¢7 5 wiversitat
e wien

Masterarbeit

Titel der Masterarbeit

On Semantic Timecard Based Project Portfolio
Management

angestrebter akademischer Grad

Magister der Sozial- und Wirtschaftswissenschaften (Mag. rer. soc. oec.)

Verfasser: Dmitry Diyachenko

Matrikel-Nummer: 0300077

Studienkennzahl: A 066 926

Studienrichtung: Wirtschaftinformatik

Betreuer: Dipl. Ing. Dr. ao. Univ.-Prof. Renate Motschnig
Dr. Peter Trimmel

Ing. Glnter Baumgartner

Wien, im April 2006

2

Dmitry Diyachenko (0300077)
Table of contents

EXECULIVE SUMMAIYe.veiviciecieeiie ettt ettt ra e e e seesre e e nre e e enaennens 4
EXECULIVE SUMMAIYc.vitieiiiiieiie ettt bbbt bbbt nnn 5
L INEFOAUCTION .. et 6
1.1 MOTIVAEION .t et bbbt 7
1.2 Content Of the theSIS........ciiiieiieire e 8
2 Project portfolio Managementccooeiiriiieie i 10
2.1 Increasing value trough project portfolio management..........c..ccccceevevernennn. 12
2.2 Guideline for portfolio management deploymentcccccoceniienicienenn. 14
2.2.1 Project inVentory preparationccoceveevveeireereneesesesesesnesseeseensenns 14
2.2.2 Project evaluation and prioritizationccoceveiencneninienieee 14
2.2.3 Portfolio monitoring and adaptation...........cccceveveverievinnnseceec e 16
2.2.4 Portfolio management Darriersccocooerirenieenene e 17
2.3 Improving project portfolio management trough the semantic timecard
APPIICALION ... e bbbt 18
2.3.1 Roles participating in the timecard applicationcccccoevevvererenenn 20
3 Building the ontology knowledge base ... 22
3.1 Introduction to the ontology concept and the need for it..........ccccevvevernenne. 25
3.1.1 Adding semantics to the timecard application............ccoccoervniiiincnncnn 28
3.2 Ontology mMark-up lanQUAGESccccveruereresise e 32
B2 L RDF/S ..ottt 33
B2 2 OWL ittt et e bbb ettt 36
3.3 Evaluation of ontology development t00IS..........cccoeveiiiinineninieiee e, 42
3.3 L APOHO. e 44
3.3 2 WEDODEooeiiteiet ettt 45
3. 3.3 ONLOSLUTIO ...t 46
3.3 4 WEDONLO ...t e 46
3.3.5 Protégé 2000........ccceieiieriiriesiieeeeee e 47
3.3.6 Direct t00] COMPATISONcveiuieieiieie ettt 48
3.3.7 Detailed description of the selected ontology development tool........... 50
3.4 Interactive ontology building ProCesscccoeririieie i 53
3.4.1 Taxonomy definitionccccveivevere s 56
3.4.2 ONtOlOgY rEASONINGveiverieieieieiieie ettt 70

R O N1V Y | GO 73

On semantic timecard based project portfolio management 3

4 Web-service based component integration............cccoereeiereieneneieneneese e 76
4.1 SOA and WeD-Services DasICS........cvvviiiiiiiiiee e 77
4.2 Java web-services With TOMCA/AXIScvvvvvreiieieiee e 79

4.2.1 APACHE AXIS coeveiiiciieiieie ettt sttt 81
4.2.2 Java web-service for ontology integration.............ccccevvevvinenninennnnn, 82
4.3 Web-service based back-end application logic integrationc..cccceevaee. 85
4.3.1 Coldfusion appliCation SEIVEN ..ot 85
4.3.2 Allaire Spectra frameworkcccovveveiieiiie i 87
4.3.3 Coldfusion web-service for back-end logic integration...............c.cc...... 88

5 Semantic timecard appliCationccocvviviiieie i 91
5.1 Semantic timecard arChiteCturecoovvvviiieni e 94
5.2 Semantic timecard functionality...........ccccooceviiiieiiiciiici e, 96
5.3 Portfolio inaccuracies and diffiCulties........ccccoevvviiiiicienen e, 104
5.4 Semantic timecard enhancement capabilities.........c..ccccceveviiieie i e, 106

B SUMIMEIY ...ttt bbb r et 107

7 RETEIBNCES ...ttt 109

8 TaDIE OF FIQUIES ... 113

O INAEX OF TADIES.....eiiceiieieiieeee et st sae e saras 115

4 Dmitry Diyachenko (0300077)

Executive summary

In der heutigen komplexen Geschaftswelt werden in den Unternehmen viele
Projekte, welche meistens Abhangigkeiten und Auswirkungen aufeinander aufweisen,
parallel durchgefuhrt. Die Hauptaufgaben des IT-Projekt-Portfolio-Managements sind
die Komplexitat des projektibergreifenden Managements in den Griff zu bekommen
und das Management in die Auswahl und die Abwicklung der IT Projekte mehr zu
integrieren.

Das Ziel dieser Diplomarbeit war es, zu uUberlegen, wie das 1T-Projekt-Portfolio-
Management von Software Losungen unterstlitzt werden konnte. Fir diesen Zweck
wurde eine Ontologienwissensbasis entwickelt, die ausgewéhlte Begriffe der IT
Domaéne und deren Zusammenhénge standardisiert definiert und zuordnet. Diese
Ontologie wird anschlieBend mit Hilfe von Web-Services in einen Timecard
Prototypen integriert, welcher ebenfalls im Rahmen dieser Diplomarbeit entwickelt
wurde, um dem Management erweiterte Technologien- und Dienstleistungs-
portfolioberichte zur Verfiigung stellen zu kénnen. Diese Portfolioberichte basieren
auf den Zeitaufzeichnungsdaten, welche von den Mitarbeitern in deren Timecards
eingetragen werden und auf den Ontologienkomponenten, die anschlielend diese
eingetragenen Daten zu bestimmten Technologien- und Dienstleistungskategorien
zuordnen. Aus diesen Portfolioberichten kann das Management dann ableiten, auf
welche Technologien und Dienstleistungsarten ihr Unternehmen vorwiegend setzt,
um dementsprechend passende IT Projekte fiir die weitere Realisierung auszuwéhlen.
Aufgrund dieser Daten kdnnen ebenfalls Umschulungen rechtzeitig angeordnet
werden, um bestimmten technologischen Trends und Herausforderungen zu geniigen.

Im Zuge dieser Diplomarbeit konnte festgestellt werden, dass wohl definierte und
aussagekréaftige Portfolioberichte nur sehr schwierig zu realisieren sind. Die gréBten
Herausforderungen stellen dabei das eindeutige Zuordnen von IT Technologien und
ein standardisiertes Beflllen von Timecard Formularen dar.

On semantic timecard based project portfolio management 5

Executive summary

The project portfolio management is a very important concept, first of all, for the
organizations dealing with a large number of projects simultaneously. [PR04] A lot of
tasks, like control and overview of all projects, comprehensive resource allocation
and, consequently, well-arranged and cost-cutting expertise and components reuse,
ensuring business strategy alignment, reporting to business executives etc., can be
accurately accomplished by the effective deployment of the project portfolio
management.

The main focus of the current diploma thesis was to consider how the IT project
portfolio management could be effectively supported by the software solutions. For
that purpose a semantic timecard prototype and ontology knowledge base were
designed. The semantic timecard prototype was implemented primarily to support
technology and service portfolios. The ontology knowledge base was thereby built to
define the standardized terms of the IT domain and their mutual relations, as well as
interconnections. The ontology components were integrated via web-services into the
timecard prototype to provide extended portfolio reports, considering technology
structures and interrelations. On the basis of the report data provided, the management
becomes able to discover which technologies and services their organizations are
specialised in and how those trends and tendencies actually change over time. That
information enables management to take customer orders, dealing exclusively with
similar technologies to assure expertise and technologies reuse. On the basis of the
well-investigated trends, essential educational trainings can be afterwards initiated,
too.

While developing the semantic timecard application, one can notice that some
challenges, such as clear IT technology classification and standardized timecard form
completion, are to be faced to provide high quality and accurate portfolio reports.

6 Dmitry Diyachenko (0300077)

1 Introduction

Nowadays the complexity of business processes is increasing rather rapidly
because of the extremely challenging and ambitious customer requirements and
business interconnectedness. Considering globalization aspects and the development
of international trading, the organizations should be able to deal with much more
competitors than several years ago. Those competitors might even have certain
country-specific advantages that allow them to offer similar products at smaller
prices. Customers’ extensive demands and requirements are changing constantly and
have to be met as fast as possible by organizations to survive in that highly
competitive environment. Customer demands not only have to be met fast, but also
with the required quality and within a certain budget. External environment and trends
are changing faster and faster as well. Thus, the business cycles become shorter and
have to be accomplished faster, too.

Due to these facts, the organizations have to be able to adapt to the changing
business environment quickly to ensure their competitiveness in future and to expand
their business activities. It means that organizations have to act flexibly, to be able to
respond to customers’ demands in time and up to standard, to carry out their business
processes and resource allocation proceedings effectively, have control of all business
activities and conform to clearly defined business strategies, goals, responsibilities
and corporate guidelines, as well as standards. To achieve the acceptable flexibility
and effectiveness levels, general concepts have to be reconsidered and improved.
Companies have to switch from hierarchical, fixed line organizations to cooperative
project- and process-oriented corporate structures. Project-oriented corporate
structures allow to perform complex risky tasks and to satisfy customer demands in
flexible and effective ways. [PR0O4] If such customer demands need to be satisfied,
projects with temporary teams have to be launched. Projects are led by project
managers, have clearly defined goals, responsibilities and requirements. Due to the
high level of complexity of the tasks, comprehensive project management has to be
absolutely essentially initiated to ensure the successful completion of projects by
organizations and the resulting satisfaction of customers. More precisely, project

On semantic timecard based project portfolio management 7

management is actually responsible for the planning, scheduling and monitoring of
projects. [PR04]

In today’s business structures projects have dependencies and impacts on each
other, some projects are interrelated or redundant. It is not enough to control and
manage single projects to achieve maximal overall return. Thus, comprehensive multi
project management must be applied additionally. Multi project management is a very
important concept, first of all, for the organizations dealing with a large number of
projects simultaneously. [PR04] A lot of tasks mentioned above, like control and
overview over all projects, comprehensive resource allocation, ensuring of the
business strategy alignment, reporting to the business executives etc. can be
accurately accomplished by the effective deployment of multi project management.
[D03]

The importance of multi project management, that helps to maximize overall return
considerably, has already been realized by many organizations. This thesis deals with
the subject of portfolio management of IT projects. Portfolio management is a specific
concept of multi project management. All the terms will be specified and explained in
detail in chapter 2 “Project Portfolio management”. Another point that has to be
considered is how project portfolio management could be improved and supported by
software applications. For this purpose timecard application will be implemented. The
main part of this diploma thesis deals with considerations about how implementing
timecard could be extended to the semantic component through specified ontology
knowledge base. Building of ontology knowledge base and its integration is thereby
the most challenging procedure.

1.1 Motivation

As it has been mentioned above, project portfolio management is an essential issue
for the organizations dealing with a large number of projects simultaneously. In fact a
lot of organizations do not have a full control over their project portfolios and make
use of poorly organized, chaotic planning processes. [D03] According to the recent
AMR research report, approximately 75% of IT organizations apply project portfolio
management poorly or do not apply it at all. Those companies do not have any clear
idea of what is happening in their project portfolios, which projects are currently
running in their organizations, and there is no clear understanding of the actual value
of those projects for the business. [AMR] In these conditions project portfolio

8 Dmitry Diyachenko (0300077)

management and its adequate use still represent noticeable challenge for many
organizations. It happens, in the first place, because of the lack of understanding
which business advantages could be achieved by project portfolio management and
how it should be applied correctly and effectively. On the other hand, there is no
comprehensive software solution on the market that would completely support
portfolio management activities in an appropriate way. Several independent software
solutions have to be integrated and combined. Generally, it is a very complex and
costly process that can not always be successfully realized. [D03]

Due to these facts, it has to be analyzed how project portfolio management could
be applied within an organization in the best possible way, how it could add value to
the business and help to gain control over the internal projects and business activities
and finally how its deployment could be supported by applying software in an
adequate way. A very important part of this diploma thesis is to implement semantic
timecard application supporting several project portfolio management activities. The
semantic of the timecard application mentioned will be provided by ontology
knowledge base that will be developed within the present thesis, too.

1.2 Content of the thesis

The content of this diploma thesis is restricted to the IT project portfolio
management. It has to be considered how its processes could be improved by creating
a guideline defining a well considered project portfolio management procedure.

Afterwards the timecard application has to be implemented in order to support IT
portfolio management activities. That timecard application should facilitate project
billing and invoicing, and also generate personalized reports concerning single
projects and project portfolios for all roles possibly interacting with our timecard tool.
Therefore it has to be considered which roles will actually interact with the timecard
application and which information could be valuable or interesting for them at all. In
order to deliver extended and high quality reports to all participating roles, certain
semantic components will be added to our timecard application.

This semantic will be provided by the ontology knowledge base including certain
IT technology components, as well as business service categories. The complex
process of the development of the intended ontology will thereby make up the main
part of this diploma thesis. Afterwards the ontology knowledge base will be tested for
its adequate expressiveness level and consistency by the Reasoner server application.

On semantic timecard based project portfolio management 9

It also has to be tested and proved that the modelled ontology is able to deliver
sufficient and required information to our semantic timecard application. After all the
tests are executed successfully, the ontology knowledge base will be integrated into
our timecard application via web-services. It has to be mentioned that the core
timecard functionality will be covered by Coldfusion web-services. Java web-
services, in turn, will be used to integrate semantic components provided by the
ontology knowledge base. All those web-services and their technology architectures
will also be implemented and presented in detail in this diploma thesis.

Finally, the functionality of our timecard application, as well as generated
personalized high quality reports, will be demonstrated and explained in the
circumstantial way.

10 Dmitry Diyachenko (0300077)

2 Project portfolio management

Project portfolio management is a part of multi project management concept. All
the projects in organization can be grouped on the basis of certain criteria (for
example, based on their type or business sector). Projects operating in the same
business area might be classified as follows:

e Procurement projects

e IT projects

o Greenfield projects

e Logistic projects

e Marketing projects

¢ Investment projects

e Construction projects

e Research projects [PR04]

Each project category represents a project portfolio. That project portfolio includes
projects that operate in the same business area and therefore may use many resources
in common, but might possibly have different complexity levels, budgets, duration,
goals and priorities. [PR04 p. 403] The task of project portfolio management is to
select, manage and monitor projects of a specific portfolio. [PR04] This diploma
thesis only deals with the issue of the IT project portfolio management.

Many different project management definitions are available in various existing
publications. To avoid misinterpretations, the most important project management
terms are going to be defined for our thesis. For our purposes the most applicable
definitions of terms will be cited from the literature references. The significant
differences between them will be demonstrated and explained, too.

To speak about management of multiple simultaneously executed projects, the
actual meaning of a single project and its management has to be understood and
defined at first. Many definitions exist in various project management books
explaining what a project actually means. In my opinion, the most comprehensive and
complete definition of the term project is as follows:

On semantic timecard based project portfolio management 11

A project

o is time restricted

o has definite goals

e is a one-time intention

e isacomplex task including subprojects and multiple activities

o includes risky tasks and challenges

e requires comprehensive department collaboration; experts and professionals
from different departments have to collaborate and to cooperate to achieve
common project goals and objectives

e requires a project manager, coordinator and a team [K0O p. 3]

Project management is actually responsible for planning, scheduling and
controlling of those activities that must be performed to achieve project goals and
objectives. [L0OO p. 7]

In large organizations dealing with multiple projects simultaneously, it is not
enough just to implement project management and manage tasks, as well as various
activities, in single projects. Management of multiple projects has to be applied in
order to allocate restricted resources effectively, to set up projects aligning with
business objectives, to maximize overall return. [HO2] Several multi project
management terms often used in literature references are presented below:

Multi project management — is responsible for management of all the starting and
already running projects within an organization. All the projects and their objectives
have to be considered to ensure comprehensive and qualitative multiple project
management. [HO2 p. 25]

Program management — manages multiple projects with the common goals and
business objectives in order to fulfil a higher-level intention (e. g. build an airport
complex) [CK83 p. 159]

Project portfolio management — manages portfolio of similar projects (projects
operating in the same business area) using many resources in common, but with
possibly different goals and objectives [PR04 p. 403]

As already mentioned above, this thesis only deals with the IT project portfolio
management issue. Other multi project management terms were presented to
demonstrate the limits of project portfolio management tasks and responsibility areas
precisely.

12 Dmitry Diyachenko (0300077)

2.1 Increasing value trough project portfolio management

Nowadays a lot of business leaders do not have a clear idea of what projects are
running in their companies and what is going on in their organizations at all. More
and more companies tend to ask questions, which IT projects are going to start soon,
which ones are actually running and which ones have been already completed, why in
fact those projects have been chosen, which profit they brought to the business and
whether these concrete projects align with the corporate objectives? Which current IT
projects have a high degree of importance and are the necessary resources for their
implementation available?

These questions are coming up because of the lack of adequate management
integration during the execution of IT projects. Because of this lack of information the
stakeholders and business executives are often not able to understand and to follow
the importance of the IT projects and their impact on the organizational structures and
development. The IT officers, on the other hand, are not always well informed about
the status and changes of the business strategy. Thus, they are not really able to select
projects aligning with the business objectives and strategies in a satisfactory manner.
Looking at these facts and conditions it is quite easy to understand why many IT
projects failed or were not started: their strategic importance for the future
development of the organization was not recognized or resources for the execution
were not available in time.

Failed projects may cause high additional costs, customer dissatisfaction and
notable reputation damage. Not recognizing the importance of certain strategic
projects can lead to strong business disadvantages resulting in considerable losses of
market share. The consequences might be fatal and can lead to serious financial losses
or, at worst, even to the bankruptcy of the organization.

Consistent and accurate deployment of project portfolio management does not only
help to avoid the situations described above. It also gains overall return of the projects
in certain portfolios through comprehensive resource allocation among the projects,
and also knowledge and components reuse and transparency assurance.

One important task of project portfolio management is to integrate management
into the IT projects in an appropriate way and to improve interaction between the
business leaders and IT officers.

The IT project portfolio management also:

e provides an abstract overview of the starting IT projects [H02]

On semantic timecard based project portfolio management 13

e provides an abstract overview of the currently running IT projects and what is
actually happening in these projects [H02]

o ensures the selection of the projects aligning with the business objectives [PR04]

e grants an overview of all available resources [PR04]

e guarantees handling and selecting projects based on their importance and priority
for the organization, while low priority projects have to wait in queue or get
dropped at all [PR0O4]

e supports effective allocation of the project comprehensive resources; important
resource sets have to be assigned to the projects with the highest strategic priority
as first. Some resources might be used by several projects at a time. [PR04]

o enables effective reuse of knowledge and existing components, functionalities
already implemented or designed in other projects might be reused and integrated
too [PR0O4]

e helps to reduce the number of redundant projects and to kill problematic or
hopeless projects [PR04]

o facilitates project accounting, billing and invoicing [PR04]

e supports project tracking and monitoring [PR04]

e demonstrates project dependencies and impacts on the organization or on each
other [PR04]

e generates reports and provides the project stakeholders with transparent and
personalized information, like project costs, effort, duration, development status,
profits for the organization etc. [H02]

Project portfolio management is an essential issue for the organizations dealing
with a large number of projects simultaneously. In fact a lot of organizations don’t
have control and full overview over their project portfolios and conduct poorly
organized, chaotic planning processes. [D03] As AMR research reports,
approximately 75% of IT organizations apply project portfolio management poorly or
do not apply it at all. These companies do not have any clear idea of what is
happening in their project portfolios, which projects are currently running in their
organizations and there is no clear understanding which profit those projects actually
bring to the business. [AMR]

14 Dmitry Diyachenko (0300077)

2.2 Guideline for portfolio management deployment

There is no single absolutely right way to do the IT project portfolio management.
There are a lot of methodologies developed by academic institutions, different
consulting companies and large corporate groups. [D03] This part of diploma thesis
will try to provide a possible guideline of how IT project portfolio management could
be done well.

The following steps are crucial for the successful project portfolio management:

e Gather relevant information, establish project inventory

e Evaluate and prioritize the projects

e Manage the project portfolio actively, using, among other things, portfolio
monitoring and adaptation to the regularly changing business priorities and
external environment [PR04]

2.2.1 Project inventory preparation

First of all, it is necessary to get a holistic overview of all the activities and projects
running within an organization. All the projects (projects scheduled to start soon,
projects starting, currently running projects, already finished projects) and the detailed
information about them, like duration, funding source, approximate costs, ROI,
business objective and benefits etc., have to be listed and documented in the project
inventory. [D03] The project inventory provides business leaders an outstanding
opportunity to look at all the projects in the IT portfolio and to understand which
goals and business objectives the projects are following, which resources are required
for the implementation etc. Based on well established project inventory, the project
evaluation and prioritization can be applied next.

2.2.2 Project evaluation and prioritization

After the project inventory is established in an appropriate way, it is absolutely
necessary to evaluate and to prioritize projects included in that portfolio
systematically. Business executives have to check to what extent projects listed in IT
project inventory are aligning with the defined business strategies and objectives, how
important single projects are for the business, how certain projects are interrelated and
dependent on each other etc.

On semantic timecard based project portfolio management 15

Usually there are much more projects on master schedule than the organization is
actually able to apply. Thus, on the basis of specified criteria the most important
projects have to be selected and funded. Those defined prioritization criteria are also
used to build the project queue and to determine which projects will be applied first.
[CK83]

If some running projects don’t align with the business strategy at all and also do
not provide acceptable value to the organization, potential consequences, as well as
further proceedings, have to be considered. Those problematic projects might even get
cut off or assigned as low priority projects. Detected redundant or overlapping
projects should be reconsolidated. The comprehensive resource allocation among
projects using similar resources has to be optimized, too. [PR04]

The prioritization criteria can depend on the following items:

o Alignment to business strategy — the project has to achieve business objectives and
strategies

e Project dependencies — dependencies between the projects, impacts on other
projects and organization, e. g. some projects have to be done to set up next
important projects

e Strategic importance - the project is important to ensure the future competitiveness
in a specific business sector

e Urgency — e. g. extra funds might be received from the government or other
financial institution, if the project meets specially defined requirements (e. g. has to
start or to end before certain date)

¢ Realization probability - what is the probability that the project might include risky
tasks, unsolvable challenges etc.

o Profitability — does the project bring high profits to the business

e Cost and duration risks — it is difficult to calculate the expected costs and duration
of the project, potential cost explosions have to be considered etc.

¢ Impacts on the environment — how intensive the impacts of the project on external
environment, on employees, on relationships with the customers, on the
organization itself (management of change) are

e Resource availability — whether the resources necessary for the project are
available, whether there are similar projects running to optimize comprehensive
resource allocation, which software components already exist and might be reused

[K06; PRO4]

16 Dmitry Diyachenko (0300077)

The level of importance of prioritization criteria might differ in various
organizations because of their varying business strategies. According to their business
strategies and objectives, the business executives have to evaluate the above-
mentioned criteria and their significance within an organization. [CK83] After that
criteria evaluation the prioritization of the projects can be performed. Some
organizations are willing to accept more risky projects in order to achieve higher
outcome. Organizations with conservative business strategies prefer to invest in less
risky projects. The final project priority might also be manipulated by other criteria
like its urgency, strategic importance, realization probability etc. [PR04]

Due to the fact that organisations usually have more projects on schedule than
resources available to implement them, the projects most relevant for the business
need to be selected for immediate realization. The remaining projects form a queue
based on their prioritization and wait for their turn. The irrelevant projects with
unacceptable profit expectations even have to be kicked out of the master schedule at
all. This proceeding is called project funnelling. [K06]

Irrelevant Projects

Project G
Project C
g _— . Currently running projects
High priority projects
Project D Project A
Project F
Project E EmicstB
Project x

Figure 1: Project funnelling

The currently running projects are also handled on the basis of their prioritization.
The projects most important and crucial for the organization have priority in
comprehensive resource allocation process, too. [CK83]

2.2.3 Portfolio monitoring and adaptation

Business strategies may change and be adapted in organizations. These changes
have an impact on the prioritization criteria and therefore also on the project

On semantic timecard based project portfolio management 17

priorities. All these changes have to be recognized in time and project priorities need
to be updated regularly. Some projects may be killed as a result of new priority
definitions. [PR04] The status (cost, deadlines etc.) of the projects have to be tracked
continuously and reported to the participating stakeholders (e. g. top management) in
definite intervals. [PR04] The so called project management office is responsible for
the monitoring of project portfolios based on information received from the project
managers [PR04]. The project management office is also responsible for:

o tracking project portfolios

¢ the development of potential project managers

e support and coaching of project manager in critical situations

e reporting to the top management

e assurance of project management quality

¢ introduction of project management standards and guidelines [K06]

2.2.4 Portfolio management barriers

Project portfolio management is able to deliver high value to the business by doing
it well, but there are some barriers which may cause complications in portfolio
management process execution.

e Democracy is not always accepted. The decisions are made by group consensus
and not only by business leaders anymore. Often it is very hard for business
executives to share the power with other participants. However this group decision-
making is crucial to ensure the quality of the portfolio. [D03]

e There is no software that completely supports portfolio management and is able to
solve all the required tasks. To apply portfolio management optimally, several
selected software suites have to be merged and integrated (which is rather costly).
[DO03]

e It is really difficult to get accurate information (project status, resource
requirements, technology costs etc.) [D03]

e It is always hard to make tough decisions and Kill useless projects, especially
projects with high investment costs already running for a long time. [D03]

e Business executives often don’t have enough time to participate in portfolio
management process. [D03]

18 Dmitry Diyachenko (0300077)

These barriers strongly interfere with the accurate project management execution.
They might be resolved through adequate corporate culture and the openness of
management’s attitudes.

2.3 Improving project portfolio management trough the semantic timecard
application

Project portfolio management can be supported by various applications and tools.
There are tools for single project planning, monitoring and tracking, resource
management tools, document management tools, financial management components,
risk management components, project evaluation tools by its prioritization, executive
dashboard components etc.

The task of this diploma thesis is to develop semantic timecard tool supporting
project portfolio management as follows:

o Control over the whole project portfolio - a list of all the projects including detailed
project information

e Project progress and status monitoring

e Comprehensive resource allocation support

e Project billing and invoicing support — transparent cash flows within projects,
facilitating understanding what the money was spent on (project expenditures),
supporting automatic employees billing

o Personalized reports for project staff, project managers, project management office,
and for top management (technology used, performed services reports, capacity
utilization etc.)

The most important part of this thesis is extending the above-mentioned timecard
application with a semantic component. To fulfil this purpose the ontology based
knowledge base prototype has to be designed and implemented. This knowledge base
prototype will consist of different IT technologies (java technology, PHP, XML etc.)
and service categories (software architect, programmer, consultant etc.). The
challenge is to acquire all these technologies, group them, create hierarchies and
relations of the listed technology groups, store designed ontology and adequately
integrate it in timecard application. It is very important to keep in mind that the
knowledge base design has to guarantee its easy extensibility. The integration of the

On semantic timecard based project portfolio management 19

ontology should be realized via web-services to enable flexible component reuse in
various other applications.

The relations between technology components should ensure extended, high
quality management reports and facilitate the completion of timecard forms for
project collaborators.

If a project collaborator wants to report completed tasks, he has to fill in a timecard
form. This timecard form contains input fields like date, project name, task name, task
description, technology and software used, work duration in hours, service type. The
tasks to be fulfilled can be imported from project management application like MS
project. It is very important that task names in the timecard are given according to the
names defined in project planning application to deliver accurate project progress and
project status information. The project collaborators should know in the knowledge
base acquired technology and service categories components. ldeally, timecard
application should import personalized technology and service types from the
ontology based on project data (collaborator participates in certain projects, only
technologies assigned to those projects should be imported to facilitate selection of
technology used to fulfil certain project task).

If specific technology is assigned to the project that is not specified in the
knowledge base, the ontology has to be extended to this new component. The
employees only have to select technology they used as well as service type they
performed in order to fulfil certain task. They don’t need to describe these
technologies and fill in more fields to specify relations to other technology categories
explicitly. The relations between all these technologies have to be covered by the
ontology knowledge base.

On the basis of these relations between different technologies and hierarchical
structures, extended management reports can be generated. Management might be
interested in which services (highly paid, routine services) the organization has been
selling and which technologies are dominating internal IT projects. Through ontology
it becomes possible to extract certain information even if that information is not
asserted explicitly. If the query has to find out, how many hours the employees
worked with specific technology like JAVA, all the technologies belonging to JAVA
technology or are interrelated with JAVA in any way need to be considered. It is only
possible to perform such kind of queries if the hierarchies and relations between the
technology components are accurately defined. The building of ontology is absolutely
necessary to describe the IT technologies used to accomplish project tasks. In this
way the collaborator only has to enter the technology terms explicitly. Other

20 Dmitry Diyachenko (0300077)

information that might be useful for certain management reports can be derived by
ontology knowledge base inference mechanisms. The ontology database can be used
for other purposes and be integrated in other applications, too.

2.3.1 Roles participating in the timecard application

To create the design of the semantic timecard and ontology knowledge base that
would be acceptable and would satisfy all stakeholders, it is crucial to understand the
environment around the application, as well as roles participating and interacting with
our semantic timecard. The issue of this section is to discover who is interacting with
the timecard tool and in what way. It is adso very important to visualize the
environment around the intended application and its dependencies.

Project Manager Executive Management
View View

Project Portfolio

I: Technology
Resources Work Type

Semantic Ti mecard

Staff
Personal View

Figure 2: Semantic timecard environment

The following roles might interact with the semantic timecard application:
e Project manager
e Project staff
o Management

The project team members are interacting directly with the timecard application.
They fill in a timecard form and document their solved tasks. These project team

On semantic timecard based project portfolio management 21

members can also benefit from timecard application. The timecard tool is
documenting all the activities of the employees and project staff: how much they
worked, in which projects they participate and which projects have been already
settled by them, for what tasks and activities the project members are responsible,
what type of work has been done by a specific employee. The timecard reports enable
the project members and employees to observe their career development and their
progress in the hierarchical structures of organization. They can keep track of their
personal development (e. g. project member -> project manager) and the development
of their work activities (e. g. programmer -> design architect -> consultant).

Project manager is interested in completing the project he is responsible for in
time, in budget and up to quality standards. The timecard application might help the
project manager to track and to monitor the progress of his project. After the project
staff have filled in their finished tasks, the project manager is able to perform
target/actual comparison. In this way project manager might discover deviations from
the schedule and take corrective measures in time.

For management it is very important to observe the project portfolio in the
organization. Management wants to ensure that projects initiated in the company are
aligning with business strategy and objectives. For management the following
information is important:

e Overview of all projects and their status
e Service categories sold to the customers (programming, design, consulting)
e Technologies used in current projects

It might be valuable information for the management, which technologies are
dominating in current projects and becoming more and more important, which
services and at which ratio the business actually offers (e. g. consulting, design,
programming), which projects are going on schedule and where delays might occur.
All these information units are stored in the timecard application and could be
delivered on request. Extended, not explicitly defined information might be extracted
from the ontology knowledge base in turn.

22 Dmitry Diyachenko (0300077)

3 Building the ontology knowledge base

In this section the complex process of the ontology knowledge base building will
be documented and explained in detail. The knowledge (terms) of IT technology and
IT service categories domains will be explicitly represented in the form of the
ontology knowledge base prototype. The ontology will not cover all the terms of
above mentioned domains. It should just represent a prototype where selected
concepts, properties, relationships and hierarchies will be defined. This chapter rather
provides a kind of guideline how the ontology knowledge bases could be
conceptualized, modelled, stored, documented, maintained and integrated in various
applications. The quality of the knowledge base will increase through its use. The
knowledge base has to be maintained during its entire life cycle carefully.
Maintaining the knowledge base means that previously incorrect modelled concepts
are to be revised and remodelled, the ontology knowledge base needs to be extended
as new concepts are coming up during the daily business operations or through the
integration of other external ontologies. The ontology also might be adapted or
extended to suit certain application requirements. This section will analyse ontology
reasoning and querying mechanisms and their opportunities in detail, too.

To show all the steps of how to build the ontology knowledge base, that is to be
considered and mentioned, a generic ontology building process will be defined below
using Adonis business process modelling tool. This process visualizes all the steps
that will be mentioned in this chapter and are necessary for successful ontology
creation and maintenance. This generic process can also be seen as a guideline
showing the structure of this chapter. Afterwards all the process activities and their
possible dependencies, as well as interrelations, will be described in detail.

On semantic timecard based project portfolio management 23

Generic ontology
Building process

I
- -

analyse analyse existing
requirements for ontology mark-up
ontalogy

languages

7 —

- -
analyse potential select

ontology appropriate tool
madeling tools

-*—-*—A

knowledge base

perfom store ontology Build ontology
consistency
checki
= unaccgptable
informatign quality
perform antology perform test quality of the
reasoning

queries delivered data?

J

usefull and

appropriate

information
deliverad

maintain ontology

l

Figure 3: Generic ontology building process

24 Dmitry Diyachenko (0300077)

At first it is very important to analyse the requirements for the ontology knowledge
base. It is necessary to find out which roles are interacting with the semantic timecard
application, which information might be important for those roles, in which way those
roles interact with the semantic timecard prototype, which information in turn might
or should be provided by the ontology knowledge base. In order to specify the
detailed requirements for the ontology knowledge base the use case diagram is going
to be drawn in order to visualize all the roles that might have something to do with
future ontology and the information that might be interesting for those participating
roles. Gathering information appropriate for the ontology requirements is crucial to
ensure the adequate and correct conceptual ontology design. If the goals and needs of
the interacting users and the applications, that will use this ontology in future, are
understood well and, therefore, the ontology conceptual design could be developed in
the way requested, then the ontology might considerably improve the information
quality processed by the application, and thus deliver substantial value to the
business.

In this thesis the ontology mark-up languages necessary to encode the ontology
have to be analysed for their expressiveness level, computational speed and facilities.
Afterwards the adequate ontology mark-up language that best fits our ontology
requirements has to be selected.

The next step is to check the existing comprehensive ontology editors supporting
the ontology modelling, visualization, querying and integration of other software
components. The ontology modelling editor that best fits our needs has to be selected.
Afterwards the conceptual ontology design and its building process have to be
considered and realized. This activity is modelled as subprocess call in our generic
ontology modelling process and will be described in the chapter 3.4. “Interactive
ontology building process” in detail.

After the ontology knowledge base is built it is very important to consider how the
created ontology could be stored. Ontology repositories enable storage of large
ontologies. They provide better ontology integration, maintenance and querying
options as well as improved scalability and performance facilities. Simple ontologies
with low integration and maintenance requirements might be stored in files, too.

Afterwards the ontology consistence, querying and inference tests have to be
performed by selected reasoner server application. Possible concept inconsistencies or
modelling mistakes (it is not possible to indicate the necessary information by
querying mechanisms) have to be corrected and adapted by modifying and improving

On semantic timecard based project portfolio management 25

the conceptual modelling design. This cycle has to be run through till satisfactory data
delivery results are achieved.

It is very important to note that the maintenance plays a very important role in the
ontology knowledge base development lifecycle. The quality of the knowledge base
increases through its use. All new terms coming up in the business activities and the
concept improvements have to be considered in the maintenance phase regularly. All
the extended constructs, new improved expertise as well as best practice experiences
have to be integrated in the ontology knowledge base during its use.

3.1 Introduction to the ontology concept and the need for it

It is very important to understand what ontology actually is, its differences to other
concepts like taxonomy, thesaurus etc, what purposes the ontology could be used for
and how the ontology could improve knowledge management facilities and deliver
value to the business. This section will provide general information about ontologies,
their possible usage fields and opportunities as well as out of it resulting information
processing advantages.

The definition of the ontology:

»An ontology is a formal, explicit specification of a shared conceptualization.
Conceptualization refers to an abstract model of some phenomenon in the
world by having identified the relevant concepts of that phenomenon. Explicit
means that the type of concepts used, and the constraints on their use are
explicitly defined. Formal refers to the fact that the ontology should be
machine-readable. Shared reflects to the notion that an ontology captures
consensual knowledge, that is, it is not private of some individual, but
accepted by a group.” [SBF98, p. 185]

In other words, ontology is used to represent the information about real world
concepts with all their relations and constraints explicitly and formally in order to
provide machine understandable constructs accepted by a group.

Ontology generally includes the following constructs:
e classes (i.e. concepts)
e attributes (i. e. properties)
o relations (described through properties)

26 Dmitry Diyachenko (0300077)
o instances (i.e. individuals). [NMO1]

Before explaining the constructs listed above in detail, | would like to compare
ontology with other knowledge representation approaches to clarify the advantages of
ontologies in their expressiveness power compared to other concepts with similar
purpose, namely explicit knowledge representation.

The figure below demonstrates different approaches to knowledge representation
and their expressiveness power facilities. They are ordered in accordance with the
rising level of their expressiveness power.

yal

Ontology

Thesaurus

Taxonomy

Glossary

Figure 4: Evolution of knowledge representation approaches [adapted according to AUMO04]

The figure shows four possible approaches for representing information about the
real world or parts of it. Controlled vocabulary approach has thereby the lowest
expressive power, ontology the highest.

Glossary just represents a limited number of specific domain terms. The meaning
of these terms is described in natural language. Glossaries can be created by the
information acquisition to define which possible terms exist in certain domains and
what those terms mean.

Taxonomy builds hierarchies of certain domain terms. There are generic concepts
(super classes) and sub concepts (subclasses). The subclasses have to be assigned to
appropriate super classes. Generally it’s not that easy to perform these assignments
because of different views in certain domains. [AUMO04]

On semantic timecard based project portfolio management 27

Thesaurus contains not only hierarchies of limited domain terms but also simple
relations between them. However these relations can only define the similarity
between the domain terms, but they cannot describe themselves. [AC04]

Ontology allows defining hierarchies of concepts, their attributes, individuals
(class instances), arbitrary complex relationships, cardinalities and constraints.
Ontology approach provides the most expressive power for the real world information
modelling. [VKO05] If the ontology is well defined and its powerful concepts are used,
new knowledge can be inferred and provided by ontology reasoners. Reasoners are
also able to perform complex ontology queries to derive necessary information.
[HMO03]

The process of the ontology creation is rather complex, time- and resource-
consuming. In order to accept this considerable effort, is rather important to
understand major reasons of the ontology building and how ontology might add value
to the business. One important task of ontologies is to define common vocabulary for
data sharing and exchange in certain domains. [M92] Also there might be following
advantages achieved by using ontologies:

Sharing common information structures among people and intelligent
software agents is one of the most important tasks in developing ontologies. The
ontology enables people and software agents to communicate in the same domain
language. All the terms, interpretations and relations are well defined and understood
by participating roles. It becomes easier for people and intelligent agents to process,
aggregate, extract, integrate or share the information necessary for different purposes.
[M92] [G93]

Reuse of domain knowledge is a common goal of the ontology development, too.
It is very important to provide ontologies publicly to improve their quality and
acceptance. As mentioned above, formal knowledge definition is a very costly and
time-consuming process. A lot of time and money could be saved by integrating
already existing domain specific ontologies (medical ontologies) or common
ontologies like UNSPSC. Several small ontologies might also be integrated to
describe portions of a large domain. [M92]

Explicit representation of domain assumptions also represents a very important
issue of the ontology development. It’s crucial to document all the domain knowledge
and expertise to ensure its further processing, improvement and use. It has already
been a considerable challenge of artificial intelligence discipline to extract experts’
knowledge in certain domain and make it accessible for other people or intelligent

28 Dmitry Diyachenko (0300077)

agents. The documented domain knowledge allows the participating groups to
understand the domain specification and its refinements. [NMO01]

Domain knowledge analysis can be performed once all terms, definitions and
interrelations of the real world concepts are well defined. All the structures, concepts,
dependencies and interrelations can be analyzed and checked for their consistency by
machines; new knowledge and assumptions might be derived and inferred. Those
facts might lead to better domain understanding, knowledge gaining, as well as to
more effective and efficient processes. [MFRWO00]

Of course, software agents might also use domain independent ontologies for
certain purposes by integrating several different knowledge bases. [NMO01]

3.1.1 Adding semantics to the timecard application

The ontology knowledge base is created in order to provide additional semantic to
our timecard application. The ontology prototype will contain specially selected IT
technology components and in the organization presented IT service categories. All
the relations, dependencies and restrictions between these terms have to be considered
and implemented.

The conceptual design phase is crucial for the successful ontology development
and its future use. The domain knowledge acquisition is one important task. Another
important task is to consider how this knowledge should be represented. Hierarchical
structures and concept interrelations might differ depending on the ontology’s
purpose and use. [HKRSWO04] The primary task of our ontology is to add meaningful
semantic to the data used by the timecard tool and to provide high quality information
for the timecard end-users.

It’s very important to analyze which information is required by the timecard tool
and what kind of data is essentially important for the timecard users. To indicate and
to visualize user interactions with the ontology knowledge base and their expectations
the use-case diagram will be drawn below. Afterwards all the activities and
dependencies will be explained in detail.

On semantic timecard based project portfolio management 29

I8

Management

Pm§

{"\

Project team Project man

Ager

technologies in use report

development report

Ontology knowledge base

request

gather ontology
knowledge base requiremenis

knowledge base

integrate ontology

request carear

test ontology for its
enough expressiveness

FM office

i

Dntology author

Figure 5: Ontology use-case diagram

30 Dmitry Diyachenko (0300077)

As visualized in the figure above the requirements for the ontology knowledge
base have to be gathered first. The ontology developer (author) has to consider and to
include all the needs of the participating roles. [GFCO03] In this case project staff, PM
office and management are interacting with the semantic timecard application. After
collecting and evaluating data provided from our participating roles the developer has
to specify requirements definitions for the further ontology development.

The requirements specification is used by ontology conceptual design development
afterwards. To model the ontology concepts in required way, the requirements data
always has to be kept in mind. The ontology concept should suit users’ needs in the
best way. In the figure is specified that management might be interested in currently
used technologies. It is also very important for management to keep track of services
currently sold and their relative proportions to each other. This information allows
management to identify some kind of trends (which services are in demand at the
moment and which technologies become more important or are new on the market).
For the project managers and PM office this information might help to recognize the
service and technology trends as well. Therefore they could react on changing market
situations and perform educational programs and seminars for employees in time. The
project managers also might shift the main focus of their projects based on this
information (the importance of certain technology increases rapidly, it has to be
integrated or excessively forced).

The employees might be interested in their career development too. The career
development information could show the employees how their responsibilities,
functions or positions changed during certain period of time, where are they placed in
the career hierarchy, how fast did they improve and increase their career status in the
organization.

The project manager might also be interested in the status of his project or projects
and the PM office in the status of the project portfolio (is the project status according
to schedule, where are delays, resource deficits or other difficulties). This information
is able to be provided by the timecard application; however the quality of that
information cannot be improved by the ontology knowledge base.

But the ontology could improve the quality of information on technologies that are
currently in use and on sold service categories (programming, consulting, architect
etc.). The ontology knowledge base could provide extended information for all
participants considering not only the domain terms but also their interrelations,
dependencies, sub categories and properties. Summarizing, the ontology would enable
more complex and expressive queries providing for users detailed high quality

On semantic timecard based project portfolio management 31

information as well as new inferred knowledge. However the ontology could only
deliver all these advantages if its requirements were specified carefully and integrated
into the conceptual phase in appropriate way.

The ontology framework was designed to provide a generic idea of the ontology
knowledge base environment and its components. This framework consisting of
certain layers visualizes how the components interact and depend on each other.

. E o

Requirements acquisition layer = e =
ﬁther requirements

i

____________________________________ % nology design

Racer Reasoner Ontology modeling tool

Ontology Building Layer

Ontology API

Ontology visualization /

. A, L I
Integration Layer o

.
Back-end services Ontology web-services

/i """""""

Consumption Layer ~~-§;_-_-:='::'-—'-—~-

Semantic timecard Other applications

Figure 6: Ontology development framework

32 Dmitry Diyachenko (0300077)

This framework shows how the entire life cycle of an ontology could look like. It
shows, in which way the ontology’s development, visualization, storage,
modification, integration and consumption components interact with each other.

As first the design of the ontology derived from its requirements (identified in the
requirements acquisition layer) has to be realized in the conceptual layer.

Afterwards the ontology has to be defined in a formal way with the help of the
necessary constructs provided by ontology mark-up languages. That modeling process
could be supported by the ontology modeling tool including comfortable graphical
interface and powerful modeling and integration constructs. Some tools can also be
used for ontology visualization for certain documentation purposes. After defining
ontology in a formal way the ontology consistency and expressiveness power should
be inspected by the reasoner (ontology querying). Ontology might be stored in
repository to improve its scalability, performance, querying and modification
facilities.

Most part of ontology modeling tools and repositories provide API for ontology
querying, modification and integration purposes. That APl could be used by
applications or web-services to process the ontology knowledge base. In our case the
web-services for ontology integration will be implemented to ensure interoperability
and to enable flexible as well as extensible ontology integration in various other
applications. That means that the developed ontology also might be used for other
purposes (not only for semantic timecard application) in the organization. Among
other things, the ontology designed could gain and improve understanding of IT
technology domain, too, assuming that the ontology maintenance process is
performed in an appropriate way. It is also very important to mention that the
ontology knowledge base archives and documents all the best practice experiences
and expertise of organizations and enables their further use for different purposes.

3.2 Ontology mark-up languages

As has been mentioned above, the ontology is necessary to structure and to
describe different terms of a specific domain. That information described has to be
machine readable and processible. There are some specifications (languages) enabling
formal ontology modelling. Those languages differ in their degree of expressiveness,
design and syntax constructs.

On semantic timecard based project portfolio management 33

The most widespread ontology languages for web applications are RDF/S and
OWL. In the present section these mark-up ontology languages will be analyzed for
their construct facilities, concepts, simplicity and expressiveness level. After that
comprehensive analysis for our purposes appropriate ontology language will be
selected.

3.2.1 RDF/S

RDF (Resource Description Framework) is a model using XML based syntax and
was devel oped to describe resources granting them machine-understandabl e semantic.
The RDF metadata model is based upon the general idea of making statements about
resources in order to describe themselves, their dependencies and relations. In the
World Wide Web Consortium (W3C) specification those statements represent
subyject-predicate-object expressions, also called RDF triples. [B04]

Figure 7: RDF triple [BO4]

This graph could be interpreted as follows: the subject can be interpreted as
resource to be described, the predicate represents a property (defined relationship
between the subject and object), the object is the second resource describing subject
in some way. [BO4]

As has been said above, RDF represents some kind of model explaining how the
resources could be meaningfully described trough their attributes and relations to each
other, but RDF does not provide possibilities to describe those attributes and
relationships between resources. RDF does not provide classes, subclasses and super-
classes concepts either. The building of taxonomies and hierarchical structuresis
therefore not possible. [BG04]

For the purpose of simple ontology creation the RDF schema using RDF syntax
was specified by W3C consortium. The RDF schemais providing some concepts to
describe simple ontologies. It enables to build and to describe hierarchical structures
and interrelations between them by using classes and properties. [BG04] RDF's
vocabulary description language, RDF Schema can be also considered as semantic
extension of RDF providing more expressive power. [BG04] RDF schemais

34

Dmitry Diyachenko (0300077)

applicable for web ontologies development because of its easy integration,
extensibility and simplicity. [BG04]

The unique namespaces are used to declare the vocabulary of RDF and RDFS

specifications. RDFS is using rdfs namespace to define its core vocabulary and rdf
namespace to include RDF resource definitions. [BG04]

RDF schema defines a considerable amount of concepts; these concepts can be

generally divided into Classes and Properties.

The most important RDF and RDFS classes are listed and explained below:
rdfs:Resource - the class resource is used to design everything. All other classes are
subclasses of Resource class.

rdfs:Literal — this class is representing literal values, e.g. textual strings, integers,
dates

rdfs:Class — with this concept it is possible to define classes (i.e. group of
resources) of certain domain, it is also possible to build hierarchies of classes using
property (relationship) rdfs:subClassOf. The classes can be interrelated to each
other through their properties.

rdf:Property — use of rdf:Property class enables modeling and describing different
relationships between specified Classes, using the tag rdfl:subClassOf also enables
creating of hierarchies between the properties. It is important to keep in mind, that
subclasses inherit all the attributes and instances of their superclasses. Properties
are also used to describe classes and, in turn, other properties.

rdfs:Datatype — this tag is used to define the data types of the classes (e. g. strings,
integers, dates, floating point numbers), the predefined XML-schema data types
are used for that purpose

rdf:Statement - the class of RDF statements is necessary to model the above-
mentioned RDF statements containing subject (instance of rdf:Resource)-predicate
(instance of rdf:Property)-object (instance of rdfs:Resource), also called RDF
triples

rdf:Bag — this tag is used to define unordered enumerations, rdf:Bag class is
subclass of rdf:Container class (opened collection)

rdf:Seq — this tag is employed while modeling ordered sequences, rdf: Seq class is
subclass of rdf:Container class (opened collection)

rdf:Alt — this class can be used for declaring possible alternatives, rdf: Alt class is
subclass of rdf:Container class (opened collection)

rdf Collections — are the opposite of container classes (seq, bag, alt), namely, they
represent closed collections (i.e. restricted amount of members) [BG04]

On semantic timecard based project portfolio management 35

The properties in RDF schema are not only used to describe classes and their
relationships, but also other properties and their dependencies. To define relationships
between resources two main concepts - rdfs:domain and rdfs:range - are used. These
two concepts define from which resource (domain) to which restricted resources
(range) the relationship is set. [BG04]

In RDF Schema some properties are specified to create and to define hierarchical
structures:

o rdfs:subClassOf
o rdfs:subPropertyOf [BG04]

Properties responsible for resource description are listed below:
o rdfs:comment
o rdfs:label
o rdfs:seeAlso
o rdfs:idDefined
o rdf:value
o rdf:itype [B04]

36 Dmitry Diyachenko (0300077)

rdfs:Resource

rdfs subClassOf

rdfs subClassOf

rdfs:domain rdfsrange

rdf:type

Tim Bermears-Leea

Information Management: A Proposal

http:f.../Proposal/

Figure 8: Simplified sample of RDFS constructs [BG02]

RDFS provides vocabulary for describing properties and classes of RDF resources.
However, the expressiveness power of those description concepts is too low (no
strong cardinality restrictions, no disjoint classes, no symmetric or recursive
properties etc.). [MHO04] Therefore they can only be applied for modelling simple
ontologies, where extended reasoning aspects are not absolutely necessary.

To model complex ontology structures and to define interrelations between
different terms in more expressive way, the web ontology language OWL was
developed by W3C consortium. OWL also fits the requirements for an entire WEB
ontology language and represents W3C recommendation since February 2004.
[MHO04]

3.2.2 OWL

OWL was designed by W3C consortium to provide semantic meaning to specific
content of information. The described information becomes therefore machine-

On semantic timecard based project portfolio management 37

understandable and can be processed by applications and not only by humans.
[MHO04]

The main task of this web ontology language is to provide expressive vocabulary
in order to describe resources on the web and their interrelations to each other
(provide explicit meaning to the content). This could also be expressed as mapping of
real world concepts to machine-understandable language that should facilitate
automatic information integrating and processing available on the web. [MH04] To
enable extensible reasoning facilities web ontology language has to fulfil numerous
modelling criteria and design goals. In the following subsections those criteria
necessary for appropriate web ontology language will be listed and explained. Three
in W3C consortium defined owl sublanguages (OWL Lite, OWL DL and OWL Full)
will be described in detail as well.

3.2.2.1 Web ontology language design goals and requirements
W3C community specified several design goals for the web ontology language OWL
and also in which areas and sectors this concept might be used and may play an
important role. In fact the ontology is very important for all sectors, where large
amounts of data and information need to be processed and exchanged. Ontology
facilitates content structuring, interrelating and integrating that can afterwards be
processed by applications for certain purposes. Actually, well-engineered ontology
language should fit the following concepts:

e shared ontologies — all the ontologies should be publicly available. It is very
important to be able to extend existing ontologies and to integrate several external
sources in one ontology knowledge base. One important task of the ontology
language is to support the concept of knowledge reuse effectively. For this purpose
every ontology has to include unique id and has to be described through meta
information tags. It should be possible to identify all the resources within a specific
ontology only by using URI reference. [H04]

e ontology evolution — application, technology and therefore knowledge base
requirements are changing frequently. There can also be some changes in ontology
design preferences, and mistakes in prior versions might be indicated. Therefore
the ontology structure has to be adapted and modified to follow the changes of
external environment. The task of ontology evolution concept is to provide
ontology versioning, relations between the revised versions and to make
compatibility possible between resources that are committed to different ontology
versions. [H04]

38

Dmitry Diyachenko (0300077)

ontology interoperability — there are different possible ways of modelling domain
knowledge. Different organizations and domains have different ideas and concepts
of how knowledge units have to be represented and how terminologies should look
like. This fact might lead to the same information being represented in different
ways structurally. The issue of ontology interoperability is to ensure that ontology
languages provide primitives for relating different representation types. The
following proceeding allows to transform data into the appropriate representation
format used in the required ontology (i.e. concept mapping). To fulfill this task
effectively and accurately classes and their properties have to be described in an
adequate way (e. g. subclasses relations, complement relations, transitive or
symmetric relations etc.). Class, property and individual equivalencies have to be
defined, it should be possible to attach specific information to defined statements
and treat classes as instances in specific cases. All these facilities should be
provided by the entire ontology language. [H04]

inconsistency detection — while ontologies with different concept views are
imported and combined, there might be some inconsistencies between different
ontologies or their conceptual views. Even false or incorrect information or
relations might be provided. The task of inconsistency detection concept is to
ensure completely automated ontology inconsistency detection through extended
reasoning components. To enable adequate persistence checking facilities it should
be possible to define class and property definition primitives (e. g. unionOf,
complementOf, intersectionOf etc.), as well as arbitrary cardinality restrictions.
[HO4]

balance of expressivity and scalability — generally there are two conflicting
requirements every well-engineered ontology language should fulfill, namely it has
to provide a wide variety of knowledge modelling concepts and guarantee their fast
computation at the same time. It has to be considered which concepts are
absolutely vital and therefore have to be included as well as which concepts,
providing extended expressiveness power but dramatically slowing ontology
computation, could be included optionally. For this purpose there are three types of
OWL mark-up languages providing different levels of expressiveness and
computational speed that can be chosen by organizations for their special needs
and requirements. [HO4]

easy of use — the language should be natural and easy understandable by humans
working with the syntax directly to enable easier querying as well as reasoning of
ontology knowledge bases. The language should have clear concept and meaning

On semantic timecard based project portfolio management 39

definitions. It should be easy to learn as well. For this purpose easy-to-understand
data types have to be used or defined and multiple alternative user-displayable
labels (e. g. displaying of concepts in different natural languages) need to be
supported by the ontology language. [H04]

e compatibility with other standards — compatibility with other industrial
standards facilitates tool and language development. The web ontology language
should be especially compatible with commonly used web standards like XML and
other XML related standards (RDF, RDF schema etc.). Compatibility with
widespread modeling standards like UML is also desirable. [H04]

¢ internationalization - the ontology language has to provide concepts enabling
ontology modeling in the multilingual mode. It should be possible to define
different ontology views that optimally fulfill requirements of different cultures
with different knowledge expression techniques. Thus, the ontology language
should necessarily support user-displayable labels, a character model as well as
uniqueness of Unicode strings. [H04]

3.2.2.2 OWL Lite

As mentioned above the OWL consists of three sublanguages providing different

expressiveness power. Organizations have to consider which sublanguage best suits

their needs before they actually start to develop their ontology knowledge bases.

OWL Lite provides less expressive concepts than OWL DL and OWL Full. However

the processing speed of querying and reasoning can be considerably improved by

using this sublanguage for modelling knowledge bases. OWL Lite also provides quick

integration paths and has lower formal complexity than OWL DL and Full. [MHO04]
OWL Lite includes numerous features and constructs, which will be explained in

detail below.
The following OWL Lite features related to RDF schema are included:

e Class — defines a group of individuals that belong together based on their similar
properties

o rdfs:subClassOf — makes it possible to build class hierarchy

o rdf:Property — enables modelling of relations. There are DatatypeProperties (e. g.
relation to data type Integer) and ObjecttypeProperties (relations between
instances)

o rdfs:subPropertyOf — for creation of property hierarchies

o rdfs:domain — limits the individuals to which the property can be applied

e rdfs:range — limits the individuals that may be represented in the property value

http://www.w3.org/TR/2004/REC-owl-features-20040210/#subClassOf
http://www.w3.org/TR/2004/REC-owl-features-20040210/#property
http://www.w3.org/TR/2004/REC-owl-features-20040210/#subPropertyOf
http://www.w3.org/TR/2004/REC-owl-features-20040210/#domain
http://www.w3.org/TR/2004/REC-owl-features-20040210/#range

40

Dmitry Diyachenko (0300077)

Individual — instances of the classes

OWL Lite equality and inequality constructs:

equivalentClass — is used to declare two equivalent classes that have the same
instances and is helpful for ontology integration and reasoning.
equivalentProperty — necessary to declare equal properties that interrelate same
individual sets

sameAs — allows to create many names actually belonging to the same individual
differentFrom — allows to declare that one individual is different from another,
improves extended ontology consistency checking and reasoning facilities
AllIDifferent or distinctMembers — enable to create a set of individuals and to
declare that these individuals are different from each other [MHO04]

OWL Lite property characteristics and restrictions:

inverseOf — useful to define inverse properties, e. g. hasChild is inverse to
hasParent

TransitiveProperty — defines transitiveness of properties. If e. g. ancestor
property is declared as transitive, than reasoner can deduce following: a ancestorOf
b, b ancestorOf ¢ - a ancestorOf ¢

SymmetricProperty — allows to declare properties’ symmetry (if a isFriendOf b
- b isFriendOf a)

FunctionalProperty — property can have for each individual at most one value or
even be empty

InverseFunctionalProperty — meaning that the inverse property may have at most
one value; enables additional reasoner deduction options, too

allvValuesFrom - restricts values of the property to be instances of the same class
(i. e. if this property comes upon within a relation, certain class is only allowed to
be related to the instances of one specific class through the specified relation, other
classes are not allowed to be represented in this relation)

someValuesFrom — doesn’t restrict all the values of the property to be instances of
the same class, at least one value or more of the property has to be instance of the
specified class (i. e. certain class has to be related to the specific class. However
this class is also allowed to be related with the instances of other classes in
arbitrary way) [MHO04]

http://www.w3.org/TR/2004/REC-owl-features-20040210/#Individual
http://www.w3.org/TR/2004/REC-owl-features-20040210/#equivalentClass
http://www.w3.org/TR/2004/REC-owl-features-20040210/#equivalentProperty
http://www.w3.org/TR/2004/REC-owl-features-20040210/#sameAs
http://www.w3.org/TR/2004/REC-owl-features-20040210/#differentFrom
http://www.w3.org/TR/2004/REC-owl-features-20040210/#AllDifferent
http://www.w3.org/TR/2004/REC-owl-features-20040210/#AllDifferent
http://www.w3.org/TR/2004/REC-owl-features-20040210/#inverseOf
http://www.w3.org/TR/2004/REC-owl-features-20040210/#TransitiveProperty
http://www.w3.org/TR/2004/REC-owl-features-20040210/#SymmetricProperty
http://www.w3.org/TR/2004/REC-owl-features-20040210/#FunctionalProperty
http://www.w3.org/TR/2004/REC-owl-features-20040210/#InverseFunctionalProperty

On semantic timecard based project portfolio management 41

OWL Lite provides several features for ontology versioning (versioninfo,
priorVersion, incompatibleWith etc.) and notation (rdfs:label, rdfs;comment etc.). It
also has to be mentioned that OWL Lite just provides restricted cardinality constructs
(only 0..1). Modeling of arbitrary cardinalities is only possible in OWL DL and OWL
Full. [MHO04]

3.2.2.3 OWL DL and OWL Full

OWL DL and OWL Full provide additional features for ontology reasoning like:

e 0neOf — enables enumeration of the class members; there are exactly as many
members in the class as there are enumerated individuals (no more, no less)

¢ hasValue — a property can be required to have a specific individual as a value

o disjontWith — set of classes may be stated to be disjoint from each other, disjoint
classes cannot have any instances in common

e unionOf — allows to create classes containing things from several classes (logical
or operator)

o complementOf — allows to create classes containing things that are not included in
specified classes (e. g. class “nonVegetarianPizza” can be created; it is only
allowed to contain pizzas that don’t belong to the “vegetarianPizza” class)

o intersectionOf - allows intersections of named classes and restrictions (logical and
operator)

e unrestricted cardinality constructs — the cardinality constructs are allowed to be
defined in an arbitrary manner (0..1, 0..n, 1..5 etc.) [MHO04]

While selecting adequate OWL sublanguage for ontology building, it needs to be
mentioned that OWL Full allowing maximum expressiveness and syntactic freedom
of RDF (arbitrary complex class description, Boolean combinations, property
restrictions, allows to treat classes as instances, too, etc.) has no computational
guarantees, i.e. it is not guaranteed that the ontology knowledge base including all
OWL Full constructs can be processed in finite time. [MH04]

For users who need maximum expressive power while retaining computational
completeness OWL DL might best suit. [MH04] OWL DL will be used in this thesis
to define our IT technology and service categories ontology knowledge base in an
expressive way. Computational completeness is vital for our timecard application as
well.

42 Dmitry Diyachenko (0300077)

3.3 Evaluation of ontology development tools

Ontology modeling tools should facilitate ontology development process by hiding
the complexity of ontology mark-up languages. Ideally the user should be able to use
and define complex ontology concepts by using convenient and intuitive graphical
interface. In this chapter for the purpose of ontology knowledge base development
potential development tools will be evaluated. The appropriate tool for development
of our ontology will be selected afterwards. Finally, the functionality and features of
that tool are going to be described in detail.

The following criteria and features are going to be analyzed while looking for the
intuitive and powerful modelling tool that is best suitable for the development of our
ontology base:

e Usability and convenient user interface: one important criterion for ontology
development tool is usability and its simple deployment. It should be easy to install
and to use. Intuitive graphical interface for different modeling or modification
purposes should be provided by the tool. The graphical ontology representation for
its navigation, editing and documentation should be enabled as well. Detailed tool
documentation, comprehensive tutorials and circumstantial demonstrative
examples may have considerable impacts on the ontology modeling tool selection
process. [GF02] All these features necessarily have to be included in the selected
modeling tool.

o Integration and merging of external ontologies: the modeling tool should
provide components supporting integration of external ontologies. Ideally it should
be possible to convert, to merge and to adapt existing ontologies in order to build
composed ontology knowledge base. The ontology development tool should be
able to import and export ontology in various ontology formats (OWL,
OIL+DAML, RDF/s) too.

o Extensibility of the development tool: ontology modeling tool has to be
extensible to additional functionalities. Those new functionalities or already
existing external components have to be integrated in the form of plug-ins easily.
At best, the ontology modeling tool has to be developed and maintained by a large
community providing a considerable amount of different plug-ins for certain
purposes and functionalities.

¢ Interoperability with other ontology tools and languages: the ontology
modelling tool should be able to interact with other relevant tools supporting the

On semantic timecard based project portfolio management 43

ontology development process (ontology reasoning tools, storage tools, querying
tools, ontology merging and converting tools, evaluation tools etc.) [GF02]
Ontology storage and querying: the ontology modelling tool should provide
scalable ontology storage capabilities. Ideally, powerful querying engines have to
be integrated to extract needed knowledge from the ontology knowledge base, too.
[GF02]

Inference services attached to the tool: for consistency checking and knowledge
evaluation purposes the inference services should be provided by the ontology
modeling tool. Through these extended inference services new implicit knowledge
can be derived and analyzed. Usually those inference services are provided by the
so-called reasoner applications. Therefore the ontology modeling tool has to be at
least interoperable with the relevant reasoner applications. The inference and
consistency checking functions are very important in the ontology development
and usage life cycle. [GF02]

Integration of the ontology knowledge base in applications: the ontology
modeling tool or ontology repositories have to provide certain APl to make the
ontology knowledge base accessible to applications or web-services. That API
should necessarily offer ontology modification, querying and maintenance options.

The following candidates have been selected for the ontology modeling tools

evaluation and selection process:

Apollo

Ontolingua
WebODE

OntoEdit

Protégé 2000 [GF02]

All these tools are widespread in the ontology design and development sector and

are accepted by relatively large communities. These tools also provide the minimum
necessary functionality supporting the ontology development process. Tools that are
irrelevant or not accepted enough will not be considered in the present diploma thesis
at all.

The functionalities and main features of these five modeling tools must be

analyzed in short. Afterwards the features of the most appropriate and therefore
selected tool will be presented and explained in detail.

44 Dmitry Diyachenko (0300077)

3.3.1 Apollo

Apollo is an ontology modelling tool with user-friendly interface. This tool was
developed in cooperation with several industry partners to support the modelling of
simple ontology concepts. It was very important for the developers to create tool that
would support basic ontology modelling techniques and would provide easily useable
and understandable syntax, as well as ontology development environment. [Apollo]

The internal model is built as a frame system according to the internal model of the
OKBC protocol. This frame based modeling system enables definition of classes,
properties, instances, hierarchies, functions, rules and simple relations. Modelling,
navigation, editing and definition processes are supported by the convenient graphical
user interface with different possible views. Apollo performs full consistency
checking while modeling the ontology knowledge base. [Apollo]

Apollo is an extensible tool. Additional functionalities might be implemented and
integrated as plug-in components. However the Apollo community is not large
enough and there are not many existing plug-ins that might be integrated for the
further use. There is no detailed documentation, demonstrative tutorials and samples
either. Apollo is a frame based ontology modeling tool and therefore does not support
strongly expressive OWL constructs. The expressive power of the knowledge
representation is not strong enough and extended querying facilities are therefore not
available.

Apollo has its own internal language for storing the ontologies (files only), but can
also export the ontology into different representation languages, as required by the
user. Apollo is implemented in Java and provides specific APl enabling ontology
access and integration. [Apollo]

Apollo provides restricted ontology modeling constructs (OWL is not supported),
it is not interoperable with other ontology development tools, it does not provide
inference engines; the ontology might get exported in limited formats, Apollo does
not have strong community maintaining and improving this application; there are no
satisfied documentation and tutorials available as well. [Apollo] Due to these facts
Apollo cannot be considered as a potential modeling tool for development of our
ontology knowledge base.

On semantic timecard based project portfolio management 45

3.3.2 WebODE

WebODE is a service that strongly supports ontology development, usage and
integration processes. WebODE has been built using 3-tier architecture (client tier-
application server-database tier). [WebODE]

Client tiex
Figure 9: WebODE three-tier architecture [WebODE]

The application server (middle tier) provides high extensibility and usability by
allowing easy addition of new services and the use of already existing services.
WebODE provides well-defined service-oriented API to access and to integrate the
ontology knowledge bases into different applications. The ontologies are stored in the
relational database (database tier). WebODE ontology development tool supports
exports and imports in many different formats (OWL, RDF/s, DAML+OIL,
WebODE’s XML). Thus, the ontology bases might be integrated and merged easily.
[ACFGO01]

A convenient and intuitive graphical user interface is provided to define term
structures and relations. WebODE supports not only hierarchy definitions and simple
relationship concepts but also expressive and powerful modelling constructs (among
other things, reflexive and symmetric properties, predefined relations like disjoint
classes, unionOf or complement relationships, multiple inheritance, rule definitions
etc.). [WebODE]

WebODE also offers consistency checking, inference, reasoning, merge and
comprehensive documentation services. It additionally supports collaborative
ontology development environment. Synchronization mechanisms allow parallel
ontology editing by multiple users. [ACFGO01]

46 Dmitry Diyachenko (0300077)

However there are not many tutorials, wikis and demonstrative ontology modelling
samples available and discussed. This tool is also not freely available (temporal free
web access only). [WebODE]

3.3.3 OntoStudio

OntoStudio successor of OntoEdit supports the ontology development process in a
comprehensive manner by using graphical means and various extended features. The
tool is based on a flexible plug-in framework and is interoperable with other ontology
development tools. Additional functionality and features can be integrated for certain
purposes. A lot of plug-in based components (inference engines or reasoners,
collaborative multi-user ontology editing facilities, import and export plug-ins etc.)
are publicly available and might be used in the OntoStudio development application
in order to customize this tool for required scenarios and purposes. Ontologies might
be stored in files or in relational databases. [OntoStudio]

Short time ago a powerful OWL reasoner OntoBroker was implemented. The main
task of the OntoBroker engine is to process expressive OWL DL and RDF/s mark up
languages. OntoBroker checks OWL ontology’s consistency, infers new implicit
knowledge, integrates ontologies originated from different sources as well as provides
API for ontology access, modification and integration. [OntoStudio]

There are also comprehensive documentations of most features, extended customer
support, as well as tutorials available. [OntoStudio]

However, OntoStudio and OntoBroker server are commercial software releases and
are not freely available. [OntoStudio]

3.3.4 WebOnto

WebOnto is a JAVA-Applet supporting collaborative browsing, creation and
editing of ontologies. The ontologies created are represented in the knowledge
modelling language OCML. The collaborative development is supported by the
convenient graphical user interface. A lot of ontologies are provided by WebOnto
service and are publicly accessible. [D98]

WebOnto does not support the OWL mark up language constructs. [D98] The
modelling of complex relations and expressions is therefore not possible. This tool is
not extensible and not interoperable with other ontology development or reasoning

On semantic timecard based project portfolio management 47

engines. Documentation, demonstrative samples and tutorials are poorly described or
not provided at all.

Due to its restricted functionality facilities WebOnto won’t be used for the
ontology development in this thesis.

3.3.5 Protégé 2000

Protégé provides a powerful graphical and interactive environment for the ontology
and knowledge base development. Protégé has a very large community around the
world. A lot of industries (e. g. medical sector) are using this tool for ontology
conceptual design and development. Protégé has the component-based architecture.
Additional functionality can be integrated in the form of plug-in components.
Community members all over the world have implemented a considerable number of
certain plug-ins that are publicly available and might be integrated fast and
unproblematic. Large Protégé community provides many detailed and intuitive
described tutorials. All the features of this tool are carefully documented and
demonstrated, too. There are also numerous wikis, mailing lists for questions and
support, as well as forums for discussions available. There are a lot of ontologies that
were created by using this tool. Most of them are publicly accessible and might be
used for one’s own purposes. [Protégé]

Protégé is used by large communities that build ontologies containing considerable
amounts of data. Very important advantages of Protégé are its scalability and
extensibility. Therefore, Protégé allows to build and to process large ontologies in an
efficient manner. Through its extensibility Protégé might be adopted and customized
to suit users’ requirements and needs. [Protégé]

Protégé provides powerful constructs facilitating building of large ontologies. It
includes outstanding graphical tree navigation as well as extended zoom facilities that
allow seeing the ontology in an abstract or detailed manner. Protégé also provides
back-end plug-ins for storage of the large ontology knowledge bases, as well as API
libraries for ontology modification, reasoning and integration. [Protégé]

Protégé provides powerful graphical and ontology merging plug-ins as well. It
supports all established and relevant ontology import and export formats (OWL,
RDF/s, XML etc.) and is interoperable with many other tools considerably
contributing to the ontology design and development processes. [Protégé]

48 Dmitry Diyachenko (0300077)

3.3.6 Direct tool comparison

In the previous part of the thesis five ontology development tools were evaluated
and their capabilities were described in general. The point of this chapter is to
compare the tools evaluated and their functionalities directly to show their advantages
and disadvantages in certain areas. On the basis of this comparison, ontology
development tool appropriate for our purposes is going to be selected.

The criteria of the comparison and ontology development tool features are shown
in the table below:

Feature Protégé OntoStudio WebODE Apollo WebOnto
Developers SMI (Stanford | Ontoprise Ontology KMI (Open | KMI (Open
University group (UPM) University) University)
Availability Open source Software Software Open source Free web
license license, access
temporal free
web access
SW Standalone, Standalone, 3-tier Standalone Client/Server
architecture | Client/Server Client/Server
Extensibility | Plug-ins Plug-ins Plug-ins Plug-ins No
Ontology Files, DBMS Files, DBMS DBML Files Files
storage
Import XML-Schema, XML-Schema, | XML, Apollo meta- | OCML
formats XML, XML, RDF(s) language
RDF(s), RDF(s) CARIN
owL owL
FLogic
Export XML-Schema, XML-Schema, | XML-Schema, | OCML OCML,
formats XML, XML, XML, CLOS Ontolingua,
RDF(s) RDF(s), RDF(s) RDF(s),
OWL, OWL, OWL, OIlL
HTML, FLogic, HTML,
Java, SQL-3, Java,
Clips, Clips,
FLogic, FLogic,
Prolog,

CARIN

On semantic timecard based project portfolio management 49

Axiom PAL FLogic WAB Unrestricted OCML
language

Inference PAL OntoBroker Prolog No Yes
engine

Consistency | Yes Yes Yes Yes Yes
checking

Graphical Yes Yes Yes Yes Yes
support

Zooms Yes Yes No No No
Collaborativ | Yes Yes Yes No Yes
e working

Ontology Yes Yes No Yes Yes
libraries

Table 1: Ontology development tool comparison [GF02]

While comparing the ontology tools, two powerful and well documented ontology
development environments were identified: Protégé and OntoStudio. These tools
provide powerful and interactive ontology modeling concepts, are interoperable with
other important ontology development tools, have large community behind them, are
well maintained and documented, have support and mailing lists available, provide
powerful ontology reasoning engines and support OWL ontology modeling language.
OWL support is one of the most important criteria in this tool selection process,
because the mark up language mentioned was selected for the modelling of complex
ontology constructs and relations.

These two tools provide similar functionality and scalability level. Their
functionality facilities may be extended in an arbitrary way and also customized to the
developers’ needs and requirements easily. Both tools provide convenient and
intuitive but also powerful graphical user interface with different views. However
Protégé is open source software and is used in many large projects. Therefore Protégé
has larger community maintaining its labs regularly and providing considerable
number of useful and powerful plug-ins. Protégé community also offers many useful
experiences and guidelines for ontology conceptual design and its development as
well as its later integration. Due to these facts the Protégé ontology editor will be
selected to develop our ontology conceptual design and afterwards to build the
ontology knowledge base required for our timecard application.

50 Dmitry Diyachenko (0300077)

3.3.7 Detailed description of the selected ontology development tool

As has been mentioned above, Protégé is an extensible and powerful application
supporting complex ontology development process in a comprehensive way. Protégé-
Frame editor (compatible with the Open Knowledge Base Connectivity protocol
OKBC) represents the core component of this ontology development tool. In the
course of time Protégé OWL plug-in was developed by Stanford University enabling
usage of complex OWL mark up language (semantic web standard) constructs. The
OWL editor represents a complex extension of Protégé that fits the semantic web
requirements and needs. [KFNMO04] This OWL editor plug-in is going to be used to
specify our ontology concepts in expressive way. In this chapter the OWL plug-in and
other relevant plug-ins supporting ontology visualization and merge as well as
reasoner server are going to be described in detail.

3.3.7.1 OWL plug-in

Ontology development is a very time-consuming and complex process. The ontology
development tool should provide intelligent assistance for developers and facilitate
the development process through convenient user views hiding complex OWL syntax,
consistency checking, ontology design inspections and visualization facilities. All
these features are provided by the OWL plug-in. Furthermore, Owl editor is able to
integrate already existing plug-ins (ontology testing, querying, integrating services) to
customize the OWL ontology development tool and its power to the developers’
needs. Highly scalable Protégé might be used to store large ontologies, multi-user
mode based on client/server architecture might be reused for collaborative working.
Other applications for the ontology processing (Jena) and reasoning (Racer server)
can be included, too. [KFNMO04]

To build simple ontology concepts like classes, properties, simple relations,
individuals the Protégé core system components might be reused. However the core
Protégé API enabling ontology access and manipulation should be extended to the
OWL API supporting OWL ontology development. This extended Protégé OWL API
implements OWL Lite and OWL DL constructs completely and OWL Full constructs
(including meta-classes) partly. [KFNMO04]

The OWL plug-in extension and its interaction with other Protégé components are
shown in the figure 10 below:

On semantic timecard based project portfolio management 51

OWL GUI Plugins
] (SWRL Editorz, ezOWL,
OWL Extension APls OWLViz, Wizards, etc.)

(SWRL, OWL-5, elc.) @

c

Protégé OWL GUI ':5‘}

Protégé OWL APl |¢— _ (Bxpression Edilor, /i

L (Logical class definitions, TR TS HE =

Jena AP | resfrictions, et %
(Parsing, Reasoning) - I \/

- Protégé GUI =

Frotege API — (Tabs, Widgets, Menug) || 5

{Classes, properties U?}\

individuals, etc.) v

o]

Q

v v @

i S 8

OWL File DB o

Storage) Storage o

Figure 10: OWL plug-in as extension of Protégé core system [KFNMO04]

The OWL plug-in extends the core system components and API to the classes that
can implement OWL specification.

The Protégé core API is used to implement the core Protégé user interface
(ontology access and manipulation). The Protégé OWL API inherits the functionality
of the Protégé core API and extends this API with custom-tailored Java classes for the
various OWL class types (unionOf, complementOf, subsectionOf constructs etc.).
Afterwards this extended OWL API is used to implement the OWL editor user
interface. It’s possible for developers to use extended OWL APIs for developing
customized plug-ins and therefore provide additional functionality for the OWL
editor. [KFNMO04] Numerous plug-ins for OWL visualization, OWL ontology merge,
querying etc. were already implemented and are publicly available.

OWL plug-in provides comprehensive mapping between its extended API and the
standard OWL parsing library Jena. Loaded Jena model is synchronized with all the

52 Dmitry Diyachenko (0300077)

changes performed in Protégé OWL plug-in. All the objects defined in OWL plug-in
are presented in Jena terms, too. Therefore the Protégé user might integrate arbitrary
Jena parsing, querying, and reasoning services. Defined ontologies (Jena objects) are
able to be serialized to file in OWL format by using Jena API. There were also several
mechanisms implemented to maintain traditional semantics of frame-based Protégé in
spite of using OWL syntax. [KFNMO04]

Several important plug-ins for OWL editor are presented and superficially
described in the following chapters.

3.3.7.2 OWLViz plug-in
OWLViz plug-in was designed by Mathew Horridge at the University of Manchester
for further use in Protégé OWL plug-in. The main task of OWLViz is to visualize
OWL ontology class hierarchies and its relations (asserted class hierarchies as well as
inferred class hierarchy). It enables an overview of generic classes, navigation in the
tree hierarchy, quick structure changes and detailed views provided through
outstanding zoom facilities. OWLViz provides an easy comparison of the both class
hierarchies (asserted class structure and inferred class structure), too. [OWLViz]

In OWLViz certain class hierarchy trees might be exported to various graphics
formats like jpeg, png and svg too. This feature is rather useful for certain project
specific documentation purposes. [OWLViz]

3.3.7.3 Promt plug-in

Ontology is changed through the constant evaluation process regularly. Ontologies
sometimes have to be adapted to different application requirements, modeling
concepts or domain interpretations might change over time, design mistakes must be
eliminated. Due to these facts appropriate tools for efficient ontology evaluation
management are required. Promt plug-in designed for Protégé OWL editor should
provide mechanisms facilitating ontology evaluation management. [SAS05]

Protégé provides concrete mechanisms for ontology versioning, comparison of
different ontologies and their versions, definition of relations between certain
ontology versions. These functions allow developers to store different ontology
versions, define relationships, extract differences between certain versions and
compare different ontologies. On the basis of that well-structured information
ontology incompatibilities can be resolved, and ontology integrations, partly
extractions, merges might be performed by Promt plug-in automatically. [SAS05]

On semantic timecard based project portfolio management 53

3.3.7.4 Racer reasoner

OWL plug-in provides direct access to description logic (DL) reasoners such as Racer

server [HMO03]. Following functionalities are provided by this OWL DL ontology

reasoning engine that will be used to infer domain knowledge in our ontology project,
too:

e Consistency checking: on the basis of the defined relations and restrictions the DL
reasoner checks if instances and classes were asserted logically correctly [HMO3]

e Classification (inference): on the basis of the described relations and term
definitions the reasoner derives new knowledge, adds appropriate instances to
certain classes satisfying their restrictions, restructures class and property
hierarchies in an appropriate way (new classification and concept reorganization
according to the defined rules and restrictions) [HMO03]

Ontology reasoning tools perform one of the most important tasks in ontology usage
process, namely, generating new assumptions and cognitions that are not defined in
the ontology knowledge bases explicitly. [HMO3]

3.4 Interactive ontology building process

An important part of this diploma thesis is to create the ontology knowledge base
that is to be integrated in an already existing timecard application. That ontology
knowledge base will contain partly selected terminology of IT sector (IT
technologies, programming languages, developers' software, as well as IT software
engineering and consulting services — provided within Siemens Austria AG). The
actual ontology development process, numerous modeling decisions and ontology’s
structure as well as its content are going to be documented and explained in the
current chapter in detail.

The comprehensive ontology building process will be presented below. It should
visualize all the steps that are necessary to build a useful ontology knowledge base
successfully. Afterwards single steps and activities are going to be explained in a
more detailed way.

54 Dmitry Diyachenko (0300077)

build entology

\

determine
demain and
scope of the
ontology
check other
publicly available
antolagies
enumerate

important terms
in the ontology

define classes
and class
higrarchy

J

define properties

of classes
define and
specify relations
betwenn classes
create
appropriate
instances

AN

Figure 11: Ontology building process [HKRSWO04]

On semantic timecard based project portfolio management 55

The first important step is to understand what our domain of interest is, i.e. it has to
be considered which information is required by the timecard application. In our case
IT domain represents a high level of importance. The timecard application has to be
able to process terminology of IT sector such as IT technologies, as well as IT
engineering and consulting services. Programming languages, different kinds of
developers’ software, databases, internet technologies etc. and their interrelations are
going to be modeled in our IT technology knowledge base. The software engineering
and consulting service categories will be included in our ontology, too.

It is also very helpful to inspect and analyze the already existing ontologies to get
the feeling about general ontology structures and modeling patterns, as well as
constructs. Ontologies covering similar domains of interest might be imported and
reused. However, for our needs ontology integration and adaptation processes are
rather complex and time-consuming. It is possible to get advantages of external
ontology imports if really considerable ontology fragments might be reused. For the
building of our IT technology knowledge base concepts and content of following
ontologies will be included and adapted to the needs of the timecard application:

e DMOZ ontology (computers section) — provides internet links for all possible IT
tools, technologies, methodologies, architectures, tutorials etc. All the IT
components are grouped in classes and hierarchies. A lot of dependencies and
interrelations are defined and publicly maintained. Ontology editors may register
and publish their links (represent instances) for appropriate categories. They are
also allowed to add new IT components and categories. Therefore DMOZ ontology
is regularly extended and maintained by registered ontology editors contributing
their expertise. The consistency checking might be regularly performed by DMOZ
ontology providers. [ODP]

e ITEC categorisation — IT engineering and consulting service categorisation
internally used in Siemens Austria AG. That standard defines various software
engineering and consulting services provided within Siemens Austria AG. The
paper mentioned includes service categories such as Software engineer, consultant,
design or solution architect, project manager, program manager, principal etc.

In order to get a general idea about the ontology scope, it is very helpful to list
important terms and concepts. That list helps to understand the structure and elements
of the ontology more clearly, too. After the ontology scope and composition are
mostly clear, classes and their hierarchies have to be specified as entirely as possible.

56 Dmitry Diyachenko (0300077)

Some properties might be defined to describe specified classes accurately and to
enable advanced querying facilities during further ontology use and processing. One
of the most important tasks is to consider and to specify interrelations as well as
dependencies between the classes represented. Extensible rules have to be defined
that assign class restrictions, interrelations, cardinalities and dependencies. According
to those rules the reasoner server applications can infer new facts, perform taxonomy
classification and provide qualified, as well as logically proved, assumptions.

Classes represent a set of instances that might be created in the final ontology
building phase and described through the already defined properties.

3.4.1 Taxonomy definition

As first it is very important to mention that there are many alternatives to model
ontology knowledge bases describing certain domains. There is no completely correct
alternative because of the different views, interests, interpretations and needs.
[HKRSWO04] You are on the best way to model the ontology successfully if you
periodically have application, further using the ontology mentioned, in mind, as well
as its needs and specified requirements. If the ontology delivers required data sets and
can fit the needs of the application, then the ontology model was specified in the best
way. [HKRSWO04]

Ontology modelling is an iterative process. The conceptual shortcomings become
visible in the course of the actual use of a certain ontology by applications. Those
defects are to be corrected, and the conceptual decisions must be adapted carefully
and deliberately. [HKRSWO04] In this way the ontology knowledge base is going to be
extended and updated regularly during its use.

To make the ontology processing by humans, as well as by machines, easier, it is
necessary to name classes, their properties, interrelations and instances close to the
real world objects (close to the domain of interest terms and relations). [HKRSWO04]

The top-down approach is going to be used to classify our taxonomy. As first the
most general concepts are to be considered, as well as their siblings. These siblings
have to be inspected and, if necessary, grouped into a certain general concept. This
way they become subclasses. It is very important to keep balance. On the one hand,
the ontology is not defined concretely enough if generic classes have too many
subclasses. Thus, detailed information might not be extracted by application. On the
other hand, it is counterproductive and not really meaningful to have only one

On semantic timecard based project portfolio management 57

subclass. It also has to be considered that the ontology might be extended during its
use, and additional subclasses or siblings might be inserted.

While modelling the ontology knowledge base, it is very important to follow a
consistent naming strategy for the further maintaining and processing reasons.
[HKRSWO04] All the classes will start with capital letters, and properties - with lower
case characters (e. g. hasStatus). Spaces are going to be represented as underlines (e.
g. Programming_Languages). A constant naming strategy should facilitate the
ontology processing, querying and navigation by humans. [HKRSWO04]

The IT ontology will include three top level classes. The ITTechnology class is
going to include the IT concepts important and useful in our case. Business_Services
class will include the IT engineering and consulting service categories, according to
the ITEC standard. The service categories mentioned determine the charging level for
performed services. Professionals might be engaged in complex and responsible tasks,
and therefore ask for higher hourly earnings. Management might be interested to
follow labor market trends and analyse proportion changes of cleared complex tasks
to the routine tasks. If complex tasks requiring highly qualified experts gain
importance, additional educational seminars and programs are to be initiated to adapt
employees’ qualification level urgently or external labor forces must be contracted in
time. The third top level class Employee_Status is irrelevant and is just used to
determine the employee classification and their charging amounts indirectly.

These top level classes include various subcategories that are going to be shown in
the figure below. This figure also gives a look at the Protégé ontology editor used to
model our ontology knowledge base.

58 Dmitry Diyachenko (0300077)

ItlJntoIngy Protégé 3.3 beta (file:\C:\Program®20Files'Protege_3.3_beta)\examples) ItOntolooy.pprj, OWL £ RDF Files) -|I:I[ﬂ

File Edit Project OWL Code Tools Window Help

NeE BB ma ¢9 a» <G|protége

r\’ 3 (Cr 117247747 UWﬁ 'T.OWI.C\&SSES r £

Swossomom ¥

For Project: @ tOntology For Class: @ Programming_Languages (instance of owkClass) [inferred View

Asserted Hierarchy W l‘ﬁ ﬁ E{j @ Q’ ! i [J Annotations
owl:Thing Property ‘ Value | Lang |

v (0 Business_Services =1 rdfs:comment ot

b [Assistence
b @ Consulting_Services
b .Engineering_Ser\rices

-
¥ © Employee_Status
1 assaciate
. beginner ﬁ é’ Q: % Asserted Conditions
- HECESEARY & SUFFICIENT
. experiences_professional HEsEeape
@ expert @ MTechnologies
0 professional

) senior_associste
v MTechnologies
b Application_Servers
13 .Artificial_lmelligence
1 4 .Componem_Frameworks
b @ Databases
p & Distriouted_Programming
b O Internet
e Java_Related
b & Java_Technology ﬁ q’ ‘@ 63' % @D oisjoints
p @ software
S NET Related
| 3 .‘ Programming_Languages

| H B 3P ﬁ r}% & B oe 6 ®) Logic View () Properties View

Figure 12: Generic IT ontology structure shown in Protégé editor

The core class of this ontology is ITTechnology concept. This class, its subclasses,
as well as dependencies and interrelations, will be described in detail. OWLViz plug-
in will be used to visualize those concepts and reasoner activities.

In order to facilitate ontology maintenance and avoid redundancies class lists are
going to be declared and described (e. g. lists of programming languages, developers’
or users’ software, various IT components etc.). Afterwards data categories, necessary

On semantic timecard based project portfolio management 59

or relevant for the timecard application, are going to be created (e. g.
Scripting_Languages, ObjectOriented_Languages, ServerSide_Languages,
LogicBased_Languages, Commercial_Application_Servers or databases etc.).
According to the logic-based concept descriptions, the reasoner will be able to
classify the defined classes and move them to the appropriate categories in the class
hierarchy. Used approach allows adding new IT components, software or
programming languages easily. After a new class has been added, logic-based concept
description has to be accomplished. Automatic concept classification performed by
the reasoner will integrate the classes added into appropriate tree hierarchies. In this
way arbitrary additional properties might be defined to describe classes in a more
expressive way and therefore infer new arbitrary knowledge, if required by the
timecard application.

In this section the most important concepts will be picked up to show the general
ontology building constructs and patterns, reasoner power, as well as logic-based
concept description facilities and further automated ontology classification.

Firstly, it is wvery helpful to determine the general concept restrictions.
[HKRSWO04] Through these restrictions reasoner server becomes able to perform
basic ontology consistency checking and reasoning activities. The following basic
restrictions might get defined in the initial modeling phase:

o Define disjoint classes of certain concept — the concept can not share the same
individuals with its disjoint classes

o Define possible Union restrictions — a concept may include individuals of several
classes defined in the union property (logical or)

e Define possible intersection restrictions — a concept may include individuals
representing intersection of several classes (logical and)

Union restrictions and intersection restrictions might be declared through logic-
based rules or by using owl:intersectionOf as well as owl:unionOf commands.
Protégé OWL plug in provides direct constructs to define disjoint classes that are
shown in the figure below.

60 Dmitry Diyachenko (0300077)

ItDntquqy Protégé 3.3 beta ({file:\C:\Program®20Files'Protege_3.3 beta‘examples’ItOntology.pprj, OWL f RDF Files)y 4 ez} ﬁl

Eile Edit Project OWL Code Tools Wndow Help

NEE B0 mad I% am <merégé

I Properties r‘lndlvlduals "= Foms r.".owwuz ‘

(@ Metadata (Ontology1172477471 awd) r 0 oW Classe:
i i S EDITOR

For Praject: @ ROntology For Class: @ |AJAX (instance of owl.Class) [Inferred View
T]
Asserted Hierarchy W tf:: % Eﬁ @ Q: @ E D Annotations
¥ (@ Named_Languages = Property | Value | Lang |
@ AcrionScript 3 refs:comment [~
@ ActiveServerPages
@ Ada
@ riax L
-
@ asp
@ asPHET
. c @ @ % % Asserted Conditions
NECES3ARY |2
C-shary |
gc i P /& Named_Languages =
- @ helongsTo some Java_Technology
@ corfusion 1 | |E) helongsTo some ClientSide_Scripting
@ Cplusplus @ helongsTo some Internet_Languages
@ Delphi €D belongsTo some ClientSide
a Flash @ helongsTo some ObjectOriented_Languages
|E) belongsTo some RIA
© Fortran |E) isRelatecWith some Java
@ Godel |E} isRelatecWith some Java_Technology [BEi =
@ HL
O Pt o owl-ortologies. comiOrtaloayt 172477471 owf,_ @B Disjoints
® Java_Applets lacation: main ortology [ROmtology] |t
@ Java_Serviets |
ﬂ JavaScript =
[R
@ Lisp
@ atliah
@ Wlercury
@ 00_cobol L
@ pascal ¥ it
l:H B 5 R ® Logic View () Properties View

Figure 13: Defining disjoint classes

Category Named_Languages is a subcategory of Programming_Languages. It
includes all programming languages defined in our ontology knowledge base. All
these languages are described through the already defined properties:

e belongsTo — this property defines how concepts belong to each other, to which
groups, super categories, vendors, producers etc.

o isRelatedWith — this property is symmetric and transitive. It defines which
technologies are related with each other in any way.

The property belongsTo defines to which technologies and concepts Ajax belongs.
This information can be used by Racer Server Reasoner to move Ajax concept to the
appropriate defined categories and technology groups (e. g. Racer can add Ajax to
internet client side languages, scripting languages, Racer can assume that Ajax is part
of Java technology etc.). Depending on the application needs, rule definitions and

On semantic timecard based project portfolio management 61

properties quantity might be extended to express certain concepts in more detail in
order to extract additional information.

| @ Metaata (Ortology 1172477471 owl) | | OWLClasses | B Properties | 4 Incividusls | = Forms | | owiviz |
PROPERTY BROWSER

For Project: @ HOrtology For Property: Il

[Owiect | Datatype | Annctation | Al | (% o m B [Annotations

I Object properties [Property I Vo iea]
8 belongsTo rdfs:commert |
I hasstatus

[isRelatedith — el

isRelatechith (instanee of owl.ObjectProperty, owl perty, ow perty)

Domain 1 @ & pange o T @

owtThing [T Functional

[inverseFunctional

i
[[Ha = e

Super Properties o ¥ Transitve]

inseraE o

[isRelatedith

Figure 14: Protégé properties view

After the technologies and certain programming languages, as well as software
units, were defined the reasoner server might be integrated to check the consistency
and to classify the ontology in an adequate way. All the logical rules were defined as
the necessary conditions to describe the explicit asserted technologies. Ajax is, for
example, a subclass of Named_Languages, that belongs to certain technology groups
or vendors or is necessarily related with several technologies. Afterwards it is
necessary to consider which information is required by the timecard application.
Management is interested in the technology portfolio. Regarding programming
languages, it would be interesting to group them in relevant categories. It could help
us to extract some information about usage proportions of certain programming
language categories within an organization. The following concepts might be created
in our ontology:

o Internet languages

o Object-oriented languages
e Procedural languages

o Client-side languages

e Server-side languages

o Logic based languages

e Open source languages

e Scripting languages

62 Dmitry Diyachenko (0300077)

e Distributed programming languages etc.

The above-mentioned programming language categories might be used to classify
the programming languages explicitly entered into the timecard. These categories
could be integrated in management portfolio for technologies to illustrate their
importance and how intensively they are used in IT projects within an organization. In
the figure below explicit asserted programming language categories are partly shown.

WisualBasic

>
;o
— — o
f :

“ OhjectOriented_Languages
SRS =

= i3 P
———— — / o

4 DatabaseProgramming_Languages

= i — — ii—fa/p‘c(iveSer\rerPageS

e — F4

 OpenSource_Languages '/ -

. — B _is,/
JE— | G
_Prozedural_Languages

= e

o —
© Maklp_Languages

__ C Secripting_Languages b

- =
T Mamed_Languages

e
=
¥
=2
@
Efi:u;icsasen_Language_éfw = e
T e e
e — s, W .@'
4 Distributed_Programming_Languages b i
L B DDt \\ _
NTED
X TG
N ™~
e
\is-
L3 \
N @D
\.
™~

TED

icial_Intelligence_Languages

T NMET_Languages

S — e =

Figure 15: Asserted programming language categories

On semantic timecard based project portfolio management 63

To add appropriate programming languages to the asserted categories, necessary
& sufficient conditions must be defined for every specified category. For example the
category “internet languages” includes two subclasses ClientSide and ServerSide
programming languages. Specific rules are to be defined, giving the reasoner server
information that only internet or (internet and client side) or (internet and server side)
languages are allowed to represent the sub classes of given internet languages
category. As already mentioned above the necessary conditions of all explicit defined
programming languages must declared before that. Inferred ontology classification
after defining necessary & sufficient rules for each programming language category:

_ e

=._..-.tE...ganne_u.-.gu;fg_e’;jy/r

/
figa—"
TSonpting_Languageshot—isa == *'@

Figure 16: Partial cutout of the inferred programming language categories

64 Dmitry Diyachenko (0300077)

Another very important subcategory of the IT technology class is software. In the
subclass Named_Software many different software products were defined and clearly
described through given properties. For technology portfolio inspection it might be
interesting, if commercial or open source software products are mostly preferred, and
also which kind of web servers, databases, application servers or developers’ software
are intensively used within departments. The software units can be described through
logic-based definitions arbitrarily. On the basis of those rules, the required
information might be inferred in the following way. In our ontology it is clearly
defined through the necessary conditions, if the software units belong to the
databases, browsers, application servers, web servers, commercial or open source
software type, editors of different kinds etc. These conditions also might be combined
to infer an additional knowledge. For example, specific software might be described
as database, commercial, belonging to certain vendor, used in server side applications
etc. to enable reasoner classification to move the described software unit to
appropriate category groups. Editors might also represent commercial software, rich
internet application development environments, belong to certain vendor, be used to
develop internet applications, support distributed programming etc.

After the software products are described through logic-based rules, they become
able to get distributed to defined categories by the Racer server reasoner. The
category classifications were created according to the timecard application
requirements. Through those categories it becomes possible to group technologies
explicitly inserted in the timecard and developers’ software products. Thus, the
following categories were defined in the ontology knowledge base to group software
products:

o Application Servers — commercial and open source application servers

o Databases — commercial and open source databases

o Atrtificial intelligence

e Distributed programming

¢ Internet software — clients as browser, ftp, ssh, utilities. Servers as web servers, but
also ftp or ssh servers etc.

¢ Rich internet software — also represents sub category of internet class

o Web-Service enabling software — is also classified as part of internet concept

o Java technology — java commercial or open source editors, J2EE application server
implementations, Java micro edition software, java software products etc.

e Component frameworks — software used to support and realize component-based
programming

On semantic timecard based project portfolio management 65

o .NET software products — web servers, application servers, databases, web-service
enabling products, remote programming enabling software, commercial or open

source editors etc.
Partial cutout of the asserted software products is shown in the figure below:

é

=t
|
——— {
/..JEVE_REH‘tED |I|I /

S‘ Fy
f

I\ /

/

=
Apache

Jo

—_ Internet_Explarer

Pl
':-C_; ;nponent_Fra mew_o;i;‘}
CE—;i;t_rihutEd_Fmgramr;in;} /
I1 //'
I\

/ . o
lI,f 4 t’_--l:-'rogramming_Language;b
// e T g ' =
) — B
/ _,"/ / ety —
"’ - (Internet b
e i
\ =
\
\

\
1 I|
»]
=
a
=
m
)
m
@
&

N

(ITTechnoIogies-\}{l—{:ﬂpplication_SeNels--_E
—

1]

— —
R e
o —
/Javi_Tzchrmlngy}

h

4N
A\ S
\\\
B Y - =
_‘ \E!_atabasis._p _LEI_A_SnﬂwiT/.
Y T —— ——— / e
.'_x_p:_r_ti_ficia 7Inte|lige[|f:_e‘} / _-;}I_\lfmedSoﬂwa_re il
\ n . == - . Borland_Enterprise_Sernver
S ST . T
\\ ;_OFEHSDHIBE_SDMEIE‘E \""-\-\. =
= Coldfusion_Application_Server

Sun_One_»Application_Sernver

| |
|
Fd il I
f / i}
]

/
é.

_—{’-Soﬂware 5

S

{

Fmducis\!
= Mozilla_Firefox

omaed |

- N o
T NET_Related) \ NET_

<c=mmercial_5nm:ré}

T Wisual_Studio_NET

Dracle_Application_Server

NetBeans

1
\
1S o
\\ T IBEM_WehSphere

o BEA_Wehlogic

06

//

T SunOneStudio

Figure 17: Partial cutout of the asserted software products

66 Dmitry Diyachenko (0300077)

After reasoner reorganization and classification the defined software products were
added to the specified categories. You can partially see the inferred commercial
software concept in the figure below.

4 SunOneStudio
! .
! # 1Boss

8
| A visual_Studio_MET
W —
QG NamedSoﬂyuare-_E:_, @
B T

G}};T ech "EI,:_E—;—) -"III

4 Component_Framewors B /

< /
utea_Pragram: j &

4 Programming_Languagss B ce

. Commercial_Software =
. f——

(__?‘é:mmer::ial_Edit;Ts-}

— ﬁa.ﬁﬁ_ = — =
LR ternet“s.! \\ {(;;nsuur:e_snﬂv\lar; - - 4 Opera

=== | e = \\
—— — == A ——

A ~rtificial_Intelligence L3 ll' QET_H-Iatm '\' d Mozilla_Firefosx

— ey = T N \

— N —

NET_Products b=] d 1S_wWebserver

(lipplicztionfsewer;}injf mercial_Application_Servers B

4 Databases M mercial_Databases B

Figure 18: Partial cutout of the inferred commercial software products

On semantic timecard based project portfolio management 67

In the screenshot above only a small cutout of the inferred ontology, as well as
commercial software products, is presented. The commercial software category
consists of commercial application servers, commercial editors and commercial
databases with their subcategories. They, in turn, also have their instances that were
added from the named software concept during the reasoning process.

After specified software products are grouped to certain concepts, the following
questions could be analyzed for the technology management portfolio:

e To what extent is commercial software used in the IT projects?

e To what extent is open source software used in our IT projects?

e Which kind of databases is commonly used?

o Which kind of the application servers is mostly used (commercial, open source)?
e What are the popular software vendors in our IT projects?

e Which IT technologies are offered by certain software vendors?

¢ Which software vendors offer open source technologies?

¢ How many hours were the rich internet technologies used?

e How intensive are the Java technologies used in internal and external IT projects?

After all that information is defined in our ontology knowledge base, the timecard
user ideally just has to enter technology name or software product used to accomplish
a certain task. Through technology description the timecard application will be able to
generate management reports demonstrating e.g. usage proportions of open source
software to commercial software, even if this information was not inserted in the
timecard application explicitly. If other information for the management reports is
required, additional concepts and logic-based descriptions must be specified to extract
necessary information. In this way the ontology might be extended during its life
cycle regularly.

It has to be mentioned that our top level ontology categories also include other
subcategories with appropriate content. That content is partly asserted by the ontology
editor directly and partly imported during the above-mentioned reasoning process.

The internet top level category includes its clients and servers. The content of
client and server subcategories partly represents the software products that are
automatically added during the reasoning process. The internet category also has
internet languages (divided in server-side and client-side languages) subcategory that
is filled with the programming languages already defined in the category
programming_languages. Web-services category (sub category of internet concept)
becomes filled while reasoning process with the web-services enabling software, web-

68 Dmitry Diyachenko (0300077)

service programming languages. Rich internet application category will be filled with
the already defined RIA software, RIA programming languages and other RIA
technologies that are partly inferred by the reasoner but also explicitly asserted by
ontology editor. Of course, all the rules must be defined in the ontology knowledge
base beforehand. It also has to be defined what kind of content should be included in
certain categories and its sub categories. On the other hand, the structure of internet
concept and information like web-service specifications have to be asserted by the
ontology editor explicitly.

The databases category consists of commercial databases, open source data bases
and database programming languages subcategories. All the data are already defined
in other categories (software, programming languages) and will be added to the
databases concept during the reasoning process.

Remaining IT technology top level concepts are defined in the similar way and
partially consist of the asserted or inferred knowledge (knowledge imported from
other categories through certain rules and constraint definitions).

Business services represent the second important part of our ontology. In that
concept the IT engineering and consulting service categories are defined. Specified
categories are used to determine the professional status of employees and therefore
their charging level for the services provided. Experienced professionals generally
handle complex tasks with high responsibility level and are, therefore, usually highly
paid for the services performed.

The Employee status class is used in our ontology to define employees' status and,
consequently, their charging level. The employee status is defined through hasStatus
property. After all general employee information and rules are defined, the following
information might be extracted for the management reports in the timecard
application:

e How many highly paid services were provided in the actually running or already
finished projects (in hours)?

e How many cheap services were performed during the projects?

e What is the proportion of certain services?

¢ How many consulting services were charged (in hours)?

e How many design services were charged?

e How many software engineering services were performed etc.?

o Arbitrary service proportions and their changes might be derived to forecast future
service trends

On semantic timecard based project portfolio management 69

All those answers and reports may be provided by the timecard application. The
employee does not need to insert additional information in the timecard application.
Ideally he only has to enter service category listed in the business service concept.
The remaining information will be inferred by the ontology knowledge base, where
all those service categories are accordingly described. Structure of the business
service category is partially visualized in the figure below:

Asserted Hierarchy

'CLASS BROWSER <€ protégé

For Project: @ HOntology

Asserted Hierarchy

owl:Thing ﬂl 5 At =
v a Business_Services For Class: ’ Process_Consuttant {instance of owl:.Class) D Inferred Vle_w
v 0 Assistence |j @ g @ I—E =)
() Project_Manager_Assistent FroneTy | T
@ Trainee

1 rddfs:comment
v O Consulting_Services

v 0 Consutting
@ IC_Consuttant
0 Junior_IC_Consulttant
O Junior_Process_Consultant éﬁ (ﬁ’ % %
Q Management_Consultant
,‘ Proce“ssj:o‘ns‘ultsm
O Sen‘i‘ér_‘lc_‘t:onsul‘t‘an‘t‘ Q Consulting
@ hasStatus some senior_associate
&) hasStatus some associate

. Senior_Management_Consultant
Q Senior_Process_Consuttant
¥ @ cortrolling
0 Project_Controller
O Quality _Manager
Q Senior_Qualty_Manager
v @® Manager
Q Associate_Partner
’ Partner @ % ‘% % %
Q Principal
O Programm_Manager
9 Project_Manager
e Senior_Project_Manager
» @ Training 4 e | Tv]
¥ @ Enginesring_Services =y & e @ ® Logic Wiew () Properties View

-~

p) Adminisrator
[3 O Architect Changed direct superclasses |

» @ Engineer L] ’Enabling;Technq?.gies, ClientSide_Scripting, CliertSide, OhjectCriented_Languages, .| =
| 2 0 Manager p:iwww.owl-ontologies.comOntology11 7247 T4 L.owlFEngineer | e
| € Fool Sty mtology: hittp: Sy ovwl-ontologies .com/Ontology1 172477471 .owl
[|!nl:al.inn: main ontology [ttontology]

Figure 19: Subcategories of the business service category

In our IT ontology approximately 250 named classes were explicitly asserted by
the ontology editor. Many additional classes were inferred through logic-based rules
by the Racer server reasoner. About 450 restrictions and rule definitions were
specified to build adequate taxonomy and concept interrelations. The Racer server

70 Dmitry Diyachenko (0300077)

was used to check the ontology consistency and to perform its taxonomy
classification.

3.4.2 Ontology reasoning

In this section the already mentioned reasoning process and its facilities will be
shortly demonstrated and explained on the basis of a small example. This example
should provide basic idea of how the information processed by the reasoner must be
declared and, therefore, which possible ontology modeling constructs or patterns
could be implemented.

The short example will show how necessary constraints must be defined to
describe certain concepts. It is very important to mention that necessary constraints
might be declared in arbitrary complexity. Firstly it has to be considered which
information is necessarily required by the application further using the ontology
knowledge base. Afterwards certain constraints must be defined to express the
concepts in the required way. On the basis of these constraints, the relevant
information might be extracted by querying the ontology knowledge base. The role of
necessary & sufficient constraints is going to be explained, too. These constraints
provide crucial information for the reasoner tool that will be used during the ontology
processing activity.

The Racer server reasoner is used in the thesis to perform ontology consistency
checking and classification processes. Racer server is available for download from
http://www.sts.tu-harburg.de/~r.f. moeller/racer/ and can process the OWL DL
ontologies. [MH04] Racer provides TCP service on port 8088 and HTTP service on
port 8080. The HTTP service is enabled by default. [HMO03] This way the ontology
could be sent via HTTP service to the RACER server reasoner for the further
processing. Manually constructed class hierarchy is called asserted class hierarchy in
Protégé OWL editor. The asserted class hierarchy is going to be sent to the reasoner.
Racer performs consistency checking of the asserted ontology and infers new class
hierarchy based on the defined constraints and rules. So called inferred class
hierarchy is sent back to the Protégé OWL editor via HTTP service. [HKRSWO04]

In our example certain software products will be picked up to demonstrate basic
rule definitions and constraints provided by the OWL DL specification. The necessary
constraints are used to define concepts and to specify which members or subclasses
are allowed to belong to the specific concept. If some classes or subclasses fulfill the
constraints defined in a certain concept, then they become allowed to represent

http://www.sts.tu-harburg.de/%7Er.f.moeller/racer/

On semantic timecard based project portfolio management 71

concept’s member and to be placed in its subcategories. Simple rule definition sample
is visualized in the figure below:

Microsoft_Utnice !

Mozila_Firefox ¢ Q’ o X

%

MS_SQL_Server
MySaL
NetBeans

) Opera

) NamedSoftware
belongsTo some OpenSource_Software
| belongsTo some Databases

[MS_Access ‘
|
|

Figure 20: Necessary constraints of MySQL database concept

MySQL database necessarily has NamedSoftware as its superclass, belongs to
open source software class (some ->belongs at least to one open source software) and
to databases class. Some restrictions mean that certain class might belong to open
source class, databases class and to other arbitrary classes that might be defined later.
[HKRSWO04] It is possible to perform so-called closure axiom. This axiom enables to
define the completeness of a certain concept. [HKRSWO04] In case of MySQL concept
closure axiom would look as follows -> MySQL bel ongsTo only (open
source software or databases). In this case MySQL might only belong
to open source software or to databases class. The class is completely defined and is
not allowed to represent other classes at all. Closure axioms are rather useful for the
so-called excluding querying mechanisms, [HKRSWO04] e. g. show me all software
products not representing commercial software products. Reasoner will include
MySQL in the query result, because of its clear definition (only belongs to open
source or only to databases classes, and nothing else). Reasoner will not add MySQL
to the query results if just some constraints are defined because of the incompleteness
of the concept. MySQL might also belong to commercial software products if it is not
excluded explicitly.

Necessary & sufficient constraints are used to define following restrictions:

e Only classes fulfilling necessary & sufficient constraints are allowed to be
members of a certain concept [HKRSWO04]

¢ All ontology classes fulfilling those constraints must be added to a certain concept
in an appropriate way (reasoning process produces inferred class hierarchy)

[HKRSWO04]

72 Dmitry Diyachenko (0300077)

The figure below demonstrates the necessary & sufficient constraint in the
databases concept:

¥) Dtabases =
a i WA R @
Commercial_Databases I & Asserted Congi :
- DatabaseProgramming_Languages wecEssary & surricent| ||
= OpenSource_Datahases -} OpenSource_Software
b (5 Distributed_Programming = belongsTo some Databases
b O Internet =) belongsTo some OpenSource_Software
5 NECESSARY
< lava_Related
. Databases -;
B & Java_Technology -|

Figure 21: Necessary & Sufficient constraints of the open source databases concept

The necessary & sufficient constraints shown above provide the following
information for the Racer reasoner server:

e only concepts belonging to the class databases and belonging to the class open
source software are allowed to be added to the open source databases concept (both
constraints have to be fulfilled in parallel)

o all the concepts available in the IT ontology knowledge base and fulfilling these
constraints in parallel have to be added to the open source databases concept

e open source databases concept must be added to open source software concept, too

e as the necessary condition open source databases have their super class called
databases

After defining the rules and performing ontology classification presented above,
the following changes are visible in the inferred class hierarchy compared to the
asserted class hierarchy:

On semantic timecard based project portfolio management 73

‘Et:;"s T 0eEy] : | REET
For Project: @ Ontology For Project @ Ontology For OpenSource_Databases | (instance of owlClass) || nferred Vielv
8 U= B i} | |
Asserted Hierarcly w ﬁ) @ |Inferred Hierarchy @ g Q L 1";3 Q; [B
owtThing - owl:Thing |~ Property | Walue
» @ Business Services b 1) Business_Services relfs:comment
b & Employee_Status b (5 Enployee_Status
v) MTechnologies ZlIM @ MTechnologies
b Application_Servers b 0 Application_Servers
b O Artificial_nteligence = b (0 Artficial_intelfigence:
» @ Component_Frameworks | | ¥ & Component Frameworks
v & Databases ¥ () Databases
B corercial Databases b Commercial_Datahases 5 OpenSource_Software
7 3 2) helongsTo some Databases
a B = DatabaseProgramming_Languages =
) DatabaseProgramming_Languages - €) belongsTo some OpenSource, Software
I OpenSource Datebases ¥ = OpenSource_Datahases I
{2 Distributed_Programming (5 6hU_saL) Databases
] ¥ MaxDB I
MysaL
& Java_Technology | || [PostgreSQL |l
& NET Related » = Distributed_Programming
» (0 Programming_Languages b mernt
o) b 5 Java_Related
¥ & Software = = e N e
k5 Java Technalnay 4 i [»]

Figure 22: Asserted vs. inferred class hierarchy

As visualized in the figure above, several software products fulfilling defined
constraints were added to the open source databases concept. Open source and
commercial databases concepts were added to the open source and commercial
software concepts, too.

In this way arbitrary constraint definitions are allowed to be performed to
determine which concepts are allowed to be added or necessarily have to be added to
certain categories.

3.4.3 OWL syntax

Protégé OWL editor facilitates ontology modeling process dramatically. Ontology
constructed in Protégé might be exported in OWL format and then get integrated in
other ontology knowledge bases or processed by arbitrary applications. Protégé is
using the Jena model to provide appropriate API that allows navigating, modifying
and querying the OWL ontology knowledge bases. Ontology integration and querying
processes will be explained and demonstrated in detail in chapter 4 “Web-service
based component integration”.

Small OWL ontology cutout is shown below to demonstrate the OWL syntax and
how OWL ontology describing the real world concepts actually looks like:

74 Dmitry Diyachenko (0300077)

<ow : Cl ass rdf: | D="NET">
<rdf s: subC assOf >
<ow : d ass rdf: | D="Conponent Franmewor ks"/>
</rdfs:subd assOf >
<ow : di sj oi nt Wt h>
<ow : Class rdf: 1 D="EJB"/>
</ow : disjointWth>
<ow : di sj oi nt Wt h>
<ow : Cl ass rdf: | D="Corba"/>
</ow : disjointWth>
</ ow : d ass>
<ow : C ass rdf: | D="CpenSour ce_Languages" >
<ow : equi val ent d ass>
<ow : Cl ass>
<owW :intersectionOf rdf: parseType="Col |l ecti on">
<ow : Restriction>
<ow : onProperty>
<ow : Qbj ect Property rdf:1D="bel ongsTo"/>

</ ow : onPr operty>

rdf : resour ceép%%(ﬁgghl%gffghgumages"/ >
</ow : Restriction>
<ow : d ass rdf: | D="Progranm ng_Languages"/ >
</ow :intersectionO>
</ ow : C ass>
</ ow : equi val ent Cl ass>
</ ow : d ass>
<ow : C ass rdf: about ="#Dat abasePr ogr anm ng_Languages" >
<rdf s: subC assOf rdf:resource="#Dat abases"/ >

<ow : equi val ent Cl ass>

On semantic timecard based project portfolio management 75

<ow : O ass>
<owW :intersectionOf rdf: parseType="Coll ection">

<ow : Restriction>

rdf : resour ceép%§8gg¥3wgar':58’rmn ng_Languages"/ >
<ow : onProperty rdf:resource="#bel ongsTo"/>

</owW : Restriction>

r df : about ng :oglr aRmi ng_Languages"/ >
</ow :intersectionC >
</ ow : O ass>
</ ow : equi val ent Cl ass>

</ ow : C ass>

This OWL syntax describes defined .NET, open source programming languages
and database programming languages concepts.

76 Dmitry Diyachenko (0300077)

4 Web-service based component integration

In the following chapter the procedure and approaches, that are used to integrate
necessary components in our timecard application, will be described and
demonstrated. For improved maintenance, extensibility and flexibility reasons, the
distributed software development approach will be used to implement the
functionality of our timecard application. More precisely defined service-oriented
architecture (SOA) has to be applied in our timecard implementation to ensure loose
coupling and independency of the software components used. Functionality provided
via web-services can also be reused in other applications for different purposes.

Firstly, the implementation of Coldfusion web-services was considered to integrate
the back-end application logic. Due to the fact that current Coldfusion application
server version (7.02) only supports java virtual machine version not higher than 1.4*
and Protégé OWL java library for ontology integration not lower than 1.5*, further
incompatibility problems can be definitely prognosticated. After numerous tests the
incompatibilities between Protégé and Coldfusion were proven. Thus, a workaround
is necessary to integrate in Protégé modelled OWL ontology knowledge base by using
its java library successfully.

After in-depth research, an effective and efficient alternative to Coldfusion
application server could be found for ontology integration reasons. The Apache
Tomcat web server in combination with soap enabled Apache Axis application server
represent a scalable and stable environment for the building and publishing of java
web-services. That platform can be set up easily and facilitates web-service creation
dramatically, too. The timecard back-end application logic and database queries will
be provided by the Coldfusion web-services. The following strategy encapsulates the
whole application back-end functionality, as well as ontology integration, totally, and
therefore can be integrated in other applications for various reasons easily, too.

To provide basic understanding about distributed software development approach,
the SOA (service oriented architecture) and web-services concept will be shortly
explained in the following subsection. Afterwards the environments for java web-
services and Coldfusion web-services, as well as their architectures, will be described

On semantic timecard based project portfolio management 77

in detail. Finally, the web-services themselves and their functions are going to be
described in a circumstantial way.

4.1 SOA and web-services basics

The distributed approach enables an easy and flexible functionality integration, as
well as process-oriented proceeding. Simplified expressed, functions available in
intranet or internet should be consumed to implement process activities. In reality
complex web-service interaction procedures, security, service quality and
composition issues must be considered and applied. [W04, p. 111] To improve the
understanding of the web-services concept, simple service-oriented architecture
constructs need to be mentioned and explained, first of all.

Basically, the service-oriented architecture concept is rather simple. There are
service suppliers and consumers. The services are implemented by supplier and
registered in the public directory UDDI (universal description, discovery and
integration). In that public directory service type, category, vendor, functionality etc.
are clearly described. On the basis of the information provided, service consumers can
search for the required and relevant services, as well as integrate the found services
that best fit their needs. [HLO04, p. 14] The SOA concept and its role interactions can
be visualized more precisely and clearly in the following way:

Figure 23: Service oriented architecture [HL04, p. 16]

78 Dmitry Diyachenko (0300077)

The figure above shows that the public UDDI directory just provides web-service
publishing and discovery opportunities. The consumer can extract service address
(end point) and therefore find out where the necessary service is actually located.
Service requests and responses might follow afterwards. Web-service function
computing is performed by the service provider’s server. The computing results are
finally sent to the service requestor. [HLO4, pp. 14-16] The SOA idea must also be
realized through concrete specifications and approaches. The web-services concept is
seen as new distributed approach that might potentially fulfil challenging SOA
requirements in appropriate way. [DJMZ05, p. 25]

Web-service technologies, standards and certain specifications are already
widespread and used in many organizations. Web-services enable flexible process-
oriented proceeding and can be adapted to the changing environment quickly. They
allow fast and uncomplicated integration of external services and functionality reuse.
Through the standardization of xml, certain communication protocols, as well as web-
service description, platform and programming language independent interactions
became possible. The computing power can be distributed among many machines by
using web-services. That fact might increase computing performance and scalability
in the required way. The organizations are also not necessarily made to implement
complex functionalities (e. g. maps with road works in certain regions), but just
integrate the already existing services providing that functionality for certain charge.
That proceeding allows the organizations to concentrate on their core business and to
avoid high expenses for secondary purposes. [V05, pp. 403-405]

Many advantages of the web-services were presented above. Anyway, it is still not
enough to deserve the acceptance of the business world completely. Many issues, like
web-service composition, semantic machine processible description, quality of
service, permanent availability, security, transaction management and controlling etc.
are still inconsistently defined. The W3C consortium and industry global players are
working hard on these topics. Many, or maybe even too many, standards and
specifications referring to those issues have already been produced. However many of
them are partially redundant or contradictory and make the potential users insecure in
this way. [WO04, pp. 108-111] Due to the fact that web-services don’t represent the
core topic of this thesis, it is not relevant to go into detail of those extended web-
service standards. Just core web-service standards, that are also partly used for back-
end logic components integration, will be mentioned and shortly described.

The core web-service components that are crucially necessary for web-service
description, consumption, publication and messages exchange are:

On semantic timecard based project portfolio management 79

SOAP - is simple XML based message exchange protocol, basically using HTTP
transport protocol. SOAP enables web-service communication (request, response)
in a standardized format.

WSDL - describes methods, for processing necessary parameters, result
composition in XML format. Thus, the consumer can inspect methods provided by
web-service, required arguments and expected results.

UDDI - describes public directory and web-services listed in there (web-service
category, vendor and its contact information, functionality provided or additional
information concerning offered web-service etc.). It enables web-service
publication and its facilitated discovery. [G03, pp. 163-177]

4.2 Java web-services with Tomcat/Axis

To provide the appropriate environment for java web-services development, as

well as deployment, the following infrastructure was installed:

JDK (java development Kkit) version 1.5.0_06) — can be downloaded from
http://java.sun.com/

Apache Tomcat 5.5.12 used as servlet container — open source software,
downloadable from http://tomcat.apache.org/

Apache Axis 1.3 for soap messages processing - open source software,
downloadable from http://ws.apache.org/axis/

Apache Ant build tool with Axis and Tomcat tasks — open source component,
downloadable from http://ant.apache.org/

Eclipse IDE (optional with web-service plug in) — comprehensive open source java
editor and devel