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Abstract

Spin waves attract increasing attention as an alternative information medium in the field
of magnonics. Yttrium Iron Garnet (YIG) is one of the most widely known magnonic
materials, due to its exceptionally low spin wave damping. The fabrication of high quality
single-crystal YIG in the nanoscale has been recently achieved. On this note, it has also
been reported that 44 nm thick YIG conduits with a lateral length of 50 nm were fabricated.
It was shown that a conduit aspect ratio near unity prevents spin wave scattering into
higher width modes. They are thus capable of single mode operation.

For faster, isotropic spin waves, focus of the community has shifted to YIG-substituted
materials. Several dopants have been studied, however, their damping is considerably
high in the intended spin wave geometries. Gallium doped YIG (Ga:YIG) is a promising
magnonic material, due to the higher spin wave group velocity, isotropic spin waves and
its intrinsic perpendicular magnetic anisotropy, which makes high bias fields in the for-
ward volume geometry obsolete. Despite that, there are only few experimental studies.
The objective of this thesis is to examine ultrathin films of Ga:YIG with a thickness
of around 100 nm. This includes the design of an excitation waveguide and determin-
ing the anisotropy fields and relaxation parameters via broadband VNA FMR spectroscopy.

In the first chapter I give a brief introduction to magnonics. The current body of research
on magnonic materials will be presented, as well as the motivation for the characterisation
of Ga:YIG specifically. The second chapter covers the basics of magnetism, including
magnetic moment, different magnetic behaviours, interactions between moments, spin
wave dynamics, the anisotropy model, and apart from that, FMR in thin films and the
kinds of FMR setups. The third chapter revolves around the waveguide design. The
necessary theory for microwave engineering will be elucidated: transmission line theory,
scattering parameters, skin effect, planar transmission line technologies, discontinuities and
transitions, followed by a description of the waveguide design process. The fourth chapter
gives an overview of YIG and Ga:YIG. Especially the anisotropy model and the evaluation
of the experimental data will be explained there. The fifth chapter lists the results of the
waveguide scattering parameter simulation and characterisation, as well as the FMR meas-
urements. The cables characterisation is added. For the FMR data, the evaluation of the
anisotropy constants, gyromagnetic ratio, saturation magnetisation, damping parameter
and inhomogeneous linewidth broadening is given. The last chapter concludes the results re-
garding the performance of the designed waveguide and the material parameters of Ga:YIG.

The excitation waveguide was simulated in COMSOL Multiphysics with the Radio Fre-
quency Module. Two designs have been created, and the evaluation led to the conclusion
that they would perform very similarly in real experiments. The chosen waveguide was
then recreated in Altium Designer to generate the fabrication files. The waveguide was
used in the FMR spectroscopy to characterise one reference YIG sample and two Ga:YIG

iii



Abstract

samples in addition to VSM measurements. The FMR data was analysed in Origin 2019.

In the course of this thesis it has been found that the characterised Ga:YIG samples possess
low Gilbert damping and inhomogeneous linewidth broadening (αG < 10−3, µ0∆H(0)
≈ 0.4 mT), a fraction of the initial saturation magnetisation µ0Ms ≈ 20 mT, and high
uniaxial anisotropy µ0Hu1 ≈ 95 mT, resulting in perpendicular magnetic anisotropy. These
properties make Ga:YIG another milestone in the search for the best magnonic material.
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Kurzfassung

Spinwellen erhalten vermehrt Aufmerksamkeit, da sie als Informationsträger in der
Magnonik eingesetzt werden können. Yttrium Eisen Granat (YIG) ist eines der bekann-
testen magnonischen Materialen wegen seiner sehr niedrigen Spinwellendämpfung. Die
Herstellung von hochwertigen Einkristallen von YIG im Nanobereich wurde vor Kurzem
berichtet. In Verbindung damit wurden 44 nm dicke, 50 nm lange YIG Leitungen un-
tersucht, die ein Seitenverhältnis nahe von 1 haben. Diese ermöglichen einen Betrieb
in einem einzigen Spinwellenmodus und verhindern die Streuung und Kopplung des Signals.

Für schnellere, isotrope Spinwellen richtet sich der Fokus der Wissenschaftler auf YIG-
substituierte Materiale. Einige Dotiermittel wurden bereits untersucht, aber die Messungen
haben ergeben, dass die Dämpfung in den gewünschten Spinwellengeometrien relativ hoch
ist. Gallium dotiertes YIG (Ga:YIG) ist ein attraktiver magnonischer Stoff wegen seiner
höheren Spinwellengeschwindigkeit, der isotropen Spinwellen, und seiner intrinsischen
senkrechten Magnetisierung, die den Betrieb in Forward Volume Geometrie begünstigen.
Bisher gibt es nur wenige experimentelle Untersuchungen. Daher ist das Ziel dieser Arbeit,
ultradünne Filme von Ga:YIG mit einer Stärke von ungefähr 100 nm zu charakterisieren.
Dafür wird ein Wellenleiter designt, und die Anisotropie Beiträge, sowie die Relaxation-
sparameter mittels Breitband VNA FMR Spektroskopie ermittelt.

Im ersten Kapitel gebe ich eine kurze Einleitung in die Magnonik. Die Forschung zu
magnonischen Materialen und die Motivation zur Charakterisierung von Ga:YIG werden
besprochen. Das zweite Kapitel deckt die Grundlagen von Magnetismus ab, wie das
magnetische Moment, verschiedene Magnettypen, Wechselwirkungen zwischen Momenten,
Spinwellendynamik, das Anisotropiemodell, und zusätzlich FMR in dünnen Filmen, sowie
die Arten von FMR Setups. Das dritte Kapitel handelt von dem Wellenleiter Design. Die
notwendige Theorie über Mikrowellentechnik wird erklärt: Transmissionslinien, Streuung,
Skin Effekt, Unterbrechungen und Übergänge, gefolgt von der Beschreibung des Wellen-
leiter Design Prozesses. Das vierte Kapitel gibt einen Überblick über YIG und Ga:YIG.
Vor allem das Anisotropiemodell und die Evaluierung der experimentellen Daten wird hier
beschrieben. Das fünfte Kapitel zeigt die Ergebnisse der Wellenleiter Simulationen und
Charakterisierung, sowie die FMR Messungen. Dabei werden zwei Wellenleiter Designs,
der hergestellte Wellenleiter und ein kommerzieller Wellenleiter untersucht. Die FMR
Daten geben Aufschluss über die Anisotropie Konstanten, das gyromagnetische Verhältnis,
die Sättigungsmagnetisierung, den Dämpfungsparameter und die inhomogene Ausbreitung
der Linienbreite. Das letzte Kapitel fasst die Ergebnisse der Wellenleiter Performance und
der Materialparameter von Ga:YIG zusammen.

Der Wellenleiter wurde in COMSOL Multiphysics mit dem Radio Frequency Modul sim-
uliert. Zwei Designs wurden erstellt, und deren Vergleich hat ergeben, dass sie ähnlich gut
in echten Experimenten laufen würden. Der gewählte Wellenleiter wurde dann in Altium
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Kurzfassung

Designer nachgebildet, um die Dateien zur Herstellung zu generieren. Der Wellenleiter
wurde in der FMR Spektroskopie verwendet, um eine Referenzprobe YIG und zwei Proben
Ga:YIG zu charakterisieren, zusätzlich zu VSM Messungen. Die Ergebnisse wurden in
Origin 2019 analysiert.

Im Rahmen dieser Arbeit hat sich ergeben, dass die Ga:YIG Proben eine geringe Gilbert
Dämpfung und inhomogene Ausbreitung der Linienbreite (αG < 10−3, µ0∆H(0) ≈ 0.4
mT), einen Bruchteil der ursprünglichen Sättigungsmagnetisierung µ0Ms ≈ 20 mT, sowie
eine hohe uniaxiale Anisotropie µ0Hu1 ≈ 95 mT aufweisen. Letzteres führt zu einer
bevorzugten Magnetisierung senkrecht zum Film. Diese Eigenschaften machen Ga:YIG zu
einem weiteren Meilenstein in der Suche nach dem besten magnonischen Material.
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1 Introduction

Spin waves are a collective motion of the electron spin subsystem in a magnetically
ordered material. [10] The wave characteristics depend on several factors like the choice
of magnetic material, the shape of the sample, and the magnetic bias field. [11] [12] The
presence of linear and nonlinear spin-wave properties makes them an interesting subject
for further studies. Several investigations have already been conducted, with reports about
one- and two-dimensional soliton formation [13] [14], wavefront reversal processes [15]
[16], and room temperature Bose-Einstein condensation of magnons [17] [18], among others.

Recently, spin waves attracted more attention because they can be used as alternative
information carriers. The field of magnonics [19] revolves around magnons – quanta of
spin waves – and their implementation in magnonic circuits. Magnonics comes with
some advantages over commercial computing, such as higher clock rates, no Joule heat
dissipation, nanofabrication, and wave-based computing. [20]

Yttrium Iron Garnet (YIG) [9] lends itself to the pool of available materials, partly due
to its exceptionally low spin wave damping. Recently, a study reported the successful
fabrication of sub-10 nm thick YIG conduits. [21] However, the fastest observed dipolar
waves are anisotropic magnetostatic surface waves, with a group velocity of approximately
0.2 µm/ns. [22] To address this issue, several YIG-substituted materials [23] [24] [25] [26]
[27] have been researched to find an alternative that allows fast, isotropic spin waves.

Gallium doped YIG (Ga:YIG) [2] [28] [29] is a promising prospect, in that it offers a
higher group velocity at lower saturation magnetisation, isotropic spin waves due to an
exchange dominated dispersion relation, and perpendicular magnetic anisotropy, which
lowers the required bias field. In this thesis, I will characterise two thin film Ga:YIG
samples via ferromagnetic resonance (FMR) spectroscopy and compare them with a
reference YIG sample. In addition, I will design a waveguide that aims to increase the
maximum measurement range of FMR spectroscopy.
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2 Theoretical basics

This chapter introduces the necessary terms and definitions to provide the reader with a
basis of knowledge in magnetism and interactions of magnetic nature. (cf. [30]) Magnetism
can be described by two distinct unit systems, SI and CGS. They can be converted
into one another. Hence, the formulas given in SI units will be different than in CGS.
Throughout this thesis I will adhere to the SI unit system, and only when specifying the
CGS formalism will I write units in CGS.

There are two fundamental sources that give rise to magnetism: electric current, and
magnetic moments of elementary particles m. The magnetic field H, the magnetisation
M and the permeability of free space µ0 form the magnetic flux or induction B:

B = µ0(H + M) (2.1)

where M =
∑︁i mi/V is the sum of magnetic moments normalised per unit volume,

and µ0 = 4π · 10−7NA−2. B is characterised as the material response to a magnetic field.
Other key expressions are the susceptibility χ = M /H and the permeability µ = B/H.

Since in the field of magnonics electric current is used in addition to or replaced by spin-
wave dynamics [19], I put my focus on magnetic moments, which govern the properties
and performance of magnonic materials.

2.1 Magnetic moments

If a solid is located in a uniform magnetic field, the object’s internal and induced magnetic
moments interact with the field. The magnetic moments m experience a torque τ , which
forces them to align with the field H. It holds [31]:

τ = m × B (2.2)

The force acting on the moments is calculated as follows:

F = ∇ (m · B) (2.3)

whereas the potential energy is given by:

Epot = −m · B (2.4)

2.1.1 Calculation of magnetic moments

To calculate the magnetic moment of an atom, first consider the Bohr model of the atom.
(cf. [32]) The electron orbits the nucleus in a circular loop with radius r and spins around

3



2 Theoretical basics

its own axis. The orbital motion of the electron is equivalent to a current I running
through a wire loop with an area vector A = An = πr2n, where n is the unit normal
vector of the area. This induces a magnetic moment:

µl = I ·A (2.5)

The charge of the electron -e is known. The angular velocity of the electron ω then
determines the current I :

I = −eω

2π
(2.6)

Combining the expressions for I and A, we get:

µl = −eωr2

2
n (2.7)

The result can be expressed in terms of the angular momentum L for an electron:

L = meωr
2n (2.8)

µl = − e

2me
L (2.9)

where me is the mass of an electron.

Since in the Bohr atom model, we assume the orbital angular momentum to be a multiple
of h̄, we can set:

µl = −glµB

h̄
L (2.10)

µB =
eh̄

2me
(2.11)

Here the Bohr magneton µB is introduced. In addition, the Landé g factor gl is also
included, where gl = 1 for orbital angular momentum. For electrons with the orbital
quantum number 0 ≤ l ≤ n – 1 and main quantum number n, it holds:

|L|2 = l(l + 1)h̄2 (2.12)

The electron also has a spin, with its corresponding spin quantum number s = 1/2. For all
practical purposes, it behaves like angular momentum, and similar to the orbital angular
momentum, the spin generates a magnetic moment:

µs = −gsµB

h̄
s (2.13)

where gs is the Landé g factor for electron spin, and takes the value of approximately gs ≈
2. (gs/2 = 1.00115965218085(76) [33]) Analogously to |L|2 we can compute |s|2 = s(s+1)h̄2.

The orbital angular momentum and spin angular momentum can be summarised in a total
angular momentum J, where I introduce the gyromagnetic ratio γ, which negates the need
for two different Landé g factors:

4



2.2 Interactions between magnetic moments

µm =
gjµj

h̄
J = γJ (2.14)

µj is defined as the magneton of a particle with the total angular momentum J, the charge
q, and the mass mj :

µj =
qh̄

2mj
(2.15)

If an external magnetic field is applied in z direction, the magnetic dipoles align themselves
to it. The projection of the magnetic moment onto the z axis is then given by:

|µm,z| =
gjµj |Jz|

h̄
(2.16)

2.2 Interactions between magnetic moments

The permanent magnetic moments in a solid can couple with each other and establish
magnetic order within the object. The cause of this is two main interactions: the classical
dipolar interaction and the exchange interaction rooted in quantum mechanics. First, the
interactions between magnetic moments will be covered, followed by an overview of the
types of magnetism in materials.

2.2.1 Dipolar interaction

The dipolar interaction energy Edip of two magnetic moments µi and µj at the positions
ri and rj , respectively, and rij = ri – rj , is given by [34]:

Edip =
µ0

4π

[︄
µi · µj

r3ij
− 3

(µi · rij)(µj · rij)
r5ij

]︄
= −µ0µi · Hdip (2.17)

µ0Hdip is the dipole field generated by µj . Considering a many-particle system, the
definition of Edip slightly changes:

Edip = −⟨µ0µi · Hdip⟩ (2.18)

Here, µ0Hdip is generated by all the other dipoles in the system.

However, the resulting energy of the dipole interaction is equivalent to the thermal energy
at around T ≈ 0,1 K. Therefore, it is not sufficient to maintain a magnetic lattice at room
temperature. The dipolar interaction becomes more important at greater distances, though.
One example is the resulting demagnetising field, which influences the spin dynamics.

2.2.2 Exchange interaction

In contrast to the dipolar interaction, the exchange interaction is isotropic and strongly
depends on the distance between neighbour spins. (cf. [3]) The Weiss theory of ferromag-
netism [35] postulates an internal field inside of the bulk magnet. It is responsible for
forming the domains of uniform magnetisation. Unfortunately, it is not possible to explain
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this Weiss "molecular" field classically, and a quantum physical explanation is underway.

A simple model is the two-electron system of two hydrogen atoms, A and B. The electrons
form a covalent bond and are described by the wave functions ΨA(r1) and ΨB(r2). The
probabilities of finding them at positions r1 and r2 are calculated with |ΨA(r1)|2 and
|ΨB(r2)|2, respectively. When the hydrogen atoms approach each other, the electrons can
either be in a bonding state or in an antibonding state, where they are localised between
the nuclei or away from the nuclei, respectively. In the case of the bonding state, there
exists a perfect internuclear distance R0, at which the energy of the system is minimised.
An energy level diagram for the system is also given in fig. 2.1.

Figure 2.1: Energy level diagram for a) two one-electron systems and b) a two-electron
system. Taken from [3].

Assuming we isolate the electrons and only look at a one-electron model, there exists
a ground state and two first excited states. There are two choices for the first excited
state because the other electron could either be parallel or antiparallel to the first one.
Comparing this to the two-electron system, we get the same ground state as before, but
only one first excited state. These states are called the singlet state and the triplet state,
with energy levels ES and ET , respectively. The Pauli exclusion principle dictates that
either the wave functions are asymmetrical and the spins parallel, or the wave functions
are symmetrical and the spins are antiparallel, resulting in the two states.

Now, with the specific energy levels, the exchange energy J is defined as:

−J = ET − ES (2.19)

If J > 0, then the system prefers a parallel alignment of the electron spins, This implies
ferromagnetic behaviour.

It was shown that the orbital wave functions and the constraints from the Pauli exclusion
principle lead to the exchange interaction. Even though we have not considered the
magnetic moment of the electrons, a spin-spin coupling is still evident. Dirac showed that
this exchange coupling energy is determined by

Eexch
ij = −2JijSi · Sj (2.20)
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2.2 Interactions between magnetic moments

where Jij is the exchange integral between the atoms i and j, and Si, Si are the spin
angular momenta given in units of h̄. Jij is short-ranged and usually just includes nearest
neighbour interactions, in some cases also next nearest neighbour interactions. The mag-
nitude of these fields is unbounded by the equations, and as such, the internal fields can
become very large.

It has to be mentioned that anisotropy has been observed in ferromagnetic materials, even
though the exchange interaction is shown to be isotropic. The reason lies within the orbital
angular momentum. For the sake of simplicity, I set L = 0, but in most cases it cannot be
ignored. In crystalline materials, the crystal structure results in an orbital alignment along
specific crystallographic directions. The spins couple to the orbitals and this spin-orbit
coupling becomes the reason for magnetocrystalline anisotropies.

2.2.3 Types of magnetism in materials

Diamagnetism

Atoms and compounds with a vanishing effective magnetisation, materials with full electron
shells like noble gases, ionic solids, or semiconductors with strong covalent bonding exhibit
what is called diamagnetic behaviour. In these materials, the electrical charges serve to
partially shield the material from magnetic fields. Diamagnets therefore have a small
negative susceptibility. The reason for this is that the electron orbits precess around the
bias field, such that the induced magnetisation opposes the field. Ideal superconducting
materials are special diamagnets with χ = -1. In other words, in their superconducting
state, they expel all magnetic flux.
As a side note, all atoms and molecules exhibit diamagnetism, but it is subtle by nature,
and in all other materials the diamagnetic behaviour is dominated by the response of
atomic magnetic moments to an applied field by a large margin.

Paramagnetism

Paramagnetic materials consist of an ensemble of individual atoms, each with a magnetic
moment m, however, the interaction between them is negligible. At room temperature,
the thermal energy of the environment is high enough to randomise the orientation of the
magnetic moments (for the formula, see Dipolar interaction). Therefore, without a bias
field, the net magnetisation M = 0. In the presence of a field, some magnetic moments
get rotated towards the field direction, which then results in a nonzero net magnetisation
and positive susceptibility. The magnetisation M increases linearly with the applied field.
Now consider the temperature. At a constant bias field, the increase in temperature leads
to a decrease in net magnetisation. The thermal energy thus counteracts the alignment of
the magnetic moments. This inverse proportional relation is known as the Curie law of
paramagnetism.

Ferromagnetism

Ferromagnetism builds upon individual atoms with a net magnetic moment but in addition
the neighbouring atoms couple with each other via the exchange interaction. The magnetic
moments or spins of the neighbour atoms align themselves parallel to each other, either ↑↑
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2 Theoretical basics

or →→. The magnetic moments also get spontaneously magnetised and split into domains
of uniform magnetisation. In the absence of an external field the domains’ orientations
result in a net magnetisation of 0, to minimise the magnetostatic energy.
Now, in ferromagnetic materials the response to external magnetic fields is nonlinear.
They exhibit hysteresis, from which material characteristics and magnetisation history
can be deduced. Reverting the field would not lead to the same magnetisation as was
in the beginning. This hysteresis is characteristic in ferro- and ferrimagnetic materials
(for ferrimagnets, see Ferrimagnetism). Given a strong enough external field, then all
the magnetic moments are aligned and the object is fully magnetised along this direction.
This value of magnetisation is the saturation magnetisation Ms.
With increasing temperature, the hysteresis remains, but the saturation magnetisation
decreases. This holds until the thermal energy is strong enough to overcome the exchange
interaction between the neighbour atoms. At this point, the saturation magnetisation
reaches 0. This temperature is called the Curie temperature TC. At T > TC the object
acts as a paramagnet, and it satisfies the Curie-Weiss law of ferromagnetism:

χ =
C

T − TC
(2.21)

Note that this equation yields a divergence at the Curie temperature TC . This is true
for the intrinsic susceptibility of the material χmat = M/Hin, with the magnetic field
Hin = Happ −NdM inside of the material (Nd is the demagnetising factor, which will be
covered in the section Demagnetising field). However, the experimentally measured
susceptibility χsample = M/Happ is sample dependent. The two susceptibilities are related
to each other as follows:

χsample =
χmat

1 +Ndχmat
(2.22)

Hence, as the temperature goes to TC , the susceptibility χsample only reaches a maximum
of 1/Nd.

Antiferromagnetism

Contrary to ferromagnetism, the exchange coupling in antiferromagnets favours the anti-
parallel alignment between magnetic moments of neighbour atoms. The magnet consists of
two identical interpenetrating, antiparallel lattices inside the magnet. In case those lattices
are perfectly aligned there exists no net magnetisation nor spontaneous magnetisation.
Many antiferromagnets are known to exhibit paramagnetic behaviour at room temperature
but below the so-called Néel temperature TN the susceptibility changes. Additionally,
below TN the susceptibility becomes dependent on the direction of the external field. The
field H is split into the two components H∥ and H⊥, parallel and perpendicular to the
preferential direction of the spin-lattice, respectively. For T > TN the susceptibility of an
antiferromagnet is given:

χ =
C

T − θ
=

C

T + TN
(2.23)

where θ = -TN is the intercept of 1/χ, when it is extrapolated from T > TN to T < 0.
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2.2 Interactions between magnetic moments

Ferrimagnetism

Ferrimagnets also have antiparallel sublattices. Just like with antiferromagnets, the
exchange interaction favours the antiparallel alignment. However, the sublattice moments
do not compensate each other in general. The sublattices are either occupied by two
different types of ions with unequal magnetic moments oriented in opposite directions
or by one kind of ion with different concentrations in the sublattices. Therefore, below
TC the magnet shows spontaneous magnetisation. This implies that ferrimagnets share
common properties with ferromagnets. Under TC they exhibit spontaneous magnetisation,
domains, saturation magnetisation, hysteresis, and above TC they behave like paramagnets.
Ferrimagnetism is usually observed in oxides. YIG and Ga:YIG are also part of this group.

2.2.4 Effective magnetic field

If a solid is located inside of a magnetic field, then the field in the solid does not necessarily
equal the external field µ0Hext. There are several fields generated that affect the internal
field, which in turn creates the effective field:

µ0Heff = µ0Hext + µ0h(t) + µ0Hex + µ0Hdemag + µ0Hani + . . . (2.24)

The additional terms are the time-dependent component of the external field µ0h(t), the
previously introduced exchange field µ0Hext and the anisotropy field µ0Hani. Since the
anisotropy in Ga:YIG is one of the key points in the research question, the theory and
calculation in the experimental setup will be discussed in separate chapters. The demag-
netising field µ0Hdemag is new as well. (see Demagnetising field) We can summarise all
terms on the right-hand side of the equation:

Heff = − 1

µ0
∇M(ϵ) (2.25)

The effective field is therefore proportional to the gradient of the energy density ϵ with
respect to the magnetisation M. In other words, it is equivalent to the change in the energy
density at the displacement of the magnetisation.

2.2.5 Demagnetising field

The demagnetising field can be described with the dipolar interaction introduced earlier.
(cf. [36], [37]) Let us look at an infinitely large, homogeneous solid, then the dipole fields
generated by the magnetic moments cancel each other out. However, this is not the case
in a finite volume, in thin films, or inhomogeneous solids. Hence, the finite magnetic
structure at the boundaries and domain walls gives rise to stray fields, which oppose the
internal magnetisation. These are called the demagnetising field µ0Hdemag.

Consider a magnetised body. The magnetisation can be thought of as magnetic monopoles
on the body surface. Then the density of surface poles σ is given by

σ = M · n (2.26)

where n is the unit normal vector at any given point on the surface of the body. In this
model, the surface poles generate a force field, which runs through the whole body. The
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demagnetising field changes according to the shape (shape anisotropy) and the size of the
sample. In order to fully magnetise samples to saturation magnetisation, work has to be
done to counteract this field. If Hdemag is uniform, then we can calculate the demagnetising
energy:

Edemag/volume = µ0

∫︂ M

0
Hdemag · dM (2.27)

A minimum of Edemag is achieved by the formation of domains.

The magnetic flux in this example is as follows

B = µ0(Hext + M + Hdemag) (2.28)

Assume that Hdemag = -NdM. In other words, the demagnetising field is proportional to
the magnetisation. After changing the expression, we get

B = µ0(Hext + M(1−Nd)) (2.29)

2.2.6 Calculating the demagnetising factor for various geometries

Sphere

Let us start with the example of a sphere with radius a. It is magnetised along the vertical
direction. Thus, the surface pole density gradually approaches 0 as we get closer to the
equatorial plane. The infinitesimal area element on the sphere surface is given as dA =
2πa sin θadθ. The poles create a field inside the sphere. The field component in the centre
can then be found via the inverse square law relationship:

H =
p

4πa2
(2.30)

dHd⊥ = −2πa sin θadθM cos θ2/4πa2 = −(M/2) sin θ cos θ2dθ (2.31)

The negative sign denotes that the field is antiparallel to M. Due to symmetry considera-
tions, it is sufficient to calculate Hd⊥ for Nd. Since the contribution from both halves is
the same, it is convenient to integrate only over one half of the sphere and multiply by 2:

Hd = −2

∫︂ π/2

0
(M/2) sin θ cos θ2dθ = −M/3 (2.32)

So it yields Nd = 1/3. In addition, the isotropy and spherical symmetry allow us to infer
the demagnetising factor for any arbitrary magnetisation direction. So, if a, b, c are the
principal directions in a Cartesian coordinate system, then Nd will remain the same along
all axes:

Na = Nb = Nc = 1/3 (2.33)

In fact, the following relationship is true for all ellipsoids of revolution:

Na +Nb +Nc = 1 (2.34)
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2.3 Dynamics of the magnetic order

Oblate spheroid (b = c ̸= a, c/a = r)

The a direction is the axis of revolution here. For Na we get

Na =
r2

r2 − 1

[︄
1−

√︃
1

r2 − 1
sin−1

√︃
r2 − 1

r

]︄
(2.35)

Finding the limit for r → ∞, the result is Na = 1, Nb = Nc = 0. The oblate spheroid can
be used as a model for flat thin films.

2.3 Dynamics of the magnetic order

The previous chapter provided a thorough overview of magnetostatics. This chapter of the
thesis is dedicated to the dynamics of magnetism. I will derive the equation of motion for a
magnetic moment and deduce from it the dynamics of the magnetisation vector. (cf. [38])
Solutions to the equation are the various spin waves, as well as modes of magnetisation
oscillation, on which I will focus in the chapter Ferromagnetic resonance.

2.3.1 Landau-Lifshitz-Gilbert equation

Consider a magnetised ferromagnet placed in an external magnetic field H0. The effective
field inside of the magnet Heff will then induce a precessional motion of the magnetic
moments. (see fig. 2.2) The displacement out of the initial state is connected to the torque
the magnetic moments experience:

τ =
dJ
dt

= µm × Beff (2.36)

The atomic magnetic moment can be expressed in terms of the total angular momentum J:

µm = −gµB

h̄
J = −γJ (2.37)

Figure 2.2: The precessional motion of M around Beff ≡ B0 (isotropic medium):
(l.) without damping (r.) with damping. Author: Rostyslav Serha.
Reprinted with the permission of the author.

11



2 Theoretical basics

where h̄ is the reduced Planck constant and γ = gµB
h̄ is the gyromagnetic ratio of the free

electron. Plugging (2.37) into (2.36) gives

τ = −1

γ

dµm

dt
= µm × Beff (2.38)

Multiplying (2.38) with the number of magnetic moments in a unit volume N and γ, we
arrive at the Landau-Lifshitz torque equation with the magnetisation M:

dM
dt

= −γM × Beff (2.39)

This equation describes the precession of the magnetisation around an effective field.
However, it is only valid for uniform magnetisation, and approximately if M varies slowly
in space. It also does not allow for losses, i.e. the dissipation of energy during the precession
motion. Gilbert added a phenomenological damping term to include the dissipation:

dM
dt

= −γM × Beff +
αG

Ms

(︃
M × dM

dt

)︃
(2.40)

The Gilbert damping parameter is denoted as αG. It is strictly positive: αG > 0, and
the magnitude of damping is given by the time dependence of the magnetisation. The
equation (2.40) is also called the Landau-Lifshitz-Gilbert equation. (LLG)

2.3.2 Excitation of magnetisation precession

In this thesis, the dynamic magnetic fields are thought to be the origin of the magnetisation.
Therefore the description of the magnetic system builds upon time-dependent magnetic
fields. First of all, the effective field and magnetisation are both split into a dynamic part
and a static part [39]:

Heff (t) = H0 + h(t) (2.41)

M(t) = M0 + m(t) (2.42)

Plugging this into the Landau-Lifshitz equation results in:

dM0

dt
+

dm(t)

dt
= −γµ0[M0 × H0 + M0 × h(t) + m(t)× H0 + m(t)× h(t)] (2.43)

dM0
dt = 0 as per definition, since this is the static part of magnetisation. Further, assume

that the static magnetic field is parallel to the static magnetisation and that the solid
is homogeneously magnetised. Then it holds M0 || H0, and further M0 × H0 = 0. In
addition, we can assume that the dynamic parts are small compared to the static parts:
|M0| ≫ |m(t)|, |H0| ≫ |h(t)|. Then, in the first approximation, the last term in (2.43)
can be omitted.

Using the ansatz

m(t) = m0 exp (−iωt) (2.44)

h(t) = h0 exp (−iωt) (2.45)
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2.4 Magnetocrystalline anisotropy

with the approximations in (2.43), the linearised Landau-Lifshitz equation will be obtained:

iωm + γµ0m × H0 = −γµ0M0 × h (2.46)

The projection onto a Cartesian coordinate system (z⃗ || M0 || H0) leads to a system of
equations:

iωmx + γµ0myH0 = γµ0M0hy (2.47)

iωmy − γµ0mxH0 = γµ0M0hx

iωmz = 0

The solution to (2.47) now sets the dynamic parts of the magnetisation and the magnetic
field in relation to each other:

m(t) = χ̃h(t) (2.48)

Here I introduce the Polder susceptibility tensor χ̃:

χ̃ =

⎛⎝ χ iχa 0
−iχa χ 0
0 0 0

⎞⎠ (2.49)

where

χ =
ωMωH

ω2
H − ω2

, χa =
ωMω

ω2
H − ω2

(2.50)

ωH = γµ0H0, ωM = γµ0M0 (2.51)

Hence, the response to an external excitation is determined by χ̃. This is the description
of the magnetisation dynamics. Furthermore, if the excitation occurs at the frequency
ωH, then this leads to a singularity in the components of the susceptibility tensor, which
corresponds to the nonexistent magnetic damping in the Landau-Lifshitz equation. Those
singularities can be avoided by reintroducing the damping in the substitution ωH −→ ωH
+ iαω.

2.4 Magnetocrystalline anisotropy

In a magnetically anisotropic material, the magnetic state exhibits a dependence on
the direction of the magnetisation. More specifically, in a magnetic solid, there exists
an orientation of the magnetisation, for which the energy of the system is minimised.
Spin-orbit coupling and the dipolar interaction set the preferred magnetisation axes in
the crystal lattice or the geometry of the magnet, respectively. If the applied external
field is misaligned with the preferential direction of magnetisation, then the field exerts
work on the system in order to displace the magnetisation. I shall shortly discuss the
magnetocrystalline anisotropy (MCA).
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2.4.1 Computation of the magnetocrystalline anisotropy

The MCA is caused by the spin-orbit interaction in the underlying crystal structure of the
magnetic solid. Szymczak and Tsuya [40] have obtained the expression for the energy of
the MCA in thin films of cubic crystal lattices, and it is accurate up to the fourth order in
the directional cosines of magnetisation:

UA = Aα2
1β

2
1 +Bα1α2β1β2 + Cβ4

1(3α
2
1 − 1) +Dβ2

1β
2
2(3α

2
3 − 1)

+Eβ2
1β2β3α2α3 + Fβ2

1α
4
1 +Gα2

1α
2
3β

2
2 +Hα2

1α2α3β2β3 + c.p. (2.52)

where A, B, ..., H are anisotropy constants, βi are the directional cosines of the crystal-
lographic axes, αi are the directional cosines of magnetisation and c.p. stands for cyclic
permutations. If another term contributes to the MCA, it is possible to split the energy
term into two parts [1]:

UA = U cubic
A + Unon cubic

A

The noncubic term comes from the presence of other anisotropies.
As an example: YIG is a cubic crystal. However, the lattice mismatch between YIG and
its substrate leads to a compressive strain in the film plane, resulting in uniaxial anisotropy.

In the presence of magnetic anisotropy, the magnetic permeability µ is no longer a single
value and becomes a tensor with the general form:

µ̂ =

⎛⎝ µ11 µ12 0
µ21 µ22 0
0 0 1

⎞⎠ (2.53)

2.5 Ferromagnetic resonance

The previous chapters help examine the phenomenon of magnetic resonance. In the
section Excitation of magnetisation the reader became familiar with the idea of using
a small dynamic magnetic field h(t). It serves to excite spin waves and/or magnetisation
oscillations in the sample. If excitation occurs close to the resonance frequency ωres, then
the excitation is at its maximum.

The uniform in-phase precession of spins in a ferro-, ferri-, or antiferromagnetic material is
called ferromagnetic resonance (FMR). [41][11][12][42] FMR is no wave propagation mode,
therefore k = 0.

2.5.1 Ferromagnetic resonance in a thin film

Suppose we want to excite FMR. The resonance frequency ωres depends on the effective
magnetic field µ0Heff . It was already mentioned that one contribution to it is the demag-
netising field µ0Hdemag, which depends primarily on the shape of the sample. Using the
demagnetising factors Nd from Demagnetising field and the Kittel equations we can
calculate ωres for an isotropic ferromagnet.
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2.6 FMR spectroscopy

As an example, let us look at the oblate spheroid with Na = 1, Nb = Nc = 0, r → ∞:

If the bias field direction coincides with direction a (perpendicular magnetisation), then

ωres = γµ0(H0 −Ms) (2.54)

If the bias field direction lies in the plane created by b and c (parallel magnetisation), then

ωres = γµ0

√︁
H0(H0 +Ms) (2.55)

In addition, ωres also becomes anisotropic due to the anisotropy field µ0Hani. This
introduces a third value for ωres because now we distinguish between directions b and c.
The exact formulas I will be using are covered in the chapter YIG and Ga:YIG.

2.6 FMR spectroscopy

So far I have written about the theoretical aspect of FMR. This chapter is dedicated to
the common FMR setups, followed by a description of the laboratory setup I work with.
(cf. [43], [44])

2.6.1 Types of FMR approaches

Cavity FMR

Historically, the first FMR setup that came around was the cavity FMR. It consists of a
microwave source, a microwave cavity, and an electromagnet. The basic idea is that the
cavity resonance occurs at fixed frequencies, while ωres is "swept" through a frequency
band. When ωres matches the cavity resonance frequency, then the FMR signal can be
observed.

In order to excite the FMR in the sample, a microwave source transmits an electromagnetic
(EM) wave to the cavity. The frequency of the EM wave is chosen so that it matches the
resonance frequency of the cavity. The reflected signal forms standing waves, thus leading
to amplification. The sample is placed inside. Now, because of (2.54), (2.55), ωres can be
sweeped by applying and modulating an external field Hext. The modulation is achieved
by controlling the current passing through the magnets. At the resonance frequency, the
FMR is excited in the whole sample, and the signal from the source is absorbed. A detector
then reads this drop in signal intensity. At the FMR signal peak, the value for H0 is
measured, which concludes the experiment.

The experiment setup is relatively simple. In addition, due to the signal amplification
and the global sample excitation, it is possible to find very weak FMR signals, and the
measurements are very precise. However, only single FMR frequencies can be achieved.

Broadband frequency FMR

There are some other FMR spectroscopy techniques used today. One of them is the
Broadband frequency FMR. In comparison to the cavity FMR, a vector network analyzer

15
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(VNA) replaces the microwave source. Also, it uses a microstrip or coplanar waveguide for
excitation. The cavity is completely omitted.

The VNA generates an alternating current (AC) signal, which is sent through the coaxial
cables to the microstrip. Due to the Oersted effect, the microstrip then creates a magnetic
field. The sample sits on top of the microstrip. The precession of the magnetisation around
the effective field absorbs energy from the microwave field when the resonance condition is
met. The output signal returns to the VNA, where the resonance is visible as a dip in the
transmitted signal. The VNA allows us to sweep the signal frequency, modulate the power,
and automate measurements. By sweeping both signal frequency and field strength, a
multitude of FMR traces can be obtained.

The VNA FMR gives us a dataset in a great frequency window. The FMR behaviour
can be monitored up to several tens of GHz. The dataset also aids in determining αG

experimentally. However, the calibration of the VNA is necessary, and the signal strength
is lower without the cavity. This amounts to more preparation work and less precision.

2.6.2 FMR setup used in experiments

For the measurements, I used the VNA FMR setup. It consists of an Anritsu VectorStar
MS4642B VNA, a GMW Associates BPS-85-70-EC power supply, a GMW Associates
3473-70 electromagnet, a SENIS I1A series magnetic transducer, a Keithley 2602B source
meter, and a PC running thaTEC software.

The magnetic transducer measures the magnetic field H0 at the sample location and
displays the value on the connected source meter. The computer controls the power supply
for the electromagnet, and therefore also the generated field H0. The VNA excites the FMR
and saves the measurement data. It can be controlled either manually or with the computer.

The waveguide in the experiment needs to meet some requirements for good performance,
i.e. optimised signal transmission and FMR excitation, as well as reduced losses of any
kind. This is achieved mostly by matching the impedance of the cables with the microstrip

Figure 2.3: Schematic setup of FMR spectroscopy: (l.) cavity FMR, (r.) VNA FMR
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and reducing the signal reflection at discontinuities. Therefore, the next chapter describes
the waveguide design process.

Figure 2.4: Pictures of the FMR laboratory. (l.) The FMR workspace, including electro-
magnet, power supply, source meter, VNA, and computer. (u.r.) A close-up of
the electromagnet and the magnetic transducer. (l.r.) A close-up of the sample
holder, microstrip, and sample.
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3.1 Basic concepts of microwave engineering

3.1.1 Characteristic impedance

Consider two coupled wires connected to a voltage source. The voltage source sends a
sinusoidal signal through the wires. Suppose we want to determine the voltage V (z) and
the current I(z) along the transmission line path. This is possible either via the Maxwell
equations or the Kirchhoff laws. The Kirchhoff laws, however, require lumped element
equivalent circuits. The aim is to find the equivalent circuit by focussing on a small
segment of the transmission line.

Assume the line segment starts at z and ends at z+∆z. Then the wire exhibits inductance
L, resistance R and capacitance C, in addition to the conductance of the dielectric material
G. Putting all together, the Kirchhoff laws are then applied:

V (z)− I(z)R∆z − I(z)iωL∆z − V (z +∆z) = 0 (3.1)

I(z)− V (z +∆z)G∆z − V (z +∆z)iωC∆z − I(z +∆z) = 0

Dividing the equations by ∆z and letting ∆z → 0 gives

dV (z)

dz
= −(R+ iωL)I(z) (3.2)

dI(z)

dz
= −(G+ iωC)V (z)

The solutions to this system of differential equations are given by a linear combination of
exponential functions:

V (z) = V +
0 e−γz + V −

0 eγz = V +(z) + V −(z) (3.3)

I(z) = I+0 e−γz + I−0 eγz = I+(z) + I−(z)

where

γ = α+ iβ =
√︁
(R+ iωL)(G+ iωC)

The consequent impedance of this circuit is called characteristic impedance Z0. It is
calculated by rewriting I+(z) with (3.2):

Z0 =
V +(z)

I+(z)
= −(R+ iωL)

V +

dV +(z)
dz

=

√︃
R+ iωL

G+ iωC
(3.4)

The characteristic impedance of free space is at around 376 Ohms.
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3.1.2 Scattering parameters

Let us include a load at the end of the transmission lines, or more generally, a 2-port
network. It receives an electromagnetic signal in the form of a wave. One portion of the
signal will pass through the device and get transmitted, the other part will be reflected
back to the source, assuming there are no losses. This holds for both ports. In order to
quantify the amount of reflection (or scattering) at the ports, the formalism of scattering
parameters will be used. (cf. [45])

Waves going towards the ports are a1 and a2, their current is by definition counted
positively. The letters b1 and b2 denote the outgoing waves, their current is counted
negatively. The reflection factor Γ and the transmission factor T are defined as

Γ =
b1
a1

(3.5)

T =
b2
a1

(3.6)

For Γ = 0, there is no reflection. For Γ = 1, the incident wave is completely reflected.

Reflection occurs wherever there is an impedance mismatch. If the source impedance does
not match the device impedance Z0, or likewise, if there is another device in series with
a different impedance Z1, then they will introduce scattering. We can rewrite Γ now in
terms of two impedances Z0 and Z1:

Γ =
Z1 − Z0

Z1 + Z0
(3.7)

For example, the reflection in a 50 Ohms cable at an open port would be 376−50
376+50 ≈ 0.77.

The incident signal and reflected signal inside a cable lead to a standing wave. The voltage
standing wave ratio (VSWR) is found by dividing the maximum voltage by the minimum
voltage:

VSWR =
|Vmax|
|Vmin|

=
1 + |Γ|
1− |Γ|

(3.8)

Finally, the transmission can be formulated via an S-matrix, which contains all scattering
parameters for this network:(︃

b1
b2

)︃
=

(︃
S11 S12

S21 S22

)︃(︃
a1
a2

)︃
(3.9)

where

S11 =
b1
a1

= Γ1, S22 =
b2
a2

= Γ2 (3.10)

S21 =
b2
a1

= T1→2, S12 =
b1
a2

= T2→1
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3.1 Basic concepts of microwave engineering

dB and dBm

There are mainly two ways to designate the power reading of a signal. The first one is
the dB scale, and it gives the power ratio between two signals in powers of 10. The exact
formula is as follows

P = P0 · 10
LdB
10 (3.11)

For instance, if the signal power P is 100 times bigger than P0, then the power ratio is 100,
or 20 dB. It is evident that this scale is dimensionless and only determines the relative
signal strength.

The other scale is the dBm scale. It is equivalent to the dB scale, only with the difference
that P0 is a fixed value: P0 = 1 mW. Thus, any power relative to P0 has a definite power
value. Take P from above, but now in dBm. 20 dBm are equal to 100 mW.

3.1.3 Skin effect

The wire electrical resistance in direct current (DC) circuits is described by the DC resist-
ance. If we switch to alternating current (AC) circuits however, the same DC electrical
resistance no longer applies to the wire. The AC resistance is found by first explaining
what is called the skin effect. (cf. [4])

In an AC circuit, the current constantly changes direction. The magnetic fields generated
inside of the wire cause an increase in resistivity, most notably in the center of the
conductor. As a consequence, the center is not conductive anymore, and the charge carriers
are concentrated in the hull (or skin) of the conductor. The skin depth δ describes the
depth at which the current drops to 1/e of its value on the conductor surface. It can be
calculated for the operating circuit frequency ω

δ =

√︃
2ρ

ωµµ0
(3.12)

where ρ is the resistance and µ is the magnetic permeability of the material. In radio
frequency (RF) applications it is advisable to use trace thicknesses d < 5δ. For d < 3δ,
the skin effect is already negligible. [4] (see fig. 3.1)

Figure 3.1: Transverse current density shown in the cross section of the strip and ground
plane of a microstrip. Dark shading indicates higher current density.
Taken from [4].
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3 Waveguide design for FMR

3.2 Waveguides for microwave signals

Waveguides are elements in which waves can propagate in the desired direction. A prime
example is the microstrip line, consisting just of a substrate, a conductor strip on top and
a ground plane on the bottom. Conveniently, the characteristic impedance is determined
by very few parameters, namely the trace width w, the substrate height h, the substrate
dielectric constant ϵr, and to a lesser degree, the trace height t. This simplifies the
impedance matching. If the microstrip cross section geometry does not change along the
transmission line, then the waveguide retains good signal integrity.

3.2.1 Propagation in waveguides

When speaking about waveguides, it makes sense to step away from the concept of current
and voltage. Rather, we tend to look at EM waves. As such, I will only refer to current
and voltage if it is deemed necessary.

Suppose we want to send a pulse signal through a coaxial line. (cf. [46]) The voltage
applied to the two conductors creates an electric field E. The E field lines are mostly
directed from the center conductor to the outer conductor. Since they are in the transversal
plane perpendicular to the wave propagation, it is referred to as Et. Furthermore, the
current flows along the line, so E also has a longitudinal component El. However, in
coaxial lines the longitudinal component is much smaller than the transverse component,
El ≪ Et. The current generates a magnetic field H, where again the transverse component
is considerably bigger than the longitudinal, Hl ≪ Ht. In general, fields where El ≪ Et

and Hl ≪ Ht are called transverse electromagnetic modes (TEM).

In comparison to coaxial lines, the cross sectional structure of the microstrip is inherently
asymmetrical. The conductor strip is located between a substrate and air, and therefore,
the permittivity of both materials need to be taken into account. The EM field is affected
by this asymmetry as well. As a result, the longitudinal components El and Hl are not
as small anymore. In this case we speak of quasi TEM modes (QTEM). Note that the
longitudinal components increase with the frequency, but broadly speaking, the resulting
modes are very close to being TEM.

3.2.2 Multiple signal modes

The EM field deviates from the QTEM mode at hand under certain conditions. [46] First,
in the presence of another conductor. The conductors establish two coupling modes, the
even mode and odd mode, which represent the same or opposite voltage polarity in the
lines, respectively. The coupling leads to distinct characteristic impedances for each mode.

Second, if the conductor width w is λ/2 or greater. When this condition is met, the
lowest-order transverse resonance occurs. The equivalent circuit is a resonant transmission
line of length w ’ = w + 2d, where d = 0.2h and h is the substrate height. The cut-off
frequency is given by [4]

fCT =
c

√
ϵr(2w + 0.8h)

(3.13)
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3.3 Design of microstrip lines for FMR studies

where c is the speed of light in free space, and ϵr is the substrate dielectric constant.

Lastly, the conditions for exciting transverse electric (TE) and transverse magnetic (TM)
modes [47] will be covered specifically for the microstrip structure.
Collin and Vendelin obtained the cut-off frequency of the lowest-order TE wave at

fe =
c

4h
√
ϵr − 1

(3.14)

The TM mode limitation is calculated separately for wide and for narrow microstrip lines:

fm =
75

H
√
ϵr − 1

, wide microstrip (3.15)

fm =
106

H
√
ϵr − 1

, narrow microstrip (3.16)

where fm is in GHz and H = h in mm.

All of the above modes, if they need to be avoided, are coined as spurious modes. The
propagation velocity generally differs for each mode, causing a signal to stretch and de-
teriorate with time. If the propagation velocity of two modes is similar, then they couple
strongly. This is called parasitic coupling. (though in some instances such as bandpass
filters, it is desired to couple the conductors with one another) To sum it up, the undesired
modes disrupt the performance and should be prevented by careful design of the waveguide.

3.3 Design of microstrip lines for FMR studies

This chapter is dedicated to the actual design of the waveguide. It lists all the restrictions the
FMR setup imposes on the waveguide geometry. First of all, we consider the requirements
for transmission lines and substrates employed in FMR experiments and make a decision
based on their feasibility and/or availability. The waveguide behaviour will then be
analysed in the microwave frequency spectrum (up to about 40 GHz). For performance
optimisation, the effect of discontinuities and transitions will be elucidated as well.

3.3.1 Types of waveguides and substrates

Ever since the evolution of the stripline, more and more transmission line structures
emerged. (cf. [48]) They differ in field modes, range of characteristic impedance and
operating frequencies. The planar transmission line structures can be broadly categorised
in field modes. Some completely non-TEM lines are the imageline and the finline. The
stripline and coaxial line represent a part of the pure TEM line group. Other structures
like microstrip, coplanar waveguide and differential line exhibit a QTEM mode.

Conditions for FMR

As far as field modes go, the TEM, QTEM and TM modes can excite FMR. The cable
impedance is 50 Ohms, which Z0 should match. The operating frequencies range from
around 1 GHz to 20 GHz. The cable connectors are required to be nonmagnetic, so that
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3 Waveguide design for FMR

they do not affect the measurements. Finally, the transmission line should be accessible
for sample placement.

Choice of transmission line

The microstrip and the coplanar waveguide both fulfill the criteria for FMR experiments.
As was said, they are QTEM lines. Their Z0 is tunable in the range of [10,110] Ohms
(microstrip) and [40,110] Ohms (coplanar waveguide). Lastly, the microstrip can operate
well up to 80 GHz, while the frequency limit for the coplanar waveguide is even higher.
The microstrip design was chosen for this thesis.

Choice of substrate

There are usually multiple questions that need to be answered when choosing the substrate
material. But, due to the simplicity of the FMR setup compared to other more sophistic-
ated experiments, requirements for mechanical stability and thermal expansion coefficient,
among other things, are very basic. What is important are the dielectric constant ϵr and
the operating frequency range. The RT/duroid 6002 laminate from the Rogers Corporation
has been selected as the waveguide substrate. The key properties are listed below.

• Dielectric constant (ϵr) of 2.94 +/- 0.4

• Low thermal coefficient of ϵr at 12 ppm/°C

• Dissipation factor of .0012 at 10 GHz

• Low Z-axis coefficient of thermal expansion at 24 ppm/°C

3.3.2 Microstrip design

There is no one exact formula for the characteristic impedance of a microstrip, which is,
to some extent, frequency dependent. However, there exist formulas for up to several GHz
which are accurate to at least 1 %. [49] These assume a static TEM field. The equations
can be modified to predict the Z0 behaviour in higher frequencies.

As it turns out, at low microwave frequencies, ϵeff and Z0 are strongly related to the
microstrip aspect ratio, u = w/h. Hammerstad and Jensen [50] found closed formulas for
both of them:

ϵeff =
ϵr + 1

2
+

ϵr − 1

2

(︃
1 +

10h

w

)︃−a·b
(3.17)

where

a(u)|u=w/h = 1 +
1

49
ln

[︃
u4 + (u/52)2

u4 + 0.432

]︃
+

1

18.7
ln

[︃
1 +

(︂ u

18.1

)︂3
]︃

(3.18)
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3.3 Design of microstrip lines for FMR studies

b(ϵr) = 0.564

[︃
ϵr − 0.9

ϵr + 3

]︃0.053
(3.19)

and

Z0(u) =
Z01(u)√
ϵeff

(3.20)

where Z01(u) denotes the characteristic impedance in free space:

Z01(u) = Z0(u)|ϵr=1 = 60 ln
[︂
F1/u+

√︁
1 + (2/u)2

]︂
(3.21)

where

F1 = 6 + (2π − 6) exp
[︁
−(30.666/u)0.7528

]︁
(3.22)

Fortunately, there are many websites offering the calculation of ϵeff and Z0 for simple
microstrips, so it is not necessary to calculate them „by hand“.

Figure 3.2: Online microstrip calculation tool. [5]

Thus, upon finding the aspect ratio u, a balance between different losses is to be achieved.
On one hand, narrow transmission lines cause conductor losses due to the increasing line
resistance. This problem is exacerbated by the skin effect at higher frequencies. On the
other hand, wider transmission lines lead to spurious modes and parasitic coupling. In
addition, with greater h, the radiation losses increase as well. (cf. [51]) A lower limit for w
is set by the width of the connector pin.

3.3.3 Discontinuities in the trace line

The microstrip and sample are fixed between the magnet poles. For a stronger excitation
under parallel magnetisation, the EM wave in the waveguide should propagate along the
externally applied magnetic field Hext. The reason is simple: The QTEM mode ensures
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3 Waveguide design for FMR

that h(t) is virtually completely confined to the transverse plane, which in turn excites
the FMR according to (2.48).

The most simple approach to the microstrip design is then to leave it as a straight line.
The cables are connected to the printed circuit board (PCB) with right-angle adapters.
However, the adapters introduce more separation between the magnet poles. This has
two consequences. First, the magnetic field will become less homogeneous. Second, the
field in the center will be weaker. That implies a lower frequency limit in the broadband
FMR measurements according to (2.54), (2.55). Also note that adapters generally increase
scattering.

I propose a waveguide with a different shape. The presence of transmission line bends in
the PCB shall replace the angle adapters. Hence, the line shape resembles that of the letter
„U“. In general, bends affect the characteristic impedance due to changes in inductance
of the trace. For example, in a right-angle unmitred bend the charges accumulate at the
corners. [52] Some tweaks to the bends are necessary to suppress those undesired effects. I
will shortly compare two kinds of bends, the radial bend and the mitred bend.

Radial bends can be a great way to connect circuit elements at any arbitrary angle. As a
general rule of thumb, the radius of the bends should be greater than about 3w, and 5w in
higher frequencies. [52]

Another kind of bend represent the mitred bends. There have been reports [52] of optimal
mitre values to mitigate the otherwise increased inductance. However, the mitre value
has been optimised for alumina substrates and others where ϵr is hovering around 10. In
comparison, the RT/duroid 6002 laminate has a reported ϵr of 2.94. Thus, the difference
between the radial and the mitred bend needs to be examined.

3.3.4 Transitions between two waveguide geometries

Until now, a lot of ground has been covered in the FMR microstrip design. One of the last
steps is the incorporation of transitions. (cf. [53]) One purpose of waveguide transitions
is to exploit the benefits of each waveguide type that is used. In the chapter Types of
waveguides and substrates I concluded that the microstrip and the coplanar waveguide
(CPW) meet the requirements for FMR spectroscopy.

Advantages of the CPW

The CPW structure [6] consists of two ground planes and one conductor evenly placed
between them, all mounted on the top of a substrate. The ground planes serve to minimise
the radiation losses that would otherwise occur with the microstrip design. The reason
is that the field is mainly localised between the conductive surfaces instead of inside the
substrate.
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3.4 Simulation of the microstrip lines

Figure 3.3: Cross-section of a CPW: a) GCPW b) FG-GCPW. Taken from [6].

The CPW structure can also be modified by adding a ground plane to the bottom which
makes it a grounded coplanar waveguide (GCPW). The extra ground plane shields the EM
field from outside noise and adds mechanical stability to the PCB. In other applications,
it could be used as a heatsink as well. Despite shielding the CPW, the ground plane
also enables higher-order modes. The side ground planes and the bottom ground plane
effectively behave like a resonant cavity. The trace strongly couples to the resonant cavity
and excites spurious modes. This effect becomes more noticeable the wider the side ground
planes are.

Via fences

Sain and Melde [54] reported shifts in resonance frequencies of the resonant cavities when
implementing arrays of vias, also commonly known as viafences. The vias are placed on
the side ground planes, and the array is parallel to the trace. The paper focusses on via
placement parameters. They found that a via spacing of λ/4 prevents higher-order modes
up to the maximum operating frequency, where λ is its corresponding wavelength. The
reported via spacing applies to the centre-to-centre distance between trace and vias, as
well as between two vias.

Transition from CPW to microstrip

A possible CPW-microstrip transition design was proposed by Jin and Vahldieck. [7] (see
fig. 3.4) It works in the 0-40 GHz frequency band and utilises step changes in gap width.
In contrast, I gradually increase the gap in my waveguide by means of radiused ground
plane corners.

3.4 Simulation of the microstrip lines

For the EM simulation I use the program COMSOL. COMSOL offers many physics modules
and can combine them in COMSOL Multiphysics. The RF module features field solutions
and scattering parameters for waveguides, antennas and the like, operating at RF.
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3 Waveguide design for FMR

Figure 3.4: Transition from CPW to microstrip. Dimensions are given in mm.
Adopted from [7].

Creating the geometry

To start off, I choose the Radio Frequency physics and tick the study „Electromagnetic
Waves, Frequency Domain“. This allows me to do a frequency sweep when calculating the
EM fields. For the geometry, I define a sphere that will mark the boundary of the system.
The waveguide is placed inside of it. The dimensions are listed in table 3.1.

width depth height trace width gap
28 mm 30 mm 0.381 mm 0.835 mm 0.225 mm

via radius via spacing sample space radius mitre
0.075 mm 0.75 mm ≥ 8 mm 4.5 mm 0.472 mm

Table 3.1: Dimensions of the designed waveguide (radiused and mitred)

Scattering boundary

The unintended reflection of EM waves at the boundary layer leads to distorted results in
the simulation. Thus, there needs to be some kind of scattering at the boundary. The
scattering of EM waves can be achieved in two ways: scattering boundary conditions (SBC)
or perfectly matched layers (PML). While SBCs are easier to implement, PMLs absorb
incident EM waves even at more oblique angles than SBCs. [8] (see fig. 3.5) The settings
are polynomial stretching, PML scaling factor 1, and PML scaling curvature parameter 3.

Materials

The materials are assigned individually. I set the sphere and the PMLs as air and the
substrate as RT/duroid 6002 laminate. All conductive surfaces are treated as perfect
electric conductors (PEC).
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3.4 Simulation of the microstrip lines

Figure 3.5: Reflection vs angle of incidence for SBCs and PMLs. Taken from [8].

Lumped ports

Lumped ports are necessary in order to excite and terminate a signal at given points in the
geometry. There are a handful of different lumped ports in COMSOL. I choose uniform
lumped ports with the settings: terminal type cable, P0 = 1 mW, Zref = 50 Ohms.

Mesh, Solver

The mesh is physics-controlled, with a normal element size. COMSOL automatically
creates a swept mesh for the PMLs. The frequency sweep is in the range [1 GHz, 20 GHz]
in increments of 1 GHz.

29





4 Gallium doped Yttrium Iron Garnet

4.1 Introduction to Magnonics

Magnonics is a growing research field [19] enabling an alternative approach to traditional
computation technology. It works with magnons - quanta of spin waves - as the main data
carrier. Spin waves (SW) are the propagating collective motion of magnetic moments,
and they form a family of functions solving the LLG equation. They can be used as an
information medium, which would have several advantages over electric current [20]:

Higher operating frequencies

The clock rate for a modern computer lies in the GHz range. The frequency limit is set
by the circuit temperature. An increase in temperature eventually leads to artifacts in
data processing, and in the worst case, to failure. On the other hand, signals in the THz
range could be accomplished with SWs. The Brillouin zone of the material and the applied
magnetic field determine the upper frequency boundary in magnonics.

Decreased heat dissipation

The electric current generates Joule heating due to the finite line resistance of the wires.
This necessitates external cooling, adding to the overall power consumption. In magnonic
circuits there is no current involved in the first place. The source of losses is primarily
given by the spin wave damping.

Scalability

With the goal of ever increasing processing speed, the engineers strive to keep up with
Moore’s law. The chips should house more transistors, therefore each transistor becomes
smaller. Recent progress revealed that sub 10-nm transistors are possible using 2D
materials [55], but in those dimensions quantum mechanical effects heavily influence the
chip design. [56] [57] Workarounds were and will be needed down the line. In comparison,
it was reported that the fabrication of high quality magnonic materials in the nm range
is possible. [21] The minimum size of a magnonic circuit element is given by the lattice
constant of the material. A workaround in chip architecture is not required.

Nonboolean states

Binary computers process information as bits, a bit either represents the state 0 or 1.
Wave-based computing, though, allows for a nonboolean state by taking the wave phase
into account. Considering the greater information density of SWs, multiplexing becomes
intrinsically possible, hinting at the idea of expanding into parallel computing.

31



4 Gallium doped Yttrium Iron Garnet

It is evident that most of the magnonics advantages are reflected in the material properties.
To summarise, a magnonic material for competitive computational power should exhibit
thermal stability (phase transition temperature above 300 K), high structural quality,
small Gilbert damping, SW frequencies in the GHz range, high SW velocities, and lastly,
allow for controlled nanofabrication. [58]

4.2 Magnetostatic Spin Waves

A selection of materials meet the aforementioned criteria appreciably. Among them are
Permalloy, CoFeB composites, Heusler half-metallic compounds and single-crystal YIG.
[9] YIG is a ferrimagnetic insulator with the lowest known Gilbert damping. This ensures
that the lifetime of SWs is two orders greater than in permalloy, for example. But until
recently, YIG could only be fabricated in the µm scale. Analogous to multimoding in wide
transmission lines, µm-thick YIG conduits are prone to spurious modes.

It has been shown that in 44 nm thick, 50 nm wide YIG conduits with an aspect ra-
tio reaching 1, the waveguide now supports single-mode operation. [59] The dispersion
relation becomes exchange dominated, and the spin wave modes get unpinned, which
causes a quasi uniform SW mode profile as opposed to a sinusoidal profile in µm wide
conduits. Furthermore, the total energy is lowered, and by that, the frequency as well.
Hence, the modes are quantised on the frequency axis. The quantisation prevents the SW
mode from scattering into higher width modes. In principle, three distinct geometries
can be realised. (see fig. 4.1) While the backward volume magnetostatic spin waves
(BVMSW) and the magnetostatic surface spin waves (MSSW) exhibit strong anisotropy
[22], the forward volume geometry (FVMSW) would allow the propagation of isotropic
exchange SWs. The caveat is the necessary high external magnetic fields to fully magnetise
YIG out of plane (OOP). The reason is that the magnetic easy axis in YIG is located
in plane (IP). In addition, the generated SWs are comparably slow at about 0.2 µm/ns. [22]

In comparison, hexaferrites have the advantage of a perpendicular magnetic anisotropy
(PMA), which opens access to controllable spin wave transport in complex 2D magnonic net-
works and the facilitation of isotropic SW propagation. Naturally, a material with intrinsic
PMA would not require high external OOP fields to reach its saturation magnetisation
and operate in the forward volume geometry.

Figure 4.1: Three spin wave geometries: (f.l.t.r) backward volume, surface, forward volume.
Adopted from [9].
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4.3 Gallium doped Yttrium Iron Garnet

4.3 Gallium doped Yttrium Iron Garnet

Through state-of-the-art material engineering, YIG-substituted materials might serve the
purpose of waveguides better than pure YIG. Studies have been conducted on a number of
candidate materials, including Bi:YIG [23] [26], Bi:LuIG [27], TmIG [24] and Mn:YIG [25].
By changing the lattice mismatch of the film and the substrate, the easy axis is effectively
shifted into OOP. This renders the films with PMA. Therefore, the magnitude of the
external field can be kept as low as some mT in the forward volume geometry. However,
the aforementioned materials typically demonstrate higher damping and a broad range of
relaxation parameters across the measurement geometries.

In the 1970s and 1980s, Gallium doped YIG has been researched [28], but the limitations
of low structural quality and thickness brought further studies to a halt. Now considering
the progress in ultrathin film fabrication [2] [29], interest in Ga:YIG for SW applications
has reemerged. The Ga3+ ions substitute the magnetic Fe3+ ions, leading to partial
or even full substitution in both magnetic sublattices, octahedral and tetrahedral. The
dispersion relation of Ga:YIG is exchange-dominated, hence the SWs are expected to be
highly isotropic. Also, the SW group velocity for exchange waves is inversely proportional
to Ms, so the magnetic compensation in Ga:YIG should in turn increase the SW velocities.

I will compare the Gilbert damping αG, the saturation magnetisation Ms and the anisotropy
fields in samples of single-crystal YIG and Ga:YIG. The samples are grown by liquid phase
epitaxy (LPE).

4.4 Computation of the magnetic parameters

4.4.1 Formulas for the resonance frequency

In their work, Bobkov and Zavislyak examined the effect of substrate and crystal orienta-
tion on the subsequent anisotropy energy in epitaxial ferrite films. [1] They were able to
deduce the frequency dependent components of the permeability tensor µ̂. With this, they
also found the FMR resonance frequencies. Böttcher et al. then summarised the FMR
solutions in two separate equations (in SI units) [2]:

For IP FMR:

f2 =
(︂γµ0

2π

)︂2
[(Hi +HA1 +Ms)(Hi +HA2)−H2

A3] (4.1)

For OOP FMR:

f2 =
(︂γµ0

2π

)︂2
[(Hi +HA1)(Hi +HA2)−H2

A3] (4.2)

where Hi = H0 −Ms. Note that the circular frequency ω has been substituted by the
linear frequency f = ω/2π.

The samples analysed in this work are grown on Gadolinium Gallium Garnet (GGG),
with the crystal orientation either (111) or (001). Depending on the orientation, the
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calculation of the magnetic parameters will differ a bit. Therefore I will cover GGG(111)
and GGG(001) in separate sections.

4.4.2 Parameters for Gadolinium Gallium Garnet(111) substrates

Resonance frequency

Consider YIG and Ga:YIG films grown on GGG(111). The fig. 4.2 shows the crystallo-
graphic directions of YIG and Ga:YIG films with respect to the substrate surface. The
HA1, HA2 and HA3 are given in table 4.1. The components consist of three main anisotropy
fields: the cubic field Hc = Kc/µ0Ms, the first order uniaxial field Hu1 = 2Ku1/µ0Ms, and
the second order uniaxial field Hu2 = 4Ku2/µ0Ms. The latter two arise from the uniaxial
strain present in the crystal and effectively contribute to the noncubic anisotropy.

HA1 HA2 HA3

IP: H || [11̄0] − Kc
µ0Ms

− 2Ku1
µ0Ms

0 −
√
2 Kc
µ0Ms

IP: H || [112̄] − Kc
µ0Ms

− 2Ku1
µ0Ms

0 0

OOP: H || [111] −4
3

Kc
µ0Ms

+ 2Ku1
µ0Ms

+ 4Ku2
µ0Ms

0

Table 4.1: The parameters HA1, HA2 and HA3 for iron garnet/GGG(111).
Adopted from [1] [2].

Figure 4.2: Crystallographic axes of YIG/GGG(111) and Ga:YIG/GGG(111).
Adopted from [2].

Together with equations (4.1), (4.2), we then arrive at the specific formulas:

f||[11̄0] =
γµ0

2π

√︂
H ||(H || −Hc −Hu1 +Ms)− 2H2

c (4.3)

f||[112̄] =
γµ0

2π

√︂
H ||(H || −Hc −Hu1 +Ms) (4.4)

f⊥ =
γµ0

2π
(H⊥ − 4

3
Hc +Hu1 +Hu2 −Ms) (4.5)
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4.4 Computation of the magnetic parameters

Parameters γ, Hc, Meff and Hu2

The parameters γ and Meff := Ms − Hc − Hu1 are fitted simultaneously for the [112̄]
direction. (see (4.4)) Since (4.3) only differs by −2H2

c , the values γ and Meff are fixed,
and Hc is calculated from the [11̄0] direction. Hu2 can be deduced from the OOP fit,
according to (4.5).

4.4.3 Parameters for Gadolinium Gallium Garnet(001) substrates

Resonance frequency

Ferrite films on GGG(001) have a different set of IP crystallographic axes. (see fig. 4.3)
They are measured along [100] (along the side) and [11̄0] (diagonally). The HA1, HA2,
HA3 are listed in table 4.2.

The equations for f are listed in the following.

f||[11̄0] =
γµ0

2π

√︂
(H || − 2Hc)(H || +Hc −Hu1 +Ms) (4.6)

f||[100] =
γµ0

2π

√︂
(H || + 2Hc)(H || + 2Hc −Hu1 +Ms) (4.7)

f⊥ =
γµ0

2π
(H⊥ + 2Hc +Hu1 +Hu2 −Ms) (4.8)

HA1 HA2 HA3

IP: H || [100] 2Kc
µ0Ms

− 2Ku1
µ0Ms

2Kc
µ0Ms

0

IP: H || [11̄0] Kc
µ0Ms

− 2Ku1
µ0Ms

− 2Kc
µ0Ms

0

OOP: H || [001] 2 Kc
µ0Ms

+ 2Ku1
µ0Ms

+ 4Ku2
µ0Ms

0

Table 4.2: The parameters HA1, HA2 and HA3 for iron garnet/GGG(001).
Adopted from [1] [2].

Parameters γ, Hc, M̃ eff and Hu2

The parameters γ, Hc and M̃ eff := Ms − Hu1 are fitted simultaneously. This can be
done for H || [100], or equivalently for H || [11̄0]. Hu2 follows from (4.8), similar to the
GGG(111) evaluation.

4.4.4 Damping parameters

Patton reports that the FMR linewidth ∆H is proportional to the resonance frequency
f(H). [60] According to [61] [43], the formula is

µ0∆H = µ0∆H(0) +
αG4πf

γ
(4.9)
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Figure 4.3: Crystallographic axes of YIG/GGG(001) and Ga:YIG/GGG(001).
Adopted from [2].

where µ0∆H is the full width at half maximum (FWHM) of H(f), and µ0∆H(0) is the
inhomogeneous linewidth broadening.

Kalarickal et al. also reported the conversion from ∆f acquired through the broadband
VNA FMR to the desired ∆H [43]:

µ0∆H =
2π∆f

γPA(f)
(4.10)

where PA(f) =

√︃
1 +

(︂
γµ0Ms

4πf

)︂2
. However, this relation was derived for YIG samples,

where |Hc|, |Hu1| ≪ Ms. [2] derived the relation for each IP configuration separately,
including the anisotropy fields. They are summarised in the table 4.3.

Substrate Direction of H µ0∆H (recalculated from ∆f)

GGG(111)
H || [11̄0] 8π2∆f ·f||[11̄0]

µ0γ2(2H||−Hc−Hu1+Ms)

H || [112̄] 8π2∆f ·f||[112̄]
µ0γ2(2H||−Hc−Hu1+Ms)

GGG(001)
H || [11̄0] 8π2∆f ·f||[11̄0]

µ0γ2(2H||−Hc−Hu1+Ms)

H || [100] 8π2∆f ·f||[100]
µ0γ2(2H||+4Hc−Hu1+Ms)

Table 4.3: The expressions for the linewidth µ0∆H for each IP configuration of Ga:YIG,
recalculated with the experimental ∆f . Adopted from [2].
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5 Results and discussion

5.1 Characterisation of the microstrip line

In order to measure FMR signals, we decided to use microstrip lines. The uniformity
of the magnetic field is crucial in FMR experiments, therefore the spacing between the
magnet poles should be minimised by the design of the microstrip. We named this special
microstrip the U waveguide. There are two ways to achieve this, by using radiused and
mitred traces.

The following simulation results show the performance of the radiused and the mitred
version of the microstrip. The data in the plots is distinguished by colour, representing
the radiused (orange) and the mitred (green) version of the U waveguide.

Figure 5.1: A top view of the simulated waveguides: (l.) radiused, (r.) mitred. The sample
would be placed on the middle trace between the bends. The little dot in the
middle trace indicates the evaluation point for the magnetic field.
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5 Results and discussion

(a) The S21 parameter calculated in the
COMSOL simulation for the radiused
(orange) and mitred (green) bend wave-
guide.

(b) The S11 parameter calculated in the
COMSOL simulation for the radiused
(orange) and mitred (green) bend wave-
guide.

(a) The perpendicular magnetic field com-
ponent Hy calculated in the COMSOL
simulation for the radiused (orange) and
mitred (green) bend waveguide.

(b) The perpendicular magnetic field com-
ponent Hz calculated in the COMSOL
simulation for the radiused (orange) and
mitred (green) bend waveguide.

Note that Hz ≪ Hy at the evaluation point for the radiused bend, while Hz completely
vanishes for the mitred bend. (see fig. 5.3a, 5.3b) Due to the similar results, it is expected
that their performance is comparable in real measurements. The radiused version has been
chosen and was made by CIBEL.

The scattering parameters for the manufactured U waveguide and a commercial GCPW
were acquired with the VNA in three bias fields, H = [0, 0.1, 0.84] T. This was done
to examine the effect of a magnetic field on the signal propagation and integrity. Fur-
thermore, due to the use of right angle adapters, the GCPW holder is wider than the
holder for the U waveguide. As a result, the spacing between the magnet poles is greater
for the GCPW, therefore decreasing the available maximum field to Hmax = 0.84 T.
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5.1 Characterisation of the microstrip line

In the case of the U waveguide, the maximum field is Hmax = 1.10 T. To compare
the waveguides, both of them were measured at the same fields. In addition, the U
waveguide was characterised at different input powers, [0, -15, +15] dBm, in order to
check the power dependency of the signal. The VNA was calibrated at the respective
power level together with the cables, and for the GCPW, also with the right angle adapters.

The figures below show the comparison of the simulation (orange) vs measurement (blue)
of the U waveguide, plotted in Origin.

(a) A comparison of the S21 parameters ac-
quired through the VNA measurement
(blue) and the simulation (orange).

(b) A comparison of the S11 parameters ac-
quired through the VNA measurement
(blue) and the simulation (orange).

The VNA data shows that the real performance of the U waveguide is worse than the
simulation results. In the observed frequency range, the simulation data of S21 proves
to be mostly an upper bound for the measured data, with the exception of the peaks
at around 5 GHz and 18 GHz. Additionally, the measurement data displays oscilla-
tions in signal strength between 11 GHz and 20 GHz, which are not represented in the
simulations. The origin of these oscillations is thought to be radiation loss, which is inher-
ent to the microstrip design. At higher frequencies, the radiation losses are expected to
increase along with spurious modes, which would be detrimental for the signal transmission.

The next figures show the cable characterisation, the VNA data of the U waveguide at
powers [0, -15, +15] dBm, where H = 0 T, as well as the data of the U waveguide (blue)
and the commercial GCPW (red) in three different bias fields, H = [0, 0.1, 0.84] T, with
the input power set to 0 dBm. All plots were created in Origin.
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5 Results and discussion

(a) The S21 parameter of the cables
without (blue) and with adapters (red).

(b) The S11 parameter of the cables
without (blue) and with adapters (red).

(a) The S21 parameter of the U waveguide
at 0 dBm (blue), -15 dBm (azure), and
+15 dBm (purple).

(b) The S11 parameter of the U waveguide
at 0 dBm (blue), -15 dBm (azure), and
+15 dBm (purple).

(a) The S21 parameter of the U (blue) and
the GCPW (red) at H = 0 T, 0 dBm.

(b) The S11 parameter of the U (blue) and
the GCPW (red) at H = 0 T, 0 dBm.
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5.1 Characterisation of the microstrip line

(a) The S21 parameter of the U (blue) and
the GCPW (red) at H = 0.1 T, 0 dBm.

(b) The S11 parameter of the U (blue) and
the GCPW (red) at H = 0.1 T, 0 dBm.

(a) The S21 parameter of the U (blue) and
the GCPW (red) at H = 0.84 T, 0 dBm.

(b) The S21 parameter of the U (blue) and
the GCPW (red) at H = 0.84 T, 0 dBm.

The cables have very little effect on the measurements for both waveguides. (S21 maximum
fluctuations of 0.035 dB (U) and 0.05 dB (GCPW), S11 below -50 dB (U) and -40 dB
(GCPW)) (see fig. 5.5a, 5.5b) On the other hand, the signal in the U waveguide shows
better performance at lower input powers. (difference of 0.75 dB between -15 dBm and
0/15 dBm) (see fig. 5.6a) These findings suggest a nonlinear behaviour of the losses versus
power. However, this difference could also be attributed to better calibration. The bias
field induces no discernible change in the signal. The signal strength is better in the U
waveguide than in the GCPW with a difference between 0.5 dB and 1.0 dB. The S21
maximum loss is comparable (-2.5 dB). The signal stability decreases at around 11 GHz
(U) and 12.5 GHz (GCPW), which can be seen as oscillations. (see fig. 5.7a, 5.8a, 5.9a)
These oscillations are greater for the U waveguide (± 0.6 dB) than for the GCPW (±
0.25 dB). Therefore, the U waveguide retains a stronger, albeit less stable signal in the
observed frequency range compared to the commercial GCPW. A GCPW version of the
proposed waveguide might be the better option at higher fields/ frequencies.
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5 Results and discussion

5.2 Results of the ferromagnetic resonance experiment

Three samples were measured: YIG AZ-E/GGG(111), GaYIG-02B/GGG(111) and GaYIG-
05B/GGG(001). The signal power was set to 0 dBm. The graphs in this section include
the fits for 105 nm thick GaYIG-02B. The datasets of YIG AZ-E and GaYIG-05B were
analysed in a similar fashion, and therefore their graphs have been omitted. The error
margins for the results were taken from the fits accordingly. The Ms values cannot be
directly determined from the FMR results, thus they have been separately acquired for
the Ga:YIG samples through vibrating sample magnetometry (VSM), and will be used in
the analysis. For YIG, the Ms value was adopted from [2].

5.2.1 In plane magnetisation of the sample along [112̄]

For a free electron, the gyromagnetic ratio lies at about 176 rad/(ns T), and it can be
fixed or fitted for YIG samples. The experimental value of γ has been calculated with
the [112̄] dataset and equation (4.4). (see fig. 5.10) The fit returns γ ≈ 179 rad/(ns
T), which comes close to the fixed value. The effective magnetisation is negative, with
µ0Meff = -46.5 mT. In pure YIG, the anisotropy contributions are either absorbed into
Ms, or combined into one term. [62] This is done because Hc and Hu1 are two orders of
magnitude smaller than Ms. In contrast, in Ga:YIG the anisotropy fields increase, while
Ms decreases, thus yielding a negative Meff . This observed trend is partially due to the
magnetic compensation in Ga:YIG, where the nonmagnetic Ga3+ ions substitute the Fe3+

ions in the tetrahedral sublattice, which leads to a lower overall Ms. The other reason
is the greater Hu1 field arising from the higher lattice misfit strain between Ga:YIG and
GGG.

Figure 5.10: The experimental VNA FMR data (blue dots) and the simplified Kittel
equation fit (red line) of the 105 nm thick Ga:YIG film grown on GGG(111).
The fit returns γ and µ0Meff for the [112̄] dataset.
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5.2 Results of the ferromagnetic resonance experiment

5.2.2 In plane magnetisation of the sample along [11̄0]

The cubic anisotropy is obtained by fixing γ and Meff , and fitting the data to equation
(4.4). (see fig. 5.11) It was found to be µ0Hc = −4.2± 0.7 mT, which is in good agreement
with -4.1 mT for 45 nm thick GaYIG reported in [29]. The uniaxial anisotropy of the first
order is then given by Meff and Hc, where µ0Hu1 = 74.8 ± 1.0 mT. Comparably, Hu1 is
one order smaller in pure YIG, implying the presence of a great PMA in Ga:YIG films.

Figure 5.11: The experimental VNA FMR data (blue dots) and the simplified Kittel
equation fit (red line) of the 105 nm thick Ga:YIG film grown on GGG(111).
The fit returns µ0Hc for the [11̄0] dataset.
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5 Results and discussion

5.2.3 Out of plane magnetisation of the sample

The uniaxial anisotropy of the second order is acquired by the OOP dataset with the
equation (4.5), where all the other parameters are constants, so that µ0Hu2 = 2.1± 0.1
mT. (see fig. 5.12)

Figure 5.12: The experimental VNA FMR data (blue dots) and the simplified Kittel
equation fit (red line) of the 105 nm thick Ga:YIG film grown on GGG(111).
The fit returns µ0Hu2 for the [111] dataset.

5.2.4 Damping parameters

The parameters αG and µ0∆H(0) were determined with the corresponding formula (4.9).
(see fig. 5.13) It was found that αG = 4.6 ± 0.28 · 10−4 ([112̄]), αG = 4.9 ± 0.52 · 10−4

([11̄0]). The dissimilar values for αG along [112̄] and [11̄0] could be attributed either to the
influence of µ0∆H(0), or to the size of the error bars. A more thorough study would be
necessary to confirm the origin of this deviation. Several works list their Gilbert damping
parameters, including αG = 0.4 · 10−4 for YIG disks [63] and αG = 1.25 · 10−4...2.44 · 10−4

for Ga:YIG disks (concentration of Ga atoms xGa = 0.78 ... 0.88) [64] made from bulk
crystal, as well as αG = 0.4 · 10−4 (t = 23 µm) [64] and αG = 0.5 ± 0.52 · 10−4 (t =
3 µm) [65] for epitaxially grown µm thick YIG. Furthmore, the sub-100 nm thick high
quality LPE YIG films are reported to have αG = 1.0 · 10−4...1.2 · 10−4 (t = 42...11 nm)
[21]. In addition, Carmiggelt et al. calculated αG = 1.0 · 10−3 for a 45 nm thick Ga:YIG
film. [29] The 45 nm thick sample has a lower Ms, therefore the larger damping is in
good agreement with the damping present in the 105 nm thick sample analysed in this
thesis. The relaxation parameters are significantly better compared to the other studied
YIG-substituted materials, e.g. Mn:YIG [25], Bi:YIG [26]. Soumah et al. reported an
exceptionally low αG = 3.0 · 10−4 and µ0∆H = 0.4 mT in their Bi:YIG film, but these
only apply to a measurement setup, where the polar angle θ is varied between 27◦ and 34◦

to minimise the linewidth at each frequency. For θ = 0◦, µ0∆H(0) ≈ 31 mT, which is two
orders of magnitude greater compared to the investigated samples.
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5.2 Results of the ferromagnetic resonance experiment

Figure 5.13: The linewidth µ0∆H recalculated with the experimentally measured linewidth
∆f for H || [11̄0] (blue dots), H || [112̄] (red triangles) and the linewidth
equation fits (blue and red line, respectively) of the 105 nm thick Ga:YIG film
grown on GGG(111). The fits return αG and µ0∆H(0) for the IP datasets.

An overview of the magnetic parameters is given in the tables 5.1 and 5.2.

Sample thickness µ0Ms [mT] µ0Hc [mT] µ0Hu1 [mT] µ0Hu2 [mT]
YIG AZ-E 97 nm 182.4 ± 1.8 -5.1 ± 0.5 -3.5 ± 0.5 3.6 ± 0.5
GaYIG-02B 105 nm 24.4 (VSM) -4.2 ± 0.7 74.8 ± 1.0 2.1 ± 0.1
GaYIG-05B 96 nm 21.7 (VSM) -5.3 ± 0.6 92.4 ± 1.7 5.2 ± 0.2

Table 5.1: The results for µ0Ms and all anisotropy fields.

Sample γ [rad/(ns T)] αG[10
−4] µ0∆H(0) [mT]

[112̄] [11̄0] [112̄] [11̄0]
YIG AZ-E 177 1.3 ± 0.15 0.6 ± 0.16 0.1 ± 0.01 0.2 ± 0.01
GaYIG-02B 179 4.6 ± 0.28 4.9 ± 0.52 0.4 ± 0.02 0.4 ± 0.04

[100] [11̄0] [100] [11̄0]
GaYIG-05B 179 8.4 ± 0.85 6.7 ± 0.68 0.4 ± 0.06 0.4 ± 0.05

Table 5.2: The results for γ, αG and µ0∆H(0).
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6 Conclusion and outlook

The proposed U waveguide allows bigger, more homogeneous fields and a stronger signal
compared to the commercial GCPW. This is due to the absence of right-angle adapters and
the subsequent tighter magnet pole spacing. However, there are oscillations visible in the
signal, which suggest the presence of radiation losses. To alleviate this issue, the waveguide
design could be revisited to change it into a GCPW, and optimise the performance also at
higher frequencies.

For all analysed samples, γ, Hc and Hu2 remain roughly the same. The value γ for a free
electron lies at around 176 rad/(ns T), which is in good agreement with the fits. Hu1, on
the other hand, changes its sign for the Ga:YIG samples and increases by a factor of about
21 and 24, for GaYIG-02B and GaYIG-05B, respectively. This implies a strong uniaxial
strain, resulting in a pronounced PMA. The acquired Ms are lower by a factor of approx.
8 compared to the YIG sample, while αG is 11 times greater along [11̄0] in GaYIG-05B.
The increase in αG counteracts the higher group velocity of the SWs. Nevertheless, the
SWs are predominantly of isotropic nature and faster than in pure YIG. Compared to
other YIG-substituted materials [23] [24] [25] [26] [27], the parameters αG and µ0∆H(0)
are among the lowest values reported so far.

To summarise, Ga:YIG removes the need for high external fields due to its PMA, and
it enables fast, isotropic SW transport. These findings suggest that Ga:YIG is a highly
competitive material in the field of magnonics.
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Acronyms

AC Alternating Current. 16

BVMSW Backward Volume Magnetostatic Spin Wave. 32

CPW Coplanar Waveguide. 26

DC Direct Current. 21

EM Electromagnetic. 15

FG-GCPW Finite Ground Grounded Coplanar Waveguide. xi, 27

FMR Ferromagnetic Resonance. 14

FVMSW Forward Volume Magnetostatic Spin Wave. 32

FWHM Full Width At Half Maximum. 36

Ga:YIG Gallium Doped Yttrium Iron Garnet. 1

GCPW Grounded Coplanar Waveguide. xi, 27

GGG Gadolinium Gallium Garnet. 33

IP In Plane. 32

LLG Landau Lifshitz Gilbert (equation). 12

LPE Liquid Phase Epitaxy. 33

MCA Magnetocrystalline Anisotropy. 13

MSSW Magnetostatic Surface Spin Wave. 32

OOP Out Of Plane. 32

PEC Perfect Electric Conductor. 28

PMA Perpendicular Magnetic Anisotropy. 32

PML Perfectly Matched Layers. 28

QTEM Quasi Transverse Electromagnetic. 22
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Acronyms

RF Radio Frequency. 21

SBC Scattering Boundary Condition. 28

SW Spin Wave. 31

TE Transverse Electric. 23

TEM Transverse Electromagnetic. 22

TM Transverse Magnetic. 23

VNA Vector Network Analyzer. 16

VSM Vibrating Sample Magnetometry. 42

VSWR Voltage Standing Wave Ratio. 20

YIG Yttrium Iron Garnet. 1
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