
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

„Copositivity Testing: A novel decomposition procedure for
arbitrary matrices and an investigation of gradient-based search

algorithms for finding violating vectors“

verfasst von / submitted by

Johannes Zischg, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2023 / Vienna, 2023

Studienkennzahl lt. Studienblatt / UA 066 977
degree programme code as it appears on
the student record sheet:

Studienrichtung lt. Studienblatt / Masterstudium Business Analytics
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Mag. Dr. Immanuel Bomze

Abstract

1 Abstract

This thesis explores the possibility of enhancing existing copositivity tests by decomposing
a given matrix in a novel way. The resulting algorithm can process any given matrix and
offers a sufficient condition for copositivity. Also, this paper investigates gradient-based
methods for a quick and efficient search for a violating vector that can be applied to any
symmetric matrix of arbitrary order without needing any preprocessing steps.

2 Kurzfassung

Diese Arbeit befasst sich mit der Problemstellung, existierende Copositivititätstests mit-
tels eines neuen Zerlegungsverfahrens besser anwendbar zu machen. Der resultierende
Algorithmus ist in der Lage, jede beliebige Matrix zu zerlegen und bietet eine hinreichende
Bedingung für den Nachweis von Copositivität einer Matrix. Darüberhinaus beschäftigt
sich diese Arbeit mit Gradientensuchverfahren zur schnellen und unkomplizierten Identi-
fizierung von Vektoren, die die Copositivitätseigenschaft einer Matrix widerlegen. Diese
Verfahren können auf jede symmetrische Matrix beliebiger Ordnung angewandt werden,
ohne Vorbearbeitungsschritte durchführen zu müssen.

i

Contents

Abstract i
1 Abstract . i
2 Kurzfassung . i

List of Tables v

List of Figures vii

Listings ix

1 Copositivity 1
1.1 Motivation . 1
1.2 Introduction . 1
1.3 Copositivity - a theoretical foundation . 2
1.4 Proving copositivity for matrices of order n ≤ 7 5
1.5 Necessary and sufficient conditions for copositivity 5
1.6 Inverse A−1 of a copositive matrix A . 7
1.7 Maintaining copositivity while manipulating a matrix 8

2 Matrix reordering 11
2.1 Theoretical aspects of the reordering algorithm 11
2.2 Case distinction based on the reordering outcome 14
2.3 Case 1: separated components in the result of the Cuthill-McKee algorithm

applied to Ad∗ . 15
2.4 Practical implementation . 16
2.5 Example of entire algorithm . 26
2.6 Time complexity of the algorithm . 28

3 Case 2 overlapping matrices - the general case 31
3.1 Computational complexity . 36
3.2 Practical implementation . 37

4 Using gradient descent for copositivity testing 41
4.1 Problem Formulations . 42

4.1.1 Problem formulation 1: xTAx . 42
4.1.2 Problem formulation 2: (x2)TA(x2) 43
4.1.3 Problem formulation 3: (softmax(x))TA(softmax(x)) 44

iii

Contents

4.2 Update step . 45
4.2.1 Learning rate . 45

5 Experiments 49
5.1 Gradient descent approach evaluation on random matrices 49
5.2 Numerical results . 52

5.2.1 ‘Standard‘ problem formulation . 52
5.2.2 ‘Square‘ problem formulation . 54
5.2.3 ‘Softmax‘ problem formulation . 56

5.3 Gradient descent approach evaluation on DIMACS data set 58

6 Conclusion and future work 65
6.1 Future Work . 65
6.2 Conclusion . 65

7 Appendix 67
7.1 Gradient descent implementation . 67
7.2 Random matrix experiment . 71
7.3 DIMACS experiment . 74

Bibliography 77

iv

List of Tables

7.1 Random matrix experiment results for methods 1, 2 and 3 72
7.2 Random matrix experiment results for methods 4, 5 and 6 72
7.3 Random matrix experiment results for methods 7, 8 and 9 72
7.4 Random matrix experiment results for methods 10, 11 and 12 73
7.5 Random matrix experiment results for methods 13, 14 and 15 73
7.6 Random matrix experiment results for methods 16, 17 and 18 73
7.7 DIMACS experiment results for methods 1-9 75
7.8 DIMACS experiment results for methods 10-18 76

v

List of Figures

1.1 A is copositive (symmetric, nonnegative), however A−1 fails to inherit this
property . 7

1.2 A is copositive (symmetric, nonnegative) and so is A−1 7

2.1 Left: original matrix A; Right: respective matrix Ad∗ 12
2.2 Decomposition as in Proposition 1.7.9 is possible since the reordered matrix

consists of block matrices with the desired properties 12
2.3 Case where a decomposition as in Proposition 1.7.9 is not possible 13
2.4 Left: unordered ‘raw‘ adjacency matrix Ad∗ ; Right: the output of the

reversed Cuthill-McKee algorithm . 13
2.5 Original matrix without reordering, the graphic on the right side shows

where negative/positive values are (the ‘more‘ negative, the darker) 14
2.6 Reordered matrix according to the respective adjacency matrix reordering.

One can spot a light rectangle in the top right and bottom left that does
not contain a single negative value . 14

2.7 Left: matrix A; Right: respective matrix Ad∗ 15
2.8 Left: original matrix; Right: rescaled matrix with ones on main diagonal . 17
2.9 Left: original matrix A; Right: respective matrix Ad∗ 17
2.10 Case 1: first row/column only consists of nonnegative values. Hence it is

discarded . 20
2.11 Case 2: first row/column only consists of negative off-diagonal values.

Hence it is discarded, and the respective new matrix is calculated based
on the dropped row/column and the remaining matrix 20

2.12 Left: unordered ‘raw‘ adjacency matrix Ad∗ ; Right: ordered version when
applying the permutation array: [3 5 2 1 6 4 0 7] 21

2.13 Unordered matrix A, Left: values colored from high (bright) to low, e.g.
negative values (dark); Right: respective matrix Ad∗ 22

2.14 Reordered matrix A, Left: values colored from high (bright) to low, e.g.
negative values (dark); Right: respective matrix Ad∗ 22

2.15 Reordered matrix Ad∗ , the respective traverse route for this matrix is
(row,column):
(7, 7), (7, 6), (6, 5), (6, 4), (5, 4), (4, 4), (3, 3), (3, 2), (3, 1), (2, 1), (2, 0),
(1, 0), (0, 0) . 24

2.16 Large example matrix A . 26
2.17 Left: matrix A depicted as image; Right: respective matrix Ad∗ 26
2.18 Left: reordered matrix A; Right: respective matrix Ad∗ 26
2.19 First separated component isolated . 27

vii

List of Figures

2.20 Second separated component isolated . 27
2.21 Third separated component isolated . 27
2.22 Left: the first isolated matrix; Center: the second column/row was removed

since it only contained negative off-diagonal values and the matrix was
adjusted accordingly; Right: the third column was removed since now it
only contained nonnegative values; the resulting 2× 2 matrix is obviously
not copositive, a violating vector is, for example, (1, 1), hence the original
11× 11 matrix is also not copositive. 28

3.1 Left: original matrix; Center: reordered version; Right: found decom-
position with the matrices B,C and E defined by the matrix D in the
corners . 38

5.1 Results for experiments with Standard formulation on how many non-
copositive matrices were identified . 52

5.2 Results for experiments with Standard formulation on how many iterations
were needed to find a violating vector . 53

5.3 Results for experiments with Square formulation on how many non-
copositive matrices were identified . 54

5.4 Results for experiments with Square formulation on how many iterations
were needed to find a violating vector . 55

5.5 Results for experiments with Softmax formulation on how many non-
copositive matrices were identified . 56

5.6 Results for experiments with Softmax formulation on how many iterations
were needed to find a violating vector . 57

5.7 Results for experiments on the DIMACS instances 1− 16 59
5.8 Results for experiments on the DIMACS instances 17− 32 60
5.9 Results for experiments on the DIMACS instances 33− 48 61
5.10 Results for experiments on the DIMACS instances 49− 64 62
5.11 Results for experiments on the DIMACS instances 54− 80 63
5.12 Aggregated results over all instances to find best performing methods . . . 64

viii

Listings

2.1 Necessary imports . 16
2.2 ’Normalization’ of matrix A . 16
2.3 Function to compute Ad∗ . 17
2.4 Helper function to check non copositivity based on diagonal values 18
2.5 Preprocessing routine . 18
2.6 Computing permutation of matrix Ad∗ . 21
2.7 Reordering of matrix A . 22
2.8 Traverse reordered matrix A . 23
2.9 Split matrix according to diagonal block 24
2.10 Complete workflow . 25

3.1 Calculating size of zero-padded matrix . 37
3.2 Splitting up a matrix according to the general decomposition procedure . 38
3.3 Recursion for splitting a matrix into small matrices that can be checked

easily for copositivity . 39

7.1 Initialization of starting vector . 67
7.2 Postprocessing vector after update step . 67
7.3 Calculating the result based on chosen problem formulation 68
7.4 Calculate the analytical gradient for ‘Standard‘ and ‘Square‘ or using

stochastic gradient in formulation ‘Softmax‘ 68
7.5 Method to adjust the learning rate after each iteration 69
7.6 Main function that incorporates the other functions to find a violating

vector for the given matrix . 69
7.7 Main function that incorporates the other functions to find 71

ix

1 Copositivity

1.1 Motivation

Copositivity is a well-studied research field, dating back to 1952 when it came up in
[Mot52]. From then on, numerous results have been achieved in this field, from general
results to concrete algorithms to prove this essential property to links to several other
fields, stressing the importance of copositivity even more. It has numerous applications,
such as optimization theory, max-clique determination, theoretical economics, etc. An
overview of the various application fields can be found, e.g., in [HS10].
It has been shown that testing a matrix for copositivity is a co-NP-complete problem
[Dic19]. Hence, as long as P ̸=NP holds, no general fast algorithm can give a definitive
answer to this question in polynomial time for an arbitrary matrix. Due to this fact, it is
an active field of research to find good algorithms for specific types of matrices (like for
tri-[Bom00] or pentadiagonal [Bre22] and acyclic matrices [Ikr02]).
Another branch of research is concerned with trying to find faster methods for the general
case. While there are existing algorithms that can be applied to any matrix of arbitrary
order, even the fastest algorithms (one of which is described in [Kap00]) become less and
less valuable if the order of the matrix increases [ZD11].
The question that naturally arises is whether there are fast, easily deployable solutions
that can be applied even to larger matrices in a reasonable time or if there is an option
to decrease the matrix size, hence reducing computational complexity in the process.

1.2 Introduction

To increase the speed of checking for copositivity of a matrix, there are essentially two
ways to go:
One can either develop a faster algorithm to derive a result in less time or reduce the size
of the matrix in question, thereby ’overcoming’ the exponential increase in run time that
comes along with (co)-NP-hard problems. This thesis aims at doing both. First, a novel
approach for splitting up a given matrix in a way that multiple but smaller matrices have
to be verified to assess copositivity of a matrix is introduced.
Since, to the author’s surprise, no detailed study of the use of gradient-based methods for
determining copositivity (or, more precisely, to refute the same) are available, different
approaches for such algorithms are presented together with experimental results on
different kinds of matrices.
This thesis is organized in the following way:
In the beginning, a theoretical foundation about general results for copositivity is laid,

1

1 Copositivity

then the main result of this paper in the form of the matrix decomposition algorithm is
presented, and the different cases that can arise in this process are treated both from
a theoretical as well as from a practical perspective. After that, several gradient-based
approaches are discussed with their up- and downsides.
In the experiments section, numerical trials using the gradient-based algorithms are
discussed, carried out on random matrices and the DIMACS data set.
Lastly, the results of this paper are summarized, and an outlook for potential future work
is given.

1.3 Copositivity - a theoretical foundation

Before diving into the properties of copositive matrices, we start by defining what
copositivity even means:

Definition 1.3.1. [Mot52][Dia62][HN63]: Let A ∈ Rn×n be a symmetric matrix. A is
considered copositive if its associated quadratic form xTAx, x ∈ Rn takes only nonnegative
values on the nonnegative orthant Rn

+.

This can also be rephrased to the following :

Definition 1.3.2. [HS10]: For a n× n matrix A define

µ(A) := min
x≥0,∥x∥=1

xTAx

where ∥.∥ is any norm.

Proposition 1.3.3. [HS10] Let A be a real, symmetric matrix. Then the following are
equivalent:

• A is copositive

• µ(A) ≥ 0

Proof. The proof is very similar to that of Lemma 1.3.5 below.

Definition 1.3.4. A vector x ∈ Rn
+ is called a violating vector for the copositivity of a

matrix A ∈ Rn×n if
xTAx < 0

i.e., the matrix A is not copositive because the vector x is a violating counterexample.

One difference that immediately becomes apparent is that in Definition 1.3.2 and in
Proposition 1.3.3, only vectors x with unit length are considered. The fact that this is
indeed a valid equivalence becomes immediately clear with the proof of the next result.

2

1.3 Copositivity - a theoretical foundation

Lemma 1.3.5. If a vector x ∈ Rn
+ is a violating vector, so is every multiple of x.

Proof. If xTAx < 0 for some x and λ ∈ R then we have

xTAx < 0 ⇔

(λ2)xTAx < 0 ⇔

(λx)TA(λx) < 0.

Remark 1.3.6. Note that if λ < 0, the resulting vector x will lie in Rn
−.

Since multiplication with a constant does not change anything about the fact that a
violating vector stays a violating vector, the same holds for normalizing a vector to unit
length (which is also just a multiplication with a constant).

One of the essential properties of copositive matrices is that copositivity also holds for
the principal submatrices - the following result will be used repeatedly in later chapters
and is, therefore, especially important.

Theorem 1.3.7. [BSU12]: If A ∈ Rn×n is a copositive, symmetric matrix, then also every
principal submatrix and every permutation similar matrix P TAP (with P a permutation
matrix) is again copositive.

Remark 1.3.8. A principal submatrix is part of an original matrix, where arbitrary
column/row indices are chosen (column and row indices have to be the same). Only the
values at these indices are used for the submatrix.

Another view on the principal-submatrix-property is given in the following proposition.

Proposition 1.3.9. [HS10]: If A ∈ Rn×n is a copositive matrix, then each principal
submatrix of order n− 1 is also copositive.

Remark 1.3.10. It is important to note that this property can be applied recursively -
meaning that if a matrix A is copositive, every principal submatrix of any order < n is
copositive as well.

The other direction does not hold, so it is insufficient to only check all principal
submatrices for copositivity.

Theorem 1.3.11. [HS10]: Let A ∈ Rn×n be a symmetric matrix. If every principal
submatrix of A of order n− 1 is copositive, the following two equivalences hold:

A is not copositive ⇔ A−1 exists and is nonpositive elementwise

and
A is copositive ⇔ detA ≥ 0 or adjA contains a negative entry.

3

1 Copositivity

Proof. A proof of the first equivalence can be found in [Had83]. For the second one,
consider [CHL67],[CHL70].

Remark 1.3.12. The adjugate matrix adjA is defined as the transpose of the matrix
of cofactors of A, which can be computed from determinants of submatrices of A. This
matter is not discussed further in detail in this thesis. The interested reader can find more
information in [HJ13].

Lastly, a result that will come in handy later is the following proposition about
nonnegative matrices in the context of verifying copositivity of a given matrix.

Proposition 1.3.13. If A ∈ Rn×n is a nonnegative, symmetric matrix, it is also coposit-
ive.

Proof. The proof is trivial since x is always a nonnegative vector in the context of
copositivity, and A is also nonnegative. Hence xTAx has to be nonnegative in any case
as well.

These are some first results that give a hint of why checking for copositivity is such
a hard problem. To verify that a matrix is copositive, naively, one would have to check
every single principal submatrix, and even then, copositivity might not be given if the
determinant of A was negative.

A fascinating aspect that will also pop up again later while conducting the numerical
experiments is the link to the max-clique problem.

In [KP02] it has been shown that the clique-number γ(G) for a graph G(V,E) with a
set of edges E and a set of vertices V can be determined by calculating

γ(G) = min{λ ∈ N : λ(I −B)− I is copositive}

where B is the adjacency matrix of G and I is the all-one matrix (i.e. every entry is 1) of
fitting size. If exact calculation is not possible - since many instances of very dense graphs
cause numerical problems while evaluating copositivity - it is still possible to derive upper
and lower bounds for the size of the maximum clique.

4

1.4 Proving copositivity for matrices of order n ≤ 7

1.4 Proving copositivity for matrices of order n ≤ 7

Proving that a matrix is indeed copositive becomes very hard in larger dimensions - after
all, this is a co-NP-complete problem. But there are closed-form solutions for some kinds
of matrices.

Proposition 1.4.1. [Had83]: Let A ∈ R2×2 be a symmetric matrix. It is copositive if
and only if

a1,1 ≥ 0, a2,2 ≥ 0

and
a1,2 +

√
a1,1a2,2 ≥ 0.

Proposition 1.4.2. [Had83]: Let A ∈ R3×3 be a symmetric matrix. It is copositive if
and only if

a1,1 ≥ 0, a2,2 ≥ 0, a3,3 ≥ 0

ā1,2 = a1,2 +
√
a1,1a2,2 ≥ 0

ā1,3 = a1,3 +
√
a1,1a3,3 ≥ 0

ā2,3 = a2,3 +
√
a2,2a3,3 ≥ 0

and √
a1,1a2,2a3,3 + a1,2

√
a3,3 + a1,3

√
a2,2 + a2,3

√
a1,1 +

√︁
2ā1,2ā1,3ā2,3 ≥ 0.

Further investigations on an algorithmic determination whether a given matrix of order
n ≤ 7 is copositive or not can be found in [YL09] - beyond that, there are no algorithmic
solutions to the author’s knowledge that don’t either focus on an investigation on single
rows/columns or require some recursive procedure.

1.5 Necessary and sufficient conditions for copositivity

For matrices larger than order 7, finding a general algorithm or a sufficient, easy-to-check
condition to prove copositivity of any given matrix A becomes increasingly. Instead, over
time many results have been found that allow a statement about the copositivity of A
in (more or less) specific cases. This section collects some of these results and aims to
indicate conditions that can be checked to verify or refute copositivity.

Corollary 1.5.1. [Mur88]: If all off-diagonal elements of a real, symmetric matrix A are
nonpositive, then A is copositive if and only if A is positive semidefinite.

It is clear that a positive semidefinite matrix is always copositive, so one way of checking
for copositivity is to verify whether a matrix A is positive semidefinite or not - while
stressing that it is a sufficient but not a necessary condition for copositivity! One way of
approaching this is to look at the eigenvalues of A.

Proposition 1.5.2. [HS10]: Let A be a real, symmetric matrix.

5

1 Copositivity

• If A is copositive, at least one of the eigenvalues of A is nonnegative and the sum
of the eigenvalues of A (counting multiplicity) is also nonnegative.

• If all eigenvalues of A are nonnegative, A is positive semidefinite, and therefore also
copositive.

It does not stop there. Copositive matrices have additional properties concerning their
eigenvalues - and their spectral radii.

Definition 1.5.3. [Bom08]: The spectral radius ρ(A) of a matrix A is the maximum of
the absolute values of all eigenvalues of A.

Theorem 1.5.4. [Bom08]: If A is a copositive matrix, then ρ(A) is an eigenvalue of A.

Remark 1.5.5. This means that the eigenvalue of A with the largest absolute value is
always positive if A is copositive.

Another approach is to look at the values of A itself. Some necessary conditions can be
identified:

Theorem 1.5.6. [Vli11]: If A is a copositive n× n matrix, then

• Ai,j ≥ −1
2(Ai,i +Aj,j) for all i ̸= j

•
∑︁

i ̸=j Ai,j ≥ −
∑︁

iAi,i

• Ai,j ≥ −
√︁
Ai,iAj,j for all i ̸= j.

Since positive diagonal values can always be rescaled to 1 (Proposition 1.7.1) , the more
specific case can be considered instead.

Theorem 1.5.7. [Vli11]: If A is a copositive n× n matrix with Ai,i = 1 for all i,

• Ai,j ≥ −1 for all i ̸= j

•
∑︁

i ̸=j Ai,j ≥ −n

In addition to that, there are plenty more certificates for copositivity. What is very
interesting, especially if one tries to reduce the dimension of the matrix that has to be
checked, is the following theorem that explains in which cases specific columns/rows can
be omitted when checking the rest of the matrix for copositivity.

6

1.6 Inverse A−1 of a copositive matrix A

Theorem 1.5.8. Let A ∈ Rn×n be a symmetric matrix with the partitioning:(︃
α β
βT B

)︃
(1.1)

where B is an (n − 1) × (n − 1) (symmetric) matrix, α ∈ R and β ∈ Rn−1. Then the
following statements hold:

a) If α < 0 then A is not copositive.

b) If β ∈ Rn−1
+ and α ≥ 0 then A is copositive if and only if B is copositive

c) If β ∈ Rn−1
− and α > 0 then A is copositive if and only if

αB − ββT

is copositive [Bom00] .

d) If α = 0 and one entry of b is negative, then A is not copositive [BE10].

Remark 1.5.9. The decomposition in this theorem can be accomplished for any row/-
column of A since every permuted version of A shares the same copositivity property as
A.

1.6 Inverse A−1 of a copositive matrix A

Another interesting aspect to consider when dealing with a copositive matrix A is whether
this property also translates to its inverse A−1. Unfortunately, this is not the case. One
cannot make a general statement about the copositivity of the inverse of a copositive
matrix, as can be seen in these two examples [HS10]:

A =

(︃
1

√
2√

2 1

)︃
A−1 =

(︃
−1

√
2√

2 −1

)︃

Figure 1.1: A is copositive (symmetric, nonnegative), however A−1 fails to inherit this
property

A =

(︃
0 2
2 0

)︃
A−1

(︃
0 1

2
1
2 0

)︃

Figure 1.2: A is copositive (symmetric, nonnegative) and so is A−1

Even though one cannot be sure that A−1 will be copositive or not, some results still
hold in any case.

7

1 Copositivity

Proposition 1.6.1. [HS10]: If A is a nonsingular and copositive matrix, each column of
A−1 contains a positive entry.

Lemma 1.6.2. [Jac76]: For a nonsingular, symmetric matrix A, the following statements
are equivalent:

• {x ∈ Rn : xTAx ≥ 0} ⊂ {x ∈ Rn : xTA−1x ≥ 0}

• There is a scalar r ≥ 0 such that A− rA3 is positive semidefinite.

But investigating the inverse can also be used in the other direction, as can be seen in
the following theorem.

Theorem 1.6.3. [Väl86]: A symmetric matrix A is not copositive if and only if it contains
a nonsingular principal submatrix B such that a column of B−1 is nonpositive.

1.7 Maintaining copositivity while manipulating a matrix

As already hinted by Theorem 1.5.8, it can be beneficial to look at certain matrix
decompositions - but even more operations can be applied to matrices that preserve
copositivity.

Proposition 1.7.1. [JR09]: A real, symmetric matrix A with only positive diagonal
elements is a copositive matrix if and only if the rescaled matrix where all diagonal elements
are 1 is copositive.

This is indeed an important proposition, as it allows us to only consider matrices with
ones on the main diagonal.
Another ‘manipulation‘ comes with the following proposition, which potentially allows
changing a matrix such that it gets easier to check it for copositivity.

Proposition 1.7.2. [BSU12]: If A is a copositive matrix and B is a rectangular matrix
of matching order with no negative entries, then BTAB is again a copositive matrix.

Remark 1.7.3. Even though the other direction is not valid (i.e., non-copositivity is not
necessarily preserved by the multiplication of such a matrix), applying this proposition can
still be useful. If the resulting matrix can be proven to be not copositive, also the original
matrix cannot be copositive.

But what about the combination of two matrices? There are some results concerning
this as well.

Proposition 1.7.4. [Yua90]: Let A,B ∈ Rn×n be symmetric matrices and C,D be two
closed sets in Rn such that C ∪D = Rn.
If

∀x ∈ C : xTAx ≥ 0 and ∀x ∈ D : xTBx ≥ 0

then
∃t ∈ [0, 1] : tA+ (1− t)B is positive semidefinite.

8

1.7 Maintaining copositivity while manipulating a matrix

Proposition 1.7.5. [CMS95]: Let A,B ∈ Rn×n be symmetric matrices. Then

• ∃t ∈ [0, 1] : tA+ (1− t)B is copositive

• ∀u, v ∈ Rn : max{uTAu+ vTAv, uTBu+ vTBv} ≥ 0

are equivalent.

The summation of copositive matrices always results in another copositive matrix. The
other direction does not hold.

Theorem 1.7.6. If A,B ∈ Rn×n are copositive, symmetric matrices and A + B = C,
then C is again copositive and symmetric.

Proof. We have

∀x ∈ Rn : xTAx ≥ 0, xTBx ≥ 0

and because of the distributive property, we get

xTCx = xT (A+B)x = xTAx+ xTBx ≥ 0.

But now, let us come back to the scenario of applying certain decompositions to a given
matrix.

Theorem 1.7.7. [Bom08][Bom96]: Let A ∈ Rn×n be a symmetric matrix with the
decomposition (︃

Bdec Ddec

DT
dec Cdec

)︃
(1.2)

where Bdec ∈ Rm×m, Cdec ∈ Rl×l and Ddec ∈ Rm×l with m + l = n. Let Bdec be
positive definite and B−1

decDdec be nonpositive. Then A is copositive if and only if Cdec −
DT

decB
−1
decDdec is copositive.

9

1 Copositivity

Remark 1.7.8. If we assume Bdec only copositive instead, this result does not hold any
longer - consider the following example:

Bdec =

(︃
1 2
2 1

)︃
, Ddec =

(︃
−1
−1

)︃
, Cdec =

(︁
0.7

)︁
Then we have that

B−1
decD =

(︃
−1

3
2
3

2
3 −1

3

)︃(︃
−1
−1

)︃
=

(︃
−1

3
−1

3

)︃
is nonpositive and

Cdec −DT
decB

−1
decDdec = 0.7−

(︃
−1
−1

)︃T (︃
−1

3
2
3

2
3 −1

3

)︃(︃
−1
−1

)︃
= 0.7− 2

3
> 0

is copositive. But the original matrix

A =

⎛⎝ 1 2 −1
2 1 −1
−1 −1 0.7

⎞⎠

is not copositive, one violating vector is, e.g., x =

⎛⎝0
1
1

⎞⎠ with xTAx = − 3
10 < 0.

The following is another result with the same decomposition - but different conditions.

Proposition 1.7.9. If A ∈ Rn×n is a symmetric matrix with a decomposition(︃
Bdec Ddec

DT
dec Cdec

)︃
(1.3)

such that Bdec ∈ Rm×m and Cdec ∈ Rl×l are copositive (the symmetry follows directly
from the symmetry of A) and Ddec ∈ Rm×l is nonnegative with m + l = n, then A is
copositive.

Proof. Proving this is trivial - in Theorem 1.7.6 it was shown that the sum of copositive
matrices is always copositive. (And a copositive matrix can always be padded with zero
rows/columns to have arbitrary order while preserving copositivity)

This means that if a matrix is brought in a form where nonnegative values accumulate
in the upper right and lower left corner and hence forming ‘rectangles‘ in the corners such
that the decomposition from Proposition 1.7.9 can be applied, only B and C have to be
checked for copositivity to verify the same for A. This is the main idea of the copositivity
checking procedure explained in the following chapters.

10

2 Matrix reordering

Now that a theoretical understanding of the term ‘copositivity‘ and the consequences
that come along with this property are established, we can try to use it to speed up
the process of identifying a matrix as copositive (or not). The main idea is to treat a
symmetric, real matrix A as an adjacency matrix, where all the negative entries represent
a 1 and all non-negative entries correspond to a 0. The first step of the algorithm is then
to reorder this adjacency matrix such that connected components can easily be identified -
and more importantly, components that are not connected can be split up into individual
parts easily. These components are then checked for copositivity.
First, the theoretical foundation for the algorithm will be laid in the following. After
that, the algorithm will be explained by showing the respective Python code and concrete
examples to illustrate the process. Also, the time complexity of the entire procedure will
be discussed.

The first step is to investigate ways to reorder a matrix such that a decomposition like
in Proposition 1.7.9 can be applied - one has to note that this is by no means always
possible, but rather only holds for a special kind of matrices that will be discussed in this
chapter.

2.1 Theoretical aspects of the reordering algorithm

Definition 2.1.1. For a matrix A ∈ Rn×n define the corresponding negative-based
adjacency matrix Ad∗ as

Ad∗
i,j =

⎧⎪⎨⎪⎩
0, for Ai,j ≥ 0, i ̸= j,

1, for Ai,j < 0, i ̸= j,

1, for Ai,i

.

Remark 2.1.2. The main diagonal elements are set to 1 for the sole purpose of more
convenient use in later algorithms - this operation does not affect any outcome presented
in this thesis, it just simplifies implementation.

11

2 Matrix reordering

⎛⎜⎜⎜⎜⎝
1 −2 7 9 5
−2 1 −1 1 4
7 −1 1 5 2
9 1 5 1 −3
5 4 2 −3 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
1 1 0 0 0
1 1 1 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 1 1

⎞⎟⎟⎟⎟⎠

Figure 2.1: Left: original matrix A; Right: respective matrix Ad∗

Corollary 2.1.3. If A is a symmetric matrix, then Ad∗ is also symmetric.

Proof. This follows immediately from the definition of Ad∗ .

The consequence of this result is that Ad∗ (if A is a real, symmetric matrix) represents
an undirected graph. Hence, any reordering algorithm applicable to undirected graphs and
suited for grouping connected components using an appropriate permutation of the rows
and columns of Ad∗ can be used to bring the matrix in the desired form. Suppose there
are disconnected components in Ad∗ . In that case, the wanted outcome is a permuted
version of Ad∗ where a decomposition as described in Proposition 1.7.9 is possible such
that D is a zero block matrix and the matrices B and C contain both ones and zeros.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 2.2: Decomposition as in Proposition 1.7.9 is possible since the reordered matrix
consists of block matrices with the desired properties

12

2.1 Theoretical aspects of the reordering algorithm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 1 0 0 0
1 1 1 1 1 1 0 0
0 1 1 1 1 1 0 0
1 1 1 1 0 0 1 0
1 1 1 0 1 1 1 1
0 1 1 0 1 1 0 1
0 0 0 1 1 0 1 1
0 0 0 0 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 2.3: Case where a decomposition as in Proposition 1.7.9 is not possible

For the algorithm described in this thesis, the (reversed) Cuthill-McKee algorithm, as
first mentioned in [CM69] is used to find the appropriate permutation. A description of
the inner workings of this algorithm, together with an example, can be found at [Dos].
It is important to note that the reversed and the regular Cuthill-McKee algorithm are
identical except for reversed index order, but since the reversed variant is superior to the
original Cuthill-McKee algorithm in terms of computational complexity [CG80]. Because
a fast implementation in Python using the ‘Scipy‘ module [Vir+20] is available, this
variant, rather than the original one, is used from now on.

Figure 2.4: Left: unordered ‘raw‘ adjacency matrix Ad∗ ; Right: the output of the reversed
Cuthill-McKee algorithm

The result is that starting from the lower right corner, connected points are kept
together while separate components form their own clusters. If the graph has separated
components, a clearly visible structure indicating the split point between the components
will arrive in the final matrix as described in Figure 2.2.

Once the desired permutation of Ad∗ is reached, A gets permuted in the same way.

13

2 Matrix reordering

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 4 1 9 7 −8 3 1
4 1 8 3 3 3 0 1
1 8 1 8 3 −8 −5 7
9 3 8 1 −10 2 4 6
7 3 3 −10 1 3 3 −5
−8 3 −8 2 3 1 8 8
3 0 −5 4 3 8 1 9
1 1 7 6 −5 8 9 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 2.5: Original matrix without reordering, the graphic on the right side shows where
negative/positive values are (the ‘more‘ negative, the darker)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −5 6 9 7 8 1 1
−5 1 −10 3 3 3 7 3
6 −10 1 4 8 2 9 3
9 3 4 1 −5 8 3 0
7 3 8 −5 1 −8 1 8
8 3 2 8 −8 1 −8 3
1 7 9 3 1 −8 1 4
1 3 3 0 8 3 4 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 2.6: Reordered matrix according to the respective adjacency matrix reordering.
One can spot a light rectangle in the top right and bottom left that does not
contain a single negative value

2.2 Case distinction based on the reordering outcome

Given the result of the reversed Cuthill-McKee algorithm, there are two possible outcomes:

• There are two or more separated components in the graph

• The entire graph is one large connected component.

The following section will discuss the first case (2.3). The second case will be investigated
in Chapter 3.

14

2.3 Case 1: separated components in the result of the Cuthill-McKee algorithm applied to Ad∗

2.3 Case 1: separated components in the result of the
Cuthill-McKee algorithm applied to Ad∗

Here we investigate the case that the resulting permuted version of A has separated
components of negative values in the matrix.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 −2 5 7 2 3 9
−4 1 −2 −7 8 5 6 6
−2 −2 1 −6 −9 7 4 4
5 −7 −6 1 −6 6 1 4
7 8 −9 −6 1 2 3 0
2 5 7 6 2 1 −10 5
3 6 4 1 3 −10 1 −9
9 6 4 4 0 5 −9 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 2.7: Left: matrix A; Right: respective matrix Ad∗

In this case, a variant of the decomposition discussed in Proposition 1.7.9 can be applied
to the given matrix.

Theorem 2.3.1. If A ∈ Rn×n is a symmetric matrix such that Ad∗ is a block diagonal
matrix where the off-diagonal blocks are zero-matrices, i.e.,

Ad∗ =

⎛⎜⎜⎜⎝
Ad∗

1 0 0 0
0 Ad∗

2 0 0

0 0
. . . 0

0 0 0 Ad∗
m

⎞⎟⎟⎟⎠ (2.1)

- where the number of separated components in Ad∗ is m - then A is copositive if and
only if the respective matrices A1, . . . An are copositive.

Proof. Follows immediately from repeated application of Proposition 1.7.9.

This means that instead of checking the entire matrix for copositivity, it is sufficient to
consider only these block matrices, which reduces computational complexity drastically!

15

2 Matrix reordering

2.4 Practical implementation

This section describes a practical implementation of the idea presented before. For
implementation, the coding language Python was used, together with the packages
"Numpy" [Har+20] and "Scipy" [Vir+20].

1 import numpy as np
2 from scipy.sparse import csr_matrix
3 from scipy.sparse.csgraph import reverse_cuthill_mckee

Listing 2.1: Necessary imports

Remark 2.4.1. These are all the imports needed to run the entire code in this chapter.

As a first step, some prepossessing operations should be carried out on the given matrix
A, namely, the deletion of rows/columns if one of the criteria given in Theorem 1.5.8 is
satisfied since this reduces the computational complexity of any copositivity test without
any downsides. This also means that after the preprocessing step, all diagonal elements
of the processed matrix will be positive (i.e., Ai,i > 0) - because a negative value would
cause the matrix to be immediately flagged as not copositive and zero values lead to a
deletion of the respective row according to the constraints given in Theorem 1.5.8. But
before introducing such a preprocessing function, two helper functions are discussed.

As already discussed in Proposition 1.7.1, the main diagonal of A can always be scaled
to 1 while keeping the copositivity property of A. Since this form of normalization allows
a more general approach to determining copositivity, it is also applied to every matrix
before applying subsequent algorithms.

1 def normalize_matrix(matrix: np.ndarray) -> np.ndarray:
2 """ normalizes passed matrix such that the main diagonal only
3 consists of ones
4

5 :param matrix: real valued , square matrix
6 :type matrix: np.ndarray
7 :return: rescaled matrix with ones on the main diagonal
8 :rtype: np.ndarray
9 """

10 # Extract the diagonal elements of A
11 diagonal = np.diag(matrix)
12

13 # Calculate the outer product of the diagonal elements
14 diagonal_product = np.outer(diagonal , diagonal)
15

16 # Divide each element in A by the corresponding element in the
diagonal product

17 result = matrix / np.sqrt(diagonal_product)
18 return result

Listing 2.2: ’Normalization’ of matrix A

16

2.4 Practical implementation

⎛⎜⎜⎜⎜⎜⎜⎝

1 −7 1 3 −2 −3
−2 8 0 7 −5 −8
4 −1 2 13 −3 1
10 3 7 6 −4 −3
−5 −1 −3 −5 5 15
−3 −8 1 4 12 7

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

1.0 −2.47 0.71 1.22 −0.89 −1.13
−0.71 1.0 0.0 1.01 −0.79 −1.07
2.83 −0.25 1.0 3.75 −0.95 0.27
4.08 0.43 2.02 1.0 −0.73 −0.46
−2.24 −0.16 −0.95 −0.91 1.0 2.54
−1.13 −1.07 0.27 0.62 2.03 1.0

⎞⎟⎟⎟⎟⎟⎟⎠

Figure 2.8: Left: original matrix; Right: rescaled matrix with ones on main diagonal

So from now on we can assume that the diagonal entries of A are always equal to 1 (i.e.
Ai,i = 1). As a next step, the function to calculate Ad∗ can be introduced.

1 def matrix_to_sign(matrix: np.ndarray) -> np.ndarray:
2 """ calculates A^d^* from a matrix A
3

4 :param matrix: real valued , square matrix
5 :type matrix: np.ndarray
6 :return: the sign matrix of A (A^d^*)
7 :rtype: np.ndarray
8 """
9 matrix_signs = np.sign(matrix)

10 matrix_signs[matrix_signs == 1] = 0
11 matrix_signs[matrix_signs == -1] = 1
12 matrix_signs += np.eye(matrix_signs.shape [0]).astype("int")
13 return matrix_signs

Listing 2.3: Function to compute Ad∗

The procedure is the following: After taking the sign for every entry of the input
matrix, the positive signed values are set to 0 and the negative entries to 1. Then the
main diagonal is set to 1 to simplify the following calculations. This has no effect on the
reordering of the matrix later on.

⎛⎜⎜⎜⎜⎜⎜⎝

1 3 −2 8 2 −5
3 1 8 −6 2 −10
−2 8 1 −9 −4 −6
8 −6 −9 1 −2 −1
2 2 −4 −2 1 3
−5 −10 −6 −1 3 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 1
0 1 0 1 0 1
1 0 1 1 1 1
0 1 1 1 1 1
0 0 1 1 1 0
1 1 1 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

Figure 2.9: Left: original matrix A; Right: respective matrix Ad∗

Now everything is in place to start the preprocessing of the ‘raw‘ matrix A.

17

2 Matrix reordering

1 def copositivity_check_diagonal(matrix: np.ndarray) -> bool:
2 """ checks if a matrix is not copositive based on its diagonal

elements
3 A matrix is flagged as not copositive if
4 3. one diagonal element is negative
5 4. diagonal element is 0 and there is a negative off -diagonal element
6

7 :param matrix: real valued , square matrix
8 :type matrix: np.ndarray
9 :return: returns a boolean indicating if the matrix is not copositive

10 :rtype: bool
11 """
12 copositive_bool = True
13 # 3.
14 if np.any(np.diag(matrix) < 0):
15 copositive_bool = False
16 # 4.
17 if np.any(np.diag(matrix) == 0):
18 for n, i in enumerate(np.diag(matrix)):
19 if i == 0:
20 if np.any(matrix[:, n] < 0):
21 copositive_bool = False
22 break
23 return copositive_bool

Listing 2.4: Helper function to check non copositivity based on diagonal values

This function serves as a helper for the preprocessing function discussed next. It checks
the diagonal values of a given matrix (and the respective rows/columns) for criteria that
refute copositivity according to Theorem 1.5.8. First, it checks whether there are any
negative elements on the main diagonal. The next step is to check whether, for a zero
element, the respective row/column contains any negative values - both cases guarantee
that the matrix cannot be copositive.

1 def preprocessing_matrix(matrix: np.ndarray) -> Tuple[np.ndarray , bool]:
2 """ perform the following preprocessing steps:
3 1. delete rows/columns that only consist of nonnegative values
4 2. adjust matrix if one row only consists of negative off -diagonal

values
5

6 :param matrix: real valued , square matrix
7 :type matrix: np.ndarray
8 :return: returns a tuple of the preprocessed matrix and a boolean

indicating if the matrix is not copositive
9 False means that it was flagged not copositive since at least one

criterion was met
10 True means that it was not flagged not copositive
11 :rtype: np.ndarray
12 """
13

14 copositive_bool = True
15 while True:
16 flag1 = False

18

2.4 Practical implementation

17 flag2 = False
18 # 1.
19 ones = np.where(np.sum(matrix_to_sign(matrix), axis =0) == 1)[0].

tolist ()[::-1]
20 if len(ones) == 0:
21 flag1 = True
22 else:
23 for z in ones:
24 matrix = np.delete(matrix , z, axis =0)
25 matrix = np.delete(matrix , z, axis =1)
26 if len(matrix) == 0:
27 flag1 = True
28 flag2 = True
29 break
30 # 2.
31 res = np.sum(matrix_to_sign(matrix), axis =0)
32 r = res == matrix.shape [0]
33 if np.any(r):
34 for n, i in enumerate(r):
35 if i:
36 gamma = matrix[n, n]
37 b = matrix[:, n]
38 b = np.delete(b, n)
39 R = matrix.copy()
40 R = np.delete(R, n, axis =0)
41 R = np.delete(R, n, axis =1)
42 matrix = gamma * R - np.outer(b, b)
43 copositive_bool = copositivity_check_diagonal(matrix)
44 if not copositive_bool:
45 return matrix , copositive_bool
46 matrix = normalize_matrix(matrix)
47 break
48 else:
49 flag2 = True
50 break
51 if len(matrix) == 0:
52 flag1 = True
53 flag2 = True
54 break
55 if flag1 and flag2:
56 break
57

58 copositive_bool = copositivity_check_diagonal(matrix)
59

60 return matrix , copositive_bool

Listing 2.5: Preprocessing routine

The main goal of this preprocessing function is to reduce rows/columns that can be
considered irrelevant when checking a matrix for copositivity. While doing that, also the
other statements from Theorem 1.5.8 are assessed, resulting in a processed matrix and
a boolean value indicating whether a violating condition was detected or not - ‘False‘
meaning that the matrix was flagged ‘not copositive‘.

19

2 Matrix reordering

First, all purely nonnegative rows/columns are deleted. Following this, rows/columns
with negative off-diagonal values are excluded, and the remaining matrix is brought in
the form given in Theorem 1.5.8. What is interesting to note in the code is that after
each calculation of the new matrix in the second case, the resulting matrix is checked
for copositivity using the ‘copositivity_check_diagonal‘ function. This is because the
newly calculated matrix could have negative values on the diagonal, a clear sign for
non-copositivity - and also something that would break the normalization process (square
root of negative values). Also note that the matrix will be processed as long as one or
both cases are met - ensured by the ‘While‘-loop that only breaks if both flags are set to
True, indicating that neither case 1 nor case 2 can be applied anymore.

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 6 7 7
0 1 0 −2 −3 −4
0 0 1 2 −10 1
6 −2 2 1 6 −10
7 −3 −10 6 1 4
7 −4 1 −10 4 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
1 0 −2 −3 −4
0 1 2 −10 1
−2 2 1 6 −10
−3 −10 6 1 4
−4 1 −10 4 1

⎞⎟⎟⎟⎟⎠

Figure 2.10: Case 1: first row/column only consists of nonnegative values. Hence it is
discarded

⎛⎜⎜⎜⎜⎝
1.0 −0.57 −0.38 −0.49 −0.35

−0.57 1.0 0.64 −0.49 −0.73
−0.38 0.64 1.0 0.27 0.72
−0.49 −0.49 0.27 1.0 0.57
−0.35 −0.73 0.72 0.57 1.0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝

1.0 0.56 −1.07 −1.21
0.56 1.0 0.1 0.68
−1.07 0.1 1.0 0.49
−1.21 0.68 0.49 1.0

⎞⎟⎟⎠

Figure 2.11: Case 2: first row/column only consists of negative off-diagonal values. Hence
it is discarded, and the respective new matrix is calculated based on the
dropped row/column and the remaining matrix

The next step is already concerned with reordering the matrix - since there is a fast
implementation of the reversed Cuthill-McKee algorithm already available for Python,
this one is used instead of implementing an own (probably slower) version.

20

2.4 Practical implementation

1 def sort_matrix_idx(matrix: np.ndarray) -> np.ndarray:
2 """ function to reorder an adjacency matrix using the reverse
3 Cuthill -McKee algorithm
4

5 :param matrix: symmetric adjacency matrix
6 :type matrix: np.ndarray
7 :return: indices for reordering (1- dimensional array)
8 :rtype: np.ndarray
9 """

10 # matrix to sparse format with
11 graph = csr_matrix(matrix)
12

13 # now reordering with reverse_cuthill_mckee algorithm
14 res = reverse_cuthill_mckee(graph)
15 return res

Listing 2.6: Computing permutation of matrix Ad∗

Remark 2.4.2. The function ‘sort_matrix_idx‘ does not return the reordered matrix
itself but rather the permutation array that is necessary to create it, i.e., it returns a list
of indices that can be used to reorder the matrix Ad∗ (and more importantly the original
matrix A). Note that indices start with 0.

Figure 2.12: Left: unordered ‘raw‘ adjacency matrix Ad∗ ; Right: ordered version when
applying the permutation array: [3 5 2 1 6 4 0 7]

The next step is reordering the matrix A according to the permutation that was returned
from the previous function computed for Ad∗ .

21

2 Matrix reordering

1 def rearrange_matrix(matrix: np.array , idx: np.array) -> np.array:
2 """ reorders a matrix according to a passed permutation (idx)
3

4 :param matrix: real , symmetric matrix
5 :type matrix: np.array
6 :param idx: 1-dimensional array holing the indices for permutation
7 :type idx: np.array
8 :return: return the permuted matrix
9 :rtype: np.array

10 """
11 matrix[:, :] = matrix[idx , :]
12 matrix[:, :] = matrix[:, idx]
13 return matrix

Listing 2.7: Reordering of matrix A

Now, if there are separated components in Ad∗ , the resulting block matrices should be
clearly visible by looking at the returned matrix and the respective, new matrix Ad∗ of
the permuted matrix A - as shown for example in Figures 2.13 and 2.14.
How to handle cases where no such block matrices can be identified will be discussed
in Chapter 3. But in this chapter we assume the case where two or more separated
components are present.

Figure 2.13: Unordered matrix A, Left: values colored from high (bright) to low, e.g.
negative values (dark); Right: respective matrix Ad∗

Figure 2.14: Reordered matrix A, Left: values colored from high (bright) to low, e.g.
negative values (dark); Right: respective matrix Ad∗

22

2.4 Practical implementation

Once the reordering of A is done, the only thing that is left to do is to split the matrix
at the right spots. These spots can be determined by traversing the matrix from the
bottom right towards the upper left corner. First, a clearly defined route from one corner
to the other is found using function described in Listing 2.8.

1 def traverse_matrix(matrix: np.ndarray) -> np.ndarray:
2 """ from bottom right corner walk the graph up towards upper left

corner
3 and find split -points , keeping track how far
4 we are away from the diagonal at every step!
5

6 :param matrix: adjacency matrix
7 :type matrix: np.ndarray
8 :return: _description_
9 :rtype: np.ndarray

10 """
11 cur_point_x = matrix.shape [0] - 1
12 cur_point_y = matrix.shape [0] - 1
13 points = []
14 while cur_point_y > 0:
15 points.append ([cur_point_y , cur_point_x])
16 if matrix[cur_point_y , cur_point_x - 1] == 1 and cur_point_x - 1

>= 0:
17 cur_point_x -= 1
18 elif cur_point_x == cur_point_y:
19 cur_point_x -= 1
20 cur_point_y -= 1
21 elif (
22 matrix[cur_point_y - 1, cur_point_x - 1] == 1
23 and cur_point_y - cur_point_x == 1
24):
25 cur_point_x -= 1
26 cur_point_y -= 1
27 else:
28 cur_point_y -= 1
29 points.append ([cur_point_y , cur_point_x])
30

31 point_array = np.array(points)
32 return point_array

Listing 2.8: Traverse reordered matrix A

The algorithm itself is just a very simple implementation following the idea of jumping
from fields with a 1 to fields with a 1 if possible (either straight ahead or diagonally).
Otherwise, it moves upwards towards the main diagonal. It essentially tries to walk on
the ‘boundary‘ of the components visible in the graph. Note that it is impossible that the
route ever crosses the main diagonal. Also, due to the nature of the reordering algorithm,
there is no need to ever move ‘down‘ or ‘right.‘

23

2 Matrix reordering

Figure 2.15: Reordered matrix Ad∗ , the respective traverse route for this matrix is
(row,column):
(7, 7), (7, 6), (6, 5), (6, 4), (5, 4), (4, 4), (3, 3), (3, 2), (3, 1), (2, 1), (2, 0),
(1, 0), (0, 0)

From this traverse route, now the points for splitting up the matrix can be decided
very easily - they are simply the points where the row index is equal to the column
index. Using the ‘coordinates‘ from the route the algorithm has taken, it can easily be
checked whether at some point the x and y coordinates are identical - implying that one
component is ‘complete‘ and the next, separate one will be entered in the next step.

1 def split_sorted_matrix_exact(traverse_route: np.ndarray , matrix: np.
ndarray) -> list:

2 """ this function splits a matrix based on the traverse -route
calculated for the respective sign matrix

3

4 :param traverse_route: the traverse route calculated for the sign
matrix

5 :type traverse_route: np.ndarray
6 :param matrix: original matrix for which the sign matrix was

calculated
7 :type matrix: np.ndarray
8 :return: list of matrices split up according to the traverse route
9 :rtype: list

10 """
11 diff = traverse_route [:, 0] - traverse_route [:, 1]
12 coord = np.where(diff == 0)[0]
13 coord = coord.reshape(-1, 2)
14 split_up_matrices = []
15 for c in coord:
16 start = traverse_route[c[1]][0]
17 end = traverse_route[c[0]][0]
18 split_up_matrices.append(matrix[start : end + 1, start : end +

1])
19 return split_up_matrices

Listing 2.9: Split matrix according to diagonal block

24

2.4 Practical implementation

This exact idea is performed in the last function of this section - Listing 2.9 - where
first the difference between the x and y coordinates is calculated, which is used to split
the matrix up in the individual block matrices that can then further be checked for
copositivity according to Proposition 1.7.9.

As already discussed, first, the function looks for zero values in the (elementwise)
difference between the x and y coordinates - note that these zeros always come in pairs
(i.e., if there is just one large component, there will be 2 zeros in this difference array, if
there are two components then it is 4 zeros, etc.). Finally, take the matrices enclosed
by the respective two crossings of the traverse route with the main diagonal and extract
the matrix enclosed by them. The result is a list containing the separated block matrices
according to the connected components in the graph Ad∗ that can now individually - and
in parallel - be checked for copositivity with any copositivity check. Once either one of
the matrices is proven to be not-copositive (by finding a violating vector) or all of them
are proven to be copositive, the copositivity property for the original matrix A can be
derived accordingly.

All of these code parts can now be put together, resulting in a routine with the potential
to reduce the time necessary to check for copositivity drastically - given the graph consists
of separated components.

1 def main_work(matrix: np.ndarray) -> list:
2 """ this function acts as an orchestrator for the introduced functions
3 and calculates the split up matrices according to the connected

components
4 of the respective adjacency matrix
5

6 :param matrix: real valued , symmetric matrix
7 :type matrix: np.ndarray
8 :return: list of matrices according to the connected components
9 :rtype: list

10 """
11 m_signs = matrix_to_sign(matrix)
12 res = sort_matrix_idx(m_signs)
13 m = rearrange_matrix(matrix , res)
14 traverse_route = traverse_matrix(matrix_to_sign(matrix))
15 split_matrices = split_sorted_matrix_exact(traverse_route , m)
16 return split_matrices

Listing 2.10: Complete workflow

At this point, this function should be self-explanatory. What remains to show is a final
example of the resulting output.

25

2 Matrix reordering

2.5 Example of entire algorithm

First, we introduce the original matrix, which is 11× 11 in this case.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0 0.28 0.79 0.4 0.3 −0.54 0.55 −0.89 0.48 0.56 −0.57
0.28 1.0 0.08 0.5 0.99 0.66 0.2 0.83 −0.79 0.83 0.58
0.79 0.08 1.0 −0.18 −0.73 0.13 0.58 0.16 0.06 −0.97 0.06
0.4 0.5 −0.18 1.0 0.69 0.89 0.07 0.54 0.73 −0.63 0.95
0.3 0.99 −0.73 0.69 1.0 0.72 0.13 0.57 0.22 0.06 0.04

−0.54 0.66 0.13 0.89 0.72 1.0 0.8 −0.32 0.96 0.74 0.58
0.55 0.2 0.58 0.07 0.13 0.8 1.0 0.72 −0.01 0.98 0.79
−0.89 0.83 0.16 0.54 0.57 −0.32 0.72 1.0 0.2 0.08 0.59
0.48 −0.79 0.06 0.73 0.22 0.96 −0.01 0.2 1.0 0.25 0.64
0.56 0.83 −0.97 −0.63 0.06 0.74 0.98 0.08 0.25 1.0 0.36
−0.57 0.58 0.06 0.95 0.04 0.58 0.79 0.59 0.64 0.36 1.0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Figure 2.16: Large example matrix A

Obviously, the algorithm’s main step is the reordering step.

Figure 2.17: Left: matrix A depicted as image; Right: respective matrix Ad∗

Figure 2.18: Left: reordered matrix A; Right: respective matrix Ad∗

26

2.5 Example of entire algorithm

And from this, the other matrices can be derived already. As can be seen in Figure
2.18, there will be 3 parts in the end - of sizes 4, 4, and 3.

⎛⎜⎜⎝
1.0 −0.32 −0.54 0.58

−0.32 1.0 −0.89 0.59
−0.54 −0.89 1.0 −0.57
0.58 0.59 −0.57 1.0

⎞⎟⎟⎠

Figure 2.19: First separated component isolated

⎛⎜⎜⎝
1.0 −0.63 −0.18 0.69

−0.63 1.0 −0.97 0.06
−0.18 −0.97 1.0 −0.73
0.69 0.06 −0.73 1.0

⎞⎟⎟⎠

Figure 2.20: Second separated component isolated

⎛⎝ 1.0 −0.79 0.2
−0.79 1.0 −0.01
0.2 −0.01 1.0

⎞⎠

Figure 2.21: Third separated component isolated

Now, to verify or refute copositivity, only these three matrices have to be checked,
which is significantly easier than checking the original matrix!

27

2 Matrix reordering

We continue the example by investigating the first isolated matrix shown in Figure
2.19.

⎛⎜⎜⎝
1.0 −0.32 −0.54 0.58

−0.32 1.0 −0.89 0.59
−0.54 −0.89 1.0 −0.57
0.58 0.59 −0.57 1.0

⎞⎟⎟⎠
⎛⎝ 1.0 −2.09 0.39
−2.09 1.0 0.22
0.39 0.22 1.0

⎞⎠ (︃
1.0 −2.09

−2.09 1.0

)︃

Figure 2.22: Left: the first isolated matrix; Center: the second column/row was removed
since it only contained negative off-diagonal values and the matrix was
adjusted accordingly; Right: the third column was removed since now it
only contained nonnegative values; the resulting 2× 2 matrix is obviously
not copositive, a violating vector is, for example, (1, 1), hence the original
11× 11 matrix is also not copositive.

Since the first matrix investigated already refuted copositivity of A, there is no need to
check any further matrices. If, on the other hand, this first isolated matrix was copositive,
we would have continued with the second and the third matrix in the same way until
either all of them are proven copositive, or we find at least one matrix which is not.

2.6 Time complexity of the algorithm

In this section, we will have a brief look at a rough estimate of the computational com-
plexity of this algorithm. But note that the here described complexity estimate only holds
for the case presented in this chapter and is not valid for the second case, which will be
described in Chapter 3.

Let us investigate the individual functions step by step, starting with the function
’matrix_to_sign’ 2.3 - here every element is replaced by another value, hence it is O(n2).

For normalization (2.2), retrieving the diagonal can be done in linear time, and the
outer product calculation, as well as the elementwise division and the elementwise square
root operation, can be done in O(n2).

Checking the diagonal values as part of a copositivity check introduced in Section 2.4
consists of the mentioned two cases. The first case, checking for negative diagonal values,
can be done in linear time. The second case requires checking every element in the upper
triangular part of the matrix, which in the worst case (if all main diagonal elements
are zero and there is only 1 negative value in this subset of the matrix) leads again to O(n2)

The preprocessing part 2.5 is a bit trickier to evaluate. Summing a matrix along the
columns needs n2 summations, and checking the resulting array for occurrences of the

28

2.6 Time complexity of the algorithm

value 1 happens in linear time. Deleting rows/columns is, in the worst case, a O(n2)
operation. For the second check, calculating the individual parts for generating the
new matrix and the calculation itself can also be summarized as O(n2). So, overall the
complexity for one iteration is O(n2).

Remark 2.6.1. There is a chance that the process could restart from the beginning with
only one row removed in each of the previous steps until the matrix gets very small. Given
that a matrix exists that would trigger this behavior, the overall complexity would result in
O(n3).

The sorting algorithm 2.6 according to [CG80] is linear in the number of non-zero
entries of the matrix, hence the complexity is O(n2) in the worst case. The same holds
for rearranging the matrix according to the given indices.

Traversing the matrix after that in 2.8 is only a O(n) operation. The algorithm re-
sponsible for splitting the matrix, in the end, is O(n2) in the worst case.

Overall, for one step of the algorithm, the complexity of the algorithm can therefore be
described with O(n2).
In the very unlikely ‘special case‘ described in Remark 2.6.1, the entire matrix can be
checked for copositivity in O(n3) operations, which is incredibly fast (considering this is
otherwise an NP-complete problem).

29

3 Case 2 overlapping matrices - the
general case

In Proposition 1.7.9 the case with the decomposition

A =

(︃
Bdec Ddec

DT
dec Cdec

)︃
for a symmetric matrix A (after preprocessing steps and reordering) was discussed.

Unfortunately, this has to be considered a special case. In most situations, it is unlikely
that matrices can be decomposed as described in Theorem 2.3.1. This means, in order to
build a practically useful algorithm, a more general approach that can be applied in any
case has to be found.

Theorem 3.0.1. Let A be a real, symmetric matrix where all preprocessing steps were
applied and the matrix was reordered according to the procedure described in Section 2.4.
Then the following decomposition of A is always possible.

B =

(︃
Bdec 0
0 0

)︃
∈ Rn×n

with Bdec ∈ Rm×m

C =

(︃
0 0
0 Cdec

)︃
∈ Rn×n

with Cdec ∈ Rl×l

D =

⎛⎝ 0 0 Ddec

0 0 0
DT

dec 0 0

⎞⎠ ∈ Rn×n
+

with Ddec ∈ Rk×h
+

E =

⎛⎝0 0 0
0 Edec 0
0 0 0

⎞⎠ ∈ Rn×n

with Edec ∈ Ru×u

such that Edec is the overlapping part of the matrices Bdec and Cdec. This means that
m+ l − u = n, m+ h = n and l + k = n and A = B + C +D − E.

31

3 Case 2 overlapping matrices - the general case

Proof. Assume A to be a matrix as described. Then there must exist at least one
nonnegative entry in each row/column of the matrix (otherwise the row would have
been deleted in the preprocessing steps of Theorem 1.5.8). Hence, there always exists
a permutation such that there is a nonnegative entry in the upper right corner of the
matrix. This means, Bdec can be set to only consist of this one entry and the other
matrices accordingly, which is a valid (but not very useful) decomposition according to
the theorem.

The matrix E represents the overlapping part between the matrices B and C - i.e.
where their respective adjacency matrices could have values ̸= 0. In the case described
in the previous chapter where the decomposition of Proposition 1.7.9 could be applied,
there was no overlapping part, hence E was just a matrix of order 0.
The matrix D consists of nonnegative values that accumulate in the corners of the matrix
A after reordering. Lastly, note

A−D = (B − E) + (C − E) + E

for later use.
Given this decomposition of the matrix A, we can specify a test for copositivity based on

the following idea: Since the sum of copositive matrices is again copositive, it is sufficient
to prove copositivity of summands of a matrix to conclude copositivity of the entire matrix.

Before a concrete algorithm is outlined, the individual parts that make this idea work
are discussed. First, have a look at two obvious steps:

Corollary 3.0.2. If A is a real, symmetric matrix with the decomposition as discussed in
Theorem 3.0.1, then the resulting matrix D is always copositive.

Proof. This is trivial since the matrix D only consists of nonnegative elements, hence it
is copositive.

Corollary 3.0.3. If A is a real, symmetric matrix with the decomposition as discussed in
Theorem 3.0.1, then A is not copositive if the matrix Edec is not copositive (and hence E
is not copositive).

Proof. Edec is by definition a principal submatrix of A. For A to be copositive, all
principal submatrices have to be copositive as well (as introduced in Theorem 1.3.7).
Hence, if E is not copositive, A is not either.

The easy part is done, now one has to investigate the matrices B and C that result
from the decomposition of A. The problem is that B and C are overlapping. Therefore it
is not immediately clear how to check B and C for copositivity. The reason for this is,
that it is necessary but not sufficient for B and C to be copositive matrices for A to be
the same. If summed together, the E part would be doubled (because it appears in both
matrices), hence we would have to account for that and subtract the E part again to end
up with the original matrix A. And this subtraction is the violating part, as one cannot

32

make a general assumption about whether a matrix is still copositive or not after another
(copositive) matrix is subtracted.
This circumstance shows that checking for copositivity this way will not produce a reliable
result.

Hence, a better way has to be found.

Theorem 3.0.4. If A is a real, symmetric matrix with the decomposition as discussed in
Theorem 3.0.1, then A is copositive if the matrices E, (B−E) and (C−E) are copositive.

Proof. The statement follows immediately from the fact that the sum of copositive
matrices is again copositive and D is always copositive.

Remark 3.0.5. In other words, to ensure copositivity of A it is sufficient to prove
copositivity of the matrix (A−D).

Remark 3.0.6. A can still be copositive even if A−D is not copositive! To the knowledge
of the author, there is no immediate way of telling whether A is copositive/not copositive
given that A−D is not copositive - except if a principal submatrix of A was not copositive.

So now the goal is to check (A−D), to approach this, the matrix E will be divided in
two parts which are added to the matrices (B − E) and (C − E).

Theorem 3.0.7. If A is a real, symmetric matrix with the decomposition as discussed in
Theorem 3.0.1 , then A is copositive if there is a λ ∈ [0, 1] such that both

(B − E) + λE

and
(C − E) + (1− λ)E

are copositive.

Proof. If a λ exists such that both (B −E) + λE and (C −E) + (1− λ)E are copositive,
then (B−E)+λE+(C−E)+(1−λ)E = (B−E)+(C−E)+E = (A−D) is copositive,
hence according to Remark 3.0.5 A is copositive.

The main task is now to find such a λ. In the following, some cases that can occur
while searching for this will be discussed.

Theorem 3.0.8. Let A be a real, symmetric matrix that was preprocessed and reordered
with a decomposition as in Theorem 3.0.1 and assume E, B, and C are copositive. Then
there is always a λ ∈ [0, 1] such that either

both (B − E) + λE and (C − E) + (1− λ)E are copositive

or

both (B − E) + λE and (C − E) + (1− λ)E are not copositive.

If there is a λ1 such that both matrices are copositive, then there is no λ2 such that both
of them are not copositive and vice versa.

33

3 Case 2 overlapping matrices - the general case

Before the proof for this theorem is shown, some explanation of the individual cases is
necessary to understand the need for this theorem: While looking for a fitting λ to prove
copositivity, it is possible that only one of both resulting matrices is copositive while the
other one is not. But such a mixed result yields no valuable insight since no conclusion
about overall copositivity can be made. Hence, one has to keep looking for a ‘decisive‘ λ -
the theorem ensures, that this search will always terminate in one of the cases presented.

Proof. Define the functions

f(λ) = min{xT ((B − (1− λ)E)x, x ∈ Rn
+, ∥x∥ = 1}

and
g(λ) = min{xT ((C − λE)x, x ∈ Rn

+, ∥x∥ = 1}

for some norm ∥.∥.
It is obvious, that both functions are continuous in the variable λ. Also, since the

matrix E is assumed to be copositive, both functions are monotone - f is monotonically
increasing, g is monotonically decreasing.
If for some λ either f or g is negative, the respective matrix is not copositive - on the
other hand, if the function takes on a nonnegative value, the respective matrix is copositive.

If for some λ both functions evaluate to a negative result case 2 is satisfied, and if both
functions evaluate to a nonnegative result, case 1 is satisfied.

Now the focus lies on showing that one of both cases is always satisfied. Without loss
of generality, we say that for 0 ≤ λ1 < 1 we have that f(λ1) < 0 and g(λ1) ≥ 0 (e.g. we
know that for λ = 0, g(0) ≥ 0 since C is copositive).
Now, evaluate f(1). If the result was negative, then B would be not copositive which
contradicts the assumptions made on B! (In this case, the entire matrix A would not be
copositive, since B is a principal submatrix).
This means that according to the intermediate value theorem

∃λ ∈ (λ1, 1] : f(λ) = 0,

we therefore choose
λ2 = min{λ ∈ (λ1, 1] : f(λ) = 0}

Next, evaluate g(λ2), if the result is nonnegative, both functions are nonnegative with
the same λ2, and we are done since f(λ2) = 0. If g(λ2) < 0 on the other hand, there
exists an ϵ > 0 (continuity of f and g) such that g(λ2 − ϵ) < 0 and f(λ2 − ϵ) < 0 which
completes this part of the proof.

What is left to check is that there can never co-exist λ1, λ2 ∈ [0, 1] with

g(λ1) < 0 and f(λ1) < 0

and
g(λ2) ≥ 0 and f(λ2) ≥ 0.

34

Assume such λ’s existed. Then by monotonicity of f and g

g(λ1) < 0 ≤ g(λ2) ⇒ λ2 < λ1

and at the same time
f(λ1) < 0 ≤ f(λ2) ⇒ λ2 > λ1

which are contradicting statements!

One way of determining the correct λ in a concrete implementation would be to apply
some sort of bisection method, i.e., starting at λ = 0.5 and evaluating both matrices - if
one is copositive and the other is not, continue with λ = 0.75 or λ = 0.25 respectively,
etc. until both matrices are copositive or both are not.

Remark 3.0.9. Even if it is not possible - to the author’s knowledge at the time of writing
this thesis - to gain a definitive answer about the copositivity/non-copositivity of A if
(A−D) is not copositive in a general case, it is still worth investigating some properties
that are connected to the described procedure.

Theorem 3.0.10. If there is a λ such that both B − (1 − λ)E and C − λE are not
copositive, then (A−D) is not copositive if the intersection of

Bλ
y :=

⎧⎪⎨⎪⎩
⎛⎝0
y
0

⎞⎠ ∈ Rn
+ : y ∈ Ru

+,

⎛⎝x
y
0

⎞⎠T

(B − (1− λ)E)

⎛⎝x
y
0

⎞⎠ < 0, for some x ∈ Rv
+,

⎛⎝x
y
0

⎞⎠ ∈ Rn
+

⎫⎪⎬⎪⎭
and

Cλ
y :=

⎧⎪⎨⎪⎩
⎛⎝0
y
0

⎞⎠ ∈ Rn
+ : y ∈ Ru

+,

⎛⎝0
y
z

⎞⎠T

(C − λE)

⎛⎝0
y
z

⎞⎠ < 0, for some z ∈ Rw
+,

⎛⎝0
y
z

⎞⎠ ∈ Rn
+

⎫⎪⎬⎪⎭
(where n is the order of the original matrix A and u+ v + w = n), is not empty, i.e.,

Bλ
y ∩ Cλ

y ̸= ∅.

Proof. If the intersection of these two sets is not empty, then there exists a vector
ȳ ∈ Bλ

y ∩Cλ
y . Also, based on the definition of both sets, there are vectors x̄ ∈ Bλ

y , z̄ ∈ Cλ
y

that satisfy
x̄T (B − (1− λ)E)x̄ < 0

and
z̄T (C − λE)z̄ < 0

with

x̄ =

⎛⎝x
y
0

⎞⎠ , ȳ =

⎛⎝0
y
0

⎞⎠ , z̄ =

⎛⎝0
y
z

⎞⎠ , x̄, ȳ, z̄ ∈ Rn
+

35

3 Case 2 overlapping matrices - the general case

such that both contain the ȳ vector. Then we have that

0 > x̄T ((B − E) + λE)x̄+ z̄T ((C − E) + (1− λ)E)z̄ =

(x̄+ z̄− ȳ)T ((B −E) + λE)(x̄+ z̄− ȳ) + (x̄+ z̄− ȳ)T ((C −E) + (1− λ)E)(x̄+ z̄− ȳ) =

(x̄+z̄−ȳ)T (((B−E)+λE)+((C−E)+(1−λ)E))(x̄+z̄−ȳ) = (x̄+z̄−ȳ)T (A−D)(x̄+z̄−ȳ) < 0

and x̄+ z̄ − ȳ ∈ Rn
+ since the ȳ part occurred in both vectors x̄ and z̄. The expansion of

the vectors is valid due to the structure of the matrices B,C, and E.

In summary, the approach is the following:
Once the decomposition Theorem 3.0.1 has been applied, the following steps have to

be taken:

1. Check if E is a copositive matrix.

1a) If E is copositive ⇒ continue with the next step

1b) Else: A is not copositive.

2. Find a λ for the matrices B and C as described in Theorem 3.0.8

2a) If both are copositive ⇒ A is copositive

2b) If for one function there is no λ such that it becomes nonnegative ⇒ A is not
copositive

2c) Otherwise A is flagged ‘not determined‘ - so no statement can be made whether
A is copositive or not

Obviously, the algorithm can be applied recursively, splitting up very large matrices
into smaller, easier-to-check parts.

3.1 Computational complexity

In this section, we have a look at the time complexity of this procedure. As far as for the
reordering part, nothing has changed compared to Section 2.6. Equal to the decomposition
in the first case, also, in this case, the overall complexity can be given by O(n2) for one
iteration (one iteration meaning the process of decomposing one matrix into the matrices
B,C,D and E which can then be further analyzed).
Due to the nature of the algorithm, possibly multiple attempts have to be made in order
to find a fitting λ to split up E accordingly - this is indeed quite a big, computational
problem. If one assumes, that on average it takes µ steps to find the correct λ, this is
equivalent to not just producing the aforementioned four matrices but instead

1(D) + 1(E) + µ(B1, B2, · · · , Bµ) + µ(C1, C2, · · ·Cµ) = 2 + 2µ

matrices - B1 e.g. refers to B − (1− λ1)E. From all of these matrices, 1 + 2µ matrices
would then have to be checked for copositivity (assuming again, that it takes µ steps to

36

3.2 Practical implementation

find the correct λ), since D does not have to be checked.

In the worst case only a decomposition as described in the proof of Theorem 3.0.1 is
possible, resulting in matrices E of size (n−1)×(n−1) and B and C of size (n−1)×(n−1).
B and C can be further reduced to size (n−2)× (n−2) using the preprocessing technique,
which is for sure applicable due to the fact that in the respective row, only one nonnegative
value was present, meaning that the row without this value consists of only negative
values, hence it can be removed following Theorem 1.5.8.

3.2 Practical implementation

The implementation part is only concerned with the actual decomposition of the matrix
rather than performing a copositivity test on any of the matrices. Also, the produced
outcome cannot be used for validating a matrix as copositive immediately, but rather
gives an idea of how many matrices would have to be checked. Therefore, some code
parts only act as a "delay" which should simulate behavior in reality.

First, a simple helper function is introduced.
1 def calc_size(matrix: np.ndarray) -> int:
2 """ calculates the size of the matrix embedded in a zero matrix
3 by counting the number of ones on the diagonal of the matrix
4

5 :param matrix: matrix embedded in a zero matrix
6 :type matrix: np.ndarray
7 :return: size of the embedded matrix
8 :rtype: int
9 """

10 return np.sum(np.diag(matrix)).astype(int)

Listing 3.1: Calculating size of zero-padded matrix

This function comes in handy to understand how large a certain matrix really is because,
in the next function, matrices will be embedded in zero matrices - as established, zero
rows/columns can be ignored when checking for copositivity.

In the following function - Listing 3.2 - some familiar elements come to our attention,
one important part is that we now do not have these clear splitting points as in the first
case. This means that we have to figure out a way to find the best split possible, this
is again done using the traverse path described in Listing 2.8 and finding the largest
rectangles (i.e. the one with the largest ‘area‘) in the upper right and lower left corners
which contain only zeros (our matrix D), that also defines the sizes of the matrices B
and C. Then the matrix is simply split according to Theorem 3.0.1.

37

3 Case 2 overlapping matrices - the general case

1 def split_connected(matrix: np.ndarray) -> list:
2 """ function that splits up a matrix according to the general

decomposition
3

4 :param matrix: real valued , symmetric matrix
5 :type matrix: np.ndarray
6 :return: list of the individual components
7 :rtype: list
8 """
9 # now split up a graph if connected

10 traverse = traverse_matrix(matrix_to_sign(matrix))
11 # find the largest rectangle with only nonnegative values
12 diff = np.zeros_like(traverse)
13 diff[:, 0] = traverse[0, 0] - traverse[:, 0]
14 diff[:, 1] = traverse[:, 1]
15 diff_mult = diff[:, 0] * diff[:, 1]
16 res = traverse[np.argmax(diff_mult)]
17

18 matrix_B_E = np.zeros_like(matrix)
19 tmp = matrix [0 : res [0] + 1, 0 : res[0] + 1]. copy()
20 tmp[res [1] :, res [1] :] = 0
21 matrix_B_E [0 : res[0] + 1, 0 : res[0] + 1] = tmp
22

23 matrix_E = np.zeros_like(matrix)
24 tmp = matrix[res[1] : res[0] + 1, res[1] : res [0] + 1]
25 matrix_E[res [1] : res[0] + 1, res[1] : res [0] + 1] = tmp
26

27 matrix_C_E = np.zeros_like(matrix)
28 tmp = matrix[res[1] : traverse[0, 0] + 1, res[1] : traverse[0, 0] +

1]. copy()
29 tmp[: res[0] - res [1] + 1, : res [0] - res[1] + 1] = 0
30 matrix_C_E[res [1] : traverse[0, 0] + 1, res [1] : traverse[0, 0] + 1]

= tmp
31

32 return matrix_E , matrix_B_E , matrix_C_E

Listing 3.2: Splitting up a matrix according to the general decomposition procedure

Figure 3.1: Left: original matrix; Center: reordered version; Right: found decomposition
with the matrices B,C and E defined by the matrix D in the corners

38

3.2 Practical implementation

Remark 3.2.1. If there are multiple possible matrices D, i.e. several rectangles with the
same, large area, the first rectangle that was found is chosen for the matrix D.

This algorithm then has to be applied recursively on the individual parts. This can be
done the following way:

1 def recursion(
2 matrix: np.ndarray , matrices: list = [], min_matrix_len =7, lambd=3
3) -> None:
4 """ This is the main recursion matrix
5

6 :param matrix: real , symmetric matrix
7 :type matrix: np.ndarray
8 :param matrices: list object that is passed down the recursion to
9 collect all found matrices , defaults to []

10 :type matrices: list , optional
11 """
12 matrix_size = calc_size(matrix)
13 if matrix_size <= min_matrix_len:
14 matrices.append(matrix)
15 return
16 else:
17 preprocessing_result = preprocessing_matrix(matrix)
18 if preprocessing_result [0]. shape [0] <= min_matrix_len:
19 matrices.append(preprocessing_result [0])
20 return
21 # preprocessing
22 preprocessed_matrix = preprocessing_result [0]
23

24 # reordering
25 m_signs = matrix_to_sign(preprocessed_matrix)
26 res = sort_matrix_idx(m_signs)
27 m = rearrange_matrix(preprocessed_matrix , res)
28

29 # split matrix up
30 res = split_connected(m, display=False)
31

32 # now run the same for E
33 recursion(res[0], matrices)
34 for i in range(lambd):
35 # next goes B + E
36 recursion(
37 res [1] + res[0], matrices , min_matrix_len=min_matrix_len ,

lambd=lambd
38)
39 # next goes C + E
40 recursion(
41 res [2] + res[0], matrices , min_matrix_len=min_matrix_len ,

lambd=lambd
42)

Listing 3.3: Recursion for splitting a matrix into small matrices that can be checked easily
for copositivity

39

3 Case 2 overlapping matrices - the general case

When the function is called for the first time, it preprocesses the matrix and then splits
it up using the aforementioned function. This procedure will be continued until a certain
matrix size is achieved - the standard parameter is set to 7 since up to this order fast
algorithms for checking copositive exist in any case ([YL09]). To mimic the search for the
correct λ in each split, the number of matrices that are used to again call the function
is increased artificially based on some (integer) value indicating the expected amount
of steps necessary to find the correct λ (on average per step), i.e. simply repeating the
respective function calls µ times.
The function is initialized with a list called ‘matrices‘ that stores all the found matrices
which can be used to count the total number of matrices after termination.

Remark 3.2.2. It has to be noted that there is a lot of redundancy in the matrices that are
investigated, submatrices that lie in the overlapping part of two matrices will be revisited
two or more times. This implementation is by no means optimized to be applied to large
matrices yet. Potential next steps on this algorithm will be outlined in the ‘Future work‘
Section 6.1.

40

4 Using gradient descent for copositivity
testing

While there are lots of copositivity tests, not too many work out of the box for a wide
range of matrices. Most are limited to a certain size of matrices (e.g. only work for
matrices up to a certain order), have specific requirements on the matrix itself, i.e., expect
the matrix to be of a certain form or are very hard to implement.
What holds for almost all tests is, that it is usually much easier (and faster) to find a
violating vector for a matrix and therefore prove that it is not copositive than proving
copositivity itself. While this algorithm is not an exception to this rule of thumb, it excels
in terms of ease of use and execution speed. In an ideal case, the procedure can terminate
and return a violating vector (given that such a vector exists) in a very short time.
The downside to this great property is, that it is not guaranteed to find one of the
violating vectors - meaning that even if the algorithm terminates after a chosen amount
of iterations without finding a violating vector, this is not a certificate for copositivity
of the matrix. Hence, it should be seen as a chance to quickly identify non-copositive
matrices with a very general algorithm that is easy to implement and which is applicable
to matrices of any order and type, rather than a certificate for copositivity.

The ’heart’ of the algorithm is the gradient-based search for a violating vector. The
idea of using the gradient as a search direction to optimize for a certain target has been
used in numerous fields and one cannot count the papers referencing such a search - the
most popular application nowadays is most probably the procedure used to train neural
networks (during the backward pass of a learning iteration, the gradients with respect to
some loss function are calculated and the weights of the network are updated respectively).
Also in the field of standard quadratic optimization problems, this approach has been
used, for example in [BP05].
But, to the author’s knowledge, using this technique for refuting copositivity of matrices
has not yet been dealt with in the available literature. This section aims to discuss
different approaches when it comes to the implementation and utilization of several
gradient-based methods.

41

4 Using gradient descent for copositivity testing

4.1 Problem Formulations

4.1.1 Problem formulation 1: xTAx

The original problem formulation for copositivity is to verify that

∀x ∈ Rn
+ : xTAx ≥ 0

for a given matrix A for it to be copositive, which is equivalent to showing

∀x ∈ Rn
+ : xTAx ≥ 0, ∥x∥ = 1,

where ∥.∥ is any norm, i.e. only looking at x’s with unit length in the process. We will
use this restriction of x in the following algorithms, as this avoids exploding values in
x and at the same time removes the danger that vectors found by the algorithm slowly
approach the 0 vector.
So, assume one chooses a random vector x ∈ Rn

+ and evaluates xTAx. If the result is
negative, a violating vector has been found in x, else we want to take a step closer towards
a violating vector. The question is, in what ‘direction‘ we should take this step. The
answer is simply the negative gradient.

Lemma 4.1.1. The gradient of xTAx with respect to x is

∇xx
TAx = 2Ax ∈ Rn.

Since we are only interested in the direction to move in and the proportion of the
gradient’s individual elements, we can ignore the factor 2 as this does not provide any
additional information.
While this is a satisfactory result, it would work even better in the scenario of checking
for positive semidefiniteness, i.e.,

∀x ∈ Rn : xTAx ≥ 0

- in contrast to this, checking for copositivity requires only looking at vectors on the
nonnegative orthant. Since the (negative) gradient (obviously) also points in a negative
direction for some dimensions, the resulting vector will take on negative values to find a
violating vector if not restricted. To avoid this, some countermeasure has to be introduced.

42

4.1 Problem Formulations

Cut-off values at 0 to avoid negative entries in x

In order to avoid negative values in x, the idea is to use a cut-off function

f(x) =

{︄
0, for x ≤ 0

x, for x > 0

that is applied elementwise on x after every update step. While this does indeed keep
the vector x nonnegative, the function f is not differentiable in 0 and also restricts the
‘movement‘ of the vector quite drastically.

Normalization of x after update step

After the update step, which is discussed a bit later in this chapter, the vector usually
does not fulfill ∥x∥ = 1 anymore, hence it has to be normalized to unit length again before
continuing the search for another vector. Therefore, we calculate

xnorm =
x

∥x∥

and use xnorm as the new vector for further calculations.

4.1.2 Problem formulation 2: (x2)TA(x2)

To avoid the necessity of a cut-off function, one idea is to square the elements of x
elementwise. This way, negative values are allowed in the original vector x since they
become positive anyways in the vector x2 = (x ◦ x) where ◦ denotes the Hadamard
product, i.e. the pointwise multiplication of two vectors - or in this case the elementwise
square of each element of x.

Due to the additional complexity in the formulation, also the calculation of the gradient
changes.

Lemma 4.1.2. The gradient of (x2)TA(x2) with respect to x is

∇x(x
2)TA(x2) = 4A(x2) ◦ x ∈ Rn

Again, as before, the factor 4 can be ignored as it does not contribute additional
information in this context.

43

4 Using gradient descent for copositivity testing

The big advantage of this problem formulation is, that there is no need for any cut-off
function and the vector can move more "freely", but it also comes with some disadvantages
of different levels of severity:

• The gradient is more complex than the one of problem formulation 1

• If the steps during the update step are too large, this could lead to oscillations of
the vectors, since the overshooting over the 0 point could lead back to the same
point again.

• It is not immediately clear how to normalize the vector x.

Especially the third point is tricky. If x has unit length, this usually does not hold for
x2 anymore. While there are several possible workarounds for this issue, all of them seem
to have their downsides.

Of course, it is still possible to scale x to unit length - this will lead to smaller values
in x2 but does not break the main functionality of finding a violating vector.

A different approach is the reformulation of the problem to

(
x2

∥x2∥
)TA(

x2

∥x2∥
)

which solves the problem at the cost of a complex gradient.
But: This formulation looks already very similar to a function well known for its

important properties in the field of deep learning - the Softmax function.

4.1.3 Problem formulation 3: (softmax(x))TA(softmax(x))

The two things that mainly bother us regarding the overall problem of finding a violating
vector are

• The resulting violating vector has to be nonnegative in all entries

• We would like the violating vector to be of unit length

While the second condition was quite easy to achieve in the first formulation, the second
case was ensured in the second formulation, but so far one of both conditions was always
lacking behind.

One possible solution to this is to use the Softmax function on x instead of squaring it.

Definition 4.1.3. The Softmax function is defined as

softmax : Rn → Rn : softmax(x) =
ex

∥ex∥m
where

∥.∥m
is the Manhattan norm, i.e. the (absolute) sum of all the entries of some vector.

44

4.2 Update step

The consequences are the following:

• softmax(x) will always produce a nonnegative vector since exi only takes on non-
negative values (in fact, only positive values) for any xi ∈ R

• Every vector the Softmax function is applied to will have unit length - with respect
to the Manhattan norm.

This means, that neither a cut-off function nor some artificial normalization procedure
is necessary. The gradient on the other hand is still quite complex for this formulation.
But one can avoid the calculation of the analytical gradient by using the stochastic
gradient instead.

Remark 4.1.4. Even though this formulation seems to solve some of the issues, it comes
at the cost of a complex gradient and the exponential scaling might hinder the algorithm
to converge in the desired manner. Whether this indeed holds true or not will be discussed
in Section 5.

4.2 Update step

So far, the calculation of the gradient was discussed together with the normalization of a
vector after the update. This section aims at shedding some light on this update step.
The overall idea is the following: Once the gradient for some vector x is determined, a
step vector is calculated and the vector x is updated according to this step vector.

In the following, several approaches to calculate this step vector are discussed.

4.2.1 Learning rate

The parameter that determines how large one step per iteration should be, is in the field
of deep learning usually called the learning rate, as it determines how ‘much‘ a model
learns from one sample - or to put it in other words, how much a model reacts to one
sample (or a batch of samples). A high learning rate means that a goal vector can be
reached fast, but there is always the risk of overstepping an optimal solution. A too large
learning rate will very often not converge to a desired result.
On the other hand, a small learning rate means only taking very small steps in each
iteration and then reassessing in what direction to go next. This means that the algorithm
converges very slowly, but will eventually arrive at some (local) optimum. But if the
learning rate is too small, it is very likely that the optimum will only be a local rather
than a global solution.

Fixed learning rate

The most basic idea is to use a constant learning rate, i.e. a learning rate that is the
same for all iterations. If chosen properly, one can have the advantages of a high and a

45

4 Using gradient descent for copositivity testing

small learning rate at the same time: Convergence in reasonable time together with a
certain resistance with respect to local solutions and overshooting a global solution.
The problem is to choose the learning rate properly - but with some rules of thumb and
keeping in mind the size of the values that should be optimized one should be able to
come to a more or less reasonable result.

Varying learning rate

Instead of having a fixed learning rate for all iterations, one can also vary the learning
rate over the course of the iteration. Two heuristics that come to mind are for example

• decrease the learning rate with every iteration a bit more - this way it should be
ensured that the model converges to some solution instead of jumping from one
promising spot to another.

• Every time the evaluation of xTnewAxnew is larger than xToldAxold (or the respective
other formulations), i.e.

xTnewAxnew > xToldAxold

where xnew is the newest vector and xold is the second-newest vector (i.e. xnew is
an updated version of xold), the learning rate is reduced - halving it could be a
good heuristic. This means, that once the algorithm runs out of options to optimize
with the old learning rate, the rate is adjusted and the algorithm uses finer steps to
approach some solution.

This is by far no exhaustive list of possibilities but just collects two ideas that will be
investigated during the experiments.

Update step

Once the learning rate stands for some iteration, the step vector s is calculated. With
the step vector at hand, we then have

xnew = xold − s

The reason for the minus in front of s is, that in order to minimize xTAx (or the
respective other formulations), we have to look at the negative gradient instead of the
positive one.
What is left to do before calculating xnew is to first calculate the step vector s from the
gradient and the chosen learning rate.

46

4.2 Update step

Straight-forward learning step

The most simple approach is to simply scale the gradient vector,

ζ = ∇xx
TAx

(or the respective other formulations) by the learning rate, i.e.

s = ζ ∗ µ,

where µ denotes the learning rate. Since the step vector is only the scaled gradient, this
can mean that the step taken in one iteration can be very large or almost zero in many
cases - solely depending on the gradient. In many cases this is the desired outcome - close
to an optimum the gradient will be very small and we only want to take very small steps,
further away from the optimum the gradient will (hopefully!) be larger which will result
in a larger step. But sometimes, for example, at a saddle point, this might be misleading
for the model and it could end up staying at some local optimum.

’Normalized’ gradient vector

Another approach is to ’normalize’ the gradient such that its length is equal to the learning
rate. This can be accomplished by calculating

s = µ · ζ

∥ζ∥

Using this step vector, the length of each step is completely determined by the learning
rate, the gradient only determines the proportion and direction in which to move for every
dimension. The advantage is, that one can very precisely determine how the solution
develops over time, the issue on the other hand is that all the power now lies in the
learning rate - if a bad rate is chosen, it is unlikely that the algorithm is able to find a
good solution.

This concludes the description of all ingredients necessary to build a gradient-based
optimization algorithm. In the experiments section 5 numerical results for the different
problem formulations together with combinations of the presented methods for choosing
the learning rate and calculating the step vector are presented.

An implementation of the different learning rate computations, step vector calculations
and the gradient search itself with the three problem formulations can be found in the
Appendix.

47

5 Experiments

In this section, experiments concerned with gradient-based methods can be found. It is
organized in the following manner:
First, we will explore the capabilities of the different gradient-based methods on random
matrices. After that, experiments on the famous ‘Second DIMACS challenge‘ data set
[Dim][JT96] concerned with max-clique detection will be used to see which configuration
performs best on the instances of this data set.

5.1 Gradient descent approach evaluation on random
matrices

This section is concerned with comparing the different gradient descent approaches
together with the several ideas presented in Chapter 4 - in total, 18 different variants are
evaluated:

Problem formulation Step size method Step vector calculation method
1 Standard fixed simple
2 Square fixed simple
3 Softmax fixed simple
4 Standard decay simple
5 Square decay simple
6 Softmax decay simple
7 Standard halving simple
8 Square halving simple
9 Softmax halving simple
10 Standard fixed norm
11 Square fixed norm
12 Softmax fixed norm
13 Standard decay norm
14 Square decay norm
15 Softmax decay norm
16 Standard halving norm
17 Square halving norm
18 Softmax halving norm

The reasoning behind this order is to keep different problem formulations using the
same step size and the same step vector calculation method together.

49

5 Experiments

Step size ‘fixed‘ refers to a static learning rate, ‘decay‘ means that after each iteration,
the learning rate will be decreased by x% (in this case, by 1%), and ‘halving‘ refers to the
case where the learning rate is halved if no improvement in the last step was possible. In
the ‘simple‘ step vector calculation, the gradient is multiplied by the learning rate, in the
‘normal‘ case the step vector is the gradient normalized to the length of the learning rate.

The inspiration for the experiment setup (first random matrices, then the evaluation on
the DIMACS data set) was drawn from [ZD11]. For a desired matrix of order n, random
values are drawn from a uniform distribution over [−1, 1], then the matrix is mirrored to
end up with a symmetric matrix, then the diagonal is filled with ones. In the setup of this
thesis, the proportion of nonpositive to nonnegative values can be adjusted by skewing
the distribution and rescaling afterward. This is necessary since it becomes less and less
probable for matrices of this type with growing order to be copositive as discussed in
[ZD11]. In the context of this experiment, this means that for each order k of matrices
a total of 1.000 instances are generated and evaluated by all 18 gradient methods. The
first of these matrices will always have a 1 : 1 proportion of negative to positive values,
whereas the last matrix will have a 10 : 1 proportion to make it more likely to produce
more copositive matrices. Also, no preprocessing steps will be applied: The gradient
methods have to find a violating vector and hence refute copositivity using only the raw
matrices without any ’help’.
We will investigate random matrices of order

k ∈ {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 50, 100, 250, 500, 1000}.

Remark 5.1.1. Even though these countermeasures were taken to avoid all matrices of a
certain order k to be not copositive, this did only work until order 20. Until this order,
the search for a violating vector was made at least ‘tricky‘ enough such that not for all of
them a violating vector could be found in the experiment.

The reason why no matrices of order 7 or less are considered lies in the fact, that
[YL09] contains algorithms specifically designed to handle those matrices, hence there is
just no need to use this procedure instead. The sequence is cut off at order 1.000 solely
due to computational limitations - it simply takes too long to generate and evaluate
multiple thousands of matrices of order 10.000 or greater due to the large number of tested
algorithms - but the algorithm works fine with any order of matrices, experiments up to
order 100.000 were carried out during implementation, showing a similar behavior as on
smaller matrices. For reference, it has to be noted that the execution of, e.g., algorithm
11 on a matrix of order 10.000 with a 1 : 1 proportion of positive to negative values on an
Apple MacBook Pro 2022 (M1) takes on average around 0.3 seconds.

Every method is instantiated with the very same starting vector (which changes with
the matrices) and the same matrix will be evaluated by all algorithms to ensure a fair
comparison. Also, every method only has one chance - i.e. one random start vector
and then 1.000 iterations (i.e. update steps) - in this experiment to find a violating
vector. If one of the methods is able to find a violating vector, the matrix is flagged as

50

5.1 Gradient descent approach evaluation on random matrices

not copositive. The individual algorithms are then compared in terms of how many of
these not-copositive matrices they were able to identify and what the average number
of iterations until finding a solution was - if a violating vector was found. This analysis
allows additional insights into how the algorithms would perform if faced with even larger
matrices.
In the following, we will have a look at the numerical results for the individual algorithms.
To improve visibility, the algorithms are clustered by the problem formulation, which
results in displaying 6 algorithms next to each other. The numerical results for the shown
plots can be found in the Appendix 7.

51

5 Experiments

5.2 Numerical results

5.2.1 ‘Standard‘ problem formulation

We start this section off with the ‘Standard‘ problem formulation - including algorithms
1, 4, 7, 10, 13, 16.

Figure 5.1: Results for experiments with Standard formulation on how many non-
copositive matrices were identified

As can be seen, there is no difference between the ‘fixed-norm‘ and ‘halving-norm‘,
‘fixed-simple‘ and ‘halving-simple‘ versions respectively. This is the expected behavior, as
the halving of the learning rate would only occur if no improvement with the old learning
rate is possible - something that is more likely to occur with ‘harder‘ examples than
random matrices. While ‘fixed-norm/halving-norm‘ performs well for smaller matrices, the
capabilities seem to drop for matrices of larger order. Version ‘decay-simple‘ on the other
hand lacks behind in the beginning and approaches the best variants ‘fixed-simple/halving-
simple‘ continuously. These two approaches dominate the others for almost any matrix
dimension. The worst variant is ‘decay-norm‘ - which can be explained by the fact that
the step size is limited and decreases continuously with every iteration, making it very
hard to reach the goal - finding a violating vector - in time if the starting vector is not
already close enough to it.

But how many iterations were needed to find the respective violating vectors?

52

5.2 Numerical results

Figure 5.2: Results for experiments with Standard formulation on how many iterations
were needed to find a violating vector

By first looking at Figure 5.2 the results might seem counterintuitive - for the variants
‘fixed-simple/halving-simple‘ and ‘decay-simple‘ the average number of iterations actually
decreases with larger matrix orders. The reason for this can most likely be found in
the fact how the matrices look like. Since the values are sampled uniformly, it simply
becomes more and more likely that not just the matrix itself is not copositive but also
the number of possible violating vectors increases. And it appears like these variants do a
particularly good job of utilizing a good initialization (i.e. a ‘good‘ starting vector) by
moving more directly into the promising direction with the right amount of momentum.
The comparably poor performance of both versions containing ‘norm‘ can be simply
explained by the fact that they are forced to take small(er) steps in each iteration than the
other algorithms - with increasing matrix dimension, this leads to the fact that movement
in a single direction is massively limited - hence it takes longer to converge overall.

53

5 Experiments

5.2.2 ‘Square‘ problem formulation

In Chapter 4 problems with the ‘Standard‘ problem formulation from a theoretical
standpoint that could have a negative influence on the overall results were outlined, in
the following we have a look at the ‘Square‘ formulation results used in the algorithms
1, 4, 7, 10, 13 and 16.

Figure 5.3: Results for experiments with Square formulation on how many non-copositive
matrices were identified

In contrast to the ‘Simple‘ formulation, Figure 5.3 offers a very clear ‘winner‘ of the
different variants: the ‘fixed-norm/halving-norm‘ variant is clearly the best version for this
problem formulation and was able to identify almost every matrix as not copositive from
order 50 onwards. For other approaches, performance is either poor from the beginning or
drops significantly with larger orders. One reason for this might be that the normalization
aspect of the step vector hinders the algorithm from oscillating - a problem that otherwise
arises if the step taken during one iteration is too large. It was already mentioned in
Section 4.1.2 that this could cause problems in a numerical example.

54

5.2 Numerical results

Figure 5.4: Results for experiments with Square formulation on how many iterations were
needed to find a violating vector

Talking about the average number of iterations needed to come to a conclusion, there
are no massive upsets - all algorithms stay in a certain range of steps needed, where
‘decay-norm‘ is arguably the most stable. But also for the other variants no clear trend
that would indicate a drastic increase in average iterations with growing matrix dimensions
can be identified. The number of iterations necessary seems to grow linearly with methods
‘fixed-norm/halving-norm‘ (mind that the x-axis has a logarithmic scale) except for the
final instances of order 1.000. This could be considered an outlier but it is hard to say for
sure since only 1.000 matrices were evaluated each, limiting the overall reliability of the
data. But even with a linear increase (with the order of matrices) the algorithm can still
be considered ‘good enough‘ considering the general difficulty of this problem.

55

5 Experiments

5.2.3 ‘Softmax‘ problem formulation

The third and final problem formulation is explored in this section - from a mathematical
perspective, some problems seem to have been solved with this variant, but the trials on
actual data are devastating, especially for matrices of larger orders.

Figure 5.5: Results for experiments with Softmax formulation on how many non-copositive
matrices were identified

While in the beginning there are still some variants that are able to perform quite
well, starting from order 50 performance starts declining for all of them. For matrices
of order 1.000, almost no violating vectors could be found anymore by any variant,
rendering this problem formulation useless for general applicability. One explanation why
it performs somewhat reasonably until order 20 for most of the presented variants (for
‘fixed-simple/halving-simple‘ even up to 100) but lacks behind for the larger dimensions
could lie in the Softmax function itself. Since the exponential function converges very,
very slowly towards 0 with decreasing exponential term, the values in the produced
vectors are almost ‘bound‘ from below - restricting the ‘movement‘ of the vector towards
a potential solution drastically. The problem lies in the fact that with a growing number
of dimensions also the solution vector has more and more entries - due to the ‘built-in‘
normalization, the method is only able to converge at extremely slow speed - not being
able to identify a violating vector in most cases.
Since for the average iteration count only ‘successful‘ rounds (i.e. those where a violating
vector was found) are taken into consideration, the behavior of the individual models

56

5.2 Numerical results

depicted in Figure 5.6 stay almost the same for the different matrix orders.

Figure 5.6: Results for experiments with Softmax formulation on how many iterations
were needed to find a violating vector

For ‘decay-simple‘ the average number of iterations was set to 1.000 for the orders 500
and 1.000 since no violating vectors were found at all, making it impossible to calculate a
mean as well.

In summary, the Softmax variant is definitely inferior to both other formulations in this
experiment - most likely an additional regularization term would be necessary to free up
the movement of the vector a bit and thereby enhance the searching procedure. The claim
still holds that this problem formulation should be capable of finding violating vectors with
the same or better performance given the correct step function, an appropriate adjustment
of the learning rate, and a fitting regularization term - making this an interesting object
to investigate in future work as also discussed in Section 6.1.

57

5 Experiments

5.3 Gradient descent approach evaluation on DIMACS data
set

Now that we have established the quality of the algorithms on random instances and
proven that several variants of this algorithm are capable of finding violating vectors in the
desired time, it remains to be checked how this kind of algorithm performs on the famous
DIMACS data set [Dim]. This data set consists of a total of 80 problem instances - the
goal is, to use the link between max clique detection and copositivity testing which was
introduced at the end of Section 1.3, to approximate the clique number. The experiment is
conducted to understand if there is a difference in the different approaches concerning this
approximation. This means, that the already introduced 18 algorithms will be competing
against each other in the quest to find the correct clique number, i.e. the largest value
for which the graph is still provable non-copositive. Every method has up to 100 trials
(meaning 100 starting points and again a maximum of 1.000 iterations per run) to find
a violating vector for a given matrix. If such a vector is found, the matrix is tested
again with the next larger supposed clique number until the method is not able to find a
violating vector anymore. The largest found number is then the result for the method on
the respective problem instance.

Remark 5.3.1. The best known estimates for this data set were taken from [PH11].
Strangely enough, for ‘C2000.0‘ [Dim] states the best known result with 80 instead of 78,
so the higher estimate was used - this introduces some doubts about the correctness of the
other estimates as well, but other researched paper (which only contain parts of the data
set) show smaller or equal estimates for the same instances.

In the following, the results of the different algorithms per data instance are shown in
one plot each to enhance the visibility of how the 18 different variants perform compared
to each other. The red line indicates the best known results, the numbering of the
algorithms is the same as outlined at the beginning of this chapter. The bar(s) for the best
algorithm(s) per data instance are colored in orange to make them more distinguishable
from the others.

58

5.3 Gradient descent approach evaluation on DIMACS data set

Figure 5.7: Results for experiments on the DIMACS instances 1− 16

From the first 16 plots shown in Figure 5.7, we can already see a pattern in which
variants perform well - a trend that will continue in the next figures. Overall, there are
only a handful of algorithms that are outstanding in terms of their performance. In some
instances like ‘C125.9‘ or ‘MANN_a9‘ the best known result could be achieved by several
methods, on the other hand, there are instances like ‘C4000.5‘ where none of the provided
algorithms perform particularly well.

59

5 Experiments

Figure 5.8: Results for experiments on the DIMACS instances 17− 32

Figure 5.8 shows instances with quite promising outcomes: the discrepancy between
performances of the procedures 11 and 17 - ‘Square‘ problem formulation with ‘fixed‘
or ‘halving‘ step size method and with ‘norm‘ step vector calculation method - and the
others in the instances in the last row are quite drastic. As a reminder: These variants
were also the most dominating ones in the random matrix experiments.

60

5.3 Gradient descent approach evaluation on DIMACS data set

Figure 5.9: Results for experiments on the DIMACS instances 33− 48

The trend continues in Figure 5.9 with the same procedures on top. Instance ‘hamming10-
2‘ is especially interesting in this context, since again variants 11 and 17 again outperform
the rest of the algorithms. But here the found clique numbers differ by 100 between those
two and the next best result.

61

5 Experiments

Figure 5.10: Results for experiments on the DIMACS instances 49− 64

62

5.3 Gradient descent approach evaluation on DIMACS data set

Figure 5.11: Results for experiments on the DIMACS instances 54− 80

It is worth mentioning that the versions with the ‘Softmax‘ problem formulation stand
no chance against the ‘Standard‘ or the ‘Square‘ formulations - which goes hand in hand
with what was observable on the random matrices.

What is left to do is aggregate the findings from these experiments to understand which
methods are truly superior.

63

5 Experiments

Figure 5.12: Aggregated results over all instances to find best performing methods

As already indicated by the figures above, the best performing methods are indeed
numbers 11 and 17 with an average ratio of 80.7% - in fact, there was no difference
between the ‘fixed‘ and ‘halving‘ method there, meaning that the learning rate never had
to be adjusted to find the optimum. This ratio should be interpreted in the way that the
found clique number was on average 20% smaller than the best known result. The best
‘Standard‘ procedure still arrives a bit above 70%, the ‘Softmax‘ procedures stand no
chance in the direct comparison.
The result is overall surprisingly good, in 12 of the 80 instances the best known clique
number was identified, and also in most other instances at least a handful of the algorithms
performed quite well.
The numerical results for all problem instances can be found in the Appendix.

64

6 Conclusion and future work

6.1 Future Work

The algorithms discussed in this thesis show great potential to speed up copositivity
testing on different levels. As already mentioned in Remark 3.2.2, the implementation
of the general decomposition algorithm can be optimized in different directions, first
and foremost it is crucial for speeding up the algorithm to keep track of which ‘parts‘ of
the matrix have already been proven to be copositive and ignoring those in subsequent
calculations in order to avoid duplicate operations. Also, the way how the rectangles
forming the matrices Ddec are chosen and the reordering algorithm that is applied in
the case where the entire matrix Ad∗ is just one large connected component might be
reevaluated since changes on this end could lead to overall easier to evaluate matrices
after the decomposition step.
One further interesting aspect that should be investigated more in-depth is the case where
(A−D) is not copositive, as noted in Remark 3.0.9. If a more general result than the
ones presented in this thesis that circle around the case where B − (1− λ)E and C − λE
are not copositive for some λ can be found, potentially a conclusion about whether A
itself is copositive or not (of course incorporating matrix D as well) could be drawn as
well. This would increase the usefulness of the proposed algorithm further.
Concerning the gradient descent approach, the ‘Softmax‘ variant should be investigated
more deeply, as from a theoretical standpoint this problem formulation should excel in
terms of robustness, even though the experiment results for the current implementation
do not reflect this. The next step on this end might be to find a better initialization
method to start with, an appropriate step function, and possibly a different approach in
terms of learning rate adjustment and experimentation with regularization terms together
with a more generous number of iterations per example.
But also the other problem formulations - especially the well-working ‘Square‘ formulation
- should be investigated and improved further, as they clearly hold much potential.

6.2 Conclusion

In this thesis, a novel decomposition algorithm was presented that is applicable to any
given matrix which allows for reducing the size of matrices that have to be checked and
offering a sufficient condition for copositivity of matrices. Moreover, if the special case
discussed in Section 2.3 is applicable, a massive speedup while checking for copositivity
can be achieved. The extensive discussion of gradient-based search algorithms to find
violating vectors yielded very promising results, being able to flag matrices of very large

65

6 Conclusion and future work

orders as not copositive within a limited number of iterations, rendering it a very useful
tool for quickly finding violating vectors without any overhead in terms of preprocessing
or complex implementation. Overall, the results of this thesis can help to speed up
copositivity testing on multiple levels and offer great potential for future use.

66

7 Appendix

7.1 Gradient descent implementation

The following functions were used to carry out the experiment described in Chapter 5.
1 def initialize_start_vector(
2 dim: int , vec: torch.Tensor , norm_order: int = 2
3) -> torch.Tensor:
4 """ generates the initial starting vector
5

6 :param dim: defines the size of the array
7 :type dim: int
8 :param vec: if a vector is already given , it will be used as the

starting vector , defaults to None
9 :type vec: torch.Tensor

10 :param norm_order: what order to use for normalization of the
generated or passed starting vector ,

11 defaults to 2
12 :type norm_order: int , optional
13 :return: normalized starting vector
14 :rtype: torch.Tensor
15 """
16 if vec is None:
17 start_vector = np.random.uniform(0, 1, (dim)).astype("float")
18 else:
19 start_vector = vec
20 start_vector /= np.linalg.norm(start_vector , ord=norm_order)
21 return start_vector

Listing 7.1: Initialization of starting vector

1 def postprocessing_vector(vector: torch.Tensor , method: str) -> torch.
Tensor:

2 """ applies postprocessing to the vector
3

4 :param vector: the vector that should be postprocessed
5 :type vector: torch.Tensor
6 :param method: what method should be used for postprocessing
7 :type method: str
8 :return: the postprocessed vector
9 :rtype: torch.Tensor

10 """
11 if method == "standard":
12 vector = torch.clamp(vector , min =0)
13 vector /= torch.norm(vector , 2)
14 return vector

67

7 Appendix

15 elif method == "square":
16 vector /= torch.norm(vector , 2)
17 return vector
18 elif method == "softmax":
19 return vector

Listing 7.2: Postprocessing vector after update step

1 def problem_formulation(
2 matrix: torch.Tensor , vector: torch.Tensor , formulation: str
3) -> torch.Tensor:
4 """ Defines what problem formulation should be used to calculate the

result
5

6 :param matrix: a real , symmetric matrix
7 :type matrix: torch.Tensor
8 :param vector: the current vector
9 :type vector: torch.Tensor

10 :param formulation: what formulation should be used to calculate the
result

11 :type formulation: str
12 :return: Result of the respective problem formulation
13 :rtype: torch.Tensor
14 """
15 if formulation == "standard":
16 return torch.inner(torch.inner(vector , matrix), vector)
17 elif formulation == "square":
18 return torch.inner(torch.inner(vector **2, matrix), vector **2)
19 elif formulation == "softmax":
20 soft = torch.nn.Softmax(dim=0)
21 return torch.inner(torch.inner(soft(vector), matrix), soft(vector

))

Listing 7.3: Calculating the result based on chosen problem formulation

1 def calc_gradient(
2 matrix: torch.Tensor , vector: torch.Tensor , gradient_method: str
3) -> torch.Tensor:
4 """ Calculates the gradient according to the gradient method (problem

formulation)
5

6 :param matrix: real , symmetric matrix
7 :type matrix: torch.Tensor
8 :param vector: the current vector
9 :type vector: torch.Tensor

10 :param gradient_method: gradient method/problem formulation that
should be used

11 :type gradient_method: str
12 :return: _description_
13 :rtype: torch.Tensor
14 """
15 if gradient_method == "standard":
16 return torch.inner(matrix , vector)
17 if gradient_method == "square":

68

7.1 Gradient descent implementation

18 return torch.inner(matrix , vector **2) * vector
19 if gradient_method == "softmax":
20 return vector.grad

Listing 7.4: Calculate the analytical gradient for ‘Standard‘ and ‘Square‘ or using
stochastic gradient in formulation ‘Softmax‘

1 def adjust_learning_rate(
2 learning_rate: float ,
3 decay_param: float ,
4 result: float ,
5 old_result: float ,
6 method: str ,
7) -> float:
8 """ function to adjust the learning rate after each iteration
9

10 :param learning_rate: current learning rate
11 :type learning_rate: float
12 :param decay_param: decay parameter indicating how much the learning

rate
13 should be decayed in the respective mode in one iteration
14 :type decay_param: float
15 :param result: the result from the current iteration
16 :type result: float
17 :param old_result: the previous result
18 :type old_result: float
19 :param method: the method that should be used to adjust the learning

rate
20 :type method: str
21 :return: new learning rate
22 :rtype: float
23 """
24 if method == "simple":
25 pass
26 elif method == "halving":
27 if result > old_result:
28 learning_rate /= 2
29 elif method == "decay":
30 learning_rate = learning_rate * decay_param
31 return learning_rate

Listing 7.5: Method to adjust the learning rate after each iteration

1 def grad_descent(
2 matrix: np.ndarray ,
3 learning_rate: float = 0.01,
4 max_iterations: int = 500,
5 vec: np.ndarray = None ,
6 step_vector_method: str = "simple",
7 learning_rate_adjustment_method: str = "simple",
8 formulation: str = "standard",
9 decay_param: float = 0.99,

10) -> Tuple[np.ndarray , bool , float]:

69

7 Appendix

11 """ Performs a gradient based search to find a violating vector for
the given matrix

12

13 :param matrix: real , symmetric matrix
14 :type matrix: np.ndarray
15 :param learning_rate: starting learning rate , defaults to 0.01
16 :type learning_rate: float , optional
17 :param max_iterations: maximum number of iterations allowed , after

that the function will
18 terminate , defaults to 500
19 :type max_iterations: int , optional
20 :param vec: a given (precomputed) starting vector can be passed in

here , defaults to None
21 :type vec: np.ndarray , optional
22 :param step_vector_method: indicates the step vector method , defaults

to "simple"
23 :type step_vector_method: str , optional
24 :param learning_rate_adjustment_method: indicates the learning rate

adjustmend method , defaults to "simple"
25 :type learning_rate_adjustment_method: str , optional
26 :param formulation: what problem formulation to use , defaults to "

standard"
27 :type formulation: str , optional
28 :param decay_param: the decay parameter for the learning rate

adjustment method "decay", defaults to 0.99
29 :type decay_param: float , optional
30 :return:
31 :rtype: _type_
32 """
33 dim = matrix.shape [0]
34 start_vector = initialize_start_vector(dim , vec)
35

36 tensor_matrix = torch.tensor(matrix).float().requires_grad_(False)
37 tensor_vector = torch.tensor(start_vector).float ().requires_grad_(

True)
38

39 result = 1
40 counter = 0
41 old_result = 99999999
42 while result > 0 and counter < max_iterations:
43 res = problem_formulation(tensor_matrix , tensor_vector ,

formulation)
44 res.backward ()
45 result = res.item()
46 if result < 0:
47 break
48 grad = calc_gradient(tensor_matrix , tensor_vector , formulation).

detach ()
49 tensor_vector.requires_grad_(False)
50 tensor_vector += calc_step_vector(grad , learning_rate ,

step_vector_method)
51 tensor_vector = postprocessing_vector(tensor_vector , formulation)
52 tensor_vector.requires_grad_(True)

70

7.2 Random matrix experiment

53 counter += 1
54 learning_rate = adjust_learning_rate(
55 learning_rate ,
56 decay_param ,
57 result ,
58 old_result ,
59 learning_rate_adjustment_method ,
60)
61 oldresult = result
62 res_vector = tensor_vector.detach ().numpy().astype("float32")
63 return res_vector , result < 0, counter , result

Listing 7.6: Main function that incorporates the other functions to find a violating vector
for the given matrix

For a given matrix A, the function can be run for example with the following call:
1 grad_descent(
2 MATRIX ,
3 learning_rate =0.01 ,
4 max_iterations =500,
5 formulation="standard",
6 learning_rate_adjustment_method="simple",
7 step_vector_method="simple",
8)

Listing 7.7: Main function that incorporates the other functions to find

The stochastic gradient in the ‘Softmax‘ setting can be calculated easily within the
‘Pytorch‘ [Pas+19] framework, that’s why the entire gradient descent routine is written
using this module rather than using ‘Numpy‘ - even though an implementation in ‘Numpy‘
for formulations ‘Standard‘ and ‘Square‘ are very easy to achieve and would look very
similar to the here presented code.

7.2 Random matrix experiment

In the following, the numerical results for the random matrix experiments are listed.
On the leftmost column, the matrix order is listed, followed by the number of matrices
that have been identified as not copositive by at least one of the 18 algorithms. A column
‘# x‘ contains the number of matrices for which method x was able to find a violating
vector, ‘◁0 x‘ indicates the average number of iterations necessary to find the violating
vector (only cases where the algorithm was successful are considered and the result is
rounded to integers).

71

7 Appendix

Random matrix experiment results for methods 0, 1 and 2
n # not copos-

itive
0 ▷0 0 # 1 ▷0 1 # 2 ▷0 2

8 642 561 100 473 370 588 107
9 745 650 106 555 389 673 121
10 794 709 86 618 367 728 115
11 811 744 87 662 365 746 119
12 858 779 74 703 370 812 127
13 899 830 81 743 373 840 130
14 922 860 72 784 376 863 139
15 940 878 66 798 366 885 138
16 940 889 60 827 380 896 138
17 959 923 67 838 383 905 141
18 969 934 65 848 366 920 148
19 975 939 61 864 373 923 155
20 976 949 55 871 379 927 155
50 1000 997 36 891 421 968 261
100 1000 1000 26 834 525 962 421
250 1000 1000 20 506 606 785 751
500 1000 998 16 246 602 129 736
1000 1000 925 6 142 570 32 727

Table 7.1: Random matrix experiment results for methods 1, 2 and 3

Random matrix experiment results for methods 3, 4 and 5
n # not copos-

itive
3 ▷0 3 # 4 ▷0 4 # 5 ▷0 5

8 642 399 80 54 141 524 128
9 745 465 80 33 104 556 148
10 794 545 73 57 128 608 143
11 811 593 69 57 100 608 150
12 858 635 66 46 117 648 167
13 899 666 65 62 128 644 173
14 922 723 63 57 140 636 176
15 940 735 61 66 113 637 183
16 940 767 61 65 111 636 187
17 959 781 59 68 155 616 192
18 969 797 51 78 134 606 197
19 975 808 53 76 151 574 211
20 976 823 51 56 128 558 208
50 1000 931 36 48 132 126 249
100 1000 969 29 27 154 17 268
250 1000 995 26 9 161 1 0
500 1000 997 19 4 129 0 1000
1000 1000 925 7 5 130 0 1000

Table 7.2: Random matrix experiment results for methods 4, 5 and 6

Random matrix experiment results for methods 6, 7 and 8
n # not copos-

itive
6 ▷0 6 # 7 ▷0 7 # 8 ▷0 8

8 642 561 100 473 370 588 107
9 745 650 106 555 389 673 121
10 794 709 86 618 367 728 115
11 811 744 87 662 365 746 119
12 858 779 74 703 370 812 127
13 899 830 81 743 373 840 130
14 922 860 72 784 376 863 139
15 940 878 66 798 366 885 138
16 940 889 60 827 380 896 138
17 959 923 67 838 383 905 141
18 969 934 65 848 366 920 148
19 975 939 61 864 373 923 155
20 976 949 55 871 379 927 155
50 1000 997 36 891 421 968 261
100 1000 1000 26 834 525 962 421
250 1000 1000 20 506 606 785 751
500 1000 998 16 246 602 129 736
1000 1000 925 6 142 570 32 727

Table 7.3: Random matrix experiment results for methods 7, 8 and 9

72

7.2 Random matrix experiment

Random matrix experiment results for methods 9, 10 and 11
n # not copos-

itive
9 ▷0 9 # 10 ▷0 10 # 11 ▷0 11

8 642 555 147 584 116 568 312
9 745 636 170 674 115 642 359
10 794 704 167 731 105 701 347
11 811 726 155 756 99 713 344
12 858 767 159 798 98 775 369
13 899 814 175 851 104 800 379
14 922 840 164 882 95 815 383
15 940 860 166 903 96 830 383
16 940 879 166 902 91 843 385
17 959 900 174 936 98 856 397
18 969 906 175 945 93 861 399
19 975 915 179 953 94 858 408
20 976 928 176 955 92 865 417
50 1000 963 212 999 97 762 515
100 1000 951 255 1000 117 525 582
250 1000 871 325 1000 173 221 587
500 1000 764 358 1000 240 106 573
1000 1000 816 384 1000 204 63 548

Table 7.4: Random matrix experiment results for methods 10, 11 and 12

Random matrix experiment results for methods 12, 13 and 14
n # not copos-

itive
12 ▷0 12 # 13 ▷0 13 # 14 ▷0 14

8 642 283 109 349 106 103 95
9 745 294 118 388 104 72 109
10 794 322 113 457 102 87 94
11 811 365 114 492 101 83 100
12 858 352 111 535 102 67 122
13 899 362 114 528 94 67 121
14 922 386 110 582 98 58 121
15 940 409 107 595 92 81 134
16 940 403 103 601 94 71 111
17 959 397 106 612 96 63 92
18 969 417 108 639 93 66 132
19 975 423 106 620 81 67 123
20 976 424 110 648 92 51 114
50 1000 394 90 660 83 28 128
100 1000 322 95 576 77 12 109
250 1000 233 90 451 79 4 140
500 1000 181 89 356 80 5 219
1000 1000 168 83 354 85 3 153

Table 7.5: Random matrix experiment results for methods 13, 14 and 15

Random matrix experiment results for methods 15, 16 and 17
n # not copos-

itive
15 ▷0 15 # 16 ▷0 16 # 17 ▷0 17

8 642 555 147 584 116 568 312
9 745 636 170 674 115 642 359
10 794 704 167 731 105 701 347
11 811 726 155 756 99 713 344
12 858 767 159 798 98 775 369
13 899 814 175 851 104 800 379
14 922 840 164 882 95 815 383
15 940 860 166 903 96 830 383
16 940 879 166 902 91 843 385
17 959 900 174 936 98 856 397
18 969 906 175 945 93 861 399
19 975 915 179 953 94 858 408
20 976 928 176 955 92 865 417
50 1000 963 212 999 97 762 515
100 1000 951 255 1000 117 525 582
250 1000 871 325 1000 173 221 587
500 1000 764 358 1000 240 106 573
1000 1000 816 384 1000 204 63 548

Table 7.6: Random matrix experiment results for methods 16, 17 and 18

73

7 Appendix

7.3 DIMACS experiment

Lastly, the the results for the DIMACS challenge can be found in the following two tables.
The first column holds the instance name and the second the respective best known result.
In the columns after that the results for the different methods are listed.

74

7.3 DIMACS experiment

DIMACS experiment results for methods 1-9
instance name best known

estimate
1 2 3 4 5 6 7 8 9

C1000.9 68 57 10 10 44 10 10 57 10 10
C125.9 34 34 15 17 28 10 9 34 15 17
C2000.5 16 2 2 2 2 2 1 2 2 2
C2000.9 80 62 10 10 47 10 9 62 10 10
C250.9 44 38 12 13 32 10 9 38 12 13
C4000.5 18 2 2 2 2 2 2 2 2 2
C500.9 57 49 11 10 38 10 9 49 11 10
DSJC1000_5 15 3 2 2 3 2 1 3 2 2
DSJC500_5 13 12 3 2 8 2 2 12 3 2
MANN_a27 126 118 88 93 117 78 80 118 88 93
MANN_a45 345 330 221 226 329 204 215 330 221 226
MANN_a81 1100 1080 673 685 1079 637 678 1080 673 685
MANN_a9 16 16 12 11 14 11 10 16 12 11
brock200_1 21 19 7 8 15 4 3 19 7 8
brock200_2 12 9 4 4 8 2 1 9 4 4
brock200_3 15 12 5 5 10 2 2 12 5 5
brock200_4 17 14 6 6 12 3 2 14 6 6
brock400_1 27 21 5 4 16 4 3 21 5 4
brock400_2 29 21 5 4 16 4 3 21 5 4
brock400_3 31 21 5 4 17 4 3 21 5 4
brock400_4 33 21 5 4 17 4 3 21 5 4
brock800_1 23 17 3 2 12 2 2 17 3 2
brock800_2 24 17 3 2 11 2 2 17 3 2
brock800_3 25 17 3 2 11 2 2 17 3 2
brock800_4 26 17 3 2 11 2 2 17 3 2
c-fat200-1 12 12 9 2 10 1 1 12 9 2
c-fat200-2 24 24 17 7 18 1 1 24 17 7
c-fat200-5 58 58 42 19 48 2 1 58 42 19
c-fat500-1 14 1 2 1 1 1 1 1 2 1
c-fat500-10 126 3 75 2 3 1 1 3 75 2
c-fat500-2 26 1 8 1 1 1 1 1 8 1
c-fat500-5 64 1 35 1 1 1 1 1 35 1
gen200_p0.9_44 44 36 14 16 30 10 9 36 14 16
gen200_p0.9_55 55 46 14 17 33 10 9 46 14 17
gen400_p0.9_55 55 45 13 12 37 10 9 45 13 12
gen400_p0.9_65 65 45 12 12 37 10 9 45 12 12
gen400_p0.9_75 75 46 14 12 40 10 9 46 14 12
hamming10-2 512 384 91 93 279 89 93 384 91 93
hamming10-4 40 32 6 5 25 5 5 32 6 5
hamming6-2 32 32 16 19 29 9 9 32 16 19
hamming6-4 4 4 3 3 3 1 1 4 3 3
hamming8-2 128 127 30 28 98 27 28 127 30 28
hamming8-4 16 16 4 2 10 2 2 16 4 2
johnson16-2-4 8 8 4 4 6 4 4 8 4 4
johnson32-2-4 16 16 8 8 9 8 8 16 8 8
johnson8-2-4 4 4 3 3 3 2 2 4 3 3
johnson8-4-4 14 14 6 6 12 4 4 14 6 6
keller4 11 9 4 5 8 3 2 9 4 5
keller5 27 19 5 4 16 4 4 19 5 4
keller6 59 17 6 5 17 5 5 17 6 5
p_hat1000-1 10 2 3 2 2 1 1 2 3 2
p_hat1000-2 46 22 11 8 22 2 2 22 11 8
p_hat1000-3 68 60 11 7 50 4 3 60 11 7
p_hat1500-1 12 1 2 1 1 1 1 1 2 1
p_hat1500-2 65 9 12 5 9 2 2 9 12 5
p_hat1500-3 94 90 12 6 64 4 4 90 12 6
p_hat300-1 8 8 4 4 6 1 1 8 4 4
p_hat300-2 25 25 11 12 21 2 2 25 11 12
p_hat300-3 36 33 11 15 30 4 4 33 11 15
p_hat500-1 9 3 3 4 3 1 1 3 3 4
p_hat500-2 36 34 11 15 28 2 2 34 11 15
p_hat500-3 50 48 12 13 41 4 4 48 12 13
p_hat700-1 11 2 3 2 2 1 1 2 3 2
p_hat700-2 44 44 12 13 31 2 2 44 12 13
p_hat700-3 62 57 13 10 49 4 4 57 13 10
san1000 15 3 7 3 3 2 2 3 7 3
san200_0.7_1 30 16 14 11 15 3 3 16 14 11
san200_0.7_2 18 12 11 11 12 5 3 12 11 11
san200_0.9_1 70 48 25 29 45 10 9 48 25 29
san200_0.9_2 60 47 15 16 36 10 9 47 15 16
san200_0.9_3 44 34 13 13 28 10 9 34 13 13
san400_0.5_1 13 8 6 6 7 2 2 8 6 6
san400_0.7_1 40 22 19 3 20 3 3 22 19 3
san400_0.7_2 30 18 14 4 16 3 3 18 14 4
san400_0.7_3 22 14 11 7 13 3 3 14 11 7
san400_0.9_1 100 55 14 10 50 10 9 55 14 10
sanr200_0.7 16 16 6 7 13 3 3 16 6 7
sanr200_0.9 42 40 13 14 34 10 9 40 13 14
sanr400_0.5 13 12 3 3 9 2 2 12 3 3
sanr400_0.7 21 18 4 3 14 3 3 18 4 3

Table 7.7: DIMACS experiment results for methods 1-9

75

7 Appendix

DIMACS experiment results for methods 10-18
instance name best known

estimate
10 11 12 13 14 15 16 17 18

C1000.9 68 32 58 10 12 15 10 32 58 10
C125.9 34 31 33 14 16 24 9 31 33 14
C2000.5 16 2 6 2 2 2 2 2 6 2
C2000.9 80 24 63 10 11 13 10 24 63 10
C250.9 44 33 39 12 14 20 9 33 39 12
C4000.5 18 2 4 2 2 2 2 2 4 2
C500.9 57 36 49 11 13 18 9 36 49 11
DSJC1000_5 15 3 10 2 2 2 2 3 10 2
DSJC500_5 13 4 11 2 2 2 2 4 11 2
MANN_a27 126 117 117 109 116 118 84 117 117 109
MANN_a45 345 330 329 293 324 330 225 330 329 293
MANN_a81 1100 1079 1079 901 1047 1080 704 1079 1079 901
MANN_a9 16 15 15 12 14 16 11 15 15 12
brock200_1 21 14 18 4 5 7 3 14 18 4
brock200_2 12 6 9 2 2 2 1 6 9 2
brock200_3 15 8 11 2 3 3 2 8 11 2
brock200_4 17 12 15 3 3 4 2 12 15 3
brock400_1 27 12 22 4 4 6 3 12 22 4
brock400_2 29 12 22 4 4 5 3 12 22 4
brock400_3 31 13 22 4 4 5 3 13 22 4
brock400_4 33 12 22 4 4 5 3 12 22 4
brock800_1 23 6 17 2 3 3 2 6 17 2
brock800_2 24 6 18 2 3 3 2 6 18 2
brock800_3 25 6 17 2 3 3 2 6 17 2
brock800_4 26 6 17 2 3 3 2 6 17 2
c-fat200-1 12 6 11 1 1 1 1 6 11 1
c-fat200-2 24 13 23 1 1 1 1 13 23 1
c-fat200-5 58 31 57 2 2 4 1 31 57 2
c-fat500-1 14 2 3 1 1 1 1 2 3 1
c-fat500-10 126 42 125 1 2 2 1 42 125 1
c-fat500-2 26 3 25 1 1 1 1 3 25 1
c-fat500-5 64 11 63 1 1 1 1 11 63 1
gen200_p0.9_44 44 33 37 13 16 22 9 33 37 13
gen200_p0.9_55 55 34 54 14 16 23 9 34 54 14
gen400_p0.9_55 55 36 46 12 14 21 10 36 46 12
gen400_p0.9_65 65 36 47 11 14 21 9 36 47 11
gen400_p0.9_75 75 38 50 12 16 25 10 38 50 12
hamming10-2 512 325 511 99 137 204 93 325 511 99
hamming10-4 40 14 33 6 7 8 5 14 33 6
hamming6-2 32 31 31 18 17 28 9 31 31 18
hamming6-4 4 3 4 2 1 2 1 3 4 2
hamming8-2 128 113 127 36 46 72 28 113 127 36
hamming8-4 16 7 15 3 3 4 2 7 15 3
johnson16-2-4 8 7 7 4 4 5 4 7 7 4
johnson32-2-4 16 12 15 8 8 9 8 12 15 8
johnson8-2-4 4 3 3 3 2 3 2 3 3 3
johnson8-4-4 14 13 13 6 5 7 4 13 13 6
keller4 11 7 10 3 3 4 2 7 10 3
keller5 27 10 19 4 5 6 4 10 19 4
keller6 59 15 37 5 6 8 5 15 37 5
p_hat1000-1 10 2 9 1 1 1 1 2 9 1
p_hat1000-2 46 15 44 2 3 6 1 15 44 2
p_hat1000-3 68 29 62 4 7 11 3 29 62 4
p_hat1500-1 12 2 8 1 1 1 1 2 8 1
p_hat1500-2 65 16 62 2 3 6 2 16 62 2
p_hat1500-3 94 33 89 4 7 12 4 33 89 4
p_hat300-1 8 4 7 1 1 1 1 4 7 1
p_hat300-2 25 15 24 2 3 6 2 15 24 2
p_hat300-3 36 26 33 5 7 12 4 26 33 5
p_hat500-1 9 3 8 1 1 1 1 3 8 1
p_hat500-2 36 16 35 2 3 6 2 16 35 2
p_hat500-3 50 30 48 5 7 12 4 30 48 5
p_hat700-1 11 2 8 1 1 1 1 2 8 1
p_hat700-2 44 16 42 2 3 6 2 16 42 2
p_hat700-3 62 32 60 5 7 12 4 32 60 5
san1000 15 7 7 2 3 5 2 7 7 2
san200_0.7_1 30 14 17 4 6 12 3 14 17 4
san200_0.7_2 18 11 11 5 10 12 3 11 11 5
san200_0.9_1 70 44 45 17 25 44 10 44 45 17
san200_0.9_2 60 36 58 13 17 28 9 36 58 13
san200_0.9_3 44 30 35 12 14 21 9 30 35 12
san400_0.5_1 13 6 6 2 3 5 2 6 6 2
san400_0.7_1 40 19 19 3 5 10 3 19 19 3
san400_0.7_2 30 14 14 3 5 9 3 14 14 3
san400_0.7_3 22 11 11 4 6 10 3 11 11 4
san400_0.9_1 100 49 67 11 16 30 9 49 67 11
sanr200_0.7 16 12 16 3 4 5 3 12 16 3
sanr200_0.9 42 35 39 12 14 21 9 35 39 12
sanr400_0.5 13 5 11 2 2 2 2 5 11 2
sanr400_0.7 21 10 18 3 3 4 3 10 18 3

Table 7.8: DIMACS experiment results for methods 10-18

76

Bibliography

[BE10] Immanuel Bomze and Gabriele Eichfelder. “Copositivity detection by difference-
of-convex decomposition and ω-subdivision”. In: Mathematical Programming
138 (Feb. 2010).

[Bom00] Immanuel Bomze. “Linear-time copositivity detection for tridiagonal matrices
and extension to block-tridiagonality”. In: Siam Journal on Matrix Analysis
and Applications 21 (Mar. 2000).

[Bom08] Immanuel Bomze. “Perron–Frobenius property of copositive matrices, and a
block copositivity criterion”. In: Linear Algebra and its Applications 429 (July
2008), pp. 68–71.

[Bom96] Immanuel M. Bomze. “Block pivoting and shortcut strategies for detecting
copositivity”. In: Linear Algebra and its Applications 248 (1996), pp. 161–184.

[BP05] Immanuel Bomze and Laura Palagi. “Quartic Formulation of Standard Quad-
ratic Optimization Problems”. In: Journal of Global Optimization 32 (June
2005), pp. 181–205.

[Bre22] Sjoerd van Bree. “Testing copositivity in pentadiagonal matrices”. Bachelor
thesis. University of Twente, 2022.

[BSU12] Immanuel Bomze, Werner Schachinger and Gabriele Uchida. “Think
co(mpletely)positive! Matrix properties, examples and a clustered bibliography
on copositive optimization”. In: Journal of Global Optimization 52 (Mar. 2012),
pp. 423–445.

[CG80] W. Chan and Alan George. “A linear time implementation of the reverse
Cuthill-McKee algorithm.” In: BIT 20 (Mar. 1980), pp. 8–14.

[CHL67] Richard Cottle, G. Habetler and C. Lemke. “Quadratic forms semi-definite over
convex cones”. In: Proceedings of the Princeton Symposium on Mathematical
Programming (Aug. 1967), p. 28.

[CHL70] R.W. Cottle, G.J. Habetler and C.E. Lemke. “On classes of copositive matrices”.
In: Linear Algebra and its Applications 3 (July 1970), pp. 295–310.

[CM69] E.H. Cuthill and J. McKee. “Reducing the bandwith of sparse symmetric
matrices”. In: ACM Proceedings of the 1969 24th national conference (Jan.
1969), pp. 157–172.

[CMS95] Jean-Pierre Crouzeix, Juan Martínez-Legaz and Alberto Seeger. “An alternat-
ive theorem for quadratic forms and extensions”. In: Linear Algebra and its
Applications 215 (Jan. 1995), pp. 121–134.

77

Bibliography

[Dia62] P.H. Diananda. “On nonnegative forms in real variables some or all of which
are non-negative”. In: Proc. Cambridge Philos. Soc. 58 (1962), pp. 17–25.

[Dic19] Peter Dickinson. “A new certificate for copositivity”. In: Linear Algebra and
its Applications 569 (May 2019).

[Dim] Dimacs. DIMACS benchmark set. url: https : / / iridia . ulb . ac . be /
~fmascia/maximum_clique/DIMACS-benchmark (visited on 26/05/2023).

[Dos] Ronak Doshi. Cuthill-McKee Algorithm. url: https://www.geeksforgeeks.
org/reverse-cuthill-mckee-algorithm (visited on 12/05/2023).

[Had83] K.P. Hadeler. “On copositive matrices”. In: Linear Algebra and its Applications
49 (1983), pp. 79–89.

[Har+20] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825
(Sept. 2020), pp. 357–362.

[HJ13] Roger A. Horn and Charles R. Johnson. Matrix Analysis, 2nd edition. Cam-
bridge University Press, New York, 2013.

[HN63] M. Hall and M. Newman. “Copositive and completely positive quadratic forms”.
In: Proc. Cambridge Philos. Soc. 59 (1963), pp. 329–339.

[HS10] Jean-Baptiste Hiriart-Urruty and Alberto Seeger. “A variational approach to
copositive matrices”. In: SIAM Review 52 (Jan. 2010), pp. 593–629.

[Ikr02] K.D. Ikramov. “Linear-time algorithm for verifying the copositivity of an
acyclic matrix”. In: Computational Mathematics and Mathematical Physics 42
(Dec. 2002), pp. 1701–1703.

[Jac76] D. Jacobson. “A generalization of Finsler’s theorem for quadratic inequalities
and equalities”. In: Quaestiones Mathematicae 1 (Jan. 1976), pp. 19–28.

[JR09] Charles Johnson and Robert Reams. “Scaling of symmetric matrices by positive
diagonal congruence”. In: Linear & Multilinear Algebra 57 (Mar. 2009), pp. 123–
140.

[JT96] David J. Johnson and Michael A. Trick. “Cliques, coloring, and satisfiability:
Second DIMACS implementation challenge, workshop, October 11-13, 1993”.
In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science
(1996).

[Kap00] Wilfred Kaplan. “A test for copositive matrices”. In: Linear Algebra and Its
Applications 313 (July 2000), pp. 203–206.

[KP02] Etienne Klerk and Dmitrii Pasechnik. “Approximation of the stability number
of a graph via copositive programming”. In: SIAM Journal on Optimization
12 (Apr. 2002), pp. 875–892.

[Mot52] Theodore S. Motzkin. “Copositive quadratic forms”. In: National Bureau of
Standards Report 1818 (1952), pp. 11–22.

[Mur88] K.G. Murty. Linear Complementarity, Linear and Nonlinear Programming.
Heldermann Verlag, Berlin, Jan. 1988.

78

https://iridia.ulb.ac.be/~fmascia/maximum_clique/DIMACS-benchmark
https://iridia.ulb.ac.be/~fmascia/maximum_clique/DIMACS-benchmark
https://www.geeksforgeeks.org/reverse-cuthill-mckee-algorithm
https://www.geeksforgeeks.org/reverse-cuthill-mckee-algorithm

[Pas+19] Adam Paszke et al. “PyTorch: An imperative style, high-performance deep
learning library”. In: Advances in Neural Information Processing Systems 32.
Curran Associates, Inc., 2019, pp. 8024–8035.

[PH11] Wayne Pullan and Holger Hoos. “Dynamic local search for the maximum
clique problem”. In: Journal of Artificial Intelligence Research 25 (Sept. 2011).

[Väl86] Hannu Väliaho. “Criteria for copositive matrices”. In: Linear Algebra and its
Applications 81 (Sept. 1986), pp. 19–34.

[Vir+20] Pauli Virtanen et al. “SciPy 1.0: Fundamental algorithms for scientific com-
puting in Python”. In: Nature Methods 17 (2020), pp. 261–272.

[Vli11] Willemieke van Vliet. “Copositive plus matrices”. Master thesis. University of
Groningen, 2011.

[YL09] Shang-jun Yang and Xiao-xin Li. “Algorithms for determining the copositivity
of a given symmetric matrix”. In: Linear Algebra and Its Applications 430
(Jan. 2009), pp. 609–618.

[Yua90] Ya-xiang Yuan. “On a subproblem of trust region algorithms for constrained
optimization”. In: Math. Program. 47 (May 1990), pp. 53–63.

[ZD11] Julius Zilinskas and Mirjam Dür. “Depth-first simplicial partition for coposit-
ivity detection, with an application to MaxClique”. In: Optimization Methods
& Software 26 (June 2011), pp. 499–510.

79

	Abstract
	Abstract
	Kurzfassung

	List of Tables
	List of Figures
	Listings
	Copositivity
	Motivation
	Introduction
	Copositivity - a theoretical foundation
	Proving copositivity for matrices of order
	Necessary and sufficient conditions for copositivity
	Inverse of a copositive matrix
	Maintaining copositivity while manipulating a matrix

	Matrix reordering
	Theoretical aspects of the reordering algorithm
	Case distinction based on the reordering outcome
	Case 1: separated components in the result of the Cuthill-McKee algorithm applied to
	Practical implementation
	Example of entire algorithm
	Time complexity of the algorithm

	Case 2 overlapping matrices - the general case
	Computational complexity
	Practical implementation

	Using gradient descent for copositivity testing
	Problem Formulations
	Problem formulation 1:
	Problem formulation 2:
	Problem formulation 3:

	Update step
	Learning rate

	Experiments
	Gradient descent approach evaluation on random matrices
	Numerical results
	`Standard` problem formulation
	`Square` problem formulation
	`Softmax` problem formulation

	Gradient descent approach evaluation on DIMACS data set

	Conclusion and future work
	Future Work
	Conclusion

	Appendix
	Gradient descent implementation
	Random matrix experiment
	DIMACS experiment

	Bibliography

