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Abstract

We construct a ‘structure invariant’ of a one-ended, finitely presented group that describes
the way in which the factors of its JSJ decomposition over two-ended subgroups fit together.
For hyperbolic groups satisfying a very general condition, these invariants completely re-
duce the problem of classifying such groups up to quasi-isometry to a relative quasi-isometry
classification of the factors of their JSJ decomposition. Under some additional assumption,
our results extend to more general finitely presented groups, yielding a far-reaching general-
isation of the quasi-isometry classification of some 3–manifolds obtained by Behrstock and
Neumann.

The same approach also allows us to obtain such a reduction for the problem of determ-
ining when two hyperbolic groups have homeomorphic Gromov boundaries.

1. Introduction

Gromov proposed a program of classifying finitely generated groups up to the geometric
equivalence relation of quasi-isometry [22]. A natural approach to this problem is to first try
to decompose the group into “smaller” pieces by means of a graph of groups decomposition,
and then reduce the quasi-isometry classification problem to the problem of understand-
ing the quasi-isometry types of the various vertex groups and the way these subgroups fit
together.

The simplest such decomposition is the decomposition of a group as a graph of groups
over finite subgroups. Stallings’s Theorem [44, 45] asserts that a finitely generated group
splits as an amalgamated product or an HNN extension over a finite group if and only if it
has more than one end. In particular, the existence of a splitting as a graph of groups with
finite edge groups is a quasi-isometry invariant. Finitely presented groups admit a maximal
splitting over finite subgroups [16], and a theorem of Papasoglu and Whyte [39] says that the
collection of quasi-isometry types of one-ended vertex groups of a maximal decomposition
of an infinite-ended, finitely presented group is a complete quasi-isometry invariant. This
reduces the quasi-isometry classification problem to one-ended groups.

We push this program to its next logical step, which is to decompose one-ended groups
over two-ended subgroups. Papasoglu [38] shows that the existence of a splitting of a fi-
nitely presented one-ended group over two-ended subgroups is quasi-isometry invariant,
provided that the group is not commensurable to a surface group. Moreover, such a group
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admits a maximal decomposition as a graph of groups over two-ended subgroups, known
as a JSJ decomposition, and Papasoglu’s results imply that quasi-isometries respect (in a
certain sense that will be made precise in Section 2·3·2) the JSJ decomposition. In particu-
lar, the quasi-isometry types of the non-elementary vertex groups of the JSJ decomposition
are invariant under quasi-isometries. Even more is true: in a non-elementary vertex group
of the JSJ we see the collection of conjugates of the two-ended subgroups corresponding to
incident edges of the JSJ decomposition. Quasi-isometries of the group must preserve the
vertex groups together with their patterns of conjugates of incident edge subgroups. We say
a quasi-isometry must preserve the relative quasi-isometry type of the vertex. Such patterns
have been exploited before [5, 12, 35, 34] to produce quasi-isometry invariants from various
‘pattern rigidity’ phenomena. However, the quasi-isometry types, or relative quasi-isometry
types, of the vertex groups alone do not give complete quasi-isometry invariants, because not
all vertex groups have the same coarse intersections: Vertices that are adjacent in the Bass–
Serre tree of the decomposition have vertex groups that intersect in two-ended subgroups,
while the coarse intersection of non-adjacent vertices may or may not be bounded.

In this paper, we produce further quasi-isometry invariants of a finitely presented one-
ended group from an appropriate JSJ decomposition over two-ended subgroups. Under a
mild technical restriction, which is known to hold for large classes of groups (see Section 4·2
for a discussion), we show that our invariants give complete quasi-isometry invariants, and
thus reduce the quasi-isometry classification problem for such groups to relative versions of
these problems in the vertex groups of their JSJ decomposition.

In the case of one-ended hyperbolic groups, a weaker classification is possible, namely
the classification up to homeomorphisms of Gromov boundaries. Indeed, recall that quasi-
isometric hyperbolic groups have homeomorphic Gromov boundaries at infinity, but there
are examples of hyperbolic groups with homeomorphic boundary that are not quasi-
isometric. For a hyperbolic group, the existence of a splitting over a finite subgroup amounts
to having a disconnected Gromov boundary, and is thus detected by the homeomorphism
type of the boundary. Paralleling the results of Papasoglu and Whyte for quasi-isometries,
Martin and Świątkowski [33] show that hyperbolic groups with infinitely many ends have
homeomorphic boundaries if and only if they have the same sets of homeomorphism types
of boundaries of one-ended factors, reducing the classification problem to the case of one-
ended hyperbolic groups.

For a one-ended hyperbolic group G whose boundary is not a circle, Bowditch shows that
the there exists a splitting over a two-ended subgroup if and only if there exists a cut pair in
the boundary [9]. From the structure of cut pairs in the boundary, he deduces the existence of
a simplicial tree on which Homeo(∂G) acts by isomorphisms. Paralleling the quasi-isometry
case, the action of Homeo(∂G) on this tree preserves the relative boundary homeomorphism
types of vertex stabilisers in G.

Using the same approach as for our quasi-isometry classification, we construct a complete
system of invariants of the homeomorphism type of the Gromov boundary of a hyperbolic
group, which completely reduces the classification problem for hyperbolic groups to relative
versions of this problem in the vertex groups of their JSJ decomposition.

Our results rely heavily on the existence of a canonical choice of tree that is preserved by
quasi-isometries, respectively, homeomorphisms of the boundary, with the additional prop-
erty that any such map induces maps of the same nature at the level of the vertex groups.

In the case of hyperbolic groups, the tree is Bowditch’s canonical JSJ tree constructed
from cut pairs in the boundary. For a more general finitely presented one-ended group G, let
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! be a JSJ decomposition over two-ended subgroups. Let T := T (!) be the Bass–Serre tree
of !. Commensurability of stabilisers defines an equivalence relation on edges of T whose
equivalence classes are called cylinders. Guirardel and Levitt [24] show that the dual tree to
the covering of T by cylinders defines a new tree Cyl(T ), the tree of cylinders of T , with
a cocompact G–action, and, in fact, this tree is independent of !, so it makes sense to call
it the tree of cylinders of G, and denote it Cyl(G). It follows from Papasoglu’s results, see
Theorem 2·8, that a quasi-isometry between finitely presented one-ended groups induces
an isomorphism between their trees of cylinders, and restricts to give a quasi-isometry of
each vertex group Gv of the tree of cylinders that coarsely preserves the pattern Pv of edge
groups Ge, for edges e incident to v. When the edge stabilisers of Cyl(G) in G are two-
ended then the quotient graph of groups gives a canonical decomposition of G over two-
ended subgroups. Our results are strongest when additionally the cylinder stabilisers are
two-ended. This is the case, in particular, when G is hyperbolic, in which case Cyl(G) is
equivariantly isomorphic to Bowditch’s tree.

Before giving more details about the ideas behind our classifications, we restrict to the
case that G is a one-ended hyperbolic group, and we adopt some notation that will allow us
to to discuss simultaneously the quasi-isometry and boundary homeomorphism cases. Let
Map((X,PX ), (Y,PY )) denote alternately:

(i) the set of quasi-isometries from X to Y taking a collection of coarse equivalence
classes of subsets PX of X bijectively to a collection of coarse equivalence classes of
subsets PY of Y ;

(ii) the set of boundary homeomorphisms from ∂ X to ∂Y taking a collection of subsets
∂PX of ∂ X bijectively to a collection of subsets ∂PY of ∂Y .

Similarly, Map(G) is either QI(G) or Homeo(∂G). An element of Map(· · · ) will be referred
to as a Map–equivalence.

The idea behind our classification result is the following. A finitely presented one-ended
group is quasi-isometric to a complex of spaces over the JSJ tree of cylinders (this will be re-
called in Section 2·4). Such a decomposition as a complex of spaces is compatible with Map-
equivalences, in that a Map-equivalence between two finitely presented one-ended groups
coarsely preserves the structure of complex of spaces, as follows from the aforementioned
results of Papasoglu and Bowditch. To determine whether two groups are Map-equivalent,
we want to decide whether their JSJ trees of cylinders are isomorphic and then try to promote
such an isomorphism to a Map-equivalence between the complexes of spaces. Now, a Map-
equivalence not only induces a simplicial isomorphism between the trees of cylinders, but
also preserves extra information about the vertex groups: Map–class of vertex groups, relat-
ive Map–class with respect to incident edge groups, etc. We decorate the vertices of the trees
of cylinders with these additional data, and ask when there exists a decoration-preserving
isomorphism between the trees of cylinders of two groups. We want to add enough additional
information so that a decoration-preserving isomorphism between the trees of cylinders can
be promoted to a Map–equivalence between the associated groups.

The existence of a decoration-preserving isomorphism will be dealt with by generalising
to cocompact decorated trees a theorem from graph theory giving a necessary and sufficient
condition for the universal covers of two graphs to be isomorphic [29], see Section 3·3. To
such a decorated tree we will associate a structure invariant that completely determines the
tree up to decoration-preserving isomorphism.
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To now get an intuition of the decorations we consider in this article, let us start from
the decoration of the tree of cylinders that associates to each vertex v the Map-equivalence
type of the vertex group Gv relative to the peripheral structure Pv coming from the incident
edge groups. Let us try to promote a decoration-preserving isomorphism χ between trees
of cylinders to a Map-equivalence between groups. The goal is to choose, for each vertex
v, a Map-equivalence between v and χ(v), and piece them together to get Map-equivalence
between groups.

The first potential problem is a realisation problem. We know that v and χ(v) are Map-
equivalent, because we included this data in the decoration, but we also need to know that
there is such a Map-equivalence that matches up peripheral subsets in the same way that χ

matches up edges incident to v and χ(v).
The second potential problem is that the vertex Map-equivalences must agree when their

domains overlap. For boundary homeomorphisms the overlap is just the boundary of an edge
space, which is a pair of points, so this a matter of choosing consistent orientations on the
edge spaces. Roughly, the orientation issue is the phenomenon underlying the fact that two
HNN extensions of the form G+ := ⟨G, t |tut̄ = v⟩ and G− := ⟨G, t |tut̄ = v̄⟩ might not
be Map-equivalent in general, for a group G and elements u, v of G. It is worth noting that
the orientation obstruction automatically disappears if all the edge groups contain an infinite
dihedral group.

For the classification up to boundary homeomorphisms, these three obstructions, relat-
ive type, realisability and orientation, are essentially the only obstructions to constructing
a Map–equivalence between the groups. We use these considerations to produce a finer
decoration that yields a structure invariant that is a complete invariant for boundary homeo-
morphism type, see Theorem 6·1.

In the case of quasi-isometries, orientation of the edge spaces is not enough; we must
choose Map-equivalence of the vertex spaces that agree all along the length of shared edge
spaces. There are two cases in which we can decide if this is possible. The first is that vertex
spaces are extremely flexible so that we have a lot of freedom to choose Map-equivalences
and make them agree on edge spaces. This is the case for the so-called ‘hanging’ vertices.
The other case is the opposite one, in which the vertex space is extremely ‘rigid’ and we
have very little choice about how to choose the maps. In this case we define an invariant
called a stretch factor that we then incorporate into the decoration. If all vertices are either
rigid or hanging then the decoration that takes into account vertex relative quasi-isometry
type, realisability, orientation, and stretch factors yields a complete quasi-isometry invariant,
see Theorem 7·5. Our version of rigidity, which we call relative quasi-isometric rigidity, is
known to hold for many classes of groups, see Section 4·2.

The classifications we provide are inherently more technical than the classifications for
splittings over finite subgroups by Papasoglu and Whyte and Martin and Świątkowski. In
splittings over finite groups the vertex groups of the canonical decomposition are essentially
independent of one another, so only the pieces of the decomposition matter. Our classifica-
tion must handle not just the pieces, but also their complex interactions.

1·1. Applications

Our main results give invariants that reduce classification problems for finitely presented,
one-ended groups to a relative version of the classification problem on the vertex groups of
a JSJ decomposition.
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A sample application of our main results is a complete description, in terms of [14], of the

quasi-isometry and boundary homeomorphism types of one-ended hyperbolic groups that
split as graphs of groups with free vertex groups and cyclic edge groups. (Such a decompos-
ition can be improved to a JSJ decomposition of the same type [13].)

Consider the following example:

Example 1·1. Let Gi =
〈
a, b, t | tui t = vi

〉
, where ui and vi are words in ⟨a, b⟩ given

below. In each case Gi should be thought of as an HNN extension of ⟨a, b⟩ over Z with
stable letter t .

Let u0 := a, v0 := abab2, u1 := ab, v1 := a2b2, u2 := ab2, and v2 := a2b.
Then the Gi are pairwise non-quasi-isometric, but have homeomorphic boundaries.
To see this one can use the techniques of [14] to show that the relative quasi-isometry types

of the vertices are the same in all three examples, and also that for these particular examples
the Cayley tree of ⟨a, b⟩ with respect to {a, b} is a rigid model space for the vertex group
relative to the incident edge groups. It follows that the stretch factor for the edge in Gi is the
ratio of the word lengths of ui and vi . Since these ratios are different for each of the Gi , these
groups are not quasi-isometric. On the other hand, computation of the structure invariants
shows that the stretch factors are the only differences between these groups. As boundary
homeomorphism type is not sensitive to stretch factors, these groups have homeomorphic
boundaries.

Our methods produce interesting invariants even in cases that the groups are not hyper-
bolic or that the relative problems for the vertex groups is not completely understood:

Example 1·2. Let M be the mapping class group of a non-sporadic hyperbolic surface,
with a fixed finite generating set. Let g0, g1, g′

0, g′
1 ∈ M be pseudo-Anosov elements that

are not proper powers. Let G := M ∗Z M and G ′ := M ∗Z M be the amalgamated product
groups obtained by identifying g0 with g1 and g′

0 with g′
1, respectively. Then G and G ′ are

not quasi-isometric if the ratio of translation lengths of g0 and g1 is different, up to inversion,
from the ratio of translation lengths of g′

0 and g′
1.

This follows because mapping class groups are quasi-isometrically rigid and the ratios of
the translation lengths in this example are the stretch factors; see Section 4.

2. Preliminaries

We assume familiarity with standard concepts such as Cayley graphs, ends of spaces, and
(Gromov) hyperbolic geometry. See [10] for background.

A group is virtually cyclic if it has an infinite cyclic subgroup of finite index. A group is
non-elementary is it is neither finite nor virtually cyclic. A standard exercise is to show that
a finitely generated, two-ended group is virtually cyclic.

2·1. Coarse geometry

Throughout the paper the qualifier ‘coarse’ is used to indicate ‘up to additive error’.
Let (X, dX ) and (Y, dY ) be metric spaces. Subsets of X are coarsely equivalent if they

are bounded Hausdorff distance from one another. A subset A is coarsely contained in B if
A is coarsely equivalent to a subset of B. Two maps φ and φ′ from X to Y are said to be
coarsely equivalent or bounded distance from each other if supx∈X dY (φ(x), φ′(x)) < ∞. A
map φ : X → Y is coarsely surjective if its image is coarsely equivalent to Y .
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A map φ : X → Y is a controlled embedding (This is more commonly called a ‘coarse
embedding’.) if there exist unbounded, non-decreasing real functions ρ0 and ρ1 such that for
all x and x ′ in X we have:

ρ0(dX (x, x ′)) ! dY (φ(x), φ(x ′)) ! ρ1(dX (x, x ′)).

There are several classes of controlled embeddings that have special names. If ρi (r) :=
Mir for i ∈ {0, 1} then φ is:

(i) an isometric embedding if M0 = 1 = M1;

(ii) an M–similitude if M0 = M = M1;

(iii) an M–biLipschitz embedding if M−1
0 = M = M1.

If such a map is surjective then it is called, respectively, an isometry, similarity or
biLipschitz equivalence.

For each of these, we can add the qualifier ‘coarse’ and allow an additive error, so that
ρ0(r) := M0r − A and ρ1(r) := M1r + A. For instance, φ is an (M, A)-coarse biLipschitz
embedding if ρi is as above with M0 = M−1 and M1 = M . In the ‘coarse’ cases we drop
the term ‘embedding’ if the map is coarsely surjective.

An (M, A)-coarse biLipschitz embedding is more commonly called an (M, A)-quasi-
isometric embedding.

Let QIsom(X, Y ) denote the set of quasi-isometries from X to Y , and let CIsom(X, Y )

denote the set of coarse isometries from X to Y . For a coarsely surjective map φ : X → Y ,
a coarse inverse is a map φ : Y → X such that φ ◦ φ is coarsely equivalent to IdX and φ ◦ φ

is coarsely equivalent to IdY . If φ ∈ QIsom(X, Y ) then all coarse inverses of φ are coarsely
equivalent and belong to QIsom(Y, X). If φ ∈ CIsom(X, Y ) then every coarse inverse of φ

belongs to CIsom(Y, X).
Let I(X, Y ), CI(X, Y ), and QI(X, Y ) denote the sets Isom(X, Y ), CIsom(X, Y ), and

QIsom(X, Y ), respectively, modulo coarse equivalence. When Y = X we shorten the nota-
tion to I(X), CI(X), QI(X), and each of these form a group under composition.

A subset of CI(X, Y ) or QI(X, Y ) is said to be uniform if there exists a C such that every
element of the subset is an equivalence class of maps containing a C-coarse isometry or a
(C, C)-quasi-isometry, respectively.

Quasi-isometries respect coarse equivalence of subsets. If P is a set of coarse equivalence
classes of subsets of X , and P′ is a set of coarse equivalence classes of subsets of Y , let
QI((X,P), (Y,P′)) be the subset of QI(X, Y ) consisting of quasi-isometries that induce
bijections between P and P′. Similarly, QI((X,P)) := QI((X,P), (X,P)) is a subgroup
of QI(X).

If φ : X → Y is a quasi-isometry, define φ∗ : QI(X) → QI(Y ) by φ∗(ψ) := φ ◦ ψ ◦ φ.
A geodesic, coarse geodesic or quasi-geodesic is, respectively, an isometric, coarse iso-

metric, or quasi-isometric embedding of a connected subset of R.
The space X is said to be geodesic, A-coarse geodesic, or (M, A)-quasi-geodesic if for

every pair of points in X there exists, respectively, a geodesic, A-coarse geodesic, or (M, A)-
quasi-geodesic connecting them.

Let !X" denote the set of proper geodesic metric spaces quasi-isometric to X . If P is a
set of coarse equivalence classes of subsets of X , let !(X,P)" denote the set of pairs (Y,P′)
where Y is a geodesic metric space and P′ is a collection of coarse equivalence classes of
subsets of Y such that there exists a quasi-isometry from X to Y that induces a bijection from
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P to P′. We call !X" the quasi-isometry type of X and !(X,P)" the relative quasi-isometry
type of (X,P).

If L is a path connected subset of a geodesic metric space (X, dX ), let dL denote the
induced length metric on L . A quasi-line in X is a path connected subset L such that (L , dL)

is quasi-isometric to R and such that the inclusion is a controlled embedding.
We define a peripheral structure P on geodesic metric space X to be a collection of

coarse equivalence classes of quasi-lines. In particular, if G is a finitely generated group and
H is a finite collection of two-ended subgroups of G, then H induces a peripheral structure
consisting of distinct coarse equivalence classes of conjugates of elements of H.

2·2. Graphs of groups

Let & be a finite oriented graph. Let V& be the set of vertices of &, and let E+& be the
set of oriented edges. For e ∈ E+&, let ι(e) be its initial vertex, and let τ (e) be its terminal
vertex. For each e ∈ E+& formally define e to be an inverse edge to e with ι(v) := τ (e),
τ (e) := ι(e), and ¯̄e := e. The inverse edge e should be thought of as e traversed against its
given orientation. Let E−& denote the set of inverse edges, and E& := E+& ! E−&.

A graph of groups ! := (&, {Gγ }γ∈V&!E+&, {εe}e∈E+&) consists of a finite oriented graph &,
groups Gγ for γ ∈ V& ! E+& such that Ge < G ι(e) for e ∈ E+&, and injections εe : Ge ↪→
Gτ (e) for e ∈ E+&.

For symmetry in the notation it is convenient to define Gē := Ge for each e ∈ E−& and
let εē denote the inclusion of Gē := Ge into Gτ (ē) := G ι(e).

A graph of groups ! has an associated fundamental group G := G(!) obtained by am-
algamating the vertex groups over the edge groups [43]. We say that ! is a graph of groups
decomposition of G.

The Bass–Serre tree T := T (!) of ! is the tree on which G acts without edge inversions,
such that G\T = & and such that the stabiliser Gt of t ∈ VT ! ET is a conjugate in G of
the group G t , where t is the image of t under the quotient map T → &.

Throughout we use the notation t to denote the image of t in &. Conversely, for each
γ ∈ V& ! E& we choose some lift γ̃ of γ to T . Given a maximal subtree in & we can, and
do, choose lifts of vertices and edge in the subtree to get a subtree in T .

Definition 2·1. Given a vertex group Gv of !, the peripheral structure coming from incid-
ent edge groups, Pv, is the set of distinct coarse equivalence classes in Gv of Gv–conjugates
of the images of the maps εe : Ge ↪→ Gv for edges e ∈ E& with τ (e) = v.

Definition 2·2. Given a vertex v of T (!), the peripheral structure coming from incident
edge groups, Pv, is the set of distinct coarse equivalence classes in the stabiliser subgroup
Gv of v of stabilisers of incident edge groups.

We are interested in graphs of groups in which the edge groups are two-ended, hence
virtually cyclic. Commensurability of edge stabilisers defines an equivalence relation on the
edges of the Bass–Serre tree T of such a splitting. The equivalence classes of edges are
called cylinders. Every cylinder is a subtree of T [24, lemma 4·2]. It follows that we get
another tree Cyl(T ), called the tree of cylinders of T , by taking the dual tree to the covering
of T by cylinders.

Let C be a cylinder in T and let Stab(C) be the stabiliser of C in G. Choose an infinite
order element z in Ge for some edge e ∈ C . For any element g ∈ Stab(C), Ge and Gge

are commensurable, virtually cyclic groups. Since ⟨z⟩ is a finite index subgroup of Ge, there
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exist non-zero a and b such that gzag−1 = zb. Define ,(g) = a/b. This defines a homo-
morphism , : Stab(C) → Q∗, called the modular homomorphism of C , that is independent
of the choice of z.

Definition 2·3. A cylinder is called unimodular if the image of its modular homomorph-
ism is in {−1, 1}. A graph of groups with two-ended edge groups is unimodular if all of its
cylinders are unimodular.

We also define a modulus ,̂ on pairs of edges of a cylinder C :

Definition 2·4. Let e0 and e1 be edges in C . Let ⟨z0⟩ < Ge0 and ⟨z1⟩ < Ge1 be infinite cyc-
lic subgroups of minimal index. Define ,̂(e0, e1) = [⟨z1⟩ : ⟨z0⟩ " ⟨z1⟩]/[⟨z0⟩ : ⟨z0⟩ " ⟨z1⟩].

It is easy to check that ,̂ does not depend on the choice of minimal index infinite cyclic
subgroups, and that ,̂(e, ge) = |,(g)|.

2·3. The JSJ tree of cylinders

2·3·1. Definitions

A JSJ decomposition of a finitely presented, one-ended group G over two-ended sub-
groups is a graph of groups with two-ended edge groups that encodes all splittings of G over
two-ended subgroups. Equivalent descriptions of such decompositions appear in Dunwoody
and Sageev [17], Fujiwara and Papasoglu [21] and Guirardel and Levitt [25]. See also Rips
and Sela [40, 41].

Following Papasoglu [38], we will give a geometric description of JSJ decompositions.
First, we need some terminology.

A quasi-line L is separating if its complement has at least two essential components, that
is, components that are not contained in any finite neighbourhood of L . In particular, if G
splits over a two-ended subgroup then that two-ended subgroup is bounded distance from a
separating quasi-line. Separating quasi-lines cross if each travels arbitrarily deeply into two
different essential complementary components of the other.

Let Gv be a vertex group in a graph of groups decomposition. Let Pv be the peripheral
structure on Gv coming from incident edge groups. Let - be a hyperbolic pair of pants.
Let P∂- be the peripheral structure on the universal cover -̃ of - consisting of the coarse
equivalence classes of the components of the preimages of the boundary curves.

Definition 2·5. We say v is hanging (after the ‘quadratically hanging’ vertex groups of
Rips and Sela) if (Gv,Pv) is quasi-isometric to (-̃,P∂-). We say v is rigid if it is not two-
ended, not hanging, and does not split over a two-ended subgroup relative to its incident
edge groups.

Definition 2·6. Let G be a finitely presented one-ended group that is not commensurable
to a surface group. A JSJ decomposition of G is a (possibly trivial) graph of groups decom-
position ! with two-ended edge groups satisfying the following conditions:
(a) every vertex group is either two-ended, hanging, or rigid;
(b) if v is a valence one vertex with two-ended vertex group then the incident edge group

does not surject onto Gv;
(c) every cylinder in the Bass–Serre tree of ! that contains exactly two hanging vertices

also contains a rigid vertex.
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This definition is equivalent to those cited above. The essential facts are that:

(i) hanging vertices contain crossing pairs of separating quasi-lines;
(ii) every pair of crossing separating quasi-lines is coarsely contained in a conjugate of a

hanging vertex group;
(iii) a separating quasi-line that is not crossed by any other separating quasi-line is

coarsely equivalent to a conjugate of an edge group;
(iv) every edge group is coarsely equivalent to a separating quasi-line that is not crossed

by any other separating quasi-line.

Remark. Condition (c) implies that the hanging vertex groups are maximal hanging,
which is necessary for item (iv).

Remark. The case that a vertex group is the fundamental group of a pair of pants and
the incident edge groups glue on to the boundary curves is called ‘rigid’ in the usual JSJ
terminology because there are no splittings of the pair of pants group relative to the boundary
subgroups. Algebraically, such a vertex behaves like our rigid vertices, but geometrically this
is a hanging vertex.

In general a group does not have a unique JSJ decomposition, but rather a deformation
space of JSJ decompositions [20, 25]. Furthermore, all JSJ decompositions are in the same
deformation space, which means any one can be transformed into any other by meas of
a finite sequence of moves of a prescribed type. The tree of cylinders of a decomposition
depends only on the deformation space [24, theorem 1], up to G–equivariant isomorphism,
so there is a unique JSJ tree of cylinders.

Definition 2·7. The JSJ tree of cylinders Cyl(G) of a finitely presented one-ended group
G is the tree of cylinders of the Bass-Serre tree of any JSJ decomposition of G.

The quotient graph of groups G\Cyl(G) gives a canonical decomposition of G. It is ca-
nonical in the sense that its Bass–Serre tree is G–equivariantly isomorphic to the tree of
cylinders of any JSJ decomposition of G. However, such a graph of cylinders is not neces-
sarily a JSJ decomposition, and it does not even have two-ended edge groups, in general.
We return to this issue in Section 2·3·4.

2·3·2. Quasi-isometry invariance of the JSJ tree of cylinders

Since quasi-isometries coarsely preserve quasi-lines, and preserve the crossing and sep-
arating properties of quasi-lines, the following version of quasi-isometry invariance of JSJ
decompositions follows from work of Papasoglu [38, theorem 7·1] and Vavrichek [47]:

THEOREM 2·8 (cf [38, theorem 7·1]). Let G and G ′ be finitely presented one-ended
groups. Suppose φ : G → G ′ is a quasi-isometry. Then there is a constant C such that
φ induces an isomorphism φ∗ : Cyl(G) → Cyl(G ′) that preserves vertex type — cylinder,
hanging, or rigid — and for v ∈ VCyl(G) takes Gv to within distance C of G ′

φ∗(v).

COROLLARY 2·9. If v is a rigid or hanging vertex in Cyl(G) then

φv := πφ∗(v) ◦ φ|Gv
∈ QI((Gv,Pv), (G ′

φ∗(v),Pφ∗(v))),

where πφ∗(v) takes the image of φ|Gv
to G ′

φ∗(v) by closest point projection.

Remark. πφ∗(v) is coarsely well defined since φ(Gv) is within distance C of G ′
φ∗(v).
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2·3·3. Boundary homeomorphism invariance of the JSJ tree of cylinders

In the case of a one-ended hyperbolic group that is not cocompact Fuchsian and Bowditch
constructed a canonical JSJ splitting of the group directly from the combinatorics of the local
cut points of the Gromov boundary of the group [9]. In this case, he proves that the JSJ tree
is unique, and such a tree is thus equivariantly isomorphic to the JSJ tree of cylinders of
the group. As a homeomorphism between the Gromov boundaries of two hyperbolic groups
preserves the topology, we get the following:

THEOREM 2·10 (cf [9]). Let G and G ′ be one-ended hyperbolic groups that are not
cocompact Fuchsian. Suppose ρ : ∂G → ∂G ′ is a homeomorphism between their Gro-
mov boundaries. Then ρ induces an isomorphism ρ∗ : Cyl(G) → Cyl(G ′) that preserves
vertex type — cylinder, hanging, or rigid — and for v ∈ VCyl(G) the homeomorphism ρ

restricts to a homeomorphism ρ|∂Gv
: ∂Gv → ∂G ′

ρ∗(v).

COROLLARY 2·11. For every vertex v ∈ Cyl(G):

ρv := ρ|∂Gv
∈ Homeo((∂Gv, ∂Pv), (∂G ′

ρ∗(v), ∂P′
ρ∗(v))).

2·3·4. Improved invariants from restrictions on the JSJ tree of cylinders

The JSJ tree of cylinders Cyl(G) of a finitely presented one-ended group G suffices for the
definition of the basic quasi-isometry invariants of Section 3. These are far from complete
invariants, however.

We can refine the invariants in restricted classes of groups. For instance, if the edges of
Cyl(G) have two-ended stabilisers in G then we can define stretch factors as in Section 4.

When the cylinder stabilisers are two-ended then the full power of Section 5 can be
brought to bear. In this case the graph of cylinders is a canonical JSJ decomposition of
G. This is the case of chief interest for this paper. This is always the case if G is hyperbolic.

If the cylindrical vertices of Cyl(G) have two-ended stabilisers then they are all finite
valence in Cyl(G). Furthermore, if ! is a JSJ decomposition of G and v ∈ T (!) is a vertex
whose stabiliser is rigid or hanging then v belongs to more than one cylinder, so Cyl(G)

has a vertex corresponding to v with the same stabiliser subgroup in G. Thus, Cyl(G) is
bipartite, with one part, VC , consisting of finite valence cylindrical vertices, one for each
cylinder of T (!). The other part consists of the rigid and hanging vertices, VR and VH ,
respectively, which are all of infinite valence.

See [24, proposition 5·2] for a general result about when the tree of cylinders gives a JSJ
decomposition.

2·4. Trees of spaces

Let T be an oriented simplicial tree. For each vertex v ∈ T let Xv be a metric space. For
each edge e ∈ E+T let Xe be a subspace of X ι(e), and let αe : Xe → Xτ (e) be a map such that
for Xē := αe(Xe) there exists a map αē : Xē → X ι(e) such that αē ◦ αe is bounded distance
from IdXe and αe ◦ αē is bounded distance from IdXē .

Let X be the quotient of the set
∐

v∈VT

Xv +
∐

e∈E+T

∐

x∈Xe

{x} × e

by the identifications x ∼ (x, ι(e)) and αe(x) ∼ (x, τ (e)). We call

X := X (T, {Xt}t∈VT !ET , {αe}e∈ET )
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a tree of spaces over T . The Xv are called vertex spaces and the Xe are called edge spaces.
The sets {x} × e we call rungs, and metrise them as unit intervals. The maps αe are called
attaching maps.

We say X has locally finite edge patterns if for every vertex v, every x ∈ Xv, and every
R " 0, there are finitely many e ∈ ET such that Xe intersects Bv

R(x) := {y ∈ Xv |
dXv

(x, y) ! R}.
The following two lemmas are easy to verify.

LEMMA 2·12. For a tree of spaces X: the quotient pseudo-metric is a metric, a ball
of radius at most 1 in a vertex space is isometrically embedded in X, and the rungs are
isometrically embedded.

LEMMA 2·13. If X is a tree of spaces over T such that each vertex space is proper and
geodesic, each edge space is closed and discrete, and edge patterns are locally finite in each
vertex space, then X is a proper geodesic space.

2·5. Algebraic trees of spaces

Let ! be a graph of finitely generated groups. In this section we construct a tree of spaces
over T := T (!) that is quasi-isometric to G := G(!). The idea is to take the vertex spaces
to be Cayley graphs of the vertex stabilisers and use the edge injections of ! to define the
attaching maps. The construction is standard, but there is some bookkeeping involved that
we will refer back to in Section 7·2.

For each v ∈ V&, choose a finite generating set for Gv and coset representatives h(v,i) for
G/Gv. For each e ∈ E& choose coset representatives g(e,i) of G ι(e)/Ge.

For each v ∈ V&, choose a lift ṽ ∈ VT . For each edge e ∈ E&, choose a lift ẽ ∈ ET with
ι(̃e) = ι̃(e). Define fe := h(ι(e), j)g(e,i) for i and j such that fe ¯̃e = ˜̄e. Given a maximal subtree
of & it is possible to choose lifts so that fe = 1 for all edges e such that e or e belongs to the
maximal subtree.

For t ∈ VT ! ET , let t ∈ & denote the image of t under the quotient by the G–action.
Let v be a vertex of T . There is a representative h(v,i) such that v = h(v,i )̃v ∈ T . Define

Yv to be a copy of the Cayley graph of Gv with respect to the chosen generating set, which
we identify with the coset h(v,i)Gv via left multiplication by h(v,i).

Take the edge spaces to be cosets of the edge stabilisers of !, and define attaching maps
via containment. Specifically, for an edge e = h(v,i)g(e, j )̃e ∈ T with ι(e) = v we define
Ye := h(v,i)g(e, j)Ge ⊂ h(v,i)Gv = Yv with attaching map:

αe(x) := h(v,i)g(e, j) feεe(g−1
(e, j)h

−1
(v,i)x) ⊂ Yτ (e).

Let Y := Y (T, {Yt}, {αe}) be the resulting tree of spaces over T , which we call an algeb-
raic tree of spaces for !. Y is quasi-isometric to G by the Milnor–Švarc Lemma.

2·6. Trees of maps

2·6·1. Trees of quasi-isometries

PROPOSITION 2·14. Suppose χ : T → T ′ is an isomorphism and X and X ′ are trees of
spaces over T and T ′, respectively. Suppose there exists M " 1 and A " 0 such that:
(i) for each v ∈ VT there is an (M, A)–quasi-isometry φv : Xv → X ′

χ(v) and a quasi-
isometry inverse φ̄v : X ′

χ(v) → Xv;
(ii) for every e ∈ ET , the space φι(e)(Xe) is A–coarsely equivalent to X ′

χ(e) in X ′
χ(ι(e)), and

the space φ̄ι(e)(X ′
χ(e)) is A–coarsely equivalent to Xe in X ι(e);
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Fig. 1. Commuting diagram for Corollary 2·16.

(iii) for every e ∈ ET and every x ∈ Xe there exists a point x ′ ∈ X ′
χ(e) such that

d(φι(e)(x), x ′) ! A and d(φτ (e)(αe(x)), α′
e(x ′)) ! A;

(iv) for every e ∈ ET and every x ′ ∈ X ′
χ(e) there exists a point x ∈ Xe such that

d(φ̄ι(e)(x ′), x) ! A and d(φ̄τ (e)(α
′
χ(e)(x ′)), αe(x)) ! A.

Then there is a quasi-isometry φ : X → X ′ with φ|Xv
= φv for each vertex v ∈ T .

Proof. It suffices to consider the unions of the vertex spaces, which form coarsely dense
subsets of X and X ′, and define φ by φ|Xv

:= φv. It is easy to verify that this map is a
quasi-isometry.

Definition 2·15. A collection of quasi-isometries (φv) satisfying the conditions given in
Proposition 2·14 is called a tree of quasi-isometries over χ compatible with X and X ′.

COROLLARY 2·16. Suppose χ : T → T ′ is an isomorphism and X and X ′ are trees of
spaces over T and T ′, respectively. Suppose there are M " 1 and A " 0 and (M, A)–
quasi-isometries φv : Xv → X ′

χ(v) for each vertex and φe : Xe → X ′
χ(e) for each edge such

that the diagram in Figure 1 commutes up to uniformly bounded error. Then (φv) is a tree of
quasi-isometries over χ compatible with X and X ′.

2·6·2. Gromov boundaries and trees of homeomorphisms

In this section, let X be a proper geodesic hyperbolic tree of spaces over a tree T , such
that the vertex spaces are proper geodesic hyperbolic spaces, the edge spaces are uniformly
quasi-convex in X , and the attaching maps are uniform quasi-isometries.

For example, if ! is a finite acylindrical graph of hyperbolic groups such that the edge
injections are quasi-isometric embeddings then the algebraic tree of spaces has this structure
[4, 26]. If, moreover, the edge groups are two-ended then the edge injections are automatic-
ally quasi-isometric embeddings.

Quasi-convexity of edge spaces implies quasi-convexity of vertex spaces, so the Gromov
boundary of each vertex space and edge space embeds into the boundary of X .

Consider the space ∂ X := ∂T +∐
v∈VT ∂ Xv modulo identifying ∂ Xe ⊂ ∂ X ι(e) with ∂ Xē ⊂

∂ Xτ (e) via ∂ψe for each edge e. Let ∂Stab denote the image of
∐

v∈VT ∂ Xv in ∂ X .

LEMMA 2·17. The inclusion of ∂ X into the Gromov boundary of X is a surjection.
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Proof. Pick a basepoint p ∈ X and let ζ : [0, ∞] → X̄ be a geodesic ray based at p.
Consider the projection π(p) of p to T .

If π ◦ζ crosses some edge e infinitely many times then there is an unbounded sequence of
times t1, t2, . . . such that ζ(ti) ∈ Xe. Since the edge space is quasi-convex, ζ stays bounded
distance from Xe, so converges to a point in ∂ Xe.

A similar argument shows that if π ◦ ζ visits a vertex v infinitely many times or is even-
tually constant at v then ζ converges to a point in ∂ Xv.

The remaining possibility is that π ◦ ζ limits to a point of ∂T . We claim there is a unique
asymptotic class of geodesic rays in X with π ◦ ζ → η ∈ ∂T . Suppose ζ ′ is another such
ray. Let v0 be the vertex such that p ∈ Xv0 . Let e be an edge in T on the geodesic from v0 to
η. Let e′ be another edge on the geodesic from v0 to η that is distance at least δ + Q from e,
where δ is the hyperbolicity constant for X and Q is the quasi-convexity constant for edge
spaces. Let x be a point of ζ " Xe and y a point of ζ " Xe′ . Let x ′ be a point of ζ ′ " Xe

and y′ a point of ζ ′ " Xe′ . Consider a geodesic triangle whose sides are ζ |[p,y], ζ ′|[p,y′], and
a geodesic ζ ′′ from y to y′. By quasi-convexity, d(x, ζ ′′) > δ and d(x ′, ζ ′′) > δ. Therefore,
hyperbolicity implies d(x, ζ ′) ! δ and d(x ′, ζ ) ! δ. This implies ζ and ζ ′ are asymptotic.

Now we define a topology on ∂ X and show it is equivalent to the Gromov topology.

Definition 2·18. The domain D(η) of a point η ∈ ∂T is the singleton {η}. The domain
D(ξ) of a point ξ of ∂Stab X is the subtree of T spanned by those vertices v of T such that
∂ Xv contains a point in the equivalence class ξ .

It can be proved that domains of points of ∂Stab X have a uniformly bounded number of
edges, see [32].

We can now define neighbourhoods of points of ∂ X , starting with points of ∂T .

Definition 2·19. Let η be a point of ∂T , and U be a neighbourhood of η in T ! ∂T . The
neighbourhood VU (η) is the set of points of ∂ X whose domain is contained in U .

Before moving to neighbourhoods of points of ∂Stab X , we need a definition.

Definition 2·20. Let ξ be a point of ∂Stab X . For every vertex v of D(ξ), choose a neigh-
bourhood Uv of ξ in Xv !∂ Xv. Let U be the collection of sets Uv, v ∈ D(ξ), which we call a
ξ -family. We define the set ConeU (ξ), called a cone, as the set of points w ∈ (T !∂T )\ D(ξ)

such that if e is the last edge of the geodesic from w to D(ξ) in T , we have ∂αe(∂ Xe) ⊂ Uτ (e).

Definition 2·21. Let ξ be a point of ∂Stab X , and U be a ξ -family. The neighbourhood
VU (ξ) is the set of points η of ∂ X such that the following holds:
(i) D(η) \ D(ξ) is contained in ConeU (ξ);

(ii) for every vertex v of D(ξ) " D(η), we have η ∈ Uv.

THEOREM 2·22 ([32, corollary 9·19]). With the topology described above, the inclusion
of ∂ X into the Gromov boundary of X is a homeomorphism.

Definition 2·23. Let X and X ′ be proper geodesic hyperbolic trees of quasi-convex spaces
over a trees T and T ′, respectively. A tree of boundary homeomorphisms compatible with X
and X ′ over an isomorphism χ : T → T ′ consists of homeomorphisms ρv : ∂ Xv → ∂ X ′

χ(v)

for every vertex v ∈ T such that for ξ ∈ ∂ Xv " ∂ Xw we have ρv(ξ) = ρw(ξ) ∈ ∂ X ′
χ(v) "

∂ X ′
χ(w), and for ξ ∈ ∂ X ′

v " ∂ X ′
w we have ρ−1

v (ξ) = ρ−1
w (ξ) ∈ ∂ Xχ−1(v) " ∂ Xχ−1(w).
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PROPOSITION 2·24. Let X and X ′ be proper geodesic hyperbolic trees of quasi-convex
spaces over trees T and T ′, respectively, with a compatible tree of boundary homeomorph-
isms (ρv) over χ ∈ Isom(T, T ′). Then there is a homeomorphism ρ : ∂ X → ∂Y defined by
ρ|∂ Xv

:= ρv and ρ|∂T := ∂χ .

Proof. We have a well defined map ρ and its inverse ρ−1 is defined by ρ−1|∂ X ′
v
:= ρ−1

χ−1(v)

and ρ−1|∂T := ∂χ−1. It clear that ρ and ρ−1 are continuous with respect to the topology
given in Definition 2·19 and Definition 2·21, which is equivalent to the standard topology
by Theorem 2·22.

THEOREM 2·25. Let G and G ′ be one-ended hyperbolic groups with non-trivial JSJ de-
compositions. Let X and X ′ be algebraic trees of spaces over the respective JSJ trees of
cylinders T := Cyl(G) and T ′ := Cyl(G ′). Every homeomorphism ρ : ∂ X → ∂ X ′ splits as
a tree of compatible boundary homeomorphisms over the isomorphism ρ∗ : T → T ′. Every
tree of boundary homeomorphisms (ρv) compatible with X and X ′ over an isomorphism
χ : T → T ′ gives a homeomorphism ρ : ∂ X → ∂ X ′ with ρ∗ = χ and ρ|∂ Xv

= ρv .

Proof. Since the edge groups are two-ended they are virtually cyclic, hence quasi-convex.
Therefore, the boundary of each vertex space embeds into the boundary of its tree of spaces.
By Theorem 2·10, ρ induces an isomorphism ρ∗ : T → T ′ and ρ(∂ Xv) = ∂ X ′

ρ∗(v). Since
these spaces are embedded, ρ|∂ Xv

∈ Homeo((∂ Xv, ∂Pv), (∂ X ′
ρ∗(v), ∂P′

ρ∗(v))), so ρ splits as a
tree of boundary homeomorphisms over ρ∗.

The converse is Proposition 2·24.

3. Decorated trees and structure invariants

Given a group G, a common strategy in understanding groups quasi-isometric to G is to
first understand self-quasi-isometries of G. A first step towards understanding QI(G) is to
understand its action on Cyl(G). In particular, we would like to determine the QI(G)–orbits
of vertices in Cyl(G). There are finitely many G–orbits of vertices in Cyl(G), and QI(G)–
orbits are unions of G–orbits, so the problem reduces to distinguishing G–orbits that are not
contained in a common QI(G)–orbit.

Two vertices cannot be in a common QI(G)–orbit if their stabilisers have different quasi-
isometry types relative to the peripheral structures given by the stabilisers of incident edge
groups. Since QI(G) preserves adjacency in Cyl(G) we can also distinguish QI(G)–orbits
by the number of each type of their neighbours. Having done so, we get a finer description
of the ’types’ of vertices, and we can again count neighbours of the refined types. In this
section we iterate this refinement process.

3·1. Decorated trees

Let G be a group and let T be a simplicial tree of countable valence upon which G acts
cocompactly and without inverting an edge.

Definition 3·1. A decoration is a G–invariant map δ : T → O that assigns to each vertex
of T an ornament o ∈ O.

For simplicity we decorate only vertices. In the next section we will also decorate edges,
with the condition that δ(e) = δ(ē) for every edge. Formally, this can be accomplished by
subdividing each edge of T and decorating the new vertices.
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Corresponding to a decoration there is a partition of T as
∐

o∈O δ−1(o). We say that a
decoration δ′ : T → O′ is a refinement of δ if the δ′–partition is finer than the δ–partition.
Equivalently, a decoration δ′ : T → O′ is a refinement of δ : T → O if there exists a
surjective map π : Im δ′ → Im δ such that π ◦ δ′ = δ. We say δ′ is a strict refinement if
the δ′–partition is strictly finer than the δ–partition. A refinement that is not strict is a trivial
refinement.

In order to reconstruct a decorated tree from its structure invariant we want to identify
orbits in T under the action of the group Aut(T, δ) := {χ ∈ Aut(T ) | δ ◦ χ = δ}, and then
to say how they fit together. In a nutshell, the idea is as follows.

Suppose v and w are two vertices. If there is a χ ∈ Aut(T, δ) with χ(v) = w, then
δ(v) = δ(w) and χ gives a decoration-preserving bijection from the neighbours of v to the
neighbours of w. Thus, for each ornament o, the number of neighbours of v bearing o must
be equal to the number of neighbours of w bearing o.

Conversely, if δ(v) = δ(w), but for some ornament o there are differing numbers of neigh-
bours of v bearing o and neighbours of w bearing o, then there is no decoration-preserving
automorphism taking v to w, so we ought refine the decoration to distinguish v from w. We
then repeat this refinement process until vertices with the same ornament can no longer be
distinguished by the ornaments of their neighbours. This happens after finitely many steps
because G\T is compact, see Proposition 3·3. Section 3·2 formalises this process, which we
call neighbour refinement.

3·2. Neighbour refinement

Let N := N ! {0, ∞}. Call O0 := O and δ0 := δ the ‘initial set of ornaments’ and the
‘initial decoration’, respectively. Beginning with i = 0, for each v ∈ VT define:

fv,i : Oi −→ N : o /→ #{w ∈ δ−1
i (o) | w is adjacent to v}.

Define Oi+1 := O0 × NOi , and define δi+1(v) := (δ0(v), fv,i ).

LEMMA 3·2. For all i , the map δi+1 : T → Oi+1 is a decoration refining δi : T → Oi .

Proof. Let v be a vertex, and let g ∈ G. Suppose δi is G–invariant. Then, δi+1(gv) =
(δi(gv), fgv,i) = (δi(v), fv,i) = δi+1(v). Since δ0 is G–invariant, all the δi are decorations
by induction.

For each i , let N (v, i, o) denote the number of neighbours of v in δ−1
i (o).

Clearly, δ1 refines δ0, since δ0 is the composition of δ1 with projection to the first co-
ordinate of the image. Suppose that δi refines δi−1. Then for every o′ ∈ Oi−1, we have
N (v, i − 1, o′) = ∑

o∈δi ◦δ−1
i−1(o

′) N (v, i, o).
If δi+1(v) = δi+1(w) then δ0(v) = δ0(w) and N (v, i, o) = N (w, i, o) for each o ∈ Oi .

Thus, for all o′ ∈ Oi−1,

N (v, i − 1, o′) =
∑

o∈δi ◦δ−1
i−1(o

′)

N (v, i, o) =
∑

o∈δi ◦δ−1
i−1(o

′)

N (w, i, o) = N (w, i − 1, o′),

so δi(v) = δi (w). Hence δi+1 refines δi . The lemma follows by induction.

PROPOSITION 3·3. There exists an s " 0 such that δi+1 is a strict refinement of δi for all
i + 1 ! s and δi+1 is a trivial refinement of δi for all i " s.

Proof. Since δi+1 refines δi there is a function δi ◦ δ−1
i+1 : Im δi+1 ⊂ Oi+1 → Oi . The

refinement is trivial precisely when this function is injective.
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Suppose there exists an s such that δs+1 is a trivial refinement of δs . For every o ∈
Im δs+1 ⊂ Os+1 we have fv,s+1(o) = fv,s ◦ δs ◦ δ−1

s+1(o), and fv,s+1(o) = 0 otherwise.
Therefore, δs+1(v) = δs+1(w) implies fv,s = fw,s , which implies fv,s+1 = fw,s+1, which
implies δs+2(v) = δs+2(w). Thus, once one refinement in the sequence is trivial so are all
further refinements.

To see that eventually some refinement is trivial, note that G–invariance implies that for
all i we have a partition of T by T = ∐

o∈Oi
δ−1

i (o) in which each part is a union of G–
orbits. A refinement is strict if and only if the new partition has strictly more parts than the
previous one. However, the number of parts is bounded above by the number of G–orbits,
which is finite.

Definition 3·4. The neighbour refinement of δ is the decoration δs : T → Os at which the
neighbour refinement process stabilises.

PROPOSITION 3·5. Let δ′ : T → O′ be the neighbour refinement of δ : T → O. The
δ′–partition of T is equal to the partition into Aut(T, δ)–orbits and to the partition into
Aut(T, δ′)–orbits.

Proof. The partition into Aut(T, δ)–orbits is finer than the δ′–partition because each
refinement step is Aut(T, δ)–equivariant. The Aut(T, δ′)–orbit partition is finer than the
Aut(T, δ)–orbit partition since δ′ is a refinement of δ. We show the δ′–partition is finer than
the Aut(T, δ′)–orbit partition by supposing δ′(v) = δ′(w) and producing χ ∈ Aut(T, δ′)
with χ(v) = w.

The automorphism χ is constructed inductively. Start by defining χ(v) := w. Since δ′ is
stable under neighbour refinement, for every o ∈ O′ we have # lk(v)"(δ′)−1(o) = # lk(w)"
(δ′)−1(o). Extend χ by choosing any bijection between these sets. This extends χ to the 1–
neighbourhood of v.

Now suppose χ is defined on a subtree T ′ of T such that for every v′ ∈ VT ′, either v′ is
a leaf or T ′ contains every edge incident to v′. Let v′ be a leaf, and let u be the vertex of T ′

adjacent to v′. For δ′(u) extend χ via a bijection between
(

lk(v) \ {u}
)
" (δ′)−1(δ′(u)) and(

lk(χ(v′)) \ {χ(u)}
)
" (δ′)−1(δ′(u)). For o ! δ′(u) extend χ just as in the base case.

3·3. Structure invariants

Let δs : T → Os be a neighbour refinement of δ as in Proposition 3·3. As defined, δs

actually encodes the history of the refinement process, not just the structure of T . We define
the structure invariant by forgetting this extraneous history. Let π0 : Os → O be projection
to the first coordinate. Choose an ordering of Im δ and let O[ j] denote the j–th ornament in
the image. Similarly, for each 1 ! j ! # Im δ, choose an ordering of π−1

0 (O[ j]) " Im δs .
Order Im δs lexicographically, and let Os[i] denote the i th ornament.

Definition 3·6. The structure invariant S(T, δ,O) is the # Im δs × # Im δs matrix whose
j, k–entry is the tuple consisting of the number of vertices in δ−1

s (Os[ j]) adjacent to each
vertex of δ−1

s (Os[k]), the O–ornament π0(Os[ j]) and the O–ornament π0(Os[k]). The last
two coordinates are called respectively the row and column ornament of the entry.

S(T, δ,O) can be seen as a block matrix, with blocks consisting of entries with the same
row ornaments and the same column ornaments. The structure invariant is well defined up
to permuting the O–blocks and permuting rows and columns within O–blocks, ie, up to the
choice of orderings of O and the π−1

0 (O[ j]).



Quasi-isometries between groups with two-ended splittings 17
PROPOSITION 3·7. Let δ : T → O be a G-invariant decoration of a cocompact G-

tree. Let δ′ : T ′ → O be a G ′-invariant decoration of a cocompact G ′-tree. There exists
a decoration-preserving isomorphism φ : T → T ′ if and only if S(T, δ,O) = S(T ′, δ′,O),
up to permuting rows and columns within O-blocks.

In particular, with the above notations, T and T ′ must have the same sets of ornaments
for a decoration-preserving isomorphism φ to exist.

Proof. It is clear that isomorphic decorated trees have the same structure invariants, up to
choosing the orderings of the ornaments. For the converse, assume that we have reordered
within O–blocks so that S(T, δ,O) = S(T ′, δ′,O) = S. Construct a decoration-preserving
tree isomorphism exactly as in the proof of Proposition 3·5.

Remark. When T is the universal cover of a finite graph & and the initial set of ornaments
is trivial then the structure invariant we have defined is just the well known degree refinement
of &. The lemma says that two graphs have the same degree refinement if and only if they
have isomorphic universal covers. A theorem of Leighton [29] says that such graphs in
fact have a common finite cover. There are also decorated versions of Leighton’s Theorem,
eg [36].

Observation. We get a quasi-isometry invariant of a group G by taking the structure in-
variant of a cocompact QI(G)-tree with a QI(G)-invariant decoration.

This observation does not seem to have appeared in the literature in this generality.
Behrstock and Neumann [2, 3] have used special cases of this type of invariant, in a

different guise, to classify fundamental groups of some families of compact irreducible 3-
manifolds of zero Euler characteristic. In both papers the tree is the Bass-Serre tree for the
geometric decomposition of such a 3-manifold along tori and Klein bottles, which is the
higher dimensional antecedent of the JSJ decompositions considered in this paper.

When the geometric decomposition has only Seifert fibred pieces the vertices are decor-
ated by the quasi-isometry type of the universal cover of the corresponding Seifert fibred
manifold. There are only two possible quasi-isometry types, according to whether or not the
Seifert fibred piece has boundary. Every vertex in the Bass–Serre tree has infinite valence,
so each entry of the structure invariant is either 0 or ∞.

Behrstock and Neumann [2] state their result in terms of ‘bi-similarity’1classes of bi-
coloured graphs. They show that each bi-similarity class is represented by a unique minimal
graph, and that two such 3–manifolds are quasi-isometric if and only if the bi-coloured
Bass–Serre tree of their geometric decompositions have the same representative minimal
graph. Their minimal bi-coloured graphs carry exactly the same information as the structure
invariant of the decorated Bass–Serre tree. One can construct their graph by taking the vertex
set to be the stable decoration set Os and connecting vertex Os[ j] to vertex Os[k] by an edge
if and only if the j, k–entry of S is ∞. The vertices of the graph are ‘bi-coloured’ by the
projection π0 : Os → O. Conversely, S can be recovered by replacing each edge in the
graph by infinitely many edges, lifting the bi-colouring to the universal covering tree, and
calculating the structure invariant.

The second paper [3] extends their results to cases where the decomposition involves
some hyperbolic pieces. The decorations there are more complex.

1 Their meaning of ‘similarity’ is different that in this paper.
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3·4. Structure invariants for the JSJ tree of cylinders

Combining Proposition 3·7 with Theorem 2·8 and Corollary 2·9 proves:

THEOREM 3·8. If G is a finitely presented one-ended group not commensurable to a
surface group, then the structure invariant for the JSJ tree of cylinders is a quasi-isometry
invariant of G, with respect to any of the following initial decorations:
(i) vertex type: rigid, hanging, or cylinder;

(ii) vertex type and, if v is rigid, !Gv";
(iii) vertex type and, if v is rigid, !(Gv,Pv)".

THEOREM 3·9. If G is hyperbolic and the JSJ decomposition of G has no rigid vertices
then the invariant of Theorem 3·8 is a complete quasi-isometry invariant.

Later we will prove a more general result, Theorem 7·5, that includes Theorem 3·9 as a
special case. A brief sketch of a direct proof of Theorem 3·9 goes like this: Given two
hyperbolic groups as in Theorem 3·9, the structure invariants of Theorem 3·8 are equivalent
if and only if the groups have isomorphic decorated JSJ trees of cylinders. Since all non-
cylindrical vertices are hanging, it follows, using techniques of of Behrstock and Neumann
[2], that the groups are quasi-isometric if and only if they have isomorphic decorated JSJ
trees of cylinders. Details of the last claim can be found in Dani and Thomas [15, section 4].
The torsion-free case also appeared in the thesis of Malone [30].

The main goal in the remaining sections to find an improved version of the invariant from
Theorem 3·8 that is a complete invariant in the case of hyperbolic groups. In this case the JSJ
decomposition has hyperbolic vertex stabilisers and two-ended cylinder stabilisers. Another
case that would be interesting to consider is that of a group in which every vertex of the JSJ
decomposition is hyperbolic. In this case cylinder stabilisers are either two-ended or quasi-
isometric to Baumslag–Solitar groups. Baumslag–Solitar groups have been classified up to
quasi-isometry by Farb and Mosher [18, 19] and Whyte [48], so Theorem 3·8 can be used
to give quasi-isometry invariants of such groups. However, promoting these to be complete
invariants is significantly harder than in the case of two-ended cylinder stabilisers, and is
beyond the scope of this paper.

4. A new decoration: stretch factors

4·1. Relative quasi-isometric rigidity

In this section, we associate to the JSJ tree of a cylinders of a group new quasi-isometry
invariants that take into account the metric information carried by the various two-ended
edge groups. Indeed, consider an infinite order element of an edge stabiliser. Its image in
each of the adjacent vertex groups has some translation length, and the ratio of these trans-
lation lengths gives a stretch factor that describes how the amalgamation distorts distance as
measured in the vertex groups. This stretch factor clearly depends on the choice of metrics
of the vertex groups, so it is not an intrinsic invariant of the group, and, in general, it is not
preserved by quasi-isometries. However, we show that when the vertex groups satisfy an
appropriate notion of quasi-isometric rigidity—a notion that is satisfied by many interesting
classes of groups—then such stretch factors are indeed quasi-isometry invariants.

Definition 4·1. A finitely generated group G is quasi-isometrically rigid relative to the
peripheral structure P, or (G,P) is quasi-isometrically rigid, if there exists a proper
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geodesic metric space X with peripheral structure P′ and a quasi-isometry µ : (G,P) →
(X,P′) such that:

(i) µ∗(QI(G,P)) is a uniform subgroup of CI((X, µ(P)));

(ii) if g ∈ G is an infinite order element fixing an element of P then i /→ µ(gi ) is a coarse
similitude.

The pair (X,P′) is called a rigid model for (G,P).

Remark. In Proposition 4·7 we prove that (i) implies (ii) if G is hyperbolic.

LEMMA 4·2. If (X,P′) is a rigid model for (G,P) then µ′ ◦ µ ∈ CIsom((X,P′)) for any
µ, µ′ ∈ QIsom((G,P), (X,P′)).

This fact motivates the terminology ‘rigid’.

Proof. For µ, µ′ ∈ QIsom((G,P), (X,P′)) we have µ′ ◦ µ ∈ QIsom((X,P′), (X,P′)).
For any µ ∈ QIsom((G,P), (X,P′)) we have CI((X,P′)) < QI((X,P′)) =
µ∗(QI((G,P))), so if µ∗(QI((G,P))) < CI((X,P′)) then QI((X,P′)) = CI((X,P′)).

Definition 4·3. Let (X,P′) be a rigid model for (G,P), and let g be an infinite order
element of G that fixes an element of P. Define the X–length of g, ℓX (g), to be the mul-
tiplicative constant of the coarse similitude from Z to X defined by i /→ µ(gi ), where
µ ∈ QIsom((G,P), (X,P′)).

If a positive power gk of an infinite order element g fixes an element of P define ℓX (g) :=
(1/k) ℓX (gk).

Lemma 4·2 implies that ℓX (g) is independent of the choice of quasi-isometry µ ∈
QIsom((G,P), (X,P′)).

We remark in the second case that if π : Z → kZ is a closest point projection then
i /→ µ(gπ(i)) is a coarse similitude from Z to X with multiplicative constant (1/k) ℓX (gk),
so this is a sensible definition for ℓX (g).

4·2. Examples of relative quasi-isometric rigidity

Let G be a finitely presented group. Let H be a finite collection of two-ended subgroups
of G. Let P be the peripheral structure consisting of distinct coarse equivalence classes of
conjugates of elements of H.

(i) If G is quasi-isometric to a space X such that I(X) = QI(X) then (G,P) is rigid.
The peripheral structure plays no role in this case. Examples include:
(a) irreducible symmetric spaces other than real or complex hyperbolic space; thick

Euclidean buildings; and products of such [28, 37];
(b) the ‘topologically rigid’ hyperbolic groups of Kapovich and Kleiner [27];
(c) certain Fuchsian buildings [7, 49];
(d) mapping class groups of non-sporadic hyperbolic surfaces [1].

(ii) If G is quasi-isometric to a space X such that CI(X) = QI(X) then (G,P) is rigid.
Again, the peripheral structure plays no role in this case. Xie gives an example of a
certain solvable Lie group with this property [50].

(iii) If X is a real or complex hyperbolic space of dimension at least 3 and G is quasi-
isometric to X then (G,P) is quasi-isometrically rigid whenever H is non-empty, by
a theorem of Schwartz [42].
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(iv) If X ′ is the 3-valent tree, G is quasi-isometric to X ′ (so G is virtually free), and G
does not virtually split over 0 or 2-ended subgroups relative to H, then (G,P) is
quasi-isometrically rigid [13, 14]. In this case the model space X depends on P, and
is not necessarily isometric to X ′.

(v) If X = H2, φ : G → X is a quasi-isometry, and G does not virtually split over 2–
ended subgroups relative to H, then (G,P) is quasi-isometrically rigid, as follows.
A result of Kapovich and Kleiner [27] shows that G has finite index in QI((G,P)).
Therefore, QI((G,P)) is a finitely generated group quasi-isometric to X . This quasi-
isometry induces a cobounded quasi-action of QI((G,P)) on X . Such a quasi-
action is quasi-isometrically conjugate to an isometric action on X , by a theorem
of Markovic [31].

The first four cases actually satisfy a stronger version of quasi-isometric rigidity:

Definition 4·4. We say G is strongly quasi-isometrically rigid relative to P, or (G,P) is
strongly quasi-isometrically rigid, if there is a proper geodesic space X such that if (X,P′)
and (X,P′′) are rigid models for (G,P), then there is a coarse isometry φ of X such that
φ(P′) = P′′.

By contrast, the last case only satisfies the weaker version of rigidity.
For a non-example, consider G := Zn and X := Rn . For any H the group QI((G,P))

contains maps conjugate to homotheties of Rn . This implies that the multiplicative constants
in QI((G,P)) are unbounded, so QI((G,P)) cannot be conjugate into some coarse iso-
metry group.

It is also easy to find non-examples of relative rigidity via splittings: If G virtually splits
over a zero or two-ended group relative to H then (G,P) is not quasi-isometrically rigid. In
such an example there are generalised Dehn twist quasi-isometries preserving P, powers of
which again produce unbounded multiplicative constants in QI((G,P)).

The previous examples and non-examples naturally lead to the following question:

Question 1. If G is a hyperbolic group that is not quasi-isometric to H2 and does not
virtually split over a zero or two-ended subgroup relative to a non-empty collection of two-
ended subgroups H, is (G,P) quasi-isometrically rigid? Strongly quasi-isometrically rigid?

Note that example (iii) shows that for a positive answer to Question 1 the peripheral
structure must be assumed to be non-empty even if G itself does not virtually split over a
zero or two-ended subgroup.

4·3. Relative quasi-isometric rigidity for hyperbolic groups

In Theorem 4·6 we give a characterisation of relative quasi-isometric rigidity for hyper-
bolic groups. This combines with Proposition 4·7 to show that the first condition of Defini-
tion 4·1 implies the second for hyperbolic groups. Theorem 4·6 also provides an alternative
viewpoint that may be useful for resolving Question 1.

A space X is called visual if there exists an A " 0 and x ∈ X such that for every y ∈ X
there exists an A-coarse-geodesic ray starting at x and passing within distance A of y. It
follows from [6, proposition 5·2 and proposition 5·6] that if X is quasi-isometric to a visual
hyperbolic space then X is a visual hyperbolic space.
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Definition 4·5. A map φ : X → Y is an (α, M)–power-quasi-symmetric embedding if for

all distinct x, y, z ∈ X :
dY (φ(x), φ(z))
dY (φ(x), φ(y))

! η

(
dX (x, z)
dX (x, y)

)
, where η(r) =

{
Mr

1
α for 0 < r < 1,

Mrα for 1 ! r.

Let PQS((X, dX ), (Y, dY )) denote the set of power-quasi-symmetric homeomorphisms,
and abbreviate PQS(X, dX ) := PQS((X, dX ), (X, dX )), which is a group. If Z is a collection
of subsets of X , define:

PQS(X, d,Z) := {φ ∈ PQS((X, d)) | ∀Z ∈ Z, φ(Z) ∈ Z and ∃!Z ′ ∈ Z, φ(Z ′) = Z}.
THEOREM 4·6. Let G be a non-elementary hyperbolic group with a peripheral structure

P consisting of coarse equivalence classes of conjugates of finitely many two-ended sub-
groups. Fix, arbitrarily, a word metric d on G, a basepoint p ∈ G, and a visual metric d∞
on ∂G. The following are equivalent:
(i) (G,P) is quasi-isometrically rigid;

(ii) there exists a proper, geodesic, visual hyperbolic space X and a quasi-isometry
µ : G → X such that µ∗(QI((G,P))) is a uniform subgroup of CI((X, µ(P)));

(iii) there exists a visual metric d ′
∞ on ∂G such that PQS(∂G, d∞, ∂P) is power-quasi-

symmetrically conjugate to a uniform subgroup of BiLip(∂G, d ′
∞).

Proof. Since G is a visual hyperbolic space, so is X . Thus, equivalence of 4·6 and 4·6 is
immediate from the definition of relative rigidity.

Item 4·6 implies item 4·6 by taking d ′
∞ to be a visual metric on ∂ X = ∂G and applying [6,

theorem 6·5], which shows that µ extends to a power-quasi-symmetry of ∂G, and a uniform
subgroup of CI(X) extends to a uniform subgroup of BiLip(∂G, d ′

∞).
Conversely, there are several ‘hyperbolic cone’ constructions in the literature [6, 8, 11, 23]

that take a metric space Z and produce a hyperbolic metric space Con(Z) such that a visual
metric on ∂ Con(Z) recovers Z with the given metric. We take Conr (Z) be the ‘truncated
hyperbolic approximation with parameter r ’ of Buyalo and Schroeder [11].

Item 4·6 implies item 4·6 by taking X to be the hyperbolic cone Conr (∂G, d ′
∞) for r

sufficiently small.

Let g be an infinite order element of a hyperbolic group G with a fixed word metric. The
isometry Lg defined by left multiplication by g has a well defined translation length, which
is positive. If µ : G → X is a quasi-isometry such that µ∗(Lg) is a coarse isometry, it is not
true in general that µ∗(Lg) has a well defined translation length. The next proposition shows
that we do still get a positive translation length for µ∗(Lg) in the special case of relative
rigidity.

PROPOSITION 4·7. Let G be a hyperbolic group and P a peripheral structure such
that there exists a proper geodesic space X and a quasi-isometry µ : G → X such that
µ∗(QI((G,P))) is a uniform subgroup of CI((X, µ(P))). For every infinite order element
g ∈ G the map i /→ µ(gi ) is a coarse similitude.

Before proving the proposition we need a few lemmas.

LEMMA 4·8. Let X be proper geodesic space quasi-isometric to a non-elementary hy-
perbolic group. For i ∈ {0, 1}, let φi be a quasi-isometry of X, with [φ0] = [φ1] ∈ QI(X).
The distance between φ0 and φ1 is bounded in terms of the quasi-isometry constants of φ0

and φ1 and the constants of X.
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Proof. We briefly outline the argument, which is standard; see for instance [46].
Since X is quasi-isometric to a visual hyperbolic space, it is a visual hyperbolic space.

Every point x ∈ X can be realised as a quasi-centre of an ideal geodesic triangle ,. Since
φ0 and φ1 are coarsely equivalent, ∂φ0 = ∂φ1, so φ0(,) and φ1(,) are ideal quasi-geodesic
triangles with the same ideal vertices, and quasi-geodesic constants depending on those of
φ0 and φ1, respectively. The set of quasi-centres of uniformly quasi-geodesic triangles with
the same vertices is bounded in terms of the quasi-geodesic constants and the hyperbolicity
constant of X , and φ0(x) and φ1(x) both lie in this set.

COROLLARY 4·9. If φ is an (M, A)–quasi-isometry and ψ is an A′–coarse isometry with
[φ] = [ψ] ∈ QI(X) then there is an A′′ depending only on M, A, A′ and X such that φ is
an A′′–coarse isometry.

LEMMA 4·10. Let µ : Y → X be a quasi-isometry between visual hyperbolic spaces.
Suppose that φ is a loxodromic isometry of Y with translation length τ . Let y0 be a point on
an axis of φ, and set yi := φi(y0) and xi := µ(yi). Suppose that {µ∗(φi)}i∈Z are uniform
coarse isometries. Then

L := lim
i→∞

d(x0, xi)

i

exists, and there exists an A such that i /→ µ(φi(y0)) is an (L , 2A)–coarse similitude.

Proof. The fact that {µ∗(φi)}i∈Z are uniform coarse isometries implies that the difference
|d(xi , x j ) − d(x0, x j−i )| is uniformly bounded. Quasi-geodesic stability further implies that
|d(x0, xi+ j )− d(x0, xi)− d(x0, x j )| is uniformly bounded. Let A be the greater of these two
bounds.

Suppose L+ := lim sup d(x0,xi )
i and L− := lim inf d(x0,xi )

i are different. Note L− > 0 since
i /→ xi is a quasi-geodesic. Take ϵ := (L+−L−)

3 . Choose some i such that d(x0,xi )
i < L−+ϵ and

such that α := (d(x0, xi) + 2A)/(d(x0, xi)) <
√

(2L+ + L−)/(L+ + 2L−). Choose some
j such that d(x0, xi)/ i > L+ − ϵ and such that (q + 1)/q <

√
(2L+ + L−)/(L+ + 2L−),

where q is the integer such that qi ! j < (q + 1)i .
The previous inequalities, together with the triangle inequality to decompose d(x0, x j )

along x0, xi , . . . , xqi , x j , yields:

L+ − ϵ <
d(x0, x j )

j
! d(x0, x j )

qi
! (q + 1)(d(x0, xi) + 2A)

qi

= α(q + 1)d(x0, xi)

qi
! α(q + 1)

q
· (L− + ϵ)

<
2L+ + L−

L+ + 2L− · L+ + 2L−

3
= L+ − ϵ.

This is a contradiction, so L+ = L− = L .
Suppose there exists an i such that d(x0, xi) < Li − 2A. Then L =

lim j→∞ d(x0, xi j )/i j < lim j→∞ Li j/i j = L , which is a contradiction.
If there exists an i such that d(x0, xi) > Li + 2A, then a similar computation leads to a

contradiction. Therefore, |d(x0, xi) − Li | ! 2A, which means i /→ xi = µ(φi(y0)) is an
(L , 2A)–coarse similitude.

Proof of Proposition 4·7 Let Lg be left multiplication on G by an infinite order element.
For all n ∈ Z the map Ln

g is an isometry, so µ∗(Ln
g) is a quasi-isometry whose constants
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depend only on those of µ. By hypothesis, there exists an A such that for each n there exists
an A–coarse isometry cn ∈ CI(X) with [cn] = [µ∗(Ln

g)]. By Corollary 4·9, there exists an
A′ independent of n such that µ∗(Ln

g) is an A′–coarse isometry. Now apply Lemma 4·10.

4·4. Stretch factors

Let G be a finitely presented, one-ended group such that T := Cyl(G) has two-ended
edge stabilisers. Let ! := G\Cyl(G). Let Y be an algebraic tree of spaces for G over T .

Vertices v0 and v1 of T that belong to a common cylinder have stabiliser groups that
intersect in a virtually cyclic subgroup.

Recall that ,̂ denotes the modulus of Definition 2·4.

Definition 4·11. Let v0 and v1 be distinct quasi-isometrically rigid vertices of T contained
in a common cylinder c. For i ∈ {0, 1}, choose a rigid model (Xvi ,Pvi ) for (Gvi ,P!

vi
). Let

⟨z⟩ be an infinite cyclic subgroup of Gv0 " Gv1 , and define the relative stretch from v0 to v1

to be:

relStr(v0, v1, (Xv0,Pv0), (Xv1,Pv1)) :=
ℓXv1

(z)

ℓXv0
(z)

Clearly, relStr(v0, v1, (Xv0,Pv0), (Xv1,Pv1)) depends on the choices of (Xvi ,Pvi ). Recall,
by Lemma 4·2, it does not depend on the choice of quasi-isometries (Gv0,P!

v0
) → (Xv0,Pv0)

and (Gv1,P!
v1
) → (Xv1,Pv1).

LEMMA 4·12. relStr(v0, v1, (Xv0,Pv0), (Xv1,Pv1)) does not depend on the choice of
⟨z⟩ < Gv0 " Gv1 .

Proof. For i ∈ {0, 1}, let ei be an edge on the geodesic in T between v0 and v1, with
ι(ei) = vi . Let ⟨z0⟩ < Ge0 and ⟨z1⟩ < Ge1 be infinite cyclic subgroups of minimal index.
Since Ge0 and Ge1 are virtually cyclic, ⟨z⟩ has finite index in each of them.

ℓXv1
(z)

ℓXv0
(z)

=
ℓXv1

(z1) · [⟨z1⟩:⟨z1⟩"⟨z⟩]
[⟨z⟩:⟨z1⟩"⟨z⟩]

ℓXv0
(z0) · [⟨z0⟩:⟨z0⟩"⟨z⟩]

[⟨z⟩:⟨z0⟩"⟨z⟩]
=

ℓXv1
(z1)

ℓXv0
(z0)

· [⟨z1⟩ : ⟨z0⟩ " ⟨z1⟩]
[⟨z0⟩ : ⟨z0⟩ " ⟨z1⟩]

=
ℓXv1

(z1)

ℓXv0
(z0)

· ,̂(e0, e1).

The right-hand side is independent of the choice of z0 and z1, since if, say, ⟨z′
0⟩ is another

infinite cyclic subgroup of minimal index in Ge0 then:

ℓXv0
(z′

0) = ℓXv0
(z0) · [⟨z0⟩ : ⟨z0⟩ " ⟨z′

0⟩]
[⟨z′

0⟩ : ⟨z0⟩ " ⟨z′
0⟩]

= ℓXv0
(z0).

COROLLARY 4·13. If v0, v1, and v2 are quasi-isometrically rigid vertices in a common
cylinder then:

relStr(v0, v1, (Xv0,Pv0), (Xv1,Pv1)) · relStr(v1, v2, (Xv1,Pv1), (Xv2,Pv2))

= relStr(v0, v2, (Xv0,Pv0), (Xv2,Pv2)).

PROPOSITION 4·14. Let φ be a quasi-isometry between finitely presented, one-ended
groups G and G ′ whose JSJ trees of cylinders have two-ended edge stabilisers. Let ! :=
G\Cyl(G) and !′ := G ′\Cyl(G ′). Suppose that v0 and v1 are distinct quasi-isometrically ri-
gid vertices of T (!) contained in a cylinder c. Choose rigid models (Xv0,Pv0) and (Xv1,Pv1)

for (Gv0,P!
v0
) and (Gv1,P!

v1
), respectively. Then:

relStr(v0, v1, (Xv0,Pv0), (Xv1,Pv1)) = relStr(φ∗(v0), φ∗(v1), (Xv0,Pv0), (Xv1,Pv1)).
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Proof. Let Y be an algebraic tree of spaces for !, and let Y ′ be an algebraic tree of spaces
for !′. For v ∈ {v0, v1} choose µv ∈ QIsom((Yv,P!

v ), (Xv,Pv)). Note that µv ◦ φv ∈
QIsom((Y ′

φ∗(v),P!′
φ∗(v)), (Xv,Pv)). Define:

R := relStr(v0, v1, (Xv0,Pv0), (Xv1,Pv1))

R′ := relStr(φ∗(v0), φ∗(v1), (Xv0,Pv0), (Xv1,Pv1)).

Choose two points x0 and x1 in µv0(Ye0) such that dXv0
(x0, x1) " 0. The idea of the proof is

to approximate R by a quantity Q(x0, x1) depending on x0 and x1, and similarly approximate
R′ by Q ′(x0, x1), and then show:

R = lim
d(x0,x1)→∞

Q(x0, x1) = lim
d(x0,x1)→∞

Q ′(x0, x1) = R′.

In the following, quantities are ‘coarsely well defined’ if they are well defined up to additive
error independent of the choice of x0 and x1.

By construction, Ye0 is a coset of Ge0 , and ⟨ze0⟩ is an infinite cyclic subgroup of minimal
index in Ge0 . Let g0 ∈ G such that Ye0 = g0Ge0 . Since g0⟨ze0⟩ is coarsely dense in Ye0 , there
exist integers ki such that dYv0

(µ−1(xi), g0zki
e0
) is small.

Ye0 and Ye1 are coarsely equivalent, so closest point projection π : Ye0 → Ye1 is coarsely
well defined. Moreover, since Ge0 and Ge1 are commensurable, there exist ϵ ∈ {±1} and
l ∈ Z such that π(g0z j

e0
) is bounded distance from g1zϵ j,̂(e0,e1)+l

e1
, where zϵ j,̂(e0,e1)+l

e1
is to be

interpreted as ze1 raised to the greatest integer less than or equal to ϵ j,̂(e0, e1) + l. Now we
have the following string of relations, where ∼ indicates equality up to additive error in the
numerator and denominator, independent of x0 and x1.

R =
ℓXv1

(g1ze1 g−1
1 )

ℓXv0
(g0ze0 g−1

0 )
· ,̂(e0, e1)

∼

(
dXv1

(µv1 (g1z
ϵk0,̂(e0 ,e1)+l
e1 ),µv1 (g1z

ϵk1,̂(e0 ,e1)+l
e1 ))

|(ϵk1,̂(e0,e1)+l)−(ϵk0,̂(e0,e1)+l)|

)

(
dXv0

(µv0 (g0z
k0
e0 ),µv0 (g0z

k1
e0 ))

|k1−k0|

) · ,̂(e0, e1)

=
dXv1

(µv1(g1zϵk0,̂(e0,e1)+l
e1

), µv1(g1zϵk1,̂(e0,e1)+l
e1

))

dXv0
(µv0(g0zk0

e0), µv0(g0zk1
e0))

∼
dXv1

(µv1(π(g0zk0
e0
)), µv1(π(g0zk1

e0
)))

dXv0
(µv0(g0zk0

e0), µv0(g0zk1
e0))

∼
dXv1

(µv1 ◦ π ◦ µ−1
v0

(x0), µv1 ◦ π ◦ µ−1
v0

(x1))

dXv0
(x0, x1)

=: Q(x0, x1).

We have shown the first equality: R = limd(x0,x1)→∞ Q(x0, x1).
Similarly, if π ′ is closest point projection from φ(Ye0) to φ(Ye1) define:

Q ′(x0, x1) :=
dXv1

(µv1 ◦ φ ◦ π ′ ◦ φ ◦ µ−1
v0

(x0), µv1 ◦ φ ◦ π ′ ◦ φ ◦ µ−1
v0

(x1))

dXv0
(x0, x1)

.
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We have R′ = limd(x0,x1)→∞ Q ′(x0, x1). However, since Ye0 and Ye1 are coarsely equivalent,
φ ◦ π ′ ◦ φ is coarsely equivalent to π , so Q(x0, x1) ∼ Q ′(x0, x1). We conclude:

R = lim
d(x0,x1)→∞

Q(x0, x1) = lim
d(x0,x1)→∞

Q ′(x0, x1) = R′

4·5. Uniformisation

The stretch factors defined in the previous section depend on the choice of rigid model for
the vertex groups. We suppress this dependence by choosing models uniformly:

Definition 4·15. Let QItypes := {!(G,P)"} be the set of quasi-isometry classes of fi-
nitely presented groups relative to peripheral structures. For each Q ∈ QItypes choose a
proper, geodesic space Z Q with peripheral structure PQ such that Q = !(Z Q,PQ)". Define
Model(Q) := (Z Q,PQ). If (Z Q,PQ) is quasi-isometrically rigid then we choose (Z Q,PQ)

to be a rigid model as in Section 4·1. We choose Z!R,R" = R.

Definition 4·16. If v0 and v1 are quasi-isometrically rigid vertices in a cylinder:

relStr(v0, v1) := relStr(v0, v1, Model(Gv0,P!
v0
), Model(Gv1,P!

v1
)).

4·6. Normalisation for unimodular graphs of groups

Suppose that Cyl(G) has two-ended edge stabilisers and c is a unimodular cylin-
der. Suppose that c contains some quasi-isometrically rigid vertices. Unimodularity im-
plies {relStr(v0, v1) | v0, v1 ∈ c are qi rigid} is bounded. Since stretch factors multiply
by Corollary 4·13, there exists a quasi-isometrically rigid v0 such that for every other
quasi-isometrically rigid vertex v in c we have relStr(v0, v) " 1. Define relStr(c, v) :=
relStr(v0, v).

Definition 4·17. Suppose that Cyl(G) has two-ended edge stabilisers. Let e be an edge
of Cyl(G) connecting a cylindrical vertex c to a quasi-isometrically rigid vertex v. Define
relStr(e) := relStr(c, v).

5. Vertex constraints

In this section assume that G is a one-ended, finitely presented group such that T :=
Cyl(G) has two-ended cylinder stabilisers. Let ! be the quotient graph of cylinders, which
is a canonical JSJ decomposition of G over two-ended subgroups; recall Section 2·3·4.

We suppose that X is a tree of spaces over T , quasi-isometric to G.
In Section 3 we saw how to decide if two vertices of T are in the same Aut(T, δ)–orbit. In

this section we would like to restrict further to subgroups of Aut(T, δ) induced by QI(X),
or, in the case that G is hyperbolic, by Homeo(∂ X). We will actually do something that is
weaker in the quasi-isometry case, but has the advantage that the same approach works for
both quasi-isometries and boundary homeomorphisms. What we do is restrict to elements
of Aut(T, δ) that at each vertex look like they are induced by a quasi-isometry or boundary
homeomorphism of the appropriate vertex space. We also add a compatibility condition
below. First we explain the notation.

For [φ] ∈ QI(X) choose a representative φ that induces an automorphism φ∗ of T and
splits as a tree of quasi-isometries φv := φ|Xv

∈ QI((Xv,Pv), (Xφ∗(v),Pφ∗(v))) over T .
Similarly, if G is hyperbolic, then X is hyperbolic and φ ∈ Homeo(∂ X) induces an

automorphism φ∗ of T and splits as a tree of boundary homeomorphisms φv := φ|∂ Xv
∈

Homeo((∂ Xv, ∂Pv), (∂ Xφ∗(v), ∂Pφ∗(v))) over T .
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Since cylinders are two-ended, each edge space is a quasi-line L in its respective vertex
space. Recall this means that there is a controlled embedding 6 of R with image L. In the
hyperbolic case 6 is actually a quasi-isometric embedding, and L has distinct endpoints at
infinity in the boundary of the vertex space containing it. In this case we define an orientation
of L to be a choice of one of these boundary points, and a boundary homeomorphism of
the vertex space that preserves ∂L is said to be orientation preserving if it fixes ∂L and
orientation reversing if it exchanges the two points of ∂L.

In the quasi-isometry case we know that 6([0, ∞)) and 6([0, −∞)) are not coarsely
equivalent. We define an orientation of L to be a choice of coarse equivalence class of either
6([0, ∞)) or 6([0, −∞)). A quasi-isometry that coarsely preserves L is said to be orienta-
tion preserving on L if it fixes the coarse equivalence classes of 6([0, ∞)) and 6([0, −∞)),
and orientation reversing if it exchanges them.

We seek χ ∈ Aut(T, δ) such that for every v ∈ VT there exists an element φv ∈
Map((Xv,Pv), (Xχ(v),Pχ(v))) such that (φv)∗ = χ |lk(v), subject to the following compat-
ibility condition. In the quasi-isometry case we require that (αχ(e) ◦ φι(e)) ◦ (φτ (e) ◦ αe)

−1

is orientation preserving on Xχ(e). In the boundary homeomorphism case we require that
(∂αχ(e) ◦φι(e)) ◦ (φτ (e) ◦ ∂αe)

−1 is the identity on ∂ Xχ(e) for every edge e. For brevity, we say
“(αχ(e) ◦ φι(e)) ◦ (φτ (e) ◦ αe)

−1 is orientation preserving on Xχ(e)” in both cases.
In the boundary homeomorphism case we conclude, in Theorem 6·1, that such a collection

of φv patch together to give φ ∈ Homeo(∂ X) with φ∗ = χ .
The analogous statement is not true for quasi-isometries. To patch together quasi-

isometries we need αχ(e) ◦ φι(e) and φτ (e) ◦ αe to be coarsely equivalent as maps, but we
have only assumed that they have coarsely equivalent image sets with the same orientations.
We also need to know that the φv have uniform quasi-isometry constants. These points will
be addressed in subsequent sections.

5·1. Partial orientations

A partial orientation ζ of X assigns to each cylindrical vertex space and to each peripheral
set in each non-elementary vertex space either an orientation of that space or the value
‘NULL’.

A cylindrical vertex space or peripheral set is said to be ζ–oriented if its ζ value is not
‘NULL’, and ζ–unoriented otherwise.

A cylindrical vertex is said to be ζ–oriented or ζ–unoriented if its vertex space is.
An edge e ∈ T is said to be ζ–oriented or ζ–unoriented if the corresponding edge space

in its incident non-elementary vertex is.
The sign of a map φ that takes an oriented space A to an oriented space B is 1 if the map

is orientation preserving and −1 if it is orientation reversing. For a partial orientation ζ we
define signζ φ as usual when A and B are both ζ–oriented, and we define signζ φ := 0 if
either of them is ζ–unoriented.

One partial orientation, ζ ′, extends another, ζ , if they agree on all ζ–oriented sets.

5·2. Cylindrical vertices

In general, if L is an element of a peripheral structure P on X , there is no reason to
believe that there is an element of Map((X,P)) that preserves L and reverses its orienta-
tion. We briefly give an idea how one may construct such an example, and show how such
considerations can be used to distinguish cylindrical vertices their neighbours.
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Fig. 2. The surface -.

Consider the genus 7 surface - in Figure 2, with a hyperbolic metric. Let f ∈ π1(-) be
the element represented by the curve running around the central hole. Let L be a component
of the preimage of this curve in -̃ = H2. The figure shows three curves the separate -

into subsurfaces -1, -2 and -3, each of which is a genus two surface with two boundary
components. Suppose each -i contains a collection of curves that is complicated enough so
that all the complementary components are discs, and different enough so that there does not
exist a crossing-preserving bijection between the components of the preimages of the curves
of -i contained in one component of the preimage of -i in -̃ and the components of the
preimages of the curves of - j contained in one component of the preimage of - j . Let P be
the peripheral structure on -̃ induced by all of the above curves in -, which is to say, each
element of P is the coarse equivalence class of a component of the preimage in -̃ of one of
the curves in -.

Then there is no element of Map(π1(-),P) that reverses L. The reason is that L passes
through components of the preimages of -1, -2, and -3 in order. If this order were reversible
by an element of Map((π1(-),P)) we would contradict the restriction that the pattern of
curves in -1, -2, and -3 were chosen to be ‘different’.

Now consider the graph of groups ! of Figure 3, where - and f are as above, and g is
a non-trivial, indecomposable element of a closed hyperbolic 3–manifold M . Then G :=
G(!) is a one-ended hyperbolic group with T := T (!) = Cyl(G).

The graph of groups ! has a central cylindrical vertex c1 that attaches to rigid vertices
r1, r2, and r3, each of which has local group π1(-), with each attachment along a copy of
f . For each ri there are other incident edges, each corresponding to one of the curves in
- described above, so that the peripheral structure on Gri induced by edge inclusions is
the peripheral structure P described above for -̃. Each of these edges we attach to another
cylindrical vertex, and then to a rigid vertex carrying a copy of π1(M).

We consider a kind of ‘ f –parity’ by counting the number of vertices adjacent to c̃1 for
which the generator of Gc̃1 is identified with f minus the number of vertices adjacent to c̃1

for which the generator of Gc̃1 is identified with f . Since c̃1 has non-zero f –parity, we call
it an unbalanced cylinder. We claim that there is not an element of Map(G) that reverses
the orientation of an unbalanced cylinder. In this example, we then conclude that Gr̃3 is a
Map(G)–orbit and Gr̃1 ! Gr̃2 is a different Map(G)–orbit.

The proof is as follows. Since Gc̃1 is the only G–orbit of cylindrical vertices in T of
valence 3, if there were an element of Map(G) taking r̃3 to, say, r̃1, then it would fix c̃1.
There is clearly an element of Map((Gr3,Pr3), (Gr1,Pr1)) taking f to f , but, since f is not
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Fig. 3. Graph of groups with an unbalanced cylinder.

reversible, if such a map extended to an element of Map(G) it would necessarily reverse the
orientation of Gc̃1 . Since f is not reversible, this would mean that every vertex in which f
is identified with the generator of Gc̃1 must be sent to a vertex in which f is identified with
the generator of Gc̃1 . This means that both r̃1 and r̃2 are sent to r̃3, contradicting the fact that
Map(G) acts by isomorphisms on T .

This discussion motivates the following definition:

Definition 5·1. Let ζ be a partial orientation. Let c be a cylindrical vertex. The orienta-
tion imbalance at c with respect to a decoration δ : T → O and a partial orientation ζ is
the function 7δ,ζ

c : O → ZO/{−1, 1}, with the action by coordinate-wise multiplication,
defined as follows. Choose an orientation of Xc and for each e ∈ lk(c) let sign αe denote the
sign of αe with respect to the chosen orientation of Xc and the ζ–orientation of Xē, which
we take to be 0 if e is ζ–unoriented. Define:

7δ,ζ
c (o) := [

∑

e∈lk(c)"δ−1(o)

sign αe].

If 7δ,ζ
c is non-zero we call c an unbalanced cylinder.

Taking an equivalence class of function in the definition eliminates the dependence on the
arbitrary choice of orientation of Xc.

PROPOSITION 5·2. Suppose δ and ζ are Map(X)–invariant. If there exists φ ∈ Map(X)

such that φ∗ fixes a cylindrical vertex c and reverses the orientation of Xc then 7δ,ζ
c is

identically zero.

Proof. Suppose o ∈ O is such that there exists a ζ–oriented edge e ∈ lk(c) " δ−1(o). Let
v := τ (e). By Map(X)–invariance, ζ(Xφ∗(e)) = φv(ζ(Xē)) = αφ∗(e) ◦φc ◦α−1

e (ζ(Xē)). Since
φc is orientation reversing, αe and αφ∗(e) have opposite signs. Therefore, (φ)∗|lk(c) gives a
bijection between edges in lk(c)" δ−1(o) whose attaching map have positive sign and edges
in lk(c) " δ−1(o) whose attaching map have negative sign. Since this is true for every o ∈ O
such that lk(c) " δ−1(o) is non-empty, 7δ,ζ

c is identically zero.

COROLLARY 5·3. Suppose δ and ζ are Map(X)–invariant. If Gc contains an infinite di-
hedral group then 7δ,ζ

c is identically zero.
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PROPOSITION 5·4. Suppose δ and ζ are Map(X)–invariant. For every φ ∈ Map(X) we

have 7δ,ζ
c = 7

δ,ζ
φ∗(c).

Proof. Choose some orientation on Xc and Xφ∗(c).
If no edge in lk(c) " δ−1(o) is ζ–oriented then 7δ,ζ

c (o) = 0, and, by Map(X)–invariance,
the same are true for φ∗(c).

Now consider o ∈ O such that there exists an edge e ∈ lk(c) " δ−1(o) such that e
is ζ–oriented. Let v := τ (e). By Map(X)–invariance, φ∗(e) ∈ lk(φ∗(c)) " δ−1(o) with
ζ(Xφ∗(e)) = φv(ζ(Xē)) = αφ∗(e) ◦ φc ◦ α−1

e (ζ(Xē)). If φc is orientation reversing then αe and
αφ∗(e) have opposite signs, so that:

∑

φ∗(e)∈lk(φ∗(c))"δ−1(o)

sign αφ∗(e) = −

⎛

⎝
∑

e∈lk(c)"δ−1(o)

sign αe

⎞

⎠ .

If φc is orientation preserving then αe and αφ∗(e) have the same signs, so that:
∑

φ∗(e)∈lk(φ∗(c))"δ−1(o)

sign αφ∗(e) =
∑

e∈lk(c)"δ−1(o)

sign αe.

The previous proposition shows we can use cylinder imbalances to distinguish different
cylinders. The following lemma shows this holds up under refinement of the decoration.

LEMMA 5·5. Suppose δ′ : T → O′ is a refinement of δ and ζ ′ is an extension of ζ .
Suppose that the δ–partition of edges of T is finer than the partition into ζ–oriented edges
and ζ–unoriented edges. Let c be a cylindrical vertex. If 7δ,ζ

c is non-zero then so is 7δ′,ζ ′
c .

Let c′ be a cylindrical vertex distinct from c. If for every o ∈ O there exist ζ–oriented
edges in lk(c) " δ−1(o) if and only if there exist ζ–oriented edges in lk(c′) " δ−1(o) then
7δ,ζ

c !7
δ,ζ
c′ implies 7δ′,ζ ′

c !7
δ′,ζ ′

c′ .

Proof. If c is unbalanced then there exists an o ∈ O such that 7δ,ζ
c (o)! 0, which implies

that there are ζ–oriented edges in lk(c) " δ−1(o). Since the δ–partition of edges of T is finer
than the partition into ζ–oriented edges and ζ–unoriented edges, all edges in lk(c) " δ−1(o)

are ζ–oriented. Since ζ ′ extends ζ , all edges in lk(c) " δ−1(o) are ζ ′–oriented, and since δ′

refines δ, we have, with respect to ζ ′ and some fixed orientation of Xc, that:
∑

e∈lk(c)"δ−1(o)

sign αe =
∑

o′∈δ′◦δ−1(o)

∑

e∈lk(c)"δ−1(o′)

sign αe

The left-hand side is non-zero, so one of the terms of the outer sum on the right-hand side
must be non-zero. Thus, 7δ′,ζ ′

c is not identically zero.
For the second statement, suppose, for contraposition, that 7δ′,ζ ′

c = 7
δ′,ζ ′

c′ . Having chosen
orientations on Xc and Xc′ , there is an ϵ ∈ ±1 such that for all o′ ∈ O′:

∑

e∈lk(c)"(δ′)−1(o′)

sign αe = ϵ

⎛

⎝
∑

e∈lk(c′)"(δ′)−1(o′)

sign αe

⎞

⎠ .

If for o ∈ O there are no ζ–oriented edges in lk(c) " δ−1(o) or lk(c′) " δ−1(o) then:

∑

e∈lk(c)"δ−1(o)

sign αe = 0 = ϵ

⎛

⎝
∑

e∈lk(c′)"δ−1(o)

sign αe

⎞

⎠ .
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Otherwise, by hypothesis, there are ζ–oriented edges in both lk(c) " δ−1(o) and lk(c′) "
δ−1(o). We conclude that 7δ,ζ

c = 7
δ,ζ
c′ from the following computation, in which the first and

third equalities are from the facts that the δ–partition of edges of T is finer than the partition
into ζ–oriented edges and ζ–unoriented edges and that δ′ refines δ, and the second equality
is from the hypothesis that 7δ′,ζ ′

c = 7
δ′,ζ ′

c′ .
∑

e∈lk(c)"δ−1(o)

sign αe =
∑

o′∈δ′◦δ−1(o)

∑

e∈lk(c)"(δ′)−1(o′)

sign αe

=
∑

o′∈δ′◦δ−1(o)

ϵ

⎛

⎝
∑

e∈lk(c′)"(δ′)−1(o′)

sign αe

⎞

⎠ = ϵ

⎛

⎝
∑

e∈lk(c′)"δ−1(o)

sign αe

⎞

⎠ .

Given δ and ζ that are both Map(X)–invariant we define the process of cylinder refinement
as follows:

(i) by passing to the coarsest common refinement, we may assume that the δ–partition of
edges of T is finer than the partition into ζ–oriented edges and ζ–unoriented edges.
The refined δ is still Map(X)–invariant;

(ii) consider the ζ–unoriented, unbalanced cylinders. Choose orientations of their vertex
spaces so that if c and c′ are two such cylinders with 7δ,ζ

c = 7
δ,ζ
c′ then for all o ∈ O

we have
∑

e∈lk(c)"δ−1(o) sign αe = ∑
e∈lk(c′)"δ−1(o) sign αe. Extend ζ to ζ ′ by taking these

orientations of the unbalanced cylindrical vertex spaces;
(iii) if e is a ζ–unoriented edge such that c := ι(e) is cylindrical and ζ ′–oriented, define

ζ ′(Xē) := αe(ζ
′(Xc));

(iv) define O′ := O × {−1, 0, 1}. Define δ′(e) := (δ(e), signζ ′(e)) for each edge and
δ′(v) := (δ(v), 0) for each vertex.

LEMMA 5·6. Suppose that δ and ζ are both Map(X)–invariant and that the δ–partition
of edges of T is finer than the partition into ζ–oriented edges and ζ–unoriented edges. Let
δ′ and ζ ′ be constructed via cylinder refinement, as above. Then δ′ is a Map(X)–invariant
refinement of δ and ζ ′ is a Map(X)–invariant extension of ζ . Moreover, the δ′–partition on
edges is finer than the partition into ζ ′–oriented and ζ ′–unoriented edges.

Proof. Suppose e is a ζ–unoriented edge with ι(e) := c cylindrical and unbalanced. Then
e is ζ ′–oriented and signζ ′ αe = 1, so δ′(e) = (δ(e), 1).

By invariance of δ and ζ , Proposition 5·4, and our choice of orientation on Xc and Xφ∗(c),
if φ ∈ Map(X) then φ∗(c) is unbalanced, and φ∗(e) is ζ–unoriented but ζ ′ oriented with
signζ ′ αφ∗(e′) = 1. Moreover, φc is orientation preserving, so φ(ζ ′(Xē)) = ζ ′(Xφ∗(e)). It also
means that δ′(φ∗(e)) = (δ(φ∗(e)), 1) = (δ(e), 1) = δ′(e).

Now suppose e is ζ–oriented and ι(e) := c is cylindrical and unbalanced. Invariance of
ζ ′ on e is inherited from invariance of ζ . From the proof of Proposition 5·4, since φc is
orientation preserving, signζ ′ αe = signζ ′ αφ∗(e). Along with invariance of δ, this gives us
δ′(e) = δ′(φ∗(e)).

For vertices and remaining edges, δ′(t) = (δ(t), 0) = (δ(φ∗(t)), 0) = δ′(φ∗(t)).
For the final claim, suppose e is ζ ′–oriented and e′ is ζ ′–unoriented. Since ζ ′ extends

ζ , e′ is also ζ–unoriented. If e is ζ–oriented then δ(e) ! δ(e′) because the δ–partition of
edges of T is finer than the partition into ζ–oriented edges and ζ–unoriented edges. Thus,
δ′(e)! δ′(e′), since δ′ refines δ.
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If e is ζ–unoriented then δ′(e) = (δ(e), signζ ′ αe) and δ′(e′) = (δ(e′), 0) differ in the

second coordinate.

LEMMA 5·7. Suppose that δ and ζ are Map(X)–invariant and stable under cylinder re-
finement. If c is an unbalanced cylindrical vertex and o ∈ O such that δ−1(o) " lk(c) ! #
then either every edge in δ−1(o) " lk(c) has orientation preserving attaching map or every
edge in δ−1(o) " lk(c) has orientation reversing attaching map.

Proof. Cylinder refinement orients every edge in an unbalanced cylinder and distin-
guishes edges with orientation preserving attaching map from those with orientation re-
versing attaching map.

5·3. Non-elementary vertices

Given a tree of spaces whose underlying tree is decorated, we get a decoration on the
peripheral structure of each vertex space by mapping to the tree and composing with the
decoration.

Throughout this subsection we assume that δ : T → O is a Map(X)–invariant decoration
and ζ is a Map(X)–invariant partial orientation.

Define:

O′ = O×
∐

Q∈Maptypes
Map(Z Q,PQ)\(OPQ × (!x∈∂PQ x ⨿ {‘NULL’})PQ ×(PQ ⨿ {‘NULL’})).

The left action of Map(Z Q,PQ) is given by φ.(χ , ζ, e) := (χ ◦ φ−1, ζ ◦ φ−1, φ∗(e)).
If e ∈ T is an edge with non-elementary terminus v := τ (e), Q = !(Xv,Pv)", µv ∈

Map((Xv,Pv), (Z Q,PQ)), and ζv is a partial orientation on Pv, define:

δ′(v) :=
(
δ(v), Map(Z Q,PQ).(δ|Pv

◦ µ−1
v , ζv ◦ µ−1

v ,‘NULL’)
)

δ′(e) :=
(
δ(e), Map(Z Q,PQ).(δ|Pv

◦ µ−1
v , ζv ◦ µ−1

v , (µv)∗(e))
)
.

Note that the image is independent of the choice of µv ∈ Map((Xv,Pv), (Z Q,PQ)).
Composition of δ′ with projection to the first factor of O′ recovers δ, so δ′ refines δ.

PROPOSITION 5·8. The refinement δ′ of δ defined above is Map(X)–invariant.

Proof. Take φ ∈ Map(X). If e is an edge with v := τ (e) non-elementary, Q := !Xv,Pv",
and χ := µφ∗(v) ◦ φv ◦ µ−1

v ∈ Map(Z Q,PQ), then:

δ′(φ∗(e)) =
(
δ(φ∗(e)), Map(Z Q,PQ).(δ|Pφ∗(v)

◦ µ−1
φ∗(v), ζφ∗(v) ◦ µ−1

φ∗(v), (µφ∗(v))∗(φ∗(e)))
)

=
(
δ(e), Map(Z Q,PQ).(δ|Pv

◦ φ−1
v ◦ µ−1

φ∗(v), ζv ◦ φ−1
v ◦ µ−1

φ∗(v), (µφ∗(v))∗(φ∗(e)))
)

=
(
δ(e), Map(Z Q,PQ).(δ|Pv

◦ µ−1
v ◦ χ−1, ζv ◦ µ−1

v ◦ χ−1, (χ ◦ µv)∗(e))
)

=
(
δ(e), Map(Z Q,PQ).(δ|Pv

◦ µ−1
v , ζv ◦ µ−1

v , (µv)∗(e))
)

= δ′(e).

Thus, δ′ is Map(X)–invariant.

PROPOSITION 5·9. For vertices v, w ∈ T , δ′(v) = δ′(w) if and only if there exists φ ∈
Map((Xv,Pv, δ, ζ ), (Xw,Pw, δ, ζ )).

For edges e, f ∈ T with v := τ (e) and w := τ ( f ) both non-elementary, δ′(e) = δ′( f ) if
and only if there exists φ ∈ Map((Xv,Pv, δ, ζ ), (Xw,Pw, δ, ζ )) with φ∗(e) = f .
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Proof. We give the proof for edges. The proof for vertices is similar.
Let Q = !Xv,Pv". By definition, δ′(e) = δ′( f ) if and only if δ(e) = δ( f ) and there

exists χ ∈ Map(Z Q,PQ) such that:
(i) δ|Pv

◦ µ−1
v ◦ χ−1 = δ|Pw

◦ µ−1
w ;

(ii) ζv ◦ µ−1
v ◦ χ−1 = ζw ◦ µ−1

w ;
(iii) (χ ◦ µv)∗(e) = (µw)∗( f ).
Define φ := µ−1

w ◦χ◦µv ∈ Map((Xv,Pv), (Xw,Pw)). Item (i) is equivalent to δ|Pv
◦φ−1 =

δ|Pw
. Item (ii) is equivalent to ζv ◦ φ−1 = ζw. Item (iii) is equivalent to φ∗(e) = f .

COROLLARY 5·10. There exists a Map(X)–invariant extension ζ ′ of ζ such that for any
edge e with v := τ (e) non-elementary, e is ζ ′–unoriented if and only if the stabiliser of Xē

in Map(Xv,Pv, δ, ζ ) contains an infinite dihedral group.

Proof. If e ζ–unoriented and the stabiliser of Xē in Map(Xv,Pv, δ, ζ ) does not contain an
infinite dihedral group then define an extension ζ ′ of ζ on (δ′)−1(δ′(e)) as follows. Choose
an orientation of Xē. If f is an edge with δ′( f ) = δ′(e) then, by Proposition 5·9, there
exists φ ∈ Map((Xv,Pv, δ, ζ ), (Xw,Pw, δ, ζ )) with φ∗(e) = f . This means that f is ζ–
unoriented, so we extend ζ by defining ζ ′(X f̄ ) := φ(ζ ′(Xē)).

The orientation of X f̄ is independent of the choice of φ because of the stabiliser condition
on Xē.

Definition 5·11. Given Map(X)–invariant decoration δ and partial orientation ζ , the pro-
cess of vertex refinement produces the Map(X)–invariant decoration δ′ and partial orienta-
tion ζ ′ defined above.

5·4. Combining the local restrictions

In this section we have our main technical tools. Theorem 5·12 identifies Aut(T, δ) orbits.
Theorem 5·13 leverages this information to understand decoration preserving isomorphisms
between two different trees. Theorem 5·13 provides a blueprint for the main classification
theorems in the next two sections.

THEOREM 5·12. Suppose δ : T → O is a Map(X)-invariant decoration and ζ is a
Map(X)-invariant partial orientation. Suppose δ and ζ are stable under neighbour, cylinder,
and vertex refinement.

For edges e, f ∈ T we have δ(e) = δ( f ) if and only if there exists χ ∈ Aut(T, δ) with:
(i) χ(e) = f ;

(ii) for every u ∈ T there exists φu ∈ Map((Xu,Pu, δ, ζ ), (Xχ(u),Pχ(u), δ, ζ )), such that
χ |lk(u) = (φu)∗;

(iii) for every edge e′ the map (αχ(e′) ◦ φι(e′)) ◦ (φτ (e′) ◦ αe′)−1 is orientation preserving on
Xχ(e′).

Proof. If there exists χ ∈ Aut(T, δ) such that χ(e) = f then δ(e) = δ( f ). Conversely,
supposing δ(e) = δ( f ), we construct χ .

Define χ(e) := f .
By Proposition 5·9, there exists φτ (e) ∈ Map((Xτ (e),Pτ (e), δ, ζ ), (Xτ ( f ),Pτ ( f ), δ, ζ )) with

(φτ (e))∗(e) = f . Define χ |lk(τ (e)) := (φτ (e))∗.
Now, suppose that we have χ satisfying the desired properties defined on a subtree T ′

of T such that every leaf is non-elementary and T ′ contains every edge incident to every
non-leaf. Given an edge e0 with c := ι(e0) $ T ′ and τ (e0) ∈ T ′, we will extend χ to lk(c0),
satisfying the desired properties. Then, by induction, we can extend χ to all of T .
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Let χ(e0) := (φτ (e0))∗(e0). Define φc := α−1
χ(e0)

◦ φτ (e0) ◦ αe0 so that (αχ(e0) ◦ φc) ◦ (φτ (e0) ◦
αe0)

−1 is orientation preserving on Xχ(e0)
.

Case 1: c is unbalanced. Extend χ to lk(c) by choosing a bijection between lk(c) \ {e0} "
δ−1(o) and lk(χ(c)) \ {χ(e0)} " δ−1(o) for each o ∈ O. For each o these sets have the same
cardinality by neighbour stability. Since c is unbalanced, cylindrical stability implies that c
and all edges in lk(c) are ζ–oriented, and, for each o ∈ O, all edges in δ−1(o) have attaching
maps with the same sign; recall Lemma 5·7. By Map(X)–invariance, the same is true for
χ(c), and for each e1 ∈ lk(c) we have signζ αe1 = signζ αχ(e1).

By Proposition 5·9, there exists

φτ (e1) ∈ Map((Xτ (e1),Pτ (e1), δ, ζ ), (Xτ (χ(e1)),Pτ (χ(e1)), δ, ζ ))

with (φτ (e1))∗(e1) = χ(e1). Define φ|Xτ (e1)
:= φτ (e1) and χ |lk(τ (e1)) := (φτ (e1))∗. By construc-

tion, (αχ(e1) ◦ φc) ◦ (φτ (e1) ◦ αe1)
−1 is orientation preserving on Xχ(e1)

.

In the balanced cases, choose some orientation of Xc and Xχ(c).

Case 2: c is balanced and o ∈ O is such that δ−1(o) " lk(c) ! # consists of ζ–oriented
edges. By neighbour stability, the total number, n, of edges in lk(c) " δ−1(o) is equal to
the total number of edges in lk(χ(c)) " δ−1(o). Since c is balanced, the number of edges in
lk(c) " δ−1(o) with orientation preserving attaching map is equal to the number of edges in
lk(c) " δ−1(o) with orientation reversing attaching map, so there are n/2 of each. Cylinder
stability implies χ(c) is also balanced, so there are n/2 edges in lk(χ(c)) " δ−1(o) with
orientation preserving attaching map and n/2 with orientation reversing attaching map.

If sign αe0 = sign αχ(e0) then φc is orientation preserving. Define χ on δ−1(o) " lk(c) \
{e0} by choosing any bijection with δ−1(o) " lk(χ(c)) \ {e0} that preserves the signs of the
attaching maps.

If sign αe0 ! sign αχ(e0) then φc is orientation reversing. Define χ on δ−1(o) " lk(c) \ {e0}
by choosing any bijection with δ−1(o) " lk(χ(c)) \ {e0} that exchanges the signs of the
attaching maps.

Extend φ and χ as in the previous case.

Case 3: c is balanced and o ∈ O is such that δ−1(o)" lk(c)!# consists of ζ–unoriented
edges. By neighbour stability, lk(c)\{e0}"δ−1(o) and lk(χ(c))\{e0}"δ−1(o) have the same
cardinality, and we extend χ by an arbitrary bijection between them. Take e1 ∈ δ−1(o) "
lk(c) \ {e0}. By Proposition 5·9, there exists

φ′
τ (e1)

∈ Map((Xτ (e1),Pτ (e1), δ, ζ ), (Xτ (χ(e1)),Pτ (χ(e1)), δ, ζ ))

with (φ′
τ (e1)

)∗(e1) = χ(e1). Since e1 is ζ–unoriented and ζ is stable under vertex refinement,
by Corollary 5·10 there exists an element of Map(Xτ (e1),Pτ (e1), δ, ζ ) reversing Xē1 . Define
φτ (e1) := φ′

τ (e1)
if (αχ(e1) ◦ φc) ◦ (φ′

τ (e1)
◦ αe1)

−1 is orientation preserving on Xχ(e1)
, and

define φτ (e1) to be φ′
τ (e1)

precomposed with a Xτ (e1)–flip otherwise. Extend χ to lk(τ (e1)) by
(φτ (e1))∗.

Let ζ0 be the trivial partial orientation on X with constant value ‘NULL’. Let δ0 : T →
O0 be any Map(X)–invariant decoration of T . Perform neighbour, cylinder, and vertex re-
finement repeatedly until all three stabilise, and let δ : T → O be the resulting decoration
and ζ the resulting partial orientation.

Now suppose X ′ is a tree of spaces over T ′ with finite cylinders and such that every
φ ∈ Map(X ′) splits as a tree of maps over T ′. Let ζ ′

0 be the trivial partial orientation, and let
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δ′
0 : T ′ → O0 be a Map(X ′)–invariant decoration of T ′. (Note that δ0 and δ′

0 map to the same
set of ornaments!) Let ζ ′ and δ′ be the partial orientation extending ζ ′

0 and the decoration
refining δ′

0 that result from performing neighbour, cylinder, and vertex refinement repeatedly
until all three stabilise.

Recall that the process of cylinder refinement involved choosing Map(X)–invariant ori-
entations. We will need to account for the fact that these choices can be made differently in
X and X ′. Let ξ ∈ {−1, 1}O. Define ξ · ζ to be the partial orientation:

ξ · ζ(Xt) =

⎧
⎪⎨

⎪⎩

‘NULL’ if ζ(Xt) = ‘NULL’

ζ(Xt) if ξ(δ(t)) = 1

opposite of ζ(Xt) if ξ(δ(t)) = −1.

THEOREM 5·13. With the above notation, the following are equivalent:
(i) there exists χ ∈ Isom((T, δ0), (T ′, δ′

0)) such that:
(a) for every vertex v ∈ T there exists φv ∈ Map((Xv,Pv), (X ′

χ(v),P′
χ(v))), such that

χ |lk(v) = (φv)∗;
(b) for every edge e ∈ T we have (αχ(e) ◦φι(e))◦(φτ (e) ◦αe)

−1 is orientation preserving
on X ′

χ(e)
.

(ii) there exists a bijection β : Im δ → Im δ′ and ξ ∈ {−1, 1}O such that:
(a) δ0 ◦ δ−1 = δ′

0 ◦ (δ′)−1 ◦ β;
(b) when the rows and columns of S(T ′, δ′,O′) are given the β–induced ordering from

S(T, δ,O), we have S(T, δ,O) = S(T ′, δ′,O′);
(c) for every o ∈ Im δ such that δ−1(o) consists of non-elementary vertices there

exists (equivalently, for every) v ∈ δ−1(o) and v′ ∈ (δ′)−1(β(o)) such that the set
Map((Xv,Pv, β ◦ δ, ξ · ζ ), (X ′

v′,P′
v′, δ′, ζ ′)) is nonempty;

(d) for every o ∈ Im δ such that δ−1(o) consists of cylindrical vertices there exists
(equivalently, for every) c ∈ δ−1(o) and χ(c) ∈ (δ′)−1(β(o)) so that 7δ,ξ ·ζ

c =
7

δ′,ζ ′

χ(c) ◦ β.

Proof. If item i is true then δ0 = δ′
0 ◦ χ and ζ0 = ζ ′

0 ◦ χ . Perform the same sequence
of refinements on δ0 and δ′

0. Each time the partial orientation on X is extended by choosing
some orientation, push that choice forward to X ′ using the appropriate φc or φv. We get the
claims of item ii with β the identity and ξ the constant map sending O to 1.

We complete the proof by showing that the hypotheses of item ii allow us to build a
isomorphism χ ∈ Isom((T, β ◦ δ), (T ′, δ′)) and a collection of maps φv satisfying the con-
ditions of item i. Condition ii(a) implies χ ∈ Isom(T, δ0), (T ′, δ′

0)). The construction is
along the lines of that in the proof of Theorem 5·12: we inductively construct χ and maps
φv ∈ Map((Xv,Pv, β ◦ δ, ξ · ζ ), (X ′

χ(v),P′
χ(v), δ

′, ζ )) with χ |lk(v) = (φv)∗.
To begin, pick a non-elementary vertex v0 ∈ T and a vertex v′

0 ∈ (δ′)−1(β ◦ δ(v0)). Define
χ(v0) := v′

0. By ii(c) and Theorem 5·12, there exists:

φv0 ∈ Map((Xv0,Pv0, β ◦ δ, ξ · ζ ), (X ′
v′

0
,P′

v′
0
, δ′, ζ ′)).

Define φ|Xv0
:= φv0 and χ |lk(v0) := (φv0)∗.

Let e0 be an edge in lk(v0) with cylindrical initial vertex c := ι(e0). Define φc := (αe′
0
)−1 ◦

φv0 ◦ αe0 .
For the induction step we extend χ to lk(c). When c is balanced the construction is virtu-

ally the same as that of Theorem 5·12, so we omit those cases. The remaining case is that c
is unbalanced.
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Extend χ to lk(c) by choosing a bijection between lk(c) \ {e0} " δ−1(o) and lk(χ(c)) \
{χ(e0)} " δ−1(β(o)) for each o ∈ O. These sets have the same cardinality by condition
ii(b). Since c is unbalanced, cylindrical stability implies that c and all edges in lk(c) are ζ–
oriented, and, for each o ∈ O, all edges in δ−1(o) have attaching maps with the same sign;
recall Lemma 5·7. This implies that for each o ∈ O, 7δ,ξ ·ζ

c (o) = ±7δ,ζ
c (o), so, in particular

7δ,ξ ·ζ
c is not identically zero. Condition ii(d) then implies χ(c) is unbalanced, so χ(c) and all

of the edges in lk(χ(c)) are ζ ′–oriented, and edges with the same ornament have attaching
maps with the same sign.

We may choose the orientations on Xc and X ′
χ(c) to be those given by ξ · ζ and ζ ′, re-

spectively. Together with condition ii(d), this implies there exists ϵ ∈ ±1 such that for all
o ∈ O:

∑

e∈lk(c)"δ−1(o)

signξ ·ζ αe = ϵ

⎛

⎝
∑

e′∈lk(χ(c))"(δ′)−1(β(o))

signζ ′ α′
e′

⎞

⎠ .

Since all the edges with a particular ornament have attaching maps of the same sign, this
means that for all e1 ∈ lk(c) we have signξ ·ζ αe1 = ϵ signζ ′ α′

χ(e1)
. Therefore, the sign of

α′
χ(e1)

◦ φc ◦ α−1
e1

= α′
χ(e1)

◦ (α′
χ(e0)

)−1 ◦ φv0 ◦ αe0 ◦ α−1
e1

on Xē1 with respect to ξ · ζ and ζ ′ is (ϵ · signξ ·ζ αe0 · signξ ·ζ αe1)
2 = +1.

By Proposition 5·9 and condition ii(c), there exists

φτ (e1) ∈ Map((Xτ (e1),Pτ (e1), β ◦ δ, ξ · ζ ), (X ′
τ (χ(e1))

,P′
τ (χ(e1))

, δ′, ζ ′))

with (φτ (e1))∗(e1) = χ(e1). Define φ|Xτ (e1)
:= φτ (e1) and χ |lk(τ (e1)) := (φτ (e1))∗. We know

(αχ(e1) ◦ φc) ◦ (φτ (e1) ◦ αe1)
−1 is orientation preserving on X ′

χ(e1)
because:

α′
χ(e1)

◦ φc ◦ α−1
e1

(ξ · ζ(Xē1)) = ζ ′(X ′
χ(e1)

) = φτ (e1)(ξ · ζ(Xē1)).

We remark that it is not required that φc(ξ · ζ(Xc)) = ζ ′(X ′
χ(c)), but this can easily be

arranged by redefining ξ(δ(c)) to be ϵ · ξ(δ(c)).

6. Classification of hyperbolic groups up to boundary homeomorphism from their JSJs

We are now ready to prove our first classification theorem, characterising the homeo-
morphism type of the Gromov boundary of a one-ended hyperbolic group from its JSJ tree
of cylinders.

THEOREM 6·1. Let G be a one-ended hyperbolic group with non-trivial JSJ decompos-
ition, with T := Cyl(G). Let X be an algebraic tree of spaces for G over T . Let ζ0 be
the trivial partial orientation on X. Take the initial decoration δ0 on T to be by vertex
type (‘cylindrical’, ‘rigid’, or ‘hanging’) and relative boundary homeomorphism type. Per-
form neighbour, cylinder, and vertex refinement until all three stabilise to give a decoration
δ : T → O and a partial orientation ζ of X.

Let G ′ be another one-ended hyperbolic group with non-trivial JSJ decomposition over
two-ended subgroups. Define T ′, X ′, δ′

0, ζ ′
0, δ′ : T ′ → O′, and ζ ′ as we did for G. Then

∂G is homeomorphic to ∂G ′ if and only if there exists a bijection β : Im δ → Im δ′ and a
ξ ∈ {−1, 1}O such that:

(i) δ0 ◦ δ−1 = δ′
0 ◦ (δ′)−1 ◦ β;

(ii) when the rows and columns of S(T ′, δ′,O′) are given the β–induced ordering from
S(T, δ,O), we have S(T, δ,O) = S(T ′, δ′,O′);
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(iii) for every o ∈ Im δ such that δ−1(o) consists of non-elementary vertices there exists
(equivalently, for every) v ∈ δ−1(o) and v′ ∈ (δ′)−1(β(o)) so that

Homeo((∂ Xv, ∂Pv, β ◦ δ, ξ · ζ ), (∂ X ′
v′, ∂P′

v′, δ
′, ζ ′))

is nonempty;
(iv) for every o ∈ Im δ such that δ−1(o) consists of cylindrical vertices there exists (equi-

valently, for every) c ∈ δ−1(o) and c′ ∈ (δ′)−1(β(o)) such that 7δ,ξ ·ζ
c = 7

δ′,ζ ′

c′ ◦ β.

Proof. Since the initial decorations δ0 and δ′
0 are trivial, the given conditions are equival-

ent, by Theorem 5·13 for boundary homeomorphism, to the existence of χ ∈ Isom(T, T ′)
such that:

(i) for every vertex v ∈ T there exists φv ∈ Homeo((∂ Xv, ∂Pv), (∂ X ′
χ(v), ∂P′

χ(v))), such
that χ |lk(v) = (φv)∗;

(ii) for every edge e ∈ T we have ∂αχ(e) ◦ φι(e) = φτ (e) ◦ ∂αe.

These conditions say there exists an isomorphism χ : T → T ′ and a tree of boundary
homeomorphisms over χ compatible with X and X ′. By Theorem 2·25, this is equivalent to
the existence of a boundary homeomorphism between ∂ X and ∂ X ′, hence between ∂G and
∂G ′.

7. Quasi-isometry classification of groups from their two-ended JSJ splittings

We are now almost ready to prove our second main theorem, characterising the quasi-
isometry type of a finitely presented one-ended group from its JSJ tree of cylinders. Before
doing so, we explain the extreme flexibity provided by the hanging vertices of the tree.

7·1. Quasi-isometric flexibility of hanging spaces

Recall that the fixed model space for hanging vertices is the universal cover of a fixed
hyperbolic pair of pants -, with peripheral structure consisting of the coarse equivalence
classes of the boundary components of -̃.

PROPOSITION 7·1 (cf [2, theorem 1·2]). Let G be a finitely presented, one-ended group
admitting a JSJ decomposition over two-ended subgroups with two-ended cylinder stabil-
isers. Let ! := G\Cyl(G) and T := Cyl(G) = T (!). Let X be an algebraic tree of spaces
for G over T . Let v be a hanging vertex in &. Let δ : T → O be a QI(X)–invariant decor-
ation and let ζ be a QI(X)–invariant partial orientation. For each edge e ∈ & incident to
v, choose a positive real parameter σe. Let δ′ : ∂-̃ → O be a decoration of the peripheral
structure of -̃ and let ζ ′ be a partial orientation of ∂- such that QI(-̃, ∂-̃, δ′, ζ ′) acts
coboundedly on -̃.

Suppose that for some e0 ∈ lk(̃v) we are given a coarse similitude φ|Xe0
from Xe0 to a

component B0 of ∂-̃ that respects the decoration and partial orientations. Suppose further
that there exists a φ′ ∈ QIsom((Xv,Pv, δ, ζ ), (-̃, ∂-̃, δ′, ζ ′)) such that φ′(Xe) = B0. Then
there exists φ ∈ QIsom((Xv,Pv, δ, ζ ), (-̃, ∂-̃, δ′, ζ )) extending φ|Xe0

that, for each edge
e ∈ lk(v) \ {e0}, restricts to be a coarse similitude with multiplicative constant σe on Xe.

The quasi-isometry constants of φ can be bounded in terms of Gv, Pv, the coboundedness
constant for QI(-̃, ∂-̃, δ′, ζ ′) ! -̃, the constants of φ|Xe0

, and the σv.

Sketch. The proof follows the same argument as [2, theorem 1·2]. The idea is to build φ

inductively, peripheral set by peripheral set. We start with φXe0
. Let σ0 be the multiplicative
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constant of φXe0

. Then we want to extend φ to peripheral sets that come close to Xe0 in Xv,
sending these to components of ∂-̃ that come close to φ(Xe0).

For another peripheral set Xe, the number of peripheral sets in the QI(Xv,Pv, δ, ζ )–orbit
of Xe that come within some fixed distance K of a subsegment of Xe0 of length l is coarsely
dl for some d > 0.

Let d ′
r be such that there are coarsely d ′

r l peripheral sets in the QI(-̃, ∂-̃, δ′, ζ ′)–
orbit of φ′(Xe) that come within r of a subsegment of B0 of length l. The fact that
QI(-̃, ∂-̃, δ′, ζ ′) ! -̃ is C–cobounded for some C says that d ′

C > 0, and, in fact, d ′
r

grows exponentially in r . This means that there is a logarithmically growing function whose
value R at d/σ0 is such that d ′

R " d/σ0. Thus, for any l there is a way to send the dl elements
in the QI(Xv,Pv, δ, ζ )–orbit of Xe that come within distance K of a length l subsegment S
of Xe0 injectively to the peripheral sets in the QI(-̃, ∂-̃, δ′, ζ ′)–orbit of φ′(Xe) that come
within R of the length approximately σ0l subsegment φ|Xe(S) of B0.

In this way one builds a matching between the peripheral sets that come close to Xe0 and
the peripheral sets that come close to B0, respecting decorations and partial orientations.
Then φ is defined along such a matched pair to be a coarse similarity with the appropriate
σe as multiplicative constant, and the neighbour-matching is repeated for each such pair.

7·2. Geometric trees of spaces for groups with two-ended cylinders stabilisers

Let G be a finitely presented, one-ended group admitting a JSJ decomposition over
two-ended subgroups with two-ended cylinder stabilisers. Let ! := G\Cyl(G) and T :=
Cyl(G) = T (!).

Recall that in Section 2·5 we built an algebraic tree of spaces Y quasi-isometric to G,
and gave conditions for a collection of quasi-isometries of the vertex spaces to patch to-
gether to give a quasi-isometry of Y . Now we will construct a geometric tree of spaces X
by uniformising the vertex spaces, that is, replacing each vertex space by its uniform model
from Section 4·5. The quasi-isometries between vertex spaces and their uniform models will
patch together to give a quasi-isometry from Y to X . Therefore, X will be quasi-isometric
to G. The price to pay for uniformising the vertex spaces is that in general G only admits a
cobounded quasi-action on X , not a cocompact action, but this will not affect us.

We use the same notation as in Section 2·5. Let Y be the algebraic tree of spaces con-
structed there. For a relatively rigid vertex v ∈ &, fix a quasi-isometry νv : (Gv,Pv) →
(Z!(Gv,Pv)",P!(Gv,Pv)") from Gv to the chosen model space for the relative quasi-isometry
type of (Gv,Pv).

If Gv is virtually cyclic choose a cyclic subgroup ⟨zv⟩ < Gv of minimal index. Define νv

by sending Gv onto ⟨zv⟩ by closest point projection and sending zk
v to kσv ∈ R, where σv is a

positive real parameter chosen as follows. If v is not adjacent to any quasi-isometrically rigid
vertices then choose σv := 1. Otherwise, choose σv := min ℓXw

(zv), where the minimum is
taken over quasi-isometrically rigid vertices w adjacent to v.

Remark 7·2. This choice of σv’s is convenient because it will imply, for an edge e with
ι(e) cylindrical and τ (e) rigid, that the attaching map αX

e constructed below is a coarse
similitude whose multiplicative constant is equal to the stretch factor relStr(e) defined in
Section 4·6.

For a hanging vertex v ∈ & we define νv as follows. For each edge e ∈ lk(v) choose a
cyclic subgroup ⟨ze⟩ < Ge of minimal index. Define

νv : (Gv,Pv) −→ (Z!(Gv,Pv)",P!(Gv,Pv)")
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to be a quasi-isometry such that for each e ∈ lk(v), each coset of Ge, which is a peripheral
set in Pv, is sent to a peripheral set in P!(Gv,Pv)" by a coarse similitude with multiplicative
constant:

[⟨zτ (e)⟩:⟨zτ (e)⟩"⟨ze⟩]
[⟨ze⟩:⟨zτ (e)⟩"⟨ze⟩] · στ (e)

ℓGv
(ze)

.

Here, ℓGv
(ze) is the translation length of ze in the Cayley graph of Gv, which is non-zero

since Gv is hyperbolic, and στ (e) is the parameter for Gτ (e) chosen above. Such a quasi-
isometry can be constructed using Proposition 7·1. These particular values are chosen to
make Lemma 7·3, below, true.

Now, for each vertex v ∈ VT define Xv to be a copy of Z!(Gv,Pv)" with isometry µv : Xv →
Z!(Gv,Pv)". Define φv : Yv → Xv by x /→ µ−1

v ◦ νv(h−1
(v,i)x).

We define edge spaces and attaching maps in X to be compatible with those of Y , as
follows. Consider an edge e with v := ι(e) and w := τ (e). There are h(v,i) and g(e, j) such
that v = h(v,i )̃v and e = h(v,i)g(e, j )̃e. Define αX

e := φw ◦ αY
e ◦ πYe ◦ φ−1

v , where πYe denotes
closest point projection to Ye. The map αX

e is coarsely well defined, since πYe moves points
of φ−1

v (Xe) bounded distance. Define αX
ē := φv ◦ αY

ē ◦ πYē ◦ φ−1
w , where πYē is closest point

projection from Yw to the coarsely dense subset Yē. This map is well defined, and is a quasi-
isometry inverse to αX

e , since πYē moves points bounded distance.
Chasing through these definitions on easily demonstrates:

LEMMA 7·3. If c = ι(e) is cylindrical and v = τ (e) is hanging then αX
e : Xc → Xv is a

coarse isometric embedding.

PROPOSITION 7·4. With notation as above, G and X are quasi-isometric.

Proof. G is quasi-isometric to Y by construction. Proposition 2·14 implies X and Y are
quasi-isometric, since (φv) is a tree of quasi-isometries over the identity on T compatible
with X and Y .

7·3. Quasi-isometries

Let G be a finitely presented, one-ended group with non-trivial JSJ decomposition over
two-ended subgroups such that:

(i) every non-elementary vertex is either hanging or quasi-isometrically rigid relative to
the peripheral structure coming from incident edge groups.

(ii) cylinder stabilisers are two-ended.

If Question 1 has positive answer then every one-ended hyperbolic group with a non-
trivial JSJ decomposition is of this form.

THEOREM 7·5. Let G and G ′ be finitely presented, one-ended groups with non-trivial
JSJ decompositions over two-ended subgroups with two-ended cylinder stabilisers.

Let T := Cyl(G). Let X be a geometric tree of spaces for G over T , as in Section 7·2.
Let ζ0 be the trivial partial orientation on X. Let δ0 the decoration on T that sends an edge
e incident to a rigid vertex to its relative stretch factor relStr(e) as in Definition 4·17, sends
other edges to ‘NULL’, and sends vertices to their vertex type (‘cylindrical’, ‘rigid’, or
‘hanging’) and relative quasi-isometry type. Let ζ0 be the trivial partial orientation on X.
Perform neighbour, cylinder, and vertex refinement until all three stabilise to give a decora-
tion δ : T → O and a partial orientation ζ of X.
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Define T ′, X ′, δ′

0, ζ ′
0, δ′ : T ′ → O′, and ζ ′ for G ′ as we did for G. In particular, X ′ is

uniformised with respect to the same choice of model spaces from Definition 4·15.
Then G and G ′ are quasi-isometric if and only if there exists a bijection β : Im δ → Im δ′

and ξ ∈ {−1, 1}O such that:
(i) δ0 ◦ δ−1 = δ′

0 ◦ (δ′)−1 ◦ β;
(ii) when the rows and columns of S(T ′, δ′,O′) are given the β–induced ordering from

S(T, δ,O), we have S(T, δ,O) = S(T ′, δ′,O′);
(iii) for every o ∈ Im δ such that δ−1(o) consists of non-elementary vertices there exists

(equivalently, for every) v ∈ δ−1(o) and v′ ∈ (δ′)−1(β(o)) so that

QIsom((Xv,Pv, β ◦ δ, ξ · ζ ), (X ′
v′,P′

v′, δ
′, ζ ′))

is nonempty;
(iv) for every o ∈ Im δ such that δ−1(o) consists of cylindrical vertices, there exists (equi-

valently, for every) c ∈ δ−1(o) and c′ ∈ (δ′)−1(β(o)) such that 7δ,ξ ·ζ
c = 7

δ′,ζ ′

c′ ◦ β.

The construction is a modification of the proof of Theorem 5·13. Recall in that case we
inductively built χ ∈ Isom((T, δ), (T, δ′)) and quasi-isometries

φv ∈ QIsom((Xv,Pv, β ◦ δ, ξ · ζ ), (X ′
χ(v),P′

χ(v), δ
′, ζ ′))

such that (φv)∗ = χ |lk(v). The proof of Theorem 5·13 mainly focuses on the inductive step
in the link of a cylindrical vertex, and chooses any φv as above such that (φv)∗ agrees with
χ on the incoming edge to v.

In the present context we must be more careful about the choices of the φv. The proof in
Theorem 5·13 gives us a collection of quasi-isometries (φv) such that for every edge e ∈ T
with ι(e) cylindrical we have that (αχ(e) ◦ φι(e)) ◦ (φτ (e) ◦ αe)

−1 is orientation preserving on
X ′

χ(e)
, but now we require it to be coarsely the identity on X ′

χ(e)
. Furthermore, we need the

quasi-isometry constants of the φv to be uniformly bounded.
Here is how we achieve these requirements. Hanging vertices present no obstacles, since

by Proposition 7·1 they are so flexible. The real work is in dealing with the rigid vertices. For
these we choose in advance a finite number of quasi-isometries to use as building blocks.
Since the collection is finite, the constants are uniformly bounded. We will choose the maps
on cylinder spaces to be coarse isometries. It then remains to see that if e ∈ ET is an edge
with c := ι(e) cylindrical and v := τ (e) relatively rigid, that we can make φc agree with a
map φv constructed from the pre-chosen building blocks. We assume we have chosen enough
building blocks so that we can make (φv)∗(e) = (φc)∗(e), with the correct orientation on Xē.
This is handled by the same considerations as Theorem 5·13. Additionally, we have set
up the geometric tree of spaces so that the edge inclusion into a rigid vertex is a coarse
similitude whose multiplicative constant is the stretch factor of the edge. Since we have
incorporated the stretch factors into the decorations, we are guaranteed that the stretch factor
on e matches the stretch factor on χ(e). It follows that (αχ(e) ◦ φc) ◦ (φv ◦ αe)

−1 is a coarse
isometry that is orientation preserving. Finally, we make it coarsely the identity by adjusting
φv using the group action.

Proof of Theorem 7·5. By Theorem 2·8, Corollary 2·9, Proposition 2·14, and Proposi-
tion 4·14, X and X ′ are quasi-isometric if and only if there exists a tree of quasi-isometries
over an element of Isom((T, δ0), (T ′, δ′

0)) compatible with X and X ′.
The existence of a tree of quasi-isometries over an element of Isom((T, δ0), (T ′, δ′

0)) com-
patible with X and X ′ implies the above conditions. Our goal is to show the converse.
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Suppose o ∈ O is an ornament such that δ−1(o) consists of vertices that are relatively
quasi-isometrically rigid. Choose representatives vo,1, . . . , vo,io of the G–orbits contained
in δ−1(o). Suppose o′ ∈ O is an ornament such that δ−1(o′) consists of edges incident to
v ∈ δ−1(o). For each 1 ! i ! io choose representatives eo,i,o′,1, . . . , eo,i,o′, jo′ of the Gvo,i –
orbits in δ−1(o′) " lk(vo,i ). For each i and j choose

;o,i,o′, j ∈ QIsom((Xvo,i ,Pvo,i , δ, ξ · ζ ), (Xvo,1,Pvo,1, δ, ξ · ζ ))

such that (;o,i,o′, j )∗(eo,i,o′, j ) = eo,1,o′,1. Such quasi-isometries exist by Proposition 5·9.
Similarly choose representatives v′

β(o),1, . . . , v
′
β(o),i ′

β(o)
of the G ′–orbits contained in

(δ′)−1(β(o)) and representatives e′
β(o),i,β(o′),1, . . . , e′

β(o),i,β(o′), j ′
β(o′)

of the G ′
vβ(o),i

–orbits in

(δ′)−1(β(o′)) " lk(v′
β(o),i ) and quasi-isometries ;′

β(o),i,β(o′), j .
Choose a quasi-isometry ;o,o′ ∈ QIsom((Xvo,1,Pvo,1, δ, ξ · ζ ), (X ′

v′
β(o),1

,P′
v′

β(o),1
, δ′, ζ ′)) that

takes eo,1,o′,1 to e′
β(o),1,β(o′),1. Such a quasi-isometry exists by condition (iii) and Proposi-

tion 5·9. If eo,1,o′,1 is ζ–unoriented then we also choose

;−
o,o′ ∈ QIsom((Xvo,1,Pvo,1, δ, ξ · ζ ), (X ′

v′
β(o),1

,P′
v′

β(o),1
, δ′, ζ ′))

that takes eo,1,o′,1 to e′
β(o),1,β(o′),1 such that ;−

o,o′ ◦(;o,o′)−1 orientation reversing on X ′
ē′
β(o),1,β(o′),1

.
Such a quasi-isometry exists by Corollary 5·10.

We have chosen finitely many quasi-isometries ;, so they have uniformly bounded quasi-
isometry constants.

Induction base case. Begin the induction by choosing a cylindrical vertex c ∈ T and a
cylindrical vertex c′ ∈ (δ′)−1(β(δ(c))). Define χ(c) := c′. By construction Xc and X ′

c′ are
copies of R. Define φc : Xc → X ′

c′ to be an isometry. If c is ζ–oriented we choose φc so that
φc(ξ · ζ(Xc)) = ζ ′(X ′

c′). Extend χ to lk(c) as in Theorem 5·13.

Inductive steps for non-elementary vertices. Suppose v = τ (e) is a non-elementary vertex
such that for c = ι(e) we have already defined a coarse isometry φc : Xc → X ′

χ(c) and
χ |lk(c). Suppose further that if c is ζ–oriented then φc(ξ · ζ(Xc)) = ζ ′(X ′

χ(c)). Let c′ := χ(c)
and e′ := χ(e).

Suppose v is rigid. Now gv = vδ(v0),i for some g ∈ G and some i , and hge = eδ(v),i,δ(e), j

for some j and some h ∈ Gvδ(v),i . Similarly, there are g′ ∈ G ′ and i ′ such that g′v′ = v′
β(δ(v)),i ′ ,

and j ′ and h′ ∈ G ′
v′

β(δ(v)),i ′
such that h′g′e′ = e′

β(δ(v)),i ′,β(δ(e)), j ′ .
The map

(h′g′)−1 ◦ (;′
β(δ(v0)),i ′,β(δ(e)), j ′)

−1 ◦ ;δ(v0),δ(e) ◦ ;δ(v0),i,δ(e), j ◦ hg

is an element of QIsom(Xv0,Pv0, β ◦ δ, ξ · ζ ), (X ′
v′

0
,P′

v′
0
, δ′, ζ ′)) taking e to e′.

If e is ζ–unoriented then we also have that the map

(h′g′)−1 ◦ (;′
β(δ(v0)),i ′,β(δ(e)), j ′)

−1 ◦ ;−
δ(v0),δ(e) ◦ ;δ(v0),i,δ(e), j ◦ hg

is an element of QIsom(Xv0,Pv0, β ◦ δ, ξ · ζ ), (X ′
v′

0
,P′

v′
0
, δ′, ζ ′)) taking e to e′. For one of

these two, the composition with αe ◦ (φc)
−1 ◦ (α′

e′)−1 is orientation preserving on Xē. Choose
this one as φ′

v.
Finally, choose a point x ∈ Xē. Since edge stabilisers act uniformly coboundedly on

their corresponding peripheral sets, we can choose an element k ∈ G ′
ē′ that is orientation

preserving on X ′
ē′ and such that kφ′

v(x) is boundedly close to α′
e′ ◦ φc ◦ (αe)

−1(x). Define
φv := kφ′

v. We have:
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(i) φv ∈ QIsom((Xv0,Pv0, β ◦ δ, ξ · ζ ), (X ′

v′
0
,P′

v′
0
, δ′, ζ ′));

(ii) (φv)∗(e) = e′;
(iii) φv(x) is boundedly close to α′

e′ ◦ φc ◦ (αe)
−1(x);

(iv) φv ◦ (α′
e′ ◦ φc ◦ (αe)

−1)−1 is orientation preserving on X ′
ē′ ;

(v) φv is a composition of three of the pre-chosen ; with multiplication by five group
elements, so the quasi-isometry constants of φv are bounded in terms of those of the
; and the constants for the group action.

By relative quasi-isometric rigidity, φv is a coarse isometry.
We also claim that α′

e′ ◦φc ◦ (αe)
−1 is a coarse isometry. This is because φc is a coarse iso-

metry, by the induction hypothesis, and αe and α′
e′ are, by construction (recall Remark 7·2),

coarse similitudes with multiplicative constants relStr(e) and relStr(e′), which are equal,
since:

relStr(e) = δ0 ◦ δ−1(δ(e)) = δ′
0 ◦ (δ′)−1 ◦ β(δ(e)) = δ′

0 ◦ (δ′)−1(δ′(e′)) = δ′
0(e

′) = relStr(e′).

Thus, φv◦(α′
e′ ◦φc◦(αe)

−1)−1 is orientation preserving coarse isometry on X ′
ē′ that coarsely

fixes a point. It follows that φv|Xē and α′
e′ ◦ φc ◦ (αe)

−1 are coarsely equivalent.
Define χ |lk(v) := (φv)∗.
For each edge e′′ ∈ lk(v) \ {ē} define φτ (e′′) := α′

χ(e′′) ◦ φv ◦ (αe′′)−1. Since φv is a coarse
isometry and αe′′ and α′

χ(e′′) are coarse similitudes with the same multiplicative constant, as
above, we have that φτ (e′′) is a coarse isometry.

Suppose v is hanging. The map α′
e′ ◦ φc ◦ (αe)

−1 : Xē → X ′
ē′ is a coarse isometry, since

attaching maps to hanging vertex spaces are coarse isometries by Lemma 7·3 and φc is a
coarse isometry by the induction hypothesis.

Use condition (iii) and Proposition 7·1 to produce a quasi-isometry

φv ∈ QIsom((Xv,Pv, β ◦ δ, ξ · ζ ), (X ′
v′,P′

v′, δ
′, ζ ′))

that is a coarse isometry along each peripheral subset and that coarsely agrees with α′
e′ ◦φc ◦

(αe)
−1 on Xē.

Define χ |lk(v) := (φv)∗.
For each e′′ ∈ lk(v) \ {ē} the map φτ (e′′) := α′

χ(e′′) ◦ φv ◦ (αe′′)−1 is a coarse isometry, since
attaching maps to hanging vertex spaces are coarse isometries by Lemma 7·3, and φv is a
coarse isometry along peripheral sets by construction.

Inductive step for cylindrical vertices. Suppose c = ι(e) is cylindrical, χ is defined
on e, φτ (e) is defined, and φc is a coarse isometry such that φc is coarsely equivalent to
(α′

χ(e))
−1 ◦ φτ (e) ◦ αe. Extend χ to lk(c) \ {e} as in Theorem 5·13.

This completes the induction. The result is χ ∈ Isom((T, δ), (T ′, δ′)) and uniform quasi-
isometries (φv) satisfying the conditions of Corollary 2·16, so (φv) is a tree of quasi-
isometries over χ compatible with X and X ′, as desired.
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