versitat

MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master's Thesis

,1reeShredder: A Program for Phylogenetic Analysis of
Large Sets of Trees Based on Splits”

verfasst von / submitted by

Clement Bader, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2023 / Vienna 2023

Studienkennzahl It. Studienblatt /
degree programme code as it appears on
the student record sheet:

Studienrichtung It. Studienblatt /
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor:

Mitbetreut von / Co-Supervisor:

UA 066 875

Masterstudium Bioinformatik

Univ.-Prof. Dr. Arndt von Haeseler

Dr. Heiko A. Schmidt

Acknowledgements

I would like to thank Heiko A. Schmidt for supporting my journey through the
trees, Arndt von Haeseler for his feedback, and Olga Chernomor for providing the
Gentrius multi-gene trees. Furthermore, I thank Marc Zobel and Vincent Reiner for
the initial Splits Extraction and Tree Creation Algorithms they have developed for
a predecessor version of TreeShredder.

Vor allem danke ich meiner Familie. Sie ist das Wichtigste in meinem Leben.

il

Abstract

TreeShredder is a parallelized multi-tool software for the phylogenetic analysis of
large sets of trees based on their splits. TreeShredder can deal with datasets of
millions of trees with thousands of taxa. It offers well-established analysis ap-
proaches and extends them by additional, more recently introduced features. Many
time-consuming procedures, such as parsing huge numbers of Newick tree strings,
or calculating Transfer Bootstrap Expectation values, are parallelized. A space
and time-saving file format for split and tree information storage and retrieval, the
TreeShredder file, is introduced and its advantages are demonstrated. TreeShred-
der implements a matrix representation feature for supertree construction, which
has seen discontinued maintenance and support of capable software in recent years.
TreeShredder offers comprehensive reference tree and consensus tree features, in-
cluding the newly introduced global relative majority consensus tree. Additionally,
the user can map eight different split measures, including occurrence rates, Internode
Certainty, or Transfer Bootstrap Expectation, but also newly developed measures
such as a split’s best incompatible split’s support and the difference in their sup-
port, onto the reference and consensus trees. Unique among competitor software
in the field, TreeShredder can find based on a set of splits or even incomplete spits
congruent trees, determine the congruency status with the splits in the trees, and
calculate congruency measures. Besides the well-established Robinson-Foulds dis-
tances, which show similarity between tree topologies, a new measure, called Split
Co-Occurrence is introduced, which shows how often two splits co-occur in the same
tree. Space-saving output compression comes without runtime increase. TreeShred-
der’s performance compares favourably against similar features offered in software
such as RAxML and BOOSTER, especially, but not exclusively, if the phylogenetic
analysis is started from TreeShredder files. By means of diverse datasets of trees
ranging in size from tens to thousands of taxa, I show that TreeShredder is a valuable
and versatile addition to the phylogenetic analysis toolbox.

Zusammenfassung

TreeShredder ist ein paralleles Multifunktionsprogramm fiir die phylogenetische
Analyse grofler Gruppen von Béaumen basierend auf ihren Splits. Es bietet bewéhrte
Analysewerkzeuge und erweitert diese um zusatzliche, neuere Funktionen. Viele
zeitintensive Funktionen, wie das Parsen einer grofien Anzahl von Newick-Tree-
Strings und das Berechnen von Transfer Bootstrap Expectation-Werten, konnen
parallel ausgefiihrt werden. Ein platz- und zeitsparendes Dateiformat zur Spe-
icherung und Wiederabrufung von Split- und Baum-Information, die TreeShredder-
Datei, wird vorgestellt und ihre Vorteile demonstriert. TreeShredder fiihrt eine
Matrix-Representation-Funktion fiir die Supertree-Konstruktion wieder ein, die in
den letzten Jahren nicht mehr gewartet und unterstiitzt wurde. TreeShredder bietet
Referenz- und umfangreiche Konsensus-Baum-Funktionen, einschlieflich des neu
eingefithrten globalen relativen Mehrheits-Konsensus-Baumes. Zusatzlich konnen
User acht verschiedene Split-Mafle, einschliefSlich Haufigkeitsraten, Internode Cer-
tainty, oder Transfer Bootstrap Expectation, aber auch die neu entwickelten Mafe
der Unterstiitzung des besten inkompatiblen Splits und die Differenz zur Un-
terstiitzung des besten inkompatiblen Splits auf Referenz- und Konsensus-Baume
projizieren. Einzigartig unter vergleichbarer Software findet TreeShredder kongru-
ente Baume und berechnet Kongruenz-Mafle fiir eine Gruppe von vollstandigen
oder sogar unvollstandigen Splits, als auch Kongruenz-Status der Splits der Baume.
Zusammen mit der Robinson-Foulds-Distanzen-Funktion, die Ahnlichkeiten zwis-
chen Baumtopologien anzeigt, wird ein neues Mafl namens Split Co-Occurrence
eingefiihrt, das zeigt, wie oft zwei Splits gleichzeitig im selben Baum auftreten.
Platzsparende Ausgabekomprimierung bleibt ohne Laufzeiterhohung. TreeShredder
schneidet im Vergleich mit RAxML und BOOSTER positiv ab, insbesondere, aber
nicht nur, wenn die phylogenetische Analyse von einer TreeShredder-Datei gestartet
wird. Anhand von diversen Gruppen von Baumen, die dutzende bis tausende Taxa
grof} sind, zeige ich, dass TreeShredder eine wertvolle und versatile Erweiterung des
Repertoires der phylogenetischen Analyse ist.

vii

Contents

[Acknowledgment] iii
[Abstract] v
[Zusammenfassung| vii
1 I v ™ als 1
(1 _Introduction| 3
(L1 Overview and Structure of the Thesisf 6
[2__Materials and Resources| 9
.1 Datasets 9
[2.2 Computational Resources and Benchmarks 10

Il Software and Optimization| 11
[3 Program Structure 13
[3.1 Program Components|. 13
[3.1.1 main() functionl. 13

[3.1.2 CommandlineParser clasd 15

[3.1.3 DataDepot class|. L. 15

[3.1.4 NewickParser class. 15

[3.1.5 Splitclass 16

[3.1.6 util.cpp file and macros|.o 16

3.1.7 Dibraries and other Accessoriesl 18

3.2 Conclusion|. 19

[4 Split Representation and Parallelization| 21
MI Tntroductionl 21
[4.1.1 Split Representation| 21

[4.1.2 Parallelization and Operating Systems| 22

4.2 Methods 22
[4.2.1 OpenMP|. 22

[4.2.1.1 Worksharing-Loop and Schedulingl 23

4.3 Results and Discussionl 24
[4.3.1 'Testing Parallelizability on Operating System| 24

4.4 Conclusion|. 27

1X

Contents

6 Reading Files and Parsing Trees| 29
[>.1 Reading Newick and Nexus files| 29
[>.1.1 Newick trees extraction step| 29
[5.1.2 Newick trees parsing step — in serial and in parallel| 30
[5.1.3 Merging files|.o 30

[>.2 Splits Extraction Algorithm| 30
[5.2.1 Extending the Algorithm to determine Rootedness 32

[5.3 Reading Taxa files) 33
[>.4 Reading Spht files|. oo 33
5.5 Reading TreeShredder files| 33
[5.5.1 Structure of TreeShredder files 36
[5.5.2 Split information string in a TreeShredder file| 36
[5.5.2.1 Root split information| 38

.6 File-IO Results and Discussion|. 38
[5.6.1 Comparing Newick and TreeShredder file runtimes|. 38
[5.6.2 Output compression| 40

b7 Conclusion|. 44
Il _Methods in TreeShredder 47
[6 Split Measures and Reference Trees| 49
6.1 Introduction| 49
[6.1.1 Split occurrence|o 49
[6.1.2 Best incompatible split occurrence| 49
[6.1.3 Occurrence diftference to best incompatible sphit| 50
[6.1.4 Internode Certainty|{. 50
[6.1.4.1 Internode Certainty and Reference Trees| ol

[6.1.5 Transter Bootstrap Expectation| 52
[6.1.5.1 Instability Score| 53

6.2 Methodsl 53
[6.2.1 Implementation of the TBE Algorithm in TreeShredder| 53
[6.2.2 Mapping Split Measures onto Reterence Trees| 55
[6.2.2.1 1Q-TREE format| 55

0.3 Results and Discussion| oL 55
[6.3.1 TreeShredder split measures| 55
6.3.2 TDBE calculation runtimefo 62

6.4 Conclusion|. 62
[/ Incomplete Splits and Congruency| 67
(.1 Introduction| 67
[7.2 Methods: Finding congruent trees and maximum/sum of occurrence| . 69
[7.2.1 Determining congruency status of splits|. 70
(7.2.2 Output files| 70

[7.3 Results: Finding congruent trees and maximum/sum of occurrence| . 71
(.4 Conclusion|. 71

Contents

8.1.1 Majority Rule Consensus Tree (M)

8.1.2 Majority Rule Extended Consensus Tree (M)

8.1.3 Relative Majority Consensus Tree (M,e)|

8.1.4 Global Relative Majority Consensus Tree (M) - . -

8.1.5 Strict Consensus Tree (Mypice)| . - - - - - - - o o o oL

8.1.6 Semi Strict Consensus Tree (Mgepi)| - - - - o o o o o000

IV Summary|

(12 Conclusion and Outlook|

(12.1 Summary|

[References]

73
73
73
74
74
74
75
75
75
75
79
79

85
85
85
86
86
88

89
89
89
90
90

93
93
93
94
97
97

99

101
101
102
103

105

X1

List of Figures

(1.1 Examples of an unrooted and a rooted tree| 4
[3.1 UML program structure ot TreeShredder| 14
[3.2 Number of unique nontrivial splits in biological and random datasets| 17
4.1 OpenMP fork-join model| 23
[4.2 Parallel runtimes and speedup of different split representation classes |
[on Windowsl 25
[4.3 Parallel runtimes and speedup ot different split representation classes |
[on Lanuxl 26
[>.1 Example of a rooted tree and its corresponding Newick string] .32
(5.2 Example of the Splits Extraction Algorithm| 35
[>.3 Example of a Newick string and its equivalent TreeShredder file| . . . 37
(5.4 TreeShredder runtimes of reading Newick files, and reading and writ- |
| ing TreeShredder files for the WN'T-82, CRF-2696, and POL-9147 |
[datasetsl 39
(5.5 TreeShredder runtimes of reading Newick files, and reading and writ- |
[ing TreeShredder files for the ACO-225, PTP-116, PF1-367, and PE7- |
[200 datasetsl 41
[.6 Comparing runtime and speedup for the GEN-404 dataset, reading |
[and writing Newick and TreeShredder files| 42
[5.7 TreeShredder runtimes of reading Newick files, and reading and writ- |
[ing IreeShredder files for the RAN-200, RAN-300, and RAN-400 |
[datasetsl 43
[5.8 TreeShredder runtime and efficacy of output compression| 45
[6.1 Example of Hamming Distance calculation| 54
[6.2 Comparison of relative support and relative best incompatible sup- |
[port measures of tfour POL-9147 trees| 56
[6.3 Comparison of relative support and relative difference to best incom- |
[patible support measures of four POL-9147 trees[. Y4
[6.4 Comparison of relative support and Internode Certainty measures of |
[four POL-9147 trees 58
[6.5 Comparison of relative support and Transfer Bootstrap Expectation |
[measures of four POL-9147 trees. 59
[6.6 T'hree trees where rogue taxa change position| 59
[6.7 Effect on TBE of two subtrees increasing in size| 60
[6.8 Effect on TBE of one subtree increasing in sizel. 61
[6.9 TreeShredder TBE calculation runtime and speedup|. 63

xiil

List of Figures

[6.10 TBE calculation runtime comparison of BOOSTER, RAxML, and |

[TreeShredderd 64
(7.1 Examples of the formats used to represent an incomplete split and its |
| implied complete splits| 000 68
[8.1 Sorting the matrix for Newick string creation|. 76
[8.2 Example of creating a Newick stringg 78
[8.3 TreeShredder runtimes of the 50% majority rule consensus tree and |
| the semi strict majority consensus tree| 80
8.4 TreeShredder runtimes of the six consensus trees for the RAN-400 |
[datasetl 81
[9.1 'TreeShredder runtimes of Matrix Representation for six datasets| . . . 87

[10.1 Generating RF distances comparing different programs and file input| 91

(11.1 TreeShredder runtimes of calculating and writing Split Co- |
[Occurrences to filel Lo 95
[11.2 Comparison of Split Co-Occurrences runtime and output compression| 96

Xiv

List of Tables

(7.1 Example of the intersection method for complete and incomplete splits| 68
[7.2 Set of four example incomplete splits and their congruency measures|. 72
[7.3 'Trees that are congruent with the set of four example incomplete splits| 72
[8.1 Summary of relationships between consensus trees| 82
[9.1 Datasets for Matrix Representation| 87

XV

Part |

Introduction and Materials

1 Introduction

In the field of phylogenetics, a typical aim of researchers is to find the optimal phy-
logenetic tree that depicts the evolutionary descent of species, organisms, or genes
from a shared ancestor in a single graph. Fig. shows such graphs representing
example phylogenetic trees.

A phylogenetic tree consists of a set of nodes which are connected by a set of
edges. Nodes that are connected to only one edge have degree = 1 and are called
leaf nodes. They are depicted as squares in Fig. and represent phylogenetic data
such as gene sequences, species, or morphological properties. Labeled leaf nodes are
also called taxa.

Nodes that are connected to two or more edges have degree > 2 and are called
internal nodes. They are depicted as circles in Fig. and join subtrees of phylo-
genetic trees. Internal nodes are typically unlabeled.

Rooted trees imply a direction from the root node along the edges toward the leaf
nodes, representing a (typically chronological) starting point at the root and an end-
point at the leaf nodes (see Fig. for an example of a rooted tree). By convention,
a root node is an internal node of degree = 2, joining two root edges. Conversely,
unrooted trees depict the relationship between subtrees without implying a starting
point (see Fig. for an example of an unrooted tree).

In phylogenetics, tree data are usually not represented as separate sets of nodes
and edges but in Newick tree format (Felsenstein et al., [1986; Page, 2003). This
text format is a string of characters which can transfer the relationship between the
nodes of a tree and additional information such as the names of the nodes, the branch
length of the edges, frequency data, or comments. An internal node is represented
by a pair of parentheses which contain other nodes that are connected to them by
edges. The nodes connected to an internal node are separated by commas. Unlike
internal nodes, leaf nodes are not enclosed by parentheses. For example, the Newick
tree string “((A,B), (C,D),E);” represents the unrooted tree in Fig.[1.1] Here, the
outermost pair of parentheses contains three nodes separated by commas: the leaf
node “E” and the two internal nodes “(A,B)” and “(C,D)”. The two internal nodes
contain the leaf nodes “A” and “B”, and “C” and “D”, respectively.

A tree connects each taxon to every other taxon via a unique path of contiguous
nodes and edges (Semple and Steel, 2003, p. 7) — there is no possibility to travel
along the edges of a tree and return to the starting point without passing the same
edge at least twice. This means that if a single edge were removed, the set of taxa
would be split into two disjoint subsets. Doing so causes a bipartition, better known
as a split, on the set of taxa. Importantly, a tree is uniquely defined by its set of
splits.

This split can be represented in “taxon notation” or “bit notation” format (see
also section [7.1)). For example, the split that splits the taxon set {A, B,C, D, E} in

1 Introduction

external edges
tm ial splits

X/@

internal edges / 2

nontrivial splits

Q

(a) An unrooted tree with Newick string “((A,B), (C,D),E);”.

AIBCDE ap
ABICDE 00001
00011 BIACDE
5]
11101
amEcD | 11011
10011 DIABCE
AB|CDE aD
’ 10111
00011
EIABCD c
|
01111

(b) A rooted tree with Newick string “((A,B), ((C,D),E));”.

Figure 1.1: Examples of an unrooted and a rooted tree: Round shapes indicate
internal nodes (including the root node), square shapes indicate external
nodes, i.e., taxa. Internal edges connect internal nodes, external edges
connect external nodes with internal ones. Removing an edge induces
a bipartition on the taxon set, a split. The bits in the “bit notation”
format correspond to the taxa in reverse order.

Fig. into the subsets {A, B, E} and {C, D} can be represented as ABE|CD or
10011. The vertical line ‘|’ shows the separation of the two taxon subsets in the
“taxon notation” format. In the example in Fig. [[.1a] T imposed lexicographical
order within the taxon subsets. In the “bit notation” format, the bits represent
the taxa in reverse order because TreeShredder’s data structure prints the least
significant bit rightmost. This means that the bits, read from left to right, stand
for £, D, C, B, and A. Taxa with bit value = 0 belong to one side of the split and
those with bit value = 1 belong to the other.

If the smaller side of the split contains only one taxon, it is called a trivial split
because it must necessarily occur in all trees with identical taxon sets, representing
the external edges connecting a leaf node to the rest of the tree (see Fig. [1.1a)).
If the smaller side contains more than one taxon, it is a nontrivial split. Trees
with identical taxa but different topologies (i.e., branching order of subtrees) have
different sets of nontrivial splits. This is where the diversity of trees with identical
taxon sets arises.

A tree with n taxa has n trivial splits, one for each external edge connecting a leaf
node to the rest of the tree. A binary unrooted tree has n—3 nontrivial splits, one for
each internal edge. This is evident from the fact that by inserting an additional leaf
node (along with its external edge) into an unrooted binary tree, either an internal
edge is split into two internal edges or an external edge is split into one internal
and one external edge. In both cases, by adding a leaf node, the number of internal
edges grows by 1 for trees with > 3 taxa (Felsenstein, [1978). Taken together, the
number of splits in an unrooted tree grows linearly by 2n — 3 with the number of
taxa.

Because of the many possibilities to connect the same set of taxa in a different
way and build different trees, typically thousands to millions of trees are generated
and evaluated in a phylogenetic reconstruction searching for the optimal tree. Due
to the super-exponential growth of combinations to connect the taxa, the number
of unrooted binary trees grows according to

_ (2n-5)!
(2n —H)!l = m

for n > 3, where n is the number of taxa (see Felsenstein, [1978; Penny, Hendy, and
Holland, 2007, p. 502). For example, there are only 15 different unrooted trees for
the taxon set {A, B,C, D, E'}. These trees could easily be generated and evaluated
individually. However, the number quickly grows prohibitively large for larger trees:
there are more than 2 x 10?° different trees with 20 taxa.

Unfortunately, there are no efficient algorithms to overcome the unwieldy large
number of possible trees and find the optimal maximum likelihood (Chor and Tuller,
2005)) or maximum parsimony (Day, Johnson, and Sankoff, [1986|) tree. Because of
the potentially huge number of different trees to take into consideration, combined
with the fact that there are no algorithms that guarantee to find the optimal tree
in polynomial time (Penny, Hendy, and Holland, [2007, p. 502), researches cannot
be sure to find the one optimal tree even after extensive search. To assess the
quality of trees, they often resample the multiple sequence alignment to generate
several trees, which can be used to calculate support values of subtrees or to create

1 Introduction

consensus trees. For example, bootstrapping or jackknifing are two such resampling
strategies to determine general robustness of data estimates, which are prerequisites
for a credible tree inference analysis and well-established in the scientific community
(Felsenstein, 1985; Felsenstein, |1986). These trees can then be used for further
analysis, strengthening robustness of the tree inference. However, presenting the
data of several thousand different trees in a single, maximally informative tree is
not trivial.

For this master’s project, I designed and implemented the software TreeShred-
der that can deal with large sets of millions of trees with thousands of taxa and
measure its performance in diverse applications. Additionally, I compare it in calcu-
lating and mapping Transfer Bootstrap Expectation values onto a reference tree, and
in calculating Robinson-Foulds Distances against RAxML (Stamatakis, 2006) and
BOOSTER (Lemoine et al., 2018), which are established programs for phylogenetic
analysis.

1.1 Overview and Structure of the Thesis

This thesis is subdivided into four parts. Each part contains chapters that deal with
related features of TreeShredder.

Part [l Introduction and Materials (the current part), introduces the reader to
basic concepts in phylogenetics and the datasets and computational resources used
to demonstrate TreeShredder’s performance throughout this thesis.

Part [, Software and Optimization, is more technical and explains the program
components and data structures of TreeShredder. It also describes how they work
together in a typical TreeShredder call:

e Treeshredder’s program structure is explained in chapter [3

e The data structure used to represent splits and the challenges for paralleliza-
tion are described in chapter [4

e The first step in a typical TreeShredder workflow is obtaining splits. This
is done by extracting them from Newick strings or reading them from a
TreeShredder file, which is designed to speed up split information storage and
retrieval (see chapter [5).

Part Methods in TreeShredder, introduces the methods implemented for
TreeShredder’s diverse applications in detail. Additionally, it presents the runtime
and memory storage results of these applications:

e TreeShredder can map split information onto a reference tree (see chapter @,
or

e find trees in a set that are congruent with incomplete splits (see chapter [7)),
which are splits where some, ambiguous taxa may occur on either side of the
split.

1.1 Overview and Structure of the Thesis

e Additionally, TreeShredder can create a variety of consensus trees (see chapter
. This allows the researcher to depict the tree information from a set of
(potentially conflicting) trees that have identical taxa in a single tree.

e However, if the taxon sets of the trees differ, a matrix representation for su-
pertree construction is needed (see chapter [9).

e TreeShredder can also calculate the similarity of two trees using the Robinson-
Foulds distance (see chapter , and

e give a measure of the overlapping occurrence of two splits in the trees, called
Split Co-Occurrence (see chapter .

Part [[V], Summary, is the overall conclusion of this thesis and provides an outlook
for additional methods that could be implemented in TreeShredder in the future.

2 Materials and Resources

In the following I describe the datasets and computational resources I used to mea-
sure TreeShredder’s performance in benchmarks as well as comparisons against other
software.

2.1 Datasets

In this thesis, I gauge TreeShredder performance and compare it against RAxML
and BOOSTER using eleven different tree datasets. For better readability I refer
to the different datasets by a three-letter prefix followed by the number of taxa
in that dataset. The eleven datasets are: Wnt (WNT-82), CRF01 (CRF-2696),
pol_nonrecombinant (POL-9147), acol gene (ACO-225), PTPN13 gene (PTP-116),
Pfam Domain PF01546 (PF1-367), Pfam Domain PF07690 (PF7-205), and Gentrius
(GEN-404).

WNT-82 are 1,000 animal trees with 82 taxa computed with the MrBayes software
(Lengfeld et al., 2009).

CRF-2696 are 1,000 HIV Ultrafast Bootstrap trees (UFBoot; Minh, M. A. T.
Nguyen, and Haeseler, 2013) with 2,696 taxa and were provided by Dim-
itrios Paraskevis (Department of Hygiene Epidemiology and Medical Statis-
tics, National and Kapodistrian University of Athens).

POL-9147 are 1,000 HIV-1 group M UFBoot trees with 9,147 taxa (Lemoine et
al., 2018)).

ACO-225 are 100,000 acol gene UFBoot trees with 225 taxa (Reddy et al., 2017).

PTP-116 are 100,000 PTPN13 gene UFBoot trees with 116 taxa from the Or-
thoMaM database (Ranwez et al., [2007)).

PF1-367 are 100,000 Pfam Domain PF01546 UFBoot trees with 367 taxa from
the PANDIT database (Whelan et al., |20006).

PF7-205 are 100,000 Pfam Domain PF07690 UFBoot trees with 205 taxa from
the PANDIT database (Whelan et al., |2006)).

GEN-404 are about 15 million multi-gene trees with 404 taxa forming a terrace
(Sanderson, McMahon, and Steel, 2011)) of equal likelihood where genes are
missing. This dataset was created with the Gentrius software, which produces
such terraces for multi-gene alignments. Olga Chernomor (CIBIV, University
of Vienna), the developer of Gentrius, kindly provided the dataset.

2 Materials and Resources

RAN-200, RAN-300, and RAN-400 contain 1 million random trees with 200,
300, and 400 taxa, respectively. They were created with the GenerateTrees
tool (Schmidt, 2007)).

2.2 Computational Resources and Benchmarks

The benchmarks on the Linux operating system were performed at the Center
for Integrative Bioinformatics Vienna (CIBIV) on an AMD Ryzen 7 1700X Eight-
Core Processor with 32 GB memory and 16 virtual processors allowing for hyper-
threading. Parallel speedup benchmarks were done on an AMD EPYC 7501 32-Core
Processor with 2.1 TB memory and 128 virtual processors. The benchmarks on the
Windows operating system were performed on an Intel Core i5-8250U CPU with 4
cores, 8 threads, and 8 GB memory.

To avoid network traffic delays, input and output data were kept in local storage.
Data points represent the median value of 5 repetitions.

10

Part I

Software and Optimization

11

3 Program Structure

The aim of this chapter is to give the user a better understanding of TreeShred-
der’s components and how they work together during execution. TreeShredder is a
C++ program and besides the obligatory main() function, it comprises four major
classes, namely Split, NewickParser, DataDepot, and CommandlineParser. In ad-
dition, the libraries Nexus Class Library (NCL; Lewis, 2003), zlib (Gailly and Adler,
2022), boost: :dynamic_bitset (Siek and Allison, 2017), and utility functions have
a supportive role.

Fig. shows the program structure of TreeShredder as a Unified Modeling Lan-
guage (UML) diagram (Object Management Group, 2017). The main() function
initializes a CommandlineParser object and then calls the execute () method which
executes the tasks determined by the command-line flags in the correct order. Some
of these flags are processed solely in the CommandlineParser object, but most re-
quire a DataDepot object. This object has C++ standard containers for trivial,
nontrivial and root splits, as well as information about which split is contained in
which tree. To parse Newick tree strings the DataDepot object uses a NewickParser
object which returns extracted split information and creates Split objects which
are stored in the split containers.

The Nexus Class Library (NCL) parses Nexus format files, zlib compresses and
decompresses file output and input, and boost: :dynamic_bitset represents bipar-
titions on taxon sets (i.e., splits; see chapter . These libraries are used by the
respective classes they are attached to in Fig. [3.1] The util file contains utility func-
tions that are used by all classes of TreeShredder and macros that allow the user to
quickly change settings that affect the whole program, e.g., output decimal precision
of number values and metacomment key names.

Because the creation of dynamic_bitsets is computationally expensive, copying
Split objects is kept to a bare minimum. Additionally, to maintain conceptional
simplicity, identical Splits only exist once in the program. To achieve this, pointers
offered by the C++ memory library, chiefly std: : shared ptr, are used to keep track
of created Splits, avoid unnecessary copying, and prevent memory leakage as the
destruction of heap objects is automatically managed by the memory library.

3.1 Program Components

3.1.1 main() function

This is the entry point of the TreeShredder program. It has a try-catch block which
tries to create an instance of CommandlineParser, and then tries to execute it using
the execute() method. If an exception was not caught and dealt with further

13

3 Program Structure

Split
variables:
dynamic_bitset
Split info
methods:
add / update()
- l checkCompatibilityWithSplit() boost
Main J - isCongruentWithincompleteSplit() | dynamic
util calcHammingDistance() bitset
1.% 1.%
1 1
DataDepot NewickParser
CommandlineParser
variables: variables:
variables: master taxa use Tree / Split info containers
commandline flags Split containers ~ |tmmmmmn2 root split pair
DataDepot object 1 splits matrix returns
>— . Splitinfo _ { methods:
methods: methods: parseNewickWithReference()
execute() ’ parseNewickTrees() updateLeaflnformation()
readTaxaFile() readNewick / NexusFile()
writeMatrixRepresentation() readSplitfileAndWriteCongruencyFile()
writeIncompleteSplitsFile() read / writeTreeShredderFile()
writeTaxaFile()
writePairwiseSplitsOverlap() zlib
writePairwise TreeRF Distances()
identicalSplitsTopo / Info()
mergeWithTreesOrSplitsinfos()
referen(;e / copsensusTree() Nexus
compatibleSplitsSets() Class Lib
calcTransferDistAndInstabScores()

Figure 3.1: UML program structure of TreeShredder: For better clarity, only

14

the main variables and methods of CommandlineParser, DataDepot,
NewickParser and Split classes are listed. The zlib, Nexus Class Li-
brary and boost: :dynamic_bitset libraries are attached to the classes
they are used in. The utility functions are used in all classes, for visu-
alization purposes the util file is attached to the main() function. The
arrow with the full diamond shape connecting the CommandlineParser
with the DataDepot class indicates a “composition” relationship. This is
because the CommandlineParser object initializes one DataDepot object
which is destroyed if the CommandlineParser is destroyed. In TreeShred-
der, a DataDepot object exists only within a CommandlineParser ob-
ject. The dashed arrows connecting the DataDepot class with the
NewickParser class indicate that the former uses the latter (when pars-
ing Newick strings), and the latter returns split information. The ar-
rows with the empty diamond shapes connecting the DataDepot and
NewickParser with the Split class indicate an “aggregation” relation-
ship. This is because the Split objects are not necessarily destroyed
when either of the former two are.

3.1 Program Components

downstream in the program logic, it will be caught here and the program will be
terminated with an appropriate exit code and exception message.

3.1.2 CommandlineParser class

The CommandlineParser class initializes a DataDepot object, stores the command-
line flags that were passed in the TreeShredder program call, and then executes their
corresponding methods in the correct order. Some flags, in particular those that do
not need the help of a NewickParser or create Splits, will be executed by methods
of the CommandlineParser. Most flags, however, are processed by the DataDepot
class.

3.1.3 DataDepot class

When DataDepot reads Newick or Nexus files it uses NewickParser to parse their
Newick strings. The NewickParser then returns the extracted split information,
which is stored by the DataDepot containers as key:value pairs with unique keys.
As a consequence, the information of identical splits is condensed into one unique
Split object, which is then stored in one of three different containers depending on
whether it is a trivial, nontrivial, or root split.

Additionally, pointers to the unique nontrivial Split objects are stored in a vector.
This makes it possible to retrieve the order in which splits were created when writing
a TreeShredder file (see section [5.5)).

The information about which split is contained in which tree is stored in a vector
of vectors of pointers to the Split objects. Here, the inner vectors represent the
pointers to the nontrivial splits of the trees, which are held by the outer vector in
the order these trees were parsed. This information is important for, e.g., Transfer
Bootstrap Expectation (see subsection, which requires the original relationship
of trees to their nontrivial splits.

The taxon names are stored in a vector of strings.

The original Newick string is stored to be retrieved by the reference tree routine
(see section [6.2.2)).

To keep the creations of dynamic bitsets to a minimum, the splits matrix (a
vector of dynamic_bitsets) belongs to the DataDepot but is passed by reference to
the NewickParser when it parses a Newick string.

3.1.4 NewickParser class

The NewickParser class parses a Newick tree string and extracts node and edge
information and maps it to the correct split using Marc Zobel’s Splits Extraction
Algorithm (see section [5.2)).

To minimize the number of dynamic bitset creations, two mitigation strategies
are employed:

e The splits matrix (a vector of dynamic_bitset) for Marc Zobel’s Splits Ex-
traction Algorithm is reused such that it needs to be created only once (as

15

3 Program Structure

opposed to as many times as there are trees). For this purpose, the splits ma-
trix belongs to the DataDepot but is passed to the NewickParser by reference
each time a Newick tree is parsed.

e Trivial and nontrivial Split objects are only created once they are known to
be new and unique. This is done because in a set of similar trees, as is common
in phylogenetic datasets, the number of unique splits is typically much smaller
than the total number of splits, which is ¢(2n — 3) for ¢ bifurcating trees with
n taxa. Fig. shows that the number of unique nontrivial splits saturates
with increasing number of trees in biological datasets. Conversely, the number

of unique nontrivial splits saturates much more slowly in the datasets with
trees with randomized topology (see Fig. [3.2b)).

3.1.5 Split class

TreeShredder is based on splits, which are bipartitions on the set of taxa of the
trees. The basic operational unit of TreeShredder are objects of the Split class.
A Split object has a dynamic _bitset to represent its bipartition on the set of
taxa. Since there are two ways to represent the same split (two flipped equivalents:
e.g., 00001 and 11110), by convention, the first taxon is defined to be equal to 1
to be able to distinguish between the two and, thus, guarantee uniqueness of the
splits in the program. The fact that the same split can be represented in two
ways can help speed up certain routines with bitwise operations (e.g., in Transfer
Bootstrap Expectation calculation; see subsection . Therefore, at the cost of
memory, a second dynamic_bitset is stored in every Split object, which is the
flipped equivalent of the first.

Additionally, the total number of taxa, the number of taxa on the smaller side of
the split, the support of the split (i.e., how often the split occurs in all trees), and
the sum of branch lengths (from which the average can be calculated) is stored.

Edge and node comments are stored as a vector of strings. Nexus edge and node
metacomments (BEAST developers, 2017) are stored as key:string or key:double
pairs. When parsing Newick trees, node (meta)comments are interpreted as be-
longing to the node that is farther from the root of the Newick string of the tree.
Therefore, when gathering node information of identical splits, TreeShredder’s re-
liance on bipartitions as the representation of splits prohibits knowing to which of
the two adjacent nodes of an edge the node information belongs. This is because
the directionality of parsing is determined by the placement of the root, which may
differ in respect to the split in question. This may render the node (meta)comment
information useless if that directionality is not preserved, which is probable when
parsing multiple trees (see subsections and . These restrictions do not
apply to edge (meta)comments.

Newly created Split objects are given an ID when they are known to be unique.

3.1.6 util.cpp file and macros

The util.cpp file contains functions that are used by the classes but are not particular
to either of them. Additionally, it defines macros that can be changed to customize

16

3.1 Program Components

Number of unique Nontrivial Splits in biological datatsets
as a function of number of trees

15000
2]
=2
7
< 10000+
2
=]
c
e —e
C A d
o
>
.8 5000+
c
5
POL-9147
-o— CRF-2696
o -o—WNT-82
1 200 400 600 800 1000

number of trees

(a) Number of unique nontrivial splits in biological datasets: The number of unique non-
trivial splits of CRF-2696 and POL-9147 increases logarithmically with the number
of trees — it saturates quickly. WNT-82 saturates more slowly. Apparently, WNT-82
trees are more diverse.

Number of unique Nontrivial Splits in random datasets
as a function of number of trees

~o— RAN-200
RAN-300
+ 2000000001 RAN-400
=
7]
<
S
IS
o
c
& 100000000
>S5
=3
c
=)
0 -
! 250000 500000 750000 1000000

number of trees

(b) Number of unique nontrivial splits in random datasets: The number of unique non-
trivial splits of RAN-200, RAN-300, and RAN-400 increases roughly linearly with the
number of trees — it saturates slowly.

Figure 3.2: Number of unique nontrivial splits in biological and random datasets

17

3 Program Structure

TreeShredder to the user’s preferences.

The most important macro is the index offset. Setting the index offset macro to 0
(which is the default) forces TreeShredder output indices to start at 0. Analogously,
setting it to 1 forces indices to start at 1. Internally, TreeShredder works with 0
based indices. Thus, if it reads in indices, e.g., when reading the “Trees” block
of TreeShredder files (see section [5.5), the index offset will be subtracted. This
will cause problems when the output of one TreeShredder instance is read in by
another instance with a different index offset. Therefore, I advise the TreeShredder
community to decide on an index offset value and stick to it to facilitate sharing of
output produced by TreeShredder. When TreeShredder is executed, it will output
the index offset. A good practice is keeping log files for later reference.

The fraction notation macro can be used to customize the output of fractions. If
it is set to 1.0 (which is the default), then fractions of certain split measures (see
section will be output as a fraction. However, choosing a different value, e.g.,
100.0, will output these split measures as percentages. The same caveat applies
as with the index offset macro when differently customized TreeShredder instances
read each other’s output. Note that the fraction notation macro must be a float,
otherwise TreeShredder could cut off decimal places due to integer divisions in C++.

The branch length macro sets the default branch length of branches. TreeShredder
assumes this branch length for branches that have no length assigned. Per default,
this macro is 1.0.

The user can customize the number of decimal places displayed in TreeShredder
float values output by changing the decimal places macro. TreeShredder will round
the values, not merely cut off decimal places.

Last but not least, the user can customize the names of the keys that TreeShredder
uses for its Nexus metacomment output (e.g., split measures) by customizing the
metacomment macros. These names are reserved in TreeShredder and cannot be
used for other keys in metacomments.

3.1.7 Libraries and other Accessories

There are four libraries used in TreeShredder (see Fig. [3.1):

The zlib library (Gailly and Adler, 2022)): This is used to read compressed input
from and write compressed output to a file.

The Nexus Class Library (Lewis, 2003): This offers tools to extract Newick tree
strings from Nexus files. Once they are extracted, TreeShredder proceeds the
same way as if they originated from a Newick file.

The boost: :dynamic_bitset library (Siek and Allison, [2017)): This is used for the
basic representation of bipartitions on the set of taxa, i.e., splits (see subsection
4.1.1)).

The util.cpp file: This file contains my functions that are globally useful and are
not specific to one particular class, as well as macros to quickly customize
TreeShredder.

18

3.2 Conclusion

3.2 Conclusion

TreeShredder comprises four classes, a main() function and four libraries. The
NewickParser class parses Newick tree strings and returns the extracted splits and
their information to the DataDepot class, which creates the Split objects. Features
are processed in the DataDepot and CommandlineParser classes, which executes the
tasks chosen with the command-line flags in the correct order. Splits are the basic
objects in TreeShredder. They are managed by pointers to avoid time-consuming
copying and guarantee their uniqueness in the program.

The start of indices, fraction notation, decimal places, default branch length,
and reserved metacomment names can be customized by the user in the util.cpp
file. The TreeShredder community should find a common set of customizations to
reduce confusion and facilitate the sharing of TreeShredder resources.

19

4 Split Representation and
Parallelization

4.1 Introduction

This chapter deals with determining a data structure to efficiently store the data. I
evaluate this especially in the context of downstream parallelization.

4.1.1 Split Representation

Choosing the optimal representation and data structures to store splits is crucial for
the performance of TreeShredder. This is because splits are the fundamental objects
which are created and used in operations thousands to millions of times in a typical
TreeShredder call.

The C++ standard library (std::) and third party libraries like BOOST
(boost: :) offer several classes suitable to store bipartitions on a set, such as

e The std::vector<bool> class: a vector of boolean values representing the
taxa. Depending on the implementation, this class can be space-efficient by
assigning each value 1 bit instead of 1 byte (which is typically the size of bool).

e The std: :vector<char> class: a vector of char values where each char (8 bits)
can represent 8 taxa. I implemented a wrapper class containing an object of
this class. Individual bits of a byte of a char are assigned 1 taxon. Bit masks
are used to retrieve the bits in a byte.

e The std: :bitset class: a set of bits of a fixed size defined at compile time
representing the taxa. This class offers standard logic operators that are ex-
tensively used for split operations. However, the number of taxa is not known
at compile time of TreeShredder, which precludes defining the correct size.

e The boost::dynamic_bitset class (Siek and Allison, 2017) of the BOOST
library (Boost developers, 2017)): a set of bits similar to std::bitset, but
with dynamic memory allocation. The size of the taxon set need not be known
at compile time.

These classes differ in their implemented methods and operators, parallelizabil-
ity, extent of optimization by the compiler, and dynamic memory allocation, with
considerable runtime implications.

Dynamic memory allocation is crucial when the size of the sets is not known
at compile time, as is the case with taxon sets in TreeShredder. This is why

21

4 Split Representation and Parallelization

the std::bitset class cannot be used. The boost::dynamic_bitset class can
be thought of as an extension of the static std::bitset class and was created
with dynamic memory allocation in mind (Boost developers, 2017; Siek and Allison,
2017).

To find the best split representation class, I implement a testing routine that
repeatedly executes — single-threaded and multi-threaded — certain tasks which are
ubiquitous in TreeShredder : it creates splits using the different classes, sets specific
taxa, flips all bits and inserts them into a container with an object of the class as
key and a pointer to the inserted object as value.

4.1.2 Parallelization and Operating Systems

Besides efficient algorithms and data structures, parallelization often is key to run-
time performance. But performance only improves if they work together seamlessly.
Choosing the right parallelization API requires thorough testing of the program’s
basic operational units. In TreeShredder’s case this is the boost: :dynamic_bitset
class, which is used to represent splits. TreeShredder is designed to deal with thou-
sands or even millions of trees containing thousands of taxa. With these large
numbers, the number of unique splits could grow by tn, where ¢ is the number of
trees and n is the number of taxa.

4.2 Methods

4.2.1 OpenMP

OpenMP is an easy-to-use collection of compiler directives, library routines and
environment variables to enable shared-memory parallelism in C, C++ and Fortran
(Dagum and Menon, 1998; OpenMP Architecture Review Board, 2018).

It implements a fork-join model of parallel execution defined by directives (see
Fig. . This parallel execution is achieved by assigning execution work, i.e., tasks,
to threads. Threads are execution entities with access to shared or thread-private
variables. The shared access is for data in memory and other local storage, such
as machine registers and cache, which speeds up access to shared data (e.g., in a
for loop). Each thread also has access to its own thread-private memory for private
variables that cannot be accessed by other threads. (OpenMP Architecture Review
Board, 2018, p. 23)

If a thread enters a parallel region, denoted by a parallel construct, it becomes
the master thread of a newly created team of threads that execute the tasks of the re-
gion in parallel. The number of threads in the team can be set with the num_threads
clause in the directive. Every thread in the team (including the master thread) then
executes all the code in the region, thus, they execute single instructions but on
multiple data (SIMD, Rauber and Riinger, 2012, p. 19). (OpenMP Architecture
Review Board, 2018, p. 74 ff.)

However, if the team of threads enters a worksharing construct, the work is
divided among the threads instead of being executed multiple times (OpenMP Ar-
chitecture Review Board, 2018, p. 21).

22

4.2 Methods

parallel region

master thread
> o Fom >

Figure 4.1: OpenMP fork-join model: When a thread encounters a parallel region
(blue), it becomes the master thread (red) and creates a team of threads
(green, includes the master thread): this is the forking step. At the end of
the parallel region, there is an implicit barrier where the threads of the
team wait for each other and cease to exist: this is the joining step. Only
the master thread continues execution. Each thread can access shared
variables in memory and private variables in thread-private memory. If
the parallel region contains a worksharing-loop the iterations of the
loop are distributed as chunks among the threads of the team.

There is an implicit barrier at the end of a parallel region where threads wait
for each other to finish their tasks. After that, only the master thread continues
execution of code outside the region. (OpenMP Architecture Review Board, [2018;
p. 76)

4.2.1.1 Worksharing-Loop and Scheduling

The worksharing-loop construct of a parallel region causes the iterations of a loop
to be divided into chunks. They are then distributed among the threads of a team
and executed in parallel. An example is the for directive (OpenMP Architecture
Review Board, [2018 p. 101 ff.). There are three kinds of scheduling strategies
available:

e static: causes the iterations of the for-loop to be divided into chunks of
equal size and distributed among the threads in a round-robin system. The
chunk size can be customized. By assigning each thread exactly one chunk, the
information of the tasks can be merged in the initial order of their iterations
as if they had been executed sequentially.

e dynamic: like static, but the chunks are distributed on request by the threads
once they are ready to execute a new chunk. This is useful when the amount of
work needed to complete each chunk is uneven and, therefore, the distribution
of an equal number of chunks to achieve roughly equal execution time for each

23

4 Split Representation and Parallelization

thread (called load balancing) does not work. This scheduling has higher over-
head than static scheduling because it dynamically distributes the chunks at
runtime.

e guided: like dynamic, but the initial chunks are larger to decrease overhead,
and chunks get smaller towards the end to improve load balancing.

4.3 Results and Discussion

Fig. shows the parallel runtimes and speedup of the split representation classes
mentioned in subsection [4.1.1]on Windows (Intel Core i5-8250U CPU with 4 cores, 8
threads, and 8 GB memory). This is done by simulating for each class common op-
erations that are expected to be executed many times in a typical TreeShredder call
using different numbers of threads. These operations are: the creation of splits for
each class, setting specific bits, flipping all bits and inserting them into a container
with an object of the class as key and a pointer to the inserted object as value.

It can be seen that the runtime on Windows generally increases the more threads
are used, the opposite of what would be expected. The split representation classes
vector<char> and dynamic bitset are the fastest when using only 1 thread and
get slower with more threads.

Fig. shows the parallel runtimes and speedup of the split representation
classes on Linux. Here, the increase in speedup generally slows down beyond four
threads. Even though vector<bool> shows the best speedup, vector<char> and
dynamic bitset have the fastest runtimes overall.

Contrary to what was expected, using OpenMP together with each of the classes
did not lead to a speedup on Windows, but instead to a slowdown. Apparently,
the shared-memory architecture of Windows is not conducive to creating the split
representation objects in parallel. Even extensive tests were not able to elucidate
why no speedup could be achieved by using more CPU cores with OpenMP. This
surprising result, where the speedup depends on the operating system, necessitates
that the user should first test the suitability of their machine and operating system
for parsing Newick trees in parallel (see subsection [5.1.2)).

4.3.1 Testing Parallelizability on Operating System

To test whether the operating system TreeShredder is run on is suitable for the
parallel parsing of Newick trees, I implemented the -testParallel flag option.
This routine creates dynamic bitsets, sets bits, and flips all bits. This is done
equally often using one thread (serial) and two threads (parallel), subsequently the
serial and parallel runtimes are compared by calculating their ratio. If the ratio of
the runtimes is very low, the parallelizability of dynamic_bitsets is lacking. In that
case, using the -parseParallel flag to parse Newick files in parallel is not advised.
However, if the runtimes ratio is high (> 1), parsing Newick files in parallel is
justified.

Note this testing routine does not parse any Newick trees, but there is a grey
area where the parallel part of the test takes longer than the serial part (i.e., if

24

4.3 Results and Discussion

Parallel runtime
Different split representation classes, 1000 taxa, 100000 objects, Windows

6 -
0 44
ke
c
o
[&]
Q
%]
2 -
vector<bool>
vector<char>
-— dynamic_bitset<>
O -

1 2 4 8 16
number of threads

(a) Parallel runtimes of different split classes on Windows: The testing routine of the split
representation class tends to take longer the more threads are used. Single-threaded
vector<char> and dynamic_bitset are fastest.

Speedup per Thread
Different split representation classes, 1000 taxa, 100000 objects, Windows

1.54
vector<bool>

vector<char>

-e— dynamic_bitset<>

1.0

0.54

time for 1 thread / time for x threads

0.0 ¢ . . .

1 2 4 8 16
number of threads

(b) Speedup of different split classes on Windows: Results below the black line indicate
slowdown, rather than speedup.

Figure 4.2: Parallel runtimes and speedup of different split representation classes
on Windows: Test runs simulate the parallel creation of splits of
the different representation classes (vector<bool>, vector<char>, and
dynamic_bitset), setting specific bits, flipping all bits and inserting
them into a container with an object of the class as key and a pointer
to the inserted object as value.

25

4 Split Representation and Parallelization

Parallel runtime
Different split representation classes, 1000 taxa, 1000000 objects, Linux

3 - vector<bool>
vector<char>
-— dynamic_bitset<>
6_
(%]
©
c
3
@ 47
n
2_
o
O_ v - A 4 A\ J
1 2 4 8 16
number of threads
(a) Parallel runtimes of different split classes on Linux: vector<char> and

time for 1 thread / time for x threads

dynamic_bitset are the fastest.

Speedup per Thread

Different split representation classes, 1000 taxa, 1000000 objects, Linux

16

2_
l_

-e— dynamic_bitset<>

vector<bool>

vector<char>

_— 1

2 4 8 16
number of threads

(b) Speedup of different split classes on Linux: The black line indicates perfect speedup.
vector<bool> has the best best speedup.

Figure 4.3: Parallel runtimes and speedup of different split representation classes

26

on Linux: Test runs simulate the parallel creation of splits of the
different representation classes (vector<bool>, vector<char>, and
dynamic_bitset), setting specific bits, flipping all bits and inserting
them into a container with an object of the class as key and a pointer
to the inserted object as value.

4.4 Conclusion

the runtimes ratio is < 1). In this grey area, speedup using multiple threads when
parsing a Newick file in parallel could still be possible. This is because the speedup
could be achieved in other aspects of the tree parsing routine (see section , even
though the creation of dynamic_bitsets and setting of bits is slower.

Therefore, before parsing a large Newick file in parallel, I recommend double-
checking the parallel parsing of Newick strings with a smaller Newick file example
on the machine and operating system planned to use.

4.4 Conclusion

Based on the results, I decided to use boost::dynamic_bitset to represent splits
in TreeShredder for the following reasons: It allows for dynamic memory allocation,
which is crucial when the number of taxa is not known at compile time. It achieves
the fastest runtimes when run multi-threaded on Linux (with acceptable speedup),
and the fastest when run single-threaded on Windows. Finally, the BOOST library
offers extensive, well-documented standard logical operations such as bitwise AND,
OR, and XOR.

27

5 Reading Files and Parsing Trees

There are diverse input file formats accepted by TreeShredder, which contain various
information of trees, splits, or taxa and will be described in the following.

Files containing tree information such as Newick, Nexus and TreeShredder files
are read with the -f flag and can be compressed or uncompressed. They are the
main source of information for TreeShredder. Two other types of files are Taxa files
and Split files, which contain taxon names and incomplete splits, respectively.

5.1 Reading Newick and Nexus files

The Newick (Felsenstein et al., [1986) and Nexus (D. R. Maddison, Swofford, and
W. P. Maddison, [1997) file formats are the common formats to store tree information
input in phylogenetic programs.

The Newick tree format is a text format that joins nodes (which represent whole
subtrees when they are internal nodes) of a tree by enclosing them in parentheses
forming new nodes (or subtrees). Thus, the relationship of nodes (or subtrees) of a
tree can be written as a single string of characters. The subtrees are separated by
commas and the Newick string is terminated by a semicolon (Felsenstein et al.,|1986}
Page, 2003). By convention, a Newick tree is assumed to be rooted if the outermost
parenthesis encloses exactly 2 subtrees, and unrooted in all other cases. See Figs.|1.1
and for a depiction of Newick trees and their corresponding Newick strings. The
Newick file format consists of one or more Newick trees, which may be newline-
separated. The Nexus file format is modular and consists of blocks such that related
information can be stored in addition to Newick trees (D. R. Maddison, Swofford,
and W. P. Maddison, 1997)). This related information may include morphological,
molecular, distance, assumptions, or sets data, and more. TreeShredder uses the
Nexus Class Library (Lewis, 2003) to extract information of specific blocks (mainly
the TREES block) from Nexus files (see chapter [3)).

The routine for reading Newick and Nexus files is a method of the DataDepot
class (see subsection . It is a two-step process: first, the Newick tree strings
are extracted from the file, then they are parsed.

5.1.1 Newick trees extraction step

The Newick trees are counted and then extracted from the file. With the -range
flag, one can specify the first and last trees of a range tha is to be extracted. The
Nexus Class Library is used to extract Newick tree strings from Nexus files.

The set and order of the taxa in the first extracted Newick string becomes the
master taxon order (except if a Taxa order file is given by the user with the -t flag,

29

5 Reading Files and Parsing Trees

see section , which is used to check that all trees in a file contain the same taxon
set even if the order differs (which is to be expected).

5.1.2 Newick trees parsing step — in serial and in parallel

Once the Newick tree strings are extracted, they are parsed using the NewickParser
class (see subsection [3.1.4)). This part of the routine can be parallelized using the
-parseParallel flag (only after checking that the parallel parsing of Newick trees
is possible on the operating system using the -testParallel flag, see subsection
5)

The serial mode creates a NewickParser object for each Newick tree in a serial
manner. The NewickParser object stores the split and tree information in the
correct containers corresponding to trivial, nontrivial, and root splits (see subsec-
tions [3.1.3 and [3.1.4)). Additionally, the relationship of splits and their trees is also
stored (i.e., which split was contained in which tree). These containers belong to
the DataDepot object but are passed to the NewickParser by reference.

The parallel mode creates NewickParser objects in parallel using OpenMP with
the static schedule. This schedule will distribute contiguous Newick tree blocks to
the threads. The ordered directive then ensures that the threads merge their split
and tree information in the order they were previously assigned the blocks. This is
important for the correct merging of the split and tree information after parsing.
This way, the internal state of the DataDepot object is identical independent of
whether the trees were parsed in serial or in parallel.

5.1.3 Merging files

Using the -merge flag, one can merge the tree information of any number of Newick,
Nexus, and/or TreeShredder files provided their taxon sets are identical.

In addition to being able to merge the information of different file formats this
way, the user can also achieve a kind of pseudo-parallelization when reading the
trees of very large Nexus or Newick files (i.e, several million trees). The first step
to do this is “splitting” the file’s trees, e.g., by reading consecutive ranges (con-
taining millions) of trees and outputting TreeShredder files for the trees in each
of those ranges separately. In the next step, these TreeShredder files can then be
merged using the -merge flag. This pseudo-parallelization method is independent of
the “proper” parallelization method using the -parseParallel flag (see subsection
b.1.2). Splitting tree information and then merging their TreeShredder files can also
be used when the tree information of interest resides in non-consecutive ranges of
(large) Newick or Nexus files.

5.2 Splits Extraction Algorithm

The Splits Extraction Algorithm extracts all bipartitions on the taxon set from a
Newick tree string that are induced by parenthesis notation (see section . The
approach used in TreeShredder was developed by Marc Zobel for the software devel-
opment course “PR Praktikum aus Bioinformatik” (“PR Laboratory Bioinformat-

30

5.2 Splits Extraction Algorithm

ics”) at University Vienna in 2015. Unlike other approaches, the splits are directly
extracted from the Newick string, without the detour of first constructing the tree
graph.

Originally, the algorithm determined all nontrivial splits of a tree while pars-
ing the Newick string and keeping track of taxon names, and opening and closing
parentheses. I extended the algorithm in four ways:

1. T extended the algorithm to simultaneously extract the node and edge infor-
mation of trivial and nontrivial splits, such as comments, metacomments, or
branch lengths following a colon ‘:’. (Note that it is the DataDepot class which
connects the node and edge information of the trivial splits to their respective
trivial splits, which are not extracted by the Splits Extraction Algorithm.)

2. I extended the algorithm to determine the rootedness of the Newick tree (see

subsection [5.2.1]).

3. I extended the algorithm to re-use the splits matrix and its dynamic_bitsets
to parse different Newick tree strings. This is necessary because creating the
splits matrix again for each Newick string would be computationally very
expensive and detrimental to parallelization.

4. T extended the algorithm to count the opening parentheses in the Newick
string to determine how many dynamic bitsets are needed. Combined with
the knowledge how many taxa there are in the trees, the sizes of both, the splits
matrix and the dynamic_bitsets, can be predefined. Doing this is much faster
than the alternative of expanding the dimensions of the matrix whenever an
opening parenthesis or taxon name was parsed.

The Splits Extraction Algorithm is implemented in the NewickParser class (see
subsection . Fig. (page explains the algorithm with an example of
a rooted Newick tree (see Fig. |5.1). An opening parenthesis ‘(’ indicates that a
new split is begun. An index variable that increases with each encountered open-
ing parenthesis is pushed onto a stack. Those index variables correspond to a
dynamic bitset in the n x m splits matrix, where n is the number of splits (=
number of opening parentheses) and m is the number of taxa. A closing parenthe-
sis ‘)’ indicates that a split is completed — the previously added index variable is
popped from the stack. Whenever a taxon name is encountered, the bits at the
position of that taxon in all splits whose indices are on the stack will be set to 1.
Thus, a vector of dynamic_bitsets will be filled with the split information induced
by each pair of parentheses of the Newick string.

To keep the computationally expensive creation of dynamic bitsets (see sub-
section [{4.1.1)) to a minimum (which also facilitates parallelization of the parsing
routine), the splits matrix is re-used after setting all bits to 0 after parsing a Newick
string. Thus, the runtime complexity of parsing ¢t Newick strings of size x is given
by O(t * z).

The Splits Extraction Algorithm does not extract trivial splits, i.e., those of edges
that connect a leaf node with an internal node. These splits must be created sepa-
rately (and only once, because the set of trivial splits is identical among trees).

31

5 Reading Files and Parsing Trees

0:11111

1:00011 2:11100

3:11000

A B C D E
(A , B), (C, (D , E)));

Figure 5.1: Example of a rooted tree and its corresponding Newick string: This tree’s
Newick string is used to demonstrate the Splits Extraction Algorithm in
Fig. Only nontrivial splits are extracted by the algorithm. The
number before the colon indicates the index of the split in the splits
extraction matrix. The 0:11111 split corresponds to the outermost pair
of parentheses, which does not induce a bipartition on the taxon set.
The bits in the “bit notation” format correspond to the taxa in reverse
order.

5.2.1 Extending the Algorithm to determine Rootedness

Rootedness of trees introduces a special case where the two root split arms induce
identical bipartitions on the set of taxa. A Newick tree is assumed to be rooted if the
outermost pair of parentheses contains exactly 2 nodes. There are three possibilities:
these 2 nodes are 2 internal nodes (e.g., “((A,B), (C,D));”), 1 internal node and 1
leaf node (e.g., “(A, (B,C));”), or 2 leaf nodes (e.g., “(A,B);”).

By counting how often the stack contains exactly 1 index variable (the one cor-
responding to the outermost split) after a taxon name or a closing parenthesis was
parsed, I extended the Splits Extraction Algorithm to determine if the Newick tree
is rooted while extracting splits. The tree is rooted if the root node degree count is
exactly 2, and unrooted in all other cases. In Fig. the stack contains exactly 1
index variable in steps 5 and 12, thus, the example Newick tree is correctly classified
as rooted.

32

5.3 Reading Taxa files

5.3 Reading Taxa files

The Taxa file contains newline-delimited taxon names. It is read with the -t flag.
The taxon names will then comprise the master taxa. This is used to set a cus-
tom taxon order, or provide taxon names for the -incompleteSplits flag, which
generates random incomplete splits of a custom taxon set.

5.4 Reading Split files

The Split file contains newline-delimited incomplete splits (see section . It is
read with the -cong flag. This is used to find trees that are congruent with a given
set of incomplete splits, obtain congruency measures of the incomplete splits, and
determine the congruency status of the nontrivial splits with the incomplete splits

(see section [7.1]).

5.5 Reading TreeShredder files

I developed the TreeShredder file format to store all necessary information for a
TreeShredder analysis. Its objective is to save time when reanalysing or merging
datasets. The file format contains blocks of specific data relating to split information
and tree information that resembles the internal data structure of TreeShredder
after parsing Newick strings. It contains information that is more condensed than
the information of an equivalent Newick file. Thus, it is smaller, faster to read
(see subsection , and easier to manipulate. Converting Newick file information
to TreeShredder file information is irreversible — some information is lost. This is
because node and edge information (e.g., branch length) is summed up or otherwise
condensed, which makes it impossible to discern to which tree these data belong.
The relationship of root splits to their trees is also lost, while the relationship of
nontrivial splits to their trees is not. However, all information that is useful to
TreeShredder is fully preserved.

The TreeShredder file reading routine is a method of the DataDepot class. The
blocks of the TreeShredder file correspond to instance variables of the DataDepot
class. Split information strings are parsed by and stored in Split objects which are
then stored in the corresponding containers of the DataDepot object. TreeShred-
der files must contain a “Taxa” and a “Trivial Splits” block, but may miss, e.g.,
“Nontrivial Splits”, “Root Splits” and “Trees” blocks (see Fig. [5.3b).

33

5 Reading Files and Parsing Trees

((a,B), (C,(D,E)));
0 00 0 00

0
0
0

o O O

0 00O
0 00O
0 00 RDG=0
((a,B), (C,(D,E)));

0 00 0 00

0
0
0

o o o

0 00
0 00
0 00 RDG=0
((&,B), (C,(D,E)));

0 10 0 00O

1
0
0

o O O

0
0
0

o O O
o O O

((a,B), (C,(D,E)));
0 11 0 00O

1
0
0

o o BB

0 00O
0 00
0 00 RDG=0

((&,B), (C,(D,E)));
0 11 0 00

o o
(=T =R

0 00
0 00
0 00 RDG=1

((&,B), (C, (D,E)));
0 11 0 00

3S]
[= =T
o o PP

0 00
0 00
0 00 RDG=1

((a,B), (C, (D,E)));
0 11 1 00

N
o Ok
o ok

0 00
1 00
0 00 RDG=1

34

Opening parenthesis is parsed.
Index variable 0 is
pushed onto the stack.

Opening parenthesis 1is parsed.
Index variable 1 is
pushed onto the stack.

Taxon name is parsed.
Corresponding bits at the index
variables are set to 1.

Taxon name is parsed.
Corresponding bits at the index
variables are set to 1.

Closing parenthesis is parsed.
The last index variable is
popped from the stack.

Root node degree count is
increased by 1.

Opening parenthesis is parsed.
Index variable 2 is pushed onto
the stack.

Taxon name 1is parsed.
Corresponding bits at the index
variables are set to 1.

5.5 Reading TreeShredder files

((A,B),(C,(D,E))); Opening parenthesis is parsed.
0 11 1 00 Index variable 3 is pushed onto
11 0 00 the stack.
2 00 i1 00
3 00 0 00 RDG=1
((A,B),(C,(D,E))); Taxon name is parsed.
0 11 1 10 Corresponding bits at the index
11 0 00 variables are set to 1.
2 00 i1 10
3 00 0 10 RDG=1
((A,B),(C,(D,E))) Taxon name is parsed.
0 11 1 11 Corresponding bits at the index
11 0 00 variables are set to 1.
2 00 1 11
3 00 0 11 RDG=1
((A,B), (C, (D,E))) ; Closing parenthesis is parsed.
0 11 1 11 The last index wvariable is
11 0 0O popped from the stack.
2 00 1 11
3 0o0 0 11 RDG=1
((A,B), (C,(D,E))); Closing parenthesis is parsed.
0 11 1 11 The last index wvariable is
11 0 0O popped from the stack.
2 0o0 1 11 Root node degree count is
00 0 11 RDG=2 increased by 1.
((A,B),(C,(D,E))); Closing parenthesis is parsed.
0 11 1 11 The last index wvariable 1is
11 0 0O popped from the stack.
00 1 11
00 0 11 RDG=2

Figure 5.2: Example of the Splits Extraction Algorithm, rooted tree: This figure
begins on the previous page. Parsed characters of the Newick string
are highlighted in green. The leftmost column is the stack of index
variables. Popped index variables are highlighted in red. There is one
row of bits for each opening parenthesis (i.e., split) in the splits matrix.
Bits of the splits matrix which are newly set to 1 are highlighted in
yellow. Root node degree count (RDG) increments are highlighted in
blue. Note that the second and third row of bits of the splits matrix
are flipped equivalents. This is because they represent the two edges
connected to the root node (see Fig. [5.1]).

35

5 Reading Files and Parsing Trees

5.5.1 Structure of TreeShredder files

Fig. [5.3] shows an example Newick string and the equivalent TreeShredder file. Cor-
responding data snippets are highlighted in color.

A TreeShredder file starts with a “#@TreeShredderFile” string followed by blocks
of data in a specific order:

1.

The “Taxa” block contains the number of taxa followed by the newline-
separated taxon names.

. The “Trivial Splits” block contains the number of unique trivial splits followed

by the newline-separated information of the trivial splits.

. The “Nontrivial Splits” block contains the number of unique nontrivial splits

followed by the newline-separated information of the nontrivial splits. The
order of the nontrivial splits corresponds to their index (starting at 0 per
default; see subsection [3.1.6), which I implemented to be the exact same order
as they are created when parsing the trees in a file containing Newick trees
using the Splits Extraction Algorithm (see section .

. The “Root Splits” block contains the number of unique root split arms (must

be a multiple of 2) followed by the information of the newline-separated root
split arms.

. The “Trees” block contains the number of trees followed by newline-separated

arrays of space-separated indices of the nontrivial splits (see “Nontrivial Splits”
block) of each tree.

The “Trees” block is optional, TreeShredder can be prevented from reading or
writing it with the -noTreesBlock flag. The “Nontrivial Splits” and “Root Splits”
blocks are omitted if there are no nontrivial splits (as in star trees) or root splits (as
in unrooted trees).

5.5.2 Split information string in a TreeShredder file

The information of a split in a TreeShredder file consists of entries in six tab-
delimited columns (see Fig. [5.3p):

1.

A bit string of 0Os and 1s where the bits correspond to taxa in reverse or-
der, which means that the first taxon is represented by the rightmost (least
significant) bit, and the last taxon by the leftmost (most significant) bit. To
guarantee uniqueness of splits, the rightmost bit (i.e., the first taxon) is defined
to be always 1.

. The number of taxa on the smaller side of the split. This is = 1 for trivial,

and > 2 for nontrivial splits.

3. The occurrence count of the split. This is > 1.

36

5.5 Reading TreeShredder files

() Newick string:
(A: [SmetaNum=0.25], ((B,C:0.66)cherry:0.33, (D[&metastr=bla]: [&metaNum=2.75],
(E[blaNode] : [blaEdge] ,F)) 99) : [&metaNum=0.35]) ;

(b) #@TreeShredderFile
Taxa:
6
A
B
C
D
E
F
Trivial Splits:
6
000001 1 1 2.000000 [&] : [&metaNum=0.350000] []:[]
111101 1 1 1.000000 [&]1:[&] [1:0[1
111011 1 1 0.660000 [&]:[&] [1:0[1
110111 1 1 1.000000 [&metaStr=bla] : [&metaNum=2.750000] [1:01]
101111 1 1 1.000000 [£]:[&] [blaNode]: [blaEdge]
011111 1 1 1.000000 [&]:[&] [1:0[1
Nontrivial Splits:
3
111001 2 1 0.330000 [&énodeInfoString=cherry] : [&] [1:01
000111 3 1 1.000000 [&] : [EnodeAsEdgeInfo=99.000000] []1:[]
001111 2 1 1.000000 [&]1:[&] [1:0[1
Root Splits:
2
000001 1 1 1.000000 [&] : [&metaNum=0.350000] []:[]
000001 1 1 1.000000 [&] : [&metaNum=0.250000] []:[]
Trees:
1
012

Figure 5.3: Example of a Newick string and its equivalent TreeShredder file: Cor-
responding data snippets are highlighted in the same color in (a) the
Newick string and (b) the TreeShredder file. Branch lengths that were
given in the Newick string are highlighted in green. Comments are high-
lighted in purple. Metacomments are highlighted in orange. The node
strings “cherry” and “99” highlighted in red are interpreted as a string
that belongs to the node and a number that belongs to the edge, respec-
tively. They are stored as metacomments with automatically assigned
keys. (The keys are reserved macro string literals assigned by TreeShred-
der. They cannot be used for other metacomments.) The 2 splits of the
“Root Splits” block are the 2 arms of the root split. The information of
these 2 arms is gathered into 1 trivial split (the first split in the “Trivial
Splits” block) in a special way described in subsection The sum
of the 2 default branch lengths of the 2 root split arms is highlighted
in blue. Note that the metacomments of the root split arms were not
added up, rather the maximum was taken.

37

5 Reading Files and Parsing Trees

4. The branch length of the split. This is > 0. (When parsing Newick strings,
TreeShredder assumes a default branch length of 1 if none is given.)

5. The node and edge metacomments (BEAST developers, 2017) of a split. The
ampersand ‘&’ distinguishes it from a normal comment. Metacomments con-
tain key:value pairs separated by commas ‘,”. The value can be a string,
which is replaced if an identical split’s new metacomments with the same key
is parsed, or a number, which is summed up if an identical split’s new meta-
comments with the same key is parsed. Metacomments that belong to the
node that is on the distant end of an edge from the root is enclosed in the first
square bracket “[&]”. Metacomments that belong to the edge of the split are
enclosed in the second square bracket “[&]”. The square brackets are sepa-
rated by a colon ‘:’. A placeholder string “[&] : [&]” indicates that there are
no metacomments for this split.

6. The node and edge comments of a split. This is analogous to the metacom-
ments, but without the ampersand ‘&’. Comments are treated as strings, and
will be concatenated (separated by a comma ‘,”) for identical splits.

5.5.2.1 Root split information

By convention, Newick strings are in rooted format if the outermost pair of paren-
theses encloses exactly 2 nodes (see section [5.2). This induces 2 identical splits —
the 2 arms of the root split — joined by the root node of degree 2.

The information of these arms is stored, redundantly, in two ways: once in the
“Root Splits” block, and once either in the “Trivial Splits” or “Nontrivial Splits”
block, depending on the classification of the root split. The information in the “Root
Splits” block is to correctly retrieve the information of the root arms when mapping
tree information onto a reference tree (see section [6.2.2). The “Trivial Splits” and
“Nontrivial Splits” blocks are for all other cases where the root split is treated as a
single split in an unrooted context, not as 2 arms of a split.

The information of the root split arms is combined thus (see first split in the
“Trivial Splits” block of Fig. [5.3b): The branch lengths are added; if the value of
metacomments with identical keys is a number then the mazimum is taken, if it is
a string the value is replaced; comments are concatenated.

5.6 File-10 Results and Discussion

Here I compare runtimes of different input and output steps of TreeShredder. For
information about the datasets used, see chapter [2]

5.6.1 Comparing Newick and TreeShredder file runtimes

Fig. shows that the runtime of reading Newick files (including parsing the trees)
grows linearly with the number of trees.

Fig. shows that reading TreeShredder files is up to 30 times faster than
reading Newick files containing the same tree information, making it the preferred

38

(a)

seconds

seconds

seconds

5.6 File-10 Results and Discussion

Reading Newick file
TreeShredder, Newick trees are parsed in serial

40 -o—POL-9147
-o— CRF-2696
-o—WNT-82

304

204

104

1 200 400 600 800 1000
number of trees

Reading TreeShredder file

TreeShredder
1.5+
-o—POL-9147
-~ CRF-2696
-0~ WNT-82
1.0
0.5
004 o= © &
1 200 400 600 800 1000
number of trees
Writing TreeShredder file
TreeShredder, uncompressed output
1.5
1.0
+FPOL-9147
3 CRF-2696
= WNT-82
0.5
0.0 H— = = £]
1 200 400 600 800 1000

number of trees

Figure 5.4: TreeShredder runtimes of reading Newick files, and reading and writing
TreeShredder files for the WNT-82, CRF-2696, and POL-9147 datasets:
The plots show the runtime of (a) reading the Newick file and parsing
the trees in serial, (b) reading the TreeShredder file, and (c) writing the
uncompressed TreeShredder file.

39

5 Reading Files and Parsing Trees

starting point for further analysis with TreeShredder for large datasets such as POL-
9147.

Once a Newick file is read and its trees parsed, transforming its information into
a TreeShredder file is quick and well worth the effort (see Fig. [5.4c). The runtime
increases roughly linearly with the number of trees, likely because the “Trees” block
in the TreeShredder file grows linearly with the number of trees. This overrides the
effect of the “Nontrivial Splits” block which grows sub-linearly with the number of
trees (see Fig. [3.24]). Since reading Newick files of small datasets (e.g., WNT-82)
is fast anyway, transforming the data to a TreeShredder file may not be necessary.
The inherent TreeShredder file modifiability advantage over Newick files remains,
however.

Fig. shows the runtime of the serial reading routine of Newick files and the
serial reading and writing routine of TreeShredder files for the ACO-225, PTP-116,
PF1-367, and PF7-205 datasets with up to 100,000 trees. Reading TreeShredder
files is about 20 times faster than reading the Newick files (e.g., 2 seconds vs 40
seconds for ACO-225). Writing TreeShredder files is also fast.

Fig. shows the runtime of the parallelized reading routine of Newick files, and
the serial reading and writing routine of TreeShredder files for the GEN-404 dataset
comprising almost 15 million of trees. Reading TreeShredder files is up to four
times faster than reading the Newick files in parallel using 16 threads. Converting
large Newick files into TreeShredder files is worth the effort and extra time spent on
writing TreeShredder files.

Fig. shows the runtime speedup per thread of reading 10 million GEN-404
Newick trees. Overall, speedup is weak.

Fig. shows the runtime of the serial reading routine of Newick files and the
serial reading and writing routine of TreeShredder files for the RAN-200, RAN-300,
and RAN-400 datasets with up to 1,000,000 trees. Reading TreeShredder files takes
about a quarter to a third less time than reading the Newick files. The time needed
to convert large Newick files into compressed TreeShredder files increases super-
linearly with increasing number of taxa and trees. However, converting can still
save time in subsequent analyses.

5.6.2 Output compression

Fig. shows the composition of time of reading millions of GEN-404 Newick trees
and writing their information to a compressed or uncompressed TreeShredder file.
The benchmarks were done on Linux. Surprisingly, the writing time of compressed
TreeShredder file output is lower than for uncompressed output. The user time,
which measures the CPU time spent executing user code (i.e., program code) in
user mode (Kerrisk, 2010), increases slightly for compressed output because of the
compression work needed to be done. The system time, which measures the CPU
time spent executing system code (i.e., I/O calls) in kernel mode, is greater for the
uncompressed file output. Apparently, compressing output and, thus, writing less
output to the disk is faster than writing uncompressed output for large files. This is
because disk access is known to be utterly slow, while memory access is fast. Thus,
compression in memory easily pays off by saving slow access while writing. In this

40

5.6 File-10 Results and Discussion

(a) Reading Newick files
TreeShredder, Newick trees are parsed in serial

-~ ACO-225
-o—PF1-367
-o—PF7-205
404 -o—PTP-116

[2)
=)
c
[e]
[5)
[
%)
204
O -
1 25000 50000 75000 100000
number of trees
(b) Reading TreeShredder files
TreeShredder
254
o~ ACO-225
o PF1-367
201 o—pF7-205
--—PTP-116
151
he]
c
(o]
(8]
[0}
® 1.0
0.5
0.0

1 25000 50000 75000 100000
number of trees

(c) Writing TreeShredder files
TreeShredder, compressed output

++ACO-225
++ENS-116
++PF1-367
++PF7-205

seconds

1 25000 50000 75000 100000
number of trees

Figure 5.5: TreeShredder runtimes of reading Newick files, and reading and writing
TreeShredder files for the ACO-225, PTP-116, PF1-367, and PF7-205
datasets: The plots show the runtime of (a) reading the Newick file and
parsing the trees in serial, (b) reading the TreeShredder file, and (c)
writing the compressed TreeShredder file.

41

5 Reading Files and Parsing Trees

Reading and writing Newick and TreeShredder files
TreeShredder, Newick trees are parsed using 16 threads, GEN-404

2500 A
read Newick (16 threads)
read tsf
2000 write tsf
«» 1500 4
o
c
o
o
5}
9 1000 4
500 4
O -
1 5000000 10000000 15000000

number of trees

(a) TreeShredder runtimes of reading Newick files, and reading and writing TreeShredder
files for the GEN-404 dataset: Newick trees were parsed in parallel using 16 threads.
Still, reading a TreeShredder file is up to four times faster.

Speedup per Thread
TreeShredder, reading Newick file, GEN-404, 10M trees

324
read Newick

244

16

time for 1 thread / time for x threads

16 24 32
number of threads

=
N -
N
o]

(b) TreeShredder speedup per thread of reading Newick file: The black line indicates
perfect speedup. These benchmarks were run on 32 physical cores.

Figure 5.6: Comparing runtime and speedup for the GEN-404 dataset, reading and
writing Newick and TreeShredder files.

42

5.6 File-10 Results and Discussion

(a) Reading Newick files
TreeShredder, Newick trees are parsed in serial
3000
-o— RAN-200
RAN-300
RAN-400
2000
[2)
ie)
c
[e]
[5)
[
%)
1000
0 -
1 250000 500000 750000 1000000
number of trees
(b) Reading TreeShredder files
TreeShredder
20004 &~ RAN-200
RAN-300
RAN-400
1500+
[2]
he]
c
8 1000
[0}
(7]
5001
0 -
1 250000 500000 750000 1000000
number of trees
(c) Writing TreeShredder files

TreeShredder, compressed output

50001 4= RAN-200
RAN-300
4000 4 RAN-400

30001

seconds

20001

10004

e

04 J—t

1 250000 500000 750000 1000000
number of trees

Figure 5.7: TreeShredder runtimes of reading Newick files, and reading and writing
TreeShredder files for the RAN-200, RAN-300, and RAN-400 datasets:
The plots show the runtime of (a) reading the Newick file and parsing
the trees in serial, (b) reading the TreeShredder file, and (c) writing the
compressed TreeShredder file.

43

5 Reading Files and Parsing Trees

case, the compressed files are about 3% the size of the uncompressed ones, which
amounts to 530 MB vs 21 GB for 14.5 million GEN-404 trees (see Fig. [5.8b)).

The real time is the wall clock time of reading the Newick trees and writing their
information to a TreeShredder file. It can be seen that the difference in compressed
and uncompressed real runtime is entirely due to the difference in writing the com-
pressed or uncompressed file output. This is supported by the system time, which
shows the same discrepancy.

Therefore, it is advised to compress file output (using the -gz flag) because it
is faster than writing uncompressed output and comes with significant disk space

savings (see also subsection [11.3.1]).

5.7 Conclusion

TreeShredder can read Newick and Nexus files, and parse the Newick tree strings
from both formats in parallel. T extended the Splits Extraction Algorithm to also
extract the node and edge information of nontrivial splits and to simultaneously
determine the rootedness of the tree.

TreeShredder can read 15 million trees with about 400 taxa in 40 minutes using
16 threads. The TreeShredder file is a condensed version of a tree file containing
tree information and speeds up reading that information 30-fold for 1,000 trees of
more than 9000 taxa, which makes it the ideal starting point for different phylo-
genetic analyses with TreeShredder. Thus, if a dataset is used for many analyses,
by once investing time in transforming a Newick file into a TreeShredder file, one
can save time in subsequent analyses. This only pays off for datasets of sufficient
size, e.g., those whose product of taxa and trees exceeds approximately one million.
However, the inherent modifiability advantage of a TreeShredder file over a Newick
file remains, independent of size.

The payoff of converting Newick files to TreeShredder files for the datasets with
random trees is much smaller than for datasets with typical trees. This is because
the former have many more unique nontrivial splits than the latter (see Fig. [3.2),
which greatly diminishes the potential of condensing the information of splits in
TreeShredder files because each unique nontrivial split needs to be incorporated in
the “Nontrivial Splits” block (see subsection [5.5.1)).

The -range and -merge flags are useful when the researcher is only interested in
a subset of the trees of a file or wants to merge the tree information of different files
(of potentially different formats).

It was unexpected to find that output compression leads to faster writing times
than uncompressed output. Combined with the benefit of significant disk space
savings, there is no reason not to compress TreeShredder output on Linux.

44

seconds

5.7 Conclusion

Output Compression
TreeShredder, compressed vs uncompressed TreeShredder file output, GEN-404

3000 A
e compressed
A uncompressed
20001 -o—real /
-—Sys
-e—user
write tsf
1000
O -

1 5000000 10000000 15000000
number of trees

43 7

(a) TreeShredder writing time of compressed and uncompressed TreeShredder file: “sys

size reduction

is the CPU time spent executing system code (i.e., I/O calls) in kernel mode; “user”
is the CPU time spent executing user code (i.e., program code) in user mode; “real” is
the wall clock time (in this case the sum of sys and user time plus idle time) (Kerrisk,
2010). “write tsf” is the wall clock time of the TreeShredder file writing routine.

Compression rates of GEN-404 TreeShredder files
TreeShredder, compressed vs uncompressed

-97.0% A

GEN-404

-97.2%

-97.4%

-97.6% A

-97.8% A

—98.0% A

T T T
1 5000000 10000000 15000000
number of trees

(b) TreeShredder compression rates of TreeShredder files: Compression rates are roughly

constant.

Figure 5.8: TreeShredder runtime and efficacy of output compression

45

Part 11l
Methods in TreeShredder

47

6 Split Measures and Reference
Trees

In many phylogenetic analyses, large sets of trees with the same set of taxa are used.
For a robust analysis, the information of these trees then needs to be projected
onto a single reference tree. To do this, there is a wide range of split measures to
choose from. This chapter explains how to calculate and map these measures onto
a reference tree.

6.1 Introduction

TreeShredder offers eight split measures, some of which are well-established, others
I have newly developed for or implemented the first time in TreeShredder. The
well-established measures are: absolute/relative occurrence of the split, Internode
Certainty (Kobert et al.,|2016)), and Transfer Bootstrap Expectation (Lemoine et al.,
2018).

For TreeShredder, I developed the absolute/relative occurrence of the split’s best
incompatible split and absolute/relative occurrence difference to the split’s best
incompatible split measures. Additionally, I generalized the Internode Certainty to
the case where some splits from a reference tree may be missing from the set of trees
that is to be mapped onto it.

6.1.1 Split occurrence

The absolute occurrence of a split, more commonly known as Felsenstein’s Bootstrap
supports (Felsenstein, [1985)), measures how often a specific split is contained in a set
S of trees. The relative occurrence of a split is the absolute occurrence normalized
to the number of trees |S| in the set. The absolute occurrence can be any natural
number in [0, |S]], the relative occurrence can be any rational number in [0, 1].

This measure is widely used and gives an easy to interpret number or ratio of
occurrence of a split in the trees.

6.1.2 Best incompatible split occurrence

In some cases, researchers may be more interested in the support of the most sup-
ported split that is incompatible with a given split (see section , rather than the
support of the split itself. For this, I developed and implemented the best incom-
patible split occurrence measure. The absolute occurrence of the best incompatible
split is the number of trees in a set S of trees that a given split’s best incompatible
split occurs in. The relative occurrence of the best incompatible split of a split is the

49

6 Split Measures and Reference Trees

absolute occurrence normalized to the number of trees |S| in the set. The absolute
occurrence can be any natural number in [0, |S|], the relative occurrence can be any
rational number in [0, 1].

6.1.3 Occurrence difference to best incompatible split

Combining the information of split occurrence and best incompatible split occur-
rence gives a measure of difference between a split and its best incompatible split
in the trees. This makes it possible to further differentiate between splits. A well-
supported split A may have a highly-supported incompatible split in the trees, while
another, less-supported split B may have no incompatible split at all. This differ-
ence could cause researchers to give more credence to split B than split A, despite
it being less supported. Therefore, I developed and implemented the occurrence
difference to the best incompatible split measure.

The absolute occurrence difference of a given split to its best incompatible split
measures the difference in occurrence of those two splits in a set S of trees. The
relative occurrence difference of a given split to its best incompatible split is the
absolute difference normalized to the number of trees |S| in the set.

Unlike the split occurrence and best incompatible split occurrence measures dis-
cussed above, the occurrence difference can be negative if the split’s best incom-
patible split occurs more often in S than the split itself. The absolute occurrence
difference can be any integer in [—|S|,|S|]. Accordingly, the relative occurrence
difference can be any rational number in [—1,1].

6.1.4 Internode Certainty

An extension of the occurrence difference to best incompatible split (see subsection
using Shannon’s measure of entropy (Shannon, 1948) is the Internode Cer-
tainty (IC, Salichos, Stamatakis, and Rokas, 2014). Slightly confusingly, “internode”
means internal edges (or branches) in this case. The IC measures the extent of con-
tradiction of a split B and the best supported incompatible split B* in the same set
of splits. In the following, I use the definitions of Salichos, Stamatakis, and Rokas
(2014)) and Kobert et al. (2016) and extend them in subsection [6.1.4.1]to apply them
to reference trees.

Let xp and x - denote the relative frequencies of B and B*, respectively, and the
function f denote their support (i.e., occurrence):

)
= 5B) + f() (61)
and
B
"5 = B+ (B (62
with

rp+ Tpx = 1.

Then, the Internode Certainty of split B (Salichos, Stamatakis, and Rokas, [2014]) is
defined as
IC(B) =1+ xp*logs(xp) + xp+ * logs(rp~) (6.3)

20

6.1 Introduction

if xg > xp« (ie., f(B) > f(B*)) and
IC(B) = =1 —zp*logs(vp) — xp« * loga(vp~) (6.4)

if tp < xp- (ie., f(B) < f(B*)). For unexplained reasons, the latter case (equation
has been omitted in Kobert et al. (2016]).

It can be seen that xp and xp- fall in the ranges (0, 1] and [0, 1), respectively.
This is because the absolute occurrence of B, f(B), is at least equal to 1 because
split B must necessarily occur at least once in the set of splits. Conversely, f(B*) is
at least equal to 0 because there may not be a split that is incompatible with B in
the set. In this case the above equations and are undefined because the term
xp * logy(xp+) with xg- = 0 is undefined. However, this problem can be solved
satisfactorily by defining IC'(B) := 1 when no incompatible split is found. This is
justified because the split B in question is not contradicted by any other split in the
set and, thus, should be assigned the highest possible certainty score.

The sum of IC scores of the nontrivial splits of a tree is called Tree Certainty (TC;
Salichos, Stamatakis, and Rokas, 2014)). When comparing two trees, the TC can
be used as a global measure for their respective incongruence (Salichos, Stamatakis,
and Rokas, 2014).

6.1.4.1 Internode Certainty and Reference Trees

The above subsection [6.1.4] concerns IC scores when the splits and their incompat-
ible splits belong to the same set of trees, which was a precondition in Salichos,
Stamatakis, and Rokas (2014) and Kobert et al. (2016). However, when calculating
IC scores for a reference tree whose splits may not exist in the set of trees, it is
no longer guaranteed that the occurrence of split B is at least equal to 1. Split
B, incompatible split B*, or even both might be absent in the trees. Thus, in the
following, I introduce a way to extend computing IC scores to the case of reference
trees.

The relative frequencies zp and zp+ in equations 6.2/ and [6.1) are undefined if splits
B and B* do not exist in the trees because the divisor f(B) + f(B*) = 0. In the
case of reference trees, therefore, relative frequencies are given by

(xp if B exists

ref gy = 0 if B* exists, B does not
1
5 if B and B* do not exist
\
and
(x5 if B exists
rel g g = 1 if B* exists, B does not
1
5 if B and B* do not exist
\
with
TeffL’B +Tef Tpe = 1
instead.

o1

6 Split Measures and Reference Trees

Analogously to the case where B exists but not B*, equations and are
also undefined if B* exists but not B. Conversely, defining /C(B) = —1 solves
this problem. This is justified because the split B in question is contradicted by
an incompatible split B* but does not itself exist in the set and, thus, should be
assigned the lowest possible certainty score.

Finally, when neither split B nor B* exist in the set, /C(B) should be = 0. This is
in accordance with all other cases where their absolute frequencies are equal: When
f(B) = f(B*), then zp and zp« are both equal to 3 and equation [6.3) becomes

1 1 1 1
IC(B)=1+ 3 * log2(§) + 3 * log2(§) = 0.

TreeShredder also computes the Tree Certainty score of a reference tree, which
I define, analogously to Salichos, Stamatakis, and Rokas (2014), as the sum of IC
scores of its nontrivial splits.

6.1.5 Transfer Bootstrap Expectation

Another measure is the Transfer Bootstrap Expectation (TBE), as suggested and
studied by Lemoine et al. (2018]). Their definitions and discussion are detailed in the
following. Phylogenies combining thousands of taxa are becoming more common
because of the increasing number of available sequences. This poses a problem
for Felsenstein’s Bootstrap Proportions (FBP) measure (Felsenstein, [1985), which
is widely used to assess robustness or repeatability of inferred branches. In large
phylogenies, FBP proportions tend to produce low values even if the dataset contains
a lot of phylogenetic information.

FBP is based on resampling with replacement the sites of the original multiple
sequence alignment to produce pseudo-alignments for replications. From these, trees
are inferred using the same inference method that was used to infer the reference
tree from the original alignment. The support of each branch of the reference tree
is the proportion of identical branches in the resampled trees.

However, if the branches in the trees do not match the branch of the reference
tree perfectly, they are counted as absent in FBP’s strict binary presence/absence
index. A difference of one single taxon in a set of thousands is enough for that
index to be 0. Taxa of uncertain placement are also called “rogue” taxa. These
taxa obtain diverse positions in the resampled trees and, unfortunately, there are
good biological and computational reasons for their existence. They can be caused,
among others, by evolutionary convergence, recombination, lack of conservation,
and sequencing errors. When rogue taxa are found it is common to remove them
and repeat the phylogenetic analysis, in the hope to obtain (higher) FBP values that
better reflect the true underlying phylogenetic signal. This can be computationally
expensive and is statistically questionable. Moreover, this does not help when the
phylogenetic signal is weak, e.g., in alignments with a high number of sequences but
a low number of sites. (Lemoine et al., 2018)

It is clear that FBP’s all-or-nothing approach to measuring the exact presence of a
branch in a tree should be replaced by a more gradual approach when the phylogeny
is large. A new measure, called Transfer Bootstrap Expectation (TBE; Lemoine et
al., 2018), applies a gradual function in the [0, 1] range instead. Inferred branches

52

6.2 Methods

are allowed to contain errors, they are not simply deemed correct or incorrect as
in FBP. This helps reveal phylogenetic signal, especially in deep branches, where
FBP would not due to its restrictive 0, 1 binary presence/absence indicator function
(Lemoine et al., [2018]).

For this, the transfer distance 6(b, b*) is used. It measures the distance between a
branch b of the reference tree T' and a branch b* of a bootstrap tree T* and counts
the number of taxa that need to be transferred from one side to the other to convert
one split into the other. The transfer index ¢(b, T*) = minycp+{0(b,b*)} measures
the minimal transfer distance of branch b to any branch b* in tree 7. There are
three important properties (Lemoine et al., |2018):

e ¢(b,T*) =0 iff b belongs to T*.

e ¢(b,T*) < p—1 where p is the number of taxa on the smaller side of the split.
This is because trivial splits with p = 1 are necessarily present in every tree.

o o(b,T*)/(p—1) is close to 1 if T* is large and random.

On the basis of these properties, Lemoine et al. (2018)) define the Transfer Boot-
strap Expectation as follows:

TBE(®) = 1 — 2% 1) (6.5)
p—1
where ¢(b, T*) is the average minimal transfer distance among all bootstrap trees.
TBE is close to 0 if the bootstrap trees are large and random, and therefore do not
contain any signal regarding b. Conversely, TBE is 1 if b occurs in all trees. TBE is
guaranteed to be larger than FBP or equal if b is a cherry (Lemoine et al., [2018]).
TBE suffers from some of the same limitations as FBP, e.g., the assumption
of site independence does not hold. Neither measure should be interpreted as a
probability that the inferred branch is correct, but rather be thought of in terms of
repeatability: Does the alignment, even after random perturbations, really contain
the phylogenetic signal implied by a given branch?

6.1.5.1 Instability Score

Additionally, calculating the transfer index ¢ (b, T*) gives an instability score for each
taxon by counting how often that taxon would need to be transferred to convert split
b into split b* with minimal transfer distance (b, b*) (Lemoine et al., [2018). This
score helps identify rogue taxa, which could then be removed from the phylogeny,
or studied to find the reason for their unstable phylogenetic position. TreeShredder
writes these instability scores to a separate file.

6.2 Methods

6.2.1 Implementation of the TBE Algorithm in TreeShredder

To calculate the Transfer Bootstrap Expectation, I developed and implemented the
following approach in TreeShredder. Let n be the taxon set size of a split, p the

23

6 Split Measures and Reference Trees

b, 0001101
b, 0011001
b, XOR b, 0010100 — Hamming Distance = 2

Figure 6.1: Example of Hamming Distance calculation: Pairs of bits with opposite
value are highlighted in blue. The Hamming Distance is equal to the
number of bits = 1 (highlighted in green) resulting from a bitwise XOR
operation.

number of taxa on the smaller side of the split (= 1 in trivial splits, > 2 in non-
trivial splits), ¢ the number of bootstrap trees and s the number of bootstrap trees
containing that split. Then the transfer distance (TD) of two splits can quickly be
computed using the Hamming Distance (HD) between their bitsets b; and by. The
XOR set operator of dynamic_bitset applies a logical XOR to each corresponding
pair of bits. Counting the resulting bits that are equal to 1 obtains the Hamming
Distance. Fig. shows an example of two splits with Hamming Distance = 2,
which corresponds to a transfer distance 6(by,by) = 2, because 2 taxa have to be
transferred to the other side of the split, i.e., the bits have to be flipped (0 — 1 or
1 —0).

By calculating the Hamming Distance between a given split and every split in a
bootstrap tree, the split with minimal transfer distance in each tree can be found.
Additionally, I developed shortcuts to achieve speedup. A lower bound for the
Hamming Distance between two splits is given by

HDloweT bound — mln(|p1 - p2|7 n—p1— p2) S HDactual

where p; and py are the number of taxa on the smaller side of the splits b; and
bs, respectively. Furthermore, each split has a maximum transfer distance of p — 1,
which is imposed by the guaranteed existence of a trivial split with p = 1 in every
tree. Thus, the actual transfer distance of a split (either to a trivial or to a nontrivial
split) is

TDactual < P — 1= TDmaximum-

Thus, if HDjywer bouna 18 not smaller than TD,,qzima N0 set operation need be
done. This is because HD 01 between those two splits would then necessarily be
equal to or greater than TD,,qzimar, & limit imposed by trivial splits.

For splits with p = 2 (i.e., cherries) the transfer distance is at most 1 because
only 1 taxon need be transferred to obtain a trivial split, which is in the tree by
definition. The instability score of both taxa in the cherry is then increased by a
weighted score of a(p — 1)/p = a/2, where a is the number of bootstrap trees not
containing that split, since either taxon could be transferred to obtain a trivial split.
Analogously, when TD,ctuat = TDoazimar the instability score of each taxon on the
smaller side of the split is increased by a weighted average of (p — 1) /p.

Only for splits where TDyciuar < TDpazimar the taxa which need to be transferred
must be determined through an actual set operation, and their instability score

o4

6.3 Results and Discussion

increased. This is because only then the split with minimal transfer distance must
necessarily be a nontrivial split and the guaranteed existence of trivial splits in the
trees cannot be used as a shortcut.

6.2.2 Mapping Split Measures onto Reference Trees

It seems straightforward to map computed split measures onto user-given reference
trees, however, a number of pitfalls exist. In particular, mapping the support infor-
mation of a set of splits M onto a reference tree is not trivial. Some difficulties have
to be dealt with:

e One or more splits of the reference tree may not exist in M. This may cause
problems in the calculation of the Internode Certainty (see subsection [6.1.4)).

e The node information of the splits of M may not be usable because it is not
clear to which of the two nodes connected by the edge it belongs. The node
information of the reference tree splits can be used, however, because the
directionality induced by the reference tree root is preserved.

e If the reference tree is rooted the two root split arms need to be preserved.
Furthermore, the branch length of the equivalent split in M (if it exists) that
is to be mapped onto the two root split arms is halved. Other information of
that split is mapped onto both root split arms unprocessed.

While parsing the original reference tree Newick string (see section the ref-
erence tree routine simultaneously builds a new Newick string that contains, both,
the original and the mapped information. This new tree is not only topologically
identical to the reference tree, in addition, its Newick string is arranged identically
(same taxon order) as the Newick string of the reference tree.

6.2.2.1 IQ-TREE format

If several information values are stated for an edge, the software IQ-TREE (L.-T.
Nguyen et al., 2015) outputs these values separated by slashes (e.g., “0.99/12/0.5”)
directly following a closing parenthesis. This is a problem for some tree visualization
programs (e.g., FigTree, Rambaut, [2010) which cannot interpret that information
as separate numbers.

The -iqtreeNames flag option causes TreeShredder to read the numbers that are
in [Q-TREE format separately and store them with custom-specified keys as edge
metacomments (see subsections|3.1.5/and |5.5.2)) when parsing Newick strings. Using
this flag and mapping a Newick tree that has IQ-TREE format onto itself converts
it to a Newick tree with identical information but a more widely readable format.

6.3 Results and Discussion

6.3.1 TreeShredder split measures

Figs. [6.2] 6.4, and show the relative support of unique splits of 1,000
POL-9147 trees plotted against the relative best incompatible support, the relative

5}

6 Split

Measures and Reference Trees

Relative support vs relative Best Incompatible support

1st tree Maximum likelihood tree
100' 1 100' 1
1 1
1 1
0.751 1 0.75 1
- 1 i) 1
o T ey, ! o T Ty, !
0.501 0.50 1
. i . B
. gl - . el o
o Cele e 7 i .®] LRI
0.251 Lo e ke 0.25 Lo e ke
L L s R
0.00 ! 0.00 !
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Majority rule extended consensus tree

Global relative majority consensus tree

relative best incompatible support

100' 1 100' 1
1 1
1 1
0.75- i 0.751 i
1 1
1 1
0.50- = 0.501
oy
D LETUL S LY
0.251 PIRSS TE 0.251 < HllTn R
¢ .1 -J-:r N o __-_? o
s bl e
0.00 ! 0.00 ! ’
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

relative support

Figure 6.2: Comparison of relative support and relative best incompatible support
measures of four POL-9147 trees: Data points to the right of the vertical
line in the consensus tree plots indicate the 50% majority consensus tree.

difference to the best incompatible support, the IC, and the TBE measures, respec-
tively, for the 1% tree in the file, the maximum likelihood tree, the majority rule
consensus tree, and the global relative majority consensus tree. For an explanation
of consensus trees, see chapter |8l The 1% tree in the file was chosen to represent any
arbitrary tree of the file. Throughout, the scatter plots for the 1*¢ and the maximum
likelihood trees are similar, differing only slightly in splits with low support.

Fig. shows the relative support plotted against the relative best incompatible
support for the four POL-9147 trees mentioned above. Because two incompatible
splits cannot occur on the same tree, their sum of support is < 100%. This explains
why data points occur only below the diagonal line. By sliding the vertical line
to the right in the consensus tree plots, one can manually create the plots for the
corresponding majority consensus tree with higher threshold. One can see that the
majority rule extended and the global relative majority consensus trees both contain
splits with < 50% support. Interestingly, these splits’ best incompatible splits tend
to have low support too.

Fig. [6.3] shows the relative support plotted against the difference to the relative
best incompatible support for the four POL-9147 trees mentioned above. Data
points below the horizontal line indicate that the split has lower support than its
best incompatible split. Because the global relative majority consensus tree contains

26

6.3 Results and Discussion

Rel. support vs rel. Difference to Best Incompatible supp.

1st tree Maximum likelihood tree
+ 1.0 ! 1.0 !
8_ 1 1
1 1
Q 054 1 0.5 1 1
(?) 1 i
) 1 1
S 0.0 T == =——tte= S N I 00 T = =——sttrs [R R St
T 1 1
Q 0.5+ ! -0.51 !
1 1
g 1 1
2 -101 : ~1.01 :
3 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Q . . .
< Majority rule extended consensus tree Global relative majority consensus tree
@) . .
- 1.04] 1.04]
8 1 1
c 1 1
O 05+ 1 0.5 1 1
o i]
= f T
T 00T —w=—2et e 0.0 7= E T
E - -
2 051 i -0.51 i
o 1 1
—_ 1 1
-1.01 t -1.04 t
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

relative support

Figure 6.3: Comparison of relative support and relative difference to best incompat-
ible support measures of four POL-9147 trees: Data points to the right
of the vertical line in the consensus tree plots indicate the 50% majority
consensus tree.

only splits that are compatible with all splits with higher support in the trees, there
are no splits below the horizontal line. This is not true of the majority rule extended
consensus tree, where there are some data points (slightly) below the horizontal line.

Fig.[6.4 shows the relative support plotted against the Internode Certainty for the
four POL-9147 trees mentioned above. Here too, because the global relative majority
consensus tree contains only splits that are compatible with all splits with higher
support in the trees, there are no splits below the horizontal line. The Internode
Certainty is only negative if the split occurs less often than its best incompatible
split. The majority rule extended consensus tree, however, does contain splits with
negative Internode Certainty.

Fig. [6.5 shows the relative support plotted against the Transfer Bootstrap Expec-
tation for the four POL-9147 trees mentioned above. Because a split’s TBE value is
equal to or greater than its support, data points are only at or above the diagonal
line. One can see that splits with low relative support can have high TBE support.
This is demonstrated in the first plot, where the two data points colored in red are
splits with, both, identical relative support (= 0.02) and identical average minimal
transfer distance (= 1.76) but very different TBE. This is because the smaller side
of the split with the lower TBE is smaller than the smaller side of split with higher

57

6 Split Measures and Reference Trees

Relative support vs Internode Certainty

1st tree Maximum likelihood tree
1.0' 10' 1
1
1
0.54 0.5 1 1
1
1
0.0 00+ =---- —T A S
1
2 -0.5- -0.59 ° i
£ i
8 y 1
B -1.04 -1.01 I
O 0.00 0.25 0.50 0.75 1.00
)
°©
o
S 1.0 1.0
7
c
= 0.5- 0.5 1
0.0 0.0 1
-0.59 -0.51
-1.01 -1.0

relative support

Figure 6.4: Comparison of relative support and Internode Certainty measures of
four POL-9147 trees: Data points to the right of the vertical line in the
consensus tree plots indicate the 50% majority consensus tree.

TBE (p = 3 and 9, respectively; see equation [6.5]).

Figs. and show the effect that increasing subtree sizes (up to 256 taxa)
have on TBE. The subtrees have the prefixes LT and RT for left and right subtree,
respectively. The different taxa in the subtrees are distinguished by a binary postfix.
Each tree represents 1 of 3 similar trees that differ only in the position of the rogue
taxa x1 and x2 (see Fig. : The topology seen here, one where x1 and x2 are
swapped, and one where x1 and x2 form a cherry. These three trees’ information
was then mapped onto the reference trees.

In Fig. it can be seen that TBE increases from =~ 0.33, =~ 0.67, =~ 0.83, to
~ 1 when both subtrees increase from 1, 2, 4, to 256 taxa. Conversely, the relative
support is ~ 0.33 for all four splits, irrespective of subtree sizes.

In Fig. it can be seen that TBE remains at ~ 0.33 when only one subtree
increases from 1, 2, 4, to 256 taxa and the other consists of 1 taxon. Similarly, the
relative support is & 0.33 for all four splits, irrespective of subtree sizes.

o8

6.3 Results and Discussion

Relative support vs TBE

1st tree Maximum likelihood tree
1.001 sere o gue : 1.001 Favv st gon :
PR !'!' -":?.‘,{ Y PR T!. . -":?'.ﬁ la | -
| s !:: -n';o "3r.;-. ot e ° S .!...:' 0 -o':- "Br}-. oot e °
0759 * & e ir Jgertc S 0751 ° o2 e i Jaartc S
" " . : BT R :
0504 . . 050 . .
1 1
. I . I
0.254 . i 0.254 i
‘o 1 1
1 1
O.OO- T T : T T 0.00- T T : T T
w 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
m
= Majority rule extended consensus tree Global relative majority consensus tree
1.004 o o8 .;('.P,{’ S 1.00 A :"g{.
iR R
0.75- L 0.75- Dok e
I I
0504 . 0.50 1
1 1
L 1 1
0.254 . i 0.25 i
1 1
1 1
O.OO- T T : T T 0.00- T T : T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
relative support
Figure 6.5: Comparison of relative support and Transfer Bootstrap Expectation
measures of four POL-9147 trees: Data points to the right of the verti-
cal line in the consensus tree plots indicate the 50% majority consensus
tree. The two red dots in the 1%¢ tree’s plot are highlighted as an example
where two splits can have identical relative support and identical aver-
age minimal transfer distance (not shown in the plot) but very different
TBE.
o & * &
L | /—<é
+ (2 & < ¢ @
Figure 6.6: Three trees where rogue taxa change position: The branch with x1 is

colored in green, the one with x2 in red. Mapping these three trees onto
the first one produces the tree and TBE value of the first tree in Figs.[6.7]
and [6.8] By only increasing the subtree sizes of RT or both, RT and LT,
the other trees and their TBE values depicted in Figs. and [6.8] can
be produced in the same way.

29

6 Split Measures and Reference Trees

+e &
o
&
w

+ <

(a) Subtrees consist of 1 taxon: TBE ~ 0.33

RTO1

o
%

x2

x1

%

&

0T11

(c) Subtrees consist of 4 taxa: TBE ~ 0.83

014

N

‘o ~

190

14 7
LT1

(b) Subtrees consist of 2 taxa: TBE =~ 0.67

(d) Subtrees consist of 256 taxa: TBE ~ 1

Figure 6.7: Effect on TBE of two subtrees increasing in size: The left and right
subtrees comprise taxa with the prefixes LT and RT, respectively. Both
subtrees increase in size. For each of these four trees, there are three
trees in total (see Fig.[6.6): one where x1 and x2 have the positions seen
here, one where they are swapped, and one where they form a cherry.
The three trees are mapped onto the (reference) trees seen here.

60

Pr

)

€e0

+ O

(a) Right subtree consists of 1 taxon:
TBE ~ 0.33

RTi10

N

<@ >

RTOO

%

(¢) Right subtree consists of 4 taxa:
TBE =~ 0.33

6.3 Results and Discussion

%,
o
N
&
~
X2
o
)
19
o/

(b) Right subtree consists of 2 taxa:
TBE ~ 0.33

il
i

= %:%%% L1
AT L
»%%@ a\\ W Y/ ’/ Q@
e \ "4
gy W v/ & S

ig% N & \é =/t Y%
iy Q Y. S E — t

L

AH !i& —— = < S 3
3&3}1 = 9 OGS g
’ "

(d) Right subtree consists of 256 taxa:
TBE =~ 0.33

Figure 6.8: Effect on TBE of one subtree increasing in size: The left and right
subtrees comprise taxa with the prefixes LT and RT, respectively. Only
the right subtree increases in size, the left subtree consists of 1 taxon.
For each of these four trees, there are three trees in total (see Fig. [6.6):
one where x1 and x2 have the positions seen here, one where they are
swapped, and one where they form a cherry. The three trees are mapped
onto the (reference) trees seen here.

61

6 Split Measures and Reference Trees

6.3.2 TBE calculation runtime

Fig. shows TreeShredder’s TBE calculation runtime for the 50% majority rule
consensus tree (Msg, see chapter [8] for definitions of consensus trees). The runtime
increases linearly with the number of trees.

Fig. shows TreeShredder’s TBE calculation speedup per thread for datasets
with 1,000 trees. POL-9147 and CRF-2696 speedup increases more slowly beyond 32
threads. WNT-82 speedup is considerably worse and decreases beyond 24 threads.
This is because the computational problem is not big enough to offset the paral-
lelization overhead.

Figs. [6.10a] and [6.10b] compare TBE runtimes of BOOSTER, RAxML, and
TreeShredder for CRF-2696, and POL-9147 using 8 threads, respectively. (The
WNT-82 dataset was intentionally left out because the runtime was too low to be
usefully compared.) Runtimes increase linearly with the number of trees (note the
log-scales). RAxML started from a Newick file is fastest for the big datasets CRF-
2696 and POL-9147. However, TreeShredder started from a TreeShredder file comes
a close second, taking only 2 minutes compared to RAxML’s 1 minute to finish POL-
9147 with 1,000 trees. As expected, TreeShredder started from a TreeShredder file
is faster than started from a Newick file because no costly parsing of Newick trees
occurs. BOOSTER started from a Newick file takes 10 times longer than RAxML
and TreeShredder for CRF-2696, and up to a 370 and 160 times longer, respectively,
for POL-9147, taking 5 hours to finish 1,000 trees. Runtimes for WNT-82 are short
overall.

6.4 Conclusion

TreeShredder provides eight split measures, including the occurrence of the split’s
best incompatible split, difference in occurrence between a split and its best incom-
patible split, Internode Certainty, and Transfer Bootstrap Expectation.

I extended IC to be applicable for reference trees and produce reasonable results
when the reference tree contains splits that do not occur in the trees that are to
be mapped onto it. While IC is useful to measure the degree of conflict between
a split and its best incompatible split (Salichos, Stamatakis, and Rokas, [2014)),
the absolute quantity of how often each split occurred, and as a consequence, the
absolute difference between the splits’ occurrences is lost. This is because 1C uses
the relative occurrences of the splits (Kobert et al., [2016]). Therefore, two splits
with similar IC can have very different absolute occurrences.

The relative difference to best incompatible split measure, while simpler than IC,
has this problem too. Two splits with different support can have equal relative
difference to best incompatible split. However, the interpretation is more straight
forward than IC: the relative difference to best incompatible split tells how much
more or less often a split’s best incompatible split occurs in the trees.

The relative best incompatible support, difference to relative best relative incom-
patible support, and Internode Certainty measures offer additional tools to assess
the validity of splits. E.g., two splits with similar relative support can differ sub-
stantially in these three measures. Also, a split with low support that has a positive

62

6.4 Conclusion

Calculating TBE
TreeShredder, for the 50% majority rule consensus tree, 8 threads

804

60

seconds
iy
o

204

-o—POL-9147
-o— CRF-2696
-o—\WNT-82

—
®

%

400 600 800 1000
number of trees

=
N
o -
o

(a) TreeShredder TBE calculation runtime: TBE calculation time increases linearly with
the number of trees. (This plot shows the calculation time of TBE only, it excludes

the time it takes to generate the consensus tree, which is a few seconds at most; see
subsection [8.3])

Speedup per Thread

TreeShredder, calculating TBE for the 50% majority rule consensus tree, 1000 trees

324

24

16

time for 1 thread / time for x threads

-o—POL-9147
-o— CRF-2696
-—WNT-82

16 24 32
number of threads

=
N -
I
o]

(b) TreeShredder TBE calculation speedup per thread: The black line indicates perfect
speedup. POL-9147 and CRF-2696 speedup is good. WNT-82 speedup is weak. These
benchmarks were run on 32 physical cores.

Figure 6.9: TreeShredder TBE calculation runtime and speedup

63

6 Split Measures and Reference Trees

seconds (log scale)

Running Reference tree and TBE
BOOSTER, RAXML, and TreeShredder, from Newick and TreeShredder file, CRF-2696

100.04

10.01

1.04

0.14

Il BOOSTER, from Newick

A RAXML, from Newick
e TreeShredder, from Newick

o TreeShredder, from tsf

1 200 400 600 800 1000
number of trees

(a) Runtimes for reference tree and TBE calculation of BOOSTER, RAxML, and
TreeShredder from Newick and TreeShredder file, CRF-2696: The y-axis is log-scale.

seconds (log scale)

Runt

imes increase linearly with the number of trees. BOOSTER is the slowest by an

order of magnitude.

1000.0

10.0

0.1

Running Reference tree and TBE
BOOSTER, RAXML, and TreeShredder, from Newick and TreeShredder file, POL-9147

[BOOSTER, from Newick
A RAXML, from Newick

J o TreeShredder, from Newick

o TreeShredder, from tsf

T T T T
1 200 400 600 800 1000
number of trees

(b) Runtimes for reference tree and TBE calculation of BOOSTER, RAxML, and
TreeShredder from Newick and TreeShredder file, POL-9147: The y-axis is log-scale.
Runtimes increase linearly with the number of trees. BOOSTER is the slowest by 2
orders of magnitude, taking up to several hours to finish for large datasets.

Figure 6.10: TBE calculation runtime comparison of BOOSTER, RAxML, and

64

TreeShredder

6.4 Conclusion

difference to best incompatible support or IC can appear better than a split with
higher support that has negative difference to best incompatible support or IC.

TBE uses a gradual function to measure the presence of a branch in a tree. As
can be seen in Fig. [6.5] this generally leads to higher values than the simple relative
support measure, even for splits with low support. This is because there are many
similar splits in the trees, that differ only slightly from the split in question and, thus,
have a low transfer distance, which leads to high TBE values. This effect is stronger
the bigger the splits are, as shown in Fig. 6.7} The reason is that, even though the
average transfer distance between splits and their respective nearest splits is equal for
all four trees, that average transfer distance is normalized by p—1 in the calculation
of TBE, where p is the number of taxa on the smaller side of the split (see subsection
. If p is held constant as shown in Fig. where only one of the two subtrees
increases in size, then TBE is constant as well. TreeShredder’s TBE algorithm offers
parallelism and takes about 100 seconds to calculate the TBE values for 1,000 input
trees with more than 9000 taxa when using 8 threads. Calculating TBE is fastest
in RAxML and TreeShredder, with BOOSTER taking 100 times longer.

When mapping split information onto reference trees, the root split must be
treated in a special way and the node information of the input trees cannot be
used. TreeShredder can transform IQ-TREE format to the widely-readable Nexus
metacomment format.

65

7 Incomplete Splits and Congruency

7.1 Introduction

An incomplete split represents a group of splits which only differ in some ambiguous
taxa that can occur on either side of the split. Thus, an incomplete split is a
convenient way to make queries on a set of trees that, e.g., only concerns a subset of
taxa. In some analyses, there is interest in the support of the separation of certain
taxa irrespective of some other (maybe rogue) taxa. To this end, one needs to check
incomplete splits that contain all taxa of interest, while excluding all those one does
not care about.

Here I define incomplete splits, i.e., splits where some taxa may occur on either side
of the split. The general split notations to denote complete splits can be extended
to denote the ambiguous taxa. In the “taxon notation” format, a vertical line ‘|’
separates one side from the other and a question mark ‘?” separates a side from
the ambiguous taxa. An incomplete split string may have one or both partition
characters (but the ‘|’ must occur first) because the missing subset can be deduced
from the other two. Taxon names and partition characters may be separated by a
space ° " or a comma ‘,’. The “bit notation” format is similar to the splits denoted
by bits, however, the ambiguous taxa are replaced by question marks ‘?”. Note that
in this format, the order of the bits represent the taxa in reverse order. Fig.
shows the three “taxon notation” formats and the “bit notation” format accepted
for an example incomplete split and its implied complete splits. TreeShredder can
process queries with incomplete splits provided in a Split file (see section .

To determine if two complete splits are congruent, the intersection method is
used (see Bryant, 2003, and references therein). Two complete splits A and B, with
the sides aj|as and by |by, respectively, are incongruent iff none of the four possible
intersections of their sides are empty:

alﬂbl#w VAN alﬂbg#ﬂ VAN agﬂbl%ﬂ A agﬂbg#@.

Conversely, A and B are congruent if one or two intersections are empty — the
latter being the case if the splits are identical (see Tab. .

An incomplete split implies 2™ complete splits, where m is the number of ambigu-
ous taxa, because they can occur on either of two sides. (It will not have escaped my
reader’s notice that an incomplete split with m = 0, where there are no ambiguous
taxa, is, in fact, a complete one.) This shows that the number of implied complete
splits can quickly grow prohibitive. Simply repeating, e.g., compatibility checks with
all complete splits implied by an incomplete one is not feasible. Therefore, the above
method of determining congruency of two complete splits must be extended to the
general case of a complete and an incomplete split. For this, the notation of an
induced subsplit C restricted by I, which is the split that remains when restricting

67

7 Incomplete Splits and Congruency

The three “taxon notation” formats:

AB|CDEG@?FG
AB | CDE
AB?FG

The “bit notation” format:

2200011

The implied complete splits:

ABFG | CDE
ABF | CDEG
ABG| CDETF
AB| CDETFG

Figure 7.1: Examples of the formats used to represent an incomplete split and its

implied complete splits: In the incomplete split, taxa A and B occur on
one side of the split and taxa C, D, and E on the other side. Taxa F and
G can occur on either side and are highlighted in yellow. The incomplete
split is congruent with each of its four implied complete splits.

Table 7.1: Example of the intersection method for complete and incomplete splits:

68

“C+S” colored in green means the splits are congruent and supportive.
“C-S” colored in green means the splits are congruent but not supportive.
“I” colored in red means the splits are incongruent.

Complete splits:

A (ailay): B (b;|b,):
1234|567 1234567 1|234567 1234|567 1235|467
a, N b, 123 1 1234 123
a, N b, 4 234 [} 4
a, N b, 7/} [/} 7] 5
a, n b, 567 567 567 67
C+S C-S C-S I

Complete and incomplete splits:

C (cilep): I (1;11z):
1234|567 12|56 12|35 12|34 15|26
c, N i, 12 12 12 1
c, N i, @ 3 34 2
c, N i, @ 7] @ 5
c, N i, 5] 6
C+s C-S C-S I

7.2 Methods: Finding congruent trees and maximum/sum of occurrence

a complete split to the set of unambiguous taxa of an incomplete split, is required.
Let C be a complete split with the sides ¢1|cy and I be an incomplete split with the
sides i1i2, then the four intersections are:

¢y restricted by I Niy = ¢y Niy
co restricted by I Niy = co Ny
¢y restricted by I Niy = ¢y Ny
co restricted by I Nig = co Ny

It can be seen that four intersections are analogous to the case with two complete
splits, i.e., the compatibility check is valid even if the taxon sets are different.

In TreeShredder, the two sides of an incomplete split are represented as two
dynamic_bitsets where each bit corresponds to a taxon. If the taxon occurs on
that side the bit is set to 1. If an incomplete split I can occur on the same tree as a
complete split C' they are said to be congruent, otherwise they are incongruent. A
congruent incomplete split is additionally supportive iff both of its sides are subsets
of different sides of split C. An incomplete split is incongruent iff none of its sides
are subsets of either side of split C.

More formally, an incomplete split I with the sides i1]iz and a complete split C
with the sides ¢1|co are incongruent iff

’ilgcl/\iQSZCQ/\Z'lSZCQ/\Z-QgCh
congruent and supportive iff
(i1 Cer AN iaCe) V (1 Cee A ds Caq),

and congruent but not supportive in all other cases.

7.2 Methods: Finding congruent trees and
maximum/sum of occurrence

To find trees that are congruent with a set of incomplete splits M* one needs to
check whether for each of those incomplete splits a given tree contains at least one
split that is congruent and supportive.

It is straightforward to find the maximum occurrence among splits in the trees that
are supportive of (or incongruent with) each incomplete split in M. For this, simply
checking compatibility against each split in DataDepot’s vector of unique nontrivial
splits (see subsection will do. This can be combined with calculating the
sum of occurrence of supportive (or of incongruent) splits that are incongruent with
the splits whose occurrence has already been summed up. To do this, one needs
to sort all supportive (or incongruent) splits in descending order. To determine
quickly whether a split is incongruent with another, one can use the property that
the sum of occurrence of two incongruent splits is not greater than the number of
trees. Otherwise they would need to occur together in at least one tree and, thus,
could not be incongruent. Only if the sum of occurrence is < 100%, one needs to
explicitly check congruency using the intersection method.

I implemented two algorithms of different greediness:

69

7 Incomplete Splits and Congruency

Version #1, greedier, no block handling: The first split has maximum occurrence
among all supportive (or incongruent) splits of the trees and is used to seed
the set of supportive (or incongruent) splits from which to calculate the sum.
A supportive (or incongruent) split is added in descending order to the set if
it is incongruent with every split in the set.

Version #2, less greedy, with block handling (-blockHandling flag): By block
handling, splits of equal support are considered together. This guarantees that
splits of equal occurrence are treated equally, enabling the algorithm to choose
the local combination of splits that has (local) maximum sum of occurrence. If
there are multiple local combinations of equal sum the first such combination
is then added to the set. Unfortunately, this arbitrariness in choosing can
prevent the consideration of combinations in blocks further downstream that
would lead to a higher global sum of occurrence.

In both versions, the sum of occurrence depends on the order in which the splits
are added to the set and can vary with a different order. Version #2 suffers from
the same constraints as version #1 but to a smaller extent because locally maximal
combinations are found, at the cost of increased complexity and runtime. The glob-
ally maximal sum of occurrence may not be found. A different parsing order of trees
when splits are extracted can lead to a different order of splits in the sorted support-
ive (or incongruent) splits and, thus, to a different summation result. Conversely,
the maximum support is independent of order.

7.2.1 Determining congruency status of splits

Given a set of incomplete splits (-cong), TreeShredder can determine the congru-
ency status of all splits of an input file with those incomplete splits. The output file
contains three blocks of data for each incomplete split: the first block contains all
congruent and supportive splits of the incomplete split, the second block contains
all congruent but not supportive splits, and the third block contains all incongruent
splits. To obtain all congruent splits, one has to combine the congruent and sup-
portive splits and the congruent but not supportive splits. To obtain all splits that
are not supportive, one has to combine all congruent but not supportive splits and
all incongruent splits.

7.2.2 Qutput files

The -cong flag produces three output files. One contains the congruency status of
splits with the incomplete splits. Another contains the trees that are congruent with
the set of incomplete splits. And a third contains the incomplete splits and their
respective maximum or sum of occurrence among supportive or incongruent splits.
The first column contains the incomplete splits, the second contains the maximum
occurrence among supportive splits, the third the sum of occurrence among support-
ive splits, the fourth the maximum occurrence among incongruent splits, and the
fiftth the sum of occurrence among incongruent splits. The columns are separated
by tabs.

70

7.3 Results: Finding congruent trees and maximum/sum of occurrence

7.3 Results: Finding congruent trees and
maximum /sum of occurrence

TreeShredder can find all trees that are congruent with a set of incomplete splits.
There are 945 different trees with 7 taxa. Of all 945 possible trees, only the 6 trees
in Tab. are congruent with the example set of incomplete splits in Tab. [7.2]
Tab. contains TreeShredder’s congruency measures of the splits in the trees. For
each incomplete split, the best supported split that is congruent and supportive
with it occurs in about 11% (i.e., in 105 or exactly a ninth) of the trees. Because
the values in the second and third column are identical, it can be concluded that
there are no other splits in the trees that are also congruent and supportive with
the incomplete splits and incongruent with the best such split: The set of congruent
and supportive splits that are additionally incongruent with each other only contains
one split, which is the one with maximum occurrence. The same is not true of the
splits in the trees that are incongruent with the incomplete splits. Here, the sum of
occurrence of the set of incongruent splits that are incongruent with each other is
bigger than the best supported incongruent split (about 22% vs 11%).

7.4 Conclusion

TreeShredder can find congruent trees, congruency measures for incomplete splits,
and determine the congruency status of the splits of an input file with the incomplete
splits. Given a set of incomplete splits and a set of trees, TreeShredder can find the
trees that are congruent with all of them. This can be useful, e.g., when one is
interested only in a subset of the taxa of the trees.

Similarly, one can find all splits in an input file that are congruent, congruent and
supportive, congruent but not supportive, incongruent, and not supportive with a
set of incomplete splits.

The congruency measures for a set of incomplete splits are the maximum occur-
rence among congruent and supportive splits, the sum of occurrences among con-
gruent and supportive splits, the maximum occurrence among incongruent splits,
and the sum of occurrences among incongruent trees. To calculate the respective
sums of occurrences, the occurrences of incongruent trees are summed up.

71

7 Incomplete Splits and Congruency

Table 7.2: Set of four example incomplete splits and their congruency measures: The

trees compatible with these incomplete splits (first column) are shown in
Tab. [7.3] The other four columns contain the congruency measures of the
complete splits of the trees: the maximum occurrence among congruent
and supportive splits, the sum of occurrence among congruent and sup-
portive splits, the maximum occurrence among incongruent splits, and
the sum of occurrence among incongruent splits.

incompleteSplits maxSupportive sumSupportive maxIncongruent sumIncongruent

BD|EG?7ACF 0.1111 0.1111 0.1111 0.2222
AE|FG?BCD 0.1111 0.1111 0.1111 0.2222
AB|CE?DFG 0.1111 0.1111 0.1111 0.2222
AC|DG?BEF 0.1111 0.1111 0.1111 0.2222

Table 7.3: Trees that are congruent with the set of four example incomplete splits:

72

These are the 6 trees (out of 945 trees) that are congruent with the four
incomplete splits in Tab. [7.2]

(A,B,(C, (D, (E,(F,®))));
(A, (((B,D),F),G),(C,E));
(A, ((B,D), (F,G)),(C,E));
(A, (((B,D),&),F),(C,E));
(A, (B, (D,F)),&,(C,E));
(A, (((B,F),D),G),(C,E));

8 Consensus Trees

8.1 Introduction

Having large sets of trees, there is often the demand of summarizing them in one
tree. Such trees are typically called consensus trees. There are consensus tree
construction methods for rooted and unrooted trees. An example of a method for
rooted trees was introduced by Adams IIT (1972), which creates a consensus tree
from all three-taxon statements (i.e., incomplete splits where two taxa are more
closely related than a third; see section [7.1]), that are not contradicted by any other
in the input trees. For a method for unrooted trees, rooted trees are considered to
be identical if they differ only in their roots (Felsenstein, |2004)). The construction
method I implemented in TreeShredder — finding the splits from which the consensus
tree will be created — does not differentiate between rooted and unrooted trees, as
it solely considers nontrivial, non-root splits of the input trees. Information about
roots is ignored.

Depicting the topologies of multiple trees in a single consensus tree requires a
set of compatible splits of those trees, from which such a consensus tree can be
constructed. A set of splits is said to be compatible if every split is compatible with
every other split in the set. For ¢ binary trees with n taxa each, there are t(n — 3)
or O(tn) nontrivial splits. However, the number of unique nontrivial splits increases
typically only by O(nln(in)) (see Fig. [3.2a)). Thus, finding a set of compatible
splits for ¢ trees would imply O((nlIn (tn))?) pairwise comparisons. Here, one can
take advantage of the fact that the sum of occurrences of two incompatible splits
cannot be greater than the total number of trees because this would imply that they
occurred together on at least one tree. Thus, if the sum is greater, they must be
compatible and no compatibility check need be done.

There are several kinds of consensus trees, which differ in the rules for finding the
set of compatible splits from which they are created. They will be introduced in
the following. (Note that the UK English term "relative majority” is equivalent to
the US English term ”plurality”, meaning a split occurring in more trees than any
other option, but no more than half of all trees.)

8.1.1 Majority Rule Consensus Tree (1))

The most common consensus tree is the majority rule consensus tree (M;) which
comprises the set of splits that have an occurrence ratio equal to or higher than a
custom specified integer threshold [in the range of [50, 100] percent (Margush and
McMorris, [1981)). Splits with an occurrence ratio of 50% (i.e., those that occur in
exactly half of trees) need to be discarded to prevent draws where two incompatible
splits have equal occurrence ratios. No compatibility checks need be done because

73

8 Consensus Trees

the sum of occurrence of any two splits in the set is guaranteed to be greater than
the number of trees and, therefore, the splits are guaranteed to be compatible. The
M, only contains splits that occur in more than half of trees.

8.1.2 Majority Rule Extended Consensus Tree (),,;)

Finding the set of compatible splits for the majority rule extended consensus tree
(M.y) requires sorting the splits by occurrence in descending order. Then, start-
ing with the split with maximal occurrence, splits are added to the set if they are
compatible with every split already in the set (Felsenstein, [1993). Again, splits with
occurrence ratios > 50% are added without the requirement of checking compati-
bility. However, splits at or below 50% can result in draws, where splits of equal
occurrence are incompatible. Thus, the set of compatible splits (and, as a result,
the M,,;) can vary depending on the order of the splits in the sorted list. Two splits
with equal occurrence need not have the same compatibility status with the splits
in the compatible set, or adding one before the other could lead to the exclusion of
different splits further down the list. This means there may exist multiple M,,; con-
sensus trees for the same set of trees, depending on the order of splits in the sorted
list (the order of splits with equal occurrence is not defined). Furthermore, the M,
may contain splits that are incompatible with splits that have higher occurrences
but were outvoted already by other splits and are therefore not included in the M,,;
consensus tree.

8.1.3 Relative Majority Consensus Tree (1,;)

Finding the set of compatible splits for the relative majority consensus tree (M,
Schmidt, 2003)) is similar to finding the set of compatible splits for the M,,;. Here,
however, encountering the first incompatible split terminates the addition of splits.
Furthermore, splits with equal occurrence as that first incompatible split are removed
from the set of compatible splits (Schmidt, [2003)). This guarantees that splits with
equal occurrence are either all in the set of compatible splits (and the consensus tree),
or none are. The M,.; contains only splits for which there exist no incompatible split
in the trees that has higher or equal occurrence.

8.1.4 Global Relative Majority Consensus Tree (M)

Finding the set of compatible splits for the global relative majority consensus tree
(Mgiop) is similar to finding the set of compatible splits for the M,;, but splits are
only added if they are compatible with all splits (of all trees) that have an equal or
higher occurrence, not only those in the set of compatible splits. The Mg, contains
only splits for which there exist no incompatible split in the trees that has higher
or equal occurrence. It is a potentially better resolved extension of the M,.. In
TreeShredder, the compatibility checks are parallelized.

74

8.2 Methods

8.1.5 Strict Consensus Tree (M ict)

The strict consensus tree (Mg,.i¢) contains all splits that occur in all trees and thus
are added to the set of compatible splits (Bryant, 1997). As they occur in all trees,
they are naturally guaranteed to be compatible.

8.1.6 Semi Strict Consensus Tree (M)

The semi strict consensus tree (Mge,,;) contains only splits that are compatible with
all splits of all trees (Bremer, 1990)). For this, only splits with no incompatible
split in any tree are added to the compatible set. This is the most computationally
expensive kind of consensus tree because it requires comparing each split with every
other split. In TreeShredder, these comparisons are parallelized.

8.2 Methods

8.2.1 Tree Creation Algorithm

From a set of compatible splits, a tree can be created. The algorithm was described
and implemented by Marc Zobel and Vincent Reiner for the software development
course “PR Praktikum aus Bioinformatik” (“PR Laboratory Bioinformatics”) at
University Vienna in 2015. This approach might have also been used by others
earlier in the past in several phylogenetic software.

Let the set of compatible splits form a matrix, where the rows correspond to
splits and the columns to taxa, as shown in Fig. 8.I] The matrix is sorted, first
by descending value of the splits when interpreted as binary value (see b)), then by
ascending value of the columns when interpreted as binary value (see c)).

From the sorted matrix, the Newick string that represents the tree that contains
the set of compatible splits is built (see Fig. : Each taxon’s name (now in the
new order) is added to the newly created Newick tree string as well as its trivial
split’s edge information. Then each split is processed at the corresponding column:
If there is a 0-1 transition from this column to the column of the next taxon, a closing
parenthesis ‘)" and that split’s edge information is added to the Newick string (see
b), d), and f)). If there is a 1-0 transition, the opening parenthesis ‘(’ count variable
is increased by 1 (see d)). If there are no 0-1 or 1-0 transitions, only the taxon
names are added (see a), ¢), e), and g)). After each split was processed this way, a
comma ‘,” and as many opening parentheses as counted by the count variable are
added to the Newick string.

By keeping track of the opening and closing parentheses, one can add the missing
ones to the Newick string (see h)). Finally, the outermost enclosing parentheses and
the semicolon ‘;” are added (see i)).

5

8 Consensus Trees

a) Unsorted matrix:

AR B C D E F G H I J K L A compatible set of splits.

11 11 1 1 1 1 1 1 0 0

1 1 1 0 0 0 0 0 0 0 0 0O

1 1 1 0 0 0 0 0 0 0 1 1

11 11 11 0 0 0 0 1 1
b) Rows sorted by wvalue:

AR B C D E F G H I J K L Sort rows descending by binary wvalue.
1 1 1 1 1 1 1 1 1 1 0 0 <- highest value

11 11 11 0 0 0 0 1 1

1 1 1 0 0 0 0 0 0 0 1 1

1 1 1 0 0 0 0 0 0O 0O 0 0 <- lowest value
c) Columns sorted by wvalue:

J I BE 6 D E F K L A B C Sort columns ascending by binary wvalue.
1 1 1 1 1 1 1 0 0 1 1 1 (Note that the taxon order changed.)
o o o001 111 1 1 11 Matrix is now sorted.

o 0 0000 01 1 1 1 1

o 0 0000 00O 0 1 1 1

lowest walue highest value

Figure 8.1: Sorting the matrix for Newick string creation: Rows correspond to splits,
columns to taxa. The leftmost bit and the bottommost bit are the most
significant when the rows and columns are interpreted as a binary value,
respectively. Note that the final taxon order may have changed.

76

a) Sorted matrix:

J

o O O

b

—

oo o Kr g

e)

o oo KRy

d)

o oo KRy

e)

[« 3 =T =T =

£)

o oo kK g

I H
1 1
0 0
0 0
0 0
Sorted
I H
1 1
0 0
0 0
0 0
Sorted
I H
1 1
0 0
0 0
0 0

G D E F K L A
1 1 1 1 0 0 1
01 1 1 1 1 1
0o 0 0 0 1 1 1
0 0 0o 0 0 0 1
Newick string:
matrix:
G D E F K L A
1 1 1 1 0 0 1
0 1 1 1 1 1 1
0 0 0o 01 1 1
0 0 0 0 0 0 1
Newick string:
matrix:
G D E F K L A
1 1 1 1 0 0 1
0 1 1 1 1 1 1
o 0 0 0 1 1 1
0o 0 0 0 0 0 1

Newick string:

Sorted matrix:

I

o O O -

(= = I =T - H

G

o o o B

oo+ KL UO

oo H+HHM
o o+ EH
o KHOR
or +HoOoBH
[T R T S]

Newick string:

Sorted matrix:

I

1
0
0
0

H

[= = = i

G

[= = = i

D

o O =B K-

ook, KHM
(=T =B s |
o K o R
or R oBH
[o P S -]

Newick string:

Sorted matrix:

I

o O O -

(=T = T =T

G

o O oK

D

(= i

ook K~ H
o o P H
o+ KEH OR
(=T E R S = I o
LI I o -

Newick string:

[l B R HHEKHED [l S e v [e s HKERPEEPD

[l e o

8.2 Methods

No 0-1 or 1-0 transitions from
J, I and H columns to the next
ones. Add taxon names and

commas .

[l el S i]

0-1 transition from G column to
the next. Add taxon name,
closing parenthesis and comma.

[ol S S]

J(I(H(G)(

No 0-1 or 1-0 transitions from
D and E ceclumns to the next
ones. Add taxon names and
commas .

[l el e]

J,I1,H6),DE,

1-0 and 0-1 transition from F
column to the next. Add taxon
name, closing parenthesis,

comma and opening parenthesis.

H FE P 0

J,I,H,6),D,EF), |

No 0-1 or 1-0 transitions from
K column to the next ones. Add
taxon name and comma.

Lol el el I]

J,I,H,6),D,E,F), (K,

0-1 transitions from L column
to the next. Add taxon name,
closing parentheses and comma.

[l el e I ¢]

J,I,H,6),D,E,F), (XK L)),

7

8 Consensus Trees

g) Sorted matrix:

J

o o o B

h)

i)

I

o o o B

H 6 D E F K L A B C No 0-1 or 1-0 transitions from
1 1 1 1 1 0 0 1 1 1 A, B and C columns to the next
o0 1 1 1 1 1 1 1 1 ones. Add taxon names and

o 0o 0o 0o 0 1 1 1 1 1 commas (except the last comma).
0o 0o 0o o o 0 0 1 1 1

Newick string: J,I,H,G),D,E,F),(K,L)),&,B,C

Add missing opening
parentheses.

Newick string: (((J,1,8,6),D,E,F),(K,L)), A B,C

Add outermost enclosing
parentheses and semicolon.

Finished Newick string: ((((J,I1,H,¢),D,E,F),(K, L)), A,B,C);

Figure 8.2: Example of creating a Newick string: This figure begins on the previous

78

page. 0-1 transitions induce a closing parenthesis (highlighted in green).
1-0 transitions induce an opening parenthesis (highlighted in red). Taxon
names (highlighted in blue) are always added to the string. Colons are
added between closing and opening parentheses (or between taxon names
if there are none). The Newick string is finished after the missing opening
parentheses, the outermost enclosing parentheses, and the semicolon are
added. The splits’ edge information can be added to the Newick string
after a taxon name or a closing parenthesis (not shown in this example).

8.3 Results and Discussion

8.3 Results and Discussion

Figs. [8.3a] and [8.3b] show the runtime of generating a My, and a M,,,,; consensus
tree, respectively. For the latter, 8 threads were used. The runtimes remain roughly
constant because the size of the set of compatible splits does not change much with
the number of trees, and thus the creation of the tree from a set of splits takes
roughly equal time.

Fig. shows the combined runtime of sorting the splits by their support (if
necessary; cf. column 2 of Tab. on page and finding the compatible set of
splits (see Fig. for the six different consensus trees for the RAN-400 dataset.
One can see that almost the entire runtime of up to 5 hours for M., Mg, and

M., is due to sorting the more than 250 million unique nontrivial splits of the 1
million RAN-400 trees (see Fig. [3.2b]) by their support.

8.4 Conclusion

Subsets of sets of compatible splits

Since consensus trees are formed from a subset of all splits of a given set of trees,
it might be interesting to know if their split sets form subsets of each other. These
relationships can be summarized by the following statements (where C means the
left consensus tree is less or equally resolved as the right one, but all splits from the
left tree are also in the right tree):

Mstrict = MlOO - Ml - M5O C Mrel - Mglob C Mea:t
Mstrict g Msemi g Mglob

The Mgt s the simplest consensus tree and its split set is necessarily a subset
of all other consensus trees. It is also clear that the set of compatible splits of a M,
consensus tree is a subset of a M; consensus tree with an equal or lower threshold.

The split set of the M,; is a subset of, both, the split sets of the M., and My
consensus trees because their methods continue adding splits when the M,..; method
has already stopped because an incompatible split was encountered.

The split set of the M is a subset of the split set of the M., because the latter’s

split set is a subset of the splits against which splits for the Mg, would be checked
(i.e., all equal or better supported splits) at any stage of finding the compatible set
of splits. Therefore a split that was rejected in the M,,; method is also rejected in
the Mgy, method, but not necessarily vice versa. By the same logic, the M, is a
subset of the M, splits that are added in the stricter Me,,; are also added in the
Mgi05, but not necessarily vice versa.
If all input trees are fully resolved, then the M,.,,; and M.+ are identical. Only
splits within unresolved regions (i.e., multifurcations) in one of the input trees could
potentially be included in the Mj.,,;, but would be missing from the M,.;.; consensus
tree (Felsenstein, 2004)).

79

8 Consensus Trees

Generating 50% Majority Rule Consensus Tree
TreeShredder, in serial

751
3
S 50-
@)
[&]
[}
7]
o~ POL-9147
251 o~ CRF-2696
-~ WNT-82
004 &e—e * M -
T T T T T T
1 200 400 600 800 1000

number of trees

(a) Runtime of the 50% majority rule consensus tree: Runtime is roughly constant.

Generating Semi Strict Majority Consensus Tree
TreeShredder, 8 threads

8 -
6 -
[%2]
2
S 41
[&]
Q
(7))
-o—POL-9147
2 -o— CRF-2696
-o—WNT-82
0{ &—=% & — —3
1 200 400 600 800 1000

number of trees

(b) Runtime of the semi strict majority consensus tree: Runtime is roughly constant, 8
threads were used.

Figure 8.3: TreeShredder runtimes of the 50% majority rule consensus tree and the
semi strict majority consensus tree: The latter is parallelized using 8
threads. Both take roughly equal time. (Runtimes only include the time
to find the set of compatible splits and to create the consensus tree, but
exclude the time to read the tree information from a file.)

80

8.4 Conclusion

Runtime of the consensus tree routine
TreeShredder, using 16 threads for Msemi and Mglob, no split measures, RAN-400

100004 -o— M50
-o— Mext
-o—Mglob
7500 A
-o— Mrel
_é) -o— Msemi
8 50004 -o— Mstrict
7]
7]

25004

1 250000 500000 750000 1000000
number of trees

(a) Consensus routine runtime of the six different consensus trees for the RAN-400 dataset:

Runtime is much longer for M., Mgiop, and M, than the others.

Runtime of finding the compatible set of splits for the consensus tree
TreeShredder, using 16 threads for Msemi and Mglob, RAN-400

-o— M50
2004 -o— Mext
-o— Mglob
-o— Mrel
150 A
g -o— Msemi
o -0— Mstrict
o
» 100
50 A
04 o * o = |

T T T T
250000 500000 750000 1000000
number of trees

(b) Runtime of finding the compatible set of splits for the six different consensus trees for
the RAN-400 dataset: Runtime is longest for Megi, Mgiop and Mep,i. This excludes
the time to sort the splits by support.

Figure 8.4: TreeShredder runtimes of the six consensus trees for the RAN-400
dataset: Mgem; and My, are parallelized using 16 threads. No split
measures were calculated. (Runtimes do not include the time to read
the tree information from a file.)

81

8 Consensus Trees

Properties of consensus trees

The different consensus tree methods apply different criteria to find the compatible
set of splits, which causes the consensus trees to differ in their properties. These
different criteria and properties are summarized in Tab.

While the M; consensus tree only contains splits that occur in more than half
of all trees, this is not necessarily true of Mgy, Mo, Mgiop, and Mge,,;. Because
any split that occurs in > 50% of the trees is necessarily compatible with any other
such split, there need not be any compatibility checks done. These splits can simply
be added to the compatible set of splits, and the order in which they are added is
irrelevant. Since the M,.,,; only contains splits that are compatible with all splits
in all trees, the order in which the compatibility is checked is also irrelevant. If the
trees are fully resolved, then Mj.,,; and Mg,.;; are identical and compatibility checks
are not necessary. (TreeShredder does not check whether trees are fully resolved,
and therefore checks compatibility for the Mep;.)

The M.,; method is the only one that could produce different consensus trees de-
pending on the (undefined) order of splits within blocks of equal support. The M.,
Myiop, and Mje,,; may contain some — not necessarily all — splits of equal support.
This is not the case for the M; (including the Msq and Mg,.ic¢) for obvious reasons,
and for the M, because the method stops adding splits once an incompatible is
found and all splits with equal support are removed from the compatible set of splits.

Obviously, Mso, Mye, Mgop, and M., are guaranteed to contain all splits that
occur in > 50% of trees. There is no such guarantee for the M; (apart from the Ms),
Mermi, and Mg, although it may turn out to be true for particular datasets.

In turn, only the M; (including the Msy and Mgt is guaranteed to contain only
splits with > 50% support. There is no such guarantee for the Memi, Myer, Myion,
and M,,; because for those the search for compatible splits continues below 50%
support.

Finally, the M., is the only consensus tree that is not guaranteed to contain only
splits that have no better supported incompatible split in any tree. This is because
the M.,; method searches through all splits, but only checks for their compatibility

Table 8.1: Summary of relationships between consensus trees: The “+” means that
the property is true of that consensus method. The “~” means that the
property is false of that consensus method. The “—*” means that the
property is generally false of trees of that consensus method but there
may be exceptions for particular datasets.

. requires tree is all splits of contains only contains .
requires o splits have no
consensus | - oo compatibility | independent of | equal support all splits splits better supported
method PO checks order of equally are either with > 50% | with > 50% | v SUPPOTLes
of splits . . . incompatible splits
of splits supported splits in or out support support
Alstrict + + * + +
]\/[semi - + + - - - +
M, - - + + — + +
Ms - - + + + + +
M, e + + + + + - +
M, glob + + + * + * +
]\/[ezt + + B — + - -

82

8.4 Conclusion

with the splits in the compatible set of splits, not against better supported splits
that have been discarded already. This is similar to the M,.; method, but here the
search for compatible splits is terminated once an incompatible one is found.

Creating a Newick string

The Tree Creation Algorithm creates a Newick tree string from a set of compatible
splits by first, sorting a matrix of splits, and second, progressively adding taxon
names, parentheses, commas, and edge information to the string.

Runtime of the different consensus trees

The runtimes of generating the different consensus trees are roughly equal and re-
main constant with increasing number of trees for the biological datasets. This is
also true of the M.,,;, whose set of compatible splits is the most computationally
expensive to find. However, generating the M, Mg, and M., for the random
dataset takes much longer than the other consensus tree methods due to the neces-
sity of sorting many millions of nontrivial splits by their support.

83

9 Matrix Representation

9.1 Introduction

There are several ways to compute species trees from alignments of a set of genes.
One possibility is to concatenate the gene alignments and analyse this so-called
superalignment. Another way is using the gene trees to construct a so-called su-
pertree. If the taxon sets of the trees are identical, one can use consensus methods
as described in chapter

However, if the taxon sets of trees are not identical, TreeShredder’s consensus tree
feature cannot depict the topology and information of those trees in a single tree.
Instead, a supertree needs to be constructed that combines diverse phylogenies into
a single tree. Input for several of these methods is a Matrix Representation (Ragan,
1992; Baum, 1992), where rows correspond to unique taxa of the trees and columns
correspond to the presence or absence status of that unique taxon in the trees’
nontrivial splits and on which side of the splits they occur. From this matrix, a
supertree can be constructed using diverse methods such as Matrix Representation
with Parsimony (MRP; Ragan, [1992; Baum, 1992)), Matrix Representation with
Flipping (MRF; Chen, Diao, et al., 2003), Matrix Representation with Distances
(MRD; Lapointe, Wilkinson, and Bryant, 2003} Levasseur and Lapointe, 20006)),
Matrix Representation with Compatibility (MRC; Ross and Rodrigo, [2004), and
Matrix Representation with Bad Clade Deletion (BCD; Fleischauer and Bocker,
2017). These methods require a Matrix Representation as input but differ, e.g.,
in complexity, number of output supertrees, and introduction of clades that are
contradicted by all input trees (Kupczok, Schmidt, and Haeseler, 2010; Fleischauer
and Bocker, [2017)).

However, with the advent of the partition model in combination with the super-
alignment, supertree construction has lost some popularity in the scientific commu-
nity in recent years. Over the same period, even though theoretical research is still
being done in this field, maintenance of and support for programs that allow for gen-
erating a Matrix Representation for supertree construction have been discontinued.
To fill that gap, TreeShredder offers this feature with the -mr flag option.

9.2 Methods

The creation of a Matrix Representation file takes files containing tree information
(that may have different taxon sets) as input. In TreeShredder, these can be Newick,
Nexus, or TreeShredder files. Let I denote the set of input files, and U denote the
union set of (unique) taxa among the input files of I.

First, the union set U of all taxon sets among input files is created to find all

85

9 Matrix Representation

unique taxa. Then, in that order (as nested loops), for each unique taxon w in U,
for each input file in set I, for each tree ¢ in that file, for each nontrivial split b in
that tree, the value of that unique taxon w (at its position) in split b (i.e., 0 or 1)
is written to the Matrix Representation file. If the unique taxon does not exist in
the taxon set of ¢ then a question mark ‘?’ is written instead, indicating the lack
of information regarding that taxon. The runtime complexity of this algorithm is
O(|U| * s), where s is the sum of nontrivial splits of all trees of all input files.

TreeShredder creates a Matrix Representation file in Nexus format by default,
where the matrix strings corresponding to trees and files are separated by one and
three blank spaces, respectively, for better readability. Additionally, the start and
end positions of, both, the strings in the matrix corresponding to individual trees,
and corresponding to individual files, are stored in a Nexus “Set” block.

Some programs require files in FASTA format for supertree construction. For
them, TreeShredder offers the ~-FASTA flag option, which outputs an additional Ma-
trix Representation file in FASTA format. Here, the matrix strings corresponding
to trees and files are separated by one or two newlines, respectively.

09.2.1 Presence-Absence file

For a simple overview about which taxon exists in which tree information file, there
is the -PresAbs flag option. This will output a Presence-Absence matrix file where
the first column contains the unique taxon names. The other columns represent
each tree in each file and contain a 1 if the unique taxon exists in that tree or a 0
if not. These columns are denoted, e.g., as “f1t1” to denote the indices of the trees
and files. The columns are separated by tabs.

9.3 Results and Discussion

Fig. shows TreeShredder runtime of reading Newick file and running the Matrix
Representation feature for six datasets collected by Rob Lanfear (Lanfear, 2019).
The datasets are collected from stinging wasps (Aculeata; Branstetter et al., [2017)),
ray-finned fishes (Actinopterygii; Faircloth et al., 2013)), spurge (Euphorbia; Horn
et al., 2014), spiny-rayed fishes (Acanthomorpha; Near et al., [2013)), amphibians
(Amphibia; Pyron and Wiens, |2011)), and mushrooms (Basidiomycota; Varga et al.,
2019)) with different number of partitions (i.e., trees) and unique taxa (see Tab.[0.1]).
The runtime tends to increase with the product of the number of unique taxa and
the sum of nontrivial splits. This is because the Matrix Representation output file
grows linearly in size with this product. Overall, runtime is in the range of a few
seconds.

86

9.3 Results and Discussion

Writing Matrix Representation file

TreeShredder
154
Branstetter_2017-807
Faircloth_2013-489
e Horn_2014-28
e Near_2013-10
1.04 -
_g Pyron_2011-14
8 Varga_2019-3
@
7]
0.5
®
0.0 o

10000000
number of unique taxa * sum of nontrivial splits

20000000 30000000

40000000

Figure 9.1: TreeShredder runtimes of Matrix Representation for six datasets: They
are encoded by first author, followed by year of publication and finally
by the number of DNA dataset partitions (mostly genes) extracted from
the original superalignment, i.e., this is also the number of trees for that

dataset.

Table 9.1: Datasets for Matrix Representation: The datasets are named as they
appear in Fig. [9.1]
partitions. The “taxa” column contains the number of unique taxa among

the trees of the dataset.

(Lanfear, 2019).

The number of trees corresponds to the number of

The datasets were collected by Rob Lanfear

dataset trees | taxa | clade dataset DOI
Branstetter_2017-807 807 | 187 | Aculeata (stinging wasps) 10.5061/dryad.r8d4q
Faircloth_2013-489 489 27 | Actinopterygii (ray-finned fishes) 10.5061/dryad.j015n
Horn_2014-28 28 | 197 | Euphorbia (spurge) 10.5061/dryad.sb1j1
Near_2013-10 10 | 608 | Acanthomorpha (spiny-rayed fishes) | 10.5061/dryad.d3mb4
Pyron_2011-14 14 | 2872 | Amphibia (amphibians) 10.5061/dryad.vdOm?7
Varga_2019-3 3 | 5285 | Basidiomycota (mushrooms) 10.5061/dryad.gc2k9r9

87

9 Matrix Representation

9.4 Conclusion

TreeShredder reintroduces the Matrix Representation feature for the construction
of supertrees from input trees with different taxon sets. This is in reaction to
the discontinuation of software for generating Matrix Representation files (see, e.g.,
Page, 2002, Chen, Eulenstein, and Ferndndez-Baca, [2004). The user can choose
between Nexus and FASTA format output. Generating a Matrix Representation file
takes less than a few seconds for a diverse selection of datasets.

The Presence-Absence file contains a simple matrix showing which unique taxon
exists in which tree of the input files.

88

10 Robinson-Foulds Distances

10.1 Introduction

When comparing two given trees, one might be interested in the similarities and dif-
ferences between them. A convenient way is to count the number of splits that occur
only in one tree or the other, but not in both. This metric is called Robinson-Foulds
(RF) distance and was described by David Robinson and Leslie Foulds (Robinson
and Foulds, 1981). The RF distance is biased because trees with more taxa (and
splits) tend to have a higher distance than trees with fewer taxa (and splits). This
bias can easily be corrected by normalizing the RF distance to a range between 0
and 1 through division by the sum of nontrivial splits of the trees.

The following definitions and annotation are taken from Steel (2016). The
Robinson-Foulds (RF) distance, dgp(7T,T"), is a measure to assess the difference
of two trees T and T” with identical taxon sets. It is the sum of splits occurring
in tree T but not in tree 7" and vice versa. If they have identical taxon sets the
maximum Robinson-Foulds distance is 2(n — 3), which is two times the maximum
possible number of nontrivial splits (which is n — 3 in bifurcating trees) where n is
the number of taxa. The trivial splits must necessarily exist in both trees and do
not contribute to the sum (Steel, [2016).

In short, the Robinson-Foulds distance is the symmetric difference of the split sets
of two trees, denoted as

dRF(T7 T/) = IZ(T) A E(T/)la

where ¥ denotes the split set of a tree (Steel, 2016).

10.2 Methods

The Robinson-Foulds distance routine in TreeShredder uses dynamic_bitsets to
represent the set of nontrivial splits of a tree (0 means the split is absent in the tree,
1 means it is present). Using DataDepot’s vector of pointers to all unique splits,
each tree’s bits are set to 1 at the position of the tree’s nontrivial splits in the vector
(which is also that split’s ID; see also “Nontrivial Splits” block in subsection .

With the dynamic_bitsets now representing the presence or absence status of the
nontrivial splits of the trees, pairwise XOR operations can be done between them.
Counting the resulting bits that are equal to 1 gives the Hamming Distance (see
also subsection between the set of nontrivial splits of two trees, i.e., how many
splits would hypothetically need to be removed from either tree such that their sets
of nontrivial splits are identical. This is equivalent to the Robinson-Foulds distance.

89

10 Robinson-Foulds Distances

This part of the algorithm is parallelized with a static schedule with block size
of 1 (see subsection , which allocates a roughly equal number of pairwise
comparisons to each thread by interleaving. Because the number of comparisons
for each tree T' to each tree 7" increases according to a half matrix (Robinson-
Foulds distances are symmetric) failing to interleave would lead to a skewed load
balance of the threads. This is because the first thread would receive the tip of the
half matrix and the last thread would receive the base of the half matrix, which has
more pairwise comparisons.

The pairwise Robinson-Foulds distances are written to a file where each line con-
tains a single tree combination (including a tree with itself, which has dgr = 0).

There are four columns separated by tabs in the output file:

e The 1% column contains the indices of Tree T,
e The 2" column contains the indices of Tree 17,
e The 3" column contains the absolute RF distances dpp(T,T"),

e The 4" column contains the relative RF distances. These are normalized to
the range of [0, 1] through division by the sum of existing nontrivial splits in
both trees (which, for partially resolved trees, is smaller than 2(n — 3)).

10.3 Results and Discussion

Figs.[10.1aland [10.1b]compare the Robinson-Foulds distances runtimes of TreeShred-
der and RAXML for CRF-2696 and POL-9147, respectively. (WNT-82 was omitted
because the runtime was too short to be usefully compared.) For both software, the
analysis is started from Newick file input, and for TreeShredder additionally from
TreeShredder file input. TreeShredder with TreeShredder file input is fastest by a
factor of about 20 for the larger datasets CRF-2696 and POL-9147. The reason is
that TreeShredder file input does not require the costly parsing of Newick strings.
RAxML and TreeShredder take roughly equal time when started from Newick file
input for both datasets. It can also be seen that the runtime for TreeShredder’s RF
distances routine increases linearly with the number of trees.

10.4 Conclusion

TreeShredder offers the well-established absolute and relative Robinson-Foulds dis-
tances feature, which measures the difference between sets of nontrivial splits of two
trees. TreeShredder’s implementation is as fast or faster than RAxML when started
from a Newick file, but orders of magnitude faster when started from a TreeShredder

file.

90

10.4 Conclusion

Running Robinson—-Foulds distances
RAxML and TreeShredder, from Newick and TreeShredder file, CRF-2696

10.0 1
A RAXML, from Newick
e TreeShredder, from Newick
7.54 o TreeShredder, from tsf
%)
ke
5
S 5.04
Q
"
2.54
0.01 =

1 200 400 600 800 1000
number of trees

(a) Generating RF distances comparing different programs and file input for CRF-2696:
TreeShredder with TreeShredder file input is fastest by an order of magnitude. RAxML
and TreeShredder with Newick file input take roughly equal time.

Running Robinson—-Foulds distances
RAXML and TreeShredder, from Newick and TreeShredder file, POL-9147

40 - A RAXML, from Newick
o TreeShredder, from Newick
o TreeShredder, from tsf
304
%)
ke
c
3
@ 204
%]
101
0 -

T T T
1 200 400 600 800 1000
number of trees

(b) Generating RF distances comparing different programs and file input for POL-
9147: TreeShredder with TreeShredder file input is by far the fastest. RAxML and
TreeShredder with Newick file input take roughly equal time.

Figure 10.1: Generating RF distances comparing different programs and file input

91

11 Split Co-Occurrences

11.1 Introduction

As described in chapter [6, counting how often a given nontrivial split occurred in a
set of input trees is an established method to assess the robustness of the analysis
regarding that split. If the split occurs in many trees derived from multiple sequence
alignments created by bootstrapping or jackknifing (see, e.g., Felsenstein, [1986)), this
is a good indication that the information regarding that split really was present in
the original alignment.

But what if the researcher is interested in not only one, but two nontrivial splits?
In the case of the above bootstrap values, splits are regarded in a strictly individual
way. le., having two bootstrap values does not tell (exactly) how often the splits
occurred together in the same trees. For two splits A and B with occurrences a and
b, respectively, lower and upper bounds for their co-occurrence can be given. It is
clear that they co-occur in at least 0 and at most min (a, b) trees. Only if the sum of
bootstrap values of two splits is greater than the number of trees ¢, the lower bound
is greater than 0 and given by (a + b) — ¢ instead. But to narrow down this broad
range of possible values, I define and implemented the Split Co-Occurrences (SCO)
measure, SCO(A, B), which gives the exact number of co-occurrences of two splits
in the trees.

A potential area of application for SCO in phylogenetics is to study the reason
why two nontrivial splits do not co-occur (or do not co-occur more often) in the
trees even though they are congruent. This could be extended to outright exclude
certain splits from consideration for, e.g., consensus trees if they do not co-occur
with the other splits with a custom-defined threshold. I.e., the consensus tree would
then consist only of splits that really co-occurred in a given minimum number of
trees. Similarly, a set of trees could be restricted to only contain those trees that
have a high co-occurrence rate of their splits. These potential applications for SCO
are out of scope of this master’s thesis and are left for others to develop further.

Since there are (n? —n)/2 pairwise comparisons (all to all), where n is the number
of unique nontrivial splits, the Split Co-Occurrences output file can grow very large.
For this reason, among others, I implemented the output compression feature in
TreeShredder (see also subsection [5.6.2).

11.2 Methods

The Split Co-Occurrences routine in TreeShredder uses a dynamic_bitset to rep-
resent the set of trees a unique nontrivial split occurs in. Here, the bits of a
dynamic_bitset correspond to the trees and if the split occurs in the tree the bit

93

11 Split Co-Occurrences

is set to 1, if not the bit is 0. To find this relationship of trees and their splits,
DataDepot’s vector of vectors of a tree’s nontrivial splits is used.

With the dynamic bitsets now representing all unique nontrivial splits’ set of
trees they occur in, pairwise AND operations determine in which trees two unique
nontrivial splits co-occur. Counting the bits that are equal to 1 obtains the number
of trees they co-occur in.

The pairwise Split Co-Occurrences are written to a file where each line contains
a single combination of two unique nontrivial splits (including each split with itself,
which is equal to the number of trees the split occurs in for absolute SCO, and equal
to 1 for relative SCO and SCO ratios).

There are six columns separated by tabs in the output file:
e The 1% column contains the indices of unique nontrivial split A,
e The 2™ column contains the indices of unique nontrivial split B,
e The 3" column contains the absolute Split Co-Occurrences SCO(A, B),

e The 4*" column contains the relative Split Co-Occurrences. These are normal-
ized to the range of [0, 1] through division by the number of trees.

e The 5 column contains the SCO ratio of split A “in” split B. This is the
ratio of the number of trees split A and B co-occur in divided by the number
of trees split B occurs in overall.

e The 6 column contains the SCO ratio of split B “in” split A. This is the
ratio of the number of trees split A and B co-occur in divided by the number
of trees split A occurs in overall.

11.3 Results and Discussion

Fig. shows the runtime of the Split Co-Occurrences routine. The runtime
increases roughly linearly with the number of trees. This is because it is the sum
of the linearly increasing runtime of calculating the SCO values (see Fig. [I1.1p)
and the sub-linearly increasing time of writing those values to the output file (see
Fig. 11.1k).

Fig. shows the calculation time for the Split Co-Occurrences values. It
grows linearly with the number of trees because the dynamic bitsets grow with
the number of trees (see section [11.2).

Fig. shows the runtime of writing the Split Co-Occurrences values to a
file. This should grow quadratically with the number of unique nontrivial splits.
However, there is no clear relationship with the number of trees. This likely reflects
the non-linear relationship of the number of unique nontrivial splits as a function of

the number of trees (see Fig. [3.2a)).

94

11.3 Results and Discussion

(a) Running Split Co—Occurrence routine
TreeShredder, uncompressed output
150 -e-PoL-9147
-o— CRF-2696
-~ WNT-82
v 1004
ie)
c
o
[5)
[0}
%)
50
0+ - - A hd
1 200 400 600 800 1000
number of trees
(b) Calculating Split Co—-Occurrences
TreeShredder
120
o POL-9147
-e— CRF-2696
-~ WNT-82
80
[2]
e]
c
(o]
(8]
(]
(7]

40 A

1 200 400 600 800 1000
number of trees

(c) Writing Split Co—Occurrences to file
TreeShredder, uncompressed output

401 o poL-0147

-o—CRF-2696

0. O WNT-82

104

1 200 400 600 800 1000
number of trees

Figure 11.1: TreeShredder runtimes of calculating and writing Split Co-Occurrences
to file: The plots show the runtime of (a) the total SCO routine, (b)
calculating the SCO values, and (c) writing the SCO values to the
uncompressed output file.

95

11 Split

Co-Occurrences

Comparison of writing Split Co—Occurrence file
TreeShredder, uncompressed vs GZipped runtime and file size, POL-9147

404 - 400
301 - 300
[}
2 -o—uncompressed time (lhs) =z
o
9 207 -e—GZipped time (Ihs) -200 @
»n
-e—uncompressed size (rhs)
-o— GZipped size (rhs)
104 - 100
e-—-—m—m—mm—m—m=mm== ==)
- -~ -—-- -~~~
[N L
ol & -0
1 200 400 600 800 1000

number of trees

(a) Comparison of Split Co-Occurrences file writing time and file sizes: Note the left-hand
side (lhs) and right-hand side (rhs) scales. GZipped and uncompressed runtimes (lhs)
are virtually identical, while their output file sizes (rhs) are not.

-85% 4

-90%

size reduction

_950@ -

-100% -

Difference between Split Co—Occurrence file sizes
TreeShredder, uncompressed vs GZipped

-o—POL-9147

1 200 400 600 800
number of trees

1000

(b) Differences of Split Co-Occurrences file sizes: GZipped files are about one tenth the
size of uncompressed files.

Figure 11.2: Comparison of Split Co-Occurrences runtime and output compression

96

11.4 Conclusion

11.3.1 GZip compression

Split Co-Occurrences output files can grow very large as the number of unique non-
trivial splits grows large. In this case, it is advised to compress the file output using
the -gz flag. This is shown in Fig. [I1.2] where uncompressed vs GZipped runtime
and file size for POL-9147 Split Co-Occurrences is compared. Writing GZipped file
output comes without noteworthy runtime changes but decreases output file size
substantially by about 90%, e.g., 9 MB vs 139 MB for 10 POL-9147 trees or 48 MB
vs 377 MB for 1,000 POL-9147 trees (Fig. [11.2a). The runtime curve in Fig.
flattens because the number of unique nontrivial splits saturates with an increasing

number of trees (compare with Fig. [3.2a]).

11.4 Conclusion

I introduced a new feature called Split Co-Occurrences, which shows how often the
splits occur with other splits in the trees. Potential fields of research are, e.g.,
investigating the reason why two congruent splits do not co-occur more often or
restricting a set of trees to only those whose splits co-occur sufficiently. Concrete
applications are left to be developed by others.

GZipping the Split Co-Occurrences output does not significantly change the run-
time but saves about 90% of space (48 MB vs 377 MB for 1,000 POL-9147 trees).

97

Part IV

Summary

99

12 Conclusion and Outlook

Here, I summarize TreeShredder’s diverse features described in their respective chap-
ters and present an outlook for future work to extend TreeShredder’s versatile tool-
box even further.

12.1 Summary

If certain precautions are taken, such as minimizing the number of creations and
copies of splits by using pointers, speedup by parallel computing can be achieved
with the boost::dynamic bitset class. This class offers bitwise standard logical
operations such as AND, OR, and XOR, as well as dynamic memory allocation at
runtime. However, speedup also depends on the operating system TreeShredder is
run on (see chapter [)).

TreeShredder can read the common file formats for tree information input in phy-
logenetic software: Newick and Nexus files. Additionally, I developed the TreeShred-
der file, which holds tree information that is useful to TreeShredder in a condensed
way (see chapter [5). Investing the time to convert Newick and Nexus files to
TreeShredder files once saves time in subsequent TreeShredder analyses because
the Newick tree strings need only be parsed once. This is especially true for large
datasets, e.g., the GEN-404 dataset comprising millions of trees, where reading the
TreeShredder file (in serial) is four times faster than reading the Newick file in
parallel using 16 threads.

The Splits Extraction Algorithm extracts nontrivial splits from Newick tree strings
along with additional information such as branch lengths and split measures. I
extended the algorithm to also extract Nexus metacomments and determine the
rootedness of the tree (see chapter . Conversely, the Tree Creation Algorithm pro-
duces a Newick tree string from a set of compatible splits. With this, TreeShredder
can create diverse consensus trees: the strict, semi-strict, majority rule, majority
rule extended, relative majority, and the newly introduced global relative majority
consensus trees (see chapter .

Besides consensus trees, TreeShredder can also map tree information onto refer-
ence trees. The user can choose between diverse split measures: abs./rel. support,
abs./rel. best incompatible support, abs./rel. difference to best incompatible sup-
port, Internode Certainty, and Transfer Bootstrap Expectation (see chapter @ The
abs. /rel. best incompatible support and abs. /rel. difference to best incompatible sup-
port split measures offer an additional way to gauge the quality of a split: weakly
supported splits could be less contradicted by incongruent splits than splits that are
better supported. I introduced a way to extend the calculation of Internode Cer-
tainty to reference trees, where there may be splits that do not occur in the set of
splits that are to be mapped onto it. TBE calculation is time consuming and lends

101

12 Conclusion and Outlook

itself to parallelization. It uses a gradual indicator function to measure the presence
of splits in the trees instead of a binary one. This leads to higher values than simple
relative support in deep branches of large phylogenies that could be disrupted by a
single taxon with uncertain placement (i.e., rogue taxon). TreeShredder compares
favorably against its competitors RAxML and BOOSTER in the calculation of TBE,
especially if the analysis is started from a TreeShredder file.

Uniquely among competitor programs, TreeShredder can deal with queries of in-
complete splits, where some taxa may occur on either side of the split (see chapter|[7)).
Given a set of incomplete splits, TreeShredder can find all trees from a set that are
compatible with those splits and calculate the maximum or sum of support among
supportive or incongruent splits in the trees. Additionally, it can determine the con-
gruency status of the splits in the trees with those incomplete splits, i.e., whether
they are congruent and supportive, congruent but not supportive, or incongruent.

To support scientists in the field of supertree construction, TreeShredder can
generate a Matrix Representation, which has seen decreasing software maintenance
and support in recent years (see chapter @

TreeShredder calculates the well-established Robinson-Foulds distance (see chap-
ter . TreeShredder is as fast or faster than RAxML, depending on whether the
analysis was started from a TreeShredder file.

Additionally, I introduced the Split Co-Occurrence, which measures how often
each pair of unique splits occurs together in the trees (see chapter . Potential
applications for this new measure include studying the reason why two congruent
splits do not co-occur (more often) in the trees or to outright exclude splits with
low co-occurrence from consideration in further analyses.

Any file input or output of TreeShredder can be compressed. Surprisingly, output
compression not only saves disk space, it is also faster than writing uncompressed
output (see subsection .

TreeShredder can transform IQ-TREE’s branch annotation values that are sepa-
rated by slashes to Nexus metacomments with custom defined names as keys (see

subsubsection [6.2.2.1]).

12.2 Outlook

In the future, TreeShredder could be extended to annotate specific splits by using
(incomplete) splits to add key:value annotation to all splits matching. Additionally,
the congruency measures for incomplete splits could be extended to include addi-
tional measures, such as the minimum occurrence or the shortest and longest branch
among matching splits.

Another feature that could be usefully extended is the consensus tree feature. As
described in section the compatible sets of splits of the different consensus tree
methods are subsets of each other. This means that generating multiple consensus
trees by finding their respective compatible sets of splits and calculating their split
measures in one go, exploiting their subset relationship, is feasible.

Furthermore, the TreeShredder file feature could be extended to write the nontriv-
ial splits in a custom-defined order, e.g., sorted by their support. This could usefully

102

12.3 Concluding Remarks

speed up subsequent analyses that require (many millions of) nontrivial splits in a
specific order.

12.3 Concluding Remarks

In this thesis, I introduced features that are unique to TreeShredder. These are:
extended Nexus metacomments, incomplete splits and related queries, new support
measures (best incompatible and difference to best incompatible support), a way to
speed up phylogenetic analyses using the TreeShredder file as convenient starting
point, dealing with several million input trees, and Split Co-Occurrence. These
unique features, together with a repertoire of established ones, make TreeShredder
a versatile and powerful addition to the analysis toolbox in phylogenetics.

103

References

Adams III, Edward N. (1972). “Consensus Techniques and the Comparison of Taxo-
nomic Trees”. In: Syst. Zool. 21, pp. 390-397. DOT: 10.1093/sysbio/21.4.390.

Baum, Bernard R. (1992). “Combining trees as a way of combining data sets for
phylogenetic inference, and the desirability of combining gene trees”. In: Tazon
41, pp. 3-10. DOI: |10.2307/1222480.

BEAST developers (2017). NEXUS format metacomments. URL: https://beast .
community/nexus_metacomments| (accessed: 2022-6-15).

Boost developers (2017). Boost 1.66.0 Libraries Documentation. URL: https://
www.boost.org/doc/libs/1_66_0 (accessed: 2022-5-5).

Branstetter, MG, BN Danforth, JP Pitts, BC Faircloth, PS Ward, ML Buffington,
MW Gates, RR Kula, and SG Brady (2017). “Phylogenomic Insights into the
Evolution of Stinging Wasps and the Origins of Ants and Bees”. In: Current
Biology 27.7, pp. 1019-1025. DOI: dx.doi.org/10.1016/j.cub.2017.03.027.

Bremer, Kare (1990). “Combinable component consensus”. In: Cladistics 6, pp. 369—
372. po1: 10.1111/3.1096-0031.1990.tb00551 . x.

Bryant, David (1997). “Hunting for trees, building trees and comparing trees: Theory
and method in phylogenetic analysis”. PhD thesis. Canterbury: Dept. Mathe-
matics, University of Canterbury. DOTI: -.

— (2003). “A classification of consensus methods for phylogenetics”. In: Bioconsen-
sus: Proceedings of Tutorial and Workshop on Bioconsensus II. DIMACS Series
in Discrete Mathematics and Theoretical Computer Science. DIMACS-AMS,
pp. 55-66. DOI: [10.1090/dimacs/061/11.

Chen, Duhong, Lixia Diao, Oliver Eulenstein, David Fernandez-Baca, and Michael J.
Sanderson (2003). “Flipping: A Supertree Construction Method”. In: DIMACS
Series in Discrete Mathematics and Theoretical Computer Science. Ed. by M. F.
Janowitz, F.-J. Lapointe, F. R. McMorris, B. Mirkin, and F. S. Roberts. Vol. 61.
Providence, Rhode Island: American Mathematical Society, pp. 135-160. DOTI:
10.1090/dimacs/061/10.

Chen, Duhong, Oliver Eulenstein, and David Fernandez-Baca (2004). “Rainbow: a
toolbox for phylogenetic supertree construction and analysis”. In: Bioinformatics
20, pp. 2872-2873. DOI: |10.1093/bioinformatics/bth313.

Chor, Benny and Tamir Tuller (May 2005). “Maximum Likelihood of Evolutionary
Trees Is Hard”. In: Proceedings of the 9th Annual International Conference on
Res earch in Computational Molecular Biology (RECOMB 2005). Vol. 3500.
Lecture Notes in Computer Science. New York, USA: ACM Press, pp. 296-310.
DOI: 10.1007/11415770_23.

Dagum, Leonardo and Ramesh Menon (1998). “OpenMP: An Industry-Standard
API for Shared-Memory Programming”. In: IEEE Comput. Sci. Eng. 5, pp. 46—
55. DOI: 110.1109/99.660313.

105

https://doi.org/10.1093/sysbio/21.4.390
https://doi.org/10.2307/1222480
https://beast.community/nexus_metacomments
https://beast.community/nexus_metacomments
https://www.boost.org/doc/libs/1_66_0
https://www.boost.org/doc/libs/1_66_0
https://doi.org/dx.doi.org/10.1016/j.cub.2017.03.027
https://doi.org/10.1111/j.1096-0031.1990.tb00551.x
https://doi.org/-
https://doi.org/10.1090/dimacs/061/11
https://doi.org/10.1090/dimacs/061/10
https://doi.org/10.1093/bioinformatics/bth313
https://doi.org/10.1007/11415770_23
https://doi.org/10.1109/99.660313

References

Day, William H. E., D. Johnson, and David Sankoff (1986). “The computational
complexity of inferring rooted phylogenies by parsimony”. In: Math. Biosci. 81,
pp- 33-42.

Faircloth, BC, L Sorenson, F Santini, and Alfaro ME (2013). “A phylogenomic
perspective on the radiation of ray-finned fishes based upon targeted sequencing
of ultraconserved elements (UCEs)”. In: PLoS ONE 8.6, ¢65923. DOI: dx.doi.
org/10.1371/journal .pone.0065923.

Felsenstein, Joseph (1978). “The number of evolutionary trees”. In: Syst. Zool. 27,
pp. 27-33. DOI: [10.2307/2412810.

— (1985). “Confidence Limits on Phylogenies: An Approach Using the Bootstrap”.
In: Fvolution 39, pp. 783-791. DOI: 10.1111/3j.1558-5646.1985.tb00420.x.

— (1986). “Discussion: Jackknife, Bootstrap and Other Resampling Methods in
Regression Analysis”. In: Ann. Stat. 14, pp. 1304-1305. DOI: 10 . 1214 /aos/
1176350146.

— (1993). PHYLIP (Phylogeny Inference Package) version 3.5¢. Distributed by the
author. Department of Genetics, University of Washington. Seattle.

— (2004). Inferring Phylogenies. Sunderland, Massachusetts: Sinauer Associates,
pp. 521-538. 1SBN: 0878931775.

Felsenstein, Joseph, James Archie, William H.E. Day, Maddison Wayne, Christopher
Meacham, F. James Rohlf, and David Swofford (1986). The Newick tree format.
URL: https://evolution.genetics.washington.edu/phylip/newicktree.
html (accessed: 2022-6-26).

Fleischauer, Markus and Sebastian Bocker (2017). “Bad Clade Deletion Supertrees:
A Fast and Accurate Supertree Algorithm”. In: Mol. Biol. Fvol. 34, pp. 2408—
2421. DOI: 10.1093/molbev/msx191.

Gailly, Jean-loup and Mark Adler (2022). zlib 1.2.12. URL: https://zlib . net
(accessed: 2022-5-9).

Horn, JW, Z Xi, R Riina, JA Peirson, Y Yang, BL Dorsey, PE Berry, CC Davis,
and KJ Wurdack (2014). “Evolutionary bursts in Euphorbia (Euphorbiaceae)
are linked with photosynthetic pathway”. In: Fvolution 68.12, pp. 3485-3504.
DOI: dx.doi.org/10.1111/evo.12534.

Kerrisk, Michael (2010). “The Linux Programming Interface - A Linux and UNIX
System Programming Handbook”. In: San Francisco: No Starch Press, p. 40.

Kobert, Kassian, Leonidas Salichos, Antonis Rokas, and Alexandros Stamatakis
(2016). “Computing the Internode Certainty and Related Measures from Par-
tial Gene Trees”. In: Mol. Biol. Evol. 33, pp. 1606-1617. DOI: 10.1093/molbev/
msw040.

Kupczok, Anne, Heiko A. Schmidt, and Arndt von Haeseler (2010). “Accuracy of
phylogeny reconstruction methods combining overlapping gene data sets”. In:
Algorithms Mol. Biol. 5, 37, p. 37. DOI: 10.1186/1748-7188-5-37.

Lanfear, Rob (2019). BenchmarkAlignments. URL: https://github.com/roblanf/
BenchmarkAlignments| (accessed: 2022-6-15).

Lapointe, Frangois-Joseph, Mark Wilkinson, and David Bryant (2003). “Matrix Rep-
resentations with Parsimony or with Distances: Two Sides of the Same Coin?”
In: Syst. Biol. 53, pp. 865-868. DOI: [10.1080/10635150390252297.

106

https://doi.org/dx.doi.org/10.1371/journal.pone.0065923
https://doi.org/dx.doi.org/10.1371/journal.pone.0065923
https://doi.org/10.2307/2412810
https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
https://doi.org/10.1214/aos/1176350146
https://doi.org/10.1214/aos/1176350146
https://evolution.genetics.washington.edu/phylip/newicktree.html
https://evolution.genetics.washington.edu/phylip/newicktree.html
https://doi.org/10.1093/molbev/msx191
https://zlib.net
https://doi.org/dx.doi.org/10.1111/evo.12534
https://doi.org/10.1093/molbev/msw040
https://doi.org/10.1093/molbev/msw040
https://doi.org/10.1186/1748-7188-5-37
https://github.com/roblanf/BenchmarkAlignments
https://github.com/roblanf/BenchmarkAlignments
https://doi.org/10.1080/10635150390252297

References

Lemoine, Frederic, Jean-Baka Domelevo Entfellner, Eduan Wilkinson, Miraine
Dévila Felipe, Tulio De Oliveira, and Olivier Gascuel (2018). “Renewing Felsen-
stein’s phylogenetic bootstrap in the era of big data”. In: Nature 556, pp. 452—
456. DOI: [10.1038/s41586-018-0043-0.

Lengfeld, Tobias, Hiroshi Watanabe, Oleg Simakov, Dirk Lindgens, Lydia Gee, Lee
Law, Heiko A. Schmidt, Suat Ozbek, Hans Bode, and Thomas W. Holstein
(2009). “Multiple Wnts are involved in Hydra organizer formation and regener-
ation”. In: Dev. Biol. 328, pp. 186-199. DOI: 10.1016/j.ydbio.2009.02.004.

Levasseur, Claudine and Frangois-Joseph Lapointe (2006). “Total Evidence, Av-
erage Consensus and Matrix Representation with Parsimony: What a Differ-
ence Distances Make”. In: Fvol. Bioinform. Online 2, pp. 1-5. DOI: [10.1177/
117693430600200018.

Lewis, Paul O. (Nov. 2003). “NCL: a C++ class library for interpreting data files
in NEXUS format”. In: Bioinformatics 19.17, pp. 2330-2331. 1SSN: 1367-4803.
DOI: 10 . 1093 /bioinformatics/btg319. eprint: https://academic . oup .
com/bioinformatics/article-pdf/19/17/2330/539234/btg319.pdf. URL:
https://doi.org/10.1093/bioinformatics/btg319.

Maddison, David R., David L. Swofford, and Wayne P. Maddison (1997). “NEXUS:
An Extensible File Format for Systematic Information”. In: Syst. Biol. 46,
pp. 590-621. DOI: [10.1093/sysbio/46.4.590.

Margush, Tim and Fred R. McMorris (1981). “Consensus n-trees”. In: Bull. Math.
Biol. 43, pp. 239-244. por: [10.1016/50092-8240 (81) 90019-7.

Minh, Bui Quang, Minh Anh Thi Nguyen, and Arndt von Haeseler (2013). “Ultrafast
Approximation for Phylogenetic Bootstrap”. In: Mol. Biol. Evol. 30, pp. 1188—
1195. DOT: [10.1093/molbev/mst024.

Near, TJ, A Dornburg, RI Eytan, BP Keck, WL Smith, KL. Kuhn, JA Moore, SA
Price, FT Burbrink, M Friedman, and PC Wainwright (2013). “Phylogeny and
tempo of diversification in the superradiation of spiny-rayed fishes”. In: Evolu-
tion 110.31, pp. 12738-12743. DOI: dx.doi.org/10.1073/pnas.1304661110.

Nguyen, Lam-Tung, Heiko A. Schmidt, Arndt von Haeseler, and Bui Quang Minh
(2015). “IQ-TREE: A fast and effective stochastic algorithm for estimating
maximum likelihood phylogenies”. In: Mol. Biol. Fvol. 32, pp. 268-274. DOI:
10.1093/molbev/msu300.

Object Management Group (2017). OMG®) Unified Modeling Language® Version
2.5.1. URL: https://omg.org/spec/UML/2.5.1/PDF.

OpenMP Architecture Review Board (2018). OpenMP Application Programming
Interface Version 5.0. URL: https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5.0.pdf.

Page, Roderic D. M. (2002). “Modified Mincut Supertrees”. In: Proceedings of the
2nd Workshop on Algorithms in Bioinformatics (WABI 2002). Vol. 2452. Lec-
ture Notes in Computer Science. New York: Springer, pp. 537-551. DOI: 10.
1007/3-540-45784-4_41.

— (2003). “Visualising Phylogenetic Trees Using TreeView”. In: Current Protocols
in Bioinformatics. Ed. by Andreas D. Baxevanis, Daniel B. Davison, Roderic
D. M. Page, Gary Stormo, and Lincoln Stein. Supplement 1. New York, USA:
Wiley and Sons, pp. 6.2.1-6.2.15. DOI: 10.1002/0471250953.b10602s01.

107

https://doi.org/10.1038/s41586-018-0043-0
https://doi.org/10.1016/j.ydbio.2009.02.004
https://doi.org/10.1177/117693430600200018
https://doi.org/10.1177/117693430600200018
https://doi.org/10.1093/bioinformatics/btg319
https://academic.oup.com/bioinformatics/article-pdf/19/17/2330/539234/btg319.pdf
https://academic.oup.com/bioinformatics/article-pdf/19/17/2330/539234/btg319.pdf
https://doi.org/10.1093/bioinformatics/btg319
https://doi.org/10.1093/sysbio/46.4.590
https://doi.org/10.1016/S0092-8240(81)90019-7
https://doi.org/10.1093/molbev/mst024
https://doi.org/dx.doi.org/10.1073/pnas.1304661110
https://doi.org/10.1093/molbev/msu300
https://omg.org/spec/UML/2.5.1/PDF
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1007/3-540-45784-4_41
https://doi.org/10.1007/3-540-45784-4_41
https://doi.org/10.1002/0471250953.bi0602s01

References

Penny, D., M. D. Hendy, and B. R. Holland (2007). “Phylogenetics: Parsimony,
Networks, and Distance Methods”. In: Handbook of Statistical Genetics. Ed.
by D. J. Balding, M. Bishop, and C. Cannings. John Wiley & Sons, Ltd.
Chap. 16, pp. 489-532. 1sBN: 9780470061619. DOI: https://doi.org/10.1002/
9780470061619.ch16. eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1002/9780470061619 . ch16. URL: https://onlinelibrary.wiley.com/
doi/abs/10.1002/9780470061619.ch16.

Pyron, RA and JJ Wiens (2011). “A large-scale phylogeny of Amphibia including
over 2800 species, and a revised classification of extant frogs, salamanders, and
caecilians”. In: Molecular Phylogenetics and Evolution 61.2, pp. 543-583. DOLI:
dx.doi.org/10.1016/j.ympev.2011.06.012.

Ragan, Mark A. (1992). “Phylogenetic inference based on matrix representation of
trees”. In: Mol. Phylogenet. Evol. 1, pp. 53-58. DOI: 10.1016/1055-7903(92)
90035-F.

Rambaut, Andrew (2010). FigTree v1.3.1. URL: http://tree.bio.ed.ac.uk/
software/figtree (accessed: 2022-6-10).

Ranwez, V, F Delsuc, S Ranwez, K Belkhir, MK Tilak, and EJ Douzery (2007).
“OrthoMaM: a database of orthologous genomic markers for placental mammal
phylogenetics”. In: BMC' Evol. Biol. 7, 241, p. 241. DOI: 10.1186/1471-2148-
7-241.

Rauber, T. and G. Riinger (2012). Parallele Programmierung. eXamen.press.
Springer Berlin Heidelberg. 1SBN: 9783642136047. URL: https : / / books .
google.at/books?id=sQydgXyf3kMC.

Reddy, Sushma, Rebecca T. Kimball, Akanksha Pandey, Peter A. Hosner, Michael
J. Braun, Shannon J. Hackett, Kin-Lan Han, John Harshman, Christopher J.
Huddleston, Sarah Kingston, Ben D. Marks, Kathleen J. Miglia, William S.
Moore, Frederick H. Sheldon, Christopher C. Witt, Tamaki Yuri, and Edward
L. Braun (2017). “Why do phylogenomic data sets yield conflicting trees? Data
type influences the avian tree of life more than taxon sampling”. In: Syst. Biol.
66, in press. DOI: 10.1093/sysbio/syx041.

Robinson, David F. and Leslie R. Foulds (1981). “Comparison of phylogenetic trees”.
In: Math. Biosci. 53, pp. 131-147. DOI: |10.1016/0025-5564(81)90043-2.
Ross, Howard A. and Allen G. Rodrigo (2004). “An assessment of matrix representa-
tion with compatibility in supertree construction”. In: Phylogenetic Supertrees:
Combining Information to Reveal the Tree of Life. Ed. by Olaf R. P. Bininda-

Emonds. Dordrecht, The Netherlands: Kluwer Academic, pp. 35-63.

Salichos, Leonidas, Alexandros Stamatakis, and Antonis Rokas (2014). “Novel In-
formation Theory-Based Measures for Quantifying Incongruence among Phylo-
genetic Trees”. In: Mol. Biol. Fvol. 31, pp. 1261-1271. poI: 10.1093/molbev/
msu061.

Sanderson, Michael J., Michelle M. McMahon, and Mike Steel (2011). “Terraces in
Phylogenetic Tree Space”. In: Science 333, pp. 448-450. DOI1:110.1126/science.
1206357.

Schmidt, Heiko A. (2003). “Phylogenetic Trees from Large Datasets”. PhD thesis.
Diisseldorf, Germany: Universitat Diisseldorf. DOT: -|

108

https://doi.org/https://doi.org/10.1002/9780470061619.ch16
https://doi.org/https://doi.org/10.1002/9780470061619.ch16
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470061619.ch16
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470061619.ch16
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470061619.ch16
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470061619.ch16
https://doi.org/dx.doi.org/10.1016/j.ympev.2011.06.012
https://doi.org/10.1016/1055-7903(92)90035-F
https://doi.org/10.1016/1055-7903(92)90035-F
http://tree.bio.ed.ac.uk/software/figtree
http://tree.bio.ed.ac.uk/software/figtree
https://doi.org/10.1186/1471-2148-7-241
https://doi.org/10.1186/1471-2148-7-241
https://books.google.at/books?id=sQydgXyf3kMC
https://books.google.at/books?id=sQydgXyf3kMC
https://doi.org/10.1093/sysbio/syx041
https://doi.org/10.1016/0025-5564(81)90043-2
https://doi.org/10.1093/molbev/msu061
https://doi.org/10.1093/molbev/msu061
https://doi.org/10.1126/science.1206357
https://doi.org/10.1126/science.1206357
https://doi.org/-

References

— (2007). GenerateTrees, version 0.5. URL: http://www.cibiv.at/software/
generatetrees (accessed: 2023-4-8).

Semple, Charles and Mike Steel (2003). Phylogenetics. Vol. 24. Oxford Lecture Series
in Mathematics and Its Applications. Oxford, UK: Oxford University Press.
ISBN: 0198509421.

Shannon, Claude Elwood (1948). “A Mathematical Theory of Communication”. In:
The Bell System Technical Journal 27, pp. 379-423. DOI: [10.1002/ 5. 1538~
7305.1948.tb01338.x.

Siek, Jeremy and Chuck Allison (2017). “Dynamic Bitset”. In: URL: https://wuw.
boost.org/doc/1libs/1_66_0 (accessed: 2022-5-5).

Stamatakis, Alexandros (2006). “RAxML-VI-HPC: maximum likelihood-based phy-
logenetic analyses with thousands of taxa and mixed models”. In: Bioinformatics
22, pp. 2688-2690. DOI: [10.1093/bioinformatics/bt1446.

Steel, Mike (2016). Phylogeny: Descrete and Random Processes in Evolution.
Philadelphia: STAM, p. 25.

Varga, T., K. Krizsan, C. Foldi, B. Dima, M. Sanchez-Garcia, S. Sanchez-Ramirez,
et al. (2019). “Megaphylogeny resolves global patterns of mushroom evolution”.
In: Nature Ecology and Evolution. DOIL: dx .doi.org/10.1038/s415569-019-
0834-1.

Whelan, S, PI de Bakker, E Quevillon, N Rodriguez, and N Goldman (2006). “PAN-
DIT: an evolution-centric database of protein and associated nucleotide domains
with inferred trees”. In: Nucleic Acids Res. 34, pp. D327-D331. DOI: 10.1093/
nar/gkjo87.

109

http://www.cibiv.at/software/generatetrees
http://www.cibiv.at/software/generatetrees
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://www.boost.org/doc/libs/1_66_0
https://www.boost.org/doc/libs/1_66_0
https://doi.org/10.1093/bioinformatics/btl446
https://doi.org/dx.doi.org/10.1038/s41559-019-0834-1
https://doi.org/dx.doi.org/10.1038/s41559-019-0834-1
https://doi.org/10.1093/nar/gkj087
https://doi.org/10.1093/nar/gkj087

	Acknowledgment
	Abstract
	Zusammenfassung
	Introduction and Materials
	Introduction
	Overview and Structure of the Thesis

	Materials and Resources
	Datasets
	Computational Resources and Benchmarks

	Software and Optimization
	Program Structure
	Program Components
	main() function
	CommandlineParser class
	DataDepot class
	NewickParser class
	Split class
	util.cpp file and macros
	Libraries and other Accessories

	Conclusion

	Split Representation and Parallelization
	Introduction
	Split Representation
	Parallelization and Operating Systems

	Methods
	OpenMP
	Worksharing-Loop and Scheduling

	Results and Discussion
	Testing Parallelizability on Operating System

	Conclusion

	Reading Files and Parsing Trees
	Reading Newick and Nexus files
	Newick trees extraction step
	Newick trees parsing step – in serial and in parallel
	Merging files

	Splits Extraction Algorithm
	Extending the Algorithm to determine Rootedness

	Reading Taxa files
	Reading Split files
	Reading TreeShredder files
	Structure of TreeShredder files
	Split information string in a TreeShredder file
	Root split information

	File-IO Results and Discussion
	Comparing Newick and TreeShredder file runtimes
	Output compression

	Conclusion

	Methods in TreeShredder
	Split Measures and Reference Trees
	Introduction
	Split occurrence
	Best incompatible split occurrence
	Occurrence difference to best incompatible split
	Internode Certainty
	Internode Certainty and Reference Trees

	Transfer Bootstrap Expectation
	Instability Score

	Methods
	Implementation of the TBE Algorithm in TreeShredder
	Mapping Split Measures onto Reference Trees
	IQ-TREE format

	Results and Discussion
	TreeShredder split measures
	TBE calculation runtime

	Conclusion

	Incomplete Splits and Congruency
	Introduction
	Methods: Finding congruent trees and maximum/sum of occurrence
	Determining congruency status of splits
	Output files

	Results: Finding congruent trees and maximum/sum of occurrence
	Conclusion

	Consensus Trees
	Introduction
	Majority Rule Consensus Tree (Ml)
	Majority Rule Extended Consensus Tree (Mext)
	Relative Majority Consensus Tree (Mrel)
	Global Relative Majority Consensus Tree (Mglob)
	Strict Consensus Tree (Mstrict)
	Semi Strict Consensus Tree (Msemi)

	Methods
	Tree Creation Algorithm

	Results and Discussion
	Conclusion

	Matrix Representation
	Introduction
	Methods
	Presence-Absence file

	Results and Discussion
	Conclusion

	Robinson-Foulds Distances
	Introduction
	Methods
	Results and Discussion
	Conclusion

	Split Co-Occurrences
	Introduction
	Methods
	Results and Discussion
	GZip compression

	Conclusion

	Summary
	Conclusion and Outlook
	Summary
	Outlook
	Concluding Remarks

	References

