.0 not only in performance but also
in predicting equivariant properties like NACs, SOCs and (transition) dipole moments.
SchNarc 2.0 itself cannot predict these vectorial properties since it uses an invariant
representation of the target geometry. A computationally expensive trick is used in
SchNarc 2.0 to circumvent this obstacle for the NACs: First a "virtual" property is
predicted then the derivative is taken to make the result equivariant.

In order to compare SchNarc 2.0 and SPaiNN, corresponding ML models were trained
for two molecules. The first molecule, methylenimmonium cation was chosen because of
its small size and fast excited-state dynamics. The small size makes it possible to generate
a large data set with highly accurate quantum chemical reference calculations and the
ultrafast transitions are challenging to reproduce with ML models [29]. The second
molecule, ethylene was chosen for similar reasons and because with simply switching
the nitrogen atom from CH2NH2

+ with a carbon atom makes it possible to reuse the
geometries from the methylenimmonium cation [30].

19

5 Results and Discussion

5.1 Training with CH2NH2
+

(a) SchNarc 2.0 (b) SPaiNN

Figure 5.1: Scatter plots of two models, with different representations, trained with the
CH2NH2

+ data base from ref. [14] with three singlet states. The same
hyperparameters and split files were used for both models.

As a first step, the scatter plots for SchNarc 2.0 and SPaiNN models trained with the
CH2NH2

+ data set, for energies, forces, NACs and (transition) dipole moments were
compared (fig. 5.1). In these plots no differentiation between states, coordinates and/or
atoms was made. Each point represents a comparison between a single element of the
predicted and reference tensor over the whole test set.

From the visual perspective, the differences between SchNarc 2.0 and SPaiNN are
hardly noticeable when looking at energies and forces, which is not surprising since
these properties do not directly benefit from an equivariant representation. However, the
difference becomes more apparent when comparing dipole moments and NACs. While
the distinction may not be drastic, there is still a noticeable difference between the two
when viewed alongside each other. When putting an imaginary regression line through
the NAC plots, it seems that the slope of the model trained with SPaiNN is close to 1,
while the SchNarc 2.0 model is slightly steeper. For the dipole moments, the imaginary
lines of both models are approximately 1, which is ideal, but the points in the SchNarc
2.0 model are more spread out around the ideal line than with the SPaiNN model.

20

5.1 Training with CH2NH2
+

Table 5.1: MAE of both CH2NH2
+ models for each property. Lower errors indicated in

bold.

Property MAE
SchNarc 2.0 SPaiNN

Energy 0.06721 0.06710
Forces 0.00640 0.00387
NACs 0.14553 0.10819

Dipoles 0.03919 0.02604

Like in the scatter plots, no differentiation between states, coordinates and/or atoms
was made. The MAE was calculated between every single element of the prediction and
the reference tensor over the whole test set. SPaiNN outperforms SchNarc 2.0 in all
properties when evaluated using the MAEs of the predicted test set (tab. 5.1). This
suggests that SPaiNN is more accurate and reliable for predicting these properties.

5.1.1 Excited-State Dynamics

(a) SchNarc 2.0 (b) SPaiNN

Figure 5.2: Population curves from dynamic simulations of CH2NH2
+ with two different

ML models. Solid lines are the populations obtained from 3846 CH2NH2
+

trajectories from the ML models. Dotted lines indicate results from 90
CH2NH2

+ trajectories, calculated with QC (MR-CISD(6,4)/aug-cc-pVDZ)
trajectories [14].

The trend continues in the dynamics (fig. 5.2), where the simulations with SPaiNN are
significantly better than the simulations with SchNarc 2.0, resulting in more accurate

21

5 Results and Discussion

population transfers over the whole time scale when compared to the reference. Looking
at the SchNarc 2.0 dynamics, only the decrease of the population from state 3 agrees well
with the reference data, the population of state 2 increases faster than in the reference at
the beginning and then drops fast until around 30 fs and then continues decreasing almost
linearly coming closer to the reference at the end of the simulation. The population of
state 1 starts increasing about the same time, but steeper as the reference, at the end
of the simulation the population is coming closer to the reference population. On the
contrary all populations of the three states simulated with SPaiNN are well reproduced
compared to the reference.

5.2 Training with ethylene

(a) SchNarc 2.0 (b) SPaiNN

Figure 5.3: Scatter plots of two models, with different representations, trained with the
ethylene data base [19] with two singlet states. The same hyperparameters
and split files were used for both models.

The scatter plots of the models trained with the ethylene data set (fig. 5.3) were created
in the same manner as for CH2NH2

+ (fig. 5.1). SPaiNN consistently outperforms SchNarc
2.0 in the prediction of properties. A visual comparison of the results for ethylene (fig.
5.3) shows that SPaiNN produces more accurate and reliable predictions. Unlike with
CH2NH2

+ (see section 5.1) there is a noticeable difference in the energy plots between
the two representations even though an equivariant representation should not improve
the prediction of this property. Also the difference in the NAC and transition dipole plots
are immediately noticeable and even larger than between the CH2NH2

+ models.

22

5.2 Training with ethylene

Table 5.2: MAE of both ethylene models for each property. Lower errors indicated in
bold.

Property MAE
SchNarc 2.0 SPaiNN

Energy 0.08775 0.08858
Forces 0.01012 0.00814
NACs 0.23886 0.21439

Dipoles 0.11870 0.10133

The MAE was calculated in the same manner as with the CH2NH2
+ trained models (tab.

5.1), no differentiation between states, coordinates and/or atoms was made. Although
the energies (fig. 5.3) appear to be better predicted by SPaiNN, the MAE (tab. 5.2)
is slightly lower with SchNarc 2.0. It is surprising that the forces have a lower MAE
with SPaiNN since these are the derivatives of the energies with respect to the atomic
positions.

The reason for this could be an artefact in one of the states produced by inconsistencies
in the quantum chemical calculations, which is not reproduced with ML [14] (see ref. [14],
supporting information, fig. S5).

23

5 Results and Discussion

5.2.1 Excited-State Dynamics

(a) SchNarc 2.0 (b) SPaiNN

Figure 5.4: Population curves from dynamic simulations of ethylene with two different
ML models. Solid lines are the populations obtained from 1000 ethylene
trajectories [19] from the ML models. Dotted lines, 1000 ethylene trajectories,
calculated with QC (SA(3)-CASSCF(2/2)/6-31G*) trajectories [14].

For both models the agreement with the reference simulation based on QC potentials
(fig. 5.4) could be better. Trying different hyper parameters and extending the data set
would probably improve the dynamics, but that is not pursued here. It can be shown that
SPaiNN is consistently better than SchNarc 2.0. The point where the populations of both
states cross, is somewhere around 60 fs in the reference, the crossing of the populations
with SPaiNN is at around 75 fs and beyond the maximal simulation time of 80 fs with
SchNarc 2.0.

5.3 Performance of Phase-less Loss Implementations

To test the performance of both phase-less loss (phase-less MSE) implementations in
SchNarc [14] and SchNarc 2.0/SPaiNN (see section 3.1), the execution time for two
random tensors in the shape of [couplings*6*3] with various number of couplings was
measured. In order to get more reliable numbers, the execution time was measured for
10.000 repetitions. This was done three times for both implementations and the result
was averaged over the three measurements.

24

5.3 Performance of Phase-less Loss Implementations

1 2 3 4 5 6
Couplings

0

2

4

6
Ti

m
e [

s]

SchNarc SPaiNN

Figure 5.5: Comparison of the time needed to calculate the phase-less loss of n couplings
with random data.

Like it was predicted in section 3.1, the phase-less loss implementation in SchNarc
[14] scales exponentially with the number of couplings (see fig.5.5). The new phase-
less loss implementation in SchNarc 2.0 and SPaiNN clearly outperforms the previous
implementation even with a small number of couplings.

Table 5.3: Averaged execution times for both phase-less loss implementations with various
number of couplings.

Number of
couplings

Time [s]
SchNarc SPaiNN

1 0.493 0.420
2 0.702 0.413
3 1.005 0.444
4 1.766 0.440
5 3.391 0.440
6 6.978 0.451

The scaling of the improved algorithm could not be determined from the measurements
due to the fast execution time and high standard deviation from sampling just three
measurements (see tab.5.3). Increasing the number of repetitions per measurement by
some orders of magnitude would give a clearer picture of the true scaling of the algorithm,

25

5 Results and Discussion

but this was not attempted since the difference between the two implementations is large
enough to leave no doubt about performance.

26

6 Conclusion and Outlook

In this work, the excited-state neural network package SchNarc [14] was recreated from
scratch with the latest python libraries and SchNetPack 2.0 [4], which includes the
equivariant representation PaiNN [18]. The new implementation is named SchNarc 2.0 or
SPaiNN, depending on which representation is used to predict molecular properties. Using
an equivariant representation to directly predict equivariant properties like NACs and
(transition) dipole moments has significantly improved the prediction accuracy compared
to the invariant representation SchNet [17] and it even improved the prediction accuracy
for invariant properties like the energies. With the improved prediction accuracy from
PaiNN it was possible to run excited-state molecular dynamics with two test systems
(ethylene, CH2NH2

+), that resulted in a qualitatively better description of the population
transfers that agree well with reference data. Beside the improvement of predictions, there
were also algorithmic improvements that significantly speed up the training with SchNarc
2.0 and SPaiNN. The most notable improvement was made with a new implementation
of the phase-less loss, which reduced the scaling from exponential to linear. Although
directly predicting the equivariant NACs with PaiNN has been proven to be the better
method, there is still a lot of room for improvement. The arbitrariness of the wave
function phase and the singularities and cusps of the NACs still makes them hard to learn
for machine learning models. A promising approach to make learning the NACs more
reliable was recently proposed by Richardson [31] and will be implemented and tested in
future versions of SchNarc 2.0/SPaiNN.

27

List of Tables

3.1 Structure of the tensors for each property in comparison between SchNarc
[14] and SPaiNN. R are the x,y,z components of the vectors. 14

4.1 Hyperparameters used in all trainings. 15
4.2 Used loss function for each trained property and contributions to the total

loss. 15
4.3 Size of the splits used in training for each data set. 16
4.4 Parameters used in the input files of all CH2NH2

+ trajectories. Not
included, rngseed which is different for each file. 16

4.5 Parameters used in the input files of all ethylene trajectories. Not included,
rngseed which is different for each file. 17

5.1 MAE of both CH2NH2
+ models for each property. Lower errors indicated

in bold. 21
5.2 MAE of both ethylene models for each property. Lower errors indicated in

bold. 23
5.3 Averaged execution times for both phase-less loss implementations with

various number of couplings. 25

29

List of Figures

1.1 Illustration of equivariant and invariant molecular properties. 2
1.2 Illustration of the differences in predicting NACs with equivariant and

invariant representations. 2

2.1 Illustration of a feed-forward neural network with an input layer, two
hidden layers and an output layer. Neurons are represented as colored
circles, the layers are connected by weights represented as black lines. . . . 8

2.2 Illustration of a single neuron. Inputs xi are multiplied with the corres-
ponding weights wi and are passed with another trainable parameter to an
activation function which determines the output value y. 8

3.1 Illustration of the distribution of NAC values (norm of the summed atom
contributions), normal and smoothed, compared to corresponding energies
in a two state system along some arbitrary reaction coordinate. 13

5.1 Scatter plots of two models, with different representations, trained with
the CH2NH2

+ data base from ref. [14] with three singlet states. The same
hyperparameters and split files were used for both models. 20

5.2 Population curves from dynamic simulations of CH2NH2
+ with two different

ML models. Solid lines are the populations obtained from 3846 CH2NH2
+

trajectories from the ML models. Dotted lines indicate results from 90
CH2NH2

+ trajectories, calculated with QC (MR-CISD(6,4)/aug-cc-pVDZ)
trajectories [14]. 21

5.3 Scatter plots of two models, with different representations, trained with the
ethylene data base [19] with two singlet states. The same hyperparameters
and split files were used for both models. 22

5.4 Population curves from dynamic simulations of ethylene with two different
ML models. Solid lines are the populations obtained from 1000 ethylene
trajectories [19] from the ML models. Dotted lines, 1000 ethylene tra-
jectories, calculated with QC (SA(3)-CASSCF(2/2)/6-31G*) trajectories
[14]. 24

5.5 Comparison of the time needed to calculate the phase-less loss of n couplings
with random data. 25

31

Bibliography

[1] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sut-
skever, D. Amodei, Language Models are Few-Shot Learners (2020), arXiv:2005.1465.

[2] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, I. Sutskever,
Zero-Shot Text-to-Image Generation (2021), arXiv:2102.12092.

[3] M. M. Kasar, D. Bhattacharyya, T. hoon Kim, Face Recognition Using Neural
Network: A Review, International Journal of Security and Its Applications, 10,
81–100 (2016).

[4] K. T. Schütt, S. S. P. Hessmann, N. W. A. Gebauer, J. Lederer, M. Gastegger,
SchNetPack 2.0: A neural network toolbox for atomistic machine learning (2022),
arXiv:2212.05517.

[5] M. Goel, S. Raghunathan, S. Laghuvarapu, U. D. Priyakumar, MoleGuLAR: Molecule
Generation Using Reinforcement Learning with Alternating Rewards, Journal of
Chemical Information and Modeling, 61, 5815–5826 (2021).

[6] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tun-
yasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A.
Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler,
T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska,
T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu,
P. Kohli, D. Hassabis, Highly accurate protein structure prediction with AlphaFold,
Nature, 596, 583–589 (2021).

[7] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Sch-
rittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, D. Hassabis, Mastering the game of Go with deep neural networks and
tree search, Nature, 529, 484–489 (2016).

[8] OpenAI, :, C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson,
J. Pachocki, M. Petrov, H. P. d. O. Pinto, J. Raiman, T. Salimans, J. Schlatter,
J. Schneider, S. Sidor, I. Sutskever, J. Tang, F. Wolski, S. Zhang, Dota 2 with Large
Scale Deep Reinforcement Learning (2019), arXiv:1912.06680.

33

Bibliography

[9] C. D. Rankine, M. M. M. Madkhali, T. J. Penfold, A Deep Neural Network for the
Rapid Prediction of X-ray Absorption Spectra, The Journal of Physical Chemistry
A, 124, 4263–4270 (2020).

[10] A. Chouai, S. Laugier, D. Richon, Modeling of Thermodynamic Properties Using
Neural Networks: Application to Refrigerants, Fluid Phase Equilibria, 199, 53–62
(2002).

[11] K. T. Schütt, S. S. P. Hessmann, N. W. A. Gebauer, J. Lederer, M. Gastegger,
SchNetPack 2.0: A neural network toolbox for atomistic machine learning (2022),
arXiv:2212.05517.

[12] T. R. Nelson, A. J. White, J. A. Bjorgaard, A. E. Sifain, Y. Zhang, B. Nebgen,
S. Fernandez-Alberti, D. Mozyrsky, A. E. Roitberg, S. Tretiak, Non-adiabatic Excited-
State Molecular Dynamics: Theory and Applications for Modeling Photophysics in
Extended Molecular Materials, Chemical Reviews, 120, 2215–2287 (2020).

[13] B. Bachmair, M. M. Reiner, M. X. Tiefenbacher, P. Marquetand, Recent advances
in machine learning for electronic excited state molecular dynamics simulations, in:
Chemical Modelling: Volume 17, volume 17, 178–200, The Royal Society of Chemistry
(2023).

[14] J. Westermayr, M. Gastegger, P. Marquetand, Combining SchNet and SHARC: The
SchNarc Machine Learning Approach for Excited-State Dynamics, The Journal of
Physical Chemistry Letters, 11, 3828–3834 (2020).

[15] K. T. Schütt, P. Kessel, M. Gastegger, K. A. Nicoli, A. Tkatchenko, K.-R. Müller,
SchNetPack: A Deep Learning Toolbox For Atomistic Systems, Journal of chemical
theory and computation, 15, 448–455 (2019).

[16] S. Mai, M. Richter, M. Heindl, M. F. S. J. Menger, A. Atkins, M. Ruckenbauer,
F. Plasser, L. M. Ibele, S. Kropf, M. Oppel, P. Marquetand, L. González, SHARC2.1:
Surface Hopping Including Arbitrary Couplings — Program Package for Non-
Adiabatic Dynamics, sharc-md.org (2019).

[17] K. T. Schütt, P.-J. Kindermans, H. E. Sauceda, S. Chmiela, A. Tkatchenko, K.-
R. Müller, SchNet: A continuous-filter convolutional neural network for modeling
quantum interactions (2017), arXiv:1706.08566.

[18] K. T. Schütt, O. T. Unke, M. Gastegger, Equivariant message passing for the
prediction of tensorial properties and molecular spectra (2021), arXiv:2102.03150.

[19] L. M. Ibele, B. F. E. Curchod, A molecular perspective on Tully models for nonadia-
batic dynamics, Physical Chemistry Chemical Physics, 22, 15183–15196 (2020).

[20] F. Plasser, H. Lischka, Multi-Reference Configuration Interaction, chapter 9, 277–297,
John Wiley & Sons, Ltd (2020).

34

Bibliography

[21] M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proceedings
of the Royal Society of London. A. Mathematical and Physical Sciences, 392, 45–57
(1984).

[22] J. Westermayr, M. Gastegger, M. F. S. J. Menger, S. Mai, L. González, P. Marquetand,
Machine learning enables long time scale molecular photodynamics simulations, Chem.
Sci., 10, 8100–8107 (2019).

[23] M. Barbatti, Nonadiabatic dynamics with trajectory surface hopping method, WIREs
Computational Molecular Science, 1, 620–633 (2011).

[24] S. Mai, P. Marquetand, L. González, Nonadiabatic dynamics: The SHARC approach,
WIREs Computational Molecular Science, 8 (2018).

[25] S. Agatonovic-Kustrin, R. Beresford, Basic concepts of artificial neural network (ANN)
modeling and its application in pharmaceutical research, Journal of Pharmaceutical
and Biomedical Analysis, 22, 717–727 (2000).

[26] R. Mercado, T. Rastemo, E. Lindelöf, G. Klambauer, O. Engkvist, H. Chen, E. Bjer-
rum, Graph Networks for Molecular Design, Machine Learning: Science and Techno-
logy, 2 (2020).

[27] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl, Neural Message
Passing for Quantum Chemistry (2017), arXiv:1704.01212.

[28] I. Loshchilov, F. Hutter, Decoupled Weight Decay Regularization (2017),
arXiv:1711.05101.

[29] J. M. Westermayr, Machine learning for excited-state molecular dynamics simulations
(2020), doi:10.25365/THESIS.63947.

[30] J. Westermayr, P. Marquetand, Deep learning for UV absorption spectra with
SchNarc: First steps toward transferability in chemical compound space, The Journal
of Chemical Physics, 153, 154112 (2020).

[31] J. O. Richardson, Machine learning of double-valued nonadiabatic coupling vectors
around conical intersections, The Journal of Chemical Physics, 158, 011102 (2023).

35

Acronyms

CI Configuration Interaction. 5

GNN Graph Neural Network. 9

LR Learning Rate. 15

MAE Mean Absolute Error. 11, 21, 23, 29

ML Machine Learning. 11, 19, 21, 23, 24, 31

MPNN Message Passing Neural Network. iii, vii, 9

MRCI Multi-Reference Configuration Interaction. 5

MSE Mean Squared Error. 11, 15, 24

NAC Non-Adiabatic Coupling. iii, vii, 1, 2, 12–15, 19–23, 27, 31

PaiNN Polarizable Atom Interaction Neural Network. iii, v, 1–3, 13, 14, 19, 27

SHARC Surface Hopping including Arbitrary Couplings. iii, v, 1, 14

SOC Spin Orbit Coupling. 1, 19

SPaiNN A combination of SHARC and PaiNN. iii, v, 14, 19–25, 27, 29

37

	Acknowledgements
	Abstract
	Kurzfassung
	Introduction
	Theory
	Quantum Chemistry for Electronic Excited States
	Multi-Reference Configuration Interaction
	Phase of the Wave Function

	Surface Hopping
	Machine Learning in Quantum Chemistry
	Neural Networks
	Message Passing Neural Networks
	Equivariant mpnn

	Algorithmic Development
	Phase-less Loss
	Smooth nacs
	Switching from SchNetPack 1.0 to SchNetPack 2.0

	Computational Details
	Training Parameters
	Surface Hopping Parameters

	Results and Discussion
	Training with CH2NH2+
	Excited-State Dynamics

	Training with ethylene
	Excited-State Dynamics

	Performance of Phase-less Loss Implementations

	Conclusion and Outlook
	List of Tables
	List of Figures
	Bibliography

