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Abstract

The widespread adoption and reliance on IT systems nowadays has led to a significant
increase in the prevalence and sophistication of cyber-threats. These increasing difficulties
often make organizations unaware of attempted attacks and their impacts. Many organiza-
tions are typically unable to quickly identify security incidents and understand their causes.
As a result, the confidentiality, availability, and integrity of their sensitive information
become more and more threatened. A sensitive data breach can have serious consequences,
including financial losses, decreased trustworthiness, and reputational damages.

Log data and cybersecurity resources are highly valuable information since they can
provide security analysts with clear visibility and understanding of system activities and
allow them to investigate security incidents, identify attacks, and monitor the system’s
health. However, they remain to pose several challenges in terms of data heterogeneity
and inconsistent structure due to the complexity and variety of systems. Furthermore, the
vast amount of generated log data distributed across multiple hosts and networks makes it
more complicated and difficult to comprehend.

Several existing cybersecurity tools such as Security Information and Event Management
(SIEM) and Intrusion Detection Systems (IDS) are widely used by security analysts to
analyze log data and help them to contain cybersecurity attacks. Moreover, several methods
have recently been proposed by researchers to tackle these challenges. Nevertheless, they
typically lack grounding in a formal conceptualization and standard data model, do not
adequately address data heterogeneity (integration), do not support automatic reasoning
and linking between log events (inference), and do not consider reuse and linking to
cybersecurity information (contextualization).

In this thesis, we propose novel approaches that leverage Semantic Web technologies and
Knowledge Graphs for semantic log monitoring & analysis, threat detection, and attack
reconstruction. To this end, we develop: (i) vocabularies and ontologies that provide a
uniform representation to integrate heterogeneous, dispersed log data and cybersecurity
information; (ii) continuously updated cybersecurity knowledge graphs constructed from
various highly valuable cybersecurity resources that provide log event enrichment and
contextualization; (iii) frameworks and tools based on RDF Stream Processing engine
(RSP) that support (near) real-time semantic log monitoring and analysis; (iv) a virtual
knowledge graph framework that provides a scalable approach for log analysis and querying
over multiple distributed hosts/networks; (v) a knowledge graph-based framework for
threat detection and attack reconstruction.

We assess the applicability and usability of our approaches on a variety of use cases and
application scenarios using synthetic data as well as existing, well-established datasets.
Furthermore, we perform an empirical evaluation to validate the feasibility and effectiveness
of our approaches in terms of performance and scalability. Based on these evaluations,
we found that our approaches facilitate security log monitoring, analysis and attack
reconstruction in an efficient and scalable manner and facilitate effective linking and
contextualization, therefore reducing alert fatigue and improving situational awareness.
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Kurzfassung

Die weitverbreitete Einführung und Abhängigkeit von IT-Systemen hat zu einer signifik-
anten Zunahme von Cyber-Bedrohungen in Bezug auf Häufigkeit und Raffinesse geführt.
Diese zunehmenden Schwierigkeiten machen Organisationen oft unbewusst von versuchten
Angriffen und deren Auswirkungen. Viele Organisationen sind typischerweise nicht in
der Lage, Sicherheitsvorfälle schnell zu identifizieren und deren Ursachen zu verstehen.
Infolgedessen werden die Vertraulichkeit, Verfügbarkeit und Integrität ihrer sensiblen In-
formationen immer mehr bedroht. Ein Datenleck von sensiblen Daten kann schwerwiegende
Folgen haben, einschließlich finanzieller Verluste, verringerter Vertrauenswürdigkeit und
Reputationsschäden.

Logdaten und Cybersicherheitsressourcen sind hochwertige Informationen, da sie Sich-
erheitsanalysten klare Sichtbarkeit und Verständnis ihrer Systemaktivitäten bieten, wie
die Untersuchung von Sicherheitsvorfällen, die Identifizierung von Angriffen und die Über-
wachung der Systemgesundheit. Sie stellen jedoch weiterhin mehrere Herausforderungen
in Bezug auf die Heterogenität der Daten und die inkonsistente Struktur aufgrund der
Komplexität und Vielfalt von Systemen dar. Darüber hinaus macht die enorme Menge an
generierten Logdaten, die über mehrere Hosts und Netzwerke verteilt sind, es komplizierter
und schwieriger, diese zu verstehen.

Es gibt mehrere bestehende Cybersecurity-Tools wie das Security Information and Event
Management (SIEM) und Intrusion Detection-Systeme (IDS), die von Sicherheitsanalysten
verwendet werden, um Logs zu analysieren und ihnen bei der Bekämpfung von Cyber-
angriffen zu helfen. Zudem wurden in jüngster Zeit von Forschern mehrere Methoden
vorgeschlagen, um diese Herausforderungen anzugehen. Sie haben jedoch typischerweise
keine formale Konzeptualisierung und kein Standarddatenmodell als Grundlage und nehmen
die Heterogenität der Daten (Integration) nicht ausreichend in Betracht, unterstützen keine
automatische Schlussfolgerung und Verknüpfung von Logereignissen (Schlussfolgerung) und
berücksichtigen die Wiederverwendung und Verknüpfung von Cybersecurity-Informationen
(Kontextualisierung) nicht.

In dieser Dissertation schlagen wir neuartige Ansätze vor, die Semantic Web-Technologien
und Knowledge Graphs für die semantische Log-Analyse und -Überwachung, Bedro-
hungserkennung und Angriffsrekonstruktion nutzen. Hierzu entwickeln wir: (i) Voka-
bulare und Ontologien, die eine einheitliche Darstellung bereitstellen, um heterogene,
zerstreute Logdaten und Cybersecurity-Informationen zu integrieren; (ii) ständig aktualis-
ierte Cybersecurity-Wissensgraphen, die aus verschiedenen hochwertigen Cybersecurity-
Ressourcen erstellt werden und Log-Ereigniserweiterung und -Kontextualisierung bieten;
(iii) Frameworks und Tools auf der Basis von RDF Stream Processing-Engines (RSP), die
(nahezu) echtzeitige semantische Log-Überwachung und -Analyse unterstützen; (iv) ein
Framework für virtuelle Wissensgraphen, das einen skalierbaren Ansatz für die Log-Analyse
und -Abfrage über mehrere verteilte Hosts/Netzwerke bereitstellt; (v) ein Framework für
die Bedrohungserkennung und Angriffsrekonstruktion auf der Basis von Wissensgraphen.

Wir beurteilen die Anwendbarkeit und Benutzerfreundlichkeit unserer Ansätze anhand
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einer Vielzahl von Anwendungsfällen und Anwendungsszenarien mithilfe von synthetischen
Daten sowie bestehenden, gut etablierten Datensätzen. Darüber hinaus führen wir eine
empirische Evaluation durch, um die Machbarkeit und Wirksamkeit unserer Ansätze
hinsichtlich Leistung und Skalierbarkeit zu validieren. Aufgrund dieser Bewertungen
haben wir festgestellt, dass unsere Ansätze die Sicherheitslog-Analyse, -Überwachung
und -Angriffsrekonstruktion auf effiziente und skalierbare Weise erleichtern, aber auch
Verknüpfung und Kontextualisierung bieten und somit die Alarmmüdigkeit verringern und
das Situationsbewusstsein verbessern.
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1. Introduction

1.1. Motivation

Organizations’ reliance on Information and Communication Technology (ICT) systems
has grown significantly in recent years. Although these systems provide numerous benefits,
they also leave organizations vulnerable to increasing cyber-security threats. According
to industry analyses [1, 2], today’s ICT systems are under unprecedented threats from
increasingly non-trivial and targeted attacks. These sophisticated threats typically combine
multiple attack vectors, including client-side attacks, to bypass traditional perimeter
security [3]. Furthermore, they quickly update their tactics in order to maintain an
advantage against improvements in security measures put in place by organizations and
governmental bodies. This increasing difficulty frequently makes organizations unaware of
attempted attacks and their impacts [4]. Most of them fail to or slow to identify security
incidents and understand their causes. Consequently, the confidentiality, availability, and
integrity of their sensitive information become threatened. Inadequate system security
may have a serious impact, including the disruption of business operations and the
exposure of sensitive data, which could result in not only financial losses but also decreased
trustworthiness and reputational damages [5].

The effort to keep systems safe from cyber-security threats requires comprehensive
security analyses. Logs produced by systems can be used to support security analysts to
precisely understand malicious events and activities that occurred within them [6]. They
are composed of log entries; each entry contains information related to a specific event
that has occurred within a system or network [7]. For instance, security log data describes
users’ activities when they attempt to gain access to a certain system via a network. These
traces of events will then be stored in a log that contains a set of information such as date,
time-stamp, username, type of access, message etc. By extracting and mining those data,
security analysts can reveal events that occurred on a given system [6].

In addition to using log data as one of the primary sources for addressing cybersecurity
threats, security analysts often rely on publicly available cybersecurity information to
protect their ICT systems. They contain information related to cybersecurity such as
vulnerabilities, weaknesses, threats& attack patterns, cybertheat intelligences, etc. and are
typically represented in various formats, either structured (e.g., CVE1, CWE2, CAPEC3,
etc.) or in a raw text (e.g., documentation, reports, blogposts, etc.). Cybersecurity
information plays a vital role as it provides the necessary knowledge for security analysts,
e.g., to contextualize log events, link events to high-level attack patterns, etc.

Despite the plethora of log data and cybersecurity information, it remains challenging for
security analysts to utilize these resources effectively in detecting attacks and mitigating
their effects. This is due to the heterogeneous and dispersed nature of the data, which

1https://cve.mitre.org/
2https://cwe.mitre.org/
3https://capec.mitre.org/
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1. Introduction

is often scattered across multiple hosts and networks. To address this issue, security
analysts typically utilize a set of security tools such as Security Information and Event
Management (SIEM) and Intrusion Detection System (IDS). SIEMs are typically used
to aggregate relevant information from the extracted log data from multiple sources in
order to provide system administrators convenient access to logging information. Using
a statistical correlation method, for example, SIEMs can generate relationships between
event log entries. IDSs, on the other hand, are often used to detect suspicious activities on
hosts and networks. They typically use two approaches, i.e., (i) signature-based-detection
that compare events against the database of suspicious activity to identify known attack
and (ii) anomaly-based detection that uses statistical techniques to identify patterns that
are not only unknown but also have not been observed before.

Current approaches in security log analysis mainly focus on system anomaly detection
through log parsing and log mining [8]. These approaches typically encounter challenges
with incomplete information of logs, which limits the extent of analysis [9]. These challenges
emerge due to the difficulty of getting the relevant information from incomplete log sources,
as an event occurred in IT systems are typically distributed into different log sources
in different locations. Another challenge is the extraction of semantic information from
security logs, which is not yet addressed in the current approaches. Without a correct
understanding of information contained in logs, the causally related events from security
logs are difficult to be inferred. The aim of this thesis is to address research challenges
described in Section 1.2 and to answer research questions stated in Section 1.4 by exploring
the potential of semantic web technologies and knowledge graphs within the context of
cybersecurity and information security (cf. Section 1.3).

1.2. Research Challenges

In the following, we identified several research challenges that serve as the primary focus
of this study.

Challenge 1 (C1): Log data heterogeneity Security log data is typically generated by a
variety of devices and systems within a network, such as servers, routers, firewalls, etc. It
has a wide range of structural schemas and is typically poorly structured, highly verbose,
and uses a variety of terminologies. Figure 1.1 shows several examples of log messages from
different log sources including Firewall Log, Windows Event Log, Linux Authlog and Syslog.
These log sources expose multiple heterogeneity including: (i) Syntactic heterogeneity,
i.e., similar data represented in different format/syntax, e.g., varying timestamp format
in different logs. (ii) Semantic heterogeneity, i.e., different meaning and interpretation,
e.g., varying severity scales from different log standards; (iii) Inconsistent identifier, e.g.,
hostname vs. IPAddress. This example shows how different systems produce log messages
with various structures. Other discrepancies in log messages can be found, including
those in the names of the attributes and the structure’s hierarchy. This inconsistent
data representation makes it difficult for analyst to connect and identify indicators of
compromise hence attack detection becomes infeasible specially in an emergency situation.

Challenge 2 (C2): Evolving heterogeneous cybersecurity information Real-world
cybersecurity information on vulnerabilities, weaknesses, attack patterns, cyberthreat
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Figure 1.1.: Security log messages generated from heterogeneous applications and systems

intelligences is publicly available and can support security professionals in protecting
their ICT systems. Security incidents are frequently published in the media and typically
communicated informally as text. Furthermore, efforts to make security information
accessible in well-defined structured formats, notably led by MITRE4 and NIST5, have
made significant progress and produced a wide range of standards. These standards
describe high-level schemas for cybersecurity information that are accessible for browsing
on the web and downloading in heterogeneous structured formats, such as CVE, CWE,
CAPEC, CVSS6, MITRE ATT&CK7, etc. However, while these resources are provided
in well-defined structured formats, the individual entities and datasets remain isolated
and lack semantics. This limits the automated machine interpretation potentials, hence
making it difficult for security analysts to keep track of all available sources and identify
relevant information.

Challenge 3 (C3): Dispersed raw log sources Log sources are typically scattered across
multiple systems, hosts and networks within an organization. This is a common practice
since organizations may use different hosts and networks for different purposes. Another
typical reason is to ensure the availability and reliability of the system, e.g., by providing
backup systems and networks in case of an outage. As a result, the generated log data can
be physically and geographically distributed across different locations. Figure 1.2 shows an
example of a cybersecurity threat (e.g, data exfiltration) and illustrates how such incidents
may leave traces and generate log data in numerous log sources in multiple distributed
hosts.

4https://www.mitre.org
5https://nist.gov
6https://www.first.org/cvss/
7https://attack.mitre.org/matrices/enterprise/
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Figure 1.2.: An example case of data exfiltration

On a local computer, there is a user who has access to a specific system using
either authorized or illegitimate credentials. This incident will be recorded in a
relevant log (e.g., Windows Event Log). The user may download a credential file
or dump a database from the database server after gaining access to a particular
server, such as a file server, web server, database server, etc. Then, a pertinent
log will be updated with these events (e.g., Webserver log, Share-point logs,
Syslogs on endpoint hosts, file system operation auditing for downloaded files or
database backups, database audit logs, firewall logs, etc.). In order to transfer
or move the downloaded contents to her or his own storage, the user can then
attach a portable storage medium (such as a USB flash drive). A system log
will thereafter have a record of these actions (attach and copy activities) (e.g.,
Win Event log).

As described above, a single intrusion could result in numerous low-level events and
leave traces over multiple log sources, which can be scattered across different systems,
devices, and hosts. Identifying such isolated indicators of compromise over dispersed log
sources is necessary in order to detect such attacks. However, analyzing those disparate
log sources remains challenging as security analyst may easily be over-burdened and lose
of keeping track of log data, particularly when the intrusion happens suddenly or in an
emergency situation.

Challenge 4 (C4): Complex event connection within and across log sources As
described in C2, the generation of multiple traces of (low-level) events - as a result of an
incident - creates complex event connections within log sources. Furthermore, attacks
often combine multiple vectors in a sequence that on the one hand produce even more
traces which highly increases event connection complexity. On the other hand, timing
and sequence of events are crucial to link indicator and analyze the attack progression.
Therefore, manually searching log files and comparing timestamp to reconstruct complex
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chains of attack becomes more and more challenging. This make it even more complicated
due to the fact that the existing suspicious events are frequently concealed behind the
abundance of benign events in log sources.

Challenge 5 (C5): Attack analysis and interpretation are highly context-specific
Isolated indicators are often inconspicuous in their local context, but they may actually
be indicators of a sophisticated attack when considered in the larger context. Without
the ability to link events to corresponding contextual knowledge, it can be challenging
to fully understand the individual indicators of an attack and their connection to the
overall attack chain. Therefore, it is important to examine all available data, including
both isolated indicators and their broader context. This can help security analysts gain a
more comprehensive understanding of the attack (e.g., understanding attack tactics and
techniques used by attackers).

1.3. Background

This section gives a brief background on this thesis, which is based on two key topics. First,
we provide a general overview of cybersecurity and security log management. Second,
we discuss knowledge graphs and semantic web technologies, as well as their potential
application to the cybersecurity domain.

1.3.1. Information Security, Cybersecurity and Security Log Management

Information Security and Cybersecurity Information Security is the protection of in-
formation and information systems from unauthorized access, use, disclosure, disruption,
modification, or destruction in order to provide confidentiality, integrity, and availability
[10]. Confidentiality refers to the preservation of authorized restrictions on the access to
and disclosure of information (e.g., proprietary information and individual privacy), while
integrity ensures that information is not improperly modified or destroyed and that it
is authentic and non-repudiated. Availability, on the other hand, refers to the prompt
and reliable access to information [10]. Cybersecurity is a subset of information security
that specifically focuses on protecting data from unauthorized electronic access, such as
cyberattacks, by deploying various defense processes, policies, procedures, and technology
[11]. Cyberattacks come in many different forms such as Malware, Ransomware, Phishing,
Social Engineering, Insider Threats, distributed Denial-of-Sevice (DDoS), Advanced Per-
sistent Threat (APT)s, etc. Cybersecurity can be categorized into several distinct types,
including Critical infrastructure security, Application security, Network security, Cloud
security, Internet of Things (IoT), etc [12].

Security Log Data and Standard Format Today, a variety of logging standards are in
use, frequently concentrating on a particular application domain, such as operating system
logs (e.g., syslogd and Windows Event Logs), web server logs (e.g., W3C8 Extended log
file format, NGINX9 logging), database logs, firewall logs, etc. Log entries are frequently
stored as semi-structured lines of text with unstructured fields such as a message and

8https://www.w3.org/
9https://www.nginx.com/
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structured sections such as a timestamp and severity level. The content of the unstructured
fields comprises context-specific information and typically lacks uniformity, whereas the
structured elements are normally standardized. Raw log data must first be split into their
relevant parts, such as a key-value based representation, in order to be (automatically)
analyzed. Predefined regular expressions (regex) are typically used in this preprocessing
step. Other standards, such as the Windows Event Log (EVTX), are already represented as
XML10 or JSON11 and are highly structured. Despite efforts at standardization, different
log formats can provide a barrier to efficient analysis. Common Event Expression (CEE)12,
an early project led by MITRE, aims to unify heterogeneous vocabularies to express events
in electronic systems in a uniform, device-independent manner. In order to facilitate log
interchange, CEE separates the taxonomy (semantic event type), the log syntax (instance
data), and the log transport component. However, due to the U.S. Government’s suspension
of funding in 2014, MITRE ceased all work on CEE.

Security Log Management and Analytics The increasing number volume and variety
of logs has prompted the need for systematic computer security log management. These
initiatives are described in a number of standards and best practices for industry, including
the NIST Cybersecurity Framework [13] and the NIST SP 800-92 Guide to Computer
Security Log Management [7]. In order to extract knowledge from these logs, a variety of
log-analytic techniques have been developed, including anomaly detection, clustering, and
rule-based intrusion detection. Security Information and Event Management (SIEM) is a
combination of Security Information Management (SIM) and Security Event Management
(SEM) [14]. SIEMs are widely used to provide a centralized perspective on security-
relevant events inside an organization with a focus on data collection, correlation, and
typically rule-based alerting. They also frequently have monitoring and alerting systems.
SIEMs have been implemented in various security service and application, e.g., Splunk13,
Papertrail14, Librato15, ArcSight16, ElasticSearch17, QRadar18, LogRhythm19, McAfee
ESM20, etc. SIEM systems have made a first step toward gathering log information in
a centralized repository and enabling security specialists to run queries. However, they
lack a foundation in a formal conceptualization and semantics of their data. Consequently,
they do not facilitate contextualization, linking, and automatic reasoning. Therefore, it is
difficult to infer semantic correlations between events.

Cybersecurity Information and Exchange Standards Common standards are necessary
for effective information exchange, especially in fields with a wide range of domains and a
fast-paced environment such as cybersecurity. In light of this, a set of standards have been
developed that specify the syntax of description languages for structured cybersecurity
10https://www.w3.org/XML/
11https://www.json.org/
12https://cee.mitre.org/
13https://www.splunk.com/
14https://www.papertrail.com/
15https://www.librato.com/
16https://www.microfocus.com/en-us/cyberres/secops/arcsight-esm
17https://www.elastic.co/
18https://www.ibm.com/qradar
19https://logrhythm.com/
20https://www.mcafee.com/
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information as well as the semantics of those descriptions in natural language. Some of
these standards are being developed by well-known standardization organizations such as
ISO21, ITU22, IEEE23, or IETF24. A standardized schema for describing, communicating,
and specifying increasingly complex events is represented by Cyber Observable eXpression
(CybOX)25. Among other things, CybOX makes it possible to define attack pattern, describe
malware, and log events. The Malware Attribute Enumeration and Characterization
(MAEC)26 project, the Structured Threat Information eXpression (STIX)27 project, and
the Trusted Automated eXchange fo Indicator Information (TAXII)28 project are similar
initiatives. the Intrusion Detection Message Exchange Format (IDMEF)29, the Incident
Object Description Exchange Format (IODEF)30, and the Format for Incident Information
Exchange (FINE)31 covers alert. Another important example of cybersecurity information
sharing standards is Common Vulnerabilities and Exposures (CVE) for publicly known
vulnerabilities, Common Attack Pattern Enumeration and Classification (CAPEC) for
known attack patterns used by adversaries, Common Weakness Enumeration (CWE) for
software security weaknesses, and Common Platform Enumeration (CPE) for encoding
the names of IT products and platforms. These standards are frequently used by security
professionals and incorporated into security goods and services, but they also provide an
essential framework for study. These standards share the ability to establish schematic
models and exchange formats, but their semantic expressiveness is typically limited. They
therefore do not allow for full semantic compatibility of sharing threat intelligence across
organizations.

Intrusion Detection Systems Intrusion Detection System (IDS)s are a mechanism to
monitor networks or systems for malicious activities. There are two primary methods
of detection [15], i.e., (i) signature-based detection, and (ii) anomaly-based detection.
By comparing an event against a database of malicious activity signatures, signature-
based detection is used to identify known attacks, whereas anomaly-based detection uses
statistical methods to identify patterns that have never before been observed in addition
to unknown patterns. Recently, successful applications of machine learning and complex
event processing algorithms have been made in this context[16]. IDSs can be classified
into two main categories, i.e., (i) Network-based intrusion detection systems (NIDS), and
(ii) Host-based intrusion detection systems (HIDS). NIDS check all of a subnet’s traffic
and verify it using the packet content and metadata. A warning alert is provided to the
network administrator if the NIDS discovers any intrusion in the network. HIDS analyses
the incoming and outgoing traffic of the device only. It warns the administrator when it
discovers unusual activity on the device such as suspicious logins, connections, operating
system calls, and different command parameters.

21https://iso.org/
22https://www.itu.int/
23https://www.ieee.org/
24https://www.ietf.org/
25https://cybox.mitre.org/about/
26https://maecproject.github.io/
27https://oasis-open.github.io/cti-documentation/stix/intro.html
28https://taxiiproject.github.io/
29https://www.rfc-editor.org/rfc/rfc4765.html
30https://datatracker.ietf.org/doc/rfc7203/
31https://datatracker.ietf.org/doc/rfc5070/
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1.3.2. Semantic Web, Linked Data and Knowledge Graph

Semantic Web The term "Semantic Web" was coined by Tim Berners-Lee, the inventor of
the World Wide Web (WWW) and director of the World Wide Web Consortium (W3C)32.
The Semantic Web can be conceived as an extended version of WWW or Web 3.0 as
it enables data to be linked from one source to another source and to be processed and
understood by computers [17]. From a technical point of view, the Semantic Web consists
primarily of three technical standards, i.e., Resource Description Framework (RDF), Web
Ontology Language (OWL), and SPARQL Protocol and RDF Query Language (SPARQL).
These standards provide a common framework and exchange protocols that allow data to
be shared and reused across application, enterprise, and community boundaries.

RDF, RDFS, OWL Resource Description Framework (RDF)33 is a standard framework
and language for representing data and their interconnection on the Web. RDF statements
express relationships between resources and are commonly known as "triple", a basic
concept consisting of interconnected nodes such as subject, predicate, object. There are three
different types of nodes in RDF: (i) Resource Node is anything that can have things said
about it. It is typically represented as Uniform Resource Identifiers (URI) or International
Resource Identifier (IRI) that identify a resource whether abstract or physical; (ii) Literal
Node, a particular data value that can be a string, a date, or a numeric; (iii) Blank Node,
known as an anonymous resource or a bnode, about which only the relationship is known.

RDF’s initial syntax was based on the XML. Nevertheless, other syntaxes, such as
N-Triple 34, JSON-LD35 , or Turtle36 are now more widely used.

The Resource Description Framework Schema (RDFS)37 is a W3C standard data model
for knowledge representation. It extends the basic RDF vocabulary with a set of classes
and RDFS entailment (inference patterns)38 and provides mechanism for describing class of
connected resources and the relation among them. These resources are used to determine
characteristics of other resources, such as the domains and ranges of properties [18]. The
Web Ontology Language (OWL)39 is a Semantic Web language to describe detailed and
complex knowledge about various objects, groups of objects, and relationships between
them. OWL is a computational logic-based language that allows computer programs to
use the knowledge expressed in it, for example, to make implicit knowledge explicit [19].

SPARQL SPARQL Protocol and RDF Query Language (SPARQL) is a W3C recommen-
ded query language that can be used to retrieve and manipulate RDF data. It provides
extensive expressivity for sophisticated queries like negation, filtering, aggregation, and
subqueries. Through query federation40, SPARQL also offers the ability to express quer-
ies across various dispersed data sources. Thus, that makes it possible to retrieve and
manipulate distributed data sources over different SPARQL endpoints.
32https://www.w3.org/
33https://www.w3.org/RDF/
34https://www.w3.org/TR/n-triples/
35https://json-ld.org/
36https://www.w3.org/TR/turtle/
37https://www.w3.org/TR/rdf-schema/
38https://www.w3.org/TR/rdf11-mt/
39https://www.w3.org/OWL/
40https://www.w3.org/TR/sparql11-federated-query/
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1.3. Background

Semantic Reasoning One of the main concepts behind both OWL and RDFS is the ability
to reason over a knowledge base. This is crucial because it can be used to automatically
infer new facts from existing data based on inference rules and ontologies. Reasoning is
possible using OWL entailment41 (owl:inverseOf and owl:SymmetricProperty) as well as
RDFS entailment42 (rdfs:domain, rdfs:range, rdfs:subPropertyOf, and rdfs:subClassOf ).

Linked Data The idea of "Linked Data" was proposed in 2009 to link various datasets
together via the Semantic Web. It provides a method of publishing structured data so
that it can be interlinked and become more useful through semantic queries. Linked data
became part of the Semantic Web technology stack and has four design principles [20]
coined by Tim by Tim Berners-Lee: (i) Use Uniform Resource Identifiers (URIs) as names
for things; (ii) Use HTTP URIs so that people can look up those names; (iii) When
someone looks up a URI, provide useful information, using the standards (i.e., RDF, OWL,
SPARQL); (iv) Include links to other URIs so that they can discover more things.

Knowledge Graphs Over the years, the adoption of linked data has increased significantly,
and it has played a crucial role in the emergence and development of "Knowledge Graphs".
The term "Knowledge Graphs" itself has been used in the literature at least since 1972,
but its modern usage dates to the Google Knowledge Graph announcement in 2012 that
utilize semantic knowledge in the application of web search. The knowledge graph idea
gained great popularity which was followed by announcements of knowledge graphs from
Amazon, eBay, Facebook, IBM, LinkedIn, Microsoft, Uber, Airbnb, etc [21]. Knowledge
graphs are frequently connected to Linked Open Data initiatives since the advent of the
Semantic Web such as DBPedia43 and Wikidata44.

A knowledge graph is a directed, labeled graph with the G = (V, E), where V denotes a
set of nodes (vertices), and E is a set of edges (properties). A single graph is represented
as a set of triples T =< s p o >, where s denotes the subject, p is the predicate, and o
denotes the object.

Figure 1.3 shows an excerpt of a log knowledge graph that expresses a single Apache log
event in RDF. It shows a graphical representation of this log event in a knowledge graph.
The subject :logEntry-24e is characterized by a number of properties that specify its type
(cl:ApacheLog), the timestamp of creation, the originating host of the log event, the client
that made the request, and the request string. Furthermore, the highlighted IP-Address
indicates that the objects link to other entities in the graph which in turn have another
object property (rdfs:type) and data property (cl:hostName).

Virtual Knowledge Graphs The Virtual Knowledge Graph (VKG) paradigm for data
integration is typically used to provide integrated access to heterogeneous relational data.
The approach, also known in the literature as Ontology-based Data Access (OBDA), aims
to replace the rigid structure of tables in traditional data integration layers with the
flexibility of graphs. This makes it possible to connect data silos by means of conceptual
graph representations that provide an integrated view on the data. To this end, VKGs
integrate three main ideas [22]:
41http://www.w3.org/ns/entailment/OWL-Direct
42https://www.w3.org/ns/entailment/RDFS
43https://www.dbpedia.org/
44https://www.wikidata.org/
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1. Introduction

Figure 1.3.: RDF example of log data

• Data Virtualization (V), i.e., they provide a conceptual view that avoids exposing end
users to the actual data sources. This conceptual view is typically not materialized
in order to make it possible to query the data without paying a price in terms of
storage and time for the data to be made accessible.

• Domain Knowledge (K), i.e., the graphs can be enriched and contextualized with
domain knowledge that makes it possible to derive new implicit knowledge from the
asserted facts at the time a query is executed.

• Graph Representation (G), i.e., the data is represented as graph where object and
data values are represented as nodes, and properties of those object are represented as
edges. Compared to traditional relational integration tables, the graph representation
provides flexibility and through mapping and merging makes it easier to link and
integrate data.

1.4. Research Questions

In this section, we define our research questions based on the motivation and research
challenges we have described before. The main research question in this thesis is:

To what extent can semantic web technologies improve cybersecurity monitoring and
analysis?

In order to provide a more focused and comprehensive examination of the topic at hand,
we break down our main research question into three sub-questions together and formulate
a set of hypotheses.

Our first research question is mainly derived from the two challenges described above,
i.e., log data heterogeneity (C1) and the evolving heterogeneous cybersecurity information
(C2).

Research Question 1 (RQ1): How to uniformly represent heterogeneous log
data and cybersecurity information?

Conceptualization of domain knowledge can be used to support unambiguous and useful
interlinking between log data and cybersecurity information so that it can be understood
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by a machine. A uniform conceptual model can semantically lift heterogeneous security
log data and cybersecurity information from diverse sources. Therefore, RQ1 is associated
with the following hypothesis:

Hypothesis 1 (H1): Security log data and cybersecurity information can
be structured and enhanced by semantics, to support unambiguous and useful
interlinking between logs and cybersecurity information in a knowledge graph.
A uniform conceptual model can semantically lift heterogeneous security log
data and cybersecurity information from diverse sources.

As described in C3, security log data generated by various systems and applications are
commonly dispersed across multiple hosts and networks. Traditional security log analyses
typically tackle this problem through centralized data integration (e.g., log server, SIEM
systems, etc.).Extraction, Transformation, Loading (ETL)[23] is a typical method for
traditional data processing. However, it has limitations in dealing with highly verbose,
redundant, incoherent and poorly structured information. As systems typically generate
vast amounts of high-frequency and fine-grained log data, analyzing data by means of
a centralized method is not ideal for real-time processes or on-demand access, where
scalability is required. Therefore, this leads to the following research question:

Research Question 2 (RQ2): How can dispersed log data and cybersecurity
information be integrated and interlinked?

We expect that decentralized semantic log processing can effectively handle large volumes
of dispersed log data and facilitate more efficient integration and analysis, potentially
addressing scalability issues in traditional centralized approaches. In addition, using
semantic query federation, we expect that both dispersed log sources and cybersecurity
information can be integrated and linked automatically. Thus, we ground our explanation
of RQ2 on the following hypothesis:

Hypothesis 2 (H2): Through decentralized semantic log processing, multiple
dispersed security log data can be integrated in a scalable manner. Furthermore,
distributed security log events together with cybersecurity information can be
interlinked via semantic query federation to obtain meaningful results.

The growing amounts of log data and their sparsity inhibits security analyses from timely
detect and response to attacks. Current security analysis processes typically rely on human
intelligence, rather than on automated systems to perform better task inference. This is
because human intelligence has the ability to take into account contextual information that
may not be easily captured by automated systems. However, human cognitive capacity is
limited and they are easily over-burdened by high complexity of the event connections (C4 )
and context-sensitive interpretation of events (C5 ). Therefore, it makes manual security
analysis would become infeasible. This leads to our next research question as follows:

Research Question 3 (RQ3): How can we discover and reconstruct attacks
from system event log information?

Knowledge graphs can be used to model complex causal relations between events and
represent dependency graphs. They facilitate automated inference that once log data
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have been lifted into uniform graph representation, a causal dependency link can be
generated, e.g., by exploiting property chains, transitive and reflexive properties of graphs.
Furthermore, existing threat detection rules can be defined and combined in flexible and
declarative manner. This make it possible to not only detect potential threats but also link
individual indicators of compromise to background knowledge, identify their root cause,
and reconstruct attack scenarios. Therefore, our RQ3 leads to the following hypothesis:

Hypothesis 3 (H3): Semantic reasoning can be used to infer sequences of
events from security log data and generate causal dependency graphs. This
makes it is possible to flexibly and declaratively specify existing attack patterns
and rules to detect potential threats, link individual indicators of compromises,
identify their root cause and reconstruct attack scenarios.

1.5. Research Methodology

This section describes the research methodology we have chosen and explains its imple-
mentation in this thesis.

1.5.1. Design Science Research

Figure 1.4.: Three Cycles of Design Science by Hevner [24]

We follow the design science principles proposed by Havner [25] as our research meth-
odology. Design science is one of the prominent research methodologies in the area of
Information Systems (IS) and is used as a guideline to develop and evaluate new innovative
artifacts. The design science methodology consists of three building blocks [25], i.e.,
(i) Knowledge base, scientific theories and engineering methods that provide a foundation
for rigorous design science; (ii) Design science research, where new innovative artifacts are
built to address a certain problem. The developed artifacts are also evaluated to ensure the
proposed solution meets the requirements of the environment; (iii) Environment, defines
the problem or contextual domain in which the phenomenon of interest exists. It includes
people, organization, problems, tasks, opportunities, etc.
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In addition to the previous method, Hevner introduced three cycle views of design science
research [24]. It emphasizes the embodiment of three closely related cycles of activities
in design research methodology, as shown in Figure 1.4. We summarize it as follows:
(i) Rigor Cycle connects the design science activities with the knowledge base of scientific
foundations. It provides grounding for the design science to support building artifacts. It
also provides input or addition to the Knowledge Base (KB) as a result of design science
research activities; (ii) Relevance Cycle bridges the contextual environment of the research
project with the design science activities; (iii) Design Cycle iterates between the core
activities of building and evaluating the design artifacts and the processes of research.

1.5.2. Implementation of Design Science Research Methodology

Figure 1.5 shows an instance of design science research cycles in this PhD thesis. We
describe the implementation of the methodology in our research as follows:

Figure 1.5.: An implementation of Three Cycle of Design Science on our thesis

Knowledge base We start our design science research with a literature review from two
different research fields, i.e., Cybersecurity/Information Security and Semantic Web/Know-
ledge Graphs. This helps us to understand the existing related work and state-of-the-art
concepts, methods, and technologies from those domains. We continue with the observation
of the existing research gaps and their limitations and find options for research directions
and further improvement. This observation supports us during research activities in design
science (i.e., building and evaluating new artifacts). For example, the theoretical concepts
in the Semantic Web domain help us in developing standard log vocabularies and construct
the cybersecurity knowledge graph. Likewise, concepts in the cybersecurity domain help
us to understand attack patterns and threat detection techniques that we also use as a
basis of our artifact development.

This shows that the Rigor Cycle is fully implemented as we ground our research
activities to the rigorous theories from both domain as well as contribute the addition to
KB from our research findings.
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Environment The environment of our design science research involves cybersecurity
as our application domain. This includes organizations that have cybersecurity issues,
persons in the organization (such as security analysts) who take the responsibility of
dealing with cybersecurity, and the organization’s infrastructures, e.g., IT assets, log data,
etc. The environment provides research problems such as log integration, log monitoring
and analysis, threat detection and attack reconstruction. Other supporting resources
provide opportunities including log data, IT infrastructure, cybersecurity resources, etc.

The Relevance Cycle here is shown as we defined research requirements we need to
fulfill during the design cycle with regards to the aforementioned environment. Furthermore,
the environment provides field testing such as IT infrastructures, networks, etc. to where
our developed artifacts are deployed, simulated and evaluated.

Design Science Research We develop several methods as a result of our observations to
both Knowledge Base and Environment to address the research questions. This includes
the development of several artifacts ranging from the conceptualization of methods, solution
architecture / framework and their components, and the prototype implementation of
the approach. The Design Cycle is applied as the developed methods and artifacts
are iteratively evaluated through several aspects as follows: (i) Use case applications,
to evaluate the usability and the feasibility of the developed methods/artifacts against
different use-cases. (ii) Performance and Scalability, to measure the performance and
scalability of the developed artifact (i.e., the prototype application) during the execution
of the artifact in various testing scenarios.

1.6. Contributions Overview

In this section, we summarize the contributions of this PhD thesis that address the
identified challenges and research questions outlined in the previous sections.

Figure 1.6.: Contribution Overview
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Figure 5.1 shows the contribution overview of the research and the corresponding research
challenges and research questions. The contributions consist of five building blocks (BBs)
as follows:

BB1: This first block introduces modular log vocabularies and ontologies based on the
OWL/RDFS for standardized representation of log data and cybersecurity information.
These modular log vocabularies and ontologies serve as the foundation for the other
building blocks and help to address the issue of log data heterogeneity (C1) by providing
uniform representation (RQ1).

BB2: This block involves the construction of integrated cybersecurity knowledge graphs
from publicly available cybersecurity information and attack patterns. These knowledge
graphs provide a "rich" cybersecurity knowledge base that is crucial for providing context
in log analysis and identifying potential attacks.

BB3: This third block involves the development of a method for integration and linking
(RQ2) dispersed stream log data (C2). To this end, we developed a prototype framework
for log monitoring based on the RDF Stream Processing (RSP) engine that supports
real-time detection of suspicious file activities and contextualizes them with background
knowledge.

BB4: It introduces a method for decentralized security log analysis using Virtual Know-
ledge Graph (VKG) approach that allow for the virtual and on-demand processing of log
data (i.e, without a priori parsing, aggregation and processing log data). Furthermore,
using semantic query federation, multiple dispersed log data (C3) can be integrated and
queried simultaneously without the necessity for a centralized processing and repository
(RQ2).

BB5: Finally, this block involves the developement of a modular framework for threat
detection and attack reconstruction based on knowledge graphs. The semantic log rep-
resentation makes it possible to infer complex event connections (C4) and combine the
state-of-the art techniques for threat detection. Furthermore, the uniform and flexible
graph models also enable enrichement and contextualization through linking to background
knowledge (C5), providing a comprehensive mechanism for attack reconstruction (RQ3).

1.7. Publications

This PhD Thesis is based on the cumulative work compiled from numerous peer-reviewed
publications. We describe the publications and highlight their roles in this thesis in
chronological order as follows:

• Kurniawan K. Semantic Query Federation for Scalable Security Log Analysis. In:
The Semantic Web: ESWC 2018 Satellite Events. ESWC 2018. Lecture Notes in
Computer Science, vol 11155. Springer, Cham. p. 294–303. 2018 [26].
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This PhD Symposium paper serves as an initial proposal of this thesis and
contributes to the development of Chapter 1 (i.e., motivation and research
questions).

• Ekelhart A, Kiesling E, Kurniawan K.Taming the logs - Vocabularies for semantic
security analysis. In: Proceeding of 14th SEMANTiCS vol. 137; p. 109–119. 2018
[27].

This conference paper focuses on C1 and investigates RQ1. It is included
in this thesis in Chapter 2.

• Kiesling E, Ekelhart A, Kurniawan K, Ekaputra F.The SEPSES Knowledge Graph:
An Integrated Resource for Cybersecurity. In: The Semantic Web – ISWC 2019. Lec-
ture Notes in Computer Science, vol 11779. Cham:Springer International Publishing;
p. 198–214. 2019 [28].

This conference paper focuses on addressing C2 and provides an answer to
RQ1. It appears in Chapter 2 of this thesis.

• Kurniawan, K., Ekelhart, A., Kiesling, E., Froschl, A., Ekaputra, F.: Semantic integ-
ration and monitoring of file system activity. In: Proceeding of 15th SEMANTiCS
(2019). [29]

This poster paper provides preliminary results that we extend to a conference
paper [30].

• Kurniawan K, Kiesling E, Ekelhart A, Ekaputra F. Cross-Platform File System
Activity Monitoring and Forensics – A Semantic Approach. In: ICT Systems
Security and Privacy Protection. SEC 2020. IFIP Advances in Information and
Communication Technology. Springer, Cham; p 384–397. 2020. [30].

This conference paper focuses on addressing C3 & C5 and provides an
answer to RQ2. It appears in Chapter 3 of this thesis.

• Kurniawan K., Ekelhart, A., Kiesling, E. An ATT&CK-KG for Linking Cybersecurity
Attacks to Adversary Tactics and Techniques. In: The Semantic Web: ISWC 2021.
Cham:Springer International Publishing; 2021 [31].

This poster paper extends our prior work [28] by introducing knowledge
graph for cyberthreat intelligence (i.e. MITRE ATT&CK).

• Kurniawan K, Ekelhart A, Kiesling E, Winkler D, Quirchmayr G, and Tjoa A. 2021.
Virtual Knowledge Graphs for Federated Log Analysis. In The 16th International
Conference on Availability, Reliability and Security (ARES 2021). ACM, New York,
NY, USA p. 1-11. 2021 [32].

This conference paper focuses on addressing C3 & C5 and provides an
answer to RQ2. It has been extended to a journal article [33].

• Kurniawan K, Ekelhart A, Kiesling E, Winkler D, Quirchmayr G, Tjoa AM. VloGraph:
A Virtual Knowledge Graph Framework for Distributed Security Log Analysis.
Machine Learning and Knowledge Extraction. 2022;4(2):371-96 [33].
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This journal article is an extended version of our prior work [32] with
more extensive evaluation and discussion. It appears in Chapter 3 of this
thesis.

• Kurniawan K, Ekelhart A, Kiesling E, Quirchmayr G, Tjoa AM. KRYSTAL: Know-
ledge graph-based framework for tactical attack discovery in audit data. Computers
Security. 2022;121:102828 [34].

This journal article focuses on addressing C4 & C5 and provides an answer
to RQ3. It is included in this thesis in Chapter 4.

1.8. Outline

The remainder of this thesis is organized as follows:

Chapter 2 introduces modular vocabularies and ontologies for semantic representation of
log events. We also describe how these representation models can be used as a foundation
for log integration, monitoring and analysis. Furthermore, we propose a knowledge graph
construction method that provides an integrated cybersecurity knowledge base derived
from publicly available cybersecurity information.

Chapter 3 discusses methods for semantic log monitoring as well as federated log analysis
through Virtual Knowledge Graphs. We start by describing their concepts, explain their
architecture and components as well as show their prototype implementation. Furthermore,
we describe the application of these approaches over several real-world use cases, perform
an evaluation and discuss our findings.

Chapter 4 discusses a modular knowledge graph based framework for threat detection
and attack graph construction. In this chapter, we focus on introducing a "hybrid"
approach that combines different state-of-the-art threat detection and attack reconstruction
techniques. We describe concepts, architecture as well as prototype implementation of
this approach. Furthermore, we evaluate our approach over well-established, large scale
datasets and discuss the results.

Chapter 5 summarizes our work, highlights our answer to the stated research questions
and challenges and highlights our contributions. We also discuss the research impact as
well as the remaining challenges and directions for future work.

Chapters 2-4 contain sections on related work that provide an overview of the current
state-of-the-art and highlight how our contributions differ from other approaches.
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2. Uniform Log Representation and
Contextualization

In this chapter, we present our approaches that address our first research question (RQ1)
as discussed in Chapter 1, i.e., "How to uniformly represent heterogeneous log data and
cybersecurity information?". We structured our discussion into two sections as follows:

• Vocabulary for log data and semantic security analysis. In this section,
we discuss the advantage of semantic web technology to bring meaning to vast
volumes of raw log data. We focus on introducing vocabularies and ontologies for
security log data and propose an initial framework for log data acquisition, extraction,
enrichment with background knowledge and semantic analysis. The vocabulary serves
as a foundational model and uniform representation that can be used to harmonize
heterogeneous log data and integrate them. To this end, we used RDF/OWL, a W3C
standard data modelling language to build the vocabulary/ontology. The initial
framework together with log vocabularies and ontologies provides foundation for
semantic security log processing and analysis.

• An integrated knowledge graph for cybersecurity information. This section
discusses our approach in developing automated knowledge graph construction from
the existing cybersecurity resources, namely SEPSES CSKG. To this end, we develop
CSKG vocabularies and integrate multiple heterogeneous cybersecurity resources,
e.g., CVE, CWE, CPE, CVSS and CAPEC in a single, integrated knowledge graph.
The constructed knowledge graph provides comprehensive and continuously updated
cybersecurity knowledge that can be used to link and provide contextualization for
semantic security log analysis and monitoring in an automated way.
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2.1. Vocabulary for log data and semantic security analysis

Andreas Ekelhart, Elmar Kiesling, Kabul Kurniawan
Published as "Taming the logs – Vocabularies for semantic security analysis" in The 14th
International Conference on Semantic Systems (SEMANTiCS), 2018 [27].

Abstract

Due to the growing complexity of information systems and the increasing prevalence
and sophistication of threats, security management has become an enormously challenging
task. To identify suspicious activities, security analysts need to monitor their systems
constantly, which involves coping with high volumes of heterogeneous log data from various
sources. Processes to aggregate these disparate logs and trigger alerts when particular
events occur are often automated today. However, these methods are typically based on
regular expressions and statistical correlations and do not involve any interpretation of
the context in which an event occurred and do not allow for inference or sophisticated
rules. Inspection and in-depth analysis of log information to link events from various
sources (e.g., firewall, syslog, web server log, database log) and establish causal chains
has therefore largely remained a tedious manual search process that scales poorly with a
growing number of heterogeneous log sources, log volumes, and the increasing complexity
of attacks.

In this paper, we make the case for a semantic approach to tackle these challenges. By
lifting raw log data and modeling their context, events can be linked to rich background
knowledge, integrated based on causal relations, and interpreted in a context-specific
manner. This builds a foundation for more comprehensive extraction of the meaning of
events from unstructured log messages. Based on the results, we envision a platform to
partly automate security monitoring and support analysts in coping with fast evolving
threat landscapes, alleviate alert fatigue, improve situational awareness, and expedite
incidence response.

2.1.1. Introduction

According to industry analyses, today’s ICT systems are threatened on an unprecedented
scale by increasingly sophisticated and targeted attacks [2, 1]. This has resulted in a series
of widely publicized data breach cases [35] associated with enormous economic costs [36].
A key issue in this context is the lack of awareness about sophisticated multi-vector attacks,
which are typically difficult to detect automatically using standard intrusion detection
methods. This slow detection and limited understanding of the scope of security incidents
severely inhibits organizations’ ability to react adequately and take timely measures to
mitigate and contain their impact. According to an industry survey, 59% of companies do
not have adequate intelligence or are unsure about attempted attacks and their impact.
Furthermore, 51% say their security solutions do not inform them or they are unsure if
their solution can inform them about the root causes of an attack. [37]

These difficulties are not necessarily caused by a lack of data, as most hard- and
software components provide comprehensive logging facilities that produce fine-grained
and high-frequency information about their state and about observed events. Consequently,
organizations’ failure to detect and respond to security incidents is not caused by a lack of
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clues that point to attacks, but by the rapid growth of log data and the manual analysis,
which is becoming less and less feasible.

Apart from sheer volume, this is further complicated by the fact that these logs are
typically weakly structured, use a variety of inconsistent formats and terminologies, and
are spread across different files and disparate systems. To detect sophisticated multi-
vector attacks, it is necessary to identify related events and connect them to create
a complete picture for the identification of malicious activity. Isolated indicators are
often inconspicuous in their local context and it is therefore necessary to harmonize
and integrate disparate log information to obtain a complete picture. Furthermore, the
interpretation of log information is highly context-specific, which makes it difficult for
monitoring applications to identify relevant information without a deeper understanding of
their context. Manual log analysis by human experts as a last resort does not scale in this
context and there is a lack of automated mechanisms to integrate and interpret security
information. Consequently, security analysts struggle to cope with the enormous volume
of raw log data, to extract insights from these heterogeneous sources, and to identify and
respond to increasingly complex attacks.

In this paper, we make the case for a semantic approach towards security analysis. This
approach has the potential to reconcile today’s highly fragmented log information land-
scape by extracting and interlinking relevant security information, facilitating automated
inference, and providing security analysts with an integrated perspective that promotes
understanding and improves situational awareness.

To this end, we develop a set of vocabularies for the uniform representation of log events
and discuss how a solid conceptual foundation facilitates linking of disparate log informa-
tion, extraction of relevant events, contextualization, and enrichment with background
knowledge. Furthermore, we describe an architecture for semantic log processing that
provides integrated access to log information via various interfaces. This creates a founda-
tion for semantic security monitoring, incidence response, and forensic applications. In
particular, the proposed approach will enable context-aware decision support and thereby
overcome the limited scope and lack of interpretation capabilities of current security monit-
oring and response technologies such as virus scanners, intrusion detection systems (IDSs),
and security incident and event management (SIEM) systems. Furthermore, the developed
vocabularies provide a foundation for sharing threat intelligence across organizations.

The remainder of this paper is structured as follows: Section 2.1.2 introduces the wider
context of the SEPSES semantic log analysis architecture (Section 2.1.2.1) and then
specifically focuses on log extraction (Section 2.1.2.2) and vocabularies (Section 2.1.2.3);
Section 2.1.3 discusses results from our prototypical implementation and illustrates how
the approach addresses current challenges in security monitoring; Section 2.1.4 provides
an overview of related work within industry and academia; Section 2.1.5 closes with
conclusions and an outlook on future work.

2.1.2. Semantic security log analysis

The log extraction approach introduced in this paper constitutes the core of a larger
semantic log analysis framework called SEPSES1, which will provide a platform for
semantic security monitoring, auditing, and forensics.

1Semantic Processing of Security Event Streams

21



2. Uniform Log Representation and Contextualization

Event 
Integrator

Event Stream 
Monitoring

Event Extractor

SPARQL

TPF

APIs
Forensics

Raw log sources

Apache log

Syslog

Data access Applications

Background knowledge

System Syslog 
Events

Apache 
Events ..

IIS log

MySQL log
Log 

Extractor

…

…

W
indow

s
Event Log

SQL server log

Log Vocabularies

CoreLog

Apache logSyslog

IIS logWin Event log MySQL log

SQL Server log

..

Log 
Extractor

}{ }{ }{

}{ }{ }{

Event Archive

RSP

APIs

Monitoring

Auditing

Incidence 
Response

Figure 2.1.: Semantic log extraction architecture

2.1.2.1. SEPSES Architecture

The SEPSES architecture is designed to facilitate scalable semantic processing, integration,
aggregation, and interpretation of heterogeneous logs in highly diverse environments. Its
main components are illustrated in Figure 2.1.

In order to provide an integrated perspective on all relevant security information and
enable semantic processing, it is first necessary to collect log data from a multitude of
log sources (e.g., system logs, network logs, application logs, etc.) in different formats.
A wide range of tools to acquire and store log information locally exists, but to provide
an integrated perspective it is necessary to transfer local log information to a central
repository and harmonize the heterogeneous log data. This typically involves local log
agents (installed on local machines) which harvest log information from various sources
and ship them to extractor components. This approach is flexible and allows for scalable
log extraction at an appropriate level of centralization. The options range from fully
decentralized extraction on the local machines, to fully centralized and load-balanced
extraction on servers.

In our architecture, the log extractor components then transform the raw log data,
received from multiple sources in various formats, into JSON-LD [38], a lightweight Linked
Data format. Because most modern log management systems use JSON to encode and
transport log messages, a key advantage of this approach is that JSON-LD annotations can
be added easily in an efficient and scalable manner in order to make the data interoperable
at web scale. This transformation from raw log data into an integrated JSON-LD log stream
applies a set of well-specified log vocabularies and thereby solves syntactic interoperability
challenges and – through alignment of formats and scales – creates a minimum level of
semantic interoperability (cf. Section 2.1.2.2). To this end, the log extractors make use of
a modular log vocabulary stack – described in Section 2.1.2.3 – that consists of slog:core,
a foundation that provides basic terms to describe log messages irrespective of their source,
and specialized vocabularies that extend the core vocabulary with log source-specific terms.
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The harmonized stream of RDFized log messages in JSON-LD format is then forwarded to
event extraction pipelines, which apply a sequence of enrichment, alignment, reconciliation,
and integration steps to extract an interpretation of the meaning contained within the log
messages2. These pipelines can combine a variety of information extraction techniques (e.g.,
named entity recognition, classifiers, and hand-written regular expressions) with inference,
linking, and rule-based approaches. In summary, extraction pipelines link incoming log
messages to rich background knowledge and obtain context-sensitive, machine-readable
interpretations of security-related events.

Subsequently, extracted log events are sent to the event integration component, which
establishes links between related events, irrespective of their original log source (e.g.,
combining the traces of a remote login event from the client, the server, and the firewall)
and thereby establishes causal relations between isolated low-level events and integrates
them into high-level events. For instance, a single high-level login event can be associated
with multiple low-level events, i.e., a series of syslog events, authentication events, firewall
events, etc. This step can be supported by statistical, learning-based, and (stream)
reasoning-based event integration approaches.

Finally, the integrated event stream can be monitored with RDF stream processing
techniques and forwarded to an RDF log archive, i.e., a triple store, for later analysis.
The prepared log data can be made available for log auditing, analysis, and forensic
applications via various interfaces. These interfaces, including APIs, SPARQL, and Linked
Data Fragments (LDF) interfaces, constitute the data access layer of the architecture.
One option for (near) real-time log monitoring by applications is to register continuous
SPARQL queries.

In the following section, we focus specifically on the log extraction of the proposed
architecture.

2.1.2.2. Log extraction

In our prototypical implementation, we use Logstash [39], an open source tool for collecting
and parsing logs, as log extraction component. Furthermore, we use Filebeat to ship raw
log data from remote agents installed on local systems to the log extractor.

To inject JSON-LD annotations into the JSON log stream, we configured Logstash
with custom filters that restructure the data to conform to the SEPSES log vocabularies
(Section 2.1.2.3) and add appropriate @context and @id annotations to yield valid JSON-
LD output. A key benefit of this approach over plugin based configuration, hardcoded
extraction or the use of generic RDF mapping tools (e.g., RML [40]) is that it can perform
initial lifting from many sources in a flexible and scalable manner using tools that are
optimized for large-scale, high-throughput log processing. Furthermore, it permits (near)
real-time extraction and usage of the lifted log streams in stream processing scenarios.

The log vocabularies and JSON-LD format provide a well-defined interface that makes it
possible to exchange the log extraction component (i.e., Logstash in our implementation) or
combine it with other extraction tools, provided they can be adapted to produce JSON-LD
output.

Whereas the interpretation of the log messages will be handled in the event extraction
phase, the log extraction process does perform preliminary harmonization steps and results

2Out of the scope of the present paper

23



2. Uniform Log Representation and Contextualization

in an integrated, uniform representation of log streams. For instance, log parsing and
transformation already harmonizes heterogeneous time stamp formats and represents them
uniformly as xsd:dataTime properties.

Furthermore, the model of the RDF log streams is structured in a way that provides
"attachment points" for subsequent enrichment, alignment, entity reconciliation, and
linking of the log information to background knowledge in the event extraction and
integration phases. These attachment points are modeled as auxiliary nodes that have a
number of literal properties and a randomly generated identifier (UUID). These nodes are
subsequently used for alignment (e.g., harmonizing severity levels in logs from different
operating systems and hence different severity scales), entity reconciliation, and linking to
background knowledge (e.g., link hosts that appear in a log stream to system background
knowledge, irrespective of whether they are identified by IP, hostname, MAC address, etc.).
In the event extraction and integration phase, the literal properties of these nodes will be
used to identify the associated concepts and create owl:sameAs links between them.

2.1.2.3. Log vocabularies

The event extraction approach introduced in this paper transforms raw log events into
a uniform RDF representation. This necessitates appropriate vocabularies to express
the heterogeneous log information. As a foundation of all log vocabularies, the core3

vocabulary provides basic concepts common for all log messages produced by a log extractor,
most importantly the LogEntry class that represents a single generic log entry, as well
as the Host and Logtype classes. The core log vocabulary also defines several properties,
i.e., hostName, ipAddress with sub-properties ip4Address and ip6Address, timestamp,
logMessage, and logFilePath.

A key principle in the design of our conceptual models is modularity, i.e., we organize
the concepts into specialized vocabularies that can be mixed and matched, which is key to
tackle log heterogeneity. This is achieved with log source-specific vocabularies that extend
the LogEntry class with more specific subclasses. In our example illustrated in Figure 2.2,
we use ApacheLogEntry provided by the apacheLog4 vocabulary for Apache web server
logs and sysLogEntry provided by syslog5 vocabulary for Unix system logs.

In the design of these vocabularies, we aim to reuse existing vocabularies wherever
possible. For instance, we reuse the existing StatusCode and Method concepts from the
http6 vocabulary for ResponseType and RequestVerb, respectively.

2.1.3. Implementation and preliminary results

To validate our approach w.r.t. current security monitoring challenges, we implemented
the acquisition and extraction components (cf. Section 2.1.2.1) using Logstash as a
platform for event collection and processing as well as our log vocabularies and system
ontologies. We then set up a test system in a virtual machine that ran an Apache web
server. From this machine, we acquired syslog and Apache log data using Filebeat and
set up a custom Logstash configuration that transforms the log stream into semantically

3https://purl.org/sepses/vocab/log/coreLog, recommended prefix: scl
4https://purl.org/sepses/vocab/log/apacheLog, recommended prefix: apacheLog
5https://purl.org/sepses/vocab/log/sysLog, recommended prefix: syslog
6http://www.w3.org/2011/http
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Figure 2.2.: Log vocabularies

explicit JSON-LD (cf. Section 2.1.2.2). In the following, we briefly discuss current major
challenges in security monitoring and illustrate with minimalist examples how our semantic
log processing approach can help to tackle them.

Volume The ever-growing volume of data relevant for security analyses poses a significant
challenge – hard- and software components produce fine-grained and high-frequency log
data. Whereas our approach does not reduce the amount of generated log data itself, it
has the potential to reduce the data a security analyst must consider and inspect (e.g.,
by harmonizing logs, filtering noise, and aggregating events). Furthermore, the semantic
integration provides a foundation for powerful semantic querying that can, for instance,
use inference for generalizations or apply context in the automatic interpretation of events.
This makes it easier to cope with large amounts of data and we expect that this approach
will be vastly more efficient than manual auditing and more effective than simpler log
correlation approaches that tend to produce a lot of false positives and thereby sometimes
contribute rather than solve the problem of data volume.

Heterogeneity Logging data is typically highly verbose, redundant, incoherent, and
poorly structured. Our current solution approach tackles this challenge on multiple
levels. In particular, it 2.1.(i) resolves syntactic heterogeneity (e.g., varying time stamp
formats in different logs) by lifting raw log data and describing it with a rich semantic
log vocabulary; 2.1.(ii) performs entity resolution to uniquely identify entities even in
heterogeneous log sources with varying identifiers (e.g., IP addresses vs host names,
different user names in different applications, etc.); 2.1.(iii) tackles semantic heterogeneity
(e.g., varying severity scales of different log standards) and offer mappings for an aligned
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Apr 9 09:37:47 kabul-VirtualBox systemd[1]: Mounted Huge Pages File System.

Figure 2.3.: Original raw log message

representation; 2.1.(iv) enables generalization (e.g., Apache and IIS are both web servers).
Figure 2.3 demonstrates an excerpt of the collected log data in original raw format and

Listing 2.1 shows the JSON-LD output produced by the implemented log extractor.

1 {
2 "@context " :" http :// s ep s e s . i f s . tuwien . ac . at / context s / sy s l o g . j s on l d " ,
3 " logMessage " :"Apr 9 09 : 37 : 47 kabul−VirtualBox systemd [ 1 ] : Mounted Huge

Pages F i l e System . " ,
4 "timestamp":"2018−04−09T07 : 3 7 : 4 7 . 0 0 0Z" ,
5 " hasProcess Id " :"1" ,
6 " hasSeve r i ty " :{
7 " severityName " :" no t i c e " ,
8 " sever i tyCode " :"5"
9 } ,

10 "@type " :" http :// pur l . org / s ep s e s /vocab/ log / sysLog#SysLogEntry " ,
11 "hasLogType " :" http :// example . org / system#sy s l o g " ,
12 "@id " :" http :// example . org / logEntry#logEntry−ca1c3894 −114 f −432d−befd−

abca46258e85 " ,
13 "hasProgram " :{
14 "programName " :" systemd"
15 } ,
16 " logF i l ePath " :"/ var / log / sy s l o g " ,
17 " ha sFa c i l i t y " :{
18 " f a c i l i t yCod e " :"1" ,
19 " fac i l i tyName " :" user−l e v e l "
20 } ,
21 " input " :{
22 " type " :" l og "
23 } ,
24 " or ig inatesFrom " :{
25 "hostName " :" kabul−VirtualBox"
26 }
27 }

Listing 2.1: Example log message transformed into JSON-LD

The SPARQL query in Listing 2.2 demonstrates entity resolution by querying for log
events from any host within the defined timeframe.

As the result excerpt in Table 2.1 shows, all events have a host name and IP address. This
information comes from the background knowledge, by linking the host node from the log
stream (owl:sameAs) to the host entity defined in the background knowledge as shown in
Figure 2.4. Silk [41], an open source framework for integrating heterogeneous data sources,
is an option to reach this goal. Listing 2.3 shows an owl:sameAs rule (LinkageRule) with
a levenshteinDistance comparison to introduce a link if the host names match.

The host type is also defined in the background knowledge and could be automatically
determined based on the software running on the host.
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1 p r e f i x owl : <http ://www.w3 . org /2002/07/ owl#>
2 p r e f i x xsd : <http ://www.w3 . org /2001/XMLSchema#>
3 p r e f i x s c l : <http :// pur l . org / s ep s e s /vocab/ log / coreLog#>
4 p r e f i x sys_bg : <http :// pur l . org / s ep s e s /bg/ system#>
5

6 SELECT ? time ? logType ?hostName ? ipAddress ?hostType ?message
7 WHERE { ? logEntry a s c l : LogEntry ;
8 s c l : or ig inatesFrom ? host ;
9 s c l : hasLogType ? logType ;

10 s c l : logMessage ?message ;
11 s c l : timestamp ? time .
12 ? host sys_bg : hostType ?hostType ;
13 s c l : hostName ?hostName ;
14 s c l : ipAddress ? ipAddress .
15

16 FILTER (? time > "2018−04−09T07 :29:00"^^ xsd : dateTime &&
17 ? time <"2018−04−09T07 :34:00"^^ xsd : dateTime ) }

Listing 2.2: SPARQL Query that demonstrates entity resolution

1 <LinkageRule l inkType="owl : sameAs">
2 <Compare id="l even sh t e inD i s t ance1 " r equ i r ed=" f a l s e " weight="1" metr ic="

l even sh t e i nD i s t anc e " th r e sho ld ="0.0" index ing="true">
3 <TransformInput id="lowerCase1 " func t i on="lowerCase">
4 <Input id="sourcePath1 " path="/ sy s l o g : hostName"/>
5 </TransformInput>
6 <TransformInput id="lowerCase2 " func t i on="lowerCase">
7 <Input id="targetPath1 " path="/bgk : hostName"/>
8 </TransformInput>
9 <Param name="minChar" value="0"/><Param name="maxChar" value="z"/>

10 </Compare>
11 </LinkageRule>

Listing 2.3: Silk owl:sameAs LinkageRule

Table 2.1.: An excerpt of query result showing events have a host name and IP Address
time (xsd:dateTime) logType hostName ipAddress hostType message
2018-04-09T07:29:15 syslog kabul-VirtualBox 192.168.0.164 DatabaseServer "org.debian.apt[683]: . . . "
2018-04-09T07:31:45 apache linux-Machine 192.145.0.124 WebServer "GET /presentations/ "
2018-04-09T07:31:45 apache linux-Machine 192.145.0.124 WebServer "GET /presentations/ . . . "
2018-04-09T07:31:45 syslog kabul-VirtualBox 192.168.0.164 DatabaseServer "systemd-tmpfiles[3572]: . . . "
2018-04-09T07:31:45 syslog kabul-VirtualBox 192.168.0.164 DatabaseServer "systemd[1]: Started . . . "
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hasLogType: http://example.org/system#s...

logFilePath: /home/kabul/log_sample/sysl...
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@type: http://purl.org/sepses/voca...

hasFacility

hasSeverity

logMessage: Apr 9 09:21:45 kabul-Virtu...

...e.org/logEntry#logEntry-154

severityCode: 5

severityName: notice

facilityName: user-level

facilityCode: 1

programName: rsyslogd

hostName: kabul-VirtualBox
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type: host
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...e.org/sepses#021c074f-e292-41b9-b7c1-3f777a042884

Figure 2.4.: SameAs linking between an auxiliary node from the log stream and a host
entity from background knowledge

Integration In the course of monitoring events to identify activities relevant from a
security perspective, it is often necessary to correlate isolated indicators from various log
sources, hence, an integrated view is required. Our solution combines different log sources
into a single log stream with a uniform core and using appropriate vocabularies for each
log source. Whereas standard SIEM systems also provide some level of integrated access,
our approach makes log data machine-readable and semantically integrate-able from the
beginning rather than collecting raw log data and integrating it at query time. The query
results in Table 2.1 already illustrate this by combining two disparate log sources (syslog
and apache) and providing integrated results.

Context Security-related events are typically highly context-specific and hence, their
interpretation requires extensive background knowledge. In our approach, we dynamically
link rich background knowledge to the extracted log events and their associated entities,
respectively.

Listing 2.4 demonstrates how vulnerability information from Common Vulnerabilities and
Exposures (CVE) [42] can be linked to affected servers. Based on the background knowledge
on installed software (organization-specific system knowledge) and CVE definitions mapped
to software versions, an analyst could ask for all vulnerabilities on a specific host.7 Naturally,
any other background knowledge can be linked and queried in a similar fashion.

Automation Manual inspection of each log event is generally infeasible due to the vast
amount of log data. Therefore, security analysts typically rely on reactive measures, such
as alarms triggered by simple rules and subsequent analysis of potential causes. Our
approach aims to reduce the burden on analysts by harmonizing various log sources and
facilitating highly expressive semantic queries. Based on the log vocabularies introduced
in this paper, we plan to develop methods for automated log interpretation and causal
linking of events in the future.

7The integration of formally modeled vulnerability information will be an interesting area for future work
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1 p r e f i x r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
2 p r e f i x s c l : <http :// pur l . org / s ep s e s /vocab/ coreLog#>
3 p r e f i x s y s l o g : <http :// pur l . org / s ep s e s /vocab/ log / sysLog#>
4 p r e f i x cve : <http :// pur l . org / s ep s e s /vocab/ cve#>
5

6 SELECT ?programName ?CVE ?CVE_Desc
7 WHERE { ? logEntry a s c l : LogEntry ;
8 s c l : or ig inatesFrom ? host ;
9 s y s l o g : hasProgram ?program .

10 ?program cve : ha sVu lne r ab i l i t y ?CVE;
11 s y s l o g : programName ?programName .
12 ?CVE cve : cveDesc ?CVE_Desc .
13 ? host s c l : hostName "kabul−VirtualBox"^^ rd f s : L i t e r a l }

Listing 2.4: CVE linking to affected servers

2.1.4. Related Work

Despite various initiatives to define common logging standards, a variety of log sources,
inconsistent log timestamps and content, and inconsistent log formats [7] remain a challenge
to this day. In the following, we partition related work into industrial practice, log
vocabularies, and approaches focused on semantic log analysis.

Industry A variety of logging systems are in production use today, such as operating
system logs (e.g., syslogd [43] and Windows Event Logs [44]), web server logs (e.g.,
Extended Log File Format [45], NGINX logging [46], W3C Extended log file format [47]),
database logs, firewall logs, etc. To collect and manage log messages from multiple sources,
a variety of services have emerged, including Splunk [48], Papertrail [49], Librato [50], and
Logstash [39], but they do not strive for semantic integration. Key-value based log formats,
such as LOGFMT [51] have become a common approach to format log data. To extract
information from raw textual log data, regular expressions are a widely used option.

Log vocabularies An early initiative to standardize heterogeneous vocabularies to express
electronic systems’ events in a uniform, device-independent manner is Common Event
Expression (CEE), which was driven by MITRE [52]. CEE distinguishes the taxonomy
(semantic event type), the log syntax (instance data), and the log transport component
for exchange. In 2014, however, MITRE stopped all work on CEE due to discontinued
funding of the U.S. Government.

Heterogeneous log file formats have been identified as a serious impediment to the
effectiveness of security controls and intrusion detection systems [53]. In the same paper,
the authors discuss disadvantages of existing common log formats for normalization of
security events and propose a new, extensible log format that is specifically designed for
intrusion detection purposes.

In another work that aims to apply semantics to log information [54], the authors focus
on web application firewalls and introduce ontologies to avoid ambiguities and vagueness.
They take a first step and propose OntoSeg, an ontology to model web application firewall
logs. The ontology was built in Protégé by inspecting actual log files and identifying major
classes and their relationships manually. Compared to our approach, their scope is rather
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narrow and focused on ontology engineering rather than large-scale RDF processing.

Another ontology-driven approach based on the well-known java logging utility log4j [55]
is RLOG [56]. It covers the basic classes for application logging, such as Log Entry, Log
Level, Status Code and the fundamental properties, like Logging message and Logging
date. In summary, this ontology comprises some basic concepts, but provides far less
than the expressiveness we require. Another ontology, with more depth is the OpenLink
Logging Ontology [57]. It uses FOAF, Dublin Core and OWL 2. The SPECIAL Policy
Log Vocabulary (Splog) [58] offers a vocabulary for log data that models processing and
sharing events that should comply with a given consent provided by a data subject. Due
to its specific purpose for consent checking, it does not cover the necessary elements to
model common log sources. The log provenance concepts from this vocabulary could be a
useful future extension for our approach.

Semantic log analysis An early approach towards semantic modeling of the logging
domain was developed in the context of computer forensics [59, 60]. The authors argue
that context information, such as environmental data and configuration information, is
vital in forensic analyses. Their overall goal is to develop a general solution (FORE -
"Forensics of Rich Events") to facilitate human understanding and automated inference.
To this end, they define an OWL ontology that captures event information and allows for
generalization and composition (e.g., DownloadExecutionEvent, which is composed of a
FileReceiveEvent and an ExecutionEvent). The authors develop a custom rule language,
based on F-Logic, to express correlation rules. An event browser provides the interface to
investigate events and explore detected causalities.

Although FORE aims for a similar goal as our approach (i.e., semantic log analysis), a
key difference is its strong focus on forensics. This is reflected in more heavyweight ontology
engineering approaches and their choice of technologies. Our approach is grounded in more
recently developed Linked Data and Semantic Web technologies such as JSON-LD and
state-of-the-art technologies for scalable log harvesting. This will allow us to implement
fast extraction pipelines and potentially allow processing of semantic log streams in (near)
real-time, based on recent advances in RDF stream processing technologies [61]. Finally,
whereas FORE’s ad-hoc ontologies were designed to illustrate particular use cases, we aim
to develop a modular vocabulary stack that can cover a variety of different log sources.

Another early approach that tackles the problem that manual review of syslog messages
is tedious and error prone is discussed in [62]. The authors apply machine-learning
algorithms to detect anomalies in the syslog message stream through classification and
investigate cause-effect hypotheses in large multiple-source event log sets. Automatically
generated word-granular regular expressions for system event logs are used. They consider
their approach as an alternative to expert systems, which require a set of rules that are
time-intensive to create and maintain.

A set of publications focuses on log files in connection with web usage mining. Properties
of web log data, such as their format, location, and access rules are discussed in [63].
Another Log Ontology (LO) for web usage mining is introduced in [64]. In this ontology,
ComplexEvents are composed out of AtomEvents, which is similar to the idea of extracting
high-level events from low-level events discussed in this paper.
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2.1.5. Conclusion

The SEPSES architecture introduced in this paper aims to create a versatile platform
for semantic security log analysis to facilitate effective and efficient security monitoring,
auditing, forensics, and incidence response applications.

This platform will support security analysts and complement their human intuition
and expertise with machine interpretation of security-related information. Thereby, we
aim to reduce the manual work necessary to connect individual pieces of information in
disparate log sources and support security analyses by contextualizing, integrating, and
linking disparate log information. This will create a semantically explicit, context-rich
environment that has the potential to complement existing intrusion detection techniques
and increase the precision of alerts and reduce security analysts’ "alert fatigue" due to a
large number of false positives they tend to generate.

In this paper, we focused on the foundation of the proposed approach to bring meaning
to vast volumes of raw textual log data, i.e., log vocabularies, log acquisition, and initial
extraction. We outlined how we combine state-of-the-art semantic web and log acquisition
technologies and illustrated how the vocabularies provide a foundation for alignment,
integration, and linking to background knowledge. Based on a prototypical implementation
and illustrative examples, we also highlighted how the proposed approach can tackle
current challenges in security analysis.

In future work, we will focus on the interpretation of individual events as well as semantic
techniques to establish relations between events and link them to security background
knowledge (e.g., vulnerabilities and threat intelligence). Next, we will investigate scalable
approaches for the storage and semantic querying of large log archives. To this end, we
will evaluate big data approaches and scalable linked data querying interfaces and explore
architectural options for scalable semantic log processing infrastructures. Finally, another
promising venue for future work on semantic security monitoring is RDF stream processing.
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2.2. An integrated knowledge graph for cybersecurity
information

Elmar Kiesling, Andreas Ekelhart, Kabul Kurniawan, Fajar Juang Ekaputra Published as
"The SEPSES knowledge graph:An integrated resource for cybersecurity", In: The Semantic
Web – ISWC 2019. vol.11779 p. 198-214.[28].

Abstract

This paper introduces an evolving cybersecurity knowledge graph that integrates and
links critical information on real-world vulnerabilities, weaknesses and attack patterns
from various publicly available sources. Cybersecurity constitutes a particularly interesting
domain for the development of a domain-specific public knowledge graph, particularly due to
its highly dynamic landscape characterized by time-critical, dispersed, and heterogeneous
information. To build and continually maintain a knowledge graph, we provide and
describe an integrated set of resources, including vocabularies derived from well-established
standards in the cybersecurity domain, an ETL workflow that updates the knowledge graph
as new information becomes available, and a set of services that provide integrated access
through multiple interfaces. The resulting semantic resource offers comprehensive and
integrated up-to-date instance information to security researchers and professionals alike.
Furthermore, it can be easily linked to locally available information, as we demonstrate by
means of two use cases in the context of vulnerability assessment and intrusion detection.

2.2.1. Introduction

Security and privacy have become key issues in today’s modern societies characterized by
a strong dependence on Information and Communication Technologies (ICT). Security
incidents, such as ransomware and data theft, are widely reported in the media and
illustrate the ongoing struggle to protect ICT systems. In their mission to secure systems,
security professionals rely on a wealth of information such as known and newly identified
vulnerabilities, weaknesses, threats, and attack patterns. Such information is collected and
published by, e.g., Computer Emergency Response Teams (CERTs), research institutions,
government agencies, and industry experts. Whereas a lot of relevant information is still
shared informally as text, initiatives to make security information available in well-defined
structured formats, largely driven by MITRE8 and NIST9, have made significant progress
and resulted in a wide range of standards [65]. These standards define high-level schemas
for cybersecurity information and have resulted in various structured lists that are available
for browsing on the web and for download in heterogeneous structured formats. This wealth
of cybersecurity data is highly useful, but the current approach for sharing it is associated
with several limitations: First, individual entities and data sets remain isolated and cannot
easily be referenced and linked from other data sets. Second, whereas the governed
schemas provide a well-defined structure, the semantics are not as well-defined. This limits
the potential for integration and automated machine interpretation. Consequently, the
resulting abundance of data raises challenges for security analysts and professionals who

8https://www.mitre.org
9https://nist.gov
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have to keep track of all the available sources and identify relevant information within
them.

In this paper, we propose that integrating cybersecurity information into a regularly
updated, public knowledge graph can overcome these limitations and open up exciting
opportunities for cybersecurity research and practice. Thereby, it is possible not only to
query public cybersecurity information, but also to use it to contextualize local information.
As we illustrate with two example use cases in this paper, this facilitates applications
such as (i) improved vulnerability assessment by automatically determining which new
vulnerabilities affect a given infrastructure, and (ii) improved incident response through
better contextualization of intrusion detection alerts.

Our main contributions can be summarized as follows: For cybersecurity research and
practice, we advance the state of the art by providing an integrated up-to-date view on
cybersecurity knowledge in a semantically explicit representation. Furthermore, we provide
tools and services to query and make use of this interlinked knowledge graph. From a
semantic web research perspective, we illustrate how Linked Data principles can be applied
to combine local and public knowledge in a highly dynamic environment characterized
by fast-changing, dispersed, and heterogeneous information. To this end, we develop an
ETL pipeline that integrates newly available structured data from public sources into the
knowledge graph, which involves acquisition, extraction, lifting, linking, and validation
steps. We provide the following resources10: (i) vocabularies for the rich representation
and interlinking of security-related information based on five well-established standards in
the cybersecurity domain. (ii) a comprehensive SEPSES Cybersecurity Knowledge Graph
(KG)11 with detailed instance data12 accessible through multiple interfaces. (iii) an ETL
workflow published as open source that updates the knowledge graph as new information
becomes available. (iv) a website13 that provides documentation, status information, and
pointers to the various access mechanisms provided. (v) a set of services to access the data,
i.e., a SPARQL endpoint, a triple pattern fragments interface, a Linked Data interface,
and download options for the whole data set as well as various subsets.

This semantic approach can provide a foundation for tools and services that support
security analysts in applying external security knowledge and efficiently navigating dynamic
security information. Ultimately, this should contribute towards improved cybersecurity
knowledge sharing and increased situational awareness, both in large organizations that
have dedicated security experts who are often overwhelmed by the large amount of
information, and in smaller organizations that do not have the resources to invest in
specialized tools and experts.

The remainder of this paper is organized as follows: Section 2.2.2 provides an overview
of related work; Section 2.2.3 covers construction and maintenance of the KG, including
vocabularies, data acquisition mechanisms, and updating pipelines; Section 2.2.4 provides
an overview of the provided mechanisms to access the data in the KG and discusses its
sustainability, maintenance and extensibility; Section 2.2.5 illustrates the usefulness of the
resource by means of two example use cases; Section 2.2.6 concludes the paper with an
outlook on future work.

10Available at https://w3id.org/sepses/cyber-kg
11Semantic Processing of Security Event Streams is an ongoing research project
1236,594,388 triples as of July 2, 2019
13https://sepses.ifs.tuwien.ac.at
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2.2.2. Related Work

Various information security standards, taxonomies, vocabularies, and ontologies have
been developed in academia, industry, and government agencies. In this subsection, we
review these lines of related work, which fall into two broad categories: (i) standard data
schemas for information sharing in the cybersecurity domain (covered in Section 2.2.2.1)
and (ii) higher-level conceptualizations of security knowledge (covered in Section 2.2.2.2).
We conclude the subsection by identifying the gap between those strands of work.

2.2.2.1. Standard Data Schemas

Efficient information exchange requires common standards, particularly in highly diverse
and dynamic domains such as cybersecurity. Hence, a set of standards has emerged that
define the syntax of description languages for structured cybersecurity information and the
semantics associated with those descriptions in natural language. Some of these standards
are driven by traditional standardization bodies such as ISO, ITU, IEEE or IETF. The
majority, however, are contributed by open source communities or other entities such as
MITRE14, a not-for-profit research and development cooperation.15

Salient examples for information sharing standards, all of which are integrated in the
knowledge graph presented in this paper, include Common Vulnerabilities and Expos-
ures (CVE)16 for publicly known vulnerabilities, Common Attack Pattern Enumeration
and Classification (CAPEC)17 for known attack patterns used by adversaries, Common
Weakness Enumeration (CWE)18 for software security weaknesses, Common Platform
Enumeration (CPE)19 for encoding names of IT products and platforms, and Common
Vulnerability Scoring System (CVSS)20 for vulnerability scoring. These standards are
widely used by security practitioners and integrated into security products and services,
but they also serve as an important point of reference for research.

2.2.2.2. Security Ontologies

A related line of academic research aims at a high-level conceptualization of information
security knowledge, which has resulted in numerous ontologies (e.g., [66, 67, 68, 69, 70,
71, 72]) that typically revolve around core concepts such as asset, threat, vulnerability,
and countermeasure. The resulting security ontologies are typically scoped for particular
application domains (e.g., risk management, incident management). The high-level ontology
developed in [73], for instance, mainly focuses on malware and aspects such as actors,
victims, infrastructure, and capabilities. The authors argue that expressive semantic models
are crucial for complex security applications and name Open Vulnerability and Assessment
Language (OVAL), CPE, Common Configuration Enumeration (CCE), and CVE as the
most promising starting points for the development of a cybersecurity ontology. Inspired
by that work, Oltramari et al. [74] introduce an ontological cyber security framework

14https://www.mitre.org
15For a review of standards for the exchange of security information, cf. [65].
16https://cve.mitre.org
17https://capec.mitre.org
18https://cwe.mitre.org
19https://cpe.mitre.org
20https://www.first.org/cvss/
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that comprises a top-level ontology based on DOLCE, a mid-level ontology with security
concepts (e.g., threat, attacker, vulnerability, countermeasure), and a domain ontology of
cyber operations including defensive and offensive actions. A comprehensive survey and
classification of similar security ontologies can be found in [75].

More recently, various initiatives aimed at developing security ontologies that cover the
standard schemas outlined in Section 2.2.2.1, including an ontology for CVE vulnerabilities
[76, 77, 78] that can be used to identify vulnerable IT products. Ulicny et al. [79]
take advantage of existing standards and markup languages such as Structured Threat
Information eXpression (STIX), CAPEC, CVE and CybOX and transform their respective
XML schemas through XSLT translators and custom code into a Web Ontology Language
(OWL) ontology. Furthermore, they integrate external information, e.g., on persons, groups
and organizations, IP addresses (WhoIs records), geographic entities (GeoNames), and
“killchain” phases. In an application example, the authors illustrate how this can help
to inspect intrusion detection events, e.g., by mapping events to kill chain stages and
obtaining more information about threat actors based on IP addresses.

As part of a research project (STUCCO), Iannacone et al. [80] outline an approach for
a cybersecurity knowledge graph and note that they aim to integrate information from
both structured and unstructured data sources. Some extraction code and JSON schema
data is available on the project website21 but no integrated knowledge graph has been
published. In a similar effort, Syed et al. [81] integrate heterogeneous knowledge schemas
from various cybersecurity systems and standards and create a Unified Cybersecurity
Ontology (UCO) that aligns CAPEC, CVE, CWE, STIX, Trusted Automated eXchange
fo Indicator Information (TAXII)22 and Att&ck23. Whereas most ontologies proposed in
the literature are not publicly available, UCO is offered for download24, including some
example instances from industry standard repositories. However, the instance data in the
dump is neither complete nor updated, and there is no public endpoint available. Finally,
the Cyber Intelligence Ontology25 is another example of an ontology that is available
for download in RDF and offers classes, properties and restrictions on many industry
standards, but no instance data.

Overall, a review of related work shows that although basic concepts in the cybersecurity
domain have been formalized repeatedly, no model has so far emerged as a standard.
Furthermore, the proposed high-level conceptualizations typically lack concrete instance
information.

On the other hand, there are many standards for cybersecurity information sharing
and the information is published in various structured formats26, navigable on the web
and/or available for download; however, there is no integrated view on this scattered,
heterogeneous information. Hence, each application that makes use of the published
data has to parse and interpret each source individually, which makes reuse, machine
interpretation, and integration with local data difficult. In the following subsection, we
describe how an evolving cybersecurity knowledge graph that provides an integrated
perspective on the cybersecurity landscape can fill this gap.

21https://github.com/stucco
22https://oasis-open.github.io/cti-documentation/
23https://attack.mitre.org
24https://github.com/Ebiquity/Unified-Cybersecurity-Ontology
25https://github.com/daedafusion/cyber-ontology
26Most commonly as XML or JSON files
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2.2.3. Knowledge Graph Construction and Evolution

To construct and regularly update the SEPSES Cybersecurity KG, we define a set of
vocabularies, described in Section 2.2.3.1, and an architecture for initial ingestion and
incremental updating of the graph, covered in Section 2.2.3.2. Publication via Linked Data
(LD), Triple Pattern Fragments (TPF), a SPARQL endpoint, and RDF dumps are covered
in Section 2.2.4.

2.2.3.1. Conceptualization and Vocabularies

To model the domain of interest, we started with a survey and found that the vast majority
of conceptualizations described in the literature are not available online. Those that were
available did not provide sufficiently detailed classes and properties to represent all the
information available in the cybersecurity repositories we target.

Hence, we opted for a bottom-up approach starting from a set of well-established
industry data sources. We structured our vocabularies based on the schemas used to
publish existing instance data and chose appropriate terms based on the survey of existing
conceptualizations. In choosing this approach, our main design goal was to include the
complete information from the original data sources and make the resulting knowledge
graph self-contained. To facilitate mapping to other existing conceptualizations, we kept
the Resource Description Framework (RDF) model structurally similar to the data models
of the original sources. This should make it easy for users already familiar with the original
data sources to navigate and integrate our semantic resource. Furthermore, we can easily
refer to the original documentation and examples in the vocabularies. We then created

Figure 2.5.: SEPSES Knowledge Graph Vocabulary High-level Overview

a schema that covers the following security information repositories (cf. Figure 2.5 for a
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high-level overview).27

CVE is a well-established industry standard that provides a list of identifiers for publicly
known cybersecurity vulnerabilities. In addition to CVE, we integrate the National U.S.
Vulnerability Database (NVD), which enriches CVEs with additional information, such as
security checklist references, security-related software flaws, misconfigurations, product
names, and impact metrics. We represent this information in the CVE class, which
includes data type properties such as cve:cveId, cve:description, cve:issued and
cve:modified timestamps. Based on the NVD information, we can link CVE to affected
products (cve:hasCPE), vulnerable configurations (cve:hasVulnerableConfiguration),
impact scores (cve:hasCVSS), related weaknesses (cve:hasCWE), and external references
(cve:hasReference).

CVSS provides a quantitative model to describe characteristics and impacts of IT
vulnerabilities. It is well-established as a standard measurement system for organizations
worldwide. We integrate the CVSS scores provided by NVD, and model the CVSS metrics
by means of the CVSSBaseMetric, CVSSTemporalMetric, and CVSSEnviron-
mentalMetric classes to comply with the CVSS specification28.

CPE provides a structured naming scheme for IT systems, software, and packages
based on URIs. NIST hosts and maintains the CPE Dictionary, which currently is based
on the CPE 2.3 specification. We represent CPEs with the CPE class and reference
product information with cpe:hasProduct. Furthermore, we define a set of properties
that describe a product, such as product name, version, update, edition, language, etc.
The vendor of each product is modeled as a Vendor and referenced by cpe:hasVendor.

CWE is a community-developed list of common software security weaknesses that
contains information on identification, mitigation, and prevention. NVD vulnerabilities
are mapped to CWEs to offer general vulnerability information. This information is
modeled using the CWE class and a set of datatype properties such as cwe:id, cwe:name,
cwe:description, and cwe:status, as well as object properties, to, e.g., link applicable
platforms (cwe:hasApplicablePlatform), attack patterns (cwe:hasCAPEC), consequences
(cwe:hasCommonConsequence), related weaknesses to model the CWE hierarchy (cwe:has-
RelatedWeakness) and potential mitigations (cwe:hasPotentialMitigation).

CAPEC is a dictionary of known attack patterns used by adversaries to exploit
known vulnerabilities, and can be used by analysts, developers, testers, and educat-
ors to advance community understanding and enhance defenses. We model CAPEC
patterns in the CAPEC class with datatype properties such as capec:id, capec:name,
capec:likelihoodOfAttack, and capec:description. Additional information is linked
via object properties such as consequences capec:hasConsequences, required skills capec:hasSkillRequired,
attack prerequisites capec:prerequisites, and attack consequences capec:hasConsequence.

Most of these data sets define identifiers for key entities such as vulnerabilities, weaknesses,
and attack patterns and reuse some concepts from other standards (e.g., CPE names
and CVSS scores are used within CVE). In the next subsection, we will describe how we
leverage these references to link the data.

27The figure omits detailed concepts for the sake of clarity. The complete vocabularies can be found at
https://github.com/sepses/vocab

28https://www.first.org/cvss/specification-document
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2.2.3.2. ETL Process

Figure 2.6 illustrates the overall architecture and the data acquisition, resource extraction,
entity linking and validation, storage and publication steps necessary to provide a continu-
ously updated cybersecurity knowledge graph. In the following, we describe the steps in
the core Extraction, Transformation, Loading (ETL) process that periodically checks and
digest data from the various sources.

Figure 2.6.: Architecture: ETL process and publishing

Data Acquisition We populate our KG using data from various sources that provide data
on their respective web sites for download in heterogeneous formats such as CSV, XML,
and JSON. These cybersecurity data sources are updated regularly to reflect changes in
the real-world. CVE data, for instance, is typically updated once every two hours.29 In
order to capture changes and reflect them in the knowledge graph, our ETL engine will
regularly poll for updates and ingest the latest version of the sources.

Resource Extraction We use the caRML engine30 to transform the original source files
from their various formats. Furthermore, we use Apache Jena31 to transform the raw RDF
data obtained from the RML mappings into the structure of the final ontology. Initially, we
developed RDF Mapping Language (RML) transformation mappings that utilized specific
features from caRML, such as carml:multiJoinCondition. Due address performance issues,
however, we decided to restructure the initial mapping into generic RML mappings that do
not involve specific constructs from caRML, which improved performance considerably.32

Because the original data sources have an established ID system, instance ID generation
was straightforward for most sources (i.e., CWE, CVE CAPEC, and CVSS). For CPE,
29cf. https://nvd.nist.gov/vuln/data-feeds
30https://github.com/carml/carml
31https://jena.apache.org
32In some cases, this reduced processing time from appr. an hour to less than a minute.
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however, the instance name is a composite of several naming elements (e.g., product name,
part, vendor, version, etc.), separated by special characters. To solve the issue, we use
XPath functions to clean and produce a unique name for each CPE instance.

Entity linking & Validation In this part of the ETL process, we link data from different
sources based on common identifiers in the data. Each CWE weakness, for example,
typically references several CAPEC attack patterns. Based on these identifiers, we create
direct links between associated resources. Specifically for CPE, we deploy the exact same
XPath functions for its identifier in the two sources (CPE and CVE) where CPE instances
are generated, to make sure that these data can be linked correctly. To ensure data quality,
we validate the generated RDF with SHACL to make sure that the necessary properties
are included for each generated individual. Furthermore, we validate whether the resulting
resources are linked correctly, as references to identifiers that are not or no longer available
in other data sets are unfortunately a common issue. As an example, a CVE instance may
have a relation to another resource such as a CPE identifier. In this case, the validation
mechanism will check whether the referenced CPE instance exists in the extracted CPE
data, log missing instances and create temporary resources for them.

Data storage We store the extracted data in a triple store and generate statistics such
as parsing time, parsing status (success or fail), counts of instances, links, and generation
time. To make sure that the data is continuously up to date, we wrote a set of bash scripts
that are set to be executed in regular intervals to trigger the knowledge generation process
and store the result in the triple store. To date, this resulted in more than half a million
instances and 36 million triples; Section 2.2.3.2 provides a breakdown of the generated
data.

CVE CVSS CPE CWE CAPEC SnortRules
Axioms 68 248 111 256 149 486
Class Count 7 9 5 10 8 10
Object Property Count 6 8 4 9 6 10
Data Property Count 8 37 18 40 22 103
Individual count 123,005 123,220 393,695 808 516 3,488

Table 2.2.: SEPSES Knowledge Graph Statistics33

2.2.4. Knowledge Graph Access

The SEPSES web site34 provides pointers to the various resources covered in this paper,
i.e., the LD resources35, the SPARQL36 and TPF query interfaces37, a download link for
the complete RDF snapshots38, and the ETL engine source code39. This allows users to
choose the most appropriate access mechanism for their application context.
33As per July 2, 2019.
34https://w3id.org/sepses
35e.g., https://w3id.org/sepses/resource/cve/CVE-2014-0160
36https://w3id.org/sepses/sparql
37https://ldf-server.sepses.ifs.tuwien.ac.at
38https://w3id.org/sepses/dumps/
39https://github.com/sepses/cyber-kg-converter
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2.2.4.1. Sustainability, Maintenance and Extensibility

The SEPSES KG is being developed jointly by TU Wien and SBA Research, a well-
established research center for information security that is embedded within a network of
more than 70 companies as well as 15 Universities and research institutions. Endpoints and
data sets are hosted at TU Wien and maintained as part of the research project SEPSES,
which aims to leverage semantic web technologies for security log interpretation. During
this project, we will extend the KG and leverage it as background knowledge in research
on semantic monitoring and forensic analysis.

To keep the KG in sync with the evolving cybersecurity landscape, we will continue
to automatically poll and process updates of the original raw data sources. We choose
our polling strategy according to the varying update intervals of the data sources: CVEs
are typically updated once every two hours, CPEs are typically updated daily. CWE and
CAPEC are less dynamic and are updated approximately on a yearly schedule.

Furthermore, SBA Research has an active interest in developing and diffusing the KG
internally and within its partner network, which will secure long-term maintenance beyond
the current research project. We also expect the KG to grow and establish an active
external user community during that time. To this end, we publish our vocabularies and the
source code under an open source MIT license40 and encourage community contributions.41

Adoption success will be measured (i) based on access statistics (web page access, SPARQL
queries, downloads, etc.), and (ii) the emergence of a community around the knowledge
graph (code contributions, citations, attractiveness as a linked data target, number of
research and community projects that make use of it, etc.).

2.2.5. Use Cases

In this subsection, we illustrate the applicability of the cybersecurity knowledge graph by
means of two example scenarios.

2.2.5.1. Vulnerability Assessment

In security management, identifying, quantifying, and prioritizing vulnerabilities in a
system is a key activity and a necessary precondition for threat mitigation and elimination
and hence for the successful protection of valuable resources. This Vulnerability Assessment
(VA) process can involve both active techniques such as scanning and penetration testing
and passive techniques such as monitoring the wealth of public data sources for relevant
vulnerabilities and threats. For the latter, keeping track of all the relevant information
and determining relevance and implications for the assets in a system is a challenging task
for security professionals. In this scenario, we illustrate how the developed knowledge
graph can support security analysts by linking organization-specific asset information to a
continuously updated stream of known vulnerabilities.

Setting: To illustrate the approach, we modeled a simplified example network comprising
of three Hosts – two workstations, a server – and NetworkDevices. All hardware
components are sub classes of ITAssets. Furthermore, we model the software installed
40https://opensource.org/licenses/MIT
41The original raw data are published by MITRE with a no-charge copyright license and by NVD without

copyright.
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on each Host by means of the hasInstalledProduct property that links the host to a
CPE specification. To determine the potential severity of an impact, we also include
DataAssets, their classification (public, private, restricted), and their storage location
(storedOn Host) in the model. In practice, the modeling of a system can be supported
by existing IT asset/software discovery and inventory tools.

Query 1: Once a model of the local system has been created, the vulnerability information
published in the cybersecurity knowledge graph can be applied and contextualized by
means of a federated SPARQL query. Note that we also provide a TPF interface for
efficient querying. In particular, a security analyst may be interested in all known
vulnerabilities that potentially apply to each host, based on the software that is installed
on it (cf. Listing 2.5). Table 2.3 shows an example query result. Each resource in the
table points to its Linked Data representation, which can serve as a starting point for
further exploration. Note that as new vulnerability information becomes available and
is automatically integrated into the knowledge graph through the process described in
Section 2.2.3, the query results will automatically reflect newly identified vulnerabilities.

1 PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
2 PREFIX a s s e t : <http :// w3id . org / s ep s e s /vocab/bgk/assetKnowledge#>
3 PREFIX cve : <http :// w3id . org / s ep s e s /vocab/ r e f / cve#>
4 PREFIX cpe : <http :// w3id . org / s ep s e s /vocab/ r e f / cpe#>
5 PREFIX cvss : <http :// w3id . org / s ep s e s /vocab/ r e f / cvs s#>
6 PREFIX cwe : <http :// w3id . org / s ep s e s /vocab/ r e f /cwe#>
7

8 SELECT d i s t i n c t ?hostName s t r (? ip ) as ?IP ? product
9 ( group_concat (? cveId ) as ? cve Ids ) from

10 <http :// l o c a l h o s t :8890/ loca ldata2 >
11 WHERE {
12 ? s a a s s e t : Host .
13 ? s r d f s : l a b e l ?hostName .
14 ? s a s s e t : ipAddress ? ip .
15 ? s a s s e t : hasProduct ?p .
16 SERVICE <http :// s ep s e s . i f s . tuwien . ac . at / sparq l> {
17 ? cve cve : hasCPE ?p .
18 ? cve cve : id ? cveId .
19 ?p cpe : t i t l e ? product .
20 }
21 }
22 group by ?hostName ? ip ? product

Listing 2.5: Vulnerability Asessment Query 1 – Vulnerable Assets

hostName IP product cveIds
DBServer1 192.168.1.3 Windows Server 2016 CVE-2016-3332, . . . , CVE-2017-8746
Workstation1 192.168.1.1 Windows 10 CVE-2016-3302, . . . , CVE-2015-2554

Table 2.3.: Vulnerability Assessment Query 1 – Results

Query 2: In order to assess the potential impact that a newly identified vulnerability
may have, it is critical to asses which data assets might be exposed if an attacker can
successfully exploit it. In the next step, we hence take advantage of the modeled data
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assets and formulate a query (cf. Listing 2.6) to retrieve the most severe vulnerabilities,
i.e., those that affect hosts that store sensitive private data (classification value = 1) and
have a complete confidentiality impact (as specified in CVSS). Table 2.4 shows the query
result and illustrates how such immediate analysis can save time by avoiding manual
investigation steps.

1 SELECT DISTINCT ?hostName ? cveId
2 ? c o n f i d e n t i a l i t y as ? conf ? cvs sScore AS ? s co r e ? dataAsset ? c l a s s i f i c a t i o n AS

? c l a s s ? consequence
3 FROM <http :// l o c a l h o s t :8890/ loca lda ta >
4 WHERE {
5 ? s a a s s e t : Host .
6 ? s r d f s : l a b e l ?hostName .
7 ? s a s s e t : hasProduct ? product .
8 ? s a s s e t : hasDataAsset ?dt .
9 ?dt r d f s : l a b e l ? dataAsset .

10 ?dt a s s e t : h a sC l a s s i f i c a t i o n ? c .
11 ? c r d f s : l a b e l ? c l a s s i f i c a t i o n .
12 ? c a s s e t : d a t aC l a s s i f i c a t i onVa l u e ? cv
13 FILTER (? c o n f i d e n t i a l i t y = "COMPLETE")
14 FILTER (? cv = 1)
15

16 SERVICE <http :// s ep s e s . i f s . tuwien . ac . at / sparq l> {
17 ? cve cve : hasCPE ?product .
18 ? cve cve : id ? cveId .
19 ? cve cve : hasCVSS2BaseMetric ? cvss2 .
20 ? cvss2 cvs s : c on f i d en t i a l i t y Impac t ? c o n f i d e n t i a l i t y .
21 ? cvss2 cvs s : baseScore ? cvs sScore .
22 ? cve cwe :hasCWE ?cwe .
23 ?cwe cwe : hasCommonConsequence ? cc .
24 ? cc cwe : consequenceImpact ? consequence
25 }
26 }

Listing 2.6: Vulnerability Assessment Query 2 – Critical Vulnerabilities42

Exploration: The query results can serve as a starting point for further exploration
of the Linked Data in the knowledge graph43. By navigating it, a security analyst can
access information from various sources such as, e.g., attack prerequisites and potential
mitigations from CAPEC, weakness classifications and potential mitigations from CWE,
and scorings from CVSS.

hostName cveId conf score dataAsset class consequence
Workstation2 2016-1646 COMPLETE 9.3 EmpData Private Read Memory
Workstation2 2016-1653 COMPLETE 9.3 EmpData Private DoS: Crash, Exit. . .
Workstation2 2016-1583 COMPLETE 7.2 EmpData Private DoS: Resource Cons. . .
Workstation2 2016-1583 COMPLETE 9.3 EmpData Private Execute Unauthorized . . .

Table 2.4.: Vulnerability Assessment Query 2 – Results

42Prefixes identical to Listing 2.5
43e.g., https://w3id.org/sepses/resource/cve/CVE-2016-1646
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2.2.5.2. Intrusion Detection

In this scenario, we illustrate how alerts from the Network Intrusion Detection System
(NIDS) Snort44 can be connected to the SEPSES Cybersecurity KGin order to obtain a
deeper understanding of potential threats and ongoing attacks. As a first step, we acquired
the Snort community rule set45 and integrated it into our cybersecurity repository using a
defined vocabulary46. Snort can monitor these rules and trigger alerts once it finds matches
to these patterns in the network traffic. We represent SnortRules as a class with two
linked concepts SnortRuleHeader and SnortRuleOption. For SnortRuleOption
we include properties such as sr:hasClassType and sr:hasCVEReference, which will be
used to link incoming alerts to CVEs.

1 [ ∗ ∗ ] [ 1 : 1 8 0 7 : 1 2 ] WEB−MISC Chunked−Encoding t r a n s f e r attempt [ ∗ ∗ ]
2 [ C l a s s i f i c a t i o n : Web Appl i ca t ion Attack ] [ P r i o r i t y : 1 ]
3 11/10 −11:10:12.321349 10 . 2 . 1 89 . 2 48 : 5 4208 −> 154 . 2 41 . 8 8 . 2 01 : 8 0
4 TCP TTL:61 TOS:0 x0 ID :36462 IpLen :20 DgmLen:1200 DF
5 ∗∗∗A∗∗∗∗ Seq : 0xCFAD1EE0 Ack : 0xB27D1032 Win : 0xB7 TcpLen : 32
6 TCP Options (3 ) => NOP NOP TS: 2592976 143157138

Listing 2.7: IDS Alert Example from MACCDC

Setting: We use a large data set collected during the MACCDC 201247 cybersecurity
competition as a realistic set of real-world intrusion detection alerts (cf. Listing 2.7 for
an example). We provide and use a Snort alert log vocabulary48 to map those alerts into
RDF.

Query: When a Snort alert is triggered, a security expert typically has to analyze
its relevance and decide about potential mitigations. False positives are common in
this context. For instance, a particular attack pattern may be detected frequently in a
network, but it may not be relevant if the targeted host configuration is not vulnerable. To
support security analysts in this time-critical and information-intensive analysis task, we
identify the corresponding Snort rule that triggered each particular alert. These rules often
include a reference to a CVE, which we can use to query our knowledge graph for detailed
CVE information related to an alert. Furthermore, by matching the installed software
on the host to the vulnerable product configuration defined in CVE (cf. Scenario 1),
we can automatically provide security decision makers a better foundation to estimate
the relevance of a Snort alert wrt. to their protected assets. To illustrate this process,
Listing 2.8 shows an example query to obtain CVE Ids and vulnerable products from Snort
alerts. Based on the result Table 2.5, a security analyst can query if the attacked host has
the vulnerable software installed (similar to Listing 2.5).

44https://www.snort.org
45https://www.snort.org/downloads
46https://w3id.org/sepses/vocab/rule/snort
47https://maccdc.org/2012-agenda/, source: https://www.secrepo.com
48https://w3id.org/sepses/vocab/log/snort-alert
49Prefixes from Listing 2.5 are reused.
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1 PREFIX cve : <http :// w3id . org / s ep s e s /vocab/ r e f / cve#>
2 PREFIX cpe : <http :// w3id . org / s ep s e s /vocab/ r e f / cpe#>
3 PREFIX snor t : <http :// w3id . org / s ep s e s /vocab/ r e f / snor t#>
4 PREFIX snort−r u l e : <http :// w3id . org / s ep s e s /vocab/ ru l e / snor t#>
5 PREFIX snort−a l e r t : <http :// w3id . org / s ep s e s /vocab/ log / snort−a l e r t#>
6

7 SELECT DISTINCT ? a l e r t ?message ? s i d ? source Ip ? d e s t i n a t i on Ip ? cveId ? cpeId
8 FROM <http :// l o c a l h o s t :8890/ sno r t a l e r t >
9 WHERE {

10 ? a l e r t a snort−a l e r t : IDSSnortAlertLogEntry ;
11 snor t : s i gna tu r e Id ? s i d ;
12 snor t : message ?message ;
13 snor t : source Ip ? source Ip ;
14 snor t : d e s t i n a t i on Ip ? d e s t i n a t i on Ip .
15

16 SERVICE <http :// w3id . org / s ep s e s / sparq l> {
17 ? ru l e a snort−r u l e : SnortRule ;
18 snort−r u l e : hasRuleOption ? ruleOpt ion .
19 ? ru leOpt ion snor t : s i gna tu r e Id ? s i d ;
20 snort−r u l e : hasCveReference ? cve .
21 ? cve cve : id ? cveId ;
22 cve : hasCPE/cpe : id ? cpeId
23 }
24 }

Listing 2.8: Intrusion Detection query49

alert message sid sourceIP targetIP cveId cpeId
Alert001 WEB-MISC Chunked. . . 1807 10.2.190.254 154.241.88.201 2002-0392 cpe:/a:apa. . .
Alert002 WEB-MISC WebDAV. . . 1070 10.2.190.254 154.241.88.201 2000-0951 cpe:/a:micr. . .
Alert003 WEB-MISC TRACE. . . 2056 10.2.197.241 154.241.88.201 2004-2320 cpe:/a:bea:w. . .
Alert004 WEB-FRONTPAGE. . . 1248 10.2.190.254 154.241.88.201 2001-0341 cpe:/o:micr. . .
Alert005 WEB-MISC Netscape. . . 1048 10.2.197.241 154.241.88.201 2001-0250 cpe:/a:netsc. . .

Table 2.5.: Intrusion Detection Query Results
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2.2. An integrated knowledge graph for cybersecurity information

2.2.6. Conclusion

In this resource paper, we highlight the need for semantically explicit representations
of security knowledge and the current lack of interlinked instance data. To tackle this
challenge, we present a cybersecurity knowledge graph that integrates a set of widely
adopted, heterogeneous cybersecurity data sources.

To maintain the knowledge graph and integrate newly available information, we developed
an ETL process that updates it as new security information becomes available. In order to
make this resource publicly available and easy to use, we offer multiple services to access
the data, including a SPARQL endpoint, a triple pattern fragments interface, a Linked
Data interface, and download options for the complete data set.

We demonstrated the usefulness of the graph by means of two example use cases
in vulnerability assessment and semantic interpretation of alerts generated by intrusion
detection systems. Given the compelling need for efficient exchange of machine-interpretable
cybersecurity knowledge, we expect the KG to be useful for practitioners and researchers,
and hope that the resource will ultimately facilitate novel and innovative semantic security
tools and services. Future work will focus on disseminating the resource in the security
domain, building a community of users and contributors around it, and growing the
knowledge graph by integrating additional security standards and information extracted
from structured and unstructured sources.
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3. Semantic Log Integration, Monitoring
and Analysis

In this chapter, we present our contributions that address our second research question
(RQ2), i.e. "How can dispersed log data and cybersecurity information be integrated and
interlinked?". We answer this research question by two approaches structured in two
sections as follows:

• Cross-Platform Semantic Log Monitoring and Forensics. This section
discusses an approach for semantic log monitoring and forensics across heterogeneous
platforms. We design and implement an architecture that includes semantic log
acquisition, extraction, linking & storage. In particular, we extend our previously
developed log vocabularies to not only model low-level log events but also represent
high-level events (i.e., File Access Event). We leverage RDF Stream Processing (RSP)
engines to execute semantic continuous queries to track file system activity across
hosts. Furthermore, using semantic query federation, we can not only integrate logs,
but can also link and contextualize them to the external background knowledge, e.g.,
vulnerability information, attack patterns, etc.

• Virtual Knowledge Graph for Distributed Security Log Analysis. This
section discusses a distributed approach for log analysis based on Virtual Know-
ledge Graph (VKG). Specifically, we introduce a novel concept and architecture
to dynamically extract heterogeneous raw log sources into log knowledge graphs
directly from the distributed monitoring hosts at query time, i.e., without a priori log
parsing, aggregation, processing, and materialization. We leverage semantic query
federation that can not only integrate log graphs from dispersed sources but also
link and contextualize them to internal/external background knowledge (e.g., asset
information, cybersecurity information, etc.) on demand.
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3.1. Cross-Platform Semantic Log Monitoring and Forensics

Kabul Kurniawan, Elmar Kiesling, Andreas Ekelhart, Fajar Juang Ekaputra.
Published as "Cross-Platform File System Activity Monitoring and Forensics – A Semantic
Approach" in ICT Systems Security and Privacy Protection. SEC 2020 [30].

Abstract

Ensuring data confidentiality and integrity are key concerns for information security
professionals, who typically have to obtain and integrate information from multiple sources
to detect unauthorized data modifications and transmissions. The instrumentation that
operating systems provide for the monitoring of file system level activity can yield important
clues on possible data tampering and exfiltration activity but the raw data that these
tools provide is difficult to interpret, contextualize and query. In this paper, we propose
and implement an architecture for file system activity log acquisition, extraction, linking
and storage that leverages semantic techniques to tackle limitations of existing monitoring
approaches in terms of integration, contextualization, and cross-platform interoperability.
We illustrate the applicability of the proposed approach in both forensic and monitoring
scenarios and conduct a performance evaluation in a virtual setting.

3.1.1. Introduction

In our increasingly digitized world, Information and Communication Technologies pervade
all areas of modern life. Consequently, organizations face difficult challenges in protecting
the confidentiality and integrity of the data they control, and theft of corporate information
– i.e., data breaches or data leakage – have become a critical concern [82].

In the face of increasingly comprehensive collection of sensitive data, such incidents
can become an existential threat that severely impacts the affected organization, e.g., in
terms of reputation loss, decreased trustworthiness, and direct consequence that affect
their bottom line. Fines and legal fees, either due to contractual obligations or laws and
regulations (e.g., the General Data Protection Regulation in the EU), have become another
critical risk. Overall, the number and size of data breaches have been on the rise in recent
years years1.

On a technical level, exfiltration of sensitive data is often difficult to detect. In this
context, we distinguish two main types of adversaries and associated threat models: (i) an
insider with legitimate access to data, who either purposely or accidentally exfiltrates
data, and (ii) an external attacker who obtains access illegitimately. Insiders typically
have multiple channels for exfiltration at their disposal, including conventional protocols
(e.g., ftp, sftp, ssh, scp), cloud storage services (e.g., dropbox, onedrive, google drive,
WeTransfer), physical media (e.g., USB, laptop, mobile phone), messaging and email
applications, and dns tunneling [83]. Whereas an insider may leverage legitimate access
permissions directly or at least internal resources as a starting point, an external attacker
must first infiltrate the organization network and obtain access to the data (e.g., by
spreading malware or spyware, stealing credentials, eavesdropping, brute forcing employee
passwords, etc.).

1https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hac
ks/

48

https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/


3.1. Cross-Platform Semantic Log Monitoring and Forensics

State-of-the-art perimeter security solutions such as intrusion detection and prevention
systems (IDS/IPS), firewalls, and network traffic anomaly detection are per se generally
not capable of detecting insider attacks [84]. However, such activities typically leave traces
in the network and on the involved systems, which can be used to spot potential misuse
in real time or to reconstruct and document the sequence of events associated with an
exfiltration and its scope ex-post. This examination, interpretation, and reconstruction of
trace evidence in the computing environment is part of digital forensics. Upon detection of
security violations, forensic analysts attempt to investigate the relevant causes and effects,
frequently following the hypothesis-based approach to digital forensics [85]. Although
there are a variety of tools and techniques available that are employed during a digital
investigation, the lack of integration and interoperability between them, as well as the
formats of their sources and resulting data hinder the analysis process [86].

In this paper, we introduce a novel approach that leverages semantic web technologies
to address these challenges in the context of file system activity analysis. This approach
can harmonize heterogeneous file and process information across operating systems and
log sources. Furthermore, it provides contextualization through interlinking with relevant
information and background knowledge.

The research question we address in this article is: How can semantic technologies support
digital file activity investigations? Addressing this question resulted in the following main
contributions: (i) a set of log and file event vocabularies (Section 3.1.3); (ii) an architecture
and prototypical implementation for file system log acquisition, event extraction, and
interlinking across heterogeneous systems and with background knowledge (Section 3.1.4);
(iii) a set of demonstration scenarios for continuous monitoring and forensic investigations
(Section 3.1.5); and (iv) a performance evaluation in a virtual setting (Section 3.1.6).

3.1.2. Related Work

Our approach builds upon and integrates multiple strands of work, which we will review in
the following: (i) approaches for file activity monitoring, both in the academic literature
and commercial tools; (ii) file system ontologies; and (iii) semantic file monitoring &
forensics.

File Activity Monitoring In contrast to the approach presented in this paper, prior work
in this category does not involve semantic or graph-based modeling, which facilitates
interoperability and integration, contextualization through interlinking with background
knowledge, and reasoning.

The authors in [87] focus on data exfiltration by insiders. They first apply statistical
analyses to characterize legitimate file access patterns and compare those to file access
patterns of recent activities to identify anomalies. The authors mention that the approach
can result in a high number of suspicious activities, which can be impractical for individual
investigation. [88] aims to predict insider threats by monitoring various parameters such
as file access activity, USB storage activity, application usage, and sessions. In their
evaluation, they train a deep learning model on legitimate user activity and then use the
model to assign threat scores to unseen activities. In [89], the authors introduce a policy-
based system for data leakage detection that utilizes operating system call provenance.
They facilitate real-time detection of data leakage by tracking operations performed on
sensitive files. This approach is similar to the one presented in this paper in its objectives,
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i.e., it also aims to monitor file activities (copy, rename, move), but it does not cover
contextualization and linking to background knowledge. [90] proposes an approach that
leverages data provenance information from OS kernel messages to detect exfiltration of
data returned to users from a database. The proposed system builds profiles of users’
actions to determine whether actions are consistent with the tasks of the users. While it
has similar goals, the focus is limited on data exfiltration from databases via files.

Apart from the academic research on various techniques for file activity monitoring, a
wide range of tools is available commercially, such as Solarwind Server and Application
Monitor, ManageEngine DataSecurity Plus, PA File Insight, STEALTHbits File Activity
Monitor, and Decision File Audit. These tools cover varying scopes of leakage detection
and typically provide a simple alerting mechanism upon suspicious activity. Another
category of existing tools are Security Information and Event Management systems (e.g.,
LogDNA, Splunk, ElasticSearch). Their purpose is to manage and analyze logs and they
do not specifically tackle the problem of tracking file activity life-cycles.

File System Ontologies Ontological representation of file system information has been
explored, e.g., in [91], in which the authors propose TripFS, a lightweight framework
that applies Linked Data principles for file systems in order to expose their content
via dereferenceable HTTP URIs. The authors model file systems with their published
vocabulary that is aligned with the NEPOMUK File Ontology (NFO)2. Similar to TripFS,
[92] proposes VDB-FilePub to expose file systems as Linked Data and to publish user-
defined content metadata. With focus on end-user access, [93] provide an extension to
TripFS which enables users to navigate the published files, and to annotate and download
them via common web browsers without the need to install special software packages.

In recent work, the authors of [94] proposed a Semantic File System (SFS) Ontology3

which extends terms from the NEPOMUK ontology. They further provide technical
definitions of terms and a class hierarchy with persistent URIs and content negotiation
capabilities. In our approach, we use the basic concepts for files, such as file names and
file properties as proposed in the related work, but our approach integrates additional
concepts, such as, e.g., file activities, source and target locations, and file classification.

Semantic Approaches to File Access Monitoring & Forensics The application of
semantics for digital forensics has been the topic of multiple research publications. While
they are motivated by similar challenges, such as heterogeneity, variety and volume of
data, they do not focus on file activity monitoring and life-cycle construction in particular,
but on the digital evidence process in general.

Early work on using semantic web technology in the context of forensics includes
[95], which introduces an evidence management methodology to semantically encode why
evidence is considered important. An ontology is used to describe the metadata file contents
and events in a uniform and application-independent manner. In [96], the authors propose
a similar ontology-based framework to assist investigators in analyzing digital evidence.
They motivate the use of semantic technologies in general and discuss the advantage of
ontological linking, annotations, and entity extraction. A broader architecture to lift the
phases of a digital forensic investigations to a knowledge-driven setting is proposed in [86].

2http://oscaf.sourceforge.net/nfo.html
3https://w3id.org/sfs-ontology#
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This results in an integrated platform for forensic investigation that deals with a variety
of unstructured information (e.g., network traffic, firewall logs, and files) and builds a
knowledge base that can be consulted to gain insights from previous cases via SPARQL
queries.

Finally, in a recent contribution [97], the authors propose a framework that supports
forensic investigators during the analysis process. This framework extracts and models
individual pieces of evidence, integrates and correlates them using a SWRL rule engine,
and persists them in a triplestore. Compared to our approach, their focus is on text
processing while file activity analysis is not considered.

The approach presented in this paper extends preliminary work published in [29] by
introducing cross-platform interoperability, scenarios that demonstrate the approach,
linking to background knowledge and a performance evaluation.

3.1.3. Conceptualization

Operating systems typically provide mechanisms and instrumentation to obtain information
on system-level file system operations, typically on the level of kernel calls. Reconstructing
the corresponding user activities, such as editing, moving, copying or deleting a file from
these low-level signals can be challenging. In particular, the sequence of micro-operations
triggered by a file system operation varies across operating systems and applications,
which complicates the analysis. On Windows systems, for instance, file operations such
as Create generate a number of access operations including ReadAttributes, WriteData,
ObjectClosed, etc.

To construct our vocabularies, we analyzed the structure, format, and access patterns
of the different file activity log sources on both Windows and Linux. Furthermore, as
contextualization is a key requirement for the interpretation of file activity in forensic
analyses, we also include sources of (i) process activity information, and (ii) authentication
events (login, logout, etc.) . The scenarios in Section 3.1.5 illustrate how we make use
of process information and authentication information. Due to space restrictions, we will
not cover the process and authentication vocabulary in full detail and refer the interested
reader to the source4.

3.1.3.1. Vocabulary

As existing ontologies (reviewed in Section 3.1.2) do not fully cover the requirements
of our approach, we developed a custom ontology. We followed a bottom-up approach
starting from low-level information from log sources with the goal to choose and collect
appropriate terms directly from the sources of evidence (e.g., users, hosts, files). We
organize our semantic model into two levels, i.e., log entry level and file operation level.
On the log entry level, we define a vocabulary to represent information on micro-level
operations for both Windows and Linux OS log sources which is based on a previously
developed vocabulary [27] for generic log data. On the file operation level, we model a
generic vocabulary to express higher-level events such as actual file event activity (e.g.,
created, modified, copied, rename, delete) derived from micro-level operations.

4https://w3id.org/sepses/vocab/event/process-event
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Figure 3.1.: High-Level event vocabularies (File Access Event)

Log Entry vocabularies The Windows Log Event (wle) vocabulary5 represents Windows
file access events using wle:WindowsEventLogEntry, a subclass of cl:LogEntry from
the SEPSES core log6. The wle:Subject class represents account information such as
wle:accountName and wle:logonID; the wle:AccessRequest class represents file access
information such as wle:accessMask and wle:accesses; the wle:Process class represents
running processes and the wle:Object class represents object file information such as
wle:objectName, wle:objectType, and wle:handleID. To cover Linux file access events,
we developed the Linux Log Event (lle)7 vocabulary that comprises five main classes:
lle:LinuxEventLogEntry, a subclass of cl:LogEntry from the SEPSES core vocabulary,
lle:Event class, which covers information on file access events such as lle:eventType,
lle:eventId, lle:eventCategory, and lle:eventAction; the lle:File class represents
information about file objects such as lle:fileName and lle:filePath; the lle:User
class covers information on users who perform the file event activities such as lle:userName
and lle:userGroup; the lle:Host class represents lle:hostArchitecture, lle:hostOS,
lle:hostName, lle:hostId, etc.

The File Operation vocabulary8 describes fae:FileAccessEvents by means of the
following properties: fae:hasAction reflects the type of access (e.g., created, modified,
copied, renamed, deleted); fae:hasUser links the file event to the user accessing the file;
fae:hasProgram represents the executable used to access the file, and fae:timestamp
captures the time of access. The properties fae:hasSourceFile and fae:hasTargetFile
model the relation between an original and copied instance of a file. Finally, property
fae:hasSourceHost and fae:hasTargetHost represent the hosts where the source and
target files are located.

3.1.3.2. Background Knowledge

To support contextualization and enrichment, we leverage several existing sources of
internal and external background knowledge.

Internal background knowledge can be developed by manually or automatically collecting
an organization’s persistent information (e.g., IT Assets, Network Infrastructure, Users).

5https://w3id.org/sepses/vocab/log/win-event
6https://w3id.org/sepses/vocab/log/core
7https://w3id.org/sepses/vocab/log/linux-event
8https://w3id.org/sepses/vocab/event/file-access
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Figure 3.2.: Solution architecture

In our scenarios, we use predefined internal background knowledge to contextualize and
create linking with file access events during event extraction.

Furthermore, it is possible to leverage existing external knowledge, such as the SEPSES
cybersecurity knowledge graph (CSKG)9, to link external information with system events.

3.1.4. Architecture & Prototype Implementation

In this subsection, we describe our architecture and prototypical implementation for
semantic integration, monitoring, and analysis of file system activity as depicted in
Figure 3.2.

The Log Acquisition component deals with the acquisition of log information and is
installed as an agent on clients or servers. We implement our Log Acquisition component
on Filebeat10, an open-source log data acquisition tool that ships log data from a host for
further processing. Using Filebeat, we can easily select and configure and add log sources
from both Windows and Linux machines. Furthermore, we use the Filebeat Audit module
to ship process and authentication information from the log sources.

The Log Extraction component handles the parsing of various log data provided by
the Log Acquisition component and can act as a filter that keeps only relevant parts. We
use Logstash11, an open source log processing tool that provides options for developing
processing pipelines to distinguish and handle different types of log sources. Furthermore,
it provides different output options such as a web socket protocol that supports data
streaming.

The RDF-ization component transforms data into RDF by mapping structured log
data produced by the Log Extraction component to a set of predefined ontologies (cf.
Section 3.1.3). This produces an RDF graph as the basis of file operation events extraction.
We use TripleWave12 to publish RDF streaming data through specified mappings (e.g.,
RML13). Furthermore, TripleWave supports the web socket protocol to publish the output.

The Event Extraction component generates file operation events by identifying a
sequence of low level (e.g., kernel-level) file system events. Furthermore, it enriches the
events by creating links between file operation events and existing internal (hosts, users,
etc.) and external (e.g., the SEPSES cybersecurity knowledge graph [28]) background

9http://sepses.ifs.tuwien.ac.at
10https://www.elastic.co/products/beats/filebeat
11https://www.elastic.co/products/logstash
12https://streamreasoning.github.io/TripleWave/
13http://rml.io
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Figure 3.3.: Scenario 1 network excerpt

knowledge. We developed a Java-based event extractor14 and use the C-Sprite[98] engine
to implement the event extraction process. C-Sprite is an RDF stream processing engine
that allows us to register a set of continuous SPARQL-Construct queries against the low
level RDF graph of file system events to generate a graph of file operation events.

Finally, the Data Storage, Querying, and Visualization component stores the
extracted RDF graph of file operation events in a persistent storage (e.g., a triplestore) and
facilitates querying and further analysis. We choose the widely-used Virtuoso15 triple store,
which provides a SPARQL endpoint, for our prototypical implementation. Furthermore,
we developed a simple web-based graph visualization interface16 that helps analysts to
interpret file access life-cycles (cf. Section 3.1.5 for an example).

3.1.5. Application Scenarios

In this subsection, we demonstrate the feasibility of our approach by means of two
application scenarios. For both scenarios, we set up a virtual lab with several Windows
and Linux machines, users, groups, and shared folders.

3.1.5.1. Scenario 1: Data Exfiltration

In the first scenario, we assume that an organization has learned that confidential in-
formation was leaked. The task in this scenario is to investigate how and by whom this
information has been transferred out of the organizational network.

Figure 3.3 depicts an excerpt of the company network, including Linux and Windows
workstations and a Linux file server that stores company-wide shared data as well as
confidential data with restricted access permissions (e.g., customer and financial data).
The organization’s access model distinguishes two groups: manager and office users. Both
groups are authorized to log in to the company workstations and access the internal file
shares. Access to the confidential data is restricted to the manager group.

As a starting point, the analyst has the name of a file that contains the leaked sensitive
information and starts to investigate its history. Listing 3.1 depicts the SPARQL query to
obtain lifecycle information for this file. The result is given in Table 3.1 and shows that
the file cstcp001.xls was accessed and modified multiple times. Inspecting the timeline, we
can see that a file customer.xls was modified on FileServer1 with the IP 193.168.1.2. It
14https://github.com/kabulkurniawan/fileAccessExtractor
15https://virtuoso.openlinksw.com/
16https://w3id.org/sepses/sparqlplus
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1 SELECT d i s t i n c t ? time ? accessType ? s ou r c eF i l e ? t a r g e tF i l e ? hostIP ?hostType
2 WHERE {
3 ?y f a e : timestamp ? timestamp .
4 ?y f a e : hasAction / f a e : actionName ? accessType .
5 ?y f a e : hasSourceF i l e / f a e : pathName ? s ou r c eF i l e .
6 ?y f a e : hasTargetF i l e / f a e : pathName ? t a r g e tF i l e .
7 ?y f a e : hasTargetHost ?h .
8 ?h c l : IpAddress ? host Ip . ? h f a e : hasSourceHost ?hostName .
9 ?y f a e : hasSourceF i l e / f a e : f i leName " cstcp001 . x l s " .

10 ?x f a e : re latedTo ∗ ?y .
11 } ORDER BY ASC(? time )

Listing 3.1: SPARQL query to retrieve the history of a file

Figure 3.4.: Graph visualization of the file history

thereafter was copied, renamed and modified on the file server. Then, the file appeared
on Workstation2 and got deleted from the file server. Finally, the file was renamed to
cstcp001.xls and copied to another folder on Workstation2 with the name Dropbox in its
file path. Figure 3.4 visualizes the file history.

timestamp accessType sourceFile targetFile hostIP hostName
11:06:55 Modified /home/alc/secdt/customer.xls /home/alc/secdt/customer.xls 193.168.1.2 FileServer1
13:39:01 Copied /home/alc/secdt/customer.xls /home/alc/customer.xls 193.168.1.2 FileServer1
13:39:35 Renamed /home/alc/customer.xls /home/alc/customer-cp.xls 193.168.1.2 FileServer1
13:40:23 Modified /home/alc/customer-cp.xls /home/alc/customer-cp.xls 193.168.1.2 FileServer1
13:43:17 Created C:\Work\customer-cp.xls C:\Work\customer-cp.xls 193.168.2.2 Workstation2
13:43:52 Deleted /home/alc/customer-cp.xls /.trash/customer-cp.xls 193.168.1.2 FileServer1
15:50:57 Renamed C:\Work\customer-cp.xls C:\Work\cstcp001.xls 193.168.2.2 Workstation2
15:53:52 Copied C:\Work\cstcp001.xls C:\DropBox\cstcp001.xls 193.168.2.2 Workstation2

Table 3.1.: File History Results
Next the analyst wants to know how the file was transferred from FileServer1 to

Workstation2. A SPARQL query17 lists the running processes and user names in the time
period of the suspicious activities. Potential exfiltration processes are modeled in the
background knowledge with the concept sys:potentialExfitrationProcesses, which includes
channels such as FTP, SCP, SSH, etc. This illustrates how queries can automatically make
use of modeled background knowledge. Table 3.2 shows the results of the query. From
this, the analyst learns that a secure copy event /usr/bin/scp was started on FileServer1
prior to the file copy and also on the Windows host Workstation2. The processes on the
file server were performed by user Alice from the manager group. The analyst concludes
that the customer-cp.xls file was successfully transferred via SCP (SSH service) by the
user Alice.

Next, the analyst wants to collect more information about this file transfer and the

17https://w3id.org/sepses/IFIP2020/queries/potentialExfitrationProcesses.sparql
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timestamp eventType hostIP hostName programName pid userName groupName
13:43:17 ProcessStopped 193.168.1.2 FileServer1 /usr/bin/scp 223 Alice Manager
13:43:17 ProcessStopped 193.168.1.2 FileServer1 /usr/bin/ssh 224 Alice Manager
13:43:17 ProcessStarted 193.168.2.2 Workstation2 C:\. . . \sshd.exe 1988 - -
13:43:18 ProcessStopped 193.168.2.2 Workstation2 C:\. . . \sshd.exe 1988 - -

Table 3.2.: Potential Exfiltration Process – Results
1 SELECT ∗ WHERE {
2 ? s rd f : type f a e : Fi l eAccessEvent ;
3 f a e : hasFi leAccessType sys : Created ;
4 f a e : hasSourceF i l e / f a e : f i leName ? f i l ename ;
5 a s s e t : h a sDa taC l a s s i f i c a t i on sys : Pr ivate ;
6 f a e : hasSourceHost / f a e : hostName ?hostName ;
7 {SELECT ?hostName ?OSName ? hostIP ? cveId ? conf ? s co r e WHERE {
8 ? t rd f : type sys : Host . ? t sys : hostName ?hostName .
9 ? t sys :OSName ?OSName. ? t sys : IPAddress ? hostIP .

10 ? t sys : hasProduct ?p .
11 SERVICE <http :// s ep s e s . i f s . tuwien . ac . at / sparq l> {
12 ? cve cve : hasCPE ?p . ? cve cve : id ? cveId .
13 ? cve cve : hasCVSS2BaseMetric ? cvss2 . ? cvss2 cvs s :

c on f i d en t i a l i t y Impac t ? conf .
14 ? cvss2 cvs s : baseScore ? cvs sScore . }}}}

Listing 3.2: Query to check vulnerable host

users involved in those steps. Therefore, a LoginProcess18 query is executed to retrieve a
list of users logged in to these hosts in the time period of interest, including userName,
sourceIp, targetIp, hostName, and the timestamp.

timestamp eventType sourceHost sourceIp targetHost targetIp userName
13:30:23 Login - 172.24.66.19 Workstation1 192.168.2.1 Bob
13:33:31 Login - 172.24.66.19 Workstation1 192.168.2.1 Bob
13:38:16 Login Workstation1 192.168.2.1 FileServer1 192.168.1.2 Alice
14:53:06 Login - 172.24.66.19 Workstation2 192.168.2.2 Bob

Table 3.3.: Login process results
The query result depicted in Table 3.3 shows that Alice was not logged in to Workstation1

during this time. Instead, Bob shows up several times in the login list of Workstation1.
From Workstation1, a login event was performed on FileServer1 with Alice’s credentials.
At the time the file copy to the Dropbox folder happened on Workstation2, only Bob was
logged in on this computer. Concluding from this evidence, the analysts suspects that
Bob logged in to Workstation1, then accessed the confidential file on FileServer1 with the
credentials of Alice. Finally, he copied the file to Workstation2 and exfiltrated the data
via Dropbox.

3.1.5.2. Scenario 2: Sensitive data on vulnerable hosts

In the second scenario, we illustrate how the semantic monitoring approach can be used
to protect confidential information by combining public vulnerability information with file
activity information from inside the company network. We assume a policy that restricts
handling of confidential files on hosts with known vulnerabilities. The objective in this
scenario is to automatically detect violations of this policy. More precisely, the goal is to
spot whenever files flagged as confidential19 are copied or created on an internal host with
18https://w3id.org/sepses/IFIP2020/queries/loginProcess.sparql
19using a classification schema of confidential, private, protected, public
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fileName hostName OSName hostIP cveId conf score
C:\Documents\Customer.xls Workstation2 Windows 192.168.2.1 2016-1653 COMPLETE 9.3
/home/docs/employee.xls Workstation3 Linux 192.168.2.1 2016-1583 COMPLETE 7.2

Table 3.4.: Vulnerability assessment results excerpt

a known vulnerability.
As background knowledge, we import information on installed software on each host. This

information is represented in the Common Platform Enumeration (CPE) format and can
be collected automatically by means of software inventory tools. To link this information
to known vulnerabilities, we rely on Common Vulnerabilities and Exposures (CVE), a
well-established enumeration of publicly known cybersecurity vulnerabilities. We take
advantage of our recent work on transforming this structured knowledge into a knowledge
graph [28] available via various semantic endpoints. This allows us to directly integrate
this information and use it in our scenario.

To implement the monitoring in this scenario, we set up a federated continuous
SPARQL query at listing 3.2 to identify whether a sensitive file shows up on a vul-
nerable workstation. To restrict the query to confidential files, we use the property
asset:hasDataClassification and restrict our query to sys:Private files. Table 3.4
shows the query results and reveals that Workstation2 and Workstation3 have critical
vulnerabilities, but store confidential files. The results include the fileName, hostName,
hostIP, cveId, etc. As a next step, an analyst can inspect the life-cycle of the files to
understand where they came from, who accessed them and explore information on the
vulnerabilities and potential mitigations. Taking automated actions based on the results,
such as blocking the access or alerting the user, is a further option.

3.1.6. Evaluation

In this subsection, we present our empirical evaluation setup and discuss the results.

3.1.6.1. Experimental Setup

We ran the experiments on an Intel Core i7 processor with 2,70GHz, 16GB RAM, and
64-bit Microsoft Windows 10 Professional and emulate hosts as docker containers. We
used C-Sprite as event extraction engine with a 3 seconds time window that slides every
second. In order to simulate user activity, we developed a java-based event generator20

to generate scripts for random file activities and use weighted random choices to select
activities.

3.1.6.2. Experiments and Results

To measure the correctness and the completeness of the event extraction and detection
using RDF stream processing with C-Sprite, we define a set of metrics, including (i) Actual
Events (AE) – number of the events executed in the simulation (ground truth), and
(ii) Returned Events (RE) – number of events correctly detected by the RDF-Stream
processing (C-Sprite). We get detection (%D) by dividing RE by AE.

Detection(%D) =
ReturnedEvents(RE)

ActualEventsGenerated(AE)
∗ 100%

20https://github.com/sepses/fileAccessExtractor/tree/master/eventGenerator
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Figure 3.5.: Detection rate on Linux (l) and Windows (r)

On each target OS (Linux and Windows), we test a varying number of events per second,
i.e. 1, 10, 20, 50, 80, 100, 125 and 200 events/sec. In the results, we report the mean of
detected events over 5 runs with 480 simulated events each.

As shown for Linux in Figure 3.5, all events can be detected close to 100% for all
frequencies (1 event/sec up to 200 events/sec) except the copy event, which reached a
maximum of 91,89%. At 200 events/sec, we observe that the detection of copy events
decreases to approx. 70%, which is mainly caused by incorrect pairings of readAttribute
and create events when these micro operations generated by two or more sequential copy
events appear together in the same window. Furthermore, we noticed that low-level events
sometimes do not arrive in sequence and hence, are not detected by our queries.

For Windows, the event detection performance for created, modified, renamed and deleted
events is higher with almost 100% of detected events for all frequencies. However, the copy
event detection in Windows achieves a lower detection with a maximum of 75,46%.

Finally, considering scalability we can make an estimation based on [98], which shows
that C-Sprite achieves a throughput of more than 300000 triples/s. Consequently, it should
be able to handle up to 23000 events/s (an individual event consists of at least 13 triples).
For forensic scenarios, the Virtuoso triple store can load more than 500 million triples per
16GB RAM21, which means that it should be possible to handle more than 38 million
events per 16GB RAM.

3.1.7. Conclusion

In this paper, we tackled current challenges in file activity monitoring and analysis,
such as the lack of interoperability, contextualization and uniform querying capability,
by means of an architecture based on Semantic Web technologies. We introduced a
set of vocabularies to model and harmonize heterogeneous file activity log sources and
implemented a prototype. We illustrate how this prototype can monitor file system
activities, trace file life cycles, and enrich them with information to understand their
context (e.g., internal and external background knowledge). The integrated data can then
be queried, visualized, and dynamically explored by security analysts, as well as be used
to facilitate detection and alerting by utilizing stream processing engines.

Finally, we demonstrate the applicability of the approach in two scenarios in virtual
21http://docs.openlinksw.com/virtuoso/virtuosofaq11/
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environments – one focused on data exfiltration forensics, and another on monitoring
policy violations integrating public vulnerability information. The results of our evaluation
indicate that the approach can effectively extract and link micro-level operations of multiple
operating systems and consolidate them in an integrated stream of semantically explicit
file activities.

Overall, the results are promising and demonstrate how semantic technologies can enrich
digital investigations and security monitoring processes. In future work, we aim to address
the accuracy and scalability limitations of the current approach identified in the streaming
evaluation, e.g., by evaluating alternative streaming engines and alternative approaches
(e.g., complex event processing) based on big data technologies. Furthermore, we will
investigate the integration of our approach into existing standards (e.g., STIX and CASE)
to increase interoperability for forensic investigation.
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3.2. Virtual Knowledge Graph for Distributed Security Log
Analysis

Kabul Kurniawan, Andreas Ekelhart, Elmar Kiesling, Gerald Quirchmayr, A Min Tjoa.
Published as "VloGraph: A Virtual Knowledge Graph Framework for Distributed Security
Log Analysis". In Machine Learning and Knowledge Extraction, 2022 [33].

Abstract

The integration of heterogeneous and weakly linked log data poses a major challenge in
many log-analytic applications. Knowledge graphs (KGs) can facilitate such integration
by providing a versatile representation that can interlink objects of interest and enrich log
events with background knowledge. Furthermore, graph-pattern based query languages
such as SPARQL can support rich log analyses by leveraging semantic relationships
between objects in heterogeneous log streams. Constructing, materializing, and maintaining
centralized log knowledge graphs, however, poses significant challenges. To tackle this
issue, we propose VloGraph – a distributed and virtualized alternative to centralized
log knowledge graph construction. The proposed approach does not involve any a priori
parsing, aggregation, and processing of log data, but dynamically constructs a virtual log
KG from heterogeneous raw log sources across multiple hosts. To explore the feasibility of
this approach, we developed a prototype and demonstrate its applicability in three scenarios.
Furthermore, we evaluate the approach in various experimental settings with multiple
heterogeneous log sources and machines; the encouraging results from this evaluation
suggest that the approach can enable efficient graph-based ad-hoc log analyses in federated
settings.

3.2.1. Introduction

This paper is an extension of [32], in which we initially introduced the concept of Virtual
Knowledge Graphs for log analysis.
Log data analysis is a crucial task in cybersecurity, e.g., when monitoring and auditing
systems, collecting threat intelligence, conducting forensic investigations of incidents,
and pro-actively hunting threats [99]. Currently available log analysis solutions, such as
Security Information and Event Management (SIEM) systems, support the process by
aggregating log data as well as storing and indexing log messages in a central relational
database [100]. With their strict schemas, however, such databases are limited in their
ability to represent links between entities [101]. This results in a lack of explicit links
between heterogeneous log entries from dispersed log sources in turn makes it difficult to
integrate the partial and isolated views on system states and activities reflected in the
various logs. Furthermore, the central log aggregation model is also bandwidth-intensive
and computationally demanding [102, 100, 103], which limits its applicability in large-scale
infrastructures. Without a dedicated centralized log infrastructure, however, the process
necessary to acquire, integrate and query log data is tedious and inefficient, which poses a
key challenge for security analysts who often face time critical tasks.
To illustrate the issue, consider the example in Figure 3.6. It is based on log data produced
by multi-step attacks22 as described in [104]. The various steps of the attack are reflected in
22These log data sets will also be used in a scenario in Section 3.2.6.
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Figure 3.6.: Motivating example illustrating that attack steps leave traces in various log
sources across multiple hosts, making it difficult to reconstruct what happened.

a large number of log messages in a diverse set of log sources dispersed across multiple hosts
and files (e.g., Syslog, ApacheLog, AuthLog, MailLog etc.). Vulnerability Scan, for instance –
which scans a system for known vulnerabilities – leaves some traces in multiple log sources
such as Syslog and ApacheLog on Host1 and Host3, respectively. User Enumeration – an
activity that aims to guess or confirm valid users in a system – also leaves some traces
in (AuthLog, MailLog etc.) stored on Host1 and Host2. As this example shows, a single
attack step typically results in a large number of log events that capture comprehensive
information. This information can be used for log analysis and attack investigation, but
correlating, tracing, and connecting the individual indicators of compromise – e.g., through
timestamps, IP addresses, user names, processes etc. – is typically a challenging and often
time-consuming task. This is partly due to the weak structure of log sources and their
inconsistent format and terminologies. Consequently, it is difficult to get a complete picture
of suspicious activities and understand what happened in a given attack – particularly in
the face of fast evolving, large volume, and highly scattered log data.

To tackle these challenges, we propose , a decentralized framework to contextualize, link,
and query log data. We originally introduced this framework in [32]; in this paper, we extend
this prior work with a detailed requirements specification, evaluation with two additional
application scenarios, and a section reflecting upon graph-based log integration and analysis,
decentralization and virtualization, and discussing applications and limitations.

More specifically, we introduce a method to execute federated, graph pattern-based
queries over dispersed, heterogeneous raw log data by dynamically constructing virtual
knowledge graphs [105, 22]. This knowledge-based approach is designed to be decentralized,
flexible and scalable. To this end, it (i) federates graph-pattern based queries across
endpoints, (ii) extracts only potentially relevant log messages, (iii) integrates the dispersed
log events into a common graph, and (iv) links them to background knowledge. All of
these steps are executed at query time without any up-front ingestion and conversion of
log messages.

Figure 3.7 illustrates the proposed approach; the virtual log knowledge graph at the
center of the figure is constructed dynamically from dispersed log sources based on analysts’
queries and linked to external and internal knowledge sources.
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Figure 3.7.: Concept overview

A key advantage of the graph-based model of this virtual knowledge graph is that it
provides a concise, flexible, and intuitive abstraction for the representation of various
relations such as, e.g., connections in networked systems, hierarchies of processes on
endpoints, associations between users and services, and chains of indicators of compromise.
These connections automatically link log messages that are related through common
entities (such as users, hosts, and IP addresses); such links are crucial in cybersecurity
investigations, as threat agent activities typically leave traces in various log files that
are often spread across multiple endpoints in a network, particularly in discovery, lateral
movement, and exfiltration stages of an attack23.

In contrast to traditional workflows that store log messages in a centralized repository,
shifts the log parsing workload from ingestion to analysis time. This makes it possible to
directly access and dynamically integrate the most granular raw log data without any loss
of information that would occur if the logs were pre-filtered and aggregated – typical steps
performed before transferring them to a central archive.

tackles a number of pressing challenges in security log analysis (discussed in Section 3.2.3)
and facilitates (i) ad-hoc integration and semantic analyses on raw log data without
prior centralized materialization, (ii) the collection of evidence-based knowledge from
heterogeneous log sources, (iii) automated linking of fragmented knowledge about system
states and activities, and (iv) automated linking to external security knowledge (such as,
e.g., attack patterns, threat implications, actionable advice).

The remainder of this paper is organized as follows: Section 3.2.2 provides an overview
of related work in this area, and in Section 3.2.3, we discuss challenges in log analysis and
derive requirements for our approach. Section 3.2.4 introduces the proposed architecture
and describes the components for virtual log knowledge graph construction in detail. In
Section 3.2.5 we present a prototypical implementation of the architecture and illustrate its
use in three application scenarios. We evaluate our approach on a systematically generated
log dataset in Section 3.2.6 and discuss benefits and limitations of the presented approach
in Section 3.2.7. Finally, we conclude with an outlook on future work in Section 3.2.8.

3.2.2. Related Work

In this section, we organize the related literature – from general to specific – into three
categories:

23ATT&CK Matrix for Enterprise https://attack.mitre.org/
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Log Management and Analytics The rising number, volume and variety of logs has
created the need for systematic computer security log management [106] and motivated
the development of a wide range of log-analytic techniques to derive knowledge from these
logs [107], including anomaly detection [108, 109], clustering [110], and rule-base intrusion
detection [111].

In the context of our work, approaches that aim to integrate and analyze log data across
multiple sources are particularly relevant. Security Information and Event Management
(SIEM) are widely used to provide a centralized view on security-relevant events inside an
organization and focus on data aggregation, correlation, and typically rule-based alerting.
These ideas are outlined in numerous guidelines and industrial best practices such as the
NIST CSF24 and NIST SP 800-9225. In this current state of practice, various commercial
offerings provide centralized solutions26.

Whereas SIEMs facilitate centralized log aggregation and management, however, they
lack a semantic foundation for the managed log data and consequently typically do
not make it easy to link, contextualize, and interpret events against the background of
domain knowledge. To tackle these challenges, [112] create a foundation for semantic
SIEMs that introduces a Security Strategy Meta-Model to enable interrelating information
from different domains and abstraction levels. In a similar vein, [100] proposes a hybrid
relational-ontological architecture to overcome cross-domain modeling, schema complexity,
and scalability limitations in SIEMs. This approach combines existing relational SIEM
data repositories with external vulnerability information, i.e., CVE.

Graph-based Log Integration and Analysis More closely related to the approach proposed
in this paper, a stream of literature has emerged that recognizes the interrelated nature of
log data and conceives log events and their connections as graphs – i.e., labeled property
graphs (LPGs) or semantically explicit RDF knowledge graphs.

In the former category, LPGs are stored in graph databases and queried through
specialized graph query languages. For network log files, for instance, [113] proposes an
approach that materializes the log in a Neo4J graph database and makes it available for
querying and visualization. The approach is limited to a single log source and focuses
exclusively on network log analysis. Similar to this, CyGraph [114] is a framework that
integrates isolated data and events in a unified graph-based cybersecurity model to assist
decision making and improve situational awareness. It is based on a domain-specific
language CyQL to express graph patterns and uses a third-party tool for visualization.

Another stream of literature transforms logs into RDF knowledge graphs that can
be queried with SPARQL, a standardized query language. Early work such as [115]
has illustrated that the use of explicit semantics can help to avoid ambiguity, impose
meaning on raw log data, and facilitate correlation in order to lower the barrier for log
interpretation and analysis. In this case, however, the log source considered is limited to
a firewall log. Approach like this do not directly transform log data into a graph, but
impose semantics to existing raw log data or log data stored in a relational database. More
recently, approaches have been developed that aim to transform log data from multiple
sources into an integrated log knowledge graph.

24NIST Cybersecurity framework
25NIST SP 800-92 Guide to Computer Security Log Management
26cf., e.g., Gartner Magic Quadrant for SIEM 2021
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For structured log files, [116] discusses an approach that analyzes their schema to
generate a semantic representation of their contents in RDF. Similar to our work, the
approach links log entities to external background knowledge (e.g., DBPedia), but the
log source processed is limited to a single log type. Ref. [117] leverages an ontology to
correlate alerts from multiple Intrusion Detection Systems (IDSs) with the goal to reduce
the number of false-positive and false-negative alerts. It relies on a shared vocabulary
to facilitate security information exchange (e.g., IDMEF, STIX, TAXII), but does not
facilitate linking to other log sources that may contain indicators of attacks.

LEKG [118] provides a log extraction approach to construct knowledge graphs using
inference rules and validates them from a background knowledge graph. It uses local
inference rules to create graph elements (triples) which can later be used to identify and
generate causal relations between events. Compared to , the approach does not aim to
provide integration and interlinking over multiple heterogeneous log sources.

To facilitate log integration, contextualization and linking to background knowledge, [27]
proposes a modular log vocabulary that enables log harmonization and integration between
heterogeneous log sources. A recent approach proposed in [30] introduces a vocabulary
and architecture to collect, extract, and correlate heterogeneous low-level file access events
from Linux and Windows event logs.

Compared to the approach in this paper, the approaches discussed so far rely on a
centralized repository. A methodologically similar approach for log analysis outside of the
security domain has also been introduced in [119], which leverages ontology-based data
access to support log extraction and data preparation on legacy information systems for
process mining. In contrast to this paper, the focus is on log data from legacy systems in
existing relational schemas and on ontology-based query translation.

Decentralized Security Log Analysis Decentralized event correlation for intrusion detec-
tion was introduced in early work such as [120], where the authors propose a specification
language to describe intrusions in a distributed pattern and use a peer-to-peer system to
detect attacks. In this decentralized approach, the focus is on individual IDS events only.
To address scalability limitations of centralized log processing, [102] distributes correla-
tion workloads across networks to the event-producing hosts. Similar to this approach,
we aim to tackle challenges of centralized log analysis. However, we leverage semantic
web technologies to also provide contextualization and linking to external background
knowledge. In the cloud environment, [121] proposes a distributed and parallel security
log analysis framework that provides analyses of a massive number of systems, networks,
and transaction logs in a scalable manner. It utilizes the two-level master-slave model
to distribute, execute, and harvest tasks for log analysis. The framework is specific to
cloud-based infrastructures and lacks the graph-oriented data model and contextualization
and querying capabilities of our approach.

3.2.3. Requirements

Existing log management systems typically ingest log sources from multiple log-producing
endpoints and store them in a central repository for further processing. Before they can
be analyzed, such systems typically parse and index these logs, which typically requires
considerable amounts of disk space to store the data as well as computational power for
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log analysis. The concentrated network bandwidth, CPU, memory, and disk space needs
limit the scalability of such centralized approaches.

Decentralized log analysis, by contrast, (partly) shifts the computational workloads
involved in log pre-processing (e.g., acquisition, extraction, and parsing) and analysis to
the log-producing hosts [102]. This model has the potential for higher scalability and
applicability in large-scale settings where the scope of the infrastructure prohibits effective
centralization of all potentially relevant log sources in a single repository.

Existing approaches for decentralized log processing, however, primarily aim to provide
correlation and alerting capabilities, rather than the ability to query dispersed log data in
a decentralized manner. Furthermore, they lack effective means for semantic integration,
contextualization, and linking, i.e., dynamically creating connections between entities and
potentially involving externally available security information. They also typically have to
ingest all log data continuously on the local endpoints, which increases continuous resource
consumption across the infrastructure.

In this paper, we tackle these challenges and propose a distributed approach for security
log integration and analysis. Thereby, we facilitate ad-hoc querying of dispersed raw
log sources without prior ingestion and aggregation in order to address the following
requirements (R):

• R.1 - Resource-efficiency Traditional log management systems such as SIEMs
perform continuous log ingestion and preprocessing, typically from multiple monitor-
ing endpoints, before analyzing the log data. This requires considerable resources
as all data needs to be extracted and parsed in advance. A key requirement for
distributed security log analysis is to avoid unnecessary ex-ante log preprocessing
(acquisition, extraction, and parsing), thus minimizing resource requirements in
terms of centralized storage space and network bandwidth. This should make log
analysis both more efficient and more scalable.

• R.2 - Aggregation and integration over multiple endpoints As discussed in
the context of the motivating example in Section 3.2.1, a single attack may leave
traces in multiple log sources, which can be scattered across different systems and
hosts. To detect sophisticated attacks, it is therefore necessary to identify and
connect such isolated indicators of compromise [27]. The proposed solution should
therefore provide the ability to execute federated queries across multiple monitoring
endpoints concurrently and deliver integrated results. This makes it possible to
detect not only potential attack actions, but also to obtain an integrated picture of
the overall attack (e.g., through linking of log entries).

• R.3 - Integration, Contextualization & Background-Linking the inter-
pretation of log information for attack investigation depends highly on the context;
isolated indicators on their own are, however, often inconspicuous in their local con-
text. Therefore, the proposed approach should provide the ability to contextualize
disparate log information, integrate it, and link it to internal background knowledge
and external security information.

• R.4 - Standards-based query language The proposed approach should provide
an expressive, standards-based query language for log analysis. This should make it
easier for analysts to formulate queries (e.g., define rules) during attack investigation
in an intuitive and declarative manner.
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3.2.4. VloGraph Framework Architecture

Based on the requirements set out in Section 3.2.3, we propose , an approach and ar-
chitecture for security log analytics based on the concept of Virtual Knowledge Graphs
(VKGs). The proposed approach leverages Semantic Web Technologies that provide (i) a
standardized graph-based representation to describe data and their relationships flexibly
using RDF27, (ii) semantic linking and alignment to integrate multiple heterogeneous
log data and other resources (e.g., internal/external background knowledge), and (iii) a
standardized semantic query language (i.e. SPARQL28) to retrieve and manipulate RDF
data.

To address R.1, our approach does not rely on centralized log processing, i.e., we only
extract relevant log events based on the temporal scope and structure of a given query
and its query parameters. Specifically, we only extract lines in a log file that (i) are within
the temporal scope of the query, and (ii) may contain relevant information based on the
specified query parameters and filters. The identified log lines are extracted, parsed, lifted
to RDF, compressed, and temporarily stored in a local cache on the respective endpoint.
This approach implements the concept of data virtualization and facilitates on-demand
log processing. By shifting computational loads to individual monitoring agents and only
extracting log entries that are relevant for a given query, this approach can significantly
reduce unnecessary log data processing. Furthermore, due to the use of RDF compression
techniques, the transferred data is rather small; we discuss this further in Section 3.2.6.

To address R.2, we distribute queries over multiple log sources across distributed
endpoints and combine the results in a single integrated output via query federation29.

To address R.3, we interlink and contextualize our extracted log data with internal and
external background knowledge – such as, e.g., IT asset information and cybersecurity
knowledge – via semantic linking and alignment. Finally, we use SPARQL to formu-
late queries and perform log analyses, which addresses R.4. We will illustrate SPARQL
query federation and contextualization in multiple application scenarios for in Section 3.2.5.

Figure 3.8 illustrates the virtual log graph and query federation architecture for log
analysis; it consists of two main components: (i) a Log Parser on each host, which
receives and translates queries, extracts raw log data from hosts, parses the extracted
log data into an RDF representation, compresses the resulting RDF data into a binary
format, and sends the results back to a (ii) Query Processor, which provides an interface
to formulate SPARQL queries and distributes the queries among individual endpoints;
furthermore, it retrieves the individual log graphs from the endpoints, integrates them,
and presents the resulting integrated graph. In the following, we explain the individual
components in detail.

SPARQL Query Editor This sub-component is part of the Query Processor and allows
analysts to define settings for query execution, including: (i) Target Hosts: a set of
endpoints to be included in the log analysis, (ii) Knowledge bases : a collection of internal
and/or external sources of background knowledge that should be included in the query

27https://www.w3.org/RDF/
28https://www.w3.org/TR/rdf-sparql-query/
29https://www.w3.org/TR/sparql11-service-description/

66

https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/sparql11-service-description/


3.2. Virtual Knowledge Graph for Distributed Security Log Analysis

Figure 3.8.: Virtual log graph and query federation architecture

execution (e.g., IT infrastructure, cyber threat intelligence knowledge bases, etc.), (iii) Time
Interval : the time range of interest for the log analysis (i.e., start time and end time).

Query Parsing The SPARQL query specification [122] provides a number of alternative
syntaxes to formulate queries. For uniform access to the properties and variables inside
the query, we therefore parse the raw SPARQL syntax into a structured format prior to
transferring the query to the monitoring hosts. The prepared SPARQL query is then sent
as a parameter to the Query Translator via the Web API in the Log Parser Component.

Query Translation This subcomponent decomposes the SPARQL query to identify
relevant properties for log source selection and log line matching. Algorithm 1 outlines
the general query translation procedure, which identifies relevant log sources and log lines
based on three criteria, i.e., (i) prefixes used in the query, (ii) triples, and (iii) filters.
Prefixes(P ) is a set of log vocabulary prefixes that appear in a given query Q. In each
query, the contained prefixes will be used by the query translator to identify relevant log
sources. Available prefixes can be configured to the respected log sources in the Log Parser
configuration on each client, including, e.g., the path to the local log file location. As
an example, PREFIX auth: <http://w3id.org/authLog> is the prefix for AuthLog; it’s
presence in a query indicates that the AuthLog on the selected hosts will be included in
the log processing.
Triples (T ) is a set of triples that appear in a query, each represented as Triple Pattern

or a Basic Graph Pattern (BGP) (i.e. <Subject> <Predicate> <Object>).
We match these triples to log lines (e.g., hosts and users) as follows: Function getTriplePattern(Q)

collects the triple patterns T contained within the query Q. For each triple statement
in a query, we identify the type of Object TiObject

. If the type is Literal, we identify the
TiP redicate as well. For example, for the triple {?Subject cl:originatesFrom "Host1"},
the function getLogProperty() identifies TiObject

"Host1", and additionally, looks up the
property range provided in regexPatterns (RP ). regexPatterns (RP )30 is the back-
30https://github.com/sepses/VloGParser/blob/hdt-version/experiment/pattern/regexPattern.ttl
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Algorithm 1: Query translation
Input: SPARQL Query (Q), Vocabulary (V ), regexPatterns (RP )
Output: QueryElements (Qe)

1 Prefixes P = {P1,...,Pn} ϵ Q ;
2 Triples T = {Subject, Predicate, Object} ϵ Q ;
3 Filters F = {V ariable, V alue} ϵ Q;
4 Function translateQuery(Q,V ,RP):
5 P ← getPrefix(Q);
6 T ← getTriplePattern(Q);
7 foreach Triple Ti ϵ T do
8 if type(TiObject

)=Literal then
9 logProperty ← getLogProperty(TiPredicate

,V ,RP );
10 keyV alue ← {logProperty, TiObject

};
11 end
12 triplesKV += keyV alue;
13 end
14 F ← getF ilterStatement(Q);
15 foreach Filter Fi ϵ F do
16 if type(FiV alue

)=Literal then
17 predicate ← getPredicate(Q,FiV ariable

);
18 logProperty ← getLogProperty(predicate,V ,RP );
19 keyV alue ← {logProperty, FiV alue

};
20 end
21 filtersKV += keyV alue;
22 end
23 Qe ← {P ,triplesKV ,filtersKV };
24 return Qe;
25 End Function
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Figure 3.9.: SPARQL Query translation example

ground knowledge that links property terms in a vocabulary to the terms in a log entry and
the respected regular expression pattern. For example, the property cl : originatesFrom
is linked to the concept "hostname" in regexPattern (RP ), which has a connected regex
pattern for the extraction of host names. The output of the getLogProperty() function is
a set of <logProperty, TiObject

> key-value pairs.
Similar to triples, we also include Filters (F ) that appear in a query Q for log-

line matching. Filter statements contain the term FILTER and a set of pairs (i.e.,
V ariable and V alue), therefore each Filter statement Fi has the members V ariable
FiV ariable

and V alue FiV alue
. Currently, we cover FILTER with simple pattern match-

ing and regular expressions such as FILTER (?variable = ”StringV alue”), FILTER
regex(str(?variable), ”StringV alue”)).

The function getF ilterStatement(Q) is used to retrieve these filter statements from
the query and to identify the type of V alue FiV alue

. If it is a Literal, the getPredicate(Q)
function will look for the connected predicate. Similar to the technique used in triples, we
use getLogProperty() to retrieve the regular expression defined in regexPattern (RP ).
Finally, the collected prefixes and retrieved key-value pairs, both from triples and filters,
will be stored in QueryElements (Qe) for further processing. Figure 3.9 depicts a SPARQL
query translation example.

Log Extraction This component is part of the Log Parser that extracts the selected
raw log lines and splits them into a key-value pair representation by means of predefined
regular expression patterns. As outlined in Algorithm 2, Log sources (Ls) are included
based on the prefixes that appear in the query.

For each log line (Lnj) in a log source, we check whether the log timestamp (LnOlogT ime)
is within the defined TimeFrame (Tf).31

If this condition is satisfied, the matchLog() function checks the logline property
(LnOlogProperties) against the set of queried triples (QetriplesKV ) and filters (QefiltersKV ). If
the log line matches the requirements, the selected log line will be parsed using parseLine()
based on predefined regular expression patterns. The resulting parsed queries will be
accumulated and cached in a temporary file for subsequent processing.

31In this version of the algorithm, we leverage the monotonicity assumption in the log context by stopping
the log parsing once the end of the temporal window of interest is reached in a log file (i.e., we assume
that log lines do not appear out of order). This can be adapted, if required for a specific log source.
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Figure 3.10.: Log graph generation overview

RDF Mapping This sub-component of the Log Parser maps and parses the extracted
log data into RDF. It uses the standard RDF mapping language to map between the log
data and the vocabulary. Different log sources use a common core log vocabulary (e.g.,
SEPSES coreLog32) for common terms (e.g., host, user, message) and can define extensions
for specific terms (e.g., the request term in ApacheLog). The RDF Mapping also maps
terms from a log entry to specific background knowledge (e.g., hosts in a log entry are
linked to their host type according to the background knowledge). Figure 3.10 provides
an overview of the log graph generation process.

RDF Compression This sub-component is part of the Log Parser, which transforms
the resulting RDF output produced by the RDF Mapper into a compact version of
RDF. This compression results in a size reduction by an order of magnitude, which has
significant advantages in our framework: (i) it enables fast data transfer to the Query
Processor component and thereby reduces latency; (ii) it makes the query execution itself
more efficient as the compressed RDF version enables query operations without prior
decompression directly on the binary representation [123]. We discuss the implementation
of this component based on existing libraries in Section 3.2.5 and evaluate the effect of
compression on the query execution performance on virtual log graphs in Section 3.2.6.

Query Execution Once the pre-processing on each target host has been completed and
the compressed RDF data results have been successfully sent back to the Query Processor,
a query engine executes the given queries against the compressed RDF data. If multiple
hosts were defined in the query, the query engine will perform query federation over

32https://w3id.org/sepses/vocab/log/core/
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Algorithm 2: Log Extraction and RDF Mapping
Input: SPARQL Query (Q), TimeFrame (Tf), LogSources (Ls)
Output: Response (R)

1 TimeFrame Tf = {startT, endT} ;
2 LogSources Ls = {Ls1, ..., Lsn};
3 LogLines Ln = {Ln1, ..., Lnn} ϵ Ls;
4 LogSourceOptions LsO = {vocabulary, regexPatterns} ϵ Ls;
5 LogLineOptions LnO = {logT ime, logProperties} ϵ Ln ;
6 QueryElements Qe = {prefixes, triplesKV, filtersKV };
7 Qe ← translateQuery(Q,LsOvocabulary, LsOregexPatterns);
8 foreach LogSource Lsi ϵ Ls do
9 if Qeprefixes contains LsOivocabulary then

10 foreach LogLines Lnj ϵ Ln do
11 lt ← LnOjLogTime ;
12 if lt<TfendT = False then
13 break;
14 end
15 if lt>TfstartT && lt<TfendT then
16 ml ← matchLog(LnOjlogProperties

, QetriplesKV , QefiltersKV );
17 if ml=True then
18 parsedLine ← parseLine(Lnj);
19 end
20 end
21 parsedData += parsedLine;
22 end
23 RDFData ← RDFMapping(parsedData);
24 result ← compressData(RDFData);
25 if result=True then
26 response ← ”Success”;
27 end
28 end
29 return response;
30 end
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multiple compressed RDF data from those individual hosts and combine the query results
into an integrated output.

Furthermore, due to semantic query federation, external data sources are automatically
linked in the query results in case they were referenced in the query (cf. Section 3.2.5 for
an example that links IDS messages to the SEPSES-CSKG33).

Visualization Finally, this component presents the query results to the user; depending
on the SPARQL query form34, e.g.,: (i) SELECT - returns the variables bound in the query
pattern, (ii) CONSTRUCT - returns an RDF graph specified by a graph template, and
(iii) ASK - returns a boolean indicating whether a query pattern matches. The returned
result can be either in JSON or RDF format, and the resulting data can be presented to
the user as an HTML table, chart, graph visualization, or it can be downloaded as a file.

3.2.5. Implementation & Application Scenarios

In this section, we discuss the implementation of framework35 and demonstrate its feasibility
by means of three application scenarios.

3.2.5.1. Implementation

The prototype relies on a number of existing open source tools and libraries. Specifically,
we implement the Log Parser36 component as a Java-based tool that is installed and run on
each monitoring host. It supports log parsing from multiple different OSs (e.g., Windows,
Linux, etc.) and heterogeneous log files (e.g., authlog, apachelog, IISlog, IDSlog). For
the Log Extraction component, we integrate Grok Patterns37, a collection of composeable
regular expression patterns that can be reused across log sources. Furthermore, we use
CARML38 as an RDF Mapping component based on RML mappings39 to map the extracted
log data into RDF. For the RDF Compression component, we leverage the HDT [123]
library to efficiently compress the resulting RDF data into a compact, binary format that
allows query operations without prior decompression.

For the analysis interface, we implemented a Query Processor40 component as a web-
application that receives SPARQL queries, sends them to multiple target hosts, and
presents the resulting graph to the analyst. Figure 3.11 shows the user interface of the
application, which consist of (i) Query Options, including e.g., target hosts, background
knowledge, analysis timeframe, as well as predefined queries to select. (ii) SPARQL Query
Input to formulate and execute SPARQL queries, and (iii) Query Results to present the
output of an the executed query. The query execution is implemented on top of the
Comunica [124] query engine that supports query federation over multiple linked data
interfaces including HDT files and SPARQL endpoints.

33http://w3id.org/sepses/sparql
34https://www.w3.org/TR/sparql11-query/#QueryForms
35Source code available at https://github.com/sepses
36https://github.com/sepses/VloGParser
37https://github.com/elastic/logstash/blob/v1.4.2/patterns/grok-patterns
38https://github.com/carml/carml
39cf. http://rml.io/
40https://github.com/sepses/VloGraphQueryProcessor

72

http://w3id.org/sepses/sparql
https://www.w3.org/TR/sparql11-query/#QueryForms
https://github.com/sepses
https://github.com/sepses/VloGParser
https://github.com/elastic/logstash/blob/v1.4.2/patterns/grok-patterns
https://github.com/carml/carml
http://rml.io/
https://github.com/sepses/VloGraphQueryProcessor


3.2. Virtual Knowledge Graph for Distributed Security Log Analysis

Figure 3.11.: SPARQL query editor interface

3.2.5.2. Application Scenarios

Scenario I - Web access log analysis In this scenario, we simulated two hosts (Win-
dows10 and Ubuntu) with different web servers (Apache and IIS) and analyze their access
logs together. In order to identify access from a specific IP address (e.g., 192.168.2.1),
we formulate the SPARQL query depicted in Listing 3.3. We specify the client’s IP
address with access:hasClient res:ip-192.168.2.1 and filter for "GET" requests via
accs:hasRequestVerb res:GET. In the query options, we selected the timeframe (from
Nov 11 10:00:04 to Nov 11 10:10:04) as well as the two target hosts.

The query results in Table 3.5 show the access information with their log sources and

1 PREFIX c l : <https : // w3id . org / s ep s e s /vocab/ log / coreLog#>
2 PREFIX accs : <https : // w3id . org / s ep s e s /vocab/ log / accessLog#>
3 PREFIX re s : <https : // w3id . org / r e sou r c e / a c c e s s#>
4

5 SELECT ? logType ?hostOS ? host Ip ? verb ? reque s t
6 WHERE {
7 ? logEntry c l : or ig inatesFrom ? host .
8 ? host c l : hostOS ?hostOS .
9 ? logEntry c l : hasLogType ? logType .

10 ? host c l : ipAddress ? host Ip .
11 ? logEntry accs : hasRequestVerb r e s :GET.
12 ? logEntry accs : hasRequest ? r eque s t .
13 ? logEntry accs : hasC l i ent r e s : ip −192 . 168 . 2 . 1 .
14 } LIMIT 4

Listing 3.3: Web access query
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Table 3.5.: Web access query result (excerpt)
logType hostOS hostIp verb request

IIS Win10 192.168.0.113 GET /employee.asp&id=12345 . . .
apache Ubuntu 192.168.0.111 GET /admin.php?userid=bob. . .
apache Ubuntu 192.168.0.111 GET /salary.php
IIS Win10 192.168.0.113 GET /global/lwb.min.js . . .

Figure 3.12.: Web access query result visualization (excerpt)

types (cl:IIS and cl:apache), the host OS (Win10 and ubuntu) with their IPs, the
request method, and request paths. Figure 3.12 depicts the graph visualization of the
result.

Scenario II - Network monitoring In this scenario, we illustrate how our prototype
provides semantic integration, generalization, and entity resolution. We simulated SSH
login activities41 across different servers (e.g., DatabaseServer, WebServer, FileServer)
with multiple demo users (e.g., Bob and Alice) and then queried the authlog files with our
federated approach.

Typically, atomic information on the log entry level is not explicitly linked to semantic
concepts. Hence, we added extractors to, e.g., detect specific log events from log messages
and map them to event types from our internal background knowledge42 (e.g., event:Login,
event:Logout). Furthermore, we added concept mappings for program names, IP addresses
etc. (cf. Section 3.2.4).

Now, an analyst can formulate a SPARQL query as shown in Listing 3.4 to extract
successful login events from SSH connections. The query results in Table 3.6 and Figure 3.13
show successful logins via SSH over multiple hosts in the specified time range (from Dec
10 13:30:23 to Dec 10 14:53:06). The host type and target IP address come from internal
background knowledge, as the host name is connected to a specific host type.

41http://bit.ly/scenario2dataset
42https://w3id.org/sepses/knowledge/eventKnowledge.ttl

74

http://bit.ly/scenario2dataset
https://w3id.org/sepses/knowledge/eventKnowledge.ttl


3.2. Virtual Knowledge Graph for Distributed Security Log Analysis

1 PREFIX c l : <https : // w3id . org / s ep s e s /vocab/ log / core#>
2 PREFIX auth : <https : // w3id . org / s ep s e s /vocab/ log /authLog#>
3 PREFIX sys : <https : // w3id . org / s ep s e s / r e s ou r c e / system#>
4 PREFIX ev : <https : // w3id . org / s ep s e s / r e s ou r c e / event#>
5

6 SELECT ?timestamp ? user ? source Ip ? targetHostType ? t a r g e t I p
7 WHERE {
8 ? logEntry c l : timestamp ? timestamp .
9 ? logEntry auth : hasUser ? user .

10 ? logEntry auth : hasSourceIp ? source Ip .
11 ? logEntry auth : hasTargetHost ? th .
12 ? logEntry auth : hasAuthEvent ? ae .
13 ? ae sys : partOfEvent ev : Login .
14 ? th sys : hostType ? targetHostType .
15 ? th c l : IpAddress ? t a r g e t Ip .
16 } LIMIT 4

Listing 3.4: SSH connections query

This information can be a starting point for security analysts to explore the rich context
of the events in the virtual knowledge graph.

Table 3.6.: SSH connections query result (excerpt)
timestamp user sourceIp targetHostType targetIp
Dec 10 13:30:23 Bob 172.24.66.19 DatabaseServer 192.168.2.1
Dec 10 13:33:31 Alice 172.24.2.1 WebServer 192.168.2.2
Dec 10 13:38:16 Alice 172.24.2.1 DatabaseServer 192.168.1.3
Dec 10 14:53:06 Bob 172.24.66.19 FileServer 192.168.2.4

Scenario III - Threat detection and ATT&CK linking In this scenario, we demonstrate
how the framework leverages existing threat detection rules to identify Indicators of
Compromise (IoCs) from log sources and link them to the respective attack techniques
and tactics. For this scenario, we used an existing log dataset [104] as described in the
motivation example in Section 3.2.1. To define our rule-based threat detection queries, we
relied on existing community-based threat detection rules such as Sigma43 and transformed
them into RDF/SPARQL. Furthermore, we used the ATT&CK-KG [31], a continuously
updated cybersecurity knowledge graph generated from the MITRE ATT&CK Matrix44

in order to link cyber attacks to adversary techniques and tactics.
Listing 3.5 shows an example query for this scenario. Using the transformed Sigma rule

as internal knowledge, we can list suspicious keywords defined in the rules (i.e., via ?sigma
sigma:keywords ?keywords) and use them to filter messages from the targeted log sources.
In this case, we target request messages in Apache log (see ?logEntry apache:hasRequest
?req) and filter them against the keywords (FILTER regex(str(?req), ?keywords)).
Next, we link the detected log entries to the respective attack techniques (note that Sigma
typically provides tags that associate its rules with ATT&CK techniques).

This can be done via ?sigma rule:hasAttackTechnique ?techn. The query leverages
linked data principles to include external background knowledge from the ATT&CK-KG,
43https://github.com/SigmaHQ/sigma
44https://attack.mitre.org/matrices/enterprise/
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Figure 3.13.: SSH connections query result visualization (excerpt)

1 PREFIX c l : <https : // w3id . org / s ep s e s /vocab/ log / core#>
2 PREFIX apache : <https : // w3id . org / s ep s e s /vocab/ log /apache#>
3 PREFIX sigma : <http :// w3id . org / s ep s e s /vocab/ ru l e / sigma#>
4 PREFIX ru l e : <http :// w3id . org / s ep s e s /vocab/ ru l e#>
5 PREFIX attack : <http :// w3id . org / s ep s e s /vocab/ r e f / attack#>
6 PREFIX dcterm : <http :// pur l . org /dc/ terms/>
7

8 SELECT ? logEntry ? timestamp ? host ?keywords ? techn ? desc ? t a c t i c ? capec
9 WHERE {

10 ? logEntry apache : hasRequest ? req ;
11 c l : or ig inatesFrom ? host ;
12 c l : timestamp ? timestamp .
13 FILTER regex ( s t r (? req ) ,? keywords )
14 { SELECT ?keywords ? techn ? t a c t i c {
15 ? sigma sigma : keywords ?keywords .
16 OPTIONAL {
17 ? sigma ru l e : hasAttackTechnique ? techn .
18 ? techn dcterm : d e s c r i p t i o n ? desc .
19 ? techn attack : accompl i shesTact i c ? t a c t i c .
20 ? techn attack :hasCAPEC ? capec .
21 }
22 }}
23 } LIMIT 4

Listing 3.5: Rule-based threat detection and ATT&CK linking query

Table 3.7.: Scenario 4 Query Results (Excerpt)
logEntry timestamp host keywords techn desc tactic capec
5f4a32. . . Mar 04 19:18:43 cup "whoami" T1505.003 "Web Shell" persistence CAPEC-650
468226. . . Mar 04 14:05:41 insect "whoami" T1505.003 "Web Shell" persistence CAPEC-650
7cff1d1. . . Mar 04 19:18:46 cup "curl" T1190 "Exploit Pub.." initial-access -
600a59. . . Mar 04 19:18:43 insect "wget" T1190 "Exploit Pub.." initial-access -
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Figure 3.14.: Threat detection and ATT&CK linking visualization (excerpt)

which makes it possible to further link the identified attack technique detailed knowledge
such as technique description (via ?techn dcterm:description ?desc), attack tactic
(via ?techn attack:accomplishesTactic ?tactic), CAPEC45 attack patterns (?techn
attack:hasCAPEC ?capec), etc.

Table 3.7 and Figure 3.14 show the query results and visualization from this scenario.
Several log entries from a particular host (mail.cup) are associated with suspicious keywords.
For example, according to a Sigma rule 46 included as background knowledge, the "whoami"
keyword is considered indicative of a Web Shell attack technique (T1505.003). This
technique in turn is an instance of the tactic Persistence and of attack pattern CAPEC-
650.

3.2.6. Evaluation

We evaluated the scalability of our approach by means of a set of experiments in non-
federated and federated settings.

3.2.6.1. Evaluation Setup

The experiments were carried out on Microsoft Azure virtual machines with seven hosts (4
Windows and 3 Linux) with 2.59 GHz vCPU and 16 GB RAM each. We reused the log
vocabularies from [27] and mapped them to the log data.

Dataset Overview We selected the systematically generated AIT log dataset (V1.1) that
simulates six days of user access across multiple web servers including two attacks on
the fifth day [104]. As summarized in Table 3.8, the dataset contains several log sources
from four servers (cup, insect, onion, spiral). To reduce reading overhead and improve log

45https://capec.mitre.org/
46https://github.com/SigmaHQ/sigma/blob/eb382c4a59b6d87e186ee269805fe2db2acf250e/rules/w

eb/web_webshell_keyword.yml
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processing performance, we split large log files from the data set into smaller files – this
can easily be replicated in a running system using log rotation mechanisms. Specifically,
we split the files into chunks of 10k–100k log lines each and annotated them with original
filename and time-range information.

Table 3.8.: Dataset description

LogType #prop mail.cup.com mail.insect.com mail.onion.com mail.spiral.com
size #lines size #lines size #lines size #lines

Audit 36 25 GB 123.6 M 22.7 GB 99.9 M 14.6 GB 68.8 M 12.4 GB 59.5 M
Apache 12 36.9 MB 148 K 44.4 MB 169.3 K 22.7 MB 81.9 K 24 .8 MB 100.4 K
Syslog 6 28.5 MB 158.6 K 26.9 MB 150.7 K 15 MB 86.6 K 15.1 MB 85.5 K
Exim 11 649 KB 7.3 K 567 KB 6.2 K 341 KB 3.9 K 355 KB 4 K
Authlog 11 128 KB 1.2 K 115 KB 1.1 K 102 KB 1 K 127 KB 1.2 K

3.2.6.2. Single-host evaluation

We measured the overall time for virtual log graph processing including (i) log reading
(i.e., searching individual log lines), (ii) log extraction (i.e., extracting the raw log line
into structured data), (iii) RDF Mapping (i.e., transforming json data into RDF), and
(iv) RDF compression (i.e., compressing RDF into Header, Dictionary, Triples (HDT)
format).

In our scenarios, we included several log sources; for each log source, we formulated a
SPARQL query47 to extract 1k, 3k, 5k, and 7k log lines filtering by timestamp in the query
option. We report the average times over five runs for experiments with several log sources
– i.e., Auditlog (AD), Apache for web logs (AP), Exim for mail transfer agent logs (EX),
Syslog for Linux system logs (SY), and Authlog for authentication logs (AT) – for a single
host in Figure 3.15. We used the data set from the first web server (i.e., mail.cup.com)
in this evaluation. Note that we only extracted 1000k log lines from Authlog due to the
small original file size (less than 1.2 k log lines).

We found that the performance for log graph extraction differs across the log sources.
Constructing a log graph from Auditlog (AD) data resulted in the longest processing times
followed by Apache, Exim, Syslog and Authlog. The overall log processing time scales
linearly with the number of extracted log lines. Typically, the log extraction phase accounts
for the largest proportion (> 80%) of the overall log processing time. Furthermore, we
found that the increase in log processing time with a growing number of extracted log lines
is moderate, which suggests that the approach scales well to a large number of log lines.

Dynamic Log Graph Generation As discussed in the first part of the evaluation, execution
times are mainly a function of the length of text in the log source and the granularity of
the extraction patterns (i.e., log properties). As can be seen in Table 3.8, the log sources
are heterogeneous and exhibit different levels of complexity. In our setup, Auditlog, for
instance, has the largest number of log properties (36), followed by Apache (12), Exim
(11), Authlog (11), and Syslog (6).

47https://github.com/sepses/VloGraphQueryProcessor/tree/hdt-client-version/public/queries

78

https://github.com/sepses/VloGraphQueryProcessor/tree/hdt-client-version/public/queries


3.2. Virtual Knowledge Graph for Distributed Security Log Analysis

AD

AD

AD

AD

AP

AP

AP

AP

1,000 3,000 5,000 7,000
0

2

4

6

8

10

12

number of log lines

av
g.

ti
m

e
(s

ec
)

EX
EX

EX
EX

SY
SY

SY
SY

Reading

Extraction

RDF Mapping

Compression

AT

Figure 3.15.: Average log graph generation time for n log lines with a single host (36
extracted properties)

3 6 12 18 24 30 36
0

2

4

6

8

10

12

number of extracted properties

av
g.

ti
m

e
(s

ec
) 1k lines

3k lines
5k lines
7k lines

Figure 3.16.: Dynamic log graph generation time

Figure 3.16 shows an evaluation of log graph generation performance with respect to
the complexity of the log source. We use the Auditlog for this evaluation as it has the
highest number of log properties. Overall, the log graph generation performance grows
linearly with the number of extracted log properties. Hence, queries that involve a smaller
subset of properties (e.g., only user or IP address rather than all information that could
potentially be extracted) will typically have smaller generation times.

Graph Compression Figure 3.17 shows the performance for log graph compression on the
Auditlog dataset. We performed full property extraction (i.e., all 36 identified properties)
against 5k, 10k, 15k, and 20k log-lines, respectively, and compare the original size of raw
log data, the generated RDF graph in TURTLE48 format (.ttl), and the compressed graph
output in HDT format.

For 5k log lines (1 MB raw log) compression results in approximately 0.4 MB compared
to 5.4 MB for the uncompressed RDF graph. 20k log lines (4 MB raw log) compresses
to about 1.87 MB from 21.4 MB uncompressed generated RDF graph. Overall, the
compressed version is typically less than half the size of the original raw log and 10x
smaller than the generated RDF graph. The resulting graph output would be even smaller
for fewer extracted properties, minimizing resource requirements (i.e. storage/disk space).

48https://www.w3.org/TR/turtle/
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Figure 3.17.: Graph compression

3.2.6.3. Multi-host evaluation

To evaluate the scalability of our approach, we measure the log processing time for multiple
hosts on the same network. This evaluation includes not only the log processing but also
the query federation performance. Federation means that the queries are not only executed
concurrently, but that they involve evaluating and combining individual query results to
achieve integrated results.

Table 3.9 summarizes the evaluation setup that consists of six experiments ranging from
30 minutes up to 5 hours. The timeframe describes the starting time and the end time of
analysis; log lines per host summarizes the range of log lines per host within the timeframe.
For this evaluation, we used the Apache log dataset described in Table 3.8 and conducted
the analysis within the log timeframe of March 2nd, 2020, starting from 8pm. Host 1 to
host 4 store the data from the original 4 servers in the dataset (host 1 mail.cup.com, host 2
mail.insect.com, and so on); for the 3 additional hosts in the evaluation, we replicated the
log files from mail.cup.com, mail.insect.com, and mail.spiral.com. Similar to the single-host
evaluation, for each experiment, we reported the average times over five runs.

Table 3.9.: Multihost Experiment Timeframe

Experiment Duration Log lines
per host Experiment Duration Log lines

per host

E1 30min 0.7k - 1k E4 3h 3k - 5k
E2 1h 1k - 1.7k E5 4h 6k - 8k
E3 2h 2.8k - 4k E6 5h 8k - 10k

Figure 3.18 shows the average log processing times for each experiment. The 1 hour
experiment shows that log processing for two hosts takes approx. 4.7 seconds on average.
In the same experiment, the time slightly increases with an increasing number of hosts
and reaches a max. of 7.5 seconds. The log processing time for the 5 hours experiment
with two hosts takes approx. 19.01 seconds on average and reaches the max. average time
of 26.10 seconds with 7 hosts. Based on these results, we conclude that the growth of
the log processing time as a function of the number of hosts is moderate. Therefore, this
approach scales well with a growing number of hosts to monitor, as the log processing on
each host is parallelized and the query federation overhead is low.

80



3.2. Virtual Knowledge Graph for Distributed Security Log Analysis

2 3 4 5 6 7
0

5

10

15

20

25

30

number of hosts

av
g.

ti
m

e
(s

ec
) E1

E2
E3
E4
E5
E6

Figure 3.18.: Query execution time in a federated setting for different time frames

3.2.7. Discussion

In this section, we reflect upon benefits, limitations, and possible applications of the
proposed virtual log knowledge graph framework.

Graph-based Log Integration and Analysis Representing log data in semantic graph
structures opens up new possibilities, such as handling log data in a uniform representation,
exploring connections between disparate entities, and applying graph-based queries to
search for abstract or concrete patterns of log events. Compared to text-based search,
graph-pattern based queries are more expressive and make it possible to link entities that
appear in log lines to background knowledge. Furthermore, the ability to provide query
results as a graph enables new workflows for analysts and may help them to be more
efficient in exploring log data and ultimately improving their situational awareness faster.

In our evaluation, we find that SPARQL as a standardized RDF query language provides
powerful means for graph pattern-based ad-hoc log analyses. A challenge, however, is that
analysts are typically not familiar with the language and require some training. This may
improve in the future, as SPARQL is often already part of computer science curricula and
is increasingly being adopted in many industries49. Furthermore, intuitive general-purpose
visual query building and exploration tools such as [125, 126] could be used and possibly
adapted for security applications to abstract the complexity of writing queries directly in
SPARQL.

Decentralization and Virtualization Decentralized ad-hoc extraction on the endpoints
at query execution time is a particularly useful approach in scenarios where log acquisition,
aggregation, and storage are difficult or impractical. This includes scenarios with a large
number of distributed hosts and log sources. Pushing log analysis towards the endpoints
is also particularly interesting in settings where bandwidth constraints do not permit
continuous transmission of log streams to a central log archive.

Whereas these considerations apply generally, the decentralized approach also has
benefits that are specific to our knowledge-graph based approach for log integration
and analysis. Specifically, the federated execution distributes the computational load of
extraction, transformation, and (partly) query execution towards the endpoints. This will
be useful in many practical settings where the scale of the log data that is constantly
generated in a distributed environment is prohibitively large and it is not feasible to
49cf. http://sparql.club
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transform the complete log data into a KG presentation. In such settings, the decentralized
approach facilitates ad-hoc graph-based analyses without the need to set up, configure
and maintain sophisticated log aggregation systems.

Our evaluation showed that this ad-hoc extraction, transformation, and federated query
execution works efficiently for temporally restricted queries over dispersed log data without
prior aggregation and centralized storage. Consequently, the approach is particularly useful
for iterative investigations over smaller subsets of distributed log data that start from initial
indicators of interest. It supports diagnostics, root cause analyses etc. and can leverage
semantic connections in the graph that would otherwise make manual exploration tedious.
An inherent limitation, however, is that the computational costs become exceedingly large
for queries without any temporal restrictions or property-based filters – i.e., the approach
is less useful for large-scale exploratory queries over long time intervals without any initial
starting point.

Log Parsing and Extraction The identification and mapping of relevant concepts in
log messages is currently based on regular expression patterns. Extracted log lines are
filtered and only lines that potentially match the query are transferred from the local
endpoint, which minimizes bandwidth usage and processing load at the querying client.
A limitation of this approach is that for complex queries, the execution of a large set of
regular expression patterns on each log line raises scalability issues.

An approach based on templates, similar to [127], could be applied to learn the structure
and content of common log messages and then only extract the expected elements from
those log messages. Furthermore, repeated application of regular expression patterns on
each log line could also be avoided by building a local index on each endpoint. Such
techniques should improve query performance, but these improvements have to be traded
off against the additional complexity and storage requirements they introduce.

Applications and Limitations The illustrative scenarios in Section 3.2.5 highlighted
the applicability of the approach in web access log analysis, intrusion detection, network
monitoring, and threat detection & ATT&CK linking.

In these settings, ad-hoc integration of dispersed heterogeneous log data and graph-based
integration can be highly beneficial to connect isolated indicators. Moreover, we found
that the virtual log knowledge graph is highly useful in diagnostic applications such as
troubleshooting or service management more generally and we are currently working on a
framework for instrumenting containers with virtual knowledge graph interfaces to support
such scenarios.

In the security domain – the focus in this paper – we found that virtual knowledge
graphs can complement existing log analytic tools in order to quickly gain visibility in
response to security alerts or to support security analysts in threat hunting based on an
initial set of indicators or hypotheses.

Key limitations, however, include that the virtual integration approach is not directly
applicable for (i) repeated routine analyses over large amounts of log data, i.e., in scenarios
where up-front materialization into a KG is feasible and amortizes due to repeated queries
over the same large data set or (ii) continuous monitoring applications, i.e., scenarios
where log data has to be processed in a streaming manner, particularly in the context
of low latency requirements. The latter would require the extension of the approach to
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streaming settings, which we plan to address in future work.

Evasion and Log Retention A typical motivation for shipping log data to dedicated
central servers is to reduce the risk of undetected log tampering when hosts in the network
are compromised. This reduces the attack surface, but makes securing the central log
archive against tampering all the more critical. Relying on data extracted at the endpoints,
by contrast, comes with the risk of local log tampering. File integrity features could
help to spot manipulations of log files, but for auditing purposes, the proposed approach
has to be complemented with secure log retention policies and mechanisms. Finally, the
communication channel between the query processor in the analytic user interface and the
local log parsers also represents an attack vector that has to be secured.

3.2.8. Conclusions

In this article, we presented , a novel approach for distributed ad-hoc log analysis. It
extends the Virtual Knowledge Graph (VKG) concept and provides integrated access
to (partly) unstructured log data. In particular, we proposed a federated method to
dynamically extract, semantically lift and link named entities directly from raw log files.
In contrast to traditional approaches, this method only transforms the information that is
relevant for a given query, instead of processing all log data centrally in advance. Thereby,
it avoids scalability issues associated with the central processing of large amounts of rarely
accessed log data.

To explore the feasibility of this approach, we developed a prototype and demonstrated
its application in three log analysis tasks in security analytics. These scenarios demonstrate
federated queries over multiple log sources across different systems. Furthermore, they
highlight the use of semantic concepts inside queries and the possibility of linking contextual
information from background knowledge. We also conducted a performance evaluation
which indicates that the total log processing time is primarily a function of the number of
extracted (relevant) log lines and queried hosts, rather than the size of the raw log files.
Our prototypical implementation of the approach provides scalability when facing larger
log files and an increasing number of monitoring hosts.

Although this distributed ad-hoc querying has multiple advantages, we also discussed a
number of limitations. First, log files are always parsed on demand in our prototype. By
introducing a template-based approach to learn the structure of common log messages and
by building an index on each endpoint to store the results of already parsed messages, query
performance could be improved. Second, the knowledge-based ad-hoc analysis approach
presented in this article is intended to complement, but does not replace traditional log
processing techniques. Finally, while out of scope for the proof of concept implementation,
the deployment of the concept in real environments requires traditional software security
measures such as vulnerability testing, authentication, secure communication channels,
etc.

In future work, we plan to improve the query analysis, e.g., to automatically select
relevant target hosts based on the query and asset background knowledge. Furthermore,
we will explore the ability to incrementally build larger knowledge graphs based on a
series of consecutive queries in a step-by-step process. Finally, an interesting direction for
research that would significantly extend the scope of potential use cases is a streaming
mode that could execute continuous queries, e.g., for monitoring and alerting purposes.

83



3. Semantic Log Integration, Monitoring and Analysis

We plan to investigate this aspect and integrate and evaluate stream processing engines in
this context.
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4. Knowledge Graph-based Threat
Detection and Attack Reconstruction

In this chapter, we present our contributions that address RQ3, i.e., "How to reconstruct
sequences of attack actions from system log event information?". We introduce a novel
approach for semantic threat detection and attack reconstruction based on standard data
representations for log data. We introduce a modular framework that integrates a variety
of threat detection and attack reconstruction techniques.

Kabul Kurniawan, Andreas Ekelhart, Elmar Kiesling, Gerald Quirchmayr, A Min Tjoa.
Published as "KRYSTAL: Knowledge Graph-based Framework for Tactical Attack Discov-
ery in Audit Data" in Computers & Security Journal, Vol 121. 2022 [34].

Abstract

Attack graph-based methods are a promising approach towards discovering attacks
and various techniques have been proposed recently. A key limitation, however, is that
approaches developed so far are monolithic in their architecture and heterogeneous in
their internal models. The inflexible custom data models of existing prototypes and the
implementation of rules in code rather than declarative languages on the one hand make it
difficult to combine, extend, and reuse techniques, and on the other hand hinder reuse of
security knowledge – including detection rules and threat intelligence. KRYSTAL tackles
these challenges by providing a knowledge graph-based, modular framework for threat
detection, attack graph and scenario reconstruction, and analysis based on RDF as a
standard model for knowledge representation. This approach provides query options that
facilitate contextualization over internal and external background knowledge, as well as the
integration of multiple detection techniques, including tag propagation, attack signatures,
and graph queries. We implemented our framework in an openly available prototype and
demonstrate its applicability on multiple scenarios of the DARPA Transparent Computing
dataset. Our evaluation shows that the combination of different threat detection techniques
within our framework improved detection capabilities. Furthermore, we find that RDF
provenance graphs are scalable and can efficiently support a variety of threat detection
techniques.

4.1. Introduction

In the face of complex cyber attacks, it is crucial to not only detect attacks as early as
possible, but also to understand their context and implications in order to choose an
appropriate response strategy. To protect themselves, organizations typically rely on
defenses such as IDSs. These systems are useful in that they can point to indicators of
compromise and issues, but they also typically generate a large number of false positive
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Figure 4.1.: Motivating Example - the enlarged section of the graph (the sub-graph
inside the red line) depicts an attack graph. Specifically, the graph inside the
blue dotted-line shows low-level event interaction as part of the attack pattern.
While existing approaches can construct such an attack graph, it remains
challenging for an analyst to recognize and understand the real attack steps
without linking to high-level context (i.e., adversary tactics and techniques).

alerts. To identify relevant alerts, it is necessary to investigate their context, which
typically requires substantial manual effort and expertise [128, 129]. As the sheer volume
of low-level log data grows, manual analyses become increasingly infeasible.

In this context, system-level provenance graphs, which rely on audit data represented in
graph structures, have recently attracted considerable attention in the security research
community as a promising tool with strong abstract expression ability and relatively high
efficiency [130]. Such provenance graphs represent relationships between the control flow
and data flow between subjects (e.g., processes, threads) and objects (e.g., files, network
sockets) in the system through a timestamped directed graph. Based on that, a large
variety of techniques have been developed to automatically detect and connect attack steps
in such graphs1.

Motivating Example Figure 4.1 depicts the provenance graph of an exfiltration attack
carried out in the context of the DARPA Transparent Computing program [131]. The
depicted graph, which was generated by our prototype, captures running processes, file reads
and writes, and sent packets on a host over a given period of time2. The enlarged section of
the graph highlights an attack fragment in which an attacker exploits a vulnerable nginx
web server through a malformed HTTP request. The attacker opens a shell connection to
the victim’s host via the vulnerable web server ( 1○ 2○); manages to write an executable file
/tmp/XIM ( 3○ 4○ 5○); starts a process that reads sensitive information from /etc/passwd
( 6○), and finally exfiltrates data via HTTP to an external network ( 7○). The automatically
constructed provenance graph summarizes the attack scenario as a sequence of connected

1cf. [130] for a recent survey
2In this case 140 hours.
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low level events, which provides a good starting point for security analyses.

Challenges Despite its potential, provenance graph-based analysis faces a number of
challenges that currently make it difficult to apply them in practical settings.

Context and interpretability . The closed nature of existing attack graph-based approaches
makes it difficult to relate provenance data to internal and external knowledge. This is
crucial because context information is important when interpreting security alerts in order
to identify rare occurrences of malicious patterns within an overwhelmingly large amount
of activities that are benign.

The graphs typically generated by state of the art techniques connect low-level events
that are not easily interpretable without additional context. In our motivating example,
for instance, the sub-graph inside the blue dotted line shows the low-level events that
constitute the sequence of attack (steps 1○ to 7○). Without relating such granular low-level
events to a high-level context, it remains difficult to identify the underlying attack tactics
and techniques, interpret the events in a broader context, and understand the attack. This
lack of abstraction from low-level event graphs to higher level techniques and tactics results
in tedious attack investigations necessary to link low-level evidence to phases of complex
multi-stage attacks.

Robust detection. Provenance graph-based attack discovery approaches have so far been
developed as monolithic prototypes implementing a particular combination of techniques.
Various prototypes have individually been shown to be effective in identifying and analyzing
attacks, but robust detection still remains a key challenge [130].

Interoperability . Existing approaches have so far been developed in the context of
tightly coupled research prototypes with proprietary internal data structures that are not
interoperable. The respective implementations are typically not openly available, which on
the one hand impedes the reproducibility of the findings, and on the other hand hinders
integration and reuse.

Solution approach To tackle these challenges, we propose a knowledge graph-driven
framework (KRYSTAL) that leverages Semantic Web technologies for audit log analysis
and tactical attack discovery.

We hypothesize that more robust detection can be achieved in an integrated platform
that makes it possible to combine heterogeneous approaches and techniques – which
is currently difficult due to the lack of a uniform data model and a common technical
foundation. Furthermore, we propose to disentangle data collection, data management,
and threat detection – which are currently to a varying degree part of and specific to each
approach – by means of a uniform, ontology-based target representation for provenance
graphs. This abstracts from storage layer implementation details, facilitates separation of
concerns, and provides interoperability between components on these layers. It also makes
it possible to reuse and recombine collection, management, and threat detection modules.

To this end, our contributions in this paper are as follows: (i) We develop a stand-
ardized3, shared and reusable conceptualization of log events, detection rules, and threat
intelligence. Thereby, we unify and integrate log events from heterogeneous sources and
enrich it with background knowledge; (ii) We introduce a modular threat detection and
attack graph reconstruction framework that leverages this model and integrates multiple

3https://www.w3.org/standards/
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state of the art techniques such as tag propagation, attenuation & decay, signature-based,
and graph querying; (iii) We generate attack graphs that can be enriched and contextual-
ized through linking to background knowledge (e.g., assets, vulnerabilities, cyberthreat
intelligence, etc.); such contextualization can help analysts to identify and assess high-level
attack scenarios in order to understand their significance, cause, and impact. (iv) We
provide an open source prototype of the system4 and evaluate it on a well-established
large-scale dataset [131].

The remainder of this paper is structured as follows: Section 4.2 discusses related work in
threat detection and attack graph construction, Section 4.3 puts forth a set of requirements
as a basis of our proposed solution; Section 4.4 discusses the conceptualization of our
approach; Section 4.5 introduces our knowledge graph-based attack detection framework,
and Section 4.6 discusses the implementation and introduces application scenarios; we
evaluate our approach in Section 4.7, discuss the results in Section 4.8 and conclude with
an outlook on future research in Section 4.9.

4.2. Related Work

In this article we focus on misuse-based intrusion detection techniques, which search for
well-defined patterns of attack [132]. Consequently, we organize related work on threat
detection and attack graph construction into the following categories: (i) provenance-based
tracking, (ii) tactical attack construction, (iii) graph queries, and (iv) ontology-based
threat detection. Table 4.1 summarizes and compares existing attack discovery approaches,
which will be discussed in the following sections.

Provenance-based Tracking Seminal work on provenance-based attack detection [133]
introduced the idea to investigate attacks through backward tracking. A major limitation of
initial "naive" backtracking approaches is that they are based on coarse-grained provenance
data. This typically introduces a large number of false dependencies in the graph, a problem
known as "dependence explosion" [134]. Several researchers introduced approaches to
mitigate this problem through fined-grained taint-tracking or information flow tracking
[135, 136, 137]. Although these approaches can accurately distinguish suspicious and benign
nodes, scaling them remains a challenge [134]. Another approach tried to solve this problem
by introducing tag-propagation. SLEUTH [128], for instance, introduced trustworthiness
tags (t-tags) and confidentiality tags (c-tags) that are used to assign suspicion levels to
nodes and propagate them through the provenance graph. In combination with a policy
framework, these tags can trigger alarms and successfully identify unseen attacks in real-
time and with low overhead. However, SLEUTH suffers from numerous false-positives for
attacks with long-running processes [138]. MORSE [138] extends

this approach by introducing tag-attenuation and tag-decay to cut down false alarms by
more than an order of magnitude. To reduce the provenance graph, it indexes all subjects
and objects using a numeric index. However, none of these approaches leverage standard
representations, but rely on custom graph models and hard-coded rules and policies.
Consequently, they are difficult to expand and it is difficult to investigate the resulting
attack graphs further, e.g., by linking them to background knowledge. Furthermore, both
SLEUTH and MORSE do not explicitly represent the high-level context of attacks. As a

4https://github.com/sepses/Krystal
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Table 4.1.: Comparison of attack discovery approaches. (DS ) refers to domain-
specific, (N/A) refers to not available, (✓) refers to provided, (✗) refers to not
provided.

Approaches Data
Models

Detection
Techniques

Data
Reduction
Techniques

Attack
Recon-

struction

High-Level
Attack

Summa-
rization

Back-
ground

Knowledge
Linking

Pub-
lished
Proto-
type

Backtracking [133] Custom Graph Naive Backtracking ✗ ✓ ✗ ✗ N/A
AIQL [139] Relational DB DS Query Language ✗ ✗ ✗ ✗ N/A
SAQL [140] Relational DB DS Stream Query ✗ ✗ ✗ ✗ N/A
POIROT [141] Custom Graph Graph Alignment ✗ ✓ ✗ ✗ N/A
HOLMES [129] Custom Graph HSG/Severity Score ✗ ✓ ✓ ✗ N/A
RapSheet [142] Custom Graph EDR/Threat Score CPR[143] ✓ ✓ ✗ N/A
Zou, et al. [144] Custom Graph Pre/Post Condition ✗ ✗ ✓ ✗ N/A
SLEUTH [128] Custom Graph Tag Propagation ✗ ✓ ✗ ✗ N/A
MORSE [138] Custom Graph Tag Propagation CSR[134] ✓ ✗ ✗ N/A
CyGraph [114] NoSQL Graph DS Query ✗ ✓ ✗ ✓ ✓
UCO [81] RDF Graph SPARQL Query ✗ ✗ ✗ ✓ ✓
Ekelhart, et al. [27] RDF Graph SPARQL Query ✗ ✗ ✗ ✓ ✓
Kurniawan, et al. [30] RDF Graph SPARQL Query ✗ ✓ ✗ ✓ ✓
SLOGERT [145] RDF Graph SPARQL Query HDT[123] ✗ ✗ ✓ ✓
KRYSTAL RDF Graph Hybrid HDT[123] ✓ ✓ ✓ ✓

result, it becomes exceedingly difficult to identify attacks as attack graphs become more
complex.

Our approach introduces a standard and flexible graph model based on an ontology.
Hence, with a standard graph model and declarative rules and policies, our approach can
produce compact attack graphs and also flexibly integrate and link them to background
knowledge. For graph reduction, we use (Header, Dictionary, Triples) HDT[123], a compact
RDF-based structure that keeps large provenance graph compressed. We discuss it in
more detail in Section 4.5.1.

Tactical Attack Construction Provenance-based tracking typically relies on a bottom-up
approach, i.e., identifying attacks based on the causality relationship of system objects,
such as processes, files, and sockets. By contrast, several approaches follow a top-down
strategy, i.e., they aim to identify attacks based on high-level models of APT campaigns
(e.g., techniques, tactics) and/or kill-chain phases. HOLMES [129] introduced threat scores
and 16 techniques, tactics, procedures (TTP) proposed by the authors to construct a
high-level scenario graph (HSG) from a provenance graph. This approach can mitigate
dependence explosion and offers a map to TTP. However, its ability to identify attacks with
only a single APT stage is limited [138]. RapSheet [142] is an attack graph construction
approach based on alert correlation from a commercial Endpoint Detection and Response
(EDR) tool. By incorporating 67 EDR rules, it can relate alerts into a tactical provenance
graph based on MITRE’s ATT&CK TTPs. For graph reduction, it implements causality-
preserved reduction (CPR) [143] that merges edges with identical operations and keeps
only the edge with the latest timestamp. Our approach also facilitates TTP mappings,
but we rather incorporate rules from open, standard and community-driven detection rules
(i.e., SIGMA [146]), thus avoiding a dependence on a commercial platform.

Another recently proposed approach [144] uses tactic-centric Advanced Persistent Threat
(APT) recognition to detect APT tactics based on APT techniques’ prerequisites (i.e.,

89



4. Knowledge Graph-based Threat Detection and Attack Reconstruction

requirements for techniques to be matched to a tactic) and post-conditions (i.e., the result
of a technique, e.g., malicious process being created). The identified attack techniques
are mapped to specific tactics and ranked based on their tactic matching. This approach
shows the detected tactics and techniques, but it does not represent the complete attack
scenario, i.e., attack sequences, causality and connections.

In our work, we propose a hybrid approach that facilitates both bottom-up and top-down
techniques for threat detection and attack construction in a single, modular framework.
Our approach generates detailed attack graphs from low-level events but also facilitates
linking and contextualization to existing high-level, tactical attack patterns such as MITRE
ATT&CK TTPs.

Graph Queries A number of research efforts resulted in query-based and graph-matching
approaches to detect and construct attack scenario graphs from historical audit log data
stored in databases. AIQL [139] introduced a domain-specific model and query language
to analyze and investigate attacks. SAQL [140] extends AIQL for stream-based querying
over system monitoring data. POIROT [141] proposed an attack graph detection approach
based on manually extracted graph patterns from previously seen attacks, e.g., in threat
intelligence reports. In our approach, we rely on a semantic model, which facilitates graph
matching through semantic graph queries (formulated in SPARQL). Furthermore, our
RDF-based provenance graph can be easily queried and linked to internal and external
background knowledge through SPARQL query federation.

Ontology-based Threat Detection A number of research efforts investigated ontologies
to support cybersecurity and threat detection. Early work [147] developed an ontology
for the intrusion detection domain based on DAML+OIL [148] to extend simple IDS
taxonomies with machine-interpretable definitions. Ref. [149] extended this IDS Ontology
to incorporate cybersecurity-related information from heterogeneous resource (e.g., web
texts, reports).

UCO [81] introduced a more instance-data driven approach to construct a rich cyber-
security ontology by integrating cybersecurity standards such as STIX[150], CyBox[151],
CVE[42], CAPEC[152], CCE[52], and CVSS[153]. UCO provides integration from het-
erogeneous sources and supports reasoning (e.g. using predefined rules to infer attacks).
However, UCO and other previously proposed ontologies were designed to support intrusion
detection rather than attack graph construction. More recent works such as [154] proposed
an ontology that supports IDS alert correlation. Through the use of reasoning rules, it
can infer and classify IDS alerts (i.e., false alert, unclassified, plausible attack) based on
existing vulnerability information. As the focus is solely on attack detection, however, this
proposed approach does not result in attack graphs.

In prior work, we proposed a modular ontology [27] that can harmonize and integrate
heterogeneous log sources (e.g., Syslog, Auth log, Apache log). Subsequent work [28] facil-
itates forensic analyses of arbitrary logs and contextualizes them with external background
knowledge (e.g., CPE, CVE, CVSS, CWE, and CAPEC) in a federated settings [155].
SLOGERT [145] extends this previous work with the ability to construct knowledge graphs
automatically from arbitrary raw log messages. It identifies, links, and enriches entities in
log sources with background knowledge. In this work, we extend and enhance our previous
work on security ontologies to integrate events from heterogeneous log sources, represent
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them in attack scenario graphs, and link them to background knowledge.

4.3. Requirements

Based on our analysis of the limitations of the state of the art (cf. Section 4.2), we
identify the following set of requirements for the construction of a modular framework for
knowledge graph-driven tactical attack discovery.

R1. Contextualization Investigating and prioritizing security alerts, which typically
include a large number of false positives, requires extensive security domain knowledge
to understand the context of an alert [156]. This makes it necessary to contextualize
information in the provenance graph with appropriate background knowledge, which
necessitates a flexible data model. As an example, important contextual information on
the system under evaluation includes installed software and patch versions of the host where
an alert has been raised. Existing approaches (e.g., [141, 138]) typically hard-code some
context information (e.g., external networks and software), whereas the majority currently
ignores them altogether. To overcome these limitations, the ability to contextualize
provenance graphs with background knowledge on the system under investigation is a key
requirement for our framework.

R2. Reusability and Extensibility Reusability – e.g., of attack patterns and resulting
graphs – and extensibility – e.g., of detection, reconstruction, and summarization techniques
– have not been design priorities in existing monolithic solutions for provenance based
log analysis. Consequently, approaches each rely on their own data structures developed
specifically for each approach, While this allows for some optimization, it makes it difficult
to reuse and extend methods, techniques, information, and results. The lack of unified data
formats as a (more specific) aspect of this requirement has also been highlighted as a major
limitation of the state of the art in a recent survey [130]. To tackle this limitation, the
developed framework should – while offering adequate performance – make it possible to:
(i) formulate and exchange rules for detection, alerting, and attack graph reconstruction
in a declarative language, (ii) exchange instances of provenance graphs in a standard
representation, (iii) query the provenance graphs in a standard language, (iv) incorporate
and exchange threat information, and (v) reuse and combine analytic techniques.

R3. Threat intelligence linking Connecting isolated events to reconstruct a complete
attack scenario is an important step to understand the relevance and impact of alerts. In
this context, an ability to link low-level threat evidence to phases of complex multi-stage
attacks would be highly beneficial. While some existing approaches [129, 142, 144] aim to
identify steps and associate them with high-level APT phases, they do not take advantage
of the abundance of available Cybersecurity Threat Intelligence (CTI) information available
in external sources such as MITRE ATT&CK [157], which offers links to CVE [42], CWE
[158], and others. We therefore define the ability to leverage such connections and provide
integrated querying capabilities as a key requirement for the developed approach. This will
facilitates abstraction from low-level event graphs to higher level techniques and tactics,
provide additional information for prioritization, impact assessment and mitigation, and
make tedious attack investigations more efficient and effective.
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Figure 4.2.: Krystal Ontology - nodes represent concepts (classes) and edges represent
the class relationship (properties).

R4. Cross-platform Interoperability Integrating provenance data from heterogeneous
sources and constructing integrated attack graphs spanning multiple systems would be
highly beneficial in the face of complex multi-host/multi-platform attacks [130]. This ne-
cessitates a unified provenance representation that can abstract from specifics of individual
platforms.

4.4. Conceptualization

In this section, we describe the conceptualization of our approach and the use of inference
for provenance graph construction.

4.4.1. System-Call Provenance Representation

Provenance graphs are a highly effective representation to keep track of information flows
[130]. They represent interactions between objects as events. Each event involves a subject,
i.e., a system object (e.g., a process, thread) that performs a particular operation (e.g.,
write, read, send) on an object (e.g., file, socket, registry). As objects typically appear in
multiple events, a graph emerges. Although system-call provenance is represented similarly
across different existing approaches [128, 138, 142, 129], no formal and standardized
representation (ontology) exists. Instead, existing approaches typically use ad-hoc and
hard-coded data models which limits their interoperability, reusability and extensibility.

4.4.2. KRYSTAL Provenance Ontology

We propose the KRYSTAL ontology5 as a standard representation for system-call proven-
ance graphs. Key benefits of using ontologies is the ability to share a common understand-
ing – including concepts and structure, making assumptions explicit, facilitating semantic

5https://w3id.org/sepses/vocab/event/log/

92

https://w3id.org/sepses/vocab/event/log/


4.4. Conceptualization

reasoning, and promoting concept reuse [159]. Furthermore, the use of an ontology for
provenance graph representation makes it easy to integrate background knowledge and
unify the conceptual model across different threat detection approaches.

In developing the KRYSTAL ontology, we followed a hybrid approach, i.e., using bottom-
up and top-down approaches concurrently [159]. Bottom-up, we started by analysing
low-level data structures from applications (e.g., auditlog) and identifying their entities
and relations. Top-down, we considered attack patterns from existing cyberthreat intel-
ligence sources (e.g., MITRE ATT&CK [157]) and compared our ontology to existing
non-ontological provenance models/schemas. Our developed ontology is able to repres-
ent low-level system-call provenance data and link it to high-level attack patterns (cf.
Section 4.5.4).

Figure 4.2 depicts an excerpt of the KRYSTAL Ontology centered around core concepts
such as User, Host, System Object. The latter represent system entities such as Processes,
Files, and Sockets. We assign each system object so to a class (identified by rdfs:Class)
and potential sub-classes (identified by rdfs:subClassOf). Each system object so is a
vertex v and the relations between system objects (e.g., writes, isReadBy, sends, etc.)
are represented via edges e (identified by owl:ObjectProperty).

The SystemObject class represent system entities in general. It has three sub-classes
such as Process, File and Socket. The Process class represents a running process in
a system (e.g., firefox, ssh, etc.) while the File class represents a file (e.g., system file,
application file, etc.). We introduce kry:writes, kry:isReadBy and kry:isExecutedBy,
kry:deletes, kry:mmap properties to represent links between Process class and File class.
The Socket class represents a network connection (combination of an IPAddress and
Port). We defined kry:sends and kry:isReceivedBy properties that link the Process
class to the Socket class.

We also defined User, a class that describes user of a system. It has three sub-classes,
i.e., (i) RootUser, that represents the root-level user, (ii) SystemUser, represents the
system-level user, (iii) LocalUser, represents the local-level user. We also defined Host
class that represent a host machine. The kry:hasUser property connects Process class
to the User class, while the kry:originatesFrom property links it to Host class. Finally,
we also defined several other classes such as Executable class that identifies an executable
file and IPAddress that represents an IP Address. The kry:hasExe property connects
Process to Executable and kry:hasHostIP that links Process to IPAddress.

Furthermore, we introduce a provenance relation (identified by kry:provRel) that self-
links to SystemObject. It is a generic, upper-level relation property that is used to
represent provenance relationships between system objects (e.g., socket to process, process
to file, file to process). This provenance relation is automatically inferred from more
specific relation properties, as explained in the following.

4.4.3. Inference Features in KRYSTAL Ontology

The KRYSTAL ontology uses the RDF-S entailment and OWL reasoning rules summarized
in Table 4.2 for provenance graph construction.

rdfs2 & rdfs3 These rules are used to automatically infer the specific type of a given sys-
tem object based on its relations. For example, as depicted in Section 4.4.3, system object
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Table 4.2.: RDFS & OWL Reasoning Rules
Rule Premise Conclusion

rdfs2 e1(v1, v2),
rdfs:domain(e1, X)

v1 ∈ X

rdfs3 e1(v1, v2),
rdfs:range(e1, Y )

v2 ∈ Y

rdfs7 e1(v1, v2),
rdfs:subPropertyOf(e1, e2)

e2(v1, v2)

owl:
InverseOf

e1(v1, v2),
owl:inverseOf(e1, e2)

e2(v2, v1)

Figure 4.3.: RDFS & OWL reasoning for vertice/edge inference.
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Figure 4.4.: Rdfs7 inference example.

:Firefox6 has the relation kry:writes to another system object :/home/admin/clean,
since in the ontology we define kry:writes as owl:ObjectProperty with an rdfs:domain
of kry:Process. Consequently, based on rdfs2 rule definition, it will be automatically
inferred that :Firefox ∈ kry:Process. The system object :/home/admin/clean is an-
other example. Since kry:writes has rdfs:range of kry:File, based on the rdfs3 rule
definition, it will be deduced that :/home/admin/clean ∈ kry:File. This class type
inference is useful for, e.g., formulating semantic graph queries to detect attack patterns
based on the system object type and their relations. We discuss the query processes in
more detail in Section 4.5.

rdfs7 This rule is used to generalize relations based on property hierarchies identified by
rdfs:subPropertyOf. In the example in Figure 4.4, for instance, :Firefox has the relation
kry:writes to :/home/admin/clean, and in the ontology, kry:writes is a sub-property of
the more generic property kry:provRel, which represents provenance relationships. Based
on the rdfs7 rule, kry:provRel will be automatically inferred between objects that have a
more specific relation; this creates provenance links for all system object relationships (e.g.,
from the :Firefox process to the :/home/admin/clean file to the :Clean process etc.).
This is helpful to identify information flows, track causality of events, and reconstruct
attack graph. We discuss the advantage of having explicit provenance relations (e.g.,
during backward-forward analysis for attack graph reconstruction) further in Section 4.5.3.

owl:InverseOf Finally, a reasoning technique that we use in our ontology is property inver-
sion, identified by owl:InverseOf, which creates relations between system objects in both
directions. For instance, as depicted in Section 4.4.3, :Firefox has a relation kry:writes
to :/home/admin/clean and in the ontology, kry:writes is defined as owl:inverseOf to
kry:isWrittenBy. Based on the owl:inverseOf rule, it will be automatically inferred that
:/home/admin/clean also has a relation kry:isWrittenBy to :Firefox. The same holds
for property kry:executes, since it has the relation owl:inverseOf to kry:isExecutedBy
in the ontology.
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Figure 4.5.: Krystal Framework Architecture

4.5. Solution Architecture

In this section we present KRYSTAL, a modular framework for tactical attack discovery in
audit data. The proposed framework integrates a variety of attack discovery mechanisms
and takes advantage of its semantic model to include internal and external knowledge in
the analysis. Figure 4.5 gives an overview of the KRYSTAL attack discovery framework
which consists of three main parts, i.e., (i) provenance graph building, (ii) threat detection
and alerting, and (iii) attack graph and scenario reconstruction.

Security analysis is typically conducted either online or offline. Online refers to an
analysis performed in a running system in (near) real-time, whereas offline refers to analysis
over collected data. These two modes have a different purpose (monitoring vs forensics),
but they can complement each other in hybrid settings [160].

KRYSTAL works in an online mode in that it imports each log event in sequence from
potentially heterogeneous hosts (e.g., Linux, Windows, FreeBSD). The Provenance Graph
Building module then generates an RDF-based provenance graph, taking advantage of the
well-defined ontology and enabling enrichment with background knowledge. Subsequently,
the Threat Detection & Alerting module allows for the combination of various approaches
on the uniform KG. We illustrate the generality of the approach by implementing a set of
common mechanisms as SPARQL queries, combining (i) tag propagation, (ii) attenuation
& decay, and (iii) signature-based detection based on Indicators of Compromise (IoCs).
The Attack Graph Reconstruction module then facilitates (offline) attack graph generation
via Backward-forward chaining and attack pattern matching via Graph Querying over the
provenance graph. We explain each component in more detail in the following subsections.

4.5.1. Provenance Graph Building

This component consists of two sub-components, Log Parsing and RDF Mapping. Log
Parsing transforms raw log events from heterogeneous hosts and operating systems (e.g.,
auditd from Linux, ETW from Windows, and dtrace from FreeBSD) into a structured
format (i.e., JSON). This component selects and parses important information from the log
event such as system entities (e.g., processes, files, sockets, etc.) and their relations (e.g.,

5We represent objects with different colors: orange for processes, purple for files, blue for sockets, and
transparent-dotted circles for inferred system object types.

6Note that we define prefix ":" for an instance and "kry:" for Krystal ontology. We omit it in figures
for simplicity.
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read, write, execute, etc). RDF-Mapping maps the structured log data into an RDF graph
representation. Specifically, we used the KRYSTAL ontology described in Section 4.4.2 and
RML7, a declarative RDF-mapping language, to map the parsed audit data and transform
them into well-defined, RDF-based provenance graphs.

1 @prefix : <http :// w3id.org/sepses/resource#> .
2 @prefix kry: <http :// w3id.org/sepses/vocab/kystal#> .
3

4 :Firefox kry:writes :/home/admin/clean ;
5 kry:cmdLine "/usr/bin/firefox" ;
6 kry:hasUser :user -2 ;
7 ...

Listing 4.1: Excerpt of RDF-based provenance graph generated from a log event

Section 4.5.1 shows an excerpt of a log event in RDF representation. It captures
the fact that a system object (Firefox process) created a file ("/home/admin/clean").
In RDF, the Firefox process is modeled as subject :Firefox, the "write" operation is
represented as property kry:writes and the file "/home/admin/clean" is connected as
object :/home/admin/clean.

Taking advantage of reasoning rules (cf. Section 4.4.3), Section 4.5.1 shows the in-
ferred RDF triples from the provenance graph. :Firefox has been identified as a
kry:Process and kry:SystemObject. In addition, the provenance relation property
:provRel with the object :/home/admin/clean has been added automatically, and the
type of :/home/admin/clean has been inferred as kry:File.

1 @prefix : <http :// w3id.org/sepses/resource#> .
2 @prefix kry: <http :// w3id.org/sepses/vocab/kystal#> .
3 ...
4 :Firefox a kry:Process , kry:SystemObject;
5 kry:provRel :/home/admin/clean.
6

7 :/home/admin/clean a kry:File , kry:SystemObject.
8 ...

Listing 4.2: Excerpt of inferred RDF triples

Graph Reduction & Compression We apply two strategies to reduce the graph size.
First, we automatically merge the duplicated RDF output identified by the same URI [161],
thus eliminating redundant events (events with the same subject, property and object).
Furthermore, we skipped irrelevant events – i.e., events that are not considered in our
ontology – from being processed. Second, we use HDT [123] as a graph compression
technique that provides a compact data structure and binary serialization format for RDF.
HDT keeps large graph data compressed and manageable while enabling query operations
without prior decompression. We discuss our graph reduction and compression results in
Section 4.7.

4.5.2. Threat Detection & Alerting

Due to the uniform KG representation, the KRYSTAL framework allows to combine and
integrate a variety of techniques for threat detection and alerting. We illustrate this

7https://rml.io/
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Figure 4.6.: Tag Propagation Example

by (i) transforming and integrating established threat detection and alerting techniques
(ii) incorporating a signature-based threat detection approach through the transformation
of curated public rules (e.g., Sigma Rule), and (iii) link the identified attack pattern into
high-level attack technique and tactic (TTPs Mapping) . Rather than hard-coding these
mechanisms and developing them for a custom data structure, we show in the following
how they can be implemented as standard declarative SPARQL queries.

Tag Propagation is a prominent method to establish event causality in the context of
provenance graphs. It is based on a set of rules to assign tag values onto system object
nodes (i.e., process, file, socket, etc.) upon interaction between them [128]. In order
to trace the impact of malicious events, tags and values will be propagated sequentially
through a provenance graph to other system objects if a given tag propagation rule is
satisfied.

Figure 4.6 illustrates tag propagation with an example. It introduces integrity and
confidentiality tags to identify the suspicion level of a node. We express propagation rules
[138] as SPARQL queries processed by our tag propagation component. Section 4.5.2
shows the query matching the illustration in Figure 4.6. It checks if a socket connection
(<socket>) is received by (:isReceivedBy) a process (<process>) and then compares the
minimum (afn:min) integrity tag value (:intTag) of the <socket> (identified by ?oit
variable) and <process> (identified by ?sit variable). 8 If ?oit is not the same as ?sit,
it updates9 ?sit with the new value (identified by the ?nit variable).

1 PREFIX : <http :// w3id.org/sepses/vocab/krystal#>
2 PREFIX afn: <http :// jena.apache.org/ARQ/function#>
3

4 DELETE { <process > :intTag ?sit }
5 INSERT { <process > :intTag ?nit }
6 WHERE { <socket > :intTag ?oit;
7 :isReceivedBy <process >.
8 <process > :intTag ?sit.
9 FILTER (?oit != ?sit).

10 BIND (afn:min(?oit ,?sit) AS ?nit). }

Listing 4.3: Propagation rule for incoming socket connection

8System objects with integrity scores in the interval [0.0− 0.5| are considered suspicious and scores in
the interval [0.5− 1.0] are considered benign.

9SPARQL uses DELETE and INSERT to perform update operations on triple(s); cf. https://www.w3.org
/TR/sparql11-update/
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Attenuation & Decay are techniques to tackle the “dependence explosion” problem
[128], which occurs when a node in the provenance graph interacts with a large number of
system objects, causing a large number of benign events to be flagged as being part of an
attack [138]. This leads to a large number of false-positive alerts, making it difficult to
identify relevant alerts. Tag attenuation [138] aims to alleviate this issue by considering
objects imperfect intermediaries for propagating malicious behavior through a benign
process. In the previous example (cf. Figure 4.6), for instance, the low integrity process p1
writes a file f1, lowering its integrity. To avoid excessive propagation to other objects from
there, the integrity and confidentiality tags of a benign subject get attenuated before they
propagate to another benign object. This can be achieved by applying an additive factor
af to the original tag value.

Tag decay is based on the assumption that in case a benign subject gets compromised
and becomes suspicious, it will do so soon after consuming a suspicious input (e.g., read
low integrity file) [138]. Consequently, this technique gradually lifts the score of the low
integrity subject and limits benign objects from being propagated and flagged as suspicious,
particularly for long-running processes.

1 PREFIX : <http :// w3id.org/sepses/vocab/krystal#>
2 PREFIX afn: <http :// jena.apache.org/ARQ/function#>
3

4 DELETE {<file > :confTag ?oct}
5 INSERT {<file > :confTag ?noct}
6 WHERE {<file > :confTag ?oct.
7 <process > :writes <file >; :confTag ?sct.
8 FILTER (?oct != ?sct).
9 FILTER (?oct != ?noct).

10 BIND (?sct + 0.2 AS ?nsct).
11 BIND (afn:min(?oct ,?nsct) AS ?noct). }

Listing 4.4: Attenuation rule for a benign write propagation

Section 4.5.2 illustrates how the KRYSTAL framework enables declarative definitions of
such rules using SPARQL queries. It shows an example of an attenuation rule for a benign
write propagation that checks for a <process> that :writes a confidential <file>. The
rule gradually increments the confidentiality tag (:confTag) value (?sct) of processes.

Provenance-Based Alerting Provenance-based alerting policies detect attacks based
on the simultaneous fulfillment of several conditions in the provenance graph. These
conditions (cf. [138]) take data integrity tags as well as information associated with nodes
(e.g., permissions, users) into account. For example, a suspicious file execution can be
detected under the following alert policy:

• a file f is executed by a process p,

• f has a low integrity tag value (<0.5) and p is benign (integrity >=0.5).

1 PREFIX rule: <http :// w3id.org/sepses/vocab/rule#>
2 PREFIX : <http :// w3id.org/sepses/vocab/krystal#>
3 CONSTRUCT {
4 << ?file :isExecutedBy ?process >>
5 rule:hasDetectedRule rule:execRule }
6 WHERE { ?file :isExecutedBy ?process.
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Figure 4.7.: Signature/rule-based threat detection example using the translated Sigma-rule
query.

7 ?file rule:intTag ?oit.
8 ?process rule:subjTag ?sst.
9 FILTER (?oit < 0.5)

10 FILTER (?sst >= 0.5)}

Listing 4.5: Alerting policy represented as SPARQL Query

The KRYSTAL framework facilitates provenance-based alerting by expressing alert policies
as SPARQL queries and matching them against the provenance log graph. Section 4.5.2
provides an example of an alerting policy for suspicious file execution. The query matches
a file (?file) with a low integrity value that has been executed by a benign process.
Specifically, files with a tag value below 0.5 are considered low integrity and the respective
triple ?file :isExecutedBy ?process) will be marked with the detected rule10.

Signature/Rule-based Threat Detection We complement the provenance-based mech-
anisms with a signature/rule-based detection approach that utilizes IoC definitions to
identify known attacks in log events. This illustrates that the uniform KG representation
facilitates the combination of a variety of approaches by using a common declarative query
language.

Signatures are an established and effective approach in detecting known attack patterns,
but maintaining the set of rules and signatures can be labour-intensive [130]. To tackle
this problem, KRYSTAL leverages Sigma11 – an open, shareable, community-driven and
generic rule format for threat detection in logs.

Figure 4.7 part (1) shows an example of signature/rule-based threat detection defined
in Sigma12. Each Sigma-rule is written in YAML13 and defines the detection rule and
its metadata (title, id, date, author, log-source etc.). A key benefit of these rules is that
the tags metadata links rules to specific TTPs from MITRE ATT&CK. For example,
attack.t1204.002 corresponds to the technique T1204.002 14 (User Execution: Malicious

10We used the SPARQL CONSTRUCT syntax to generate new triples and link the detected alert to the
respective rule.

11https://github.com/SigmaHQ/sigma
12https://github.com/SigmaHQ/sigma
13https://en.wikipedia.org/wiki/YAML
14https://attack.mitre.org/techniques/T1204/003/
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File). As per November 202115, Sigma contains more than 1497 rules/signatures for
different log sources (e.g., application, network, web logs) and platforms (e.g., Linux &
Windows).

Our framework translates these Sigma rule specifications16 automatically and transforms
them into SPARQL query expressions. Specifically, we identified two search-identifiers
under the detection attribute: (i) lists that contain strings applied to the full log message
and joined with a logical ’OR’, and (ii) maps that consist of key/value pairs, where key
is a field in the log data and value is a string or integer. Lists of maps are joined with a
logical "OR" while all elements of a map are joined with a logical "AND". We express
lists as SPARQL filters with regex matching, while maps are represented as triple patterns,
i.e. Subject (S), Predicate (P), and Object (O). S is a log object, P is a log property, i.e.,
key/field in the log data and O is the value. Similar to lists, we express the key/value pair
matching using regex filters in SPARQL. Furthermore, we also map and transform the
rule metadata into RDF. Figure 4.7 part (2) shows an example translation of a Sigma rule
into SPARQL and RDF.

The translated Sigma rules are executed against the provenance graph to detect potential
attacks/threats in the Threat Detection and Alerting module of our framework. As we can
see in Figure 4.7 part (3), we detect an alert called "Program Executions in Suspicious
Folder" in the provenance graph since the execution of the /tmp/vUgefal process is located
in the /tmp/ folder as defined in the Sigma rule. Subsequently, the generated alert will be
linked automatically to the T1204.002 (User Execution: Malicious File) technique from
the ATT&CK knowledge graph [31] in the background knowledge (cf. Figure 4.7 part (4)).
We explain this linking mechanism further in Section 4.5.3.

4.5.3. Attack Graph Reconstruction

The next important step once the provenance graph has been constructed and alerts have
been raised is to understand how the alerts are connected and to reconstruct potential
attack steps. To this end, we construct an attack graph and the attack scenario out of the
provenance graph through (i) Backward-Forward Chaining and (ii) Graph Querying.

Backward-Forward Chaining Backward-Forward Chaining is used to first identify the
potential root cause of an attack and then reconstruct the overall attack steps. As
provenance-based alerting may produce a lot of alerts, we need to prioritize them and
identify potential root cause alerts of an attack. This can be done by assigning an alert
score during backward searching, i.e., incrementing alert scores of each predecessor alert on
a path.

For this search, we leverage Property Paths17, a SPARQL feature that allows us to find
routes between nodes in the RDF provenance graph. Recall that we used rdfs7 inference
to automatically generate an upper-level relation :provRel between system objects.

As shown in Section 4.5.3, the backward search query consists of a triple pattern [
?currentAlert ˆ:provRel* ?s ], in which ˆ..* represents the property path that finds all
possible backward connections from a node ?currentAlert to a node ?s via the relation
property :provRel, where ?s is classified as part of another alert. We represent this
15Last access: 11/26/2021
16https://github.com/SigmaHQ/sigma/wiki/Specification
17https://www.w3.org/TR/sparql11-query/#propertypaths
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condition as an RDF-star18 statement, i.e., [ «?s ?p ?o» rule:hasDetectedRule ?rule
].

1 PREFIX : <http :// w3id.org/sepses/vocab/krystal#>
2 PREFIX rule: <http :// w3id.org/sepses/vocab/rule#>
3 SELECT ?s ?p ?o
4 WHERE { ?currentAlert ^: provRel* ?s
5 <<?s ?p ?o>> rule:hasDetectedRule ?rule.
6 }

Listing 4.6: Backward searching expressed as SPARQL Query

Next, we iteratively update the alert scores for each predecessor alert (+1). After scoring
all alerts, we can construct attack sequences, starting with the alerts with the highest
values and performing forward chaining to construct attack scenario graphs. We use the
same technique as we did for backward chaining, i.e., property paths to find forward routes
connected to the defined starting nodes. Section 4.5.3 shows the generic SPARQL query
to construct an attack scenario from the provenance graph. From the ?startingNode, it
finds possible routes and visits connected nodes via the :provRel relation. A threshold
defines which nodes will be connected, e.g., only low integrity nodes with an integrity tag
lower than 0.5.

1 PREFIX : <http :// w3id.org/sepses/vocab/krystal#>
2 PREFIX rule: <http :// w3id.org/sepses/vocab/rule#>
3 CONSTRUCT { ?s ?p ?o.}
4 WHERE { ?startingNode :provRel* ?s . ?s ?p ?o.
5 ?s rule:intTag ?spt. ?o rule:intTag ?spo.
6 FILTER ( ?spt < 0.5 && ?spo < 0.5 )
7 }

Listing 4.7: Forward chaining mechanism expressed as SPARQL query

Graph Querying Graph querying can detect attack behavior in a provenance graph based
on attack patterns. The graph query patterns can be constructed from observed behavior
or existing information in published CTI, incident reports, public malware documentation,
etc. Based on that, the patterns can be constructed manually or – potentially – also
through automated extraction methods such as AttacKG [162].

Figure 4.8 visualizes a graph query example. A subset of the graph (red box) represents an
observed attack pattern inside the provenance graph. Unlike previous work [141, 139, 140]
that use custom domain-specific languages to perform graph querying, KRYSTAL provides a
uniform graph querying mechanism with a high expressivity through SPARQL. Furthermore,
it also supports linking to other datasets.

1 PREFIX rule: <http :// w3id.org/sepses/vocab/rule#>
2 PREFIX : <http :// w3id.org/sepses/vocab/krystal#>
3

4 CONSTRUCT { ?socket :isReceivedBy ?browser.
5 ... #similar to where clause
6 }WHERE {
7 ?socket :isReceivedBy ?browser.
8 SERVICE <http :// w3id.org/sepses/repositories/knowledge >
9 { ?browser a :Browser. }

18https://w3c.github.io/rdf-star/cg-spec/editors_draft.html
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Figure 4.8.: Graph query alignment example: Graph query (red box) is aligned over the
provenance graph to detect potential attack patterns. The constructed attack
graph below represents a detected pattern.
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10 ?browser :writes ?file1. ?file1 :isExecutedBy ?process.
11 ?process :reads ?file2.? process :sends ?socket2.
12 ?file2 rule:confTag ?fit. FILTER (?fit < 0.5)
13 }

Listing 4.8: SPARQL graph query19for Figure 4.8

To formulate graph patterns in SPARQL20, we can define system object types as nodes
(i.e., via Classes) and their interactions as relation properties (i.e., via Object Properties).
The formulated graph queries can be executed against the provenance graphs to match
potential attack patterns. Section 4.5.3 depicts an example graph query visualized in
Figure 4.8. It detects a potential attack where a browser receives a connection from a
socket (?socket :isReceivedBy ?browser). The fact that ?browser is of type :Browser is
established in the background knowledge (i.e. <http://w3id.org/sepses/..knowledge>).
The SPARQL query federation mechanism is used to include the background knowledge in
the query (SERVICE syntax).

Subsequently, the browser creates a file in the local system (defined by ?browser :writes
?file1). This file is then executed as a new process (:file1 :isExecutedBy :process2)
and reads another confidential file (?file1 :reads ?file2). Next, the process sends the
confidential file to another socket (process :sends ?socket2). We can use the FILTER
syntax (i.e. FILTER (?fit < 0.5)) to focus on confidential files (i.e., with a tag value
(?file2 rule:confTag ?fit) lower than 0.5).

To reconstruct the resulting attack graph, we used SPARQL CONSTRUCT queries to
generate new triples in RDF. The generated attack graph can be shared and reused – e.g.,
for further threat hunting activities and analysis.

4.5.4. Contextualization & Linking

Security-related events are typically highly context-specific and hence, their interpretation
requires extensive background knowledge [27]. Such knowledge plays an important role
in our approach and can enrich and provide additional information – e.g., to identify
high-level attack steps in the generated attack graph.

In particular, we link results to our previously developed SEPSES CSKG[28], a continu-
ously updated cybersecurity knowledge graph that integrates data from various publicly
available sources, including CAPEC, CPE, CVE, CVSS, and CWE. Furthermore, we
extend the SEPSES CSKG with attack patterns from MITRE ATT&CK that consist of
665 attack techniques and 14 attack tactics (ATT&CK-KG [31]).

Figure 4.9 illustrates this background knowledge linking. The example relation :isExecutedBy
between a file :/home/admin/clean and a process :Clean can be linked to attack tech-
niques and tactics in the background knowledge: in this case, the technique “exploitation
for client execution", identified by node :T1203) from the MITRE ATT&CK matrix21 [31].
Since node :T1203 also provides links to additional information (tactics, mitigations, etc.),

19Graph pattern that identifies a specific known attack pattern; defined based on the DARPA Transparent
Computing TA5.1 Ground Truth Report [131].

20Note that the automatic construction of graph patterns from existing resources is out of scope for this
paper.

20Recall that semantic reasoning infers the type (i.e. Class) of system objects automatically based on
their relations (i.e., rdfs2 & rdfs3), hence, we can define attack patterns based on their relations only.

21https://attack.mitre.org/techniques/T1203/
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Figure 4.9.: Background linking example, to automatically link alerts detected by the
threat detection module to external background knowledge (e.g., ATT&CK-
KG).

we can use this node to abstract from concrete indicators to a higher-level conceptualization
of attacks and their TTPs.

1 PREFIX : <http :// w3id.org/sepses/vocab/krystal#>
2 PREFIX rule: <http :// w3id.org/sepses/vocab/rule#>
3 PREFIX at: <http :// w3id.org/sepses/vocab/ref/attack#>
4 CONSTRUCT {
5 <<?s ?p ?o>> :hasPotentialAttackTechnique ?tech.
6 ?s ?p ?o. ?tech at:accomplishesTactic ?tt.}
7 WHERE {
8 OPTIONAL{
9 <<?s ?p ?o>> rule:hasDetectedRule ?r.

10 SERVICE <http :// w3id.org/sepses/repositories/knowledge >
11 {?r rule:hasAttackTechnique ?tech.
12 ?tech at:accomplishesTactic ?tt.}
13 }
14 .. #same as forward -chaining query where clause
15 }

Listing 4.9: Contextualization and linking through semantic query federation (SPARQL
Service)

Section 4.5.4 shows an excerpt of background linking during forward chaining via
SPARQL query federation. We modified the query from Section 4.5.3 and introduced addi-
tional query patterns such as SERVICE followed by an endpoint e.g., http://w3id.org/sepses/repositories/knowledge
which references external background knowledge. This links a detected rule with a corres-
ponding attack technique in the background knowledge (identified by the triple pattern
?r rule:hasAttackTechnique ?tech). Finally, we also link the identified technique to
a tactic (identified by ?tech at:accomplishesTactic ?tt). This illustrates how the
SPARQL federation mechanism makes it possible to query and link an entity to additional
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Figure 4.10.: Implementation Setup

resources, such as mitigation techniques, impacts, etc.

4.6. Implementation & Application Scenarios

In this section, we describe the implementation of our framework and demonstrate its
feasibility in several scenarios.

4.6.1. Implementation

Figure 4.10 visualizes the implementation architecture of our approach. We developed a
Java-based log processing tool called the KRYSTAL engine 22 that consumes log data from
three different log sources, i.e., Linux auditd, FreeBSD DTrace23, and Windows ETW. We
used the KRYSTAL Ontology to parse and map log data into an RDF-based provenance
graph. By means of the Jena24 reasoning engine, we can infer new knowledge during
provenance graph building.

Furthermore, we extended the existing SEPSES Cybersecurity Knowledge Graph[28]
by including attack techniques and tactics from MITRE ATT&CK and incorporate it as
external background knowledge. Furthermore, we translate existing IoC Sigma[146] rules
into SPARQL queries.

To construct attack graphs (through backward-forward chaining and graph querying),
link internal and external background knowledge (via SPARQL query federation), as well
as to visualize the resulting attack graphs, we use the in-memory Jena TDB25 and the
Stardog Enterprise Knowledge Graph platform26.

4.6.2. Application Scenarios

In the following application scenarios, we demonstrate how the KRYSTAL framework
automatically constructs compact attack graphs, links and contextualizes them with
22https://github.com/sepses/SimpleLogProvenance
23https://wiki.freebsd.org/DTrace/
24https://jena.apache.org/documentation/inference/
25https://jena.apache.org/documentation/tdb/
26https://www.stardog.com/platform/

106

https://github.com/sepses/SimpleLogProvenance
https://wiki.freebsd.org/DTrace/
https://jena.apache.org/documentation/inference/
https://jena.apache.org/documentation/tdb/
https://www.stardog.com/platform/


4.6. Implementation & Application Scenarios

Table 4.3.: Attack Scenarios
Scenario

ID
Dataset

ID
OS

Platform
Scenario
Name Scenario description

1 Cadets
I FreeBSD Nginx

backdoor

Nginx backdoor w/ Drakon in-memory. An attacker
sent a malformed HTTP request to a vulnerable
Nginx web server that leads to several malicious
file creations and process executions in the local
system (Figure 4.11).

2 Cadets
I FreeBSD Nginx

backdoor

Nginx backdoor w/ Drakon in-memory. A vulnerable
Nginx webserver downloads several malicious
files after being exploited by a malformed HTTP
request (Figure A.1).

3 Cadets
II FreeBSD Nginx

backdoor

Nginx backdoor w/ Drakon in-memory. Similar
to Scenario 3, the vulnerable Nginx webserver was
successfully exploited by an attacker. It downloads
a payload file which leads to sensitive information
leaking (Figure A.2).

4 Theia Ubuntu
12.04

Firefox
backdoor

Firefox backdoor w/ Drakon in-memory. Firefox
process gets exploited by a malicious website
to download and execute files to steal sensitive
information from users (Figure 4.11).

5 Five
Direction

Windows
10

Firefox
backdoor

Firefox backdoor w/ Drakon in-memory. Firefox
process gets exploited via a drakor memory payload
after browsing a malicious website (Figure A.4).
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Figure 4.11.: Scenario 1 (Nginx backdoor w/ Drakon in-memory). This attack begins with
a vulnerable Nginx web server hosted on a FreeBSD server that gets exploited
by a malformed HTTP request. The exploit leads to multiple file creations
on the local system. The attacker successfully creates an executable file
("/tmp/XIM"), changes the permissions and runs it as an elevated process.
This process reads a sensitive file ("/etc/passwd") and forwards data to an
external network (53.158.101.118:80 ).

background knowledge, and finally maps them to high-level attack steps via TTPs defined
in MITRE ATT&CK.

We use a DARPA dataset [131] that contains attack scenarios carried out by a red team
as part of the DARPA Transparent Computing (TC) program. An overview of the attack
scenarios can be found in Table 4.3. Due to space limitation, we only explain one scenarios
in this section (Scenario 1), and include the remaining scenarios in the appendix.

Scenario 1 - Nginx backdoor w/ Drakon in-memory This attack scenario has been
used as motivation example in Section 4.1. As shown in Figure 4.11, our system detected
a number of alerts including file creation, change permission, file execution, and data-
leak. After performing backward and forward chaining, we successfully constructed the
attack graph of this scenario. Furthermore, we performed query federation during forward
chaining to include external background knowledge. Our query yields an attack graph that
automatically links the detected alerts to the MITRE ATT&CK techniques and tactics.
Finally, we can see the reconstructed attack graph together with its kill-chain phases such
as Reconnaissance, Defense Evasion, Execution and Exfiltration.

4.7. Evaluation

In this section, we evaluate the KRYSTAL framework through a set of experiments and
discuss the results.
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4.7.1. Experimental Setup

We performed the experiments on two machines: (i) an Ubuntu 18.04 Server (Intel 2.59 GHz
vCPU, 32 GB RAM) was used for provenance graph building and evaluation of threat
detection and alerting techniques. (ii) a Windows 10 (Intel 2.90 GHz vCPU, 16 GB
RAM) machine was used for scenario reconstruction, graph querying and attack graph
visualization using Stardog Studio27.

Dataset Overview For the evaluation, we used well-established datasets from red vs.
blue team adversarial engagements produced as part of the third Transparent Computing
(TC) program organized by DARPA [131]. The datasets are organized into five categories,
namely Cadets, Trace, Theia, FiveDirections and ClearScope. Each dataset includes log
events generated during the engagements on a specific targeted host and platform. For
example, Cadets represents dtrace28 log data from FreeBSD OS, Trace and Theia have
been generated from auditd29 Ubuntu log data, and FiveDirection contains ETW 30 log
data from Microsoft Windows and ClearScope collected from Android logs. In addition,
a description of attack steps is available as ground truth. Table 4.4 summarizes the five
attack scenarios from the Theia (TH), Cadets (CD), and FiveDirection (FD) datasets
that we evaluated. In total, the scenarios covers more than 7 days of log data from three
datasets, with more than 53 GB of logs in JSON format31.

4.7.2. Experiment Results

We collect the following evaluations metrics in our experiments: (i) provenance graph size
reduction and compression performance, (ii) run-time performance, (iii) provenance-based
alert detection, (iv) rule-based alert detection.

Graph Size Reduction & Compression Performance Table 4.4 shows the evaluation
results for provenance graph generation and compression in the five scenarios. Our

Table 4.4.: Graph size reduction & compression.

Scenario
ID

Dataset
ID

Duration
(hh:mm)

Log data
in JSON

(GB)

Prov.
in RDF
(MB)

Prov.
in HDT
(MB)

1,2 CD I 48:59 7 150 7
3 CD II 90:01 12 250 10
4 TH 25:33 18.7 280 16
5 FD 19:27 16 25 0.9

system generates RDF-based provenance graphs in RDF TURTLE format32. Out of the
18.7 GB Theia log dataset, for instance, we generated a 280 MB provenance graph (i.e.,
27https://www.stardog.com/studio/
28https://en.wikipedia.org/wiki/DTrace
29https://linux.die.net/man/8/auditd
30https://docs.microsoft.com/en-us/windows/win32/etw/event-tracing-portal
31Note that DARPA published the datasets in both binary and JSON formats, we used the JSON data as

input in our evaluation
32https://www.w3.org/TR/turtle/
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66x smaller), the set of Cadets datasets (19 GB) resulted in a 400 MB provenance graph
(i.e., 48x smaller), and out of the Five direction dataset (16 GB), we generated a 25 MB
provenance graph (i.e., 640x smaller).

The last column of Table 4.4 shows the compression results of the generated provenance
graphs for each dataset in HDT [123] format. On average, the resulting compressed proven-
ance graphs are approximately smaller by a factor of 22 than the generated provenance
graphs in TURTLE format.

Table 4.5.: Scenario graph construction run-time.

Scenario
ID

Total
Events
(M)

Prov. Graph
Building

& Alerting
(events/sec)

Forward
Chaining

(sec)

Graph
Querying

(sec)

1,2 7.8 16.8 K 0.79 0.31
3 12.9 17.5 K 0.99 0.26
4 23.4 15.6 K 1.6 0.41
5 19.3 37.8 K 1.99 0.42

Run-time Performance We evaluate three aspects to measure the run-time performance
of our approach: (i) Time for generating the provenance graphs from the log data, including
time for tag-propagation, attenuation & decay and provenance-based alerting ; (ii) Time
for constructing the scenario graphs via forward-chaining ; and (iii) Time for generating
scenario graphs through graph querying. We repeated each experiment five times and
present average results.

As shown in Table 4.5, our approach can generate RDF-based provenance graphs from
log data with up to 20k events/sec on average. The highest performance for provenance
generation is achieved in Scenario 5 (FiveDirection dataset on Windows), with 37.8k
events/sec. Compared to the other scenarios, FiveDirection has a larger number of events
that are not considered in our model , resulting in a large number of events that can be
excluded in the provenance graph generation process.

Compared to MORSE, which achieved 100K events/sec [138], provenance construction
is somewhat slower.33 This performance penalty with respect to approaches based on
optimized custom data structures is expected and mainly attributable to the parsing, RDF
lifting and the in-memory SPARQL query execution times necessary for tag propagation.
The manageable reduction in run time performance in our evaluation demonstrates that
the approach is viable. Given the benefits, including improved reusability, interoperability,
and enrichment with background knowledge the tradeoff seems favorable. Overall, our
framework achieved a performance of 1.2 seconds per attack on average in the scenario
graph construction via forward-chaining. The highest performance has been achieved in
scenario 2 and 3 (Cadets dataset with FreeBSD) with 0.79 seconds. Note that we excluded
time for backward-chaining for root cause identification as it is basically a select query
over the provenance graph (without constructing a new graph) and therefore the run times
are relatively fast. The run time for scenario graph generation through graph querying is
even faster, i.e., less than 0.5 seconds for all scenarios. This indicates that our RDF-based
33Specifically, by a factor of 5 for Linux/FreeBSD and 3 for Windows, respectively.
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provenance graph data model scales well with respect to graph size and query complexity
when it comes to graph-query based attack construction.

Table 4.6.: Provenance-based alert detection.

Scenario
ID

Total
Events
(M)

Reconn Change
Perm

File
Exec

File
Corrupt

Data
Leak

1,2 7.8 65 1152 15 115 3
3 12.9 4 1274 1 1040 3
4 23.4 3 9 2 618 3
5 19.3 22 448 0 288 10

Propagation-Based Alert Detection Performance In the following, we measure the
effectiveness of our approach in detecting alerts based on alerting policies over the tagged
provenance graph. We leverage alert policies such as Change Permission, File Execution,
File Corruption, or Data Leak from [138]. In addition, we created a custom alert Reconn
that detects connections from external IPs to processes that access sensitive files. Table 4.6
summarizes the detected alerts for all scenarios. Overall, our approach detected all high-
level attack activities in the ground truth and achieved similar detection performance as
the evaluation in [138] (cf. Table 4.3).

Signature-Based Alert Detection Performance In this evaluation, we used the Sigma
rules incorporated into our KRYSTAL framework to detect attacks based on IoCs from
logs. As discussed in Section 4.5.2, we automatically translated Sigma rules into executable
SPARQL queries and run them against the provenance graph. To this end, we translated
most of the existing Sigma rules for Linux logs (33 rules) and Windows logs (160 rules).
At the time of writing34, there are no specific Sigma rules for dtrace FreeBSD, however,
dtrace FreeBSD logs have a similar structure to auditd Linux logs in the evaluated DARPA
dataset, hence, we could also use them to detect attacks in FreeBSD logs.

Table 4.7.: Detected alerts by Sigma rules.

Scenario
ID

Dataset
ID

Total
Events (M)

Correctly
Identified

Alert

Incorrectly
Identified

Alert

1,2 CD I 7.8 34 0
3 CD II 12.9 41 0
4 TH 23.4 19 0
5 FD 19.3 1162 261

Table 4.7 shows the number of triggered alerts based on Sigma rules from all five
scenarios within our KRYSTAL framework. For scenarios with Linux and FreeBSD as
log sources, the translated Sigma rules detected similar alerts as propagation-based alert
detection without any incorrectly identified alerts. It includes alerts for system owner or

34last access 04/05/2021
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user discovery35, file or folder permissions change36, privilege escalation preparation37,
program executions in suspicious folders38, etc. Furthermore, Sigma rules detected more
specific alerts which have been missed by propagation-based approaches, such as bash_profile
modification39 (as part of the persistence phase), and data compressed40 (as part of the
data-exfiltration phase).

For Windows, we identified more alerts on Scenario 5 (Five Direction) with a total of
1162 alerts (with 261 incorrect alerts that could not be linked to actual attack activities
in the scenario). Relevant alerts include, e.g., Suspicious Service Path Modification41,
Suspicious XOR Encoded PowerShell Command Line42, Rar with Password or Compression
Level43, Change Default File Association44, LSASS Memory Dumping45, and Capture a
Network Trace with netsh.exe46.

Integrated and Enriched Cross-Technique Graphs Our experiments showed that the
knowledge graph foundation enables the integration of results from various detection
techniques and their linking to additional knowledge and gives the analyst a rich view for
comprehensive, multi-paradigmatic threat analysis.

The scenario attack graph in Figure 4.11, for instance, shows an enriched attack graph
constructed through a combination of techniques summarized in Table 4.8, which compares
KRYSTAL to other state of the art approaches and highlights the integrative aspect of
the framework. The identified attack steps are linked to rich background knowledge on
TTPs (SEPSES ATT&CK-KG[31]) in (cf. Figure 4.9, detailed information on tactics and
techniques not shown due to space constraints).

Table 4.8.: Detection techniques supported by state of the art approaches.
Detection
Technique

Holmes
[129]

Morse
[138]

Poirot
[141]

Rapsheet
[142] Krystal

Tag-Propagation - ✓ - - ✓
Rule/Policy-Based ✓ ✓ - - ✓
Signature-Based - - - ✓ ✓
Graph Query - - ✓ - ✓
Tactical Analysis
(TTP Mapping) ✓ - - ✓ ✓

35http://bit.ly/sigmaDiscovery
36http://bit.ly/sigmaFolderPermission
37http://bit.ly/sigmaPrivilegeEscalation
38http://bit.ly/sigmaProgramExecution
39http://bit.ly/sigmaBashProfileModification
40http://bit.ly/sigmaDataCompressed
41http://bit.ly/SigmaWinSuspService
42http://bit.ly/SigmaWinPowerShellXOR
43http://bit.ly/SigmaWinRarFlags
44http://bit.ly/SigmaWinChangeFileAssoc
45http://bit.ly/SigmaWinLSASSDump
46http://bit.ly/SigmaWinNetSHPacket
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4.8. Discussion

In this section, we discuss how KRYSTAL can support threat detection and attack
reconstruction processes and cover its limitations.

Uniform Data Model and Representation A uniform representation is a key foundation
to be able to fulfill the requirements put forth in Section 4.3. Existing provenance-graph
based detection and investigation approaches lack a unified data format, which hinders
their reuse and integration. KRYSTAL fills this gap (also cf. [130]) with a knowledge graph
framework based on the W3C standards RDF and OWL47. The unified model allowed
us to combine various state of the art threat detection techniques and apply them on a
common provenance graph – fulfilling R2. Furthermore, it also also makes it easier to
construct datasets and share provenance graph data.

Our evaluation showed that the KRYSTAL ontology can be used to model audit data
across platforms – i.e., Linux (auditd), FreeBSD (dtrace), and Windows (ETW ) – thereby
fulfilling R4. Overall, this should contribute towards lowering the barrier for further
research, reproduction, and quantitative comparison.

Finally, we also find that the uniform representation makes it possible to contextualize
provenance graphs with knowledge from internal and external sources (R1). This is
particularly useful for KRYSTAL’s ability to not only reconstruct low-level attack graphs,
but also link them to high-level attack tactics and techniques from MITRE ATT&CK
(R3).

Future approaches building on our model can take advantage of the semantic flexibility
and richness offered by the existing RDF ecosystem. RDF can, for instance, support
multiple paradigms for the implementation of data management architectures in provenance
graph-based detection systems, including (i) materialized graphs in triple stores, (ii) cached
graphs implemented as in-memory triple stores [163], (iii) distributed graphs [164, 165, 166],
(iv) virtualized graphs [33, 167], and (v) stream reasoning techniques [168].48

Standard Query Language KRYSTAL leverages SPARQL [171], a graph-based query
language for RDF that offers high expressivity and supports complex querying (e.g.,
aggregation, subqueries, negation) in a declarative manner [172]. We find that this
standardized query language provides powerful means to define reusable rules, policies and
graph patterns (cf. R2).

In particular, we observe that SPARQL property path queries can perform analyses that
are critical to provenance-based analyses – such as backward-forward chaining for attack
graph reconstruction – efficiently. This is despite the fact that theoretical studies [173] on
the computational complexity of property paths found that the implementation of a naïve
(unfiltered) query can result in double exponential runtime complexity, which becomes
critical, e.g., for nodes with more than 15k sequence paths. The typical property path
lengths in our scenario attack graphs, however, tend to be rather short, with a maximum
path length of 37. This is attributable to the absence of long chains in the provenance
data to begin with on the one hand, but also due to tagging and filtering mechanisms such

47cf. https://www.w3.org/standards/
48For a survey of RDF data storage and query processing schemes, cf. [169]. For a survey of approaches

to scale to massive data, cf. [170].
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as attenuation and decay, which effectively limit path lengths by focusing only on relevant
suspicious events and nodes with low integrity. As a consequence, we observe that the
attack graph reconstruction through property paths performs efficiently.

Although SPARQL is part of computer science curricula and is increasingly being adopted
in many industries49, it is typically new to security analysts and thus requires some training.
This could partly be addressed with general-purpose visual query building and exploration
tools such as [174, 126], but we also see a potential for future work in the development of
intuitive specialized interfaces for threat detection and attack reconstruction.

Integrated & Modular Framework Current research has resulted in numerous prototypes
that each provide solutions for specific detection techniques. KRYSTAL, by contrast,
enables the combination of multiple different threat detection techniques and attack recon-
struction approaches in a single integrated framework (cf. R2). Instead of applying different
techniques – each with their own preprocessing pipelines – in isolation, the framework
allows us to compare and combine different techniques in a single model. In Sections 4.5
and 4.6, we specifically showed how a variety of detection and attack reconstruction
techniques can be formulated in SPARQL and executed within the KRYSTAL framework.
The modularity of the framework also makes it extensible for future techniques.

Distributed Log Analysis In production settings, security analysis will often require and
involve data from disparate sources. KRYSTAL is built upon Semantic Web technologies
which are explicitly designed for decentralization. Consequently, KRYSTAL inherently
supports distributed analysis (i.e., querying data across different machines). In Sections 4.5
and 4.6, we demonstrated how KRYSTAL can integrate external information sources and
facilitate distributed analysis through SPARQL query federation, a technique that enables
multiple data sources to be queried in an integrated manner.

To support large-scale provenance graph based attack discovery in production environ-
ments, it is necessary to distribute and parallelize computational loads to multiple (local)
log processing nodes. This will be part of our future research, where we plan to allow
for independent local analysis modules for threat detection and alerting and to integrate
the local results into a (global) module, e.g., via SPARQL query federation in order to
construct complete attack graphs to address cross-machine attack scenarios. If necessary,
several layers of hierarchies can be introduced to better scale the coordination effort.

Online Attack Graph Reconstruction KRYSTAL has been evaluated in an offline setting,
which can facilitate, e.g., forensic analyses. A (near real-time) online deployment mode
would require consideration of issues for attack reconstruction over streaming data. In
particular, it would require (i) strategies to dynamically construct attack graphs, (ii)
mechanisms to manage continuous updates on a multitude of parallel attack graph recon-
struction processes, (iii) policies for prioritizing and discarding attack graph reconstruction
processes. Furthermore, the complexity of the approach grows if analyses should be
performed in large distributed scenarios and over multiple data streams, which raises
issues around time synchronization, latency, throughput, etc. We plan to investigate online
scenarios with (semantic) streaming technologies and extend the framework accordingly in
future work.
49cf. http://sparql.club
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Unknown Attack Behavior To increase robustness against new ways to evade detection,
KRYSTAL provides a more general framework that makes it possible to combine a variety
of attack reconstruction techniques on top of a common knowledge graph foundation. For
instance, we demonstrated how KRYSTAL can incorporate existing community-based
threat detection rules such as Sigma and integrate them with state of the art detection
techniques that have been demonstrated to be effective in the context of APTs.

We argue that although evasion techniques to circumvent detection will always be a
concern, the possibility to apply multiple techniques (combining, e.g., rule-based, graph
queries, and tag propagation) in the KRYSTAL framework can provide more robust
detection of unknown attack behavior compared to the isolated application of individual
approaches. Furthermore the flexible framework allows for faster adaptation, experiment-
ation, and parameter tuning. For instance, the rules and policies in the Listings in this
paper can be adapted quickly to address new evasion techniques.

4.9. Conclusions

In this paper, we proposed KRYSTAL, a modular knowledge graph-based framework for
threat detection, scenario reconstruction, and tactical attack analysis. We provide an open,
standards-based provenance graph representation based on Semantic Web technologies that
can flexibly combine multiple threat detection techniques and contextualize provenance
data over both internal system knowledge and external cyber-security knowledge. Based
on the KRYSTAL ontology, we provide a foundation for provenance and attack graph
modeling in a unified framework. The ontology provides semantic interoperability and
allows users to leverage community knowledge for tactical attack analysis. Furthermore, our
framework introduces a declarative and modular architecture to overcome the inflexibility
of monolithic prototypes; hence, it supports rapid development and integration of new
approaches, lowering the barriers for rule development, reproducibility, and further research.

To evaluate the ability of SPARQL to effectively express threat detection rules, we
implemented several state of the art techniques including tag propagation, attenuation
and decay, signature/rule-based detection and graph queries. We evaluated the feasibility
of our approach for threat detection and attack construction through multiple attack
scenarios from the well-established DARPA-TC dataset. The evaluation shows that our
ontology-based RDF provenance graphs are scalable with respect to graph size and query
complexity without sacrificing graph reduction, compression, and attack reconstruction
performance. This makes it possible to combine a variety of threat detection techniques,
which improved the detection capabilities in our evaluation. For instance, we found
that complementary rule-based threat detection identified threats which were missed by
tag-propagation techniques.

Finally, our framework facilitates linking to high-level attack patterns to establish a "kill-
chain" of high-level attacker tactics, which results in a navigable and queryable provenance
graph enriched with security knowledge. This can help improve attack understanding and
situational awareness.

As next steps in our research, we plan to integrate with multiple large-scale heterogeneous
log sources beyond audit log data and aim for performance optimization (e.g., for better
exploration and visualization). Based on the possibility to combine detection techniques,
we want to explore how alerts raised by one technique could automatically trigger analysis
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by other techniques for confirmation and additional information. Further research will
also focus on exploring other threat detection approaches, including anomaly detection
techniques, and integrating them into our framework. Finally, we plan to adapt and
evaluate the attack graph construction approach in different implementation settings such
as in decentralized and distributed scenarios.
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In this chapter, we review our research questions and hypotheses and discuss how our
contributions address them and provide impacts and practical implications. We also discuss
the remaining challenges and further research directions.

5.1. Contributions & Impact Summary

As discussed in Chapter 1, the main research question in this thesis is:

To what extent can semantic web technologies improve cybersecurity monitoring
and analysis?

We decomposed this research question into three sub-research questions (cf. Section 1.4)
and focused on five research challenges (cf. Section 1.2). To address those challenges and
answer those research questions, we introduced and developed several concepts, methods
and frameworks and evaluated them.

Figure 5.1.: Contribution Overview

Figure 5.1 summarizes the overall contributions we have made and their alignment to the
challenges (left) and the research questions (right). The contributions are visualized as a
"House" that consists of three layers of building blocks, i.e., (i) Foundational layer, a basic
layer of building block that is required to accommodate the other layers; (ii) Integration
layer, this layer connects different components in building blocks and enables them to
communicate and work together; (iii) Task layer, the highest level of the block that is
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responsible for providing specific functionality. Each layer comprises one or more building
blocks; the foundational layer consists of two building blocks, the integration layer has two
building blocks and the task layer has one building block. Each building block represents
a contribution, which provides one or more solutions to challenges and answers to research
questions. We describe those layers and their building blocks in more detail as follows:

Foundational layer This layer focuses on addressing the foundational challenges of this
thesis, i.e., (i) Log data heterogeneity (C1) and (ii) Evolving heterogeneous cybersecurity
information (C2), which leads to the following research question:

RQ1: How to uniformly represent heterogeneous log data and cybersecurity
information?

with the following hypothesis:

H1: Security log data and cybersecurity information can be structured and
enhanced by semantics to support unambiguous and useful interlinking between
logs and cybersecurity information in a knowledge graph. A uniform conceptual
model can semantically lift heterogeneous security log data and cybersecurity
information from diverse sources.

On this layer, we provide two building blocks of contributions that address both C1 & C2
and answer RQ1. First, we introduced modular log vocabularies and ontologies to model
and represent log data in RDF. Based on the results, we found that these representations
provide semantic integration that not only lifts raw log data but also enriches them with
semantic log vocabulary, which makes it easy to connect individual pieces of log events
from heterogeneous log sources. Furthermore, they provide a foundation for semantic
querying that can be used to not only integrate log events but also to link and contextualize
them to rich background knowledge. Therefore they address C1.

The second contribution of this layer is knowledge graphs for cybersecurity informa-
tion (namely SEPSES-CSKG). To this end, we introduced an ontology for cybersecurity
information and developed a method to automatically construct knowledge graphs from
openly available cybersecurity information and standards such as CVE, CPE, CWE, CVSS,
CAPEC, ATT&CK, etc. Based on the results, we found that the generated knowledge
graph serves as a rich "external" background knowledge that is useful to link and contex-
tualize local knowledge (i.e., log events,) to detect and identify potential threats as well as
to reconstruct attack patterns. Therefore, this contribution addresses C2.

In summary, the aforementioned contributions provide evidence to accept H1 and answer
RQ1.

118



5.1. Contributions & Impact Summary

Research Impact: (i) the log vocabulary introduces a novel concept for semantic
log representation and the applicability of Linked Data Principles to harmonize and
integrate heterogeneous log sources; (ii) the SEPSES CSKG advances the state of
the art by providing integrated and continuously updated cybersecurity resources in
semantically explicit representation, with a tool and service to query and make use
of the interlinked knowledge graph.

Practical Implications: (i) the proposed approach complements human expertise
and intuition (e.g., of a security analyst) with machine interpretation and context-
aware decision support for log monitoring and analysis; (ii) the CSKG provides
integrated & continuously updated security-related knowledge that can be used by
security analysts to support automated contextualization and linking during log
monitoring and analysis.

Integration layer In this layer, we focus on addressing the challenge of dispersed raw log
sources (C3). This leads to the following research question:

RQ2: How can dispersed log data and cybersecurity information be integrated
and interlinked?

with the following hypothesis:

H2: Through decentralized semantic log processing, multiple dispersed security
log data can be integrated in a scalable manner. Furthermore, distributed
security log events together with cybersecurity information can be interlinked
via semantic query federation to obtain meaningful results.

To address the challenge and answer the research question, we provide two building
blocks of contributions in this layer. First, we developed a framework for real-time semantic
log monitoring across heterogeneous platforms. Based on our previously developed log
vocabularies and ontologies, the framework lifts and harmonizes incoming heterogeneous
raw log data streams into RDF. Next, an existing RDF Stream Processing (RSP) engine,
i.e., C-Sprite is used to continuously query the parsed log data stream to extract high-level
file-system events (e.g., write, read, update, delete, etc.). Based on our evaluation, we
found that the approach can effectively detect file system activities and enrich them with
background knowledge to reconstruct the file-access life-cycle across heterogeneous hosts.

The second contribution of this layer introduces a Virtual Knowledge Graph (VKG)
approach that provides distributed log analysis across multiple heterogeneous hosts. In
contrast to the previous approach that performs log processing on a centralized machine,
it dynamically extracts and parses raw-log data into RDF directly from the log-producing
hosts on demand (i.e., at query time). The distributed RDF log data are then queried
together via semantic query federation to integrate as well as link them to background
knowledge (e.g., SEPSES-CSKG). Based on our evaluation, we found that the approach can
be used to efficiently integrate & analyze log data from heterogeneous sources. Furthermore,
it shifts computational load from a centralized processor to the decentralized hosts, hence
addressing C3.

In summary, the evaluation of both approaches provides evidence to accept H2, therefore
answering RQ2.
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Research Impact: The first contribution shows the applicability of Stream Reas-
oning concepts to tackle the problem of heterogeneous data stream processing
in the cybersecurity domain to facilitate, i.e., log monitoring and forensics over
heterogeneous platforms.
The second contribution shows the applicability of data processing via A Virtual
Knowledge Graph (VKG) approach to tackle the problem of distributed heterogen-
eous data processing, in particular for the cybersecurity domain, i.e., federated log
analysis. The evaluation shows that it is not only able to integrate and aggregate
distributed log data in a scalable manner but also to dynamically contextualize and
link them to background knowledge.

Practical Implications: the first contribution provides security analysts with
automated event detection across heterogeneous log streams. This can be used
to automatically detect a potential attack in real-time. The second contribution
complements security analysts with an optional distributed log analysis mechanism.

Task Layer This layer focuses on addressing the following challenges: (i) Complex events
connection within and across log source (C4) and (ii) Attack analysis and interpretation
are very context-specific processes (C5). They lead to the following research question:

R3: How can we discover and reconstruct attacks from system event log in-
formation?

with the following hypothesis:

H3: Semantic reasoning can be used to infer sequences of events from security
log data and generate causal dependency graphs. This makes it is possible to
flexibly and declaratively specify existing attack patterns and rules to detect
potential threats, link individual indicators of compromises, identify their root
cause and reconstruct attack scenarios.

To address the challenge and research question, we introduced semantic knowledge
graph representation based on RDF to model provenance graphs of log data (i.e., auditlog)
from heterogeneous platforms. It automatically infers the sequence of log events based
on the identified system objects (e.g., files, processes, sockets) and their relations (e.g.,
writes, reads, executes, sends, etc) and generates dependency graphs. Furthermore, we
proposed a modular knowledge-graph-based framework (called KRYSTAL) that provides
integration of multiple threat detection techniques (e.g., tag propagation, attenuation and
decay, rule-based detection) and attack reconstruction (e.g., backward-forward chaining
and graph query). Based on our evaluation, we found that the integration improves
threat detection capabilities. This is because of the flexible data model and declarative
architecture provided by the KRYSTAL framework. Therefore, it addresses C4.

Next, C5 is addressed by the flexibility and the interoperability of the provenance graph
model (i.e., RDF-based graph) that can link and contextualize the aforementioned threat
detection techniques to internal and external background knowledge. (i.e., cyber threat
intelligence from the CSKG) via semantic query federation.

In summary, the evaluation of the proposed KRYSTAL framework provides evidence to
accept H3, therefore it gives answers for RQ3.
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Research Impact: The aforementioned contributions advance the current state-of-
the-art threat detection and attack construction approaches by introducing standard
and reusable graph representations based on RDF to model provenance graphs from
audit log data. The approach can not only integrate a variety of threat detection
and attack reconstruction techniques but also contextualize them to the existing
internal system knowledge and external cybersecurity information. Furthermore,
the extensible and flexible graph model makes it easy for approach customization
(e.g., expanding the model, integrating new threat detection techniques, links to
other knowledge resources, etc.)

Practical Implications: The proposed approach helps security analysts to apply a
variety of threat detection techniques and reconstruct potential attack scenarios in a
single modular framework based on a standard data model (i.e., RDF) and querying
mechanism (i.e., SPARQL). The flexibility of threat detection integration makes
it effective and efficient to better detect potential attacks and therefore improves
cybersecurity awareness.

Finally, Table 5.1 shows the summary of the contributions with respect to the research
questions and challenges.

Table 5.1.: Summary of Contributions and their alignment to the Research Questions, &
Challenges, Artifacts and Publications

Contributions Challenges Research
Questions

Artifacts
& Publications

Vocabulary and ontology for log
data and cybersecurity information C1 RQ1 Log & Cybersecurity

Ontology [27, 28]

Knowledge graph for cybersecurity
infomation and attack patterns C2 RQ1 SEPSES-CSKG [28, 31]

Semantic approach for security
log stream monitoring C3, C5 RQ2 Semantic Log

Stream Monitoring [30, 29]

VKG-based approach for distributed
security log analysis C3, C5 RQ2 VloGraph Framework [32, 33]

Knowledge graph-based framework
for attack reconstruction C4, C5 RQ3 KRYSTAL Framework [34]
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5.2. Limitations and Future Work

This section reviews the current limitation of the proposed approaches and their future
work.

Vocabulary and ontology for log data and cybersecurity information Log vocabulary
and ontology provide uniform representation for log data integration. However, log data
produced by multiple logging and software systems have a large variety of types and
structures as well as different levels of granularity. Therefore, it is important to understand
these differences as a basis of ontology design and development and how to align them.
Furthermore, dynamic updates of systems and logging mechanisms can lead to schema
or structural changes in log data, particularly when new systems are introduced. As a
result, continuous maintenance and evaluation of the developed vocabulary and ontology
are required to ensure their validity, consistency, and robustness. Future work can further
explore methods such as ontology evolution [175] in order to address the dynamic evolving
schema and structural changes of log data and cybersecurity information.

Knowledge graph for cybersecurity information and attack patterns The dynamic
nature of evolving cybersecurity information resources produced by different communities,
vendors and companies requires considerable effort to ensure the constructed knowledge
graph remains up-to-date and reflects the current state. Especially, for resources that
have periodic minor or major schema and structure changes such as MITRE ATT&CK
1, the maintainability of CSKG is essential to ensure the validity of the constructed KG
and avoid errors during the updates. Furthermore, the current CSKG focuses mostly on
extracting cybersecurity information from structured formats. Therefore, future work
could explore methods that incorporate unstructured types of cybersecurity information
(e.g., blog-posts, reports, documentation, tweets, etc ) into the CSKG, e.g., by leveraging
Natural Language Processing or Machine Learning techniques. Another limitation of the
current CSKG includes performance issues when processing large amounts of resources.
This is due to the inherent issue that exists on the current RML engine on processing large
files. Therefore, future research can investigate an efficient RDF mapping algorithm that
can handle large-scale knowledge graph generation.

Semantic approach for security log stream monitoring Current approach for semantic
stream log monitoring has shown promising results in detecting complex file access events
in near real-time with high accuracy. However, scalability limitations have been identified
when processing log streams with highly concentrated events, such as those produced by
copying a folder containing a large number of files, which could occur at rates of more than
a thousand events per second. The accuracy of the approach decreases as the number of
events per second increases.

Therefore, future research could further investigate the accuracy and scalability lim-
itations of the current approach (e.g., by evaluating alternative RSP engines [176] and
Complex Event Processing approaches) as well as implement the approach in different
settings, i.e., distributed or decentralized scenarios.

1MITRE updates their ATT&CK schema bi-annually, cf. https://attack.mitre.org/resources/ver
sions/
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VKG-based approach for distributed security log analysis A current limitation of VKG
approach is the restriction of the extracted log lines (currently based on time frames) when
executing queries for analysis to keep the processing time manageable. This is because
the log files are parsed on demand and not indexed. Therefore, future research could
investigate the possibility to improve the processing time efficiency, e.g., to extend the
current approach to support analysis in a streaming mode, e.g, via distributed semantic
continuous queries. Furthermore, the current VKG approach requires an analyst to select
the target hosts manually before analysis. Therefore, further research could improve the
current approach to be able to automatically select the relevant targeted hosts based on
the query and background knowledge.

Knowledge graph-based framework for attack reconstruction The performance of
Krystal’s provenance graph generation (specifically the parsing raw log data to RDF) has
been found to be slightly lower compared to the previous work, i.e., MORSE [138]. This is
mainly due to the RDF representation that requires unique identification (i.e., URI/URI)
of both entities and properties, resulting in less compact underlying graph data. Therefore,
future work can further investigate alternative RDF representations that strike a balance
between unique identification and data compactness.

Additionally, the use of SPARQL for declarative rule language must consider efficient
query formulation, as more complex queries can result in longer execution times. Future
work could explore efficient querying mechanisms, specifically for a process that involves
routine query execution (e.g., tag propagation, threat detection, etc). Apart from this,
future research could explore the possibility of involving different log types (beyond the
audit log) as well as other threat detection techniques, e.g., anomaly detection.

5.3. Remaining Challenges and Further Research Direction

Semantic web technologies and knowledge graphs have the potential to improve cybersecur-
ity monitoring, analysis and attack reconstruction. However, there are several challenges
that must be addressed in order to fully unlock their potential. We outline several remain-
ing challenges and provide options for research direction based on the reflection of our
findings and limitations.

Intuitive KG-based platform interface Semantic web technologies and knowledge graphs
may not be familiar to security professionals who do not have a background in this area.
For example, the use of SPARQL-queries for security log analysis may not be intuitive
for them. Therefore, future research should focus on developing methods that support
them with an intuitive interface, e.g., by providing cybersecurity domain-specific language
for querying and searching mechanisms with knowledge graphs. This will enable security
professionals to easily and quickly analyze log data using semantic web technologies and
knowledge graphs, without the need for extensive training or expertise in these technologies.

Privacy-aware log analysis Log data typically contains sensitive information of individu-
als, such as usernames, hostnames, IP addresses and other relevant details. The analysis
of raw log data without considering data privacy can potentially harm individuals’ privacy.
Future research should explore approaches for knowledge graph-based privacy-aware log
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monitoring and analysis. One potential solution is to incorporate anonymization and
annotation techniques that preserve individual privacy data in log sources during analysis.
However, this can be challenging as analyzing anonymized log data is more difficult.
For instance, it may be difficult to identify attack actors and other malicious entities in
anonymized log data. Additionally, future research could also explore the use of ML such
as federated graph learning [177], which allows for the analysis of log data while preserving
individual’s privacy data and keeping it decentralized.

Hybrid AI The combination of symbolic AI such as knowledge representation and sub-
symbolic AI such as ML-based approaches has strong potential to address dynamic and
highly complex cybersecurity threats. ML-based approaches can support humans in
coping with complex, tedious, and repetitive analytic tasks while knowledge representation
provides a contextualization and enrichment with formalized knowledge from domain
experts, which is typically limited in purely ML-based approach. The current CSKG
and log knowledge graphs represented in this thesis can serve as a foundation for more
advanced analytics via Hybrid AI approach [178]. For example, graph-based learning and
relational machine learning [179] - which are largely unexplored filed in cybersecurity -
can be used for several tasks, such as: (i) node classification and clustering for anomaly
detection; (ii) link prediction for attack sequence reasoning. (iii) sub-graph classification
for attack pattern behavior matching, etc.

KG-based cybersecurity research While this thesis primarily focuses on log monitoring,
analysis and attack reconstruction, future research can further explore the feasibility of
KG-based approach to address cybersecurity challenges in a broader context [180]. In
vulnerability assessment and management for example, knowledge graphs can be used to
model IT assets information (e.g., software version, types, dependencies, etc.) and link
them to vulnerability knowledge such as CVE. The constructed KG can be used to map
and identify potential vulnerabilities of systems based on CVE information, and prioritize
them via CVSS scoring mechanism. Furthermore, the enriched KG provides information
on how the identified vulnerabilities can affect other connected systems but also how to
mitigate them in case of no patches are available yet.

In another context such as network security, knowledge-graph can be used to represent
network infrastructures such as network topology and their interconnected devices (e.g.,
servers, firewalls, hosts, etc.). The model can then be linked to other contextual information
(e.g., users, policies, control, etc.) and serve as integrated knowledge graphs for network
security analysis, contextualize network threat detections and so on. Other relevant topics
such as risk assessment, incident response, social engineering, etc. can also be explored to
validate the feasibility of KG-approach in addressing cybersecurity challenges.

KG-based cybersecurity research in other domains Other directions in cybersecurity
research include the application of knowledge-graph based approaches in various domains,
especially in a domain where interconnected components exist. For example, in a manufac-
turing industry specifically in production systems, several components such as processes,
products, resources, and technologies are highly interconnected. A knowledge graph can
be used to represent them and model their relations. This representation can then be
used as a basis for cybersecurity-related tasks e.g., to trace back the root cause of attacks
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and propagate their impacts through the production systems network. Apart from that,
knowledge graphs are also well-suited for representing other domains as well such as
energy sector where several energy utilities and networks are interconnected; transportation
industry where railways network, routes, traffic control, etc. are typically linked; financial
services that involve transactions, payments, banks, customers, and so on.

Finally, there may be no single approach to security log monitoring and analysis that is
suitable for all types of log data and that can satisfy all scenarios. This is because different
types of log data can only be used for different purposes, e.g., stream log data is necessary
for log monitoring, historical log data for forensic analysis, etc. However, it is necessary to
rely on standardized and uniform representations of log data, e.g., via RDF graph model,
as it provides interoperability and facilitates integration that makes it easier to develop
approaches upon them.
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A. Appendix

Scenario 2 - Nginx backdoor w/ Drakon in-memory In this scenario our system
detects several alarms on the provenance graph as shown on Figure A.1. We performed
backward-forward chaining with query federation to construct the attack graph together
with its kill-chain phases. We successfully linked the generated attack graph to MITRE
ATT&CK techniques such as Gather Victim Identity Information (T1589), File and
Directory Permissions Modification (T1222), Exploitationfor Client Execution (T1203)
and Automated Exfiltration (T1020). Finally, following the connection from techniques to
tactics, we can see kill-chain phases including Reconnaissance, Defense-evasion, Execution
and Exfiltration.

Scenario 3 - Nginx backdoor w/ Drakon in-memory As shown in Figure A.2, from
the detected alerts, we performed backward-forward chaining over the provenance graphs
together with query federation to external background knowledge. The system successfully
constructed this scenario attack graph together with connections to MITRE ATT&CK
techniques and tactics. In that figure, we see identified attack techniques such as Gather
Victim Identity Information (T1589), File and Directory Permissions Modification (T1222),
Exploitation for Client Execution (T1203) and Automated Exfiltration (T1020). Finally,
these detected techniques lead to the attack phases including Reconnaissance, Defense-
evasion, Execution and Exfiltration.

Scenario 4 - Firefox backdoor w/ Drakon in-memory As shown in Figure A.3, our
system detects several alarms in this scenario, including file execution ("Clean" and
"Profile" process) and data leaks (both "Clean" and "Profile" processes read a sensitive
file "/etc/passwd" and send data to "161.116.88.72:80"). Furthermore, due to the
query federation those detected alarms are automatically linked and mapped to our CTI
background knowledge, yielding two MITRE ATT&CK techniques namely Exploitation
for Client Execution (T1203) and Automated Exfiltration (T1020). Those techniques are
further linked to high-level MITRE ATT&CK tactics, i.e. Execution and Exfiltration.

Scenario 5 - Firefox backdoor w/ Drakon in-memory As shown in Figure A.4, our
system detects several alerts within this scenario. After performing backward-forward
chaining and queries with federation to background knowledge, our system successfully
identified two MITRE ATT&CK attack techniques within the attack graph, namely Gather
Victim Identity Information (T1589) and Automated Exfiltration (T1020). Finally, we
identify kill-chain phases such us Reconnaissance and Exfiltration.

143



A. Appendix

Figure A.1.: Scenario 2 (Nginx backdoor w/ Drakon in-memory). The attack begins
with a vulnerable Nginx installed on a FreeBSD host that gets exploited by
an attacker. The attacker sends a malformed HTTP request that results in
downloading several malicious files on the local system. One of the files, i.e.,
/tmp/pEja72mA then gets executed, which spawns a process pEja72mA. This
process reads sensitive information/etc/passwd) and connects remotely via
C&C to the attacker console.

Figure A.2.: Scenario 3 (Nginx backdoor w/ Drakon in-memory). The same case as before,
this time the attacker successfully exploits a vulnerable Nginx by downloading
another payload file ("/tmp/vUgefal"). The attacker spawns an elevated
process. This process later reads sensitive information ("/etc/passwd") from
the local system and sends data the the external network.
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Figure A.3.: Scenario 4 (Firefox backdoor w/ Drakon in-memory) The attack starts
with the exploitation of Firefox 54.01 on Ubuntu 12.04 by a malicious ad
server. The Firefox process gets compromised after visiting a malicious
website, and subsequently downloads a malicious file to the user directory
"/home/admin/clean". This file is then executed spawning a new process
Clean. Another file Profile is also created and spawned. Both processes
access a sensitive file "/etc/passwd" and send the data to an external network
(161.116.88.72:80 ).

Figure A.4.: Scenario 5 (Firefox backdoor w/ Drakon in-memory). This attack begins
with the exploitation of Firefox 54.01, installed on a Windows 10 host. The
exploit loads drakon into Firefox memory, which opens a C&C connection
to the attack network. Via the Firefox process, multiple user documents are
successfully exfiltrated to the attacker’s network.
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