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Abstract (DE)

Beobachtungen auf atomarer Ebene von Materialien werden oft unter Verwendung eines Transmis-

sionselektronenmikroskops durchgeführt. Abhängig von der Beschleunigungsspannung der Elek-

tronen, kann der Strahl Defekte in der Probe induzieren oder verschiedene Dynamiken hervor-

rufen. Der elastischer Stoß von Elektronen an Atome ist der Hauptschadenmechanismus und

obwohl die Schwingungen der Atome das Wirkungsquerschnitt beeinflusst, wurde bisher nur die

Schwingungsrichtung der Atome außerhalb der Ebene betrachtet. Da es eine nicht Übereinstim-

mung zwischen Experiment und Theorie gibt, präsentieren wir hier eine vollständige dreidimension-

ale Theorie der elastischer Stoße zwischen Elektronen und Atome, die uns erlaubt den Wirkungs-

querschnitt beliebiger Dynamiken zu berechnen. Wir validieren das Modell mit zuvor experimentell

gemessene Werte mit Hilfe der Rastertransmissionselektronenmikroskop und verwenden unsere

Methodik um Dynamiken wie die reversible Sprünge der Stickstoffatome in Graphen, oder der

Tausch zwischen Silizium- und Kohlenstoffatome zu erklären. Das Modell basiert sich auf ab-initio

Methoden und kann auf beliebige Materialien angewendet werden um den elastischen Stoß als

Schadenmechanismus zu erklären.



Abstract (EN)

Transmission electron microscopy characterization may damage materials, but an electron beam

can also induce interesting dynamics. Elastic knock-on is the main electron irradiation damage

mechanism in metals including graphene, and although atomic vibrations influence the displace-

ment cross section, only the out-of-plane direction have been considered so far. Because of the

mismatch between experiment and theory, we introduce a full three-dimensional first-principles

theory of knock-on displacements to describe dynamics into arbitrary directions. We validate the

model with previously experimentally measured values using the scanning transmission electron

microscope and use our methodology to explain dynamics such as the reversible jumps of nitrogen

atoms in graphene, or the swapping between silicon and carbon atoms. The model is based on

ab-initio methods and can be applied to any material to explain knock-on as a damage mechanism.
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Chapter 1

Introduction

1.1 Motivation

Throughout history, mankind gazed out into the night sky without recognizing the stars of our

galaxy as other suns, or the billions of galaxies making up the rest of our universe. While telescopes

have let us view and understand the cosmos, microscopes have granted us access to the invisible

world around us, allowing us to view the smallest components of living and inanimate objects

alike. There are mentions of people using lenses for magnification since antiquity [1], but the first

optical microscope was arguably built by Hans and Zacharias Janssen in 1590 [2], and this paved

the way for many scholars in the pursuit of finding out what matter is made of. Microscopy has

been ever since the backbone of many scientific breakthroughs, such as the discovery of cells by

Robert Hooke in 1665 [3] or the discovery of bacteria in 1676 by Antonie Van Leeuwenhoek [4].

In 1873, Ernst Abbe found that the resolution of visible-light microscopes is not constrained

by the quality of the instrument but by the wavelength of light and the aperture of its optics [5],

and so reported that the smallest resolvable distance between two points can not be smaller than

roughly half the wavelength of the imaging light beam. However, this did not stop Ernst Ruska

and Max Knoll to build the first electron microscope in 1931 [6], who were at that point counting

on the extremely small size of the electrons [7], since they were not aware of Louis De Broglie’s

work on wave-particle duality in 1924 [8]. They found out about De Broglie’s work in the summer

of 1931, that even for the electron microscope, the resolution should be limited by the wavelength,

but were immediately satisfied when they used his equation to calculate the wavelength of the

1



1.1. MOTIVATION 1. Introduction

electron to be five orders of magnitude smaller than visible light [7]. However, resolution was still

limited and Otto Scherzer proved in 1936 that chromatic and spherical aberrations of rotationally

symmetric electron lenses are unavoidable [9]. It was only after more than half a century that

Joachim Zach and Max Haider substituted the electric multipoles for magnetic multipoles, which

are mandatory for eliminating chromatic aberrations [10], and achieved an improvement in the

resolution of an electron microscope.

Despite being first built in 1938 [11] by Baron Manfred von Ardenne, the scanning transmission

electron microscope (STEM) did not see many improvements until Albert Crewe developed the field

emission gun [12] in 1969 and just one year later achieved a resolving power of 5 Å and reported

the ”visibility” of single atoms [13] by imaging uranium on thin carbon films. This progress was

followed by Ondrej Krivanek and colleagues [14] who managed to correct for spherical aberrations

and demonstrated a significant resolution improvement of STEM [15] in 2003. Around the same

time, Kostya Novoselov and Andre Geim discovered graphene in 2004 [16], which led to a surge

in two-dimensional materials research and atomic-level observations using transmission electron

microscopy (TEM) [17].

In a TEM, a beam of accelerated electrons is transmitted through the sample, interacting

with it as it passes through. The first description of the interaction between charged particles

due to the Coulomb force by Ernest Rutherford dates back to 1911 [18]. Further, the theoretical

cross section for the Coulomb scattering between an electron and a nucleus was derived by Nevill

Mott [19] in 1930, who also considered the spin of the electron. Several years later in 1948,

McKinley and Feschbach expanded the results of Mott in a power series, obtaining an analytical

cross-section formula for the relativistic scattering between an electron and nuclei up to middle-

Z elements [20]. Depending on the acceleration voltage, the beam may also induce defects

in the sample either due to elastic or inelastic interactions with the target atoms. Knock-on

atom displacements due to elastic electron backscattering [21] affect all materials, and are the

primary damage mechanism for graphene [17]. For non-destructive imaging, the electron should

not transfer more energy than the energy needed to displace an atom from the lattice. The

major improvements in aberration correction have not only allowed the construction of electron

microscopes with sub-Ångström resolution but have also enabled to operate them at acceleration

voltages below the energy thresholds where one might induce defects or even destroy the sample.

Operating an electron microscope at energies close to the knock-on threshold requires a more

2



1.1. MOTIVATION 1. Introduction

complete description of the displacement cross sections. Jannik Meyer and colleagues [22] have

shown that a static lattice approximation was insufficient in predicting any defect creation in

graphene at acceleration voltages below 108 keV, and that accounting for out-of-plane vibrations

of the target C atoms resulted in a better agreement with experimental observations. The same

was observed Hannu-Pekka Komsa et al. [23] in a similar study on different transition metal

dichalcogenides. Further improvements to the theory came from Toma Susi et al. [24] who derived

the atom velocity distribution from the phonon density of states instead of using a Debye model,

and by myself and colleagues [25], where the effect of the temperature on the displacement

threshold energy of the atoms was quantified. However, for a full physical description of the

electron-atom interactions, both nuclear velocities and momentum transfers in all directions must

be included.

This work introduces a full three-dimensional theory of electron knock-on displacements for

arbitrarily moving target atoms, and explores its implications for knock-on displacements from

pristine graphene as well as for the beam-induced dynamics of silicon substitutions [26, 27], and

the reversible dynamics of its pyridinic nitrogen impurity sites [28]. The timescale at which such

processes happen is on the order of 10−12 s, and thus can only be visualized and understood using

atomistic simulations. Density functional theory (DFT) molecular dynamics (MD) is an established

tool to investigate many-body condensed matter and biomolecular systems. Using DFT-MD, the

emission of the target atoms under different conditions can be simulated in order to find the

displacement threshold energies and to understand the conditions under which the beam-induced

dynamics occur. Those findings can then be compared to observations and used to validate a

three-dimensional theoretical framework for predicting the experimental cross section, which is

derived from relativistic momentum and energy conservation.

3



1.2. (SCANNING) TRANSMISSION ELECTRON MICROSCOPY 1. Introduction

1.2 (Scanning) transmission electron microscopy

To find out what materials are made of and to improve their synthesis, atomic-scale characterization

is needed to study their structure and composition. The transmission electron microscope (TEM)

and the scanning transmission electron microscope (STEM) have emerged as some of the best

tools to fulfill this purpose due to recent advances in instrumentation, which allow to correct the

aberrations caused by imperfect electron optics [29–31] and thus open the way to atomic-resolution

imaging.

Electrons have wavelengths on the order of picometers (10−12 m) and therefore can interact

with the atomic lattice and provide meaningful information of interatomic distances that are on the

order of a few Ångströms (10−10 m). As mentioned above, TEM and STEM both use electrons

for the purpose of imaging, and in Fig. 1.1 we show a schematic comparison between them. In

a conventional TEM, the electrons produced by a source go through a condenser aperture, and

are focused as a parallel beam onto the sample by a condenser lens. The transmitted electrons

will then pass through an objective aperture to exclude electrons scattered at high angles and are

forwarded onto the objective lens. The objective lens will focus the electrons to create an image,

but some of them will have different velocities (different wavelengths) due to instability in the

acceleration voltage or due to inelastic scattering with the target sample, and so they will have

STEM

Screen

electron source

Aberration corrector

Objective aperture

Objective lens

Annular dark �eld detector

Field emission source

TEM
Collector aperture (EELS)

Specimen

Condenser lens

Condenser lens

Figure 1.1: Schematic comparison between a conventional TEM and a scanning TEM
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1.2. (SCANNING) TRANSMISSION ELECTRON MICROSCOPY 1. Introduction

different focal lengths as a result of chromatic aberrations (Fig. 1.2c). Electrons passing through

the periphery of the objective lens will be refracted more than the ones passing closer to the

axis due to spherical and other aberrations (Fig. 1.2b). It is challenging to suppress aberrations,

since the aberration coefficients of electromagnetic lenses are positive [32]. However, sequences

of sextupole and octupole magnets can be used as aberration correctors before the image is finally

recorded. Besides that, also selecting electrons that are closest to the optical axis by inserting

limiting apertures can help, since they are not affected as much by the lens aberrations.

In contrast to the conventional TEM, in a STEM the aberration correction of the electrons

happens before they enter the objective lens. They are focused into an Ångström-sized beam

which scans the sample pixel by pixel. The image is then formed by the electrons that scatter due

to the Coulomb interaction with the nuclei, and which are collected by an annular dark field (ADF)

detector. The angle at which the electrons scatter is highly dependent on the atomic number Z of

the atoms. If an atom has a high Z, more electrons will be scattered to high angles and collected

by a high-angle ADF (HAADF), or if Z is low, by a medium-angle ADF detector (MAADF). This

imaging technique is often called Z -contrast imaging. These electrons that scatter elastically

with the sample contribute to the image, while the ones that undergo inelastic interactions can

be collected by an electron energy-loss spectrometer (EELS), which can be used to provide the

chemical composition at the atomic scale.

Having a highly focused aberration-corrected electron beam makes the STEM one of the most

powerful tools to achieve sub-Ångström resolution imaging. While the unprecedented quality of

images are giving us valuable information on the structure of the samples, the electron probe can

also be used to manipulate a Si impurity in graphene [26, 27] by means of controlled electron

irradiation of the neighboring C atoms.

5



1.3. GRAPHENE 1. Introduction

ba

c
image plane

v>v0

v0

Figure 1.2: a) Electrons passing through an ideal lens. Electron rays affected by b) spherical and
c) chromatic aberrations (v and v0 represent electron velocities).

1.3 Graphene

In the last two centuries there have been several major breakthroughs in the field of material

science, such as the discovery of polymers in 1830, semiconductors in 1833 and plastic in 1941.

The existence of two-dimensional (2D) materials had been argued before [33, 34], but they were

thought to be unstable at room temperature because thermal fluctuations would be comparable

to the distance between the atoms. Andre Geim and his Ph.D. student Konstantin Novoselov

isolated graphene, a one-atom thick layer of carbon atoms, for the first time and after several

failed attempts managed to publish their discovery in October 2004 [16]. The Nobel prize in

Physics for this discovery was awarded to them in 2010.

6



1.3. GRAPHENE 1. Introduction

a1

a=0.142 nm

a2

A B

a b

M

K

K’

kx

ky

b1

b2

Figure 1.3: a) Graphene lattice structure in real space with the corresponding unit vectors, b)
Reciprocal space with the first Brillouin zone and high-symmetry points.

Graphene is a single layer of carbon atoms that are bound in a honeycomb lattice (see Fig. 1.3).

It is the building block of graphite, which consists of multiple stacked graphene layers bound

by the van der Waals force. The graphene honeycomb lattice is built out of two triangular

sublattices (Fig. 1.3a, A (blue) and B (orange)). Assuming the distance between the carbon

atoms is a = 0.142 nm, the lattice vectors can be calculated by the properties of the isosceles

triangle as

~a1 =
a

2

(
3,
√

3
)
, ~a2 =

a

2

(
3,−
√

3
)
. (1.1)

The correspondent reciprocal lattice vectors ~b1 and ~b2 (Fig. 1.3b) to the triangular Bravais lattice

of graphene are

~b1 =
2π

3a

(
1,
√

3
)
, ~b2 =

2π

3a

(
1,−
√

3
)
. (1.2)

Despite its 2D nature and being one-atom thick, graphene is not completely flat, displaying ripples

in the structure that can go up to 1 nm in height as transmission electron microscope studies have
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a

c

γrms= 7.8°

b

d

e

85 6 7

1.0

0.8

0.6

0.4

0.2

1.2

α

σ

σ/
α 

(1
0-3

/Å
·d

eg
re

e)
γrms (°)

γrms= 0°

Figure 1.4: Effect of varying surface inclination on the graphene diffraction pattern. A flat sample
has parallel lattice normals throughout a, which leads to sharp rods in the reciprocal space b
giving the same width for diffraction spots regardless of the sample tilt. In contrast, a corrugated
sample c (here with root mean square inclination of γrms = 7.8◦) exhibits cone-like volumes in
the reciprocal space d that lead to increasing diffraction spot sizes for higher sample tilts. e
Relationship between the diffraction spot size (σ) and the sample tilt (α) for simulated corrugated
graphene structures with varying values of γrms. Figure adapted from Ref. [35] (CC-BY).

confirmed [35, 36]. It is challenging to measure such ripples in a one-atom thick membrane,

especially since these subnanometric undulations can not be directly imaged due to the depth

of field in a TEM. However, they can be estimated from the electron diffraction patterns (see

Fig. 1.4), where the width of the diffraction spots can be correlated with the inclination of the

plane [35]. However, for the purpose of our study, a flat lattice is an adequate local description.

Each carbon atom in the graphene lattice has six electrons, two on the core shell and four

on the valence shell, with a ground state electronic structure 1s2 2s2 2p2. Electrons in the 1s

orbital do no contribute to chemical bonding. The outer-shell electrons on the 2s, 2px and 2py

orbitals hybridize to form three sp2 in-plane orbitals, which are responsible for the strong σ bonds

(Fig. 1.5a, b) that result from the head-to-head overlap of orbitals between the carbon atoms.

These bonds have an angle of 120◦ between them resulting in the hexagonal structure of graphene

(Fig. 1.5c). The pz orbital, which hosts the remaining electron, is perpendicular to the others and

combines with the pz orbitals of the neighbouring C atom to form π-bonds. One can visualize the

8



1.3. GRAPHENE 1. Introduction

y

z

x

s

py

px

y

x

zba

pz

�-bonds
z

d

σ-bonds

c

Figure 1.5: Orbital hybridization of the carbon atoms in the graphene lattice.

π bonds as the lateral overlap between the pz orbitals (see Fig. 1.5d), where the electrons can hop

from one sublattice to the next.

The important physics of graphene takes place at the reciprocal-space two points of high

symmetry, K and K’, where the valence and conduction band touch at the corners of the Brillouin

zone (Fig. 1.3b) resulting in a zero band gap:

~K ′ =

(
2π

3a
,

2π

3
√

3a

)
, ~K =

(
2π

3a
,− 2π

3
√

3a

)
. (1.3)

The electrons in the vicinity of these points can be described by the Dirac equation in two di-

mensions and behave like massless fermions [37]. This explains some of graphene’s electronic

properties, which makes the material unique, such as the high electron mobility [38, 39] or the

room-temperature quantum Hall effect [40]. As a consequence, the dispersion of the electrons is

linear with very high mobility. Graphene behaves like a zero-gap semiconductor and the charge

9



1.3. GRAPHENE 1. Introduction

carriers have an electron mobility over 15,000 cm2/Vs at room temperature [16, 41]. Graphene is

the strongest material ever measured and also the most stretchable crystal [42] thanks to the sp2-

hybridized bonds. It has a tensile strength of 130 GPa and an elastic modulus of 330 N/m [42].

Its thermal properties are also remarkable, boasting a thermal conductivity of up to 5000 W/m K

at room temperature [43], which is about 20 times higher than that of copper, and has a negative

thermal expansion coefficient between 0 and 700K [44].

However, these exceptional properties are mostly present in defect-free pristine graphene and

any deviation from this, such as defects or impurities [45], may cause changes in the properties.

10
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1.4 Defects in graphene

”Crystals are like people, it is the defects in them which tend to make them interesting!”

- Colin Humphreys.

Defects in crystals can take many forms and depending on their dimensionality (ranging from

0 to 3), can be classified as point defects, line defects, surface defects and bulk defects. Zero-

dimensional point defects are localized disruptions in the regularity of the lattice such as in-

terstatial atoms, bond rotations, missing atoms or impurities. Line defects or dislocations, are

one-dimensional defects and represent an abrupt change in the regular arrangement of atoms

along a line in a solid. Two-dimensional defects are discontinuities in the crystal structure of a

surface, where regions of this surface have a different orientation with respect to one another, and

three-dimensional defects manifest as voids or clusters of impurities within a bulk material.

The highly energetic electron beam can transfer a considerable amount of kinetic energy to

the atoms and if that energy exceeds their displacement threshold energy (the energy required

to displace an atom from the lattice) the atom is removed and a defect is created. The most

common type of defect resulting from irradiation of solids are Frenkel defects [46, 47]. They form

when an atom receives enough energy to displace it from its initial lattice position and end up in

an interstatial site within the crystal, leaving a vacancy behind. However, in 2D materials such

Figure 1.6: STEM image of graphene with defects. We can see an octagon, three pentagons and
an heptagon. (Image courtesy of Mukesh Tripathi)

11
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Figure 1.7: a) Single vacancy in graphene as seen in an experimental TEM image (adapted with
permission from Ref. [50]. Copyright 2008 American Chemical Society); b) its atomic structure
obtained from DFT calculations. (Reprinted with permission from Ref. [49]. Copyright 2011
American Chemical Society)

as graphene the atoms would either be knocked out completely, or if the energy and momentum

transferred are not high enough, they might cause bond rotations and thus creating Stone-Wales

type defects [48]. In Fig. 1.6 we can see the defective graphene lattice with the C atoms forming

one octagon, one heptagon and few pentagons as a result of two missing atoms and a 90◦ C–C

bond rotation.

One of the simplest defects in 2D materials is a missing atom. One missing carbon atom from

the graphene lattice forms a single vacancy (SV) site as seen in Fig. 1.7. Here, the missing atom

leads to the formation of a five- and a nine-membered ring, with one of the C atoms left with a

dangling bond [49]. Removing more than one atom from the lattice can lead to multiple vacancies

and even formation of large holes. For example, double vacancies can be created by the merging

of two SV or by removing two neighboring atoms (see Ref. [49] for such examples). As a rule of

thumb, vacancies with an even number of missing atoms are energetically more favored than the

ones with an odd number because their dangling bonds are saturated.

Another type of defect are substitutional impurities in graphene, where atoms such as silicon,

boron, nitrogen or germanium have been observed to replace C atoms [28, 51–56] (see Figure 1.8).

These kind of defects are of particular interest in this work, since they can non-destructively move in

graphene [26, 28, 57], thus opening the door to designing custom patterns within graphene, such as

embedded silicon structures [58]. There are many physical and chemical routes to synthesize doped
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Figure 1.8: Electron beam-induced dynamics (top and bottom show consecutive ADF images) from
left to right a-f: substitutional Si, Si trimer in a hexavacancy, Si6 cluster in a pore, substitutional
B, substitutional N, pyridinic N in a single vacancy. Figure reproduced from Ref. [55] (CC-BY
3.0).

graphene, including ion implantation and chemical vapor deposition using a suitable heteroatom-

containing precursor. However, since these go beyond the scope of the current work, the interested

reader is referred to recent reviews on the topic [59, 60].

1.4.1 Silicon impurities in graphene

In 2012, using a combination of Z -contrast imaging and electron energy-loss spectroscopy (EELS)

[61, 62] within a STEM operated at 60 keV, two distinct substitutional Si defect geometries were

observed in graphene [51]. The Si impurities were either substituting a single C atom or a C–C pair,

which formed either a three- or a four-coordinated Si defect, respectively. The exact origin of the

Si impurities is not exactly known, but are thought to originate from the chemical vapor deposition

(CVD) process used for growing graphene or the glassware used to process samples [51, 62]. The

buckled structure surrounding the three-coordinated Si atoms was inferred by analyzing electron

energy-loss spectra [51] and also later directly by acquiring images when the sample is tilted [63].

The Si atom may buckle up or down with respect to the graphene lattice causing a deformation in

the out-of-plane direction. Despite having a symmetric appearance in normal-incidence plane-view

images [51, 64], this buckling causes a shift of position in the tilted projections [63]. This can be

visualized by overlaying a flat and a relaxed model on top of the STEM images in Fig. 1.9.

While the 60 keV electron beam rarely transfers enough energy to knock out the carbon

atoms, experiments have shown that three-coordinated Si atoms change places with neighboring

C atoms under such irradiation [64]. To understand the observed swapping mechanism, DFT/MD
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Figure 1.9: STEM image of a Si dopant in graphene overlaid by a flat model (a) and a relaxed
buckled model (b). On the top row, side views of the models are shown. The magnified image
(bottom) shows a poor match of the Si atom position using the flat model (a) but an excellent
match using the buckled structure (b). Figure adapted with permission from Ref. [63].

simulations were employed [64](see Sec.1.7.1). If one of the C neighbors gets slightly but not

completely displaced from the lattice, the Si simultaneously relaxes into the place vacated by the

C atom, while it gets pulled back into the initial place of the Si (see Fig. 1.10). In a followup study,

the controlled manipulation of a three-coordinated Si impurity at 55 and 60 keV was established

by Tripathi et al. [27], where they precisely moved the Si atom along a hexagonal path as shown

in Fig. 1.11. This was achieved by placing the beam of the STEM on one of the C atoms between

scanning frames until a jump was observed.
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Figure 1.10: Molecular dynamics simulation of an electron impact delivering 15 eV to a C atom
neighboring Si–C3 in graphene. (a) Top view of the starting configuration at time t0. (b) Side
view at t0, with the kinetic energy indicated on the impacted atom. (c) A snapshot at t1 (≈ 700
time steps into the simulation), with the entire trajectories of the ejected C atom and the Si atom
marked by semitransparent balls and dashed lines. (d) Top view near the end of the simulation
at time t2 after ≈ 1400 time steps. (e) Side view at time t2. Note that although the atomic
motion has not ceased by this point, no further changes in the atomic configuration follow. Figure
reproduced from Ref. [64] (CC-BY 3.0).

Figure 1.11: Electron-beam manipulation of Si at 60 keV around a hexagon. The overlaid numbers
show the number of 10 s spot irradiations preceding each frame, and the triangles indicate the
ordering of the frames. Figure reproduced from Ref. [27] (CC-BY 4.0).
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a b

Figure 1.12: Single pyridinic N at two equivalent sites a) with the corresponding model b). Scale
bar is 2 nm (Figure adapted with permission from Ref. [28]. Copyright 2015 American Chemical
Society)

.

1.4.2 Nitrogen impurity at a single vacancy

Single vacancies (SV) are common in graphene and have been observed by TEM [50]. Of interest in

this work are SV where the C atom with a dangling bond is substituted by a N atom, after exposing

the CVD grown graphene to N in a gas chamber at 100◦ C [28]. More recent studies [65] have also

reported N substitutions in graphene without intentional doping. The pyridinic nitrogen dopant

has been observed to jump back and forth across the vacancy under the scanning electron beam at

a temperature of 500◦ by [28] (Fig. 1.8f and Fig. 1.12) and later by us at room temperature [57]

(Fig. 3.10). However, these dynamics of the pyridinic nitrogen at the single vacancy have yet to

be explained and are central to this work as we will see further in Chapter 3.

16



1.5. IRRADIATION EFFECTS IN SOLIDS 1. Introduction

1.5 Irradiation effects in solids

The effects of electron irradiation in solids is a field of intense research, since plenty of them are

investigated by means of electron microscopy. Formation of unexpected structures due to irradia-

tion has often been observed in carbon nanostructures and graphitic materials. The electron beam

can transform graphene into single-atom carbon chains and carbon nanoribbons [66, 67], graphene

flakes into fullerenes [68], or amorphise graphene under prolonged exposure [69]. Therefore it is of

great importance to understand how energetic particles such as electrons interact with the target,

and what are the effects caused by the energy or momentum transfer that take place. The most

common effects of irradiation are:

• knock-on displacement of atoms;

• electronic excitations and ionization;

• collective electronic excitations such as plasmons;

• phonon excitation and heating;

• radiolysis and bond breaking;

• x-ray emission ;

• emission of secondary or Auger electrons.

When an accelerated electron encounters an atom, it may first penetrate the outer loosely bound

electron cloud, go further to interact with the core-shell electrons, and could also finally encounter

the nucleus. Several effects might arise along the electron’s trajectory as is pictured in Fig. 1.13,

where SE and BSE stands for secondary electrons and backscattered electrons, respectively. We

split these effects into those which lead to direct atom displacements and those that do not. The

likelihood of damaging the target material by knocking out atoms increases with the acceleration

voltage and is described by elastic interactions between the electron and the atom, while ionization

caused by inelastic interactions will increase at lower acceleration voltages. In the next section,

we will focus in more detail on elastic interactions and how they contribute to the displacement

of atoms and introduce some of the irradiation effects caused by inelastic interactions.
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Figure 1.13: Electron-nucleus interactions.

1.5.1 Electron-atom elastic interactions and knock-on damage

An elastic or quasi-elastic interaction between an electron and an atom will result in the scattering

of the electron without any or negligible loss of energy due to the large difference in mass between

the electron and an atom (e.g a C atom is roughly 22000 times heavier than an electron). The

electron needs to be fast enough to penetrate the electron cloud and get close to the nucleus

where it will scatter in a different direction due to the Coulomb interaction (see BSE in Fig. 1.13).

It is the change in direction of the electron that causes a momentum transfer.

Damage production through electron irradiation has been studied for more than half a decade,

especially defect production (Frenkel pairs) in metal crystals [70]. To quantify the amount of

defects produced the electrical resistivity was measured, since it is proportional to the concen-

tration of created Frenkel defects [46, 47, 70]. The most important quantity in these studies,

which describes the minimum amount of energy necessary to displace an atom from the lattice,

is called the displacement threshold energy Ed. In solids, one electron impact may cause multiple

displacements, depending on how much energy the electron transfers to the atom. According to

the Kinchin-Pease theory [71], a minimum energy of at least double the displacement threshold

energy Ed must be transferred to an atom so that it may induce further displacements. Thus,

18



1.5. IRRADIATION EFFECTS IN SOLIDS 1. Introduction

we assume that atoms receiving energies between Ed and 2Ed are displaced, but will not induce

further displacements [71]. The orientation of the sample with respect to the incoming electron

beam also affects the displacement threshold. One of the first studies to measure and account for

the anisotropy of the displacement threshold energy in single copper and platinum crystals with

different orientations were done by Bauer et al. [46] and Jung et al. [47] in 1964 and 1973, respec-

tively. They have shown that both fcc (face-centered-cubic) metals exhibit the lowest displacement

thresholds in the closest-packed directions (110) and (100). The anisotropy of the displacement

threshold is valid not just for 3D structures but must be accounted for in low-dimensional materi-

als, as shown by Zobelli et al. [72] for carbon nanotubes and in this work for graphene. However,

compared to solids, once the atom has been displaced from its lattice position, in 2D materials it

will most likely be removed from the system and not get the chance to recombine as an interstitial.

Knock-on collisions of highly energetic electrons with atoms affects all materials and are the

primary damage mechanism in carbon nanostructures [21] and graphene [17]. The displacement

threshold energy for a C atom in graphene is about 21.13 eV [24] and the maximum amount of

kinetic energy transferred by an electron at an acceleration voltage of 100 keV in the static nucleus

approximation [72] is 20.05 eV. The energy difference of about 1 eV between the experimental

and the predicted displacement thresholds is not due to energy conservation, but rather from

the momentum conservation that is not quite correct in the static lattice approximation. In any

real material the nuclei are not at rest, and depending on the velocity and the direction they are

vibrating, this may enable a substantially higher amount of kinetic energy to be transferred to

the nucleus as was shown recently [24, 25, 73]. Those studies accounted for atoms vibrating in

the out-of-plane direction, which may lead to a kinetic energy transfer of up to 24 eV depending

on the velocity of the atom, a boost of almost 4 eV. At electron acceleration voltages below

100 keV, irradiation damage in graphene cannot be explained in the static approximation, but

is observed down to 85 keV [22, 24]. To date, the momentum transfer to the nuclei has only

been treated in the out of-plane direction. For a complete description of electron-beam induced

dynamics such as Si-C inversions [27], pyridinic N jumps [28, 57] and knock-on damage, momentum

transfers in all directions must be included. In Sec. 3.1.2 we present a full three-dimensional theory

of elastic electron-atom interactions for arbitrarily moving target atoms, which can be used to

predict the probabilities of knock-on and beam-induced dynamics by calculating the corresponding

displacement cross sections, which is the method used to quantify such beam-induced effects.
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1.5.2 Inelastic interactions

Inelastically scattering electrons are also important, because they generate signals that can reveal

the chemical composition of the target and cause ionization. Electron-electron interactions leading

to generation of characteristic x-rays, secondary electrons, plasmons and ionization damage will

be discussed below.

Characteristic x-rays To produce characteristic x-rays, a beam electron must penetrate through

the outer shells and reach the core (inner shell) electrons. If the energy transfer is greater than

the binding energy of an inner-shell electron, it escapes leaving a hole behind. The beam electron

continues through the specimen after losing energy and leaves the atom in an excited state, which

we describe as ionized. Subsequently, the atom will return to its ground state by filling the hole

with an electron from one of the outer shells. When an outer-shell electron falls into the inner

shell, a photon can be released with an energy equivalent to the difference between the outer shell

and the inner shell involved in this transition. Since each chemical element has a specific set of

energy levels, this energy difference will be characteristic to the element involved.

Secondary electrons Secondary electron emission happens when the beam electron ejects elec-

trons from the sample. Outer-shell electrons from the conduction and valence bands are more

easily ejected, since their binding energies are less than 50 eV, while core electrons require higher

energies (e.g. 8.9 keV for Cu) and often lead to characteristic x-ray generation. However, the

energy when a core hole is filled is not always released in the form of a photon, but can be trans-

ferred to another electron, which is then ejected from the atom. This second emitted electron is

called an Auger electron. Secondary electrons can be used as an imaging technique to study the

surface of materials (especially in scanning electron microscopy) or for elemental identification.

Plasmons A plasma is a gas of charged particles, but a metal can also be seen as a sort of

”metallic” plasma due to the confined nuclei and the ”sea” of free electrons. In a metal we have

nuclei screened by the core electrons and free electrons that move around. On average, the system

will be neutral, but when the electron beam interacts with the free-electron sea, sometimes there

will be a charge separation between the free electrons and the positively charged nuclei. Because

we have a charge separation, there will be an electrostatic force acting between the electrons and
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the nuclei. Since the nuclei are stationary and the electrons are so much lighter, they will start

moving towards the nuclei, gaining kinetic energy and reaching a maximum as they pass them,

and then will be slowed down, caught again by the electrostatic force and move back towards the

nuclei. This exchange between the electrostatic Coulomb force and the kinetic energy is what we

call plasma oscillations. Just like photons are the quanta of electromagnetic oscillations, plasmons

are the quanta of plasma oscillations.

Ionization damage and radiolysis Inelastic excitations may lead to damage especially in

molecules and organic materials in a phenomenon called radiolysis. Radiolysis is a process where

an excited state can be converted to momentum and directly break bonds. While in inorganic

solids such as hexagonal boron nitride (hBN) and molybdenum disulfide (MoS2), direct radiolysis

is not possible, a covalently bound atom may be easier displaced if the excitonic relaxation time is

long enough to weaken the chemical bonds and lower its displacement threshold energy [74]. By

contrast, in pristine graphene, electronic excitations reach the ground state before any changes

in the structure may occur. Graphene is one of the most studied 2D materials and its ionization

lifetimes have been well characterized: holes in the valence band are neutralized within 10−15 s

and core holes within 10−14 s, whereas collective excitations such as plasmons are damped within

10−13 s and phonons in 10−12 s [75–77]. In a STEM with a typical electron dose rate of 109 e−s−1,

a single electron will interact with the sample every 10−9 s, so ionization damage is unlikely to

happen since the electron will always find the sample in the ground state, as experiments also

seem to show [24]. On the other hand, excitation lifetimes in MoS2 and hBN are much longer,

10−12 s for MoS2 and even longer 10−9 s for hBN [77–79], which increases the possibility of

ionization damage. While excitation effects may indirectly contribute to damage due to weakening

or breaking of chemical bonds, the most prominent and direct damage mechanism in 2D materials

is caused by the elastic interactions between electrons and atoms that leads to knock-on damage.

The mechanisms of this process can be studied via molecular dynamics simulations.
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1.6 Molecular dynamics

Molecular dynamics (MD) is a computational method used to study many-body condensed matter

systems and biomolecular congregations. The aim of MD is to give insight into atomic processes

and validate experimental observations, bridging the gap between the macroscopic world and the

microscopic length and time scales. There are two major types of simulations for many-body

systems, stochastic and deterministic, which are covered by the Monte Carlo (MC) and the MD

methods, respectively. Monte Carlo explores configurations by trial moves of atoms as a result of

random perturbations to the system (see Section 1.8) but does not provide information on the

time evolution of the system [80]. Molecular dynamics simulations on the other hand can study

the temporal evolution of a given system.

We can distinguish between three types of MD in terms of the amount of empirical input

and accuracy: classical, semi-ab-initio and ab-initio MD. We will concentrate on what they all

have in common: all consist of the step-by-step numerical solution of classical equations of mo-

tion [81] [82], which in the Newton formalism are

mir̈i = fi and fi = − ∂

∂ri
U
(
rN
)
, (1.4)

where fi is the force acting on atom i with mass mi, which is derived from the potential energy

U
(
rN
)
, where rN = (r1, r2, ...rN) represents the complete set of 3N atomic coordinates.

For classical MD and semi-ab-initio calculations, the part of the potential energy U from

interactions between atoms in the same molecule and those in other molecules is commonly split

into one-body, two-body, and three-body terms with the form:

U(rN) =
∑
i

u (ri) +
∑
i

∑
j>i

v (ri, rj) +
∑
i

∑
j,k>i

v (ri, rj, rk) + ... . (1.5)

The term u (r) represents an externally applied potential field, and it is common to focus on the

pair potential v (ri, rj). The most commonly used form of pair potential is the Lennard-Jones

two-body potential

vLJ = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (1.6)

which is used to describe the interaction between a pair of neutral atoms or molecules. One
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parameter, ε, is the depth of the potential well, which describes the region surrounding the lowest

potential energy point. σ describes the distance where the particle-particle interaction is null,

while r is the distance between the particles. The r−12 term stands for the repulsion at short

ranges between the particles caused by the overlapping of electron orbitals [83], and the r−6 term

accounts for the long-range attraction. This potential was used in the earliest studies and gave

a very good approximation on the equilibrium state of argon [84]. Having defined the potential

energy function U
(
rN
)
, the atomic forces can be calculated using Eq. 1.4. For simplicity, we

can describe a structure composed of atoms with potential energy U
(
rN
)

and coordinates rN =

(r1, r2, ...rN) also in terms of kinetic energy K
(
pN
)

=
∑N

i=1 | pi |2 /2mi with atomic momenta

pN = (p1, p2, ...pN). The total energy or the Hamiltonian can be written as the sum of the

kinetic and potential energy H = K + U . Now if we write the classical equations of motion as

ṙi = ṗi/mi and ṗi = fi, (1.7)

we get a system of coupled ordinary differential equations. These equations need to be numerically

integrated step-by-step by the MD algorithm. The integration time step δt must not be too large,

since this may produce inaccurate results. A good example of an algorithm which allows the use

of longer timesteps without putting the accuracy of the simulations at risk is the ’velocity Verlet’

algorithm [85]. The main attributes of the Verlet algorithm are that it is time reversible, it requires

just one force evaluation per step, and it is easy to program. Concerning MD, the main ingredients

needed to start are:

• a model to describe the interaction between atoms, molecules etc;

• a integrator that shifts particle positions and velocities from time t to t+ δt;

• a microcanonical ensemble (NVE),

where a NVE is an isolated statistical system of particles N where the energy conservation does

not change with time. These three essential quantities define a MD simulation. The ab-initio MD

method will be introduced in detail in the next section.
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1.7 Ab-initio molecular dynamics

1.7.1 Many-body problem

The ”ab-initio” method, in latin ”from beginning”, is a theoretical approach to finding solutions

to the equation that describes the quantum behaviour of atoms, the Schrödinger equation. In a

many-body system, electrostatic interactions between the particles, such as the electron-electron

repulsion, electron-nuclei attraction and nuclei-nuclei repulsion, need to be accounted for. The

non-relativistic, time-independent Schrödinger equation can describe such a system as

Ĥψ (ri, Ri) = Eψ (ri, Ri) , (1.8)

where E is the total energy of the system and ψ (ri, Ri) the wave function dependent on the

positions of the electrons and nuclei ri and Ri, respectively. In the absence of external fields, the

Hamiltonian operator Ĥ, which contains information regarding the kinetic and potential energies

of all the particles in the system, takes the form

Ĥ = Te + Tn + Ve−n + Ve−e + Vn−n, (1.9)

where Te is the kinetic energy of the electrons, Tn the kinetic energy of the nuclei, Ve−n the

Coulomb attraction between electrons and nuclei, Ve−e the Coulomb repulsion between electrons,

and Vn−n the Coulomb repulsion interaction between the nuclei. The terms in Eq. 1.9 can be

written as

Ĥ = −1

2

N∑
i=1

∇2
i −

1

2

M∑
A=1

1

MA

∇2
A −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>1

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
RAB

. (1.10)

For simplicity the Hamiltonian in Eq. 1.10 is shown in atomic units, where the mass of the electron

me, the charge e, the reduced Planck’s constant h̄ and the permitivitty of free space 4πε0 are

all set to unity. MA is the mass of nucleus A and ZA its charge. The indices in the summation
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terms i and j run over the N electrons, and the indices A and B run over the M nuclei of the

system. The first two terms represent the kinetic energy of the electrons and nuclei, respectively,

while the other three are potential energy terms. These arise from the electrostatic interaction

between the nuclei and electrons, the repulsive electron-electron and nucleus-nucleus interations

in this particular order as seen in Eq. 1.10. r represents the distance between an electron and

another particle, be it an electron or a nucleus, while RAB represents the distances between the

nuclei.

It is quite difficult to try and find a solution which takes into account all these interactions,

as we need to consider the interaction contribution of all the electrons and nuclei simultaneously.

However, an important simplification of this problem can be obtained by the simple observation

of the difference between the mass of an electron and that of a given nucleus. The electrons are

three orders of magnitude lighter than nuclei, and as a consequence, they travel three orders of

magnitude faster than the nuclei given the same amount of kinetic energy. In other words, to the

electrons it appears as if the nuclei are fixed in place, while to the nuclei, the positions of the

electrons appear to update instantaneously to their every move. As a result, the system can be

simplified by separating the electronic from the nuclear motion, and look for solutions of the wave

function in the form

ψ (ri, Ri) = x (Ri)ψ (ri) , (1.11)

where x (Ri) and ψ (ri) are the nuclear and electronic wave functions. This simplification is known

as the Born-Oppenheimer approximation [86]. Under this approximation, the kinetic energy term

of the nuclei becomes 0, as the nuclei are not allowed to move, and thus the potential energy term

describing the nuclei-nuclei repulsion becomes a constant. If we only focus on the electronic part

of the problem, the Hamiltonian will take the form

Ĥelec = −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>1

1

rij
, (1.12)

and now the Schrödinger equation for the electronic part, where the electronic wave function Ψelec
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depends only on the electron spatial coordinates, becomes

Ĥelecψ (~ri, ..., ~rN) = Eelecψ (~ri, ..., ~rN) , (1.13)

where Eelec are eigenvalues. The wave function solution for this system that gives the lowest

energy is called the ground state, and the eigenvalue of the ground state is called the ground-state

energy.

However, it is still not easy to get a solution for the ground-state energy, mainly because of

the electron-electron repulsion term in Eq. 1.12, since each electron simultaneously experiences an

electrostatic repulsion due to the presence of every other electron in the system. It is worth men-

tioning that the wave function itself cannot be directly observed. What can be instead measured

is the probability density that N electrons are at a set of coordinates r1, r2...rN ,

|ψ (r1, ...rN) |2 = ψ∗ (r1, ...rN)ψ (r1, ...rN) , (1.14)

where the asterisk denotes a complex conjugate. However, the wave function is still a function of

3N coordinates. For a C atom, which has 6 electrons, the wave function would be a function of

18 dimensions (3×6 electrons). Given the fact that there is no way of distinguishing between the

electrons, the wave function ψ (~ri, ..., ~rN) can be approximated as a product of N single-electron

wave functions, also called the Hartree product, to overcome the dimensional obstacle:

ψ (~ri, ..., ~rN) ≈ ψ1 (~r)ψ2 (~r) ...ψN (~r) . (1.15)

Now we can calculate the electron density by counting how many electrons will on average be

found at position ~r by summing over all the probabilities that an electron in the wave function

ψi (~r) will be located at the position ~r:

n (~r) = 2
N∑
i

ψ∗i (~r)ψi (~r) , (1.16)
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where the factor 2 is a consequence of the electrons having spin and of the Pauli exclusion principle,

which states that two electrons occupying an orbital must have opposite spin. The electron density

is a function of only three spatial coordinates compared to 3N coordinates of the wave function.

In the next section we will discuss how we can use the electron density to obtain solutions to the

Schrödinger equation.

1.7.2 Density functional theory

Density functional theory (DFT) rests on two theorems proved by Hohenberg and Kohn [87], and

on a set of equations by Kohn and Sham [88]. The first theorem states that the ground-state

energy E0 is a unique functional of the ground-state electron density n0 (~r):

E [n0 (~r)] = E0. (1.17)

The second theorem states that the ground-state energy can be obtained variationally. The func-

tional that delivers the ground-state energy of the system can only deliver the lowest energy if

the input density is the true ground-state electron density corresponding to the solution of the

Schrödinger equation.

Kohn and Sham proved that the right electron density can be found by a set of equations,

which only involve single electrons ψi [88]:

[
1

2
∇+ V (~r) + VH (~r) + Vxc (~r)

]
ψi (~r) = εiψi (~r) , (1.18)

where the first term is the kinetic energy of the electron, the second term V (~r) defines the potential

due to the electron interaction with the nuclei, VH (~r) is the Hartree potential that describes the

Coulomb repulsion between the electron and the electron density of all the other electrons in the

system, and Vxc (~r) is an exchange-correlation potential that accounts for the Pauli repulsion and

for how much the movement of one electron is influenced by the presence of all other electrons.

To solve the Kohn-Sham equations, the Hartree potential needs to be defined, and that requires

knowing the electron density. However, the electron density can only be found if we know the
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single-electron wave functions, and that means we have to solve the Kohn-Sham equation. This

problem can be treated iteratively in the following way:

1. Define an initial, trial electron density n (~r).

2. Find the single-electron wave functions ψi (~r) by solving the Kohn-Sham (KS) equations

using the trial electron density.

3. Calculate the electron density using the Kohn-Sham single-electron wave functions from

step 2, nKS (~r) = 2
∑

i ψ
∗
i (~r)ψi (~r).

4. Compare the trial density n (~r) with the calculated electron density nKS (~r) and if they

are equal, the ground state electron density has been found and the total energy can be

calculated. If they differ, then the trial density needs to be updated and the process starts

again at step 2.

A convenient aspect of DFT is that all the energy terms that can’t be explicitly expressed are

accounted for in the exchange-correlation potential Vxc (~r). Therefore, also the accuracy of the

ground state energy depends on how well Vxc (~r) is approximated. The true form of the exchange-

correlation functional is not generally known, though it can be derived exactly for the uniform

electron gas, where the positive charges are uniformly distributed and so the electron density is a

uniform quantity at any point in space, n (~r) = const. This way the exchange-correlation potential

at any position is known from the electron density at that position:

Vxc (~r) = V electron gas
xc [n (~r)] . (1.19)

This is called the local density approximation (LDA) and it gives us a way to solve the KS equations,

though it is an approximation that is not the true exchange-correlation and will not deliver the true

solution to the Schrödinger equation in general. Another way to define the exchange-correlation

functional is the generalized gradient approximation (GGA), which uses not only the local electron

density but also the local gradient in the electron density, such as the Perdew-Wang (PW91) [89]

or the Perdew-Burke-Ernzerhof (PBE) [90] functionals, which are commonly used for calculations

involving solids. Despite its approximate nature, DFT provides a remarkably good description of

most properties of many materials.
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1.7.3 Density-functional tight-binding

While DFT calculations are often the most reliable point of reference for experiments, they are

computationally expensive and slow for the purpose of describing large systems (hundreds of atoms)

or for stochastic experiments. The density-functional based tight-binding (DFTB) method scales

better for larger systems since the computational effort can be dramatically reduced, while main-

taining reasonable accuracy [91–93]. DFTB is not an ab-initio method, since it is parametrized

and the fundamental starting point is that the electrons are ”tightly bound”, which limits the com-

plexity of their interaction, but is well suited to describe covalently bonded carbon structures [91,

94]. DFTB is based on a second-order Taylor-series expansion of the Kohn-Sham total energy

(Eq. 1.17) in DFT. Instead of finding the electron density n (~r) that minimizes the energy, a

reference density n0 (~r) is assumed and perturbed with some fluctuations:

n (~r) = n0 (~r) + δn (~r) . (1.20)

The total energy is expanded into a Taylor series up to the third term as

E[n0 (~r)+δn (~r)] = E0[n0 (~r)]+E1[n0 (~r) , δn (~r)]+E2[n0 (~r) , (δn (~r))2]+E3[n0 (~r) , (δn (~r))3],

(1.21)

where the first two terms contribute to the non-self-consistent DFTB method [91, 92], and the

rest to so-called self-consistent charge (SCC) DFTB [93, 95] methods.

1.8 Monte Carlo method

Monte Carlo methods are computational algorithms that are based on repeated random sampling

to obtain results. Within the Metropolis algorithm [96], the atomic configuration is tested by

trial moves of particles, and the energy change from one step to the other is used as a trigger to

accept or reject the new configuration. In material science, these methods can be applied to model

the dynamic behaviour of atoms and are commonly called kinetic Monte Carlo (KMC). KMC is

considered as a form of coarse graining in the context of molecular dynamics, since it bridges the

motion of individual atoms occuring on a pico- to femtosecond timescale with events that may

require even seconds to occur within an ensemble of multiple possible processes [97]. In KMC
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Figure 1.14: A typical kinetic Monte Carlo MD trajectory (black) on a potential energy surface,
with red regions representing lower energy basins. Figure adapted from Ref. [97] (CC-BY).

all transitions are Poisson-distributed, independent of the system’s history, and only high-barrier

events are of interest (e.g. atom jumps, adsorption and desorption). In Fig. 1.14 we see a possible

MD trajectory (black) of an atom on a potential energy surface (PES), where the red regions

represent the system’s lower energy basins. After many random trials, the atom finds a route to

escape to the next basin. Most transitions are filled with time spent around PES minima, as the

event-relevant transitions only occur occasionally.

Originally the KMC method was used to study vacancy diffusion in alloys [98], but it can be

used for predicting surface diffusion, dislocation mobility [99] and other phenomena. In this study

it is used to study the diffusion of N adatoms near the graphene vacancy.
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Chapter 2

Methods

Here, we introduce the concept of the displacement cross section used for quantifying knock-on

displacements caused by electron irradiation. We compare static and non-static models, and show

how to account for the effects of atomic vibrations in the cross-section calculations. Further, we

describe the acquisition of the experimental data with STEM and introduce the computational

tools used to model atom displacements in materials under the electron beam.

2.1 Predicting the displacement cross section

To predict and quantify the damage created through electron irradiation, we calculate the displace-

ment cross section σ. Conceptually the displacement cross section is the effective area of collisions

that will lead to the displacement of an atom and is measured in units of barn (10−28 m2). The

elastic scattering of a relativistic electron by a nucleus was first derived by N. Mott [19] as a

solution to the Dirac equation [100], since Dirac was the first to account for special relativity in

the context of quantum mechanics. McKinley and Feschbach built on Mott’s work [20], providing

an analytical solution to describe cross sections for elements up to a medium Z :

σ = σR
[
1− β2 sin2 θ/2 + πZαβ sin θ/2 (1− sin θ/2)

]
, (2.1)

where θ is the electron scattering angle, Z is the atomic number, α is the fine structure constant,

and β = v/c is the ratio of the electron velocity with the speed of light. We can express β in
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terms of the acceleration voltage as

β =

√
1− 1

(Ee/mc2 + 1)2
, (2.2)

where Ee (= Ekin) is the acceleration voltage. In Eq. 2.1, σR is the classical Rutherford scattering

cross-section

σR =

(
Ze2

4πε02mc2

)2
1− β2

β4
csc4(θ/2), (2.3)

where ε0 is the vacuum permittivity, e the electron charge and m the mass of the electron.

To obtain the total displacement cross section, one needs to integrate Eq. 2.1 over all possible

electron scattering angles θ for which the transferred energy to the nucleus Ẽn is higher than its

displacement threshold energy Ed. In the static approximation, where the atoms are assumed to

be stationary, the integral is:

σstatic =

θ=π∫
θ=0

H
(
Ẽn (Ee, θ)− Ed

)
σ (Ee, θ) dθ. (2.4)

We are using the Heaviside step functionH, which can take the values 1 or 0 depending on whether

or not the transferred energy Ẽn (Ee, θ), as in Eq. 3.18, exceeds the displacement threshold energy

Ed. The highest energy transfer occurs when the electron backscatters at θ = π (see Eq. 3.18).

Vibration-assisted displacement cross section

In the non-static approach discussed in [22, 24, 25], the out-of-plane velocity vz of the target atom

is included as a parameter to the transferred energy in addition to the electron scattering angle

θ. Essentially this is due to the fact that if an atom happens to vibrate along the direction of the

electron beam, the energy transfer will be higher than if it was at rest. In any real material the

atoms will never be at rest due to thermal vibrations. Meyer et al. [22] calculated the out-of-plane

velocities for graphene in the framework of the Debye model to be able to match the experimentally

observed displacement cross sections of graphene at voltages under 100 keV. This method was
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further improved by Susi et al. [24], by using the phonon density of states to also account for

quantum mechanical zero-point vibrations from first principles. The probability to find an atom

vibrating at a certain velocity can be expressed in terms of a normal distribution:

P (vz, v2z) =
1√
2πv2z

exp

(
−v2z
2v2z

)
, (2.5)

where the mean-squared velocity v2z is the variance. For example, an electron beam of 100 keV

can only transfer 20.05 eV to a C atom at rest, whereas if the atom is vibrating at a velocity

equivalent to three times the standard deviation (square root of the variance) of the velocity

distribution Eq. 2.5 it will transfer 24 eV, which is almost 4 eV more (the formulas will be given in

Sec. 3.1.2). While this boost in energy transfer may be negligible for acceleration voltages above

120 keV, it will make a decisive difference when operating the electron microscope around or below

the displacement threshold limit.

To estimate the total cross section, we now integrate over all possible velocity combinations

as in Ref. [25]:

σvz =

vmax
z∫

−vmax
z

θ=π∫
θ=0

P (vz, v2z)H
(
Ẽn (Ee, vz, θ)− Ed

)
σ (Ee, θ) dvzdθ. (2.6)

To date, vibrations have only been treated in the out-of-plane direction. However, if we want

to quantify the emission of atoms in arbitrary directions or describe events such as the in-plane

pyridinic N jump, we need to be able to account for vibrations and emission to arbitrary directions

and limit the cross-section to an angular sector of interest, as will be discussed in Sec. 3.2.

2.1.1 Atomic mean-square velocities

Atomic vibrations of the lattice are caused by the excitation of phonons. Here, they are described by

normal distributions of in- and out-of-plane velocities distinguished by their mean-square widths

v2xyz. The widths were derived from the phonon density of states thanks to our collaborators

Nicholas A. Pike and Matthieu J. Verstraete (see Supplemental information of Ref. [57]). Briefly,

the phonon dispersion is calculated, a displacement-weighted phonon density of states is con-
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structed for each atom using Gaussian smearing of 0.6 meV, and populated with Bose-Einstein

thermal factors at 300 K. In the end, within a harmonic model, the mean-square velocity is related

directly to the mean-square displacement by the mode frequency [27].

2.2 Analysis of experimental cross-section data

To quantify electron beam-induced effects, we need to estimate the experimental displacement

cross section. Commercial monolayer graphene (Easy Transfer, Graphenea) and CVD-grown sam-

ples were used to determine the cross sections of graphene [24] and graphene with impurities. The

graphene samples that had Si impurity atoms, were synthesized by CVD on 25µm thick Cu foils

in a furnace made out of quartz. The Cu foils are annealed for < 1h under constant CH4 methane

and Ar/H2 flow at 960◦ and a pressure of 10 mbar. During this process the C atoms from methane

recombine on the Cu foil to form graphene. In the end, the graphene is transferred onto holey

amorphous carbon on a TEM support grid. The exact origins of the Si impurities is not known,

but are believed to be either introduced during the annealing process, since the furnace is made

of quartz, but may also stem from the transfer process [51, 64] as Si is one of the most abundant

elements on earth and present in laboratory glasswear. While N impurities may be purposefully

introduced in the graphene lattice, in our case they are also incidental.

The experimental data was acquired by colleagues scanning over specified areas using the Nion

UltraSTEM100 scanning transmission electron microscope and recording images with a probe

convergence semi-angle of 30 mrad and a medium-angle annular dark-field detector with a semi-

angular range of 80–200 mrad [24]. The identity of the Si and N impurities was determined by

electron energy-loss spectroscopy [101]. The electron beam was usually scanned across fields of

view of 1×1 or 2×2 nm2. Whenever a jump or a displacement event is observed, the accumulated

areal dose (e−/ Å2) was calculated based on a nominal beam current of 30 pA and the number of

continuous frames between events and their acquisition times. The ocurrence of one event does

not affect the probability that another one will happen, and thus we consider the doses to be

Poisson-distributed. The expectation value of the corresponding exponential distribution can be

fitted as we will see later (Fig. 3.10) and the experimental cross-section evaluated as

σexp =
1

λ
, (2.7)
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where λ is the expectation value of the Poisson distribution (in units of Å−2).

2.3 Displacement simulations

To test the 3D model for vibration-assisted knock-on damage presented in Sec. 3.1.2 and Sec. 3.2,

we ran DFT/MD simulations that allowed us to predict the displacement threshold energy Ed (γ, δ)

of atoms for the beam-induced dynamics observed experimentally in pristine graphene [24], graphene

with Si impurities [27] and graphene with a pyridinic N site [28, 57].

For the purpose of setting up and conducting the displacement simulations, we used GPAW [102],

a density functional theory code based on the projector-augmented wave (PAW) method [103, 104],

with MD as implemented within the atomic simulation environment (ASE) [105]. ASE is a front-

end software package for molecular dynamics also written in the Python programming language

that uses the NumPy library [106] to perform simulation tasks; one can set up, perform and an-

alyze simulations in ASE. Before we start the displacement simulations we need to set up a cell

of atoms. We use the Atoms object in ASE to create a system of two carbon (C) atoms, set the

distance between them and define the unit cell vector. We perform cell relaxation by minimizing

the potential energy of the system and the inter-atomic forces while optimizing the overall geom-

etry including the size of the cell. Once the unit cell structure is relaxed, we create a graphene

supercell and start the DFT/MD simulations to determine the displacement threshold energy for

the three systems mentioned above.

For pristine graphene we used ASE for Velocity-Verlet dynamics with a timestep of 0.3 fs

in a 7×7×1 graphene supercell, with forces from a GPAW DFT calculator using the PBE [90]

functional, a dzp basis-set, a 3×3×1 Monkhorst-Pack k-point grid, and a Fermi-Dirac smearing

of 0.025 eV. For the graphene with a Si impurity and graphene with a pyridinic N–C2 site we used

a 6×6×1 graphene supercell with a Si impurity located in the middle of the cell or a structure

similar to a single vacancy but with the dangling-bond C atom replaced by N bonding to two C

neighbors and stabilizing the defect, respectively. To model what happens in STEM experiments,

where the incoming electron beam is perpendicular to the graphene sheet, we transfer momentum

to a C atom, describing the kick it would receive from an elastic electron scattering event. We loop

over a range of energies and atom emission angles until our stopping criteria is reached as will be
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discussed in Chapter 3. A code example is provided in Appendix A.4 for displacement simulations

on pristine graphene. The simulations for Si–C and N–C2 are done in a similar fashion, since only

the stopping criteria are different.

2.4 Temperature-dependent displacement simulations

We additionally used density-functional tight-binding (DFTB)-based MD to predict the displace-

ment threshold of the Si-C and the pyridinic N systems at a temperature of 300 K. We opted

for DFTB since it scales better computationally for the large cells and for gathering statistics.

We used the non-self-consistent and non-spin-polarized DFTB+ calculator [107] and employed

the ”pbc-0-3” parameter set [108]. To thermalize the systems, we used the Maxwell-Boltzmann

distribution with kinetic energies corresponding to 600 K as seen in Appendix A.2. Half of this

energy goes into the potential energy of the atoms and the other half to their kinetic energy, hence

resulting in a temperature of 300 K. The DFTB+ calculator runs for several thousand timesteps

and one can save different thermalized states as a trajectory file, where information on positions,

velocities and forces of all the atoms in the structure is contained. These configurations are then

used to perform displacement simulations as discussed in Section 3.6. The same method was used

to study the displacement threshold energy of pristine graphene at various temperatures by Chirita

et al. [25].
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Chapter 3

Results

In this chapter, we derive the 3D theoretical framework used to predict electron beam-induced

dynamics that accounts for atomic vibrations in- and out-of-plane. We start from the energy

and momentum conservation and derive a 3D formula to predict the transferred energy resulting

from the elastic scattering of an electron to an atom. We introduce a method to describe the

displacement cross section, which considers the atom velocities at the moment of impact and

accounts for the anisotropy of the displacement threshold energy. This anisotropy is evaluated by

DFT/MD simulations and used to predict displacement cross sections in an attempt to bridge the

gap between theory and experimental observations.

3.1 Derivation of the 3D electron-atom elastic interaction

3.1.1 Basic notions of relativity

Before we dive deeper into how to derive the 3D model for the electron energy transfer, it is

important to cover some notions of relativity, since the electron accelerated to TEM energies is a

relativistic particle. The fraction of the speed of light c at which a relativistic particle with velocity

v moves is denoted by

β =
v

c
. (3.1)

The relativistic total energy Etot is expressed as the sum of the kinetic Ekin and rest energies Erest
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of the particle:

Etot = Ekin + Erest = γmc2 (3.2)

Ekin +mc2 = γmc2 (3.3)

Ekin = (γ − 1)mc2 (3.4)

γ = Ekin/mc
2 + 1, (3.5)

where m is the mass of the particle and γ is known as the Lorentz factor, which quantifies the

change in properties of a particle moving close to the speed of light (relativistic speeds):

γ =
1√

1− β2
. (3.6)

We can also recover Eq. 2.2 by substituting Eq. 3.5 in Eq. 3.6. At this point it is worth mentioning

that for v << c (e.g. atoms), the binomial expansion of γ gives

γ = 1 +
v2

2c2
→ γ − 1 =

v2

2c2
, (3.7)

which leads to the classical expression:

Ekin =
v2

2��c2
m��c2 =

mv2

2
. (3.8)

The relativistic energy-momentum relation, also called the dispersion relation, can be derived from

the expression of the effective mass:

m = γm0 → m =
m0√
1− v2

c2

, (3.9)

where m0 is the rest mass of the particle. We next square the expression, bring it to the same
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denominator and then multiply by c4:

m2 − m2v2

c2
= m2

0 → m2c4 −m2v2c2 = m2
0c

4 (3.10)

m2c4 = m2
0c

4 +m2v2c2. (3.11)

The momentum is the product of mass times velocity, p = mv, and the total energy is E = mc2.

Using these two identities we end up with

E2 =
(
Ekin +m0c

2
)2

= m2
0c

4 + p2c2, (3.12)

which is an important relation that will be used in the energy and momentum conservation equa-

tions presented in the next section.

3.1.2 3D energy and momentum conservation

To derive a three-dimensional model for the electron-atom energy transfer, we consider the elec-

tron as a relativistic projectile scattering from a moving, non-relativistic target, the nucleus, in a

Cartesian coordinate system. Our goal is to determine the amount of kinetic energy transferred to

the atom after scattering. Since this is an elastic scattering event, the total energy and momentum

of the system will be conserved:

Ee + En = Ẽe + Ẽn, (3.13)

pe + pn = p̃e + p̃n, (3.14)

where the quantities Ẽe, Ẽn and p̃e, p̃n represent the total energies and momenta after the collision

of the electron and nucleus, respectively. We can use the dispersion relation derived in Eq. 3.12
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with Ekin = Ee to express p̃e as

|p̃e| =
√
Ẽe

(
Ẽe + 2mc2

)
/c2 =

√(
Ee + En − Ẽn

)((
Ee + En − Ẽn

)
+ 2mc2

)
/c2, (3.15)

where c is the speed of light and m the rest mass of the electron. At this point, to reach an

analytic solution we make the approximation Ee +En− Ẽn ≈ Ee, since the energy of the electron

(e.g. Ee = 90 keV) is much higher than that of the nucleus before or even after the collision (e.g.

for 12C, En ≈ 25 meV and Ẽn ≈ 10 eV). The amount of energy that the electron loses due to the

interaction with the atom is negligible and so we can approximate |pe| ≈ |p̃e|, which will deliver

an analytical solution [25].

After decomposing the momentum vectors in terms of their magnitude and direction (e.g.

pe = pep̂e, pn = pnp̂n) and using Eq. 3.15, we rewrite the momentum conservation equation as

√
Ee (Ee + 2mc2) /c2 p̂e +

√
2MEn p̂n =

√
Ee (Ee + 2mc2) /c2 ˆ̃pe +

√
2MẼn

ˆ̃pn, (3.16)

where p̂e,n and ˆ̃pe,n are vectors of unit length that give the direction of the electron and atom

before and after the collision, respectively. We denote |pe| = pe =
√
Ee (Ee + 2mc2) /c2 and

|pn| = pn =
√

2MEn = Mv for brevity, where M is the mass of the nucleus. Our goal is to

determine the energy of the nucleus after the collision, Ẽn. Shifting the third term to the left side

of Eq. 3.16 and then squaring results in

|Ẽn| =
((pe − p̃e) + pn)2

2M
=

(pe − p̃e)
2 + 2 (pe − p̃e)pn + p2

n

2M
. (3.17)

Static approximation Eq. 3.17 is the general representation of the elastic scattering of an

electron from a moving target atom for arbitrary directions. We can recover the static limit [21]

as used in Eq. 2.4, where the atom is considered to be at rest at the moment of impact, by setting
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pn = 0, and pe = pe (0, 0, 1) (assuming the electrons impinge perpendicular to a sample surface

in the x-y plane) in equation 3.17:

Ẽn =
p2e

(
p̂2
e + ˆ̃p

2

e − 2p̂e · ˆ̃pe

)
2M

=
p2e (2− 2 cos θ)

2M
θ=π
=

2Ee (Ee + 2mc2)

Mc2
, (3.18)

where the angle θ arising from the product between the initial and final electron momenta coincides

with the spherical coordinate polar angle, and the last substitution yields the maximum energy

transfer for electron backscattering (θ = π).

Out-of-plane vibration-assisted energy transfer If the atom is vibrating only in the out-of-

plane z direction at the moment of impact, we may instead set pn = pn (0, 0, 1) for the nucleus

(as the momentum transfer will be increased only if the nucleus is moving in the same direction

as the electron, although the other direction may also contribute to a finite cross section if the

incoming electron energy is well above the threshold). The product p̂n · p̂e yields unity since

p̂n = p̂e = (0, 0, 1), leading to ˆ̃pe · p̂n = ˆ̃pe · p̂e = cos θ. Substituting these terms in equation 3.17

results in the vz-dependent energy transfer that was previously discussed in Refs. [25, 73]

Ẽn (Ee, vz, θ) =
p2e (2− 2 cos θ) + 2pepn (1− cos θ) + p2n

2M

=
2 (1− cos θ)

(
Ee (Ee + 2mc2) +Mvzc

√
Ee (Ee + 2mc2)

)
+ (Mvzc)

2

2Mc2

θ=π
=

(
2
√
Ee (Ee + 2mc2) +Mvzc

)2
2Mc2

. (3.19)

Maximum energy transfer is again obtained for electron backscattering, where the initial nuclear

momentum is antiparallel to the final electron momentum.

3D-vibration assisted energy transfer To derive the full 3D description of the energy transfer

we use a spherical coordinate system (see Fig. 3.1 for a graphical representation). Assuming that

the incoming electron has an initial momentum along the z-axis, its direction vector is pe =
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Figure 3.1: The three-dimensional electron-atom scattering geometry adapted for pristine
graphene. ϕ and θ are the azimuthal and polar electron scattering angles after the collision
(blue), whereas δ and γ are the azimuthal and polar emission angles of the atom (red).

pe (0, 0, 1). Since we know the initial momenta of the nucleus when the scattering occurs, which

are later treated statistically, we denote pn = M (vx, vy, vz). The electron can scatter into any

angle after the collision, p̃e = |pe| (sin θ cosϕ, sin θ sinϕ, cos θ) and so can the atom, p̃n =

|p̃n| (sin γ cos δ, sin γ sin δ, cos γ), where θ and ϕ are the polar and azimuthal electron scattering

angles, and γ and δ the polar and azimuthal atom emission angles. Substituting these terms in

Eq. 3.17 and using the trigonometric identity sin2 + cos2 = 1 results in the 3D energy transfer:

Ẽn (Ee, vx,y,z, θ, ϕ)

=
p2e (2− 2 cos θ) + 2peM (vz − vx sin θ cosϕ− vy sin θ sinϕ− vz cos θ)

2M
+
M2

(
v2x + v2y + v2z

)
2M

=
M
(
v2x + v2y + v2z

)
2

+ (1− cos θ)
Ee (Ee + 2mc2) +Mcvz

√
Ee (Ee + 2mc2)

Mc2
−

sin θ

c
(vx cosϕ+ vy sinϕ)

√
Ee (Ee + 2mc2). (3.20)

Setting θ = π and the in-plane components vx,y = 0 will recover the out-of-plane vibration-assisted
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energy transfer Eq. 3.19.

Although the scattering problem is naturally expressed in terms of the electron scattering angles

θ and ϕ and Eq. 3.20 provides that information, the emission of the atom is often of greater interest

as it is something that can be simulated. We thus need to derive a connection with the atom

emission angles γ and δ to describe the emission of the atom after the collision. We decompose

the momentum conservation condition Eq. 3.14 to its Cartesian components as

pxn = pe sin θ cosϕ+ p̃n sin γ cos δ, (3.21)

pyn = pe sin θ sinϕ+ p̃n sin γ sin δ, (3.22)

pzn + pe = pe cos θ + p̃n cos γ. (3.23)

We can use Eqs. 3.21-3.23 to derive expressions for the atom emission angles. To express the

angle δ, we solve equation 3.22 for p̃n as

p̃n =
pyn − pe sin θ sinϕ

sin γ sin δ
, (3.24)

substitute this in equation 3.21

pxn − pe sin θ cosϕ =
(pyn − pe sin θ sinϕ)���sin γ cos δ

���sin γ sin δ
, (3.25)

and then solve for δ:

δ (Ee, vx, vy, vz, ϕ, θ) = arctan

(
pyn − pe sin θ sinϕ

pxn − pe sin θ cosϕ

)
= arctan

(
Mvy −

√
Ee (Ee + 2mc2) /c2 sin θ sinϕ

Mvx −
√
Ee (Ee + 2mc2) /c2 sin θ cosϕ

)
. (3.26)
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To obtain the atom emission angle γ, we solve equation 3.21 for cos δ:

cos δ =
pxn − pe sin θ cosϕ

p̃n sin γ
. (3.27)

Using the trigonometric identity sin δ2 + cos δ2 = 1 we can rewrite Eq. 3.27 as

sin δ =

√
1− (pxn − pe sin θ cosϕ)2

p̃2n sin γ2
, (3.28)

and substitute the sin δ term in equation 3.22 to obtain

pyn − pe sin θ sinϕ =

√
p̃2n sin γ2 − (pxn − pe sin θ cosϕ)2. (3.29)

Next, we square both sides,

p̃2n sin γ2 = (pxn − pe sin θ cosϕ)2 + (pyn − pe sin θ sinϕ)2 , (3.30)

solve equation 3.23 for p̃n,

p̃n =
pzn + pe (1− cos θ)

cos γ
, (3.31)

and substitute it in Eq. 3.30 to solve for γ:

γ (Ee, vx, vy, vz, ϕ, θ) = arctan


√

(pxn − pe sin θ cosϕ)2 + (pyn − pe sin θ sinϕ)2

pzn + pe (1− cos θ)


= arctan

([(
Mvx −

√
Ee (Ee + 2mc2) /c2 sin θ cosϕ

)2
+(

Mvy −
√
Ee (Ee + 2mc2) /c2 sin θ sinϕ

)2]1/2
/(

Mvz +
√
Ee (Ee + 2mc2) /c2 (1− cos θ)

))
. (3.32)
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We can also use momentum and energy conservation equations to calculate the transferred energy

Ẽn (Ee, vx, vy, vz, γ, δ) in terms of the atom emission angles γ and δ (see Fig. 3.3 for its behaviour

against γ in pristine graphene). However, the solution to this equation is quite complicated and

was only solved in Mathematica. The solutions are listed in Appendix A.4 and in our supplementary

Mathematica notebook to Ref. [57] as functions named Tmaxcase11 and Tmaxcase12. Now, not

only can we predict the amount of energy transferred to an arbitrarily moving atom, but can also

predict its emission in any arbitrary direction as a result of the elastic scattering with an electron.

3.2 Cross section for displacements in 3D

Here, we further introduce a three-dimensional theoretical approach to describing the displace-

ment cross section for arbitrarily moving atoms emitted in arbitrary directions. This takes into

consideration the atom velocities at the moment of impact as described by Eq. 3.20, but also

accounts for changes in the displacement threshold energy of the atom, either due to variaton

with respect to the atom emission angles or thermal perturbations [25]. Both are effects that

can be quantified employing molecular dynamics as we will see in the next sections. Taking into

account the anisotropy of the displacement threshold energy and the atomic vibrations in 3D, we

integrate Eq. 2.1 as follows:

σT3D =

∫ ∫ ∏
i={x,y,z}

vmax
i∫

−vmax
i

P (vi, v2i )P (Ed, w(T ))H(Ẽn − ξEd (γ, δ))σ(Ee, θ) dvi sin θ dθ dϕ,

(3.33)

where P (vi, v2i ) with i = x, y, z are the normal distributions of velocities of the target atom with

mean-square velocities (variances) v2i derived from the phonon density of states [24] and inte-

grated over e.g. ±3vmaxi covering the variation of velocities, P (Ed, w(T )) is a normal distribution

accounting for the thermal variation of Ed at temperature T [25], where w(T ) is the standard

deviation, H is the Heaviside step function ensuring the transferred energy Ẽn exceeds Ed (γ, δ)

and ξ is a fitting factor multiplying the simulated Ed (γ, δ) to help match the experimentally
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observed displacement cross-sections. Introducing the factor ξ is a necessity since the simulated

displacement threshold energies do not always match with the ones resulting from experimental

data. As a measure of goodness of the fit and for finding ξ, we calculate a weighted mean-square

error (WMSE) as

WMSE (ξ) =
[σtheory (ξEd (γ, δ))− σexp]2

εexp
, (3.34)

where σtheory can be any theoretical model used to describe the cross-section (e.g. σ3D), σexp is

the experimentally observed displacement cross section and εexp its corresponding measurement

uncertainty (typically standard error of the mean). The closer ξ is to unity, the better the simulated

Ed (γ, δ) matches experimental data.

To describe the dependence of Ed on the atom emission angles and to exclude the angles

that do not contribute to the cross section, we use an interpolation function defined piece-wise as

follows:

Ed (γ, δ) =

Ed (γ, δ) γ1 ≤ γ ≤ γ2 and δ1 ≤ δ ≤ δ2

50 eV

, (3.35)

where the polar atom emission angles γ1, γ2 and the azimuthal atom emission angles δ1, δ2

represent the lower and upper ranges of the angular sector of the simulated displacement threshold

energies. The value of 50 eV is chosen large enough for our range of primary beam energies to avoid

any incorrect extrapolation. Using an interpolation function allowed us to sample displacement

threshold energies within a specific range and perform accurate numerical integrations.

3.2.1 Numerical integration of the displacement cross section

To estimate the total displacement cross section we have to integrate Eq. 3.33, which depending

whether we take temperature variation of Ed into account or not, will have 5 or 6 dimensions.

This demanding multi-dimensional integral had to be integrated with numerical methods. We tried

several methods using Python’s scipy [109] library as well as ”brute-force” approaches, which did

not yield a converged result in any reasonable amount of time; scipy’s quad function never yielded
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any result, even after letting it run for several days. Mathematica features a large number of

advanced integration methods and we have trialed most of them. Adaptive algorithms and Monte

Carlo methods, such as the AdaptiveMonteCarlo delivered inconsistent results, while some others

would take unreasonable amounts of time to compute and still be inconsistent. However, the

GlobalAdaptive algorithm [110] as implemented in Mathematica proved to be the only method

to deliver consistent results. To ensure the numerical precision of the integrals to two decimal

places we used the option PrecisionGoal=2, and for a finer subdivision of the integration region,

especially in areas where the cross section is small, we opted for MinRecursion=4. To calculate

a cross section for a single acceleration voltage point to this degree of accuracy usually takes one

minute on a modern CPU, and one can parallelize the computation over available cores using

ParallelTable.

3.3 Pristine graphene

To evaluate our 3D theory, we first turned to the best-characterized system, namely knock-on

damage of pristine graphene. We performed displacement simulations for a C atom in pristine

graphene covering the polar atom emission angle 0◦ ≤ γ ≤ 30◦ in 5◦ steps, and azimuthal angle

0◦ ≤ δ ≤ 60◦ in 10◦ steps, which by symmetry allows us to predict Ed (γ, δ) for all azimuthal

angles δ as pictured in Fig. 3.2. We found that the displacement threshold energy Ed lies within

the range [22.55, 23.25] eV (tested in steps of 0.05 eV) and can see that Ed (γ, δ) increases for

γ > 0◦ (as also noted earlier in [72]). With increasing angle γ, also the energy transfer becomes

smaller because the electron scattering angle θ is also smaller than π (backscattering) and with

it the amount of energy transferred is reduced from the maximum. This is the reason why we

only simulated emissions up to γ = 30◦, since the reduced energy transfer cannot overcome the

increasing displacement threshold energy. To confirm this, we plotted (Fig. 3.3) the transferred

energy Ẽn (Ee, vx, vy, vz, γ, δ) (see Appendix A.4 for the complete formula) with respect to the

atom emission angle γ at an acceleration voltage Ee = 100 keV for different velocities and

azimuthal angles δ and compared it to the displacement threshold energies Ed (γ, δ). While certain

energy transfers for γ > 30◦ can be significant (Fig. 3.3), they will not contribute to the total

cross section since the probability of the required large velocities is very low (due to multiplication

with the velocity normal distributions in Eq. 3.33).
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Figure 3.2: The three-dimensional electron-atom scattering geometry adapted for pristine
graphene. ϕ and θ are the azimuthal and polar electron scattering angles after the collision (blue),
whereas δ and γ are the azimuthal and polar emission angles of the atom (red). The colored dome
indicates the calculated and interpolated angular variation of the displacement threshold energy
Ed for pristine graphene calculated with DFT/MD. Figure reproduced from ref. [57] (CC-BY 4.0).

To test our theory, we compared it to the experimental cross-section data for knock-on acquired

by colleagues [24]. In Table 3.1 we present the data points at acceleration voltages Ee = 85, 90,

95 and 100 keV and also their corresponding fits using the theoretical models for the out-of-plane

velocity cross section σvz (see Eq. 2.6) and the full 3D cross section σ3D (see Eq. 3.33 without the

temperature component), and plot the two models and the experimental data in Fig. 3.4. There

is no significant difference between the two theoretical models, as they both fit the experimental

data to the same extent. The fitting was done using Eq. 3.34, and the scaling factor ξ required to

multiply the simulated displacement thresholds yielded values of ξvz = 0.938 and ξ3D = 0.932 for

the σvz and σ3D cross-section models, respectively. Also, in terms of error, these two models were

very similar with WSME values (Eq. 3.34) yielding 0.005 and 0.004 for the σvz and σ3D models,

respectively. Thus, this not only shows that the vz-only model is sufficient to describe knock-on

damage of pristine graphene, but also provides the first test of the validity of our 3D model.
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Figure 3.3: Transferred energy Ẽn as a function of atom polar emission angle γ for graphene
for different initial velocities and azimuthal emission angles δ for an acceleration voltage of Ee =
100 keV. The static approximation of the transferred energy (Eq. 3.18), where no initial velocity of
the atom is taken into consideration, and the 3D model are compared to the DFT/MD displacement
threshold energy Ed (γ, δ), which is plotted as an orange dashed line. For the non-static cases,
the energy curves are plotted for 1–3 standard deviations from the velocity mean for different
combinations of initial velocities (a) z (vz); note that scattering in this case is isotropic as a
function of the azimuthal atom scattering angle δ, (b) x (vx), (c) xy (vx and vy), and (d) xyz
(vx, vy, vz) directions, plotted for (b) δ = 0◦ or (c,d) δ = 45◦.

Table 3.1: Experimental cross sections for pristine graphene compared to the theoretical models
σvz and σ3D. The experimental data is from Ref. [24].

Ee [keV] Exp. cross section [barn] σvz [barn] σ3D [barn]

85 12.0× 10−4 2.0× 10−4 2.5× 10−4

90 10.9× 10−3 4.9× 10−3 5.7× 10−3

95 0.056 0.056 0.059

100 0.328 0.328 0.325
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Figure 3.4: Comparison of experimental knock-on cross section for pristine graphene (green open
circles) with the calculated ones for the full 3D (solid blue line) and the vz-only (dashed orange
line) velocity models. The experimental data points are from Ref. [24].

3.4 Si-doped graphene

We further performed displacement simulations for another experimentally quantified graphene

system: the trivalent Si–C3 impurity [27, 51, 64], where the impacted C atom exchanges places

with the Si atom (yellow sphere in Fig. 3.5). We explored multiple pathways for the exchange

process to happen, and calculated the displacement threshold energy Ed (γ, δ) that will lead to

an exchange between the two atoms for 0◦ ≤ γ ≤ 30◦ in 5◦ steps, and 0◦ ≤ δ ≤ 180◦ in 10◦

steps (due to symmetry only covering the half-dome shown in Fig. 3.5). The displacement energy

was varied from 14 to 21 eV in steps of 0.25 eV until an exchange occured or the atom was

ejected. Again we used Eq. 3.35 to create an interpolation function defined piecewise only for

the ranges we simulated. The possible pathways for such a beam-driven exchange to happen are

shown by the color-coded tiles of the half-dome in Fig 3.5. The uncolored tiles of the left half-

dome represent angles at which no exchange between the atoms was observed. The displacement

energies that lead to a silicon-carbon exchange vary from 14.25 to 20.25 eV. The lowest-energy

exchange pathways lie in the direction of the Si-C bond, away from the Si atom. In this sector

(blue to dark-blue in Fig. 3.5), Ed drops with increasing γ. On the other hand, if we orient the

C displacement direction towards the Si atom, Ed will take higher values with increasing γ. The
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reason is that the Si atom buckles out from the plane and is more likely to fall in the place of the

ejecting carbon atom if it is displaced away from as opposed to towards the Si atom.

In Table 3.2 we present experimental cross-section data from Ref. [27] and yet unpublished

data acquired by colleagues with the STEM at 55, 60, 65 and 70 keV, and the corresponding fits

using the theoretical models σvz , σ3D and σT
3D (with and without the temperature variation of Ed).

While the fitting using Eq. 3.34 apparently yielded scaling factors for the simulated displacement

threshold energies very close to unity: ξvz = 0.987, ξ3D = ξT3D = 0.980, we can tell by looking at

Fig. 3.6 that all three theoretical models are a poor match to the experimental cross-section data,

especially the points at 60 and 65 keV. This is also reflected in the large WSME values we get

with Eq. 3.34 for all three cases: 7.85, 7.17, 6.47 for σvz , σ3D, σT
3D, respectively.

14
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20
Ed (eV)

Figure 3.5: Graphene with a Si impurity (yellow sphere). The colored half-dome represents the
variation of the displacement threshold energy Ed (γ, δ) of a carbon atom in the vicinity of the Si
impurity that will lead to a Si-C inversion in graphene, estimated with DFT/MD and numerically
interpolated. We left the other symmetric half-dome tiles uncolored for the clarity of the graphical
representation.
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Figure 3.6: Comparison of experimental cross-section (green open circles) for the Si–C exchange
events with the calculated ones for the full 3D with and without temperature effects (red and
solid blue lines), the vz-only (dashed orange line). The experimental data points are taken from
Ref. [27] and yet unpublished data.

Table 3.2: Experimental cross sections for the Si–C inversion compared to the theoretical predic-
tions calculated with the out-of-plane vibration model σvz , the three-dimensional vibration model
σ3D, and the temperature-dependent three-dimensional vibration model σT

3D. The experimental
data is from Ref. [27] and yet unpublished work.

Ee [keV] Exp. cross section [barn] σvz [barn] σ3D [barn] σT
3D [barn]

55 0.07 ± 4× 10−3 1×10−4 4×10−4 0.002

60 0.530 ± 0.08 0.006 0.017 0.038

65 0.643 ± 0.06 0.116 0.225 0.280

70 0.768 ± 0.07 0.885 1.263 1.287

3.4.1 Graphene doped with multiple Si atoms

We additionally ran another set of displacement simulations for larger cells (7×7×1) where there is

more than one Si atom in the cell using the same computational methodology as for graphene with

one Si impurity, however for γ = 0◦ emissions only. The idea was to simulate local configurations

that might come up in larger structures as shown in Fig. 3.7, and to check whether or not the

exchange process will happen. Most of the displacements resulted in knocking out the C atom,
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and some recombined to form pentagon or octagon-type defects. We found that the Si–C3 will

exchange only in three out of the nine configurations we trialed, namely configurations 1, 2 and 9

(see Fig. 3.8). The atoms marked with green were subject to displacement simulations (and are

numbered same as in the simulation cell). Not all the marked C atoms in configurations 1,2,9

will result in an exchange with the Si atoms: only atom 62 of configuration 1 will undergo an

exchange with its neighboring Si atom at Ed = 14.25 eV, while in configuration 2, both atoms

35 and 48 will switch places with their neighboring Si atom for Ed = 15.0 eV, as well as atom

35 of configuration 9 for Ed = 14.75 eV. It is also worth noting that only C atoms which have a

direct bond to the Si impurity can potentially lead to an exchange. The remaining of the marked

C atoms have KO thresholds varying from 13.5 to 23 eV, depending on their position relative to

the Si impurities. The lowest KO threshold, 13.5 eV, was found for the C atom in configuration 4,

which has two Si atoms as its nearest neighbors (see Fig. 3.7), while the highest Ed (>22.0 eV)

Figure 3.7: Sketch of different possible local Si–C3 configurations that might occur in larger
structures. Each red square, numbered from 1-9, represent distinct configurations that were
independently simulated in separate supercells. The beige-colored atoms represent Si, and those
highlighted in green are the C atoms which have been subject to displacement simulations, covering
distinct local configurations by symmetry.
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is found for atoms that do not have a Si atom as their neighbour.

48
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Con�guration 1

48
35

21
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35
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Figure 3.8: Close-up views on the configurations 1, 2 and 9, where a Si–C exchange was observed.
The beige-colored atoms represent Si atoms, and the green marked ones are the C atoms which
have been subject to displacement simulations (the atoms are numbered as in the structure files).
Atom 62 of configuration 1 will change places with the neighboring Si atom at Ed = 14.25 eV,
atom 35 and 48 of configuration 2 will both change places with their neighboring Si atom at
Ed = 15.0 eV; and atom 35 of configuration 9 will change places with the neighboring Si atom at
Ed = 14.75 eV.
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3.5 Pyridinic N

We further explored the implications of our 3D theory by running MD simulations for the reversible

transformations of the pyridinic nitrogen impurity. The N can jump back and forth across the

vacancy, as originally observed by Lin et. al. [28]. This configuration is similar to a single vacancy,

but with the dangling-bond C atom replaced by N, bonding to two C neighbors and stabilizing

the defect as presented in Fig. 3.9. We acquired statistical data for the reversible jumps at both

55 and 60 keV at room temperature (see Fig. 3.10g,h). Further, although two instances of N

knock-out were also observed at 55 keV, this was not sufficient to obtain a reliable cross-section

estimate and thus only the value at 60 keV based on eight observed events was estimated to be

1.54 barn.

  Ed (eV)

10

11

12

13

Figure 3.9: Graphene with a pyridinic N–C2 impurity site. The color-coded quarter-dome is a
representation of the possible N jump pathways with their corresponding energy thresholds Ed,
estimated with DFT/MD and numerically interpolated. The uncolored tiles of the dome represent
trialed ejection pathways of the N atom, which did not lead to jumping across the vacancy and
bonding on the other side. For the purpose of having a clear representation of the defect site, we
did not draw the other quarter-dome despite it being equivalent by symmetry.
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Figure 3.10: Reversible jumps of N across a vacancy in graphene. (a–f) Six selected frames from
a medium-angle annular dark-field scanning transmission electron microscopy image series which
contained a total of 17 jumps, recorded at 60 keV at room temperature, with the N atom finally
ejected before the last frame. The scale bar is 2 Å. (g, h) Exponential distribution of jump doses
(N events in total; each bin contains all the events that occurred at doses higher than the lower bin
limit) fitted with the expected Poisson expectation value λ at (g) 55 keV (resulting cross section
σ of 17.0 barn) and (h) 60 keV (22.5 barn).

We ran DFT/MD displacement simulations for various emission angles to determine under which

conditions the N can cross the vacancy to bind with the C atoms on the other side. From the

colored-coded area in Fig. 3.9, we can immediately tell that maximum energy transfers at or around

γ = 0◦ will not result in a jump, regardless of the angular orientation or how much initial momenta
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the N atom receives. Instead, we found that effective emission directions where the N jumped and

recombined across the vacancy lie in a narrow sector between 90◦ ≤ δ ≤ 110◦ (and symmetrically

towards the other side, where δ = 90◦ points directly across the vacancy) and at relatively large

polar emission angles 55◦ ≤ γ ≤ 90◦, with Ed (γ, δ) ranging from 10 to 13.5 eV (see color-coded

area in Fig. 3.9; again a representation of the numerically interpolated displacement thresholds

Ed (γ, δ) taken from DFT/MD).

For other angles or energies, either no change in the site occurs due to the restoring force

of the two C neighbours, or the N almost ejects from the lattice and is left as an adatom near

its original position, which happens for a range of emission angles close to the surface normal at

energies between 14–16 eV (Fig. 3.11). Although most such adatom configurations presumably

recombine at the closest side of the defect, thus restoring the site to its original configuration,

adatom migration at room temperature may allow some of them to recombine on the other side,

which would be experimentally indistinguishable from a direct jump. At even higher transferred

energies, which are increasingly unlikely at primary beam energies of 60 keV or below, the N can

be entirely ejected from the lattice.

To explore the alternative pathway via an N adatom route (Fig. 3.11) and evaluate the prob-

ability for the adatom to recombine on either the original side of the vacancy, or the other side

thus appearing as a jump, we ran Monte Carlo simulations [57] in three simulation cells: an open

world, where an adatom can diffuse away from the defect, and closed periodic cells of two sizes

modeling the potential energy well around the vacancy, where it always ends up recombining on

either side. These constitute ”best” and ”worst” case estimates for the true probability with

the assumption that all migration barriers are equal. Based on 10,000 simulations for each case,

Figure 3.11: Selected top views from a DFT/MD trajectory of a higher-energy perpendicular
ejection (γ = 5◦, δ = 5◦, Ẽn = 15 eV) resulting in an N adatom near its original location.
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Figure 3.12: Comparison of experimental jump (blue open circles) and knock-on (KO, orange open
circle) cross sections with the calculated ones for the full 3D (solid blue line) and z-only (dashed
blue line) models for the direct jump pathway (Fig. 3.9), as well as the 3D model for displacement
to an adatom (Fig. 3.11) followed by recombination on the other side at 47% probability (orange
solid line), and direct knock-out corresponding to the same scaling factor ξ (orange dashed line).
The error bars correspond to 2-sigma confidence intervals. The cross section values are presented
also in Table 3.3

probabilities for the N adatoms to recombine on the other side range from 32% (open world,

only considering those atoms that do not escape) to 47% (periodic 3×3×1 cell) [57]. The latter

value is used in Fig. 3.12 to plot the limiting case for the apparent jump cross sections via an

adatom-mediated route. To estimate this cross section, we multiply σ3D by 0.47 when doing the

fitting with Eq. 3.34. Both theoretical cross-section models σvz and σ3D can be fitted to match the

experimental jump cross sections closely (see Fig. 3.12) with WMSE values of 1.18 and 0.55 barn,

respectively. However, the scaling factors ξvz = 0.167 and ξ3D = 0.224 are far below unity, and

represent a 83.3% and 77.6% decrease, respectively, from the original DFT/MD threshold energy

values Ed. In Fig. 3.13 we have plotted the amount of energy that can be transferred to a N atom

in the static approximation and in the full 3D model for various initial velocity combinations of the

atom with respect to the atom emission angle γ. We compared the energy transfers to the scaled

ξEd (γ, δ) (orange dots) for ξ = 0.224. Despite drastically scaling down Ed (γ, δ) so that the N

could receive sufficient energy to reach the other side of the vacancy against the restoring force of
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3.5. PYRIDINIC N 3. Results

its original two C neighbors, the static model would miss any possible jump above γ ≈ 60◦. Even

though the jump trajectory is close to in-plane, the 3D model does not fare much better than the

out-of-plane model (0.167 vs. 0.224 scaling factor ξ), and thus fails to describe the remarkably

high experimentally observed jump rates. Without the scaling factor, the predicted jump cross-

sections would be negligible for both elastic models. Finally, theoretical adatom and KO curves

were simultaneously fit to match the jump and knock-out cross sections, and they deliver the best

fit for ξ = 0.579. The σ3D adatom curve is still far from matching the experimental data as can

be seen in Fig. 3.12. By further lowering the scaling fator ξ, one would be able to match the jump

cross section, but it would result in a too high probability to knock out the N atom, contradicting

the experimental observations.
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Figure 3.13: Energy transfer to a N atom from a 60-keV electron. Scaled displacement thresholds
ξEd (orange dots, ξ = 0.224) that will lead to a jump compared to transferred energies as a
function of polar atom emission angle γ compared to transferred energies for different velocity
components (solid lines). The energy transfer across the vacancy is greatest for positive vy and
negative vz velocity components.

Table 3.3: Experimental cross-sections for the N–C2 jumps compared to the out-of-plane σvz and
the 3D σ3D vibrational theoretical models.

Ee [keV] σexp jump [barn] σexp KO [barn] σvz [barn] σ3D [barn] σ3D adatom [barn]

55 16.9 ± 3.0 - 18.08 17.27 7.01

60 22.4 ± 4.3 1.54± 0.72 20.64 20.82 12.12
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3.6. TEMPERATURE-DEPENDENT DISPLACEMENT THRESHOLDS 3. Results

3.6 Temperature-dependent displacement thresholds

Finally, we performed temperature-dependent DFTB/MD simulations for graphene with a Si impu-

rity or a pyridinic N site using the methodology described in Section 2.4. For both systems we used

a 15×15×1 graphene supercell with the respective impurities located in the middle of the cell. We

sampled 212 trajectories at 300 K for the Si-C3 system and 241 trajectories for the pyridinic N. We

tested different angular ranges and noticed that in most cases the target atom either completely

displaced or did not switch places with the Si atom, likely due to DFTB+ calculator not being as

accurate in describing this process as DFT. Therefore we settled for just one ejection direction in

both systems. The C atom next to the silicon impurity was always displaced in a direction away

from the Si atom at an polar angle of γ = 15◦. In the non-thermalized state, DFTB yielded a

displacement threshold Ed = 13.6 eV compared to 14.56 eV calculated with DFT. The nitrogen

atom was displaced towards the center of the vacancy at an angle γ = 90◦. Here DFTB+ yielded

a displacement threshold of 9.1 eV for the non-thermalized case which is close to the 9.5 eV value

calculated with DFT. Sampling different thermalized states, the histograms in Fig. 3.14 represent

the spread of the displacement threshold energies and the red curves represent normal distributions

fits. We tried to use the standard deviation w to evaluate the temperature-dependent cross-section

integral described by Eq. 3.33 for the Si–C3 system. However, due to the now 6-dimensional and

piecewise-restrained numerical integral, the GlobalAdaptive algorithm of Mathematica could not

provide us with a numerically stable cross-section value for the pyridinic N site.

1 2 1 3 1 4 1 5 1 6
0 . 0

0 . 1

0 . 2
bS i - C 3

Pro
ba

bili
ty

D i s p l a c e m e n t  t h r e s h o l d  E d  ( e V )

a

7 8 9 1 0
0 . 0

0 . 1

0 . 2
N - C 2

D i s p l a c e m e n t  t h r e s h o l d  E d  ( e V )

Figure 3.14: Histograms representing the distribution of displacement threshold energies for Si-
C3 (a) and N-C2 (b) from temperature-dependent displacement simulations. The red curves are
Gaussian fits with a standard deviation w = 0.49 eV for Si-C3 and w = 0.62 eV for N-C2.
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Chapter 4

Conclusion

The electron beam is a powerful tool for imaging the atomic structure of materials. Often, it

may damage them, but sometimes it can also induce interesting dynamics. The main mechanism

for these events in graphene are elastic knock-on displacements. This work presents a complete

description of knock-on between electrons and nuclei, and provides new insights into the physics of

manipulating single atoms. The elastic interaction between an electron and a target atom has been

accounted for the first time including atom vibrations in all directions. The energy transfer from

an electron to a nucleus can be described as a function of both the polar and azimuthal electron

scattering angles, which in turn determine the atom emission angles, as well as the three velocity

components of the vibrating nucleus. The energy required to displace an atom, the displacement

threshold energy, is not assumed to be isotropic, but to vary as a function of the atomic emissions

angles, opening the way to studying beam-induced dynamics in arbitrary directions. We have

tested this theory on pristine graphene, graphene with silicon impurities, and graphene with a

pyridinic nitrogen impurity site.

For pristine graphene, the new model yielded a very similar result to the earlier out-of-plane ve-

locity model. Since the difference between the two models is negligible and no major improvement

to the predicted cross section is observed, we can conclude that the vz-only model is sufficient for

describing knock-on in graphene. There is little reason to expect that in-plane components would

play a major role in the displacement of C atoms from pristine graphene.

In the case of Si-doped graphene, all the models we tested proved to be a poor match for

the experimental data. Regardless of the choice of fitting parameters, none of the models could
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4. Conclusion

explain the observed rates, especially at 60 and 65 keV. The pyridinic N site, which shows reversible

jumping dynamics is one of the most stringent possible tests of our 3D elastic theory, as in-plane

components should play a major role here. However, the predicted threshold energies were far

from agreement with the experiment.

Since vibrations and the variation of the threshold energy as a function of emission angles

are included, we conclude that the discrepancies must be caused by inelastic effects, which are

not treated in this study, and have been shown to explain damage in other non-metallic 2D

materials [73, 111]. It is surprising that they seem to also play an important role at impurity

sites in metallic graphene. Future theoretical developments for describing inelastic excitations in

combination with elastic knock-on can be expected to give valuable insights into the observed

dynamics, and to be better able to describe the experimental data.

62



List of publications and conference

contributions

Publications

Alexandru Chirita, Toma Susi and Jani Kotakoski. Influence of temperature on the displacement

threshold energy in graphene, Scientific Reports 9, 12981 (2019).

Alexandru Chirita, Alexander Markevich, Mukesh Tripathi, Nicholas A. Pike, Matthieu J. Ver-

straete, Jani Kotakoski, and Toma Susi. Three-dimensional ab initio description of vibration-

assisted electron knock-on displacements in graphene, Physical Review B 105, 235419 (2022).

(Contribution: theoretical framework for the 3D electron-atom elastic interaction, MD simulations,

and analysis of the results.)

Manuscripts in preparation

Andreas Postl, Alexandru Chirita, Nicholas A. Pike, Matthieu J. Verstraete, Jani Kotakoski, Toma

Susi, Electron irradiation cross sections for graphene’s silicon impurities. (Contribution: simulation

of the 3D variation of the displacement threshold energy, and of the 3D contribution of vibrations

to the elastic displacement cross section.)

Thuy An Bui, Gregor T. Leuthner, Jacob Madsen, Carsten Speckmann, Alexandru I. Chirita,

Clemens Mangler, Jani Kotakoski, and Toma Susi, Electron irradiation damage of hexagonal boron

nitride. (Contribution: modeling of the 3D contribution of vibrations to the elastic displacement

cross section.)

63



4. Conclusion

Conference participation

Graphene Study Winter 2018, 5-10 February, Obergurgl, Austria.

Conference on Physics of Defects in Solids: Quantum Mechanics Meets Topology 2018, 9-13

July, Trieste, Italy.

Towards Reality in Nanoscale Materials IX Workshop, 12-14 February 2019, Levi, Finland.

Physics Boat, Atomic structure of nanosystems from first-principles simulations and microscopy

experiments (AS-SIMEX 2019), 28-30 May 2019 , Helsinki, Finland - Stockholm, Sweden.

Towards understanding and modelling intense electronic excitations (TUMIEE) Training school,

23 September - 4 October 2019, Rethymno, Crete (Greece).

Conference proceedings

Alexandru Chirita, Alexander Markevich, Jani Kotakoski, and Toma Susi. ”Atomistic Understand-

ing of Damage and Beam-driven Dynamics in 2D Materials.” Microscopy and Microanalysis 26,

no. S2 (2020): 542-543.

Gregor Leuthner, Thuy An Bui, Georg Zagler, Bernhard Fickl, Mohammad Monazam, Alexandru

Chirita, Toma Susi, and Jani Kotakoski. ”Quantitative Measurement and Utilization of Electron

Irradiation Effects in 2D Materials.” Microscopy and Microanalysis 26, no. S2 (2020): 166-166.

Andreas Postl, Thuy An Bui, Fabian Kraft, Alexandru Chirita, Gregor Leuthner, Heena Inani,

Clemens Mangler, Kimmo Mustonen, Jani Kotakoski, and Toma Susi. ”Adventures in Atomic

Resolution in situ STEM.” Microscopy and Microanalysis 28, no. S1 (2022): 2342-2343.

64



Appendix A

Simulation codes

A.1 Unit cell construction of graphene

import numpy.math.sqrt as sqrt

from ase import Atoms, io

# add 2 Carbon atoms

a = Atoms('C2')

# nearest neighbour carbon-carbon distance

a0=1.42

#set the unit cell vectors and scaled positions

a.set_cell([[a0*3/2,a0*sqrt(3)/2,0],[a0*3/2,-a0*sqrt(3)/2,0],

[0,0,10]])

a.set_scaled_positions([[1./3,1./3,0],[2./3,2./3,0]])

io.write('graphene_unit_cell.POSCAR',a)
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A.2. DFTB+ THERMALIZATION A. Simulation codes

A.2 DFTB+ thermalization

import os

from ase import Atoms

from ase.calculators.dftb import Dftb

from ase.io import Trajectory

from ase import io

from ase.md.velocitydistribution import (MaxwellBoltzmannDistribution,Stationary)

from ase.md.verlet import VelocityVerlet

from ase import units

import numpy as np

import sys

fname = 'Si_gra_sc15'

system = io.read(sys.argv[1])

calc = Dftb(label='carbon',

atoms=system,

#run_manyDftb_steps=True,

kpts=(1,1,1),

#Driver_='VelocityVerlet',

#Driver_MaxForceComponent='1E-4',

#Driver_MaxSteps=1000,

Hamiltonian_MaxAngularMomentum_='',

Hamiltonian_MaxAngularMomentum_C='"p"',

Hamiltonian_MaxAngularMomentum_Si='"p"')

system.set_calculator(calc)

temperature = 600
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A.2. DFTB+ THERMALIZATION A. Simulation codes

name=fname+"_MB_300Kelvin"

traj = Trajectory(name+".traj", 'w', system, properties={"energy",

"velocities", "forces"})

MaxwellBoltzmannDistribution(system, temperature_K = temperature)

Stationary(system) # so that the atoms dont drift in any direction

# We run MD with constant energy using the VelocityVerlet algorithm.

dyn = VelocityVerlet(system, 1 * units.fs) # 1 fs time step.

dyn.attach(traj.write, interval=1)

dyn.run(5000)

traj.close()
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A.3. DFTB+ TEMPERATURE-DEPENDENT DISPLACEMENT SIMULATIONS FOR
SI-DOPED GRAPHENE A. Simulation codes

A.3 DFTB+ temperature-dependent displacement simula-

tions for Si-doped graphene

import sys, os, math

import numpy as np

from ase import io

from ase import Atom

from ase.calculators.dftb import Dftb

from ase.io.dftb import read_dftb_velocities, write_dftb_velocities

from ase.md.velocitydistribution import MaxwellBoltzmannDistribution

from ase.md.verlet import VelocityVerlet

from ase import units

from ase.io import Trajectory, read

#load the trajectories / thermalized structure frames

path = os.getcwd() #uses current working directory (cwd)

trajectories = []

for root, dirs, files in os.walk(path):

for name in files:

if name.endswith('.traj'):

trajectories.append(name)

at = int(sys.argv[1])

delta = float(sys.argv[2])

gammaval = [-15]

#displacement threshold energy values

tdvalues = np.arange (13.4, 17.6, 0.1)
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A.3. DFTB+ TEMPERATURE-DEPENDENT DISPLACEMENT SIMULATIONS FOR
SI-DOPED GRAPHENE A. Simulation codes

flog = open("displacement_log.txt",'w')

for f in trajectories:

atoms = io.read(f)

atoms2 = atoms.copy()

name = os.path.splitext(f)[0]

for gamma in gammaval :

flog.write(name+", gamma= "+str(gamma)+", ")

for E in tdvalues :

atoms = atoms2.copy()

outname = name + "_at" + str(at) + "_E" + str(E)

#set DFTB

calc = Dftb(label = 'carbon',

atoms = atoms2,

kpts=(1,1,1),

Hamiltonian_MaxAngularMomentum_= '',

Hamiltonian_MaxAngularMomentum_C= '"p"',

Hamiltonian_MaxAngularMomentum_Si= '"p"'

)

atoms.set_calculator(calc)
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A.3. DFTB+ TEMPERATURE-DEPENDENT DISPLACEMENT SIMULATIONS FOR
SI-DOPED GRAPHENE A. Simulation codes

dyn = VelocityVerlet(atoms, 0.3*units.fs)

traj = Trajectory(outname + '.traj', 'w',atoms)

dyn.attach(traj.write, interval=1)

dyn.run(1)

v = (2*float(E)/atoms[at].mass)**0.5

vx = v * math.sin(math.pi*gamma/180)*math.cos(math.pi*delta/180)

vy = v * math.sin(math.pi*gamma/180)*math.sin(math.pi*delta/180)

vz = v * math.cos(math.pi*gamma/180)

atoms[at].momentum[0]=atoms[at].mass * vx

atoms[at].momentum[1]=atoms[at].mass * vy

atoms[at].momentum[2]=atoms[at].mass * vz

dyn.run(850)

flog.write('\n')

traj.close()

if atoms[224].position[0] < 7.4 and atoms[224].position[2] < 3.3 :

flog.write('E = '+str(E))

flog.write('\n')

break

elif atoms[at].position[2] > 5 :

flog.write('ejected at = '+str(E))

flog.write('\n')

break
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A.4 DFT-MD displacement simulations for pristine graphene

import sys, os, math

import numpy as np

from ase import io

from ase import Atom

from ase.units import Bohr

from gpaw import GPAW, FermiDirac

from gpaw import restart

from ase.md.velocitydistribution import MaxwellBoltzmannDistribution

from ase.md.verlet import VelocityVerlet

from ase import units

from ase.io import Trajectory, read

filename = str(sys.argv[1])

name = os.path.splitext(filename)[0]

atoms = io.read(filename)

atoms2 = atoms.copy()

at = int(sys.argv[2])

alpha = float(sys.argv[3]) # Spherical angle alpha

betaval = [20,30]

tdvalues = [22.85,22.9,22.95,23.0,23.05,23.1,23.15,23.2,23.25]

flog = open("displacement_log.txt",'a')

def checkejected(a=atoms): # store a reference to atoms in the definition.

if atoms[at].position[2] > 15.5 :

flog.write('\n')
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A.4. DFT-MD DISPLACEMENT SIMULATIONS FOR PRISTINE GRAPHENEA. Simulation codes

flog.write(str(E))

return False

if atoms.get_velocities()[at,2] < 0 :

flog.write("not ejected")

return False

else:

return True

for beta in betaval :

for E in tdvalues :

flog.write("beta="+str(beta)+", E="+str(E)+",")

atoms = atoms2.copy()

outname = name + "_at" + str(at) + "_E" + str(E)

#set gpaw

myk=3

calc = GPAW(mode='lcao',

xc = 'PBE',

basis='dzp',

kpts=(myk, myk, 1),

occupations=FermiDirac(0.025),

txt = 'out',

gpts=(80, 80, 96),

symmetry={'point_group': False},

parallel=dict(sl_auto=True, augment_grids=True, band=1),

)
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A.4. DFT-MD DISPLACEMENT SIMULATIONS FOR PRISTINE GRAPHENEA. Simulation codes

atoms.set_calculator(calc)

MaxwellBoltzmannDistribution(atoms,1*units.kB)

dyn = VelocityVerlet(atoms, 0.3*units.fs)

traj = Trajectory(outname + '.traj', 'w',atoms)

dyn.attach(traj.write, interval=1)

dyn.run(1)

#attach the observer

dyn.attach(checkejected,interval=1)

v = (2*float(E)/atoms[at].mass)**0.5

vx = v * math.sin(math.pi*beta/180)*math.cos(math.pi*alpha/180)

vy = v * math.sin(math.pi*beta/180)*math.sin(math.pi*alpha/180)

vz = v * math.cos(math.pi*beta/180)

atoms[at].momentum[0]=atoms[at].mass * vx

atoms[at].momentum[1]=atoms[at].mass * vy

atoms[at].momentum[2]=atoms[at].mass * vz

while checkejected(atoms) == True:

dyn.run(1)

flog.write("\n")

traj.close()

if atoms[at].position[2] > 15.5 :

break
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Solution to the energy transfer in terms

of atom emission angles

In[ ]:= M = MC (*Redefine symbol for the mass of C12 atom to simplify notation.*);

(*Solving for the transferred energy in terms of gamma and delta resulted in two solutions to the

equation and therefore we have Tmaxcase11 and Tmaxcase12*)

Tmaxcase11[vx_, vy_, vz_, U_, delta_, gamma_] :=

-
1

2 c2 M
-2 Te[U]2 Cos[gamma]2 - 4 c2 Te[U] m Cos[gamma]2 - 2 c2 Te[U]

Te[U]

c2
+ 2 m M vz Cos[gamma]2 -

c2 M2 vz2 Cos[gamma]2 + c2 M2 vx2 Cos[delta]2 Cos[gamma]2 + c2 M2 vy2 Cos[delta]2 Cos[gamma]2 +

c2 M2 vx2 Cos[gamma]2 Sin[delta]2 + c2 M2 vy2 Cos[gamma]2 Sin[delta]2 -

4 c2 Te[U]
Te[U]

c2
+ 2 m M vx Cos[delta] Cos[gamma] Sin[gamma] - 4 c2 M2 vx vz Cos[delta] Cos[gamma] Sin[gamma] -

4 c2 Te[U]
Te[U]

c2
+ 2 m M vy Cos[gamma] Sin[delta] Sin[gamma] - 4 c2 M2 vy vz Cos[gamma] Sin[delta] Sin[gamma] +

2 c2 Te[U]
Te[U]

c2
+ 2 m M vz Sin[gamma]2 + c2 M2 vz2 Sin[gamma]2 - c2 M2 vx2 Cos[delta]2 Sin[gamma]2 +

c2 M2 vy2 Cos[delta]2 Sin[gamma]2 - 4 c2 M2 vx vy Cos[delta] Sin[delta] Sin[gamma]2 + c2 M2 vx2 Sin[delta]2 Sin[gamma]2 -

c2 M2 vy2 Sin[delta]2 Sin[gamma]2 +

1

4
c2  -

1

c2
16 M2 4 Te[U]2 vz2 + c2 8 Te[U] m vz2 + 4 Te[U]

Te[U]

c2
+ 2 m M vz vx2 + vy2 + vz2 + M2 vx2 + vy2 + vz22 +

1

c4
16 2 Te[U]2 + 4 c2 Te[U] m + c2 M 2 Te[U]

Te[U]

c2
+ 2 m vz - M vx2 + vy2 - vz2 Cos[gamma]2 +

c2 M -vz 2 Te[U]
Te[U]

c2
+ 2 m + M vz + M vx2 - vy2 Cos[2 delta] + 2 M vx vy Sin[2 delta] Sin[gamma]2 +

2 Te[U]
Te[U]

c2
+ 2 m + M vz (vx Cos[delta] + vy Sin[delta]) Sin[2 gamma]

2

 e;

Tmaxcase12[vx_, vy_, vz_, U_, delta_, gamma_] :=
1

2 c2 M

2 Te[U]2 Cos[gamma]2 + 4 c2 Te[U] m Cos[gamma]2 + 2 c2 Te[U]
Te[U]

c2
+ 2 m M vz Cos[gamma]2 + c2 M2 vz2 Cos[gamma]2 -

c2 M2 vx2 Cos[delta]2 Cos[gamma]2 - c2 M2 vy2 Cos[delta]2 Cos[gamma]2 - c2 M2 vx2 Cos[gamma]2 Sin[delta]2 -

c2 M2 vy2 Cos[gamma]2 Sin[delta]2 + 4 c2 Te[U]
Te[U]

c2
+ 2 m M vx Cos[delta] Cos[gamma] Sin[gamma] +

4 c2 M2 vx vz Cos[delta] Cos[gamma] Sin[gamma] + 4 c2 Te[U]
Te[U]

c2
+ 2 m M vy Cos[gamma] Sin[delta] Sin[gamma] +

4 c2 M2 vy vz Cos[gamma] Sin[delta] Sin[gamma] - 2 c2 Te[U]
Te[U]

c2
+ 2 m M vz Sin[gamma]2 -

c2 M2 vz2 Sin[gamma]2 + c2 M2 vx2 Cos[delta]2 Sin[gamma]2 - c2 M2 vy2 Cos[delta]2 Sin[gamma]2 +

4 c2 M2 vx vy Cos[delta] Sin[delta] Sin[gamma]2 - c2 M2 vx2 Sin[delta]2 Sin[gamma]2 + c2 M2 vy2 Sin[delta]2 Sin[gamma]2 +

1

4
c2  -

1

c2
16 M2 4 Te[U]2 vz2 + c2 8 Te[U] m vz2 + 4 Te[U]

Te[U]

c2
+ 2 m M vz vx2 + vy2 + vz2 + M2 vx2 + vy2 + vz22 +

1

c4
16 2 Te[U]2 + 4 c2 Te[U] m + c2 M 2 Te[U]

Te[U]

c2
+ 2 m vz - M vx2 + vy2 - vz2 Cos[gamma]2 + c2

M -vz 2 Te[U]
Te[U]

c2
+ 2 m + M vz + M vx2 - vy2 Cos[2 delta] + 2 M vx vy Sin[2 delta] Sin[gamma]2 +

2 Te[U]
Te[U]

c2
+ 2 m + M vz (vx Cos[delta] + vy Sin[delta]) Sin[2 gamma]

2

 e;

Figure A.1: Screenshot of the solution to the energy transfer in terms of atom emission angles γ
and δ.
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and static screening in graphene. Phys. Rev. B 86, 195429 (2012).

76. Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures.

Nature Photonics 7, 394–399 (2013).

80



BIBLIOGRAPHY BIBLIOGRAPHY

77. Iglesias, J. M., Martin, M. J., Pascual, E. & Rengel, R. Hot carrier and hot phonon coupling

during ultrafast relaxation of photoexcited electrons in graphene. Applied Physics Letters

108, 043105 (2016).

78. Li, J. et al. Nature of exciton transitions in hexagonal boron nitride. Applied physics letters

108, 122101 (2016).

79. Kozawa, D. et al. Photocarrier relaxation pathway in two-dimensional semiconducting tran-

sition metal dichalcogenides. Nature Communications 5, 1–7 (2014).

80. Paquet, E. & Viktor, H. L. Molecular dynamics, Monte Carlo simulations, and Langevin

dynamics: a computational review. BioMed research international 2015 (2015).

81. Newton, I. Sir Isaac Newton’s mathematical principles of natural philosophy and his system

of the world (Univ of California Press, 1962).

82. Allen, M. P. et al. Introduction to molecular dynamics simulation. Computational soft mat-

ter: from synthetic polymers to proteins 23, 1–28 (2004).

83. Dollfus, P. et al. Simulation of Transport in Nanodevices (John Wiley & Sons, 2016).

84. Verlet, L. Computer” experiments” on classical fluids. I. Thermodynamical properties of

Lennard-Jones molecules. Physical Review 159, 98 (1967).

85. Swope, W. C., Andersen, H. C., Berens, P. H. & Wilson, K. R. A computer simulation

method for the calculation of equilibrium constants for the formation of physical clusters

of molecules: Application to small water clusters. The Journal of Chemical Physics 76,

637–649 (1982).

86. Born, M. & Oppenheimer, R. Zur quantentheorie der molekeln. Annalen der Physik 389,

457–484 (1927).

87. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Physical Review 136, B864

(1964).

88. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects.

Physical review 140, A1133 (1965).

89. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas

correlation energy. Phys. Rev. B 45, 13244 (1992).

81



BIBLIOGRAPHY BIBLIOGRAPHY

90. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple.

Physical Review Letters 77, 3865 (1996).
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