

DISSERTATION / DOCTORAL THESIS

Titel der Dissertation /Title of the Doctoral Thesis

„Supporting Architecture Evolution in Microservice-Based
Systems and Infrastructure-as-Code Based Deployments“

verfasst von / submitted by

Evangelos Ntentos

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Doktor der technischen Wissenschaften (Dr. techn.)

Wien, 2023 / Vienna 2023

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on the student
record sheet:

UA 786 880

Dissertationsgebiet lt. Studienblatt /
field of study as it appears on the student record sheet:

Informatik

Betreut von / Supervisor:

Univ.-Prof. Dr. Uwe Zdun

Acknowledgements

I would like to express my deepest gratitude to my advisor Uwe Zdun, for his invaluable guidance,
encouragement, and support throughout my doctoral research. His insightful feedback and
constructive criticism were instrumental in shaping my research and academic growth. I am
grateful to all my co-authors, and especially to Konstantinos Plakidas, who provided me with
their expertise and resources, and without whom my research would not have been possible.
Their contributions were critical to the success of my research. I extend my heartfelt thanks to
my family, Stavros, Vasiliki and Georgios Ntentos, for their unconditional love, support, and
encouragement throughout my academic journey. Their unwavering belief in me has been a
constant source of strength and motivation. Lastly, I would like to thank the faculty of Computer
Science of University of Vienna, for providing me with the resources and infrastructure necessary
for conducting my research. Their support has been invaluable in enabling me to achieve my
academic goals.

Thank you all for your unwavering support and encouragement throughout my doctoral journey.

i

Abstract

Microservice systems are a modern approach to software architecture that involves the decom-
position of a large, monolithic application into smaller, independently deployable services. The
traditional approach to software development involved building large, monolithic applications
that included all the functionality needed for the system. While this approach made it easier to
develop and deploy applications, it also led to several challenges, such as increased complexity,
reduced scalability, and difficulty in maintaining and updating the application.

In contrast, microservice systems offer a number of benefits over monolithic applications. For
example, each microservice can be developed, tested, and deployed independently, allowing for
faster and more efficient development cycles. This also allows for easier scaling of individual
services, as only the services that require additional resources need to be scaled, rather than
the entire application. Another key advantage of microservice systems is increased resilience.
Because each service is deployed independently, if one service experiences a failure, the other
services in the system can continue to operate normally. This creates more robust systems that
can continue to operate even in the face of individual service failures. In addition to these benefits,
microservice systems also offer improved scalability, as services can be deployed across multiple
nodes or locations to meet changing demands. This allows the system to handle increased load and
traffic, while maintaining high levels of performance. One of the key challenges of microservice
systems is managing the communication and integration between services. To address this
challenge, microservice systems use well-defined APIs to enable services to communicate with
each other in a consistent and predictable manner. This facilitates the development of more
complex systems that can be managed and updated more easily.

Another challenge in microservice systems is ensuring that services are deployed and managed
consistently across the system. To address this challenge, many organizations use DevOps prac-
tices, such as continuous integration and delivery, to automate the deployment and management
of services. This helps to ensure that services are deployed and managed consistently across the
system, while also reducing the risk of manual errors and improving the speed and efficiency of
the deployment process. Although there are established patterns and best practices documented,
actual implementations often deviate from them and it is difficult to assess this manually for
large-scale systems. One of the main challenges in software architecture is avoiding architecture
model drift and erosion, which is exacerbated in microservice-based systems due to frequent
changes and the use of multiple technologies. Existing solutions for reconstructing architecture
models fall short in addressing these challenges as they struggle with continuous evolution,
accuracy, and polyglot settings. Spotting violations in complex or large systems can be hard and
tedious.

The complexity of developing and deploying microservice-based systems has increased and
become a challenge due to the requirement of frequent releases and the substantial number of
infrastructure nodes necessary for system operation. Infrastructure as code (IaC) is a practice that

iii

Abstract

involves the use of configuration files, scripts, and other code artifacts to manage and provision the
underlying infrastructure for a software system. This allows for the deployment and management
of infrastructure to be automated and repeatable, which is crucial for ensuring the stability and
reliability of microservice systems. When deploying microservices in a production environment,
it is important to have a well-designed infrastructure that supports the requirements of the services.
This includes having sufficient computing resources, network connectivity, storage, and other
resources needed to run the services effectively. IaC automates and standardizes infrastructure
management, enabling efficient deployment of new services, scaling of existing services, and
updates. Defining infrastructure as code allows for versioning, testing, and collaboration, im-
proving reliability and repeatability of the deployment process. IaC can be applied to various
types of infrastructure, including virtual machines, containers, and cloud resources. In the context
of microservice systems, IaC can be particularly valuable, as it allows for the deployment and
management of the infrastructure in a way that is tailored to the requirements of the microservices.
Despite its widespread use, there is a lack of methods for evaluating architectural conformance
and addressing architectural issues, such as loose coupling, in IaC-based deployments.

In summary, IaC and microservices are complementary technologies that can be used together
to deploy and manage software systems in a scalable, flexible, and reliable way. By automating
the deployment and management of infrastructure, IaC helps to reduce the risk of manual errors
and improve the overall speed and efficiency of the deployment process.

In this thesis, we conducted a thorough and qualitative examination of best practices and
patterns in microservice data management architecture through practitioner descriptions. By
following a model-based qualitative research approach, we arrived at a formal architecture de-
cision model. Upon comparing the completeness of our model to an existing pattern catalog, we
found that it greatly reduces the effort and uncertainty involved in comprehending microservice
data management decisions. We designed an architecture model abstraction approach that would
allow for a better understanding of the architecture models of complex systems that evolve
over time. We have identified two possible approaches and have evaluated them through an
empirical case study: an opportunistic approach and a reusable semi-automatic detector-based
approach. Furthermore, we developed an automated method for evaluating microservice archi-
tecture conformance to established patterns and practices, and IaC-based deployments, by using
a microservice system’s component model. This involved establishing a ground truth for all
possible microservice architectures and determining relevant metrics to assess microservice and
IaC principles, regardless of the technology used. Additionally, we have created an automated
assistance approach to aid architects during the development of microservice systems and IaC
deployments. Specifically, our focus was on providing a foundation for automated architecture
reconstruction, assessing conformance to microservice-specific patterns and practices, and identi-
fying potential violations. As a result, architects can use our approach to enhance architecture
compliance through a continuous feedback process, offering practical solutions for improving the
overall quality of microservice systems and IaC deployments.

This thesis aims to develop a systematic and reusable architectural design decision model for
microservices and create an accurate approach for reconstructing component architecture models.
It also focuses on devising a method for automatically assessing architecture conformance to
microservice patterns and practices, along with determining suitable metrics for the assessment.

iv

The combination of these techniques with runtime and dynamic features of software systems can
improve problem detection and assessment, reducing the decision space to a manageable set of
actionable options.

v

Kurzfassung

Microservice-Systeme sind ein moderner Ansatz für die Softwarearchitektur, bei dem eine große,
monolithische Anwendung in kleinere, unabhängig einsetzbare Dienste zerlegt wird. Diese
Dienste kommunizieren über genau definierte APIs miteinander und ermöglichen so eine höhere
Skalierbarkeit, Flexibilität und Belastbarkeit. Der traditionelle Ansatz der Softwareentwicklung
bestand darin, große, monolithische Anwendungen zu erstellen, die alle für das System benötigten
Funktionen enthielten. Dieser Ansatz erleichterte zwar die Entwicklung und Bereitstellung von
Anwendungen, führte aber auch zu einer Reihe von Problemen, wie z. B. erhöhter Komplex-
ität, geringerer Skalierbarkeit und Schwierigkeiten bei der Wartung und Aktualisierung der
Anwendung.

Im Gegensatz dazu bieten Microservice-Systeme eine Reihe von Vorteilen gegenüber mono-
lithischen Anwendungen. So kann beispielsweise jeder Microservice unabhängig entwickelt,
getestet und bereitgestellt werden, was schnellere und effizientere Entwicklungszyklen ermög-
licht. Dies ermöglicht auch eine einfachere Skalierung einzelner Dienste, da nur die Dienste, die
zusätzliche Ressourcen benötigen, skaliert werden müssen, und nicht die gesamte Anwendung.
Ein weiterer entscheidender Vorteil von Microservice-Systemen ist die erhöhte Ausfallsicherheit.
Da jeder Dienst unabhängig eingesetzt wird, können bei einem Ausfall eines Dienstes die anderen
Dienste im System normal weiterarbeiten. Dies ermöglicht robustere Systeme, die auch bei
einem Ausfall einzelner Dienste weiterarbeiten können. Zusätzlich zu diesen Vorteilen bieten
Microservice-Systeme auch eine bessere Skalierbarkeit, da die Dienste über mehrere Knoten
oder Standorte verteilt werden können, um wechselnden Anforderungen gerecht zu werden. Auf
diese Weise kann das System eine höhere Last und einen größeren Datenverkehr bewältigen
und gleichzeitig ein hohes Leistungsniveau beibehalten. Eine der größten Herausforderungen
von Microservice-Systemen ist die Verwaltung der Kommunikation und Integration zwischen
den Diensten. Um diese Herausforderung zu bewältigen, verwenden Microservice-Systeme
genau definierte APIs, damit die Dienste auf konsistente und vorhersehbare Weise miteinander
kommunizieren können. Dies ermöglicht die Entwicklung komplexerer Systeme, die sich leichter
verwalten und aktualisieren lassen.

Eine weitere Herausforderung bei Microservice-Systemen besteht darin, sicherzustellen, dass
die Dienste systemweit einheitlich bereitgestellt und verwaltet werden. Um diese Herausforderung
zu bewältigen, setzen viele Unternehmen DevOps-Verfahren ein, z. B. kontinuierliche Integration
und Bereitstellung, um die Bereitstellung und Verwaltung von Diensten zu automatisieren. Auf
diese Weise wird sichergestellt, dass die Dienste im gesamten System einheitlich bereitgestellt
und verwaltet werden, während gleichzeitig das Risiko manueller Fehler verringert und die
Geschwindigkeit und Effizienz des Bereitstellungsprozesses verbessert wird. Obwohl es etablierte
Muster und dokumentierte Best Practices gibt, weichen die tatsächlichen Implementierungen
oft davon ab, und es ist schwierig, dies bei großen Systemen manuell zu beurteilen. Eine
der größten Herausforderungen in der Software-Architektur ist die Vermeidung von Drift und

vii

Kurzfassung

Erosion des Architekturmodells, was sich bei Microservice-basierten Systemen aufgrund häufiger
Änderungen und der Verwendung mehrerer Technologien noch verschärft. Bestehende Lösungen
zur Rekonstruktion von Architekturmodellen können diese Herausforderungen nicht bewältigen,
da sie mit der kontinuierlichen Entwicklung, der Genauigkeit und den polyglotten Einstellungen
zu kämpfen haben. Das Aufspüren von Verstößen in komplexen oder großen Systemen kann
schwierig und mühsam sein.

Die Komplexität der Entwicklung und des Einsatzes von Microservice-basierten Systemen
hat zugenommen und ist zu einer Herausforderung geworden, da häufige Releases erforderlich
sind und eine beträchtliche Anzahl von Infrastrukturknoten für den Systembetrieb notwendig
ist. Infrastructure as Code (IaC) ist eine Praxis, die die Verwendung von Konfigurationsdateien,
Skripten und anderen Code-Artefakten zur Verwaltung und Bereitstellung der zugrunde lie-
genden Infrastruktur für ein Softwaresystem beinhaltet. Dies ermöglicht eine automatisierte
und wiederholbare Bereitstellung und Verwaltung der Infrastruktur, was für die Gewährleistung
der Stabilität und Zuverlässigkeit von Microservice-Systemen entscheidend ist. Bei der Bereit-
stellung von Microservices in einer Produktionsumgebung ist es wichtig, eine gut konzipierte
Infrastruktur zu haben, die die Anforderungen der Services unterstützt. Dazu gehören aus-
reichende Rechenressourcen, Netzwerkkonnektivität, Speicherplatz und andere Ressourcen, die
für die effektive Ausführung der Dienste erforderlich sind. IaC automatisiert und standardisiert
die Verwaltung der Infrastruktur und ermöglicht die effiziente Bereitstellung neuer Dienste, die
Skalierung bestehender Dienste und Updates. Die Definition der Infrastruktur als Code ermöglicht
die Versionierung, das Testen und die Zusammenarbeit und verbessert die Zuverlässigkeit und
Wiederholbarkeit des Bereitstellungsprozesses. IaC kann auf verschiedene Arten von Infrastruk-
tur angewendet werden, darunter virtuelle Maschinen, Container und Cloud-Ressourcen. Im
Kontext von Microservice-Systemen kann IaC besonders wertvoll sein, da es die Bereitstellung
und Verwaltung der Infrastruktur auf eine Weise ermöglicht, die auf die Anforderungen der
Microservices zugeschnitten ist. Trotz der weiten Verbreitung von IaC fehlt es an Methoden zur
Bewertung der Architekturkonformität und zur Behandlung von Architekturproblemen, wie z. B.
der losen Kopplung, in IaC-basierten Implementierungen.

Zusammenfassend lässt sich sagen, dass IaC und Microservices komplementäre Technologien
sind, die zusammen verwendet werden können, um Softwaresysteme auf skalierbare, flexible und
zuverlässige Weise bereitzustellen und zu verwalten. Durch die Automatisierung der Bereitstel-
lung und Verwaltung der Infrastruktur hilft IaC, das Risiko manueller Fehler zu verringern und
die Geschwindigkeit und Effizienz des Bereitstellungsprozesses insgesamt zu verbessern.

In dieser Arbeit haben wir eine gründliche und qualitative Untersuchung von Best Practices
und Mustern in der Microservice-Datenmanagement-Architektur anhand von Beschreibungen von
Praktiker*innen durchgeführt. Mit Hilfe eines modellbasierten qualitativen Forschungsansatzes
haben wir ein formales Architekturentscheidungsmodell entwickelt. Beim Vergleich der Voll-
ständigkeit unseres Modells mit einem bestehenden Musterkatalog stellten wir fest, dass es den
Aufwand und die Ungewissheit, die mit dem Verstehen von Microservice-Datenmanagement-
Entscheidungen verbunden sind, erheblich reduziert. Wir haben einen Ansatz zur Abstraktion
von Architekturmodellen entwickelt, der ein besseres Verständnis der Architekturmodelle kom-
plexer Systeme, die sich im Laufe der Zeit weiterentwickeln, ermöglichen würde. Wir haben
zwei mögliche Ansätze identifiziert und anhand einer empirischen Fallstudie evaluiert: einen

viii

opportunistischen Ansatz und einen wiederverwendbaren halbautomatischen detektorbasierten
Ansatz. Darüber hinaus haben wir eine automatisierte Methode entwickelt, um die Konformität
von Microservice-Architekturen mit etablierten Mustern und Praktiken sowie IaC-basierte Imple-
mentierungen anhand des Komponentenmodells eines Microservice-Systems zu bewerten. Dies
beinhaltete die Erstellung einer Basiswahrheit für alle möglichen Microservice-Architekturen
und die Bestimmung relevanter Metriken zur Bewertung von Microservice- und IaC-Prinzipien,
unabhängig von der verwendeten Technologie. Darüber hinaus haben wir einen automatisierten
Assistenzansatz entwickelt, um Architekt*innen bei der Entwicklung von Microservice-Systemen
und IaC-Implementierungen zu unterstützen. Insbesondere haben wir uns darauf konzentriert,
eine Grundlage für die automatische Rekonstruktion der Architektur zu schaffen, die Kon-
formität mit Microservice-spezifischen Mustern und Praktiken zu bewerten und potenzielle
Verstöße zu identifizieren. Als Ergebnis können Architekt*innen unseren Ansatz nutzen, um
die Konformität der Architektur durch einen kontinuierlichen Feedback-Prozess zu verbessern
und praktische Lösungen zur Verbesserung der Gesamtqualität von Microservice-Systemen und
IaC-Implementierungen anzubieten.

Diese Arbeit zielt darauf ab, ein systematisches und wiederverwendbares Architekturentscheidungs-
modell für Microservices zu entwickeln und einen genauen Ansatz für die Rekonstruktion von
Komponentenarchitekturmodellen zu schaffen. Ein weiterer Schwerpunkt ist die Entwicklung
einer Methode zur automatischen Bewertung der Konformität der Architektur mit Microservice-
Mustern und -Praktiken sowie die Bestimmung geeigneter Metriken für die Bewertung. Die
Kombination dieser Techniken mit Laufzeit- und dynamischen Merkmalen von Softwaresystemen
kann die Problemerkennung und -bewertung verbessern und den Entscheidungsraum auf eine
überschaubare Menge von Handlungsoptionen reduzieren.

ix

Contents

Acknowledgements i

Abstract iii

Kurzfassung vii

List of Tables xvii

List of Figures xix

List of Algorithms xxi

Listings xxi

1 Introduction 3
1.1 Thesis Subject and Motivation . 3
1.2 Thesis Structure . 5

2 State of the Art 7
2.1 Research Context . 7
2.2 Related Work . 8

2.2.1 Related Works on Best Practices and Patterns in Microservices 8
2.2.2 Related Works on Frameworks and Metrics in Microservices 9
2.2.3 Related Works on Best Practices and Patterns in IaC-based Deployments 9
2.2.4 Related Works on Frameworks and Metrics in IaC-based Deployments 9
2.2.5 Software Architecture Conformance Checking in IaC-based Deployments 10

3 Problem Analysis and Research Approach 11
3.1 Research Topics and Aims . 11
3.2 Research Questions . 11
3.3 Research Problems . 12
3.4 Research Contributions . 13
3.5 List of Publications . 14
3.6 Architecture Evaluation and Optimization . 16
3.7 Research Methods . 18

xi

Contents

4 Supporting Architectural Decision Making on Data Management in Mi-
croservice Architectures 23
4.1 Introduction . 23
4.2 Related Work . 24
4.3 Research Method and Modelling Tool . 25
4.4 Reusable ADD model for data management in microservice architectures . . . 27

Microservice Database Architecture (Fig. 4.2). 27
Structure of API Presented to Clients (Fig. 4.3). 28
Data Sharing Between Microservices (Fig. 4.4). 29
Microservice Transaction Management (Fig. 4.5). 31
Realization of Queries (Fig. 4.6). 33

4.5 Evaluation . 34
4.6 Threats to Validity . 35
4.7 Conclusion . 36

5 Detector-based Component Model Abstraction for Microservice-Based
Systems 41
5.1 Introduction . 41
5.2 Related Work . 43
5.3 Background . 44
5.4 Case Study Design . 45

5.4.1 Study Definition . 45
Problem Investigation and Treatment Design 45
Case Study: Problem Investigation . 47

5.4.2 Detector-based Architecture Abstraction Approaches 50
Approach 1: Opportunistic Detector-based Architecture Model Abstraction 50
Approach 2: Reusable Detector-based Architecture Model Abstraction 52

5.5 Case Study Implementation . 53
5.5.1 Architecture UML Profile . 53
5.5.2 Detector Framework . 55

5.6 Case Study Evaluation . 56
5.6.1 Effort and Size . 56
5.6.2 Requirements Fulfillment . 58

5.7 Extending the Approach to Cases from Different Domains 59
5.8 Threats to Validity . 62
5.9 Conclusions and Future Work . 64

6 Assessing Architecture Conformance to Coupling-Related Patterns and
Practices in Microservices 67
6.1 Introduction . 67
6.2 Related Work . 68
6.3 Decisions . 69
6.4 Research and Modeling Methods . 70

6.4.1 Research Method . 70

xii

Contents

6.4.2 Model Generation . 71
6.4.3 Methods for Modeling Microservice Component Architectures 72

6.5 Ground Truth Calculations . 72
6.6 Metrics . 74

6.6.1 Metrics for Inter-Service Coupling through Databases Decision 75
6.6.2 Metrics for Inter-Service Coupling through Synchronous Invocations

Decision . 75
6.6.3 Metrics for Inter-Service Coupling through Shared Services Decision . 75
6.6.4 Metrics Calculation Results . 76

6.7 Ordinal Regression Analysis Results . 76
6.8 Discussion . 78

6.8.1 Discussion of Research Questions . 78
6.8.2 Threats to Validity . 79

6.9 Conclusions and Future Work . 80

7 Metrics for Assessing Architecture Conformance to Microservice Archi-
tecture Patterns and Practices 81
7.1 Introduction . 81
7.2 Related Work . 82
7.3 Background . 83
7.4 Research and Modeling Methods . 85

7.4.1 Model Selection Methods . 85
7.4.2 Metrics Definition, Ground Truth Calculation, and Statistical Evaluation

Methods . 85
7.4.3 Methods for Modeling Microservice Component Architectures 86

7.5 Ground Truth Calculations for the Study . 86
7.6 Metrics . 88

7.6.1 Metrics for the External API Decisions 88
7.6.2 Metrics for Persistent Messaging for Inter-Service Communication Decision 89
7.6.3 Metrics for End-to-End Tracing Decision 89

7.7 Ordinal Regression Analysis Results . 90
7.8 Discussion . 90

7.8.1 Discussion of Research Questions . 90
7.8.2 Threats to Validity . 91

7.9 Conclusions and Future Work . 92

8 Evaluating Architecture Conformance to Coupling-Related Infrastructure-
as-Code Best Practices 95
8.1 Introduction . 95
8.2 Related Work . 96
8.3 Research and Modeling Methods . 97
8.4 Decisions on Coupling-related, IaC-Specific Practices 98
8.5 Metrics Definition . 100

8.5.1 Model Elements Definition . 101

xiii

Contents

8.5.2 Metrics for System Coupling through Deployment Strategy Decision . 102
8.5.3 Metrics for System Coupling through Infrastructure Stack Grouping

Decision . 102
8.6 Case Studies . 104
8.7 Discussion . 108
8.8 Conclusions and Future Work . 109

9 Assessing Security Conformance in Infrastructure-as-Code Deployments 111
9.1 Introduction . 111
9.2 Related Work . 113

9.2.1 Related Works on Best Practices and Patterns 113
9.2.2 Related works on Frameworks and Metrics 113

9.3 Research and Modeling Methods . 114
9.3.1 Overview . 114
9.3.2 Model Selection Methods . 114
9.3.3 Metrics Definition, Ground Truth Calculation, and Statistical Evaluation

Methods . 116
9.3.4 Methods for IaC Architectural Reconstruction 117
9.3.5 The Tool Flow of the Approach . 119

9.4 IaC Security-Related ADDs . 119
9.5 Ground Truth Calculations for the Study . 120
9.6 Metrics . 122

9.6.1 Metrics for the Security Observability Decision 123
9.6.2 Metrics for Security Access Control Decision 123
9.6.3 Metrics for Security Traffic Control Decision 124

9.7 Evaluation of our Approach . 124
9.8 Discussion . 126

9.8.1 Discussion of Research Questions . 126
9.8.2 Threats to Validity . 127

9.9 Conclusions and Future Work . 128

10 Semi-Automatic Feedback for Microservice Architecture Conformance 131
10.1 Introduction . 131
10.2 Background . 132

10.2.1 Decisions . 133
Decision: Persistent Data Storage of Services 133
Decision: Service Interconnections 133
Decision: Dependencies through Shared Services 134

10.3 Related Work . 134
10.4 Research and Modeling Methods . 135

10.4.1 Research Method . 136
10.4.2 Using the Approach in a Continuous Delivery Pipeline 136

10.5 Approach Details . 136
10.5.1 Violation Detection . 138

xiv

Contents

10.5.2 Fixes . 140
10.5.3 Violation Detection and Fixes Example 141

10.6 Evaluation . 142
10.7 Discussion of Research Questions . 143
10.8 Threats to Validity . 144
10.9 Conclusion and Future Work . 145

11 Improving Microservice Architecture Conformance to Design Decisions 149
11.1 Introduction . 149
11.2 Background: Decisions and Metrics . 150
11.3 Related Work . 152
11.4 Research and Modeling Methods . 153

11.4.1 Research Method . 153
11.5 Architecture Refactoring Approach . 153

11.5.1 Violations and Detection Algorithms 155
11.5.2 Fix Options and Algorithms . 156
11.5.3 Example Application . 157

11.6 Iterative Application and Evaluation . 159
11.7 Discussion . 159
11.8 Threats to Validity . 161
11.9 Conclusion and Future Work . 162

12 Detecting and Resolving IaC-Based Architecture Smells in Microservices 165
12.1 Introduction . 165
12.2 Background . 167

12.2.1 Infrastructure Stack . 167
12.2.2 Architectural Design Decisions (ADDs) 167

ADD 1: System Coupling through Deployment Strategy 167
ADD 2: System Coupling through Infrastructure Stack Grouping . . . 168

12.3 Related Work . 169
12.3.1 Related Works on IaC-Based Best Practices and Patterns 169
12.3.2 Tool-based and Network Smell Detection Approaches 169
12.3.3 Related works on Frameworks and Metrics 170

12.4 Research and Modeling Methods . 171
12.4.1 Research Method . 171
12.4.2 Modeling Method . 171

12.5 Case Studies . 172
12.6 Architecture Smells and Fix Options Definition 172

12.6.1 Smell Detection . 175
12.6.2 Fixes . 175
12.6.3 Smell Detection and Fixes Example 177

12.7 Evaluation . 178
12.8 Discussion of Research Questions . 179
12.9 Threats to Validity . 180

xv

Contents

12.10Conclusion and Future Work . 181

13 Conclusion 185

Bibliography 187

xvi

List of Tables

3.1 Overview of modelled systems used in our studies (size, details, and sources) . 20

4.1 Knowledge Sources Included in the Study . 26
4.2 Comparison of number of found elements and relation types our ADD model and

microservices.io . 35

5.1 Effort and Size Comparison . 58
5.2 Comparison between the two approaches on requirement fulfillment 59
5.3 Continuous Comprehension Support (release examined in case study in bold) . 60
5.4 Size Comparison between Detector Implementations for two Example Case Studies 61

6.1 Ground truth assessment results . 73
6.2 Metrics Calculation Results . 77
6.3 Regression Analysis Results . 78

7.1 Ground Truth Data . 86
7.2 Metrics Calculation Results . 93
7.3 Regression Analysis Results . 94

8.1 Overview of modeled case studies and the variants (size, details, and sources) . 105
8.2 Metrics Calculation Results . 108

9.1 Selected IaC Deployments Models: Size, Details, and Sources 118
9.2 Ground Truth Data . 121
9.3 Metrics Calculation Results . 125
9.4 Regression Analysis Results . 126

10.1 Identified Violations and Violation Detection Algorithms 139
10.2 Identified Fixes And Fix Algorithms . 146
10.3 This table shows a) the architecture assessment (per decision/violation pair) of

the original models used in our study, b) the number of models generated at
each step of an iterative application of our algorithms, and c) the number of
violation instances (generated models ⇥ violations per model) still remaining,
or introduced, after each iteration, plus d) the resulting number of suggested
(optimal) models at the end (cf. Figure 10.4 for a detailed example). 147

11.1 Identified Violations and Violation Detection Algorithms 155
11.2 Identified Fixes And Fix Algorithms . 156

xvii

List of Tables

11.3 This table shows a) the architecture assessment (per decision/violation pair) of
the original models used in our study, b) the number of models generated at
each step of an iterative application of our algorithms, and c) the number of
violation instances (generated models ⇥ violations per model) still remaining,
or introduced, after each iteration, plus d) the resulting number of suggested
(optimal) models at the end (cf. Figure 11.3 for a detailed example). 161

12.1 Overview of modeled case studies and the variants (size, details, and sources),
adapted from our previous work [NZSB22] 173

12.2 Detected Smells and Smell Detection Algorithms 176
12.3 Detected Fixes And Fix Algorithms . 177
12.4 Example of an exhaustive iterative application of our approach in the CS1.V2

model. Final (i.e. optimally resolved) resulting models are rendered in boldface
font. 179

12.5 This table shows the results of evaluating the initial models used in our study. It
includes the number of models created at each step of applying our algorithms in
an iterative process, the number of smell instances (calculated by multiplying the
number of generated models by the number of smells per model) that remained or
were introduced in each iteration, and the final count of recommended (optimal)
models. 180

xviii

List of Figures

3.1 Research Overview . 15
3.2 Example of Microservice Component Model 17
3.3 Architecture Evaluation and Optimization Workflow 18

4.1 Reusable ADD Model on Microservice Data Management: Overview 27
4.2 Microservice Database Architecture Decision 29
4.3 Structure of API Presented to Clients Decision 30
4.4 Data Sharing Between Microservices Decision 32
4.5 Microservice Transaction Management Decision 33
4.6 Realization of Queries Decision . 34

5.1 Overview of the research study execution steps 47
5.2 Case Study: Overview of the reconstructed component architecture Ground Truth

as a UML2 model . 49
5.3 Opportunistic detector example: Detecting a Restful HTTP connector 51
5.4 Reusable detector example: Detecting a Restful HTTP connector 53
5.5 Architecture UML Profile: Component Stereotypes 54
5.6 Architecture UML Profile: Connector Stereotypes 54
5.7 Resulting Design: Domain Model of the Detectors 56
5.8 Process Flow Architecture of the Prototype 57

6.1 Overview diagram of the research method followed in this study 71

8.1 Overview of the research method followed in this study 98
8.2 Excerpt of the reconstructed model CS1 from Table 8.1 99

9.1 Overview of the research method followed in this study 115
9.2 Tool Flow Architecture of the Proposed System 116
9.3 Overview of a reconstructed model (Model S4 in Table 9.1). 117

10.1 Placing of our approach in a delivery pipeline 137
10.2 Overview diagram of the research method followed in this study 137
10.3 Example of an Architecture Component Model of model TH1 in Table 3.1: this

architecture violates the Service Interaction (D2.V1) and Dependencies through
Shared Services (D3.V1) decisions (cf. Table 10.1). 142

10.4 Example of an exhaustive iterative application of our approach in the TH1 model.
Final (i.e., optimally resolved) resulting models are thickly outlined. 143

xix

List of Figures

11.1 Overview diagram of the research method followed in this study 154
11.2 Example of an Architecture Component Model (CI4 in Table 3.1): this architec-

ture violates all three ADDs . 158
11.3 Example of an exhaustive iterative application of our approach in the CI4 model.

Final (i.e., fully resolved) resulting models are thickly outlined. 160

12.1 The lifecycle of an infrastructure stack. this figure is adopted from Morris
book [Mor15] . 168

12.2 Overview diagram of the model generation process 172
12.3 Overview diagram of the research method followed in this study (the diagram is

adapted from our previous work [NZSB22]) 174
12.4 Excerpt of an Architecture Component Model of Case CS1.V2 in Table 3.1. . . 178

xx

Listings

10.1 Detect Directly Shared Services Violation . 139
10.2 Detect Transitively Shared Services Violation 139
10.3 Remove Connectors of Directly Shared Services 140
10.4 Remove Connectors of Directly Shared Services 140
10.5 Integrated Shared Services into Calling Service 140
10.6 Integrated Calling Service into Calling Services 141

11.1 Services Communicate w/o Intermediary Component Violation 155
11.2 Remove the non-persistent connectors between services and replace them with

persistent messaging-based connectors . 157
11.3 Remove the non-persistent connectors between services and replace them by

writing to and reading from a common database 157

12.1 Detect System Services are Deployed on a Single Execution Environment Smell 175
12.2 Integrate Services Deployed in the Same Execution Environment (D1.S1.F3) . 175

xxi

Part I
Foundations and Research Overview

1

1 Introduction

1.1 Thesis Subject and Motivation

The subject of this thesis concerns the study of microservice architectures and IaC-based deploy-
ments. The objective is to provide automated assistance for architecting during the evolution of
microservice-based systems. Specifically, we strive to establish the groundwork for an automated
process of reconstructing the architecture, assessing conformance to patterns and practices spe-
cific to microservice architectures, detect possible violations and provide actionable options to
architects for improving architecture conformance as part of a feedback mechanism.

Microservice architectures [New15, Zim17] have emerged from established practices in service-
oriented computing (cf. [PJ16, Ric17, ZKL+09]). The microservices approach emphasizes
business capability-based and domain-driven design, development in independent teams, cloud-
native technologies and architectures, polyglot technology stacks including polyglot persistence,
lightweight containers, loosely coupled service dependencies, and continuous delivery (cf. [LF04,
New15, Zim17]). Some of these tenets introduce substantial challenges for such architectures.
Notably, it is usually advised to decentralize all data management concerns. Such an architecture
requires, in addition to the already existing non-trivial design challenges intrinsic to distributed
systems, sophisticated solutions for data integrity, data querying, transaction management, and
consistency management [New15, Zim17, PJ16, Ric17]. Many authors have written about
microservice data management and various attempts to document microservice patterns and best
practices exist [Ric17, Gup17, LF04, PJ16]. Nevertheless, most of the established practices in
the industry are only reported in the so-called “grey literature”, consisting of practitioner blogs,
experience reports, system documentations, etc. In most cases, each of these sources documents
a few existing practices well, but usually they do not provide systematic architectural guidance.
Instead, the reported practices are largely based on personal experience, often inconsistent,
and, when studied on their own, incomplete. This creates considerable uncertainty and risk in
architecting microservices, which can be reduced either through substantial personal experience
or by a careful study of a large set of knowledge sources. The fact that microservice-based
systems are complex and polyglot means that an automatic or semi-automatic assessment of their
conformance to best patterns and practices is difficult: real-world systems feature combinations
of patterns, and different degrees of violations of the same; and different technologies in different
parts of the system implement the patterns in different ways, making the automatic parsing of code
and identification of the patterns a haphazard process. Making matters even more challenging,
a high level of automation is required for complex systems. While a manual assessment of
small-scale systems of a few services by an expert is probably as quick and as accurate as an
automated one, that is not true for industrial-scale systems of several hundred or more services,
which are being developed by different teams or companies, evolving at different paces. In that

3

1 Introduction

case, manual assessment is laborious and inaccurate, and a more automated method would vastly
improve cost-effectiveness.

Architecture reconstruction is also a challenging topic in microservices. Several architecture
reconstruction approaches have been proposed to automatically or semi-automatically produce
architecture models from the source code [DP09, MNS95, MMW02]. Unfortunately, these
approaches are usually not designed for supporting continuous evolution, meaning a substantial
effort is needed to either manually maintain the reconstructed architecture model or redo the
reconstruction after the system has evolved (see [HZ14]). In addition, automated approaches
have only low accuracies (see [GIM13]), meaning much manual effort is needed for correcting
and augmenting their results. Most reconstruction approaches focus on a very limited number
of programming languages and technologies (see [DP09]), meaning they are hard to apply to
systems such as today’s microservice systems which use polyglot programming, persistence and
technologies, often in their latest incarnations.

The development and deployment of microservice-based systems have become increasingly
challenging and complex due to the need for frequent releases and the large number of in-
frastructure nodes required to keep the system running. Furthermore, cloud computing has
caused a significant increase in the number of infrastructure nodes required by microservice
systems [Nyg07]. Additionally, modern systems are frequently released to production, sometimes
multiple times per day, leading to more frequent infrastructure changes [HF10, Nyg07]. To
address these challenges, organizations have adopted IaC, which involves using reusable scripts
to manage and provision infrastructure [Mor15]. IaC ensures that a provisioned environment
remains consistent with the same configuration, and configuration files containing infrastruc-
ture specifications can be easily edited and distributed [Mor15, ABDN+17]. Implementing IaC
practices can also improve consistency, security, and reduce errors and manual configuration
effort [ABDN+17]. Without IaC, it becomes increasingly difficult to manage the scale of current
systems’ components and infrastructure [Mor15]. IaC technologies (e.g. Ansible, Terraform)
allow to provision, deploy, and configure arbitrary application architectures. Thus, developers
and operators, respectively, can model any desired deployment. This freedom quickly results in
problems if security-related aspects are not taken into account. For example, vulnerabilities in
IaC deployment models (e.g. weak access and traffic control) could allow attackers to access
procedures and run code to hack the application. Furthermore, the deployment infrastructure can
be structured using infrastructure stacks. An infrastructure stack is a collection of infrastructure
elements/resources that are defined, provisioned, and updated as a unit [Mor15]. An incorrect
structure can result in issues if coupling-related aspects are not considered. For instance, defining
all the system deployment artifacts as only one unit in one infrastructure stack can significantly
impact the dependencies of system parts and teams as well as the independent deployability of
system services. This, combined with the fact that industry-scale systems support multiple such
architectural practices at once and also different implementations of them, makes it difficult to
assess whether an IaC deployment model that implicitly describes also the application’s architec-
ture is conforming to recommended best practices or not. In modern cloud-based architectures,
such as microservice architectures [New15] and other frequently released systems [Nyg07], an
automatic assessment method would produce more accurate results. For instance, this could be
applied in the context of continuous delivery practices employed in these systems requiring the

4

1.2 Thesis Structure

automated setup of infrastructures in usually every run of the delivery pipeline [HF10].

1.2 Thesis Structure

This doctoral thesis is structured as follows:

• In Part I, we discuss the state of the art that constitutes the basis of the thesis and point
out the novelty of our research work in comparison to existing approaches. In addition,
we analyze the main research problems addressed and the research methods applied in the
context of this thesis.

• In Part II, we study all the patterns and practices related to data management in mi-
croservices to create a systematic, reusable architectural design decision model. This
model aims to complement the existing literature on individual practices by practitioners
with a consistent and unbiased overview of industry practices. The design decision model
provides a comprehensive approach to microservice architecture.

• In Part III, we suggest an approach for evaluating microservice architecture conformity
to patterns and practices through an automatic assessment using the component model of
a microservice system. To accomplish this, we establish a standard or "ground truth" for
each possible microservice architecture and determine appropriate metrics to assess all
relevant microservice principles, regardless of the technology used. Moreover, we report on
a research study aiming to design a highly accurate architecture model abstraction approach
for comprehending component architecture models of highly polyglot systems that can
cope with continuous evolution.

• In Part IV, we focus on automated assistance for architects during the ongoing develop-
ment of microservice systems. Specifically, we focus on the establishment of a foundation
for automated architecture reconstruction, evaluation of conformity to microservice-specific
patterns and practices, and detection of potential violations. By doing so, we provide archi-
tects with practical solutions for enhancing architecture compliance through a continuous
feedback process.

• Finally, in Part V, we summarize the main contributions of the thesis.

5

2 State of the Art

In this chapter, we give the context of our research by discussing the related work. In this
discussion, we also define some challenges and the motivation behind the research work. First,
we briefly introduce the main context of this doctoral thesis. In addition, we present the related
work on the existing approaches in the areas of microservices, IaC best practices, frameworks for
detecting violations, and architecture conformance checking. The discussion of the related work,
however, does not end here. Each chapter introduces additional related works and a comparison
with the respective approach.

2.1 Research Context

Microservices typically do not share their data with other services, are commonly deployed in
lightweight containers or virtualized environments and communicate with other services through
message-based remote APIs that are loosely coupled. Microservices utilize multiple programming
languages and data storage systems, along with DevOps practices like continuous delivery and end-
to-end monitoring (see e.g. [Zim17, PZA+17]). While microservices are one of many service-
based architecture decomposition approaches (see e.g. [PJ16, PW09, Ric17, ZGK+07]), they,
like others, do not effectively address the software architecture problems of architecture drift and
erosion. These problems occur when changes are made to the source code that violate or are not
reflected in the architecture model, causing the architecture models to become out of sync with the
code during system evolution (see e.g. [PW92, ZZGL08]). The principle of strong coupling goes
against some of the fundamental principles of microservices. Specifically, the ability to release
microservices independently is a crucial aspect of modern systems that adopt DevOps practices.
Strong coupling between microservices makes it challenging to achieve releasability, as it hinders
the independent and swift release of individual microservices. Additionally, the development of
independent teams becomes more challenging due to strong dependencies between microservices,
and the autonomous deployment of individual microservices in lightweight containers becomes
difficult for the same reason.

The complexity of developing and deploying microservice-based systems has increased due
to the demand for quick releases and the extensive number of infrastructure nodes necessary to
operate the system [HF10, Nyg07]. To manage and provision IT infrastructure effectively, IaC
architecture utilizes software development techniques like version control, automated testing, and
continuous integration and delivery (CI/CD) [Mor15]. In an IaC architecture, infrastructure is
described using code, typically in a declarative language such as YAML or JSON, which specifies
the desired state of the infrastructure. The code is versioned using a source control system, such
as Git, which allows teams to collaborate on infrastructure changes and track changes over time.
Continuous integration and delivery (CI/CD) pipelines are used to automate the testing, building,

7

2 State of the Art

and deployment of infrastructure code changes. The pipeline can be configured to run tests
automatically and to deploy the code changes to production or staging environments when they
pass. By treating infrastructure as code, it becomes easier to manage infrastructure changes and
track changes over time. Additionally, IaC architecture can help improve security by providing
visibility into infrastructure changes and enabling teams to identify and fix security vulnerabilities
quickly and reduce coupling in deployment by structuring the infrastructure elements based on
certain responsibilities.

In this thesis, as an initial step, we investigate microservice-related patterns and practices in
order to provide a systematic and consistent, reusable architectural design decision model which
can complement the rich literature of detailed descriptions of individual practices by practitioners.
The design decision model aims to provide an unbiased and more complete treatment of industry
practices. Another necessary component of this work is the creation of a highly accurate
architecture model abstraction approach for reconstructing component architecture models of
highly polyglot systems, that can cope with continuous evolution. The next step focuses on
devising a method for automatically assessing architecture conformance to patterns and practices
in microservice architectures and IaC-based deployments based on a microservice system’s
component model. To do this, we also need to establish a ‘ground truth’ about the state of each
possible microservice architecture. Consequently, we need to determine suitable metrics for the
assessment of all relevant microservice and IaC tenets independent of the technology employed.
By integrating these techniques with well-established runtime and dynamic features of software
systems, it is possible to improve the accuracy of problem detection and assessment. Ideally,
this combination would identify the exact cause of the problem, thereby reducing the number of
potential solutions (reducing the decision space) to a manageable set of actionable options.

2.2 Related Work

This section provides an overview of the related works that were utilized in our studies. Moreover,
each chapter expands on and builds upon these works, including a comparison with the approach
that is presented.

2.2.1 Related Works on Best Practices and Patterns in Microservices

Various studies have extensively examined best practices for microservices. Richardson [Ric17]
has published a set of microservice patterns and practices, while Skowronski [Sko19] has pub-
lished another set of practices specific to event-driven microservice architectures. Zimmermann
et al. [ZSZ+19] have introduced patterns that are relevant to microservice APIs. Fowler and
Lewis [LF04] have discussed the basics and best practices of microservices, and Pahl and Jam-
shidi [PJ16] have summarized many of them in a mapping study. Taibi and Lenarduzzi [TL18]
have studied "bad smells" in microservices. Chapters 4, 6, and 7 provide a comprehensive
review of related works on patterns and practices in microservices and compare them with our
approaches.

8

2.2 Related Work

2.2.2 Related Works on Frameworks and Metrics in Microservices

Nowadays, many studies on service metrics concentrate on runtime properties (e.g. [PRG18]).
Several studies have assessed microservice-based software architectures using metrics, such as
those proposed in [PW09, ZNL17, BWZ17]. However, each of these studies only focuses on a
narrow set of architecture-relevant tenets (e.g. loose coupling), and there is no overall approach
for assessing different microservice tenets. For instance, Pautasso and Wilde [PW09] proposed a
composite metric based on facets to evaluate loose coupling in service-oriented systems. Zdun et
al. [ZNL17] investigated the independent deployment of microservices and defined metrics to
assess architecture conformance to microservice patterns in terms of two aspects: independent
deployment and shared dependencies of services. Engel et al. [ELBH18] proposed a method
based on real-time system communication traces to extract metrics that conform to recommended
microservice design principles, such as loose coupling and small service size. These studies
treat microservice architectures as a combination of components and connectors, taking into
account the technologies employed, and producing assessments that aggregate different evaluation
parameters (i.e. metrics). If automatically collected, these metrics could be utilized as part of
larger assessment models or frameworks during the design and development phases. Chapters 6,
7, 10, and 11 discuss these related works, among others.

2.2.3 Related Works on Best Practices and Patterns in IaC-based
Deployments

As IaC practices gain more popularity and acceptance in the industry, there is a growing body
of scientific research focused on collecting and systematizing IaC-related patterns and prac-
tices. Kumara et al. [KGR+21] present a comprehensive catalog of language-agnostic and
language-specific best and bad practices that address implementation issues, design issues, and
violations of essential IaC principles. Morris [Mor15] provides guidance on how to manage
IaC and describes technologies related to IaC-based practices, along with a broad catalog of
patterns and practices classified into several categories. Sharma et al. [SFS16] present a cata-
log of design and implementation smells specific to Puppet, while Schwarz et al. [SSL18]
provide a catalog of smells for Chef. Our work also adheres to IaC-specific recommendations
outlined in AWS [AWS21], OWASP [OWA21a, OWA21c, OWA21b], and the Cloud Security
Alliance [Clo18, Clo21]. Chapters 8 and 9 discuss additional related works on patterns and
practices in IaC-based deployments.

2.2.4 Related Works on Frameworks and Metrics in IaC-based
Deployments

Numerous studies have proposed various tools and metrics to evaluate and enhance the quality
of IaC deployment models. For instance, Dalla Palma et al. [DDPT20, DDT20] offer a catalog
of 46 quality metrics that concentrate on Ansible scripts to identify IaC-related characteristics
and demonstrate how to use them to analyze IaC scripts. Wurster et al. [WBH+20] present
TOSCA Lightning, an integrated toolchain that specifies multi-service applications with TOSCA
Light and transforms them into different deployment technologies that are production-ready.

9

2 State of the Art

Kumara et al. [KVM+20] suggest a tool-based approach for identifying smells in TOSCA
models. Sotiropoulos et al. [SMS20] develop a tool-based approach that detects dependencies-
related issues by analyzing Puppet manifests and their system call trace. Van der Bent et
al. [vdBHVG18] define metrics that reflect best practices for assessing Puppet code quality.
Pendleton et al. [PGLCX16] provide a comprehensive survey on security metrics that focuses on
how a system security state can evolve as an outcome of cyber-attack defence interactions. They
also propose a security metrics framework for measuring system-level security. Frameworks and
metrics related to IaC-based deployments are further described in Chapters 8 and 9.

2.2.5 Software Architecture Conformance Checking in IaC-based
Deployments

In [FBKL17, KBKL18], an approach is presented for automatically verifying compliance of
declarative deployment models during design time. The approach involves modeling compliance
rules as a pair of deployment model fragments, where one fragment serves as a detector subgraph
that determines whether the rule applies to a given deployment model, and the second fragment
determines a desired structure that the deployment model must contain. However, this approach
is generic and does not introduce specific compliance rules, such as for the security domain, and
assumes that the rule modeler can translate best practices into compliance rules of the expected
format. Other approaches related to architecture conformance checking, such as those based on
automated extraction techniques [GAK99, VDHK+04], can be used to check conformance to
architecture patterns [GAK99, HZ14] or other architectural rules [VDHK+04]. Chapters 8 and 9
provide additional works and comparisons in this area.

10

3 Problem Analysis and Research
Approach

In this chapter, we formulate the main research problems that are addressed in the context of
this doctoral thesis. Each research problem leads us to consider one or more research questions.
Furthermore, we discuss the research methodology as well as the research methods that have
been applied to evaluate the proposed approaches that address the research questions under study.

3.1 Research Topics and Aims

The aim was to contribute to a more robust, comprehensive, and evidence-based understanding of
architecting microservice-based systems and deployments. To do this, it is necessary to collect,
model, analyze, assess, and understand both the extant practices and the theoretical underpinnings
of the microservice domain. Specifically, this requires us to:

1. investigate existing practices in the industry and extant scientific and practitioner literature
to acquire a comprehensive overview of the state of the field,

2. systematically categorize and model the extant practices and recommendations in a unified
framework for modelling and analyzing microservice-based systems and deployments,

3. establish an automatic approach to assess architecture conformance to recommended
patterns and practices of real-world microservice-based systems and deployments,

4. automatically calculate and provide actionable options to architects for improving architec-
ture conformance as part of a feedback loop.

Based on the information derived from this process, we aim to answer a series of research
questions on the subject of microservice-based systems and IaC-based deployments evolution.

3.2 Research Questions

Based on the motivation described in 1.1, the purpose of this thesis is to investigate methods for
understanding the present practices in the industry and literature that relate to microservice-based
systems and IaC-based deployments. Furthermore, it endeavours to assess how well a system
complies with the recommended best practices and patterns and to suggest improvements to
enhance architecture conformance. We state four primary research questions (RQs), and every
chapter comprises several subsidiary questions that pertain to the following RQs:

11

3 Problem Analysis and Research Approach

• RQ1: What are the commonly used patterns and practices in architecting microservice-
based systems and IaC-based deployments?

• RQ2: How can you reconstruct the component model from the source of an extant
microservice-based system?

• RQ3: How can you automatically assess conformance to recommended patterns and
practices in microservice-based systems and IaC-based deployments?

• RQ4: How can you provide actionable options for improving the system architecture as
part of a feedback loop?

3.3 Research Problems

In order to support the architecture evolution of microservice-based systems and IaC-based
deployments, it is essential to tackle a range of issues pertaining to gathering, modeling, analyz-
ing, assessing, refactoring, and comprehending both the existing practices and the theoretical
foundations of the microservice domain. The following research problems (P) are addressed in
this doctoral thesis:

• P1 Lack of codification of architecture knowledge in form of a reusable architectural
design decision model.

The problem is related to RQ1. Numerous patterns and practices for managing data in
microservice architectures have been suggested. However, these concepts are mostly
discussed informally in "grey literature" such as practitioner blogs, experience reports, and
system documentations. Consequently, the knowledge related to microservice architecture
is spread across several sources, which are often based on individual experiences, lack
consistency, and when examined independently, do not offer a complete understanding.

• P2 Lack of accurate architecture model abstraction of systems that are highly polyglot.

The problem is related to RQ2. Preventing architecture model drift and erosion is a major
challenge in software architecture, especially in complex software systems. Microservice-
based systems introduce additional challenges as they frequently use a wide range of
technologies in their latest version and undergo frequent changes and releases. The existing
solutions for reconstructing architecture models do not adequately address these new
challenges, as they are not suited to continuous evolution, have low accuracy, and lack
support for highly polyglot environments.

• P3 Lack of assessing architecture conformance to best patterns and practices in mi-
croservices and IaC-based deployments.

The problem is related to RQ3 and RQ4. One of the fundamental principles for a thriving
microservice architecture is the strong autonomy of individual microservices, i.e. loose
coupling. While several patterns and best practices are established in the literature, most
microservice-based systems, either entirely or partially, do not conform to them. Evaluating
this conformity manually is not a practical option for large-scale systems.

12

3.4 Research Contributions

• P4 Lack of a unified framework for modelling and analyzing microservice-based systems
and IaC-based deployments.

This problem is related to RQ1, RQ2, and RQ3 and concerns the key components needed
for establishing a meta-model for modeling microservice-based systems. It is also related
to the essential elements required for reconstructing existing microservice-based systems,
such as connector and component types, relationships, and associated technologies.

• P5 Lack of automatic violation detection and fix suggestion in microservice-based archi-
tectures and IaC-based deployments.

This problem pertains to RQ3 and RQ4 and concerns potential architecture violations
resulting from design decisions, which can be detected through automatic means. It
also concerns methods of guiding architects in rectifying these violations via continuous
feedback while retaining flexibility to consider other architecture trade-offs. Moreover,
it concerns the possible solutions to these violations and ways to support architects in
selecting and implementing the appropriate fixes.

3.4 Research Contributions

This section offers a summary of the contributions presented in this doctoral thesis, connected to
their respective research problems outlined in Section 3.3. The contributions were published in
conferences and scientific journals such as International Conference on Software Architecture
(ICSA), European Conference on Software Architecture (ECSA), International Conference on
Services Computing (SCC), International Conference on Cloud Computing (CLOUD), Interna-
tional Conference on Service-Oriented Computing (ICSOC) and the Computing journal. The
contributions (C) published in the course of this doctoral thesis are:

• C1 Reusable architectural design decision model.

The contribution addresses P1 by providing a pattern catalog with all the related data
management patterns and practices, their relations and the corresponding impact/drivers
(Chapter 4).

• C2 Architecture reconstruction of polyglot systems from the source code.

The contribution is part of P2 and P4 and introduces a number of detectors that continuously
parse relevant parts of the source code and create model abstractions from it. The detectors
are designed to address the polyglot nature of microservice-based systems (Chapter 5).

• C3 Automatic assessment based on support or violation of patterns/practices of modeled
systems.

The contribution addresses P3 by providing an automatic metric-based approach for meas-
uring whether a microservice-based system supports the best patterns and practices and to
what degree it does so (Chapters 6, 7, 8 and 9).

13

3 Problem Analysis and Research Approach

• C4 Modeling microservice-based systems and IaC-based deployments.

The contribution is part of P3 and P4 by performing an iterative study of a variety of
microservice-related knowledge sources, in order to gradually refine a meta-model, and
modeling a number of model instances (microservice-based systems and IaC-based deploy-
ments) in order to investigate the ontology, and to evaluate the meta-model’s efficiency
(Chapters 5, 6, 7, 8 and 9).

• C5 Automatic decision-based violation detection.

The contribution addresses P3 and P5 by introducing detectors that are able to localize a
decision-based violation and in combination with the metrics introduced to address P3, the
detectors return the elements (components and connectors) that are involved in a specific
violation (Chapters 10, 11 and 12).

• C6 Automatic model generation based on the recommended fixes.

The contribution addresses P5 by providing a number of actionable options (fixes) for each
violation to improve the system architecture as part of a feedback loop (Chapters 10, 11
and 12).

3.5 List of Publications

The content of this thesis is primarily derived from research that has either been published in
various scientific outlets such as workshops, conferences, and journals, or is currently under
review for submission to a research venue. We associate the publications with the corresponding
chapter. The following publications were used in its composition:

• Evangelos Ntentos, Uwe Zdun, Ghareeb Falazi, Uwe Breitenbücher, Frank Leymann
"Detecting and Resolving Coupling-Related Infrastructure as Code Based Architecture
Smells in Microservice Deployments" IEEE CLOUD 2023, 2-8 July 2022, Chicago, Illinois
USA (2023)

– DOI: https://doi.org/10.5281/zenodo.7737931 (Chapter 12)

• Evangelos Ntentos, Uwe Zdun, Jacopo Soldani, Antonio Brogi "Assessing Architecture
Conformance to Coupling-Related Infrastructure-as-Code Best Practices: Metrics and Case
Studies" 16th European Conference on Software Architecture, 19.09.2022 - 23.09.2022,
Prague, Czech Republic (2022)

– DOI: https://doi.org/10.5281/zenodo.6801247 (Chapter 8)

• Evangelos Ntentos, Uwe Zdun, Ghareeb Falazi, Uwe Breitenbücher, Frank Leymann
"Assessing Architecture Conformance to Security-Related Practices in Infrastructure as
Code Based Deployments" IEEE International Conference on Services Computing (SCC
2022), 11-16 July 2022, Barcelona, Spain (2022)

– DOI: https://doi.org/10.5281/zenodo.6694962 (Chapter 9)

14

https://doi.org/10.5281/zenodo.7737931
https://doi.org/10.5281/zenodo.6801247
https://doi.org/10.5281/zenodo.6694962

3.5 List of Publications

RQ1:

What are the commonly used

patterns and practices in

architecting microservice-based

systems and IaC-based

deployments?

RQ2: How can you reconstruct

the component model from the

source of an extant

microservice-based system?

RQ3:

How can you automatically

assess conformance to

recommended patterns and

practices in microservice-based

systems and IaC-based

deployments?

RQ4:

How can you provide actionable

options for improving the system

architecture as part of a

feedback loop?

P1: Lack of codification of

architecture knowledge in form

of a reusable architectural

design decision model

P2: Lack of accurate architecture

model abstraction of systems

that are highly polyglot

P3: Lack of assessing

architecture conformance to best

patterns and practices in

microservices and IaC-based

deployments

P4: Lack of a unified framework

for modelling and analyzing

microservice-based systems and

IaC-based deployments

P5: Lack of automatic violation

detection and fix suggestion in

microservice-based

architectures and IaC-based

deployments

C1: Reusable architectural

design decision model.

Part II Chapter 4

C2: Architecture reconstruction

of polyglot systems from the

source code.

Part III Chapter 5

C3: Automatic assessment

based on support or violation

of patterns/practices of

modeled systems.

Part III Chapter 6, 7, 8, 9

C4: Modeling microservice-

based systems and IaC-based

deployments.

Part III Chapter 5, 6, 7, 8, 9

C5: Automatic decision-based

violation detection.

Part IV Chapter 10, 11, 12

C6: Automatic model

generation based on the

recommended fixes.

Part IV Chapter 10, 11, 12

Figure 3.1: Research Overview

• Ghareeb Falazi, Uwe Breitenbücher, Frank Leymann, Miles Stötzner, Evangelos Ntentos,
Uwe Zdun, Martin Becker, Elena Heldwein "On Unifying the Compliance Management of
Applications Based on IaC Automation" 1st International Workshop on the Foundations of
Infrastructure Specification and Testing, 12 March 2022, Virtual (2022)

– DOI: https://doi.org/10.5281/zenodo.7143512

• Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, Sebastian Geiger "Evaluating and
Improving Microservice Architecture Conformance to Architectural Design Decisions"
Service-Oriented Computing - 19th International Conference, ICSOC 2021, November
22-25, Dubai, United Arab Emirates (2021)

– DOI: https://doi.org/10.5281/zenodo.7124916 (Chapter 11)

• Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, Patric Genfer, Sebastian Geiger,
Sebastian Meixner, Wilhelm Hasselbring "Detector-based component model abstraction for

15

https://doi.org/10.5281/zenodo.7143512
https://doi.org/10.5281/zenodo.7124916

3 Problem Analysis and Research Approach

microservice-based systems" Computing, 103 pp. 2521-2551 ISSN 0010-485X Springer
(2021)

– DOI: https://doi.org/10.5281/zenodo.5235931 (Chapters 5)

• Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, Sebastian Geiger "Semi-automatic
Feedback for Improving Architecture Conformance to Microservice Patterns and Practices"
18th IEEE International Conference on Software Architecture (ICSA 2021), 22 - 26 March,
Stuttgart, Germany (2021)

– DOI: https://doi.org/10.5281/zenodo.5724082 (Chapter 10)

• Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, Sebastian Meixner, Sebastian
Geiger "Metrics for Assessing Architecture Conformance to Microservice Architecture
Patterns and Practices" 18th International Conference on Service Oriented Computing
(ICSOC 2020), 14-17 Dec 2020, Dubai (2020)

– DOI: https://doi.org/10.5281/zenodo.4551448 (Chapter 7)

• Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, Sebastian Meixner, Sebastian
Geiger "Assessing Architecture Conformance to Coupling-Related Patterns and Practices
in Microservices" 14th European Conference on Software Architecture (ECSA), 2020,
14-18 Sep 2020, L’Aquila, Italy (2020)

– DOI: https://doi.org/10.5281/zenodo.4551524 (Chapter 6)

• Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, Daniel Schall, Fei Li, Sebastian
Meixner "Supporting Architectural Decision Making on Data Management in Microservice
Architectures" 13th European Conference on Software Architecture (ECSA) - 2019, 9-13
September 2019, Paris, France (2019)

– DOI: https://doi.org/10.5281/zenodo.3484435 (Chapter 4)

• Uwe Zdun, Evangelos Ntentos, Konstantinos Plakidas, Amine El Malki, Daniel Schall, Fei
Li "On the Design and Architecture of Deployment Pipelines in Cloud- and Service-Based
Computing – A Model-Based Qualitative Study" 2019 IEEE International Conference on
Services Computing (SCC 2019), 8-13 July 2019, Milan, Italy (2019)

• Christoph Czepa, Amirali Amiri, Evangelos Ntentos, Uwe Zdun "Modeling compliance
specifications in linear temporal logic, event processing language and property specification
patterns: a controlled experiment on understandability" Software and Systems Modeling,
18 pp. 3331-3371 ISSN 1619-1366 Springer (2019)

– DOI: 10.1007/s10270-019-00721-4

3.6 Architecture Evaluation and Optimization

As illustrated in Figure 3.3, our approach consists of one main role and 3 major phases as well
as other additional factors. Initially, we investigate methods and techniques related to system

16

https://doi.org/10.5281/zenodo.5235931
https://doi.org/10.5281/zenodo.5724082
https://doi.org/10.5281/zenodo.4551448
https://doi.org/10.5281/zenodo.4551524
https://doi.org/10.5281/zenodo.3484435
10.1007/s10270-019-00721-4

3.6 Architecture Evaluation and Optimization

«Service»
Billing Service
:Component

«Pub/Sub Component»
Pub/Sub

:Component

«Database»
DB

:Component

«database

connector»

«Service»
Payment Service

:Component

«Service»
Trip Management Service

:Component

«Service»
Drive Management

Service
:Component

«Database»
DB

:Component

«database

connector»

«Facade»
API Gateway
:Component

«Client»
Mobile App
:Component

«RESTful HTTP»

«HTTP, HTTPS»

«Publisher, Subscriber

published= ["topic"],

subscribe= ["topic"]»

«Publisher, Subscriber

published= ["topic"],

subscribe= ["topic"]»

Figure 3.2: Example of Microservice Component Model

architecture abstraction. For this process we utilize real systems, as well as the generic component
meta-model, which contains all the necessary stereotypes to reconstruct system architecture and
generate a component model such as the one in Figure 3.2. Additionally, the architect manually
specifies the architecture abstraction specification for a software system which is used also
as an input for the system architecture abstraction phase (see Chapter 5). In the architecture
conformance assessment phase, based on the generated system component model, an automatic
assessment of conformance to microservice patterns and practices, outlined in Chapter 4, is
performed, using a set of generic, technology independent metrics detailed in Chapters 6, 7, 8,
and 9, as well as a detection of violations to recommended microservice and IaC patterns and
practices. This returns a feedback to the architect concerning the system architecture quality
and the possible violations. Subsequently, a semi-automatic architecture refactoring phase is
performed (see Chapters 10, 11 and 12). The architect selects an optimal provided solution based
on a catalog of possible fixes for decisions, decision options, and metric violations. Then, a new
model with the applied fixes is generated and can follow the same process.

17

3 Problem Analysis and Research Approach

System Architecture Abstraction
Architecture Conformance

Assessment

Reusable

Design

Decision

Model

produces a new version of

returns feedback to

System Refactoring

Predefined

Fix Options

Component

Model

selects the optimal solution

defines

Architect /

Developer

Component

Meta-Model

used by

Software System

Source Code

Violation Detection & Fix

Algorithms

used by

used by

Runtime

Metrics

Aggregation

& Analysis

used by

Optional input

Architecture Refactoring

Figure 3.3: Architecture Evaluation and Optimization Workflow

3.7 Research Methods

In order to answer RQ1, we conducted a systematic study of established practices in the field of
architecting microservice-based systems. This study combines the established Grounded Theory
(GT) [GS67] qualitative research approach with techniques for studying established practices,
such as pattern mining [Cop96] and its combination with GT [HZHD15]. The GT approach
involves a systematic and iterative process of data collection and analysis, with the goal of
developing a theory that reflects the experiences and perspectives of the study population. The
data collected through this method is analyzed through various steps, including open coding,
axial coding, and selective coding, to identify patterns and relationships and generate a theor-
etical framework that helps explain the dynamics and processes involved in the development
and adoption of microservice-based systems. We began with the collection of descriptions of
established practices from the authors’ own experiences. We then searched for a limited number
of credible, technically-detailed sources from the so-called “grey literature” (e.g. practitioner
reports, system documentations, practitioner blogs, etc.). These sources provided unbiased
descriptions of established practices in the field and served as the basis for our further analysis.
Furthermore, we followed many of the principles of the classic GT approach, with a few key
differences. Similar to GT, we involved a thorough examination of each knowledge source and a
systematic coding process, as well as a constant comparison procedure to develop a model. In
classic GT, the data analysis process primarily involves the use of textual analysis to identify
patterns and relationships in the data. In our study, while textual codes were used initially, they
were then transformed into formal software models. This distinction is what sets our method

18

3.7 Research Methods

apart from classic GT and gives it its "model-based" character.
To answer RQ2 we used design science research to analyze the design of artifacts in a specific

context. The research process involves several design and engineering cycles, each comprising
four steps: problem investigation, treatment design, treatment validation, and design implementa-
tion. If the evaluation of a cycle is unsatisfactory, subsequent cycles may be conducted to improve
the design. Design implementation is optional, and our study did not carry it out. Empirical
evaluation based on a case study was used to validate the treatment, which is one of the various
empirical methods recommended by Wieringa et al. [Wie14].

To answer RQ3, it was necessary to collect a sufficient number of microservice-based systems
that have been developed by practitioners and published in public repositories and practitioners’
blogs. We use these systems as case studies to evaluate the respective approaches. Case studies
are often regarded as "typical research" since they observe and analyze activities, processes, and
other aspects of real-world projects. Yin [Yin02] defines case studies as empirical investigations
of current phenomena in their authentic settings, particularly when it’s unclear where the boundary
between the phenomenon and context lies. The primary objective of conducting case studies is
to comprehend the hows and whys of specific phenomena within a defined time frame and to
identify the mechanisms that establish various cause-and-effect relationships [WHH03]. Table
3.1 shows the case studies that served as the main dataset for the approaches in Chapters 6,7,10
and 11.

To create the system component models, the decision models and the meta-model, we used our
existing modeling tool CodeableModels1, a Python implementation for the precise specification of
meta-models, models, and model instances in code. CodeableModels allows for the specification
of meta-models for components, connectors, and relationships, making it an ideal tool for our
study. The next step in the process was to manually create model instances for each of the
collected systems. This involved utilizing automated constraint checkers and PlantUML code
generators to generate graphical visualizations of all meta-models and models. This process
was iterative, allowing for refinement and testing of the meta-model’s ontology until no further
additions were necessary. The collection of microservice-based systems, along with the use of
CodeableModels, allowed us to create models and a meta-model that accurately reflected the
existing practices in the field. The iterative refinement process ensured that the meta-model’s
ontology was comprehensive and accurate, making it a valuable tool for future research in the
field.

For the theoretical basis of RQ3 and RQ4, we conducted a comprehensive multi-vocal literature
study. This involved exploring all possible sources of knowledge, including web resources, public
repositories, and scientific papers, as outlined in [GFM17]. Additionally, we employed an iterative
trial-and-error process to create automatic tools that would support the specific tasks outlined
in the RQs. This involved continual refinement and testing until the tools were optimized for
the tasks at hand. Where statistical evaluation of our results was necessary, we utilized robust
statistical methods and relevant R packages to ensure the validity and reliability of our findings.
By combining the multi-vocal literature study with the use of automatic tools and robust statistical
methods, we were able to provide a comprehensive and rigorous examination of the theoretical
basis of microservice-based systems and IaC-based deployments.

1https://github.com/uzdun/CodeableModels

19

https://github.com/uzdun/CodeableModels

3 Problem Analysis and Research Approach

Model ID Model Size Description / Source
BM1 10 components

14 connectors
Banking-related application based on CQRS and event sourcing (from https://github.c
om/cer/event-sourcing-examples).

BM2 8 components
9 connectors

Variant of BM1 which uses direct RESTful completely synchronous service invocations instead
of event-based communication.

BM3 8 components
9 connectors

Variant of BM1 which uses direct RESTful completely asynchronous service invocations instead
of event-based communication.

CO1 8 components
9 connectors

The common component model E-shop application implemented as microservices directly ac-
cessed by a Web frontend (from https://github.com/cocome-community-case
-study/cocome-cloud-jee-microservices-rest).

CO2 11 components
17 connectors

Variant of CO1 using a SAGA orchestrator on the order service with a message broker. Added
support for Open Tracing. Added an API gateway.

CO3 9 components
13 connectors

Variant of CO1 where the reports service does not use inter-service communication, but a shared
database for accessing product and store data. Added support for Open Tracing.

CI1 11 components
12 connectors

Cinema booking application using RESTful HTTP invocations, databases per service, and an
API gateway (from https://codeburst.io/build-a-nodejs-cinema-api-g
ateway-and-deploying-it-to-docker-\part-4-703c2b0dd269).

CI2 11 components
12 connectors

Variant of CI1 routing all interservice communication via the API gateway.

CI3 10 components
11 connectors

Variant of CI1 using direct client to service invocations instead of the API gateway.

CI4 11 components
12 connectors

Variant of CI1 with a subsystem exposing services directly to the client and another subsystem
routing all traffic via the API gateway.

EC1 10 components
14 connectors

E-commerce application with a Web UI directly accessing microservices and an API gateway
for service-based API (from https://microservices.io/patterns/microservi
ces.html).

EC2 11 components
14 connectors

Variant of EC1 using event-based communication and event sourcing internally.

EC3 8 components
11 connectors

Variant of EC1 with a shared database used to handle all but one service interaction.

ES1 20 components
36 connectors

E-shop application using pub/sub communication for event-based interaction, a middleware-
triggered identity service, databases per service (4 SQL DBs, 1 Mongo DB, and 1 Redis DB),
and backends for frontends for two Web app types and one mobile app type (from https:
//github.com/dotnet-architecture/eShopOnContainers).

ES2 14 components
35 connectors

Variant of ES1 using RESTful communication via the API gateway instead of event-based com-
munication and one shared SQL DB for all 6 of the services using DBs. No service interaction
via the shared database occurs.

ES3 16 components
35 connectors

Variant of ES1 using RESTful communication via the API gateway instead of event-based com-
munication and one shared database for all 4 of the services using SQL DB in ES1. However,
no service interaction via the shared database occurs.

FM1 15 components
24 connectors

Simple food ordering application based on entity services directly linked to a Web UI (from
https://github.com/jferrater/Tap-And-Eat-MicroServices).

FM2 14 components
21 connectors

Variant of FM1 which uses the store service as an API composition and asynchronous interser-
vice communication. Added Jaeger-based tracing per service.

FM3 13 components
15 connectors

Variant of FM1 which demonstrates a cyclic dependency case, uses the store service as an API
composition and asynchronous inter-service communication.

HM1 13 components
25 connectors

Hipster shop application using GRPC interservice connection and OpenCensus monitoring &
tracing for all but one service as well as on the gateway (from https://github.com/Goo
gleCloudPlatform/microservices-demo).

HM2 14 components
26 connectors

Variant of HM1 that uses publish/subscribe interaction with event sourcing, except for one ser-
vice, and realizes the tracing on all services.

RM1 11 components
18 connectors

Restaurant order management application based on SAGA messaging and domain event inter-
actions. Rudimentary tracing support (from https://github.com/microservices-p
atterns/ftgo-application).

RM2 14 components
14 connectors

Variant of RM1 which contains transitively shared services, API Gateway for client services
communication, database per service and direct communication between service.

RM3 14 components
15 connectors

Variant of RM1 which demonstrates a cyclic dependency case, API Gateway for client services
communication, database per service and direct communication between service.

RS 18 components
29 connectors

Robot shop application with various kinds of service interconnections, data stores, and Instana
tracing on most services (from https://github.com/instana/robot-shop).

TH1 14 components
16 connectors

Taxi hailing application with multiple frontends and databases per services from (https://
www.nginx.com/blog/introduction-to-microservices/).

TH2 15 components
18 connectors

Variant of TH1 that uses publish/subscribe interaction with event sourcing for all but one service
interaction.

Table 3.1: Overview of modelled systems used in our studies (size, details, and sources)

20

https://github.com/cer/event-sourcing-examples
https://github.com/cer/event-sourcing-examples
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/jferrater/Tap-And-Eat-MicroServices
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/microservices-patterns/ftgo-application
https://github.com/microservices-patterns/ftgo-application
https://github.com/instana/robot-shop
https://www.nginx.com/blog/introduction-to-microservices/
https://www.nginx.com/blog/introduction-to-microservices/

Part II
Decision-Making Support for Microservice Architectures

21

4 Supporting Architectural Decision
Making on Data Management in
Microservice Architectures

As described in the previous chapter in Section 1.1 managing data in microservice architectures is
crucial and requires careful consideration. Although many patterns and practices for microservice
data management have been proposed, they are often informally discussed in practitioner blogs,
experience reports, and system documentation. In this chapter we present a qualitative study of
35 practitioner descriptions of best practices and patterns in microservice data management archi-
tectures. Using a model-based qualitative research method, we developed a formal architecture
decision model with 325 elements and relations.

4.1 Introduction

Microservice architectures [New15, Zim17] have emerged from established practices in service-
oriented computing (cf. [PJ16, Ric17, ZKL+09]). The microservices approach emphasizes
business capability-based and domain-driven design, development in independent teams, cloud-
native technologies and architectures, polyglot technology stacks including polyglot persistence,
lightweight containers, loosely coupled service dependencies, and continuous delivery (cf. [LF04,
New15, Zim17]). Some of these tenets introduce substantial challenges for the data management
architecture. Notably, it is usually advised to decentralize all data management concerns. Such
an architecture requires, in addition to the already existing non-trivial design challenges intrinsic
in distributed systems, sophisticated solutions for data integrity, data querying, transaction
management, and consistency management [New15, Zim17, PJ16, Ric17].

Many authors have written about microservice data management and various attempts to
document microservice patterns and best practices exist [Ric17, Gup17, LF04, PJ16]. Never-
theless, most of the established practices in industry are only reported in the so-called “grey
literature”, consisting of practitioner blogs, experience reports, system documentations, etc. In
most cases, each of these sources documents a few existing practices well, but usually they do
not provide systematic architectural guidance. Instead the reported practices are largely based
on personal experience, often inconsistent, and, when studied on their own, incomplete. This
creates considerable uncertainty and risk in architecting microservice data management, which
can be reduced either through substantial personal experience or by a careful study of a large
set of knowledge sources. Our aim is to complement such knowledge sources with an unbiased,
consistent, and more complete view of the current industrial practices than readily available today.

To reach this goal, we have performed a qualitative, in-depth study of 35 microservice data
practice descriptions by practitioners containing informal descriptions of established practices

23

4 Supporting Architectural Decision Making on Data Management in Microservice Architectures

and patterns in this field. We have based our study on the model-based qualitative research
method described in [ZSZ+18]. It uses such practitioner sources as rather unbiased (from our
perspective) knowledge sources and systematically codes them through established coding and
constant comparison methods [GS67], combined with precise software modeling, in order to
develop a rigorously specified software model of established practices, patterns, and their relations.
This work aims to study the following research questions:

• RQ1.1 What are the patterns and practices currently used by practitioners for supporting
data management in a microservice architecture?

• RQ1.2 How are the current microservice data management patterns and practices related?
In particular, which architectural design decisions (ADDs) are relevant when architecting
microservice data management?

• RQ1.3 What are the influencing factors (i.e., decision drivers) in architecting microservice
data management in the eye of the practitioner today?

This work makes three major contributions. First, we gathered knowledge about established
industrial practices and patterns, their relations, and their decision drivers in the form of a
qualitative study on microservice data management architectures, which included 35 knowledge
sources in total. Our second contribution is the codification of this knowledge in form of a
reusable architectural design decision (ADD) model in which we formally modeled the decisions
based on a UML2 meta-model. In total we documented 9 decisions with 30 decision options
and 34 decision drivers. Finally, we evaluated the level of detail and completeness of our model
to support our claim that the chosen research method leads to a more complete treatment of the
established practices than methods like informal pattern mining. For this we compared to the by
far most complete of our pool of sources, the microservices.io patterns catalog [Ric17], and are
able to show that our ADD model captures 210% more elements and relations.

The remainder of this chapter is organized as follows: In Section 4.2 we compare to the related
work. Section 4.3 explains the research methods we have applied in our study and summarizes
the knowledge sources. Section 4.4 describes our reusable ADD model on microservice data
management. Section 4.5 compares our study with microservices.io in terms of completeness.
Finally, Section 4.6 discusses the threats to validity of our study and Section 4.7 summarizes our
findings.

4.2 Related Work

A number of approaches that study microservice patterns and best practices exist: The mi-
croservices.io collection by Richardson [Ric17] addresses microservice design and architecture
practices. As the work contains a category on data management, many of them are included in
our study. Another set of patterns on microservice architecture structures has been published by
Gupta [Gup17], but those are not focused on data management. Microservice best practices are
discussed in [LF04], and similar approaches are summarized in a recent mapping study [PJ16].
So far, none of those approaches has been combined with a formal model; our ADD model
complements these works in this sense.

24

4.3 Research Method and Modelling Tool

Decision documentation models that promise to improve the situation exist (e.g. for service-
oriented solutions [ZKL+09], service-based platform integration [LSZ12], REST vs. SOAP
[PZL08], and big data repositories [GKN15]). However, this kind of research does not yet
encompass microservice architectures, apart from our own prior study on microservice API
quality [ZSZ+18]. The model developed in our study can be classified as a reusable ADD
model, which can provide guidance on the application of patterns [ZKL+09]. Other authors have
combined decision models with formal view models [vHAH12]. We apply such techniques in
our work, but also extend them with a formal modeling approach based on a qualitative research
method.

4.3 Research Method and Modelling Tool

Research Method. This work aims to systematically study the established practices in the field
of architecting data management in microservice architectures. We follow the model-based qual-
itative research method described in [ZSZ+18]. It is based on the established Grounded Theory
(GT) [GS67] qualitative research method, in combination with methods for studying established
practices like pattern mining (see e.g. [Cop96]) and their combination with GT [HZHD15]. The
method uses descriptions of established practices from the authors’ own experiences as a starting
point to search for a limited number of well-fitting, technically detailed sources from the so-called
“grey literature” (e.g., practitioner reports, system documentations, practitioner blogs, etc.). These
sources are then used as unbiased descriptions of established practices in the further analysis.
Like GT, the method studies each knowledge source in depth. It also follows a similar coding
process, as well as a constant comparison procedure to derive a model. In contrast to classic GT,
the research begins with an initial research question, as in Charmaz’s constructivist GT [Cha14].
Whereas GT typically uses textual analysis, the method uses textual codes only initially and then
transfers them into formal software models (hence it is model-based).

The knowledge-mining procedure is applied in many iterations: we searched for new knowledge
sources, applied open and axial coding [GS67] to identify candidate categories for model elements
and decision drivers, and continuously compared the new codes with the model designed so
far to incrementally improve it. A crucial question in qualitative methods is when to stop this
process. Theoretical saturation [GS67] has attained widespread acceptance for this purpose. We
stopped our analysis when 10 additional knowledge sources did not add anything new to our
understanding of the research topic. While this is a rather conservative operationalisation of
theoretical saturation (i.e., most qualitative research saturates with far fewer knowledge sources
that add nothing new), our study converged already after 25 knowledge sources. The sources
included in the study are summarized in Table 4.1. Our search for sources was based on our own
experience, i.e., tools, methods, patterns and practices we have access to, worked with, or studied
before. We also used major search engines (e.g., Google, Bing) and topic portals (e.g., InfoQ) to
find more sources.
Modelling Tool Implementation. To create our decision model, we used the Python modeling
library CodeableModels described in Chapter 3.7.

25

4 Supporting Architectural Decision Making on Data Management in Microservice Architectures

Table 4.1: Knowledge Sources Included in the Study

Name
Description Reference

S1 2 Intro to Microservices: Dependencies and Data Sharing https://bit.ly/2YTnolQ
S2 1 Pattern: Shared database https://bit.ly/30L1PW2
S3 4 Enterprise Integration Patterns https://bit.ly/2Wr1OHC
S4 2 Design Patterns for Microservices https://bit.ly/2EBmIcQ
S5 2 6 Data Management Patterns for Microservices https://bit.ly/2K3YMTb
S6 1 Pattern: Database per service https://bit.ly/2EDDici
S7 2 Transaction Management in Microservices https://bit.ly/2XSKhWL
S8 2 A Guide to Transactions Across Microservices https://bit.ly/2WpQN9j
S9 2 Saga Pattern – How to implement business transactions using Microservices https://bit.ly/2WpRBuR
S10 2 Saga Pattern and Microservices architecture https://bit.ly/2HF6G3G
S11 2 Patterns for distributed transactions within a microservices architecture https://bit.ly/2QqZgUx
S12 2 Data Consistency in Microservices Architecture https://bit.ly/2K5G79y
S13 2 Event-Driven Data Management for Microservices https://bit.ly/2WlSKUs
S14 1 Pattern: Saga https://bit.ly/2WpS549
S15 2 Managing Data in Microservices https://bit.ly/2HYIvvY
S16 2 Event Sourcing, Event Logging – An essential Microservice Pattern https://bit.ly/2QusIcb
S17 1 Pattern: Event sourcing https://bit.ly/2K62TOn
S18 2 Microservices With CQRS and Event Sourcing https://bit.ly/2JK2IZQ
S19 2 Microservices Communication: How to Share Data Between Microservices https://bit.ly/2HCR94u
S20 2 Building Microservices: Inter-Process Communication in a Microservices Architecture https://bit.ly/30OVB7U
S21 1 Pattern: Command Query Responsibility Segregation (CQRS) https://bit.ly/2X80LcM
S22 3 Data considerations for microservices https://bit.ly/2WrLeav
S23 2 Preventing Tight Data Coupling Between Microservices https://bit.ly/2WptQmJ
S24 3 Challenges and solutions for distributed data management https://bit.ly/2wp5YkO
S25 3 Communication in a microservice architecture https://bit.ly/2X7UDkT
S26 2 Microservices: Asynchronous Request Response Pattern https://bit.ly/2WjAFqb
S27 2 Patterns for Microservices — Sync vs. Async https://bit.ly/2Ezhsqg
S28 2 Building Microservices: Using an API Gateway https://bit.ly/2EA3AfA
S29 2 Microservice Architecture: API Gateway Considerations https://bit.ly/2YUKWqr
S30 1 Pattern: API Composition https://bit.ly/2WlVqS0
S31 1 Pattern: Backends For Frontends https://bit.ly/2X9I3kQ
S32 3 Command and Query Responsibility Segregation (CQRS) pattern https://bit.ly/2wltdMq
S33 2 Introduction to CQRS https://bit.ly/2HY0sLm
S34 2 CQRS https://bit.ly/2JKI2Rz
S35 2 Publisher-Subscriber pattern https://bit.ly/2JGtqCx

1 denotes a source taken from microservices.io
2 practitioner blog
3 Microsoft technical guide
4 book chapter

26

https://bit.ly/2YTnolQ
https://bit.ly/30L1PW2
https://bit.ly/2Wr1OHC
https://bit.ly/2EBmIcQ
https://bit.ly/2K3YMTb
https://bit.ly/2EDDici
https://bit.ly/2XSKhWL
https://bit.ly/2WpQN9j
https://bit.ly/2WpRBuR
https://bit.ly/2HF6G3G
https://bit.ly/2QqZgUx
https://bit.ly/2K5G79y
https://bit.ly/2WlSKUs
https://bit.ly/2WpS549
https://bit.ly/2HYIvvY
https://bit.ly/2QusIcb
https://bit.ly/2K62TOn
https://bit.ly/2JK2IZQ
https://bit.ly/2HCR94u
https://bit.ly/30OVB7U
https://bit.ly/2X80LcM
https://bit.ly/2WrLeav
https://bit.ly/2WptQmJ
https://bit.ly/2wp5YkO
https://bit.ly/2X7UDkT
https://bit.ly/2WjAFqb
https://bit.ly/2Ezhsqg
https://bit.ly/2EA3AfA
https://bit.ly/2YUKWqr
https://bit.ly/2WlVqS0
https://bit.ly/2X9I3kQ
https://bit.ly/2wltdMq
https://bit.ly/2HY0sLm
https://bit.ly/2JKI2Rz
https://bit.ly/2JGtqCx

4.4 Reusable ADD model for data management in microservice architectures

Figure 4.1: Reusable ADD Model on Microservice Data Management: Overview

4.4 Reusable ADD model for data management in
microservice architectures

In this section, we describe the reusable ADD model derived from our study 1. All elements
of the model are emphasized and all decision drivers derived from our sources in Table 4.1 are
slanted. It contains one decision category, Data Management Category, relating five top-level
decisions, as illustrated in Fig. 4.1. These decisions need to be taken for the decision contexts all
instances of an API, Service instances, or the combination of Data Objects and Service instances,
respectively. Note that all elements of our model are instances of a meta-model (with meta-classes
such as Decision, Category, Pattern, AND Combined Group, etc.), which appear in the model
descriptions. Each of them is described in detail below (some elements may be relevant for more
than one decision, but this has been omitted from the figures for ease of presentation).

Microservice Database Architecture (Fig. 4.2).

Since most software relies on efficient data management, database architecture is a central
decision in the design of a microservice architecture. Quality attributes such as performance,
reliability, coupling, and scalability, need to be carefully considered in the decision making
process. The simplest decision option is to choose service stores no persistent data, which is
applicable only for services whose functions are performed solely on transient data, like pure
calculations or simple routing functions. By definition, a microservice should be autonomous,
loosely coupled and able to be developed, deployed, and scaled independently [LF04]. This is
ensured by the Database per Service pattern [Ric17], which we encountered, either directly or
implicitly, in 33 out of 35 sources: each microservice manages its own data, and data exchange
and communications with other services are realized only through a set of well-defined APIs.
When choosing this option, transaction management between services becomes more difficult,

1Replication package can be found at: https://bit.ly/2EKyTnL

27

https://bit.ly/2EKyTnL

4 Supporting Architectural Decision Making on Data Management in Microservice Architectures

as the data is distributed across the services; for the same reason making queries could become
a challenge, too. Thus the optional next decisions on Microservice Transaction Management
(see sources [S7, S8, S11]) and Realization of Queries [Ric17] should be considered (both
explained below). The use of this pattern may also require a next decision on the Need for Data
Composition, Transformation, or Management. Another option, which is recommended only for
special cases (e.g., when a group of services always needed to share a data object), is to use a
Shared Database [Ric17](see sources [S1, S19]): all involved services persist data in one and the
same database.

There are a number of criteria that determine the outcome of this decision. Applying the
Database per Service pattern in a system results in more loosely coupled microservices. This
leads to better scalability than a Shared Database closer to the service with only transient
data, since microservices can scale up individually. Especially for low loads this can reduce
performance, as additional distributed calls are needed to get data from other services and establish
data consistency. The pattern’s impact on performance is not always negative: for high loads a
Shared Database can become a bottleneck, or database replication is needed. On the other hand,
Shared Database makes it easier to manage transactions and implement queries and joins; hence
the follow-on decisions for Database per Service mentioned above. Furthermore, Database per
Service facilitates polyglot persistence. The Shared Database option could be viable only if the
integration complexity or related challenges of Database per Service-based services become
too difficult to handle; also, operating a single Shared Database is simpler. Though Shared
Database ensures data consistency (since any changes to the data made in a single service are
made available to all services at the time of the database commit), it would appear to completely
eliminate the targeted benefits of loose coupling. This negatively affects both the development

and runtime coupling and the potential scalability.

Structure of API Presented to Clients (Fig. 4.3).

When software is decomposed into microservices, many major challenges lie in the structure of
the API. This topic has been extensively studied in our prior and ongoing work on API patterns
[ZSZ+18]; here we concentrate only on those decision options relevant to data management.
Many issues in microservice design are resolved at the API level, such as routing requests
to the appropriate microservice, the distribution of multiple services, and the aggregation of
results. The simplest option for structuring a system is Clients Access Microservices Directly:
all microservices are entry points of the system, and clients can directly request the service
they need (each service offers its own API endpoint to clients). However, all studied sources
recommend or assume the use of the API Gateway pattern [Ric17] as a common entry point
for the system, through which all requests are routed. An alternative solution, for servicing
different types of clients (e.g., mobile vs. desktop clients) is the Backends for Frontends pattern
variant [Ric17], which offers a fine-grained API for each specific type of client. An API Gateway
could also be realized as an API Composition Service [Ric17], that is a service which invokes
other microservices. Furthermore an API Gateway can have Additional centralized data-related
functions (shown in Fig. 4.3 and discussed below as decision drivers).

The main driver affecting this decision is that API Gateways (and thus API Composition Service
and Backends for Frontends in a more limited capacity) can provide a number of centralized

28

4.4 Reusable ADD model for data management in microservice architectures

Figure 4.2: Microservice Database Architecture Decision

services. They can work as a proxy service to route requests to the appropriate microservice,
convert or transform requests or data and deliver the data at the granularity needed by the client,
and provide the API abstractions for the data needed by the client. In addition, they can handle
access management to data (i.e., authentication/authorization), serve as a data cache, and handle

partial failures, e.g. by returning default or cached data. Although its presence increases the
overall complexity of the architecture since an additional service needs to be developed and
deployed, and increases response time due to the additional network passes through it, an API
Gateway is generally considered as an optimal solution in a microservice-based system. Clients
Access Microservices Directly makes it difficult to realize such centralized functions. A sidecar
architecture [sid17] might be a possible solution, but if the service should fail, many functions are
impeded, e.g. caching or handling partial failures. The same problem of centralized coordination
also applies to a lesser extent to Backends for Frontends (centralization in each API Gateway is
still possible). Use API Gateway to cache data reduces the response time, returning cached data
faster, and increases data availability: if a service related to specific data is unavailable, it can
return its cached data.

Data Sharing Between Microservices (Fig. 4.4).

Data sharing must be considered for each data object that is shared between at least two mi-
croservices. Before deciding how to share data, it is essential to identify the information to be

29

4 Supporting Architectural Decision Making on Data Management in Microservice Architectures

Figure 4.3: Structure of API Presented to Clients Decision

shared, its update frequency, and the primary provider of the data. The decision must ensure
that sharing data does not result in tightly coupled services. The simplest option is to choose
services share no data, which is theoretically optimal in ensuring loose coupling, but is only
applicable for rather independent services or those that require only transient data. Another
option, already discussed above, is a Shared Database. In this solution services share a common
database; a service publishes its data, and other services can consume it when required. A
number of viable alternatives to the Shared Database exist. Synchronous Invocations-Based
Data Exchange is a simple option for sharing data between microservices. Request-Response
Communication [HW03b] is a data exchange pattern in which a service sends a request to another
service which receives and processes it, ultimately returning a response message. Another typical
solution that is well suited to achieving loose coupling is to use Asynchronous Invocations-Based
Data Exchange. Unlike Request-Response Communication, it removes the need to wait for a
response, thereby decoupling the execution of the communicating services. Implementation of
asynchronous communication leads to Eventual Consistency [Per17]. There are several possible

30

4.4 Reusable ADD model for data management in microservice architectures

Asynchronous Data Exchange Mechanisms: Publish/Subscribe [HW03b], in which services can
subscribe to an event; use of a Messaging [HW03b] middleware; Data Polling, in which services
periodically poll for data changes in other services; and the Event Sourcing [Ric17] pattern that
ensures that all changes to application state are stored as a sequence of events.

The choices in this decision are determined by a number of factors. With a Shared Database,
the system tends to be more tightly coupled and less scalable. Conversely, an Asynchronous
Data Exchange Mechanism ensures that the services are more loosely coupled, since they interact
mostly via events, use message buffering for queuing requests until processed by the consumer,
support flexible client--service interactions, or provide an explicit inter-process communication
mechanism. It has minimal impact on quality attributes related to network interactions, such
as latency and performance. However, operational complexity is negatively impacted, since an
additional service must be configured and operated. On the other hand, a Request-Response Com-
munication mechanism does not require a broker, resulting in a less complex system architecture.
Despite this, in a Request-Response Communication-based system, the communicating services
are more tightly coupled and the communication is less reliable, as they must both be running
until the exchange is completed. Applying the Event Sourcing pattern increases reliability, since
events are published whenever state changes, and the system is more loosely coupled. Pat-
terns supporting message persistence such as Messaging, Event Sourcing, and messaging-based
Publish/Subscribe increase the reliability of message transfers and thus the availability of the
system.

Microservice Transaction Management (Fig. 4.5).

One common problem in microservice-based systems is how to manage distributed transactions
across multiple services. As explained above, the Database per Service pattern often introduces
this need, as the relevant data objects of a transaction are scattered across different services
and their databases. Issues concerning transaction atomicity and isolation of user actions for
concurrent requests need to be dealt with. One of the easiest and most efficient options to
solve the problem of distributed transactions is to completely avoid them. This can be done
through a Shared Database (with all its drawbacks in a microservice architecture) or by service
redesign so that all data objects of the transaction reside in one microservice. If this is not
possible, another option is to apply the Saga Transaction Management [Ric17] pattern, where
each transaction updates data within a single service, in a sequence of local transactions [S9];
every step is triggered only if the previous one has been completed. The implementation requires
an additional decision for the Saga Coordination Architecture. There are two possible options
for implementing this pattern: Event/Choreography Coordination and Command/Orchestration
Coordination [S9]. Event/Choreography Coordination is a distributed coordination approach
where a service produces and publishes events, that are listened to by other services which
then decide their next action. Command/Orchestration Coordination is a centralized approach
where a dedicated service informs other involved services, through a command/reply mechanism,
what operation should be performed. Moreover, Saga Transaction Management supports failure
analysis and handling using Event Log and Compensation Action practices [S12]. Implementing
this pattern leads also to Eventual Consistency. Another typical option for implementing a
transaction across different services is to apply the Two-Phase Commit Protocol [AhS09] pattern:

31

4 Supporting Architectural Decision Making on Data Management in Microservice Architectures

Figure 4.4: Data Sharing Between Microservices Decision

in the first phase, services which are part of the transaction prepare for commit and notify the
coordinator that they are ready to complete the transaction; in the second phase, the transaction
coordinator issues a commit or a rollback to all involved microservices. Here, the Rollback [S7]
practice is used for handling failed transactions.

There are a number of criteria that need to be considered in this decision. When implementing
the Saga Transaction Management pattern, the Event/Choreography Coordination option results
in a more loosely coupled system where the services are more independent and scalable, as
they have no direct knowledge of each other. On the other hand, the Command/Orchestration
Coordination option has its own advantages: it avoids cyclic dependencies between services,
centralizes the orchestration of the distributed transaction, reduces the participants’ complexity,
and makes rollbacks easier to manage. The Two-Phase Commit Protocol pattern is not a typical
solution for managing distributed transactions in microservices, but it provides a strong consist-

ency protocol, guarantees atomicity of transactions, and allows read-write isolation. However, it
can significantly impair system performance in high load scenarios.

32

4.4 Reusable ADD model for data management in microservice architectures

Figure 4.5: Microservice Transaction Management Decision

Realization of Queries (Fig. 4.6).

For every data object and data object combination in a microservice-based system, and its services,
it must be considered whether queries are needed. As data objects may reside in different services,
e.g., as a consequence of applying Database per Service, queries may be more difficult to design
and implement than when utilizing a single data source. The simplest option is of course to
implement no queries in the system, but this is often not realistic. An efficient option for managing
queries is to apply the Command-Query-Responsibility-Segregation (CQRS) pattern [Fow11].
CQRS is a process of separation between read and write operations into a “command” and a
“query” side. The “command” side manages the “create”, “update” and “delete” operations;
the “query” side segregates the operations that read data from the “update” operation utilizing
separated interfaces. This is very efficient if multiple operations are performed in parallel on the
same data. The other option is to implement queries in a API Composition Service or in the API
Gateway.

A number of criteria determine the outcome of this decision. The Command-Query-Responsibility-
Segregation (CQRS) option increases scalability since it supports independent horizontal and
vertical scaling, improves security since the read and write responsibilities are separated. It also
increases availability: when the “command” side is down the last data update remains available
on the “query” side. Despite these benefits, using CQRS has some drawbacks: it adds significant
complexity, and is not suitable to every system. On the other hand, implementing queries in an
API Composition Service or API Gateway introduces an overhead and decreases performance,

33

4 Supporting Architectural Decision Making on Data Management in Microservice Architectures

Figure 4.6: Realization of Queries Decision

entails the risk of reduced availability, and makes it more difficult to ensure transactional data

consistency.

4.5 Evaluation

We used our model-based qualitative research method described in Section 4.3 because informal
pattern mining, or just reporting the author’s own experience in a field (which is the foundation
of most of the practitioner sources we encountered), entail the high risk of missing important
knowledge elements or relations between them. To evaluate the effect of our method, we
measure the improvement yielded by our study compared to the individual sources; specifically
microservices.io [Ric17], the by far most complete and detailed of our sources. This is an
informally collected pattern catalog based on the author’s experience and pattern mining. As such,
it is a work with similar aims to this study. Of course, our formal model offers the knowledge in a
much more systematically structured fashion; whereas in the microservices.io texts the knowledge
is often scattered throughout the text, requiring careful study of the entire text to find a particular
piece of knowledge. For this reason, we believe the formal ADD model to be a useful complement
to this type of sources, even if the two contain identical information.

For evaluation of our results, we studied the microservices.io texts in detail a second time after
completing the initial run of our study, to compare which of the model elements and relations we
found are also covered by microservices.io. Some parts of this comparison might be unfair in
the sense that the microservices.io author does not present a decision model and covers the topic
in a broad manner, so that some elements or relations may have been excluded on purpose. In
addition, there may be some differences in granularity between microservices.io and our model,
but we tried to maintain consistency with the granularity in the analysis and coding during the

34

4.6 Threats to Validity

Table 4.2: Comparison of number of found elements and relation types our ADD model and
microservices.io

Element and Relation Types ADD Model microservices.io Improvement

Domain model elements 4 4 0%

Decisions 9 4 125%

Decision context relations 6 3 100%

Patterns/practices 32 15 113%

Decision to option relations 30 13 131%

Relations between patterns/practices 10 4 150%

Patterns/practices to decision relations 12 4 200%

Categories 1 1 0%

Category to decision relations 5 3 67%

Unique decision drivers 34 17 100%

Decision drivers to patterns/practices relations 182 37 392%

Total number of elements 325 105 210%

GT process. Considering the relatively high similarity of those microservices.io parts that overlap
with the results of our study, and the general goal of pattern mining of representing the current
practice in a field correctly and completely, we nevertheless believe that our assumption that the
two studies are comparable is not totally off.

Table 4.2 shows the comparison for all element and relation types in our model. Only 105 of the
325 elements and relations in our model are contained in microservices.io: a 210% improvement
in completeness has resulted from systematically studying and formally modeling the knowledge
in the larger set of knowledge sources summarized in Table 4.1. Apart from the trivial Categories
element type, most elements and relation types display high improvement, most notably, the
Decision driver to patterns/practices relations. That is mainly because design options (and
consequently their relations) are missing entirely. Apart from Categories, only the Domain
model elements type shows no improvement, because we only considered those domain elements
directly connected to our decisions here. In the larger context of our work, we use a large and
detailed microservice domain object model, but as there is nothing comparable in the microservice
patterns, we only counted the directly related contexts here (else the improvement of our model
would be considerably higher).

4.6 Threats to Validity

To increase internal validity we used practitioner reports produced independently of our study.
This avoids bias, for example, compared to interviews in which the practitioners would be aware
that their answers would be used in a study. This introduces the internal validity threat that
some important information might be missing in the reports, which could have been revealed
in an interview. We tried to mitigate this threat by looking at many more sources than needed
for theoretical saturation, as it is unlikely that all different sources miss the same important
information.

35

4 Supporting Architectural Decision Making on Data Management in Microservice Architectures

The different members of the author team have cross-checked all models independently to
minimize researcher bias. The threat to internal validity that the researcher team is biased in some
sense remains, however. The same applies to our coding procedure and the formal modeling:
other researchers might have coded or modeled differently, leading to different models. As our
goal was only to find one model that is able to specify all observed phenomena, and this was
achieved, we consider this threat not to be a major issue for our study.

The experience and search-based procedure for finding knowledge sources may have introduced
some kind of bias as well. However, this threat is mitigated to a large extent by the chosen research
method, which requires just additional sources corresponding to the inclusion and exclusion
criteria, not a specific distribution of sources. Note that our procedure is in this regard rather
similar to how interview partners are typically found in qualitative research studies in software
engineering. The threat remains that our procedures introduced some kind of unconscious
exclusion of certain sources; we mitigated this by assembling an author team with many years
of experience in the field, and performing very general and broad searches. Due to the many
included sources, it is likely our results can be generalized to many kinds of architecture requiring
microservice data management. However, the threat to external validity remains that our results
are only applicable to similar kinds of microservice architectures. The generalization to novel or
unusual microservice architectures might not be possible without modification of our models.

4.7 Conclusion

In this chapter, we have reported on an in-depth qualitative study of existing practices in industry
for data management in microservice architectures. The study uses a model-based approach
to provide a systematic and consistent, reusable ADD model which can complement the rich
literature of detailed descriptions of individual practices by practitioners. It aims to provide an
unbiased and more complete treatment of industry practices. To answer RQ1.1 we have found in
32 common patterns and established practices. To answer RQ1.2, we have grouped 5 top-level
decisions in the data management category and documented in total 9 decisions with 6 decision
context relations. Further we were able to document 30 decision to option relations and 22
(10+12) further relations between patterns and practices and decisions. Finally, to answer RQ1.3,
we have found 34 unique decision drivers with 182 links to patterns and practices influencing
the decisions. The 325 elements in our model represent, according to our rough comparison to
microservices.io, an 210% improvement in completeness. We can conclude from this that to
get a full picture of the possible microservice data management practices, as conveyed in our
ADD model, many practical sources need to be studied, in which the knowledge is scattered
in substantial amounts of text. Alternatively, substantial personal experiences need to be made
to gather the same level of knowledge. Both require a tremendous effort and run the risk that
some important decisions, practices, relations, or decision drivers might be missed. Our rough
evaluation underlines that the knowledge in microservice data management is complex and
scattered, and existing knowledge sources are inconsistent and incomplete, even if they attempt
to systematically report best practices (such as microservices.io, compared to here). A systematic
and unbiased study of many sources, and an integration of those sources via formal modeling, as
suggested in this chapter, can help to alleviate such problems and provide a rigorous and unbiased

36

4.7 Conclusion

account of the current practices in a field (like presently on microservice data management
practices).

37

Part III
Assessment of Architecture Conformance

39

5 Detector-based Component Model
Abstraction for Microservice-Based
Systems

Software architecture presents challenges in avoiding model drift and erosion in complex systems.
These challenges are compounded in microservice-based systems, which frequently use a diverse
range of technologies and undergo frequent changes and releases. Existing solutions for recon-
structing architecture models struggle to handle continuous evolution, suffer from low accuracy,
and struggle in highly polyglot settings. In this chapter we report on a research study aiming to
design a highly accurate architecture model abstraction approach for comprehending component
architecture models of highly polyglot systems that can cope with continuous evolution.

5.1 Introduction

Microservice-based architectures are a kind of service-oriented architecture that consist of
independently deployable, modifiable, and scalable services, each having a single responsib-
ility [New15, LF04]. Microservices typically do not share their data with other services, are
deployed in lightweight containers or other virtualized environments, and communicate via
message-based remote APIs in a loosely coupled fashion. They feature polyglot programming
and polyglot persistence, and are often combined with DevOps practices such as continuous deliv-
ery and end-to-end monitoring (see e.g. [Zim17, PZA+17, HS17]). Microservices are one of many
service-based architecture decomposition approaches (see e.g. [PJ16, PW09, Ric17, ZGK+07]).
Just like other architecture decomposition approaches, they do not address the classical software
architecture problems of architecture drift and erosion [PW92] well. That is, during system
evolution, the architecture models increasingly diverge from the actual software as changes are
made in the source code which either violate the architecture model’s original specifications, or
are not reflected in it, for example through the introduction of new features [ZZGL08].

To address this problem, architecture reconstruction approaches have been proposed to automat-
ically or semi-automatically produce architecture models from the source code [DP09, MNS95,
MMW02]. Unfortunately, these approaches usually involve a substantial effort to either manually
maintain the reconstructed architecture model, or repeat the reconstruction after the system has
evolved (see [HZ14]), meaning that they are not suited for supporting continuous evolution of sys-
tems. In addition, automated approaches have low accuracy (see [GIM13]), and much additional,
manual effort is needed for correcting and augmenting their results. Finally, most reconstruc-
tion approaches focus on a very limited number of programming languages and technologies
(see [DP09]), meaning they are hard to use with modern systems, such as microservice-based

41

5 Detector-based Component Model Abstraction for Microservice-Based Systems

systems, which use typically polyglot programming, persistence and technologies, often in their
latest iterations.

For these reasons, the prospects for ever developing a one-size-fits-all, generic reconstruction
method that can cope well with evolving microservice systems (and similar polyglot systems)
look bleak. Fortunately, there is hope in the fact that developers usually know a lot about their
projects and thus a generic, fully automated reconstruction may not be necessary. In this chapter,
we report on a design science research study [Wie14] in which we aimed to design a new approach
to enable the accurate creation and continuous evolution of component architecture models in
microservice-based and similar polyglot settings with little extra effort. We set out to answer the
following research questions:

• RQ2.1 How to design a 100% accurate architecture model abstraction approach for
comprehending component architectures of systems that are highly polyglot?

• RQ2.2 How to support continuous comprehension of such systems in the context of such
an architecture model abstraction approach?

• RQ2.3 How high is the required time (effort) for creating and maintaining architecture
model abstractions in such an approach?

Our study was performed by first defining the design science study in terms of design context,
artifacts studied, stakeholders, and their requirements. We then selected a case study for research
validation and investigated the case by performing a manual reconstruction of it, used later as a
ground truth. We then analyzed the related studies that fulfill our requirements best.

In particular, our work is an extension of the approach taken by [HZ14], which is presented in
more detail in Section 5.3. Based on our experience with this work, we designed an opportunistic
detector-based approach which is capable of fulfilling all our requirements regarding support for
polyglot, continuously evolving systems. Our evaluation of this first approach showed that it
could be further refined by making the detectors reusable, which we proceeded to accomplish.
The result were two approaches which are the key contribution of this work:
Detectors are software components that continuously parse relevant parts of the source code

and create model abstractions from the code.
Reusable Detectors are detectors which can be reused across different model abstraction tasks
and projects.

We realized both approaches fully (design, prototype development, validation in the case
study), and quantitatively and qualitatively compared the results of the two approaches.

This chapter is organized as follows. Section 5.2 examines related work and explains our
study’s contributions in the context of the state of the art. Next, in Section 5.3 we explain
the background of this study and Section 5.4 explains our research study design and the two
detector-based approaches in detail. In Section 5.5 we explain the case study implementation,
and in Section 5.6 we report on its evaluation. In Section 5.7 we provide a brief overview of an
implementation of the same approach in a different domain, as addition proof of concept. We
conclude with a discussion of the treats to validity of our approach in Section 5.8, and our general
summary in Section 5.9.

42

5.2 Related Work

5.2 Related Work

Related Works on Microservice Architectures Microservices [New15, LF04, Ric17]
are, among many other things, a way to decompose an architecture based on services [Zim17].
This is an area which has been studied intensively in recent years (see e.g. [PJ16, PW09,
ZGK+07]). According to mapping studies [AAE16, FML17], the focus of microservice re-
search is – in contrast to our study – frequently on specific system architectures or applications,
often in relation to questions of deployment, monitoring, performance, APIs, scalability, and
container technologies. The problems of complexity and service composition – relevant to our
study – are addressed often, but the majority of these studies focuses on a variety of qualities
(with many focusing on runtime aspects) [FML17]. [GCF+17] provide one of the few existing
microservice-specific architecture reconstruction approaches. It statically analyses Docker and
Docker Compose files for names and ports, and then the Docker containers and network bridges
dynamically, to reconstruct the deployed microservices from the system’s communication logs.
While having quite a different goal than our study, this approach confirms our thesis that mi-
croservices require different approaches to architecture reconstruction than those adopted by the
existing literature on the topic. As Granchelli et al. only use information from Docker files and
related data, the reconstruction achieved is much more limited than the two approaches reported
in our study, but in contrast to our approach it considers information on dynamic behavior as well.

[AAE18a] present an approach that is intended as a groundwork for architecture reconstruction
of microservices. From the analysis of 8 open source projects, the approach derived a meta-model
and possible mapping rules for microservices. This approach misses the detection component,
which is the major focus of our approach, but additionally focuses on a broader set of concerns than
just those that can be modeled in component models. [VLS14] report on a study of a microservice-
based reference architecture as a starting point for enterprise measurement infrastructures. This
can be seen as an alternative to a reconstruction effort, but it requires manual maintenance of
the architecture in relation to the reference architecture – which could, e.g., be provided by
one of the approaches reported in our paper. [RSZ19] suggest to address the polyglot nature of
microservices using an aspect-oriented modeling approach. Again, this approach requires manual
effort. It could be used as a modeling extension of our approach, where our approach can deliver
the information needed for creating and maintaining the model.

Related Works on Architecture Reconstruction and Abstraction Architecture recon-
struction focuses on automatically or semi-automatically producing architecture abstractions
from the source code [DP09, MMW02, MNS95, vDB11]. Many approaches focus on identi-
fying components or similar abstractions through automatic clustering [vDB11, CDMS10]. A
variety of approaches establish different kinds of abstractions between source code and the
architecture level. Some use graph-based techniques [Sar03], while others utilize model-driven
techniques [SROV06, MNS01, KMNL06], or logic-oriented programming [MMW02]. Other ap-
proaches [GL14] analyze external dependencies to discover architectures and analyze a system’s
quality attributes. ExplorViz observes the runtime behavior of instrumented software systems and
reconstructs their architecture on software landscape and software application level [FKH17].

Unfortunately, these approaches have some major issues in practice: (1) architecture recon-

43

5 Detector-based Component Model Abstraction for Microservice-Based Systems

struction approaches focus on identifying abstractions from code, without considering continuous
software evolution. That is, once a reconstruction effort is finished and a few subsequent evolution
cycles of the software system have occurred, the reconstructed architecture is once again outdated
and a new reconstruction effort would be needed. This would not be a big problem, if the
reconstruction approach were low-effort, fast, and largely automated. However, (2) automated
reconstruction approaches generally have rather low accuracy, precision, and recall ability. For ex-
ample, a comparative study of nine approaches reports average accuracy of 31% to 58% [GIM13].
Given the tremendous effort needed to find and correct incorrectly-mapped source code elements
in large-scale systems, in practice anything else than close to 100% accuracy is hard to use.
In other words, today a substantial manual effort is required to reach close to 100% accuracy
when starting off with the results of an automatic reconstruction. Finally, (3) most reconstruction
approaches focus on a very limited number of programming languages and technologies (e.g.,
only considering Java code and even there ignoring special cases such as reflection, libraries
that create dynamic dependencies, dependencies injected by an external technology, and so
on). Systems such as today’s microservice systems use polyglot programming, persistence and
technologies, often in their latest iteration; that is, different programming languages are used, and
in each of them various libraries, sometimes offering multiple APIs, are used to perform tasks
such as client invocations, server programming, publish/subscribe interactions, database access,
dependency injection, and so on. This is combined with multiple technologies for persistence,
dependency management, CI/CD, containerization, end-to-end monitoring, call tracing, and so
on, each coming with their specific configuration or other domain-specific languages. New such
libraries and technologies emerge constantly, which are quickly adopted by microservice projects,
further complicating the issue.

For this [HZ14] proposed an approach for creating an architecture component view from
the source code using a domain-specific language (DSL) for architecture abstraction. In this
approach, the architect would specify known facts, such as the names of the major components,
filter patterns for the relations of packages or classes to components, and so on. The filter patterns
are designed to require little or no change if the source code changes. By studying various cases,
it has been shown [HZ14, HNZ17] that this approach requires relatively little effort (compared
to program size) and can cope well with the evolution of systems. As this approach seems in a
number of ways more promising for practical support of continuous architecture abstraction than
the existing reconstruction approaches, we decided to use it as groundwork for our study. Like
the other mentioned approaches, however, it too falls short in addressing the polyglot nature of
microservice-style systems.

5.3 Background

Our study of related works identified the approach by [HZ14] as close to our research requirements.
From an architectural point of view, this approach uses program code in Java, and the abstraction
DSL, as inputs, and creates models as output. In a first step, Java source code elements are
mapped to an abstract syntax tree, from which then a detailed UML model of the relevant parts of
the code is created. Next, this model is interpreted and transformed. In a background analysis we
investigated to what extent it was possible to extend this Java parsing-based approach to support

44

5.4 Case Study Design

multiple technologies and languages. We designed a similar solution based on ANTLR1, since
that is one of the few polyglot parser frameworks that supports most of the grammars for the
languages used in our case study. Unfortunately, parsing with existing grammars for ANTLR
frequently failed for our case study (see Section 5.4.1) and other test examples, as many ANTLR
parsers do not support all the latest features of all languages used in our case study.

We decided not to pursue this approach further, since it would have required sustained effort to
first correct and then maintain a wide variety of grammars, just to be able to parse all language
features that we might encounter. We concluded that the approach would require us to maintain a
polyglot parser framework or an adapter framework to polyglot parsers.

5.4 Case Study Design

This study employs the design science research method, which supports studying the design
of artifacts in a specific context [Wie14]. A design science research study is performed in a
number of design and engineering cycles. [Wie14] defines 4 possible steps in such a research
cycle: problem investigation, treatment design, treatment validation, and design implementation.
Evaluation of a cycle might lead to a next cycle for improving the design. The last step of
the research cycle, design implementation, concerns the technology transfer into the real-world
context, and is optional. We have not performed it in our study. For treatment validation, several
validation methods can be applied, including various empirical methods. In our study, we have
opted for an empirical evaluation based on a case study. If empirical methods are applied,
Wieringa proposes a nested empirical cycle for performing the empirical study.

5.4.1 Study Definition

Figure 5.1 summarizes the main steps in our research study, which started with a problem in-
vestigation, followed by a definition of requirements, and a background analysis of the approach
by [HZ14] (described in Section 5.3) that our study has revealed as close to our research re-
quirements. In parallel we performed a manual reconstruction of a case study as a ground truth
(described in Section 5.4.1). Based on the insights of those research steps, we designed and
validated first the opportunistic detector-based approach and then the reusable detector-based
approach. Finally, we quantitatively and qualitatively compared the results of the two approaches.

Problem Investigation and Treatment Design

In an initial problem investigation and requirements definition phase, we have investigated the
problem from a stakeholder and stakeholder goals perspective, followed by a definition of the
requirements. In parallel we have defined and studied the case study; this has influenced the
problem investigation and requirements definition, and vice versa.

Context The specific context of our study is comprehending microservice architectures; this
context can be generalized to comprehending the component architectures of polyglot and evolving

1https://www.antlr.org/

45

https://www.antlr.org/

5 Detector-based Component Model Abstraction for Microservice-Based Systems

software systems.

Artifact As we have argued above, to design a fully automated reconstruction technique that
works well in this context is likely infeasible. Using the examples provided below, we will
illustrate why this is the case in more detail. Hence, we decided to study instead as an artifact a
semi-automatic architecture abstraction method inspired by the work of [HZ14].

Stakeholders The stakeholders of our study are microservice developers and architects
whose systems are complex enough to make comprehension difficult; in a broader context, any
developers and architects who are in such a situation are the relevant stakeholders.

Stakeholder Goals and Requirements We first investigated high-level stakeholder goals
and then derived the following concrete requirements for our design:

• R1 The approach should support stakeholders in getting an accurate understanding of
the component architecture of a system, in the form of a complete component model at
a sufficient level of detail, i.e., a model that contains all the possible components and
component types, connectors and connector types as well as the related technologies.

• R2 The approach should lead to architecture component models that are – in the absence
of human error – 100% correct. Our approach enables 100% accuracy since it involves
a full and detailed manual reconstruction of the component architecture, which is the
ground truth for the development of our detectors. The process ensures that the detector
developers will be familiarized with the architecture, if that was not the case previously.
The detectors are developed explicitly to cover at least the ground truth established by the
manually reconstructed architecture, and are thus guaranteed to cover all architecturally
relevant elements (per R1). Please note that our approach could potentially use heuristics
as detectors. We have deliberately not chosen this option in this article’s case study. If it
was chosen that detection would be less than 100% correct as a downside, but the efforts
(R6/R7) could substantially be reduced this way. Investigating this option further is beyond
the scope of this article.

• R3 The approach should be applicable in a microservice setting. That is, it should be
possible with a reasonable time (effort) (see Requirements R6 and R7 below) to cope with
polyglot programming and projects which frequently adopt the latest technologies.

• R4 The approach should support continuous comprehension. That is, the time (effort)
needed to recreate the architecture model after a change of the system should be minimal,
i.e., usually close to zero; and in exceptional cases, a fraction of the time (effort) needed
for creating the initial architecture model abstraction.

• R5 The approach should support traceability between architecture model abstractions and
the source code.

46

5.4 Case Study Design

Background Analysis
of the approach by Haitzer et al.

Approach 1 Approach 2
Study Definition

Case Study Implementation

Case Study Evaluation

Problem Investigation: Define

stakeholders and goals

Treament Design:
Define Requirements

Case Study Problem
Investigation Treament Design: Design

treatment based on opportunistic

detector-based approach

Treatment Validation: Full

prototype realization

Treatment Validation: Case

Study – Empirical Cycle

Treament Design: Design

treatment based on reusable

detector-based approach

Treatment Validation: Full

prototype realization

Treatment Validation: Case

Study – Empirical Cycle

Comparison of Approach 1 and
Approach 2

Case Study Design

Figure 5.1: Overview of the research study execution steps

• R6 Compared to the overall time (effort) needed to engineer the system, stakeholders
should need to invest only a minimal amount of time (effort) for the manual part of the
architecture model abstraction. We estimate that less than 1% of the development time
(effort) is acceptable in practice.

• R7 Compared to the overall time (effort) needed to manually reconstruct an architecture,
stakeholders should need to invest only a small amount of time (effort) for the manual part
of the architecture model abstraction. We estimate less than 10% of the reconstruction time
(effort) is acceptable in practice.

Case Study: Problem Investigation

In order to provide a suitable case study, based on our requirements, we require a highly polyglot
microservice-based system that applies a substantial number of different technologies. The case
study should have a reasonable size, but not be too large for us to be able to completely implement
an architecture abstraction in the scope of a research study, maybe multiple times in each of the
research cycles. It should have an industrial background (i.e., be implemented by industry experts,
not a toy example by researchers). One option would have been performing an observational
case study in industry. But as our study design demands that the design science artifact should
substantially evolve within each research cycle, this would have required many implementation
iterations performed by industry experts to adapt the case study according to the research progress;
this would have made rapid improvements of the method based on intermediate case study results

47

5 Detector-based Component Model Abstraction for Microservice-Based Systems

impossible. For this reason, we decided to perform a so-called mechanism experiment [Wie14],
i.e. implement the architecture abstraction prototypically for the case ourselves.

We selected an open-source system2 that was built as a demonstrator for the Instana monitoring
technology. We report here on the master branch from 2019-10-23. Overall it consists of 140
files with a total of 5311 lines of code. It was built by industry experts from the company
Instana in the timeframe Jan, 2018 — Oct, 2019; hence we believe it to be a good representative
example for the current industry practices in microservice-based architectures. The project is
highly polyglot: it consists of services written in JavaScript/NodeJS, Java/Spark, Python/Flask,
Go, PHP/Apache, RabbitMQ messaging, and Python/Go AMQP messaging. These services
use Redis, MongoDB, and MySQL as database technologies, accessed with various APIs for
RESTful HTTP communication. AngularJS is used for the web frontend. Nginx is used as an
API gateway and web reverse proxy. Docker, Docker Compose, Docker Swarm, and Kubernetes
are used for lightweight virtualization and autoscaling. DC/OS and OpenShift are supported.
End-to-end monitoring via Instana is supported, and some services have Prometheus metrics
endpoints. A load generator is built with Python/Locust. Paypal is used as an external service.

For problem investigation, we performed a full manual reconstruction of the component
architecture of the system as a ground truth for the case study. Figure 5.2 shows the result,
a detailed component model specifying the component types (e.g., Services, Facades, and
Databases), and connector types (e.g., RESTful HTTP, Synchronous/Asynchronous, database
connectors etc.). This figure is based on the auto-generated figure created by the prototype
implementing our proposed approach, described below. The system consists of 18 components
and 29 connectors. More specifically, a Client, a Web UI, an API Gateway as entry point of the
system, seven Services, three Databases, a Message Broker, an External Component (Service),
two Monitoring Components, and a Tracing Component. We kept precise time records of the
manual reconstruction effort. It took us 2468 minutes (approx. 5 person-days) to perform the
reconstruction.

To study R3, for a very rough comparison of time (effort), we have used the numbers estimated
by COCOMO [BCH+95] that would be needed for constructing the case study in an industry
setting. We used the online calculator provided by COCOMO 3. To be on the safe side, we used
very conservative parameters for the COCOMO estimations (assuming only nominal values for
parameters such as experiences, capabilities, developed for reusability, and so on). In total, the
estimated effort for the case study system was 23.7 person-months. This estimation is inline with
the estimation in Code Complete which states: “The industry-average productivity for a software
product is about 10 to 50 of lines of delivered code per person per day (including all noncoding
overhead).” [McC04]: Assuming 1720 working hours a year, the 23.7 person-months would yield
1698.5 person-hours or 212.31 8-hour person days. This means 31.43 lines of delivered code
would be needed for the COCOMOII estimate, which is very close to the average of the Code
Complete estimate of 30.

2https://github.com/instana/robot-shop
3https://csse.usc.edu/tools/COCOMOII.php

48

https://github.com/instana/robot-shop
https://csse.usc.edu/tools/COCOMOII.php

5.4 Case Study Design

«S
er

vi
ce

»
C

ar
t :

 C
om

po
ne

nt

«S
er

vi
ce

»
C

at
al

og
ue

 :
C

om
po

ne
nt

«S
er

vi
ce

»
D

is
pa

tc
h

: C
om

po
ne

nt

«S
er

vi
ce

»
Pa

ym
en

t :
 C

om
po

ne
nt

«S
er

vi
ce

»
R

at
in

gs
 :

C
om

po
ne

nt
«S

er
vi

ce
»

Sh
ip

pi
ng

 :
C

om
po

ne
nt

«S
er

vi
ce

»
U

se
r :

 C
om

po
ne

nt

«S
er

vi
ce

, F
ac

ad
e»

N
G

IN
X

A
PI

 G
at

ew
ay

 :
C

om
po

ne
nt

«C
lie

nt
»

R
ES

T
A

PI
 C

lie
nt

 :
C

om
po

ne
nt

«W
eb

 U
I»

W
eb

 U
I C

lie
nt

 :
C

om
po

ne
nt

«R
ed

is
DB

»
C

ar
t a

nd
 A

no
ny

m
ou

s
U

se
r C

ou
nt

 D
B

 :
C

om
po

ne
nt

«M
on

ito
rin

g»
C

ar
t P

ro
m

et
he

us
 M

on
ito

r :
 C

om
po

ne
nt

«M
on

go
D

B
»

C
at

al
og

ue
 U

se
rs

 O
rd

er
s

D
B

 :
C

om
po

ne
nt

«S
er

vi
ce

, E
xt

er
na

l C
om

po
ne

nt
»

Pa
yp

al
 P

ay
m

en
t G

at
ew

ay
 :

C
om

po
ne

nt

«M
on

ito
rin

g»
Pa

ym
en

t P
ro

m
et

he
us

 M
on

ito
r :

 C
om

po
ne

nt

«T
ra

ci
ng

, E
xt

er
na

l C
om

po
ne

nt
»

In
st

an
a

A
ge

nt
 :

C
om

po
ne

nt

«M
es

sa
ge

 B
ro

ke
r»

R
ab

bi
t M

Q
 :

C
om

po
ne

nt

«M
yS

Q
LD

B»
R

at
in

gs
 a

nd
 S

hi
pp

in
g

C
iti

es
 D

B
 :

C
om

po
ne

nt

«R
ES

Tf
ul

 H
TT

P,
 A

sy
nc

hr
on

ou
s»

«R
ES

P,
 S

yn
ch

ro
no

us
 +

 A
sy

nc
hr

on
ou

s»
«I

n-
M

em
or

y
C

on
ne

ct
or

»

«H
TT

P/
2»

«M
on

go
W

ire
»

«H
TT

P/
2»

«H
TT

P/
2»

«M
es

sa
ge

 C
on

su
m

er
»

{c
ha

nn
el

 =
 "o

rd
er

s"
}

«R
ES

Tf
ul

 H
TT

P,
 S

yn
ch

ro
no

us
»

«R
ES

Tf
ul

H
TT

P,
 S

yn
ch

ro
no

us
»

«R
ES

Tf
ul

 H
TT

P,
 S

yn
ch

ro
no

us
»

«I
n-

M
em

or
y

C
on

ne
ct

or
»

«H
TT

P/
2»

«M
es

sa
ge

 P
ro

du
ce

r»
{c

ha
nn

el
 =

 "o
rd

er
s"

}

«M
yS

Q
L

Pr
ot

oc
ol

»

«R
ES

Tf
ul

 H
TT

P»

«R
ES

Tf
ul

 H
TT

P»
«J

DB
C»

«R
ES

P,
 S

yn
ch

ro
no

us
»

«M
on

go
W

ire
»

«H
TT

P/
2»

«R
ES

Tf
ul

 H
TT

P»

«R
ES

Tf
ul

 H
TT

P»
«R

ES
Tf

ul
 H

TT
P»

«R
ES

Tf
ul

 H
TT

P»
«R

ES
Tf

ul
 H

TT
P»

«R
ES

Tf
ul

 H
TT

P»

«R
ES

Tf
ul

 H
TT

P»
«H

TT
P»

Figure 5.2: Case Study: Overview of the reconstructed component architecture Ground Truth as
a UML2 model

49

5 Detector-based Component Model Abstraction for Microservice-Based Systems

5.4.2 Detector-based Architecture Abstraction Approaches

In this section we present and describe in detail the design for Approach 1 and Approach 2. The
code and models used in and produced as part of this study have been made available online
for reproducibility 4. Both approaches are based on detectors and aim to address architecture
reconstruction challenges introduced by continuous evolution of microservice-based systems and
their polyglot nature. Approach 1 is more case-specific and requires custom detectors, while
Approach 2 provides detectors that can be reused in multiple cases.

Note that both approaches presuppose that a system expert (architect) has identified the high-
level, component-and-connector architecture of the system — with which he should be familiar
either way — and modelled it in an execution script that iterates the detectors over each system
element. This involves a relatively small per-release effort (removal and addition of services and
links between releases, cf. R4, R6, R7 and Section 5.6.2), but can also be obviated altogether by
adapting the detector approach to this domain, as shown in Section 5.7.

Approach 1: Opportunistic Detector-based Architecture Model Abstraction

The design used in the study was based on small detectors, one for each feature relevant for detect-
ing one or more architecture abstractions. For example, if code is written in JavaScript/NodeJS,
importing the request library means that a RESTful HTTP call could possibly be used in the
file(s) using this specific technology; if a request(...); is present in addition, an HTTP call is
actually made in the file. If a manual inspection confirms that a RESTful HTTP call is actually
made, we have precise evidence for the presence of a RESTful HTTP call and can establish
traceability links to all occurrences of such invocations. Based on such simple detectors, we can
correctly detect most evolution scenarios: if changes to other parts of the file are made, it is not
possible that the detection of the RESTful HTTP call will fail. If another RESTful HTTP call is
added, it will be detected, too. If all RESTful HTTP calls are removed, the detection will fail, as
it should, and manual action is required. Only if a RESTful HTTP call with a different technology
is made, would a remodeling of the detector be required.

This new approach would not work better than the one from Section 5.3 in terms of parsing, if
we followed the same full-fledged parser-based approach. However, some parser frameworks
support scanning for the occurrence of parse rules rather than requiring parsing the whole file.
One such parser framework is pyparsing5, which we used to only parse the relevant parts of the
code. This solved the parsing issues described in Section 5.3. To illustrate the approach, let’s
consider a simple detection from our case study. Assuming that we have previously detected
two components, the Shipping and Cart services (cf. Figure 5.2), we now want to determine
the presence, and the technology, of any connector between the two components. For detecting
these two components we used the JSExpressService and JavaSparkService detectors that return
an evidence specifying the corresponding technology types. The detector process will call the
detector instances listed in the DetectInFile evidence to determine the connections between
the two components (see Figure 5.3). In this case, if the DetectInFile evidence is successful
in detecting (1) a Main.java file in the specified directories, and (2) successfully executes the

4https://doi.org/10.5281/zenodo.5235931
5https://github.com/pyparsing/pyparsing

50

https://doi.org/10.5281/zenodo.5235931
https://github.com/pyparsing/pyparsing

5.4 Case Study Design

«RESTful HTTP»
{technology_types = ["Java",

"Apache HTTP Client"]}

«Service»
{technology_types = ["Javascript",

"JS Express"]}
Cart : Component

«Service»
{technology_types = ["Java",

"Spark", "Restful"]}
Shipping : Component

Pseudocode for detector function (context):
context.matches_pattern("CART_URL" + "=" +

 word(printables, exclude = ";").matches_pattern(

 "http://" + "/shipping" + "CART_ENDPOINT")

context.matches_pattern("new" + "HttpPost" +

 round_braces_block).matches_pattern("CART_URL")

«Detector»
JavaCartHTTPPost : SingleFileDector

triggers model
transformation to create

«Evidence»
: DetectInFile

file_name = "Main.java"
detector = JavaCartHTTPPost

Resulting Component Model

Figure 5.3: Opportunistic detector example: Detecting a Restful HTTP connector

JavaCartHTTPPost detector, it adds a connector of the restfulHTTP type between the Shipping
and Cart components to the model. Here, the DetectInFile() represents the reusable code of
the detector process, and JavaCartHTTPPost is a specific detector required for this particular
occurrence (i.e., detecting the presence of a Java HTTP call from Shipping to Cart). As the
specific code will be different for other occurrences, we call this the opportunistic approach.
Please note that usually, the specific code required for a detection is rather small, e.g. in this case
two lines of pseudo code are enough.

As we will discuss in more detail below, following this approach, we were able to design a
solution that fulfills all the requirements of our study. However, we observed that, as can be
seen in the JavaCartHTTPPost example, a lot of code is very specific for the particular case at
hand, and that many aspects of the detection could be automated to a higher degree, with a higher
code reuse. For instance, in the simple example given here, most likely many Java posts, or even
other HTTP requests using the same API, could be detected with a more generic detector. If this
detector is selected, it is known that it produces Restful HTTP connector links; thus a reusable
solution could provide this knowledge as default value. Also, it might not be necessary to specify
the exact file in which the request occurs, as this could be “guessed” from the directories of
the detected components. As a consequence, while the approach described here works well, a
reusable detector approach with less specification effort per case and more automation potential
might be possible. Consequently, we aimed to design such an approach next.

That is, based on the current state of the art, this approach cannot satisfy Requirement R3
(concerning a “small amount of time (effort) for the manual part of the architecture abstraction”)
and makes Requirement R4 hard to achieve (“continuous comprehension”). Based on this
experience, we designed an opportunistic detector-based approach (Approach 1) to cover all
challenges that the approach by Haitzer and Zdun cannot address. Based on this, we realized that
it is also possible to design a similar, but reusable, detector-based approach (Approach 2).

51

5 Detector-based Component Model Abstraction for Microservice-Based Systems

Approach 2: Reusable Detector-based Architecture Model Abstraction

In the reusable detector-based approach, we aimed to reduce the necessary specification in the
abstraction model and completely get rid of any case-specific detector code. Instead, all detection
should be handled in reusable detectors. We managed to bring almost all specifications of
architecture abstractions down to a single line of code per abstraction. To illustrate this approach,
let us again consider the previous example. We developed a generic, and hence reusable, detector
for the Java Apache HTTP technology, which we provide to the method, along with the IDs of the
two components, to create a link between them. The directory in which to search for the link is
taken from the component, where it is provided as a top-level directory only (no specific directory
or file names are provided anymore).

Given this dramatic reduction in the code size that needs to be written by users, it might
seem at first that full automation might be possible. However, this is not correct: Note that the
detector specification is meant as an assertion by a human that a component or connector link of
a certain type was found. With this little extra information – which is much easier to obtain than
performing a full manual architecture model reconstruction – we can avoid the issues that make
automatic detection hard or even impossible. The problematic part that requires human input in
this case is the Cart URL and endpoint, which are two specific variable names used in the Java
implementation (see pseudo code in Figure 5.3). We could potentially guess them to a certain
extent, but developers could find many ways to implement or change them in the future, such
as hard-coding the URL directly, obtaining them through a call to an arbitrarily named method,
reading them from a file, and so on. By requiring the human identification of the occurrence once,
we greatly reduce the possibility of any false positives or negatives.

In our reusable detector, we use some heuristics, and the human user who specifies the case-
specific detection must be aware of the heuristics and their limitations. For the example detection
between the Shipping and Cart services we used in Section 5.4.2, the JavaApacheHTTPLink
reusable detector. It is able to find matches for get, put, post, and delete requests, as illustrated in
Figure 5.4. For all of these, it checks in the relevant Java files (file_endings = [“Java”])
if a respective new statement is found. If so, we have previously auto-detected possible aliases for
the component names in various places; e.g., in the specific case, these were detected in Docker
env statements. If one of the matches for the HTTP method links to one of the target component’s
aliases, we have found a match for calling from source to target using an HTTP method. Otherwise
we use the detector method get_var_assignment_matches_containing_url_alias to find all Java
variable assignments that match one of the target aliases. If one of those is used in a match, it also
constitutes a match for calling from source to target component. Both are seen as evidences for a
link between the source and target components. This would then trigger the model transformation
for creating the Restful HTTP connector in the component model.

With this design, the detector process can tolerate many changes in system evolution (even
more than in the design from Approach 1). For example, calling the URL directly instead of using
the CART_URL variable, moving to a different variable name, moving the call to another method
or file, and so on, are examples of possible non-breaking evolution scenarios. The design also
fulfills all requirements set for the design study. Thus, we next studied how the two approaches
compare with regard to our requirements in the context of our case study to answer the research
questions.

52

5.5 Case Study Implementation

«RESTful HTTP»
{technology_types = ["Java",

"Apache HTTP Client"]}

«Service»
{technology_types = ["Javascript",

"JS Express"]}
Cart : Component

«Service»
{technology_types = ["Java",

"Spark", "Restful"]}
Shipping : Component

Pseudocode for detect_in_context(context, target):
matches = []
new_http_method_matches = context.match_pattern("new" +
 ("HttpPost" | "HttpGet" | "HttpPut" | "HttpDelete") +
 round_braces_block + ";")
for new_http_method_match in new_http_method_matches {
 if round_braces_contains(new_http_method_match,
target.alias) {
 matches += new_http_method_match
 } else {
 for var, var_assignment_match in
 get_var_assignments_containing_url_alias (context,
 target) {
 if round_braces_contains(new_http_method_match, var)
 {
 matches += [new_http_method_match,
var_assignment_match]
 }
 }
}
if matches {
 return LinkEvidence(matches, «RESTful HTTP»,
 {technology_types = ["Java", "Apache HTTP Client"]}
}
return FailedEvidence("no apache http method call to
target found")

«Reusable Detector»
: JavaApacheHTTPLink

triggers model
transformation
to create

file_endings = ["java"]

Resulting Component Model

Figure 5.4: Reusable detector example: Detecting a Restful HTTP connector

5.5 Case Study Implementation

5.5.1 Architecture UML Profile

As the generation target of our model transformations we introduced a UML profile. In it,
components are extended by the stereotype component types (see Figure 5.5), and connectors
by the stereotype connector types (see Figure 5.6), for introducing the microservice-specific
modeling aspects. That is, to be able to apply our two approaches, we first performed an iterative
study of a variety of microservice-related knowledge sources, and we refined a meta-model which
contains all the required elements to allow an adequate reconstruction of architecture model
abstractions in the microservice domain. The resulting stereotypes range from general notions
such as the Service component type, to very technology-specific classes such as the RESTful HTTP
connectors. As component types we support, for example, Service, Pub/Sub, Message Broker,
Event Sourcing, Steam Processing, Client, External Component, Web UI, Monitoring, Tracing,
Logging, Saga Orchestrator, and various kinds of Databases. As connector types we support,
for example, various Service Connectors such as RESTful HTTP, SOAP, or GRPC connectors,
various Web Connectors such as HTTP, HTTPS, or HTTP/2, various kinds of Synchronous and
Asynchronous connectors, various Indirect connections, In-Memory connectors, various Database
connectors, various Event-based Connectors such as Publishers and Subscribers, and various
Messaging Connectors such as Message Producers and Message Consumers.

53

5 Detector-based Component Model Abstraction for Microservice-Based Systems

«s
te

re
ot

yp
e»

C
om

po
ne

nt
 T

yp
e

«s
te

re
ot

yp
e»

S
er

vi
ce

«s
te

re
ot

yp
e»

D
at

ab
as

e

«s
te

re
ot

yp
e»

In
-M

em
or

y
D

at
a

S
to

re
«s

te
re

ot
yp

e»
P

os
tg

re
S

Q
L

D
B

«s
te

re
ot

yp
e»

M
yS

Q
L

D
B

«s
te

re
ot

yp
e»

S
Q

L
S

er
ve

r
«s

te
re

ot
yp

e»
M

on
go

 D
B

«s
te

re
ot

yp
e»

LD
A

P
S

to
re

«s
te

re
ot

yp
e»

E
la

st
ic

 S
ea

rc
h

S
to

re
«s

te
re

ot
yp

e»
M

em
ca

ch
ed

 D
B

«s
te

re
ot

yp
e»

R
ed

is
 D

B
«s

te
re

ot
yp

e»
E

ve
nt

 S
to

re

«s
te

re
ot

yp
e»

P
ub

/S
ub

 C
om

po
ne

nt

«s
te

re
ot

yp
e»

S
tr

ea
m

 P
ro

ce
ss

in
g

«s
te

re
ot

yp
e»

M
es

sa
ge

 B
ro

ke
r

«s
te

re
ot

yp
e»

E
ve

nt
 S

ou
rc

in
g

«s
te

re
ot

yp
e»

E
xt

er
na

l C
om

po
ne

nt

«s
te

re
ot

yp
e»

C
lie

nt

«s
te

re
ot

yp
e»

Fa
ca

de

«s
te

re
ot

yp
e»

W
eb

 U
I

«s
te

re
ot

yp
e»

M
on

ito
ri

ng
«s

te
re

ot
yp

e»
Tr

ac
in

g
«s

te
re

ot
yp

e»
Lo

gg
in

g
«s

te
re

ot
yp

e»
O

rc
he

st
ra

to
r

«s
te

re
ot

yp
e»

S
ag

a
O

rc
he

st
ra

to
r

Fi
gu

re
5.

5:
A

rc
hi

te
ct

ur
e

U
M

L
Pr

ofi
le

:C
om

po
ne

nt
St

er
eo

ty
pe

s

«s
te

re
ot

yp
e»

C
on

ne
ct

or
 T

yp
e

«s
te

re
ot

yp
e»

D
ir

ec
te

d
«s

te
re

ot
yp

e»
Sy

nc
hr

on
ou

s

«s
te

re
ot

yp
e»

Sy
nc

hr
on

ou
s

+
A

sy
nc

hr
on

ou
s

«s
te

re
ot

yp
e»

A
sy

nc
hr

on
ou

s

«s
te

re
ot

yp
e»

C
al

lb
ac

k
«s

te
re

ot
yp

e»
Po

lli
ng

«s
te

re
ot

yp
e»

O
ne

 W
ay

«s
te

re
ot

yp
e»

In
di

re
ct

 R
el

at
io

n
vi

a
A

PI
«s

te
re

ot
yp

e»
In

-M
em

or
y

C
on

ne
ct

or

«s
te

re
ot

yp
e»

D
at

ab
as

e
C

on
ne

ct
or

«s
te

re
ot

yp
e»

JD
BC

«s
te

re
ot

yp
e»

O
DB

C
«s

te
re

ot
yp

e»
M

on
go

 W
ir

e
«s

te
re

ot
yp

e»
HD

FS
«s

te
re

ot
yp

e»
RE

SP
«s

te
re

ot
yp

e»
M

yS
Q

L
Pr

ot
oc

ol

«s
te

re
ot

yp
e»

S
er

vi
ce

 C
on

ne
ct

or

«s
te

re
ot

yp
e»

R
ES

Tf
ul

 H
TT

P
«s

te
re

ot
yp

e»
SO

A
P

«s
te

re
ot

yp
e»

AV
R

O
«s

te
re

ot
yp

e»
G

RP
C

«s
te

re
ot

yp
e»

Th
ri

ft

«s
te

re
ot

yp
e»

W
eb

 C
on

ne
ct

or

«s
te

re
ot

yp
e»

H
TT

P
«s

te
re

ot
yp

e»
H

TT
PS

«s
te

re
ot

yp
e»

H
TT

P/
2

«s
te

re
ot

yp
e»

Lo
os

el
y

C
ou

pl
ed

 C
on

ne
ct

or

«s
te

re
ot

yp
e»

Ev
en

t-B
as

ed
 C

on
ne

ct
or

«s
te

re
ot

yp
e»

P
ub

lis
he

r
«s

te
re

ot
yp

e»
S

ub
sc

ri
be

r

«s
te

re
ot

yp
e»

LD
A

P
«s

te
re

ot
yp

e»
M

em
ca

ch
ed

 C
on

ne
ct

or

«s
te

re
ot

yp
e»

M
es

sa
gi

ng

«s
te

re
ot

yp
e»

M
es

sa
ge

 P
ro

du
ce

r
«s

te
re

ot
yp

e»
M

es
sa

ge
 C

on
su

m
er

«s
te

re
ot

yp
e»

JM
S

«s
te

re
ot

yp
e»

ST
O

M
P

Fi
gu

re
5.

6:
A

rc
hi

te
ct

ur
e

U
M

L
Pr

ofi
le

:C
on

ne
ct

or
St

er
eo

ty
pe

s

54

5.5 Case Study Implementation

5.5.2 Detector Framework

One of the contributions of this work is a model for the design of a semi-automatic detector
framework for creating architecture abstractions along with traceability links to the source code.
The latest design for this part of our study in Approach 2 differs only in details from the one
from Approach 1. Thus we report only the latest design here, as it is a few refactoring cycles
ahead of our earlier design. As shown in Figure 5.7, a number of detections are abstracted in
a Project. Each detection traverses the models to detect features of interest. That is, to the
project we add architecture abstraction in specifications such as those in Figure 5.4. In those
specifications, the Detectors that the project should use to detect the abstractions are specified. For
example, the 2 components (Shipping and Cart) in Figure 5.4 use the detectors JavaSparkService,
JSExpressService, and the connector between them uses the detector JavaApacheHTTPLink. Two
specific subclasses of Detector are shown in Figure 5.7: one for detecting at least one matching
file and one for detecting matches across multiple files. The former is used as superclass for
the majority of our current detectors; the latter is used occasionally. As illustrated in Figure 5.4,
detectors use DetectorContexts, which implement the scanning and matching methods and contain
the text to be parsed. If detectors find matches, a Match is used to store the matching text, its
position in the parsed text, the file, and the directory; this way, traceability to the source code is
established. When all required matches are found for an architecture abstraction, the detector
creates an evidence for it (like the LinkEvidence in used in Figure 5.4). As shown in Figure 5.7,
Evidence has three main subclasses, called FailedEvidence, NamedEvidence, and LinkEvidence:
NamedEvidence has an additional subclass ComponentEvidence in which possible link types can
be collected on the component if its matches can be considered as enough items for a link (e.g., a
Web server, offering the component already, implies possible links to the Web clients). It has also
a subclass ServiceEvidence to specify the corresponding component type.

The project stores detected components to use them for later detection; e.g., the directory
guessing in link detectors explained above works this way. Our design only works for components
and connector links so far; for supporting other abstractions, more evidence types and additional
functionality on the project would be needed. The project stores all failed evidences, because we
do not stop the detection if one failure occurs, but rather let all detectors run through and provide
the user with all failures that occurred.

As proof of concept, we realized a process, using Python scripts, that takes the polyglot source
code and the detector specification as inputs. It creates an architectural abstraction containing a
UML-style component model together with Evidences and Matches. Models are expressed using
the Python modeling library CodeableModels described in Chapter 3.7, a Python implementation
for precisely specifying meta-models, models, and model instances in code with a lightweight
interface. The process contains a visualization generator for generating PlantUML diagrams such
as the one in Figure 5.2.

While the process flow could be changed substantially compared to how we constructed
our prototype, the general process flow architecture illustrates how the building blocks interact
in order to enact the design explained above (see Figure 5.7). The process aims to generate
models for the modeling library CodeableModels. As illustrated in Figure 5.8, the performer
of the process is envisaged as a developer or architect. The architect specifies the architecture
abstraction specification for a software system, while the developer implements it in source

55

5 Detector-based Component Model Abstraction for Microservice-Based Systems

uses

Project Evidence

FailedEvidence

Evidences

NamedEvidence

Component

Evidence

ServiceEvidence

LinkEvidence

Detector

AtLeastOneFile

MatchesDetector

MatchesAcross

MultipleFilesDetector

Detected

Component

DetectorContext

Match

failed
evidences

1 1

detected
components*

1

**
*

uses

creates

uses

Figure 5.7: Resulting Design: Domain Model of the Detectors

code. Both roles can also be involved in the development of detectors for the two approaches
outlined above. The Detectors Development Process produces as output either the Architecture
Model Abstraction based on the Opportunistic Detector or the Reusable Detector approach,
which in turn are used as inputs in the Detector-based Architecture Abstraction phase of the
Detectors Implementation Process. The architecture specification and the system’s source code
are also inputs of the Detector-based Architecture Abstraction phase. The detector performs the
architecture abstraction, and when successfully completed, uses a code generator to generate
the corresponding System Component Model with CodeableModels. The code generator utilizes
the Architecture UML Profile to instantiate the System Component Model from it. Finally,
CodeableModels contains a Visualization Generator, which uses the System Component Model
as input, for generating PlantUML diagrams such as the one in Figure 5.2.

5.6 Case Study Evaluation

5.6.1 Effort and Size

In this subsection, we want to give a rough estimation of the effort required to design and
implement prototypes for (1) the generic detectors approaches for our two approaches and (2)
the case-specific code in both approaches as well as a size comparison in terms of lines of code
(LoC). We discuss in Section 5.8 why such a comparison can only provide a rough estimate.
More research is needed to generate solid numbers, e.g. for precise effort prediction. However,
for the purpose of this study, roughly correct numbers are good enough, as we are interested in
understanding the effort and size relations in orders of magnitude. The efforts in minutes reported
in Table 5.1 are based on manual time recordings made throughout our project. Lines of code are
automatically counted using the VS Code plug-in VC Code Counter, which supports the counting
of only the Python code.

As can be seen, the generic code base needed for Approach 2 is substantially larger (64.41%)

56

5.6 Case Study Evaluation

performs

output output

ARCHITECT

develops

DEVELOPER

Detector-based
Architecture
Abstraction

Codeable Model
Generator

Visualization
Generator

ActivityInitial ActivityFinal

Detectors Development

ActivityInitial ActivityFinal

Detectors Implementation Process

performs output

Detectors Development Process

input

Opportunistic
Detector-based

Architecture
Model

Abstraction

Reusable
Detector-based

Architecture
Model

Abstraction

input

Source Code

instance of

input

System
Component

Model

input

Architecture
UML Profile PlantUML

Model

input

Architecture
Abstraction

Specification

creates

Figure 5.8: Process Flow Architecture of the Prototype

than for Approach 1 and we needed moderately more time (21.62%) for creating it. The effort
increase is less than the code size increase, as the generic code base contains a common code base
of about 40% of the code, which was created in 1900 minutes. In addition, a learning effect from
the experience in the design and implementation of Approach 1 probably also played a role in the
reduction. We believe that this learning effect is small, as the non-common code parts turned out
to be significantly different. In addition, Approach 2 contains reusable detectors as part of the
generic code, which Approach 1 does not; it contains the case-specific detectors instead. Note
that for our case study, the number of reusable detectors in Approach 2 is very high because we
have studied a highly polyglot case, and started out with zero detectors; for a less polyglot case
(as the cases discussed in Section 5.7), or if already extant detectors can be reused (e.g., from an
open-source detector repository based on our approach), would dramatically reduce the number
of new detectors and the concomitant effort expended. As a consequence of these numbers, the
generic code effort is much higher (146.78%) for Approach 2, and the LoC needed for Approach
2 are significantly more (338.89%).

The situation for the case-specific parts is reversed: The case-specific model for Approach
2 is much smaller (-43.69%) than for Approach 1, and requires much less effort (-45.13%). In
addition, Approach 1 requires 107 LoC for case-specific detectors constructed in 870 minutes
(which are totally absent in Approach 2). Consequently, the case-specific code for Approach 2
is in total significantly smaller (-62.94%) than for Approach 1 and required substantially less
effort (-79.13%). That means that realizing a reusable solution can pay off in the long run, when
the approach would be applied on many projects. If the approach is needed only once (and for a
small-scale case study as performed here), the reusable approach in Approach 2 does not pay off,

57

5 Detector-based Component Model Abstraction for Microservice-Based Systems

as the total effort and LoC comparisons show.

Approach 1 Effort Approach 2 Effort Diff. Approach 1 Lines Approach 2 Lines Diff.
in Minutes in Minutes of Code of Code

Generic Code Base 5329 6481 21.62% 576 947 64.41%
Reusable Detectors – 6670 N/A – 1581 N/A
Total Generic Code 5329 13151 146.78% 576 2528 338.89%
Case-specific Detectors 870 – N/A 107 – N/A
Case-specific Model 534 293 -45.13% 206 116 -43.69%
Total Case-specific Code 1404 293 -79.13% 313 116 -62.94%
Total 6733 13444 99.67% 889 2644 197.41%

Table 5.1: Effort and Size Comparison

5.6.2 Requirements Fulfillment

For Requirements R1 and R2 we can assess that both approaches are able to exactly reproduce
the component model from the ground truth. The same result would likely be possible with the
approach by Haitzer and Zdun (discussed in Section 5.3), but this has not been fully implemented
in our study. Our approach can lead to highly accurate architecture model abstraction since no
additional manual effort was needed to correct the resulting model. Moreover, the developers
who create the detectors are very familiar with the system, meaning that they hold in depth the
system characteristics and requirements. Requirement R3 is about supporting a highly polyglot
setting, as is typical of modern microservices. This seems infeasible for the approach by Haitzer
and Zdun with regard to required time and effort, unless the state of the art on polyglot parser
approaches and support for multiple well working grammars is significantly improved. Both new
Approaches support this requirement well.

Requirement R4 is about continuous comprehension. In order to test this, we have examined
the differences in architecture and technologies used in the system in four additional releases: one
prior to our case study, three later ones. We did not only test evolution in later releases, but also
in prior ones, in order to be able to test whether our approach works for the removal of features.
These are summarized in Table 5.3. Our approaches are able to detect a) the removal of services,
b) the removal of system-level capabilities (e.g. Prometheus), and c) the modification of specific
technologies (e.g. Go). As can be seen in the table, the additional time effort (in minutes) to the
script containing the abstracted architecture model (execution script) to each release is negligible
(a few minutes). However, there is a caveat for Approach 1: Due to the many small opportunistic
detectors, different implementations for similar concerns and opportunistic code reuse (copy &
paste) occurred. It is known that this leads to problems during evolution, such as changes not
being carried through for all similar code fragments, or that overly specific code for particular
detections can lead to breaking detectors.

Requirement R5 concerns traceability from code to models. Both approaches establish trace
links automatically. Requirement R6, i.e., how the amount of time (effort) for creating the
architecture abstractions compares to the overall amount of effort for engineering the system, is
fulfilled for Approach 1 and Approach 2: Compared to the COCOMO II estimate for delivering
the case study project as an industrial solution, the efforts both for Approach 1 and Approach 2
are tiny. For instance, assuming 140 work hours per month, the case study construction would

58

5.7 Extending the Approach to Cases from Different Domains

have consumed, according to COCOMO II, 199080 minutes. That is, the case-specific effort for
creating a model and detectors for Approach 1 would be 0.7%, and for Approach 2 0.1%. That
is, according to our COCOMO II estimates both approaches are way beyond the set target of
1%. Please note that this does not work out, if generic code base and reusable detectors cannot
be reused. Then we observed 4% for Approach 1 and 7% for Approach 2, which might still be
acceptable for some projects, but are beyond our 1% target. For more extensive systems these
numbers would be much smaller in comparison. Requirement R7 is about the comparison of
the approach to a manual reconstruction. If we compare to the manual reconstruction effort for
the case study (see Section 5.4.1), we can see that Approach 1 requires a case-specific effort of
56.89% of the manual reconstruction effort; Approach 2 only requires 11.87% of the case-specific
effort. Thus both approaches, when combined with a single manual reconstruction (or with our
approach applied permanently from the inception of the project onwards), would require much
less effort than periodically repeated manual reconstruction efforts. Assuming the existence of
a large repository of reusable detectors (e.g., as an open-source project), Approach 2 would be
vastly superior to Approach 1, too; without it, the substantial effort needed to create reusable
detectors might eat up much of the benefit compared to Approach 1.

Table 5.2 summarizes and compares Approach 1 and Approach 2 based on the stated require-
ments. It is evident that, although both approaches meet the requirements we have set, there is a
considerable difference in performance in terms of effort in favor of Approach 2.

Requirements Approach 1:
Case-Specific Detectors

Approach 2:
Reusable Detectors

Component Model Reconstruction (R1&R2)
100% correctness
(if detectors are
not heuristics)

100% correctness
(if detectors are
not heuristics)

Polyglot Support (R3) fully supported fully supported
Continuous Comprehension (R4) fully supported fully supported
Traceability (R5) automatically ensured automatically ensured
Estimated Percentage of Overall
System Development Effort (R6) 0.7% 0.1%

Comparison to Manual Reconstruction
(R7) as Percentage of Manual Reconstruction 56.98% 6.76%

Table 5.2: Comparison between the two approaches on requirement fulfillment

5.7 Extending the Approach to Cases from Different
Domains

To further assess whether our approach is also applicable in different case study settings, we
applied it to two cases in the domain of modeling inter-service communication in API-centric
communication models. We did this with the purpose of automatically detecting asynchronous
cycles in communication at the API-level. These unintended domain-based cyclic dependen-
cies [Wol16] manifest mainly on the conceptual level and less on the implementation level and
are therefore considered relatively difficult to track exclusively through static code analysis

59

5 Detector-based Component Model Abstraction for Microservice-Based Systems

System Re-
lease

16.04.2018 23.10.2019 06.07.2020 26.08.2020 22.02.2021

System Lines
of Code

3650 5311 5115 4997 5746

Number of
System Ele-
ments

12 components
17 connectors

18 components
29 connectors

18 components
29 connectors

18 components
29 connectors

18 components
29 connectors

System
Changes

•No Ratings ser-
vice yet
•Prometheus,
Paypal Payment,
Instana not yet
added

•Ratings service
has been added
•Prometheus,
Paypal Payment,
Instana have been
added

•Dispatch service
has been modi-
fied

•Shipping ser-
vice has changed
framework from
Java Spark to
Spring Boot

•An Event
Listener has been
introduced in
Ratings service.

Time Needed
(in minutes)
to adjust exe-
cution script
(Approach 1 /
Approach 2)

8 min / 5 min‡ NA 5 min / 3 min† 5 min / 3 min† 5 min / 3 min†

‡: compared to the case study release version, †: compared to the previous release

Table 5.3: Continuous Comprehension Support (release examined in case study in bold)

methods. However, collecting runtime information to track these dependencies can often be
very time-consuming. Hence an approach that focuses on source code analysis would be pre-
ferred. To this end, we implemented essentially two different types of detectors: The first type
of detectors was responsible for recognizing relevant architectural elements, like API Interfaces,
API Operations, and specific calls and invocations that establish interservice communication.
We, therefore, refer to them as Hot Spot Detectors. The second type, Invocation Detectors, are
responsible for tracking call chains between the various hot spots, thus creating the final graph
structure representing our communication model. As the approach should be offered as a reusable
component to be used e.g. in a continuous delivery pipeline of a project, based on the data from
our case study reported in Section 5.4.1, we selected Approach 2 for the two additional cases. We
developed reusable detectors that were not bound to any project-specific implementation, apart
from some project-specific code in order to reduce the implementation effort (see below).

The first API model case study was conducted on two versions of the open-source Lakeside
Mutual6 project. This project realizes the architecture of a fictional insurance company and
consists of several Java Spring-based backend microservices. To detect the relevant hot spots and
invocations, we had to implement ten detectors in total. While these were specific to Java-based
communication technologies, such as SpringRestControllers, FeignClients or JmsTemplates,
their usage would a) not be restricted to any concrete project and b) could easily be adapted for
other Java-based microservice implementations. The overall implementation for analyzing the
Lakeside Mutual project took 431 lines of code (LoC) for Java-specific detectors and 373 lines
of generic code to orchestrate the detection process and generate the model, resulting in a total
implementation size of 804 LoC. Using our detectors on the Fall 2020 revision of the project7, we

6https://github.com/Microservice-API-Patterns/LakesideMutual
7https://github.com/Microservice-API-Patterns/LakesideMutual/tree/spring-te
rm-2020

60

https://github.com/Microservice-API-Patterns/LakesideMutual
https://github.com/Microservice-API-Patterns/LakesideMutual/tree/spring-term-2020
https://github.com/Microservice-API-Patterns/LakesideMutual/tree/spring-term-2020

5.7 Extending the Approach to Cases from Different Domains

were able to identify 40 different API operations (35 synchronous and five asynchronous ones)
and 16 interservice connectors between these operations. Based on the generated model, we were
able to track two domain-based cycles in the system. Our detectors were also able to analyze the
latest8 version of the Lakeside Mutual project without requiring any changes to our existing code
base. The analysis revealed a slight decrease in synchronous API operations (to 29), and we could
verify that all cyclic dependencies we had detected in the previous version had been resolved.
Although the architecture has undergone significant changes between the two revisions, this case
study demonstrates that our detectors were still able to identify the relevant structural elements in
both versions without adjustments, which underlines the reusability aspect of our approach.

In the second API model case study, we examined the communication structure of the eSho-
pOnContainers9 system, an open-source microservice reference implementation for the .NET
technology stack. Compared to Lakeside Mutual project, this one uses a pure event-based
asynchronous communication model for interservice communication. In addition, some service
implementations pursue a domain-driven design approach, resulting in a more implicit invocation
call chain within the services themselves. While writing generic reusable detectors to track
these invocations would be possible, generically covering all of these cases would require a
considerable amount of implementation effort. Therefore our detector implementation used
some heuristics that were specifically tailored to the underlying project. Because of that, our
implementation amounted to 162 lines of code for project-specific detectors and 181 lines of
generic detectors that could also be reused for other C#-based microservice applications. Table 5.4
summarizes the implementation efforts of our case studies. Please note that due to the close
syntactic relationship between Java and C#, the amount of language-specific detector code could
be reduced by implementing some of the generic detectors in a language-agnostic way.

System Size
(LoC)1

Generic
reusable

code
(LoC)

Language-specific
reusable

detector code
(LoC)

Project-specific
detector code

(LoC)

Total
implementation

(LoC)

Lakeside
Mutual

35.2K /
35.4K2 373 431 – 804

eShopOn
Containers 81.4K 373 181 162 716

1 all files except json configuration files, calculated with cloc: http://cloc.sourceforge.net/
2 Spring-Term 2020 branch / master branch April 2021

Table 5.4: Size Comparison between Detector Implementations for two Example Case Studies

The two API model cases show that the detector-based approach is well suited for problem-
specific scenarios, too. The effort for implementation and configuration is significantly lower
than using language-specific parsers, especially if these language parsers have to be kept up-
to-date. While the generic detector approach might require some upfront implementation, this

8https://github.com/Microservice-API-Patterns/LakesideMutual/commit/bdc6d30
135149563c057dd30f21b7df68608c500

9https://github.com/dotnet-architecture/eShopOnContainers

61

http://cloc.sourceforge.net/
https://github.com/Microservice-API-Patterns/LakesideMutual/commit/bdc6d30135149563c057dd30f21b7df68608c500
https://github.com/Microservice-API-Patterns/LakesideMutual/commit/bdc6d30135149563c057dd30f21b7df68608c500
https://github.com/dotnet-architecture/eShopOnContainers

5 Detector-based Component Model Abstraction for Microservice-Based Systems

work amortizes considerably soon if more than one project revision needs to be analyzed, as
seen in our first case. The ability to combine both approaches in the second case in order to
reduce implementation effort shows that the approach is flexible, while the two projects show
that detectors can be used to retrieve the system architecture automatically, eliminating the need
for manual maintenance of the architecture model.

In terms of the design requirements, our approach satisfies in both cases R1 and R2 (adapted
to the given context, e.g. it does not need to cover the entire system architecture). R3 is not
applicable due to the mostly homogeneous code basis of the relevant parts of the two projects
examined, but the detectors could easily be (re)written so as to cover both Java and C#-based
systems. R4 is not relevant, as there is no manually created architectural model. R5 is implicitly
supported by the approach, but traceability is not used any further in the cases. R6 and R7 are of
limited relevance due to the different context, i.e. the focus on a subset of the system, and the
automatic detection of relevant elements only; but the overall coding effort required in LoC (and
thus, implicitly, time) is a fraction of the project size, even when leaving aside the gains from
detector reuse relative to the changes in the project implementation over time.

5.8 Threats to Validity

It is important to consider the threats to validity during the design of the study to increase its
validity. [WRH+12] distinguish four types: conclusion, internal, external, and construct validity.
Internal validity address establishing a causal relationship between variables. It is not relevant
for this study, as we do not aim to create a causal relationship between variables using statistical
means.

Conclusion Validity: Threats to the conclusion are concerned with issues that affect the
ability to draw the right conclusions between the treatments and the outcome of the study. As we
do not apply statistical testing, related sources to conclusion validity reported by [WRH+12] do
not apply to our study. As data reported about the resulting design and the case study ground truth
is collected semi-formally (i.e., contains qualitative elements), there is the risk that the researchers’
background, development experience, and understanding influence the interpretations. This risk
is reduced as the different research team members carefully reviewed the steps taken by the
other researchers. The risk is further reduced by the researchers’ deep background in both the
microservices domain and architecture abstraction methods. Finally, we included industry experts
as authors to further reduce the bias. To ensure the reliability of our measures, we used objective
measurements such as precise time recording and lines of code. For both a subjective element
remains: other developers might have needed a different amount of time or structured their lines
of code differently. Also, a few minor aspects of our measurements are estimated such as the
common code base of Approach 1 and Approach 2. As we only aim for the measurements to
provide a very rough estimate (i.e., in orders of magnitude), we believe possible differences to
be negligible. The choice to perform a so-called mechanism experiment [Wie14], i.e. implement
the architecture model abstraction prototypically for the case ourselves, might have negatively
influenced the reliability of the treatment implementation for the reported measurements and the
comparison between the two approaches. Regarding RQ2.1 and RQ2, both of which investigate
whether and how a feasible design is possible, the reliability of the treatment implementation is

62

5.8 Threats to Validity

given, as two feasible designs have been found. We do not claim that the found designs are the
only possible designs or optimal.

Construct Validity: Construct validity is concerned with obtaining the right measures and
instruments for the phenomena being studied. Our study combines design science and case study
research to minimize possible mono-method bias. There is a risk of a possible interaction between
treatments, as the treatments in the two approaches are applied one after another. Again, this
does not impact the research for RQ2.1 and RQ2.2. A learning effect may have impacted the
comparison between the two approaches. However, we argue that our goal is only to understand
the differences in orders of magnitude, and do not claim generalizability of the precise measures.
Continuous comprehension support, i.e., the ability of our detectors to detect all changes in the
implementation (addition, modification, removal) of connectors in every release version of the
system, has been tested in Section 5.6.2. The only problem we anticipate would be in the case
where major changes occur between releases, but this goes beyond continuous comprehension,
and effectively requires a de novo architectural reconstruction. Additionally, the evolution aspect
has been tested and validated in three systems already for the predecessor work [HZ14] of the
approach presented here.

External Validity: Threats to external validity are conditions that limit our ability to generalize
the results. Our research has been performed by researchers and not in an industrial setting. This
might limit the generalizability to industrial practices. As our main line of research aims to find
a feasible design in context, the threat appears negligible. For the approach comparisons and
precise measurements, the threat is realistic for the reasons given above. In addition, in order
to come up with a sound design, we applied substantial refactoring effort throughout the study,
which may not reflect current common practice in industry. That is, the reported effort might be
slightly higher than what a “quick and dirty” implementation in industry would actually require.
On the other hand, no effort was needed for meetings, design sessions, deployment, and thus
also not reported. This might substantially increase the relevant measurements when creating
industry-grade solutions. As all this should not considerably impact the relative difference
between Approach 1 and Approach 2, we believe the threat to be negligible for RQ2.3. Finally,
the basic soundness of the approach has been tested on open-source case studies realized by
industry practitioners. This way we have ensured that our approach is applicable in a realistic
setting. The fact that the case study projects are merely demonstrators and not a production-ready
systems might result in differences compared to actual industrial implementations. From our
point of view, the risk is that real-life industry systems are usually larger and less well-structured
than the system we have studied. From our experiences with industry systems in the microservice
domain (we included industry experts in the author team to confirm this point), many current
industry systems are realized in a similar fashion, and we are confident that a) the chosen system
is a representative cross-cut of current practices in the microservice domain and b) that it applies
a sufficient number of different technologies so as to be a representative of industrial polyglot
systems. The risk that our methods might require additional engineering when applied to very
large-scale systems remains, but this is a question of additional adaptation and coverage effort,
and does not invalidate the basis of our approach. On the contrary, once a basic set of technologies
has been covered and a sufficiently large library of detectors exists, and with a more automated
method for detecting architecture changes so that the manual model maintenance is further

63

5 Detector-based Component Model Abstraction for Microservice-Based Systems

reduced, we are confident that the savings in effort due to the reusability of the detectors will end
up being much more pronounced in a continuously-evolved, large-scale system than in our case
study.

5.9 Conclusions and Future Work

In this chapter we have reported on a design-science study combined with case-study research
for studying methods for comprehending the component architecture of highly polyglot systems,
as exemplified by state-of-the-art microservices systems. With regard to RQ2.1, we conclude
that our study revealed that the approach taken by [HZ14] (discussed in Section 5.3) probably
allows to design a highly accurate architecture abstraction, but that it involves considerable effort
in a highly polyglot setting. By contrast, both of the semi-automatic, detector-based approaches
developed in our study work well in the highly polyglot setting and fulfill all our requirements. We
further observed that the reusable detectors from Approach 2 tend to enable cleaner solutions: due
to the detector specificity, similar detections sometimes led to different approaches in Approach 1,
whereas in Approach 2 – as reuse was already a goal of the design – the solution was provided by
more generic, common code. Thus, Approach 2 makes it more unlikely that recurring code issues
or possible defects stay undetected. Moreover, in a system with 11 different technologies, we
managed to retrieve its component architecture with a reasonable effort (i.e., within a reasonably
short period of time), with high hopes for high reusability and small deltas during future evolution
of the same system. With regard to RQ2.2, all three approaches studied can support continuous
comprehension well. The approach by Haitzer and Zdun is limited, as many parser technologies
and grammars need continuous maintenance and testing effort; the two detector approaches
developed as part of the present study work better in this regard. Approach 2 is superior to the
one from Approach 1, as new or changed detection requirements need to be realized only once, in
reusable detectors, and are then applied automatically for all projects using those same detectors.
Approach 1, in contrast, would require searching for all related custom detectors and changing
them individually. As a result, the reusable detector approach also seems to be slightly better
suited for RQ2.2, as it requires a lot of discipline and refactoring to reach the same quality of
evolution stability in Approach 1 as is built into Approach 2. For RQ2.3 we have compared our
two approaches in terms of time (effort), using time recording, and lines of code measurements.
The results indicate that creating new reusable detectors for a single project requires substantially
higher time (effort) for Approach 2 than for Approach 1. Creating the case-specific code requires
significantly less time (effort) for Approach 2 than for Approach 1. Our data indicates there is a
break-even point where the reusable detector method pays off. A very rough estimation, based
on the averages in our case study data, indicates that the break even-point for effort is reached
at about 6 uses of a reusable detector. For the lines of code measurements, it is reached after
8 uses. This does not consider the extra effort needed in Approach 1 compared to Approach 2
during software evolution; to cover those, further studies of an evolving software system would
be needed. Based on all data and observations, we thus would recommend the reusable detector
approach, unless a project is certain to use all detectors a very few times at maximum. We have
also tested the adaptability of the same approach to different tasks, which are well suited to be
used in combination with the architecture abstraction detectors, potentially greatly reducing the

64

5.9 Conclusions and Future Work

already small manual overhead required by our method.
As future research we plan to further investigate the methods reported in this chapter in an

industry context, and for other kinds of models than component models. We further plan to
exploit the traceability links provided through our method in various research approaches. It
would also be interesting to investigate whether a more precise prediction of required time and
efforts is possible.

65

6 Assessing Architecture Conformance to
Coupling-Related Patterns and
Practices in Microservices

Microservice architecture is a widely adopted approach for building applications that offer
high scalability, independent development, and adaptability to change, supporting the use of
various technologies. One of the essential principles of this architecture is the high degree
of independence among individual microservices, which is commonly achieved through loose
coupling. Despite the abundance of established patterns and best practices, most microservice-
based systems, in whole or in part, do not adhere to them, making a manual assessment of
conformance impractical for large-scale systems. In this chapter we provide the groundwork for
an automated approach to assess conformance to coupling-related patterns and practices specific
to microservice architectures.

6.1 Introduction

Microservice architectures [New15, Zim17, LF04] describe an application as a collection of
autonomous and loosely coupled services, typically modeled around a domain. Key microservice
tenets are development in independent teams, cloud-native technologies and architectures, poly-
glot technology stacks including polyglot persistence, lightweight containers, loosely coupled
service dependencies, high releasability, and continuous delivery [Zim17]. Many architectural
patterns that reflect recommended “best practices” in a microservices context have already been
published in the literature [Ric17, ZSZ+19, Sko19]. The fact that microservice-based systems
are complex and polyglot means that an automatic or semi-automatic assessment of their con-
formance to these patterns is difficult: real-world systems feature combinations of these patterns,
and different degrees of violations of the same; and different technologies in different parts of
the system implement the patterns in different ways, making the automatic parsing of code and
identification of the patterns a haphazard process.

This work focuses on describing a method for assessing architecture conformance to coupling-
related patterns and practices in microservice architectures. Coupling between microservices is
caused by existence of dependencies, e.g. whenever one service calls another service to fulfill
a request or share data. Loose coupling is an established topic in service-oriented architec-
tures [Zim17] but the application to the specific context of microservice architectures has not, to
our knowledge, been examined so far.

Strong coupling is conflicting with some of the key microservice tenets mentioned above.
In particular, releasability, which is a highly desirable characteristic in modern systems due to
the emergence of DevOps practices, relies on the rapid and independent release of individual

67

6 Assessing Architecture Conformance to Coupling-Related Patterns and Practices in Microservices

microservices, and is compromised by strong dependencies between them. For the same reason,
development in independent teams becomes more difficult, and independent deployment of
individual microservices in lightweight containers is also impeded. This work covers three
broad coupling aspects: Coupling through Databases, resulting from reliance on commonly
accessed data via shared databases; Coupling through Synchronous Invocations, resulting from
synchronous communication between individual services; and Coupling through Shared Services,
which arises through the dependence on common shared services (for details see Section 6.3).

In reality, of course, no microservice system can support all microservice tenets well at the
same time. Rather the architectural decisions for or against the use of specific patterns and
practices must reflect a trade-off between ensuring the desired tenets and other important quality
attributes [HWB17, Zim17]. From these considerations, this work aims to study the following
research questions:

• RQ3.1 How can we automatically assess conformance to loose coupling-related patterns
and practices in the context of microservice architecture decision options?

• RQ3.2 How well do measures for assessing coupling-related decision options and their
associated tenets perform?

• RQ3.3 What is a set of minimal elements needed in a microservice architecture model to
compute such measures?

In pursuing of these questions, we surveyed the relevant literature (Section 6.2) and gathered
knowledge sources about established architecture practices and patterns, their relations and tenets
in form of a qualitative study on microservice architectures. This enabled us to create a meta-
model for the description of microservice architectures, which was verified and refined through
iterative application in modelling a number of real-world systems, as outlined in Section 6.4. We
manually assessed all models and model variants on whether each decision option is supported,
thereby deriving an objective ground truth (Section 6.5). As the basis for an automatic assessment,
we defined a number of generic, technology-independent metrics to measure architecture con-
formance to the decision options, i.e. at least one metric per major decision option (Section 6.6).
These metrics (and combinations thereof) were applied on the models and model variants to
derive a numeric assessment, and then compared to the ground truth assessment via an ordinal
regression analysis (Section 6.7). Section 6.8 discusses the results of our approach, as well as its
limitations and potential threats to validity. Finally, in Section 6.9 we draw our conclusions and
discuss options for future work.

6.2 Related Work

Many studies focus on best practices for microservice architectures. Richardson [Ric17] has
published a collection of microservice patterns related to major design and architectural practices.
Patterns related to microservice APIs have been introduced by Zimmermann et al. [ZSZ+19],
while Skowronski [Sko19] collected best practices for event-driven microservice architectures.
Microservice fundamentals and best practices are also discussed by Fowler and Lewis [LF04], and
are summarized in a mapping study by Pahl and Jamshidi [PJ16]. Taibi and Lenarduzzi [TL18]

68

6.3 Decisions

study microservice “bad smells”, i.e. practices that should be avoided (which would correspond
to violations in our work).

Many software metrics-related studies for evaluating the system architecture and individual
architectural components exist, but most of them are not specific to the microservices domain.
Allen et al. [AGG06, AGG07] study component metrics for measuring a number of quality
attributes, e.g. size, coupling, cohesion, dependencies of components, and the complexity of
the architecture. Additional studies for assessing quality attributes related to coupling and
cohesion have been proposed and validated in the literature [CK94, BD02, HCN98, BBM96].
Furthermore, a small number of studies [PW09, ZNL17, BWZ17] propose metrics specifically
for assessing microservice-based software architectures. Although these works study various
aspects of architecture, design metrics, and architecture-relevant tenets such as coupling and
independent deployment, their approach is usually generic. None of the works covers all the
related software aspects for measuring coupling in a microservice context: the use of databases,
system asynchronicity, and shared components. This is the overarching perspective of our work,
and the chief contribution of this study.

6.3 Decisions

In this section, we briefly introduce the three coupling-related decisions along with their de-
cision options (i.e. the relevant patterns and practices). We also discuss the impact on relevant
microservice tenets, which we later on use as an argumentation for our manual ground truth
assessment in Section 6.5.

Inter-Service Coupling through Databases. One important decision in microservice-
based systems is data persistence, which needs to take into account qualities such as reliability
and scalability, but also adhere to microservice-specific best practices, which recommend that
each microservice should be loosely coupled and thus able to be developed, deployed, and scaled
independently [LF04]. At one extreme of the scale, one option is No Persistent Data Storage,
which is applicable only for services whose functions are performed on transient data. Otherwise,
the most recommended option is the Database per Service pattern [Ric17]: each service has
its own database and manages its own data independently. Another option, which negatively
affects loose coupling, is to use a Shared Database [Ric17]: a service writes its data in a common
database and other services can read these data when required. There are two different ways to
implement this pattern: in Data Shared via Shared Database multiple services share the same
table, resulting in a strongly coupled system, whereas in Databased Shared but no Data Sharing
each service writes to and reads from its own tables, which has a lesser impact on coupling.

Inter-Service Coupling through Synchronous Invocations. Service integration is
another core decision when building a microservice-based system. A theoretically optimal
system of independent microservices would feature no communication between them. Of course,
services need to communicate in reality, and so the question of integrating them so as to not
result in tight inter-service coupling becomes paramount. The recommended practice is that
communication between the microservices should be, as much as possible, asynchronous. This

69

6 Assessing Architecture Conformance to Coupling-Related Patterns and Practices in Microservices

can be achieved through several patterns which are widely implemented in typical technology
stacks: the Publish/Subscribe [HW03a] pattern, in which services can subscribe to a channel to
which other services can publish; the use of a Messaging [HW03a] middleware, which decouples
communication by using a queue to store messages sent by the producer until they are received
by the consumer; the Data Polling [Ric17] pattern, in which services periodically poll other
services for data changes; and the Event Sourcing [Ric17] pattern, that ensures that all changes to
application state are stored as a sequence of events; Asynchronous Direct Invocation technique,
in which services communicate asynchronously via direct invocations. Applying these patterns
ensures loose coupling (to different degrees), and increases the system reliability.

Inter-Service Coupling through Shared Services. Many of the microservice patterns
focus on system structure, i.e. avoiding services sharing other services altogether, or at least not
in a strongly coupled way. An optimal system in terms of architecture quality should not have
any shared service. In reality, this is often not feasible, and in larger systems service sharing
leads to chains of transitive dependencies between services. This is problematic when a service is
unaware of its transitive dependencies, and of course for the shared service itself, where the needs
of its dependents must always be taken into account during its evolution. We define three cases:
a Directly Shared Service is a microservice which is directly linked to and required by more
than one other service; a Transitively Shared Service is a microservice which is linked to other
services via at least one intermediary service; and a Cyclic Dependency [GM14] which is formed
when there is a direct or transitive path that leads back to its origin, i.e. that allows a service to
be ultimately dependent on itself after a number of intermediary services. Cyclic dependencies
often emerge inadvertently through increasing complexity over the system’s lifecycle, and require
extensive refactoring to resolve. All three cases are inimical to the principle of loose coupling as
well as to system qualities such as performance, modifiability, reusability, and scalability.

6.4 Research and Modeling Methods

In this section, we summarize the research and modeling methods applied in our study. The
code and models used in and produced as part of this study have been made available online for
reproducibility 1.

6.4.1 Research Method

Figure 6.1 shows the research steps from initial data collection to final data analysis. For the
data collection phase we conducted a multi-vocal literature study using web resources, public
repositories, and scientific papers as sources [GFM17]. We then analyzed the data collected
using qualitative methods based on Grounded Theory [CS90] coding methods, such as open and
axial coding, and extracted the three core architectural decisions described in the previous section
along with their corresponding decision drivers and impacts. As data for our further research we
used generated models taken from the Model Generation process, described below. We defined a
rating scheme for systematic assessment based on support or violation of core practices and tenets.

1https://bit.ly/2WmFP3N

70

6.4 Research and Modeling Methods

Model Generation

Metrics Definition

Architectural Design DecisionsData Analysis

Extract Ontology (Data

Types) from best practices and

tenets

Determine Decision Impacts for

each option

Objective AssessmentStatistical Evaluation

Metrics Evaluation: Regression

analysis on ability of the metrics to

predict the ground truth assessment

Data Analysis: Qualitative study
based on Grounded Theory method

Define Metrics for quantifying

extent of support/violation of each

pattern/practice and tenet

Automatic Calculation of generated
metrics based on the system

component models

System Component

Model

Data Collection Phase

Repositories

Research Papers

Formulation of Core Decisions

Establish a Rating Scheme for

System Assessment: Ordinal scale

based on support or violation of

patterns/practices and tenets

Static Code Analysis

Ground Truth Definition: Manual

assessment of system model

according to rating scheme

Definition of Decision Options:

Patterns and practices

Extraction of Decision Drivers:

Quality attributes/Tenets

Model Visualisation
Codeable Models

Generator

Web Resources

Figure 6.1: Overview diagram of the research method followed in this study

From these we derived a ground truth for our study (the ground truth and its calculation rules are
described in Section 6.5) as well as a set of metrics for automatically calculating conformance
to each individual pattern or practice per decision. We then used the ground truth data to assess
how well the hypothesized metrics can possibly predict the ground truth data by performing an
ordinal regression analysis. Ordinal regression is a widely used method for modeling an ordinal
response’s dependence on a set of independent predictors, which is applicable in a variety of
domains. For the ordinal regression analysis we used the lrm function from the rms package in
R [FEH15].

6.4.2 Model Generation

We began by performing an iterative study of a variety of microservice-related knowledge sources,
and we gradually refined a meta-model which contains all the required elements to help us
reconstruct existing microservice-based systems. In order to investigate the ontology, and to
evaluate the meta-model’s efficiency, we gathered a number of microservice-based systems,
summarized in Table 3.1. Each is either a system published by practitioners (on GitHub and/or
practitioner blogs) or a system variant adapted from a published example according to discussions
in the relevant literature in order to explore the possible decision space. Apart from the specific

71

6 Assessing Architecture Conformance to Coupling-Related Patterns and Practices in Microservices

variations described in Table 3.1 all other system aspects remained the same as in the base models.
The systems were taken from 9 independent sources in total. They were developed by practi-

tioners with microservice experience, and they are representative of the best practices summarized
in Section 6.3. We performed a fully manual static code analysis for those models where the
source code was available (7 of our 9 sources; two were modeled from documentation published
by the practitioners).

To create our models, we used the Python modeling library CodeableModels described in
Chapter 3.7.

The result is a set of precisely modeled component models of the examined software systems
(modeled using the techniques described below). This resulted in a total of 27 models summarized
in Table 3.1. We assume that our evaluation systems are, or reflect, real-world practical examples
of microservice architectures. As many of them are open source systems with the purpose of
demonstrating practices or technologies, they are at most of medium size and modest complexity,
though.

6.4.3 Methods for Modeling Microservice Component Architectures

From an abstract point of view, a microservice-based system is composed of components and
connectors, with a set of component types for each component and a set of connector types for
each connector. For modeling microservice architectures we followed the method reported in our
previous work [ZNL17].

6.5 Ground Truth Calculations

In this section, we present and describe the calculation of the ground truth assessment for each
of the decisions from Section 6.3. The results of those assessments are reported in Table 6.1.
The assessment begins with a manual evaluation by the authors on whether each of the relevant
patterns (decision options) is either Supported, Partially Supported, or Not Supported (S, P, N in
Table 6.1). Based on this and informed by the description of the impacts of the various decision
options in Section 6.3, we combined the outcome of all decision options to derive an ordinal
assessment on how well the decision as a whole is supported in each model, using the ordinal
scale: [++: very well supported, + : well supported, o : neutral, -: badly supported, --: very badly
supported]. This was done according to best practices documented in literature. For instance,
following the ordinal scale the assessment for the model BM1 is + : well supported, since a)
option Database per Service is not supported, b) some services have a shared database, but c)
they do not share data via the shared database.

For the Inter-Service Coupling through Databases decision, we derive the following scoring
scheme for our ground truth assessment:

• ++: All services (which require data persistence) have individual databases Database per
Service.

• +: Some services have Shared Databases and no Data Shared via the Shared Databases.

• o: All services have Shared Databases and no Data Shared via the Shared Databases.

72

6.5 Ground Truth Calculations

D
at

ab
as

e-
ba

se
d

In
te

r-
Se

rv
ic

e
C

ou
pl

in
g BM1

BM2

BM3

CO1

CO2

CO3

CI1

CI2

CI3

CI4

EC1

EC2

EC3

ES1

ES2

ES3

FM1

FM2

FM3

HM1

HM2

RM1

RM2

RM3

RS

TH1

TH2

D
at

ab
as

e
pe

r
Se

rv
ic

e
N

S
S

S
S

P
S

S
S

S
S

S
N

S
N

P
S

S
S

S
S

N
S

S
N

S
S

Sh
ar

ed
D

at
ab

as
e

P
N

N
N

N
P

N
N

N
N

N
N

S
N

S
P

N
N

N
N

N
S

N
N

S
N

N
D

at
a

Sh
ar

ed
vi

a
Sh

ar
ed

D
B

N
N

N
N

N
P

N
N

N
N

N
N

S
N

N
N

N
N

N
N

N
N

N
N

N
N

N
A

ss
es

sm
en

ts
+

++
++

++
++

-
++

++
++

++
++

++
--

++
o

+
++

++
++

++
++

o
++

++
o

++
++

In
te

r-
Se

rv
ic

e
C

ou
pl

in
g

th
ro

ug
h

Sy
nc

hr
on

ou
sI

nv
oc

at
io

ns

BM1

BM2

BM3

CO1

CO2

CO3

CI1

CI2

CI3

CI4

EC1

EC2

EC3

ES1

ES2

ES3

FM1

FM2

FM3

HM1

HM2

RM1

RM2

RM3

RS

TH1

TH2

As
yn

ch
ro

no
us

D
ir

ec
t

In
te

rc
on

ne
c-

tio
ns

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
S

S
P

P
N

N
N

P
N

N

Pu
bS

ub
/E

ve
nt

So
ur

ci
ng

In
te

rc
on

ne
c-

tio
ns

S
N

N
N

N
N

N
N

N
N

N
S

N
P

N
N

N
N

N
N

S
P

N
N

N
N

P

As
yn

ch
In

te
r-

co
m

m
un

ic
at

io
n

vi
a

AP
I

G
W

N
N

S
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N

Sh
ar

ed
D

at
ab

as
e

In
te

rc
on

ne
ct

io
ns

N
N

N
N

N
P

N
N

N
N

N
N

S
N

N
N

N
N

N
N

N
N

N
N

N
N

N
M

es
sa

gi
ng

In
te

rc
on

ne
ct

io
ns

N
N

N
N

S
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
P

N
N

P
N

N
A

ss
es

sm
en

ts
++

--
-

--
++

-
--

--
--

--
--

++
o

+
--

--
--

+
+

-
++

+
--

--
o

--
+

In
te

r-
Se

rv
ic

e
C

ou
pl

in
g

th
ro

ug
h

Sh
ar

ed
Se

rv
ic

es

BM1

BM2

BM3

CO1

CO2

CO3

CI1

CI2

CI3

CI4

EC1

EC2

EC3

ES1

ES2

ES3

FM1

FM2

FM3

HM1

HM2

RM1

RM2

RM3

RS

TH1

TH2

D
ir

ec
tS

er
vi

ce
Sh

ar
in

g
N

N
N

N
N

N
P

N
P

N
N

N
N

P
P

P
P

P
P

P
N

N
N

N
P

P
N

Tr
an

si
tiv

el
y

Sh
ar

ed
Se

rv
ic

es
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
P

N
N

N
S

N
N

N
N

C
yc

lic
D

ep
en

de
nc

ie
s

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

S
N

N
N

N
S

N
N

N
A

ss
es

sm
en

ts
++

++
++

++
++

++
o

++
o

++
++

++
++

o
o

o
o

o
--

o
++

++
o

--
o

o
++

Table 6.1: Ground truth assessment results

73

6 Assessing Architecture Conformance to Coupling-Related Patterns and Practices in Microservices

• -: Some services have Shared Databases and Data Shared via the Shared Databases.

• --: All services have Shared Databases and Data Shared via the Shared Databases.

From the Inter-Service Coupling through Synchronous Invocations decision, we derive the
following scoring scheme for our ground truth assessment:

• ++: All services communicate asynchronously via Message Brokers or Publish/Subscribe
or Stream Processing

• +: All services communicate asynchronously via API Gateway or HTTP Polling or
Direct Asynchronous calls, or (some) via Message Brokers or Publish/Subscribe or Stream
Processing.

• o: None or some services communicate asynchronously and all other services communicate
asynchronously via Data Sharing (e.g. Shared DB).

• -: None or some services communicate asynchronously, none or some communicate
asynchronously via Data Sharing, some services communicate synchronously.

• --: All services communicate synchronously.

Finally, from the Inter-Service Coupling through Shared Services decision, we derive the
following scoring scheme for our ground truth assessment:

• ++: None of the services is a Directly Shared Service or Transitively Shared Service and
no Cyclic Dependencies exist.

• +: Some of the services are Transitively Shared Services , but none are Directly Shared
Services and no Cyclic Dependencies exist.

• o: Some or none of the services are Transitively Shared Services and some are Directly
Shared Services, but no Cyclic Dependencies exist.

• -: Some of the services are Transitively Shared Services and all other services are Directly
Shared Services, but no Cyclic Dependencies exist.

• --: There are Cyclic Dependencies or all the services are Transitively Shared Components
and all the services are Directly Shared Components.

6.6 Metrics

In this section, we describe the metrics we have hypothesized for each of the decisions described
in Section 6.3. All metrics, unless otherwise noted, are a continuous value with range from 0
to 1, with 1 representing the optimal case where a set of patterns is fully supported, and 0 the
worst-case scenario where it is completely absent.

74

6.6 Metrics

6.6.1 Metrics for Inter-Service Coupling through Databases Decision

Database Type Utilization (DTU) metric. This metric returns the number of the connectors
from Services to Individual Databases in relation to the total number of Service–to–Database
connectors. This way, we can measure how many services are using individual databases.

DTU =
Database per Service Links

Total Service-to-Database Links

Shared Database Interactions (SDBI) metric. Although a Shared Database is considered as
an anti-pattern in microservices, there are many systems that make use of it either partially or
completely. To measure its presence in a system, we count the number of interconnections via a
Shared Database compared to the total number of service interconnections.

SDBI =
Service Interconnections with Shared Database

Total Service Interconnections

6.6.2 Metrics for Inter-Service Coupling through Synchronous
Invocations Decision

Service Interaction via Intermediary Component (SIC) metric. We defined this metric to
measure the proportion of service interconnections via asynchronous relay architectures such
as Message Brokers, Publish/Subscribe, or Stream Processing. These represent the best current
practices, and are not exhaustive; should any new architectures emerge, these should be added to
this list.

SIC =
Service Interconnections via [Message Brokers | Pub/Sub | Stream]

Total Service Interconnections

Asynchronous Communication Utilization (ACU) metric. This metric measures the propor-
tion of the sum of asynchronous service interconnections (via API Gateway / HTTP Polling /
Direct calls / Shared Database) to the total number of service interconnections.

ACU =
Asynchronous Service Interconnections via [API | Polling | Direct Calls | Shared DB]

Total Service Interconnections

6.6.3 Metrics for Inter-Service Coupling through Shared Services
Decision

Direct Service Sharing (DSS) metric. For measuring DSS we count all the directly shared
services and set this number in relation to the total number of system services. To this add all the
shared services connectors in relation to the total number of services interconnections. This gives

75

6 Assessing Architecture Conformance to Coupling-Related Patterns and Practices in Microservices

us the proportion of the directly shared elements in the system.

DSS =

Shared Services
Total Services

+
Shared Services Connectors

Total Service Interconnections
2

Transitively Shared Services (TSS) metric. For measuring TSS we count all the transitively
shared services and set this number in relation to the total number of system services. To this
we add all the transitively shared service connectors in relation to the total number of service
interconnections. This gives us the proportion of the transitively shared elements in the system.

TSS =

Transitively Shared Services
Total Services

+
Transitively Shared Services Connectors

Total Service Interconnections
2

Cyclic Dependencies Detection (CDD) metric. Let SG = (S,C) be the service graph, S the
set of service nodes, and C the set of connector edges in a microservice model. Based on the
generic definition of closed paths, we define a closed service path in SG as a sequence of services
s1, s2, . . . , sn (each service 2 S) such that (sn, sn + 1) 2 C is a directed connector between
services for i = 1, 2, . . . , n and s1 = sn. A service cycle is a closed service path in which no
service node is repeated except the first and last, and which contains at least two distinct service
nodes. Let ServiceCycles() return the set of all service cycles in a service graph. CDD returns
1 (True) if there is at least one cyclic dependency in the model:

CDD =

(
1 : if |ServiceCycles(SG)| = 0

0 : otherwise

6.6.4 Metrics Calculation Results

We note that for the Inter-Service Coupling through Shared Services decision as well as SDBI
metric, our metrics scale is reversed in comparison to the other two decisions, because here
we detect the presence of an anti-pattern: the optimal result of our metrics is 0, and 1 is the
worst-case result.

The metrics results for each model per decision metric are presented in Table 6.2.

6.7 Ordinal Regression Analysis Results

The dependent outcome variables are the ground truth assessments for each decision, as described
in Section 6.5 and summarized in Table 6.1. The metrics defined in Section 6.6 and summarized
in Table 6.2 are used as the independent predictor variables. The ground truth assessments are
ordinal variables, while all the independent variables are measured on a scale from 0.0 to 1.0.
The objective of the analysis is to predict the likelihood of the dependent outcome variable for
each of the decisions by using the relevant metrics for each decision.

76

6.7 Ordinal Regression Analysis Results

Metrics
BM1 BM2 BM3 CO1 CO2 CO3 CI1 CI2 CI3 CI4 EC1 EC2 EC3

Database-based Inter-Service Coupling

DTU 0.33 1.00 1.00 1.00 1.00 0.60 1.00 1.00 1.00 1.00 1.00 1.00 0.00

SDBI 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Inter-Service Coupling through Synchronous Invocations

SIC 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

ACU 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Inter-Service Coupling through Shared Services

DSS 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.38 0.00 0.00 0.00 0.00

TSS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CDD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Metrics
ES1 ES2 ES3 FM1 FM2 FM3 HM1 HM2 RM1 RM2 RM3

RS
TH1 TH2

Database-based Inter-Service Coupling

DTU 1.00 0.00 0.33 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.66 1.00 1.00

SDBI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Inter-Service Coupling through Synchronous Invocations

SIC 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.80 1.00 0.00 0.00 0.11 0.00 0.60

ACU 0.00 0.00 0.00 0.00 1.00 0.08 0.50 0.20 0.00 0.00 0.00 0.11 0.00 0.00

Inter-Service Coupling through Shared Services

DSS 0.27 0.34 0.34 0.62 0.47 0.55 0.52 0.00 0.00 0.00 0.00 0.36 0.33 0.00

TSS 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.18 0.16 0.00 0.00 0.00

CDD 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

Table 6.2: Metrics Calculation Results

Each resulting regression model consists of a baseline intercept and the independent variables
multiplied by coefficients. There are different intercepts for each of the value transitions of the
dependent variable (�Badly Supported, �Neutral, �Well Supported, �Very Well Supported),
while the coefficients reflect the impact of each independent variable on the outcome. For example,
a positive coefficient, such as +5, indicates a corresponding five-fold increase in the dependent
variable for each unit of increase in the independent variable; conversely, a coefficient of -30
would indicate a thirty-fold decrease.

The statistical significance of each regression model is assessed by the p-value; the smaller the
p-value, the stronger the model. A p-value smaller than 0.05 is generally considered statistically
significant. In Table 6.3, we report the p-values for the resulting models, which in all cases are
very low, indicating that the sets of metrics we have defined are able to predict the ground truth
assessment for each decision with a high level of accuracy.

77

6 Assessing Architecture Conformance to Coupling-Related Patterns and Practices in Microservices

Intercepts/Coefficients Value Model p-value
Database-based Inter-Service Coupling

Intercept (�Badly Supported) 2.6572

1.706019e-06

Intercept (�Neutral) 0.8789
Intercept (�Well Supported) -1.3820
Intercept (�Very Well Supported) -3.1260
Metric Coefficient (DTU) 6.4406
Metric Coefficient (SDBI) –3.7048
Inter-Service Coupling through Synchronous Invocations

Intercept (�Badly Supported) -2.6973

6.705525e-11

Intercept (�Neutral) -4.4087
Intercept (�Well Supported) -5.8513
Intercept (�Very Well Supported) -15.3677
Metric Coefficient (SIC) 17.3520
Metric Coefficient (ACU) 6.5520
Inter-Service Coupling through Shared Services

Intercept (�Neutral) 59.4089

1.625730e-10
Intercept (�Very Well Supported) 9.7177
Metric Coefficient (DSS) -82.4474
Metric Coefficient (TSS) -122.2583
Metric Coefficient (CDD) -57.4650

Table 6.3: Regression Analysis Results

6.8 Discussion

In this section, we first discuss what we have learned in our study that helps to answer the research
questions and then discuss potential threats to validity.

6.8.1 Discussion of Research Questions

To answer RQ3.1 and RQ3.2, we proposed a set of generic, technology-independent metrics
for each coupling-related decision, and to each decision option corresponds at least one metric.
We objectively assessed for each model how well patterns and/or practices are supported for
establishing the ground truth, and extrapolated this to how well the broader decision is supported.
We formulated metrics to numerically assess a pattern’s implementation in each model, and
performed an ordinal regression analysis using these metrics as independent variables to predict
the ground truth assessment. Our results show that every set of decision-related metrics can
predict our objectively evaluated assessment with high accuracy. This suggests that automatic
metrics-based assessment of a system’s conformance to the tenets embodied in each design
decision is possible with a high degree of confidence.

Here, we make the assumption that the source code of a system can be mapped to the models
used in our work. To enable this, we used rather simplistic modeling means, which can rather
easily be mapped from a specific source code to the system models. However, it should be noted
that full automation of this mapping is an additional effort that needs to be considered and is the
subject of ongoing work on our part.

78

6.8 Discussion

Regarding RQ3.3, we consider that existing modeling practices can be easily mapped to
our microservice meta-model and there is no need for major extensions. More specifically, for
completing the modeling of our evaluation system set, we needed to introduce 25 component
types and 38 connector types, ranging from general notions such as the Service component type,
to very technology-specific classes such as the RESTful HTTP connector, which is a subclass of
Service Connector. Our study shows that for each pattern and practice embodied in each decision,
and the proposed metrics, only a small subset of the meta-model is required.

The decisions Inter-Service Coupling through Databases and Inter-Service Coupling through
Shared Services require to model at least the Service and the Database component types and the
technology-related connector types (e.g. Database Connector, RESTful HTTP and Asynchronous
Connector) and the read/write process which explicitly modeled in the Database Connector
type. The Inter-Service Coupling through Synchronous Invocations decision requires a number
of additional components (e.g. Event Sourcing, Stream Processing, Messaging, PubSub) and
the respective connectors (e.g. Publisher, Subscriber, Message Consumer, Messages Producer,
RESTful HTTP and Asynchronous Connector) to be modeled.

6.8.2 Threats to Validity

We deliberately relied on third-party systems as the basis for our study to increase internal
validity, thus avoiding bias in system composition and structure. It is possible that our search
procedures introduced some kind of unconscious exclusion of certain sources; we mitigated this
by assembling an author team with many years of experience in the field (including substantial
industry experiences), and performing very general and broad searches. Given that our search was
not exhaustive, and that most of the systems we found were made for demonstration purposes, i.e.
relatively modestly sized, this means that some potential architecture elements were not included
in our meta-model. In addition, this raises a possible threat to external validity of generalization
to other, and more complex, systems. We nevertheless feel confident that the systems documented
are a representative cross-cut of current practices in the field, as the points of variance between
them were limited and well attested in the literature. Another potential threat is the fact that
the variant systems were derived by the author team. However, this was done according to best
practices documented in literature. We carefully made sure only to change specific aspects in
a variant and keep all other aspects stable. That is, while the variants do not represent actual
systems, they are reasonable evolutions of the original designs.

The modeling process is also considered as source of internal validity threat. The models
of the systems were repeatedly and independently cross-checked by the author team that has
considerable experience in similar methods, but the possibility of some interpretative bias remains:
other researchers might have coded or modeled differently, leading to different models. As a
mitigation, we also offer the whole models and the code as open access artifacts for review.
Since we aimed only to find one model that is able to specify all observed phenomena, and this
was achieved, we consider this threat not to be a major issue for our study. The ground truth
assessment might also be subject to different interpretations by different practitioners. For this
purpose, we deliberately chose only a three-step ordinal scale, and given that the ground truth
evaluation for each decision is fairly straightforward and based on best practices, we do not
consider our interpretation controversial. Likewise, the individual metrics used to evaluate the

79

6 Assessing Architecture Conformance to Coupling-Related Patterns and Practices in Microservices

presence of each pattern were deliberately kept as simple as possible, so as to avoid false positives
and enable a technology-independent assessment. As stated previously, generalization to more
complex systems might not be possible without modification. But we consider that the basic
approach taken when defining the metrics is validated by the success of the regression models.

6.9 Conclusions and Future Work

Our approach considered that it is achievable to develop a method for automatically assessing
coupling related tenets in microservice decisions based on a microservice system’s component
model. We have shown that this is possible for microservice decision models that contain patterns
and practices as decision options. In this work, we first modeled the key aspects of the decision
options using a minimal set of component model elements. These could be possibly automatically
extracted from the source code. Then we derived at least one metric per decision option and
used a small reference model set as a ground truth. We then used ordinal regression analysis
for deriving a predictor model for the ordinal variable. The statistical analysis shows that each
decision related metrics are quite close to the manual, pattern-based assessment.

There are many studies related on metrics for component model and other architectures so
far, but specifically for microservice architectures and their coupling related tenets have not
been studied. Based on our discussion in Section 6.2, assessing microservice architectures using
general metrics it is not very helpful. Our approach is one of the first that studies a metrics-based
assessment of coupling-related tenets in the microservices domain. We aim to a continuous
assessment, i.e. we envision an impact on continuous delivery practices, in which the metrics
are assessed with each delivery pipeline run, indicating improvement, stability, or deterioration
in microservice architecture conformance. With small changes, our approach could also be
applied, for instance, during early architecture assessment. As future work, we plan to study
more decisions, tenets, and related metrics. We also plan to create a larger data set, thus better
supporting tasks such as early architecture assessment in a project.

80

7 Metrics for Assessing Architecture
Conformance to Microservice
Architecture Patterns and Practices

This chapter builds upon the approach outlined in Chapter 6 by introducing three new architectural
design decisions that address important aspects, namely External API, Inter-Service Message
Persistence and End-to-end Tracing. By combining these two approaches, it becomes possible to
assess whether most of the significant aspects in microservices are being supported or violated.

7.1 Introduction

Microservices architectures [New15, Zim17] structure an application as a collection of autonom-
ous services, modeled around a domain. They share a set of important tenets such as development
in independent teams, cloud-native technologies and architectures, polyglot technology stacks
including polyglot persistence, lightweight containers, loosely coupled service dependencies, high
releasability, end-to-end tracing and monitoring, and continuous delivery [Zim17, LF04, New15].
This work examines ways to ensure architecture conformance to these microservice tenets while
applying established patterns and practices. That is, many architectural patterns that reflect
recommended “best practices” in a microservices context have already been published in the liter-
ature [Ric17, ZSZ+19, Sko19]. Conformance to these patterns impacts how far a microservice
system supports the desired microservices tenets.

Unfortunately, as real-world, industrial microservice-based systems are usually highly complex,
often highly polyglot, and rapidly changed and released (see, e.g. [KH19, Che18]), an automatic
or semi-automatic assessment of their pattern conformance is difficult: real-world systems
feature various combinations of these patterns and different degrees of violations of the same.
Different technologies in various parts of the system implement the patterns in different ways,
and these implementations are continuously changing at a high pace. Making matters even more
challenging, a high level of automation is required for complex systems. While for small-scale
systems of a few services, a manual assessment by an expert is probably as quick and as accurate
as an automated one, that is not true for industrial-scale systems of several hundred or more
services, which are being developed by different teams or companies, evolving at different paces.
In that case, manual assessment is laborious and inaccurate, and a more automated method would
vastly improve cost-effectiveness. Another major challenge is that no microservice system can
support all microservice tenets well at once. Rather the architectural decisions for or against a set
of related patterns and practices need to make a trade-off among the desired tenets and important
other quality attributes [HWB17, Zim17]. Under these considerations, this work aims to study
the following research questions:

81

7 Metrics for Assessing Architecture Conformance to Microservice Architecture Patterns and Practices

• RQ3.4 How can conformance to the tenets embodied in microservice architecture decision
options (i.e. patterns and practices) be automatically assessed?

• RQ3.5 How well do measures for assessing decision options and their associated tenets
perform?

• RQ3.6 What is a set of minimal elements needed in a microservice architecture model to
compute such measures?

Our approach to address these challenges is to define a set of metrics for each microservice
decision associated to the decision’s options, i.e. at least one metric per major decision option.
Based on a manual assessment of a small set of models and model variants that is representative
for the possible decision options and option combinations of the studied decisions, we derive
a ground truth. The ground truth is established by objectively assessing whether each decision
option is supported. By combining the outcome of all options of a decision, we can then derive an
ordinal assessment of how well the decision is supported in each model. We then use the ground
truth data to assess how well the hypothesized metrics can possibly predict the ground truth data
by performing an ordinal regression analysis. We propose an architectural component model
based approach which uses only modeling elements that can be derived from the system’s source
code. For this reason, it is important to be able to work with a minimal set of modeling elements,
else it might be difficult to continuously parse them from the source code.

To study the research questions we selected and modeled three major decisions, which represent
important aspects in architecting microservices. To illustrate our approach we selected by purpose
very different aspects of microservices architecture, in particular: the decision for an external
API, message persistence, and end-to-end tracing. For each of these we hypothesized a number of
generic, technology-independent metrics to measure conformance to the respective decisions. For
the evaluation of these metrics, we modeled 24 architecture models taken from the practitioner
literature and assessed each of them manually regarding its support of the patterns and practices
contained in each decision. We then compared the results in depth and statistically over the whole
evaluation model set. The results show that a subset of each decision related metrics are quite
close to the manual, pattern-based assessment.

This chapter is structured as follows: Section 7.2 compares to related work. In Section 7.3
we explain the decisions considered in this chapter and the related patterns/practices. Next, we
describe the research methods and the tools we have applied in our study in Section 7.4. In
Section 7.5 we report how the ground truth data for each decision is calculated. Section 7.6
introduces our hypothesized metrics. Section 7.7 describes the metrics calculations results for
our models and the results of the ordinal regression analysis. Section 7.8 discusses the RQs
regarding the evaluation results and analyses the threats to validity. Finally, in Section 7.9 we
draw cocnclusions and discuss future work.

7.2 Related Work

Much research has been conducted in collecting and systematizing microservice patterns. For
instance, Richardson [Ric17] collected microservice patterns related to major design and archi-
tectural practices. Zimmermann et al. [ZSZ+19] introduce microservice API related patterns.

82

7.3 Background

Skowronski [Sko19] collected best practices for event-driven microservice architectures. Mi-
croservice fundamentals and best practices are also discussed by Fowler and Lewis [LF04], and
are summarized in a mapping study by Pahl and Jamshidi [PJ16]. Taibi and Lenarduzzi [TL18]
study microservice bad smells, i.e. practices that should be avoided (which would correspond to
metrics violations in our work).

Many of the works on service metrics today are focused on runtime properties (see e.g. [PRG18]).
A number of studies has used metrics to assess microservice-based software architectures,
e.g. [PW09, ZNL17, BWZ17], but each is focused on narrow sets of architecture-relevant tenets
(e.g. loose coupling), and no general approach for an assessment across different microservice
tenets exists. Pautasso and Wilde [PW09] propose a composite, facet-based metric for the
assessment of loose coupling in service-oriented systems. Zdun et al. [ZNL17] study the inde-
pendent deployment of microservices by defining metrics to assess architecture conformance to
microservice patterns, focused on two aspects: independent deployment and shared dependencies
of services. Bogner et al. [BWZ17] propose a maintainability quality model which combines
eleven easily extracted code metrics into a broader quality assessment. Engel et al. [ELBH18]
also propose a method of using real-time system communication traces to extract metrics on
conformance to recommended microservice design principles such as loose coupling and small
service size.

These studies focus on treating microservice architectures as a question of components and
connectors, factoring in the technologies used, and producing assessments that combine different
assessment parameters (i.e. metrics). Such metrics, if automatically collected, can be utilized as
part of larger assessment models/frameworks during design and development time. Our work
broadly follows the same approach, but extends it to different architecture tenets relevant to
microservice-specific design decisions. Once metrics can be checked automatically, our approach
can be classified as a metrics-based, microservice-specific approach for software architecture
conformance checking. In general, approaches for architecture conformance checking are often
based on automated extraction techniques [GAK99, VDHK+04]. Techniques that are based on a
broad set of microservice-related metrics to cover multiple microservice tenets do not yet exist.

7.3 Background

External API Decision. One central decision in microservice-based systems is how the
external API is offered to clients. This is tightly coupled to the loose coupling, releasability,
independent development and deployment, and continuous delivery tenets, as it determines the
coupling between client and internal system concerns. In some service-based systems, the clients
can call into system services directly, meaning high coupling and thus difficulties in releasing,
developing, and deploying the clients and system services independently of each other. A better
decoupling level might be reached through an API Gateway [Ric17], a pattern that describes
a common entry point for the system through which all requests are routed. It is a specialized
variant of a Reverse Proxy, which covers only the routing aspects of an API Gateway but not
further API abstractions such as authentication, rate limiting, and so on (see [ZSZ+19]). A variant
of API Gateway for servicing different types of clients (e.g., mobile and desktop clients) is the
Backends for Frontends pattern [Ric17], which offers a fine-grained API for each specific type of

83

7 Metrics for Assessing Architecture Conformance to Microservice Architecture Patterns and Practices

client. A variant where clients can call into system services directly, but are still decoupled is API
Composition [Ric17], i.e. a service which can invoke other microservices and provides an API
for the connected services.

Inter-Service Message Persistence Decision. In many business-critical microservice
systems, an important concern is that no messages get lost. This concern directly influences
the communication between services, and, depending on which option is chosen, the coupling
between services, their releasability, their independent development and deployment, as well as
their continuous delivery are impacted. Many systems choose communication means that offer
no inter-service message persistence. Some patterns better support the related aspects of the
microservice tenets: The Messaging pattern [HW03a] describes service communication, in which
persistent message queuing is used to store a producer’s messages until the consumer receives
them. Many Stream Processing [Sko19] components (e.g. Apache Kafka) offer a very similar
message persistence level. These solutions offer optimal inter-service message persistence, in
the sense that the technology is designed for providing support for it. Some other solutions
applied in the microservice field can be used (or adapted) to support it: Interaction through a
Shared Database, even though frowned upon with regard to other microservice tenet aspects,
supports some level of message persistence as well, but not the automated support of Messaging.
A more microservice-style technique that supports this level of database-based persistence is
the combination of the Outbox and the Transaction Log Tailing patterns [Ric17] in which each
service that sends messages has an outbox database table. As part of the database transaction,
the service sends messages by inserting them into the outbox table. A message relay component
reads the outbox table and publishes the messages to a message broker. Using the Event Sourcing
pattern [Ric17] every change to the state of the system should be contained in an event object and
stored sequentially in order to be accessible over time. The events are persisted in an event store.
This way at least a temporary message persistence is achieved.

End-to-end Tracing Decision. Logging and monitoring are standard practices for creating
observability of microservices. As microservice architectures are used for highly distributed
and polyglot systems with complex interactions, many of them go one step further and realize
end-to-end tracing. It supports tracing and monitoring tenets directly, as well as understandability
concerns during independent development and deployment, mastering complexity of highly
decoupled services, and thus indirectly releasability and continuous delivery. Like in the other
decisions, one option is to offer No Tracing Support. In contrast, Distributed Tracing [Ric17]
is a method used to profile and monitor applications through recording traces on the distributed
components. It can either be supported on the microservices of a system, on the gateways of a
system, or on both. If both support Distributed Tracing, this is optimal, as all relevant traces in
ingress, egress, and inter-service communication can be recorded. If it is not supported, a lower
level of tracing and monitoring can be reached by routing the service communication through
a central component, such as a Publish/Subscribe or Message Broker component [HW03a].
This can also be achieved if all internal inter-service communication is routed through the API
Gateway, or if Event Sourcing or Event Logging [Ric17, Sko19] are used, which store all events
temporarily. None of the later techniques has the same level of support as Distributed Tracing,

84

7.4 Research and Modeling Methods

but all of them can – with some programming or manual effort – be used to reconstruct traces.

7.4 Research and Modeling Methods

7.4.1 Model Selection Methods

This study focuses on architecture conformance to microservice patterns and practices. To be
able to study this, we first performed an iterative study of a variety of microservice-related
knowledge sources, and we refined a meta-model which contains all the required elements to
help us reconstruct existing microservice-based systems. For problem investigation and as an
evaluation model set for eventually creating a ground truth for our study, we have gathered
a number of microservice-based systems, summarized in Table 3.1. Each of them is either
taken directly from a system published by practitioners (on GitHub and/or practitioner blogs)
or a system variant adapted according to discussions in the relevant literature. The systems
were taken from 9 independent sources. They were developed by practitioners with microservice
experience, and they provide a good representation of the microservices best practices summarized
in Section 7.3. We performed a fully manual static code analysis for those models where the
source code was available (i.e. 7 of our 9 sources; two were modeled based on documentation
created by the practitioners). The result is a set of precisely modeled component models of the
software systems (modeled using the techniques described below). Variations were modeled to
cover the complete design space of our three decisions described in Section 7.3, according to
the referenced practitioner sources. Apart from the variations described in Table 3.1 all other
system aspects remained the same as in the base models. This resulted in a total of 24 models
summarized in Table 3.1. We assume that our evaluation models are close to models used in
practice and real-world practical needs for microservices. As many of them are open source
systems with the purpose of demonstrating practices, they are at most of medium size, though.

7.4.2 Metrics Definition, Ground Truth Calculation, and Statistical
Evaluation Methods

To measure conformance to the respective patterns and practices in the design decisions from
Section 7.3, we defined a set of metrics for each microservice decision associated to the decision’s
options, i.e. at least one metric per major decision option. Based on the manual assessment of
the models from Table 3.1, we derived a ground truth for our study (the ground truth and its
calculation rules are described in Section 7.5). The ground truth is established by objectively
assessing whether each decision option is supported, partially supported, or not supported. By
combining the outcome of all options of a decision, we then derived an ordinal assessment on
how well the decision is supported in each model, using the scale: [++: very well supported, +:
well supported, o: neutral, �: badly supported, ��: very badly supported]. Our scale does not
assume equal distances (i.e. it is not a Likert scale), but it assumes the given order. We then used
the ground truth data to assess how well the hypothesized metrics can possibly predict the ground
truth data by performing an ordinal regression analysis.

Ordinal regression is a widely used method for modeling an ordinal response’s dependence on
a set of independent predictors. For the ordinal regression analysis we used the lrm function from

85

7 Metrics for Assessing Architecture Conformance to Microservice Architecture Patterns and Practices

the rms package in R [FEH15].

7.4.3 Methods for Modeling Microservice Component Architectures

From an abstract point of view, a microservice-based system is composed of components and
connectors with a set of component types and a set of connector types. Our work has the goal to
automate metrics calculation and assessment based on the component model of a microservice
system. That is, if the system is manually modeled or the model can be derived automatically
from the source code, our approach is applicable. For modeling microservice architectures we
followed the method reported in our previous work [ZNL17]. All the code and models used in
and produced as part of this study have been made available online for reproducibility 1

7.5 Ground Truth Calculations for the Study

In this section, we report for each of the decisions from Section 7.3 how the ground truth data is
calculated based on manual assessment whether each of the relevant patterns is either Supported (
S in Table 7.1), Partially Supported (P in Table 7.1), or Not-Supported (N in Table 7.1). The
ordinal results of those assessments are then reported in the Assessments rows of Table 7.1.

External API

BM
1

BM
2

BM
3

C
O

1

C
O

2

C
O

3

C
I1

C
I2

C
I3

C
I4

EC
1

EC
2

EC
3

ES
1

ES
2

ES
3

FM
1

FM
2

H
M

1

H
M

2

R
M

R
S

TH
1

TH
2

Reverse Proxy S S S N S N S S N P P P P S S S N N N N S S P P
API Gateway S S S N S N S S N P P P P S S S N N N N S S P P
Backends for Frontends N N N N N N N N N N N N N S S S N N N N N N N N
API Composition N N N N N N N N P P N N N N N N N S S S N N P P
Assessments ++ ++ ++ -- ++ -- ++ ++ - o o o o ++ ++ ++ -- + + + ++ ++ o o
Persistent Messaging for Inter-Service Communication

BM
1

BM
2

BM
3

C
O

1

C
O

2

C
O

3

C
I1

C
I2

C
I3

C
I4

EC
1

EC
2

EC
3

ES
1

ES
2

ES
3

FM
1

FM
2

H
M

1

H
M

2

R
M

R
S

TH
1

TH
2

Messaging or Persistent
PubSub

N N N N S N N N N N N N N N N N N N N N S P N N

Shared Database Interac-
tion

N N N N N S N N N N N N S N N N N N N N N N N N

Outbox and Trans. Log Tail-
ing

N N

Event Sourcing S N N N N N N N N N N S N N N N N N N P N N N P
All Service Comm. Persist-
ent

S N N N S S N N N N N S N N N N N N N N S N N P

Assessments + -- -- -- ++ + -- -- -- -- -- + - -- -- -- -- -- -- - ++ o -- o
End-to-End Tracing

BM
1

BM
2

BM
3

C
O

1

C
O

2

C
O

3

C
I1

C
I2

C
I3

C
I4

EC
1

EC
2

EC
3

ES
1

ES
2

ES
3

FM
1

FM
2

H
M

1

H
M

2

R
M

R
S

TH
1

TH
2

Distributed Tracing on Ser-
vices

N N N N S S N N N N N N N N N N N S P S P P N N

Distributed Tracing on
Gatew.

N N N N S N N N N N N N N N N N N N S S N N N N

Pub/Sub, Messaging S N N N S N N N N N N S N P N N N N N P S P N S
Inter-service comm. via
Gatew.

N S S N N N P S N P S N N N P P N N N N N N N N

Event Sourcing/Logging S N N N N N N N N N N S N N N N N N N P S N N S
Assessments o - - -- ++ ++ -- - -- -- - o -- -- -- -- -- + + ++ o o -- o

Table 7.1: Ground Truth Data

Following the argumentation, which decision option explained in Section 7.3 has which impact
on the External API Decision related tenets, we can derive the following scoring scheme for our
ground truth assessment of this decision:

1https://doi.org/10.5281/zenodo.3999477

86

7.5 Ground Truth Calculations for the Study

• ++: All client traffic is routed through an API Gateway or Backends for Frontends.

• +: All client-connected services provide API Composition or only Reverse Proxy capabilit-
ies.

• o: Some client traffic is routed through API Gateway or Backends for Frontends.

• -: Some client-connected services provide API Composition or only Reverse Proxy
capabilities.

• --: All client traffic is directly connected to backend services and no API Composition
happens.

From the argumentation for the Inter-service Message Persistence Decision, we can derive the
following scoring scheme for our ground truth assessment:

• ++: Message Brokers or a persistent Publish/Subscribe or Stream Processing component
are used for all inter-service communication.

• +: All interservice communication is persisted by some combination of partial Message
Brokers, persistent Publish/Subscribe, or persistent Stream Processing or partial or full
coverage with Shared Database, Event Sourcing, Outbox/Transaction Log Tailing.

• o: A part of the interservice communication is persisted by partial coverage with Message
Brokers, persistent Publish/Subscribe, or persistent Stream Processing.

• -: A part of the interservice communication is persisted by partial coverage with Shared
Database, Event Sourcing, Outbox/Transaction Log Tailing.

• --: None of the above is supported.

Finally, from the argumentation for theEnd-to-end Tracing Decision, we can derive the follow-
ing scoring scheme for our ground truth assessment:

• ++: Distributed Tracing is fully supported on all services and gateways.

• +: Distributed Tracing is fully supported on either the services or the gateways.

• o: Distributed Tracing is partially supported or Event Sourcing/Event Logging are fully
supported.

• -: Publish/Subscribe, Message Broker, or Invocations Routed Via API Gateway are fully
supported for service interactions or those patterns are partially supported and at the same
time Event Sourcing/Event Logging are supported.

• --: None of the above is supported.

87

7 Metrics for Assessing Architecture Conformance to Microservice Architecture Patterns and Practices

7.6 Metrics

All metrics, unless otherwise noted, are a continuous value with range from 0 to 1, with 1
representing the optimal case where a set of patterns is fully supported, and 0 the worst-case
scenario where it is completely absent. For instance, in EC1 client traffic is partially routed
through API Gateway resulting CCF = 0.25. The metrics results for each model per decision
metric are presented in Table 7.2.

7.6.1 Metrics for the External API Decisions

Client-side Communication via Facade utilization metric (CCF). This metric returns the
number of the connectors from Clients to Facade components set in relation to the total number
of unique Client connectors. This way, we can measure how many unique client links are using
the External API used by one of the Facade components (i.e. offered through patterns such as
API Gateway, Reverse Proxy, Backends for Frontends).

CCF =
Number of Client to Facade Links

Number of Unique Client Links

In this metric (and in other metrics below), the number of unique client links is defined as
follows:

Number of Unique Client Links =
max{Number of Facades Linked to Clients,

Number of Clients Linked to Facades}
+Number of Client to Non-Facade/Non-Client Links

As a result, the only decision option remaining is API Composition, for which we formulated
the APIC metric.

API Composition utilization metric (APIC). In cases that a client is directly connected to
services, it is possible that these services offer an External API shielding the interfaces of other
services that are connected to them. That is, a client can have access to a system service via other
services. To detect such cases, we count the routes from the client to system services via other
services and set this number in relation to the total number of system services. That gives us
the proportion of services that are accessible by clients via other services. We then divide this
number with the unique client links to estimate the proportion of clients connected services which
are possibly composing an External API using API Composition.

APIC =

Number of Client to Services via other Services Routes
Total Number of Services

Number of Unique Client Links

88

7.6 Metrics

7.6.2 Metrics for Persistent Messaging for Inter-Service Communication
Decision

Service Messaging Persistence utilization metric (SMP). One important aspect in services
interconnections is the persistence of the exchanged messages. We defined this metric to measure
the proportion of the services interconnections that are made persistent through supporting
technology (i.e. Messaging or Stream Processing).

SMP =
Service Interconnections with Messaging or Stream Processing

Number of Service Interconnections

Shared DataBase utilization metric (SDB). Although a Shared Database is considered as
an anti-pattern in microservices, there are many systems that use it either partially or completely.
The pattern might be beneficial for persistent messaging, but definitely is not the optimal option.
To measure its presence in a system, we count the number of interconnections via a Shared
Database compared to the total number of interconnections. We note that for this metric, our
metrics scale is reversed in comparison to the other metrics, because here we detect the presence
of an anti-pattern: the optimal result of our metrics is 0, and 1 is the worst-case result.

SDB =
Service Interconnections with SharedDB

Number of Service Interconnections

Outbox/Event Sourcing utilization metric (OES). Outbox and Event Souring can ensure
temporary message persistence. Our metric measures the proportion of the interconnections with
Outbox/Event Sourcing to the total number of interconnections.

OES =
Service Interconnection with Outbox or Event Sourcing

Number of Service Interconnections

7.6.3 Metrics for End-to-End Tracing Decision

SFT =
Services and Facades Support Distributed Tracing

Number of Services and Facades

Service Interaction via Central Component utilization metric (SICC) and Service Inter-
action with Event Sourcing utilization metric (SIES). Distributed Tracing can be supported
by routing the inter-service communication via a central component (e.g. Publish/Subscribe,
Message Broker and API Gateway). Since Event Sourcing also enables tracing by tracking the
messages, we distinguish between systems that support Event Sourcing (SIES), and systems that
do not (SICC).

89

7 Metrics for Assessing Architecture Conformance to Microservice Architecture Patterns and Practices

SICC =
Service Interaction via Central Component w/o Event Sourcing

Number of Service Interconnections

SIES =
Service Interaction via Central Component with Event Sourcing

Number of Service Interconnections

7.7 Ordinal Regression Analysis Results

The metrics calculations for each model per each decision metric are presented in Table 7.2. The
dependent outcome variables are the ground truth assessments for each decision, as described
in Section 7.5 and summarized in Table 7.1. The metrics defined in Section 7.6 are used as the
independent predictor variables. The ground truth assessments are ordinal variables, while all
the independent variables are measured on a scale from 0.0 to 1.0. The aim of the analysis is to
predict the likelihood of the dependent outcome variable for each of the decisions by using the
relevant metrics.

Each resulting regression model consists of a baseline intercept and the independent variables
multiplied by coefficients. There are different intercepts for each of the value transitions of the
dependent variable (�Badly Supported, �Neutral, �Well Supported, �Very Well Supported),
while the coefficients reflect the impact of each independent variable on the outcome. For example,
a positive coefficient, such as +5, indicates a corresponding five-fold increase in the dependent
variable for each unit of increase in the independent variable; conversely, a coefficient of -30
would indicate a thirty-fold decrease.

In Table 7.3, we report the p-values for the resulting models, which in all cases are very low,
indicating that the sets of metrics we have defined are able to predict the ground truth assessment
for each decision with a high level of accuracy.

7.8 Discussion

7.8.1 Discussion of Research Questions

For answering RQ3.4 and RQ3.5, we suggested a set of generic, technology-independent
metrics for each microservice decision, and we associated at least one metric to each major
decision option. The ground truth is established by objectively assessing how well a pattern
and/or practice is supported in each model, and extrapolating this to how well the broader decision
is supported. We formulated metrics to assess a pattern’s implementation in each model, and
performed an ordinal regression analysis using these metrics as independent variables to predict
the ground truth assessment. Our results show that every set of decision-related metrics can
predict with high accuracy our objectively evaluated assessment. This suggests that automatic
metrics-based assessment of a system’s conformance to the tenets embodied in each design
decision is possible with a high degree of confidence.

90

7.8 Discussion

Regarding RQ3.6, we can assess that our microservice meta-model has no need for major
extensions and is easy to map to existing modeling practices. More specifically, in order to fully
model our evaluation model set, we needed to introduce 25 component types and 38 connector
types, ranging from general notions such as the Service component type, to very technology-
specific classes such as the RESTful HTTP connector, which is a subclass of Service Connector.
Our study shows that for each pattern and practice embodied in each decision and the proposed
metrics, only a small subset of the meta-model is required. The decision External API requires to
model at least the Service, Client, and the Facade component types and the technology-related
connector types (e.g. RESTful HTTP, Synchronous Connector, HTTP, HTTPS). The Persistent
Messaging for Inter-Service Communication and End-to-End Tracing decisions need a number of
additional components (e.g. Event Sourcing, Stream Processing, Messaging, PubSub) and the
respective connectors (e.g. Publisher, Subscriber, Message Consumer and Messages Producer) to
be modeled.

7.8.2 Threats to Validity

We deliberately relied on third-party systems as the basis for our study to increase internal
validity, thus avoiding bias in system composition and structure. It is possible that our search
procedures introduced some kind of unconscious exclusion of certain sources; we mitigated this
by assembling an author team with many years of experience in the field, and performing very
general and broad searches. Given that our search was not exhaustive, and that most of the systems
we found were made for demonstration purposes, i.e. relatively modestly sized, this means that
some potential architecture elements were not included in our meta-model. In addition, this raises
a possible threat to external validity of generalization to other, and more complex, systems. We
nevertheless feel confident that the systems documented are a representative cross-cut of current
practices in the field, as the points of variance between them were limited and well attested in the
literature. Another potential threat is the fact that the variant systems were derived by the author
team. However, this was done according to best practices documented in literature. We made
sure only to change specific aspects in a variant and keep all other aspects stable.

Another potential source of internal validity threat is the modeling process itself. The author
team has considerable experience in similar methods, and the models of the systems were
repeatedly and independently cross-checked, but the possibility of some interpretative bias
remains: other researchers might have coded or modeled differently, leading to different models.
As our goal was only to find one model that is able to specify all observed phenomena, and this
was achieved, we consider this threat not to be a major issue for our study. The ground truth
assessment might also be subject to different interpretations by different practitioners. For this
purpose, we deliberately chose only a three-step ordinal scale, and given that the ground truth
evaluation for each decision is fairly straightforward and based on best practices, we do not
consider our interpretation controversial. Likewise, the individual metrics used to evaluate the
presence of each pattern were deliberately kept as simple as possible, so as to avoid false positives
and enable a technology-independent assessment. As stated previously, generalization to more
complex systems might not be possible without modification. But we consider that the basic
approach taken when defining the metrics is validated by the success of the regression models.

91

7 Metrics for Assessing Architecture Conformance to Microservice Architecture Patterns and Practices

7.9 Conclusions and Future Work

In this chapter we have hypothesized that it is possible to develop a method to automatically assess
microservices tenets in microservice decisions based on a microservice system’s component
model. We have shown that this is possible for microservice decision models comprising patterns
and practices as decision options. Our approach first modeled the key aspects of the decision
options using a minimal set of component model elements (which could be automatically extracted
from the source code). Then we derived at least one metric per decision option and used a small
reference model set as a ground truth. We then used ordinal regression analysis for deriving a
predictor model for the ordinal variable. Our statistical analysis shows a high level of accuracy.

While so far many studies on metrics for component model and other architectures exist, the
specifics of microservice architectures and their particular tenets have not been studied. As
discussed in Section 7.2, only using general metrics does not help much in assessing microservice
architectures. Our approach is one of the first that studies a metrics-based assessment of multiple,
very different microservice tenets. Our main goal is a continuous assessment, i.e. we envision an
impact on continuous delivery practices, in which the metrics are assessed with each delivery
pipeline run, indicating improvements, stability, or deteriorations in microservice architecture
conformance. With small changes, our approach could also be applied, during early architecture
assessment.

As future work, we plan to study more decisions, tenets, and related metrics. We also plan to
create a larger data set, thus better supporting tasks such as early architecture assessment in a
project.

92

7.9 Conclusions and Future Work

Table 7.2: Metrics Calculation Results
Metrics

BM1BM2BM3CO1CO2CO3CI1 CI2 CI3 CI4 EC1 EC2

External API

CCF 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 0.50 0.25 0.25

APIC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.10 0.00 0.00

Persistent Messaging for Inter-Service Communication

SMP 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SDB 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

OES 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

End-to-End Tracing

SFT 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

SICC 0.00 1.00 1.00 0.00 1.00 1.00 0.14 1.00 0.00 0.60 1.00 0.00

SIES 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Metrics
EC3 ES1 ES2 ES3 FM1FM2HM1HM2RM

RS
TH1 TH2

External API

CCF 0.25 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.25 0.25

APIC 0.00 0.00 0.00 0.00 0.25 0.50 0.70 0.70 0.00 0.00 0.12 0.04

Persistent Messaging for Inter-Service Communication

SMP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.11 0.00 0.00

SDB 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

OES 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.66

End-to-End Tracing

SFT 0.00 0.00 0.00 0.00 0.00 1.00 0.90 0.90 0.14 0.62 0.00 0.00

SICC 0.00 0.60 0.45 0.45 0.00 0.00 0.00 0.00 1.00 0.11 0.00 0.00

SIES 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.66

93

7 Metrics for Assessing Architecture Conformance to Microservice Architecture Patterns and Practices

Table 7.3: Regression Analysis Results
Intercepts/Coefficients Value Model p-value
External API

Intercept (�Badly Supported) -3.5690

4.423828e-11

Intercept (�Neutral) -4.5042
Intercept (�Well Supported) -10.2692
Intercept (�Very Well Supported) -15.7271
Metric Coefficient (CCF) 20.3552
Metric Coefficient (APIC) 18.1419
Persistent Messaging for Inter-Service Communication

Intercept (�Badly Supported) -5.6344

2.002198e-09

Intercept (�Neutral) -9.5937
Intercept (�Well Supported) -11.2074
Intercept (�Very Well Supported) -21.0398
Metric Coefficient (SMP) 94.5503
Metric Coefficient (SDB) 10.4199
Metric Coefficient (OES) 13.3840
End-to-End Tracing

Intercept (�Badly Supported) -35.4940

4.440892e-15

Intercept (�Neutral) -53.7947
Intercept (�Well Supported) -103.6085
Intercept (�Very Well Supported) -135.5906
Metric Coefficient (SFT) 44.6971
Metric Coefficient (SICC) 94.1809
Metric Coefficient (SIES) 125.5634

94

8 Evaluating Architecture Conformance to
Coupling-Related
Infrastructure-as-Code Best Practices

The method used in Chapters 6 and 7 was replicated in this chapter to examine architectural
design decisions related to coupling in IaC-based deployments. The findings comprise 8 metrics
that evaluate the support for coupling in deployment strategy and infrastructure stack grouping.

8.1 Introduction

Today, many microservice-based systems are being rapidly released, resulting in frequent changes
not only in the system implementation but also in its infrastructure and deployment [HF10,
Nyg07]. Furthermore, the number of infrastructure nodes that a system requires is increasing
significantly [Nyg07] and the managing and structuring of these elements can have a significant
impact on the development and deployment processes. Infrastructure as Code enables auto-
mating the provisioning and management of the infrastructure nodes through reusable scripts,
rather than through manual processes [Mor15]. IaC can ensure that a provisioned environment
remains the same every time it is deployed in the same configuration, and configuration files
contain infrastructure specifications making the process of editing and distributing configurations
easier [Mor15, ABDN+17]. IaC can also contribute to improving consistency and ensuring loose
coupling by separating the deployment artifacts according to the services’ and teams’ responsibilit-
ies. The deployment infrastructure can be structured using infrastructure stacks. An infrastructure
stack is a collection of infrastructure elements/resources that are defined, provisioned, and updated
as a unit [Mor15]. A wrong structure can result in severe issues if coupling-related aspects are
not considered. For instance, defining all the system deployment artifacts as only one unit in
one infrastructure stack can significantly impact the dependencies of system parts and teams as
well as the independent deployability of system services. Most of the established practices in the
industry are mainly reported in the so-called “grey literature,” consisting of practitioner blogs,
system documentation, etc. The architectural knowledge is scattered across many knowledge
sources that are usually based on personal experiences, inconsistent, and incomplete. This creates
considerable uncertainty and risk in architecting microservice deployments.

We investigate such IaC-based best practices in microservice deployments. In this context, we
formulate a number of coupling-related Architectural Design Decisions (ADDs) with correspond-
ing decision options. In particular, the ADDs focus on System Coupling through Deployment
Strategy and System Coupling through Infrastructure Stack Grouping. For each of these, we
define a number of generic, technology-independent metrics to measure the conformance of a
given deployment model to the (chosen) ADD options. Based on this architectural knowledge,

95

8 Evaluating Architecture Conformance to Coupling-Related Infrastructure-as-Code Best Practices

our goal is to provide an automatic assessment of architecture conformance to these practices in
IaC deployment models. We also aim for a continuous assessment, i.e., we envision an impact
on continuous delivery practices, in which the metrics are assessed with each delivery pipeline
run, indicating improvement, stability, or deterioration in microservice deployments. In order to
validate the applicability of our approach and the performance of the metrics, we conducted three
case studies on open source microservice-based systems that also include the IaC-related scripts.
The results show that our set of metrics is able to measure the support of patterns and practices.

This work aims to answer the following research questions:

• RQ3.7 How can we measure conformance to coupling-related IaC best practices in the
context of IaC architecture decision options?

• RQ3.8 What is a set of minimal elements needed in an IaC-based deployment and
microservice architecture model to compute such measures?

This chapter is structured as follows: Section 8.2 discusses related work. Next, we describe the
research methods and the tools we have applied in our study in Section 8.3. In Section 8.4 we
explain the ADDs and the related patterns and practices. Section 8.5 introduces our metrics in a
formal model. Then, three case studies are explained in Section 8.6. Section 8.7 discusses the
RQs regarding the evaluation results and analyses the threats to validity of our study. Finally, in
Section 8.8 we draw conclusions and discuss future work.

8.2 Related Work

Several existing works target collecting IaC bad and best practices. For instance, Sharma
et al. [SFS16] present a catalog of design and implementation language-specific smells for
Puppet. A broad catalog of language-agnostic and language-specific best and bad practices
related to implementation issues, design issues, and violations of essential IaC principles is
presented by Kumara et al. [KGR+21]. Schwarz et al. [SSL18] offer a catalog of smells for
Chef. Morris [Mor15] presents a collection of guidance on managing IaC. In his book, there is a
detailed description of technologies related to IaC-based practices and a broad catalog of patterns
and practices. Our work also follows IaC-specific recommendations given by Morris [Mor15],
as well as those more microservice-oriented given by Richardson [Ric17]. We indeed build
on their guidelines and catalogs of bad/best practices to support architecting the deployment
of microservices, while also enabling us to assess and improve the quality of obtained IaC
deployment models.

In this perspective, it is worth relating our proposal with existing tools and metrics for assessing
and improving the quality of IaC deployment models. Dalla Palma et al. [DDPT20, DDT20]
suggest a catalog of 46 quality metrics focusing on Ansible scripts to identify IaC-related
properties and show how to use them in analyzing IaC scripts. A tool-based approach for
detecting smells in TOSCA models is proposed by Kumara et al. [KVM+20]. Sotiropoulos et
al. [SMS20] provide a tool to identify dependency-related issues by analyzing Puppet manifests
and their system call trace. Van der Bent et al. [vdBHVG18] define metrics reflecting IaC
best practices to assess Puppet code quality. All such approaches focus on the use of different

96

8.3 Research and Modeling Methods

metrics to assess and improve the quality of IaC deployment models, showing the potential
and effectiveness of metrics in doing so. We hence follow a similar, metrics-based approach
but targeting a different aspect than those of the above mentioned approaches, namely system
coupling. To the best of our knowledge, ours is the first solution considering and tackling such
aspects.

Other approaches worth mentioning are those by Fischer et al. [FBKL17] and Krieger et al.
[KBKL18], who both allow automatically checking the conformance of declarative deployment
models during design time. They both model conformance rules in the form of a pair of
deployment model fragments. One of the fragments represents a detector subgraph that determines
whether the rule applies to a particular deployment model or not. The comparison of the model
fragments with a given deployment model is done by subgraph isomorphism. Unlike our study,
this approach is generic and does not introduce specific conformance rules, such as checking
coupling-related ADDs in IaC models.

Finally, it is worth mentioning that architecture conformance can also be checked with other
techniques such as dependency-structure matrices, source code query languages, and reflexion
models as shown by Passos et al. [PTV+10]. So far, methods based on various interrelated
IaC-based metrics to check pattern/best practice conformance like ours do not yet exist. Also,
none are able to produce assessments that combine different assessment parameters (i.e., metrics).
Such metrics, if automatically computed, can be used as a part of larger assessment models during
development and deployment time.

8.3 Research and Modeling Methods

Figure 8.1 shows the research steps followed in this study. We first studied knowledge sources
related to IaC-specific best practices from practitioner books and blogs, and the scientific literature
(such as [KGR+21, Mor15, Ric17, SSL18, SFS16]) as well as open-source repositories (such as
the case studies discussed in Section 8.6). We then analyzed the data collected using qualitative
methods based on Grounded Theory [CS90] coding methods, such as open and axial coding, and
extracted the two core IaC decisions described in Section 8.4 along with their corresponding
decision drivers and impacts. We followed the widely used pattern catalogs by Morris [Mor15] and
Richardson [Ric17] closely to obtain the necessary information since both are well documented,
detailed, and address many relevant concerns in the IaC domain. Among the many design
decisions, covered in these catalogs, we selected those that are directly connected to IaC practices,
operate at a high abstraction level (i.e., they are “architectural” design decisions), and are related
to architectural coupling issues. We then defined a set of metrics for automatically computing
conformance to each coupling-related pattern or practice per decision described in Section 8.4.
We studied and modeled three case studies following the Model Generation process. Finally, we
evaluated our set of metrics using the case studies. Furthermore, in our work [NZP+21], we have
introduced a set of detectors to automatically reconstruct an architecture component model from
the source code. Combining the automatic reconstruction with the automatic computation of
metrics, the evaluation process can be fully automated.

The systems we use as case studies were developed by practitioners with relevant experience
and are supported by the companies Microsoft, Instana, and Weaveworks as microservice ref-

97

8 Evaluating Architecture Conformance to Coupling-Related Infrastructure-as-Code Best Practices

Static Code Analysis

Research Papers

Analyze Data: Grounded
Theory

Define Metrics

Define and Analyse Case
Studies

Evaluate Metrics

Codeable Models
Generator

Component Model

Model Visualisation

Model Generation Process
Search

Repositories

Formulate Core Decisions

Search Web
Resources

Figure 8.1: Overview of the research method followed in this study

erence applications, which justifies the assumption that they provide a good representation of
recent microservice and IaC practices. We performed a fully manual static code analysis for the
IaC models that are in the repositories together with the application source code. To create our
models, we used the Python modeling library CodeableModels described in Chapter 3.7.The
result is a set of decomposition models of the software systems along with their deployments (see
Section 8.5.1). The code and models used in and produced as part of this study have been made
available online for reproducibility 1.

Figure ?? shows an excerpt of the resulting model of Case Study 1 in Section 8.6. The
model contains elements from both application (e.g., Service, Database) and infrastructure (e.g.,
Container, Infrastructure Stack, Storage Resources). Furthermore, we have specified all the
deployment-related relationships between these elements. In particular, a Service and a Web
Server are deployed on a Container. A Database is deployed on Storage Resources and also on a
separate Container. An Infrastructure Stack defines deployment of a Container as well as a Web
Server. All the containers run on a Cloud Server (e.g., ELK, AWS, etc.).

8.4 Decisions on Coupling-related, IaC-Specific Practices

In this section, we briefly introduce the two coupling-related ADDs along with their decision
options. In one decision, we investigate the deployment strategy between services and execution
environments, and in the second, we focus on the structure of all deployment artifacts.

1https://doi.org/10.5281/zenodo.6696130

98

8.4 Decisions on Coupling-related, IaC-Specific Practices

«Infastructure Stack»
Marketing Data Stack

:Infastructure Resources

«Infastructure Stack»
Payment API Stack

:Infastructure Resources

«Infastructure Stack»
Marketing API Stack

:Infastructure Resources

«Infastructure Stack»
Payment Data Stack

:Infastructure Resources

«Web Server»
 Webserver 10.0.0.9

:Device

«Cloud Server»
ELK Server:Device

«Container»
Docker Container 0.0.0.3
:Execution Environment

«Container»
Docker Container 0.0.0.4
:Execution Environment

«Container»
Docker Container 0.0.0.5
:Execution Environment

«Container»
Docker Container 0.0.0.6
:Execution Environment

«defines deployment of»

«defines deployment of»

«defines deployment of»

«defines deployment of»

«Storage Resources»
Mongo DB

:Infrastructure Resources

«Storage Resources»
MySQL DB

:Infrastructure Resources

«deployed on»

«deployed on»

«defines deployment of»

«defines deployment of»

«runs on»

«runs on»
 «runs on»

«Service»
Marketing

:Component

«Service»
Payment

:Component

«Database»
Payment DB
:Component

«Database»
Marketing DB
:Component

«deployed on»

«deployed on»

«deployed on»

«deployed on»

«deployed on»

«deployed on»

«database connector»

«database connector»

«deployed on»

«deployed on»

Figure 8.2: Excerpt of the reconstructed model CS1 from Table 8.1

System Coupling through Deployment Strategy Decision. An essential aspect of
deploying a microservice-based system is to keep the services independently deployable and
scalable and ensure loose coupling in the deployment strategy. Services should be isolated from
one another, and the corresponding development teams should be able to build and deploy a ser-
vice as quickly as possible. Furthermore, resource consumption per service is another factor that
should be considered, since some services might have constraints on CPU or memory consump-
tion [Ric17]. Availability and behavior monitoring are additional factors for each independent
service that should be ensured in a deployment. One option, which hurts the loose coupling of
the deployment, is Multiple Services per Execution Environment 2 In this pattern, services are
all deployed in the same execution environment making it problematic to change, build, and
deploy the services independently. A second option for service deployment is Single Service per
Execution Environment [Ric17]. This option ensures loose coupling in deployment since each
service is independently deployable and scalable, and resource consumption can be constrained
for each service and monitoring services separately. Development team dependencies are also

2The term Execution Environment is used here to denote the environment in which a service runs such as a VM, a
Container, or a Host. Please note that execution environments can be nested. For instance, a VM can be part of
a Production Environment which in turn runs on a Public Cloud Environment. Execution environments run on
Devices (e.g., Cloud Server).

99

8 Evaluating Architecture Conformance to Coupling-Related Infrastructure-as-Code Best Practices

reduced. Although Single Service per Execution Environment reduces coupling significantly, an
incorrect structure of the system artifacts can introduce additional coupling in deployment even if
all services are deployed on separate execution environments. The following decision describes
in detail the structuring practices.

System Coupling through Infrastructure Stack Grouping Decision. Managing the
infrastructure resources can impact significant architectural qualities of a microservice-based
system, such as loose coupling between services and independent development in different teams.
Grouping of different resources into infrastructure stacks should reflect the development teams’
responsibilities to ensure independent deployability and scalability. An infrastructure stack may
include different resources such as Compute Resources (e.g., VMs, physical servers, containers,
etc.) and Storage Resources (e.g., block storage (virtual disk volumes), structured data storage,
object storage, etc.) [Mor15]. An important decision in infrastructure design is to set the size and
structure of a stack. There are several patterns and practices on how to group the infrastructure
resources into one or multiple stacks. A pattern that is useful when a system is small and simple
is the Monolith Stack [Mor15]. This pattern facilitates the process of adding new elements to a
system as well as stack management. However, there are some risks to using this pattern. The
process of changing a larger monolith stack is riskier than changing a smaller one, resulting
in more frequent changes. Also, services cannot be deployed and changed independently and
different development teams may be dependent on each other [Mor15]. A similar pattern is
the Application Group Stack [Mor15]. This kind of stack includes all the services of multiple
related applications. This pattern is appropriate when there is a single development team for the
infrastructure and deployment of these services and has similar consequences as the Monolith
Stack pattern.

A structuring that can work better with microservice-based systems is the Service Stack
[Mor15]. In this pattern, each service has its own stack which makes it easier to manage. Stacks
boundaries are aligned to the system and team boundaries. Thus, teams and services are more
autonomous and can work independently. Furthermore, services and their infrastructure are
loosely coupled since independent deployability and scalability for each service are supported.
The pattern Micro Stack [Mor15] goes one step further by breaking the Service Stack into even
smaller pieces and creates stacks for each infrastructure element in a service (e.g., router, server,
database, etc.). This is beneficial when different parts of a service’s infrastructure need to change
at different rates. For instance, servers have different life cycles than data and it might work
better to have them in separate stacks. However, having many small stacks to manage can add
complexity and make it difficult to handle the integration between multiple stacks [Mor15].

8.5 Metrics Definition

In this section, we describe metrics for checking conformance to each of the decision options
described in Section 8.4.

100

8.5 Metrics Definition

8.5.1 Model Elements Definition

We use and extend a formal model for metrics definition based on our prior work [ZNL17]. We
extend it here to model the integration of component and deployment nodes. A microservice de-
composition and deployment architecture model M is a tuple (NM , CM , NTM , CTM , c_source,
c_target, nm_connectors, n_type, c_type) where:

• NM is a finite set of component and infrastructure nodes in Model M .

• CM ✓ NM ⇥NM is an ordered finite set of connector edges.

• NTM is a set of component types.

• CTM is a set of connector types.

• c_source : CM ! NM is a function returning the component that is the source of a link
between two nodes.

• c_target : CM ! NM is a function returning the component that is the target of a link
between two nodes.

• nm_connectors : P(NM) ! P(CM) is a function returning the set of connectors for
a set of nodes: nm_connectors(nm) = {c 2 CM : (9n 2 nm : (c_source(c) =
n ^ c_target(c) 2 CM) _ (c_target(c) = n ^ c_source(c) 2 CM))}.

• n_type : NM ! P(NTM) is a function that maps each node to its set of direct and
transitive node types. (for a formal definition of node types see [ZNL17]).

• c_type : CM ! P(CTM) is a function that maps each connector to its set of direct and
transitive connector types. (for a formal definition of connector types see [ZNL17]).

All deployment nodes are of type Deployment_Node, which has the subtypes Execution_Environment
and Device. These have further subtypes, such as VM and Container for Execution_Environment,
and Server, IoT Device, Cloud, etc. for Device. Environments can also be used to distinguish
logical environments on the same kind of infrastructure, such as a Test_Environment and a Pro-
duction_Environment. All types can be combined, e.g. a combination of Production_Environment
and VM is possible.

The microservice decomposition is modeled as nodes of type Component with component
types such as Service and connector types such as RESTful HTTP.

The connector type deployed_on is used to denote a deployment relation of a Component (as a
connector source) on an Execution_Environment (as a connector target). It is also used to denote
the transitive deployment relation of Execution_Environments on other ones, such as a Container
is deployed on a VM or a Test_Environment. The connector type runs_on is used to model the
relations between execution environments and the devices they run on.

The type Stack is used to define deployments of Devices using the defines_deployment_of rela-
tion. Stacks include environments with their deployed components using the includes_deployment_node
relation.

101

8 Evaluating Architecture Conformance to Coupling-Related Infrastructure-as-Code Best Practices

8.5.2 Metrics for System Coupling through Deployment Strategy Decision

The System Coupling through Deployment Strategy related metrics, introduced here, each have a
continuous value with range from 0 to 1, with 0 representing the optimal case where the coupling
is minimized by applying the recommended IaC best practices.

Shared Execution Environment Connectors Metric (SEEC). This metric SEEC : P(CM) !
[0, 1] returns the number of the shared direct connectors from deployed service components
to execution environments (e.g., containers or VMs) in relation to the total number of such
service to environment connectors. For instance, the connectors of two services that are
deployed on the same container are considered as shared. This gives us the proportion of
the shared execution environment connectors in the system. In this context, let the function
service_env_connectors : P(CM) ! P(CM) return the set of all connectors between de-
ployed services and their execution environments: service_env_connectors(cm) = {c 2 cm :
Service 2 n_type(c_source(c)) ^ Execution_Environment 2 n_type(c_target(c)) ^
deployed_on 2 c_type(c)}. Further, let the function shared_service_env_connectors :
P(CM) ! P(CM) return the set of connectors from multiple components to the same execution
environment: shared_service_env_connectors(cm) = {c1 2 service_env_connectors(cm) :
9 c2 2 CEE : c_source(c1) 6= c_source(c2) ^ c_target(c1) = c_target(c2)}. Then SEEC
can be defined as:

SEEC(cm) =
|shared_service_env_connectors(cm)|

|service_env_connectors(cm)|

Shared Execution Environment Metric (SEE). The metric SEE : P(NM) ! [0, 1] meas-
ures the shared execution environments that have service components deployed on them (e.g., a
container/VM that two or more services are deployed on) in relation to all executions environments
with deployed services:

SEE(nm) =
|{n 2 nm : (9 c 2 nm_connectors(nm) : c 2 shared_service_env_connectors(cm) ^ c_target(c) = n)}|

|{n 2 nm : (9 c 2 nm_connectors(nm) : c 2 service_env_connectors(cm) ^ c_target(c) = n)}|

8.5.3 Metrics for System Coupling through Infrastructure Stack Grouping
Decision

The metrics for System Coupling through Infrastructure Stack Grouping decision are return
boolean values as they detect the presence of a decision option. Please note that the boolean
metrics are defined for arbitrary node sets, i.e. they can be applied to any subset of a model to
determine sub-models in which a particular practice is applied.

For the metrics below, let the function services : P(NM) ! P(NM) return the set of ser-
vices in a node set: services(nm) = {n 2 nm : Service 2 n_type(n)}. Further, let the
function stack_deployed_envs : NM ⇥ P(NM) ! P(NM) return environments included in
a Stack s with stack_included_envs(s, nm) = {e 2 nm : (9 c 2 nm_connectors(cm) :
Stack 2 n_type(s) ^ c_source(c) = s ^ c_target(c) = e ^ includes_deployment_node 2

102

8.5 Metrics Definition

c_type(c))}. Let the function stack_deployed_components : NM ⇥P(NM) ! P(NM) return
the components deployed via an environment by a Stack s with stack_deployed_components(s, nm) =
{n 2 nm : (9 c 2 nm_connectors(cm) : Component 2 n_type(c_source(c))^ c_target(c) 2
stack_included_envs(s)^ deployed_on 2 c_type(c))}. With this, stacks_deploying_services :
P(NM) ! P(NM) can be defined, which returns all stacks that deploy at least one service:
stacks_deploying_services(nm) = {s 2 nm : Stack 2 n_type(s) ^ (n 2 services(nm) :
n 2 stack_deployed_components(s))}.
Finally, we can define stacks_deploying_non_service_components(nm) : P(NM) ! P(NM)
as stacks_deploying_non_service_components(nm) = {s 2 nm : Stack 2 n_type(s) ^
(n 2 nm : n 2 stack_deployed_components(s) ^ n 62 services(nm))}.

Monolithic Stack Detection Metric (MSD). The metric MSD : P(NM) ! Boolean

returns True if only one stack is used in a node set that deploys more than one service via stacks
(e.g., a number of/all system services are deployed by the only defined stack in the infrastructure)
and False otherwise.

MSD(nm) =

(
True : if |stacks_deploying_services(nm)| = 1

False : otherwise

Application Group Stack Detection Metric (AGSD). The metric AGSD : P(CM) !
Boolean returns True if multiple stacks are used in a node set to deploy services and more
services are deployed via stacks than there are stacks (e.g., system services are deployed by one
stack and other elements such as routes are deployed by different stack(s)). That is, multiple
services are clustered in groups on at least one of the stacks.

AGSD(nm) =

8
><

>:

True : if |stacks_deploying_services(nm)| > 1^
|stacks_deploying_services(nm)| < |services(nm)|

False : otherwise

Service-Stack Detection Metric (SES). The metric SES : P(NM) ! Boolean returns
True is the number of services deployed by stacks equals the number of stacks (e.g., each system
service is deployed by its own stack).

SES(nm) =

(
True : if |stacks_deploying_services(nm)| = |services(nm)|
False : otherwise

Micro-Stack Detection Metric (MST). The metric MST : P(CM) ! Boolean returns
True if SES is True and also there is one or more stacks that deploy non-service components
(e.g., databases, monitoring components, etc.). For instance, a service is deployed by one stack
and its database is deployed by another stack as well as a router is deployed by its own stack, etc.:

MST (nm) =

8
><

>:

True : if SES(nm) = True^
|stacks_deploying_non_service_components(nm)| > 0

False : otherwise

103

8 Evaluating Architecture Conformance to Coupling-Related Infrastructure-as-Code Best Practices

Services per Stack Metric (SPS). To measure how many services on average are deployed
by a service-deploying stack, we define the metrics SPS : P(CM) ! R as:

SPS(nm) =

|{n 2 services(nm) : (9s 2 nm : Stack 2 n_type(s)^
n 2 stack_deployed_components(s))}|

|stacks_deploying_services(nm)|

Components per Stack Metric (CPS). To measure how many components on average are
deployed by a component-deploying stack, we define the metrics CPS : P(CM) ! R as:

CPS(nm) =

|{n 2 nm : (9s 2 nm : Stack 2 n_type(s)^
n 2 stack_deployed_components(s))}|

|stacks_deploying_services(nm)[
stacks_deploying_non_service_components(nm)|

8.6 Case Studies

In this section, we describe the case studies used to evaluate our approach and test the performance
of the metrics. We studied three open-source microservice-based systems. We also created
variants that introduce typical violations of the ADDs described in the literature or refactorings to
improve ADD realization to test how well our metrics help to spot these issues and improvements.
The cases are summarized in Table 8.1 and metrics results are presented in Table 8.2.

Case Study 1: eShopOnContainers Application. The eShopOnContainers case study
is a sample reference application realized by Microsoft, based on a microservices architecture and
Docker containers, to be run on Azure and Azure cloud services. It contains multiple autonomous
microservices, supports different communication styles (e.g., synchronous, asynchronous via
a message broker). Furthermore, the application contains the files required for deployment
on a Kubernetes cluster and provides the necessary IaC scripts to work with ELK for logging
(Elasticsearch, Logstash, Kibana).

To investigate further, we performed a full manual reconstruction of an architecture component
model and an IaC-based deployment model of the application as ground truth for the case
study. Figure 8.2 shows the excerpt component model specifying the component types (e.g.,
Services, Facades, and Databases), and connector types (e.g., database connectors, etc.) as well
as all the IaC-based deployment component types (e.g., Web Server, Cloud Server, Container,
Infrastructure Stack, Storage Resources, etc.) and IaC-based deployment connector types (e.g.,
defines deployment of, deployed on, etc.) using types as introduced in Section 8.5 shown here as
stereotypes.

The component model, consists of in total 235 elements such as component types, connector
types, IaC-based deployment component types and IaC-based deployment connector types. More
specifically, 19 Infrastructure Stacks, 19 Execution Environments, 6 Storage Resources, 7 Services,
6 Databases, 19 Stack-to-Execution Environment connectors, 7 Stack-to-Service connectors and 6

104

8.6 Case Studies

Case
Study ID

Model Size Description / Source

CS1 68 components
167 connectors

E-shop application using pub/sub communication for event-based interaction
as well as files for deployment on a Kubernetes cluster. All services are de-
ployed in their own infrastructure stack (from https://github.com/d
otnet-architecture/eShopOnContainers).

CS1.V1 67 components
163 connectors

Variant of Case Study 1 in which half of the services are deployed on the same
execution environment and some infrastructure stacks deploy more than one
service.

CS1.V2 60 components
150 connectors

Variant of Case Study 1 in which some services are deployed on the same
execution environment and half of the non-services components are deployed
by a component-deploying stack.

CS2 38 components
95 connectors

An online shop that demonstrate and test microservice and cloud-native tech-
nologies and uses a single infrastructure stack to deploy all the elements (from
https://github.com/microservices-demo/microservice
s-demo).

CS2.V1 40 components
101 connectors

Variant of Case Study 2 where multiple infrastructure stacks are used to de-
ploy the system elements as well as some services are deployed on the same
execution environment.

CS2.V2 36 components
88 connectors

Variant of Case Study 2 where two infrastructure stacks are used to deploy the
system elements (one for the services and one for the rest elements) as well as
some services are deployed on the same execution environment.

CS3 32 components
118 connectors

Robot shop application with various kinds of service interconnections, data
stores, and Instana tracing on most services as well as an infrastructure stack
that deploys the services and their related elements (from https://gith
ub.com/instana/robot-shop).

CS3.V1 56 components
147 connectors

Variant of Case Study 3 where some services are deployed in their own infra-
structure stack as well as some services are deployed on the same execution
environment.

CS3.V2 56 components
147 connectors

Variant of Case Study 3 where all services are deployed in their own infra-
structure stack as well as all services are deployed on their own execution
environment.

Table 8.1: Overview of modeled case studies and the variants (size, details, and sources)

105

https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/microservices-demo/microservices-demo
https://github.com/microservices-demo/microservices-demo
https://github.com/instana/robot-shop
https://github.com/instana/robot-shop

8 Evaluating Architecture Conformance to Coupling-Related Infrastructure-as-Code Best Practices

Storage Resources-to-Database connectors. There are also other 146 elements in the application
(e.g., Web Server, Cloud Server, Stack-to-Web Server connectors, etc.).

The values of metrics SEEC and SEE show that Single Service per Execution Environment
pattern is fully supported. We treat both components and connectors as equally essential elements;
thus, we use two metrics to assess coupling in our models. Given that SEE returns the shared
execution environments, it is crucial to measure how strongly these environments are shared. The
SEEC value indicates this specific aspect by returning the proportion of the shared connectors
that these environments have.

The application uses multiple stacks to deploy the services and the other elements, and this
is shown by the outcomes of the metrics for the System Coupling through Infrastructure Stack
Grouping decision. Since multiple stacks have been detected the metrics MSD and AGSD return
False. The SES metric returns True meaning that the Service Stack pattern is used. The MST
returns True which means the Micro-Stack pattern for the node sub-set Storage Resources is
also used. The SPS value shows that every service is deployed by a service-deploying stack.
Furthermore, CPS also shows that components that belong to node sub-set Storage Resources are
deployed by a component-deploying stack. Overall the metrics results in this case study show no
coupling issue in deployment, and all best practices in our ADDs have been followed.

For further evaluation, we created two variants to test our metrics’ performance in more
problematic cases. Our analysis in CS1.V1 shows that half of the execution environments are
shared, and around two-thirds of the connectors between services and execution environments
are also considered as shared, meaning these execution environments are strongly coupled with
the system services. Using both values, we have a more complete picture of the coupling for
all essential elements in this model. Furthermore, the SPS value indicates that the Service Stack
pattern is partially supported, meaning some services are grouped in the same stacks. The
analysis in CS1.V2 shows that our metrics can measure all the additional violations that have
been introduced.

Case Study 2: Sock Shop Application. The Sock Shop is a reference application for
microservices by the company Weaveworks to illustrate microservices architectures and the com-
pany’s technologies. The application demonstrates microservice and cloud-native technologies.
The system uses Kubernetes for container-orchestration and services are deployed on Docker
containers. Terraform infrastructure scripts are provided to deploy the system on Amazon Web
Services (AWS). We believe it to be a good representative example of the current industry practices
in microservice-based architectures and IaC-based deployments.

The reconstructed model of this application contains in total 133 elements. In particular, 1
Infrastructure Stack, 13 Execution Environments, 3 Storage Resources, 7 Services, 4 Databases,
13 Stack-to-Execution Environment connectors, 7 Stack-to-Service connectors and 4 Storage
Resources-to-Database connectors. There are also another 74 elements in the application such as
Web Server, Cloud Server, Stack-to-Web Server connectors and Execution Environment-to-Cloud
Server connectors.

We have tested our metrics to assess the conformance to best patterns and practices in IaC-
based deployment. The outcome of the metrics related to System Coupling through Deployment
Strategy decision shows that also this application fully supports the Single Service per Execution

106

8.6 Case Studies

Environment pattern. That is, all services are deployed in separate execution environments.
Regarding the System Coupling through Infrastructure Stack Grouping decision, we detected the
Monolith Stack pattern, which means one stack defines the deployment of all system elements,
resulting in a highly coupled deployment. The metrics AGSD, SES, and MST are all False, and
SPS and CPS return 0, since a monolith stack has been detected. These values can guide architects
to improve the application by restructuring the infrastructure to achieve the desired design.

In our variants, we introduced gradual but not perfect improvements. The metrics results for
CS2.V1 show an improvement compared to the initial version. That is, Monolith Stack pattern is
not used since three infrastructure stacks have been detected, and some services are deployed
by service-deploying stacks. In CS2.V2 there is a slight improvement since Application Group
Stacks has been detected. However, SEEC and SEE metrics indicate that there is a strong coupling
between services and execution environments. In both variants, the metrics have well detected
the improvements made.

Case Study 3: Robot-Shop Application. Robot-Shop is a reference application by
the company Instana provides to demonstrate polyglot microservice architectures and Instana
monitoring. It includes the necessary IaC scripts for deployment. All system services are deployed
on Docker containers and use Kubernetes for container-orchestration. Moreover, Helm is also
supported for automating the creation, packaging, configuration, and deployment to Kubernetes
clusters. End-to-end monitoring is provided, and some services support Prometheus metrics.

The reconstructed model of this application contains in total 150 elements. In particular, 2
Infrastructure Stacks, 18 Execution Environments, 2 Storage Resources, 10 Services, 3 Databases,
13 Stack-to-Execution Environment connectors, 10 Stack-to-Service connectors and 3 Storage
Resources-to-Database connectors. There are also 89 additional elements in the application.

The metrics results for the System Coupling through Deployment Strategy decision are both
optimal, showing that in this application all services are deployed in separate execution environ-
ments. For the System Coupling through Infrastructure Stack Structuring decision, the AGSD
metric return True which means that the Application Group Stack pattern is used, resulting in
highly coupled services’ deployment. Thus, the metrics SES and MST are False and SPS and CPS
return 0. According to these values, architects can be supported to address the detected violations
(e.g., as done in CS3.V2).

In the variants, we introduced one gradual improvement first and then a variant that addresses
all issues. Our analysis in CS3.V1 shows significant improvement in infrastructure stack grouping.
Most of the services are deployed on their own stack, and components that belong to node
sub-set Storage Resources are completely deployed by a separate stack. However, coupling
between services and execution environments has also been detected. Variant CS3.V2 is even
more improved since, in this case, all services are deployed by service-deploying stacks, and no
coupling has been detected. In both variants, the metrics have faithfully identified the changes
made.

107

8 Evaluating Architecture Conformance to Coupling-Related Infrastructure-as-Code Best Practices

Table 8.2: Metrics Calculation Results
Metrics CS1

CS1.V1 CS1.V2
CS2

CS2.V1 CS2.V2
CS3

CS3.V1 CS3.V2

System Coupling through Deployment Strategy

SEEC 0.00 0.71 0.42 0.00 0.25 0.62 0.00 0.37 0.00

SEE 0.00 0.50 0.20 0.00 0.14 0.40 0.00 0.16 0.00

System Coupling through Infrastructure Stack Grouping

MSD False False False True False False False False False

AGSD False False False False False True True False False

SES True False False False False False False False True

MST True True False False False False False False True

SPS 1.00 0.20 0.57 0.00 0.12 0.00 0.00 0.62 1.00

CPS 1.00 1.00 0.50 0.00 0.00 0.00 0.00 1.00 1.00

8.7 Discussion

Discussion of Research Questions. To answer RQ3.7, we proposed a set of generic,
technology-independent metrics for each IaC decision, and each decision option corresponds to
at least one metric. We defined a set of generic, technology-independent metrics to assess each
pattern’s implementation in each model automatically and conducted three case studies to test
the performance of these metrics. For assessing pattern conformance, we use both numerical
and boolean values. In particular, SEEC and SEE measures return a range from 0 to 1, with 0
representing the optimal case where a set of patterns is fully supported. Having this proportion,
we can assess not only the existence of coupling but also how severe the problem is. However,
this is not the case for the MSD, AGSD, SES, and MST metrics that return True or False. Using
these metrics, we intend to detect the presence of the corresponding patterns. For Service Stack
and Micro Stack decision options, we introduce two additional metrics with numerical values
that can be applied on node subsets to assess the level of the pattern support when patterns are
not fully supported. However, applying them on node subsets has the limitation that many runs
need to be made, leading to ambiguous results. Our case studies’ analysis shows that every
set of decision-related metrics can detect and assess the presence and the proportion of pattern
utilization.

Regarding RQ3.8, we can assess that our deployment meta-model has no need for significant
extensions and is easy to map to existing modeling practices. More specifically, to fully model
the case studies and the additional variants, we needed to introduce 13 device type nodes and 11
execution environment nodes types such as Cloud Server and Virtual Machine respectively, and 9
deployment relation types and 7 deployment node relations. Furthermore, we also introduced
a deployment node meta-model to cover all the additional nodes of our decisions, such as
Storage Resources. The decisions in System Coupling through Deployment Strategy require
modeling several elements such as the Web Server, Container, and Cloud Server nodes types and
technology-related connector types (e.g. deployed on) as well as deployment-related connector
types (e.g. Runs on, Deployed in Container). For the Coupling through Infrastructure Stack

108

8.8 Conclusions and Future Work

Grouping decision, we have introduced attributes in the system nodes (e.g., in Infrastructure
Stack, Storage Resources) and connector types (e.g., defines deployment of, includes).

Threats to Validity. We mainly relied on third-party systems as the basis for our study to
increase internal validity and thus avoid bias in system composition and structure. It is possible
that our search procedures resulted in some unconscious exclusion of specific sources; we
mitigated this by assembling a team of authors with many years of experience in the field and
conducting a very general and broad search. Because our search was not exhaustive and the
systems we found were created for demonstration purposes, i.e., were relatively modest in size,
some potential architectural elements were not included in our metamodel. Furthermore, this
poses a potential threat to the external validity of generalization to other, more complex systems.
However, we considered widely accepted benchmarks of microservice-based application as
reference applications, in a way to reduce this possibility. Another potential risk is that the system
variants were developed by the author team itself. However, this was done following best practices
documented in the literature. We were careful to change only certain aspects in a variant and keep
all other aspects stable. Another possible source of internal validity impairment is the modeling
process. The author team has considerable experience with similar methods, and the systems’
models have been repeatedly and independently cross-checked, but the possibility of some
interpretive bias remains. Other researchers may have coded or modeled differently, resulting
in different models. Because our goal was only to find a model that could describe all observed
phenomena, and this was achieved, we do not consider this risk to be particularly problematic
for our study. The metrics used to assess the presence of each pattern were deliberately kept as
simple as possible to avoid false positives and allow for a technology-independent assessment.

8.8 Conclusions and Future Work

We have investigated the extent to which it is possible to develop a method to automatically
evaluate coupling-related practices of ADDs in an IaC deployment model. Our approach models
the critical aspects of the decision options with a minimal set of model elements, which means it
is possible to extract them automatically from the IaC scripts. We then defined a set of metrics to
cover all decision options described in Section 8.4 and used the case studies to test the performance
of the generated metrics. Before, for the coupling aspects of IaC deployment models, no general,
technology-independent metrics have been studied in depth. Our approach treats deployment
architectures as a set of nodes and links, considering the technologies used, which were not
supported in prior studies. The goal of our approach is a continuous evaluation, taking into
account the impact of continuous delivery practices, in which metrics are evaluated continuously,
indicating improvements and loose coupling of deployment architecture compliance.

In future work, we plan to study more decisions and related metrics, test further in larger
systems, and integrate our approach in a systematic guidance tool.

109

9 Assessing Security Conformance in
Infrastructure-as-Code Deployments

Building on the approach outlined in Chapter 8, this chapter delves into security practices in IaC-
based deployments, with a specific focus on observability, access control, and traffic control. We
present three architectural design decisions related to security: Security Observability, Security
Access Control, and Security Traffic Control. We also report a total of 13 metrics that evaluate
compliance or noncompliance with the relevant security practices.

9.1 Introduction

Cloud computing has significantly increased the number of infrastructure nodes that a sys-
tem requires [Nyg07]. Moreover, nowadays systems are being released to production more
rapidly, often many times a day, resulting in more and more frequent changes in the infrastruc-
ture [HF10, Nyg07]. Infrastructure as Code (IaC) is the management and provisioning of the
infrastructure using reusable scripts instead of manual processes [Mor15]. IaC can ensure that a
provisioned environment remains the same every time it is deployed in the same configuration,
and configuration files contain infrastructure specifications making the process of editing and
distributing configurations easier [Mor15, ABDN+17]. IaC can also contribute to improving
consistency, security, avoiding errors, and reducing manual configuration effort. Without an
IaC practice in place, it becomes increasingly difficult to manage the scale of current systems’
components and infrastructure.

IaC technologies (e.g., Ansible, Terraform) enable to provision, deploy, and configure arbitrary
application architectures. Thus, developers and operators, respectively, can model any desired
deployment. This freedom quickly results in severe problems if security-related aspects are not
taken into account. For example, vulnerabilities in IaC deployment models (e.g. weak access and
traffic control) could allow attackers to access procedures and run code to hack the application.

The focus of this work is to investigate security-related practices in deployment architectures
that can be configured and managed via IaC scripts. In this context, we formulate a number of
Architectural Design Decisions (ADDs) with corresponding decisions options that have been
documented as best practices in the gray literature, i.e. informal guidelines for practitioners, blog
posts, public repositories, and so on. Based on this architectural knowledge, we aim to provide
an automatic assessment of architecture conformance to these practices in the IaC deployment
models.

So far, not many architectural patterns or formal guidelines that reflect security best practices
in the context of IaC have been documented. Currently, the literature seems to rather focus on
specific code-level practices. In combination with the fact that industry-scale systems support

111

9 Assessing Security Conformance in Infrastructure-as-Code Deployments

multiple such architectural practices at once and different implementations of them, this makes it
difficult to assess whether an IaC deployment model that implicitly describes also the application’s
architecture is conforming to recommended best practices or not. In modern cloud-based architec-
tures, such as microservice architectures [New15] and other frequently released systems [Nyg07],
an automatic assessment method would vastly improve cost-effectiveness and produce more
accurate results. For instance, this could be applied in the context of continuous delivery practices
employed in these systems requiring the automated setup of infrastructures in usually every run
of the delivery pipeline [HF10]; for example, consider production environments and identical test
environments. Therefore, this work aims at answering the following research questions:

• RQ3.9 How can conformance to IaC architecture security-related decision options (i.e.
patterns or practices) be automatically assessed?

• RQ3.10 What kinds of measures can be applied to asses this conformance and how well
do they perform?

• RQ3.11 What is the minimal set of modeling elements required in an IaC deployment
model to compute these measures?

To address these research questions, we introduced a set of metrics for different security-related
architectural decisions to cover all their possible decision options. We derived a ground truth from
a manual assessment of a set of models that evaluates their conformance to all considered decision
options and their combinations. In particular, the decisions focus on Security Observability,
Security Access Control, and Security Traffic Control. To create the ground truth, we first
objectively assessed whether each decision option is supported in a system and to which extent.
We derived an ordinal rating scheme to distinguish different levels of security support, and If
security flaws were indeed found, the rating scheme indicates how far the conformance to best
practices is nonetheless supported. Both, the rating scheme and the ground truth assessment,
have been reviewed and discussed with two industrial experts (both having experience in security
of microservice systems) until a consensus was reached. We then used the ground truth data to
assess how well the defined metrics can predict the ground truth assessment by performing an
ordinal regression analysis.

In this chapter, we propose a deployment model-based approach, which uses only modeling
elements that can be derived from the typical scripts used by IaC technologies. A deployment
model implicitly also describes the architecture of the application to be deployed, thus, enabling
assessing the conformance to architectural decisions. For this reason, it is important to be able to
work with a minimal set of elements, else it might be difficult to parse them from the IaC scripts.

This chapter is structured as follows: Section 9.2 compares related work. Next, we describe
the research methods and the tools we have applied in our study in Section 9.3. In Section 9.4
we explain the decisions and the related patterns and practices. In Section 9.5 we report how the
ground truth data for each decision is calculated. Section 9.6 introduces our hypothesized metrics.
Section 9.7 describes the metrics calculations results for our models and the results of the ordinal
regression analysis. Section 9.8 discusses the RQs regarding the evaluation results and analyses
the threats to validity. Finally, in Section 9.9 we draw conclusions and discuss future work.

112

9.2 Related Work

9.2 Related Work

9.2.1 Related Works on Best Practices and Patterns

As IaC practices are becoming more and more popular and widely adopted by the industry,
there is also more scientific research into collecting and systematizing IaC-related patterns and
practices. Kumara et al. [KGR+21] present a broad catalog of best and bad practices, both
language-agnostic and language-specific, that reflect implementation issues, design issues, and
violations of essential IaC principles. Morris [Mor15] presents a collection of guidance on how
to manage Infrastructure as Code. In his book, there is a detailed description of technologies
related to IaC-based practices and a broad catalog of patterns and practices embodied in several
categories. Language-specific practices have been proposed by Sharma et al. [SFS16] who
present a catalog of design and implementation smells for Puppet. Schwarz et al. [SSL18]
present a catalog of smells for Chef. Our work also follows IaC-specific recommendations
described in AWS [AWS21], OWASP [OWA21a, OWA21c, OWA21b] and the Cloud Security
Alliance [Clo18, Clo21]. In contrast to our work, many of these works are less focused on
architectural decisions in the deployment architecture of the systems to be deployed. Furthermore,
these works do not support conformance checking as suggested in our work.

9.2.2 Related works on Frameworks and Metrics

Tool-based and Network Metrics Approaches There are several studies that propose
tools and metrics for assessing and improving the quality of IaC deployment models. Dalla
Palma et al. [DDPT20, DDT20] propose a catalog of 46 quality metrics focusing on Ansible
scripts to identify IaC-related properties and show how to use them in analyzing IaC scripts.
Wurster et al. [WBH+20] present TOSCA Lightning, an integrated toolchain for specifying
multi-service applications with TOSCA Light and transforming them into different production-
ready deployment technologies. They also present a case study on the toolchain’s effectiveness
based on a third-party application and Kubernetes. A tool-based approach for detecting smells in
TOSCA models is proposed by Kumara et al. [KVM+20]. Sotiropoulos et al. [SMS20] develop a
tool-based approach that identifies dependencies-related issues by analyzing Puppet manifests and
their system call trace. Van der Bent et al. [vdBHVG18] define metrics that reflect also the best
practices to assess Puppet code quality. Pendleton et al. [PGLCX16] present a comprehensive
survey on security metrics. It focuses on how a system security state can evolve as an outcome of
cyber-attack defense interactions. They then propose a security metrics framework for measuring
system-level security.

Although some of these works focus on quality assurance of IaC systems, none of them address
and focus specifically on security critical concerns and measures in IaC deployment models,
which is the case in our work.

Software Architecture Conformance Checking In [FBKL17, KBKL18], an approach
for automatically checking the compliance of declarative deployment models during design
time is introduced. The approach allows modeling compliance rules in the form of a pair of
deployment model fragments. One of the fragments represents a detector subgraph that determines

113

9 Assessing Security Conformance in Infrastructure-as-Code Deployments

whether the rule applies to a given deployment model or not. If a compliance rule is found to
be applicable, the second fragment determines a desired structure that the deployment model
must contain. Comparing the model fragments to a given deployment model happens using
subgraph isomorphism. In contrast to our study, this approach is generic and does not introduce
specific compliance rules, e.g. for the security domain, and assumes the rule modeler is capable
of translating best practices into compliance rules of the expected format. Moreover, it only
provides a Boolean outcome indicating whether a compliance rule is violated or not, rather than
indicating to what degree it is violated.

Our approach can be considered as a metrics-based, IaC-specific approach for deployment
architecture conformance checking. Many approaches related to architecture conformance check-
ing are usually based on automated extraction techniques [GAK99, VDHK+04]. Conformance
to architecture patterns [GAK99, HZ14] or other kinds of architectural rules [VDHK+04] can
often be checked by such approaches. As proposed in our work, here techniques that are based on
various interrelated metrics of IaC-related metrics to cover security related features and practices
do not yet exist. Furthermore, none of these approaches treat deployment architectures as a set
of nodes and connectors i.e. a deployment architecture. Also, none are able to produce assess-
ments that combine different assessment parameters (i.e. metrics). Such metrics, if automatically
computed, can be utilized as part of larger assessment models/frameworks during design and
development time.

9.3 Research and Modeling Methods

9.3.1 Overview

Figure 9.1 shows the research steps followed in this study. We first studied knowledge sources
related to IaC-specific security best practices from industry organizations, practitioners blogs and
scientific literature [Clo21, Clo18, OWA21b, OWA21c, OWA21a, Goo21, AWS21, KGR+21,
Mor15, SSL18, SFS16]. We then analyzed the data collected using qualitative methods based
on Grounded Theory [CS90] coding methods, such as open and axial coding, and extracted the
three core IaC security-related decisions described in section 9.4 along with their corresponding
decision drivers and impacts. Based on our dataset, which contains generated models, we derived
a ground truth as well as a set of metrics to measure the proportion of the support of each practice.
Next, we defined a rating scheme on support or violation of best practices and refined the
ground truth assessment. The generated models, the rating scheme, and ground truth assessment
were independently analyzed by two industrial security experts, each with around 5 years of
experience in developing and architecting cloud-based systems. We discussed each assessment
with the experts until a consensus was reached and used the ground truth data to assess how well
the hypothesized metrics can possibly predict the ground truth data by performing an ordinal
regression analysis..

9.3.2 Model Selection Methods

This study focuses on conformance to security-related features and practices in IaC deployment
models. To be able to study this, we first performed an iterative study of a variety of IaC

114

9.3 Research and Modeling Methods

Analyze Data: Grounded
Theory

IaC
Deployment

Model Evaluate Metrics

Define Metrics

Search Repositories

Formulate Core Decisions

Establish a Rating Scheme for
System Assessment

Define Ground Truth

Search Web
Resources

Figure 9.1: Overview of the research method followed in this study

knowledge sources. Next, we refined a meta-model, which contains all the required elements
to help us reconstruct the actual architecture that gets deployed by the IaC model. For problem
investigation and as an evaluation model set for eventually creating a ground truth for our study, we
gathered a number of IaC systems, summarized in Table 9.1. Each of them is taken directly from
a system published by practitioners (on GitHub and/or practitioner blogs) from 9 independent
sources. We mostly used search engines to find all systems used in this study. Searching in
such engines might lead to selection bias and to different types of data [PD18]. For avoiding
such a selection bias we initially started our research with keywords taken from AWS [AWS21],
OWASP [OWA21a, OWA21c, OWA21b] and the Cloud Security Alliance [Clo18, Clo21] such
as Infrastructure Architecture Security, Infrastructure Hardening, Monitoring and Logging and
Security Groups and Traffic Control etc. We used major search engines (e.g. Google, Bing,
DuckDuckGo) and topic portals (e.g. InfoQ, DZone) to find relevant practitioner texts.

The systems we found were developed by practitioners with relevant experience, which justifies
the assumption that they provide a good representation of the IaC security-related best practices
summarized in Section 9.4. We performed a fully manual static code analysis for the IaC models
that are in the repos together with the application source code. For model creation, we used the
Python modeling library CodeableModels described in Chapter 3.7. Variations were modeled to
cover the complete design space, including also the bad practices that can cause a violation, of
our three ADDs and described in Section 9.4, according to the referenced practitioner sources.
Apart from the variations described in Table 9.1, all other system aspects remained the same as in
the base models. This resulted in a total of 21 models summarized in Table 9.1. We assume that

115

9 Assessing Security Conformance in Infrastructure-as-Code Deployments

ARCHITECT

Architecture
Abstraction

Specification

IaC
Deployment

Model

Detector-based
Architecture
Abstraction

Model
Generator

Visualization
Generator PlantUML

Model

IaC Scriptsspecification for

creates

Deployment
Meta-model

used by

instance of

Detectors Developmentimplemented by Reusable
Detector

develops

DEVELOPER

used for Optional Process

Figure 9.2: Tool Flow Architecture of the Proposed System

our evaluation models are close to models used in practice and real-world practical needs. As
many of them are open source systems with the purpose of demonstrating practices, they are at
most of medium size, though.

9.3.3 Metrics Definition, Ground Truth Calculation, and Statistical
Evaluation Methods

We defined a set of metrics for each ADD to measure conformance to the respective practices in
the design decisions from Section 9.4, i.e. at least one metric per major feature/practice. Based on
the manual assessment of the models from Table 9.1, we derived a ground truth for our study (the
ground truth and its calculation rules are described in Section 9.4). The ground truth is established
by assessing whether each decision option is supported, partially supported, or not supported. We
combined the outcome of all decision’s options and then derived an ordinal assessment on how
well the decision is supported in each model, using the scale:

• ++: very well supported;

• +: well supported, but aspects of the solution could be improved;

• ⇠: serious flaws in the security design, but substantial support can already be found in the
system;

• �: serious flaws in the security design, but initial support can already be found in the
system;

• ��: no support for the security tactic can be found in the system.

We discussed this assessment scheme with the two industrial security experts until a consensus
was reached. The authors assessed all the system models and the variants for conformance to
each of the ADDs, and the assessments are again reviewed by the two industrial security experts.

116

9.3 Research and Modeling Methods

«Monitoring/Logging Data Provider,
Centralized Log Management»
 Filebeat Webserver 10.0.0.8

:Component

«Monitoring/Logging Data Provider,
System Metrics Collection»

 Metricbeat Webserver 10.0.0.8
:Component

«Monitoring/Logging Data Provider,
Centralized Log Management»
 Filebeat Webserver 10.0.0.9

:Component

«Monitoring/Logging Data Provider,
Centralized Log Management»
 Filebeat Webserver 10.0.0.10

:Component

«Monitoring/Logging Data Provider,
System Metrics Collection»

 Metricbeat Webserver 10.0.0.9
:Component

«Monitoring/Logging Data Provider,
System Metrics Collection»

 Metricbeat Webserver 10.0.0.10
:Component

«Web Server»
 Webserver 10.0.0.8

:Device

«Web Server»
 Webserver 10.0.0.10

:Device

«Web Server»
 Webserver 10.0.0.9

:Device

«Logging»
Logtash

:Component

«Monitoring»
Elasticsearch
:Component

«Monitoring Dashboard»
Kibana

:Component

«Cloud Server»
ELK Server:Device

«Container»
ELK Docker Container

:Execution Environment

«deployed on»

«deployed on»

«deployed on»

«deployed on»

«deployed on»

«deployed on»

«RESTful HTTP»

«RESTful HTTP»

«RESTful HTTP»

«RESTful HTTP»

«RESTful HTTP»

«RESTful HTTP»

«RESTful HTTP»

«RESTful HTTP»

«RESTful HTTP»

«RESTful HTTP»

«connects to»

«connects to»

«connects to»

«deployed on container»

«deployed on container»

«deployed on container»

«runs on»

Figure 9.3: Overview of a reconstructed model (Model S4 in Table 9.1).

Our scale does not assume equal distances, but it assumes the given order. We then used the
ground truth data to assess how well the defined metrics can predict the ground truth data by
performing an ordinal regression analysis.

Ordinal regression is a widely used method for modeling an ordinal response’s dependence on
a set of independent predictors. For the ordinal regression analysis we used the lrm function from
the rms package in R [FEH15].

9.3.4 Methods for IaC Architectural Reconstruction

From an abstract point of view, an IaC system is composed of nodes and connectors with a
set of nodes types and a set of connector types. Our work has the goal to automate metrics
calculation and assessment based on the node model of an IaC system. That is, if the system is
manually modeled or the model can be derived automatically from the IaC scripts, our approach
is applicable. For modeling IaC deployment models we followed the method reported in our
previous work [ZNL17]. All the code and models used in and produced as part of this study have
been made available online for reproducibility1.

In the context of this approach, and based on our work [NZP+21], we have introduced a
number of detectors in order to automatically reconstruct the IaC architecture from the source
code. Combining the automatic reconstruction with the automatic metrics calculation, the overall
assessment process can be improved. So far we have done this only for one system and for
one technology (S4 in Table 9.1) fully and are developing extensions for the other systems at
the moment. A detector is a piece of code that looks for specific characteristics in the IaC
deployment model and produces architectural information. The idea is that by having many

1https://doi.org/10.5281/zenodo.6559385

117

9 Assessing Security Conformance in Infrastructure-as-Code Deployments

Model ID Model Size Description / Source

S1 12 nodes
13 connectors

Consul-based application with specified security groups (from https://github.c
om/apiacademy/microservices-deployment).

S2 12 nodes
13 connectors

Variant of S1 which uses API keys authentication practice.

S3 8 nodes
9 connectors

Variant of S1 which uses Plaintext authentication practice.

S4 14 nodes
25 connectors

Elasticsearch, Logstash, and Kibana (ELK)-based system using metrics collection and log
management tools (from https://github.com/babtunee/azure-cloud-se
curity-architecture).

S5 14 nodes
25 connectors

Variant of S4 using Ingress Traffic Control and partial support of SSL-Based Authentica-
tion.

S6 14 nodes
25 connectors

Variant of S4 using Ingress Traffic Control and full support of Token-Based Authentica-
tion.

S7 10 nodes
17 connectors

ELK-based system using metrics collection and application monitoring related tools (from
https://github.com/deviantony/docker-elk).

S8 10 nodes
17 connectors

Variant of S7 with additional servers and Plaintext Authentication.

S9 17 nodes
48 connectors

Variant of S8 using additional tools for centralized log management, service availability
and performance analytics as well as Ingress and Egress traffic control, Token-Based
Authentication and Single Sign-On authentication.

S10 8 nodes
11 connectors

ELK-based system using metrics collection related tools (from https://github.c
om/ManuelMourato25/elastic-stack-architecture-example).

S11 10 nodes
14 connectors

Variant of S10 using Application monitoring, Ingress traffic control and Security groups

S12 16 nodes
30 connectors

ELK-based system using metrics collection and log management tools as well as security
groups (from https://github.com/frahmeto/Elk-Stack-Project-1).

S13 19 nodes
57 connectors

Variant of S12 using additional Application monitoring, service availability, performance
analytics and API keys authentication.

S14 10 nodes
15 connectors

ELK-TLS-based system using metrics collection, log management, performance analytics
and endpoint security tools (from https://github.com/swimlane/elk-tls-
docker).

S15 14 nodes
35 connectors

Variant of S14 using additional servers and Application monitoring, performance analyt-
ics and SSL-Based Authentication, ingress traffic control and Single Sign-On authentica-
tion

S16 8 nodes
11 connectors

Java ELK-based system with service availability and log management tools (from http
s://github.com/twogg-git/java-elk).

S17 6 nodes
5 connectors

Variant of S16 using only Plaintext authentication and no additional tool to support other
features.

S18 14 nodes
21 connectors

Variant of S16 which uses application monitoring, Ingress and Egress traffic control and
security groups.

S19 9 nodes
8 connectors

Openshift-based application with application monitoring and metrics collection tools
(from https://github.com/redhat-helloworld-msa/k).

S20 9 nodes
8 connectors

Variant of S19 with SSL-based and Single Sign-On authentication.

S21 8 nodes
7 connectors

Terraform application deployed in AWS with metric collection tool and security groups
(from https://github.com/ryanmcdermott/terraform-microservic
es-example).

Table 9.1: Selected IaC Deployments Models: Size, Details, and Sources

of these, all lightweight and possibly looking at different languages (e.g. Ansible, Terraform),
then deployment architectures can be extracted in an automatic way. Figure 9.3 shows the

118

https://github.com/apiacademy/microservices-deployment
https://github.com/apiacademy/microservices-deployment
https://github.com/babtunee/azure-cloud-security-architecture
https://github.com/babtunee/azure-cloud-security-architecture
https://github.com/deviantony/docker-elk
https://github.com/ManuelMourato25/elastic-stack-architecture-example
https://github.com/ManuelMourato25/elastic-stack-architecture-example
https://github.com/frahmeto/Elk-Stack-Project-1
https://github.com/swimlane/elk-tls-docker
https://github.com/swimlane/elk-tls-docker
https://github.com/twogg-git/java-elk
https://github.com/twogg-git/java-elk
https://github.com/redhat-helloworld-msa/k
https://github.com/ryanmcdermott/terraform-microservices-example
https://github.com/ryanmcdermott/terraform-microservices-example

9.4 IaC Security-Related ADDs

resulting model after applying our detectors. Moreover, from the grounded theory analysis, we
defined deployment meta-models, in which nodes are extended by the stereotype nodes types and
connectors by the stereotype connector types, to reconstruct model instances for the deployments.

9.3.5 The Tool Flow of the Approach

Figure 9.2 illustrates the general tool flow architecture on how the building blocks interact. Using
the detectors it’s possible to generate models from our modeling tool Codeable Models. As
Figure 9.2 shows, the user can be either a developer or an architect. The architect specifies
the architecture abstraction specification for an IaC system, while the developer implements it
in the IaC scripts potentially of different technologies. However, both can be involved in the
development of detectors. The user can use the architecture specification, IaC scripts and the
detector toolchain to generate the IaC deployment model. The architecture specification and the
IaC scripts are the inputs of the detector component. The detector performs the detections, and, if
successful, uses a code generator to generate the Codeable Models code. The generator uses the
deployment meta-model to generate the IaC deployment model. It also contains a visualization
generator for generating PlantUML diagrams such as the one in Figure 9.3.

9.4 IaC Security-Related ADDs

In this section, we briefly introduce the three security-related decisions along with their decision
options (i.e. the relevant patterns and practices). We also discuss the impact on relevant security
aspects, which we later on use as an argumentation for our manual ground truth assessment in
Section 9.4.

Security Observability An important aspect in deployment architectures is to be able to
identify and respond to what is happening within a system, what resources need to be observed,
and inspect what is causing a possible issue. Using observability practices to collect, aggregate,
and analyze log data and metrics is a key for establishing and maintaining more secure, flexible,
and comprehensive systems [Clo18]. Moreover, collecting and analysing information improves
the detection of suspicious system behavior or unauthorised system changes on the network and
can facilitate the definition of different behavior types, in which an alert should be triggered.
A crucial decision in infrastructure observability is Server Monitoring which is an essential
process of observing the activity on servers, either physical or virtual. A single server can support
hundreds or even thousands of requests simultaneously. As such, ensuring that all of the servers
are operating according to expectations is a critical part of managing an infrastructure. Another
equally critical decision is Application Monitoring which is a process of collecting log data to
support aspects such as track availability, bugs, resource use, and changes to performance in an
application. Moreover, features such as Metrics Collection, Services Availability, Centralized Log
Management and Monitoring and Performance Analytics Support would additionally improve a
system’s security.

119

9 Assessing Security Conformance in Infrastructure-as-Code Deployments

Security Access Control A critical security factor in cloud-based systems is how stable,
verifiable, and secure the interactions between a user and a cloud-application are. For this, a
secure authentication practice would address most of the possible issues. Authentication is
the process of determining a user’s identity. Moreover, authorization practices provide access
control for systems by checking if a user’s credentials match the credentials of an authorized
user or in a data authentication server. Also, it assures secure systems, secure processes and
enterprise information security [OWA21a]. There are a number of ways authentication can be
achieved. At the level of deployment architectures, one strongly recommended practice is the SSL
Protocol-Based Authentication [RKH14] in which a cryptographic protocol (SSL/TLS) encrypts
the data that is exchanged between a web server and a user [OWA21c] and provides means for
authentication of the connection. An alternative practice is Token-Based Authentication [Okt21],
a protocol which allows users to verify their identity, and in return receive a unique access token
for a specified time period. A similar practice but without granting tokens for a limited time
period is API Keys based authentication [Goo21], which utilizes a unique identifier to authenticate
a user or a calling program to an API. However, they are typically used to authenticate a project
with the API rather than a human user. A less secure practice and not recommended for security
critical interactions is Plaintext Authentication (or Shared Secret Based Authentication), where
the user name and password are submitted to the server in plaintext, being easily visible in
any intermediate router on the Internet. An authentication practice that can be implemented
additionally is the Single Sign-On (SSO) [aut21]. This is a method that can allow users to log
into one application and gain access to multiple applications. The goal of SSO is to make it
unnecessary for users to have numerous kinds of credentials also benefits them because it allows
them to log-off from all system components that use SSO with a single request. In this way, SSO
can enable users to improve passwords by getting rid of the need to remember and use them for
every single application, offering the best combination of simplicity and security for users.

Security Traffic Control Controlling incoming and outgoing traffic in a system can signific-
antly improve the overall security. Two common practices in this field are Ingress and Egress
Traffic Control. Optimally, a system should fully support both practices. Egress Traffic Con-
trol [The21] refers to traffic that exits a network boundary, while Ingress Traffic Control [Kub21]
refers to traffic that enters the boundary of a network. The ability to control what is entering a
system is of significant importance for security assurance, since it can prevent possible attacks
from outside of the network, where many possible attacks originate. Furthermore, it is important
to reduce the vulnerability as much as possible and prevent the attackers from using a cluster
for further attacks on external services or systems outside of the cluster. This requires securing
control of egress traffic. Both practices can be specified by security rules implementing security
groups [AWS21] that act as a virtual firewall for a system.

9.5 Ground Truth Calculations for the Study

In this section, we report for each of the ADDs from Section 9.4 how the ground truth data is
calculated based on manual assessment whether each of the relevant practices is either Supported
(S), Partially Supported (P), or Not-Supported (N) in Table 9.2. Following the information

120

9.5 Ground Truth Calculations for the Study

taken from the description of the impacts of the various decision options in Section 9.4, we
combined the outcome of all decision options to derive an ordinal assessment on how well
the decision as a whole is supported in each model, using the ordinal scale in Section 9.3.3.
This was done according to best practices documented in literature and experts assessment.
For instance, following the ordinal scale the assessment for the model S4 is ⇠: serious flaws
in the security design, but substantial support can already be found in the system, since the
practices ServicesAvailability Bugsand Performance Management and ApplicationMonitoring
are not supported. The ordinal results of assessments are reported in the Assessments rows of
Table 9.2.

Security Observability

S1 S2 S3 S4 S5 S6 S7 S8 S9 S1
0

S1
1

S1
2

S1
3

S1
4

S1
5

S1
6

S1
7

S1
8

S1
9

S2
0

S2
1

Server Monitoring S S P S S S S S S S N S S S P S N S N S S
Application Monitoring N N N N S N S P S N N N S N P N N S S S N
System Metrics Collection N N N S P N S P S S N S S S S N N N S N S
Centralized Log Manage-
ment

N N N S S N N N S N N S S S S S N S N N N

Services Availability N N N N N N N N S N N N S N N S N S N N N
Bugs and Performance
Management

N S P N N N N N S N N N S S S N N N N N N

Assessments - ⇠ ⇠ ⇠ + ⇠ + o ++ o -- ⇠ ++ ⇠ - ⇠ – + - + ⇠

Security Access Control

S1 S2 S3 S4 S5 S6 S7 S8 S9 S1
0

S1
1

S1
2

S1
3

S1
4

S1
5

S1
6

S1
7

S1
8

S1
9

S2
0

S2
1

SSL Protocol-Based Au-
thentication

N N N N P N N S N N N N N S S N N N N S N

Token-Based Authentica-
tion

S N N N N S N N S N N N N N N N N N N N N

Plaintext Authentication N N S S N N S N N N N N N N N N S N N N S
API Keys N S N N N N N N N N N N S N N N N N S N N
Single Sign-On (SSO) N N N N N N N N S N N N N N S N N N N S N
Assessments + ⇠ - - ⇠ + - + ++ -- -- -- ⇠ + ++ -- - -- ⇠ ++ -

Security Traffic Control

S1 S2 S3 S4 S5 S6 S7 S8 S9 S1
0

S1
1

S1
2

S1
3

S1
4

S1
5

S1
6

S1
7

S1
8

S1
9

S2
0

S2
1

Ingress Traffic Control S P N N S S N S S N N S P N P N S S N P S
Egress Traffic Control S N N N P N N N P N N S P N N N N S N N S
Assessments ++ - -- -- + ⇠ -- ⇠ + -- -- ++ - -- - -- ⇠ ++ -- - ++

Table 9.2: Ground Truth Data

Following the argumentation, for the Security Observability related practices, we can derive
the following scoring scheme for our ground truth assessment of this decision:

• ++: All server nodes support Server Monitoring, Application Monitoring, Centralized
Log Management, System Metrics Collection, Services Availability and Monitoring and
Performance Analytics.

• +: All server nodes support Server Monitoring and Application Monitoring and one or
more of the practices Centralized Log Management, System Metrics Collection, Services
Availability and Monitoring and Performance Analytics is supported.

121

9 Assessing Security Conformance in Infrastructure-as-Code Deployments

• ⇠: The majority of the server nodes support Server Monitoring and Application Monitoring
and one or more of the practices Centralized Log Management, System Metrics Collection,
Services Availability and Monitoring and Performance Analytics is supported.

• �: Some of the server nodes support Server Monitoring and/or Application Monitoring.

• ��: None of the server nodes support monitoring.

From the argumentation for the Security Access Control decision, we can derive the following
scoring scheme for our ground truth assessment:

• ++: All server nodes support SSL-Based Authentication or Token-Based Authentication
and Single Sign-On authentication.

• +: All server nodes support Token-Based Authentication or SSL-Based Authentication.

• ⇠: All server nodes are authenticated and some of those only support API Keys-Based
Authentication.

• �: All server nodes are authenticated and some of those only support Plaintext-Based
Authentication.

• ��: None of the server nodes support authentication.

Finally, from the argumentation for the Security Traffic Control decision, we can derive the
following scoring scheme for our ground truth assessment:

• ++: All server nodes support Ingress Traffic Control and Egress Traffic Control.

• +: All server nodes support Ingress Traffic Control and Egress Traffic Control to the
majority of system nodes.

• ⇠: All server nodes support Ingress Traffic Control and Egress Traffic Control not to the
majority of system nodes.

• �: The majority of server nodes support Ingress Traffic Control.

• ��: No traffic control is supported.

9.6 Metrics

In this section, we describe the metrics we have hypothesized for each of the decisions described
in Section 9.4. They are deliberately rather simple, as to represent each decision point in our
design decisions. The metrics, are a continuous value with range from 0 to 1, with 1 representing
the optimal case where a set of patterns is fully supported, and 0 the worst-case scenario where
it is completely absent, except Plaintext Authentication utilization metric in which the scale is
reversed in comparison to the others, because here we detect the presence of an anti-pattern: the
optimal result of our metrics is 0, and 1 is the worst-case result.. Using the model computed in
the ordinal regression analysis below, we then provide more complex metrics per decision in
section 9.4.

122

9.6 Metrics

9.6.1 Metrics for the Security Observability Decision

Server Monitoring metric (SEM). This metric returns the proportion of Server Nodes that
support server monitoring.

SEM =
Server Monitoring Support
Number of Server Nodes

Application Monitoring Support metric (AMS). This metric measures the proportion of
servers that support Application Monitoring.

AMS =
Number of Application Monitoring Links

Number of Server Nodes

System Metrics Collection Support metric (SMC). This metric measures the proportion of
servers that support System Metrics Collection tools.

SMC =
Number of System Metrics Collection Links

Number of Server Nodes

Centralized Log Management Support metric (CLM). This metric measures the proportion
of servers that support Centralized Log Management tools.

CLM =
Number of Centralized Log Management Links

Number of Server Nodes

Service Availability Support metric (SAS). This metric measures the proportion of servers
that support Service Availability tools.

SAS =
Number of Service Availability Links

Number of Server Nodes

Monitoring and Performance Analytics Support metric (PAS). This metric measures the
proportion of servers that support Monitoring and Performance Analytics tools.

PAS =
Number of Monitoring and Performance Analytics Links

Number of Server Nodes

9.6.2 Metrics for Security Access Control Decision

SSL Protocol-based Authentication utilization metric (SSLA). We defined this metric to
measure the proportion of servers that support SSL Protocol-based Authentication.

SSLA =
SSL Protocol-based Authentication Support

Number of Server Nodes

Token-Based Authentication utilization metric (TBA). This metric measures the proportion
of servers that support Token-Based Authentication.

TBA =
Token-Based Authentication Support

Number of Server Nodes

123

9 Assessing Security Conformance in Infrastructure-as-Code Deployments

API Keys utilization metric (API). This metric measures the proportion of servers that
support API Keys.

API =
API Keys Support

Number of Server Nodes

Plaintext Authentication utilization metric (PLA). This metric measures the proportion of
servers that support Plaintext Authentication.

PLA =
Plaintext Authentication Support

Number of Server Nodes

Single Sign-On Authentication utilization metric (SSO). This metric measures the propor-
tion of servers that support Single Sign-On Authentication.

SSO =
Single Sign-On Authentication Support

Number of Server Nodes

9.6.3 Metrics for Security Traffic Control Decision

Ingress Traffic Control utilization metric (ING). We defined this metric to measure the
proportion of servers that support Ingress Traffic Control.

ING =
Ingress Traffic Control Support

Number of Server Nodes

Egress Traffic Control utilization metric (EGR). We defined this metric to measure the
proportion of servers that support Egress Traffic Control.

EGR =
Egress Traffic Control Support

Number of Server Nodes

9.7 Evaluation of our Approach

In this section, we present and discuss the results of the metrics calculations for our models as
well as the results of the ordinal regression analysis. The metrics calculations for each model per
each decision metric are presented in Table 9.3. The dependent outcome variables are the ground
truth assessments for each decision, as described in Section 9.5 and summarized in Table 9.2. The
metrics defined in Section 9.6 and summarized in Table 9.3 are used as the independent predictor
variables. The ground truth assessments are ordinal variables, while all the independent variables
are measured on a scale from 0.0 to 1.0. The objective of the analysis is to predict the likelihood
of the dependent outcome variable for each of the decisions by using the relevant metrics for each
decision.

124

9.7 Evaluation of our Approach

Table 9.3: Metrics Calculation Results
Metrics S1 S2 S3 S4 S5 S6 S7 S8 S9

S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21

Security Observability

SEM 1.00 1.00 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.40 1.00 0.00 1.00 0.00 1.00 1.00

APM 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.66 1.00 0.00 0.00 0.00 1.00 0.00 0.40 0.00 0.00 1.00 1.00 1.00 0.00

SMC 0.00 0.00 0.00 1.00 0.66 1.00 1.00 0.33 1.00 1.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00

CLM 0.00 0.00 0.00 1.00 1.00 0.66 0.00 0.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00

SAS 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00

PAS 0.75 1.00 0.75 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Security Access Control

SSLA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00

TBA 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

API 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

PLA 0.00 0.00 1.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00

SSO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00

Security Traffic Control

ING 1.00 0.75 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 0.00 1.00 0.33 0.00 0.80 0.00 1.00 1.00 0.00 0.50 1.00

EGR 1.00 0.00 0.00 0.00 0.66 0.00 0.00 0.00 0.66 0.00 0.00 1.00 0.33 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00

Each resulting regression model consists of a baseline intercept and the independent variables
multiplied by coefficients. There are different intercepts for each of the value transitions of the
dependent variable (� [-]: serious flaws in the security design, but initial support can already
be found in the system, �[⇠]: serious flaws in the security design, but substantial support
can already be found in the system, � [+]: well supported, but aspects of the solution could
be improved, � [++]: very well supported), while the coefficients reflect the impact of each
independent variable on the outcome.

The statistical significance of each regression model is assessed by the p-value; the smaller the
p-value, the stronger the model is. A p-value smaller than 0.05 is generally considered statistically
significant [MC]. In Table 9.4, we report the p-values for the resulting models, which in all cases
are very low, indicating that the sets of metrics we have defined are able to predict the ground
truth assessment for each decision with a high level of accuracy.

Often, the C-index, which is also called concordance index and is equivalent to the area under
the Receiver Operating Characteristic (ROC) curve, is reported in the statistical literature as a
measure of the predictive power of ordinal regression models [APW+11]. The C-index is a metric
to evaluate the predictions made by an algorithm. Values over 0.7 indicate a good model, whereas
values over 0.8 indicate a strong model. A value of 1 means that the model perfectly predicts
those group members who will experience a certain outcome and those who will not. As Table 9.4
shows, the values of C-indexes are generally larger than 0.8 indicating a good enough model for
predicting the outcomes of individuals. Harrell [FEH15] suggests bootstrapping as a method for
obtaining nearly unbiased estimates of a model’s future performance based on re-sampling. We
used lrm’s validate function to perform bootstrapping and calculate the bias-corrected C-index.

125

9 Assessing Security Conformance in Infrastructure-as-Code Deployments

Table 9.4: Regression Analysis Results
Intercepts/Coefficients Value
Security Observability
Intercept: � [-] -1.0154
Intercept: � [⇠] -4.0071
Intercept: � [+] -7.9753
Intercept: � [++] -10.956
Metric Coefficient (SEM) 4.4224
Metric Coefficient (APM) 2.7670
Metric Coefficient (SMC) 1.7050
Metric Coefficient (CLM) 0.2630
Metric Coefficient (SAS) 2.1536
Metric Coefficient (PAS) 0.3730
Model p-value 1.153036e-06
Model C-index (original) 0.929
Model C-index (bias-corrected) 0.8934091
Security Access Control
Intercept: � [-] 0.1688
Intercept: � [⇠] -2.0267
Intercept: � [+] -3.6306
Intercept: � [++] -6.6639
Metric Coefficient (SSLA) 4.3872
Metric Coefficient (TBA) 4.4533
Metric Coefficient (API) 1.2695
Metric Coefficient (PLA) 2.5834
Metric Coefficient (SSO) 3.8701
Model p-value 3.871694e-07
Model C-index (original) 0.951
Model C-index (bias-corrected) 0.9456178
Security Traffic Control
Intercept: � [-] -29.792
Intercept: � [⇠] -69.340
Intercept: � [+] -90.643
Intercept: � [++] -120.88
Metric Coefficient (ING) 77.7199
Metric Coefficient (EGR) 52.539
Model p-value 2.031708e-14
Model C-index (original) 0.904
Model C-index (bias-corrected) 0.8827108

9.8 Discussion

9.8.1 Discussion of Research Questions

To answer RQ3.9 and RQ3.10, we proposed a set of generic, technology-independent metrics
for each IaC decision, and to each decision option corresponds at least one metric. We established
the ground truth to objectively assessed how well patterns and/or practices are supported in each
model, and extrapolated this to how well the broader decision is supported. We defined a set of
generic, technology independent metrics to automatically and numerically assess each pattern’s
implementation in each model, and performed an ordinal regression analysis using these metrics
as independent variables to predict the ground truth assessment. Our results show that every set
of decision-related metrics can predict with high accuracy our objectively evaluated assessment.

126

9.8 Discussion

This suggests that an automatic metrics-based assessment of a system’s conformance to ADD’s
options is possible with a high degree of confidence.

Here, we make the assumption that the infrastructure code can be mapped to the models used
in our work. For enabling this, we used rather simplistic modeling means, which can easily be
mapped from a specific code to the models

Regarding RQ3.11, we can assess that our deployment meta-model has no need for major
extensions and is easy to map to existing modeling practices. More specifically, in order to
fully model our evaluation model set, we needed to introduce 13 device type nodes and 11
execution environment nodes types such as Cloud Server and Virtual Machine respectively, and 6
deployment relation types and 4 deployment node relations. Furthermore, we also introduced
a deployment node meta-model to cover all the additional nodes of our decisions, such as
Centralized Log Management, which is a subclass of node type. The decisions in Security
Observability require modeling several elements such as the Web Server, Container, and Cloud
Server nodes types and technology-related connector types (e.g. RESTful HTTP) as well as
deployment-related connector types (e.g. Runs on, Deployed in Container). For the Security
Access Control and Security Traffic Control decisions, we have introduced additional attributes in
the system nodes (e.g. in Web Server) to specify whether an authentication practice is supported
or not, and which specific practice is used (e.g. SSL Protocol-Based Authentication). Based on
these considerations, we can assess that our decisions and the corresponding model elements can
easily be extracted automatically, e.g. with an approach as described in Section 9.3.5.

9.8.2 Threats to Validity

We mostly relied on third-party systems as the basis for our study in order to increase the internal
validity and thus avoid distorting the system composition and structure. It is possible that our
search procedures have resulted in some kind of unconscious exclusion of certain sources; we
have mitigated this by putting together a team of authors with years of experience in this field
and doing a very general and broad search. As our search was not exhaustive and most of the
systems we found were created for demonstration purposes and they were relatively small in
size, meaning that some potential architectural elements were not included in our metamodel.
Moreover, this contains a potential threat to the external validity of generalization to other,
more complex systems. However, we are confident that the documented systems represent a
representative cross-section of current practices in this area. Another potential risk is the fact that
the system variants were developed by the team of authors themselves. However, this was done
in accordance with the best practices documented in the literature. We made sure to only change
certain aspects in one variant and to keep all other aspects stable.

Another possible source of compromising internal validity is the modeling process. The team
of authors has considerable experience with similar methodologies, and the models of the systems
have been repeatedly and independently cross-checked, but the possibility of some interpretive
bias remains: other researchers might have coded or modeled differently, resulting in different
models. Since our aim was only to find a model that could specify all observed phenomena,
and this was achieved, we do not consider this risk to be particularly problematic for our study.
The assessment of the basic truth could also be interpreted differently by different practitioners.
The individual metrics that are used to evaluate the presence of the individual patterns were

127

9 Assessing Security Conformance in Infrastructure-as-Code Deployments

deliberately kept as simple as possible in order to avoid false positive results and to enable an
evaluation that is independent of technology.

9.9 Conclusions and Future Work

In this chapter we have studied how far it is possible to develop a method to automatically assess
security practices in architectural design decisions in the scope of an IaC deployment model.
We have shown that this is possible for IaC security-related decisions that contain patterns and
practices as decision options. In our approach, we modeled the key aspects of the decision
options using a minimal set of deployment model elements, which means that it is possible to
automatically extract them from the IaC scripts. Then we defined a number of metrics to cover
all the possible decision options and utilized the generated models as a ground truth. We then
used statistical methods (ordinal regression analysis) to derive a prediction model. The results
show that our metrics set can predict the ground truth assessment with a high level of accuracy.

So far, for security aspects of IaC deployment models, no generic, technology-independent
metrics have been studied in depth. According to the discussion in Section 9.2, there are studies
which are focused on quality assurance of IaC systems, but none specifically address security
critical measures. Furthermore, our approach treats deployment architectures as set of nodes
and connectors factoring out the technologies used, which is not the case for other studies.
Our approach’s goal is a continuous assessment, considering the impact of continuous delivery
practices, in which the metrics are assessed in a continuous manner, indicating improvements,
stability, and security of deployment architecture conformance.

As future work, we plan to study more decisions and related metrics, and to create a larger data
set, thus better supporting tasks such as early architecture assessment in a project.

128

Part IV
Architecture Refactoring

129

10 Semi-Automatic Feedback for
Microservice Architecture
Conformance

With the architectural design decision outlined in Chapter 6, we devised an approach to automate
architecting in the ongoing development of microservice-based systems. Our method provides the
basis for automated architecture reconstruction, conformity assessment to patterns and practices,
and detection and localization of potential violations. Subsequently, architects are presented with
actionable options to enhance architecture conformity within a continuous feedback loop. The aim
is to bolster architecting within the framework of continuous delivery practices, where architecture
violations are continually scrutinized, and remedial options are persistently recommended.

10.1 Introduction

Microservices are one of many service-based architecture decomposition approaches (see e.g. [PJ16,
PW09, Ric17, ZGK+07]). Microservices should not share their data with other services, can
be highly polyglot, and communicate via message-based remote APIs in a loosely coupled
fashion. This enables their independent deployment in lightweight containers or other virtu-
alized environments, as well as the rapid evolution of individual microservices independently
of one another. These features make microservices ideal for modern DevOps practices (see
e.g. [Zim17, PZA+17]).

Many architectural patterns and other recommended “best practices” for microservices have
been published in the literature [Ric17, ZSZ+19, Sko19]. So far little attention has been paid to
providing usable means to enforce these practices during the evolution of microservice-based
systems. This is problematic as it is hard to handle conformance manually, especially in large
and/or complex microservice architectures. Best practices have dependencies among each other,
meaning that improvement of one practice can lead to issues with another one. Many other system
architecture and implementation requirements influence the architectures in ways that might lead
to unwanted or accidental violations of microservice best practices, too. Finally, in the context of
continuous delivery and DevOps practices, it is to be expected that the architecture will change
rapidly and often without central coordination.

This study focuses on providing a set of actionable solutions to violations of loose coupling
related microservice best practices. In particular, we investigate three major Architectural
Design Decisions (ADD) related to microservice coupling: Persistent Data Storage of Services
related to data sharing via shared data storage; Service Interconnections related to the effects of
intermediate system components, such as API gateways, as well as of asynchronous integration;
and Dependencies through Shared Services related to direct, transitive, and cyclic dependencies

131

10 Semi-Automatic Feedback for Microservice Architecture Conformance

between individual microservices. These decisions have been modeled based on an empirical
study of existing best practices and patterns used by practitioners from our prior work [NZP+20a]

To address the outlined challenges, we propose a novel architecture refactoring approach
that is specific for architectural design in the context of the microservice ADDs, and uses the
empirically validated metrics proposed in our prior work [NZP+20a]. These metrics enable us
to study, for each of the above named ADDs, precisely how much a microservice architecture
model conforms to favored or less favored design options. For each possible design option
in the ADDs, we propose to systematically specify each possible violation. Based on those
specifications, we propose automated violation detection algorithms. From the combination of
possible ADD options, the chosen option, possible violations, and the detected violations, in each
design situation we can calculate all possible next decision options by applying possible solutions
to the violations. This leads to a search tree of possible next architecture design models, which we
each assess using our metrics. With this we can compare architecture conformance of the current
design and possible refactorings, and suggest to an architect all possible improvements in the
three ADDs. Please note that this approach is designed to be continuously applicable during each
run of a continuous delivery pipeline. This work aims to study the following research questions:

• RQ4.1 What are the possible architecture violations related to the above-mentioned
coupling-related architectural design decisions and how can they be automatically detected?

• RQ4.2 How can architects be guided in fixing those violations in a continuous feedback
loop, while retaining enough flexibility for architect’s to chose between possible options,
e.g. because other architecture trade-offs need to be considered?

To evaluate our approach we utilized a set of 27 models based on microservice-based systems ori-
ginally created or described by practitioners (see Table 3.1) as our main data set. We implemented
the automated violation detection and refactoring algorithms to detect the possible violations and
to generate all the possible fixes for addressing each violation. We then calculate our metrics
on coupling in microservices to judge the improvements compared with the initial version. Our
result is that in at most 4 refactoring steps, each of the violations found in the 27 models can be
fully resolved leading to optimal metric values, usually with many suggested optimal models
provided as options for architects to choose from.

This chapter is structured as follows: In Section 10.2 we explain the decisions. We also explain
the related patterns and practices, as well as the corresponding metrics as the background of
our work. Section 10.3 discusses and compares to related work. Next, we describe the research
methods and the tools we have applied in our study in Section 10.4. We then describe the
approach details in Section 10.5. In Section 10.6 we explain the evaluation process of our work.
Section 10.7 discusses the RQs regarding the evaluation results. In Section 10.8, we then analyse
the threats to validity. Finally, in Section 10.9 we draw conclusions and discuss future work.

10.2 Background

In this section, we briefly introduce the three coupling-related decisions, their decision options
(i.e. the possible patterns and practices that can be chosen). This information comes from two of

132

10.2 Background

our prior works: a) The decisions have been modeled based on an empirical study of existing
best practices and patterns by practitioners [NZP+20a, NZP+20b]. This study also contained a
detailed analysis of possible decision drivers (forces, quality attributes) of the decision options.
b) We have defined and empirically validated metrics to assess, for a given system model, how
well it conforms to the patterns and best practices modeled in our decision model. Based on the
reported positive and negative decision outcomes on the mentioned decision drivers, we could
further assess which of the options are more or less favored in the microservice practitioner
literature. For evaluation we used 27 microservice component architecture models, summarized
in Table 3.1 and described in Section 10.4.

10.2.1 Decisions

Decision: Persistent Data Storage of Services

This decision is about how persistent data storage is handled for services, if any is needed. The
following decision options can be chosen: No Persistent Data Storage is applicable only for
services whose functions are performed on transient data. The most recommended option is
Database per Service pattern [Ric17], in which each service has its own database and manages
its own data independently. Another option, is to use a Shared Database [Ric17]: two or more
services read to and write from a common database. This option has two alternatives: Data
Shared via Shared Database in which multiple services share the same table, resulting in a
strongly coupled system. In contrast in the Database Shared but no Data Sharing option, each
service writes to and reads from its own tables, which has a lesser impact on coupling.

In our previous work, we have empirically defined two metrics that can be used to assess
conformance to each of the decision options:

• Database Type Utilization to measure the proportion of services that are using individual
databases.

• Shared Database Interactions to measure the proportion of interconnections via a Shared
Database among the total number of service interconnections.

Decision: Service Interconnections

Another important aspect in microservices is how the services communicate between each other.
The decision is about how tightly service are coupled via their interconnections. No Service
Interconnection is an optimal option but in reality this is not applicable. One other option is
Synchronous Service Interconnections which is usually not the favored option in microservice
systems. A number of asynchronous alternative options exist. One of these is Asynchronous Direct
Interconnections, in which all the services communicate asynchronously via direct invocations.
Another option is asynchronous communication through intermediary components. These can be
Pub/Sub Interconnections [HW03a], in which services publish and subscribe to events between
each other, maybe combined with Event Sourcing; Messaging Interconnections [HW03a], in
which services produce and consume messages that are stored in a message broker; Asynchronous
Interconnections via API Gateway [Ric17], where services route asynchronous invocations via

133

10 Semi-Automatic Feedback for Microservice Architecture Conformance

the API Gateway; Shared Database Interconnection, in which services interact via a shared
database—every communication that is happening in this way is considered as asynchronous.
Please note that the last option is beneficial over synchronous invocations in this decision, but
leads to other problems, including shared-database interactions from the previous decision.

For this decision too we have empirically defined two metrics that can be used to assess
conformance to each of the decision options:

• Asynchronous Communication Utilization to measure the proportion of asynchronous
service interconnections in the system.

• Service Interactions via Intermediary Components to measure the proportion of service
interconnections via asynchronous relay architectures, such as Message Brokers, Pub-
lish/Subscribe, or Stream Processing.

Decision: Dependencies through Shared Services

Optimally, in a microservice-based system, services should not share other services all together
at least not in a strongly coupled fashion. There are many patterns that are related to system
structures avoiding service sharing. Especially in large scale systems, service sharing can lead
to additional issues such as a chain of transitive dependencies between services and severe
maintenance issues. We have identified four decision options for this decision: First, the optimal
case, the might be No Shared Services. There are three cases containing some service sharing:
Directly Shared Service in which two or more services are directly connected to other service(s);
Transitively Shared Service in which a service is linked to other services via at least one inter-
mediary service creating a transitive chain; and Cyclic Dependency [GM14] in which services
create a direct or transitive path that leads back to the initial service. Cyclic dependencies are
considered as highly problematic since the services can no longer be changed, understood, or
tested in isolation.

For this decision too we have empirically defined three metrics that can be used to assess
conformance to each of the decision options:

• Direct Service Sharing to measure the proportion of directly shared elements in the system.

• Transitively Shared Services to measure the proportion of transitively shared elements in
the system.

• Cyclic Dependencies Detection to detect the presence of at least one cyclic dependency in
the system.

10.3 Related Work

Microservice best practices have been widely examined in various studies. A collection of
microservice patterns and practices has been published by Richardson [Ric17] and another
collection of practices related to event-driven microservice architectures has been published by
Skowronski [Sko19]. Zimmermann et al. [ZSZ+19] introduced patterns related to microservices

134

10.4 Research and Modeling Methods

APIs. Fowler and Lewis [LF04] have discussed microservice fundamentals and best practices.
Pahl and Jamshidi [PJ16] have summarized many of those in a mapping study. Microservice “bad
smells” have been studied by Taibi and Lenarduzzi [TL18], which correspond to violations in our
work.

There is a number of studies that focus on techniques for detecting design or architecture
smells, which are considered as violations in our case, but most of them are not specific to the
microservices domain. A catalog of architectural bad smells using a format has been published in
Garcia et al.’s [GPEM09a, GPEM09b] studies. These studies also propose possible techniques
for identification of these architecture smells. Le et al. [LLSM18] examined the relations
between smells and a project’s issues. They further examined the detection of multiple types of
architecture smells. A number of detection strategies that take advantage of metrics-based rules
for detecting design flaws have been presented by Marinescu [Mar04]. Garcia et al. [GPM+11]
present a machine learning-based technique for recovering an architectural view containing
a system’s components and connectors, which aims at detecting architecture drift or erosion.
A prototypical tool for architecture recovery of microservice-based systems (MicroART) is
presented by Granchelli et al. [GCD+17]. Alshuqayran et al. [AAE18b] suggest a microservice
architecture recovery approach based on a meta-model and rules for mapping artifacts to it.
A multivocal literature review, focused on identifying architectural smells for independent
deployability, horizontal scalability, fault isolation and decentralisation of microservices, as well
as suggesting refactorings to resolve them, is presented by Brogi et al. [NSZB19].

Although these works study various aspects of architecture violation detection, and some of
them investigate aspects related to the microservice domain, none covers detecting and addressing
coupling-related violations in a microservice context. In contrast, our work investigates in detail
coupling-related aspects such as data persistence, communication types, and shared service
dependencies. As a direct benefit of this, we expect that, in the context of loose coupling,
our work produces more accurate detections of decision-specific violations and more targeted
suggestions for fixes than those other works possibly could. As a downside, our work requires
a model in which the component and connector roles in a microservice architecture have been
modeled (as for instance done with stereotypes in the model introduced in Figure 10.3). That is,
our work requires additional insight into a system’s architecture, and some effort in encoding the
corresponding models; however, this knowledge is at a relatively high level of abstraction and
the resulting models are not impacted by changes in service implementation. We are currently
working on a semi-automatic approach for architecture reconstruction and modelling that relies
on reusable code abstractions and is thus suitable for complex systems with short delivery cycles.

10.4 Research and Modeling Methods

In this section, we summarize the main research and modeling methods applied in our study. For
reproducibility, all the code and models produced in this study will be made available online, as
an open access data set in a long-term archive1.

1https://doi.org/10.5281/zenodo.4491583

135

10 Semi-Automatic Feedback for Microservice Architecture Conformance

10.4.1 Research Method

Figure 10.2 shows the research steps of this study. In Section 10.2 we have already explained
in detail the architectural decisions and the model-based metrics on which this study is based.
In Section 10.5 we present a) precise definitions and algorithms for the detection of possible
violations for each decision option, and b) precise definitions and algorithms for the possible
fixes for each violation.

To evaluate our approach, we have applied it on a dataset of 27 models, summarized in Table 3.1.
This dataset comprises microservice-based systems from 9 independent sources, developed by
practitioners and published in public repositories and practitioners’ blogs. We assume that these
systems are, or reflect, real-world practical examples of microservice architectures. However,
as many are open-source systems for demonstrating practices or technologies, they are, at most,
of medium size and modest complexity. For the specification of our Microservice Component
Architectures meta-model and the calculation of all metrics, violation detection, and fixes, we
used the Python modeling library CodeableModels described in Chapter 3.7.

Our approach is designed to detect all violations for every model in our data set, and perform
all possible suggested architecture refactorings (fixes) to it. This we did recursively, i.e., on the
resulting, refactored models for each violation fix, we again performed all violation detection
algorithms and applied all possible refactorings, until either no more violations were detected,
or the refactored model was identical to a previous version. In the latter case, this means that it
is not possible to fix all violations, since resolving one violation will require introducing other
violations. For each of the final models (the ‘leaves’ of the iteration tree), we assessed pattern
conformance through our metrics on microservice coupling, to judge the improvement compared
to the original model.

10.4.2 Using the Approach in a Continuous Delivery Pipeline

Figure 10.1 shows the position of our approach in a delivery pipeline in which every commit
triggers an iterative loop of improvements. We place our approach after initial tests have been run,
i.e. where usually code coverage and similar checks are run. In this stage we perform the metrics
calculation process and if a violation is detected we determine the specific type of violation and
provide a set of fix options. The architect or developer can select the optimal fix or to perform
no more fixes. This triggers the automatic architecture refactoring process and a new version of
the system component is generated. The metrics calculation process is performed again for the
new version to evaluate the improvements. If there is no more violation after the fix process we
continue in pipeline process. Of course, the approach can be equally applied to more complex
systems with multiple delivery pipelines, for example, by mining docker files or other runtime
logs in order to reconstruct the architecture.

10.5 Approach Details

In this section, we first give an overview of the violations and possible fixes we have identified,
as well as the algorithms we have developed to detect violations or enact fixes. Also, we give

136

10.5 Approach Details

Commit Build Test Deploy

selects desired fixes

get guidances on fixes

Architect/
Developer

Violation
Detection

Metrics
Calculation

Fix Suggestions Fixes Selection
Architecture
Refactoring
Suggestions

yes

no

Violation
Found?Deploy

yes

no Fix
Violations?

Architecture
Assessment

Architecture
Model

Generation

Figure 10.1: Placing of our approach in a delivery pipeline

Background

Architecture Refactoring

Violations/Solutions

Architecture Evaluation

Violation Detection
Algorithms

Fix Algorithms

Violation Definition

Fix Definition

Automatic Architecture
Refactoring

Architectural Design
Decisions on Microservice

Coupling

Microservices Compoent
Architecture Models

Metrics Calculation for
Evaluation Model Data Set

Evaluation

Metrics on Coupling in
Microservices

Figure 10.2: Overview diagram of the research method followed in this study

137

10 Semi-Automatic Feedback for Microservice Architecture Conformance

detailed examples from the Dependencies through Shared Services decision to illustrate the
approach.

We base our violation and fix definitions on the notion of a microservice-based architecture
model consisting of a directed components and connectors graph. This can be expressed formally
as: A microservice architecture model M is a tuple (CP, CN, CPT, CNT, ST) where:

• CP is a finite set of component nodes. The operation components(M) returns all
components in M .

• CN ✓ CP ⇥ CP is an ordered finite set of connectors. connectors(M) returns all
connectors in M .

• CPT is a set of component types. The operation services(M) returns all components
of type service in M . The operation service_connectors(M) returns all connectors of
components of type service in M .

• CNT is a set of connector types.

• ST is a finite set of stereotype nodes. The operation cp_stereotypes(CP) returns all
stereotypes of component CP . The operation cn_stereotypes(CN) returns all stereotypes
of connector CN . Stereotypes can be applied to components to denote their type, such as
Service, API Gateway, etc. Stereotypes can be applied to connectors to denote their type,
such as Read_Data, RESTful HTTP, or Asynchronous. Some are specialized with tagged
values (details omitted here for space reasons).

• cp_annotations : CP ! {String} is a function that maps an component to its set of
annotations. Annotations are used in our approach (in some of the fixes) to document
aspects that need further consideration or maybe manual refactoring.

• cn_annotations : CN ! {String} is a function that maps a connector to its set of
annotations.

Please note that we define many additional model traversal operations not detailed here for space
reasons.

10.5.1 Violation Detection

Table 10.1 summarizes the possible violations we have identified for each of the decisions. The
table also describes in detail how the algorithms work that we use for detecting the violations
in models based on our model definition above. In Algorithm 10.1 we exemplary detail the
algorithm for detecting the Directly Shared Services Violation of Decision D3. It returns a
list of violations, each described by a set of two services connectors in which two services si
and sj share a service sm. Its sibling for the Transively Shared Services Violation is shown in
Algorithm 10.2. This one returns a list of all service sets in which two services si and sj share a
service sm via intermediaries.

138

10.5 Approach Details

Violation Violation Detection Algorithm Summary
D1: Persistent Data Storage of Services

D1.V1: Services have a shared
database, but no data is shared
via the shared database

The models are traversed for finding database accesses. Database accesses by more than one service are
inspected for the data entities that are read and written. If none of those data entities are shared by two
services, this violation is raised. All violating data accesses (including services, databases, and connectors
involved) are returned by the detector operation.

D1.V2: Services have a shared
database and data is shared via
the shared database

The models are traversed for finding database accesses. Database accesses by more than one service are
inspected for the data entities that are read and written. If at least one of those data entities is shared by at
least two services, this violation is raised. All violating data accesses (including services, databases, and
connectors involved) are returned by the detector operation.

D2: Service Interconnections
D2.V1: System services commu-
nicate synchronously

All service connectors in the model are traversed. If any synchronous connector is encountered, the viola-
tion is raised and the list of all synchronous connectors is returned by the detector operation.

D3: Dependencies through Shared Services
D3.V1: Directly shared services All services in the model are traversed, and it is checked whether two services share another service via

directly linking connectors. If this is the case, a violation is raised. Each pair of shared service connectors
that is found is returned by the detector operation.

D3.V2: Transitively shared ser-
vices

All services in the model are traversed, and it is checked whether two services share another service via
transitively linking connectors. Transitive means here via any number of intermediary other services. If
this is the case, a violation is raised. Each pair of shared service connectors that is found is returned by the
detector operation.

D3.V3: Cyclic Dependency On the graph of services and connectors in the model we run a cycle detection based on a depth-first search
algorithm. If we detect a cycle, a violation is raised. All detected cycles are returned as a list of sets of
connectors participating in the respective cycle.

Table 10.1: Identified Violations and Violation Detection Algorithms

Algorithm 1: Detect Directly Shared Services Violation
i n p u t : Model M
o u t p u t : Set <Tuple >
beg in

v i o l a t i o n s ;
f o r sm 2 s e r v i c e s (M) :
f o r si 2 s e r v i c e s (M) :
f o r sj 2 s e r v i c e s (M) :

i f ((si, sm) 2 s e r v i c e _ c o n n e c t o r s (M) ^
(si, sm) 2 s e r v i c e _ c o n n e c t o r s (M)) :

v i o l a t i o n s violations [(si, sm), (sj , sm)
r e t u r n v i o l a t i o n s

end

Algorithm 2: Detect Transitively Shared Services Violation
i n p u t : Model M
o u t p u t : Set <Tuple >
beg in

v i o l a t i o n s ;
f o r sm 2 s e r v i c e s (M) :
f o r si 2 s e r v i c e s (M) :
f o r sj 2 s e r v i c e s (M) :

i f (e x i s t s _ t r a n s i t i v e _ l i n k (M, si , sm) ^
e x i s t s _ t r a n s i t i v e _ l i n k (M, si , sm)) :

v i o l a t i o n s violations [(si, sm), (sj , sm)
r e t u r n v i o l a t i o n s

end

139

10 Semi-Automatic Feedback for Microservice Architecture Conformance

10.5.2 Fixes

Table 10.2 details all the fixes for each identified violation along with a summary of the fix
algorithm. Please note that many algorithms can only be applied with default values or approaches
fully automatically. Many of them require human review by the architect and sometimes a human
decision to be applicable. For example, the architects can be presented with a choice of an
intermediary component to use to replace cyclic links or which of a set of transitive connectors
should be deleted. That is, our fix approach is intended to be used as guidance to architects in a
feedback loop (as illustrated in Figure 10.1), not to replace them.

Please note that some obvious details of the algorithms that are repetitive have been omitted
for space reasons. For example, if connectors are replaced, existing stereotypes and annotations
on them that are not related to the type of provided replacement must be retained on the new
connectors. To illustrate this consider a RESTful HTTP, Synchronous connector is replaced with
a RESTful HTTP, Asynchronous connector. Obviously, the stereotype Synchronous changes to
Asynchronous during the fix, but also it must be ensured that the RESTful HTTP annotation is
retained.

The Algorithms 10.3–10.6 exemplary present the fixes for Decision D3 and its Violation V1
in detail. They represent the identically named fixes D3.V1.F2–D3.V1.F5 respectively. For
explanations of each fix, please study Table 10.2.

Algorithm 3: Remove Connectors of Directly Shared Services
i n p u t : Model M, Set <Tuple > v i o l a t i o n
o u t p u t : �
beg in

f o r (si, sm) 2 v i o l a t i o n :
i f (si, sm) 2 s e r v i c e _ c o n n e c t o r s (M) :

d e l e t e _ c o n n e c t o r (M, (si, sm))
end

Algorithm 4: Remove Connectors of Directly Shared Services
i n p u t : Model M, Set <Tuple > v i o l a t i o n , Component i n t e r m e d i a r y
o u t p u t : �
beg in

f o r (si, sm) 2 v i o l a t i o n :
a d d _ c o n n e c t o r (si , i n t e r m e d i a r y ,

g e t _ a p p l i c a b l e _ s t e r e o t y p e s (M, (s _ i , s_m)))
a d d _ c o n n e c t o r (i n t e r m e d i a r y , sm ,

g e t _ a p p l i c a b l e _ s t e r e o t y p e s (M, (s _ i , s_m)))
d e l e t e _ c o n n e c t o r (M, (si, sm))

end

Algorithm 5: Integrated Shared Services into Calling Service
i n p u t : Model M, Set <Tuple > v i o l a t i o n
o u t p u t : �
beg in

i n t e g r a t i o n _ a n n o t a t i o n s ;
f o r (si, sm) 2 v i o l a t i o n :

i n t e g r a t i o n _ a n n o t a t i o n s i n t e g r a t i o n _ a n n o t a t i o n s [
" i n t e g r a t e d f u n c t i o n a l i t y from : " +
g e t _ s e r v i c e _ n a m e (M, si)

140

10.5 Approach Details

f o r c o n n e c t o r 2 i n c o m i n g _ c o n n e c t i o n s (M, si) :
c h a n g e _ t a r g e t (model , c o n n e c t o r , sm)

d e l e t e _ s e r v i c e (M, si)
a d d _ a n n o t a t i o n s (M, sm , i n t e g r a t i o n _ a n n o t a t i o n s)

end

Algorithm 6: Integrated Calling Service into Calling Services
i n p u t : Model M, Set <Tuple > v i o l a t i o n
o u t p u t : �
beg in

f o r (si, sm) 2 v i o l a t i o n :
f o r c o n n e c t o r 2 o u t g o i n g _ c o n n e c t i o n s (M, sm) :

c h a n g e _ s o u r c e (M, c o n n e c t o r , si)
a d d _ a n n o t a t i o n s (M, si ,

{" i n t e g r a t e d f u n c t i o n a l i t y from : " +
g e t _ s e r v i c e _ n a m e (M, sm) })

d e l e t e _ s e r v i c e (M, sm)
end

10.5.3 Violation Detection and Fixes Example

In Figure 10.3 the model TH1 from Table 3.1 is shown. As an illustrative example, we use
it here to demonstrate the Directly Shared Services Violation (D3.V1) and possible fixes. In
this model the Payment service is called directly by services Passenger Management and Drive
Management. Here, the Payment service is considered as shared service causing the Directly
Shared Services Violation. It would be triggered in our approach by providing a bad metric value,
which would trigger the detailed detection, which would return the {(Passenger Management,
Payment), (Passenger Management, Payment)} set of tuples. If we run our fix algorithms the
resulting model fix suggestions are for instance:

• Applying Fix D3.V1.F2: The architect can decide that the connectors or one of them is not
really needed or can be replaced by some other manual refactoring. If this is the case, the
connectors can get removed by this fix.

• Applying Fix D3.V1.F3: Payment service will be disconnected from Passenger Management
and Drive Management services and connected to API Gateway (all interactions will be
happening via the API Gateway). Alternatively, this fix could also introduce a new
intermediary component (e.g., Pub/Sub) and all the involved services will be connected to
it with publish and subscribe operations for the data exchange.

• Applying Fix D3.V1.F4: The Passenger Management and Drive Management services can
be integrated into Payment service.

• Applying Fix D3.V1.F5: The Payment service can be integrated to Passenger Management
and Drive Management services, if that’s possible.

In all these fixes the identified directly shared services violation would get fixed.

141

10 Semi-Automatic Feedback for Microservice Architecture Conformance

«Client»
Mobile App : Component

«Facade»
API Gateway : Component

«Service»
Passenger Management Service

: Component

«Web UI»
Passenger : Component

«Client»
Browser : Component

«Web UI»
Driver : Component

«Service»
Driver Management Service

: Component

«Service»
Payment Service

: Component

«Service»
Notification Service

: Component
«Database»

Driver DB : Component
«Database»

Passenger DB : Component

«Service»
Trip Management Service

: Component

«Service»
Biling Service
: Component

«Database»
Trip DB : Component

«RESTful HTTP»

«Asynchronous, RESTful HTTP» «Asynchronous, RESTful HTTP»«Asynchronous, RESTful HTTP»

«RESTful HTTP»«Database Connector»

«Asynchronous, RESTful HTTP»«Asynchronous, RESTful HTTP»

«HTTP, HTTPS» «HTTP, HTTPS»

«Asynchronous, RESTful HTTP»

«RESTful HTTP» «RESTful HTTP» «Database Connector»«RESTful HTTP» «Database Connector»

Figure 10.3: Example of an Architecture Component Model of model TH1 in Table 3.1: this
architecture violates the Service Interaction (D2.V1) and Dependencies through
Shared Services (D3.V1) decisions (cf. Table 10.1).

10.6 Evaluation

For evaluating our work, we have fully implemented our algorithms for detecting violations and
performing fixes, as well as generating the set of metrics described in Section 10.2 to measure
the improvements and the presence of remaining violations, in our model set. In case multiple
violations are present in a model, then the algorithms can be employed iteratively, until all
violations have been fully resolved.

As an example, let us illustrate this exhaustive iterative refactoring for the TH1 Model (see
Figure 10.3). TH1 violates two of the decisions—“System services communicate synchronously”
(D2.V1) fully and “Directly shared services” (D3.V1) partially, as indicated by the two respective
measures (0.00 and 0.67 respectively) in Table 10.3. The incremental refactoring process is
illustrated in Figure 10.4. At the first iteration step, there are two branches, depending on which
violation is dealt with first. The first iteration step results in 7 possible model variants, one for
each fix option from Table 10.2. Out of those, the model variant F shows no further violations
(i.e., the fix for D2.V1 has also coincidentally fixed violation D3.V1 and thus optimally resolved
all violations). In model variant G the violation D3.V1 was also coincidentally fixed, but this fix
introduced a new “Services have a shared database and data is shared via the shared database”
(D1.V2) violation. Thus, after the first iteration, there are 6 new model variants that still contain a
violation.

The second iteration step results in further 18 models. In turn, 4 of the resulting models now
exhibit violation D1.V2, requiring a third step to be resolved. At the end of the third step, we
have 23 suggested model variants (A1–A2, A3_1–A3_2, B1–B2, B3_1–B3_2, C1–C2, C3_1–C3_2,
D1–D2, D3_1–D3_2, E1–E4. F, G1–G2) which all optimally resolve the violations (i.e., scoring 1.00
in our assessment scale). The architect can choose the refactoring sequence, and from among
those final optimal model variants, but can also choose to not apply certain fixes, e.g. due to other
constraints that are outside of the scope of our study.

For evaluation purposes, we have performed this procedure for all 27 system models in

142

10.7 Discussion of Research Questions

Table 3.1. The resulting number of intermediate models and violation instances per step, and the
number of final suggested models with an optimal assessment of 1.00, are given in Table 10.3,
along with the initial violations and architecture assessment values for each model. Please note
that the metrics reported here are the ones associated to each of the violations; most metrics
from Section 10.2 match one-to-one, only D2.V1 has two metrics associated (i.e., both from
Section 10.2.1). Please also note that for D2.V1 to be fixed, it is enough that one of the two
metrics is optimal (1.00); this is why the models BM3, CO2, and EC2 require no refactoring
steps, even though they score less than 1.00 in the other of the two metrics. The metrics measure
the degree of the violation, with 1.00 when no violation exists and 0.00 where the worst possible
option is selected and not even partial conformance is measured. Obviously, the number of steps
required to reach optimal models depends on a) the number of the violations present in the initial
model and b) on the possible appearance of new violations during the refactoring process (as
explained in detail in the TH1 example above). As can be seen in Table 10.3, all models are fully
resolved—i.e., all assessment metrics are 1.00—after at most four steps.

TH1

produces

D3.V1

produces

D2.V1

A B C D

produces

D2.V1

violates violates

violates violates violates violates

GE

produces

D3.V1

violates

A2 B2 C2 D2

violates

A3

violates

B3

violates

C3

violates

D3

E1

E2

E3

F

E4

produces

D1.V2

A3_2 B3_2 C3_2 D3_2

D1.V2

G1

G2

produces

violates

A1 B1 C1 D1

A3_1 B3_1 C3_1 D3_1

Figure 10.4: Example of an exhaustive iterative application of our approach in the TH1 model.
Final (i.e., optimally resolved) resulting models are thickly outlined.

10.7 Discussion of Research Questions

To answer RQ4.1 we have systematically specified a number of decision-based violations related
to each possible decision option, summarized in Table 10.1. As we have empirically shown in our
prior work [NZP+20a] that the metrics described in Section 10.2 can reliably distinguish favored
or less favored design options, the role of the violation detectors is to find the precise spots in

143

10 Semi-Automatic Feedback for Microservice Architecture Conformance

the models where the violations occur. For each system model in our evaluation dataset it was
possible to suggest fixes that bring the architecture to optimal values, meaning that the algorithms
have found the right place(s) to apply the fixes.

Regarding RQ4.2 we defined a number of algorithms addressing every possible violation,
with multiple fix options (cf. Table 10.2). If all options are tried out, this results in a search tree
of possible architecture models, which can in turn be assessed, using our metrics, to measure
improvements to the initial architecture and detect any remaining violations. We have shown (cf.
Table 10.3) that an iterative approach of using our algorithms successively, results, within a few
steps, in a sufficient variety of possible architecture models that remove all detected violations and
ensure pattern conformance of the system architecture. The multiple optimal model variants that
result from our approach give architects substantial levels of freedom in their design decisions.
As detection is fully automated and human expertise is limited to the fix process, the approach is
well suited to be run in a continuous delivery environment, which was one of our research goals.

10.8 Threats to Validity

To increase the internal validity of our approach, throughout our study, as well as in the previous
works on which it builds, we have relied on a large number of systems produced by third parties
for testing and evaluation (cf. Table 3.1). Likewise, the solutions we propose are derived from
best practices and patterns in the published (grey) literature: our work is limited to gathering,
systematizing, and applying them to the given set of systems. Any omissions can be added to our
model without invalidating the fundamental approach. One possible threat to the internal validity
of our algorithms is that they depend on the particular modelling approach we have adopted.
However, this approach is by design generic, based on typical component-and-connector models,
and should be both capable of dealing with most microservice systems, as well as be easy to
extend or adapt if required.

Our approach presently has some limitations: it operates at a relatively high level of abstraction,
does not consider any decision parameters other than the metrics evaluating pattern conformance,
and limits itself to specific, coupling-related patterns. We consider that these limitations can be
addressed in future work, by applying the same fundamental, metrics-based approach to finer-
granularity parameters , enriching our decision support model with additional data sources , and
adding more patterns to our decision model. In terms of generalizability, we have not considered
industrial-scale systems with hundreds of services, but are confident that the fundamental approach
is sound. The challenge would be one of adapting our method and increase its ‘intelligence’ so as
to target contiguous portions of large-scale systems at a time, so that the generated refactored
models would be realistically feasible. The solutions proposed may also not be always optimal,
as we aim to present generically applicable solutions. It remains possible that an architect will
devise a custom, hybrid solution that optimizes a system in ways that an automated approach
cannot. Again, however, this is a matter of extending the present approach with the metrics and
the ‘intelligence’ required to model these hybrid solutions.

144

10.9 Conclusion and Future Work

10.9 Conclusion and Future Work

In this chapter we have presented a set of violations for three ADDs and mapped them to
existing, empirically validated metrics judging the outcomes of these decisions. We have defined
automatic detectors for these violations, which provide the precise places in a model where the
violations occur. Bases on this, we have defined a set of possible fixes for each violation, as
part of an approach for ensuring pattern and best practice conformance in microservice-based
architectures. We have evaluated our approach on a set of 27 models showing various degrees of
pattern violations and architecture complexity, and have shown that our approach is capable of
resolving these violations in at most 4 refactoring steps that can largely be automated. As both
metric calculation and violation detection are fully automated, the approach can be applied as
an additional “architecture assessment test” in a continuous delivery pipeline, as was our goal.
Fixes are automated, too, but architects have to decide which of the suggested options should be
applied (if any) and sometimes need to provide some input. Thus the approach is still flexible
enough to let the architect make architectural design choices.

In our future work, we aim to broaden the set of ADDs and violations included in our approach,
enrich it with runtime metrics and other architecture aspects such as deployment environments,
and extend our model dataset to include larger and more complex systems. In addition, we hope
to experimentally validate our approach by employing it in real-world delivery pipelines as part
of a feedback loop.

145

10 Semi-Automatic Feedback for Microservice Architecture Conformance

Violation Fix Fix and Fix Algorithm Summary
D1: Persistent Data Storage of Services

D1.V1
D1.V1.F1: Do not fix the violation The architect should have the option to not fix the violation, e.g. because it is not critical.
D1.V1.F2: Introduce new service-specific data-
bases and migrate database accesses

Disconnect services from the shared database and introduce a new database per service. Migrate
each service-specific database access to the respective service-specific database. The architect
needs to check if this fix is possible and, if applied, whether the original database can be deleted
after the migration.

D1.V1.F3: Merge services with shared data-
base into a single service using one database

Merge the services using the same shared database into a single service using that database. The
architect needs to check whether such integration is possible and can provide annotations for im-
plementers about the details of the envisaged service integration.

D1.V2
D1.V2.F1: Do not fix the violation The architect should have the option to not fix the violation, e.g. because it is not critical.
D1.V2.F2: Migrate to new database and add
consistency mechanism for the shared data

Same as Fix D1.V1.F3. In addition, add consistency mechanism for the data shared between ser-
vices. The architect needs to select the consistency mechanism applied (e.g., eventual consistency
via an event store). Then connectors will be extended with respective stereotypes and exchange of
data-related events.

D1.V2.F3: Merge Services with Shared Data-
base into a single service using one Database

Same as Fix D1.V1.F3.

D2: Service Interconnections

D2.V1

D2.V1.F1: Do not fix the violation The architect should have the option to not fix the violation, e.g. because it is not critical.
D2.V1.F2: Replace synchronous direct inter-
connection with asynchronous direct intercon-
nection

Disconnect all the synchronously connected services and connect them using asynchronous con-
nectors with the same stereotypes as the synchronous ones. Delete the synchronous connectors.

D2.V1.F3: Replace synchronous direct inter-
connection with interactions via an intermedi-
ary component, e.g., API Gateway, Pub/Sub,
Message Broker

The architect has to select if an existing intermediary component can be used for the fix, or a new
one has to be created. Replace synchronous direct interconnections with asynchronous intercon-
nections via this component. Delete the synchronous connectors.

D2.V1.F4: Introduce communication by writ-
ing to and reading from common databases

The architect has to select if an existing database can be used for the fix, or a new one has to be
created. For each synchronous connectors, introduce communication by writing to and reading
from this database. Delete the synchronous connectors. Please note, while this fix repairs this
violation, it leads to a violation of D1.

D3: Dependencies through Shared Services

D3.V1

D3.V1.F1: Do not fix the violation The architect should have the option to not fix the violation, e.g. because it is not critical.
D3.V1.F2: Remove connectors of directly
shared services

Change the connections between services and remove connectors between the involved services.
This fix is only applicable, if a solution makes sense that performs the same functionality without
those connectors. This must be judged by a human architect.

D3.V1.F3: Replace direct links via an interme-
diary component, e.g., API Gateway, Pub/Sub,
Message Broker

The architect has to select if an existing intermediary component can be used for the fix, or a new
one has to be created. Replace direct interconnections with asynchronous interconnections via this
component. Delete the direct connectors.

D3.V1.F4: Integrate shared services into call-
ing service

Integrate the responsibility and functionality of the shared services (i.e., the services that are called
by two or more services) into calling services (services that call a shared service), and delete the
shared services and any connectors accessing them. Here we add annotations that functionality has
been added to the calling service, so that implementers later on can realize this functionality.

D3.V1.F5: Integrate calling service into shared
service

Integrate the responsibility and functionality of the calling services into shared services, delete the
calling service, and rewire their clients directly to the shared services. Here we add annotations
that functionality has been added to the shared services, so that implementers later on can realize
this functionality. Which functionality goes to which shared service can be further annotated by
the architects.

D3.V2

D3.V2.F1: Do not fix the violation The architect should have the option to not fix the violation, e.g. because it is not critical.
D3.V2.F2: Remove connectors of transitively
shared services

The architect needs to decide which of the connectors in each transitive link path are safe to delete.
It must then be checked that this is enough to break up the transitive sharing. Then: Same as
D3.V1.F2 for selected connectors.

D3.V2.F3: Replace direct links via an interme-
diary component, e.g., API Gateway, Pub/Sub,
Message Broker

As in D3.V2.F2 the architect needs to select connectors, and a check that sharing is broken needs
to be performed. Then: Same as D3.V1.F3 for the selected connectors.

D3.V2.F4: Integrate transitively shared ser-
vices into a calling service

The architect has to select which services on the transitive link path are to integrated into the calling
service. It must then be checked that this is enough to break up the transitive sharing. Then: Same
as D3.V1.F4 for the selected services. The

D3.V2.F5: Integrate transitively calling service
into shared service

As in D3.V2.F4 the architect needs to select services, and a check that sharing is broken needs to
be performed. Then: Same as D3.V1.F5 for the selected services.

D3.V3

D3.V3.F1: Do not fix the violation The architect should have the option to not fix the violation, e.g. because it is not critical.
D3.V3.F2: Replace cyclic relations via an in-
termediary component, e.g., API Gateway, Pub-
/Sub, Message Broker

The architect has to select if an existing intermediary component can be used for the fix, or a new
one has to be created. Replace all connectors in a cycle with connectors to this component. Delete
the cyclic connectors.

D3.V3.F3: Remove connectors from a cycle un-
til there is no cycle

The architect selects connectors that can be deleted in a cyclic path. It is then checked whether
the cycle is broken by those deletions. Then the selected connectors are deleted. If selected by
the architect, the steps from D3.V3.F2 can then be followed to introduce links via an intermediary
component instead.

D3.V3.F4: Integrate all functionality of ser-
vices involved to a cycle into one service

Integrate the responsibility and functionality of the services in the cycle into one integration ser-
vice, selected by the architect. This can also be a new service, introduced by the architect. Rewire
the cyclic services’ clients directly to the integration service. Here we add annotations that func-
tionality has been added to the integration service, so that implementers later on can realize this
functionality.

Table 10.2: Identified Fixes And Fix Algorithms
146

10.9 Conclusion and Future Work

Model
ID

Initial Model Models Generated / Remaining Violation Instances
Resulting Suggested

(Optimal) ModelsAssessments per Refactoring Step
D1.V1 D1.V2 D2.V1 D3.V1 D3.V2 D3.V3 Step 1 Step 2 Step 3 Step 4

BM1 0.33 1.00 1.00, 0.00 1.00 1.00 1.00 2 / 0 – – – 2

BM2 1.00 1.00 0.00, 0.00 1.00 1.00 1.00 3 / 1 2 / 0 – – 4

BM3 1.00 1.00 0.00, 1.00 1.00 1.00 1.00 – – – – –

CO1 1.00 1.00 0.00, 0.00 1.00 1.00 1.00 3 / 1 2 / 0 – – 4

CO2 1.00 1.00 1.00, 0.00 1.00 1.00 1.00 – – – – –

CO3 0.60 0.00 0.00, 1.00 1.00 1.00 1.00 2 / 0 – – – 2

CI1 1.00 1.00 0.00, 0.00 0.75 1.00 1.00 7 / 6 18 / 4 8 / 0 – 23

CI2 1.00 1.00 0.00, 0.00 1.00 1.00 1.00 3 / 1 2 / 0 – – 4

CI3 1.00 1.00 0.00, 0.00 0.70 1.00 1.00 7 / 6 18 / 4 8 / 0 – 23

CI4 1.00 1.00 0.00, 0.00 1.00 1.00 1.00 3 / 1 2 / 0 – – 4

EC1 1.00 1.00 0.00, 0.00 1.00 1.00 1.00 3 / 1 2 / 0 – – 4

EC2 1.00 1.00 1.00, 0.00 1.00 1.00 1.00 – – – – –

EC3 0.00 0.00 0.00, 1.00 1.00 1.00 1.00 2 / 0 – – – 2

ES1 1.00 1.00 0.60, 0.00 0.73 1.00 1.00 7 / 1 2 / 0 – – 8

ES2 0.00 1.00 0.00, 0.00 0.66 1.00 1.00 9 / 10 26 / 11 28 / 2 4 / 0 45

ES3 0.33 1.00 0.00, 0.00 0.66 1.00 1.00 9 / 10 26 / 11 28 / 2 4 / 0 45

FM1 1.00 1.00 0.00, 0.00 0.38 1.00 1.00 7 / 2 6 / 0 – – 11

FM2 1.00 1.00 0.00, 1.00 0.70 1.00 1.00 4 / 0 – – – 4

FM3 1.00 1.00 0.00, 1.00 1.00 0.77 0.00 7 / 0 – – – 7

HM1 1.00 1.00 0.00, 0.42 0.80 1.00 1.00 7 / 6 18 / 4 8 / 0 – 23

HM2 1.00 1.00 0.80, 0.20 1.00 1.00 1.00 3 / 1 2 / 0 – – 4

RM1 0.00 1.00 1.00, 0.00 1.00 1.00 1.00 2 / 0 – – – 2

RM2 1.00 1.00 0.00, 0.00 1.00 0.82 1.00 7 / 6 18 / 4 8 / 0 – 23

RM3 1.00 1.00 0.00, 0.00 1.00 0.82 0.00 10 / 7 30 / 7 14 / 0 – 38

RS 0.66 1.00 0.11, 0.11 0.63 1.00 1.00 9 / 14 37 / 14 61 / 5 10 / 0 89

TH1 1.00 1.00 0.00, 0.00 0.67 1.00 1.00 7 / 6 18 / 4 8 / 0 – 23

TH2 1.00 1.00 0.66, 0.00 1.00 1.00 1.00 3 / 1 2 / 0 – – 4

Table 10.3: This table shows a) the architecture assessment (per decision/violation pair) of the
original models used in our study, b) the number of models generated at each step of
an iterative application of our algorithms, and c) the number of violation instances
(generated models ⇥ violations per model) still remaining, or introduced, after each
iteration, plus d) the resulting number of suggested (optimal) models at the end (cf.
Figure 10.4 for a detailed example).

147

11 Improving Microservice Architecture
Conformance to Design Decisions

This chapter employs the architectural design decisions featured in Chapter 7 and the method
outlined in the preceding chapter to facilitate the semi-automated detection and rectification of
conformance violations. The objective is to aid the software architect by presenting a range of
viable options for resolution and creating models of "fixed" architectures.

11.1 Introduction

Microservices are one of many service-based architecture decomposition approaches (see e.g. [PJ16,
PW09, Ric17, ZGK+07]). The chief features of microservices are that they communicate via
message-based remote APIs in a loosely coupled fashion, and that they can be highly polyglot;
ideally, microservices should not share their data with other services. This allows the rapid evolu-
tion of individual microservices independently of one another, and their independent deployment
in lightweight containers or other virtualized environments. These features make microservices
ideal for DevOps practices (see e.g. [Zim17, PZA+17]).

While a large body of literature has examined architectural patterns and recommended “best
practices” in a microservice context [Ric17, ZSZ+19, Sko19], translating these theoretical in-
sights into usable tools to assist the architectural evolution of actual microservice-based systems
has lagged behind. While the theoretical tenets proposed in the literature are easy to grasp and
maintain in small-scale systems, ensuring conformance in large, complex, as well as rapidly and
independently evolving systems quickly becomes a laborious affair requiring considerable manual
work and resulting in extensive overhead effort. Furthermore, patterns have mutual dependencies,
meaning that improvement in one area can result in deterioration in another. Real-world architec-
tures are also impacted by a number of non-microservice-specific requirements, which also can
lead to unintended violations of microservice best practices.

This work provides a set of actionable solutions to violations on different aspects of mi-
croservice architectures, as part of a larger study on the topic. Three architectural design decisions
(ADDs) were selected as representing very different aspects of architecting microservices, so as
to demonstrate the wide applicability of our approach. Other ADDs have already been covered in
our prior work. More specifically, for covering the best practices of client-system communication
we chose the External API decision; for the guaranteed delivery of messages, a critical aspect
of many business-critical microservice systems, we used the Inter-Service Message Persistence
decision to examine the relevant recommended practices; finally, to cover the logging and monit-
oring practices that ensure observability of the microservices and their complex interactions, we
used the End-to-End Tracing decision. In this context, we aim to study the following research

149

11 Improving Microservice Architecture Conformance to Design Decisions

questions:

• RQ4.3 What are the possible architecture violations related to the above-mentioned ADDs
and how can they be automatically detected?

• RQ4.4 What are the possible fixes for the violations found in RQ4.3 and how can architects
be assisted in choosing the appropriate solutions and applying them?

We propose a novel architecture refactoring approach that uses empirically validated metrics
proposed in our prior work [NZP+20b] to evaluate the degree of architecture conformance for
each of the given ADDs. For every ADD design option, we define every possible violation and
propose a corresponding, automated violation detection algorithm, as well as a set of possible
fixes. For each microservice-based system, the sets of ADD options, violations, and fixes leads to
a search tree of possible architecture designs that partly or entirely enforce conformance to best
practices, which we can continually assess using our metrics.

To evaluate our approach we utilized a set of 24 models of microservice-based systems from
third-party practitioners (see Table 3.1). For each of these, we implemented the automated
violation detection and refactoring (fix) algorithms to detect the possible violations and to
generate all the possible fixes for addressing each violation, resulting in a set of models. Using
our metrics, we evaluated the improvements compared with the original version, as well as any
outstanding issues. This process was iteratively repeated until all violations were resolved. Each
of the violations found in the 24 models can be fully resolved leading to optimal metric values
within at most 3 refactoring steps, usually with many suggested optimal models provided as
options for architects to choose from.

This chapter is structured as follows: In Section 11.2 we analyze the ADDs examined in this
work, the associated patterns and practices, and the corresponding metrics. Section 11.3 discusses
and compares our approach to existing studies in the literature. Our research methods and the
tools we have applied in our study are described in Section ??, followed by a detailed explanation
of our approach in Section 11.5. The evaluation process is given at Section 11.6, the results are
discussed in Section 11.7, and the threats to validity in Section 11.8. Finally, in Section 11.9 we
draw conclusions and discuss future work.

11.2 Background: Decisions and Metrics

In this section, we briefly introduce the three ADDs and the corresponding patterns and practices
as decision options, based on our prior work. The decisions have been modeled based on an
empirical study of existing best practices and patterns by practitioners [NZP+19], while the
metrics used to assess the pattern conformance of each given system derive from [NZP+20b].

External API Decision. A fundamental decision in microservice-based systems is how
external clients are connected to the system services. This can affect aspects related to loose
coupling, releasability, independent development and deployment, and continuous delivery. The
simplest method, but with the highest negative impact, occurs when the clients can call into system
services directly, resulting in high coupling that impedes releasing, developing, and deploying

150

11.2 Background: Decisions and Metrics

the clients and system services independently of each other. Another option, that solves possible
problems caused by client-service direct connections, is the API Gateway [Ric17], which provides
a common entry point for the system (Facade component) and all client requests are routed via
this component. It is a specialized variant of a Reverse Proxy, which covers only the routing
aspects of an API Gateway but not further API abstractions such as authentication, rate limiting,
etc. (see [ZSZ+19]). The Backends for Frontends pattern [Ric17] is another variant of API
Gateway that specializes in handling different types of clients (e.g., mobile and desktop clients).
Alternatively, the API Composition pattern [Ric17] describes a service that shields other services
from the clients by actively gathering and composing their data. In our previous work [NZP+20b],
we have empirically defined two metrics that can be used to assess conformance to each of the
decision options:

• Client-side Communication via Facade utilization metric measures how many unique client
links are using the External API used by one of the Facade components (i.e. offered through
patterns such as API Gateway, Reverse Proxy, Backends for Frontends) compared to the
total number of unique client links.

• API Composition utilization metric measures the proportion of clients connected services
which are possibly composing an External API using API Composition.

Inter-Service Message Persistence Decision. The persistence or missing persistence of
the inter-service messages is another decision with considerable impact on the qualities of the
system. Many real-world systems use no inter-service message persistence, while options that
support message persistence are the Messaging pattern [HW03a], in which persistent message
queuing is used to store a producer’s messages until the consumer receives them, or alternatively
Stream Processing [Sko19] components (e.g. Apache Kafka). Another option is Interaction
through a Shared Database, since it supports some level of message persistence, but not the
automated support of Messaging. A technique that is more microservice-relevant and able to
support a lower level of persistence to Messaging or a Shared Database is the combination of
the Outbox and the Transaction Log Tailing patterns [Ric17]. A persistence more tailored to
event-driven or eventually consistent microservice architectures can be achieved following the
Event Sourcing pattern [Ric17]. For this decision, too, we have empirically defined three metrics
that can be used to assess conformance to each of the decision options:

• Service Messaging Persistence utilization metric measures the proportion of all service
interconnections that are made persistent through a supporting technology (i.e. Messaging
or Stream Processing).

• Shared Database utilization metric measures the proportion of all interconnections via a
Shared Database.

• Outbox/Event Sourcing utilization metric measures the proportion of all interconnections
with Outbox/Event Sourcing.

151

11 Improving Microservice Architecture Conformance to Design Decisions

End-to-end Tracing Decision. End-to-end tracing is an important aspect in microservice
architectures since they are usually highly distributed and polyglot systems with complex in-
teractions. One option, like in the other decisions, is to offer no tracing support. Alternatively,
traces can be recorded on either the services themselves or facade components (or both) via
Distributed Tracing [Ric17]. A less comprehensive level of tracing can be achieved when service
communication is routed through a central component, which stores some, but not all inter-
service communication (e.g., Publish/Subscribe, Message Broker [HW03a], API Gateway or
Event Logging [Ric17, Sko19]); the exception is Event Sourcing, which temporarily stores all
service events.

For this decision, too, we have empirically defined three metrics that can be used to assess
conformance to each of the decision options:

• Services and Facades Support Distributed Tracing metric measures the proportion of all
services and facades that support distributed tracing.

• Service Interaction via Central Component utilization w/o Event Sourcing metric measures
the proportion of all service interactions through a central component other than Event
Sourcing.

• Service Interaction via Central Component with Event Sourcing metric measures the
proportion of all service interactions through a central component via Event Sourcing.

11.3 Related Work

The fundamentals of the term “microservices” were first discussed by Fowler and Lewis
[LF04], and fundamental tenets by Zimmermann [Zim17]. Richardson [Ric17] has published
a collection of microservice patterns and practices, while a mapping study by Pahl and Jam-
shidi [PJ16] has summarized much of the previous literature on patterns. Skowronski [Sko19]
has examined event-driven microservice architectures specifically, and microservice API patterns
were studied by Zimmermann et al. [ZSZ+19].

A number of studies have focus on techniques for detecting design or architecture “bad
smells” (violations). Taibi and Lenarduzzi [TL18] defined a list of microservice-specific smells,
while Neri et al. [NSZB19] have presented an extensive examination of architectural smells
for independent deployability, horizontal scalability, fault isolation, and decentralisation of
microservices, as well as suggesting refactorings to resolve them. Most similar studies are
more generic, but still useful. Le et al. [LCCM16] proposed a classification of architectural
smells and their impact on different quality attributes. Catalogs of smells have been published
by Garcia et al. [GPEM09a, GPEM09b] and Azadi et al. [AFT19]. Detection strategies for
smell categories related to our study are discussed by Brogi et al. [BNS20], Le et al. [LLSM18],
Marinescu [Mar04], and especially Neri et al. [NSZB19], along with suggested refactorings for
resolving them. Although these works study various aspects of architecture violations detection,
and some investigate aspects related to the microservice domain, none covers detecting and
addressing violations specifically associated with the ADDs covered in this work (external

152

11.4 Research and Modeling Methods

API, persistent messaging, and end-to-end tracing) in a microservice context, which our work
investigates in detail.

As a result, we expect that our work produces more accurate detection of decision-specific
violations and more targeted suggestions for fixes. On the other hand, our approach requires
a model in which the component and connector roles in a microservice architecture have been
modeled (as for instance done with stereotypes in the model introduced in Figure 11.2). That is,
our work requires additional insight into a system’s architecture, and some effort in encoding the
corresponding models; however, this knowledge is at a relatively high level of abstraction and
the resulting models are not impacted by changes in service implementation. We are currently
working on a semi-automatic approach for architecture reconstruction and modelling that relies
on reusable code abstractions and is thus suitable for complex systems with short delivery cycles.

11.4 Research and Modeling Methods

In this section, we summarize the main research methods applied in our study. These have been
more extensively described in our previous work [NZPG21]. For reproducibility, all the code of
the algorithms’ implementation and the models produced in this study will be made available
online, as an open-access dataset in a long-term archive1.

11.4.1 Research Method

Figure 12.3 shows the structure of the research process of this study. In Section 11.2 we have
already explained in detail the architectural decisions and the model-based metrics on which this
study is based. In Section 11.5 we present precise definitions and algorithms a) for the detection
of possible violations per decision option, and b) for the possible fixes (architecture refactorings)
for each violation.

We have tested our approach by applying the algorithms to the 24 models in our data set. First
all violations present in each model were detected, and then all possible fixes for each violation
were applied in an iterative-exhaustive manner, i.e., on the resulting, refactored models for each
violation fix, we again performed all violation detection algorithms and applied all possible
refactorings, until either no more violations were detected, or we arrived at a refactored model
identical to a previous version. In the latter case, which we did not encounter here, this would
have meant that a violation could not be entirely resolved, as its fix introduced other violations.
For each of the final models (the ‘leaves’ of the iteration tree), we assessed pattern conformance
through our metrics on microservice coupling, to judge the improvement compared to the original
model.

11.5 Architecture Refactoring Approach

From an abstract point of view, a microservice-based system is composed of components and
connectors, with distinct sets of component types and connector types. This applies also to

1https://doi.org/10.5281/zenodo.5549978

153

11 Improving Microservice Architecture Conformance to Design Decisions

Architecture Refactoring

Background

Violations/Solutions

Architecture Evaluation

Violation Detection
Algorithms

Fix Algorithms

Violation Definition Fix Definition

Automatic Architecture
Refactoring

Metrics Calculation for
Evaluation Model Data Set Evaluation

Architectural Design
Decisions on Microservice

Coupling

Microservices Component
Architecture Models

Metrics on Coupling in
Microservices

Figure 11.1: Overview diagram of the research method followed in this study

indirect or implicit relationships between components, such as indirect dependencies, which can
be described as a special set of connectors. For example, in Figure 11.2, two components are
indirectly linked via the API gateway.

We base our definitions of the violations and fixes on the notion of an architecture model
consisting of a directed components and connectors graph. This can be expressed formally as: A
microservice architecture model M is a tuple (CP, CN, CPT, CNT, ST) where:

• CP is a finite set of component nodes. The operation components(M) returns all
components in M .

• CN ✓ CP ⇥ CP is an ordered finite set of connectors. connectors(M) returns all
connectors in M .

• CPT is a set of component types. The operation services(M) returns all components
of type service in M . The operation service_connectors(M) returns all connectors of
components of type service in M .

• CNT is a set of connector types.

• ST is a finite set of stereotype nodes. The operation cp_stereotypes(CP) returns all
stereotypes of component CP . The operation cn_stereotypes(CN) returns all stereotypes
of connector CN . Stereotypes can be applied to components to denote their type, such as
Service, API Gateway, etc. Stereotypes can be applied to connectors to denote their type,
such as Read_Data, RESTful HTTP, or Asynchronous. Some are specialized with tagged
values (details omitted here for space reasons).

154

11.5 Architecture Refactoring Approach

• cp_annotations : CP ! {String} is a function that maps an component to its set of
annotations. Annotations are used in our approach (in some of the fixes) to document
aspects that need further consideration or maybe manual refactoring.

• cn_annotations : CN ! {String} is a function that maps a connector to its set of
annotations.

Please note that we define many additional model traversal operations not detailed here for space
reasons.

11.5.1 Violations and Detection Algorithms

Violation Violation Detection Algorithm Summary
D1: External API
D1.V1: Services are directly connected to clients All services in the model are traversed, and it is

checked whether services are directly connected to
clients or web UIs. If this is the case, a violation is
raised. Each service-client connector that is found is
returned by the detector operation.

D2: Persistent Messaging for Inter-Service Communication
D2.V1: Services communicate without using an in-
termediary component that is able to persist the
communication (e.g., Message Brokers or a persist-
ent Publish/Subscribe or Stream Processing or Event
Sourcing or Outbox/Transaction Log Tailing or Data-
base) and no persistent messaging occurs between
them.

All service connectors in the model are traversed. If
no intermediary component is found, the violation is
raised and the list of all relevant connectors is returned
by the detector operation.

D3: End-to-End Tracing
D3.V1: Distributed Tracing is not supported on
services and/or facades or services communicate
without using a central intermediary component
(e.g., Message Brokers or persistent Publish/Sub-
scribe or Stream Processing or Event Sourcing or
Outbox/Transaction Log Tailing or API Gateway)

All services, facades and the corresponding connect-
ors in the model are traversed, and it is checked
whether services and/or facades support tracing or
whether an intermediary component is presented. If
no intermediary component or tracing support on ser-
vices/facades is found, the violation is raised and the
list of all relevant connectors is returned by the de-
tector operation.

Table 11.1: Identified Violations and Violation Detection Algorithms

Table 11.1 summarizes the possible violations we have identified for each of the decisions.
The table also describes in detail how the algorithms that we use for detecting the violations in
the models work. As a detailed example, Algorithm 1 detects the Services communicate without
using an intermediary component violation of Decision D2. It returns a list of connected service
pairs si and sj , that are not connected via an intermediary component.

Algorithm 7: Services Communicate w/o Intermediary Component Violation
i n p u t : Model M
o u t p u t : Set <Tuple > Component i n t e r m e d i a r y
beg in

v i o l a t i o n s ;
f o r si 2 s e r v i c e s (M) :

155

11 Improving Microservice Architecture Conformance to Design Decisions

f o r sj 2 s e r v i c e s (M) :
i f (si, sj) 2 d i r e c t _ s e r v i c e _ c o n n e c t o r s (M) :

v i o l a t i o n s violations [(si, sj)
r e t u r n v i o l a t i o n s

end

11.5.2 Fix Options and Algorithms

Table 11.2 details all the fixes for each identified violation, along with a summary of the fix
algorithm. Please note that many algorithms can only be applied fully automatically with their
default values. Many of them require human review and decision by the architect. For example,
the architects can be presented with a choice of an intermediary component to use to replace
services links.

Violation Fix Fix and Fix Algorithm Summary
D1: External API

D1.V1
D1.V1.F1: Do not fix the violation The architect should have the option to not fix the vi-

olation, e.g. because it is not critical.
D1.V1.F2: Introduce a new API Gateway
and connect client to services via it

Disconnect client(s) from the services and introduce
a new API Gateway. Connect the client(s) to the API
Gateway and the API to each former client-connected
service.

D1.V1.F3: Introduce API Composition ser-
vice or service with reverse proxy capabilit-
ies and connect client(s) to the services via
this component

Disconnect client(s) from the services and introduce
a new API composition service. Connect the client(s)
to the API composition service and the latter to each
former client-connected service.

D2: Persistent Messaging for Inter-Service Communication

D2.V1

D2.V1.F1: Do not fix the violation The architect should have the option to not fix the vi-
olation, e.g. because it is not critical.

D2.V1.F2: Remove the non-persistent con-
nectors between services and replace them
with persistent messaging-based connectors

Replace non-persistent interconnections with interac-
tions via an intermediary component (e.g., API Gate-
way, Pub/Sub, Message Broker). The architect has to
select if an existing intermediary component can be
used for the fix, or a new one has to be created. Re-
place non-persistent interconnections with persistent
interconnections via this component.

D2.V1.F3: Remove the non-persistent con-
nectors between services and replace them
by writing to and reading from a common
database

The architect has to select if an existing database can
be used for the fix, or a new one has to be created. For
each connector, introduce communication by writing
to and reading from this database. Delete the non-
persistent interconnections.

D3: End-to-End Tracing

D3.V1

D3.V1.F1: Do not fix the violation The architect should have the option to not fix the vi-
olation, e.g. because it is not critical.

D3.V1.F2: Remove the connectors that don’t
support end-to-end tracing between services
and replace them with interactions via an
intermediary component (e.g., API Gateway,
Pub/Sub, Message Broker)

The architect has to select if an existing intermediary
component can be used for the fix, or a new one has
to be created. Replace interconnections that don’t sup-
port end-to-end tracing with interconnections via this
component.

D3.V1.F3: Connect services and facades
that don’t support end-to-end tracing with a
tracing component (e.g., Zipkin)

The architect has to select if an existing tracing com-
ponent can be used for the fix, or a new one has to be
created. Introduce interconnections from service and
facades to tracing component.

Table 11.2: Identified Fixes And Fix Algorithms

156

11.5 Architecture Refactoring Approach

The Algorithms 2 and 3 respectively present the fixes F2 and F3, for Decision D2 and its
Violation V1. For explanations of each fix, please study Table 11.2.

Algorithm 8: Remove the non-persistent connectors between services and replace them with
persistent messaging-based connectors

i n p u t : Model M, Set <Tuple > v i o l a t i o n , Component i n t e r m e d i a r y _ c o m p o n e n t
o u t p u t : �
beg in

f o r (si, sj) 2 v i o l a t i o n :
a d d _ c o n n e c t o r (si , i n t e r m e d i a r y _ c o m p o n e n t ,

g e t _ a p p l i c a b l e _ s t e r e o t y p e s (M, (s _ i , s _ j)))
a d d _ c o n n e c t o r (i n t e r m e d i a r y , sm ,

g e t _ a p p l i c a b l e _ s t e r e o t y p e s (M, (s _ i , s _ j)))
d e l e t e _ d i r e c t _ c o n n e c t o r (M, (si, sj))

end

Algorithm 9: Remove the non-persistent connectors between services and replace them by writing
to and reading from a common database

i n p u t : Model M, Set <Tuple > v i o l a t i o n , Component d a t a b a s e
o u t p u t : �
beg in

f o r (si, sj) 2 v i o l a t i o n :
a d d _ c o n n e c t o r (si , d a t a b a s e ,

g e t _ a p p l i c a b l e _ s t e r e o t y p e s (M, (s _ i , s _ j)))
a d d _ c o n n e c t o r (sj , d a t a b a s e ,

g e t _ a p p l i c a b l e _ s t e r e o t y p e s (M, (s _ i , s _ j)))
d e l e t e _ d i r e c t _ c o n n e c t o r (M, (si, sj))

end

11.5.3 Example Application

In Figure 11.2 the model CI4 from Table 3.1 is shown as an illustrative example to demonstrate all
three violations and possible fixes. In this model the Cinema Catalog service is connected directly
with Movie and Booking services, causing D2.V1 and D3.V1, while Client is connected directly
with Cinema Catalog service, causing D1.V1. In contrast, Booking Payment and Notification
services are connected to each other and with the Client through the API Gateway, resulting in no
violation. If we run our fix algorithms, some of the resulting refactoring suggestions are:

• Applying Fix D1.V1.F2: The architect can choose the existing API Gateway and connect
Client to Cinema Catalog and Movie services through it. The current connectors are
removed by this fix.

• Applying Fix D1.V1.F3: The architect can introduce an API composition service or service
with reverse proxy capabilities and connect Client to Cinema Catalog and Movie services
through it. The current connectors are removed by this fix.

• Applying Fix D2.V1.F2: All services with non-persistent connectors are disconnected and
connected to a Message-based persistent mechanism (all interactions will be happening via

157

11 Improving Microservice Architecture Conformance to Design Decisions

this component). For example, this fix can introduce a new Pub/Sub intermediary compon-
ent (alternatively Message Broker or API Gateway), to which all involved services will be
connected with publish and subscribe operations supporting persistent communications.

• Applying Fix D2.V1.F3: All services with non-persistent connectors are disconnected from
each other as well as from their existing databases and connected to a new shared database
with read and write operations.

• Applying Fix D3.V1.F2: Cinema Catalog, Movie and Booking services that don’t support
end-to-end tracing will be disconnected from each other and connected to a new (or
existing) intermediary component (e.g., Pub/Sub, Message Broker or API Gateway).

• Applying Fix D3.V1.F3: A new tracing component (e.g., Zipkin) is introduced and connec-
ted to all services and the API Gateway.

«Client»
User App : Component

«Facade»
API Gateway : Component

«Service»
Booking Service

: Component

«Service»
Notification Service

: Component

«Service»
Payment Service

: Component

«Database»
Payment DB : Component

«Service»
Cinema Catalog Service

: Component

«Service»
Movies Service
: Component

«Database»
Movies DB : Component

«Database»
Cinema Catalog DB

: Component

«Database»
Booking DB : Component

«RESTful HTTP»

«RESTful HTTP» «Asynchronous, RESTful HTTP»

«RESTful HTTP, Indirect Relation
via

API»

«RESTful HTTP, Indirect Relation
via

API»
«RESTful HTTP» «Database Connector»

«RESTful HTTP, Indirect Relation
via

API»
«Database Connector»«RESTful HTTP» «Database Connector»

«Database Connector»

Figure 11.2: Example of an Architecture Component Model (CI4 in Table 3.1): this architecture
violates all three ADDs

158

11.6 Iterative Application and Evaluation

11.6 Iterative Application and Evaluation

To evaluate our work, we have fully implemented our algorithms for detecting violations and
performing fixes, as well as generating the set of metrics described in Section 11.2 to measure
the improvements and the presence of remaining violations, in our model set. In case multiple
violations are present in a model, then the algorithms can be employed iteratively, until all
violations have been fully resolved.

As an example, let us illustrate this exhaustive iterative refactoring for the previously mentioned
CI4 Model (see Figure 11.2). CI4 violates all the three decisions as indicated by the corresponding
decision-related measures in Table 11.3. The incremental refactoring process is illustrated in
Figure 11.3. At the first iteration, there are three branches, indicating the respective violations.
The first refactoring step produces 6 possible model variants, one for each fix option from
Table 11.2. All resulting models have resolved the respective violation, but have the other two
unresolved, requiring another refactoring step that produces 18 new model variants. In turn, 7 of
the resulting models still violate D1.V1 and D2.V1, requiring a third step to be resolved. At the
end of the third step, we have 29 suggested model variants (M1_1, M2_1, M2_3, M1_2_1–M1_2_2,
M2_1_1–M2_2_2, M2_4_1–M2_4_2, M3_1, M3_2_1–M3_2_2, M4_1, M4_2_1–M4_2_2, M4_3_1–
M4_3
_2, M5_1–M5_2, M4_4_1–M4_4_2, M6_1_1–M6_2_2, M6_2_1–M6_2_2, M6_3_1–M6_3_2, M6_4_1–
M6_4_2) which all fully resolve the violations (i.e., scoring 1.00 in our assessment scale). The
architect can choose the refactoring sequence, and from among those final optimal model variants,
but can also choose to not apply certain fixes, e.g. due to other constraints that are outside of the
scope of our study.

For evaluation purposes, we have performed this procedure for all 24 system models in
Table 3.1. The resulting number of intermediary models and violation instances per step, and the
number of final suggested models with an optimal assessment of 1.00, are given in Table 11.3,
along with the initial violations and architecture assessment values for each model. Please note
that the metrics reported here are the ones associated with each of the decisions in Section 11.2.
Please also note that for each violation to be fixed, it is enough that at least one of the correspond-
ing metrics is optimal (1.00). Obviously, the number of steps required to reach optimal models
depends on a) the number of the violations present in the initial model and b) on the possible
appearance of new violations during the refactoring process, which did not occur in the present
case. As can be seen in Table 11.3, all models are fully resolved—i.e., all assessment metrics are
1.00—after at most three steps.

11.7 Discussion

To answer RQ4.3 we have systematically specified a number of decision-based violations related
to each possible decision option, summarized in Table 11.1. As we have empirically shown in our
prior work [NZP+20b] that the metrics described in Section 11.2 can reliably distinguish favored
or less favored design options, the role of the violation detectors is to find the precise locations in
the models where the violations occur. For each system model in our evaluation dataset it was
possible to suggest fixes that bring the architecture to optimal values, meaning that the algorithms

159

11 Improving Microservice Architecture Conformance to Design Decisions

CI4 D2.V1

D3.V1

M5

M6

D1.V1

D2.V1

D1.V1

D2.V1

D1.V1

D1.V1

D3.V1

M3_2

M4_2

M4_3 M4_4

M3

M4

M6_3 M6_4

M5_1 M5_2

M6_1 M6_2

M6_3_2

M6_4_2

M6_3_1

M6_4_1

D1.V1

D2.V1 M2_4_2M2_4_1

D2.V1

D3.V1

M1_2

M2_2

M2_3 M2_4

M1

M2

M1_1

M2_1

M3_1

M4_1

M4_3_2M4_3_1

M4_4_2M4_4_1

M6_1_2

M6_2_2

M6_1_1

M6_2_1

D3.V1

M1_2_2M1_2_1

M2_2_2M2_1_1

M3_2_2M3_2_1

M2_4_2M4_2_1

D3.V1

Figure 11.3: Example of an exhaustive iterative application of our approach in the CI4 model.
Final (i.e., fully resolved) resulting models are thickly outlined.

have found the right place(s) to apply the fixes.

Regarding RQ4.4 we defined a number of algorithms addressing every possible violation, with
multiple fix options (cf. Table 11.2). If all options are tried out, this results in a search tree
of possible architecture models, which can in turn be assessed, using our metrics, to measure
improvements to the initial architecture and detect any remaining violations. We have shown (cf.
Table 11.3) that an iterative approach results, within a few steps, in a sufficient variety of possible
architecture models that remove all detected violations and ensure pattern conformance of the
system architecture. The multiple optimal model variants that result from our approach give
architects substantial levels of freedom in their design decisions. As detection is fully automated
and human expertise is limited to the fix process, the approach is well suited to be run in a
continuous delivery environment, which was one of our research goals.

160

11.8 Threats to Validity

Model
ID

Initial Model Models Generated / Remaining Violation Instances
Resulting Suggested

(Optimal) ModelsAssessments per Refactoring Step
D1.V1 D2.V1 D3.V1 Step 1 Step 2 Step 3

BM1 1.00, 0.00 0.00, 0.00, 1.00 0.00, 0.00, 1.00 – – – –

BM2 1.00, 0.00 0.00, 0.00, 0.00 0.00, 1.00, 0.00 2 / 0 – – 2

BM3 1.00, 0.00 0.00, 0.00, 0.00 0.00, 1.00, 0.00 2 / 0 – – 2

CO1 0.00, 0.00 0.00, 0.00, 0.00 0.00, 0.00, 0.00 6 / 9 18 / 11 22 / 0 29

CO2 1.00, 0.00 1.00, 0.00, 0.00 1.00, 1.00, 0.00 – – – –

CO3 0.00, 0.00 0.00, 1.00, 0.00 1.00, 0.00, 0.00 2 / 0 – – 2

CI1 1.00, 0.00 0.00, 0.00, 0.00 0.00, 0.14, 0.00 4 / 2 4 / 0 – 6

CI2 1.00, 0.00 0.00, 0.00, 0.00 0.00, 1.00, 0.00 2 / 0 – – 2

CI3 0.00, 0.30 0.00, 0.00, 0.00 0.00, 0.00, 0.00 6 / 9 18 / 11 22 / 0 29

CI4 0.50, 0.10 0.00, 0.00, 0.00 0.00, 0.60, 0.00 6 / 9 18 / 11 22 / 0 29

EC1 0.25, 0.00 0.00, 0.00, 0.00 0.00, 1.00, 0.00 4 / 4 8 / 0 – 8

EC2 0.25, 0.00 1.00, 0.00, 1.00 0.00, 0.00, 1.00 2 / 0 – – 2

EC3 0.25, 0.00 0.00, 1.00, 0.00 0.00, 0.00, 0.00 4 / 2 4 / 0 – 4

ES1 1.00, 0.00 0.60, 0.00, 0.60 0.00, 0.60, 0.00 4 / 2 4 / 0 – 6

ES2 1.00, 0.00 0.00, 0.00, 0.00 0.00, 0.45, 0.00 4 / 2 4 / 0 – 6

ES3 1.00, 0.00 0.00, 0.00, 0.00 0.00, 0.45, 0.00 4 / 2 4 / 0 – 6

FM1 0.00, 0.25 0.00, 0.00, 0.00 0.00, 0.00, 0.00 6 / 9 18 / 11 22 / 0 29

FM2 0.00, 0.50 0.00, 0.00, 0.00 1.00, 0.00, 0.00 4 / 4 8 / 0 – 8

HM1 0.00, 0.70 0.00, 0.00, 0.00 0.90, 0.00, 0.00 6 / 9 18 / 11 22 / 0 29

HM2 0.00, 0.70 0.80, 0.00, 0.80 0.90, 0.00, 0.80 6 / 9 18 / 11 22 / 0 29

RM 1.00, 0.00 1.00, 0.00, 0.00 0.14, 1.00, 0.00 – – – –

RS 1.00, 0.00 0.11, 0.00, 0.00 0.62, 0.11, 0.00 4 / 2 4 / 0 – 6

TH1 0.25, 0.12 0.00, 0.00, 0.00 0.00, 0.00, 0.00 6 / 9 18 / 11 22 / 0 29

TH2 0.25, 0.04 0.66, 0.00, 0.66 0.00, 0.00, 0.66 6 / 9 18 / 11 22 / 0 29

Table 11.3: This table shows a) the architecture assessment (per decision/violation pair) of the
original models used in our study, b) the number of models generated at each step of
an iterative application of our algorithms, and c) the number of violation instances
(generated models ⇥ violations per model) still remaining, or introduced, after each
iteration, plus d) the resulting number of suggested (optimal) models at the end (cf.
Figure 11.3 for a detailed example).

11.8 Threats to Validity

The basis material of our study derives from third-party sources: the solutions we propose are
gathered from the best practices recommended in the published literature, and our evaluation
dataset is a fairly representative set of systems (cf. Table 3.1), derived from nine different sources
and published with the express purpose of demonstrating microservice architecture features. One
possible threat to the internal validity of our algorithms is that they depend on the particular
modelling approach we have adopted. However, our approach is by design abstract and generic,
based on typical component-and-connector models used widely in the literature. The author team,
with considerable experience in modeling methods, performed the system modeling as well as,

161

11 Improving Microservice Architecture Conformance to Design Decisions

repeatedly and independently cross-checked all models. As the main modelling criterion was the
ability to adequately represent the context of our systems, we cannot exclude that other teams
might arrive at different interpretations, but we are confident that any resulting models would
be broadly similar and compatible with our results. Furthermore, the algorithms we specified
could easily be adapted to a different model, as they operate on the level of basic architectural
constructs.

Nevertheless, some limitations remain. In order to remove the obstacles provided by the
polyglot nature of microservice-based systems, we have chosen to apply our metrics and tools
at a relatively high level of abstraction. We also limited our evaluation in the present paper to
the patterns, metrics, and concerns applying to the given three ADDs, which in a real-world
architecture would be insufficient. This point is addressed in previously published and ongoing
parts of our work, which extend the coverage to additional ADDs, and aim to extend and test our
approach in a larger set of patterns, design requirements, and more granular parameters. The
same concern applies as to the lack of evaluation of the applicability of our approach on larger
and more complex systems that are commonly found in industry, but which were not accessible
to us for study. The lack of full automation is also a major obstacle to practical application, as
the process still requires considerable input by the architect. At the same time, our approach
can not match the ability of an experienced architect, familiar with the system, to devise a much
more optimal solution. This is a limitation of all generic architecture assistance approaches, and
one we intend to improve on. We want to emphasize that the present approach is a starting point
from which the question of evaluating and improving microservice architectures can be examined,
facilitating and building up to more complex and nuanced methods as more systems and decisions
are modelled and tested. The generated models are also not optimal, as they are not evaluated, for
example, on the coding/refactoring effort required to implement them. Nevertheless, the existence
of a semi-automatic approach that detects and analyzes violations in an architecture remains of
great value, since practitioners often ignore best practices, systems are often developed without
a conscious effort to follow best practices, or are allowed to drift from the original architecture
specifications over time.

11.9 Conclusion and Future Work

In this chapter we present a set of violations for three microservice-related ADDs. Building
on previous work, we have defined automatic detectors, which return the location where the
violations occur, a set of possible fixes for each violation, and automatic algorithms for refactoring
the system in order to fix the violations. We have evaluated our approach on a set of 24 models
of various degrees of pattern violations and architecture complexity, and have shown that our
approach is capable of resolving these violations in at most 3 refactoring steps. Both metric
calculation and violation detection are fully automated, but the choice of fixes and refactoring
sequence remains with the human architect. Thus the approach is still flexible enough to let the
architect make meaningful architectural design choices.

In our future work, we aim to broaden the set of ADDs and violations included in our approach,
enrich it with runtime metrics and other architecture aspects such as deployment environments,
and extend our model dataset to include larger and more complex systems. In addition, we hope

162

11.9 Conclusion and Future Work

to experimentally validate our approach by employing it in real-world delivery pipelines as part
of a feedback loop.

163

12 Detecting and Resolving IaC-Based
Architecture Smells in Microservices

In this chapter, we utilize the architectural design decisions discussed in Chapter 8 and the
methodology explained in Chapter 10 to enable the semi-automated detection and correction
of conformance smells. Our objective is to assist software architects by offering them various
practical remedies to correct these smells and generate "fixed" architecture models.

12.1 Introduction

Microservice-based systems often support rapid release techniques, resulting in frequent in-
frastructure and deployment modifications. Additionally, the infrastructure components that a
system needs are growing rapidly [Nyg07]. Managing and organizing these pieces often impacts
the development and deployment processes. Infrastructure as Code (IaC) facilitates automated
management and provisioning of infrastructure components [Mor15]. By dividing deployment
artifacts according to the duties of services and teams, IaC can also ensure that a deployed envir-
onment stays the same each time it is deployed in the same configuration [Mor15, ABDN+17].
Furthermore, it can help with coherence and maintain loose coupling by separating deployment
artifacts according to the responsibilities of services and teams. It helps keep the architecture
diagrams and the actual deployment consistent.

There have been several architectural patterns and other “best practices” for microservice-
based systems [Ric17, ZSZ+19, Sko19] as well as microservice deployments [Mor15]. However,
providing practical mechanisms to enforce such patterns and practices specifically for IaC-based
deployments has received very little attention up to this point. This is troublesome because
managing architecture compliance manually can be challenging, particularly in big complex
architectures. Moreover, enhancing one best practice may cause problems with another since
best practices are often interdependent. Thus, numerous additional system architectural and
implementation constraints impact the architectures in ways that might result in unintentional
or deliberate breaches of best practices for IaC-based deployments. In the context of DevOps
and continuous delivery, it is anticipated that the architecture changes rapidly and often without
central coordination. Architecture smell is a term used in software engineering to describe specific
characteristics or traits of a software architecture that indicate a potential problem or suboptimal
design [GPEM09b]. These smells can arise due to various factors, such as poor modularization,
lack of cohesion, high coupling, or inefficient use of design patterns.

We have observed that there are multiple factors contributing to the increasing complexity of
architecture. If infrastructure as code technologies are utilized to deploy these architectures, there
is a significant possibility that architectural issues may be embedded in the IaC models without

165

12 Detecting and Resolving IaC-Based Architecture Smells in Microservices

the developers’ immediate knowledge.
This study aims to provide actionable solutions to fix architectural smells of loose coupling-

related IaC best practices. We focus on two major Architectural Design Decisions (ADD) in this
scope, System Coupling through Deployment Strategy and System Coupling through Infrastructure
Stack Grouping, that have been modeled based on an empirical study of existing best practices
and patterns used by practitioners in our previous work [NZSB22].

We provide automated architecture refactoring tailored for architectural design in the context of
IaC-related ADDs. We also employ the experimentally proven metrics suggested in our previous
work [NZSB22]. These metrics allow us to analyze the degree to which an IaC deployment
model adheres to preferred or less preferred design alternatives for each of the ADDs previously
mentioned. We systematically specify each potential smell for every design option in the ADDs,
and propose automated smell detection algorithms based on those specifications. Using the
combination of available ADD options, the chosen option, potential smells, and detected smells,
we can determine all possible next decision options by applying solutions to the smells. This
results in a search tree of models for the next architecture iteration, which we individually evaluate
using our metrics. Based on this, we can assess the conformance of IaC-based deployment
models regarding architectural patterns and potential refactorings and provide an architect with
all potential improvements. The purpose of smell detection is to discover the precise locations in
the models where the smells occur.

This method is also intended to be continually applicable across each run of a continuous
delivery pipeline.

This paper aims to study the following research questions:

• RQ4.5 What are the potential coupling-related architectural smells in IaC-based de-
ployment models related to System Coupling through Deployment Strategy and System
Coupling through Infrastructure Stack Grouping, and how can they be automatically
detected?

• RQ4.6 What are the possible fixes for the architectural smells in IaC-based deployment
models related to System Coupling through Deployment Strategy and System Coupling
through Infrastructure Stack Grouping, and how can architects be supported in correcting
them?

In total, 12 IaC-based deployment models (three case studies and nine variations) based
on microservice-based systems that practitioners developed are used to evaluate our approach
(see Table 12.1). We implemented automated smell detection and refactoring algorithms to
detect potential smells and develop every solution that may be used to solve each smell. The
improvements over the initial version are then measured using our metrics [NZSB22] on coupling
aspects in IaC-based deployments. The results show that every smell can be addressed in no more
than three refactoring steps, producing ideal metric values.

This paper is structured as follows: In Section 12.2, we explain the decisions in the focus of
this paper. We also explain related patterns and practices, as well as the corresponding metrics,
as the background of our work. Section 12.3 discusses and compares to related work. Next,
we describe the research methods and the tools we have applied in our study in Section 12.4.
Then, three case studies are explained in Section 12.5. We then describe the approach details

166

12.2 Background

in Section 12.6. In Section 12.7, we explain the evaluation process of our work. Section 12.8
discusses the RQs regarding the evaluation results. In Section 12.9, we then analyze the threats to
validity. Finally, in Section 12.10, we conclude and discuss future work.

12.2 Background

This section will briefly discuss two coupling-related ADDs and their associated options. This
information is based on our previous research [NZSB22], in which we conducted an empirical
study to identify the IaC-related best practices and patterns currently used by practitioners. We
also examined the potential decision drivers, or the factors that influence the decision-making
process, and developed metrics to evaluate how well a given system model adheres to our
decision model’s recommended patterns and practices. By analyzing the reported outcomes of
these decisions, we can determine which options are more or less popular among microservice
practitioners. We employed 9 IaC-based component and deployment architecture models for
evaluation, which are used and extended in this work, listed in Table 12.1 and explained in
Section 12.4.

12.2.1 Infrastructure Stack

Infrastructure stacks can be used to organize the deployment infrastructure, which refers to the
set of hardware, software, and networking resources required to deploy and run applications,
services, and systems in a production environment. According to [Mor15], an infrastructure
stack is a group of infrastructure resources defined, provisioned, and updated collectively. A
non-optimal structure can harm the system if coupling-related factors are not considered. For
instance, the dependencies of system parts and teams and the independent deployability of system
services might be impacted by grouping all declarations of the system’s infrastructure resources
in only one infrastructure stack.

Figure 12.1 shows the lifecycle of an infrastructure stack. The resources and services that
an infrastructure platform offers are the elements of a stack, and they are described by source
code. For instance, a stack might consist of computing resources (e.g., a virtual machine),
storage resources (e.g., disk volume), and network resources (e.g., a subnet) [Mor15]. A stack
management tool reads the source code for the stack and assembles the defined elements in the
code to provision an instance of the infrastructure stack using a cloud platform’s API [Mor15].

12.2.2 Architectural Design Decisions (ADDs)

ADD 1: System Coupling through Deployment Strategy

Maintaining the services’ independence, scalability, and loose coupling is crucial when imple-
menting a microservice-based system. The corresponding development teams should be able
to construct and deploy a service swiftly, and services should be segregated. Another aspect to
consider is resource use per service since certain services may restrict CPU or memory usage
[Ric17]. Extra criteria should be guaranteed for each autonomous service, such as availability or
behavior monitoring.

167

12 Detecting and Resolving IaC-Based Architecture Smells in Microservices

Cloud Platform

Source Code Stack Tool

API

Infrastructure Stack

provide instance of

useread by

Figure 12.1: The lifecycle of an infrastructure stack. this figure is adopted from Morris
book [Mor15]

The System Coupling through Deployment Strategy decision concerns how services are
deployed in execution environments. The following decision options can be chosen: (i) Multiple
Services per Execution Environment, where services are all deployed in the same execution
environment making it problematic to change, build, and deploy the services independently.
Execution Environment is used here to denote the environment in which a service runs, such as a
VM, a Container, or a Host. Please note that execution environments can be nested. For instance,
a VM can be part of a Production Environment, which runs on a Public Cloud Environment.
Execution environments run on Devices (e.g., Cloud Server). The most recommended option
is the (ii) Single Service per Execution Environment pattern [Ric17], in which each service is
deployed in its execution environment and can be managed independently. In our previous work
[NZSB22], we empirically identified two metrics that can be used to differentiate and assess the
decision options’ conformance:

• Shared Execution Environment Connectors Metric (SEEC) to measure the proportion of
the shared connectors between services and execution environments.

• Shared Execution Environment Metric (SEE) to measure the proportion of the shared
execution environments.

ADD 2: System Coupling through Infrastructure Stack Grouping

Another essential aspect of microservices deployment is the grouping of the infrastructure
elements. The System Coupling through Infrastructure Stack Grouping decision concerns how
grouping different resources into infrastructure stacks should reflect the development teams’
responsibilities to ensure independent deployability and scalability. The following decision
options can be chosen: Monolith Stack [Mor15], where all resources are grouped in a single
stack. Another option is Application Group Stack, in which multiple services are deployed by one
stack. A structuring that can work better with microservice-based systems is the Service Stack, in
which one stack deploys one service and all related infrastructure resources. The Micro Stack
pattern [Mor15] goes one step further by breaking the Service Stack into even smaller pieces and
creating stacks for each infrastructure resource in a service (e.g., router, server, database, etc.).
For this decision, we have empirically defined six metrics that can be used to assess conformance
to each of the decision options:

168

12.3 Related Work

• Monolithic Stack Detection Metric (MSD) to detect if a single stack is used to deploy all
the infrastructure elements.

• Application Group Stack Detection Metric (AGSD) to detect if a single stack is used to
deploy all system services.

• Service-Stack Detection Metric (SES) to detect if every service is deployed by its own
stack.

• Micro-Stack Detection Metric (MST) to detect if every infrastructure element is deployed
by its own stack.

• Services per Stack Metric (SPS) to measure how many services are deployed by a service-
deploying stack on average.

• Components per Stack Metric (CPS) to measure how many components, on average, are
deployed by a component-deploying stack.

12.3 Related Work

In this section, we provide details on and compare related works. We first discuss related studies
for IaC-based best practices and patterns, then tool-based approaches for smell detection, and
finally, approaches for evaluating the conformance of architectures.

12.3.1 Related Works on IaC-Based Best Practices and Patterns

As the industry adopts and popularizes IaC practices, many scientific studies are compiling
or organizing IaC-related patterns, practices, smells, and anti-patterns. For example, a list
of design and implementation language-specific smells for Puppet is presented by Sharma et
al. [SFS16]. Kumara et al. [KGR+21] offer a comprehensive list of best and worst practices
relating to implementation problems, design problems and smells of fundamental IaC concepts.
Schwarz et al. [SSL18] provide a list of smells for Chef. Morris [Mor15] provides management
recommendations for infrastructure as code. This book includes an extensive list of patterns and
practices that fall under several categories and a complete discussion of technologies relevant
to IaC-based practices. Our work follows the IaC-specific principles outlined in this book and
those in [Ric17]. Many of these publications are less concerned with architecture decisions in
the deployment architecture than our work is. In contrast to our research, they do not provide
architecture conformance assessment or detect and resolve architecture smells.

12.3.2 Tool-based and Network Smell Detection Approaches

A tool-based approach for detecting smells in TOSCA models is proposed by Kumara et
al. [KVM+20]. Sotiropoulos et al. [SMS20] develop a tool-based approach that identifies
dependency-related issues by analyzing Puppet manifests and their system call trace. Van
der Bent et al. [vdBHVG18] define metrics that also reflect best practices to assess Puppet

169

12 Detecting and Resolving IaC-Based Architecture Smells in Microservices

code quality. Saatkamp et al. [SBKL19] utilize architectural and design patterns to reorganize
topology-driven deployment models to identify any issues obstructing a successful deployment.
Their approach covers two aspects: (1) identifying problems in reorganized deployment models
through architecture and design patterns and (2) automating problem detection by formalizing
the issue and its context through implementing patterns. This work presents a method for identi-
fying and implementing suitable solutions for issues in declarative deployment models in an
automated manner. Saatkamp et al. [SBF+19] also present an approach that uses first-order
logic to evaluate the applicability of solutions to a specific deployment model by expressing the
required deployment context as a logical formula. Adaptation algorithms are also defined to
operate on topological elements indicated by the deployment context to realize the solution in the
deployment model. In [SBKL18] Saatkamp et al. demonstrate using formalized patterns to detect
problems in two application scenarios. The Message Mover and Integration Provider patterns,
relevant to restructured topology-based deployment models in distributed applications, show the
approach’s applicability in message-based systems. Reusable conditions to express pattern rules
have also been defined. Although some of these works concentrate on the quality assurance of
IaC systems, none of them, unlike our work, address and focus primarily on coupling-related
issues in IaC deployment models and on architecture smell detection and fixes.

12.3.3 Related works on Frameworks and Metrics

An approach for automatically verifying declarative deployment models’ conformity throughout
design time is presented in [FBKL17, KBKL18]. The method enables modeling compliance
rules as two fragments of a deployment model. One of the parts is a detector subgraph that
decides whether the rule applies to a particular deployment model. Subgraph isomorphism
compares the model fragments to the deployment model in question. In contrast to our study, this
technique generally does not incorporate any particular compliance rules, like checking coupling-
related ADDs in IaC models. It presupposes that the rule modeler can convert best practices
into compliance rules with the desired format. Additionally, it doesn’t indicate the severity of
a rule violation; instead, it merely offers a Boolean result showing whether or not the rule is
being broken. Weller et al. [WBSB] present the Deployment Model Abstraction Framework
(DeMAF), a tool that allows the transformation of technology-specific deployment models
into technology-independent deployment models modeled based on the Essential Deployment
Metamodel (EDMM). This framework demonstrates the capability of abstracting deployment
models in a technology-agnostic manner.

Numerous studies concentrate on methods for spotting design or architectural smells, but
most do not specifically target the IaC domain. Garcia et al.’s approach [GPEM09a, GPEM09c]
provides a format for a collection of offensive smells in architecture. Additionally, these findings
provide potential methods for detecting these architectural smells. The relationship between
smells and project problems was investigated by Le et al. [LLSM18]. Marinescu [Mar04] has
proposed several detection techniques that use metrics-based heuristics to find design flaws.
To detect architecture erosion or drift, Garcia et al. [GPM+11] describe a machine learning-
based method for reconstructing an architectural perspective that includes a system’s parts and
connectors.

Although several of these publications examine features of the microservice domain and other

170

12.4 Research and Modeling Methods

aspects of architecture smell detection, none address detecting and refactoring coupling-related
smells in an IaC domain. This leads to our expectation that, in the context of loose coupling, our
work yields more precise detections of decision-specific smells and more focused suggestions for
fixes than this other research possibly could.

12.4 Research and Modeling Methods

This section summarizes the main research and modeling methods applied in our study. For
reproducibility, all the code and models produced in this study are available online as an open-
access data set in a long-term archive 1.

12.4.1 Research Method

The steps used in this study are shown in Figure ??. We have already provided a detailed
explanation of the architectural decisions and model-based metrics that served as the foundation
for this study in Section 12.2. We offer explicit definitions and algorithms for detecting potential
smells for each decision option and detailed definitions and methods for the possible fixes for
each smell in Section 12.6.

Every smell associated with the ADDs listed in the previous section will be found using our
method. Any suggested architecture refactorings will be applied to each model in our data set.
For each smell fix, we ran all possible smell detection algorithms and refactorings on the resulting
refactored models until no more smells were found or the refactored model matched a previous
version. In the latter case, this shows that it is impossible to eliminate all smells because doing
so would require creating new smells. To assess each final model’s improvement over the initial
model, we examined pattern conformance using metrics on IaC coupling.

12.4.2 Modeling Method

We used a dataset of 12 IaC-based deployment models (3 case studies and 9 variations) listed in
Table 12.1 to evaluate our approach. This dataset consists of three sources of microservice-based
systems and deployment artifacts. The fact that professionals with relevant expertise created
the systems we discovered supports the notion that they serve as a solid example of the IaC
coupling-related best practices enumerated in Section 12.2. Figure 12.2 shows the steps we
followed for reconstructing the model from the source code. We conducted a complete manual
static code analysis for the IaC models included in the repositories and the source code for
the applications. To create our models, we used the Python modeling library CodeableModels
described in Chapter 3.7. The result is a collection of meticulously designed software systems
and IaC-based deployment models. Figure 12.4 shows an excerpt of an IaC-based deployment
model.

1https://doi.org/10.5281/zenodo.7692017

171

12 Detecting and Resolving IaC-Based Architecture Smells in Microservices

Static Code Analysis Geneate Model Component Model Model Visualisation

Model Generation Process

Figure 12.2: Overview diagram of the model generation process

12.5 Case Studies

This section briefly describes the case studies used to evaluate our approach. We studied three
open-source microservice-based systems and created nine variants that introduce typical ADD
smells of the ADDs described in Section 12.2. Table 12.1 summarizes the case studies and
corresponding variants.

Case Study 1: eShopOnContainers Application The eShopOnContainers case study is
a prototype reference application, realized by Microsoft, built on a microservices architecture
and Docker containers that can be used with Azure and Azure cloud services. It features several
independent microservices and accommodates various communication modes (e.g., synchronous
and asynchronous via a message broker). The code repository also offers the necessary IaC
scripts to work with ELK for logging and deployment on a Kubernetes cluster (Elasticsearch,
Logstash, Kibana).

Case Study 2: Sock Shop Application The Sock Shop is a microservices reference
application built by the company Weaveworks to show several microservice architectures and the
company’s technologies. The application showcases cloud-native and microservices technology.
Services are deployed on Docker containers, and the system employs Kubernetes to manage
containers. The system may be deployed on Amazon Web Services (AWS) using infrastructure
scripts for Terraform. In our opinion, this is a common practice in the industry regarding
microservice-based designs and IaC-based deployments.

Case Study 3: Robot-Shop Application Robot-Shop is a reference application by the
company Instana that showcases polyglot microservice architectures with Instana monitoring. The
IaC scripts are included. Kubernetes is used for container orchestration, and all system services
are deployed on Docker containers. Helm is also supported for automated cluster Kubernetes
construction, packaging, setup, and deployment. In addition, some services support Prometheus
metrics and offer end-to-end monitoring.

12.6 Architecture Smells and Fix Options Definition

This section presents an overview of the various smells, possible solutions, and algorithms we
have designed for detecting smells and implementing fixes. To further clarify our approach, we
also include examples from the decision of “System Coupling via Infrastructure Stack Grouping.”

172

12.6 Architecture Smells and Fix Options Definition

Case
Study ID

Model Size Description / Source

CS1 68 components
167 connectors

E-shop application using pub/sub communication for event-based interaction and files for deployment
on a Kubernetes cluster. All services are deployed in their infrastructure stack (from https://gith
ub.com/dotnet-architecture/eShopOnContainers).

CS1.V1 67 components
163 connectors

Variant of Case Study 1 in which half of the services are deployed on the same execution environment,
and some infrastructure stacks deploy more than one service.

CS1.V2 60 components
150 connectors

Variant of Case Study 1 in which some services are deployed on the same execution environment and
half of the non-services components are deployed by a component-deploying stack.

CS1.V3 60 components
150 connectors

Variant of Case Study 1 in which some services are deployed on the same execution environment and the
non-services components are deployed by a component-deploying stack.

CS2 38 components
95 connectors

An online shop that demonstrates and tests microservice and cloud-native technologies and uses a single
infrastructure stack to deploy all the elements (from https://github.com/microservices-d
emo/microservices-demo).

CS2.V1 40 components
101 connectors

Variant of Case Study 2 where multiple infrastructure stacks are used to deploy the system elements, as
well as some services are deployed on the same execution environment.

CS2.V2 40 components
101 connectors

Variant of Case Study 2 where two infrastructure stacks are used to deploy the system elements (one for
the services and one for the rest elements), as well as some services are deployed on the same execution
environment.

CS2.V3 60 components
150 connectors

Variant of Case Study 2 in which some services are deployed on the same execution environment and the
non-services components are deployed by a component-deploying stack.

CS3 32 components
118 connectors

Robot shop application with various kinds of service interconnections, data stores, and Instana tracing
on most services, as well as an infrastructure stack that deploys the services and their related elements
(from https://github.com/instana/robot-shop).

CS3.V1 56 components
147 connectors

Variant of Case Study 3 where some services are deployed in their infrastructure stack and some services
are deployed on the same execution environment.

CS3.V2 56 components
147 connectors

Variant of Case Study 3 where all services are deployed in their infrastructure stack and all services are
deployed on their execution environment.

CS3.V3 54 components
148 connectors

Variant of Case Study 3 where some services are deployed in their infrastructure stack and some services
are deployed on their execution environment.

Table 12.1: Overview of modeled case studies and the variants (size, details, and sources), adapted
from our previous work [NZSB22]

173

https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/microservices-demo/microservices-demo
https://github.com/microservices-demo/microservices-demo
https://github.com/instana/robot-shop

12 Detecting and Resolving IaC-Based Architecture Smells in Microservices

Smell Detection and Fix
AlgorithmsSmell Definition

Fix Definition IaC-Based Model
Architecture Refactoring

Evaluation

Architectural Design
Decisions on IaC Coupling

IaC Component Architecture
Models

Metrics on Coupling in IaC-
Based Deployments

Background Smells/Fixes Architecture Refactoring

Architecture Evaluation

Figure 12.3: Overview diagram of the research method followed in this study (the diagram is
adapted from our previous work [NZSB22])

Our previous work [NZSB22] presents a microservice-based architecture model description/-
modeling of a directed graph of components and connectors. This model serves as the foundation
for our definitions of smells and fixes.

A microservice decomposition and deployment architecture model M is a tuple (NM , CM ,

NTM , CTM , c_source, c_target, nm_connectors, n_type, c_type) where:

• NM is a finite set of components and infrastructure nodes in Model M .

• CM ✓ NM ⇥NM is an ordered finite set of connector edges.

• NTM is a set of component types.

• CTM is a set of connector types.

• c_source : CM ! NM is a function returning the component that is the source of a link
between two nodes.

• c_target : CM ! NM is a function returning the component that is the target of a link
between two nodes.

• nm_connectors : P(NM) ! P(CM) is a function returning the set of connectors for
a set of nodes: nm_connectors(nm) = {c 2 CM : (9n 2 nm : (c_source(c) =
n ^ c_target(c) 2 CM) _ (c_target(c) = n ^ c_source(c) 2 CM))}.

• n_type : NM ! P(NTM) is a function that maps each node to its set of direct and
transitive node types. (For a formal definition of node types, see [ZNL17].)

• c_type : CM ! P(CTM) is a function that maps each connector to its set of direct and
transitive connector types. (For a formal definition of connector types, see [ZNL17].)

All deployment nodes are of type Deployment_Node, which has the subtypes Execution_Environment
and Device. These have further subtypes, such as VM and Container for Execution_Environment,

174

12.6 Architecture Smells and Fix Options Definition

and Server, IoT Device, Cloud, etc. for Device. Environments can also distinguish logical envir-
onments on the same infrastructure, such as a Test_Environment and a Production_Environment.
Combining all types, e.g., Production_Environment and VM, is possible.

The microservice decomposition is modeled as nodes of type Component with component
types such as Service and connector types such as RESTful HTTP.

The connector type deployed_on is used to denote a deployment relation of a Component (as a
connector source) on an Execution_Environment (as a connector target). It is also used to denote
the transitive deployment relation of Execution_Environments on other ones, e.g., a Container
that is deployed on a VM or a Test_Environment. The connector type runs_on models the relations
between execution environments and the devices they run on.

The type Stack is used to define deployments of Devices using the defines_deployment_of rela-
tion. Stacks include environments with their deployed components using the includes_deployment_node
relation.

12.6.1 Smell Detection

Table 12.2 summarizes the possible smells we have detected for each ADD. It also describes how
the algorithms we use to detect smells in models are based on meta-model definition introduced
in Section 12.6. For example, Algorithm 12.1 describes the steps required for detecting the Smell
Services are Deployed on a Single Execution Environment of ADD 1. It returns a list of smells,
each represented by a set of service environment connectors in which two services sm and sj

share an execution environment ei.

Algorithm 10: Detect System Services are Deployed on a Single Execution Environment Smell
i n p u t : Model M
o u t p u t : Set <Tuple >
beg in
s m e l l s ;
f o r sm 2 s e r v i c e s (M) :

f o r sj 2 s e r v i c e s (M) :
f o r ei 2 e x e c u t i o n _ e n v i r o n m e n t (M) :

i f ((sm, ei) 2 s e r v i c e _ e n v _ c o n n e c t o r s (M) ^
(sj , ei) 2 s e r v i c e _ e n v _ c o n n e c t o r s (M)) :

smells smells [{(sm, ei), (sj , ei)}
r e t u r n smells

end

12.6.2 Fixes

Table 12.3 summarizes all possible fixes for each detected smell and the fix algorithm. Many of
the fixes require human review and sometimes a human decision to be applicable. For instance,
the architect may be faced with a decision of which infrastructure stack is better suitable to
the application requirements. For example, Algorithm 12.2 shows one of the fix algorithms,
integrating services deployed in the same execution environments needed to realize D1.S1.F3.

Algorithm 11: Integrate Services Deployed in the Same Execution Environment (D1.S1.F3)
i n p u t : Model M , E x e c u t i o n _ E n v i r o n m e n t env

175

12 Detecting and Resolving IaC-Based Architecture Smells in Microservices

Smells Smell Detection Algorithm Summary
D1: System Coupling through Deployment Strategy
D1.S1: System services are running/deployed on a
single execution environment [Host/VM/Container].

All service connectors in the model are traversed. If at least two ser-
vices are deployed on the same execution environment, an instance of
the smell is found. The detector operation returns each such service-
execution connector that is found.

D2: System Coupling through Infrastructure Stack Grouping
D2.S1: All infrastructure elements and services are
part of a single infrastructure stack.

All infrastructure elements connectors in the model are traversed. If
only one infrastructure stack is found to be used by them, an instance of
this smell is found. The detector operation returns the list of all relevant
model elements.

D2.S2: Two or more services are part of a single in-
frastructure stack.

All service and stack connectors in the model are traversed. The smell
is found if multiple services are clustered in groups on at least one of
the stacks. The detector operation returns the list of all relevant model
elements.

D2.S3: If Service Stack is True: Infrastructure ele-
ments (e.g., databases, routers, etc.) that services de-
pend on are not part of their service stack.

All infrastructure elements connectors in the model are traversed. Sup-
pose non-service components (e.g., databases) are connected to a dif-
ferent stack than their services. In that case, the smell is found. The
detector operation returns the list of all such model elements.

D2.S4: If Service Stack is True: Infrastructure ele-
ments (e.g., databases, routers, etc.) that services are
not dependent on are part of their service stack.

All infrastructure elements connectors in the model are traversed. Sup-
pose non-service components (e.g., databases) are connected to a stack
they are not dependent on. In that case, the smell is found, and the
detector operation returns the list of all relevant model elements.

Table 12.2: Detected Smells and Smell Detection Algorithms

o u t p u t : �
beg in

new_service Nul l
first True
integration_annotations ;

f o r s 2 g e t _ s e r v i c e s (M , env) :
i f f i r s t :

new_service = c r e a t e _ s e r v i c e (M ,
g e t _ s e r v i c e _ n a m e (M , s) ,
g e t _ a p p l i c a b l e _ s t e r e o t y p e s (M , s))

f i r s t F a l s e
e l s e :

s e t _ s e r v i c e _ n a m e (M , new_service ,
g e t _ s e r v i c e _ n a m e (M , new_service) + " + " +
g e t _ s e r v i c e _ n a m e (M , s))

a d d _ a p p l i c a b l e _ s t e r e o t y p e s (M , new_service , s)

integration_annotations integration_annotations
[{" i n t e g r a t e d f u n c t i o n a l i t y from : " +
g e t _ s e r v i c e _ n a m e (M , s) }

a d d _ c o n n e c t o r (new_service , env ,
g e t _ a p p l i c a b l e _ s t e r e o t y p e s (M , (s , env)))

d e l e t e _ s e r v i c e (s)

a d d _ a n n o t a t i o n s (M , new_service , integration_annotations)
end

176

12.6 Architecture Smells and Fix Options Definition

Smell Fix Fix Summary
D1: System Coupling through Deployment Strategy

D1.S1
D1.S1.F1: Do not fix the smell The architect has the option to not fix the smell, e.g. because it

has no significant impact on system deployment.
D1.S1.F2: Deploy each service in a separate
execution environment

Disconnect services from the execution environment and intro-
duce a new execution environment for each service. Connect
the services to the execution environments.

D1.S1.F3: Integrate the services deployed
on the same execution environment into one
service

Disconnect services from the execution environment. Merge
the services using the same execution environment into a single
service using that execution environment. Connect the new
service to the execution environment. Here we add annota-
tions that functionality has been added to one service so that
implementers, later on, can realize this functionality. The ar-
chitect must check whether such integration is possible and
can provide developers with annotations about the envisaged
service integration details.

D1.S1.F4: Introduce VMs/Containers in a
Host/VM to separate services in different ex-
ecution environments

Disconnect services from the execution environment and intro-
duce new VMs/containers for each service in the same host.
Connect the services to the VMs/containers.

D2: System Coupling through Infrastructure Stack Grouping

D2.S1

D2.S1.F1: Do not fix the smell The architect has the option to not fix the smell, e.g. because it
has no significant impact on system deployment.

D2.S1.F2: Create separate infrastructure
stacks for each service and additional infra-
structure elements

Disconnect services from the infrastructure stack. Introduce
new infrastructure stacks for each service and additional infra-
structure elements. Connect the services and elements to their
stack.

D2.S2

D2.S2.F1: Do not fix the smell The architect has the option to not fix the smell, e.g. because it
has no significant impact on system deployment.

D2.S2.F2: Create separate infrastructure
stacks for each service

Disconnect services from the infrastructure stack. Introduce
new infrastructure stacks for each service and connect the ser-
vices to their stack.

D2.S3

D2.S3.F1: Do not fix the smell The architect has the option to not fix the smell, e.g. because it
has no significant impact on system deployment.

D2.S3.F2: Move the service-dependent in-
frastructure elements in the same service
stack

Disconnect service-dependent infrastructure elements from the
infrastructure stack. Connect service-dependent infrastructure
elements to the infrastructure stacks they are dependent on.

D2.S4

D2.S4.F1: Do not fix the smell The architect has the option to not fix the smell, e.g. because it
has no significant impact on system deployment.

D2.S4.F2: Move the service-independent in-
frastructure elements in the dependent ser-
vice stack

Disconnect service-independent infrastructure elements from
the infrastructure stack. Connect service-independent infra-
structure elements to the infrastructure stacks they are depend-
ent on.

Table 12.3: Detected Fixes And Fix Algorithms

12.6.3 Smell Detection and Fixes Example

Figure 12.4 shows an excerpt model of CS1.V2 from Table 12.1. As an illustrative example,
we use it here to demonstrate the System services are running/deployed on a single execution
environment [Host/VM/Container](D1.S1) smell. All services are deployed on a single Container
in this model. Here, the Docker Container 0.0.0.3 is considered as shared execution environment,
causing the corresponding smell. It would be triggered in our approach by providing a bad metric
value, which would trigger the detailed detection, which would return the {(Catalog, Docker
Container 0.0.0.3), (Basket, Docker Container 0.0.0.3), (Order, Docker Container 0.0.0.3)} set
of tuples. If we run our fix algorithms, the resulting model fix suggestions are:

• Applying Fix D1.S1.F2: Catalog, Order and Basket services will be disconnected from the

177

12 Detecting and Resolving IaC-Based Architecture Smells in Microservices

execution environment. The fix will introduce different execution environments for each
service, which will be connected to its own execution environment.

• Applying Fix D1.S1.F3: The Catalog, Order and Basket services can be integrated into one
new service.

• Applying Fix D1.S1.F4: The fix will introduce new execution environments for each service
as part of the same host. Catalog, Order, and Basket services will be disconnected from the
execution environment, and each service will be connected to its execution environment.

«Infastructure Stack»
Application Group Stack

:Infastructure Resources

«Web Server»
 Webserver 0.0.0.0

:Device

«Cloud Server»
AWS Server:Device

«Container»
Docker Container 0.0.0.2

:Execution Environment

«Container»
Docker Container 0.0.0.3

:Execution Environment

«defines deployment of»

«runs on»

«Service»
Basket

:Component

«Service»
Order

:Component

«Database»
Order DB

:Component

«Database»
Basket DB

:Component

«deployed on»

«deployed on»

«deployed on»

«Service»
Catalog

:Component

«deployed on»

«Database»
Catalog DB

:Component

«Storage Resources»
Storage Resources Order

:Infastructure Resources

«deployed on»

«database
connector»

«database
connector»

«database
connector»

«deployed on»

«deployed on»

«runs on»

«deployed on»

«Storage Resources»
Storage Resources Basket

:Infastructure Resources

«Storage Resources»
Storage Resources Catalog

:Infastructure Resources

«Infastructure Stack»
Basket Data Stack

:Infastructure Resources

«Container»
Docker Container 0.0.0.1

:Execution Environment

«defines deployment of»

«deployed on»

«Infastructure Stack»
Catalog Data Stack

:Infastructure Resources

«Container»
Docker Container 0.0.0.4

:Execution Environment

«defines deployment of»

«deployed on»

«Infastructure Stack»
Order Data Stack

:Infastructure Resources

«defines deployment of»

«deployed on»
 «deployed on»

«runs on»

«runs on»

Figure 12.4: Excerpt of an Architecture Component Model of Case CS1.V2 in Table 3.1.

12.7 Evaluation

To evaluate our work, we have fully implemented our algorithms for detecting smells and
performing fixes, and generating the metrics described in Section ?? to measure the improvements
and presence of remaining smells in our model set. If multiple smells are present in a model, then
the algorithms can be employed iteratively until all smells have been fully resolved.

For example, let us illustrate the exhaustive, iterative refactoring for the CS1.V2 Model (see
Figure 12.4). CS1.V2 has the following smells—“System services are running/deployed on a
single execution environment” (D1.S1), “Two or more services are part of the same infrastructure
stack” (D2.S2), and “Infrastructure elements (e.g., databases, routers, etc.) that services depend

178

12.8 Discussion of Research Questions

on are not part of their service stack” (D2.S3) as indicated by the respective measures in Table
12.2. There are two branches at the first iteration step of the refactoring process in Table 12.4.
The first iteration step results in 4 possible model variants, one for each fix option from Table
12.3. In these models, the corresponding smells have been fixed. However, all the new models
still contain a smell. M1–M3 still has the D2.S2 smell since this is not resolved in this branch.
M4 still has the D1.S3 smell.

The second iteration step results in four further models. In turn, the resulting models M1.A,
M2.A, and M3.A, now contain the additional smells D2.S3. At the end of the third step, we have
four suggested model variants, all optimally resolving the smells. The architect can choose the
refactoring sequence from among these final optimal model variants but can also choose not to
apply specific fixes, e.g., due to other constraints outside our study’s scope.

We followed this technique for all 12 system models in Table 12.1 to evaluate them. In
Table 12.5, along with the starting smells and architecture evaluation values for each model,
are the number of intermediate models and smell cases at every step, as well as the number of
final suggested models with an optimal metric assessment. Please note that the metrics below
correspond to each of the smells; D1.S1 has two related metrics, and D2.S2 has three metrics,
one for detecting the Application Group Stack pattern, one for detecting the Service Stack pattern,
and one to measure the proportion of this.

The number of smells in the starting model and the potential emergence of additional smells
throughout the refactoring process determines the number of steps necessary to attain ideal
models. All models are fully resolved, or all assessment metrics have optimal values after a
maximum of three phases, as shown in Table 12.5.

CS1.V2

Step 1 Smells D1.S1 D2.S2
Produced Component Models (Fixes) M1, M2, M3 M4

Step 2 Smells D2.S2 D2.S3
Produced Component Models (Fixes) M1.A, M2.A, M3.A M4.A

Step 3 Smells D2.S3 No additional smell
Produced Component Models (Fixes) M1.A-1, M2.A-2, M3.A-3 –

Total 4 Optimal Component Models

Table 12.4: Example of an exhaustive iterative application of our approach in the CS1.V2 model.
Final (i.e. optimally resolved) resulting models are rendered in boldface font.

12.8 Discussion of Research Questions

For each potential alternative option, we methodically detected several decision-based smells,
which are included in Table 12.2 to address RQ1. The purpose of the smell detectors is to
discover the precise locations in the models where the smells occur because we have empirically
demonstrated in our prior work [NZSB22] that the metrics described in Section 12.2 can reliably
distinguish preferred or less preferred design options. For each system model in our evaluation
dataset, proposing corrections to improve the architecture was possible. This indicates that the
algorithms had correctly detected the resolution’s proper location or locations.

179

12 Detecting and Resolving IaC-Based Architecture Smells in Microservices

Model
ID

Initial Model Models Generated / Remaining smell Instances Resulting
Suggested

Models
Assessments per Refactoring Step

D1.S1 D2.S1 D2.S2 D2.S3,
D2.S4

Step 1 Step 2 Step 3

CS1 0.00, 0.00 False True, False, 1.00 True, 1.00 1 / 1 1 / 0 – 1

CS1.V1 0.71, 0.50 False False, False, 0.20 True, 1.00 4 / 3 3 / 0 – 4

CS1.V2 0.42, 0.20 False False, False, 0.57 False, 0.50 4 / 4 4 / 3 3 / 0 4

CS1.V3 0.57, 0.25 False False, False, 0.42 False, 0.33 4 / 4 4 / 3 3 / 0 4

CS2 0.00, 0.00 True False,False, 0.00 False, 0.00 1 / 1 1 / 0 – 1

CS2.V1 0.25, 0.14 False False,False, 0.12 False, 1.00 4 / 3 3 / 0 – 4

CS2.V2 0.62, 0.40 False False,True, 0.00 False, 0.00 4 / 4 6 / 0 – 6

CS2.V3 0.25, 0.14 False False,False, 0.12 False, 0.33 4 / 4 4 / 3 3 / 0 4

CS3 0.00, 0.00 False False,False, 0.00 False, 0.00 1 / 1 1 / 0 – 1

CS3.V1 0.37, 0.16 False False,False, 0.62 False, 1.00 4 / 4 6 / 0 – 6

CS3.V2 0.00, 0.00 False True,False, 1.00 True, 1.00 1 / 1 1 / 0 – 1

CS3.V3 0.25, 0.14 False False,False, 0.75 False, 0.33 4 / 4 4 / 3 3 / 0 4

Table 12.5: This table shows the results of evaluating the initial models used in our study. It
includes the number of models created at each step of applying our algorithms in
an iterative process, the number of smell instances (calculated by multiplying the
number of generated models by the number of smells per model) that remained or
were introduced in each iteration, and the final count of recommended (optimal)
models.

We built a variety of methods for RQ2 that addressed every conceivable smell and provided
several correction alternatives (see Table 12.3). A search tree of potential architecture models
is produced if every option is tested (such as the one shown in Table 12.4). This search tree
may then be evaluated using metrics to gauge how much the basic architecture has improved
and detect unresolved issues. We have demonstrated that an iterative method of employing our
algorithms successively yields, within a few steps, a variety of potential architectural models that
eliminate all smells detected and guarantee pattern conformity of the system architecture (see
Table 12.5). The numerous ideal model versions produced by our method offer architects a great
deal of design flexibility. The approach is suited to be used in a continuous delivery environment,
which was one of our study’s aims. This is because detection is automated, and human expertise
is only used in the fix process.

12.9 Threats to Validity

The information and solutions presented in our study are based on published literature and best
practices in the field. Our evaluation dataset consists of a representative collection of systems
drawn from three different sources and specifically selected to demonstrate various features of
IaC architectures (see Table 12.1). While our method is based on traditional component-and-
connector models, widely used in the literature, and modified to include deployment aspects, it is
designed to be abstract and general.

180

12.10 Conclusion and Future Work

To ensure our results’ accuracy and reliability, the authors’ team carried out the modeling
process, and all models were independently cross-checked. The authors have extensive expertise
in modeling methodologies and are confident that alternative interpretations of the models would
still be generally similar and compatible with our findings. However, it should be noted that our
method depends on a specific modeling strategy and may not apply to all architectures.

One of the main limitations of our study is that it only considers two specific ADDs and the
associated trends, metrics, and issues. In real-world architectures, it would be necessary to con-
sider a broader range of ADDs to evaluate the architecture fully. Additionally, our measurements
and tools were applied at a relatively high level of abstraction to accommodate different IaC
technologies, such as Ansible, Terraform, and Puppet.

Another potential limitation of our technique is its ability to effectively address larger, more
complex systems commonly found in industry but which we could not include in our research.
While our method is automated to some extent, it still requires input and guidance from the
architect, which may make it challenging to implement in practice. Additionally, our method
cannot match the expertise and ability of a skilled architect to design a more optimal solution.
This is a common limitation of generic architecture assistance techniques that we aim to address
in future research.

We want to emphasize that our current approach is just a starting point for examining the
issue of evaluating and improving IaC architectures. The models we have produced do not yet
consider factors such as the amount of code or rewriting needed to implement them. Despite
these limitations, it is still valuable to have a semi-automatic approach that can detect and analyze
violations of architectural best practices, even if some of these issues may be inevitable in practice.
Practitioners may not always adhere to best practices, and systems may be developed without a
deliberate effort to follow them or may drift from their original specifications over time.

12.10 Conclusion and Future Work

In this chapter, we investigate the use of coupling-related architectural design decisions in
infrastructure as code architectures and their impact on the system’s overall design. We identify
specific "smells" that may indicate issues and have developed automated detectors to locate the
source of these smells within the model. We have created a set of potential solutions for each
detected smell to address these smells and ensure adherence to best practices in microservice-
based architectures.

We conducted three case studies on open-source microservice-based systems to evaluate
our approach. We introduced smells or refactorings to 9 variants of these systems to test the
performance of our smell detection algorithms in more complex scenarios. Our analysis of these
models, which ranged in architectural complexity and the presence of patterns and smells, showed
that our technique could eliminate smells in just three refactoring steps, most of which could be
automated.

One of the main advantages of our method is its fully automated metric computation and smell
detection, which makes it suitable for incorporation into a continuous delivery pipeline as an
additional “architecture evaluation” step. While the proposed fixes on the IaC-based models are
automated, architects still have the flexibility to make design choices and provide feedback as

181

12 Detecting and Resolving IaC-Based Architecture Smells in Microservices

needed.
We plan to expand the range of ADDs and smells supported by our method and improve it by

including runtime metrics and other design components. We also plan to increase the size and
complexity of our model dataset and empirically validate our approach through its use in real
delivery pipelines as part of a feedback loop.

182

Part V
Conclusion

183

13 Conclusion

This doctoral thesis outlines several accomplishments related to the codification of architecture
knowledge, including the development of a reusable architectural design decision model, accurate
abstraction of highly polyglot systems, assessment of architecture conformance to best patterns
and practices in microservices and IaC-based deployments, a unified framework for modeling
and analyzing such systems, as well as automatic violation detection and fix suggestions.

In Part II, we report on a qualitative study of data management practices in microservice
architectures. The study uses a model-based approach to provide a systematic and consistent
representation of industry practices. The study concludes that existing knowledge sources on
microservice data management practices are inconsistent and incomplete, and a systematic and
unbiased study of many sources, integrated via formal modeling, can provide a more complete
and rigorous account of current practices.

In Part III, we report on a study that combines design science and case study research to
study methods for comprehending the component architecture of highly polyglot systems, as
exemplified by state-of-the-art microservices systems. The study recommends the reusable
detector approach unless a project is certain to use all detectors a very few times at most. The
study also tested the adaptability of the same approach to different tasks, which are well-suited to
be used in combination with the architecture abstraction detectors, potentially greatly reducing
the already small manual overhead required by the method.

Furthermore, Part III presents a method that automatically assesses different tenets in mi-
croservice and IaC decisions based on a microservice system’s component model. The method
utilizes a minimal set of component model elements to model the key aspects of decision options,
and derives metrics for each decision option. The method also employs ordinal regression analysis
to develop a prediction model. Statistical analysis reveals that each decision-related metric closely
aligns with manual, pattern-based assessments.

Part IV describes a method for detecting and fixing violations in microservice and IaC-based
architectures by mapping them to existing metrics and defining automatic detectors. The approach
is evaluated on various models and is shown to be capable of resolving violations in a small
number of automated refactoring steps. The approach can be used as an additional "architecture
assessment test" in a continuous delivery pipeline and is flexible enough to allow architects to
make design choices.

We have identified four research questions (RQ1-RQ4) (see Section 3.2) related to microservice-
based systems and proposed contributions to address these questions. RQ1 pertains to the lack
of a comprehensive understanding of data management patterns and practices in microservice
architecture, while RQ2 focuses on preventing architecture model drift and erosion. RQ3
involves evaluating the conformity of microservice-based systems with established patterns and
best practices, and identifying potential architecture violations resulting from design decisions.

185

13 Conclusion

Finally, RQ4 concerns providing actionable feedback to rectify these violations and improve the
system architecture.

In order to investigate our research questions, we have identified five problem areas (P1-P5)
(refer to Section 3.3) that pertain to different aspects of the microservice domain. These areas
encompass data gathering, modeling, analysis, assessment, refactoring, and comprehension of
existing practices and theoretical foundations. To address these problem areas, we propose a set
of contributions (C1-C6) discussed in Section 3.4.

The first problem area, P1, which corresponds to RQ1, is addressed by C1. C1 involves
the creation of a comprehensive pattern catalog that encompasses data management patterns
and practices. This catalog explores the interrelationships between patterns and practices and
investigates their associated impact and drivers (Chapter 4).

The second and fourth problem areas, P2 and P4, are linked to RQ1, RQ2, and RQ3. They are
addressed by C2, which introduces detectors capable of analyzing relevant sections of source code.
These detectors generate model abstractions to handle the diverse nature of microservice-based
systems. Furthermore, the detectors aid in reconstructing existing microservice-based systems
(Chapter 5).

The third problem area, P3, pertains to RQ3 and RQ4 and is tackled by C3. C3 involves an
iterative study of various knowledge sources related to microservices. This study refines a meta-
model and creates multiple model instances of microservice-based systems and Infrastructure as
Code (IaC)-based deployments. The investigation aims to explore the ontology and evaluate the
efficiency of the meta-model (Chapters 5, 6, 7, 8 and 9).

Both problem areas P3 and P5, connected to RQ3 and RQ4, are addressed by C4 and C5.
These contributions involve the implementation of detectors capable of identifying decision-based
violations. Additionally, metrics introduced in Chapters 6, 7, 8 and 9 are used in conjunction
with these detectors to pinpoint the elements (components and connectors) involved in specific
violations (Chapters 10, 11, and 12). Furthermore, the fifth problem area, P5, related to RQ3 and
RQ4, is addressed by C6. C6 provides actionable options (fixes) for each violation, aiming to
enhance the system architecture as part of a feedback loop (Chapters 10, 11, and 12).

Overall, the contributions of this doctoral thesis address all the defined problems, answer the
RQs, offer a comprehensive understanding of microservice-based systems and deployments, and
provide valuable insights into improving architecture conformance and rectifying architecture
violations.

186

Bibliography

[AAE16] Nuha Alshuqayran, Nour Ali, and Roger Evans. A systematic mapping study in
microservice architecture. In IEEE 9th Int. Conf. on Service-Oriented Computing
and Applications (SOCA), pages 44–51. IEEE, 2016.

[AAE18a] N. Alshuqayran, N. Ali, and R. Evans. Towards micro service architecture recovery:
An empirical study. In 2018 IEEE International Conference on Software Architecture
(ICSA), pages 47–4709, April 2018.

[AAE18b] N. Alshuqayran, N. Ali, and R. Evans. Towards micro service architecture recovery:
An empirical study. In 2018 IEEE International Conference on Software Architecture
(ICSA), pages 47–4709, 2018.

[ABDN+17] Matej Artac, Tadej Borovssak, Elisabetta Di Nitto, Michele Guerriero, and
Damian Andrew Tamburri. Devops: Introducing infrastructure-as-code. In 2017
IEEE/ACM 39th International Conference on Software Engineering Companion
(ICSE-C), pages 497–498, 2017.

[AFT19] Umberto Azadi, F. Fontana, and D. Taibi. Architectural smells detected by tools: a
catalogue proposal. 2019 IEEE/ACM International Conference on Technical Debt
(TechDebt), pages 88–97, 2019.

[AGG06] Edward B. Allen, Sampath Gottipati, and Rajiv Govindarajan. Measuring size,
complexity, and coupling of hypergraph abstractions of software: An information-
theory approach. Software Quality Journal, 15:179–212, 2006.

[AGG07] Edward B. Allen, Sampath Gottipati, and Rajiv Govindarajan. Measuring size,
complexity, and coupling of hypergraph abstractions of software: An information-
theory approach. Software Quality Journal, 15(2):179–212, 2007.

[AhS09] Yousef Al-houmaily and George Samaras. Two-phase commit. In Encyclopedia of
Database Systems, pages 3204–3209. 2009.

[APW+11] Antti Airola, Tapio Pahikkala, Willem Waegeman, Bernard De Baets, and Tapio
Salakoski. An experimental comparison of cross-validation techniques for estimating
the area under the roc curve. Computational Statistics & Data Analysis, 55(4):1828–
1844, 2011.

[aut21] auth0Docs. Single sign-on (sso). https://auth0.com/docs/authentic
ate/single-sign-on, 2021.

187

https://auth0.com/docs/authenticate/single-sign-on
https://auth0.com/docs/authenticate/single-sign-on

Bibliography

[AWS21] AWS Documentation. Security groups for your vpc. https://docs.aws.a
mazon.com/vpc/latest/userguide/VPC_SecurityGroups.html,
2021.

[BBM96] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented design met-
rics as quality indicators. IEEE Transactions on Software Engineering, 22(10):751–
761, 1996.

[BCH+95] Barry Boehm, Bradford Clark, Ellis Horowitz, Chris Westland, Ray Madachy, and
Richard Selby. COCOMO 2.0. Ann. Softw. Eng., 1(1):1–24, 1995.

[BD02] J. Bansiya and C. G. Davis. A hierarchical model for object-oriented design quality
assessment. IEEE Transactions on Software Engineering, 28(1):4–17, 2002.

[BNS20] Antonio Brogi, Davide Neri, and Jacopo Soldani. Freshening the air in microservices:
Resolving architectural smells via refactoring. In Sami Yangui, Athman Bouguettaya,
Xiao Xue, Noura Faci, Walid Gaaloul, Qi Yu, Zhangbing Zhou, Nathalie Hernan-
dez, and Elisa Y. Nakagawa, editors, Service-Oriented Computing – ICSOC 2019
Workshops, pages 17–29, Cham, 2020. Springer International Publishing.

[BWZ17] Justus Bogner, Stefan Wagner, and Alfred Zimmermann. Towards a practical main-
tainability quality model for service-and microservice-based systems. pages 195–198,
09 2017.

[CDMS10] Anna Corazza, Sergio Di Martino, and Giuseppe Scanniello. A probabilistic based
approach towards software system clustering. In Proceedings of the 2010 14th
European Conference on Software Maintenance and Reengineering, CSMR ’10,
pages 88–96, Washington, DC, USA, 2010. IEEE Computer Society.

[Cha14] Kathy Charmaz. Constructing grounded theory. Sage, 2014.

[Che18] L. Chen. Microservices: Architecting for continuous delivery and devops. In 2018
IEEE International Conference on Software Architecture (ICSA), pages 39–397,
April 2018.

[CK94] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6):476–493, 1994.

[Clo18] Cloud Security Alliance. Continuous monitoring in the cloud. https://clou
dsecurityalliance.org/blog/2018/06/11/continuous-monit
oring-in-the-cloud/, 2018.

[Clo21] Cloud Security Alliance. Five approaches for securing identity in cloud infrastructure.
https://cloudsecurityalliance.org/blog/2021/05/20/five
-approaches-for-securing-identity-in-cloud-infrastruct
ure/, 2021.

[Cop96] J. Coplien. Software Patterns: Management Briefings. SIGS, New York, 1996.

188

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://cloudsecurityalliance.org/blog/2018/06/11/continuous-monitoring-in-the-cloud/
https://cloudsecurityalliance.org/blog/2018/06/11/continuous-monitoring-in-the-cloud/
https://cloudsecurityalliance.org/blog/2018/06/11/continuous-monitoring-in-the-cloud/
https://cloudsecurityalliance.org/blog/2021/05/20/five-approaches-for-securing-identity-in-cloud-infrastructure/
https://cloudsecurityalliance.org/blog/2021/05/20/five-approaches-for-securing-identity-in-cloud-infrastructure/
https://cloudsecurityalliance.org/blog/2021/05/20/five-approaches-for-securing-identity-in-cloud-infrastructure/

Bibliography

[CS90] Juliet Corbin and Anselm L. Strauss. Grounded theory research: Procedures, canons,
and evaluative criteria. Qualitative Sociology, 13:3–20, 1990.

[DDPT20] Stefano Dalla Palma, Dario Di Nucci, Fabio Palomba, and Damian Andrew Tamburri.
Toward a catalog of software quality metrics for infrastructure code. Journal of
Systems and Software, 170:110726, 2020.

[DDT20] Stefano Dalla Palma, Dario Di Nucci, and Damian A. Tamburri. Ansiblemetrics: A
python library for measuring infrastructure-as-code blueprints in ansible. SoftwareX,
12:100633, 2020.

[DP09] S. Ducasse and D. Pollet. Software architecture reconstruction: A process-oriented
taxonomy. IEEE Transactions on Software Engineering, 35(4):573–591, Jul-Aug
2009.

[ELBH18] Thomas Engel, Melanie Langermeier, Bernhard Bauer, and Alexander Hofmann.
Evaluation of microservice architectures: A metric and tool-based approach. In Jan
Mendling and Haralambos Mouratidis, editors, Information Systems in the Big Data
Era, pages 74–89, Cham, 2018. Springer International Publishing.

[FBKL17] Markus Philipp Fischer, Uwe Breitenbücher, Kálmán Képes, and Frank Leymann.
Towards an approach for automatically checking compliance rules in deployment
models. In Proceedings of The Eleventh International Conference on Emerging
Security Information, Systems and Technologies (SECURWARE), pages 150–153.
Xpert Publishing Services (XPS), 2017.

[FEH15] Jr. Frank E. Harrell. Regression Modeling Strategies: With Applications to Linear
Models, Logistic and Ordinal Regression, and Survival Analysis. Springer, 2nd
edition, 2015.

[FKH17] Florian Fittkau, Alexander Krause, and Wilhelm Hasselbring. Software Landscape
and Application Visualization for System Comprehension with ExplorViz. Informa-
tion and Software Technology, 87:259–277, July 2017.

[FML17] P. D. Francesco, I. Malavolta, and P. Lago. Research on architecting microservices:
Trends, focus, and potential for industrial adoption. In 2017 IEEE International
Conference on Software Architecture (ICSA), pages 21–30, April 2017.

[Fow11] Martin Fowler. Command and Query Responsibility Segregation (CQRS) pattern,
2011.

[GAK99] George Yanbing Guo, Joanne M Atlee, and Rick Kazman. A software architecture
reconstruction method. In Software Architecture, pages 15–33. Springer, 1999.

[GCD+17] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino, and A. Di
Salle. Microart: A software architecture recovery tool for maintaining microservice-
based systems. In 2017 IEEE International Conference on Software Architecture
Workshops (ICSAW), pages 298–302, 2017.

189

Bibliography

[GCF+17] G. Granchelli, M. Cardarelli, P. D. Francesco, I. Malavolta, L. Iovino, and A. D. Salle.
Towards recovering the software architecture of microservice-based systems. In 2017
IEEE International Conference on Software Architecture Workshops (ICSAW), pages
46–53, April 2017.

[GFM17] Vahid Garousi, Michael Felderer, and Mika V. Mäntylä. Guidelines for including the
grey literature and conducting multivocal literature reviews in software engineering.
CoRR, 2017.

[GIM13] Joshua Garcia, Igor Ivkovic, and Nenad Medvidovic. A comparative analysis of
software architecture recovery techniques. In Proceedings of the 28th IEEE/ACM
International Conference on Automated Software Engineering, ASE’13, pages 486–
496, Piscataway, NJ, USA, 2013. IEEE Press.

[GKN15] Ian Gorton, John Klein, and Albert Nurgaliev. Architecture knowledge for evaluating
scalable databases. In Proc. of the 12th Working IEEE/IFIP Conference on Software
Architecture, pages 95–104, 2015.

[GL14] Dharmalingam Ganesan and Mikael Lindvall. Adam: External dependency-driven
architecture discovery and analysis of quality attributes. ACM Trans. Softw. Eng.
Methodol., 23(2):17:1–17:51, April 2014.

[GM14] Maayan Goldstein and Dany Moshkovich. Improving software through automatic
untangling of cyclic dependencies. In Companion Proceedings of the 36th Interna-
tional Conference on Software Engineering, ICSE Companion 2014, page 155–164,
New York, NY, USA, 2014. Association for Computing Machinery.

[Goo21] Google Cloud. Using api keys. https://cloud.google.com/docs/auth
entication/api-keys, 2021.

[GPEM09a] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic. Identifying architectural
bad smells. In 2009 13th European Conference on Software Maintenance and
Reengineering, pages 255–258, 2009.

[GPEM09b] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic. Toward
a catalogue of architectural bad smells. In Raffaela Mirandola, Ian Gorton, and
Christine Hofmeister, editors, Architectures for Adaptive Software Systems, pages
146–162, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[GPEM09c] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic. Toward
a catalogue of architectural bad smells. In Raffaela Mirandola, Ian Gorton, and
Christine Hofmeister, editors, Architectures for Adaptive Software Systems, pages
146–162, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[GPM+11] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Yuanfang Cai. Enhan-
cing architectural recovery using concerns. In 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011), pages 552–555, 2011.

190

https://cloud.google.com/docs/authentication/api-keys
https://cloud.google.com/docs/authentication/api-keys

Bibliography

[GS67] Barney G. Glaser and Anselm L. Strauss. The Discovery of Grounded Theory:
Strategies for Qualitative Research. de Gruyter, 1967.

[Gup17] Arun Gupta. Microservice design patterns. http://blog.arungupta.me/mi
croservice-design-patterns/, 2017.

[HCN98] R. Harrison, S. J. Counsell, and R. V. Nithi. An evaluation of the mood set of
object-oriented software metrics. IEEE Transactions on Software Engineering,
24(6):491–496, 1998.

[HF10] Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Addison-Wesley Professional,
2010.

[HNZ17] Thomas Haitzer, Elena Navarro, and Uwe Zdun. Reconciling software architecture
and source code in support of software evolution. Journal of Systems and Software,
123:119–144, 2017.

[HS17] Wilhelm Hasselbring and Guido Steinacker. Microservice architectures for scalability,
agility and reliability in e-commerce. In Proceedings 2017 IEEE International Con-
ference on Software Architecture Workshops (ICSAW), pages 243–246, Gothenburg,
Sweden, April 2017. IEEE.

[HW03a] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns. Addison-Wesley,
2003.

[HW03b] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing, Build-
ing, and Deploying Messaging Solutions. Addison-Wesley, 2003.

[HWB17] Stefan Haselböck, Rainer Weinreich, and Georg Buchgeher. Decision models for
microservices: Design areas, stakeholders, use cases, and requirements. In Software
Architecture. ECSA 2017, Lecture Notes in Computer Science, vol 10475, pages
155–170. Springer International Publishing, 2017.

[HZ14] Thomas Haitzer and Uwe Zdun. Semi-automated architectural abstraction spe-
cifications for supporting software evolution. Science of Computer Programming,
90:135–160, 2014.

[HZHD15] Carsten Hentrich, Uwe Zdun, Vlatka Hlupic, and Fefie Dotsika. An Approach
for Pattern Mining Through Grounded Theory Techniques and Its Applications to
Process-driven SOA Patterns. In Proc. of the 18th European Conference on Pattern
Languages of Program, pages 9:1–9:16, 2015.

[KBKL18] Christoph Krieger, Uwe Breitenbücher, Kálmán Képes, and Frank Leymann. An Ap-
proach to Automatically Check the Compliance of Declarative Deployment Models.
In Papers from the 12th Advanced Summer School on Service-Oriented Computing
(SummerSoC 2018), pages 76–89. IBM Research Division, Oktober 2018.

191

http://blog.arungupta.me/microservice-design-patterns/
http://blog.arungupta.me/microservice-design-patterns/

Bibliography

[KGR+21] Indika Kumara, Martín Garriga, Angel Urbano Romeu, Dario Di Nucci, Fabio
Palomba, Damian Andrew Tamburri, and Willem-Jan van den Heuvel. The do’s and
don’ts of infrastructure code: A systematic gray literature review. Information and
Software Technology, 137:106593, 2021.

[KH19] Holger Knoche and Wilhelm Hasselbring. Drivers and barriers for microservice
adoption – a survey among professionals in germany. Enterprise Modelling and
Information Systems Architectures (EMISAJ) – International Journal of Conceptual
Modeling, 14(1):1–35, 2019.

[KMNL06] Jens Knodel, Dirk Muthig, Matthias Naab, and Mikael Lindvall. Static evaluation
of software architectures. Software Maintenance and Reengineering, European
Conference on, pages 279–294, 2006.

[Kub21] Kubernetes Documentation. Ingress traffic control. https://kubernetes.i
o/docs/concepts/services-networking/ingress/, 2021.

[KVM+20] Indika Kumara, Zoe Vasileiou, Georgios Meditskos, Damian A. Tamburri, Willem-
Jan Van Den Heuvel, Anastasios Karakostas, Stefanos Vrochidis, and Ioannis Kom-
patsiaris. Towards semantic detection of smells in cloud infrastructure code. In
Proceedings of the 10th International Conference on Web Intelligence, Mining and
Semantics, WIMS 2020, page 63–67, New York, NY, USA, 2020. Association for
Computing Machinery.

[LCCM16] D. M. Le, C. Carrillo, R. Capilla, and N. Medvidovic. Relating architectural decay
and sustainability of software systems. In 2016 13th Working IEEE/IFIP Conference
on Software Architecture (WICSA), pages 178–181, 2016.

[LF04] James Lewis and Martin Fowler. Microservices: a definition of this new architectural
term. http://martinfowler.com/articles/microservices.html,
March 2004.

[LLSM18] D. M. Le, D. Link, A. Shahbazian, and N. Medvidovic. An empirical study of
architectural decay in open-source software. In 2018 IEEE International Conference
on Software Architecture (ICSA), pages 176–17609, 2018.

[LSZ12] Ioanna Lytra, Stefan Sobernig, and Uwe Zdun. Architectural Decision Making for
Service-Based Platform Integration: A Qualitative Multi-Method Study. In Joint
10th Working IEEE/IFIP Conf. on Software Architecture & 6th European Conf. on
Software Architecture (WICSA/ECSA), Helsinki, Finland. IEEE Comp. Soc., 2012.

[Mar04] R. Marinescu. Detection strategies: metrics-based rules for detecting design flaws. In
20th IEEE International Conference on Software Maintenance, 2004. Proceedings.,
pages 350–359, 2004.

[MC] Caroline Davis Michael Cowles. On the origins of the .05 level of statistical signific-
ance. In American Psychologist, 37(5), 553–558.

192

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
http://martinfowler.com/articles/microservices.html

Bibliography

[McC04] Steve McConnell. Code Complete: A Practical Handbook of Software Construction.
Best Practices for Developers. Microsoft Press, Redmond, WA, 2 edition, 2004.

[MMW02] Kim Mens, Tom Mens, and Michel Wermelinger. Maintaining software through
intentional source-code views. In Proceedings of the 14th international conference
on Software engineering and knowledge engineering, SEKE ’02, pages 289–296,
New York, NY, USA, 2002. ACM.

[MNS95] Gail C. Murphy, David Notkin, and Kevin Sullivan. Software reflexion models:
bridging the gap between source and high-level models. In Proceedings of the 3rd
ACM SIGSOFT symposium on Foundations of software engineering, SIGSOFT ’95,
pages 18–28, New York, NY, USA, 1995. ACM.

[MNS01] G.C. Murphy, D. Notkin, and K.J. Sullivan. Software reflexion models: bridging the
gap between design and implementation. IEEE Trans. Softw. Eng., 27(4):364–380,
2001.

[Mor15] Kief Morris. Infrastructure as Code: Dynamic Systems for the Cloud. O’Reilly,
2015.

[New15] Sam Newman. Building Microservices: Designing Fine-Grained Systems. O’Reilly,
2015.

[NSZB19] Davide Neri, Jacopo Soldani, Olaf Zimmermann, and Antonio Brogi. Design prin-
ciples, architectural smells and refactorings for microservices: a multivocal review.
SICS Software-Intensive Cyber-Physical Systems, 35(1-2):3–15, Sep 2019.

[Nyg07] Michael Nygard. Release It! Design and Deploy Production-Ready Software. Prag-
matic Bookshelf, 2007.

[NZP+19] Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, Daniel Schall, Fei Li, and
Sebastian Meixner. Supporting architectural decision making on data management in
microservice architectures. In 13th European Conference on Software Architecture
(ECSA) - 2019, September 2019.

[NZP+20a] Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, Sebastian Meixner, and Se-
bastian Geiger. Assessing architecture conformance to coupling-related patterns and
practices in microservices. In 14th European Conference on Software Architecture
(ECSA), 2020, September 2020.

[NZP+20b] Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, Sebastian Meixner, and
Sebastian Geiger. Metrics for assessing architecture conformance to microservice
architecture patterns and practices. In 18th International Conference on Service
Oriented Computing (ICSOC 2020), December 2020.

[NZP+21] Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, Patric Genfer, Sebastian
Geiger, Sebastian Meixner, and Wilhelm Hasselbring. Detector-based component

193

Bibliography

model abstraction for microservice-based systems. Computing, 103:2521–2551,
August 2021.

[NZPG21] Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, and Sebastian Geiger. Semi-
automatic feedback for improving architecture conformance to microservice patterns
and practices. In 18th IEEE International Conference on Software Architecture(ICSA
2021), March 2021.

[NZSB22] Evangelos Ntentos, Uwe Zdun, Jacopo Soldani, and Antonio Brogi. Assessing
architecture conformance to coupling-related infrastructure-as-code best practices:
Metrics and case studies. In 16th European Conference on Software Architecture,
Software Architecture - 16th European Conference, ECSA 2022, Prague, Czech
Republic, September 19?23, 2022, Proceedings, pages 101–116, September 2022.

[Okt21] Okta. Token-based authentication. https://www.okta.com/identity-10
1/what-is-token-based-authentication/, 2021.

[OWA21a] OWASP Cheat Sheet Series. Authentication cheat sheet. https://cheatsheet
series.owasp.org/cheatsheets/Authentication_Cheat_Sheet
.html#logging-and-monitoring, 2021.

[OWA21b] OWASP Cheat Sheet Series. Infrastructure as code security cheatsheet. https:
//cheatsheetseries.owasp.org/cheatsheets/Infrastructur
e_as_Code_Security_Cheat_Sheet.html, 2021.

[OWA21c] OWASP Cheat Sheet Series. Transport layer protection cheat sheett. https:
//cheatsheetseries.owasp.org/cheatsheets/Transport_Lay
er_Protection_Cheat_Sheet.html#ssl-vs-tls, 2021.

[PD18] Waligora M. Piasecki, J. and V Dranseika. Google search as an additional source in
systematic reviews. Sci Eng Ethics 24, 55(4):809–810, 2018.

[Per17] Matthieu Perrin. Overview of existing models. In Matthieu Perrin, editor, Distributed
Systems, pages 23–52. Elsevier, 2017.

[PGLCX16] Marcus Pendleton, Richard Garcia-Lebron, Jin-Hee Cho, and Shouhuai Xu. A
survey on systems security metrics. ACM Comput. Surv., 49(4), December 2016.

[PJ16] Claus Pahl and Pooyan Jamshidi. Microservices: A systematic mapping study. In 6th
International Conference on Cloud Computing and Services Science, pages 137–146,
2016.

[PRG18] R. Pietrantuono, S. Russo, and A. Guerriero. Run-time reliability estimation of
microservice architectures. In 2018 IEEE 29th International Symposium on Software
Reliability Engineering (ISSRE), pages 25–35, Oct 2018.

[PTV+10] Leonardo Passos, Ricardo Terra, Marco Tulio Valente, Renato Diniz, and Nabor
das Chagas Mendonca. Static architecture-conformance checking: An illustrative
overview. IEEE software, 27(5):82–89, 2010.

194

https://www.okta.com/identity-101/what-is-token-based-authentication/
https://www.okta.com/identity-101/what-is-token-based-authentication/
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#logging-and-monitoring
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#logging-and-monitoring
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#logging-and-monitoring
https://cheatsheetseries.owasp.org/cheatsheets/Infrastructure_as_Code_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Infrastructure_as_Code_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Infrastructure_as_Code_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html#ssl-vs-tls
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html#ssl-vs-tls
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html#ssl-vs-tls

Bibliography

[PW92] Dewayne E Perry and Alexander L Wolf. Foundations for the study of software
architecture. ACM SIGSOFT Software Engineering Notes, 17(4):40–52, 1992.

[PW09] Cesare Pautasso and Erik Wilde. Why is the web loosely coupled?: a multi-faceted
metric for service design. In 18th Int. Conf. on World wide web, pages 911–920.
ACM, 2009.

[PZA+17] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, and N. Josuttis. Microservices
in practice, part 1: Reality check and service design. IEEE Software, 34(1):91–98,
Jan 2017.

[PZL08] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. RESTful Web Services
vs. Big Web Services: Making the right architectural decision. In Proc. of the 17th
World Wide Web Conference (WWW), pages 805–814, April 2008.

[Ric17] Chris Richardson. A pattern language for microservices. http://microservi
ces.io/patterns/index.html, 2017.

[RKH14] Aditya Kaushal Ranjan, Vijay Kumar, and Muzzammil Hussain. Security analysis of
tls authentication. In 2014 International Conference on Contemporary Computing
and Informatics (IC3I), pages 1356–1360, 2014.

[RSZ19] F. Rademacher, S. Sachweh, and A. Zündorf. Aspect-oriented modeling of tech-
nology heterogeneity in microservice architecture. In 2019 IEEE International
Conference on Software Architecture (ICSA), pages 21–30, March 2019.

[Sar03] Kamran Sartipi. Software architecture recovery based on pattern matching. In
Proceedings of the International Conference on Software Maintenance, ICSM ’03,
pages 293–, Washington, DC, USA, 2003. IEEE Computer Society.

[SBF+19] Karoline Saatkamp, Uwe Breitenbücher, Michael Falkenthal, Lukas Harzenetter,
and Frank Leymann. An approach to determine & apply solutions to solve detected
problems in restructured deployment models using first-order logic. In International
Conference on Cloud Computing and Services Science, 2019.

[SBKL18] Karoline Saatkamp, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. Applic-
ation scenarios for automated problem detection in tosca topologies by formalized
patterns. In Papers From the 12th Advanced Summer School on Service-Oriented
Computing (SummerSOC’18), pages 43–53. IBM Research Division, 2018.

[SBKL19] Karoline Saatkamp, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. An
approach to automatically detect problems in restructured deployment models based
on formalizing architecture and design patterns. SICS Softw.-Inensiv. Cyber-Phys.
Syst. 34, page 85–97, 2019.

[SFS16] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. Does your configuration
code smell? In Proceedings of the 13th International Conference on Mining Software

195

http://microservices.io/patterns/index.html
http://microservices.io/patterns/index.html

Bibliography

Repositories, MSR ’16, page 189–200, New York, NY, USA, 2016. Association for
Computing Machinery.

[sid17] Sidecar pattern, 2017.

[Sko19] Jason Skowronski. Best practices for event-driven microservice architecture. https:
//hackernoon.com/best-practices-for-event-driven-micro
service-architecture-e034p21lk, 2019.

[SMS20] Thodoris Sotiropoulos, Dimitris Mitropoulos, and Diomidis Spinellis. Practical fault
detection in puppet programs. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ICSE ’20, page 26–37, New York, NY, USA,
2020. Association for Computing Machinery.

[SROV06] Christoph Stoermer, Anthony Rowe, Liam O’Brien, and Chris Verhoef. Model-
centric software architecture reconstruction. Softw. Pract. Exp., 36(4):333–363, April
2006.

[SSL18] Julian Schwarz, Andreas Steffens, and Horst Lichter. Code smells in infrastructure
as code. In 2018 11th International Conference on the Quality of Information and
Communications Technology (QUATIC), pages 220–228, 2018.

[The21] The Security Skeptic. Firewall best practices - egress traffic filtering. https:
//securityskeptic.typepad.com/the-security-skeptic/fir
ewall-best-practices-egress-traffic-filtering.html, 2021.

[TL18] D. Taibi and V. Lenarduzzi. On the definition of microservice bad smells. IEEE
Software, 35(3):56–62, May 2018.

[vDB11] Markus von Detten and Steffen Becker. Combining clustering and pattern detection
for the reengineering of component-based software systems. In Proceedings of the
joint ACM SIGSOFT conference – QoSA and ACM SIGSOFT symposium – ISARCS
on Quality of software architectures – QoSA and architecting critical systems –
ISARCS, QoSA-ISARCS ’11, pages 23–32, New York, NY, USA, 2011. ACM.

[vdBHVG18] Eduard van der Bent, Jurriaan Hage, Joost Visser, and Georgios Gousios. How
good is your puppet? an empirically defined and validated quality model for puppet.
In 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 164–174, 2018.

[VDHK+04] Arie Van Deursen, Christine Hofmeister, Rainer Koschke, Leon Moonen, and
Claudio Riva. Symphony: View-driven software architecture reconstruction. In 4th
Working IEEE/IFIP Conf. on Software Architecturen(WICSA 2004), pages 122–132.
IEEE, 2004.

[vHAH12] U. van Heesch, P. Avgeriou, and R. Hilliard. A documentation framework for
architecture decisions. J. Syst. Softw., 85(4):795 – 820, 2012.

196

https://hackernoon.com/best-practices-for-event-driven-microservice-architecture-e034p21lk
https://hackernoon.com/best-practices-for-event-driven-microservice-architecture-e034p21lk
https://hackernoon.com/best-practices-for-event-driven-microservice-architecture-e034p21lk
https://securityskeptic.typepad.com/the-security-skeptic/firewall-best-practices-egress-traffic-filtering.html
https://securityskeptic.typepad.com/the-security-skeptic/firewall-best-practices-egress-traffic-filtering.html
https://securityskeptic.typepad.com/the-security-skeptic/firewall-best-practices-egress-traffic-filtering.html

Bibliography

[VLS14] M. Vianden, H. Lichter, and A. Steffens. Experience on a microservice-based
reference architecture for measurement systems. In 2014 21st Asia-Pacific Software
Engineering Conference, volume 1, pages 183–190, Dec 2014.

[WBH+20] Michael Wurster, Uwe Breitenbücher, Lukas Harzenetter, Frank Leymann, and
Jacopo Soldani. Tosca lightning: An integrated toolchain for transforming tosca light
into production-ready deployment technologies. In Nicolas Herbaut and Marcello
La Rosa, editors, Advanced Information Systems Engineering, pages 138–146, Cham,
2020. Springer International Publishing.

[WBSB] Marcel Weller, Uwe Breitenbücher, Sandro Speth, and Steffen Becker. The deploy-
ment model abstraction framework.

[WHH03] Claes Wohlin, Martin Höst, and Kennet Henningsson. Empirical Research Methods
in Software Engineering, pages 7–23. Springer Berlin Heidelberg, Berlin, Heidelberg,
2003.

[Wie14] Roel J Wieringa. Design science methodology for information systems and software
engineering. Springer, 2014.

[Wol16] Eberhard Wolff. Microservices: flexible software architecture. Addison-Wesley
Professional, 2016.

[WRH+12] Claes Wohlin, Per Runeson, Martin Hoest, Magnus C. Ohlsson, Bjoern Regnell, and
Anders Wesslen. Experimentation in Software Engineering. Springer, 2012.

[Yin02] Robert K. Yin. Case study research: Design and methods, 3rd edition (applied social
research methods, vol. 5). 12 2002.

[ZGK+07] Olaf Zimmermann, Thomas Gschwind, Jochen Küster, Frank Leymann, and Nelly
Schuster. Reusable architectural decision models for enterprise application develop-
ment. In Int. Conf. on the Quality of Software Architectures, pages 15–32. Springer,
2007.

[Zim17] Olaf Zimmermann. Microservices tenets. Computer Science - Research and Devel-
opment, 32(3):301–310, Jul 2017.

[ZKL+09] Olaf Zimmermann, Jana Koehler, Frank Leymann, Ronny Polley, and Nelly Schuster.
Managing architectural decision models with dependency relations, integrity con-
straints, and production rules. J. Syst. Softw., 82(8):1249–1267, 2009.

[ZNL17] Uwe Zdun, Elena Navarro, and Frank Leymann. Ensuring and assessing architecture
conformance to microservice decomposition patterns. In Michael Maximilien, Anto-
nio Vallecillo, Jianmin Wang, and Marc Oriol, editors, Service-Oriented Computing,
pages 411–429, Cham, 2017. Springer International Publishing.

197

Bibliography

[ZSZ+18] Uwe Zdun, Mirko Stocker, Olaf Zimmermann, Cesare Pautasso, and Daniel Lübke.
Supporting architectural decision making on quality aspects of microservice apis.
In 16th International Conference on Service-Oriented Computing (ICSOC 2018),
Hangzhou, Zhejiang, China, November 2018. Springer.

[ZSZ+19] Olaf Zimmermann, Mirko Stocker, Uwe Zdun, Daniel Luebke, and Cesare Pautasso.
Microservice API patterns. https://microservice-api-patterns.org,
2019.

[ZZGL08] O. Zimmermann, U. Zdun, T. Gschwind, and F. Leymann. Combining pattern
languages and reusable architectural decision models into a comprehensive and com-
prehensible design method. In Software Architecture, 2008. WICSA 2008. Seventh
Working IEEE/IFIP Conference on, pages 157–166, 2008.

198

https://microservice-api-patterns.org

	Acknowledgements
	Abstract
	Kurzfassung
	List of Tables
	List of Figures
	List of Algorithms
	Listings
	Introduction
	Thesis Subject and Motivation
	Thesis Structure

	State of the Art
	Research Context
	Related Work
	Related Works on Best Practices and Patterns in Microservices
	Related Works on Frameworks and Metrics in Microservices
	Related Works on Best Practices and Patterns in IaC-based Deployments
	Related Works on Frameworks and Metrics in IaC-based Deployments
	Software Architecture Conformance Checking in IaC-based Deployments

	Problem Analysis and Research Approach
	Research Topics and Aims
	Research Questions
	Research Problems
	Research Contributions
	List of Publications
	Architecture Evaluation and Optimization
	Research Methods

	Supporting Architectural Decision Making on Data Management in Microservice Architectures
	Introduction
	Related Work
	Research Method and Modelling Tool
	Reusable ADD model for data management in microservice architectures
	Microservice Database Architecture (Fig. 4.2).
	Structure of API Presented to Clients (Fig. 4.3).
	Data Sharing Between Microservices (Fig. 4.4).
	Microservice Transaction Management (Fig. 4.5).
	Realization of Queries (Fig. 4.6).

	Evaluation
	Threats to Validity
	Conclusion

	Detector-based Component Model Abstraction for Microservice-Based Systems
	Introduction
	Related Work
	Background
	Case Study Design
	Study Definition
	Problem Investigation and Treatment Design
	Case Study: Problem Investigation

	Detector-based Architecture Abstraction Approaches
	Approach 1: Opportunistic Detector-based Architecture Model Abstraction
	Approach 2: Reusable Detector-based Architecture Model Abstraction

	Case Study Implementation
	Architecture UML Profile
	Detector Framework

	Case Study Evaluation
	Effort and Size
	Requirements Fulfillment

	Extending the Approach to Cases from Different Domains
	Threats to Validity
	Conclusions and Future Work

	Assessing Architecture Conformance to Coupling-Related Patterns and Practices in Microservices
	Introduction
	Related Work
	Decisions
	Research and Modeling Methods
	Research Method
	Model Generation
	Methods for Modeling Microservice Component Architectures

	Ground Truth Calculations
	Metrics
	Metrics for Inter-Service Coupling through Databases Decision
	Metrics for Inter-Service Coupling through Synchronous Invocations Decision
	Metrics for Inter-Service Coupling through Shared Services Decision
	Metrics Calculation Results

	Ordinal Regression Analysis Results
	Discussion
	Discussion of Research Questions
	Threats to Validity

	Conclusions and Future Work

	Metrics for Assessing Architecture Conformance to Microservice Architecture Patterns and Practices
	Introduction
	Related Work
	Background
	Research and Modeling Methods
	Model Selection Methods
	Metrics Definition, Ground Truth Calculation, and Statistical Evaluation Methods
	Methods for Modeling Microservice Component Architectures

	Ground Truth Calculations for the Study
	Metrics
	Metrics for the External API Decisions
	Metrics for Persistent Messaging for Inter-Service Communication Decision
	Metrics for End-to-End Tracing Decision

	Ordinal Regression Analysis Results
	Discussion
	Discussion of Research Questions
	Threats to Validity

	Conclusions and Future Work

	Evaluating Architecture Conformance to Coupling-Related Infrastructure-as-Code Best Practices
	Introduction
	Related Work
	Research and Modeling Methods
	Decisions on Coupling-related, IaC-Specific Practices
	Metrics Definition
	Model Elements Definition
	Metrics for System Coupling through Deployment Strategy Decision
	Metrics for System Coupling through Infrastructure Stack Grouping Decision

	Case Studies
	Discussion
	Conclusions and Future Work

	Assessing Security Conformance in Infrastructure-as-Code Deployments
	Introduction
	Related Work
	Related Works on Best Practices and Patterns
	Related works on Frameworks and Metrics

	Research and Modeling Methods
	Overview
	Model Selection Methods
	Metrics Definition, Ground Truth Calculation, and Statistical Evaluation Methods
	Methods for IaC Architectural Reconstruction
	The Tool Flow of the Approach

	IaC Security-Related ADDs
	Ground Truth Calculations for the Study
	Metrics
	Metrics for the Security Observability Decision
	Metrics for Security Access Control Decision
	Metrics for Security Traffic Control Decision

	Evaluation of our Approach
	Discussion
	Discussion of Research Questions
	Threats to Validity

	Conclusions and Future Work

	Semi-Automatic Feedback for Microservice Architecture Conformance
	Introduction
	Background
	Decisions
	Decision: Persistent Data Storage of Services
	Decision: Service Interconnections
	Decision: Dependencies through Shared Services

	Related Work
	Research and Modeling Methods
	Research Method
	Using the Approach in a Continuous Delivery Pipeline

	Approach Details
	Violation Detection
	Fixes
	Violation Detection and Fixes Example

	Evaluation
	Discussion of Research Questions
	Threats to Validity
	Conclusion and Future Work

	Improving Microservice Architecture Conformance to Design Decisions
	Introduction
	Background: Decisions and Metrics
	Related Work
	Research and Modeling Methods
	Research Method

	Architecture Refactoring Approach
	Violations and Detection Algorithms
	Fix Options and Algorithms
	Example Application

	Iterative Application and Evaluation
	Discussion
	Threats to Validity
	Conclusion and Future Work

	Detecting and Resolving IaC-Based Architecture Smells in Microservices
	Introduction
	Background
	Infrastructure Stack
	Architectural Design Decisions (ADDs)
	ADD 1: System Coupling through Deployment Strategy
	ADD 2: System Coupling through Infrastructure Stack Grouping

	Related Work
	Related Works on IaC-Based Best Practices and Patterns
	Tool-based and Network Smell Detection Approaches
	Related works on Frameworks and Metrics

	Research and Modeling Methods
	Research Method
	Modeling Method

	Case Studies
	Architecture Smells and Fix Options Definition
	Smell Detection
	Fixes
	Smell Detection and Fixes Example

	Evaluation
	Discussion of Research Questions
	Threats to Validity
	Conclusion and Future Work

	Conclusion
	Bibliography

