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Abstract

The enhanced performance of recent Large Language Models (LLMs) in different types of
natural language tasks has revolutionized the field of artificial intelligence and acceler-
ated the adoption of LLM-based applications in various domains. However, amidst the
hype surrounding LLMs, security-related aspects, such as potential risks for data leaks,
should not be neglected, as LLMs are typically trained on vast amounts of data, which
may contain sensitive information. In particular, the potential for sensitive data leakage
presents a growing concern for society as a whole considering the increased pervasiveness
of LLMs. Therefore, the aim of this thesis is to develop a risk analysis framework for the
leakage of sensitive information from the training data of LLMs. This framework involves
several black-box attack strategies to estimate the information leakage of a Named Entity
Recognition model and is based on the assumption that data instances that were used
for the training of the model receive higher prediction scores than those that were not
included in the training dataset. The findings in this thesis indicate that the output score
of a neural tagger can serve as a reliable indicator to detect and estimate sensitive infor-
mation leakage from a LLM. Furthermore, additional research questions have been raised
addressing the influence of model scaling and prompt engineering on data leakages from
LLMs, but require further investigation which extends beyond the scope of this thesis.
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Kurzfassung

Die gesteigerte Leistungsfähigkeit von aktuellen, großen Sprachmodellen (Large Lan-
guage Models, LLMs) für unterschiedliche Aufgaben in der natürlichen Sprachverarbeitung
haben den Bereich der Künstlichen Intelligenz revolutioniert und die Einführung von LLM-
basierten Anwendungen in vielen Domänen beschleunigt. Inmitten dieses Hypes rund
um LLMs darf aber nicht auf sicherheitsrelevante Aspekte, wie potenzielle Risiken für
Datenlecks, vergessen werden, da LLMs üblicherweise mit sehr großen Datenmengen,
die unter anderem sensible Daten beinhalten könnten, trainiert werden. Betrachtet man
die schnelle Verbreitung von LLMs, bereitet besonders das Risiko, dass sensible oder
persönliche Daten offengelegt werden könnten, erhebliche Bedenken. Daher ist das
Ziel dieser Arbeit, ein Risikoanalysekonzept für Datenlecks aus den Trainingsdaten von
LLMs zu entwickeln. Dieses Konzept umfasst mehrere Black-Box Angriffsstrategien, um
das Datenleakpotenzial eines Eigennamenerkennungs- (Named Entity Recognition, NER)
Modelles abzuschätzen und basiert auf der Annahme, dass Dateninstanzen, die für das
Training des Modells verwendet wurden, höhere numerische Vorhersagewerte erhalten als
solche, die nicht im Trainingsdatensatz inkludiert waren. Die Erkenntnisse dieser Arbeit
zeigen, dass Ausgabewerte eines neuronalen Taggers als zuverlässiger Indikator dienen
können, um Datenlecks in einem LLM zu erkennen und zu bewerten. Darüberhinaus wur-
den weitere Forschungsfragen aufgeworfen, die den Einfluss von Modellskalierung und
Prompt-Engineering auf Datenlecks in LLMs thematisieren, aber weitere Untersuchungen
erfordern, die über den Rahmen dieser Arbeit hinausgehen würden.

v





Contents

Acknowledgements i

Abstract iii

Kurzfassung v

List of Tables ix

List of Figures xi

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Background and Related Research 7
2.1. What is Sensitive Information? . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1. (L)LMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2. Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3. Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4. Privacy Attacks on LLMs . . . . . . . . . . . . . . . . . . . . . . . 17

3. Methodology 21
3.1. Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2. Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1. Positive Samples: Model Training Dataset . . . . . . . . . . . . . 24
3.2.2. Negative Samples: Wikidata Name List . . . . . . . . . . . . . . . 25
3.2.3. Attack Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vii



Contents

3.2.4. Input Prompts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3. Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4. Results 39
4.1. General Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1. Influence of Utterance Type and Syntactic Position of NEs . . . . . 41
4.1.2. Scaling Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.3. Data Duplication . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2. Results of Privacy Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.1. Analysis of Pair-wise Comparison . . . . . . . . . . . . . . . . . . 44
4.2.2. Analysis of Full-list Comparison . . . . . . . . . . . . . . . . . . . 47
4.2.3. Verification on Test Dataset . . . . . . . . . . . . . . . . . . . . . 49

5. Limitations and Outlook 53

6. Conclusion 55

Bibliography 57

A. Appendix 65
A.1. Additional Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.2. Software Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

viii



List of Tables

2.1. BERTBase and BERTLarge compared on the number of their hyperparameters. 12
2.2. Comparison of BERT results on the CoNLL-2003 NER task comparing fine-

tuning and feature-based approach. Shortened version of Table 7 in [Devlin
et al., 2018]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3. Taxonomic overview of general properties to define privacy attacks on
LLMs - adapted version of Table 1 in [Nasr et al., 2019]. . . . . . . . . . . . 19

3.1. Comparison of baseline and fine-tuned BERT models. . . . . . . . . . . . 22
3.2. Evaluation of the performance of BERT-based NER models. Results are

taken from [Lim, 2020a, Lim, 2020b] . . . . . . . . . . . . . . . . . . . . 23
3.3. Overview of NE-tags used in CoNLL-2003 dataset. . . . . . . . . . . . . . 24
3.4. Sample of bert-NER training data . . . . . . . . . . . . . . . . . . . . . . 25
3.5. Number of PER names per dataset. The numbers here reflect the data

after a data cleaning process that considered only multi-token names with
characters encoded in CP-1252 and involved removing duplicate names. . 28

3.6. Input prompts for querying the model. The [MASK] token is replaced with
the respective PER name being queried. . . . . . . . . . . . . . . . . . . 29

4.1. Results for bert-base-NER with Adev dataset . . . . . . . . . . . . . . . . 40
4.2. Results for bert-large-NER with Adev dataset . . . . . . . . . . . . . . . 40
4.3. Comparison of µposi > µnegi accuracy for bert-base-NER and bert-large-

NER over all input prompts with Adev dataset. . . . . . . . . . . . . . . . 42
4.4. Comparison of the accuracy of methods (A1)-(A4) in assessing the leakage

risk for bert-base-NER and bert-large-NER using the Adev dataset. . . . . . 46
4.5. Attack evaluation metrics for bert-base-NER with Adev dataset . . . . . . 48
4.6. Attack evaluation metrics for bert-large-NER with Adev dataset . . . . . . 48

ix



List of Tables

4.7. Comparison of bert-base-NER and bert-large-NER leakage assessment
metrics using theAdev dataset with averaged scores over all input prompts
ci for Average Precision and Expected Rank and for MAP the arithmetic
mean of the AP scores from Tables 4.5 and 4.6. . . . . . . . . . . . . . . . 48

4.8. Verification of attack strategy (A3) MAX Score using Atest dataset. . . . . . 51
4.9. Comparison of bert-base-NER and bert-large-NER on the attack evaluation

metric Mean Average Precision/Average Precision using the verification
dataset Atest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.1. Alternative ranking methodology for the expected rank strategy using
BERT Base with dev dataset . . . . . . . . . . . . . . . . . . . . . . . . 65

A.2. Alternative ranking methodology for the expected rank strategy using
BERT Large with Adev dataset . . . . . . . . . . . . . . . . . . . . . . . 65

A.3. Comparison of BERT Base and BERT Large employing an alternative rank-
ing methodology for the expected rank strategy using the Adev dataset . . 66

A.4. Privacy attack strategy (B1) verification with Atest dataset for bert-base-
NER and bert-large-NER . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

x



List of Figures

1.1. Schematic view of attack scenario. The character symbols were generated
by DALL-E Demo licensed under CreativeML Open RAIL-M. . . . . . . . . . 4

3.1. Illustration of creation of attack datasets Adev and Atest. . . . . . . . . . . 27
3.2. Schematic view of Step 1 in attack workflow . . . . . . . . . . . . . . . . 31
3.3. Schematic view of Step 2 in attack workflow . . . . . . . . . . . . . . . . 32

4.1. Influence of type of utterance and syntactic position (subject/object) of
PER name in the input prompt on the accuracy ofµposi > µnegi per sample
pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2. Distribution of averaged bert-base-NER prediction output for PER names
from the training dataset sorted by the PER name’s occurrence count in
the training data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3. Distribution of averaged bert-large-NER prediction output for PER names
from the training dataset sorted by the PER name’s occurrence count in
the training data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4. Distribution of sample pair winners of attack dataset Adev measured on
the PER-tag prediction score produced by bert-base-NER. . . . . . . . . . 45

4.5. Distribution of sample pair winners of attack dataset Adev measured on
the PER-tag prediction score produced by bert-large-NER. . . . . . . . . . 45

4.6. Distribution of MAX scores for posi and negi per sample name pair as
formulated under (A3) using dataset Atest. . . . . . . . . . . . . . . . . . 50

4.7. Verification of attack strategy B1 using dataset Atest . . . . . . . . . . . . 52

xi

https://dalledemo.com/
https://huggingface.co/spaces/CompVis/stable-diffusion-license




Acronyms

AI Artificial Intelligence. 7, 22

AP Average Precision. x, 35, 47, 51

BERT Bidirectional Encoder Representations from Transformers. 1, 10, 12, 39, 55

CCPA California Consumer Privacy Act. 9

DPO Data Protection Officer. 9

ELMo Embeddings from Language Models. 11

FN False Negative. 15

FP False Positive. 15, 39, 40

GDPR General Data Protection Regulation. 7, 8

GPT Generative Pre-trained Transformer. 1, 11, 14, 20, 22

HIPAA Health Insurance Portability and Accountability Act. 8

LGPD Lei Geral de Proteção de Dados. 9

LLM Large Language Model. 1, 10, 12

LLMs Large Language Models. iii, 1, 7, 12, 16, 17, 39, 53–55

LM Language Model. 10, 12

LSTM Long Short Term Memory. 10

MAP Mean Average Precision. x, 35, 47, 51

xiii



Acronyms

MLM Masked-Language-Modeling. 10, 13, 22

NE Named Entity. 14

NER Named Entity Recognition. iii, ix, 10, 11, 14, 15, 21, 22, 55

NLP Natural Language Processing. 1, 10–12, 17

NSP Next Sentence Prediction. 10, 13, 22

PER Person. 3, 9, 25, 39, 55

PHI Personal health information. 7

PII Personally Identifiable Information. 7–9, 14, 17, 29, 54, 55

POS Part of Speech. 24

TP True Positive. 15, 39

xiv



Nomenclature

µnegi averaged PER-tag prediction score for multi-token negative sample

µposi averaged PER-tag prediction score for multi-token positive sample

ϕ prediction score (numerical)

Adev development data set for attack

Atest test data set for attack

C corpus of input prompts ci

ci input prompt for attack

D′ data set which includes a subset of Dtrain

Dtrain training data set of a model M

Kn sum of wins for negative sample in majority voting

Kp sum of wins for positive sample in majority voting

nneg number of negative samples

npos number of positive samples

nword number of words

negi negative sample

posi positive sample

si sample name from set Adev or Atest

wi target data points (words or tokens)

xv





1. Introduction

The past decade has seen a rapid development of language models for a wide range
of different Natural Language Processing (NLP) tasks. Especially, in the field of deep
learning, there has been a focus on increasing the size and complexity of neural network
architectures in order to improve the performance of models, which can identify, predict
and generate natural language data. Just in the past five years, several advanced Large
Language Models (LLMs) such as BERT [Devlin et al., 2018] and the GPT-series [Radford
et al., 2019, Brown et al., 2020, OpenAI, 2023] have been developed and demonstrated a
strong performance across a broad range of domains and applications. As a result, these
models are being used in a variety of language modeling solutions beyond just academic
research, for example, in the form of neural machine translation [Dabre et al., 2020] or
chatbots [Adamopoulou and Moussiades, 2020], which have received particular attention
from the public since the release of ChatGPT and other dialogue-based AI systems. It
is thus important to study the effects on security and privacy in machine learning as
language models become more widely integrated into daily life.

A significant potential vulnerability in terms of privacy for neural language models is
their training data. Training data is the first and essential component in the process of
developing a language model. LLMs (mostly) use text-based datasets to learn probabilities
of word occurrences or specific language properties and transfer the learned knowledge
onto unseen texts [Hiemstra, 2009]. By its nature, a LLM commonly requires large amounts
of training data. To acquire these large quantities of training data, examples are often
collected through the process of crawling publicly available texts on the internet or us-
ing private datasets. This data can, however, contain sensitive information of various
kinds, such as names, unique identifiers or confidential data. Ideally, a model should
not memorize or disclose any sensitive information that was part of the training corpus,
but in practice, research has shown that models can be attacked to output training data
instances ( [Carlini et al., 2018] and [Thomas et al., 2020], amongst others). This undesired
sharing of data during the deployment of a model is known as information leakage and
might pose security risks for or infringe privacy rights of individuals and organizations.
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CHAPTER 1. INTRODUCTION

1.1. Motivation

The release of BERT marked the beginning of a new era in language modeling research,
characterized by the use of larger models and larger datasets to achieve new benchmarks
in performance and opening up new areas of application. This shift towards bigger models
has had a significant impact on the field and has recently raised important considerations
about data safety and privacy due to the potential for training data leakage [Brown et al.,
2022, Balle et al., 2022].

As the size of datasets used to train LLMs continues to grow, there is a greater risk
that sensitive information may be included in the training data. This is often due to the
high cost of properly curating such large internet-search-based datasets, which can make
it difficult to thoroughly review and remove sensitive information [Bender et al., 2021].
Therefore, investigating possible factors for training data leakage as well as its extent
constitutes a major area of interest in the field of NLP research.

Privacy attacks on LLMs can take many forms, yet they all rely on the requirement
that the targeted language model and/or its parameters are available to or accessible by
attackers. While it is important to share research efforts and breakthroughs, data privacy
should not be neglected in this context. The possibility of privacy breaches when sharing
(pre-trained) models or their training parameters has already received attention from
research communities, particularly those involved in handling privacy sensitive data such
as, e.g., biomedical NLP [Xafis et al., 2019, Nakamura et al., 2021]. An attack on a model
trained on patient data could have serious consequences for individuals and society. For
example, [Lehman et al., 2021] call attention to a worst-case scenario in which leaked
patient information may lead to the rejection of mortgage or credit card applications for
individuals. This means that revealing the mere presence of certain data points in a dataset
along with the intended use of the model can have negative consequences, including
the compromise of personal privacy and the violation of ethical norms. Therefore, it is
important to identify and mitigate the risk1 of sensitive information leakage in language
models in order to ensure their responsible and ethical use.

1In a different context, the leakage of sensitive information used for training a language model might not
be considered a risk, but rather as a chance to expose the unauthorized use of sensitive information
during the training process of models as [Rigaki and Garcia, 2020] argue. However, this alternative
approach does not fall under the objectives of this thesis.

2



1.2. PROBLEM DEFINITION

1.2. Problem Definition

The problem addressed in this thesis is the leakage of sensitive information, in specific
Person (PER) names, which were used to train a neural language model. Despite the
fact that awareness regarding data (set) privacy has increased, there exists no commonly
accepted test or metric to assess the training data leakage of LLMs [Tamkin et al., 2021].
One possible reason for the lack of an one-fits-all solution for evaluating data leakage in
LLMs could be the diversity of training processes and deployment strategies. The develop-
ment of a comprehensive and unified solution for data leakage assessment lies beyond
the scope of this thesis, but instead this research will specifically focus on developing
an analytical framework to examine training data leakage of a sequence labeling model,
because sequence labeling is an integral part of many NLP applications, enabling systems
to extract and identify relevant pieces of information present in linguistic data [Jurafsky
and Martin, 2023].

A broader term for sequence labeling models are neural taggers, which additionally
specify that the model is based on an artificial neural network. While sequence labeling
refers more explicitly to the process of assigning labels to individual elements (words,
phrases etc.) based on their grammatical function or role in a sequence, tagging applies
to any process of annotation and thus encompasses sequence labeling [Rei et al., 2016].
In this thesis, the terms sequence labeling and tagging will be used interchangeably, as
they are both closely related concepts in NLP.

The main aim of this research is to deepen the understanding of data leakage in neural
tagger language models and develop new methods for evaluating it. To achieve this, the
study uses probing attacks, which involve PER names as target data pointswi to determine
whether wi is a member of a training dataset Dtrain of a model M . Following traditions
in information security research literature, three characters involved in a possible data
leakage scenario are introduced:

(a) Alex (model& data owner): knowledgable about the training dataset Dtrain and
model M ; has access to both.

(b) Blake (adversary): Blake uses the prediction score ϕ(wi) for the label tag PER
outputted by the Model M to determine if wi ∈ Dtrain. Blake has only query access
to the model;

(c) Charlie (baseline adversary): Charlie follows the strategy of stratified random guess-
ing. In the discussed case, this corresponds to flipping a fair coin, i.e. 50:50 chance

3



CHAPTER 1. INTRODUCTION

of being a member or non-member of the training dataset Dtrain. This serves as a
baseline to compare the attack results of (b).

In the outlined scenario, Alex, Blake and Charlie work together on the question of how
probing attacks can be used to evaluate the leakage of PER names from neural taggers in
an analytical risk framework. Their aim is to check the model’s robustness against privacy
attacks. Therefore, they have assigned roles as (a) model and data owner, who knows the
PER names in the the training dataset Dtrain and adversaries, who (b) exploit the model
output for insight or (c) use a rather basic approach of stratified random guessing. An
adversary is an attacker or malicious threat actor who seeks to cause harm or exploit
vulnerabilities in a system or network [Anderson, 2008]. A more detailed description of
the used model, its training dataset and the attack strategies is provided in Chapter 3.

Figure 1.1.: Schematic view of attack scenario. The character symbols were generated by DALL-E
Demo licensed under CreativeML Open RAIL-M.

4

https://dalledemo.com/
https://dalledemo.com/
https://huggingface.co/spaces/CompVis/stable-diffusion-license


1.3. CONTRIBUTION

1.3. Contribution

This thesis extends previous research by providing a thorough investigation into the in-
fluence of prediction scores generated by neural tagger models regarding the leakage of
sensitive information from the model’s training data. In this context, an analytical frame-
work to assess the risk of training data leakage is developed by testing various methods
and evaluation metrics. This work seeks to contribute to the growing research field of iden-
tifying information leakage in LLMs by exploring a novel measure to quantify the scope of
privacy attacks on neural taggers. The measure of expected rank, E(rank|wtrain), defines
a conditional expectation value for the rank of a randomly selected training data instance
in a ranked list of possible training data candidates. In a simulated privacy attack on
the target model, the proposed analytical framework involving the expected rank along
with traditional metrics, such as accuracy and average precision, can be used as leakage
indication for language models based on their prediction output.

1.4. Outline

This thesis is organized into five main chapters. The following chapter begins by briefly
examining the concept of sensitive information and explains why protecting this kind
of data is crucial. Chapter 2 provides a detailed overview of the existing literature on
information leakage in LLMs, including key studies and findings in this area. Chapter 3
describes the research design and methods used in the study, including the resources
used, such as the neural tagger model and the datasets used for the attack scenario, as well
as the metrics used to measure leakage risk. The fourth chapter presents and analyzes
the results of the attack experiment and discusses the performance of the strategies
proposed in the analytical risk framework. The final two chapters, Chapter 5 and 6, of the
thesis examine the limitations of the study, identify opportunities for further research,
summarize the key findings and provide a general evaluation of the research problem.

5





2. Background and Related Research

This section provides a definition of sensitive information and discusses the protection
status of this kind of data from a legal perspective on the example of the General Data
Protection Regulation (GDPR). The second part of this chapter gives a brief overview on
the recent history of (Large) Language Models and explains the basic training procedure of
LLMs and the data used in this context. The chapter concludes with an outline of different
types of privacy attacks.

2.1. What is Sensitive Information?

As the use of Artificial Intelligence (AI) systems trained on real-world data becomes more
prevalent, the potential for personal information to be exposed also increases. Due to ad-
vancements in technology that allow for storage, processing and analysis of vast amounts
of data and the facilitated access to an ever-increasing supply of data online, more and
more data, including sensitive information, is being collected and used for training of
machine learning models. Sensitive information refers to data that requires a high level of
protection due to its nature and the potential negative impact of unauthorized disclosure
or access [Quinn and Malgieri, 2021]. Sensitive data can be in the form of text, images,
or other types of (digital) files. The definition of sensitive data varies depending on the
context, but it typically includes personal information such as names, medical records,
proprietary information along with other confidential data [Quinn and Malgieri, 2021]. In
academic literature, sensitive data is often described as information that falls into one or
more of the following categories:

− Personally Identifiable Information (PII), which can include names, addresses, social
security numbers, and other data that can be used to identify an individual [Lison
et al., 2021].

− Personal health information (PHI)1, which refers to information related to an indi-
1There exists an alternative compound term for PHI: Protected Health Information. It is mainly used in the

7



CHAPTER 2. BACKGROUND AND RELATED RESEARCH

vidual’s physical or mental health, including medical records, treatment plans, and
other sensitive medical information [Winter and Davidson, 2019].

− Financial information, such as credit card numbers, bank account information, and
other financial records [Scholz, 2019].

− Intellectual property, such as trade secrets, patents, and other proprietary informa-
tion that could provide a competitive advantage if it were to be revealed [Bhilare
et al., 2009].

There have been a variety of legal efforts aimed at protecting data privacy. For example,
the European Union’s General Data Protection Regulation (GDPR) sets strict guidelines
for the collection, use, and storage of personal data, including the requirement to obtain
explicit consent for the use of personal data in machine learning [Murakonda and Shokri,
2020]. However, [Brown et al., 2022] note that, in the case of publicly available data used
for machine learning, for example social media data, individual data subjects cannot
properly consent to the use of their data. Furthermore, obtaining consent for the use of
this kind of data would involve an immense administrative effort by the data processing
party.

The GDPR gives a very broad definition of Personally Identifiable Information in Art. 4(1)
“Personal data are any information which are related to an identified or identifiable natural
person.” [European Commission of Justice and Consumers, 2016]. This comprehensive
interpretation of PIIs has a significant impact on machine learning, as personal or sensitive
data may be included in the input used to train and test machine learning models. The
use of sensitive data in the training of these models has been a major area of concern
because a breach of the data used to train models could possibly lead to the exposure of
sensitive information [Nasr et al., 2019]. For example, the occurrence of PIIs in training
datasets can result in the re-identification of individuals, which is particularly concerning
when the data contains sensitive information such as medical records or financial data.
The leakage of this type of data may not necessarily be caused by an attack on the model,
but rather by the model’s failure to understand the concept of data sensitivity [Brown
et al., 2022]. If not annotated in some form, it is not evident for a model, which instances
in the training dataset classify as sensitive information.

To effectively manage large amounts of data while simultaneously ensuring the security
of the data used to train, test and deploy machine learning models, the GDPR introduced

context of Health Insurance Portability and Accountability Act (HIPAA) and is synonymous with Personal
Health Information.

8



2.1. WHAT IS SENSITIVE INFORMATION?

the role of a Data Protection Officer (DPO) responsible for the compliance of the regulation
(Art. 38 and Art. 39). The DPO plays a crucial role in the GDPR framework as the main point
of contact for data subjects, the supervisory authority, and the public. They are responsible
for administering data protection risks and identifying and reporting data breaches. It is
important to note that the GDPR’s legal framework is not the only effort to address data
protection in the context of data processing. Other similar (inter)national legal efforts have
also been implemented, such as the California Consumer Privacy Act (CCPA) in the United
States and the Lei Geral de Proteção de Dados (LGPD) in Brazil. Together, these legal
frameworks demonstrate that data protection has been acknowledged as an important
aspect of machine learning. This is because they safeguard sensitive information from
being compromised during model training or deployment.

In addition to these legal actions, there are also ethical guidelines and best practices that
have been developed for the use of machine learning ([Boddington, 2017, Brundage et al.,
2018, Jobin et al., 2019], amongst others). These guidelines can help organizations and
institutions to ensure that they are using machine learning in a way that is fair, transparent,
and respects individuals’ privacy rights. In sum, these efforts stress the significance of not
only protecting data but also of identifying possible data leakages in machine learning
at an early stage in order to mitigate risks and ensure ethical and safe use of data and
technology.

This thesis narrows its focus on the category of Personally Identifiable Information,
in specific, its subcategory of direct identifiers, which includes PER names. Following a
definition provided by [Lison et al., 2021], direct identifiers can be specified as “[a] (set of)
variable(s) unique for an individual (a name, address, phone number or bank account)
that may be used to directly identify the subject.” Additionally, the research is limited to
PER names consisting of more than one word. For instance, the two-word name Robin
Hood, would be considered as a PER name, whereas the words Robin or Hood on their
own are not regarded as a PER name in this analysis. The reason behind this restriction
lies in the fact that single token name parts cannot be counted as unique identifiers of
persons and therefore do not fall within a narrow interpretation of sensitive information.
While there is a minimum limit for the number of words nword in a PER name nword ≥ 2,
there is no set upper limit.
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2.2. Theory

This section is comprised of four parts, each addressing a different aspect of language
modeling. The first part provides a general introduction to the broader topic of (Large)
Language Models, with specific emphasis on the LLM BERT, which serves as the source
model for the targeted NER model in the simulated attack scenario. The next section
deals with the training process of LLMs and highlights The next section deals with the
training process of LLMs and highlights several NLP tasks in this context, including, inter
alia, Named Entity Recognition. This is followed by a section focused on the training data
of LLMs. The final part explores potential privacy risks associated with LLMs and presents
an overview of different privacy attacks.

2.2.1. (L)LMs

At its early stages, classical text analysis in machine learning primarily focused on word-
based or phrase-based statistical modeling of natural language using n-grams [Brown
et al., 1993] and Bag-of-Words models [McCallum et al., 1998]. Despite the limitations in
computing power at the time, n-grams and Bag-of-Words models allowed for efficient
processing and analysis of large amounts of data, motivating the development of Lan-
guage Models (LMs) based on corpora [Clark et al., 2013]. However, these methods have
constraints in capturing the semantics of words, leading to a shift towards deep learning
frameworks, such as LSTM-based [Hochreiter and Schmidhuber, 1997] and transformer-
based [Vaswani et al., 2017] LMs that aim at mapping the relationship between form and
meaning of words. As a result, deep learning frameworks have emerged as the dominant
approach for solving NLP tasks in LMs, achieving performance levels comparable to human
capabilities [Min et al., 2021].

[Devlin et al., 2018]’s proposal of a neural network based on a transformer architecture
titled BERT (Bidirectional Encoder Representations from Transformers) marked a signifi-
cant advancement in the field of language modeling. BERT’s unique bidirectional encoder
representation, which allows for the parallel processing of both past and future context,
resulted in a cutting-edge performance on a wide range of natural language processing
tasks and greatly reduced training time, while outperforming other models [Min et al.,
2021]. BERT is trained using a dual-phase method that incorporates transfer learning [Yang
et al., 2020]: in phase one, a general model is pre-trained on a large, unlabeled dataset or
corpus. This pre-training process uses techniques such as Masked-Language-Modeling
(MLM) and and Next Sentence Prediction (NSP) to learn rich representations of word mean-
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ing [Jurafsky and Martin, 2023]. In phase two, this pre-trained model is further used as a
baseline model to learn specific NLP tasks with smaller datasets. By inserting the step of
pre-training models, it is possible to obtain general language representations2 that can be
applied to a wide range of language modeling and understanding tasks, as for example
NER, eliminating the need to start training a model from scratch [Qiu et al., 2020]. An
addtional advantage of pre-training models according to [Erhan et al., 2010] is that it can
also be seen as a regularization mechanism to some extent helping to prevent overfitting
on small datasets. The upcoming section will elaborate further on the dual-stage training
procedure of LLMs.

BERT’s fundamental novelty is its advanced method of handling input bidirectionally.
Unlike former mechanisms3, such as one-directional LMs like OpenAI’s GPT, which read
text input sequentially from one direction, BERT processes the entire input sequence at
once, allowing each token to pay attention to other tokens from both left to right and
right to left. In the context of NLP, the term token refers to a sequence of characters that
represents a single unit of meaning or grammatical structure, such as a character, word or
phrase [Jurafsky and Martin, 2009]. The bidirectional processing is achieved through the
use of a network of stacked encoders which apply multiple-head-self-attention4, enabling
BERT to learn different semantic meanings at each layer of the network [Devlin et al.,
2018]. This breakthrough in training techniques and model architecture has generated a
significant increase in interest and a plethora of investigations in this particular field of
research.

Originally, BERT was published in two sizes: BERTBase and BERTLarge. The size of the
model is determined by three main hyper-parameters, which define (1) the number of
encoder units (i.e. layers of the model), (2) the hidden size of each embedding vector5

2Following the definition of [Qiu et al., 2020], a good language representation should capture the implicit
linguistic rules and common sense knowledge that are inherent in text data, including, but not limited
to, lexical meanings, syntactic structures, semantic roles, and pragmatic implications.

3For the sake of completeness it has to be noted here that the model ELMo [Peters et al., 2018] is also
described as bidirectional by its authors, but in a strict sense only qualifies as weakly bidirectional,
because ELMo uses two models, one trained left-to-right and another trained right-to-left, which are
then concatenated.

4Self-attention is a mechanism introduced by [Vaswani et al., 2017] used in deep learning to assign weights
to different components of a model’s input sequence based on their relevance to a particular context
or language task [Raschka, 2023]. In multiple-head-self-attention the input sequence is transformed
into several sub-representations, referred to as “heads”, allowing neural networks to attend to different
parts of the input in parallel [Vaswani et al., 2017].

5Embedding vectors serve as a means to represent the meaning of words and sentences and are derived
from the semantic information in the training dataset [Brown et al., 2022]. As output of the pre-training,
they can be further used as input in downstream NLP tasks.
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and (3) the number of attention heads in each self-attention layer [Devlin et al., 2018]. An
overview of the dimensions of BERTBase and BERTLarge is given in Table 2.1.

Model Size BERTBase BERTLarge

Layers 12 24
Hidden Size 768 1024
Self-attention heads 12 16
Total Parameters 110 Mio. 340 Mio.

Table 2.1.: BERTBase and BERTLarge compared on the number of their hyperparameters.

At the time of its release, BERT was among the largest models trained, but is now
considered small compared to newer models such as GPT-3 [Brown et al., 2020], Megatron
[Smith et al., 2022] and PaLM [Chowdhery et al., 2022]. These models are significantly
larger in terms of parameter count, with billions of parameters. The trend towards models
with increasingly high numbers of parameters as well as the use of vast amounts of data
during training has also reflected in the terminology used for these models as they have
been termed as Large Language Models (LLM) [Tamkin et al., 2021]. In other words, the
attribute “large” was added to the expression to distinguish more recent LMs from smaller,
less complex models that have traditionally been used in NLP. Throughout this thesis
the focus will be exclusively on the role of more recent language models, referred to as
LLMss and their risk of leaking training data. Older language models, or LMs, will not be
considered in this investigation.

2.2.2. Model Training

This section will give a comprehensive overview of the two key training phases of LLMs:
pre-training and fine-tuning, with a specific focus on the BERT model. It will examine
pre-training objectives, fine-tuning methods and the related types of NLP tasks.

In general, training is the process of adjusting the parameters of a model to optimize its
performance on a given set of data, also known as training data [Bottou et al., 2016]. In
neural networks, the parameters that need to be adjusted are the weights and biases of
the different layers6 of the network [Schmidhuber, 2015]. The training process typically in-
volves initializing these parameters with random values and then modifying them through
an optimization algorithm to minimize a loss function, which measures the difference

6In this context, a layer is a collection of neural units, which take real-valued data input, perform a specific
computational operation and produce an output that is then passed forward in the network [Jurafsky
and Martin, 2023].
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between the model’s predictions and the true values of the output [Dargan et al., 2020].
The final values of the weights after training represent the learned information of the
network, which can be used to make predictions on new input data [Hintersdorf et al.,
2021].

Pre-Training

The idea behind pre-training is that during this initial model training phase, the language
model can learn general contextual representations of word meanings, which can be
leveraged further to facilitate the learning of downstream language understanding tasks in
the subsequent process of model fine-tuning [Jurafsky and Martin, 2023]. The pre-training
is usually performed with a large, unlabeled dataset using self-supervised learning7, while
the fine-tuning is realized with a smaller, labeled dataset to adapt the model to a particular
NLP task. This pretrain-finetune paradigm is an example of transfer learning, in which
knowledge learned from one domain or task is applied (or transferred) to a new task
[Jurafsky and Martin, 2023].

The pre-training of BERT involves two different language learning objectives: Masked-
Language-Modeling (MLM) and Next Sentence Prediction (NSP). The main purpose of
MLM is to train for bidirectionality [Devlin et al., 2018]. This is done by reserving 15%8 of
each training input sequence for masking before feeding the input into BERT. Of these
randomly selected 15%, 80% are exchanged with a special [MASK] token, 10% are re-
placed with a randomly chosen different word the remaining 10% are left unchanged,
i.e. with the original token. The model then attempts to predict the original value of the
masked word without any information about the category it belongs to (80-10-10). The
predictions are made based on the context provided by the other non-masked words in
the sequence. In this way, the model takes into account both the context , i.e. tokens,
on the right of the mask and the context, i.e. tokens, on the left of the mask. In contrast
to MLM, which concentrates on word-level predictions, Next Sentence Prediction shifts
the focus to sentence-level predictions. NSP can be understood as a binary classification
task with the goal to predict whether two sentences are consecutive or not. The NSP
component is intended to assist BERT in learning relationships between sentences [Devlin

7Self-supervised learning is a model training approach used when the training dataset lacks labels. In
NLP this implies learning meaningful representations of the input text automatically without explicitly
labeled data input [Bengio et al., 2013].

8[Devlin et al., 2018] argue that a masking rate of 15% strikes a balance between the challenge of training
an excessively expensive model (with lower masking percentages resulting in fewer predictions) and the
lack of context for training (with higher masking percentages resulting in poor performance).
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et al., 2018]. Taken together, these pre-training objectives, MLM and NSP, enable BERT to
acquire bidirectional representations of the input with a focus on the linguistic context.
GPT-variants, on the other hand, adopt a different approach in pre-training. As they are
generative LLMs they concentrate on predicting the next word in a sequence based on
the previous words, which is a form of uni-directional training. In that way, GPT is able to
produce coherent and fluent text [Brown et al., 2020].

Fine-Tuning

Following the pre-training phase, LLMs can be further optimized for new specific language
tasks using either a fine-tuning or a feature-based approach. The fine-tuning strategy
entails adjusting the parameters of the pre-trained model to maximize performance on a
new task or dataset, whereas the feature-based approach involves using the pre-trained
model as a feature extractor and feeding the output to another model specifically designed
for the new task [Li et al., 2020]. In their ablation studies, [Devlin et al., 2018] compared
the two fine-tuning strategies on a Named Entity Recognition (NER) task.

Given that the model used for the privacy attack in this thesis is a BERT-based NER
model, NER will be discussed in greater detail here. Named Entity Recognition is a NLP
task that involves identifying and classifying named entities in a given text into pre-defined
categories (or labels) [Qiu et al., 2020]. NER is typically implemented within a sequence
labeling framework and plays a crucial role in natural language understanding and infor-
mation retrieval tasks by enabling systems to extract and understand relevant entities in a
text [Qiu et al., 2020]. A Named Entity (NE) refers to a word or phrase that unambiguously
identifies one item from a group of items that possess similar characteristics [Li et al.,
2022]. This definition overlaps with the description of Personally Identifiable Information
(PII)s, or more precisely direct identifiers, presented in a previous section about sensi-
tive information. Examples of NEs can be of generic nature, like names, organizations,
locations etc., or domain-specific, such as genes in the field of biology or bank account
numbers in the financial sector [Li et al., 2022]. The sentence below in (1) illustrates a
simplified example including NEs with their corresponding labels in brackets.

(1) <LOC On Time Square> <PER Anne> <PER Shirley> ate a <ORG Fairtrade> chocolate.

In (1) there are four different NEs (Time Square, Anne, Shirley, Fairtrade) of three different
entity types (location <LOC>, person <PER>, organization <ORG>). A common
approach in language modeling involves analyzing the text and then predicting the most
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likely entity type for each word or phrase considering all possible entity types [Li et al.,
2022]. So, in the case of (1), a neural tagger would calculate the probability of, for example,
the identified named entity Anne being an instance of types <LOC>, <PER> or <ORG>.
This probability distribution over all possible types is then used to assign the type with
the highest probability <PER> to the named entity Anne.

Referring back to the comparison of the fine-tuning and feature-based strategies for
NER-specific BERT, [Devlin et al., 2018] applied BERT to the CoNLL-2003 NER task9 [Sang
and Meulder, 2003] using both approaches. For fine-tuning, a classification layer is added
to the pre-trained model, and all parameters are then adjusted collectively for the NER task.
In contrast, for the feature-based approach, activations10 are obtained from one or more
layers of BERT without any adjustments to its parameters to use them as features for further
processing. Based on the performance of both approaches on the NER task summarized in
Table 2.2, [Devlin et al., 2018] deduce that pre-trained BERT can successfully be employed
with both approaches. The performance metric presented in Table 2.2, i.e. the f1-score for
the development dataset, is the harmonic mean of the two metrics precision and recall.
Precision is a reliability measure that computes the proportion of True Positive (TP) to all
positive results (TP and FP) [Goutte and Gaussier, 2005]. Recall is an effectiveness measure
that calculates the proportion of TP to all actual positive results (TP and FN) [Sokolova
and Lapalme, 2009]. To all three metrics applies that they range between 0 and 1, where 1
is the best achievable score and 0 the worst.

System DEV F1 score
Fine-tuning
BERTBase 96.4
BERTLarge 96.6
Feature-based
BERTBase + Concat Last Four Hidden Layers 96.1

Table 2.2.: Comparison of BERT results on the CoNLL-2003 NER task comparing fine-tuning and
feature-based approach. Shortened version of Table 7 in [Devlin et al., 2018].

To summarize, LLM pre-training and fine-tuning have proven to be exceedingly suc-
cessful in enhancing the performance of downstream tasks such as, e.g. Named Entity
Recognition [Jurafsky and Martin, 2023]. LLMs can gain generic linguistic knowledge by

9A more in-depth analysis of the CoNLL-2003 dataset will be presented in the next chapter.
10Activations in this context are the output of one or more layers of the BERT model when processesing

input data. These activations, often referred to as“feature maps”, capture intermediate representations
of the input data at various levels of abstraction [Sharma et al., 2020].
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pre-training on large text corpora, which is then fine-tuned on task-specific datasets to
achieve improved results on task-specific applications. However, with the use of vast
amounts of unlabeled training data comes a growing concern over data quality and safety.
For example, it is possible that personal or sensitive information may be included in LLM
training datasets without the knowledge or consent of individuals involved. The next
section will explore ethical implications of using potentially sensitive data in LLM training.

2.2.3. Training Data

So far, the main emphasis in this part has been on the training objectives and methods
of LLMs. However, it is equally important to also consider the data used in the training
process. Training data refers to the set of samples, typically represented as input-output
pairs, used to train a model [Dargan et al., 2020]. In NLP, different types of training data are
used for various tasks such as language understanding, generation, and translation. For
example, training data for named entity recognition tasks typically consists of sentences
with corresponding entity labels, while training data for machine translation tasks typically
consists of parallel sentences in different languages.

The quality and quantity of training data is critical to the performance of the model, i.e.
a large amount of high-quality data is needed for the model to generalize well and avoid
overfitting11[Deng and Liu, 2018]. Frequently, the source of datasets used to train LLMs
are publicly available texts from the internet, such as Wikipedia, news articles, scientific
papers, and books or other web-mined content [Kreutzer et al., 2022]. As mentioned
previously, LLMs are usually trained on large datasets, which as [Bender et al., 2021] point
out increases the difficulty of knowing what is in the training data. This issue also applies to
the (unintended) inclusion of sensitive information of any form in the training data, which
can be problematic as the risk of exposing sensitive data only arises from the presence of
this data in the training dataset [Weidinger et al., 2021]. Another noteworthy aspect of
web-crawled training datasets is that they could function as unintended archives for data
that has been removed from the internet after the crawling process [Carlini et al., 2020].
These “archives” could then not only include sensitive information, but also harmful

11Overfitting is a common problem in machine learning. [Lever et al., 2016] provide a broad explanation
of model over- and underfitting, which can be summarized as follows: model fit can be evaluated
by comparing its predictions to new data (prediction error) or estimated and true parameter values
(estimation error). Both types of errors are influenced by bias (error caused by using a model that is
not capable of capturing the underlying model) and variance (error caused by sensitivity to noise in the
data). A model that is overly complex will have low bias and high variance (overfitting), while a model
that is too simple will have high bias and low variance (underfitting).
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language and/or misinformation extracted from banned websites as [Gehman et al., 2020]
observe.

The issue of data prevalence and quality has been recognized by the research commu-
nity, which have identified that web-crawled datasets tend to be noisy12, resulting in a
lower quality of data compared to manually curated datasets [Kreutzer et al., 2022]. How-
ever, gathering and curating such massive datasets is an expensive and time-consuming
process and might not be feasible in most cases. Efforts to develop a standardized method
to document and annotate datasets used for training models have been suggested by
[Gebru et al., 2021] universally for machine learning and for NLP systems in specific by
[Bender and Friedman, 2018]. The latter do not allude to the topic of sensitive data, in
the sense of Personally Identifiable Information, but rather concentrate on identifying
and addressing biases in systems trained on naturally occurring language data. In [Gebru
et al., 2021]’s proposal that datasets should be released with accompanying datasheets
informing about the contexts and contents of the dataset, the handling of sensitive infor-
mation is only mentioned peripherally. They do not go into details, but suggest to include
a description of the relevant data if a dataset contains sensitive information. The reason
for attaching little significance to sensitive data in these guidelines may be due to the
fact that the mentioned approaches are primarily dedicated to promote transparency
and fairness. Nevertheless, the collection and choice of training data instances may also
influence the risk of involuntarily sharing sensitive information, but currently there is a
lack of universally accepted industry-wide standards or implementations for administer-
ing sensitive data in training datasets. Despite this, it is critical to be aware of possible
risks and dangers associated with accessing information through privacy attacks. The
next section will explore this issue in more detail, providing an overview of the various
approaches used to measure the risk of information leakage in LLMs.

2.2.4. Privacy Attacks on LLMs

As Large Language Models continue to advance, they become integrated into more and
more different applications and technologies. Nonetheless, the growing use of LLMs has
raised serious concerns about the dangers of privacy attacks. In the field of NLP, the term
privacy attack has been applied to unauthorized or illicit attempts to extract sensitive
information of individuals or groups from LLMs [Dwork et al., 2017, Rigaki and Garcia, 2020].
12Noisy data refers to data that contains errors, inconsistencies, or irrelevant information. The term can also

be applied to data that includes irrelevant or redundant features that do not contribute to the problem
being solved. [Wang et al., 1995]

17



CHAPTER 2. BACKGROUND AND RELATED RESEARCH

According to a definition provided by [Nasr et al., 2019], privacy-sensitive information in
this context refers to information about a model’s training data, architecture or (hyper-
)parameters that an adversary cannot derive from other models trained on similar data or
in a comparable way. In the training data space, it can be further distinguished between
information about the general data population and information related to individual
training samples, with the latter being vulnerable to privacy breaches [Nasr et al., 2019].
So the target of privacy attacks are either the training data of models or the model itself.
Depending on their objective and applied strategy, privacy attacks can be divided into
four broad categories of attacks:

− Membership Inference Attacks aim at determining whether a specific record was
used in the training of a machine learning model, by analyzing the output of the
model for that record. This type of attack was first introduced by [Shokri et al., 2017],
which has inspired further research in this field. Membership Inference attacks are
developed under the supposition that a data record’s membership in a model’s
training data would generally reflect in higher predictions scores, whereas unseen
data records would yield lower scores in comparison [Hintersdorf et al., 2021].

− Reconstruction Attacks attempt to recreate training samples and/or their non-
sensitive training labels. This type of attack has also been referred to as attribute
inference [Yeom et al., 2018] and model inversion [Salem et al., 2019] since it involves
utilizing the output of a machine learning model to infer sensitive features or retrieve
the entire data sample.

− Property Inference Attacks are designed to extract information that was learned
by the model unintentionally and that is not relevant to the model’s primary training
task [Rigaki and Garcia, 2020]. One example of this type of attack is the memorization
attack, which seeks to uncover sensitive patterns in the training data of the target
model [Carlini et al., 2018].

− Model Stealing Attacks intend to obtain the parameters [Tramèr et al., 2016] or
hyperparameters [Oh et al., 2017] of a target machine learning model. In many
cases trained models count as intellectual property and are regarded as confiden-
tial, which renders the retrieval of models’ (hyper-) parameters privacy violations
[Mireshghallah et al., 2020].

All of the above-mentioned privacy attack types can be further specified. An overview
of general properties of privacy attacks is presented in Table 2.3. Initially, there is the
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question of which kind of access quality is given for the respective attack scenario, because
the quality of the access determines the nature of input for the attack [Nasr et al., 2019].
This access can either be black-box or white-box. In a white-box attack the adversary has
knowledge about the model’s parameters, architecture or training data [Rigaki and Garcia,
2020]. Attacks in which the adversary’s access is more limited are called black-box attacks.
In those attacks, adversaries can only use the model’s output to their queries to gain
information [Liu et al., 2021]. Another important factor is the mode of the attack, which
provides details about the timing of the attack. Active attacks assume that the adversary is
part of the training process, as in federated learning13 and can thus actively manipulate the
target model [Nasr et al., 2019]. Passive attacks typically occur after the training process is
completed and do not interfere with the learning process of the model [Nasr et al., 2019].
Another significant element of an attack is the adversary’s prior knowledge. An adversary
with supervised knowledge uses a dataset, which comprises a subset of the training data
from the targeted model to train an attack model to discover insights from the target
model [Nasr et al., 2019]. An adversary with unsupervised knowledge, on the other hand,
cannot exploit a labeled dataset for their attack, but has to find a structure or patterns
without conducive identifiers [Nasr et al., 2019].

Attribute Type Description

Access black-box only query access to the target model, without
knowledge on the model’s architecture or (hyper-
)parameters

white-box access to full target model, including architecture and
(hyper-) parameters

Mode passive attack (mostly) during inference; does not interfere
with the training phase of a model

active attack during the training phase of the model to inter-
fere with the learning process

Knowledge supervised the adversary possesses a dataset D′ which overlaps
with the target dataset D.

unsupervised the adversary has no information about whether a
data sample is in the target dataset D.

Table 2.3.: Taxonomic overview of general properties to define privacy attacks on LLMs - adapted
version of Table 1 in [Nasr et al., 2019].

13Federated learning is a form of distributed machine learning in which multiple data owners contribute
data to collaboratively train a model by only sharing parameter updates from local model training
[McMahan et al., 2017].
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The list given in Table 2.3 is not exclusive, additional properties that can describe the
nature of a privacy attack exist, but within the scope of this thesis, access, mode and
knowledge level of an attack are the most fundamental descriptive properties. It should
also be noted here, that this thesis deals with indirect information exposure, which means
attack scenarios in which the adversary attempts to infer model information but does
not have access to this information [Mireshghallah et al., 2020]. In contrast to direct
information leakage, in which data breaches are precipitated by acquiring access to the
actual model information [Mireshghallah et al., 2020].

Independent from the attack type, one of the most widely-researched type of models in
this context are generative models, which are trained to produce textual or visual output
([Shokri et al., 2017, Song et al., 2017, Yeom et al., 2018, Carlini et al., 2018], among others).
For example, in a number of experiments with GPT-variants investigating the disclosure
of unique or rare sequences from the training data of text-generating LLMs, [Carlini et al.,
2018, 2020, 2022] found that model scale, data duplication in the training data and input
context are among the most influential factors for training data memorization/extraction
in neural networks. Regarding the connection of model scale and data leakage, [Tiru-
mala et al., 2022] affirm that larger models tend to memorize more training data. They
further highlight that specifically nouns, proper nouns14, and numerals are memorized
remarkably faster than other word classes.

A smaller number of investigations address the issue of information leakage in sequence-
labeling models [Qiu et al., 2020, Lehman et al., 2021, Vakili and Dalianis, 2021]. Based
on the difference in task, these approaches primarily use BERT-based models as targets
for their attacks. For example, [Lehman et al., 2021] and [Vakili and Dalianis, 2021] focus
on BERT versions trained on digital health records in an attempt to check if the targeted
model is at risk of leaking sensitive information. They conclude that the likelihood of
successfully extracting sensitive information from a BERT-based model is significantly
lower when compared to a GPT model. To broaden the current knowledge about data
leakage in BERT-based models and to assess the influence of model size, data duplication
and probing context on privacy breaches for neural tagger models, this thesis will propose
an analysis framework to investigate the risk of identifying named entities, to be specific
PER names, as members of the training dataset.

14A proper noun is a specific name for a person, place, or thing [Brown and Miller, 2013].
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This section describes the methodology used to investigate sensitive information leakage
in a BERT-based Named Entity Recognition model. First, an overview of the targeted NER
model, the datasets and the input prompts used in the privacy attack is given. Then the
experimental setting for the simulated attack is explained in detail. The presented analysis
framework follows an exploratory approach to thoroughly assess the leakage risk of a
NER model in a narrowly defined attack scenario. Additionally, the framework offers a
deeper understanding of the potential privacy risks inherent in NER models.

3.1. Model Description

This research examines a BERT-based NER model, which comes in two sizes, the bert-
base-NER and the bert-large-NER model [Lim, 2020a, Lim, 2020b]. For simplicity reasons,
bert-NER will be used as an umbrella term to refer to both model sizes. Bert-NER is a
fine-tuned, cased BERT model trained on a Named Entity Recognition task and provided
open-source by Hugging Face. The bert-NER model was chosen because it is the second1

most downloaded NER model on Hugging Face (status January, 2023) and the most
downloaded NER model trained on an English dataset (950,000 downloads, both model
sizes taken together). The training dataset of bert-NER constituted a second reason to
select this model for a detailed analysis. Bert-NER was trained on the CoNLL-2003 dataset
[Sang and Meulder, 2003], a widely used dataset for NER tasks. The CoNLL-2003 dataset
will be described in more detail in section 3.2.1.

For the training of the bert-NER model, the authors used the recommended hyperpa-
rameter values for batch size, learning rate and number of epochs from the original BERT
paper. Bert-NER uses a subword-based tokenizer [PreTrainedTokenizerFast, version 4.26.0,
], which depends on the transformer’s tokenizer library. Subword-based tokenization op-
erates on the principle that frequent words should not be split into smaller units, whereas

1The most downloaded NER model on Hugging Face at the time of writing this thesis was: camembert-ner
trained on a French dataset (2,150,000 downloads as of January, 2023).
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rare words should be decomposed into meaningful sub-units [Sennrich et al., 2015]. If we
recall the example sentence (1) from section 2.2.2, a subword tokenizer algorithm renders
(1) into (2).

(2) [‘On’, ‘Time’, ‘Square’, ‘Anne’, ‘Shirley’, ‘ate’, ‘a’, ‘Fair’, ‘##tra’,
‘##de’, ‘chocolate’, ‘.’]

The two octothorpe symbols “##", as in ‘##tra’ or ‘##de’ in Example (2), inidcate that
these tokens are completions of the previous one and can be attached to the precedent
token without space (i.e. ‘Fair’ + ‘##tra’ + ‘##de’ = ‘Fairtrade’).

As can be seen in Table 3.1 the fine-tuned bert-NER model closely follows the pre-trained
baseline model regarding number of layers and parameter count.

Model Type Training objective Layers Parameters
BERTBase baseline MLM + NSP 12 110 Mio.
BERTLarge baseline MLM + NSP 24 340 Mio.

bert-base-NER fine-tuned NER 12 108 Mio.
bert-large-NER fine-tuned NER 24 hidden + 3 FC layers 333 Mio.

Table 3.1.: Comparison of baseline and fine-tuned BERT models.

The training objective of the bert-NER model consisted of assigning pre-defined NE-tags
to tokens from the labeled CoNLL-2003 dataset. In contrast to generative models such
as GPT-variants which produce textual output, a NER model outputs a prediction of the
most likely NE-tag for the inserted token. In theoretical terms, the final layer of a NER
model yields a probability distribution over the different entity tags, i.e. the prediction
scores for each entity tag, by using an activation function, in the case of bert-NER the
SoftMax function [Goodfellow et al., 2016]. Therefore, the prediction scores in this model
range between 0 and 1 for each entity tag, whereas the prediction scores of all entity tags
have to sum up to 1. With an interposed post-processing step, the model reports only
the entity tag with the highest prediction score for the respective token. In some studies,
the authors refer to these prediction scores also as confidence values or scores, but with
regard to research in the area of explainable AI [Samek et al., 2017, van der Waa et al.,
2020] arguing that measures like the SoftMax, which represent an estimated likelihood
for a certain prediction label, often lack transparency and explainability, this terminology
will not be used in this thesis.

Considering the tokenized example sentence (2), a bert-base-NER output for the token
‘Anne’ is illustrated in Example (3). The model classified ‘Anne’ as a ‘B-PER’ entity2

2A detailed description of the various entity tags is provided in section 3.2.1.
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with a normalized prediction score of 0.9993299.

(3) {‘entity’:‘B-PER’, ‘score’:0.9993299, ‘index’:4, ‘word’:‘Anne’}

Regarding the performance of bert-NER, the authors report good results (cf. Table 3.2),
although they are slightly lower than the original BERT results summarized in Table 2.2. A
definition for the evaluation metrics, f1-score, precision and recall is given in section 2.2.2.

bert-base-NER
Metric DEV set TEST set
f1-score 95.1 91.3
precision 95.0 90.7
recall 95.3 91.9

bert-large-NER
Metric DEV set TEST set
f1-score 95.7 91.7
precision 95.3 91.2
recall 96.1 92.3

Table 3.2.: Evaluation of the performance of BERT-based NER models. Results are taken from [Lim,
2020a, Lim, 2020b]

3.2. Data Description

Based on the problem definition in Section 1.2, an attack dataset is created to investigate
the (non-)membership of data samples in the targeted model’s training data. The attack
dataset used in this analysis is balanced, meaning that it contains an equal number of
positive samples posi, i.e. PER name in training data, and negative samples negi, i.e. PER
name not in training data. This balance helps to ensure that the results obtained from this
dataset are more generalizable and applicable to a wider range of scenarios.

The attack dataset can be organized in two different ways, using the same set of data
instances, but with different data configurations. Dataset A is arranged as a set of randomly
aggregated n pairs of positive and negative samples (posi, negi), while dataset B is struc-
tured as a list of positive and negative samples. By varying the internal structure of the
attack dataset, various attack strategies can be tested to estimate the risk of sensitive data
leakage in bert-NER. This section describes the data sources, the steps of data preparation
and the input prompt corpus for the privacy attack on bert-NER.
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3.2.1. Positive Samples: Model Training Dataset

The bert-NER model was fine-tuned on the English version of the standard CoNLL-2003
Named Entity Recognition dataset [Sang and Meulder, 2003]. The English CoNLL-2003
dataset is a collection of news wire articles from the Reuters Corpus [Lewis et al., 2004]
from mid 1996 to mid 1997. The corpus contains over 800,000 articles in total, which
were written in English and cover a wide range of topics including business, politics, and
sports. CoNLL-2003 is considered a high-quality dataset with a large number of examples
of named entities from various domains, making it a valuable resource for NER research
[Derczynski et al., 2016].

The CoNLL-2003 dataset is split into training, development and test data. Together
these three datasets contain over 300,000 tokens with entities labeled according to four
types: person PER, organization ORG, location LOC, and miscellaneous MISC. Table 3.3
presents an overview of the various tags used in the CoNLL-2003 dataset. To identify
spans of tokens that belong to the same named entity, BIO-tagging [Ramshaw and Marcus,
1995] is used in addition to the named entity tagging. Tokens tagged with O are outside
of any named entity span, the I-XXX and B-XXX tag are used to indicate whether two
immediately consecutive tokens of the same entity type belong to the same span, with
B-XXX marking the beginning of a new independent span [Sang and Meulder, 2003].

NE-tag Description
O outside of NE

I-PER person’s name
B-PER [Beginning] of a person’s name immediately following an I-PER entity
I-ORG organization
B-ORG [Beginning] of an organization immediately following an I-ORG entity
I-LOC location
B-LOC [Beginning] of a location immediately following an I-LOC entity
I-MISC miscellaneous entity
B-MISC [Beginning] of a miscellaneous entity immediately following an I-MISC entity

Table 3.3.: Overview of NE-tags used in CoNLL-2003 dataset.

Regarding the data format of the CoNLL-2003 dataset, the dataset has one token per
line, and four fields per line. The first item on each line is a token, the second a Part of
Speech (POS) tag, the third a syntactic chunk tag and the fourth a named entity tag from
the list given in Table 3.3. Some sample instances contained in the dataset are provided in
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Table 3.4.

token POS-tag chunk tag NE-tag
Meidlinger NNP I-NP I-PER

the DT B-NP O
World NNP I-NP I-MISC

Table 3.4.: Sample of bert-NER training data

For the attack, only the training dataset of the CoNLL-2003 corpus is relevant as this
is the same data used in the training process of bert-NER. This dataset includes 6600
instances of PER entities, i.e. tokens with NE-tag I-PER or B-PER. However, this number
comprises duplicates and single token PER names, which are redundant or undesirable
data samples for the simulated attack. Therefore these instances were removed in a data
cleaning process to obtain a high-quality dataset holding 2,645 unique, multi-token3 PER
names.

3.2.2. Negative Samples: Wikidata Name List

The source for the negative samples, i.e. PER names that are not included in the training
dataset of bert-NER, is the knowledge base Wikidata [Vrandecic and Krötzsch, 2014].
Wikidata is an open-source, linked data platform that allows users to create, manage, and
use data in a structured format [Färber et al., 2017]. Additionally, Wikidata supports rich
querying capabilities, which allow to retrieve and aggregate data from the knowledge
base. Thus, the rationale behind using Wikidata as a source for the negative samples was
to quickly and easily compile a list of actual names of real-world persons. Factors that
would also be relevant for potential adversaries with the intention to create large PER
name lists in order to attack NER models.

To access data stored in Wikidata, a SPARQL query has to be formulated defining the
relevant data objects. With the query in 3.1, entities of the instance human (wd:Q5) are
selected and their names (personLabel) are returned. By using a relatively unconstrained
query like 3.1, Wikidata returns a very high number of person records.

1 PREFIX wdt: <http :// www.wikidata.org/prop/direct/>
2 PREFIX wd: <http :// www.wikidata.org/entity/>
3 PREFIX schema: <http :// schema.org/>

3No upper limit was set for the accumulation of successive I-PER tokens. In practice, the maximum
number of tokens for one PER name was reached with five consecutive tokens.
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4 SELECT DISTINCT ?person ?personLabel
5 WHERE {
6 ?person wdt:P31 wd:Q5 .
7 ?person schema:name ?personLabel .
8 FILTER (lang(? personLabel) = "en") .
9 }

Listing 3.1: Query to Knowledge Base Wikidata

However, only person names that include characters supported by the CP-1252 encod-
ing are considered for the experiments in this thesis. The character set CP-1252 is the
default encoding for text files in Windows-based systems and is used for the encoding
of English and most European languages [Code page, 1252]. The reason for this restric-
tion is that the bert-NER training data is encoded in CP-1252. Therefore, their characters
should be recognizable for the model in order to guarantee a fair comparison between
the sampled PER names. Because of this restriction, 292,426 PER names retrieved from
Wikidata could not be included. In all other aspects of data cleaning, the same constraints
are applied to the names from the Wikidata dataset and the names contained in Dtrain.
During the data cleaning process, duplicates and single-token instances of PER names
were filtered out. Finally, 7,617,797 multi-token PER names form the dataset W , which
serves as a sampling pool for the creation of a dataset W ′, a subset of W without Dtrain.
In other words, W ′ does not contain PER names found in Dtrain. The next section outlines
how the positive samples dataset derived from Dtrain and the negative samples dataset
W ′ obtained from Wikidata are merged to build a dataset for the attack on the targeted
model bert-NER.

3.2.3. Attack Dataset

The illustration shown in Figure 3.1 represents a diagrammatic overview of the creation
process for the attack datasets Adev and Atest. The source for the positive samples posi
is the bert-NER training dataset Dtrain and for the negative samples negi the source is a
Wikidata name list W as explained in the previous sections. In the next step, the datasets
D′, a subset of Dtrain, and W ′, a subset of W , are generated.
D′ consists of all sample PER names that are in the intersection of Dtrain and W . The

magnitude of D′ expressed in numbers can be seen in Table 3.5. As the condition |D′|
= |W ′|, where |D′| denotes the size of the intersection Dtrain and W , must hold true
to be able to compose positive - negative sample pairs for a pair-wise approach in the
experiments, the number of randomly sampled names from W is based on the number of
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Figure 3.1.: Illustration of creation of attack datasets Adev and Atest.

positive samples in D′. To create dataset W ′, n (= |D′| = 1653) PER names are randomly
selected from W , provided that the samples meet the condition {negi ∈ W \ D′}. It
is essential to highlight here, that the two sets D′ and W ′ are completely disjoint, i.e.,
D′ ∩W ′ = ∅. Each sample name can only occur once in the attack dataset A, so that for
any elements x and y in A, x ̸= y applies. Subsequently, the attack dataset A consists
of 50% positive and 50% negative samples, which build the foundation for the a) the
pair-wise approach and b) full-list approach of the experiments. For the latter, the internal
structure of A does not need to be changed further.

To combine the sample names from the datasets D′ and W ′ into positive-negative
sample pairs for the pair-wise approach, an additional step has to be taken. Theoretically
this process can be described as follows: Let posi be a data record from the model’s
training dataset D′ and negi be a randomly sampled name from the dataset W ′, then
posi and negi will form a unique pair (posi, negi) in dataset A. Symbolically this can be
written as:

posi ∈ D′, negi ∈ W ′ → ∃!(posi, negi) ∈ A (3.1)

Additionally, the elements of the sample pairs (posi, negi) in A are assigned a binary
label (0/1) indicating if they belong to the training dataset of bert-NER, i.e. D′. 1 denotes
positive samples from D′ and 0 signifies the absence from D′.

In order to have one dataset to measure the performance of different attack strategies
and one dataset to verify the performance of the attack, the attack datasetA is subdivided
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with a ratio of 50:50 into a development Adev and test dataset Atest. Table 3.5 summarizes
the PER name count in the individual datasets.

source data # of PER names
Wikidata W 7,617,797
bert-NER Dtrain 2,645
attack datasets # of PER names
D′ 1,653
W ′ 1,653
Adev 826
Atest 827

Table 3.5.: Number of PER names per dataset. The numbers here reflect the data after a data
cleaning process that considered only multi-token names with characters encoded in
CP-1252 and involved removing duplicate names.

It shall be noted here that the proportion of training data PER names contained in the
Wikidata name list W is 0.0002%, whereas 62.5% of the training dataset PER names can
be found in W . This means that a high percentage of PER names in Dtrain can be covered
by a simple Wikidata query. The advantage of easy access to a large amount of possibly
sensitive information may be exploited by adversaries who can use name lists like W to
initiate privacy attacks on NER models.

The PER names in the attack dataset A are presented to the bert-NER model without
context as well as part of longer prompt sequences. To check whether the contextual
surrounding influences the likelihood of detecting training data samples, various input
prompts are devised to embed the probed names from dataset A. The next section 3.2.4
presents the input prompts used in different attack strategies which are outlined in section
3.3.

3.2.4. Input Prompts

Input prompts are the text input provided to a language model. Given an input prompt,
the model generates a task-specific response. In the case of bert-NER, named entities in
the input prompt are identified and classified according to the pre-defined NE-types (cf.
Table 3.3). For the simulated attack, nine different input prompts are composed. Table 3.6
lists the nine input prompt contexts c1, ..., c9 together with their linguistic features.

The PER names from the attack datasets Adev and Atest are individually inserted at the
position of a placeholder [MASK] token (= tmask) into the different input prompt contexts
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ci and fed as a complete sequence to bert-NER. The respective sequences of the input
prompt corpus C vary in length, type of utterance and syntactic position of the PER name
tokens, but tmask ∈ ci always holds true.

i Input Prompt c Type of Utterance Syntactic Position of PER token
1 [MASK] n/a n/a
2 [MASK] is a person. assertion subject
3 My name is [MASK]. assertion object
4 I am named [MASK]. assertion object
5 [MASK] is an individual human being. assertion subject
6 Is [MASK] your name? interrogative subject
7 Is [MASK] a person? interrogative subject
8 [MASK] is not a person. negation subject
9 My name is not [MASK]. negation object

Table 3.6.: Input prompts for querying the model. The [MASK] token is replaced with the respective
PER name being queried.

Input prompt c1 only contains the respective sample name si without additional context.
The rest of the input prompts c2 - c9 are designed to embed the sample names in semantic
proximity to the concept of Personally Identifiable Information. For example, input prompt
c5 is a dictionary definition for the countable noun “person” [Collins Dictionary, ]. By
varying the syntactic position of the inserted sample names and the type of utterance
possible effects on the data leakage potential of accompanying context can be examined.
The next section 3.3 describes the use of the input prompts and the implementation of
different attack strategies.

3.3. Experimental Setting

After configuring the attack datasetsAdev andAtest and composing input prompts for bert-
NER, the next step involves defining the analytical framework to evaluate the sensitive
data leakage risk from the targeted model. For this, let us recall the three characters
introduced in the problem statement section 1.2. The aim of Alex, Blake and Charlie is to
simulate an attack on the bert-NER model to estimate the risk of sensitive information
leakage in this model. They all have different responsibilities in this simulated attack; Alex,
as the model and data owner, knows the labels [0/1] of the sample names (posi, negi) in
the attack datasets and can therefore evaluate the attacks performed by Blake and Charlie.
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Blake and Charlie apply different attack strategies, although Charlie’s attack only serves
as a baseline for Blake’s attacks.

Considering the categorization of privacy attacks along the lines of the criteria formu-
lated in Table 2.3, the attack by Alex, Blake and Charlie on bert-NER can be classified as
black-box, passive and supervised. The access supplied to the adversaries Blake and
Charlie is specified as black-box because they do not have direct access to the model or
the training data, but only query access. However, Alex as the model and data owner
provides supervised knowledge regarding the membership of the probed sample names
in bert-NER’s training data. The mode of the attack is defined as passive because the
model is attacked after the training process is completed.

The analytical framework for the attack is based on the same assumption as member-
ship inference attacks: if a data record was used in the training of a model, the model will
assign a higher prediction score to it compared to a novel record [Mireshghallah et al.,
2020]. According to [Nasr et al., 2019], the last layer of a language model, i.e. the model
output, discloses the most information about a data record’s potential membership in
the training data4. Using the model output as the main indicator for determining the
risk of information exposure is a practical choice because the interpretation of output
prediction scores is less ambiguous than the interpretation of, e.g. gradient values and
from a pragmatic perspective, the output is more readily accessible for adversaries.

The attack process can be divided into two steps. In the first step, the bert-NER model
is prompted with the prepared attack dataset A and inputs from corpus C . In the second
step, the attack strategies of adversary Blake are applied to the results gained from step 1.
To assess the informative value of Blake’s attack strategies, they are compared to Charlie’s
baseline attack approach.

Step 1

The privacy attack uses the balanced set of of positive and negative sample names from
the attack dataset A = {(posi, negi)}ni=1, where posi denotes the full name from the
positive sample and negi denotes the full name from the negative sample of the i-th pair,
in the case of the pair-wise approach. n denotes the size of the respective attack dataset,
Adev or Atest. Given a corpus of pre-defined input prompts C = {c1, ..., c9} (cf. Table
3.6), the individual sample names are inserted in place of the [MASK] token into the input

4For the sake of completeness, it should be noted that [Nasr et al., 2019] further point out that the infor-
mation gain regarding training data membership might be greater with gradients compared to output
layers. However, the attack approach in this thesis concentrates on the model output.
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sequences of C and passed as input through the model. When the target model is queried
with the supplied inputs, the model returns NER-tag predictions and the corresponding
prediction scores for the input tokens.

The focus in this framework lies on the prediction (scores) of PER-tags assigned to the
probed sample names by the bert-NER model. As the probed sample names consist of
multiple tokens, each individual token receives a prediction score for the PER-tag. To
make the PER-tag prediction scores more comparable among sample names with different
token numbers, the tokens’ PER-tag prediction scores are averaged for each sample name.
An alternative solution, though less exhaustive, would have been to take the minimum
or the maximum score but both approaches would have given too much weight to one
token of a multi-token entity. This can be illustrated briefly with the name “Anne Shirley”
already known from Examples (1) - (3). The score for the token “Anne” is 0.9993299 and for
the token “Shirley” 0.999025, for the full sample name “Anne Shirley” this constitutes an
averaged prediction score of 0.999177455. These averaged prediction scores per sample
name, µposi for positive samples and µnegi for negative samples, are further exploited
as the main source of information whether a data sample is a member of the model’s
training dataset. Figure 3.2 provides a schematic overview of the proceedings in step 1 of
the simulated attack on bert-NER.

Figure 3.2.: Schematic view of Step 1 in attack workflow

Step 2

The post-processed model output, i.e. averaged prediction scores for positive and negative
samples (µposi , µnegi) for each input prompt (c1, ..., c9), constitutes the starting point for
the second step of the analytical attack framework. A simplified representation of the
approach and the involved roles is shown in Figure 3.3.

The adversary Blake follows the hypothesis that neural taggers like bert-NER assign
higher prediction scores to tokens known from the training process than to unseen to-

5The prediction score was not rounded for the sample names to not distort the results.
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Figure 3.3.: Schematic view of Step 2 in attack workflow

kens. Therefore, Blake develops different attack strategies for both the (A) pair-wise attack
dataset and (B) the full-list attack dataset, leveraging the same sample name prediction
score values. The purpose of these attack strategies is to estimate the risk of PER name
leakage in bert-NER. In addition to Blake’s strategies, Charlie defines a simple baseline
strategy for (A) and (B) to validate the risk evaluation of Blake’s attack strategies in com-
parison to pure guessing. For the baseline strategy the prediction score is not relevant.
The performance of the different strategies is gauged by Alex, who has knowledge about
the origin (D′ or W ′) of the sample names in attack datasets Adev and Atest.

(A) Pair-wise Approach

(A1) Majority Voting: Majority voting is a simple ensemble method used in ma-
chine learning and data science for combining multiple decisions of different
classifiers into a single, consensus prediction [Lam and Suen, 1997]. The prin-
ciple underlying majority voting utilizes the advantage of multiple classifiers
in order to obtain a more robust and accurate overall prediction [Dietterich,
2000]. In this research, the majority voting result is not based on multiple clas-
sifiers but on multiple input contexts, i.e. queries, to the model. This majority
voting approach uses the prediction scores of sample pairs (posi, negi) for all
nine input prompts to determine which pair member is also a training dataset
member.

Given a set of prediction score pairs{(µpos1, µneg1), (µpos2, µneg2), ..., (µposj, µnegj)},
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where (µposj, µnegj) is the prediction score for positive and negative sample
pair names in input context j from corpus C , the majority voting prediction is

defined as follows: kj =

⎧⎨⎩1, µposj > µnegj

0, µnegj > µposj

Kp =
∑︂
j∈C

kj (3.2)

Kn = |C| −Kp

The winner, winneri, of pair (posi, negi) can be expressed as:
winneri = (posi ifKp > Kn, negi ifKn > Kp)

In the formula presented in 3.2 a winneri, i.e. sample pair name with higher
prediction scores in more than |C|/2 cases, is determined by comparing the
number of individual context wins (Kp,Kn) for posi and negi. To evaluate
the majority voting method, the sample names labeled by the majority voting
as “winners” are compared with the true training data names posi in the attack
dataset A and the accuracy of the majority voting approach is calculated.

(A2) AVG Score: The average score strategy uses the prediction scores µj of the
sample name si for all input prompts cj and calculates the mean PER-tag pre-
diction score for each element of the sample pair (posi, negi) over the entire
input corpus C . The mean scores of the pair, mean(µposi),mean(µnegi), are
compared against each other and the sample name with the higher mean
score is determined as training data instance of bert-NER.

mean(µsi) = (1/j) ∗ (µs1 + µs2 ,+...+ µsj) (3.3)
The winner, winneri, of pair (posi, negi) can be expressed as:

winneri =

⎧⎨⎩posi, mean(µposi) > mean(µnegi)

negi, mean(µnegi) > mean(µposi)

Similar to the majority voting approach, the results of the AVG score method
are compared with the true training data instances of bert-NER and the perfor-
mance measured by the accuracy of prediction.
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(A3) MAX Score: The maximum score strategy uses the highest PER-tag prediction
score of the sample name for the entire input prompt corpusC . The maximum
score for posi and negi of pairi are compared against each other and the
sample pair name with the highest maximum score is assumed to be a training
data instance of the target model M . In case both pair sample names have an
identical MAX PER-tag score, the sample name with the higher AVG score is
considered winneri.

winneri =

⎧⎨⎩posi, max(µposi) > max(µnegi)

negi, max(µnegi) > max(µposi)
(3.4)

The MAX Score method is another pair-wise attack strategy, for which the
results are compared with the true training data instances of bert-NER. The
accuracy of the prediction is then used to measure its performance.

(A4) Baseline: Given a sample pair (posi, negi), a dummy classifier randomly pre-
dicts with equal probability, which pair member is from the training dataset [1]
and which pair member is not from the training dataset [0]. The code example
in (3.2) shows the implementation of the dummy classifier in Python. Both
classes are equally likely, similar to a coin toss decision. For adversary Blake’s
attack strategies to be successful, their accuracy must exceed the baseline
value of approximately 0.5, which amounts to random guessing.

1 import random
2

3 class PairDummyClassifier:
4 def __init__(self):
5 self.classes_ = [[1, 0], [0, 1]]
6

7 def predict(self , X):
8 return random.choice(self.classes_)

Listing 3.2: Simple Dummy Classifier used as baseline to classify sample pair elements (posi, negi)
at random with equal probability for being a member (1) or non-member (0) of Dtrain.

(B) Full-list Approach In addition to the pair-wise sampling approach, also the full list
of sample names in the attack dataset A is used. In this approach the list of sample
names is ranked by their individual PER-tag prediction score for the respective query
µi.
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(B1) Average Precision: Average Precision (AP) is commonly used as an evaluation
metric for information retrieval tasks where the objective is to retrieve a set of
relevant items from a large collection [Manning et al., 2008]. The relevance of
each item is binary, either relevant or not relevant, which maps to the attack
approach in this thesis, as sample names can also be either in Dtrain or not in
Dtrain, or, in other words, can be a relevant training data instance or not.

AP =
n∑︂

i=1

(Reci −Reci−1) · Preci (3.5)

where:

n is the number of items in the ranked list.

Reci is the recall at rank i.

Preci is the precision at rank i.

The Average Precision per query is calculated by ranking the prediction scores
(µposi ,µnegi) for each context input and then applying the formula in 3.5 [Zhang
and Zhang, 2009] to the ranked list. The result for each context input, i.e. query,
is an AP value ranging from 0 to 1, where 1 denotes a perfect AP. To summarize
the effectiveness of rankings from multiple queries, the arithmetic mean of
the individually computed APs, termed the Mean Average Precision (MAP),
can be calculated [Croft et al., 2009]. MAP is a frequently used effectiveness
measure because it reflects the idea that top-ranked items are considered the
most important [Croft et al., 2009] and it has been demonstrated that the MAP
score has particularly good stability and discrimination [Manning et al., 2008].

(B2) Expected Rank: E(rank|posi) expresses a conditional expectation given
a randomly selected positive sample posi (= PER name from Dtrain) and its
expected rank in a ranking of PER-tag scores. This can also be formulated as
the expected number of guesses until posi is encountered in a list of sample
names. The accuracy in the first summand of the formula presented in 3.6 is
derived from the accuracy observed in the direct comparison of (µposi , µnegi)
and can be determined for each input prompt (c1, ..., c9) or as an average
accuracy for the entire input corpus C. nneg and npos denote the number of
negative and positive samples, respectively. The second summand [0.5 npos]
is a constant, which considers also other positive samples in the ranking.
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E(rank|posi) = (1− accuracy) · nneg + 0.5 · npos (3.6)

As the expected value of the rank inE(rank|posi) is measured on a sample, i.e.
attack dataset A, it presents a good estimate for this value. In contrast to the
accuracy in the pair-wise attack strategies (A1-A3) and the average precision
(B1), a low value (≥1) is desired for the expected rank to demonstrate that the
attack was successful6.

(B3) Baseline: Given a balanced list of PER names, consisting of 50% training data
instances and 50% non-training data instances, a dummy classifier assigns
binary labels [0, 1] at random with an equal probability of 0 (not in training
data) or 1 (in training data) to the names in the list. The accuracy in this
case is to expected to be close to 0.5. (3.3) shows a code example of the
implementation of the dummy classifier in Python.

1 import random
2 import numpy as np
3

4 class ListDummyClassifier:
5 def __init__(self , random_seed =1653):
6 self.random_seed = random_seed
7

8 def fit(self , X):
9 np.random.seed(self.random_seed)

10 self.dummy_labels = np.random.choice ([0, 1], size
=len(X), p=[0.5, 0.5])

11

12 def predict(self , X):
13 return self.dummy_labels

Listing 3.3: Simple Dummy Classifier used as baseline to classify sample names in a list at random
with equal probability for being a member (1) or non-member (0) of Dtrain.

The above-mentioned attack strategies for the leakage risk analysis in bert-NER are
first optimized and evaluated on attack dataset Adev in its (A) pair-wise and (B) full-list
configuration. The performance of the various strategies in this process and practical

6From another point of view, a high value for the expected rank could be preferable implying that the
model is not easily prone to leak sensitive information.
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considerations will decide which attack strategy for the pair-wise (A1-A3) and full-list
approach (B1-B2) will be tested on the second attack dataset Atest. The next chapter
presents the results of the simulated attack outlined in this section.
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4. Results

This chapter conducts an in-depth analysis of the investigation into sensitive information
leakage in a BERT-based NER model. It provides general insights into the potential for
leakages of named entities, i.e. Person (PER) names, from the model’s training dataset
and presents the findings of the simulated attack. The performance of the different attack
strategies outlined in the previous chapter is used to estimate the risk of leakage in the
examined language model. The chapter is divided into two parts: the first part discusses
general findings of the attack approach based on the model’s output and examines the
hypothesis that training data samples tendentially receive higher prediction scores than
non-training data samples. The second part concentrates on the findings of the simulated
attack highlighting both the strengths and limitations of the presented strategies. The
results of this research attempt to contribute to a better understanding of information
leakage in Large Language Models by providing a collection of strategies within a risk
assessment framework to gauge the scope and contingency of training data leakages.

4.1. General Findings

This section provides a comprehensive overview of general findings with a particular focus
on addressing the question whether the prediction score of PER-tags represents a reliable
indicator for determining whether a sample name was included in the training dataset of
bert-NER.

Tables 4.1 and 4.2 summarize the results of the pair-wise comparison of probed names to
differentiate a training data sample nameposi a from negative sample namenegi /∈ Dtrain

based on the PER-tag prediction score computed by bert-base-NER and bert-large-NER.
Each row represents the result for one input context, which is specified with the accuracy
of the assumption that µposi > µnegi in each sample pair (posi, negi) and the number of
True Positives and False Positives indicating which element of the respective sample pair
achieved a higher PER-tag score. It is worth mentioning here, that due to the pair-wise
approach the numbers for TP and TN, and FP and FN, are identical. This explains also
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the equal values for precision and recall. The FP-rate can be thought of as a false alarm
meter revealing how many negi pair elements are identified as training data samples due
to their comparatively high prediction score.

Input Prompt ci Accuracy TP FP Precision Recall FP-Rate
MASK 0.696 575 251 0.696 0.696 0.304
MASK is a person. 0.701 579 247 0.701 0.701 0.299
My name is MASK. 0.723 597 229 0.723 0.723 0.277
I am named MASK. 0.722 596 230 0.722 0.722 0.278
MASK is an individual human being. 0.702 580 246 0.702 0.702 0.298
Is MASK your name? 0.712 588 238 0.712 0.712 0.288
Is MASK a person? 0.685 566 260 0.685 0.685 0.315
MASK is not a person. 0.701 579 247 0.701 0.701 0.299
My name is not MASK. 0.706 583 243 0.706 0.706 0.294

Table 4.1.: Results for bert-base-NER with Adev dataset

Input Prompt Accuracy TP FP Precision Recall FP-Rate
MASK 0.707 584 242 0.707 0.707 0.293
MASK is a person. 0.674 557 269 0.674 0.674 0.326
My name is MASK. 0.68 562 264 0.68 0.68 0.32
I am named MASK. 0.695 574 252 0.695 0.695 0.305
MASK is an individual human being. 0.674 557 269 0.674 0.674 0.326
Is MASK your name? 0.678 560 266 0.678 0.678 0.322
Is MASK a person? 0.684 565 261 0.684 0.684 0.316
MASK is not a person. 0.686 567 259 0.686 0.686 0.314
My name is not MASK. 0.668 552 274 0.668 0.668 0.332

Table 4.2.: Results for bert-large-NER with Adev dataset

It can be seen from the accuracy ranging between 0.67 and 0.72 specified in Tables
4.1 and 4.2 that in a pair-wise comparison, a relatively high percentage of posi and negi
across all input contexts are correctly classified. Interestingly, the accuracy varies quite
considerably if we compare the results of the individual input contexts across model sizes.
The best-performing input prompt using model size bert-base is “My name is MASK.” with
an accuracy of 0.723, and for the model size bert-large, the best-performing prompt is
“MASK” with an accuracy of 0.707, which is, however, the prompt with the highest FP-
rate for bert-base-NER. For the larger NER model, the highest FP-rate can be observed
with the input prompt “My name is not MASK.”. [Hisamoto et al., 2020] discovered for
privacy attacks with a comparable approach that they naturally yield a high rate of false
positives because of the overconfidence in neural networks. However, this claim may
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be challenged by the possibility that potential overconfidence in predictions would also
apply to training data samples and might be even more apparent in direct comparison
with non-training data samples supporting the adopted assumption µposi > µnegi . The
pair-wise comparison of (posi, negi) inevitably results in a relatively high FP-rate, as a
binary decision is made between two pair elements rather than over the entire sample.

4.1.1. Influence of Utterance Type and Syntactic Position of NEs

The type of utterance (assertion vs. interrogative vs. negation) and the syntactic position
(subject vs. object) of the PER name in the input prompt only show minor effects in terms
of accuracy. Figure 4.1 illustrates the influence of the type of utterance and syntactic
position of the PER name in the prompt on the accuracy of the assumption µposi > µnegi .
A slight tendency to achieve a higher accuracy can be observed for the syntactic position
of PER names in assertions, namely when the PER name is in object position (symbolized
by a blue circle •) in contrast to being in subject position (symbolized by a blue diamond
♦). However, the number of observations per case1 might be too small to draw meaningful
conclusions from it.

Figure 4.1.: Influence of type of utterance and syntactic position (subject/object) of PER name in
the input prompt on the accuracy of µposi > µnegi per sample pair.

1Each combination of type of utterance + syntactic position of PER name occurs 1-2 times in the input
prompt corpus C , as the total size of C is 9 and the input prompt c1 “MASK” could not be considered in
this comparison.
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4.1.2. Scaling Phenomenon

The averaged results for both model sizes of bert-NER are presented in Table 4.3. Follow-
ing [Yeom et al., 2018, Song and Raghunathan, 2020] this table includes a new metric.
Adversarial advantage, sometimes also referred to as threat score, can be formalized as
the difference between the true and false positive rate, i.e. TP-Rate − FP-Rate. A higher
adversarial advantage suggests that a model is more vulnerable to adversarial attacks,
while random guessing provides 0 advantage [Song and Raghunathan, 2020]. With adver-
sarial advantage scores above 0.36 for bert-NER, it can be argued that an adversary can
gain a fair amount of information on the training data of bert-NER.

In summary, Table 4.3 reveals that the adopted method of taking the PER-tag prediction
score as an indicator to distinguishing members and non-members of training data is more
accurate for the smaller model bert-base-NER with an accuracy of 0.706 in comparison to
bert-large-NER with an accuracy of 0.684. This finding refutes the “scaling phenomenon”
proposed by [Carlini et al., 2022], which says that larger models memorize training data
points to a greater extent.

Model Size Accuracy Recall Precision TP-Rate FP-Rate Adversarial Advantage
base 0.706 0.706 0.706 0.706 0.294 0.412
large 0.684 0.684 0.684 0.684 0.317 0.367

Table 4.3.: Comparison of µposi > µnegi accuracy for bert-base-NER and bert-large-NER over all
input prompts with Adev dataset.

4.1.3. Data Duplication

In addition to models scale, data duplication is also considered to be one of the key factors
that significantly impact training data memorization by LLMs according to [Carlini et al.,
2022]. It is argued that samples that occur multiple times in the training dataset are
easier extractable in privacy attacks. From Figures 4.2 and 4.3 it can be observed for both
model sizes of bert-NER that if a PER name occurs2 at least six-times in the training data,
the (averaged) prediction score for the PER-tag does not fall below a threshold of 0.85.
However, the sample size of PER names with a high occurrence rate (≥ six occurrences) in
the training data is considerably lower than for the PER name samples with an occurrence
rate under six. These results, therefore, need to be interpreted with caution. Overall, it

2As an occurrence counts the full multi-token name. One-token occurrences of just the first or last name
are not included in the occurrence count.
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Figure 4.2.: Distribution of averaged bert-base-NER prediction output for PER names from the
training dataset sorted by the PER name’s occurrence count in the training data.

Figure 4.3.: Distribution of averaged bert-large-NER prediction output for PER names from the
training dataset sorted by the PER name’s occurrence count in the training data.
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has to be noted that the box plots presented in Figures 4.2 and 4.3 vary in their number of
observations, i.e., sole horizontal lines indicate that there was only one observation in
this distribution. Similar to the comparison of accuracy and FP-rate among the two model
sizes, it becomes evident that the smaller model bert-base-NER tends to assign higher
PER-tag prediction scores than the larger model bert-large-NER at least for PER names
occurring 15-times or less in the training data.

After having discussed the general insights into the prediction output of bert-NER, the
following section will delve into the results of the simulated attack strategies for the (A)
pair-wise and (B) full-list approach.

4.2. Results of Privacy Attack

This section presents the empirical analysis of the different attack strategies described
in Section 3.3. For the simulated attack on the bert-NER model different approaches, (A)
pair-wise comparison and (B) full-list collation, were tested to assess the risk of sensitive
information leakage. The performance of the most effective strategy (A1-A3) and (B1-B2)
for each approach was further verified on a test dataset.

4.2.1. Analysis of Pair-wise Comparison

Returning to the different attack strategies outlined in Section 3.3, the adversary Blake
proposed three different methods to evaluate the data leakage potential of bert-NER for
probes defined as pairs of PER names: (A1) Majority Voting, (A2) AVG Score and (A3) MAX
Score. The adversary Charlie developed a random guessing approach as a baseline (A4)
to validate Blake’s strategies.

Figures 4.4 and 4.5 illustrate the count of sample pair wins per input context by the
negative and positive samples of the paired probes in attack dataset Adev for both model
sizes. It can clearly be observed for all input contexts, that given a pair of sample names,
the positive sample obtained a higher score in around two-thirds of the cases, which
supports the hypothesis that samples seen during model training receive higher scores
than unseen samples.

For the Majority Voting method, the PER-tag scores of the sample pairs (posi, negi)
are compared per input prompt to decide on a winner name per context. The decisions
are then pair-wise aggregated to ultimately determine the sample pair element, which is
more likely to be a member of Dtrain. For the methods AVG Score and MAX Score, the PER-
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Figure 4.4.: Distribution of sample pair winners of attack dataset Adev measured on the PER-tag
prediction score produced by bert-base-NER.

Figure 4.5.: Distribution of sample pair winners of attack dataset Adev measured on the PER-tag
prediction score produced by bert-large-NER.
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tag scores for all input prompts per sample pair are adduced to ascertain the individual
average score, or respectively, the maximum score, which consequently decides on the
sample name expected to be a training data instance conforming to rules described in
Section 3.3.

The results presented in Table 4.4 show that all attack strategies (A1)-(A3) exceed the
threshold set by the baseline (A4), i.e. ≈50% accuracy. In [Hisamoto et al., 2020], an
accuracy slightly above 50% in a binary classification task of this nature is already regarded
as a potential breach of privacy. The margin to the baseline can be considered significant,
as the respective accuracies lie more than 21 percentage points above the threshold for
the bert-base-NER model and more than 17 percentage points above the threshold for
the bert-large-NER model.

Method Accuracy: bert-base-NER Accuracy: bert-large-NER
(A1) Majority Voting 0.708 0.67
(A2) AVG Score 0.711 0.686
(A3) MAX Score 0.721 0.683
Baseline Accuracy
(A4) Dummy Classifier 0.497

Table 4.4.: Comparison of the accuracy of methods (A1)-(A4) in assessing the leakage risk for bert-
base-NER and bert-large-NER using the Adev dataset.

Majority voting is the method with the lowest accuracy in identifying a training data
instance among pairs of sample names for both model sizes. A possible explanation for
the weaker performance of the majority voting strategy could be that the size of the input
prompt corpus C might not have been sufficient enough to provide stronger predictions
for the membership of PER names in Dtrain. The obtained results, however, can serve as
a baseline for future investigations using an increased quantity of determinant context
factors for majority voting. The other two methods investigated in the pair-wise approach
to quantify the risk of information leakage demonstrate a model-dependent performance.
For bert-large-NER, the accuracy of the AVG Score method is slightly higher than the MAX
Score method. A greater margin in accuracy between these two methods, (A2) and (A3),
can be found for the smaller bert-base-NER model. Here, the MAX Score method achieves
an accuracy of 0.72, compared to an accuracy of 0.71 for the AVG Score method. As there
is a moderately larger difference for the MAX Score strategy, this strategy will be further
used for additional verification on test dataset Atest.
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4.2.2. Analysis of Full-list Comparison

In addition to the pair-wise configuration of the attack dataset A, the dataset can also
be used as a simple list of PER names. This list, composed of 50% positive samples posi
and 50% negative samples negi, is exploited by the adversary Blake to assess sensitive
information leakage from bert-NER based on two metrics: (B1) (Mean) Average Precision
and (B2) Expected Rank of a randomly selected PER name sample from Dtrain given a
ranked list of PER names. Similar to the pair-wise approach, a baseline (B3) to test the
performance of the strategies was developed by the adversary Charlie.

Tables 4.5 and 4.6 list the rounded results for attack strategies (B1) and (B2) on bert-
base-NER and bert-large-NER for each input prompt of corpus C. The average precision
per input prompt is calculated by ranking the names according to their PER-tag-prediction
score and iterating over this ordered list by applying the formula defined in 3.5. To com-
pute the expected rank, i.e. the number of guesses until a randomly selected posi is
encountered, the respective accuracies specified in Tables 4.1 and 4.2 are inserted into
the formula given in 3.6. It should be noted that the expected rank values presented here
are based on a ranking methodology that considers also other positive sample names
occurring higher in the ranked list. For expected rank values that do not take into account
the impact of other positive samples in the ranking, please refer to Tables A.1 and A.2 in
the appendix.

As expected based on the knowledge acquired from the general finding section, the two
model sizes show differences in the achieved results across the nine input prompts. For
bert-base-NER the most revealing input context is “My name is MASK”, while for bert-large-
NER “MASK”, the probed PER name without any context, can be identified as the most
predictive in determining training data samples. Intuitively, the expected rank should
be low when the AP is high and vice versa. This can be confirmed by the actual figures
in Tables 4.5 and 4.6 and thus provides further evidence that the two metrics, expected
rank and average precision, demonstrate informative value to evaluate data leakage by
agreeing on the best performing input prompt.

Table 4.7 provides an overview of the results for the attack strategies (B1), (B2) and the
baseline (B3) for the full-list approach. The average precision attempts to quantify the
attack’s total performance, taking into consideration both the strategy’s capacity to detect
relevant instances and the quality of those detections. Here, this means that the aim is to
find a high number of posi samples. The Mean Average Precision for bert-base-NER and
bert-large-NER is calculated as the arithmetic mean of the AP scores for the individual
input prompts. An alternative approach to taking the mean of the AP scores defined in
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Input Prompt ci (B1) Avg. Precision (B2) Expected Rank
MASK 0.697 664
MASK is a person. 0.729 661
My name is MASK. 0.731 642
I am named MASK. 0.721 643
MASK is an individual human being. 0.721 660
Is MASK your name? 0.715 652
Is MASK a person? 0.699 674
MASK is not a person. 0.726 661
My name is not MASK. 0.724 656

Table 4.5.: Attack evaluation metrics for bert-base-NER with Adev dataset

Input Prompt ci (B1) Avg. Precision (B2) Expected Rank
MASK 0.707 655
MASK is a person. 0.7 677
My name is MASK. 0.695 677
I am named MASK. 0.702 666
MASK is an individual human being. 0.693 683
Is MASK your name? 0.699 679
Is MASK a person? 0.703 675
MASK is not a person. 0.7 673
My name is not MASK. 0.69 687

Table 4.6.: Attack evaluation metrics for bert-large-NER with Adev dataset

Tables 4.5 and 4.6 could be to calculate the average precision from the ordered list of
averaged PER-tag scores over all nine contexts, i.e. total mean PER-tag score for each
sample name. The comparison of these two values, MAP and AP, in Table 4.7 shows that
the second approach, AP, yields marginally better results, especially for the larger model
bert-large-NER improving the score by 1%.

Model Size (B1) MAP (B1) AP (B2) Expected Rank
base 0.718 0.723 656
large 0.699 0.708 675
Baseline (B3) Accuracy
Dummy Classifier 0.497

Table 4.7.: Comparison of bert-base-NER and bert-large-NER leakage assessment metrics using
the Adev dataset with averaged scores over all input prompts ci for Average Precision
and Expected Rank and for MAP the arithmetic mean of the AP scores from Tables 4.5
and 4.6.
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The attack strategy (B2) approaches the issue of estimating data leakage in a LLM from
a different perspective. The goal for the expected rank metric is to achieve a value as
low as possible in order to define the attack as successful. At first sight, the numbers in
Tables 4.5, 4.6 and 4.7 may appear relatively high in comparison to the sample size (=
1653), but the results need to be interpreted under the condition that the formula given in
3.6 approximates the rank of a specific randomly selected sample from D′ and not of just
any, or first, positive sample in a ranked list. Put differently, for a particular sample posi
to be encountered in an ordered list of PER names, the expected value of name guesses
required is 656 (bert-base-NER), or alternatively 675 (bert-large-NER). Due to the lack of
comparable approaches, or other referential work, it is challenging to set a benchmark to
distinguish between satisfactory and unsatisfactory scores for the expected rank metric.
As previously with the individual input prompt dependent results, the expected rank
values without considering other positive samples in the ranking methodology can be
found in Table A.3 in the appendix.

In comparison to attack strategy (B2) for the full-list approach, using average precision
offers a number of advantages. First, average precision is a well-established and frequently
used measure in a number of different areas of application. It can be easily compared to a
defined baseline and thus offers a higher level of reliability compared to the expected rank
method. An additional benefit of using average precision is that it can also be applied
to smaller datasets. Based on these pragmatic considerations, the attack strategy (B1)
involving average precision was chosen for the verification process with dataset Atest.

4.2.3. Verification on Test Dataset

This section aims to verify the effectiveness of one promising strategy per approach (A
and B) out of the multiple strategies defined in the leakage risk analysis framework for
bert-NER. For the pair-wise approach (A), the focus lies on the MAX Score strategy and for
the full-list approach (B), Average Precision is used to asses the extent of data leakage risk.

(A) Pair-wise Comparison: MAX Score

Figure 4.6 attempts to display the individual MAX scores per sample name pair, which are
used to determine the training data instance within each pair according to the formula
defined under (A3). The purpose of this figure is to observe general trends, so that the
values of singular samples can be neglected. Naturally, the PER-Tag MAX scores for the
PER names in the attack dataset are located more towards the upper end of the scale,
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i.e. most of the MAX scores accumulate in the area above 0.9 in both model sizes. When
comparing the MAX scores between model sizes it becomes evident that number of MAX
scores below a PER-tag prediction score of 0.85 is moderately higher in case of the larger
model bert-large-NER, which supports the overall finding that bert-large-NER assigns
lower prediction scores in general and is therefore less susceptible to privacy attacks
based on prediction scores than bert-base-NER.

Figure 4.6.: Distribution of MAX scores for posi andnegi per sample name pair as formulated under
(A3) using dataset Atest.

Table 4.8 displays the accuracy of the MAX Score strategy in determining training data
samples given a pair of sample names (posi, negi) for both model sizes of bert-NER (cf.
Table 4.4 for the performance of the MAX Score strategy on the Adev dataset). It can be
seen that the accuracy of the MAX score strategy is considerably higher than the baseline
set by the dummy classifier (A4). In comparison to the accuracies achieved using the Adev

dataset the performance, however, shows a minor drop for both model sizes alike. Overall,
the values in Table 4.8 suggest a similar observation as was found for the Adev dataset,
the smaller model bert-base-NER exhibits a greater vulnerability to training data leakage
than the larger model bert-large-NER.
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Method Accuracy: bert-base-NER Accuracy: bert-large-NER
(A3) MAX Score 0.712 0.656
Baseline Accuracy
(A4) Dummy Classifier 0.497

Table 4.8.: Verification of attack strategy (A3) MAX Score using Atest dataset.

(B) Full-List Comparison: Average Precision

Figure 4.7 demonstrates the average precision achieved for each context input for both
bert-NER sizes (see Table A.4 in the appendix for the numerical data). Despite the lower AP
scores for the Atest dataset compared to the Adev dataset, the performance of the attack
strategy is still encouraging and suggest that it can be successfully deployed in a data
leakage risk assessment. Similar to the observation for the Adev dataset, the average
precision for the smaller model, bert-base-NER, seems to be generally higher than for
the larger model bert-large-NER. Except for the input context c7 “Is MASK a person?”, the
average precision scores of the privacy attack for the two model sizes are separated by a
difference of at least 1.5 percentage points. Contexts c1 to c6 show a similar trend in both
model sizes regarding the magnitude of AP. Contexts c8 and c9, on the other hand, have
an entirely different impact on the attack evaluation metric. In case of bert-base-NER,
the two input contexts of utterance type negation increase the overall AP, whereas in
case of bert-large-NER they have the opposite effect. Given that this finding is based
on a single NER model in two sizes, further experimental investigations are needed to
examine whether the utterance type of input prompts influences the output of models
with different sizes.

Model Size MAP AP
base 0.689 0.701
large 0.664 0.671
Baseline (B3) Accuracy
Dummy Classifier 0.498

Table 4.9.: Comparison of bert-base-NER and bert-large-NER on the attack evaluation metric Mean
Average Precision/Average Precision using the verification dataset Atest.

The aggregated verification results for bert-NER are shown in Table 4.9. In line with
the per-context results, bert-base-NER appears to have a higher risk of leaking sensitive
information in the form of PER names as bert-large-NER. A margin of 0.025 for the Mean
Average Precision and even larger margin of 0.03 for the average precision considering
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Figure 4.7.: Verification of attack strategy B1 using dataset Atest

averaged PER-tag scores can be observed between the metrics documented for the two
model sizes. Consistent with the results from Adev, the AP computed from a list ranked
with mean PER-tag scores achieves a higher score than the simple arithmetic mean across
individual AP scores, i.e. MAP. Overall, the outcome of the verification with Atest is slightly
less strong with differences to the MAP and AP scores using Adev ranging from 0.22 to
0.37. Despite the minor decrease in absolute values with the test dataset, MAP and AP in
connection with the prediction output for PER-tag scores proves to be a robust strategy to
estimate sensitive information leakage in bert-NER.

The findings presented in this chapter reinforce the assumption that training data
samples tendentially receive higher output scores than samples previously unseen by
the model. Further, the effectiveness of the strategies (A3) MAX Score and (B1) Average
Precision as a measure to assess the risk of data leakage in LLMs could be validated.
However, the effect of model size in this context requires further attention since the
results for bert-NER turned out differently than what was anticipated from the literature.
Taken together, the findings for all attack strategies tested in the analytical risk framework
proposed in this thesis do not support previous research claiming that larger models are
more prone to training data leakage [Carlini et al., 2022]. In fact, for bert-NER the opposite
appears to hold true. The underlying causes for this phenomenon in bert-NER are yet to
be determined in future work.
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This section of the thesis provides an outlook on the implications of the findings presented
in previous sections. It includes a discussion on the limitations of the study and potential
for further research. The practical significance of the results for the field of data leakage
and privacy protection are also highlighted. Furthermore, it provides a summary of the
main contributions of the thesis, their significance in the current state of knowledge,
and briefly describes approaches attempting to mitigate the identified privacy risks in
language models.

Limitations

While model output or score-based privacy attacks may be simple and easy to implement
and therefore constitute an adversary-friendly approach to obtain information on the
training data of Large Language Models, the issue of overconfident predictions of neural
networks needs to be addressed. This overconfidence can pose a challenge as it may lead
to distorted results and potentially generate an increased number of false positives, i.e.
data samples falsely detected as members of the model’s training dataset [Hintersdorf
et al., 2021].

This research is further limited by the lack of information on the scale of acceptability
for data leakages in LLMs. Due to the absence of a formally defined reference framework
or benchmark specifying the extent and nature of data leakage considered considered
acceptable or unacceptable, it is difficult to classify the performance of the targeted models
outside of the self-imposed guidelines established within this study. In a highly restrictive
interpretation, any kind of leakage would be considered unacceptable. This, however,
appears to be an unrealistic approach and would presumably prevent the deployment of
any current LLM.
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Future Work

This research has raised several questions in need of further investigation. For instance,
future work could explore the impact of model scale on information leakage in LLMs, as
the results on this topic in this thesis diverge from previous findings (cf. [Carlini et al.,
2022]). This difference may be attributed to the different types of LLMs that were examined
in this regard, neural tagger vs. generative LLM, or there may be other underlying reasons
to this scaling phenomenon. Another interesting research direction would involve testing
the effect of different types of input prompts on an output-based privacy attack in more
detail and also analyzing the influence of an increased number of input prompts on the
proposed attack strategies. Through the use of a generative AI system the creation of
input prompts could be automated and thereby extending or even replacing the manually
produced corpus. Additionally, future studies could concentrate on information leakage
in pre-trained models and their fine-tuned versions to investigate whether there is a
significant difference concerning vulnerability to privacy attacks in the two steps of model
development.

In this work, the focus was on detecting leakages from LLMs in the form of sensitive
information, such as Personally Identifiable Information. While identifying the vulnerabil-
ity of AI systems to privacy breaches is essential to estimate the risk in deployment, it is
equally important to consider protective measures earlier in the development process.
On a higher level, privacy-preserving techniques such as differential privacy [Dwork et al.,
2017] and federated learning [McMahan et al., 2016] have been proposed to protect the
privacy of sensitive data points in a dataset, when data is shared or used for data analysis
or machine learning applications. Lower level, “data-near” techniques, such as data ag-
gregation [He et al., 2011], encryption [Gai et al., 2021] or obfuscation [Brunton, 2015] seek
to preserve data privacy by rendering it unreadable or incomprehensible to unauthorized
parties. Although, there already exists a toolbox to protect data privacy, there are still
open questions and challenges. More research is especially needed on how to implement
the proposed privacy-enhancing measures in the context of large amounts of web-scraped
data, as current solutions may be impractical in this regard [Wallace et al., 2020]. Overall,
privacy protection techniques present numerous opportunities for further investigations,
but they fall outside the scope of this thesis which concentrated on detecting privacy
leakage.

54



6. Conclusion

Identifying the risk of data leakage in Large Language Models (LLMs) has become increas-
ingly important considering both, the growing use of LLMs for personal and professional
purposes, and the potential consequences of unauthorized or unintentional exposure of
(sensitive) information. LLMs require vast amounts of training data from different domains
to produce high-quality output. This data can be sourced from publicly accessible data
from the internet or private datasets, which both may include sensitive information, such
as Personally Identifiable Information (PII). Therefore, the leakage of sensitive data from
LLMs poses a realistic threat and has been recognized as such in the research field of
artificial intelligence. This study aimed to explore sensitive information leakage in neural
taggers, a subcategory of LLMs, and endeavoured to contribute to the existing body of
knowledge on the subject.

This thesis has addressed the question whether the prediction score of a neural tagger
represents a dependable indicator to differentiate between training data and non-training
data samples. Furthermore, the risk of sensitive information leakage, in specific Person
(PER) names, in a BERT-based Named Entity Recognition (NER) model was estimated
by developing a multi-approach risk analysis framework and applying different attack
strategies based on the PER-tag prediction output provided by the model. The underly-
ing assumption here was that training data instances receive higher prediction scores
than data samples which were not part of the training dataset and thus, have not been
encountered by the model during the training phase.

In summary, the findings of this study support the assumption that training data in-
stances tend to receive higher tag prediction scores than non-training data samples. This
was shown by a pair-wise comparison of PER names from the training dataset and out-of-
sample PER names not used during model training, in which approximately 70 % of sample
pairs included a training data sample with a higher PER-tag prediction. In this context,
the phenomenon of training data memorization in connection with model scale and data
duplication in the training dataset was also investigated. In contrast to previous research
work, no clear correlation between frequency of occurrence in the training dataset and
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PER-tag prediction could be established in this study. For the influence of the model scale
on training data memorization, in terms of a high(er) PER-tag prediction score, it was
found that the smaller model size of the targeted NER model leaks more data than the
larger one.

The analytical risk assessment framework intends to simulate a black-box, passive,
supervised privacy attack on the target NER model employing various strategies. By using
a broad range of strategies, it was possible to investigate different methods and metrics
for estimating the vulnerability to training data leakage in a structured process. The
results of the experiments indicate that it is generally possible to distinguish between
training and non-training PER names based on the model’s PER-tag prediction score.
All of the attack strategies employed in the leakage risk framework performed better
than the baseline methods. However, it should be noted here that not all strategies
are metrically comparable to the defined baseline. For this reason and other practical
considerations only two of the five attack strategies defined in the framework were further
used to verify the results on a second attack dataset. The results obtained from the test
dataset confirmed that the attack strategies (A3) MAX Score and (B1) Average Precision are
effective in evaluating sensitive information leakage in the targeted model. In addition, it
was shown that different model sizes or models can be compared with each other using
relatively simple means and without requiring access to the models’ (hyper-)parameters.
Taken together, the findings presented in this thesis add to a rapidly expanding field of
leakage risk assessment for LLMs aimed at evaluating the extent of (sensitive) information
leakage.
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A. Appendix

A.1. Additional Tables

Input Prompt cis Tried Negatives
MASK 250
MASK is a person. 244
My name is MASK. 235
I am named MASK. 240
MASK is an individual human being. 242
Is MASK your name? 245
Is MASK a person? 249
MASK is not a person. 243
My name is not MASK. 241

Table A.1.: Alternative ranking methodology for the expected rank strategy using BERT Base with
dev dataset

Input Prompt ci Tried Negatives
MASK 252
MASK is a person. 266
My name is MASK. 264
I am named MASK. 254
MASK is an individual human being. 269
Is MASK your name? 266
Is MASK a person? 265
MASK is not a person. 263
My name is not MASK. 277

Table A.2.: Alternative ranking methodology for the expected rank strategy using BERT Large with
Adev dataset
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APPENDIX A. APPENDIX

Model Size Tried Negatives
base 239
large 258

Table A.3.: Comparison of BERT Base and BERT Large employing an alternative ranking methodol-
ogy for the expected rank strategy using the Adev dataset

Input Prompt ci Avg. Precision: bert-base Avg. Precision: bert-large
MASK 0.691 0.669
MASK is a person. 0.686 0.66
My name is MASK. 0.701 0.66
I am named MASK. 0.696 0.671
MASK is an individual human being. 0.678 0.66
Is MASK your name? 0.699 0.665
Is MASK a person? 0.667 0.668
MASK is not a person. 0.685 0.664
My name is not MASK. 0.695 0.656

Table A.4.: Privacy attack strategy (B1) verification with Atest dataset for bert-base-NER and bert-
large-NER

A.2. Software Information
The code for the experiment presented in this thesis can be found in the following GitHub reposi-
tory: https://github.com/L-Nux/masterThesis_privacyLeakage. This repository contains all the
necessary scripts and data files to reproduce the results of the experiment. Below the versions of
the main software used in the experiment are listed.

• Python version: 3.9.12
• Python packages:

– numpy 1.21.0
– plotly 5.10.0
– pandas 1.4.2
– regex 2022.6.2
– scikit-learn 1.0.2
– scipy 1.8.0
– tensorflow 2.8.0
– tokenizers 0.12.1
– torch 1.11.0
– transformers 4.20.1
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