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Abstract

This work approaches knowledge supervised information extraction for natural language
processing. More precisely, it is about how knowledge can be integrated into supervised
machine learning models (in this case neural networks) for information extraction. Machine
learning models are usually tailored to generalize as much as possible in their learning
process to offer a wide range of applications. In cases where generalized models do not
sufficiently learn specialized tasks, the integration of knowledge is particularly important
and is therefore investigated in this thesis. In particular, three different perspectives are
highlighted: i) data-centric knowledge supervision, ii) model-centric knowledge supervision,
and iii) knowledge supervision for industrial information extraction.
First, machine learning in general, knowledge supervised machine learning, and represent-
ation learning, as well as downstream tasks in natural language processing are explained.
The above mentioned perspectives on knowledge supervision are introduced and it is
explained how knowledge about domain, task, and/or method can be integrated into
machine learning models.
The contributing articles for data-centric knowledge supervision tackle named entity
recognition in historical text, a domain with peculiarities that differ from standard
contemporary texts many machine learning models are trained on. It is shown that
data-centric knowledge integration, for example via pre-training domain-specific language
models or the creation of knowledge-enriched word representations, is beneficial and
enhances model performance. The findings are confirmed by the results across different
data sets and experiments.
One article on model-centric knowledge supervision proposes an adversarial neural net-
work for weakly supervised data that aims to learn robust and noise-invariant input
representations. Based on three classification datasets, it is shown that expanding the
model focus to all relevant information contained in input instances improves downstream
performance of machine learning models. Another model-centric approach measures
generalization of models trained on misleading noisy data obtained from weak supervision.
Results show that the adversarial network is able to control the degree of generalizing
from noisy signals. A comparison of different state-of-the-art models for weak supervision
shows that generalization and model performance are not related one-to-one.
The knowledge supervision approach for industrial information extraction establishes
best-practices and provides a guide on how to turn rule-based systems into machine
learning models by utilizing weak supervision. Along with a case study, the process is
explained in detail and illustrated by examples.
The second part of this work includes all the original manuscripts of the contributing
articles, cites the respective source, and presents the contributions of each author.
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Kurzfassung

Diese Arbeit befasst sich mit der wissensüberwachten Informationsextraktion im Bereich
des Natural Language Processing. Es geht darum, wie Wissen in überwachte Lernmodelle
zur Informationsextraktion (in diesem Fall neuronale Netze), integriert werden kann.
Maschinelle Lernmodelle sind darauf zugeschnitten, in ihrem Lernprozess möglichst gut
verallgemeinern. In Fällen, in denen generalisierte Modelle daran scheitern, Spezialauf-
gaben zufriedenstellend zu lernen, ist die Integration von Wissen besonders wichtig.
Drei Perspektiven werden in dieser Arbeit besonders hervorgehoben: i) datenzentrierte
und ii) modellzentrierte Wissensüberwachung, sowie iii) Wissensüberwachung für die
Informationsextraktion in der Industrie.
Zunächst werden maschinelles und wissensüberwachtes maschinelles Lernen, das Lernen
von Repräsentationen und Anwendungen für Natural Language Processing erklärt. Die
drei Perspektiven werden eingeführt und es wird erklärt, wie Wissen über Domäne, Task
und/oder Methode in maschinelle Lernmodelle integriert werden kann.
Die Beiträge zur datenzentrierten Wissensüberwachung befassen sich mit Eigennamener-
kennung in historischen Texten, einer speziellen Domäne, die sich von zeitgenössischen
Standardtexten unterscheidet. Es wird gezeigt, dass die datenzentrierte Wissensintegra-
tion, bspw. über vor-trainierte domänenspezifische Sprachmodelle oder die Erstellung
von mit Wissen angereicherten Wortrepräsentationen, die Modellleistung steigert. Die
Erkenntnisse werden durch Ergebnisse auf mehreren Datensätzen bestätigt.
Einer der Beiträge zur modellzentrierten Wissensüberwachung präsentiert ein neuronales
Netzwerk, das im Inneren mit zwei konkurrierenden neuronalen Netzen arbeitet (adversa-
rial network). Dieses ist für die Verarbeitung von Weak Supervision Daten gedacht und
lernt robuste und rauschinvariante Eingaberepräsentationen. Es wird gezeigt, dass die
Erweiterung des Modellfokus auf alle relevanten Informationen, die in Eingabeinstanzen
enthalten sind, die Leistung der Lernmodelle verbessert. Ein weiterer modellzentrierter
Ansatz enthält eine Methode zur Messung von Generalisierung in Modellen, die auf
irreführenden Weak Supervision Daten trainiert wurden. Die Ergebnisse zeigen, dass
das adversarial Network in der Lage ist, den Grad der Generalisierung zu kontrollieren.
Ein Vergleich verschiedener State-of-the-Art-Modelle für Weak Supervision zeigt, dass
Generalisierung und Modellleistung nicht direkt zusammenhängen.
Der Ansatz zur Wissensüberwachung für die Informationsextraktion in der Industrie
etabliert eine Anleitung, wie ein regelbasiertes System aus dem Blickwinkel von Weak
Supervision in ein maschinelles Lernmodell überführt werden kann. Neben einer Fallstudie
wird der Prozess detailliert erklärt und anhand von Beispielen aus einem industriellen
Informationsextraktionssystem veranschaulicht.
Der zweite Teil dieser Arbeit enthält alle Originalmanuskripte der inkludierten Artikel,
nennt die entsprechenden Quellen und erläutert den Beitrag der einzelnen Autoren.
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1. Introduction and Background

1.1. Outline

This work addresses knowledge supervised information extraction in natural language
processing and utilizes machine learning to learn different downstream tasks and is divided
in two main parts.
Part I, the synopsis of this thesis, includes theoretical background relevant to the topic
as well as a brief description of the contributing articles. After a motivation on the
topic, relevant concepts related to the contributing articles contained in this work are
presented and explained. First of all, the general basics of machine learning and associated
algorithms are explained. After an introduction to supervised machine learning and
knowledge integration, various ways of representing language data are presented. The
introductory chapter ends with a presentation of relevant downstream tasks. When
explaining the basics, care was taken to relate the approaches to other current research
activities. Next, all contributing articles in this work are related to the appropriate area
of knowledge supervised machine learning as well as roughly motivated and outlined.
Starting with methods that focus on data-centric knowledge supervision, the chapter
continues with model-centric knowledge supervision before finally dealing with knowledge
supervision for industrial information extraction. The synopsis ends with a conclusion and
an outlook on possible starting points for further work in the research area of knowledge
supervised machine learning.
Finally, Part II contains the original manuscripts of all contributing articles. Each article
is preceded by a description of the author’s contributions and relevant meta information,
such as the status of the manuscript.

1.2. Motivation

The area of artificial intelligence (AI) or, to put it another way, the possibility of enabling
computers to learn independently, has been one of the pioneering research topics in
recent years. In contrast to other disciplines (e.g., mathematics), the computational
processing of language has a comparatively short history. Due to digital communication,
digital language content is available in extremely large quantities, unlike in the past. The
desire to quickly access, process and use this wealth of knowledge is obvious. Automated
information extraction is an important field in this context because the extremely large
amounts of data can be made accessible to humans more quickly and easily. Thus, the
application of AI in natural language processing and information extraction opens up
promising and relevant research areas.
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1. Introduction and Background

Neural networks were first proposed in the 1950s, but due to a lack of computational
capabilities and resources, the field almost fell into oblivion. Since their resurgence in
the early 2000s, the intensity and interest of research fluctuated for a decade until neural
networks finally became the focus of AI research in the 2010s.
One of the original ideas for designing neural networks was to emulate the workings of the
human brain. The human brain is capable of constructing an almost all-encompassing
image of reality and thus of generalizing and abstracting, while at the same time being
able to acquire and access specialized knowledge on a large scale. Until today, it is a
major challenge for neural architectures to mimic these human abilities.
To understand how knowledge might be integrated into neural models, one can imagine
an analogy between a neural network and a drilling machine: Depending on the specific
task (e.g., drilling a hole in a wooden board/ recognizing named entities), there is an
optimal device (wood drill/ named entity recognition module) and a specific configuration
(rotational speed/ data domain). Equipping the drilling machine with both, the correct
device and the correct configuration will enable the machine to fulfill the task, i.e., to
drill a hole in the wooden board. Many neural networks aim to learn various tasks from
different domains without modifications, what corresponds to developing one drilling
machine with a standard drill for any material. In contrast, the integration of knowledge
into neural networks or machine learning models corresponds to developing special devices
and configurations to learn different tasks. One can either develop new configurations
(data-centric knowledge supervision), create new devices (model-centric knowledge super-
vision), or both (combining data- and model-centric knowledge supervision). In summary,
knowledge supervision should enable machine learning models to learn specific problems
in various domains or to broaden the representation of reality captured in those models.
When it comes to knowledge, language is one of the most important carriers of information.
Every science expresses its findings and achievements through natural language. Of course,
the transfer of scientific knowledge through language is complemented by visualizations
or mathematical notations. However, language lies at the core of knowledge transmission.
Expert knowledge is also usually available in the form of language, be it unstructured
or already prepared in a structured form (e.g. taxonomies, tables, etc.). What could
be more obvious than bringing all this knowledge encoded in language into the neural
networks and leveraging natural language processing. The field is almost inexhaustible
and extensive, making it particularly interesting. Especially in the last few years, the
entire area, together with computer vision, has been at the forefront in the development
of AI and a variety of available approaches can be utilized. Note that it is not important
to simply integrate as much knowledge as possible into the machine learning models but
relevant knowledge, for example about data, tasks, or methods.
For all these reasons, the articles contributing to this thesis lie in the field of knowledge
supervision for machine learning models through natural language processing. More
precisely, all solutions presented in this work deal with tasks representing the large class
of custom information extraction problems encountered in practice. Developing new
methods and extensions beyond the existing approaches while remaining as universal as
possible enables a contribution to scientific progress as well as to applied research.
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1.3. Machine Learning Background

1.3. Machine Learning Background

Natural language processing is not a new branch of science and research. It dates
back to the 1940s when machine translation was introduced and when in World War II
written messages were encoded, sent and decoded (Johri et al., 2021). Later advances
in the field include the proposal of the Turing test (Turing, 1950), the introduction of
machine interpretable grammar (Chomsky, 1956) and many other rule-based algorithms.
Probabilistic (Chen, 1996) and statistical (Manning and Schutze, 1999) approaches were
brought up and are still being expanded to this day. As for other research branches like
computer vision, machine learning or deep learning found its way into the field of natural
language processing as well and has been heavily studied since then (Lewis and Gale,
1994; Jurafsky and Martin, 2000; Collobert and Weston, 2008). Most recent advances in
natural language processing all play in the realm of machine learning and are built on top
of neural networks. The methods proposed in this work build on machine learning and
concepts relevant to the understanding of this work are explained in more detail below.

1.3.1. Machine Learning Types

In general, there are different types of machine learning, that one can distinguish between.
All have in common that some kind of input should be modeled in order to obtain in-
formation from it. Throughout the remainder of this work, input means textual instances
that are fed to a model. Organizing the field coarse grained, there is supervised learning,
unsupervised learning, semi-supervised learning, and reinforcement learning.

Supervised learning maps the input to a pre-specified output space that is known
in advance, i.e., mapping instances to labels or making a label prediction for an input
instance. The basic requirement for supervised learning is labeled or annotated data.
Details about supervised learning are discussed in the following section.
Unsupervised learning aims to model the input without further information or known
outcome. The output of the model is not specified in advance and the most common
scenario in unsupervised learning is clustering. Clustering algorithms aim to group the
data into buckets that share properties in order to provide insights.
Semi-supervised learning aims to combine both, supervised and unsupervised learning
to train a model and takes labeled as well as unlabeled data points as input in order to
learn a downstream task.
Reinforcement learning employs two modules: a learner system and an external trainer.
The trainer provides the learner system with information on how well the task has been
solved. However, the learner system is not guided but must discover which action gains
the most reward itself.
It is beyond the scope of this work to explain all types of machine learning in detail and
there is comprehensive literature about those topics, e.g., Caruana and Niculescu-Mizil
(2006), Kotsiantis (2007) or Nasteski (2017).
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1. Introduction and Background

1.3.2. Machine Learning Algorithms

Within supervised machine learning, there are various implementations and algorithms,
that can be chosen for model training. The most well-known systems include: Naive Bayes,
k-Nearest Neighbours, Support Vector Machines, Decision Trees and Neural Networks.

Naive Bayes models ground on the Bayes Theorem: P (A|B) = P (B|A)·P (A)
P (B) , which

is used to calculate the conditional probability of A given B. Naive Bayes algorithms
assume the simplification that each feature is equal and independent of another. In the
machine learning context, the formula can be reformulated to determine a class y with
given features X as P (y|X) = P (X|y)·P (y)

P (X) . Published approaches include, among many
others, an empirical study of Naive Bayes Classifiers (Watson, 2001), sentiment analysis
using Naive Bayes classification (Troussas et al., 2013) or classification of brain strokes
(Jayachitra and Prasanth, 2021).

k-Nearest Neighbours (kNN) assumes that instances in a data set exist close to each
other in the feature space if they have similar properties. The label for an unlabeled
instance can be determined by observing its nearest neighbours that already contain a label
(k specifies how many neighbours should be taken into account). The original approach
was proposed by Cover and Hart (1967), more recent approaches include clustering with
kNN (Gallego et al., 2018) and classifying heterogeneous data sets (Ali et al., 2019b).

Support Vector Machines (SVMs) aim to find a hyperplane in a multidimensional
space in order to separate/ classify data points in the space. A hyperplane is a decision
boundary, with its dimensions depending on the number of features. In addition, the
margin between the hyperplane and the data points should be maximized in order to
separate them optimally. Maximizing the margin distance enables future data points
to be classified more reliably. After the proposal of SVMs (Boser et al., 1992) various
approaches were published, recent ones are aimed at the medical (Ali et al., 2019a; Ragab
et al., 2019) and the bioinformatics (Liu et al., 2020) fields.

Decision Trees classify instances by sorting them based on feature values, e.g. Quinlan
(1993). Each node in the tree represents a feature of an instance to be classified, and
each branch represents a value that the node can accept. Instances are then classified in
descending order, starting at the root node and sorted according to their feature values.
During training, the nodes and branches of the tree are determined, and during testing,
the optimal path for the instance is found and returned. Recent approaches using decision
trees tackle Covid19 classification (Yoo et al., 2020), or turn neural networks into decision
trees (Frosst and Hinton, 2017).

Neural Networks were originally intended to emulate the workings of the human brain.
Basically, a neural network is a connected graph of neurons and edges that link the
neurons. The neurons can either be input (having no predecessor), output (having no
successor), or intermediate (having a predecessor and a successor). Each connection
between neurons is responsible for transferring the output of one neuron to the input of

6



1.3. Machine Learning Background

another and gets assigned a weight. The output of a neuron can be formalized as follows:

z =

n∑︂

i=1

xi × wi (1.1)

where xi is the i-th feature of the input and wi the weight for this feature. Usually, the
bias term b is also added to the equation:

z =

(︄
n∑︂

i=1

xi × wi

)︄
+ b (1.2)

which is responsible for shifting the activation function towards a desired direction for
successful learning. The neuron above can only perform linear operations and if that
were valid for all neurons the neural network would be restricted to learning only linear
input-output mappings. To also be capable of non-linear transformations an activation
function is introduced:

z = α(w × x+ b) (1.3)

where α is the activation function and the rest of the term is a simplified description of
Formula 1.2. Popular activation functions include:

• sigmoid function sig(x) = 1/ (1 + exp(−x)),

• softmax function sm(x) =
(︂
exp(xi)/

(︂∑︁
j exp(xj)

)︂)︂
,

• hyperbolic tangent function tanh(x) = (exp(x)− exp(−z)) / (exp(x) + exp(−x)),
or

• rectified linear unit function ReLU(x) = max(0, x).

In addition, backpropagation algorithms (as used in this work) require calculating the
error of the predictions and the ground truth. A Loss function is leveraged to calculate
the error:

Loss = J(y, yp) (1.4)

where y is the ground truth (true label) and yp the prediction (predicted label). Depending
on the label space one has to use a regression loss function or a classification loss function.
The most popular loss functions are mean absolute error, where the sum of absolute
differences between y and yp is calculated, mean squared error, where the average of
the squared differences is taken, negative log likelihood, where the model is rewarded
for making the correct label prediction with a high probability, and cross entropy, where
the model is penalized for predicting with high confidence but wrong. For classification
with discrete labels, negative log-likelihood and cross-entropy are calculated equally. See
Table 1.1 for the formulae of the mentioned loss functions.
To update their weights, neural networks need a learning rule during training. The most
common option is to update the weights using gradient descent (Curry, 1944):

7



1. Introduction and Background

loss function formula

mean absolute error loss(x, y) = |x− y|

mean squared error loss(x, y) = (x− y)2

negative log likelihood loss(x, y) = −logP (x = y)

(cross entropy)

Table 1.1.: Overview of loss functions. x denotes the input, y is the label.

∗Wx = Wx − lr

(︃
∂J

∂Wx

)︃
(1.5)

where Wx is the current weight, lr the learning rule and ∂J
∂Wx

the derivative of the loss
with respect to the weight.
In other words, the activation function computes the input of a neuron from the outputs
of its predecessor neurons. The learning rule modifies the weights of the connections in
order to produce a preferred output for a given input. This way inputs are processed
within the network, utilizing the activation function and the learning rule to produce
outputs.
There are many types of neural networks (see Schmidhuber (2015)) for an extensive
overview) and only a few should be mentioned in the context of this work. Figure 1.1
illustrates the structure of the presented networks.
Multilayer Perceptrons (MLPs) were first introduced by Rosenblatt (1961) and contain at
least one layer of neurons. The input layer is followed by n hidden layers that provide
different levels of abstraction. The output layer serves as the prediction layer. MLPs can
be used for either classification or regression tasks.
Recurrent Neural Networks (RNNs) (Rumelhart et al., 1986) can be considered an
extension of MLPs, adding more connections between the neurons to process sequential
data. RNNs work on the principle of saving the output of a given layer and feeding it
back to the input to predict the layer’s output. Instead of only connecting consecutive
neurons, each recurrent cell also has a loop connection to itself (see the blue cells in
Figure 1.1). That means that neuron weights can also be updated by processing previous
information, e.g., of time steps. A very popular kind of RNNs is the Long Short-Term
Memory Network (LSTM) (Hochreiter and Schmidhuber, 1997). Instead of standard
neurons as defined in Equation 1.2, LSTMs use memory blocks. Each block contains
several gates that handle its state and output. The forget gate decides which parts of the
information can be discarded. The input gate controls which values from the input to
update the memory state with and the output gate determines (based on the input and
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Figure 1.1.: Overview of the structure of MLP, RNN, LSTM and CNN.

the memory state) what to output. RNNs can best be used for sequence prediction tasks,
including classification, regression, and generation of speech and text.
Convolutional Neural Networks (CNNs) (Fukushima and Miyake, 1982) originally had
been developed for image classification. The kernel (processing input data) of a CNN is
followed by three basic layers: a convolutional layer (preserving the spatial relationship
between pixels in an image by learning feature maps using smaller windows of the input
data), a pooling layer (reducing the dimensionality of each feature map while preserving
the most important information) and a feed forward layer (usually consisting of a MLP).
CNNs are able to process image data well and can learn classification and regression
tasks.

1.3.3. Supervised Machine Learning

This section explains supervised learning with neural networks using backpropagation
and outlines the relevant basic principles. See also Figure 1.2 for an illustration of the
process.
The process summarized in a short overview: Given are instances and ground truth
labels as model input and label predictions as model output. Instances and labels are
transformed into vectors and fed to the model. The model learns and makes label
predictions which are compared to the ground truth labels. The information about the
distance between prediction and ground truth is sent back to the model (the loss). This is
iteratively repeated and the final trained model is saved and in turn used to get predictions
for test instances without labels.
The process explained in detail: Each supervised neural model takes instances and labels
for the instances as input. Let X = (x1, ....., xn) be the collection of input instances and
Y = (y1, ....., yn) the ground truth labels. The set of labels C, yi ∈ C must be specified
in advance and can either lie in a continuous space (for regression) or consist of discrete
values (for classification). The next fundamental step is to transform the input instances
into feature vectors. For natural language processing there are different techniques to do
so. Among the most common are representing each word in the input instance as its index
in a pre-defined vocabulary, representing the input using tf-idf (term frequency-inverse
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Figure 1.2.: The process of supervised machine learning and testing. Instances and labels
are transformed into vectors and passed as input to the model. The model
learns the inductive bias from the input instances and makes predictions
for each instance. The predictions are compared to the real labels and the
prediction error is calculated. This error is used to update the model. This is
repeated until the model is fully trained or the maximum number of iterations
is reached. During testing, only instances (no labels) are transformed into
feature vectors and passed to the trained model. Based on the patterns seen
in the training data the model predicts labels for the input instances.

document frequency) features or embedding each word (or subword unit) of the instance
in a pre-defined feature space. Section 1.5 will discuss how to represent the input instances
in more detail.
The labels need to be encoded in a vector as well and usually each label is assigned its
index from the set of possible labels. Both, the resulting feature vectors and the label
vectors are passed to the model afterwards.
The model detects patterns, structures, regularities, and correlations in the input instances
and predicts the most likely label for each instance. Basically, the model approximates
some function to map inputs to outputs:

y ≈ f∗(x) (1.6)

where y is the label, f∗ the approximation function and x the input instance.
Neural models define a parameter mapping to learn the best approximation function:

y ≈ f(x; θ) (1.7)
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where y is the label, x the input instance and θ are the learnable parameters.
During the learning process, a model predicts labels ŷ for each instance x. The label
predictions ŷ then are compared to the original known labels y, using different loss
functions. Predictions are usually given in the form of probability distributions over all
possible labels, which will be passed to the loss function. The calculated error or loss
value is then backpropagated to the model in order to let it adjust its weights and produce
more accurate predictions. The prediction, comparison to the ground truth and updating
are iteratively repeated until certain criteria are met (depending on the configuration of
model and training). Finally, the trained model or its state after training is saved. For
testing, the trained model is loaded and test instances, again transformed to their feature
vector representation, are passed to it. Based on the properties learned during training,
the model predicts the most likely labels for the input instances, the probabilities are
converted into labels, which then serve as model output.

1.4. Knowledge Supervised Machine Learning

The success of neural networks for solving a wide variety of tasks is resounding because
they have the ability to successfully learn even complex problems that involve a lot of data.
One disadvantage that neural models share across all architectures is that due to the goal
of learning structures that are as general as possible, there might be a wrong specialization.
Nevertheless, specialization is essential for some domains, since the domain properties
can be blatantly different from, or even go beyond, general properties. Technically, the
learning process of each model is predefined by its architecture and introduces an inductive
bias. The inductive bias expresses all assumptions of the approximation function that
the model should learn to capture the relationship between input and output. If these
assumptions are no longer correct because the relationship between input and output
is strongly deviating in a specialized domain or for a specific task, the model suffers
from an insufficient inductive bias and the approximation function can no longer make
correct predictions. However, knowledge about certain domains, tasks, and methods
is often abundant, and it is highly desirable to integrate this knowledge into neural
models to overcome the problem of an insufficient inductive bias. How to enrich neural
models with additional knowledge is an interesting area of research. There are not only
different approaches to tackling this problem, but also different perspectives on what
"knowledge" is and how it can best be introduced into models. This work considers
knowledge supervision from the following points of view: i) incorporating knowledge into
neural models via the data they use (data-centric knowledge supervision), ii) integrating
knowledge by focusing on the model architecture (model-centric knowledge supervision),
and iii) the intersection of data- and model-centric knowledge supervision or holistic
knowledge supervision. See also Figure 1.3 for an illustration of the above mentioned
perspectives and some popular approaches that lie in the respective research areas. The
figure also contains the section numbers of the contributing articles for each perspective.
The three above mentioned perspectives and associated approaches are briefly outlined in
the following, whereas the relation to this work will be highlighted in Chapter 2 in detail.

11
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Figure 1.3.: Fields and associated topics of knowledge supervision

1.4.1. Data-Centric Methods

Data-centric approaches aim to reflect additional knowledge about the task or the domain
on the data or the input the models are trained on. One could categorize integrating
knowledge via data as i) using knowledge repositories, ii) curating domain specific data
and iii) fine-tuning language models. Note, that this categorization is incomplete and
providing a complete overview of all approaches goes beyond the scope of this work.
Using knowledge graphs as knowledge repositories has become very popular, especially
in the last ten years. Knowledge repositories can be considered as semantic networks
that model the relationship between real-world entities, such as persons, objects, events,
etc. Utilizing knowledge graphs can enrich model learning with these relationships or the
additional knowledge about these relationships. Ji et al. (2022) provide a comprehensive
survey on knowledge graphs. In general a lot of approaches cover relation modeling
problems (Nickel et al., 2016; Nathani et al., 2019) or representation learning (Xu et al.,
2018; Xie et al., 2016).
Curating domain specific data means the creation and maintenance of domain specific data
sets to represent the respective domain optimally. Additional knowledge about the domain
to be modeled is already contained in the input data in this case or can be integrated
by leveraging domain specific data in addition to training data. For natural language
processing popular domain specific data sets are e.g. the SQuAD dataset for question
answering (Rajpurkar et al., 2016), the Stanford Sentiment Treebank STT (Socher et al.,
2013) or the IMDb movie reviews corpus (Maas et al., 2011), both for sentiment analysis.
Large language models will be discussed in Section 1.5 in more detail. Their pre-training
or fine-tuning is another opportunity to tailor them to a specific domain and integrate
additional domain knowledge. Work in this field includes the proposal of language
specific models, for example, CamemBERT for French (Martin et al., 2020) or GBERT
and GELECTRA for German (Chan et al., 2020), but also investigating the knowledge
capturing capabilities of language models (Roberts et al., 2020) or extending language
models with knowledge bases (Fei et al., 2021).
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1.4.2. Model-Centric Methods

Model-centric approaches focus on the model architecture and how to design the learning
process of a model in a way to exploit and incorporate knowledge optimally. While some
knowledge can be contained in the input data already, additional knowledge about task
and domain can be injected through other inputs or methods inside the network. For
this work, we briefly outline three main principles: i) knowledge distillation, ii) attention
mechanisms and iii) utilizing initialization or priors.
Knowledge distillation describes the process of reducing large neural networks in size,
by still retaining the contained knowledge. No additional knowledge is brought into the
model, but the goal is to compress and generalize the already present knowledge as much
as possible. To perform the distillation process, knowledge is transferred from a large
pre-trained model to a smaller one. The approach was first introduced by Hinton et al.
(2015). Recent approaches include a reduced BERT language model called DistilBERT
(Sanh et al., 2019) or propose student-teacher training (Mirzadeh et al., 2020).
In neural architectures, attention mechanisms are used to set the model focus on specific
parts of the input that are most important for prediction. Knowledge about the most
relevant input parts for a learning problem can be reflected well by using this technique.
Ever since attention for neural networks was first presented and successfully applied
(Bahdanau et al., 2015), it has become an integral part of the research field. Hence there
are various approaches on attention mechanisms, including strategies to deal with the
opposite of knowledge injection, the forgetting of learned knowledge (Serrà et al., 2018),
sentiment analysis using commonsense with an attentive LSTM (Ma et al., 2018), or
attentive emotion detection (Zhong et al., 2019). Extensive surveys on utilizing attention
have also been published (Chaudhari et al., 2021).
The initialization of neural network weights or the use of priors can also be leveraged to
achieve knowledge integration. The approaches aim to set the initialization values or use
priors to adjust neural network weights in order to incorporate additional knowledge about
task and domain in beforehand. Milletari et al. (2017) integrate statistical knowledge with
priors to obtain robust predictions for classification with corrupted and noisy data. With
informed machine learning (von Rueden et al., 2021) the authors provide a comprehensible
survey on integration of knowledge via priors. Recent work proposes to perform a semantic
mapping from symbolic representations of domain knowledge to weights and biases of a
neural network (Hoffmann et al., 2021).

1.4.3. Holistic Methods

Approaches in this category represent the combination of the above described aspects.
Relevant approaches are i) domain adaptation, ii) adversarial architectures and iii) weak
supervision. The latter plays a major role in this work and is therefore described in detail
in a dedicated section (see Section 1.4.4).
Domain Adaptation aims to transfer learned representations from one domain (the source
domain, with large resources of labeled training data) to another (the target domain,
in which there are mostly few annotated sources). The additional knowledge that is
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reflected on the data (data-centric aspect) is adjusted within the model (model-centric
aspect) in order to achieve good results on the target domain. Although source and
target domain may differ with respect to their data properties, the same downstream
task is usually learned. Though, there is also some work on utilizing domain adaptation
across downstream tasks (Ramirez et al., 2019). For solving the same task, selected work
includes unsupervised domain adaptation (Liang et al., 2020b), dimensionality reduction
for domain adaptation (Pan et al., 2011) or knowledge aggregation techniques (Dong
et al., 2021).
Adversarial Architectures have been intensively researched in recent years. Most popular
are generative adversarial networks (Goodfellow et al., 2014), where two modules play a
zero-sum game and one module (the generator) tries to fool the other (the discriminator).
In this way, the generator is trained to produce examples that the discriminator module
could not distinguish from original/real data examples. Besides, adversarial architectures
are also utilized for denoising and increasing robustness of neural models (Xie et al., 2016;
Warde-Farley and Bengio, 2017) or knowledge distillation (Wang et al., 2018). Adversarial
models can be considered holistic, because i) additional knowledge is reflected on the
instance level (data-centric aspect), since knowledge about input characteristics is utilized
and ii) on the learning level (model-centric aspect), since additional knowledge about the
properties of data and task are integrated here as well.

1.4.4. Weak Supervision

In general, weak supervision can be defined as a branch of machine learning where noisy,
limited, or imprecise sources are used to provide a supervision signal for labeling large
amounts of (training) data. With the advent of machine learning and neural networks or
deep learning, the demand for large labeled data sets constantly increases. Utilizing an
approach that enables the automatic labeling of large amounts of data without the need
to manually perform the annotation is tempting, even if the obtained labels may contain
noise.
Nevertheless, weak supervision is not the only branch of research aimed at circumventing
the problem of requiring labeled training data. Before discussing weak supervision in
detail, the most common approaches from which it can be distinguished are outlined:
Transductive Transfer learning (including domain adaptation, which was explained in
Section 1.4.3) aims to train models on available sources of labeled data and transfer
learned knowledge to another domain with less/no annotated training data (transfer on
data level). There is also inductive transfer learning, i.e., the target task is different from
the source task (transfer on task level). See Pan and Yang (2010) for a study on transfer
learning types and paradigms.
Active learning aims to find out which data points will add the greatest value to model
training. As soon as the most relevant instances have been discovered, these are labeled
exclusively. Literature surveys on the field provide detailed insight, e.g. Settles (2009);
Ren et al. (2022).
Also, semi-supervised learning can be considered a related branch, since the goal here is
to leverage both, labeled and unlabeled data sources for model training in data-sparse
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domains. See also Yang et al. (2021) for a recent literature survey on the topic.

Weak supervision has received increasing attention in research, especially in the last
five to ten years. Early work in the area includes knowledge-based weak supervision
(Hoffmann et al., 2011) and distant supervision methods (utilizing an external database
for labeling) (Mintz et al., 2009). In 2017, Ratner et al. proposed Snorkel, a paradigm
and framework to label data programmatically using weak supervision. Since then, the
scientific community has been inundated with publications on weak supervision. Recent
publications include a benchmark for weak supervision tasks (WRENCH) (Zhang et al.,
2021), a software toolkit aiming to easily apply weak supervision in practice (skweak)
(Lison et al., 2021) and a framework for interactive weak supervision (IWS) (Boecking
et al., 2021), as well as a comprehensive overview on the topic of programmatic weak
supervision (Zhang et al., 2022).
Within the various approaches of weak supervision, it has been agreed to use the term
"labeling functions". Labeling functions can be considered as templates that are applied
to unlabeled data in order to match certain parts of the input and are able to assign
a label once matching. Formally, assume |X| = n data points and |Y | = m possible
labels. To retrieve weakly supervised labels for X, labeling functions λ = (λ1, ....., λl),
λi : X → ∅ ∪ {y} are defined. Each labeling function either abstains from labeling (∅)
or assigns a class label y. Annotation by labeling functions can be expressed using two
matrices: i) a matrix of labeling function matches Z, where Z ∈ {0, 1}n×l, with Zi,j = 1
if LF j matches instance i, otherwise Zi,j = 0. ii) a matrix encoding the link from
labeling functions to labels T , where T ∈ {0, 1}l×m, Tj,k = 1 if label k is associated with
labeling function j, Tj,k = 0 otherwise. Some models process Z and T directly, whereas
for other approaches "weak" labels are computed, that are stored in matrix Ŷ , where
Ŷ ∈ {0, ...,m}n, with Ŷ i expressing the label index of instance i.
See also Figure 1.4 for an example of two labeling functions and their matches on unlabeled
input data. The example stems from relation extraction and both labeling functions
express the relation "married to". Although for each sentence one of the labeling functions
matches, the second sentence does not the express the "married to" relation and is labeled
wrongly. From an example like this, the system could learn spurious correlations, like: if
two persons occur in a sentence that is about a Covid19 diagnose they are married. This is
a wrong conclusion and accordingly the second sentence introduces noise and misleading
signals into the model.
There are different possibilities how to generate labeling functions, for example hand-
crafting them (Ratner et al., 2017; Meng et al., 2018), leveraging knowledge bases to
retrieve labeling functions (Hoffmann et al., 2021; Liang et al., 2020a; Roth and Klakow,
2013), use pre-trained models or existing systems (Bach et al., 2019) or use crowd-sourced
labels (Yuen et al., 2011; Nguyen et al., 2017).
To deal with the noisy and possibly misleading output of weak supervision (Z and Ŷ )
there are three main groups of approaches: i) label models, ii) end models and iii) joint
models.
Label models aim to denoise the labels contained in Ŷ before passing them to a machine
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Figure 1.4.: Labeling function application to example sentences from the relation extrac-
tion task. Labeling function 1 matches the first sentence and assigns label
"married to". Labeling function 2 matches the second and third sentence
and assigns "married to" to both of them. The assignment is wrong for the
second sentence, since it does not express this relation.

learning model for further processing. Usually there are overlaps and conflicts among
the different labeling functions. In addition, some of the labeling functions might be of
higher precision than others or there is a degree of statistical dependence among the
labeling functions. Some label models are leveraged to model these dependencies between
several labeling functions and output probabilistic labels (Ratner et al., 2016; Cachay
et al., 2021b; Bach et al., 2017; Varma et al., 2017), that models designed for weak
supervision can take as inputs in turn. There are also approaches that assume statistical
independence of the labeling functions or output hard labels (no probability distribution,
but one label per instance). This includes, for example, majority voting, where the output
of all labeling functions is collected and if there is a winning label according to their
votes it is assigned (otherwise either a random label/ the "other" class is assigned or the
instance is discarded).
End models take the noisy labels (produced by a label model) as input and learn the
downstream task on the weakly supervised data. In general, any neural model can be
trained on the weakly supervised labels. However, there are also approaches that are
specifically designed for learning from weakly supervised or noisy data. Some utilize a
noise aware loss function (Ratner et al., 2017), others try to learn from the weakly labeled
instances in a way to also leverage unlabeled data points (Yu et al., 2021). See Song et al.
(2020) for a survey on 62 different noise-robust models.
Joint models integrate the two above mentioned approaches, take matrices T and Z
as input and train label model and end model at the same time. Hence, they are also
referred to as end-to-end models (taking the weakly supervised input and output the
desired predictions for the end task). Recent work aims to learn the downstream model
by alternately training a label model and using the predictions from the label model for
training the end model and vice versa (Cachay et al., 2021a) or estimating the reliability
of labeling functions, then aggregating weak labels (in order to denoise them) and feeding
them to a neural classifier (Ren et al., 2020).

In this work, weak supervision is considered as combining data- and model-centric
knowledge integration into neural networks. The labeling functions reflect additional
knowledge about the task on the training data (data-centric) and additional inputs Z
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Figure 1.5.: Overview of different word representations.

and T integrate task/method knowledge on the model level (model-centric).

1.5. Representation Learning for Natural Language

In its natural form, language is encoded with letters, rather than numerically, as is usually
the case with other data intended for machine processing. To enable the processing of
language though, it must be converted into a machine-readable, numeric format. One of
the most basic approaches to doing this is to build a vocabulary of all the words contained
in a data set and represent each word in an instance as its index number in the vocabulary.
For most cases, a representation like that will not be sufficient. Words cannot always be
considered independent functional units, but can often only get their full meaning in the
context in which they occur. There are several approaches that aim to take the context of
a word into account and learn a good representation. Basically, the word representation
approaches can be divided into representing words with or without taking their context
into account. See Figure 1.5 for an overview of different word representations. This
section provides insights and techniques for both approaches and explains the concepts
relevant to this work.

1.5.1. Context Independent Representations

This section describes three different context independent word representations used in
this work. While tf-idf and BPE do not require machine learning, FastText does.

TF-IDF (Term Frequency-Inverse Document Frequency) is a statistical measure eval-
uating how relevant a word is to a document within a collection of documents. It is
calculated by multiplying the term frequency by the inverse document frequency. The
term frequency expresses how often a word occurs in a document and can either simply
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be counted or normalized by parameters such as word length or document length. The
inverse document frequency of the word within all documents indicates how rare a word
is with respect to the entire collection of documents. To calculate the idf for a word,
the size of the document collection is divided by the total number of documents that do
contain the word. Tf-idf can be defined as:

tf idf(t, d,D) = tf(t, d)× idf(t,D) (1.8)

tf(t, d) = log (1 + freq (t, d)) (1.9)

idf(t,D) = log

(︄
N∑︁

d|t∈d,d∈D 1

)︄
(1.10)

where t corresponds to the term or word, d is a single document and D is the collection
of documents. Accordingly, a higher tf-idf for a word given a document expresses that
a term/word is more relevant to the document. Compared to other representation
techniques, tf-idf is less complex, which can be useful for first experiments and results or
when one wants to use less computing power.
FastText (Bojanowski et al., 2017) is a very popular approach to embed words and
was mainly used before transformers had been proposed. It is based on the principle of
word2vec (Mikolov et al., 2013) utilizing shallow neural networks to learn word embeddings.
The approach assumes that each word is composed of several character n-grams. This
feature enables it to learn not only rare words but also out-of-vocabulary words. Each
word is represented as a bag of its character n-grams including the whole word as well as
special boundary symbols "<" and ">". Once the bag of character n-grams is computed,
two different models can be used to calculate the actual embedding. The skip-gram
model aims to predict a word based on its directly adjacent words. The continuous
bag-of-words (CBOW) predicts the target according to a bag-of-words containing words
within a pre-specified window of neighboring words.
GloVe means global vectors and was introduced by Pennington et al. (2014). Unlike
other previously developed embedding approaches, GloVe relies on global word statistics
within texts to obtain word representations. To calculate statistics, GloVe first counts
word co-occurrences and stores them in matrix X, where Xij denotes how often word i
has occurred with word j in the corpus. Next, co-occurrence probabilities for token pairs
(i, j) are computed:

Pij = P (j|i) = Xij/Xi (1.11)

where Xij is the co-occurrence count of i and j and Xi =
∑︁

k Xik is the number of times
any word k appears with word i. After the statistics are calculated, GloVe performs
unsupervised learning to obtain word representations. Relying on the global word
statistics enables the model to learn linear substructures in the vector space. One of the
contributing articles uses GloVe-based embeddings after tokenizing the corpus using Byte-
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Pair-Encoding (BPE1, Gage (1994)) to obtain word representations. This approach was
suggested by Heinzerling and Strube (2018) and is referred to as Byte-Pair-Encoding-based
embeddings in the article in Section 4.1.

1.5.2. Context Dependent Representations

In addition to the word representation techniques presented above, there are also some
context dependent representations. FLAIR is a RNN-based architecture and character-
based embeddings are LSTM-based, whereas BERT, RoBERTa and DistilBERT all are
transformer-based. Although there are a large number of other language models (Zhang
et al., 2019; Lewis and Gale, 1994; Brown et al., 2020), only language models used in this
work are explained in detail.

Character-based embeddings as first introduced by Lample et al. (2016) utilize bid-
irectional LSTMs to process all characters in a sentence (see Figure 1.6 for an illustration).
First, for all characters, random embeddings are initialized. To obtain the word embed-
dings, all characters of a word are passed to the LSTM to get the representation for a word.
The hidden state of the forward pass and the hidden state of the backward pass are then
concatenated to form the final embedding. Having trained the character embeddings, word
vectors can be formed even for words that did not occur during training (out-of-vocabulary
words). Note that training of the LSTM and resulting character representations are task
specific and have been found useful for morphologically rich languages.
FLAIR embeddings (Akbik et al., 2018) are also called contextualized string embeddings.
They can be pre-trained on large unlabeled corpora, capture a word’s meaning depending
on the context and model words as character sequences, which makes the embeddings more
robust to misspellings. In addition, they are capable of modeling subword structures (e.g.
prefixes or suffixes). Like the character-based embeddings, they use a forward-backward
RNN to retrieve sequence representations from the hidden states of both directions. In
addition to the forward and backward hidden states, the following hidden character states
are added for each word as well: i) the output hidden state after the last character in
the word, ii) the output hidden state before the word’s first character. See also Figure
1.6 for an illustration of the computing of FLAIR embeddings. The former captures
the semantic-syntactic information of the sentence up to this point, whereas the latter
captures the semantic-syntactic information from the end of the sentence to the character.
Finally, both hidden states are concatenated to represent the final embedding, containing
information about the word and its context.
BERT (bidirectional encoder representations from transformers) was proposed in 2018
by Devlin et al. and has since then been heavily researched, extended and adapted.

1For tokenization words are decomposed into sub-tokens applying the following steps: i) the vocabulary
is initialized, ii) each word in the corpus is represented as a combination of its characters and a special
token indicating the end of a word ("/w"), iii) character pairs are iteratively counted within the
tokens in the vocabulary, iv) the occurrence of the most frequent pair is merged and the resulting new
n-gram is added to the vocabulary, v) step iv is repeated until certain criteria are met (number of
merge operations, vocabulary size etc.).
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Figure 1.6.: Character-level embeddings as proposed by Lample et al. Lample et al. (2016)
on the left and FLAIR embeddings as proposed by Akbik et al. (2018) on
the right.

BERT is the first language model that can take into account both, the left and the right
context of a word in a sentence and upon its publication it set the state-of-the-art for
different important natural language processing benchmarks (e.g. GLUE or SQuAD). The
core concept contains self-supervised training of 24 transformer blocks and uses masked
language modeling and next sentence prediction in order to model context dependencies
optimally. Masked language modeling (MLM) in this case means masking 15% of the
tokens during pre-training and aiming to predict the masked words. For next sentence
prediction (NSP) a simple binary classification task is designed that aims to predict
whether sentence B immediately follows sentence A. By doing so, the relationship between
sentences should be modeled. After pre-training, the model can be fine-tuned on various
downstream tasks. See Figure 1.7 for a depiction of the BERT architecture.
RoBERTa (Liu et al., 2019) can be understood as a powerfully re-trained version of
BERT where hyperparameters have been tuned more carefully in a way to increase the
potential of BERT and outperform the original model. See also Table 1.2 for a comparison
of BERT, RoBERTa and DistilBERT. The training data for RoBERTa is ten times more
than for BERT, resulting in longer training time, but better results on the end tasks.
Furthermore, RoBERTa was trained with more training iterations and the NSP was
removed from the pre-training process. Also, they use a larger vocabulary and replace
the original MLM by a dynamic masking process.
DistilBERT (Sanh et al., 2019) is intended to speed up the training process of BERT
and to reduce the large size of BERT while retaining the performance as good as possible.
In summary, DistilBERT reduces the number of parameters of BERT base by 40%,
enhances the speed by 60% while retaining 97% of its capabilities. Instead of using 12/24
transformer blocks, DistilBERT uses six blocks only, and in addition, the token-type
embeddings and the pooler are removed. Since larger batch-sizes and dynamic masking
have been proven useful with RoBERTA, DistilBERT also uses both and removes the
next sentence prediction as well. Two additional loss functions, cosine-distance loss and
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Figure 1.7.: Pre-training and fine-tuning process for BERT. Figure taken from the original
paper by Devlin et al. (2019)

BERT RoBERTa DistilBERT

method BERT (= bidirec-
tional transformer
with 12 encoder
blocks, MLM and
NSP)

BERT without NSP,
larger mini-batches,
larger learning rate,
bigger step size,
longer training, differ-
ent masking

BERT distilled (= 6
transformer blocks, no
pooler, no token-type
embeddings, no NSP,
distillation loss, cosine-
distance loss)

data Books Corpus, Wiki-
pedia

Books Corpus, Wiki-
pedia, CCNews, Open-
WebText, Stories

Books Corpus, Wiki-
pedia

data size 16 GB 160 GB 16 GB
number of parameters Base: 110 M Base: 110 M Base: 66 M

Large: 340 M Large: 340 M -
training time Base: 96 days 4-5 times more than

BERT
Base: 4 times less than
BERT

Large: 256 days -
performance upon publication

(2018) outperforms
state-of-the-art on
GLUE benchmark

2-20% better than
BERT

3% worse than BERT

Table 1.2.: Differences in BERT-based language models.

distillation loss, ensure that both the hidden states and the output are as similar as
possible to BERT. DistilBERT is trained with student-teacher training.
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1. Introduction and Background

Figure 1.8.: Example sentences for Named Entity Recognition.

1.6. Downstream Tasks

In the supervised machine learning context, a downstream task means any task that
utilizes a pre-trained model or component for some kind of prediction. Machine learning
models are applied to a broad variety of different natural language processing downstream
tasks. Among them are part-of-speech tagging, information retrieval, topic modeling,
named entity recognition, relation extraction, and text classification. The latter three
are also addressed within the scope of this work and are explained in detail in the next
sections.

1.6.1. Named Entity Recognition

In named entity recognition, nouns and proper nouns of interest (named entities) in a text
should be located and categorized. For many other tasks in natural language processing
(e.g., relation extraction) it is a prerequisite to find and define the entities. Which entities
are to be extracted is determined in advance and the training data must be annotated
accordingly. Popular named entities that are usually extracted from sentences are person,
organization and location. See Figure 1.8 for example sentences containing the above
mentioned entities.
It is possible that any, none, or all entities occur in a sentence. Since named entities are
oftentimes proper nouns, the first letter is capitalized in many languages. This pattern
in the surface form is very helpful for successfully solving named entity recognition. On
the other hand, there are many proper nouns in texts that should not be classified as
named entities. Assume locations, persons and organizations are extracted and the input
sentence is: "Today I go to Metro to buy Lugana for my party". "Lugana" is a proper
noun, but in this context neither a location, nor a person, nor an organization, but the
name of a type of wine. Note that in other contexts, "Lugana" can be a location as well.
Thus, simply finding all proper nouns and classifying them is not sufficient, and more
advanced approaches are needed.
Since named entity recognition was first introduced in 1998 (Chinchor, 1998) at the Message
Understanding Conference, many approaches and benchmarks have been presented to
address the task. Popular benchmarks include the CoNLL 2003 data set (Sang and
Meulder, 2003) for English and German or Ontonotes v5 (Weischedel, 2013) for English,
Chinese and Arabic. State-of-the-art for CoNLL was established by a transformer-based
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architecture in 2021 (Wang et al., 2021). Also knowledge distillation approaches (Zhou
and Chen, 2021) and different derivatives from BERT had reached strong results (Schweter
and Akbik, 2020; Li et al., 2020) on the above mentioned benchmarks.
Named entities can consist of several words. In Figure 1.8 most of the entities consist
of two words, e.g. first and last name of a person. Various tagging schemes have been
proposed to take this fact into account. Most common is the IOB2 tagging scheme (Sang
and Veenstra, 1999), where for each entity it is marked if it occurs at the beginning or
inside an entity span. In the first example sentence, "Tom Hanks" would be labeled as
"Tom <B-PER> Hanks <I-PER>", where "PER" is the person label, "B" marks the
beginning of the entity span and "I" indicates that the word lies within the span. See
also Alshammari and Alanazi (2020) for an extensive study on tagging schemes in named
entity recognition.

To evaluate named entity recognition, the F1 score is calculated, balancing the overall
precision and recall:

F1 =
2

recall−1 + precision−1
(1.12)

where precision expresses how many instances have been labeled correctly and recall
expresses how many instances of a label have been found out of all possible occurrences
of the label.

precision =
TP

TP + FP
(1.13)

recall =
TP

TP + FN
(1.14)

where TP is the number of true positives (correct label was predicted), FP is the number
of false positives (correct label was not predicted) and FN is the number of false negatives
(label was wrongly predicted). Originally, the F1 score was developed for binary tasks. In
order to also be able to evaluate multi-class tasks, the F1 score is either calculated per
class and then the average is formed (macro F1) or TP, FP and FN are aggregated across
all classes and then the F1 score is calculated from them (micro F1).
The contributing articles in this work tackle named entity recognition in the historical
domain (Section 4.1 and 4.3) as well as in an industry scenario with custom named entities
(Section 6.1).

1.6.2. Relation Extraction

The task of relation extraction builds upon named entity recognition because the relation
between two entities should be extracted in this task. The example in Figure 1.4 addresses
relation extraction, where the relation "married to" must be recognized for the first and
third example sentences. Relation extraction represents a fundamental task in natural
language processing, such as building knowledge graphs, sentiment analysis or question
answering. Relation extraction can be conducted for binary cases (for instance, spouse vs.
no spouse), but is also widely explored in a multi-class scenario, where a certain relation
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from a set of relations must be predicted. In addition, a distinction must be made whether
the relationship between two or between n entities must be extracted. Jiang et al. (2020)
provide an analysis of this topic in their recent publication.
One challenge is that data sets for relation extraction are often unbalanced and contain a
large proportion of unlabeled examples. In addition, the various relation classes in the
data are also represented to different extents often, i.e., unbalanced. Another challenge in
extracting relations is that there are often different words expressing the same entity that
need to be disambiguated between (e.g., the entity "Rita Wilson" can be expressed as
"Rita", "Mr. Wilson", "Hanks wife" etc.).
Several benchmarks for relation extraction allow to follow the recent advances in the field.
The TACRED benchmark (Zhang et al., 2017) contains 41 different relation types to be
extracted and is compiled of texts from the news and the web domain. The current state-
of-the-art model (Wang et al., 2022) pre-trains large language models on task agnostic
data sets to learn various structure prediction tasks, among them relation extraction.
Another recent approach (Baek and Choi, 2022) tackles the problem of class imbalance
with a minority class attention module and augmentation methods.
The SemEval 2010 data set (Hendrickx et al., 2009) focuses on multi-class classification of
semantic relations between pairs of entities and contains ten different relations. The best
performing model on SemEval from 2020 (Cohen et al., 2020) frames relation extraction
as a span prediction problem like e.g., question answering. Another recent approach
(Zhao et al., 2021) utilized graph neural networks to tackle relation extraction.

Just like named entity recognition, relation extraction is evaluated with the F1 score.
Two of the contributing articles in this work (see Section 5.1 and 5.2) address binary
extraction of the spouse relation.

1.6.3. Text Classification

Text classification is the downstream task of assigning an appropriate category to an input
sentence or text. The categories or classes depend on the data set as well as the topic and
common classification problems in natural language processing include spam detection,
sentiment analysis, question classification, topic classification or language detection.
Figure 1.9 shows example sentences from sentiment analysis. While the first sentence
clearly expresses a positive sentiment towards Rita’s dress, the second sentence expresses
a negative sentiment towards Tom Hanks. The difficulties in text classification are as
different as the tasks. For sentiment analysis, but also for many other tasks, a common
problem is negation (of adjectives or verbs) or the occurrence of multiple adjectives in
one sentence indicating different sentiments, as in the second sentence of the example.
A major difficulty is that words are often ambiguous and require several sentences to
unequivocally determine their meaning. Constructs such as sarcasm, irony or jokes are
also difficult to handle in classification tasks. Note that the vast majority of classification
models are designed for the English language, so there is a great need to transfer or adapt
them to other languages.
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1.6. Downstream Tasks

Figure 1.9.: Example sentences from sentiment classification.

Text classification benchmarks include AG News (Zhang et al., 2015) (a data set compris-
ing news articles from four different categories), TREC (Li and Roth, 2002) (a question
classification data set with six classes) or IMDb (Maas et al., 2011) (a binary movie review
data set). For AGNews the best performing model is XLNet (Yang et al., 2019), a trans-
former based auto-regressive architecture learning bidirectional contexts by maximizing
the expected likelihood over all permutations of the input sequence factorization order.
The Universal Sentence Encoder (Cer et al., 2018), a popular model for learning sentence
representations for transfer learning, tops the leaderboard for the TREC data set. The
current state-of-the art for the IMDb data set was established in 2020 by ERNIE-doc
(Ding et al., 2021) an extended language model based on BERT capable of transforming
long documents.

Tasks in text classification are usually evaluated using the accuracy or the error rate.
Accuracy expresses how many instances out of the total instances have been classified
correctly:

accuracy =
#correct predictions

#total predictions
=

TP + TN

TP + FP + TN + FN
(1.15)

The error rate, or simply error, is defined as:

error = 1− #correct predictions

#total predictions
=

#incorrect predictions

#total predictions
(1.16)

Accuracy can also be expressed as 1−error and error can also be expressed as 1−accuracy.
Both, accuracy and error can be used for binary or multi-class classification.
Text classification problems are addressed by the articles presented in Sections 5.1 and
5.2.
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2. Knowledge-Supervised Information
Extraction for Natural Language
Processing

Infusing knowledge into neural models is a challenging and complex area of research. A high
proportion of knowledge is encoded in language (regardless of whether it is spoken, written,
or otherwise represented). The enrichment of neural models with additional knowledge is
particularly desirable in the context of natural language processing. Information extraction
is only one field of natural language processing, but oftentimes it is used in customized
and specialized contexts such as industry or medicine. The specialized domains have a
particularly large wealth of knowledge, and information extraction systems that can access
and successfully exploit this knowledge are required. This thesis addresses the following
perspectives on knowledge supervision for neural models, see also Figure 2.1: Incorporate
knowledge into i) the data that the models use for training, ii) the model architecture, and
iii) models for industrial information extraction. The contributing articles presented in
this work cover all three aspects and are explained and briefly presented in the following
section. Figures 2.2, 2.3 and 2.4 illustrate in which section the original manuscript of the
contributing articles for each perspective can be found.

Figure 2.1.: Knowledge supervision perspectives addressed in this work.
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2.1. Data-Centric Knowledge Supervision

In this part of the work, approaches to reflecting knowledge on the training data for neural
models are presented. Many domains come with peculiarities that are not present outside
their domain, e.g., specialized vocabulary, syntax, or, in the case that text has been
digitized using optical character recognition (OCR), font type. All of these peculiarities
must be captured by the inductive bias of a model and learned during training. There is a
variety of approaches for model training and one might assume that using "good data" for
training is sufficient and that alone should be enough for data-centricity. What is decisive,
however, is that knowledge supervision integrates additional knowledge into the data.
The application of supervised algorithms requires annotated data, which often cannot be
assumed to be available both in terms of number of data points and representability for
the domain. Furthermore, there can be a lot of valuable knowledge in unlabeled data that
one wants to use without having to annotate it and there may also be further knowledge
about the task or domain that should be integrated. The aim is therefore to be able to use
the knowledge regardless of its source or whether it is represented by labeled or unlabeled
data. Hence, the approaches presented in this section all have the same goal: optimally
use, condense, and enrich existing data sources to enable efficient domain-specific training.
In addition to domain specific approaches for the integration of knowledge, the articles
also deal with universal methods that can be applied to any domain.

Figure 2.2.: Data-centric knowledge supervision.
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2.1.1. Embedding Domain Knowledge in Input Representations.

Contributing article:
Schweter, S., & März, L. (2020). Triple E-Effective Ensembling of Embeddings and
Language Models for NER of Historical German. In Working Notes of CLEF 2020 -
Conference and Labs of the Evaluation Forum, Thessaloniki, Greece, September 22-25,
2020.

This approach operates in the scope of named entity recognition for the historical domain.
What makes this domain different from others are several peculiarities associated with
historical texts as such, but also associated with their digitization process. Historical text
differs most from contemporary texts in terms of vocabulary and spelling, i.e., not only
different words have been used than today, but also the phonetic shift and orthography
are relevant. In addition, historical texts have not been created digitally, but were printed
via letter press or even handwritten. To make them accessible for machine learning, they
need to be digitized first, which is usually done by Optical Character Recognition (OCR).
This process introduces errors that can either come from the OCR implementation itself
or from hard-to-read documents that have suffered over time. Therefore, contemporary
data sources do not provide optimal representation of the specialties of historical texts.
Operating in the scope of supervised machine learning requires labeled data and for the
historical domain this data is very scarce. Thus, ingesting knowledge about the historical
data through a channel other than annotated data is a reasonable approach.
One data-centric way to enrich the representation of the input is to use embeddings and
language models (as explained in Section 1.5). There is a large variety of embeddings for
standard contemporary language (mostly collected from the news domain and web texts),
which also can be leveraged for the historical domain. Nevertheless, the embeddings for
standard contemporary language will not represent the historical domain well enough. For
this purpose, embeddings for the historical domain can be created, and language models
can either be fine-tuned or trained from scratch on unlabeled historical data. The presented
article (see Section 4.1) successfully creates a "T-shape" in the knowledge representation,
i.e., having a broad spectrum of knowledge covered by the large contemporary embeddings
(the horizontal part of T) and at the same time going deep and covering very specific
knowledge about the historical domain (the vertical part of T). This "T-shape"-principle
can also be applied when operating in any other specialized domain.
To cope with coarse-grained named entity recognition for historical German texts, know-
ledge is integrated by assembling various embeddings and language models composed of
contemporary and historical data. First, historical embeddings and language models are
computed1. The embeddings are calculated with different embedding methods: FastText
(Mikolov et al., 2018), Byte Pair Encoding-based embeddings (BPE, Heinzerling and
Strube (2018)) and FLAIR (Akbik et al., 2018). The language models base on BERT
(Devlin et al., 2019). For each method, different German corpora, either contemporary or
historical, are used. The best performing embeddings are then determined experimentally

1In addition to using those for the conducted experiments, they are also publicly released.

29



2. Knowledge-Supervised Information Extraction for Natural Language Processing

for each category (FastText/ BPE, Flair, BERT). For the final ensemble, the best possible
combination of the different embeddings and language models is found experimentally. In
this way, knowledge from several sources enriches one representation in order to carry out
standard model training for named entity recognition. For model training, a bidirectional
LSTM with CRF as the final layer provided by the FLAIR library is used. The results
show that the combination of broad knowledge with domain-specific knowledge ("T-
shape"-principle) is powerful. The best performing model combines embeddings trained
on contemporary (Wikipedia) texts with a language model that was trained on a large
collection of unlabeled historical data. Consequently, reflecting domain knowledge on
input representations is a good option in the area of data-centric knowledge supervision
and it seems promising to apply this method to other domains as well.

2.1.2. Introducing Domain Knowledge using Input Perturbation

Contributing article:
März, L., Schweter, S., Poerner, N., Roth, B., & Schütze, H. (2021). Data Centric
Domain Adaptation for Historical Text with OCR Errors. In International Conference on
Document Analysis and Recognition (pp. 748-761). Springer, Cham.

This method approaches historical named entity recognition as well. Here, the goal is to
extract historical named entities for French and Dutch. The focus of this article is twofold:
on the one hand, domain knowledge is incorporated into embeddings and language models,
on the other hand, domain knowledge is reflected by assimilating the peculiarities of
historical texts via input perturbation methods. Again, unlabeled historical data is
successfully leveraged to create historical language models and embeddings. In addition
to the embeddings mentioned in the previous section, character-level embeddings are used.
Words are embedded using the representations of their individual characters, thus it is
possible to represent out-of-vocabulary words2 better. This is a favorable advantage for
the historical domain because due to the deviations from the modern language and the
OCR errors, out-of-vocabulary words are common.
Although knowledge from unlabeled resources can be integrated well by using embeddings
and language models, a larger amount of labeled data for training is desirable too. When
a neural model sees a greater variety or number of typical examples in the input, it is more
likely to learn an appropriate inductive bias and make correct predictions. The article
proposes to generate labeled training data by utilizing knowledge about the historical texts
and computer vision methods. Labeled modern data is used for this purpose, which is then
approximated to the surface form of historical texts by means of artificial perturbations.
Two perturbation methods are proposed: i) introducing systematic corruptions, by
inserting, removing or transposing characters in the contemporary labeled data and ii)
perturbing contemporary labeled data by assigning a random font and font size, printing
it to a PDF, rotating, blurring and dropping out pixels in the PDF and then OCR it again.
Both methods introduce knowledge into the data in order to recreate the characteristics

2Words that not have been observed during training but during testing.
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of OCR’d historical data. After that, the corrupted/perturbed and clean texts are aligned
to retrieve the annotations for the corrupted/perturbed text. That way the peculiarities
contained in the surface forms of historical texts are introduced, while also obtaining
annotations for the data.
The article performs in- and cross-domain experiments, i.e., training on contemporary
data and testing on historical data vs. training and testing on historical data. The
in-domain experiments reaffirm that embeddings and language models are good at
reflecting knowledge about the historical domain. The cross-domain experiments show
that integrating knowledge by using embeddings and language models together with
perturbation methods is all the more effective the more the texts used for testing contain
characteristics of the historical domain. For both scenarios and both languages, state-of-
the-art results are established.

2.1.3. Utilizing Focused Language Models to Reflect Domain Knowledge

Contributing article:
Schweter, S., März, L., Schmid, K., & Çano, E. (2022). hmBERT: Historical Multilingual
Language Models for Named Entity Recognition. Proceedings of the Working Notes of
CLEF 2022 - Conference and Labs of the Evaluation Forum, Bologna, Italy, September
5th - to - 8th, 2022.

The last of the data-centric methods presented in this chapter also deals with named
entity recognition in the historical domain. The approach is based on different aspects: i)
generating very large language models in the target (historical) domain, ii) integrating
multiple languages, and iii) focusing the language model on the knowledge most relevant
to the downstream task. The integration of domain-specific knowledge via embeddings
and language models had proven itself in the two previous works. Therefore, this method
is successfully repurposed in this approach.
Some of the data used in the article (see Section 4.3) stems from historical commentaries3

from different languages. Commentaries usually contain additional information about
the text they are addressing. Because they often quote the original literary text, several
languages can be found in there. Consequently, it makes sense to leverage knowledge from
multiple languages when extracting information from these commentaries. In addition,
linguistic properties are shared across multiple languages (Aikhenvald et al., 2006), which
is another argument to use more languages. Accordingly, multiple languages are used to
create a large language model (hmBERT ) and to incorporate all knowledge contained
in the languages. German, French, Swedish, Finnish, and English data sets are used to
train the hmBERT language model. In order to avoid redundancies and to tap synergies
between the different languages, a multilingual vocabulary is created for the hmBERT
training. In order to alleviate the problem with erroneous surface shapes caused by the

3A classical commentary is a scholarly publication that aims to facilitate the reading and understanding
of classical works of literature by providing additional information such as translations or bibliographic
references.
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OCR process, text is filtered out where incorrect OCR recognition is likely to occur often
(based on OCR confidence).
Training large language models takes a lot of computational resources. In order to find
out whether the integration of multiple languages really offers a great advantage and
whether it is worth investing these resources, monolingual models are also calculated.
The difference in performance on news data is not particularly large for the majority
of the languages. Accordingly, depending on the needs and available resources, either
the monolingual or the multilingual models can be used. Overall, hmBERT proved to
be successful and could outperform the baseline for three out of four languages on the
NewsEye NER dataset (Hamdi et al., 2021).
To finally achieve focusing of hmBERT on the knowledge most relevant to the commentary
task, multi-stage fine-tuning is performed. Hereby, in the first stage, the multilingual
model is fine-tuned. Hyperparameter configurations for the best performing model are
then used for the second stage of fine-tuning, where one optimal model is determined for
each language. The final model successfully addresses the commentary challenge and can
outperform other systems for two out of three languages. Hence, the results show that the
fine-tuning of language models is helpful for the optimal reflection of domain knowledge.

2.2. Model-Centric Knowledge Supervision

Another way to approach knowledge supervision is to put the main focus on the model
architecture instead of the input data. There are many ways to influence the learning of the
appropriate inductive bias in the way the input data is processed, projected, transformed,
and exploited in neural networks. Sometimes one has to operate in a scenario where there
is no way to make changes, adjust, or enrich the data with knowledge. In addition, the
ingestion of knowledge based on the architecture of a network can tackle other dimensions
and aspects. Neural networks process the input data systematically and stringently.
Therefore, they can learn and recognize structures that are not (immediately) accessible
by a human. In addition, these structures can certainly differ from those that a human
considers obvious. Taking this fact into account, it is desirable to design and develop
architectures that allow the incorporation of knowledge based on the internal workings of
the model. The article outlined in the next section falls within the scope of model-centric
knowledge supervision.
Furthermore, there is another article (März et al., 2019) towards this direction which
is not included in the contributing articles for this thesis but still worth mentioning. It
proposes an approach for domain adaptation by integrating additional knowledge about
the target domain by adjusting transferred weights from the source domain to learn
part-of-speech tagging for Twitter data. The source-domain model is trained on a large
German newswire corpus and the learned weights are transferred by using them as a prior
for training the final model on the target domain (a data-set of German Tweets), which
obtains state-of-the-art results. For detailed information see the publication:
März, L., Trautmann, D., & Roth, B. (2019). Domain adaptation for part-of-speech
tagging of noisy user-generated text. In Proceedings of the 2019 Conference of the North
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American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers).

Figure 2.3.: Model-centric knowledge supervision.

2.2.1. Capturing Knowledge by Expanding the Model Focus

Contributing article:
März, L., Asgari, E., Braune, F., Zimmermann, F., & Roth, B. (2021). KnowMAN:
Weakly Supervised Multinomial Adversarial Networks. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Processing, pages 9549–9557, Online
and Punta Cana, Dominican Republic. Association for Computational Linguistics.

This approach addresses one of the main difficulties resulting from weak supervision.
Due to the nature of the weak supervision process, labels may contain noise or be
inaccurate. Labeling functions are inflexible and will bluntly match anything they are
generally designed to match, regardless of context or whether it makes sense. As a result,
the instances are labeled, but they also contain noise that needs to be dealt with. In
addition, during the learning process, models may over-rely on the signals captured by
labeling functions and are hindered to exploit other signals. Therefore, it is desirable to
get the model to focus on other relevant signals than the possibly misleading labeling
function signals by integrating knowledge about weak supervision. The contributing
article addresses just that — it proposes an architecture independent model, KnowMAN,
with the goal of expanding the model focus to take into account all signals and not
just those of the deceptive labeling functions. KnowMAN is designed in an adversarial
manner, consisting of a shared feature extractor, a text classifier (learning the downstream
task) and a labeling function discriminator (learning to determine which labeling function

33



2. Knowledge-Supervised Information Extraction for Natural Language Processing

matched for an instance). As input, it takes labeled training data as well as additional
knowledge about the weak labels, captured by an input matrix reflecting which labeling
function was responsible for assigning the label to the instance. The classifier and the
discriminator play a statistical min-max game, i.e., each module aims to maximize its own
reward while minimizing the other’s reward. That translates to expanding the focus of the
model on the shared feature extractor level. Both modules back-propagate to the shared
feature extractor to adjust the feature representation to be optimal for solving their task.
While the classifier is performing standard back-propagation to optimize downstream
performance, the discriminator backpropagates the reversed gradient to optimize labeling
function distinction. Reversing the discriminator gradient for backpropagation enables
discarding information about the labeling functions. On the one hand, deceptive signals of
the labeling functions are discarded, on the other hand, important information from other
signals relevant to classification is learned. Discarding the information coming from the
labeling functions entirely can be harmful, as they may still contain valuable information.
Therefore, KnowMAN utilizes a hyperparameter with which the degree of discarding
labeling function signals can be set. The concrete value of this parameter can then be
determined experimentally, depending on the data set. The results confirm the proposed
functionality, and KnowMAN improves classification results across all tested data sets.

2.2.2. Assessing Generalization of Knowledge-Supervised Systems

Contributing article:
März, L., Asgari, E., Braune, F., Zimmermann, F., & Roth, B. (2022). XPASC: Measur-
ing Generalization in Weak Supervision by Explainability and Association.
Submitted to Journal of Natural Language Engineering on 06 May 2022, accepted (with
minor revisions) on 03 September 2022, re-submitted on 22 November 2022.

Many approaches deal with weakly supervised or other knowledge enriched data. Usually,
the success of the models is measured by their prediction performance on downstream
tasks. This is reasonable, but it does not give information about the processing of the
knowledge and to what extent it is utilized. Weak supervision suffers from the problem
of many but noisy labels being produced. There are algorithms designed for processing
weakly supervised data that can deal with the noisy labels or aim to filter them out for
training. Ultimately, they all have the same goal: learning general patterns from the
noisy input data. However, also in this scenario, there is no universal way to figure out if
the model has generalized from the noisy data and to what extent. The proposed method
in this section, XPASC, provides a novel metric to measure just that, the generalization
ability of a weak supervision model, i.e., the ability to generalize from the labeling
function signals. This allows gaining insights into knowledge exploitation and evaluation
of models besides pure prediction performance. Different weak supervision models are
evaluated with respect to this aspect, and in addition, the functionality of KnowMAN4

4Section 5.1, expanding the focus of a model to take other parts of the input besides the labeling
functions into account.
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is examined.
To measure the generalization from labeling function signals of a model, two aspects
are taken into account: i) the explainability or importance of a feature for the model,
and ii) the association of the feature to its class and its labeling function. In this way,
one should be able to measure the generalization from labeling functions because, if the
model associates the most important features more closely with the class, there is less
risk of emphasizing the noisy signals of the potentially misleading labeling functions.
To compute explainability, a method from XAI (eXplainable AI), namely occlusion is
used. Occlusion works by comparing the model output for an instance to the model
output for a modified instance. For XPASC, the Kullback-Leibler-Divergence between
the prediction for an entire instance and the prediction for the instance with one omitted
feature is calculated. The smaller the divergence, the less the omitted feature changes
the prediction and the less important it is. That way, the explainability of the omitted
feature can be determined. To compute association to classes and labeling functions, two
different methods are proposed. Chi-square-based association, which relies on statistical
association strength, and positive pointwise mutual information-based association, which
measures the more general information-theoretic association strength. To relate class
association to labeling function association, the values are subtracted for each feature.
A smaller subtraction value indicates a stronger association with the labeling function,
while a larger value indicates a stronger association with the label. Ultimately, both
components (explainability and association) are related in the final XPASC formula and
generalization of a model given a weakly supervised data set can be measured.
The proposed metric gives immediate insights into how different weak supervision models
generalize from labeling function signals. On the one hand, XPASC confirms the
hypothesis of KnowMAN: The hyperparameter λ in the KnowMAN architecture controls
the degree of generalization. On the other hand, the generalization of different models
is compared and it is shown that generalization is not the sole key to good downstream
performance. The XPASC formula is flexible in that the individual components can be
exchanged and other methods of explainability or association could be used and plugged
in easily. In addition, the metric is novel because until now there was no universal measure
to calculate the generalization from labeling functions in weak supervision settings.

2.3. Knowledge Supervision for Industrial Information
Extraction

In practice there is a large class of custom information extraction problems, for example
in the medical or industrial domain. In industry, there is a large collection of knowledge
that is often not utilized optimally or not integrated into machine learning models at all.
What makes the industrial domain challenging is that knowledge exists in many different
forms, be it unstructured, structured, or in the form of expert knowledge, heuristics,
databases, etc. In the automotive industry, for example, suitable learning requires valuable
additional linguistic information (there is domain-specific vocabulary, words may have
a different frequency and relevance to the subject than in standard texts, etc.). Basic
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Figure 2.4.: Knowledge supervision for industrial information extraction.

meanings in this domain may also differ from other domains. For example, in sentiment
analysis, the sentiment of slow and fast is different in the automotive context. In relation
to food (fast food/ slow food) slow has a positive connotation, in relation to vehicles it is
vice versa (fast car/ slow car) and fast has a positive connotation. However, based on
the observations from data- and model-centric knowledge supervision, it is promising to
utilize industrial knowledge to ingest additional information into the learning process.
The data-centric side makes it possible to integrate domain-specific knowledge, e.g., in the
form of valuable knowledge from domain experts. The model-centric side allows to model
the knowledge enriched input in a way to optimally exploit the knowledge contained in
the input as well as to integrate further knowledge. The article presented in the following
section addresses knowledge supervision for industrial information extraction and takes
the data- as well as the model-centric perspective into account.

2.3.1. Practical Knowledge Infusion for Industrial Information Extraction

Contributing article:
März, L., Altergott, C., Stephan, A., & Roth, B. (2022). Recycle your Rules: How to
turn a Rule-based System into a Machine Learning Model.
Submitted to European Chapter of the Association for Computational Linguistics (EACL)
2023 on 20 October 2022.

Data-centric AI and weak supervision are popular approaches to acquiring large amounts
of labeled data for model training. Especially in industrial settings, there is a great
demand for these methods. Usually large amounts of data are available, that reflect
domain specific properties and knowledge well, but no annotations. However, what
can be found in many companies are rule-based algorithms. Valuable knowledge from
domain experts can be translated into rules easily and since machine learning systems
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require annotated data, many companies have so far resorted to a rule-based approach.
Meanwhile, however, there is a great need for companies to also use machine learning
algorithms.
The contributing article addresses these issues. It utilizes a rule-based system for weak
supervision in order to perform machine learning with the data obtained in this way.
At the same time, a practical and theoretical guide is created, detailing the necessary
steps to turn a rule-based model into a machine-learning model. First, the machine
learning background for such an undertaking is explained, then the requirements for
weak supervision are discussed. Usually weak supervision methods rely on two matrices,
one containing the labeling function matches for each instance and the other holding
the mapping from rules to labels. How to acquire both is thoroughly discussed in the
article. Apart from the mathematical background, it is carefully explained how to obtain
labeling functions from a rule-based system. Hereby difficulties and stumbling blocks are
also discussed and how to deal with them. This part of the work covers the data-centric
perspective of knowledge supervision.
After all the basic steps of the process have been expounded, a case study that addresses
custom named entity recognition in an industrial setting follows. Using the case study, the
individual steps of how to transfer the rule-based system into a machine learning system
with the help of weak supervision are concretely illustrated and explained. Various weak
supervision algorithms are then applied to the weakly supervised data. In addition, the
adversarial KnowMAN architecture is adapted to also be able to learn sequence tagging
problems. This part of the approach covers model-centric knowledge supervision.
The case study shows that the method is useful and worth applying in industry because the
utilization of the rule-based system for weak supervision and model training improves the
task’s prediction performance. Overall, the high-level perspective and the concrete level
can be combined with the case study and thus a decent amount of universal information
can be transported. Careful attention has been paid to describing and discussing the
aspects relevant to this process, so that the guide can help researchers and practitioners
solve similar problems.
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3.1. Research Contributions

This thesis addresses the integration of knowledge into supervised machine learning models
for natural language processing. Three perspectives performing knowledge supervision
are examined: data- and model-centric knowledge supervision as well as knowledge super-
vision for industrial information extraction. For each perspective at least one approach
is proposed and a specific as well as a general contribution can be derived, which are
presented below.

All articles for data-centric knowledge supervision address named entity recognition in
historical documents. The specific contributions of all approaches are the training of
historical taggers that establish very good results or even state-of-the-art performances for
various data sets and languages (German, English, French, Dutch, Swedish, and Finnish)
as well as the release of code and models. In addition, the approaches successfully outline
and apply the "t-shape" principle (the combination of broad knowledge and deeply spe-
cialized knowledge when learning downstream tasks) and explain how to utilize unlabeled
data for knowledge integration in general.

In model-centric knowledge supervision, the specific contribution of the first article is the
development and proposal of KnowMAN, an adversarial multinomial neural network for
weakly supervised datasets that is invariant to the interference of noisy weak supervision
signals. The general contribution that can be drawn from this article is that a broad
and robust representation of input instances is beneficial. It makes sense to review the
model focus while learning representations and, if necessary, shift it from the weak signals
towards other signals for improved performance on downstream tasks. The specific contri-
bution of the second article is the proposal of a novel metric to measure generalization
from misleading signals of noisy weak supervision data as well as a detailed explanation
and experimental validation of the measure. Since the components of the metric are
interchangeable and can therefore be tailored to different needs, it can also be used in a
modified form to measure the generalization of noisy data other than weakly supervised
data.

Finally, the article on knowledge supervised information extraction in industry offers
a step-by-step guide on how to turn rule-based systems into machine learning models
with weak supervision. This detailed guide and its application to an automotive industry
task can be considered the specific contribution. In general, the recycling of existing
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systems for weak supervision is another contribution to the research community and can
be applied in many scenarios.

Overall, the approaches suggest that knowledge supervised information extraction is
advantageous in many settings, since general representations are often insufficient to solve
niche problems and there might be additional knowledge that is not covered and should
be integrated in machine learning models.

3.2. Concluding Remarks

It can be expected that machine learning research and research in natural language
processing will continue to advance in the upcoming years. In addition to the general
improvement of model architectures and the processing of large amounts of data with
increased capacities, the integration of knowledge into these models will be crucial. There
are many different sources of general knowledge as well as specialist knowledge about
tasks and domains. However, knowledge supervision is far from exhausted and innovative
approaches are needed. This doctoral thesis aims to contribute in part to methodically
equipping the research on this topic and to provide inspiration for further work in the
field of knowledge supervision.
All articles in this thesis have shown that the integration of additional knowledge about
domain or task is helpful for the learning process of machine learning models. The
approaches provide different starting points for future work, be it i) to develop methods to
better represent language-specific and cross-language knowledge, ii) to design additional
inputs (such as for weak supervision) to support the learning process of the models, or iii)
to develop a possibility of presenting knowledge that is already contained in models in an
interpretable way for humans, in order to know which knowledge components are still
missing.
Whether at some point "knowledge saturation" is reached in machine learning models or
whether completely different techniques have to be developed in order to inject additional
knowledge into learning problems remains an exciting open question.
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Abstract. Named entity recognition (NER) for historical texts is a chal-
lenging task compared to NER for contemporary texts. Historical texts
come with several peculiarities that differ greatly from modern texts and
large labeled corpora for training a neural tagger are hardly available. In
this work we tackle NER for historical German with an ensembling ap-
proach, combining different labeled and unlabeled resources of historical
and contemporary texts as part of the CLEF HIPE 2020 evaluation lab.
We stack different word/subword embeddings and transformer-based lan-
guage models to train a powerful NER tagger for historical German. We
conduct experiments with different word embeddings, Flair embeddings
and pretrained Bert models. The named entities are classified in literal
and in metonymic sense, for which we have developed a separate tagger
each. Our experiments show that the usage of Bert is particularly help-
ful, when trained on a large amount of historical data. Our best ensemble
is a combination of FastText embeddings trained on German Wikipedia,
Flair embeddings trained on CLEF HIPE data (historical German) and
a Bert language model trained on a large corpus of historical German.
We release our code and models3.

Keywords: Named Entity Recognition · Transformer-based language
models · Embeddings · Historical texts · Flair · FastText · Byte Pair
Encoding.

1 Introduction

In NER neural networks achieve good accuracy on high resource domains such as
modern news text or Twitter ([2, 4]). But on historical text, NER taggers often
perform poorly. This is due to domain shift and to the fact that historical texts
contain systematic errors not found in modern text, since historical datasets

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). CLEF 2020, 22-25 Septem-
ber 2020, Thessaloniki, Greece.

3 Our code and models are available at: https://github.com/stefan-it/clef-hipe
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usually stem from optical character recognition (OCR). OCR is noisy and the
Gothic type face (Fraktur) is a low resource font, that is very challenging for
OCR. Another problem is that a large amount of data is required when training
neural models and only relatively small corpora (e.g. [20]) exist for historical
NER. All of these challenges mean that NER for contemporary texts differs
greatly from NER for historical texts and that existing models cannot be used.
From a resource orientated and ecological point of view it is reasonable to reuse
existing models to save both computing power and emissions. Therefore, we
reuse existing models on the one hand and make our newly developed language
models publicly available on the other hand.

In the NLP community there are several approaches and models provided,
one of which is Flair [1]. Flair allows to apply state-of-the-art natural language
processing (NLP) models, such as NER, part-of-speech tagging (PoS), word sense
disambiguation or classification to various input texts. In this work we built our
systems with that framework.

Transformer-based language models are widely used and Bert [8] can be
considered as a powerful standard resource. There are several recent approaches
that use Bert for NER in different languages, such as [25] or [16]. The latter
conduct experiments with historical German using Bert and unsupervised pre-
training on a large corpus of historical German texts together with supervised
pretraining on a contemporary German corpus.

1.1 Task and Objective

In this work, we address neural NER tagging on historical German data. With
our approach we aim to solve coarse grained NER in the CLEF HIPE shared
task [11] (bundle 4) for historical German as best as possible. The tagset of the
provided data contains person, location, organisation, product and time. The
organizers arranged two scenarios to be solved: NER for the literal sense of the
words and NER for metonymic sense. The example below shows that the tags
for the literal (first sentence) and metonymic (second sentence) sense can differ.
Hannover can be interpreted as an organization as well as a location depending
on its context and the metonymic category addresses this issue.

Example:
Unterhandlungen über das Konkordat mit B-loc Hannover schreiten voran.
Unterhandlungen über das Konkordat mit B-org Hannover schreiten voran.
(Negotiations on the Concordat with Hanover are progressing.)

This paper is structured as follows: The next section describes data sets and
other resources that are used in the experiments presented. Section 3 outlines
our method and section 4 explains details on implementation and the conducted
experiments. The outcome of the experiments is discussed in that section as well.
Then, section 5 overviews ideas for future work and we conclude the paper with
section 6.
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2 Data and Resources

This section describes the data provided by the shared task organizers as well
as additional resources and data that we used for our experiments.

2.1 CLEF HIPE Data

The shared task corpus for German is composed of articles sampled among sev-
eral Swiss and Luxembourgish historical newspapers on a diachronic basis and
is provided by the CLEF-HIPE-2020 organizers. The articles that were chosen
for the train, development and test data are journalistic articles only, that had
to match certain selection criteria such as length or format. Feuilleton, tabular
data, crosswords, weather forecasts, time schedules and obituaries were excluded
as well as articles that were fully illegible due to massive ORC noise. The news-
paper content stems for the time period from 1798 until 2018 and thus there is
different OCR quality present in the data which covers a broad spectrum of text
composition. The corpora were manually annotated by native speakers according
the HIPE impresso guidelines ([10, 9]).

2.2 Additional Data and Resources

Table 1 gives an overview of all resources and shows time period and domain of
each data set. The sizes of the training data used for the embeddings/models
is shown in Table 2. Our approach includes data from different time periods as
well as from various domains to reuse existing resources optimally.

Embeddings We use different FastText-based word embeddings [19] trained
on Wikipedia4, Common Crawl5 and on historic data (provided by the orga-
nizers) as well as Byte Pair Encoding-based embeddings (BPE, [24]) trained
on Wikipedia. We use the FastText embeddings trained on Wikipedia (FastText
Wiki) and Common Crawl (FastText CC ) in a ”classic” word embeddings man-
ner, that means we do not use subwords. To include subword information we use
German subword embeddings [12] with a dimension of 300 and a vocab size of
200k (BPEmb). Additionally, we experiment with multilingual subword embed-
dings [13] with a dimension size of 300 and a vocab size of 1M (MultiBPEmb).

We use Flair embeddings [3, 2] provided by the organizers (CLEF-HIPE ) and
compared them to other Flair embeddings that were trained on historic data.
We use two historic Flair embeddings that were trained by [23]: embeddings
trained on the Hamburger Anzeiger newspaper corpus (HHA) and embeddings
trained on the Wiener Zeitung newspaper corpus (WZ ). Both embeddings are
available in the Flair framework. In addition we use the data of the recently
published REDEWIEDERGABE corpus [6] that consists of fictional and non-
fictional texts. We also experiment with the Flair embeddings provided by [3]
(German Flair).

4 https://fasttext.cc/docs/en/pretrained-vectors.html
5 https://fasttext.cc/docs/en/crawl-vectors.html
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usage name time period domain

train data 1798 - 2018 news
FastText FastText Wiki contemp. various
FastText FastText CC contemp. various
BPE BPEmb 1798 - 2018 news
BPE MultiBPEmb contemp. news

Flair HHA 1888 - 1945 news
Flair WZ 1703 - 1875 news
Flair Redewiedergabe 1840 - 1920 various
Flair German Flair contemp. various
Flair CLEF-HIPE 1798 - 2018 news

Bert Europeana Bert 1618 - 1990 news
Bert German Bert historical various

Table 1. Overview of time periods and domains of the training data used for the
embeddings and language models.

usage name data tokens size

train data CLEF HIPE* 0.071 S
FastText FastText Wiki Wikipedia 1400 L
BPE BPEmb Wikipedia ≈ 1400 L
BPE MultiBPEmb Wikipedia < 7000 L
FastText FastText CC Common Crawl 65648 XL

Flair Redewiedergabe REDEWIEDERGABE 0.489 S
Flair German Flair OPUS project 500 M
Flair HHA Hamburger Anzeiger 742 M
Flair WZ Wiener Zeitung 802 M
Flair CLEF-HIPE CLEF-HIPE* 1722 L

Bert Europeana Bert Europeana 8000 L
Bert German Bert - ≈ 24000 XL

Table 2. Overview of different training data used. Number of tokens is given in millions.
* indicates that data was provided by the organizers.
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Transformer-based language models For transformer-based language mod-
els we conduct experiments with self-trained Bert models, Europeana Bert6

and large German Bert7 (German Bert). In preliminary experiments we also
used publicly available German Bert models (deepset8 and DBMDZ9). Since
their performance was not convincing we did not include them in our final setup.

The Europeana Bert data comes from the Europeana Newspapers collec-
tion10, which contains historical news articles in 12 languages published between
1618 and 1990. The Europeana Bert model was trained on 51GB of newspa-
pers, extracted from German Europeana. It mainly covers newspaper articles
from the 18th to 20th century. German Bert was trained on a huge collection
of various historical resources.

3 Methods

To develop an efficient NER tagger for historical texts we experiment with stack-
ing methods described in the following.

We experiment with different kinds of ensembling/stacking approaches on the
development set to figure out the optimal combination of embeddings and lan-
guage models. Our final system Cisteria uses an ensemble of word embeddings,
transformer-based language models and Flair embeddings. To arrive at the best
combination of embeddings for Cisteria we conduct experiments where we a)
select the best word embeddings, Flair embeddings and transformer-based lan-
guage models independently and b) combine the best selected word embedding,
the best transformer-based language model and the best Flair embeddings and
feed those to our network. The network for the classification is a bidirectional
LSTM with a conditional random field (CRF) as final output layer as proposed
by [14]. Note that we train separate models for the metonymic and the literal
sense span.

4 Implementation and Experiments

The following describes the implementation of our approach, overviews the dif-
ferent experiments and presents the results. Our final system for the CLEF HIPE
2020 evaluation lab is referred to as Cisteria.

To feed the CLEF-HIPE data into our tagger we need several preprocessing
steps. Our preprocessing includes sentence splitting (rule based method) and nor-
malizing word hyphenations. The motivation behind normalizing hyphenation is
that pretrained language models normally include normalized text and the word
hyphenation character in the CLEF-HIPE shared task is a special symbol (¬)

6 https://github.com/stefan-it/europeana-bert
7 Under review.
8 https://huggingface.co/bert-base-german-cased
9 https://github.com/dbmdz/berts

10 http://www.europeana-newspapers.eu/
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and does not occur in training corpora for pretrained language models. As we
use contextualized word embeddings, the correct hyphenation is very important
to produce high quality embeddings. To get the data ready for evaluation with
the officially provided evaluation script, we perform a reverse process and add
word hyphenation and sentence boundaries again.

We use the Flair [1] library to train our NER tagging models and we make
use of Bert embeddings in a feature-based setting. In order to get a represen-
tation for an input token, we first compute the mean of the first subword over
all layers of the transformer-based architecture and feed the resulting represen-
tation into a bidirectional LSTM with a CRF as the final layer, following [3].
To ensemble different embeddings and language models their representations are
concatenated and the resulting vector is processed by the neural model. Ciste-
ria was trained on the official training and development data and does not use
any other additional labeled training data.

For the experiments with transformer-based language models, we fine-tune
Bert models using the Hugging Face Transformers library [29]. For these fine-
tuning experiments, we use a batch size of 16 and train 10 epochs. We perform
three runs per transformer-based model and select the best model based on
development F1-score. We do not perform extensive hyperparameter search.

We then use the fine-tuned model in Flair (feature-based approach) for all
further experiments. We use a bidirectional LSTM with 256 hidden states and
a batch size of 16. The original Bert paper [8] uses the last four layers of
the transformer-based model for a feature-based NER model. Additionally, we
reduce the learning rate by a factor of 0.5 with a patience of 3. This factor
determines the number of epochs with no improvement after which the learning
rate will be reduced and can be seen as early stopping.

We found that fine-tuning a Bert model for the metonymic sense span was
very unstable resulting in zero F1-scores. This is a well known problem for
datasets when only a small number of training instances are available and a
solution could be to use a different dropout strategy [17]. For that reason we
trained a model using the CLEF-HIPE Flair embeddings. In the prediction
phase we only do predictions when an entity is detected for the literal sense
span.

Our final system for the literal sense span uses FastText embeddings trained
on Wikipedia (FastText Wiki) and a self-trained large German Bert model. For
the metonymic sense span we train a separate model that uses FastText embed-
dings trained on Wikipedia and Flair embeddings provided by the organizers.

4.1 Results

For the evaluation of NER there are two regimes: strict and fuzzy. The strict
regime corresponds to exact boundary matching whereas the fuzzy takes over-
lapping boundaries into account, a detailed description can be found in [11]. In

4. Data-Centric Knowledge Supervision

50



addition spans are evaluated w.r.t literal or metonymic sense (see section 1.1).
We evaluate our systems using the official evaluation script11.

All our reported results on the development set refer to the F1 score for
coarse grained NER in the strict scenario for the literal sense. For the test set
we report precision, recall and F1 score for both scenarios in the literal sense as
well as in the metonymic sense (see Table 8). According to the overview paper
of the shared task [11] the baseline in the strict evaluation scenario for German
Coarse NER in literal sense results in 47.6% F1-score (see Table 7).

Our results of the experiments with different word embeddings show that
the FastText Wiki embeddings perform best, see Table 3. With an F1-score of
approx. 69% they can overcome the baseline by more than 20 percentage points.
Interesting is that the FastText Wiki embeddings are not trained on the biggest
amount of data compared to the other word embeddings (see Table 2).

Model F1

FastText Wiki 69.28 ±0.65
FastText CC 66.38 ±0.51
BPEmb [12] 67.71 ±0.48
MultiBPEmb [13] 66.22 ±0.14

Table 3. Experiments with different word Embeddings on German development set.
Averaged F1-score over 3 runs is reported here. Best result in bold.

Different Flair embeddings lead consistently to better results than using
word embeddings. The Flair embeddings provided by the organizers (CLEF-
HIPE ) perform best, with an F1-score of 77.04% (see Table 4). The gap between
the different Flair embeddings is comparably large and ranges from seven to
three percentage points difference. Here the embeddings that were trained on
the biggest amount of data perform best and the Redewiedergabe embeddings
that were trained on the least amount perform worst.

Model F1

Hamburger Anzeiger [23] 74.14 ±0.11
Wiener Zeitung [23] 75.07 ±0.11
Redewiedergabe [6] 70.21 ±0.27
German (Flair) [3] 74.98 ±0.30
CLEF-HIPE 77.04 ±0.12

Table 4. Experiments with different Flair Embeddings on German development set.
Averaged F1-score over 3 runs is reported here. Best result in bold.

11 https://github.com/impresso/CLEF-HIPE-2020-scorer
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Model F1

Europeana Bert (cased) 80.41 ±0.14
Europeana Bert (uncased) 79.66 ±0.32
German Bert (cased, large) 82.11 ±0.50

Table 5. Experiments with different Bert models on German development set. Aver-
aged F1-score over 3 runs is reported here. Best result in bold.

The usage of Bert enhances the performance once more. The German Bert
model performs best and results in 82.11% F-score (see Table 5). Again this is
the model that was trained on the biggest amount of data. The cased version
of Europeana Bert leads to a similar performance with approx. two percentage
points less. Since German is case sensitive it is understandable that the cased
models perform better than the uncased ones. Like with the Flair embeddings
every setup with Bert outperforms the models of our previous experiments.

Model F1

FastText (Wikipedia) + CLEF-HIPE + German Bert 83.57 ±0.36
FastText (Wikipedia) + CLEF-HIPE 77.97 ±0.47
FastText (Wikipedia) + German Bert 83.69 ±0.08

Table 6. Experiments with different stacking experiments on German development
set. Averaged F1-score over 3 runs is reported here. Best result in bold.

Finally the combination of German Bert with the FastText Wiki embed-
dings outperforms all of our other systems on the development set and results
in 83.69% (see Table 6). This result is plausible if we compare it to the best
F1-scores of [16] on other historical datasets. For two datasets their performance
is around 84%. The addition of the best Flair embeddings decreases the results
slightly. If combining the best Flair embeddings with the best FastText em-
beddings the model performs better than using Flair embeddings only but still
worse than the other stacking approaches. The performance of our best system
is approx. 40% better than the baseline, which is a large improvement.

4.2 Discussion of Results

We want to relate our final results on the test set to those of the other partic-
ipating teams. Compared to the baseline our final systems (CISTERIA) could
perform very good. If we take a look at the median of all participating teams
our system for the literal sense performs approx. 2% points better in the strict
scenario and is almost on par with the median in the fuzzy scenario (see Table 7).
For both regimes the best system L3i [5] outperforms ours by slightly more than
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10% points. This could be due to the fact that they use powerful transformer-
based embeddings for different languages and a hierarchical transformer-based
attention model [28] together with a multi task learning setting approach. Our
experiments with Bert embeddings show that the model can benefit from the
German Europeana Bert language model a lot and that only a model trained
with even more data could outperform it. Therefore it is not surprising that a
model trained with more of these powerful Bert embeddings performs even bet-
ter. The benefit of the combination of models for different languages is at hand
and we suppose that our model performances can be enhanced if we integrate
multilinguality as well.

Team
Strict Fuzzy

P R F1 P R F1

Cisteria 0.745 0.578 0.651 0.880 0.683 0.769
Ehrmama [27] 0.697 0.659 0.678 0.814 0.765 0.789
L3i [5] 0.790 0.805 0.797 0.870 0.886 0.878
Sbb [15] 0.499 0.484 0.491 0.730 0.708 0.719
SinNer [21] 0.658 0.658 0.658 0.775 0.819 0.796
UPB [7] 0.677 0.575 0.621 0.788 0.740 0.763
Uva-ilps [22] 0.499 0.556 0.526 0.689 0.768 0.726
Webis [26] 0.695 0.337 0.454 0.833 0.405 0.545

Baseline 0.643 0.378 0.476 0.790 0.464 0.558
Median 0.686 0.576 0.636 0.801 0.752 0.766

Table 7. Results for NERC-Coarse literal with micro precision, recall and F1-score on
the test set. Bold font indicates highest, underlined the second highest result.

In the evaluation w.r.t the metonymic sense it turns out that our approach
to train a separate model was constructive. In both regimes our system performs
clearly above the median and in the fuzzy regime our F1-score is the second best
(see Table 8). Again the L3i system can reach the best scores, probably due to
the same reasons as mentioned above. Our results support our strategy that we
only do predictions for tokens where the literal sense is classified as an entity.

Regarding the precision our system performs very well and reaches second
best performance in all cases, except for the fuzzy evaluation in the literal sense
where our system performs best. Unfortunately the recall is relatively low with
around 50% for the metonymic sense and 57%/68% for the strict/fuzzy evalu-
ation in the literal sense. Our system has the ability to classify correctly if it
identifies a token as a possible entity but has problems with finding the entities
as such.
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Team
Strict Fuzzy

P R F1 P R F1

Cisteria 0.738 0.500 0.596 0.787 0.534 0.636
Ehrmama [27] 0.696 0.542 0.610 0.707 0.551 0.619
L3i [5] 0.571 0.712 0.634 0.626 0.780 0.694

Baseline 0.814 0.297 0.435 0.814 0.297 0.435

Table 8. Results for NERC-Coarse metonymic with micro precision, recall and F1-
score. Bold font indicates highest, underlined the second highest result.

5 Future Work

The approach of the winning team suggests to include multilingual language
models and/or more data. Since a lot of powerful pretrained language models
are available we will integrate some of them in Cisteria.

Another strategy is to take into account the domain of historical language
even more. Since there is a lot of noise in the data due to OCR it greatly differs
from modern standard language. Nevertheless there are many modern corpora
available on which transformer-based language models can be trained. Our goal
is to increase the similarity of those modern corpora to historical data. Therefore
we want to recreate some of the phenomena in historical corpora in the modern
corpora that we use for training the language models.

Besides that, manual rule-based sentence segmentation could have drawbacks
(e.g. bad segmentation could lead to short sentences). So in future experiments
we could use the context before and after the actual training sentence, such as
in [18]. This approach could eliminate potential drawbacks of an automatically
sentence segmented training corpus, because shorter sentences are now enhanced
with longer contexts.

6 Conclusion

We proposed a system to solve coarse grained NER for German in the CLEF
HIPE shared task. We conducted experiments with ensembling different word
and subword embeddings as well as transformer-based language models on the
basis of a bidirectional LSTM with a CRF as final layer. To use historical re-
sources at best we trained large language models on historical German data, such
as the German Europeana collection. Our best system uses FastText embeddings
trained on German Wikipedia data in combination with a large German Bert
language model. With a performance of 65.1% F1-score our best system per-
forms slightly better than the median in the strict scenario for the literal sense
and with an F1-score of 76.9% on par with the median in the fuzzy scenario. For
the metonymic sense our best system performs clearly above the baseline and
reaches the second best performance in the fuzzy scenario.
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(eds.) CLEF 2020 Working Notes. Working Notes of CLEF 2020 - Conference and
Labs of the Evaluation Forum. CEUR-WS (2020)

6. Brunner, A., Engelberg, S., Jannidis, F., Tu, N.D.T., Weimer, L.: Corpus RE-
DEWIEDERGABE. In: Proceedings of The 12th Language Resources and Evalua-
tion Conference. pp. 803–812. European Language Resources Association, Mar-
seille, France (May 2020), https://www.aclweb.org/anthology/2020.lrec-1.

100

7. Craita, C.C., Cercel, D.C.: Multilingual Named Entity Recognition on Historical
Texts Using Transfer and Multi-Task Learning. In: Cappellato, L., Eickhoff, C.,
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Abstract. We propose new methods for in-domain and cross-domain
Named Entity Recognition (NER) on historical data for Dutch and
French. For the cross-domain case, we address domain shift by integrating
unsupervised in-domain data via contextualized string embeddings; and
OCR errors by injecting synthetic OCR errors into the source domain
and address data centric domain adaptation. We propose a general app-
roach to imitate OCR errors in arbitrary input data. Our cross-domain
as well as our in-domain results outperform several strong baselines and
establish state-of-the-art results. We publish preprocessed versions of the
French and Dutch Europeana NER corpora.

Keywords: Named Entity Recognition · Historical data · Flair

1 Introduction

Neural networks achieve good NER accuracy on high-resource domains such as
modern news text or Twitter [2,4]. But on historical text, NER often performs
poorly. This is due to several challenges: i) Domain shift: Entities in historical
texts can be different from contemporary entities, this makes it difficult for
modern taggers to work with historical data. ii) OCR errors: historical texts –
usually digitized by OCR – contain systematic errors not found in non-OCR text
[14]. In addition these errors can change the surface form of entities. iii) Lack of
annotation: Some historical text is now available in digitized form, but without
labels, and methods are required for beneficial use of such data [16].

In this paper, we address data centric domain adaptation for NER tagging
on historical French and Dutch data. Following Ramponi and Plank [20], data
centric approaches do not adapt the model but the training data in order to

c© Springer Nature Switzerland AG 2021
J. Lladós et al. (Eds.): ICDAR 2021, LNCS 12822, pp. 748–761, 2021.
https://doi.org/10.1007/978-3-030-86331-9_48

4. Data-Centric Knowledge Supervision

60



Data Centric Domain Adaptation for Historical Text with OCR Errors 749

improve generalization across domains. We address both in-domain and cross-
domain NER. In the cross-domain setup, we use supervised contemporary data
and integrate unsupervised historical data via contextualized embeddings. We
introduce artificial OCR errors into supervised modern data and find a way
to perturb corpora in a general and robust way – independent of language or
linguistic properties.

In the cross-domain setup as well as in-domain, our system outperforms neu-
ral and statistical state-of-the-art methods, achieving 69.3% F1 for French and
63.4% for Dutch. With the in-domain setup, we achieve 77.9% for French and
84.2% for Dutch. If we only consider named entities that contain OCR errors,
our domain-adapted cross-domain tagger even performs better (83.5% French/
46.2% Dutch) than in-domain training (77.1% French/ 43.8% Dutch). Our main
contributions are:

• Release of the preprocessed French and Dutch NER corpora1;
• Developing synOCR to mimic historical data while exploiting the annotation

of modern data;
• Training historical embeddings on a large amount of unlabeled historical data;
• Ensembling a NER system that establishes SOTA results for both languages

and scenarios.

2 Methods

2.1 Architecture

We use the Flair NLP framework [1]. Flair taggers achieve SOTA results on
various benchmarks and are well suited for NER. Secondly, there are powerful
Flair embeddings. They are trained without explicit notion of words and model
words as character sequences depending on their context. These two properties
contribute to making atypical entities - even those with distorted surface - eas-
ier to recognize. In all our experiments, word embeddings are generated by a
character-level RNN and passed to a word-level bidirectional LSTM with a CRF
as the final layer. Depending on the experiment, we concatenate (�) additional
embeddings and refer to that as ensembling process.

2.2 Noise Methods

Since digitizing by OCR introduces a lot of noise into the data, we recreate some
of those phenomena in the modern corpora that we use for training. Our goal
is to increase the similarity of historical (OCR’d) and modern (clean) data. An
example drawn from the dutch training corpora can be found in Fig. 1. Words
that are different from the original text are indicated in bold font.

Generation of Synthetic OCR (synOCR) Errors. This method processes
every sentence by assigning a randomly selected font and a font size between 6

1 https://github.com/stefan-it/historic-domain-adaptation-icdar
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and 11 pt. Batches of 150 sentences are printed to PDF documents and then
converted to PNG images. The images are perturbed using imgaug2 with the
following steps: (i) rotation, (ii) Gaussian blur and (iii) white or black pixel
dropout. The resulting image is recognized using tesseract version 0.2.6.3. We
re-align the recognized sentences with the clean annotated corpus to transfer
the NER tags. For the alignment between original and degraded text we select
a window of the bitext and calculate a character-based alignment cost. We then
use the Wagner-Fisher algorithm [27] to obtain the best alignment path through
the window and the lowest possible cost. If the cost is below a threshold, we
shift the window to the mid-point of the discovered path. Otherwise, we iter-
atively increase the window size and re-align, until the threshold criterion is
met. This procedure allows us to find an alignment with reasonable time and
space resources, without risking to lose the optimal path in low-quality areas.
Finally this results in an OCR-error enhanced annotated corpus with a range
of recognition quality, from perfectly recognized to fully illegible. We refer to
OCR-corrupted data as synOCR’d data.

Generation of Synthetic Corruptions. This method is applied to our mod-
ern corpora, again to introduce noise as we find it in historical data. Similar to
[21], we randomly corrupt 20% of all words by (i) inserting a character or (ii)
removing a character or (iii) transposing two characters. Therefore, we use the
standard alphabet of French/Dutch. We re-align the corrupted tokens with the
clean annotated tokens while maintaining the sentence boundaries to transfer
the NER tags. Since the corruption method does not break the word boundaries
we can simply map each corrupted word to the original one and retrieve the
corresponding NER tag. We refer to synthetically corrupted data as corrupted
data.

Fig. 1. Example from the dutch train set. Text in its original, the synOCR’d and the
corrupted form.

2 https://github.com/aleju/imgaug
3 https://github.com/tesseract-ocr/
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2.3 Embeddings

We experiment with various common embeddings and integrate them in our
neural system. Some of them are available in the community and some others
we did train on data described in Sect. 3.1.

Flair Embeddings. [3] present contextual string embeddings which can be
extracted from a neural language model. Flair embeddings use the internal
states of a trained character language model at token boundaries. They are con-
textualized because a word can have different embeddings depending on its con-
text. These embeddings are also less sensitive to misspellings and rare words and
can be learned on unlabeled corpora. We also usemultilingual Flair embeddings.
They were trained on a mix of corpora from different domains (Web, Wikipedia,
Subtitles, News) and languages.

Historical Embeddings. We train Flair embeddings on large unlabeled his-
torical corpora from a comparable time period (see Sect. 3.1) and refer to them
as historical embeddings.

BERT Embeddings. Since BERT embeddings [9] produce state-of-the-art
results for a wide range of NLP tasks, we also experiment with multilingual
BERT embeddings4. BERT embeddings are subword embeddings based on a
bidirectional transformer architecture and can model the context of a word. For
NER on CoNLL-03 [25], BERT embeddings do not perform as well as on other
tasks [9] and we want to examine if this observation holds for a cross-domain
scenario with different data.

FastText Embeddings. We do also use FastText embeddings [6] which are
widely used in NLP. They can be efficiently trained and address character-
level phenomena. Subwords are used to represent the target word (as a sum
of all its subword embeddings). We use pre-trained FastText embeddings for
French/Dutch5.

Character-Level Embeddings. Due to the OCR errors out-of-vocabulary
problems occur. Lample et al. [15] create character embeddings, passing all char-
acters in a sentence to a bidirectional LSTM. To obtain word representations, the
forward and backward representations of all the characters of the word from this
LSTM are concatenated. Having the character embedding, every single words
vector can be formed even if it is out-of-vocabulary. Therefore, we do also com-
pute these embeddings for our experiments.

3 Experiments

In the cross-domain setup, we train on modern data (clean or synOCR’d) and
test on historical data (OCR’d). In the in-domain setup, we train and test on a
set of historical data (OCR’d). We do use different combinations of embeddings
and also use our noise methods in the experiments.

4 We use the cased variant from https://huggingface.co/bert-base-multilingual-cased
5 https://fasttext.cc/docs/en/crawl-vectors.html
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3.1 Data

We use different data sources for our experiments from which some are openly
available and some historical data come from an in-house project. For an
overview of different properties (domain, labeling, size, language) see Table 1.

Annotated Historical Data. Our annotated historical data comes from the
Europeana Newspapers collection6, which contains historical news articles in 12
languages published between 1618 and 1990. Parts of the German, Dutch and
French data were manually annotated with NER tags in IO/IOB format for PER
(person), LOC (location), ORG (organization) by Neudecker [17]. Each NER
corpus contains 100 scanned pages (with OCR accuracy over 80%), amounting
to 207K tokens for French and 182K tokens for Dutch.

We preprocess the data as follows. We perform sentence splitting, filter out
metadata, re-tokenize punctuation and convert all annotations to IOB1 format.
We split the data 80/10/10 into train/dev/test. We will make this preprocessed
version available in CoNLL format.

Annotated Modern Data. For the French cross-domain experiments, we use
the French WikiNER corpus [18]. WikiNER is tagged in IOB format with an
additional MISC (miscellaneous) category; we convert the tags to our Europeana
format. For better comparability we downsample (sentence-wise) the corpus from
3.5M to 525K tokens. Therefore, entire sentences were sampled uniformly at
random without replacement. For Dutch, we use the CoNLL-02 corpus [24],
which consists of four editions of the Belgian Dutch newspaper “De Morgen”
from the year 2000. The data comprises 309K tokens and is annotated for PER,
ORG, LOC and MISC. We convert the tags to our Europeana format.

Unlabeled Historical Data. For historical French, we use “Le Temps”, a jour-
nal published between 1861 and 1942 (initially under a different name), a similar
time period as the Europeana Newspapers. The corpus contains 977M tokens and
is available from the National Library of France.7 For historical Dutch, we use
data from an in-house OCR project. The data is from the 19th century and
it consists of 444M tokens. We use the unlabeled historical data to pre-train
historical embeddings (see Sect. 2.3).

3.2 Baselines

We experiment with three baselines. (i) The Java implementation8 of the Stan-
ford NER tagger [12]. (ii) A version of Stanford NER published by Neudecker
[17]9 that was trained on Europeana. In contrast to our system they trained

6 http://www.europeana-newspapers.eu/
7 https://www.bnf.fr/fr
8 https://nlp.stanford.edu/software/CRF-NER.html
9 https://lab.kb.nl/dataset/europeana-newspapers-ner
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Table 1. Number of tokens per dataset in our experiments.

Domain Data Labeled Size

French Historical Europeana NER + 207K

Modern WikiNER + 525K

Historical “Le Temps” − 977M

Dutch Historical Europeana NER + 182K

Modern CoNLL-02 + 309K

historical in-house OCR − 444M

theirs on the entire amount of the labeled Europeana corpora with 4-fold cross
validation. (iii) NN base. The neural network (see Sect. 2.1) with FastText, char-
acter and multilingual Flair embeddings, as recommended in Akbik et al. [1].
For French, we also list the result reported by Çavdar [8]. Since we do not have
access to their implementation and could not confirm that their data splits con-
form to ours, we could not compute the combined F1 score or test for significance.

Table 2. Results (F1 scores on French/Dutch Europeana test set) of training on Euro-
peana French/Dutch training set. Hist. Embs. are historical embeddings. Scores marked
with * are significantly lower than NN base � hist. Es.

French models Overall PER ORG LOC

Çavdar 0.68 0.37 0.68

Stanford NER tagger 0.662* 0.569* 0.335* 0.753*

Stanford Neudecker 0.750* 0.750* 0.505 0.826*

NN base 0.741* 0.703* 0.320* 0.813*

NN base � hist. Embs 0.779 0.759 0.498 0.832

Dutch models Overall PER ORG LOC

Stanford NER tagger 0.696* 0.640* 0.333* 0.794*

Stanford Neudecker 0.623* 0.700* 0.253* 0.702*

NN base 0.818* 0.809* 0.442* 0.871*

NN base � hist. Embs 0.842 0.833 0.480 0.891

4 Results and Discussion

We evaluate our systems using the CoNLL-2000 evaluation script10, with F1

score. To check statistical significance we use randomized testing [28] and results
are considered significant if p < 0.05.

10 https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt
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4.1 In-domain Setup

For both languages we achieve the best results with NN base � historical embed-
dings. With this setup we can produce F1 scores of around 80% for both lan-
guages, which outperforms all three baselines in the overall performance signifi-
cantly. The results are presented in Table 2. For French, the overall F1 score as
well as the F1 for LOC and ORG is best with NN base � historical embeddings.
For ORG the pre-trained tagger of Neudecker [17] works best, which could be
due to the gazetteer information they included and of course due to the fact that
they train with the entire Europeana data. We hypothesize that the category
with the most structural changes over time is ORG. In the military or ecclesias-
tical context in particular, there are a number of names that no longer exist (in
this form). For Dutch we observe the best overall performance with NN base �
historical embeddings except for all entity types.

4.2 Cross-Domain Setup

As shown in Table 3, NN base performs better than the statistical Stanford NER
baseline, which is in line with the observations for the in-domain training. We
experimented with concatenating BERT embeddings to NN base. For both lan-
guages this increases the performance (Table 3, NN base � BERT). The usage
of the historical embeddings is also very beneficial for both languages. We can
achieve our best results by using BERT for Dutch and by using historical embed-
dings for French. We conclude that the usage of modern pre-trained language
models is crucial for the performance of NER taggers.

We generated synthetic corruptions for the WikiNER/CoNLL corpus. This
could not outperform NN base for both languages. The training on synOCR’d
WikiNER/CoNLL gives slightly worse results than NN base too. The corruption
of the training data without the usage of any embeddings seems to harm per-
formance drastically, what is in line with the observation of Hamdi et al. [13].
It is striking that the training on corrupted/synOCR’d Dutch gives especially
bad results for PER compared to French. A look at the Dutch test set shows
that many entities are abbreviated first names (e.g. in A J van Roozendal) and
are often misrecognized what leads to a performance decrease. For French the
combination of NN base and historical embeddings, trained on corrupted data or
on synOCR’d (NN ensemble corrupted/ NN ensemble synOCR’d) gives the best
results and outperforms all other systems. For Dutch NN ensemble corrupted and
NN ensemble synOCR give slightly worse results than NN base � BERT and
NN base � historical embeddings, but performs better than the tagger trained
on synOCR’d or corrupted data only (Table 3, NN ensemble).

Ablation Study. We analyze our results and examine the composition of NN
ensemble synOCR more closely (since the results for NN ensemble corrupted are
very similar we perform the analysis for NN ensemble synOCR as a representative
for both NN ensemble).
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The ablation study (see Table 4) shows that NN ensemble benefits from dif-
ferent information in combination. For French NN ensemble gives the best results
only for PER. The overall performance increases if we do not use character level
embeddings. There is a big performance loss if we omit the historical embed-
dings. If we do not train on synOCR’d data the performance decreases. For
Dutch we can observe these facts even more clearly. If we do not train on syn-
OCR’d data the F1 score even increases. If omitting the historical embeddings
we loose performance as well.

Table 3. Results of training on WikiNER/CoNLL corpus. Scores marked with * are
significantly lower than NN ensemble.

French models Overall PER ORG LOC

Çavdar 0.48 0.11 0.56

Stanford NER tagger 0.536* 0.451* 0.059* 0.618*

NN base 0.646* 0.636* 0.096* 0.721*

NN base � BERT 0.660 0.639* 0.163 0.725*

NN base � hist. Embs. 0.672 0.661* 0.015* 0.748

Corrupted WikiNER 0.627* 0.635* 0.085* 0.710*

synOCR’d WikiNER 0.619* 0.590* 0.078 0.710

NN ensemble corrupted 0.693 0.624 0.063 0.783

NN ensemble synOCR 0.684 0.710 0.111 0.744

Dutch models Overall PER ORG LOC

Stanford NER tagger 0.371* 0.217* 0.083* 0.564*

NN base 0.567* 0.493* 0.085* 0.700*

NN base � BERT 0.634 0.572 0.250 0.771

NN base � hist. Embs. 0.632 0.568 0.084 0.738*

Corrupted CoNLL 0.535* 0.376* 0.155* 0.717*

synOCR’d CoNLL 0.521* 0.327* 0.061* 0.721*

NN ensemble corrupted 0.606* 0.439* 0.158 0.799

NN ensemble synOCR 0.614 0.481 0.157 0.775

To find out why our implementation of the assumption – synOCR increases
the similarity of the data and improves results – does not have the expected
effect, we analyze the test sets. It shows, that only 10% of the French and
6% of the Dutch entities contain OCR errors. Therefore the wrong predictions
are mostly not due to the OCR errors, but due to the inherent difficulty of
recognizing entities cross-domain. This also explains why synthetic noisyfication
does not consistently improve the system. In addition there are some illegible
lines in the synOCR’d corpora consisting of dashes and metasymbols, what is
not similar to real OCR errors.
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Table 4. Ablation study. Results of training on the clean and the synOCR’d
WikiNER/CoNLL corpus.

French models Overall PER ORG LOC

NN ensemble synOCR 0.684 0.710 0.011 0.744

- char 0.693 0.681 0.078 0.758

- word 0.686 0.664 0.080 0.756

- hist. Embs. 0.619 0.590 0.078 0.710

- synOCR’d data 0.672 0.661 0.015 0.748

Dutch models Overall PER ORG LOC

NN ensemble synOCR 0.614 0.382 0.157 0.775

- char 0.600 0.404 0.119 0.780

- word 0.584 0.430 0.102 0.745

- hist. Embs. 0.521 0.327 0.061 0.721

- synOCR’d data 0.632 0.568 0.084 0.738

Fig. 2. Example sentence from the French test set.

To verify our assumption we also compare the different systems only on the
entities with OCR errors. Here NN ensemble outperforms both of the cross-
domain baselines (Table 5, Stanford NER tagger, NN base cross-domain). Com-
pared to the French results Dutch is a lot worse. A look at the entities shows
that in the Dutch test set there are many hyphenated words where both word
parts are labeled. However, if looking at the parts of the word individually, a
clear assignment to an entity type cannot be made, which leads to difficulties
with tagging. Though it is plausible that NN ensemble can capture specific phe-
nomena in the historical data better, since the difference between the domains is
reduced by the synthetic noisyfication and the historical embeddings. The exam-
ple in Fig. 2 drawn from the test set shows, that NN ensemble can handle noisy
entities well in contrast to e.g. the Stanford NER tagger. Thus in a scenario with
many OCR errors the NN ensemble performs well.

5 Related Work

There is some research on using natural language processing for improving OCR
for historical documents [5,26] and also on NER for historical documents [11]. In
the latter - a shared task for Named Entity Processing in historical documents -
Ehrmann et al. find that OCR noise drastically harms systems performance. Like
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Table 5. Results on entities with OCR errors in the French/Dutch test set. Scores
marked with * are significantly lower than NN ensemble.

Models French Dutch

Stanford NER tagger 0.661* 0.207*

NN base in-domain 0.771 0.438

NN base cross-domain 0.783 0.200*

NN ensemble synOCR 0.835 0.462

us several participants (e.g. [7,23]) also use language models that were trained on
historical data to boost the performance of NER taggers. Schweter and Baiter
[22] explore NER for historical German data in a cross-domain setting. Like
us, they train a language model on unannotated in-domain data and integrate
it into a NER tagger. In addition to the above mentioned work, we employ
“OCR noisyfication” (Sect. 2.2) and examine the influence of different pretrained
embeddings systematically. Çavdar [8] addresses NER and relation extraction
on the French Europeana Newspaper corpus. Ehrmann et al. [10] investigate
the performance of NER systems on Swiss historical Newspapers and show that
historical texts are a great challenge compared to contemporary texts. They
find that the LOC class entities causes the most difficulties in the recognition of
named entities. The recent work of Hamdi et al. [13] investigates the impact of
OCR errors on NER. To do so, they also perturb modern corpora synthetically
with different degrees of error rates. They experiment with Spanish, Dutch and
English. Like us they perturb the Dutch CoNLL corpus and train NER taggers
on that data. Unlike us they do also train on a subset of the perturbed corpus.
We test on a subset of the Dutch Europeana corpus. Hamdi et al. [13] show
that neural taggers perform better compared to other taggers like the Stanford
NER tagger and they also prove that performance decreases drastically if the
OCR error rate increases. Piktus et al. [19] learn misspelling-oblivious FastText
embeddings from synthetic misspellings generated by an error model for part-
of-speech tagging. We use a similar corruption method, but we also use synOCR
and historical embeddings for NER.

6 Conclusion

We proposed new methods for in-domain and cross-domain Named Entity Recog-
nition (NER) on historical data and addressed data centric domain adaptation.
For the cross-domain case, we handle domain shift by integrating non-annotated
historical data via contextualized string embeddings; and OCR errors by inject-
ing synthetic OCR errors into the modern data. This allowed us to get good
results when labeled historical data is not available and the historical data is
noisy. For training on contemporary corpora and testing on historical corpora
we achieve new state-of-the-art results of 69.3% on French and 63.4% on Dutch.
For the in-domain case we obtain state-of-the-art results of 77.9% for French and
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84.2% for Dutch. There is an increasing demand for advancing the digitization of
the world’s cultural heritage. High quality digitized historical data, with reliable
meta information, will facilitate convenient access and search capabilities, and
allow for extensive analysis, for example of historical linguistic or social phe-
nomena. Since named entity recognition is one of the most fundamental labeling
tasks, it would be desirable that advances in this area translate to other labeling
tasks in processing of historical data as well.

Acknowledgement. This work was funded by the European Research Council (ERC
#740516).

A Appendix

Detailed Information About Experiments and Data
The computing infrastructure we use for all our experiments is one GeForce GTX
1080Ti GPU with an average runtime of 12 h per experiment. For the French
and Dutch baseline model NN base we count 15,895,683 parameters each. For
the French NN ensemble model there are 88,264,777 parameters and 96,895,161
parameters for the Dutch NN ensemble.

The Europeana Newspaper Corpus is split 80/10/10 into train/dev/test
(Table 6). The downsampled French WikiNER corpus is split 70/15/15 into
train/dev/test and the Dutch CoNLL-02 corpus is already split in its original
version. The downloadable version of the data can be found here: https://github.
com/stefan-it/historic-domain-adaptation-icdar.

Table 6. Number of tokens for each datasplit.

Dataset Train dev Test

French Europeana 167,723 18,841 20,346

Dutch Europeana 147,822 16,391 18,218

French WikiNER 411,687 88,410 88,509

Dutch ConNLL-02 202,930 68,994 37,761
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Abstract
Compared to standard Named Entity Recognition (NER), identifying persons, locations, and organizations
in historical texts constitutes a big challenge. To obtain machine-readable corpora, the historical text
is usually scanned and Optical Character Recognition (OCR) needs to be performed. As a result, the
historical corpora contain errors. Also, entities like location or organization can change over time, which
poses another challenge. Overall, historical texts come with several peculiarities that differ greatly
from modern texts and large labeled corpora for training a neural tagger are hardly available for this
domain. In this work, we tackle NER for historical German, English, French, Swedish, and Finnish by
training large historical language models. We circumvent the need for large amounts of labeled data by
using unlabeled data for pretraining a language model. We propose hmBert, a historical multilingual
BERT-based language model, and release the model in several versions of different sizes. Furthermore,
we evaluate the capability of hmBert by solving downstream NER as part of this year’s HIPE-2022
shared task and provide detailed analysis and insights. For the Multilingual Classical Commentary
coarse-grained NER challenge, our tagger HISTeria outperforms the other teams’ models for two out of
three languages.

Keywords
Named Entity Recognition, historical NER, Transformer-based language models, Historical texts, Flair

1. Introduction

Standard Named Entity Recognition (NER) for high resource domains has already been success-
fully addressed with performances above 90% F1-score [1, 2]. In contrast, NER taggers often fail
to achieve satisfying results in the historical domain. Since historical datasets usually stem from
Optical Character Recognition (OCR) and also include domain shifts, they contain characteristic
errors not found in modern text. Low-resource fonts like Fraktur pose additional challenges for
clean OCR. Another problem is that large amounts of labeled data are required when training
neural models and only little labeled data exists for historical NER [3]. Because of all these
challenges, systems designed for contemporary datasets cannot be applied to the historical
domain without adaptations or further training. However, in the last few years, a number of
works have shown that it is possible to adapt systems by using different approaches [4].
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In this work, we develop a new BERT-based language model [5] for the historical context:
hmBert. We tackle NER for historical German, English, French, Swedish, and Finnish. We use
self-supervised learning to pretrain our language model on unlabeled data before we fine-tune
the NER tagger on labeled data. This allows to reduce the need for large amounts of labeled
training data. To mitigate the impact of OCR noise in the pretraining corpora, we use a filtering
step that allows to control the OCR confidence of the texts.
Another design step in training language models is the choice of the underlying vocabu-

lary. Beltagy et al. [6] showed that using a domain-specific vocabulary leads to performance
improvements compared to using a general domain vocabulary. Thus, we use a sub-corpus of
our pretraining corpus to create an in-domain vocabulary for the hmBert training. Finally,
we arrive with a powerful hmBert model that establishes state-of-the-art results for three out
of four languages on the NewsEye NER dataset [7]. As large language models require a lot of
computational resources for pretraining and during inference time, we also provide smaller
models.
Addressing the HIPE-2022 NERC-Coarse task, we also study a single-model vs. one-model

approach. Our comparison shows that fine-tuning hmBert models for each language individu-
ally (single-model approach) improves performance compared to models that were fine-tuned
on data from all languages (one-model approach). At the same time, however, fine-tuning
individual models is much more computationally expensive. The one-model approach is more
efficient, achieving similar performance while requiring less computation.
In addition, our final model HISTeria is trained by using multi-stage fine-tuning. We first

fine-tune the multilingual model and evaluate it over the development data of all the different
available languages. The resulting hyperparameter configuration is used for another fine-
tuning step for each monolingual model. Finally, our detailed study of hmBert also includes
experiments with a knowledge-based approach, training an ELECTRA-based language model [8],
and addressing a tokenization issue. These additional experiments did not enhance performance
but represent a suitable starting point for further research.
Our contributions are i) the comprehensive description of the development of hmBert, ii)

the release of hmBert models of different sizes, iii) the release of the hmBert pretraining code,
and iv) extensive experiments using hmBert including detailed insights for the community.

This paper is structured as follows: the next section (2) describes hmBert and its development
in details. We include an explanation of the used datasets, as well as processing, hyperparameter
settings, and pretraining steps. We close the section with a downstream task evaluation. Section
3 provides insights into the HIPE-2022 Multilingual Commentary Challenge1 [9]. We describe
our approach for the shared task submission in detail and provide an analysis of our results. We
conclude the paper with Section 4.

2. hmBert: Historical Multilingual BERT Model

In this section, we present hmBert which supports German, English, French, Finnish, and
Swedish. We train two different models with different vocabulary sizes: 32,000 and 64,000.
We first describe the corpora used for training hmBert, as well as preprocessing and filtering

1https://hipe-eval.github.io/HIPE-2022/
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Figure 1: Overall pretraining of our ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 model and fine-tuning procedure for NER downstream
tasks. CLS is a special symbol added in front of every input example, and SEP is a special separator
token.

steps to create the pretraining corpus. In addition, we explain the pretraining process and end
the section by evaluating the model on a downstream NER task. Figure 1 shows the overall
pretraining procedure for hmBert and its application on downstream tasks.

2.1. Corpora

For German, French, Swedish and Finnish we use the Europeana newspapers2 provided by
the European Library. For English we use a dataset published by the British Library [10]. The
dataset contains OCR-processed text from digitized books and has also been used by Hosseini
et al. [11] to train historical language models for English.

2.1.1. Filtering

OCR full-text for the Europeana newspapers also includes an OCR confidence value. This
measure indicates the average OCR confidence for each word of a newspaper3. For German
and French we perform a number of characters per year analysis using different (minimum
required) OCR confidence thresholds. For German, we test three different thresholds and report
the resulting dataset size (see Table 15 in the appendix). We use an OCR confidence threshold
of 0.60 to get a final dataset of approx. 28 GB. For French, we test five different OCR confidence
values (see Table 16 in the appendix) and choose 0.70 so that the resulting dataset size of 27 GB
is comparable to the size of the German dataset. For Finnish and Swedish, we use an OCR
confidence threshold of 0.60. However, training data for Swedish and Finnish is very limited. In
total, only 1.2 GB for Finnish, and 1.1 GB for Swedish are available, thus these corpora are not
filtered any further using other OCR confidence thresholds. For English, language filtering using

2http://www.europeana-newspapers.eu/
3https://www.clarin.eu/sites/default/files/Nuno_Freire_Europeana_CLARINPLUS.pdf
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Figure 2: Number of characters per year distribution for filtered German Europeana corpus (1683-1949).

Figure 3: Number of characters per year distribution for filtered French Europeana corpus (1814-1944).

Figure 4: Number of characters per year distribution for filtered English corpus from British Library
(1800-1899).

langdetect4 for each book in the corpus is performed. Additionally, we use books published
between 1800 and 1900 exclusively. The resulting English corpus has a total size of 24GB.
To get a deeper insight into the filtered corpora, we analyze the distribution of characters

over time for each language. Figure 2 shows the distribution for German. The period from 1865
to 1914 is well-covered in the dataset, while the years from 1683 to 1849 and the 20th century
are underrepresented. For French, the 20th century is highly covered, but there is only little
data available for the 19th century (see Figure 3), which contrasts with the German corpus. The
English corpus contains texts from the 19th century only and shows good coverage starting
from 1850. However, there is only little coverage from 1800 to 1849 (see Figure 4). Since both
Finnish and Swedish corpora include newspapers from 1900 to 1910 only, we do not analyze
the number of characters per year for these datasets.

2.1.2. Multilingual Vocabulary Generation

To create a BERT-compatible wordpiece-based vocabulary [12], we use 10GB of each language
and train the vocabulary using the Hugging Face Tokenizers library5. We build a cased vocabu-

4https://github.com/Mimino666/langdetect
5https://github.com/huggingface/tokenizers
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Table 1
NER datasets that are used for calculating subword fertility rate and portion of UNKs. For English, the
development dataset was used due to a missing training split.

Language NER Corpora

German CLEF-HIPE-2020 [15], NewsEye [7]
French CLEF-HIPE-2020 [15], NewsEye [7]
English CLEF-HIPE-2020 [15]
Finnish NewsEye [7]
Swedish NewsEye [7]

Table 2
Subword fertility rate and portion of UNKs calculated on NER datasets using a 32k wordpiece-based
vocabulary.

Language Subword Fertility UNK Portion

German 1.43 0.0004
French 1.25 0.0001
English 1.25 0.0
Finnish 1.69 0.0007
Swedish 1.43 0.0

lary with no lower casing or accent stripping being performed. For Finnish and Swedish we
need to upsample6 the corpus because both corpora have a size of 1 GB only.
We create a 32k and 64k vocabulary. Inspired by Rust et al. [13], we report the subword

fertility rate (SFR) and the portion of unknown (UNK) tokens per language on various historical
NER datasets (see Table 1). The SFR is defined as the average number of subwords a tokenizer
produces per word [13]. It indicates how aggressively a tokenizer splits, i.e. whether it over-
segments or not. As over-segmentation can negatively impact downstream performance, an
SFR close to 1 (indicating that the tokenizer vocabulary contains every word in the input text)
is optimal. UNK tokens are challenging because such tokens are not seen during pretraining and
the model cannot provide useful information for them during the fine-tuning phase [14]. Table
2 and Table 3 show the SFR and portion of UNKs in the 32k/64k corpus. French and English have
the lowest SFRs, whereas Finnish has the highest rate in both wordpiece-based vocabularies.

2.2. Final Pretraining Corpus

For common multilingual models such as multilingual BERT [mBERT; 5], XLM-RoBERTa [16]
or mT5 [17] different corpus sampling strategies have been developed to up-/downsample low-
/high-resource languages [18]. Since our multilingual language model includes five languages
only (mBERT covers 104 languages7), we use a similar size for all languages. After upsampling
the Swedish and Finnish corpora to 27GB each, we arrive at a total dataset size of 130GB. Table

6For upsampling we simply concatenate the original corpus 𝑁 -times to match the desired 10GB size per
language.

7https://github.com/google-research/bert/blob/master/multilingual.md
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Table 3
Subword fertility rate and portion of UNKs calculated on NER datasets using a 64k wordpiece-based
vocabulary.

Language Subword Fertility UNK Portion

German 1.31 0.0004
French 1.16 0.0001
English 1.17 0.0
Finnish 1.54 0.0007
Swedish 1.32 0.0

Table 4
Size per language of final pretraining corpus for hmBert.

Language Dataset Size

German 28GB
French 27GB
English 24GB
Finnish 27GB
Swedish 27GB

Total 130GB

4 shows an overview of the sizes per language included in our final pretraining corpus. For the
hmBertmodel with a vocabulary size of 32k, we use the official BERT implementation8 to create
pretraining data. Detailed description of all parameters used for the creation of pretraining data
can be found in Section A.2 of the appendix.

2.3. Models

We pretrain an hmBert model with a vocabulary size of 32k, further denoted as ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 ,
and another hmBert model with a vocabulary size of 64k, further denoted as ℎ𝑚𝐵𝐸𝑅𝑇64𝑘.
Inspired by Hou et al. [19], we also pretrain and release smaller hmBert models, with the
number of layers ranging from 2 to 8 and hidden sizes ranging from 128 to 512. Pretraining of
the different models is described in detail in Section A.3 of the appendix.

2.4. Downstream Task Evaluation

We evaluate the ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 models on the NewsEye NER dataset [7], because this dataset
includes most of the languages that hmBert covers (except English), and compare them with
the current state-of-the-art reported by Hamdi et al. [20]. We use the Flair [21] library and
perform a hyperparameter search (see Table 18 in appendix) using the common fine-tuning
paradigm. Fine-tuning adds a single linear layer to a Transformer and fine-tunes the entire
architecture on the NER downstream task. To bridge the difference between subword modeling

8https://github.com/google-research/bert#pre-training-with-bert
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Table 5
Performance overview of ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 models on German NewsEye NER dataset.

Model Name Development F1-Score Test F1-Score

ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Tiny 30.16 24.35
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Mini 35.74 31.54
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Small 40.27 39.04
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Medium 43.45 43,41
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Base 46.17 46.66

Hamdi et al. [20] - 48.3

and token-level predictions, subword pooling is applied to create token-level presentations
which are then passed to the final linear layer. A common subword pooling strategy is to use
the first subtoken to represent the entire token and we also use this strategy in our experiments.
To train our architecture, we use AdamW [22] optimizer, a very small learning rate and a fixed
number of epochs as a hard-stopping criterion. We evaluate the model performance after each
training epoch on the development set and use the best model (strict micro F1-score) for final
evaluation. We adopt a one-cycle [23] training strategy, in which the learning rate linearly
decreases until it reaches 0 by the end of the training. Tables 5 - 8 show the performance of our
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 models compared to the current state-of-the-art.

For German, even the ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 base model could not reach the performance reported by
Hamdi et al. [20], that was based on the models developed by Boros et al. [24]. The performance
difference is 1.64 percentage points. This could be due to the fact that the German NewsEye
dataset is very large and the hyperparameter search needed to be extended. Furthermore,
Hamdi et al. [20] proposed a new architecture for handling OCR errors by adding two extra
transformer layers, whereas we only performed a standard fine-tuning approach. For French our
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 medium sized model is very close to the result reported by Hamdi et al. [20]. The
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 base model outperforms the current best result by +2.7 percentage points. The
same performance gain can be observed for Finnish and Swedish: The ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 base model
outperforms the current SOTA by 2.41 percentage points for Finnish, and 2.1 percentage points
for the Swedish NewsEye dataset. Figure 5 shows an overall performance comparison for the
pretrained ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 smaller models on the NewsEye dataset. On average, the performance
difference between the 8-layer ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 medium and the 12-layer ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 base model
is 2.7 percentage points.

3. HIPE-2022: Multilingual Classical Commentary Challenge

We participated in the Multilingual Classical Commentary Challenge (MCC) that was newly
introduced in the 2022 edition of HIPE [25] with our tagger being denoted as HISTeria. The
challenge requires participants to work with historical classical commentaries in at least two
different languages and to develop solutions for Named Entity Recognition, Classification,
and/or Linking. HISTeria aims to detect and classify named entities according to coarse-grained
types (NERC-Coarse task) and is described in more detail in this section.
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Table 6
Performance overview of ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 models on French NewsEye NER dataset.

Model Name Development F1-Score Test F1-Score

ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Tiny 60.04 50.79
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Mini 70.55 62.28
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Small 75.72 69.02
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Medium 78.99 72.51
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Base 81.58 75.10

Hamdi et al. [20] - 72.7

Table 7
Performance overview of ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 models on Finnish NewsEye NER dataset.

Model Name Development F1-Score Test F1-Score

ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Tiny 30.37 34.76
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Mini 56.60 62.68
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Small 64.31 73.20
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Medium 69.95 76.34
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Base 76.05 80.11

Hamdi et al. [20] - 77.7

Table 8
Performance overview of ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 models on Swedish NewsEye NER dataset.

Model Name Development F1-Score Test F1-Score

ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Tiny 43.65 38.91
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Mini 64.05 65.58
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Small 73.47 76.29
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Medium 78.07 82.47
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Base 81.13 83.60

Hamdi et al. [20] - 81.5

3.1. Data

A classical commentary is a scholarly publication that aims to facilitate the reading and under-
standing of classical works of literature by providing additional information such as translations
or bibliographic references. Apart from the challenges that are common to historical texts,
commentaries have other characteristics that may complicate Named Entity Recognition and
Classification: they frequently cite the original literary text, making them inherently mul-
tilingual, and they often use abbreviations to convey information more concisely. For the
Multilingual Classical Commentary Challenge, HIPE9 has chosen a single dataset that was

9https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md
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Figure 5: Overview of performance of ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 smaller models on NewsEye NER datasets. F1-score
on the test set is reported here.

Table 9
Dataset statistics about ajmc dataset.

Language Training Sentences Development Sentences

German 1,024 192
English 1,154 252
French 894 202

created in the context of the Ajax MultiCommentary project10 (ajmc dataset). The dataset
contains excerpts from commentaries published in the 19th century in English, French, and
German. The French texts date from 1886, the German ones from 1853 and 1894, and the English
ones from 1881 and 1896. This emphasis on the second half of the 19th century fits well with
the temporal distribution of our pretraining data for English and German. Apart from standard
entity types like person or location, the dataset also includes domain-specific annotations like
the scope and work entity type for bibliographic references. Additional dataset statistics can be
found in Table 9 and in the HIPE 2022 Overview paper [9].

3.2. Single-Models vs. One-Model Approach

In preliminary experiments models that are independently fine-tuned for each language (single-
model approach) and a model that uses training data from all languages (one-model approach)
are compared. We perform hyperparameter searches for the two approaches. The relevant
hyperparameters for fine-tuning models are shown in the appendix (Table 19). We use the Flair
library for all experiments. For the one-model approach, a breakdown analysis for each language

10https://mromanello.github.io/ajax-multi-commentary/

4. Data-Centric Knowledge Supervision

84



Table 10
Performance comparison for NERC-coarse between single-model and one-model approach on ajmc
development dataset. Numbers express F1-score calculated by using the strict evaluation regime.

Language Single-Model One-Model

German 86.21 86.68
English 84.98 84.85
French 85.69 85.09

is performed after determining the best hyperparameter configuration. This is compared to the
three independently fine-tuned models for each language. For German, the one-model approach
is +0.47 percentage points better than the single-model approach. For English, the one-model
approach performs slightly worse (-0.13 percentage points) and for French, the single-model
approach outperforms the one-model by 0.6 percentage points. However, the single-model
approach requires fine-tuning of 120 models, whereas the one-model approach only needs 40
models to be fine-tuned for hyperparameter search. To save resources, we decided to use the
one-model approach for further experiments. The performance comparison on the ajmc dataset
is shown in Table 10.

3.3. Multi-Stage Fine-Tuning

Wang et al. [26] proposed a knowledge-based system for multilingual NER using a multi-stage
fine-tuning approach for the MultiCoNER SemEval 2022 task11. The first stage of multi-stage
fine-tuning refers to training a multilingual model on data from different languages. In the
second stage, this fine-tuned multilingual model is used as a starting point for training a
monolingual model. We adapt this approach for our final system: in the first stage, we fine-tune
one multilingual model over the training data of all three languages (German, English, and
French) and optimize over all development data (one-model approach) using a hyperparameter
search. We select the best hyperparameter configuration as a combination of batch size, the
number of epochs, and the learning rate, which results in five models (because of five different
random seeds). The hyperparameter search grid for the different stages is shown in Section B.1
in the appendix. From these five models, we choose the one with the highest F1-score on the
development set for second stage fine-tunings. In the second stage, we use the best model from
the first stage and fine-tune single models for each language with a hyperparameter search
on the development set. For each language, we select the best hyperparameter configuration
and choose the best performing model with the highest F1-score on the development set. In
preliminary experiments, this multi-stage fine-tuning approach boosts performance by 1.23
percentage points on average compared to results in the first stage.
For our final submission, ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 achieves the best results during the first-stage of

fine-tuning with a batch size of 4, 10 fine-tuning epochs and a learning rate of 5𝑒− 05. This
results in an average F1-score of 86.89 on the (combined) development sets for ajmc. The best
hyperparameter configuration for ℎ𝑚𝐵𝐸𝑅𝑇64𝑘 can be achieved when using a batch size of 8,

11https://multiconer.github.io/
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Table 11
Final results on ajmc development dataset for all languages using best models after multi-stage fine-
tuning. Results are reported with official HIPE scorer.

Submission ID Hyperparameter Configuration Strict F1-Score Fuzzy F1-Score

German (ℎ𝑚𝐵𝐸𝑅𝑇32𝑘) - 1 bs8-e05-lr3e-05 91.5 94.2
German (ℎ𝑚𝐵𝐸𝑅𝑇64𝑘) - 2 bs8-e10-lr3e-05 92.0 93.9

English (ℎ𝑚𝐵𝐸𝑅𝑇32𝑘) - 1 bs4-e10-lr3e-05 89.1 92.9
English (ℎ𝑚𝐵𝐸𝑅𝑇64𝑘) - 2 bs8-e10-lr3e-05 88.0 93.8

French (ℎ𝑚𝐵𝐸𝑅𝑇32𝑘) - 1 bs4-e10-lr3e-05 86.8 93.1
French (ℎ𝑚𝐵𝐸𝑅𝑇64𝑘) - 2 bs4-e10-lr5e-05 85.9 93.0

10 epochs of fine-tuning and a learning rate of 3𝑒−05. This results in an overall F1-score of 86.69
percentage points. Thus, ℎ𝑚𝐵𝐸𝑅𝑇64𝑘 is slightly worse than ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 (-0.2 percentage
points). Table 11 shows the performance for our final submissions using ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 and
ℎ𝑚𝐵𝐸𝑅𝑇64𝑘 for all languages in the ajmc dataset. We report strict and fuzzy F1-scores using
the official HIPE-scorer12. We exclude document-level scores for better readability.

3.4. HISTeria Results

Table 12 shows an overview of HISTeria compared to the runs of other teams in the HIPE-2022
shared task13 .

To gain a better understanding of our models, we use the attribute-aided evaluation proposed
by Fu et al. [27]. In order to highlight the strengths and weaknesses of different models, they
analyze how model performance varies with regard to certain attributes. In the case of NER,
properties that may influence performance are i) how consistently a given surface form of a
token or an entity is labelled across a dataset (tCon and eCon), ii) how often a given token
or entity appears in the dataset (tFre and eFre), iii) the number of tokens that make up an
entity (eLen) or sentence (sLen) as well as iv) the relative number of out-of-vocabulary words
and entities per sentence (oDen and eDen). Using the implementation by Fu et al. [27], we
distribute the values into buckets and compute the strict F1-score for each bucket. Table 13
shows Spearman’s rank correlation coefficient as a measure of how well the attribute correlates
with the F1-score, and the standard deviation of the F1-score to indicate how strongly the
attribute influences performance. We omit results that are not statistically significant.
For the two German models, none of the attributes seem to correlate with performance

in a statistically significant way. For the English and French models, performance correlates
directly and positively with the consistency of the token labels. The standard deviation of 10%
(French) and 8-9% (English) of the F1-score indicates that this attribute has a marked impact
on performance. For French ℎ𝑚𝐵𝐸𝑅𝑇32𝑘, entity length influences performance to the same
degree. In this case, performance gets worse the more tokens an entity has. The impact of entity
length on English ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 and ℎ𝑚𝐵𝐸𝑅𝑇64𝑘 is less strong but still notable (standard

12https://github.com/hipe-eval/HIPE-scorer
13https://github.com/hipe-eval/HIPE-2022-eval/
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Table 12
Final results on ajmc test dataset for all languages compared to other participants in the HIPE-2022
shared task. HISTeria denotes our system. Rank is ordered by strict F1-score.

Rank Language Submission ID Strict F1-Score Fuzzy F1-Score

1 German L3i (team 2) - 2 93.4 95.2
2 German HISTeria (ℎ𝑚𝐵𝐸𝑅𝑇32𝑘) - 1 91.3 93.7
3 German HISTeria (ℎ𝑚𝐵𝐸𝑅𝑇64𝑘) - 2 91.2 94.5
4 German L3i (team 2) - 1 90.8 93.4
5 German Neural baseline 81.8 87.3

1 English HISTeria (ℎ𝑚𝐵𝐸𝑅𝑇64𝑘) - 2 85.4 91.0
2 English L3i (team 2) - 1 85.0 89.4
3 English L3i (team 2) - 2 84.1 88.4
4 English HISTeria (ℎ𝑚𝐵𝐸𝑅𝑇32𝑘) - 1 81.9 89.9
5 English Neural baseline 73.6 82.8

1 French HISTeria (ℎ𝑚𝐵𝐸𝑅𝑇64𝑘) - 2 84.2 88.0
2 French HISTeria (ℎ𝑚𝐵𝐸𝑅𝑇32𝑘) - 1 83.3 88.8
3 French L3i (team 2) - 2 82.6 87.2
4 French L3i (team 2) - 1 79.8 86.0
5 French Neural baseline 74.1 82.5

Table 13
Spearman’s rank correlation coefficient and standard deviation of models’ F1-score depending on
different attribute values. We omit results that are not statistically significant.

Model Attribute Spearman Standard Deviation

English ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 tCon 1.0 0.09
eLen -1.0 0.06
oDen -1.0 0.09

English ℎ𝑚𝐵𝐸𝑅𝑇64𝑘 tCon 1.0 0.08
eLen -1.0 0.01

French ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 tCon 1.0 0.10
eLen -1.0 0.10

French ℎ𝑚𝐵𝐸𝑅𝑇64𝑘 tCon 1.0 0.10

deviation of 6% and 1% respectively). In addition to entity length, the amount of words that
did not feature in the training set also correlates negatively with the performance of English
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘.

3.5. Challenges

We also experimented with the knowledge-based system for multilingual NER that was proposed
by Wang et al. [26]. We used their implementation to enrich the original ajmc datasets with a
knowledge base and implemented their context approach in the Flair library. More precisely,
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we used the FLERT approach [28] and utilized the knowledge-base enriched context as the left
context for each training example. A left context size of 128 performs best in the experiments.
However, the final result was slightly worse than using no context at all. This may be due to the
fact that a contemporary, general-purpose knowledge base (Wikipedia) was used. A domain-
specific knowledge base may yield better results. As the preliminary results were slightly worse
than our main baseline, we did not conduct further experiments with this knowledge-based
system.

We calculated the portion of UNKs in the German ajmc dataset and found that the portion rate
of 16.3 % is unreasonably high. We discovered that the German ajmc dataset contains long-s
characters, unlike the Europeana Newspaper corpora which were used to train a vocabulary. As
a consequence, the hmBert tokenizer is not able to handle tokens that include long-s characters,
resulting in UNKs. For our final system, we manually replaced all long-s characters with a
normal s character to circumvent the UNK problem. In upcoming versions of our hmBert
models, we will add this replacement step in the tokenizer configuration directly. Furthermore,
we also trained an ELECTRA model [8] for 1M steps on the same pretraining corpus as the
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 model. We found that the downstream performance on NewsEye datasets was
1 to 3 percentage points worse than ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 and -0.28 percentage points worse on the
ajmc dataset. We have therefore decided not to release the model yet.

3.6. Community Contributions

To foster research on language and NER models for the historical domain, we publicly release
our pretrained and fine-tuned models on the Hugging Face Model Hub14 under the dbmdz
namespace15. We also publicly release all code that was used for fine-tuning models16. Table
14 shows an overview of released models for our HIPE-2022 submission, including the model
identifier on the Hugging Face Model Hub. All models are released under a permissive MIT
license. Additionally, we added dataset support for all HIPE-2022 NER datasets into Flair
library17.

4. Conclusion

We presented hmBert, a new multilingual BERT-based language model for historical data.
hmBert is composed of German, French, English, Finnish, and Swedish unsupervised corpora
of historical OCR-processed texts. The corpora have been filtered for OCR confidence as well
as sampled so that each language contributes a similar amount of data to the model. The
underlying vocabulary is also derived from each of the languages used for hmBert. In our
temporal analysis of the pretraining corpora, we have found that data from the 18th and 19th

century is unevenly distributed across the different languages. For future models, we are looking
for additional datasets to balance this representation. We evaluated two hmBert models of
different sizes with downstream Named Entity Recognition. For the NewsEye dataset hmBert

14https://huggingface.co/
15https://huggingface.co/dbmdz
16https://github.com/dbmdz/clef-hipe
17Added in Flair version 0.11: https://github.com/flairNLP/flair/releases/tag/v0.11
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Table 14
Community contributions for our HIPE-2022 submission: Pretrained language models and fine-tuned
NER models are publicly available on the Hugging Face Model Hub.

Model Description Model Name

ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Tiny Model dbmdz/bert-tiny-historic-multilingual-cased
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Mini Model dbmdz/bert-mini-historic-multilingual-cased
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Small Model dbmdz/bert-small-historic-multilingual-cased
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Medium Model dbmdz/bert-medium-historic-multilingual-cased
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Base Model dbmdz/bert-base-historic-multilingual-cased
ℎ𝑚𝐵𝐸𝑅𝑇64𝑘 Base Model dbmdz/bert-base-historic-multilingual-64k-td-cased

NER First Stage (ℎ𝑚𝐵𝐸𝑅𝑇32𝑘) dbmdz/flair-hipe-2022-ajmc-all
NER First Stage (ℎ𝑚𝐵𝐸𝑅𝑇64𝑘) dbmdz/flair-hipe-2022-ajmc-all-64k

NER Second Stage - German (ℎ𝑚𝐵𝐸𝑅𝑇32𝑘) dbmdz/flair-hipe-2022-ajmc-de
NER Second Stage - English (ℎ𝑚𝐵𝐸𝑅𝑇32𝑘) dbmdz/flair-hipe-2022-ajmc-en
NER Second Stage - French (ℎ𝑚𝐵𝐸𝑅𝑇32𝑘) dbmdz/flair-hipe-2022-ajmc-fr

NER Second Stage - German (ℎ𝑚𝐵𝐸𝑅𝑇64𝑘) dbmdz/flair-hipe-2022-ajmc-de-64k
NER Second Stage - English (ℎ𝑚𝐵𝐸𝑅𝑇64𝑘) dbmdz/flair-hipe-2022-ajmc-en-64k
NER Second Stage - French (ℎ𝑚𝐵𝐸𝑅𝑇64𝑘) dbmdz/flair-hipe-2022-ajmc-fr-64k

established a new state-of-the-art for three out of four languages: French, Finnish, and Swedish.
For the 2022 HIPE Multilingual Classical Commentary Challenge, our HISTeria system could
outperform the other systems for two out of three languages. Using multi-stage fine-tuning
together with the multilingual BERT-based model led the model to its optimal performance.
Detailed analysis showed the benefits of all of hmBerts design choices, as well as interesting
findings for future research. Our contributions include all of the trained hmBert models and
our source code, which are made publicly available.
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A. hmBERT: Historical Multilingual BERT Model

A.1. Corpora Filtering

Table 15
Word level OCR confidence thresholds for German. Bold OCR confidence is used for the final corpus.

OCR Confidence Dataset Size

0.60 28GB
0.65 18GB
0.70 13GB

Table 16
Word level OCR confidence thresholds for French. Bold OCR confidence is used for the final corpus.

OCR Confidence Dataset Size

0.60 31GB
0.65 27GB
0.70 27GB
0.75 23GB
0.80 11GB

A.2. Final Pretraining Corpus

For creation of the pretraining data, we use the same parameters as BERTurk [29]: maximum
sequence length = 512, maximum predictions per sequence = 75, masked language probability
rate = 0.15, duplication factor = 5. Due to hardware limitations, we split the pretraining
corpus into chunks of 1GB and create pretraining data for each chunk individually. For the
hmBertmodel with a vocabulary size of 64k we use the official implementation18 with the same
parameters as for the 32k model, but we increase the maximum predictions per sequence to 76.

A.3. Models

We use the official BERT implementation19 for pretraining ℎ𝑚𝐵𝐸𝑅𝑇32𝑘. ℎ𝑚𝐵𝐸𝑅𝑇64𝑘 is
trained with the recently proposed “token dropping” approach by Hou et al. [30]. Using this
approach, unimportant tokens starting from an intermediate layer in the model are dropped to
make the model focus on important tokens more efficiently, which makes model pretraining
faster compared to the original BERT implementation. For both pretraining approaches, we use a
maximum sequence length of 512 for the full training time. For the pretraining of ℎ𝑚𝐵𝐸𝑅𝑇32𝑘

a batch size of 128 is used for 3M training steps. Pretraining was done on a v3-32 TPU pod

18https://github.com/tensorflow/models/blob/27fb855b027ead16d2616dcb59c67409a2176b7f/official/legacy/
bert/README.md#pre-training

19https://github.com/google-research/bert
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within 67 hours. The pretraining of ℎ𝑚𝐵𝐸𝑅𝑇64𝑘 was done on a single v4-8 TPU with a batch
size of 512 for 1M steps within 114 hours. Figure 6 shows the pretraining loss for ℎ𝑚𝐵𝐸𝑅𝑇32𝑘

and ℎ𝑚𝐵𝐸𝑅𝑇64𝑘. The final ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 has 110.62M, whereas ℎ𝑚𝐵𝐸𝑅𝑇64𝑘 has 135.19M
parameters due to the increased vocabulary size.

For better comparability, we measure the number of total subtokens seen during pretraining20

and the number of total subtokens of the pretraining corpus for our two hmBert models. More
precisely, ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 has seen 196B subtokens during pretraining, whereas the pretraining
corpus has a total size of 42B subtokens. This results in 4.7 pretraining epochs over the corpus.
Our ℎ𝑚𝐵𝐸𝑅𝑇64𝑘 model has seen 262B subtokens during pretraining. Because of the larger
vocabulary size, the number of subtokens for the corpus is 39B. This results in 6.7 pretraining
epochs over the corpus.

Figure 6: Overview of pretraining loss for ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 and ℎ𝑚𝐵𝐸𝑅𝑇64𝑘 .

For the smaller models, we use the same pretraining data and hyperparameter as for the
base ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 model and pretrain them on a v3-32 TPU pod. Table 17 shows an overview
of pretrained models, including their model size, number of parameters and pretraining time.
Figure 7 shows an overview of pretraining loss for all smaller ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 models.

Table 17
Overview of smaller ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 models with their corresponding model size, number of parameters
and pretraining time.

Model Name Number of Layers Hidden Size Parameters Pretraining Time

ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Tiny 2 128 4.58M 4.3s / 1k steps
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Mini 4 256 11.55M 10.5s / 1k steps
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Small 4 512 29.52M 20.7s / 1k steps
ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Medium 8 512 42.13M 35.0s / 1k steps

ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 Base 12 768 110.62M 80.0s / 1k steps

20Total number of subtokens during pretraining can be calculated as multiplication of training steps, batch size
and sequence length
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Figure 7: Overview of pretraining loss for smaller ℎ𝑚𝐵𝐸𝑅𝑇32𝑘 models.

A.4. Downstream Task Evaluation

Table 18
Hyperparameter search for downstream evaluation on NewsEye NER dataset.

Parameter Values

Batch Size [4, 8]
Epoch [5, 10]
Learning Rate [3𝑒− 05, 5𝑒− 05]
Seed [1, 2, 4, 5]

B. HIPE-2022: Multilingual Classical Commentary Challenge

B.1. Multi-Stage Fine-Tuning

Table 19
Hyperparameter search during the first stage of NER model fine-tuning.

Parameter Values

Batch Size [4, 8, 16]
Epoch [10]
Learning Rate [1𝑒− 05, 2𝑒− 05, 3𝑒− 05, 4𝑒− 05, 5𝑒− 05]
Seed [1, 2, 4, 5]
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Table 20
Hyperparameter search during the second stage of NER model fine-tuning.

Parameter Values

Batch Size [4, 8]
Epoch [5, 10]
Learning Rate [3𝑒− 05, 5𝑒− 05]
Seed [1, 2, 4, 5]

As a batch size of 16 and learning rates of 1𝑒 − 05 and 2𝑒 − 05 do not perform well, we
exclude them when performing hyperparameter search with ℎ𝑚𝐵𝐸𝑅𝑇64𝑘.
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5. Model-Centric Knowledge Supervision
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Abstract

The absence of labeled data for training neu-
ral models is often addressed by leveraging
knowledge about the specific task, resulting
in heuristic but noisy labels. The knowledge
is captured in labeling functions, which detect
certain regularities or patterns in the training
samples and annotate corresponding labels for
training. This process of weakly supervised
training may result in an over-reliance on the
signals captured by the labeling functions and
hinder models to exploit other signals or to
generalize well. We propose KnowMAN, an
adversarial scheme that enables to control in-
fluence of signals associated with specific la-
beling functions. KnowMAN forces the net-
work to learn representations that are invari-
ant to those signals and to pick up other sig-
nals that are more generally associated with an
output label. KnowMAN strongly improves
results compared to direct weakly supervised
learning with a pre-trained transformer lan-
guage model and a feature-based baseline.

1 Introduction

Neural approaches rely on labeled data sets for
training. For many tasks and languages, such data
is either scarce or not available at all. Knowledge-
based weak supervision tackles this problem by
employing labeling functions (LFs). LFs are manu-
ally specified properties, e.g. keywords, that trigger
the automatic annotation of a specific label. How-
ever, these annotations contain noise and biases
that need to be handled.

A recent approach for denoising weakly super-
vised data is Snorkel (Ratner et al., 2020). Snorkel
focuses on estimating the reliability of LFs and of
the resulting heuristic labels. However, Snorkel
does not address biases on the input side of weakly
supervised data, which might lead to learned repre-
sentations that overfit the characteristics of specific
LFs, hindering generalization. We address the prob-
lem of overfitting to the LFs in this paper.

Other approaches tackle such overfitting by
deleting the LF signal completely from the input
side of an annotated sample: For example, Go et al.
(2009) strip out emoticons that were used for label-
ing the sentiment in tweets, and Alt et al. (2019)
mask the entities used for distant supervision of re-
lation extraction training data (Mintz et al., 2009).
However, as LFs are often constructed from the
most prototypical and reliable signals (e.g., key-
words), deleting them entirely from the feature
space might – while preventing over-reliance on
them – hurt prediction quality considerably. How-
ever, we find a way to blur the signals of the LFs
instead of removing them.

In this work we propose KnowMAN
(Knowledge-based Weakly Supervised Multi-
nomial Adversarial Networks), a method for
controllable soft deletion of LF signals, allowing
a trade-off between reliance and generalization.
Inspired by adversarial learning for domain
adaptation (Chen and Cardie, 2018a; Ganin and
Lempitsky, 2015), we consider LFs as domains
and aim to learn a LF-invariant feature extractor
in our model. KnowMAN is composed of three
modules: a feature extractor, a classifier, and a
discriminator. Specifically, KnowMAN employs
a classifier that learns the actual task and an
adversarial opponent, the LF- discriminator, that
learns to distinguish between the different LFs.
Upstream of both is the shared feature extractor to
which the gradient of the classifier and the reversed
gradient of the discriminator are propagated. In our
experiments, the feature extractor for encoding the
input is a multi-layer perceptron on top of either a
bag-of-words vector or a transformer architecture,
but KnowMAN is in principle usable with any
differentiable feature extractor.

KnowMAN consistently outperforms our base-
lines by 2 to 30% depending on the dataset. By set-
ting a hyperparameter λ that controls the influence
of the adversarial part we can control the degree of
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Figure 1: KnowMAN architecture. The figure depicts
one iteration over a batch of inputs. The parameters
of C and Fs are updated together, following the green
arrows. The LF discriminator D is updated following
the red arrows. Solid lines indicate forward, dashed
lines the backward pass.

discarding the information of LF-specific signals.
The optimal λ value depends on the dataset and its
properties.

The contributions of this work are i) proposing
an adversarial architecture for controlling the in-
fluence of signals associated with specific LFs, ii)
consistent improvements over weakly supervised
baselines, iii) release of our code 1. To our knowl-
edge, we are the first that apply adversarial learning
to overcome the noisiness of labels in weak super-
vision.

2 Method

Our approach is composed of three interacting mod-
ules i) the shared feature extractor Fs, ii) the clas-
sifier C and iii) the LF discriminator D. The loss
function of C rewards the classifier C for predicting
the correct label for the instance, and the gradient is
used for optimizing the shared feature extractor and
classifier modules towards that goal. At the same
time, the loss function for the LF-discriminator
D rewards predicting which LF was responsible
for labeling an instance. However, in adversarial
optimization, KnowMAN backpropagates the re-
versed gradient for the LF-discriminator, hence the
information indicative for distinguishing between
specific LFs is weakened throughout the network.
The hyperparameter λ is used to control the level

1https://github.com/LuisaMaerz/KnowMAN

of weakening the signals - the higher we choose the
value the more influence is assigned to the discrimi-
nator information that goes intoD. The result of the
interplay between classifier and LF-discriminator
is a shared feature representation that is good at
predicting the labels while reducing the influence
of LF-specific signals, encouraging the shared fea-
ture extractor to take other information (correlated
with all LFs for a class) into account.

In Figure 1, the arrows illustrate the training flow
of the three modules. Due to the adversarial nature
of the LF discriminator D, it has to be trained with
a separate optimizer (red arrows), while the rest
of the network is updated with the main optimizer
(green arrows). When D is trained the parameters
of C and Fs are frozen and vice versa.

To calculate the losses we utilize canonical neg-
ative log-likelihood loss (NLL) and use it for both,
the classifier and the LF discriminator. The classifi-
cation NLL can be formalized as:

LC(ŷi, yi) = − logP (ŷi = yi) (1)

where yi is the (weakly supervised) annotated label
and ŷi is the prediction of the classifier module C,
for a training sample i. Analogously, we can define
the NLL for the LF discriminator:

LD(l̂f i, lfi) = − logP (l̂f i = lfi) (2)

where lfi is the actual LF used for annotating sam-
ple i and l̂f i is the predicted LF by the discrimi-
nator D. Accordingly, we minimize two different
objectives within KnowMAN:

JC =
N∑

i=1

LC(C(Fs(xi); yi)) (3)

JD =

N∑

i=1

LD(D(Fs(xi); lfi)) (4)

Here the shared feature extractor has two different
objectives: i) help C to achieve better classification
performance and ii) make the feature distribution
invariant to the signals from the LFs. This is cap-
tured by the shared objective:

JFs = JC + λ · (−JD) (5)

where λ is the parameter that controls the adversar-
ial influence i.e. the degree of LF signal blur. −JD
is the reversed loss of the LF discriminator D that
represents Cs adversarial opponent. In general, the
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exact implementation or architecture of the individ-
ual modules is interchangeable and can be set up
as required. This makes KnowMAN a universally
applicable and easily customizable architecture.

3 Experiments

3.1 Data

For our experiments we use three standard datasets
for weak supervision.
Spam. Based on the YouTube comments dataset

(Alberto et al., 2015) there is a smaller Spam
dataset from Snorkel (Ratner et al., 2020) where
the task is to classify if a text is relevant to a certain
YouTube video or contains spam. This dataset is
very small and does consist of a train and a test
set only. For the 10 LFs keywords and regular
expressions are used.
Spouse. This dataset for extracting the spouse

relation has also been created by Snorkel, it is based
on the Signal Media One-Million News Articles
Dataset (Corney et al., 2016). The 9 LFs use in-
formation from a knowledge base, keywords and
patterns. One peculiarity of this dataset is that over
90% of the instances do not hold a spouse relation.
IMDb. The IMDb dataset contains movie re-

views that should be classified in terms of their sen-
timent (binary, positive or negative sentiment). The
LFs used for this dataset are occurrences of positive
and negative keywords from (Hu and Liu, 2004). A
particular characteristic of this data set is the large
amount of 6800 LFs, which constitutes a particu-
lar challenge to the Snorkel denoising framework.
As a result Snorkel fails to calculate its generative
model, since its memory consumption exceeds the
available limit of 32GB RAM.

3.2 Experimental setup

For the experiments we use two different methods
for encoding the input: i) TF-IDF encoding and
ii) a DistilBERT transformer. For TF-IDF encod-
ing, we vectorize2 the input sentences and feed
them to a simple MLP. In the transformer setting,
the sequences of words are encoded using a pre-
trained DistilBERT. Similar to BERT (Devlin et al.,
2019), DistilBERT is a masked transformer lan-
guage model, which is a smaller, lighter, and faster
version leveraging knowledge distillation while re-
taining 97% of BERT’s language understanding

2https://scikit-learn.org/stable/
modules/generated/sklearn.feature_
extraction.text.TfidfVectorizer.html

capabilities (Sanh et al., 2019).
Our encoder takes the representation of the CLS

token from a frozen DistilBERT and learns a non-
linear transformation with a drop-out layer to avoid
overfitting (Srivastava et al., 2014):

hi = DistilBERT (Sentencei)[CLS]

Fsi = Dropout(ReLU(f(hi)))

where DistilBERT (.)[CLS] generates the hidden
state of the BERT’s classifier token (CLS) and the
function f represents a linear transformation for
the ith sentence.

The classifier and discriminator networks follow-
ing the feature extractor are in line with the imple-
mentation of Chen and Cardie (2018a) for domain-
adversarial learning. Both are simple sequential
models with dropout, batch normalization, ReLU
activation and softmax as the last layer. Please see
our code for implementation details. In the TF-IDF
setup we use Adam (Kingma and Ba, 2014) for
both optimizers. When using transformer encoding
the D optimizer again is Adam and the C optimizer
is AdamW (Loshchilov and Hutter, 2018), as this
yielded more stable results.

Baselines For each input encoding we imple-
mented several baselines. Weakly supervised TF-
IDF (WS TF-IDF) and Weakly supervised Distil-
BERT (WS DistilBERT). Both calculate the labels
for each instance in the train set based on their
matching LFs. WS TF-IDF directly applies a lo-
gistic regression classifier to the input and the cal-
culated labels. WS DistilBERT directly uses the
DistilBERT uncased model for English (Sanh et al.,
2019) as a prediction model. The second baseline
(Feature TF-IDF, Feature DistilBERT) uses feature
extractor and classifier layers of KnowMAN with-
out taking the information of D into account (this
is equal to setting λ to zero). We also fine-tuned
the pure language model (Fine-tuned DistilBERT)
without further transformations and without inte-
grating the KnowMAN architecture.

We also compare with training TF-IDF and Dis-
tilBERT models on labels denoised by Snorke
(Snorkel TF-IDF, Snorkel DistilBERT). However,
Snorkel denoising failed for the IMDb data set due
to the large amount of LFs.
KnowMAN We refer to the KnowMAN archi-

tecture as TF-IDF KnowMAN and DistilBERT
KnowMAN. Depending on the dataset we choose
different λ values. We also implemented two ways
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Spam Spouse IMDb
Acc P R F1 Acc

WS TF-IDF 0.87 0.12 0.83 0.20* 0.65*
Feature TF-IDF 0.91 0.12 0.76 0.21* 0.75*
Snorkel TF-IDF 0.81 0.18 0.63 0.28* 0.50*
KnowMAN TF-IDF 0.94 0.16 0.72 0.35 0.77
Fine-tuned DistilBERT 0.92 0.14 0.78 0.24 0.70
WS DistilBERT 0.87 0.09 0.90 0.17* 0.67*
Feature DistilBERT 0.86 0.18 0.80 0.29* 0.74
Snorkel DistilBERT 0.88 0.13 0.70 0.23* 0.49*
KnowMAN DistilBERT 0.90 0.27 0.67 0.39 0.76

Table 1: Results on the test sets. The * indicates that KnowMAN performs significantly better than the marked
model. For the Spouse data set we do report significance for the F1 scores only.

of evaluation and best model saving during train-
ing: i) evaluate after each batch and save the best
model, ii) evaluate after a certain number of steps
in between the batches and save the best model.
Hyperparameters We perform hyperparameter

tuning using Bayesian optimization (Snoek et al.,
2012) for the IMDb and Spouse datasets. For Spam,
hyperparameters are not optimized, as no valida-
tion set is available. Sampling history and resulting
hyperparameters are reported in the Appendix, Fig-
ures 2, 3 as well as hyperparameters chosen for the
Spam data set.
Evaluation For the evaluation of the IMDb and

the Spam datasets we use accuracy, for the Spouse
dataset we use the macro F1 score of the positive
class. To check statistical significance we use ran-
domized testing (Yeh, 2000). Results are consid-
ered significant if ρ < 0.05.

3.3 Results

The results of the experiments are shown in Table 1.
For the TF-IDF setup KnowMAN TF-IDF outper-
forms the baselines across all datasets. We find the
optimal λ values as follows: Spam/Spouse/IMDb
= 2/5/4.9. Using the additional feature extractor
layer (Feature TF-IDF) is beneficial compared to
direct logistic regression for all datasets. Snorkel
TF-IDF can outperform the other two baselines for
the Spouse dataset only.

Fine tuning of DistilBERT can not outperform
our best KnowMAN. However, for the Spam
dataset Fine-tuned DistilBERT gives better results
than KnowMAN DistilBERT but still is worse than
KnowMAN TF-IDF. Using WS DistilBERT gives
the same results for the Spam dataset and slightly
better results for IMDb, when compared to WS

TF-IDF, for Spouse the performance decreases.
Snorkel DistilBERT can outperform the other two
baselines for the Spam dataset only. The low perfor-
mance of Snorkel on IMDb (for both DistilBERT
and TF-IDF) might be explained by the very large
amount of LF for this dataset. The KnowMAN
DistilBERT results across datasets are in line with
the TF-IDF setup - KnowMAN can outperform all
baselines for the Spouse and IMDb dataset. We ob-
serve that λ = 5 for Spouse and λ = 1 for IMDb
is most beneficial when using DistilBERT. For the
Spam dataset we observe that KnowMAN (with
λ = 2) outperforms all the baselines, except for the
fine-tuned DistilBERT model.

Discussion The performance drop we observe
with DistilBERT for KnowMAN compared to the
tf-idf setup of the IMDb dataset could be explained
by implementation details. Due to memory issues
we have to truncate the input when using Distil-
BERT. Since the movie reviews from IMDb are
rather long this could harm performance. Since
the Spam dataset is very small a single wrongly
classified instance can have great impact on the
results. This could explain why KnowMAN TF-
IDF outperforms KnowMAN DistilBERT here as
well. In general we could not perform hyperparam-
eter optimization for the DistilBERT experiments
due to memory issues. Therefore the results for
that experiments might not have reached their opti-
mum. However, the results show the value of using
KnowMAN though. Overall our results confirm
the assumption that KnowMAN enables a focus
shift of the shared feature extractor from the sig-
nals of the LFs towards signals of other valuable
information. KnowMAN consistently improves
over the other experiments significantly - except
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for the Spam dataset. We assume that the dataset
size is too small to see significant changes in the
results. Compared to the implementation of Chen
and Cardie (2018a) we could not use the special-
ized domain feature extractor for our datasets in
the experiments. This is due to the fact that our test
sets do not contain information about LF matches.
However, we will address this issue by integrating
a mixture of experts module for the specialized
feature extractor as recommended by Chen et al.
(2019).

4 Related Work

Adversarial neural networks have been used to re-
duce the divergence between distributions, such as
Goodfellow et al. (2014), Chen et al. (2018) and
Ganin and Lempitsky (2015). The latter proposed
an architecture for gradient reversal and a shared
feature extractor. Unlike us, they focused on a bi-
nary domain discriminator. Similarly, (Chen and
Cardie, 2018a) use an adversarial approach in a
multinomial scenario for domain adaptation.

Some works on adversarial learning in the con-
text of weak supervision focus on different aspects
and only share similarity in name with our ap-
proach: Wu et al. (2017) use virtual adversarial
training (Miyato et al., 2017) for perturbing input
representations, which can be viewed as a general
regularization technique not specific to weakly su-
pervised learning. Qin et al. (2018); Zeng et al.
(2018) use generative adversarial mechanisms for
selecting negative training instances that are dif-
ficult to discriminate from heuristically annotated
ones for a classifier.

Several approaches have focused on denoising
the labels for weakly supervised learning (Taka-
matsu et al., 2012; Manning et al., 2014; Lin et al.,
2016). Snorkel (Ratner et al., 2020) is one of the
most general approaches in this line of work. How-
ever, Snorkel only models biases and correlations
of LFs, and does not consider problems of weak su-
pervision that may stem from biases in the features
and learned representations.

A recent approach that focuses on denoising
weakly supervised data is (Sedova et al., 2021).
Knodle is a framework for comparison of different
methods that improve weakly supervised learning.
We use some of their datasets for our approach but
denoise the signals of the LFs during training.

5 Conclusion

We propose KnowMAN - an adversarial neural net-
work for training models with noisy weakly super-
vised data. By integrating a shared feature extrac-
tor that learns labeling function invariant features,
KnowMAN can improve results on weakly super-
vised data drastically across all experiments and
datasets in our setup. The experiments also show
that the adverse effect of labeling function-specific
signals is highly dependent on the datasets and their
properties. Therefore, it is crucial to fine-tune the λ
parameter on a validation set to find the optimal de-
gree of blurring the labeling function signals. Since
the modules in the KnowMAN architecture are eas-
ily exchangeable, KnowMAN can be applied to
any architecture and dataset labeled with heuristic
labeling functions.
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A Appendix

A.1 Dataset statistics
The datasets used for the KnowMAN experiments
have different properties. Especially the numer of
labeling functions and the dataset sizes varies a lot.

dataset classes train/test samples lfs
Spam 2 1586/250 10

Spouse 2 22254/2701 9
IMDb 2 40000/5000 6786

Table 2: Dataset statistics for KnowMAN experiments.
Lfs are labeling functions.

A.2 Hyperparameter optimization
We perform hyperparameter tuning using Bayesian
optimization (Snoek et al., 2012). Bayesian Opti-
mization is an approach that uses the Bayes Theo-
rem to direct the search in order to find the mini-
mum or maximum of a black-box objective func-
tion. In comparison with random search and grid
search, it tends to obtain better hyperparameters in
fewer steps by making a proper balance between
exploration and exploitation steps. Our hyperpa-
rameter space includes batch size, dropout, number
of iterations over D, the shared hidden size of the
models, learning rate for D and Fs, C and the num-
ber of layers of C,D and Fs. We implemented
two ways of evaluation and best model saving dur-
ing training: i) evaluate after each batch and save
the best model, ii) evaluate after a certain number
of steps in between the batches and save the best
model. We also optimized the number of steps if
logging in between a batch.

We evaluated the models for IMDb and Spouse
on the respective validation set. For the Spam
dataset, there is no development set available
and we used the following hyperparameters for
KnowMAN TF-IDF following the parameters used
in Chen and Cardie (2018b): Batch size: 32,
dropout: 0.4, n critic: 5, lambda: 2.0, shared
hidden size: 700, learning rate C & F: 0.0001,
learning rate D: 0.0001 , number of F layers: 1,
number of C layers: 1, number of D layers: 1.

A.3 Experimental details
We ran our experiments on a DGX-1 server with
one V100 GPU per experiment. The runtime of
one model depends on the dataset: 0.25 hours for
the Spam dataset, 0.25 hours for the Spouse dataset,
and 8 hours for the IMDb dataset.

Please find our implementation at https://
github.com/LuisaMaerz/KnowMAN.
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Figure 2: Sampled hyperparameters for KnowMAN TF-IDF on IMDb. Optimal hyperparameters are indicated in
red.
Batch size: 895, dropout: 0.275, n critic: 50, lambda: 4.9, shared hidden size: 585, learning rate C & F:
0.0001, learning rate D: 0.0001, number of F layers: 1 , number of C layers: 1, number of D layers: 10.
Histograms on the diagonal show how, for each hyperparameter, how many samples have been drawn during
optimization.
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Figure 3: Sampled hyperparameters for KnowMAN DistilBERT on Spouse. Optimal hyperparameters are indi-
cated in red.
Batch size: 16, dropout: 0.379, n critic: 1, lambda: 5.0, shared hidden size: 988, learning rate C & F: 0.0005,
learning rate D: 0.001 , number of F layers: 5, number of C layers: 10, number of D layers: 1.
Histograms on the diagonal show how, for each hyperparameter, how many samples have been drawn during
optimization.
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Abstract
Weak supervision is leveraged in a wide range of domains and tasks due to its ability to create massive
amounts of labeled data, requiring only little manual effort. Standard approaches use labeling functions to
specify signals that are relevant for the labeling. It has been conjectured that weakly supervised models
over-rely on those signals and as a result suffer from overfitting. To verify this assumption, we intro-
duce a novel method, XPASC (eXPlainability-Association SCore), for measuring the generalization of
a model trained with a weakly supervised dataset. Considering the occurrences of features, classes and
labeling functions in a dataset, XPASC takes into account the relevance of each feature for the predic-
tions (explainability) of the model as well as the connection of the feature with the class and the labeling
function (association), respectively. The explainability is measured using occlusion in this work. The asso-
ciation in XPASC can be measured in two variants: XPASC-CHI SQUARE measures associations relative
to their statistical significance, while XPASC-PPMI measures association strength more generally.
We use XPASC to analyze KNOWMAN, an adversarial architecture intended to control the degree of
generalization from the labeling functions and thus to mitigate the problem of overfitting. On one hand,
we show that KNOWMAN is able to control the degree of generalization through a hyperparameter. On
the other hand, results and qualitative analysis show that generalization and performance do not relate
one-to-one, and that the highest degree of generalization does not necessarily imply the best performance.
Therefore methods that allow for controlling the amount of generalization can achieve the right degree of
benign overfitting. Our contributions in this study are i) the XPASC score to measure generalization in
weakly-supervised models, ii) evaluation of XPASC across datasets and models and iii) the release of the
XPASC implementation.
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2 XPASC, März et.al

1. Introduction
Many machine learning architectures still require large amounts of labeled training data, result-
ing in static data sets with limited usability for changing data distributions or task definitions.
Manual annotation is both expensive and time-consuming and thus not always practically feasible
or convenient. One way to circumvent this problem is to use weak supervision. Weak supervision
methods utilize different knowledge sources such as knowledge bases, heuristics, or taxonomies to
annotate large amounts of data automatically. The knowledge of the external sources is encoded
in labeling functions, programmatically specified heuristics (e.g., keywords, patterns, database
lookups) that trigger the automatic annotation of a specific output. A labeling function can also
be thought of as a decision rule that is defined based on prior (expert) knowledge. If this rule is
matched, the appropriate output is assigned to the instance. Due to the fact that labeling functions
only consider a narrow context for triggering an annotation, it is likely that some weak labels are
noisy and/or imprecise. Moreover, large sets of weakly annotated instances all follow similar pat-
terns (captured by the same labeling function), and it has been conjectured that weakly supervised
models rely too heavily on the labeling functions and therefore suffer from overfitting (März et al.
2021; Dehghani et al. 2017).

Approaches to tackle the problem of noisy weak labels can be categorized into two main
groups: Those who try to filter out the noisy labels for training (Ren et al. 2020; Sukhbaatar
et al. 2014; Dehghani et al. 2017) and those who try to estimate the accuracy of the labeling
functions or the weak sources (Fu et al. 2020; Ratner et al. 2020). See Zhang et al. (2022a) for
a detailed survey on weak supervision approaches and labeling function modeling. None of them
addresses the problem of overfitting to (or, inversely, generalization from) labeling functions. As
an alternative, we developed KNOWMAN (März et al. 2021), an adversarial architecture with
the objective to shift the focus for the learned representation of a model away from the label-
ing functions towards a more general representation. This is achieved through a hyperparameter
that controls the influence of the labeling functions on the feature representation. KNOWMAN
has explicitly been designed to overcome the problem of overfitting to the noisy labeling func-
tion signals. However, while training in the KNOWMAN-settings increases the prediction quality
for the studied weakly supervised neural networks, it could not be directly evaluated whether the
KNOWMAN actually increases generalization from the labeling functions.

In this study, we present XPASC (eXPlainability-Association SCore) to observe generaliza-
tion from noisy signals in weakly supervised models more closely. The intuition behind the score
is that models suffering from overfitting to labeling functions have a low ability to generalize,
and will heavily rely on features associated with labeling functions for prediction. Generalization
in the scope of this work means the capability of a model to abstract from the labeling func-
tion signals and to learn representations based on various signals and parts of the input. A higher
generalization should ultimately lead to the representation being more robust against mislead-
ing labeling functions and being able to represent the input with as many aspects as possible.
Accordingly, a greater generalization from the weak source indicates a smaller degree of overfit-
ting. In this work we consider the strongly information-carrying surface forms, i.e. the individual
tokens, of an instance as features. By using XPASC the generalization ability of a model, given a
data set, can be measured. The score combines the relevance of each feature for the prediction of
a weakly supervised model (explainability) with the connection of the feature with the class and
the labeling function (association).

To measure prediction relevance of the single features we leverage a method from XAI
(eXplainable AI), namely occlusion. In general, XAI methods aim to give insights into the out-
put of machine learning models to make internal processes more transparent to users. Taking into
account the explainability method is central to the analysis with XPASC, and also represents an
unconventional use case of XAI.

5.2. XPASC: Measuring Generalization in Weak Supervision
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To compute association in XPASC we propose two different methods: XPASC-CHI SQUARE
which relies on statistical association strength, and XPASC-PPMI which measures the more
general information-theoretic association strength.

Apart from introducing the formal details of XPASC, we study KNOWMAN and WEASEL as
well as two traditional weak supervision approaches, MAJORITY VOTE and SNORKEL-DP (Data
Programming), with respect to their generalization, as measured by XPASC. Our findings show
that the KNOWMAN architecture is able to control the degree of generalization in direct relation
to its hyperparameter λ . In fact, KNOWMAN can get the model to focus more on words that
are associated with the class (generalize more), and even ignore features highly associated with
single, misleading labeling functions.

We have observed that the generalization of a model and its performance are not one-to-one
related, and that at a certain point there can be too much generalization from the weak signals.
Our observations show that the two different association computations, PPMI and CHI SQUARE,
behave analogously in the overall picture. However, we find that the values of the association based
on PPMI are distributed across a larger space. This means that PPMI also takes into account the
”long tail” of data sets and presents the reality in the data more straightforwardly. The values of the
CHI SQUARE-based association, on the other hand, have a denser distribution. So CHI SQUARE
also appears to be more resilient to outliers in the data.

Our main contributions in this paper are:r the proposal and detailed introduction of XPASC to measure generalization from weak
signalsr the evaluation of XPASC across models and data setsr the confirmation of the hypothesis and functionality of KNOWMANr the release of the XPASC implementationa.

The remainder of the paper is structured as follows: After investigating related work in the
fields of weak supervision and overfitting metrics we describe the method the XPASC formally.
Section §4 gives an overview over models and data sets used in this work. The analysis is divided
in quantitative and linguistic results and followed by the conclusion.

2. Related Work
We consider the concepts of overfitting and generalization to be related in that overfitting can
be a result of low generalization. In the weak supervision context, this means that a model that
abstracts little from the labeling functions, i.e. has low generalization, is more likely to overfit to
these misleading signals. In the following we present approaches that focus either on overfitting
or on generalization. Some are tailored to weak supervision, while others deal with overfitting and
generalization in natural language processing in general.

Overfitting of machine learning models has been repeatedly identified as a problem. In machine
learning generally, overfitting means that a model has adapted too much to the training data and
can therefore no longer perform well on newly seen data. Model performance on unseen data or
held-out test sets is therefore typically used as an indicator for overfitting. If the result on unseen
data is much worse than on training data it is likely that the model overfitted to the training data.
Salman and Liu (2019) analyze the training dynamics and the application of models to unseen
data to observe overfitting. Other works measure overfitting by the total number of parameters,
where a low number of parameters indicates less overfitting than a high number of parameters. (Li
et al. 2019) measure overfitting through the number of parameters of a model and its accuracy on
the test set.

ahttps://github.com/LuisaMaerz/XPASC
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Roelofs et al. (2019) analyze overfitting caused by test set reuse on a large set of Kaggle com-
petitions. The assumption is that if many models are centered towards one test set, overfitting of
the models to that test set is likely. However, with their experiments they show that there is no
significant overfitting due to test set reuse in Kaggle. Roelofs et al. (2019) provide a simple mea-
surement for the adaptivity gap between the losses on train and test set. Here they use the fact that
Kaggle provides two types of test sets with which this gap can be approximated very well. Unlike
us, they cover overfitting to test set reuse rather than overfitting to labeling functions.

Due to the nature of weak supervision, models may overfit to systematic errors and biases
introduced by the automatic labeling process. Yu et al. (2021) fine tune a pre-trained language
model with weak supervision. This is challenging, because large language models have a higher
risk to overfit due to their large amount of parameters anyways. Errors are more propagated due
to overfitting, which degrades performance and prevents the models from learning properly. Yu
et al. (2021) tackle this issue by contrastive self-training, what can be considered as denoising
in the first place and reduces error propagation and overfitting to the noise. In their experiments,
they use RoBERTa (Liu et al. 2019) and fine-tune a simple classification head. Like us, they use
MAJORITY VOTE (exact match in their work) and SNORKEL-DP for weak labeling. However,
they do not specifically address the impact of overfitting to labeling functions. As in our previous
work with KNOWMAN (März et al. 2021), their model aims at learning better representations
from weakly labeled data. Unlike us, they use a contrastive approach that pulls labels with simi-
lar weak supervision signals closer together and pushes others further away in the feature space,
rather than an adversarial network as in KNOWMAN. In recent work Zhang et al. (2022b) propose
the source-aware Influence Function to understand programmatic weak supervision. By observ-
ing changes in the loss of a model while utilizing the source-aware influence function, they gain
insights in the influence of single data points, labeling functions or weak sources on model per-
formance. Like us, they aim to identify important parts of the input to make the model output
more explainable. Similar to KNOWMAN, they try to reduce the impact of misleading labeling
functions on model training. Although they provide some insight into what influences the training
through the source-aware influence function, they do not use this information to compare different
models, which is different from our work.

Generalization refers to a model’s ability to perform well on unseen data, i.e., a model gener-
alizes well if it overfits only slightly. For example Ratner et al. (2019) consider generalization of
weak supervision sources observable through the estimation error of their trustworthiness. They
claim that the generalization error scales with the number of unlabeled data points and try to mini-
mize the loss for predicting weak labels without loss of generality. By connecting generalization to
the estimation error, generalization is not only observable, but also controllable. Like our metric,
this can be viewed as a formal measurement of generalization. Unlike our metric, their measure
is tightly coupled with their specific weak supervision approach and not generally applicable as a
universal tool to compare generalization across models and data sets.

Many weak supervision approaches try to overcome a lack of generalization by denoising the
weak sources (Ren et al. 2020; Hsieh et al. 2022). In contrast to these approaches, we address the
issue of generalizing from weak supervision sources, instead of denoising them. Fu et al. (2020)
provide a weak supervision framework to model and label data by leveraging different weak super-
vision sources. In addition, they provide a bound for generalization. To do so, they measure the
performance gap between the end model parametrization using outputs of the label model and
the optimal end model parametrization over the true distribution of labels. More efforts can be
mentioned in studying generalization in general, e.g., measuring number of required “strong”
labels (Robinson et al. 2020), studying generalization in algorithmic datasets (Power et al. 2022),
generalization in generative models by measuring the uniqueness of generated sample (Mauri
et al. 2022).

Although there is work on both overfitting and generalization, and both are considered to be
important issues in weak supervision, to the best of our knowledge XPASC is the first universal
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Figure 1. Modules of XPASC: product of eXPlainability and Association. The eXPlainability of a feature of an
instance is calculated by the KL divergence of the class predictions for the entire instance and the instance
without the respective feature. For each instance the explainability for all features is computed and the most
important feature can be obtained. The Association for an instance given a feature is calculated as the difference
of the association of the feature with the class and with the labeling function, which in practice is a matrix lookup.
The matrices are computed in advance and are based on coocurrences of features, classes and labeling functions
in the data corpus.

score measuring overfitting to and generalization from labeling functions in weakly supervised
models. Moreover, since our approach is based on explainability methods, it makes transparent
which features are mainly responsible for overfitting or generalization.

3. The Explainability-Association Score
The goal of XPASC is to measure generalization from weak signals for weakly supervised mod-
els. The intuition behind XPASC is that input parts or features that are most important for the
class prediction of these models are highly associated with the heuristics used for annotating the
training data. This is due to the fact that the model relies too much on the labeling functions and
therefore tends to ignore other valuable signals for classification.

XPASC measures to what degree a model, trained with a weakly labeled data set, can gener-
alize from the information associated with the features, classes and labeling functions present in
the data. Several considerations such as how important featuresb are for the classification and how
much features, classes and labeling functions are correlated are taken into account. Therefore
XPASC is composed of three parts: i) the explainability of each feature for a model, ii) its
association with the class, and iii) its association with the labeling function. Note that both explain-
ability and association contribute equally to XPASC. To calculate explainability, we use occlusion
(Zeiler and Fergus 2014). The association strength is measured either with the PPMI or the CHI
SQUARE-score. See Figure 1 for an illustration of XPASC.

3.1 Explainability
The term explainability expresses how important a single feature is for the classification of an
instance, i.e., how the class prediction changes if the feature is omitted, masked or changed. To
determine the importance of each feature of an instance for the classification task, we use the
explainability method of occlusion. The idea for occlusion originally came from computer vision
proposed by Zeiler and Fergus (2014), and since then it has been also used for Natural Language
Processing, e.g., by Harbecke and Alt (2020), or Ancona et al. (2018).

bIn this work, by features we mean the observable tokens of an input instance, in contrast to learned features from a network.
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We perform occlusion in four steps as follows: we pass i) our input instance through our model
and ii) the instance without the feature through the model. Explainability is then computed by
iii) retrieving the prediction probabilities from both, and iv) calculating the Kullback-Leibler-
Divergence (Kullback and Leibler 1951):

DKL(P||Q) = ∑
x∈ X

P(x) log
(

P(x)
Q(x)

)
(1)

where P and Q are discrete probability distributions and X is a shared probability space.
By computing how different two probability distributions are, the Kullback-Leibler-Divergence
indicates how much the occlusion affects the prediction in our case. Accordingly, we define the
explainability of an instance and a feature as:

Sxp(i, f ) = DKL (P(i)||Q(i \ f )) (2)

where P(i) is the model prediction for the entire instance and Q(i \ f ) is the model predic-
tion for the instance with feature f omitted. Note that both predictions are vectors of probability
distributions over the set of possible classes. The smaller this difference of the two probabil-
ity distributions, the less important the feature is for the classification result. In any case, the
Kullback-Leibler-Divergence is between zero and one. The highest explainability is assigned
to the features where the two prediction distributions differ the most, i.e., where the prediction
changes greatly if the feature is omitted.

3.2 Association
Association measures the degree of correlation between observations. To find out how much a
feature is correlated with its class and with its labeling function we calculate two association
matrices with the following shapes:

|C|= classes× f eatures

|L|= labeling f unctions× f eatures

where C is the association matrix for classes and L is the matrix for labeling functions. The
details for the matrix calculation are explained in section 3.2.1 and section 3.2.2. During the
calculation of XPASC, the respective association value is looked up in the matrices for each
feature given its class and its labeling function. To put both associations (feature and class/ feature
and labeling function) in relation we subtract their scores and arrive with the overall association
for a feature given its instance:

Sasc(i, f ) =
N

∑
j=1

(
Cci f −Lli

j f

)
(3)

where we iterate over all matching labeling functions l for instance i. Variable f denotes the
feature, Cci f is the value of the association-matrix with respect to the class label of instance i, ci,
and Lli

j f the value for the j’th matching labeling function, li
y. By computing association that way

the result can either be positive, negative or zero. Depending on the exact result, the score can then
be interpreted directly. The larger (positive) Sasc, the more feature f is associated with the class,
the smaller (negative) Sasc, the more feature f is associated with the labeling function. The closer
the score is to zero, the more similar the association of the feature with the class and the labeling
function.
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Association can be modeled in different ways. We calculate it in two manners: using i) a chi
squared test or ii) the positive pointwise mutual information.

3.2.1 CHI SQUARE-based association
For this option we calculate the association matrices based on univariate feature selection. This
works by selecting the best features based on univariate statistical tests, in our case a chi squared
(χ2) test.

CHI SQUARE(z, f ) =

(
oz f − õz f

)2

õz f
(4)

where f is the feature, z represents a label (either class label or labeling function), oz f is the
absolute frequency of the combination of class/ labeling function and a feature (observed value)
and õz f is the expected value of the absolute frequency of the combination of class / labeling
function and a feature.

The χ2 test measures the dependence between the features and the class/labeling function.
Features with a high CHI SQUARE score are likely to be independent of the class/labeling function
and therefore more irrelevant for the classification. The smaller the CHI SQUARE result, the more
a feature is related to the class/labeling function and, consequently, the more important it is. Note
that the CHI SQUARE association expresses which of the features are most associated with the
class and include positive as well as negative correlation. Thus also negative examples can be
found among the most associated ones, e.g. “brother” can have a very high association with the
“married to” relation, although it is a negative indicator for that relation.

Formulas 5 and 6 define how to calculate one matrix entry for a feature and its corresponding
class/ labeling function.

C CHI SQUARE
c f = CHI SQUARE(c, f ) (5)

L CHI SQUARE
l f = CHI SQUARE(l, f ) (6)

where c is the class, l the labeling function and f the feature.

3.2.2 PPMI-based association
As a second option we calculate the positive pointwise mutual information (Equation 8), where
only the positive results of the pointwise mutual information (Equation 7) are taken into account.
Assuming independence of two variables (in our case: a feature and a class/labeling function)
PMI quantifies the discrepancy between the probability of their coincidence given their individual
distributions and their joint distribution.

PMI( f , z) = log
(

P( f , z)
P( f )P(z)

)
(7)

PPMI( f , z) =

{
PMI, if PMI > 0

0 else
(8)

where f is a feature, z a label (either class label or labeling function), P( f , z) the joint probabil-
ity of a feature and a label, P( f ) the probability of the feature and P(z) the probability of a label.
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Formulas 9 and 10 define how to calculate one matrix entry for a feature and its corresponding
class/ labeling function.

CPPMI
c f = PPMI( f , c) (9)

LPPMI
l f = PPMI( f , l) (10)

where c is the class, l the labeling function and f the feature.

3.3 The Combined Score: XPASC
XPASC (eXPlainability Association SCore) combines both explainability and association for one
data set and a model. It measures how important each feature of an instance is and if it is more
correlated with the class or with the labeling function. By multiplying the two measures and
summing up over all instances and features we obtain:

SXPASC(d, m) = 1 +

(
1

N ×M

N

∑
i=1

M

∑
f=1

Sxp(i, f )× Sasc(i, f )

)
(11)

where d is the data set, m is the pre-trained model, N is the number of instances and M is
the number of features. To make sure that XPASC is comparable across models and data sets
we normalize by the data set size (number of instances times the number of features). Multiplying
both components gives small negative values, so we add one to the result to make the final XPASC
value above zero. The multiplication allows to put the importance of a feature in relation to its
association with the class and the labeling function.

The sharpness of the explainability measure could be increased by a temperature hyperparam-
eter γ for putting the focus only on the most relevant features (γ→∞) or equally on all features
(γ→ 0), changing the XPASC formula as follows: (Sxp(i, f )γ)× (Sasc(i, f )). In this work, we
considered the unchanged importance as given by the explainability algorithm (γ = 1).

Thus, a high XPASC indicates that many of the most important features (those that are effec-
tively used for prediction) are correlated with the class instead of the labeling function. We
can conclude that a high XPASC indicates more independence from the labeling functions and
accordingly a greater generalization from the weak source. This also indicates a smaller degree of
overfitting to the weak signals. Note that the results of CHI SQUARE-based XPASC and PPMI-
based XPASC are scaled differently. This is due to their different characteristics, as well as the
specific result values of the two calculations.

4. Weak Supervision Methods and Datasets
For our experiments we study four different weak supervision approaches, KNOWMAN,
MAJORITY VOTE, SNORKEL-DP (Data Programming) (Ratner et al. 2020) and WEASEL
(Cachay et al. 2021). Of those, only KNOWMAN provides an explicit mechanism for control-
ling the degree of generalization from the labeling functions. The latter three methods have been
developed without any mechanism to control generalization.

Experiments are conducted for four classifications tasks: sentiment analysis, spam detection,
detection of the spouse relationship and question classification. Four data sets that are common in
weak supervision are used, which are SPAM, SPOUSE, IMDb and TREC, see Section 4.2.

5.2. XPASC: Measuring Generalization in Weak Supervision
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Figure 2. KNOWMAN architecture. One iteration for a pass of one batch of inputs. The correct class and labeling
function for the example instance are highlighted. The parameters of C and F are updated together, the labeling
function discriminator D is updated with a separate optimizer. Solid lines indicate forward, dashed lines the back-
ward passes. ∇ indicates the (reversed) gradient. Before entering F the gradient is flipped. The influence of D can
be controlled by hyperparameter λ . Strength of λ equals generalization strength.

4.1 Models
We use a pre-trained DistilBERT language model to encode the input texts. Similar to BERT
(Devlin et al. 2019), DistilBERT is a masked transformer language model, which is a smaller,
lighter, and faster version leveraging knowledge distillation while retaining 97% of BERT’s
language understanding capabilities (Sanh et al. 2019).

To arrive with the DistilBERT input encodings we first tokenize the texts using the DistilBERT
tokenizer. After that, the tokenized input is converted to the DistilBERT transformer encod-
ing, consisting of the input ids as well as the attention mask. We use that representation across
KNOWMAN, SNORKEL-DP and MAJORITY VOTE models.

For WEASEL we encode the input using RoBERTa (Liu et al. 2019), a optimized version of
the BERT language model, because DistilBERT is not supported by WEASEL.

4.1.1 KNOWMAN
In previous work we proposed KNOWMAN (März et al. 2021). The ultimate goal of KNOWMAN
is to learn a feature representation that is invariant to the labeling functions which annotated the
weakly supervised data. We showed that this representation is more general and more robust to
incorrect classes that have been assigned by the labeling functions.

The architecture is designed as an adversarial model and contains three modules: i) a shared
feature extractor F , ii) a classifier C and iii) a labeling function discriminator D. See Figure 2 for
an illustration of the architecture. The classifier C is trained to predict the labels of a downstream
task. The gradient of the loss function is used to optimize the classifier itself as well as the shared
feature extractor. At the same time, the discriminator D is learned to distinguish between the
different labeling functions and should predict which of the labeling functions was responsible
for labeling an instance. The gradient of the discriminators loss function is used to optimize D. In
addition, the reversed gradient of D is used to optimize the feature extractor F . This adversarial
update leads to a weakening of the labeling function discrimination information and therefore to
a better generalization. KNOWMAN uses a hyperparameter λ to control the level of weakening
the signals. Consequently, XPASC allows us to study how changes in λ affect the degree of
generalization of trained KNOWMAN models.

KNOWMAN is implemented as follows: the discriminator D is trained with a separate opti-
mizer than C and F . When D is trained, the parameters of C and F are frozen and vice versa. The
losses for both, the classifier and the discriminator, are computed using negative log-likelihood
(NLL). The classification NLL can be formalized as:

5. Model-Centric Knowledge Supervision
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Table 1. KNOWMAN results on the test sets.

SPAM SPOUSE IMDb

Acc P R F1 Acc

MAJORITY VOTE TF-IDF 0.87 0.12 0.83 0.20 0.65

BLIND KNOWMAN TF-IDF 0.91 0.12 0.76 0.21 0.75

SNORKEL-DP TF-IDF 0.81 0.18 0.63 0.28 0.50

KNOWMAN TF-IDF 0.94 0.16 0.72 0.35 0.77

Fine-tuned DistilBERT 0.92 0.14 0.78 0.24 0.70

MAJORITY VOTE DistilBERT 0.87 0.09 0.90 0.17 0.67

BLIND KNOWMAN DistilBERT 0.86 0.18 0.80 0.29 0.74

SNORKEL-DP DistilBERT 0.88 0.13 0.70 0.23 0.49

KNOWMAN DistilBERT 0.90 0.27 0.67 0.39 0.76

LC(ĉi, ci) =− log P(ĉi = ci) (12)

where ci is the (weakly supervised) annotated class and ĉi is the prediction of the classifier
module C , for a training sample i. Analogously, the NLL for the labeling function discriminator is
defined as:

LD(l̂i, li) =− log P(l̂i = li) (13)

where li is the actual labeling function used for annotating sample i and l̂i is the predicted
labeling function by the discriminator D.

The results of the experiments with KNOWMAN are shown in Table 1. As mentioned above,
we encode the inputs with DistilBERT. In März et al. (2021) we did that for the experiments with
KNOWMAN as well and additionally encoded the input with TF-IDF. Table 1 reports the results
for experiments with both, DistilBERT and TF-IDF encodings. The baselines are a MAJORITY
VOTE model as well a SNORKEL-DP model. The functionality of both models is explained in
section 4.1.2. For DistilBERT encoded input we also trained a fine-tuned DistilBERT model and
utilized it for prediction.

We refer to the KNOWMAN model with a λ value of zero as BLIND KNOWMAN. Setting λ
to zero means disabling the generalization mechanism, because the feature extractor F is blind
for the loss of the discriminator D. KNOWMAN TF-IDF and KNOWMAN DistilBERT refer to
a KNOWMAN model with optimal λ (tuned on the dev set through Bayesian hyperparameter
optimization) for the respective dataset. KNOWMAN is able to outperform the baselines for all
data sets. The only exception is fine-tuned DistilBERT, which performs better for SPAM.

4.1.2 Models without generalization mechanism
We also study three methods with no generalization control. This demonstrates that XPASC
allows highlighting generalization across different approaches. The first method is majority
voting. The second approach follows the data programming paradigm (DP) proposed by Ratner
et al. (2016). The third approach (Cachay et al. 2021), WeaSEL, aims to learn in an end-to-end
fashion from the labeling function output directly.

MAJORITY VOTE. For the majority vote classifier a matrix that holds the mapping between
each labeling function and the corresponding class (the labeling function it is associated with)
is needed. For each instance of the train set it is checked which labeling functions apply. Based
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Table 2. Statistics on data set sizes. Size after filtering is the size of the data sets after instances without labeling
function matches were filtered out.

Data set original size size after filtering percentage of original size labeling functions

SPAM 1586 1382 87.1 10

TREC 4965 4723 95.1% 68

SPOUSE 22254 5734 25.8% 9

IMDb 40000 39998 99.9% 6786

on this information it is looked up which class each matching labeling function would assign to
the instance and if there is a majority for one class among them. If so, the class is assigned. If
not, the class is either chosen at random from among the matching classes, or another special
class is assigned to this instance. After labeling the training data in this way, we use the uncased
DistilBERT model provided by Hugging Face (Wolf et al. 2019) as the prediction model.

SNORKEL-DP. We also compare to training models on labels denoised by SNORKEL-DP
(Data Programming) (Ratner et al. 2020). To do this, we use Knodle’s SNORKEL-DP wrapper
(Sedova et al. 2021), where first a generative SNORKEL-DP model is learned, generating weak
labels for the instances, and then a classification model (used for prediction) is trained with those
labels. SNORKEL-DP works with a set of given labeling functions and learns a label model that
focuses on the conflicts and agreements between the labeling functions to estimate their accuracy.
For each labeling function an accuracy value is estimated to weigh their votes on each instance.
Taking into account the weighted labeling functions, the label model can assign a probabilistic
class to each instance and arrives with a weakly supervised data set. As with MAJORITY VOTE,
the prediction model trained on the weak labels is uncased DistilBERT. The cross-entropy loss is
optimzed on the probabilistic SNORKEL-DP labels.

WEASEL. In addition, we train models with WEASEL, an end-to-end model for weak super-
vision that does not take the noisy weak class labels, but the labeling function output as input for
model training (Cachay et al. 2021). The approach produces accuracy scores for each labeling
source (in our case labeling function) and trains both a neural encoder and a downstream model
at the same time on the same loss by using each other’s predicted labels as input. We use the
WEASEL implementation of Zhang et al. (2021), train with the default hyperparameters and use
RoBERTa as an encoder.

4.2 Data sets
For our experiments we use four standard data sets for weak supervision. In addition to the three
binary data sets covered by KNOWMAN (SPAM, SPOUSE, IMDb) we also study one multi class
data set (TREC). While SPAM, TREC and IMDb are classification tasks, SPOUSE addresses
relation extraction.

4.2.1 SPAM
SNORKEL-DP provides a small subset of the YouTube comments data set (Alberto et al. 2015)
where the task is to classify whether a text is relevant to a certain YouTube video or contains
spam. Ten different labeling functions are used to assign the classes, mostly based on keywords
and regular expressions. In contrast to other datasets, no development set is provided for SPAM,
which is not relevant for XPASC but for downstream task training.

5. Model-Centric Knowledge Supervision
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4.2.2 TREC
Another text classification data set is TREC which was proposed by (Li and Roth 2002) and
addresses question classification. The data set contains automatically retrieved as well as manu-
ally constructed questions from six different classes. Multiple classes can be assigned for each
instance, but the authors chose to design TREC as a single-class dataset. Therefore, the data set
was manually annotated with one class per instance. However, the result of the initial overlapping
of classes for each instance is that TREC is difficult to learn. We use the version of the data set
provided by Zhang et al. (2021) within the WRENCH framework, containing 68 keyword-based
labeling functions which have been generated by Awasthi et al. (2020).

4.2.3 SPOUSE
This data set addresses a binary relation extraction problem and aims to identify the spouse relation
in text snippets. It has also been created by SNORKEL-DP and is based on the Signal Media One-
Million News Articles Data set (Corney et al. 2016). The nine labeling functions use information
from a knowledge base, keywords and patterns. One peculiarity of this data set is that it is very
skewed, with over 90% of the instances not holding a spouse relation.

4.2.4 IMDb
The largest data set we use is IMDb, which contains movie reviews and is based on the data set
from Maas et al. (2011). We use the IMDb version compiled by Sedova et al. (2021). All of the
labeling functions used for this data set are occurrences of positive and negative keywords from Hu
and Liu (2004). The addressed task for IMDb is binary sentiment analysis, classifying the reviews
as either positive or negative. Unlike for the other two data sets, there are 6800 labeling functions
for IMDb, which constitutes a particular challenge to the SNORKEL-DP denoising framework.

5. Experiments with XPASC
We present here the setup and findings of our analysis of different models, using XPASC. We
evaluated XPASC both quantitatively across all models and with a qualitative feature analysis for
KNOWMAN.

5.1 Evaluation settings
Since we want to calculate the correlations in XPASC on a representative amount of data for
one data set, we use the train sets for the XPASC computations. Moreover, in a practical weak
supervision setting (where XPASC might be used, e.g. for model selection), the existence of
labeled development and test sets cannot be assumed, and the XPASC calculation needs to rely
on weakly labeled training data only.

When using weak supervision to assign classes with labeling functions it can happen that
instances do not have a labeling function match. Especially, for SPAM and SPOUSE many
instances lack a labeling function match. Therefore, we filter out those instances with no label-
ing function matches for all our experiments and arrive with smaller data sets. For IMDb and
TREC the number of instances does only change slightly, since there are very few instances with-
out labeling function matches. Fortunately, the already very small SPAM data set does not get
much smaller after filtering. For SPOUSE, we observe the greatest difference and only 25% of the
original data set remain after filtering. See Table 2 for the data set sizes of the train sets.

In contrast to the results reported in März et al. (2021), we average results across 15 different
seeds for SPAM and SPOUSE and across 5 different seeds for TREC to achieve more stable
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Figure 3. Evaluation of XPASC across baselines and
KNOWMAN models for SPAM. BLIND KNOWMAN is
a KNOWMAN model with λ set to 0. KNOWMAN for
SPAM means a model trained with λ set to 2.
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Figure 4. Evaluation of XPASC across baselines and
KNOWMAN models for TREC. BLIND KNOWMAN is
a KNOWMAN model with λ set to 0. KNOWMAN for
TREC means a model trained with λ set to 0.001.
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Figure 5. Evaluation of XPASC across baselines and
KNOWMAN models for SPOUSE. BLIND KNOWMAN
means a KNOWMAN model with λ set to 0. KNOWMAN
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Figure 6. Evaluation of XPASC across baselines
and KNOWMAN models for IMDb. BLIND KNOWMAN
means a KNOWMAN model with λ set to 0. KNOWMAN
for IMDb means a model trained with λ set to 0.5.

results. Due to the size of IMDb one XPASC run takes three days. To consume less resources, we
performed one XPASC run with one seed for this data set only.

In our study of KNOWMAN with XPASC, we experiment with different values of λ . As the
hyperparameter λ is intended to control the degree of generalization, this sheds light onto the the
functionality of KNOWMAN. Specifically, it is useful for examining the hypothesis whether the
model is able to generalize from the labeling functions when tuning λ . Our expectation is that the
higher the value chosen for λ , the higher the XPASC result. With the experiments in this paper,
we want to confirm that expectation and validate KNOWMAN with XPASC and vice versa. For
MAJORITY VOTE, SNORKEL-DP and WEASEL we do not have a presumption of the XPASC
result, but assume that the score could be higher than for KNOWMAN because these models have
fewer parameters.
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5.2 Quantitative evaluation
Our quantitative evaluation includes XPASC results across all models mentioned in section 4.1, as
well as the results for different λ values for KNOWMAN. In addition, we evaluated KNOWMAN
with XPASC for both association measures, CHI SQUARE and PPMI.

5.2.1 XPASC results across all models
We calculated XPASC with CHI SQUARE-based association for MAJORITY VOTE, SNORKEL-
DP, WEASEL and KNOWMAN on all data sets.

The evaluation of SPAM (see Figure 3) shows the highest generalization for WEASEL and the
SNORKEL-DP model achieves the second highest XPASC. Generalization scores for MAJORITY
VOTE and the KNOWMAN model with the optimal λ value of 2 are similar and slightly worse
than for SNORKEL-DP. The generalization of the BLIND KNOWMAN model with the disabled
generalization mechanism is in contrast the lowest. The observations are different for the class
prediction performance of the models. Here WEASEL and KNOWMAN give the highest, whereas
MAJORITY VOTE gives the worst classification accuracy.

For TREC we observe the highest generalization for SNORKEL-DP and WEASEL (see Figure
4). Both achieve low classification numbers, although their performance differs significantly.
SNORKEL-DP achieves the lowest results and WEASEL achieves results similar to BLIND
KNOWMAN and MAJORITY VOTE. MAJORITY VOTE shows a similar classification perfor-
mance as KNOWMAN but much higher generalization. The KNOWMAN models achieve the
best classification performance, but have the lowest XPASC. Unlike for the other data sets, using
KNOWMAN decreases the XPASC value slightly.

The evaluation of SPOUSE (see Figure 5) shows a picture similar to SPAM. Again, SNORKEL-
DP achieves the highest XPASC. The scores of both KNOWMAN models are close to the
generalization score of the WEASEL model. The difference between BLIND KNOWMAN and
KNOWMAN is smaller than in the other data sets. In terms of performance, the models are ranked
differently. Both KNOWMAN models perform better than SNORKEL-DP or MAJORITY VOTE.
Indeed, the performance of SNORKEL-DP is the lowest, while this model has a high generaliza-
tion value. The WEASEL model gives unreasonably low results for both, XPASC and F1 score,
and like Stephan et al. (2022) we assume that this is due to the fact that they did not integrate large
pre-trained language models like RoBERTa in their original work.

For IMDb the results are in agreement with the insights of the other data sets (see Figure
6). Again, SNORKEL-DP gives the highest XPASC and WEASEL the second highest XPASC
result. Since BLIND KNOWMAN and KNOWMAN are only different by a λ value of 0.5, their
generalization scores are close to each other. Again, MAJORITY VOTE reaches a slightly higher
XPASC than the KNOWMAN models. The classification accuracy gives the same ranking as
for SPOUSE, except for the WEASEL model, which performs best on the IMDb data set. Both
KNOWMAN models perform better than SNORKEL-DP and MAJORITY VOTE, while having
smaller XPASC results.

Overall we observe that models without explicit generalization modeling achieve higher
XPASC values than KNOWMAN. This can be explained by the fact that these models employ
a smaller number of layers, thus are less complex and enable greater generalization more eas-
ily. The more complex a model becomes and the more parameters it consists of, the more likely
it is to overfit and thus generalization is more difficult to achieve. Another observation that can
easily be drawn from the plots is that performance and generalization are not related one-to-one.
Indeed, it seems like greater generalization often hinders performance. An explanation for this
correlation may be that more generalization leads to less (over-)fitting, what can also harm perfor-
mance. The works of Bartlett et al. (2019) and Zhang et al. (2020) show that models that overfit
to noisy data still can achieve good performance and that the noise doesn’t harm the performance
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Figure 10. PPMI-based XPASC and accuracy for
TREC across different λ values.

as much as expected. Still, Sanyal et al. (2021) claim that overfitting might not harm the perfor-
mance of a model, but its robustness and that too much overfitting makes a model vulnerable (e.g.
to adversarial attacks).

5.2.2 XPASC results across KNOWMAN models
To figure out if the degree of generalization can be controlled via the hyperparameter λ in the
KNOWMAN models, we calculate XPASC for different λ values. We calculate both, XPASC
CHI SQUARE and XPASC PPMI for SPAM, TREC and SPOUSE. For IMDb we calculate
XPASC CHI SQUARE only, to save resources.

Figures 7 and 8 show the results for SPAM. It can be clearly seen that XPASC increases with
increasing λ . The performance has its peak when using a λ value of 2.0. Both XPASC curves of
the two association options are very similar in their shape, though, we find slightly smaller values
for XPASC CHI SQUARE. To compare the two options for calculating association we draw scatter
plots that depict the performance and generalization per run and seed (see Figures 14 and 15).

5. Model-Centric Knowledge Supervision

124



16 XPASC, März et.al

0 0.5 1 2 4

0.999

0.9992

0.9994

0.9996

0.9998

1

lambda λ

XPASC

12

14

16

18

20

22

24

F1

generalization
performance

Figure 11. Chi-squared-based XPASC and F1 for
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Figure 13. Chi-squared-based XPASC and accuracy for IMDb across different λ values.

For the CHI SQUARE option the accuracy and XPASC scores are clustered clearly recognizable
for each λ value. For PPMI we observe slightly different results. Especially for lower λ s the
distributions are more mixed up. Still, both plots reflect the clustering of XPASC-values according
to the chosen λ -values, and the performance trends, nicely.

The results for TREC (see Figures 9, 10) show that KNOWMAN is sensitive to small values
of the hyperparameter λ in the multi-class setting. Using smaller λ values (in comparison to
binary models) does improve the performance of the TREC model, whereas using greater λ values
is less effective. The model with the best classification performance is trained with λ = 0.001.
With regard to XPASC, one can clearly see from the curve that smaller λ values increase the
generalization to a lesser extent than larger λ values. Moreover, the trends are less clear and
effects are more brittle in this setting.

For SPOUSE, we observe a clear positive correlation of XPASC in relation to larger λ as
well (see Figures 11, 12). Unlike for the SPAM and IMDb the curve is not strictly monotonically
increasing, however. The scatter plots with the distributions of all results across the 15 runs show
that for those λ values that cause the dips in the curve, there are some outliers that cause the
lowerings (see Figures 16 and 17). In general SPOUSE appears more challenging and unstable,
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Figure 14. XPASC-CHI SQUARE and accuracy results
of runs across 15 seeds for SPAM. Different colors indi-
cate different λ values. Numbers in brackets must be
multiplied by the subscript value, 10−4.
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Figure 15. XPASC-PPMI and accuracy results of runs
across 15 seeds for SPAM. Different colors indicate dif-
ferent λ values. Numbers in brackets must be multiplied
by the subscript value, 10−3.
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Figure 16. XPASC-CHI SQUARE and accuracy results
of runs across 15 seeds for SPOUSE. Different colors
indicate different λ values. Numbers in brackets must
be multiplied by the subscript value, 10−3.
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Figure 17. XPASC-PPMI and accuracy results of runs
across 15 seeds for SPOUSE. Different colors indi-
cate different λ values. Numbers in brackets must be
multiplied by the subscript value, 10−4.

having more outliers for both axes, XPASC and F1 score. In terms of performance, the optimum
is reached with a λ value of 0.5 and decreases drastically with λ values being higher than 1.

The XPASC curve for IMDb increases monotonically in relation to λ (see Figure 13). There
are no lowerings or peaks in the XPASC curve for this data set. As for SPOUSE, the best
performance is reached with λ = 0.5 and decreases with λ being higher than 1.

Overall, we can conclude that it is possible to control the degree of generalization for the
KNOWMAN models by using the respective hyperparameter λ . In addition, the results con-
firm our assumption that XPASC can reflect the generalization of models. As for the evaluation
across all models, it shows that performance and generalization are not the same. The highest
performance is not achieved with the greatest degree of generalization.

5. Model-Centric Knowledge Supervision

126



18 XPASC, März et.al

5.2.3 Magnitude of XPASC
The results show that the values for XPASC are very small. This is a consequence of composition
of the formula: On the one hand, the CHI SQUARE and PPMI values are low (often zero or close
to zero) already and the final association value (Formula 3) becomes even smaller due to the
subtraction. On the other hand, the explainability values come from a probability distribution and
therefore range between zero and one. By multiplying these small values, the results become even
smaller. To bring the XPASC to a range with higher magnitude values, we experimented with the
following normalization steps to calculate a scaled version of XPASC:r scaling the range of the PPMI values between zero and one by using the normalized

pointwise mutual information:

NPMI( f , z) =
PMI( f , z)

h( f , z)
(14)

where the pointwise mutual information in Equation 7 is normalized by h( f , z), with h( f , z)
being the joint self-information −log(P( f , z)).r scaling the explainability score to range between zero and one by normalizing the explain-
ability of feature f given instance i by the maximum explainability value per instance:

Sxp(i, f ) =
DKL (P(i)||Q(i \ f ))

max ({∀ f ′ ∈ i | DKL (P(i)||Q(i \ f ′))}) (15)

where P(i) is the model prediction for the entire instance and Q(i \ f ) or Q(i \ f ′) is the
model prediction for the instance with feature f or f ′ omitted.r scaling the distribution of both, explainability and association, to range between zero and
one each by using MinMax scaling:

Xstd =
(X − X .min)

(X .max− X .min)
(16)

Xscaled = Xstd × (max−min) + min) (17)

where X is the array of all values (explainability or association) and min/max indicate the
minimum/maximum value of the array.

This results in larger XPASC values, but normalizing and scaling the values can discard useful
information. To investigate if there is an information loss due to the normalizing of the score, we
compute another scatter plot that depicts the performance and generalization per run and seed for
SPAM after applying the above mentioned steps to XPASC (see Figure 18). As one can clearly
see, the individual characteristics are no longer as distinctly recognizable in the normalized version
of XPASC (right plot) as they had been before (left plot). While the values for the individual
KNOWMAN models used to be clearly separated from each other, the normalization has mixed
them up. We conclude that important information is lost due to the normalization of the values.
For this reason we accept the small values of the original formula in order to be able to optimally
represent all information.
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Figure 18. Original and normalized XPASC-CHI SQUARE and accuracy results of runs across 15 seeds for
SPAM. Different colors indicate different λ values. Numbers in brackets must be multiplied by the subscript value,
10−4.

5.3 Qualitative Feature Analysis
To confirm the functionality of XPASC qualitatively we took a close look at the data and their
linguistic features to find instances that illustrate XPASC and its components.

First, we examined the association matrices to verify that they reflect the actual association
of features, classes and labeling functions. See Tables 3 and 4 for the top five association values
(for both CHI SQUARE and PPMI) of labeling functions and features for SPAM and SPOUSE.
Because of the larger number of labeling functions we did not conduct this analysis for TREC and
IMDb.

With regard to the CHI SQUARE-based association, the association between the labeling func-
tions and the features can be understood easily. Many of the features most associated with their
labeling function would also be considered very relevant by a human. In some cases, the features
are even part of the pattern of the labeling function. For the PPMI-based association the top fea-
tures contain parts of the patterns only rarely. Note, that PPMI is very sensitive to features that
occur only once. These features obtain very high PPMI-based association scores because they
are observed exclusively with a single class or labeling function. However, since these features
all have a low frequency (occur only once), this is not a problem for the calculation of XPASC.
Still, one can find words that are part of common expressions together with the keyword of the
labeling function, e.g. “ALBUM” is associated with “my”. For SPOUSE one can find a lot of
names among the PPMI-based association. To figure out if persons are married it is plausible that
persons names are considered a lot.

The association of features with the classes is not as intuitive as for the labeling functions.
For CHI SQUARE-based association the top ten features are identical for the classes for SPAM
and almost identical for SPOUSE. Note that the CHI SQUARE-association only expresses which
features were particularly relevant for determining the class. However, the correlation of these
features with the class can be both positive (the feature is strongly associated because it gives a
clue to the correct class) and negative (the feature is strongly associated because it gives a clue
to distinguish it from other classes). The association with each class for the TREC data set is
more intuitive in some cases. Words like “odor” or “malawi” are associated with the class “human
being”, “cpr” or “p.m.” with “abbreviation”, what is plausible. On the other hand words like “make
up” are associated with “location”. Since only one gold class could be chosen by the annotators
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Table 3. Top 5 labeling function related features SPAM.

labeling function class CHI SQUARE PPMI

keyword “my” SPAM my, channel, Hey, MY, probably Cyphers, ALBUM,
TOMORROW, READING,
tvcmcadavid.weebly

keyword “subscribe” SPAM me, subscribe, to, subscribers,
subscribe

Del, Rey, Drake, Macklemore,
Pink

link SPAM V, \, STYLE, fight,
’http://youtu.be/9bZkp7q19f0’

scrubs, ./r, MontageParodies,
AND, OTHER

keyword “Please” SPAM plz, please, Please, PLEASE,
school

–, †,| , PLZZ, supporters

keyword “song” HAM song, This, songs, fun, Best spare, upcoming, uk,
rapper.please, worries

regex “Check out” SPAM out, this, on, Check, video act, retain, delightful, system,
rhythm

short comment HAM out, this, on, , and BR, sparkling-heart emoji, won-
derful, LOST?, heart emoji

has person HAM Katy, Perry, Official, Charlie,
Eminem

belle, chanson, lost?, clean,
Eminem

polarity > 0.9 HAM best, photo, Oppa, Yeah, Best MOVES, MAKES, MEH,
SMILE, EVER

subjectivity >= 0.5 HAM only, views, YouTube:, love, out Driveshaft, YEAH, Crazy, Flow,
Ill

Table 4. Top 5 labeling function related features for SPOUSE.

labeling function class CHI SQUARE PPMI

keyword “husband/wife” SPOUSE married, son, wife, husband,
boyfriend

Peck, Veronique, glitters,
Sweeting’s, Body

keyword “husband/wife” left
window

SPOUSE written, wife, husband, con-
spiring, tunnel

Guys, Running, Role, wres-
tle, Off

same last name SPOUSE son, wife, husband, after-
noon, daughter

Dudley, Hales, facilitating,
Thomson, M&F

keyword “married” SPOUSE married, relationship, 2007.,
who, trainer

wakes, Gordon-Levitt, row-
ing, Regardless, minorities

familiar relationship NO SPOUSE son, wife, husband, sister,
daughter

Fire, window, forcing, ribs,
Claims

familiar relationship left win-
dow

NO SPOUSE on, husband, half-brother,
daughter, mother

hopelessness, hairdresser,
sponsoring, Tailyour,
Commandant

regex other relationship NO SPOUSE husband, boyfriend, planted,
Gamble, David

Rita, Ora, Grimshaw, Zeinat,
ordinary

known spouses from database SPOUSE Martin, denim, afternoon,
Gwyneth, Paltrow

lacing, Amicable, exes, shifts,
Basinger

last name known spouses SPOUSE Mara, mirror, tank, Paltrow,
beauties

reported, Radar, spousal, gro-
cery, head-on
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Table 5. Top 10 class related features.

data set class CHI SQUARE PPMI

SPAM

SPAM subscribe, please, check, out,
my, channel, song, Please, on,
Check

beat, losing, ideas, lies, his-
tory, Driveshaft, YEAH, hot,
Beats!!, STTUUPID

HAM subscribe, please, check,
out, my, will, channel, song,
Please, on

Drake, Macklemore, Pink,
countless, inspire, FYI, free-
dom, speech, Lil, uploaded

TREC

description cleaveland, cavaliers, monar-
chy, added, quisling, reposse-
sion, butcher, handful, spine,
currency

per, chicken, dog, capital,
university, black, island, san,
south, west

entity sailed, talk-show, lends,
surroundings, thalia, shake-
spearean, shylock, airforce,
compiled, won-lost

leader, animals, words, father,
christmas, held, nicknae, law,
only, john

human being builds, resistance, odor,
auh2o, mccain, rifleman, lai,
malawi, zebulon, pike

god, square, mile, gas, strip,
court, basketball, nationality,
rock,month

abbreviation olympic, original, commit-
tee, aids, manufacturer, cpr,
abbreviation, p.m., trinitro-
toluene, equipment

monarchy, added, quisling,
puerto, rico, repossession,
butcher, handful, spine, ’s

location aborigines, adventours, tours,
photosynthesis, makeup,
erykah, badu, m, ayer, bend

said, so, letter, kennedy,
bridge, human, nixon, no,
river, his

numeric value 56-game, streak, graffiti,
quilting, iran-contra, deere,
tractors, cherubs, puerto, rico

square, strip, court, jackson,
basketball, numbers, univer-
sity, john, show

SPOUSE

SPOUSE married, son, wife, husband,
boyfriend, , young, family,
sister, daughter

ringing, Sweeting’s, Body,
Cutting, Crap, Australians,
marches, splashes, Kingi

NO SPOUSE married, son, wife, husband,
boyfriend, , young, family,
younger, sister

ordinary, rank-and-file,
handpicked, Abu, Bakr,
al-Baghdadi, L.L., J.’s,
trendy

IMDB

negative Instead, back, character, too,
much, does, entire, cast, So,
bizarre

Zwarts, Fredrikstad,
Hilarios!10, wawa,
CONSIDERING, Hobb’s,
Smooch, Investigative,
belly-dancers, retirony

positive writing, It’s, most, drag, you,
us, won, Oscar, those, endless

Culpability, Package, slip-
ups, AARP, Symona,
Boniface, Lorch, Lynton,
Tyrrell, Heinie
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Figure 19. Examples from SPOUSE and IMDb where the feature with the highest explainability is shifted from
a misleading labeling function towards the correct class. Association is based on CHI SQUARE and KNOWMAN
uses λ = 4.

during the labeling of the data set, it is likely that some words would also be suitable for another
class that had been in the set of suitable classes associated with the instance. For IMDb the features
are different for both classes and very intuitive for a human. Features like “bizarre” or “Oscar”
clearly point to a certain sentiment.

For PPMI-based association the top ten features are different for all data sets. Again this rank-
ing is not easily interpretable for a human, but reflects the association and co-occurrence in the
weakly supervised data sets. Because of the sensitivity to rare words, we found many features
with the same association score, and the top n features in Table 5 are therefore only an excerpt.

Next, we looked for instances that confirm the functionality of XPASC and KNOWMAN.
Therefore, we compared BLIND KNOWMAN and KNOWMAN with λ = 4. The ultimate and
most challenging requirement for the models would be the following: Shift the focus from features
that are associated with a deceptive labeling function towards features that are associated with the
correct class. Two kinds of information need to be found for that goal: i) a feature that is very
important for the classification (has a very high explainability score) and is associated most with
a misleading labeling function, pointing to the wrong class, in BLIND KNOWMAN and ii) the
KNOWMAN model is able to shift the highest explainability to a feature that is not associated with
the misleading labeling function anymore, but with the correct class. Thus in the KNOWMAN
model the most important feature should be associated with the correct class most. For example in
Figure 19 the first instance should be classified as holding a spouse relation. The most important
feature for BLIND KNOWMAN is father, what actually would lead to the classification of no
spouse. The KNOWMAN model achieves the shift to the feature wife, that is a better indicator for
the spouse relation. The second example in Figure 19 is drawn from IMDb. The review is positive
and the feature ’I’ is associated with the negative class. KNOWMAN manages to shift the focus
to the feature ’GREAT’, what is a better indicator for a positive sentiment.

We also measured this shift of the most important feature quantitatively. For SPAM, we found
a shift is achieved for 12 instances and for SPOUSE 267 instances (both on average across seeds).

5.2. XPASC: Measuring Generalization in Weak Supervision
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Figure 20. Examples from SPAM and SPOUSE. Highest explainability is shifted from features that are associated
with the labeling function to other features. Association is based on CHI SQUARE and KNOWMAN uses λ = 4.

For IMDb the model manages to shift the misleading feature to the correct one for 7 instances.
This comparison always refers to BLIND KNOWMAN and KNOWMAN with λ = 4.

A better generalization can also be achieved if the focus is shifted from the misleading feature to
another feature that is not associated with the correct class, but at least is no longer associated with
the labeling function. See Figure 20 for examples that illustrate this. The first example, again from
SPOUSE, expresses a no spouse relation, but the most important feature for BLIND KNOWMAN
is husband. Shifting the focus to another word - pouty - KNOWMAN is able to assign the correct
label. The second example is comes from SPAM, where BLIND KNOWMAN considers the most
important feature as subscribed for an instance that actual belongs to the HAM class. Since this
is misleading, KNOWMAN focuses on the emoticon in the instance and assigns the correct label.

In addition, we noticed in the linguistic feature-based analysis that the weak labels for SPOUSE
are very noisy and imprecise. We found many instances where a human annotator would have
assigned another class than the labeling functions assigned.

Overall, the quantitative results can confirm our findings of the qualitative analysis. The
KNOWMAN architecture is able to increase generalization and XPASC is a good indicator for
the generalization ability of models.

6. Conclusion
We presented XPASC, a novel score to measure generalization for weakly supervised models.
Our extensive analysis shows that XPASC is able to reflect the generalization of models given
a dataset and the labeling functions used to perform weak supervision. In addition, we studied
the adversarial approach KNOWMAN, designed to enable the control of generalization in weakly
supervised models. We confirmed the hypothesis that the architecture is able to control the shift
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from labeling functions to other signals by a hyperparameter. We also showed that performance
and generalization do not relate one-to-one and it has to be decided based on the task, dataset
and model, which degree of generalization is desired. XPASC can be used with any pre-trained
weakly supervised model, a dataset and its set of applied labeling functions. Assuming that many
neural models, designed to work with noisy weakly supervised data, are complex and thus suffer
from overfitting, XPASC can serve as an indicator for their ability to fit unseen data. In general
the core components of XPASC, explainability and association, are interchangeable, what makes
the score flexible in practice.
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Ancona, M., Ceolini, E., Öztireli, C., and Gross, M. 2018. Towards better understanding of gradient-based attribution
methods for deep neural networks. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net.

Awasthi, A., Ghosh, S., Goyal, R., and Sarawagi, S. 2020. Learning from rules generalizing labeled exemplars. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net.

Bartlett, P. L., Long, P.M., Lugosi, G., and Tsigler, A. 2019. Benign overfitting in linear regression. CoRR, abs/1906.11300.
Cachay, S. R., Boecking, B., and Dubrawski, A. 2021. End-to-end weak supervision. In Ranzato, M., Beygelzimer, A.,

Dauphin, Y. N., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 1845–1857.

Corney, D. P. A., Albakour, D., Martinez-Alvarez, M., and Moussa, S. 2016. What do a million news articles look like? In
Martinez-Alvarez, M., Kruschwitz, U., Kazai, G., Hopfgartner, F., Corney, D. P. A., Campos, R., and Albakour, D.,
editors, Proceedings of the First International Workshop on Recent Trends in News Information Retrieval co-located with
38th European Conference on Information Retrieval (ECIR 2016), Padua, Italy, March 20, 2016, volume 1568 of CEUR
Workshop Proceedings, pp. 42–47. CEUR-WS.org.

Dehghani, M., Severyn, A., Rothe, S., and Kamps, J. 2017. Avoiding your teacher’s mistakes: Training neural networks
with controlled weak supervision. CoRR, abs/1711.00313.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. 2019. BERT: pre-training of deep bidirectional transformers for language
understanding. In Burstein, J., Doran, C., and Solorio, T., editors, Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational
Linguistics.

Fu, D. Y., Chen, M. F., Sala, F., Hooper, S. M., Fatahalian, K., and Ré, C. 2020. Fast and three-rious: Speeding up weak
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Ratner, A. J., Sa, C. D., Wu, S., Selsam, D., and Ré, C. 2016. Data programming: Creating large training sets, quickly. In
Lee, D. D., Sugiyama, M., von Luxburg, U., Guyon, I., and Garnett, R., editors, Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pp. 3567–3575.

Ren, W., Li, Y., Su, H., Kartchner, D., Mitchell, C. S., and Zhang, C. 2020. Denoising multi-source weak supervision
for neural text classification. In Cohn, T., He, Y., and Liu, Y., editors, Findings of the Association for Computational
Linguistics: EMNLP 2020, Online Event, 16-20 November 2020, volume EMNLP 2020 of Findings of ACL, pp. 3739–
3754. Association for Computational Linguistics.

Robinson, J., Jegelka, S., and Sra, S. 2020. Strength from weakness: Fast learning using weak supervision. In Proceedings
of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pp. 8127–8136. PMLR.

Roelofs, R., Shankar, V., Recht, B., Fridovich-Keil, S., Hardt, M., Miller, J., and Schmidt, L. 2019. A meta-analysis of
overfitting in machine learning. In Wallach, H. M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., and
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Abstract

Rule-based systems for data processing are of-001
ten still the norm in many industrial contexts,002
capturing important knowledge about business003
processes that need to be automated. In this004
article, we establish best practices and present005
a step-by-step guide on how to transform rule-006
based systems into machine learning models007
from a weak supervision perspective. Program-008
matic weak supervision requires labeling func-009
tions that associate configurations in the data010
with a desired output. We describe in detail011
how to generate labeling functions from exist-012
ing systems and how to use them to annotate013
data. In addition to a high-level perspective014
that contains fundamentals of the method on015
a more abstract level, we illustrate the process016
using an example from an automotive company017
and carry out experiments with the weakly su-018
pervised data. In this way, we want to enable019
practitioners to apply the process in their con-020
text. We point out difficulties and stumbling021
blocks along the way and describe steps how to022
deal with them. Our contributions include: i) a023
structured guide on how to leverage rule-based024
systems with the help of weak supervision and025
ii) an example from the automotive domain, in-026
cluding a detailed evaluation, comparing a rule-027
based system to established standard and weak028
supervision taggers for Named Entity Recogni-029
tion.030

1 Introduction031

Machine learning and deep learning models have032

increasingly found their way into industry. The033

use cases in industry are often very specific (in034

terms of tasks, data, and complexity) and deviate035

substantially from the standard settings studied in036

academic research. Companies need therefore to037

either solve a task using rule-based approaches or038

train their own machine learning models, which039

requires labeled data. Manual labeling is an expen-040

sive and inflexible approach to create labels. How-041

ever, there is a variety of strategies for automated042

labeling and one of the most popular strategies is 043

weak supervision. Weak supervision aims to an- 044

notate large amounts of data by using heuristics 045

and patterns. Templates to label data are called 046

labeling functions (LFs) in this context. A LF can 047

be a rule, regular expression, keyword match, or 048

other heuristic that allows a label to be assigned 049

automatically. In this way, a large labeled data set 050

can be obtained quickly and with noticeably less 051

manual effort. Nevertheless, these heuristics and 052

patterns must be defined first. 053

Currently, many companies actively use rule- 054

based algorithms. These algorithms often perform 055

sufficiently well, but tend to be complex pipelines 056

that are expensive to develop and maintain. More- 057

over, rule-based systems can only capture what 058

has been explicitly specified, and apart from that 059

they have no generalization abilities. On the other 060

hand, not using the knowledge contained in already 061

existing rule-based systems would be a waste of 062

resources. For this reason, it makes sense to take 063

advantage of existing rule-based systems and view 064

them in the light of weak supervision. This way 065

large amounts of annotated data can be retrieved 066

while still using existing systems instead of dis- 067

carding them entirely. In addition, the neural weak 068

supervision models are easier to use and more flex- 069

ible, both when compared to rule-based systems 070

(in terms of generalization abilities) and to systems 071

based on annotated data (in terms of dealing with 072

changing task specifications). 073

In this work, we present a step-by-step guide 074

on how to transform a rule-based system into a 075

machine learning system by leveraging weak su- 076

pervision. We aim to provide a practical and un- 077

derstandable guide for companies to recycle their 078

rule-based systems for modern machine learning 079

approaches. We will discuss how, ideally, weak 080

supervision can be used to label data at scale in 081

an organization and then train a machine learning 082

model on that labeled data. The focus here is par- 083

1
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Figure 1: Example supplier email with marked material, amount and arrival date.

ticularly on how to develop and use LFs from a084

rule-based system.085

In order to make the process more tangible, we086

will use an example from industry as a guide in087

this work and illustrate the individual steps using088

this example. At the same time, our goal is to keep089

a high-level perspective in order to describe the090

process in general terms. The following real-world091

example, which is very typical for the industrial092

context and comes from the automotive domain,093

runs through the remainder of the paper:094

In a company, deliveries from different suppliers095

have to be coordinated by logisticians and the cor-096

responding information needs to be transferred to097

a database (that can then be accessed by an enter-098

prise application software). Not all supplier inter-099

actions can be captured programmatically, and in100

reality a lot of important communication is done via101

emails, that then need to be retroactively inserted102

into the databases. Hence, the information relevant103

to the database needs to be extracted from the text104

of the emails. Typical information that should be105

extracted is mentioned material, amount of the106

material and time of departure and/or arrival (de-107

noted by MAT, PC, ETA and ETD labels). See108

Figure 1 for an example sentence. We compare109

different neural sequence tagging models to extract110

the desired information automatically: standard111

sequence tagging architectures, as well as an adver-112

sarial architecture and two label models for weak113

supervision.114

Our contributions are: i) a structured guide on115

how to leverage rule-based systems with the help116

of weak supervision and ii) a sequence tagging ex-117

ample from the automotive domain illustrating the118

process and including a detailed evaluation of com-119

paring a rule-based system to established standard 120

and weak supervision models for Named Entity 121

Recognition. 122

The remainder of the paper contains the detailed 123

description about the steps of the system conversion 124

in Section 2 and the sequence tagging experiments 125

with real-world data from supplier emails as well 126

as the results and analysis in Section 3. We also dis- 127

cuss related work in the field of weak supervision 128

and the application of weak supervision in industry 129

in Section 4. 130

2 System conversion: From Rule-based to 131

Machine Learning 132

We propose the following steps to turn the exist- 133

ing rule-based system to a machine learning sys- 134

tem: i) machine learning problem determination, ii) 135

data collection, iii) labeling function identification, 136

iv) weak supervision. All the steps are explained 137

in detail in the following sections. As a running 138

example, we use email communication within a 139

company’s logistics, whereby information has to 140

be extracted from the emails. Within our case study 141

in section 2 we go into this in detail. 142

2.1 Machine Learning Problem 143

Determination 144

The first step is to find out if and how the task to 145

be solved can be viewed as a machine learning 146

problem. The second step is to identify what type 147

of machine learning problem best represents the 148

task. 149

In our running example, every token should be 150

categorized as containing a certain information 151

piece or not. Thus we can solve this problem with 152

2
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Figure 2: Example sentence from the labeled corpus with custom named entities in the IOB2 format.

sequence tagging. See Figure 2 for a tagged exam-153

ple sentence.154

Suitable machine learning tasks for other prob-155

lems could be classification, e.g., to which kind156

of email does the entire email belong (spam, ham157

etc.?) or sentiment analysis (is the tone in the email158

neutral, positive or negative?). Once the machine159

learning problem is identified the input and output160

of the model need to be determined. In the machine161

learning context the information is encoded in input162

representations and labels and can be formalized as163

follows. Let X = (x1, ....., xn) be the collection164

of unlabeled data points and Y = (y1, ....., yn) the165

labels to be determined. Note that the set of labels166

C, yi ∈ C must also be specified in advance.167

In our case the labels are custom entities (e.g.,168

MAT, ETA). One entity can either be just a single169

token (e.g., "1000") or it can be a span of entities170

and consist of multiple tokens (e.g., "1000 pieces"),171

see also Figure 2. Hence, the model output follows172

the IOB-style tagging scheme. See Alshammari173

and Alanazi (2020) for an extensive study on tag-174

ging schemes in named entity recognition. In addi-175

tion to the classes/labels, there usually also exists176

an "other" or "outside" class ("O").177

2.2 Data Collection178

To apply weak supervision unlabeled data needs179

to be collected, which can then be used to train a180

machine learning system. To form a well-suited181

training data set several design choices have to be182

specified in advance. This section discusses the183

requirements for the unlabeled data. Note that this184

data cannot be used for supervised learning without185

labels and is only one of the first steps on the way186

to the conversion to a weakly supervised machine187

learning system.188

One of the most basic questions is determining189

the size of the data set. Usually acquiring labeled190

data comes with high costs of annotations. If weak191

supervision already resolves this cost problem, one192

is still confronted with the question of how many193

data samples should be labeled for training. In194

industry (as in most other contexts) data is not un-195

limited, thus a good starting point is just to use what 196

is there. One way to estimate a suitable amount of 197

data points is to produce a learning curve, that can 198

display performance plateaus (Perlich, 2010). If 199

only little data is available, up-sampling methods 200

can be used to increase dataset size (e.g. (Feng 201

et al., 2021)). 202

Since the trained model should be applicable in 203

practice, the training data should reflect reality at 204

inference time as closely as possible. Therefore, 205

the real-world data should be examined beforehand. 206

If there are large differences in the real-world data, 207

these should also be represented by the training 208

data set. In the case of the supplier mails the dif- 209

ferent suppliers contacts have a different writing 210

style and some are not native speakers. While some 211

include the relevant information into the body text, 212

others represent them with bullet points or attach- 213

ments. The data set should contain sufficient ex- 214

amples for all varieties, so that during inference 215

all data peculiarities can be handled – otherwise 216

there is an increased risk that the model suffers 217

from biases and domain shift. 218

2.3 Labeling Function Identification 219

Weak supervision can be formalized as the labeling 220

of large amounts of data by using labeling functions 221

(LFs). Hence, we aim to retrieve useful LFs from 222

the rule-based system. 223

LFs are programmatic rules to detect a pre- 224

specified configuration in a data point and each 225

LF is associated with a specific class, thus it is pos- 226

sible to assign the respective label automatically. 227

Formally, assume we have |X| = n data points and 228

|Y | = m possible labels. To retrieve weakly super- 229

vised labels forX we define LFs λ = (λ1, ....., λl), 230

λi : X → ∅ ∪ {y}. Each LF either abstains from 231

labeling (∅) or assigns a class label y. 232

Labeling by LFs can be expressed using two 233

matrices: i) a matrix of LF matches Z, where 234

Z ∈ {0, 1}n×l, with Zi,j = 1 if LF j matches 235

instance i, otherwise Zi,j = 0. ii) a matrix en- 236

coding the link from LFs to the labels T , where 237

T ∈ {0, 1}l×m, Tj,k = 1 if label k is associated 238
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Figure 3: Stages of the labeling process. The LFs are applied to the input to acquire matrix Z. Matrix T contains
the mapping of LFs λ to labels y. Combining both results in noisy labels for the input text and matrix Ŷ .

with LF j, Tj,k = 0 otherwise. See Figure 3 to see239

how the LFs are applied to the text and matrices Z240

and T are retrieved. Usually the information for T241

is gathered at the time the LFs are identified.242

In rule-based systems there are databases, reg-243

ular expressions, keywords, parsing outputs and244

other code fragments that extract the desired in-245

formation and could potentially be used to define246

LFs. We consider these as sources of information247

and identifying them in heterogeneous code bases248

is a difficult task. Especially, when the person249

that tries to detect the LFs did not implement the250

rule-based system, or when there is a pipeline of251

different modules involved. The most important252

step is to identify the pieces of code where rule-253

based decisions are made. Sometimes it is difficult254

to determine which piece of code is ultimately re-255

sponsible for a decision, or a decision is spread256

over several pieces of code. In this case, one can257

either define LFs for all of the pieces individually258

or merge the output of the pieces into one single259

LF.260

In our running example, supplier emails, the ex-261

isting rule-based system is modular. See Figure262

4 for a simplified overview of the LF extraction263

process. The input mails are passed through the264

single modules with each module having a differ-265

ent functionality, e.g. markup removal and text266

cleaning, recognizing time expressions, checking267

material numbers. If one of the modules would268

output a label and we identified the source of infor-269

mation, a LF can be created from the correspond-270

ing piece of code in the module. For example 271

for material mentions there is aMaterial Crawler 272

(module) that searches every input text for mate- 273

rial numbers from a delivery database (source of 274

information). Thus, we can either specify a coarse 275

LF LF:database_match or a more fine-grained one 276

where each number forms a single LF like a key- 277

word: LF:numberXY_match. 278

In general, there can be a degree of freedom in 279

what level of granularity to reflect in the LFs. Ex- 280

tremes would be combining the LFs in such a way 281

that they only express the final class label, or on 282

the other hand using each LF individually. We rec- 283

ommend to reflect a fine-grained granularity in the 284

LFs, that potentially allows denoising methods to 285

later filter out specific LFs based on their reliability. 286

2.4 Weak Supervision 287

Now that we have the matrices Z and T , the next 288

step is model training. Traditionally, many systems 289

require labels that would have to be created from Z 290

and T , arriving with the matrix Ŷ containing noisy 291

labels. Alternatively, there are end-to-end systems 292

that can take matrices Z and T as input. Examples 293

of both types are explained in section 3 in more 294

detail. 295

In the following we describe two traditional ap- 296

proaches to create labels from Z and T . We aim to 297

produce "weak" labels from the rule matches, that 298

will be stored in matrix Ŷ , where Ŷ ∈ {0, ...,m}n, 299

with Ŷi expressing the label index of instance i (in 300

sequence labeling: position i). When generated, 301
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Figure 4: Overview of the process of retrieving LFs from the rule-based system. Modules output certain information
pieces which are considered as sources of information. Finally, this information is encoded in LFs.

the labels Ŷ can be used with any arbitrary standard302

supervised machine learning systems that takes la-303

bels for model training. It is not uncommon that304

several LFs match for one token. Such cases can305

be resolved by majority voting, where the majority306

of LF matches determines the label. If no clear ma-307

jority exists either a label can be chosen randomly308

or the "other" class can be assigned.309

Importantly, there still needs to be a manually310

labeled test set. We argue that annotation efforts311

should rather go into the labeling of evaluation312

than training data, since it is impossible to esti-313

mate the quality of the algorithm without reliable314

gold standard labels. In the following we point315

out a few important clues how to create a viable316

test set. For most industrial tasks, manual labeling317

has to be performed by domain experts rather than318

data scientists or developers. Therefore, annotation319

guidelines should be created to ensure that the la-320

bels assigned to the data are the same, regardless of321

the annotator. We recommend to choose a test data322

set that is sufficiently large to reliably indicate dif-323

ferences in model performance. In our experience,324

test data sets should be at least 100 samples (i.e.325

model decisions) large (for a very coarse detection326

of large model differences), but better in the order327

of 1000 samples. In our experiments, we use a test328

set of around 6K tokens.329

3 Case Study: Weak Supervision in the330

Automotive Domain331

This section guides through the process of turning332

a rule-based model into a machine learning sys-333

tem using the supplier email example. After the334

presentation of the problem, including data and an-335

notation description, a detailed experimentation is336

shown. 337

3.1 Problem Description 338

We frame this information extraction problem as a 339

sequence tagging task that addresses named entity 340

recognition with custom entities. 341

The data for the experiments presented in this 342

work stems from supplier emails in an automotive 343

company. Since we aim to extract content from 344

the email body, we remove header and footer in 345

a preprocessing step. The remaining body text is 346

mostly unstructured. The emails are sent by dif- 347

ferent suppliers and thus vary in writing style and 348

presentation of the information. While some sup- 349

pliers include all necessary information in the body 350

text, others present the information in bullet points 351

or tables. For our experiments, we do not take at- 352

tachments or tables within the email into account 353

and instead focus on the unstructured body text. 354

One email can include information about materials, 355

material numbers, the amount of the material and 356

the estimated time of departure and/or arrival. As 357

for standard named entity recognition we do not 358

expect that every instance contains any or all enti- 359

ties from our entity set. The entities to be retrieved 360

from the emails are the following: i) MAT: men- 361

tioned material number, ii) PC: how many pieces/ 362

which amount of the material the information is 363

about, iii) ETD: estimated time of departure of the 364

delivery, iv) ETA: estimated time of arrival of the 365

delivery, v) TRG: trigger token that indicates if a 366

time is ETD or ETA. 367

Every token that is not assigned one of the 368

above mentioned entities is annotated with an O 369

(outside) tag. Following the usual convention of 370

named entity tagging, we use the IOB2 tagging 371
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scheme (Tjong Kim Sang and Veenstra, 1999) for372

our dataset.373

3.2 Transformation to Weak Supervision374

For the training data set we compose an email set375

from different postbox dumps of the logisticians.376

This set contains mails that are relevant for the task377

(supplier mails mentioning materials and deliver-378

ies) as well as emails that are irrelevant for our task379

(other conversations without delivery mentions).380

As described in section 2.3 a rule-based system381

is utilized to identify LFs so that it produces the382

matrix Z. More specifically, we identify the spots383

in the code that make a relevant decision (gener-384

ate a label) and save their output. This file in turn385

was then processed by a custom parser so that the386

relevant information could also be assigned to the387

correct tokens in the instance. Since the existing388

code is highly encapsulated, this process required389

a good understanding of the entire rule-based sys-390

tem. We create the matrix T of size 5× 9 (number391

of classes × number of LFs) semi-automatically392

using keywords. Via majority vote the weak labels393

are assigned for each token in the input emails, re-394

sulting in Ŷ . See Table 1 for an overview of corpus395

statistics.396

Our gold standard test set contains 182 manu-397

ally annotated emails, which comprise around 6K398

tokens. The annotations are based on annotation399

guidelines that were designed together with the400

domain experts beforehand.401

3.3 Experimental Setup402

The data is split into 80% for the test set and 20%403

for the validation set. We perform a hyperparameter404

grid search for our models and report hyperparam-405

eters of the final models as well as the grids in the406

appendix. If we use pre-trained language models407

(like BERT or RoBERTa) we freeze the encoder408

and only fine-tune the token classification head.409

We experiment with two different types of ap-410

proaches in this work. On the one hand we train411

taggers designed for standard sequence tagging:412

FLAIR and RoBERTa. In addition we experiment413

with three methods that are designed for weak su-414

pervision and also take the LFs/ rule matches into415

account: HMM, CHMM and SEQKNOWMAN.416

We evaluate our results using the conlleval1417

script from the CoNLL-2000 shared task and report418

micro F1 scores.419

1https://www.cnts.ua.ac.be/conll2000/chunking/
output.html

split # emails # tokens
train 10133 978313
dev 3452 243830
test 182 5927

Table 1: Sizes of the data splits of the email corpus.

3.4 Models 420

Majority Vote Baseline The naive MV baseline is 421

to apply the LFs to the test data directly and retrieve 422

labels via majority vote. This corresponds to the 423

rule-based system. 424

RoBERTaWe perform standard supervised learn- 425

ing by training a pre-trained RoBERTa model (Liu 426

et al., 2019) on the majority vote labels and refer 427

to it as RoBERTa MV. 428

FLAIR Since FLAIR (Akbik et al., 2019) is one 429

of the state-of-the-art tools for named entity recog- 430

nition, we train different FLAIR models on the 431

MV labels, using the following embedding stacks: 432

FLAIR_base uses fastText2 and character-level 433

embeddings only, FLAIR_bert uses BERT embed- 434

dings on top, and FLAIR_roberta uses RoBERTa 435

embeddings additionally. 436

SEQKNOWMAN Recently, KNOWMAN (März 437

et al., 2021), an architecture for learning repre- 438

sentations that are invariant to the noisy weakly 439

supervised input signals, was developed. KNOW- 440

MAN originally was designed to tackle classifi- 441

cation tasks. For the email data task, we adapt 442

KNOWMAN and present SEQKNOWMAN that 443

can also predict on the token level. Note, that SEQ- 444

KNOWMAN is trained not only on the MV labels, 445

but also requires matrix Z. 446

HMM and CHMM Traditionally, HMMs (Hid- 447

den Markov models) are used for temporal mod- 448

eling. Lison et al. (2020) represent true labels as 449

latent variables in an HMM and learn using ex- 450

pectation maximization. Additionally, (Li et al., 451

2021) proposed an approach for a conditional Hid- 452

den Markov model-based label model where the 453

Markov model is enriched with contextual repre- 454

sentations from BERT. We use the implementation 455

of (Zhang et al., 2021) to train the HMM/CHMM 456

label model and also use their LSTM and BERT- 457

based end models for prediction. 458

3.5 Results 459

As the results in Table 2 show the MV baseline can 460

achieve an F1 score of 62.9. RoBERTa MV per- 461

2https://fasttext.cc/
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model prec rec F1
MV baseline 75.8 51.6 62.9
RoBERTa MV 69.0 60.9 64.7

SeqKnowMAN l0 70.4 55.3 61.9
SeqKnowMAN l05 95.4 11.1 19.9
SeqKnowMAN l1 88.5 14.2 24.4
FLAIR_base 83.5 39.3 53.5
FLAIR_BERT 79.4 54.1 64.4

FLAIR_RoBERTa 83.8 44.3 58.0
HMM LSTM 70.3 32.0 44.0
HMM BERT 76.9 20.84 32.8
CHMM LSTM 81.4 29.8 43.63
CHMM BERT 69.73 22.1 33.6

Table 2: Overview of the results on the test set reported
in precision, recall and micro F1 scores.

forms best across all models and reaches a score462

of 64.7 F1. The performance of SEQKNOWMAN463

is with 61.9 F-score also similar to the baseline as464

long as no lambda value is set, i.e. as long as it is465

not attempted to blur the information contained in466

the LFs. The KNOWMAN models that are trained467

towards LF invariance yield very poor results, see468

SEQKNOWMAN l05 and SEQKNOWMAN l1 in469

Table 2. We hypothesize that each LF carries valu-470

able information, so training a model which is in-471

variant to a specific LF does not obtain sufficiently472

useful information.473

For the FLAIR models only FLAIR_BERT per-474

forms close to RoBERTa MV with an F1 score of475

64.4. Though, it is possible that the FLAIR taggers476

did not reach their full potential. A hyperparameter477

grid search showed that the results are very differ-478

ent depending on the configuration. This shows479

how challenging the custom named entity recogni-480

tion task is on this data.481

Using a label model to retrieve aggregated labels482

is harmful for our setup. The performance of the483

HMM and the CHMM models is noticeably lower484

than for the other taggers. This can be explained by485

the fact that the label models only produce accuracy486

values of around 75%, so it is likely that the end487

models are trained on some wrong labels.488

We draw another finding from the precision and489

recall results for the models. The two models that490

outperform theMV baseline, as well as SEQKNOW-491

MAN_l0 achieve higher recall values. We con-492

clude that weak supervision enables the retrieval of493

more tags compared to the rule-based system, thus494

generalizing from the labeling functions towards495

ETA ETD TRG MAT PC
0

20

40

60

80

100
MV Baseline
RoBERTa MV
FLAIR_BERT
CHMM LSTM

Figure 5: F1 scores for each tag across the best perform-
ing models.

other important patterns. In contrast their precision 496

values are not necessarily higher then for the MV 497

baseline. 498

However, since the best model (RoBERTa MV 499

can outperform the rule-based baseline we claim 500

that one can actually train good models with no per- 501

formance loss, while requiring less maintenance. 502

Once trained, the models can be reused without 503

great effort and thus make the maintenance of com- 504

plex rule-based systems unnecessary. 505

3.6 Error Analysis 506

In order to get a deeper insight in the performance 507

of the models, we take a close look at the data to 508

identify instances that reflect the most common 509

errors made by the models. See Figure 6 for three 510

example sentences from the manually annotated 511

test set (translated from German to English). There 512

are many instances in the data where ETD and ETA 513

are mentioned in one sentence. We observe that it 514

is hard for the MV Baseline to label both mentions 515

correctly at the same time. The rule-based model 516

will only predict "ETA" as the label for both dates, 517

regardless of whether the trigger comes before or 518

after the time mentions.The third example sentence 519

shows that if the sentence has no standard syntax, 520

but is e.g., part of an enumeration, theMV Baseline 521

is only able to label MAT correctly. 522

Another interesting observation can be drawn 523

from the F1 score per label (see Figure 5). The 524

MAT label is the easiest to predict for the models, 525

since the material numbers all have a very similar 526

surface forms. However, the taggers have the hard- 527

est time predicting the ETA/ETD labels. The time 528

mentions in the text may be i) expressing ETD in 529

a sentence, ii) expressing ETA or iii) expressing 530

none of both, because the context is not about a 531

delivery. Consequently, these labels are actually 532

very difficult to predict correctly. 533
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Figure 6: Example sentences translated from the test set. Correctly predicted tags are highlighted in green, wrongly
predicted tags are indicated in red.

4 Related Work534

Weak supervision has frequently been used in in-535

dustry. The advantage of being able to generate536

large amounts of data quickly and relatively easily537

is compelling. Since one of the biggest challenges538

in this context is to create good and practical la-539

beling functions (LFs), Cohen-Wang et al. (2019)540

and Evensen et al. (2020) propose methods how to541

easily retrieve and design LFs manually. However,542

the design and manual creation of LFs is not the543

focus of our investigations.544

There are few published approaches on how to545

use weak supervision from existing systems. Simi-546

lar to our work, Bach et al. (2018) also have recog-547

nized the need to apply weak supervision and con-548

ducted several experiments with industry data. The549

difference to our work is that there is no detailed550

description how existing systems can actually be551

converted into LFs. In addition, Bach et al. (2018)552

focuses on the Snorkel (Ratner et al., 2017) label553

model, and do not study alternative weak supervi-554

sion architectures.555

With the advent of the data programming556

paradigm (Ratner et al., 2016) and data centric557

AI (e.g. (Koch et al., 2021) or (Mazumder et al.,558

2022)), there were some approaches that tried to559

create a better data basis for their systems using560

weak supervision. Therefore, there are some ap-561

proaches on how data programming and thus also562

LFs can be used well in the industrial environment.563

Ein-Dor et al. (2019) address financial event ex-564

traction and compare a weakly supervised and a565

manually labeled data set, similar to our test set.566

Like us, they use BERT as the end-model. In con-567

trast to us, however, they do not use the weak labels568

themselves for further studies. Their focus is more569

on the data sources themselves and from which 570

sources the LFs could be created. Like us, Sun 571

et al. (2021) use data on a large scale in industry 572

cases utilizing weak supervision. They also do 573

use the Snorkel framework to retrieve labels for 574

the data and conduct experiments with this weakly 575

supervised data. Overall, they find that the usage 576

of weak supervision works well, but there is no 577

integration of existing systems to create LFs. In- 578

stead, LFs are created manually. Chatterjee et al. 579

(2020) tackle scientific datasets and claim that la- 580

bel models are unstable and susceptible to different 581

parameter combinations. They propose the integra- 582

tion of a quality guide and continuous LFs. 583

5 Conclusion 584

We present a case study on how to turn a rule-based 585

industry information extraction system into a ma- 586

chine learning model by utilizing weak supervision. 587

We explain how to retrieve labeling functions from 588

a rule-based system and what requirements are nec- 589

essary to produce weakly supervised data and train 590

a machine learning model. We illustrate the pro- 591

cess using an example from the automotive industry 592

that tackles custom named entity recognition. The 593

results of our experiments confirm that weak super- 594

vision for named entity recognition improves on 595

the status quo. Thus, we conclude that rule-based 596

systems can be reused to train flexible and power- 597

ful neural models, which can then in turn be used 598

without the enormous maintenance effort of out- 599

dated systems. This work is aimed at practitioners 600

who want to use machine learning models for their 601

individual problems in a company. Our guide can 602

be applied for numerous problems and end tasks. 603
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Limitations604

As part of our experiments, we found out that the605

sentence-wise processing likely misses some cases606

where the correct label can only be determined with607

certainty based on the preceding sentence. How-608

ever, processing the entire email as input was not609

possible because the instances were simply too610

long to be processed with standard transformer lan-611

guage models. Thus the sentence-based sequence612

tagging might by a limitation for this setup. To613

solve this problem, one would have to examine ap-614

proaches specifically designed for processing long615

documents.616

Another point is that through the process de-617

scribed in this work, one can generate very large618

datasets to use them for machine learning. This in619

turn presupposes that suitable resources (e.g. mem-620

ory space and GPUs) must also be available in621

order to effectively train this model. This can be622

a challenge (especially for small companies) that623

would have to be solved beforehand.624

Additionally, in practice, it can be difficult to es-625

timate the complexity of transforming a rule-based626

system as described, as there are many uncertain-627

ties. Among others, the code quality of the legacy628

system or organizational barriers such as code ac-629

cess might hinder the process. Furthermore the630

quantity, quality and coverage of the rules are dif-631

ficult to estimate beforehand. Nevertheless, we632

believe that a successfully and carefully executed633

project, following the outlined steps, can success-634

fully transform an existing rule-based system into635

a machine learning model.636
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manual labeled gold-standard as the test set. Thus753

model performance differs from the results on the754

test set.755

3https://github.com/JieyuZ2/wrench
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model runtime batch size learning rate epochs/ steps
MV baseline 10 h - - -
RoBERTa MV 2 h [8, 16, 32] [0.1, 0.01, 0.001, 0.0001] [2, 5, 10]

SeqKnowMAN l0 2 h [8, 16, 32] [0.1, 0.01, 0.001, 0.0001] [2, 5, 10]
SeqKnowMAN l05 2 h [8, 16, 32] [0.1, 0.01, 0.001, 0.0001] [2, 5, 10]
SeqKnowMAN l1 2 h [8, 16, 32] [0.1, 0.01, 0.001, 0.0001] [2, 5, 10]
FLAIR_base 10 h [8, 16, 32] [0.1, 0.01, 0.001, 0.0001] [2, 5 15]
FLAIR_BERT 22 h [8, 16, 32] [0.1, 0.01, 0.001, 0.0001] [2, 5 15]

FLAIR_RoBERTa 22 h [8, 16, 32] [0.1, 0.01, 0.001, 0.0001] [2, 5 15]
HMM 0.1 h - - [15, 25, 50]
CHMM 1.5 h [8, 16, 32] - [15, 25, 50]
LSTM 1 h [8, 16, 32] [0.1, 0.01, 0.001, 0.0001] 10K
BERT 1 h [8, 16, 32] [0.00001, 0.00002] 2K

Table 3: Overview of run times in hours per parameter configuration and hyperparameters per model. We report the
number of epochs for SeqKnowMAN and FLAIR models. For LSTM/BERT models we report the number of steps.
Bold numbers indicate the chosen hyperparameters for the final models.

model dev F1
RoBERTa MV 48.8

SeqKnowMAN l0 48.5
SeqKnowMAN l05 57.6
SeqKnowMAN l1 49.5
FLAIR_base 70.3
FLAIR_BERT 70.7

FLAIR_RoBERTa 71.7
HMM LSTM 62.3
HMM BERT 55.7
CHMM LSTM 64.5
CHMM BERT 59.0

Table 4: Overveiw of the results on the dev set reported in micro F1 scores.
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