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Abstract: We consider a ‘contracting boundary’ of a proper geodesic metric space consisting of equivalence
classes of geodesic rays that behave like geodesics in ahyperbolic space.We topologize this set via theGromov
product, in analogy to the topology of the boundary of a hyperbolic space. We show that when the space is
not hyperbolic, quasi-isometries do not necessarily give homeomorphisms of this boundary. Continuity can
fail even when the spaces are required to be CAT(0). We show this by constructing an explicit example.
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1 Introduction
In an extremely in�uential paper, Gromov [7] introduced hyperbolic spaces and their boundaries. Among
myriad applications, the topological type of the boundary provides a quasi-isometry invariant of the space,
since quasi-isometries of hyperbolic spaces extend to homeomorphisms of their boundaries.

Recently Charney and Sultan [4] introduced a quasi-isometry invariant ‘contracting boundary’ for CAT(0)
spaces, consisting of those equivalence classes of geodesic rays that are ‘contracting’, which is to say that
they behave like geodesic rays in a hyperbolic space in a certain quanti�able way. As a set, the contracting
boundary of a CAT(0) space can be naturally viewed as a subset of the visual boundary of the space. A quasi-
isometry does induce a bijection of this contracting subset, even though it does not necessarily induce a
homeomorphism of the entire visual boundary. Charney and Sultanwere unable to determine if this bijection
is a homeomorphism with respect to the subspace topology. Instead, they de�ne a �ner topology that they
show to be quasi-isometrically invariant.We answer their question in the negative: quasi-isometries of CAT(0)
spaces do not, in general, induce homeomorphisms of the contracting boundary with the subspace topology.
We do so by constructing an explicit example.

2 The contracting boundary and Gromov product topology
Let X be a proper geodesic metric space. Let γ be a geodesic ray in X, and de�ne the closest point projection
map πγ : X → 2X by πγ(x) := {y ∈ γ | d(x, y) = d(x, γ)}. Properness of X guarantees that the empty set is not
in the image of πγ .
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A geodesic ray γ in X is contracting if there exists a non-decreasing, eventually non-negative function ρ
such that limr→∞ ρ(r)/r = 0 and such that for all x and y in X, if d(x, y) ≤ d(x, γ) then diam πγ(x) ∪ πγ(y) ≤
ρ(d(x, γ)). The ray is strongly contracting if the function ρ can be chosen to be bounded.

A geodesic ray γ in X is Morse if there exists a function µ such that if α is a (λ, ϵ)–quasi-geodesic with
endpoints on γ, then α is contained in the µ(λ, ϵ)–neighborhood of γ.

It is not hard to show that a contracting ray is Morse. Cordes [5] generalizes the Charney-Sultan construc-
tion by building a ‘Morse boundary’ consisting of equivalence classes of Morse geodesic rays in an arbitrary
geodesic metric space. In fact, the Morse and contracting properties are equivalent in geodesic metric spaces
[1], so we can just as well call Cordes’s construction the contracting boundary, where we allow rays satisfying
the more general version of contraction de�ned above.

Let us describe the points of the contracting boundary. For points x, y, z ∈ X, the Gromov product of x
and y with respect to z is de�ned by:

(x · y)z :=
1
2(d(x, z) + d(y, z) − d(x, y))

Fix a basepoint o ∈ X and consider contracting geodesic rays based at o. De�ne an equivalence relation
by α ∼ β if limi,j→∞(α(i) · β(j))o = ∞. This relation is transitive on contracting geodesic rays because con-
tracting rays are Morse and Morse rays are related if and only if they are at bounded Hausdor� distance from
one another. De�ne the contracting boundary ∂cX to be the set of equivalence classes. It is easy to see that
a quasi-isometry ϕ of X induces a bijection ∂cϕ of ∂cX. It remains to de�ne a topology on ∂cX and check
continuity of ∂cϕ.

The topology is de�ned by restricting to ∂cX the usual construction of the ‘ideal’ or ‘Gromov’ boundary
(cf. [2, 3, 7]). Extend the Gromov product to ∂cX by:

(η · ζ )o := sup
α∈η, β∈ζ

lim inf
i,j→∞

(α(i) · β(j))o

Given η ∈ ∂cX and r > 0, de�ne U(η, r) := {ζ ∈ ∂cX | (η · ζ )o ≥ r}. De�ne the Gromov product topology on
∂cX to be the topology such that a set U ⊂ ∂cX is open if for every η ∈ U there exists an r > 0 such that
U(η, r) ⊂ U. Denote the contracting boundary with this topology ∂Gpc X.

When X is hyperbolic ∂Gpc X is the usual Gromov boundary. When X is CAT(0) ∂Gpc X is homeomorphic to
the contracting subset of the visual boundary with the subspace topology.

Note that Uη := {U(η, r) | r > 0} is not necessarily a neighborhood basis at η in this topology. We do
not need this fact for the conclusions of Section 3, but, as it may be of separate interest, we give a su�cient
condition. Some spaces satisfy a contraction alternative in the sense that every geodesic ray is either strongly
contracting or not contracting. We will say that such a space is CA. By [1], CA is equivalent to “every Morse
geodesic ray is strongly contracting.” Examples of CA spaces include hyperbolic spaces, in which geodesic
rays are uniformly strongly contracting, and CAT(0) spaces [8].

Proposition. If X is a proper geodesic CA metric space then for all η ∈ ∂cX the setUη is a neighborhood basis
at η in ∂Gpc X.

Proof. A standard topological argument shows that Uη is a neighborhood basis at η if and only if:

∀r > 0, ∃Rη > r, ∀ζ ∈ U(η, Rη), ∃Rζ > 0 such that U(ζ , Rζ ) ⊂ U(η, r) (})

Suppose α is a contractinggeodesic raybasedat o. By the contractionalternative it is strongly contracting,
so there exists a C ≥ 0 bounding its contraction function. For brevity, let us say that α is ‘C–strongly contract-
ing’. The Geodesic Image Theorem (GIT), [1, cf. Theorem 7.1], implies that if β is a geodesic segment that stays
at least distance 2C from α then the diameter of πα(β) is at most 4C. It follows easily that if β is a geodesic ray
based at o then α and β are asymptotic if and only if β is contained in the closed 6C–neighborhood of α. In
fact, this can be improved to 5C by a further application of the de�nition of strong contraction.

If A is a contracting set and B is bounded Hausdor� distance from A then B is also contracting, with
contraction function determined by that of A and the Hausdor� distance [1, Lemma 6.3]. In particular, if α is
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C–strongly contracting then there exists a C′ depending only on C such that every geodesic ray α′ based at
o and asymptotic to α is C′–strongly contracting. Thus, for a given η ∈ ∂cX there exists a Cη such that every
geodesic ray α ∈ η is Cη–strongly contracting.

Claim: Given η ∈ ∂cX there exists Kη ≥ 0 such that for all ζ ∈ ∂cX \ {η} and all α ∈ η, β ∈ ζ , if
T(α, β) := max{t | d(β(t), α) = 2Cη} then |T(α, β) − (η · ζ )o| ≤ Kη.

Assuming the Claim, we show that condition (}) is satis�ed. Let η ∈ ∂cX and r > 0. Set Rη := r + 2Kη +
13Cη. For ζ ∈ U(η, Rη), set Rζ := (ζ · η)o + Kη + Kζ + 6Cη + 4Cζ . Suppose that ξ ∈ U(ζ , Rζ ). Choose α ∈ η,
β ∈ ζ , and γ ∈ ξ . Let x := γ(T(β, γ)) and let y be a point of β at distance 2Cη from x. Let z := β(T(α, β)). Let
w := γ(T(α, γ)).

d(y, α) ≥ d(y, z) − 6Cη by the GIT
= d(o, y) − d(o, z) − 6Cη
≥ d(o, x) − d(o, z) − 6Cη − 2Cζ
≥ (ξ · ζ )o − (ζ · η)o − Kη − Kζ − 6Cη − 2Cζ by the Claim, twice
≥ Rζ − (ζ · η)o − Kη − Kζ − 6Cη − 2Cζ since ξ ∈ U(ζ , Rζ )
= 2Cζ = d(x, y)

Since d(x, y) ≤ d(y, α), the contraction property for α says the diameter of πα(x)∪πα(y) is at most Cη. With the
GIT, this tells us the diameter of πα(β([T(α, β),∞)))∪πα(γ([T(α, γ),∞))) is at most 9Cη. Thus, d(w, z) ≤ 13Cη.
The Claim gives us d(o, z) ≥ Rη − Kη, so d(o, w) ≥ d(o, z) − 13Cη ≥ Rη − Kη − 13Cη > r + Kη, which, by the
Claim again, yields (ξ · η)o ≥ r. Hence, U(ζ , Rζ ) ⊂ U(η, r).

It remains to prove the claim. Let α, α′ ∈ η and β, β′ ∈ ζ be arbitrary.
Consider s, t � T(α, β). Let γ be a geodesic from α(s) to β(t). Let z be the last point on γ at distance 2Cη

from α. Let y ∈ πα(β(t)). Let x := β(T(α, β)). The GIT says the projection of the subsegment of β between x and
β(t) has diameter at most 4Cη, as does the projection of the subsegment of γ from z to β(t). Thus d(x, y) ≤ 6Cη
and d(y, z) ≤ 6Cη. It follows that |(α(s) · β(t))o − d(o, y)| ≤ 6Cη, so:

|(α(s) · β(t))o − T(α, β)| ≤ 12Cη (1)

Consider the e�ect of replacing α with α′. For every t we have d(β(t), α) ≥ t − T(α, β) − 6Cη, and α and
α′ have Hausdor� distance at most 5Cη, so d(β(t), α′) ≥ t − T(α, β) − 11Cη. Since d(β(T(α′, β)), α′) = 2Cη we
have T(α′, β) ≤ T(α, β) + 13Cη. The argument is symmetric in α and α′, so we conclude:

|T(α, β) − T(α′, β)| ≤ 13Cη (2)

Now consider the e�ect of replacing β with β′. The Hausdor� distance between them is at most 5Cζ . This
does not admit any a priori bound in terms of Cη. However, eventually points of β are closer to β′ than they
are to α, so we can invoke strong contraction of α and the GIT, twice, to say:

diam πα(β([T(α, β),∞))) ∪ πα(β′([T(α, β′),∞))) ≤ 9Cη

Which tells us:
|T(α, β) − T(α, β′)| ≤ 13Cη (3)

Combining equations (1), (2), and (3), we have, for all s, s′, t, t′ su�ciently large, that |(α(s) · β(t))o − (α′(s′) ·
β′(t′))o| ≤ 50Cη. Thus, for any α ∈ η and β ∈ ζ and for all su�ciently large s and t we have |(α(s) · β(t))o − (η ·
ζ )o| ≤ 50Cη. A further application of equation (1) completes the proof of the Claim with Kη := 62Cη.

3 Pathological Examples
Construct a proper geodesic metric space X from rays α, β, and γi for i ∈ N as follows. Identify α(0) and β(0),
and take this to be the basepoint o. For each i connect γi(0) to α(i) and β(i) by segments of length 2i. Then
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the γi are strongly contracting, and α and β are contracting rays whose contracting function ρ can be taken to
be logarithmic. The essential point is that the projection of γi(0) to α ∪ β has diameter 2i, while the distance
from γi(0) to α ∪ β is 2i.

The contracting boundary of X consists of one point for each of the rays α, β, and γi, which we denote
α(∞), β(∞), and γi(∞), respectively. Compute the Gromov products of boundary points: (α(∞) · γi(∞))o = i =
(β(∞) · γi(∞))o, while (α(∞) · β(∞))o = 0. The sequence (γi(∞))i converges to both α(∞) and β(∞) in ∂Gpc X.
In this example ∂Gpc X is compact but not Hausdor�.

Now consider the space Y obtained from X by rede�ning, for each i, the length of the segment connecting
γi(0) to β to be 2i − 2i. The identity map is a quasi-isometry, but in the new metric (α(∞) · γi(∞))o = 0. The
sequence (γi(∞))i does not converge to α(∞) in ∂Gpc Y. Thus, ∂cId: ∂Gpc X → ∂Gpc Y is not continuous.

Next, we construct a CAT(0) example. Let X′ be the universal cover of the Euclidean planeminus a ball of
radius one. Parameterize X′ by polar coordinatesR × [1,∞). Let α : [0,∞)→ X′ : t 7→ (t, 1) and β : [0,∞)→
X′ : t 7→ (−t, 1). Each of these geodesic rays is π–strongly contracting.

Let X be the proper CAT(0) space obtained from X′ by attaching, for each i ∈ N, a geodesic ray γi with
γi(0) = (i, 2i) ∈ X′. These rays are also strongly contracting.

The contracting boundary of X consists of points corresponding to the γi(∞) and the two points α(∞)
and β(∞). Since α is strongly contracting, it follows that (α(∞) · γi(∞))o = i up to bounded error. Thus, the
sequence (γi(∞))i converges to α(∞) in ∂Gpc X.

Let Y be the proper CAT(0) space obtained from X′ by attaching, for each i ∈ N, a geodesic ray γ′i with
γ′i (0) = (0, 2i) ∈ X′. De�ne ϕ to be the map (t, r) 7→ (t − log2(r), r) on X′, so that ϕ(γi(0)) = γ′i (0). This is
a variation of the well-known logarithmic spiral quasi-isometry of the Euclidean plane. Extend ϕ to all of X
by isometries γi → γ′i for each i. This gives a quasi-isometry ϕ : X → Y, but points in ∂Gpc Y are isolated, so
∂cϕ : ∂Gpc X → ∂Gpc Y is not continuous.

Interesting open questions remain: If ϕ : X → Y is a quasi-isometry between proper geodesic spaces
that have cocompact isometry groups and such that X and Y are CAT(0) (or, more generally, CA), must
∂cϕ : ∂Gpc X → ∂Gpc Y be a homeomorphism? Must ∂Gpc X and ∂Gpc Y be homeomorphic? Note that for visual
boundaries of CAT(0) spaces the second question is much harder than the �rst [6].
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