

Masterarbeit

Titel der Masterarbeit

On Semantic Timecard Based Project Portfolio
Management

angestrebter akademischer Grad

Magister der Sozial- und Wirtschaftswissenschaften (Mag. rer. soc. oec.)

Verfasser: Dmitry Diyachenko

Matrikel-Nummer: 0300077

Studienkennzahl: A 066 926

Studienrichtung: Wirtschaftinformatik

Betreuer: Dipl. Ing. Dr. ao. Univ.-Prof. Renate Motschnig

 Dr. Peter Trimmel

 Ing. Günter Baumgartner

Wien, im April 2006

2 Dmitry Diyachenko (0300077)

Table of contents

Executive summary .. 4
Executive summary .. 5
1 Introduction ... 6

1.1 Motivation .. 7
1.2 Content of the thesis ... 8

2 Project portfolio management ... 10
2.1 Increasing value trough project portfolio management 12
2.2 Guideline for portfolio management deployment .. 14

2.2.1 Project inventory preparation .. 14
2.2.2 Project evaluation and prioritization ... 14
2.2.3 Portfolio monitoring and adaptation .. 16
2.2.4 Portfolio management barriers .. 17

2.3 Improving project portfolio management trough the semantic timecard
application .. 18

2.3.1 Roles participating in the timecard application 20
3 Building the ontology knowledge base ... 22

3.1 Introduction to the ontology concept and the need for it 25
3.1.1 Adding semantics to the timecard application 28

3.2 Ontology mark-up languages ... 32
3.2.1 RDF/S .. 33
3.2.2 OWL .. 36

3.3 Evaluation of ontology development tools ... 42
3.3.1 Apollo .. 44
3.3.2 WebODE ... 45
3.3.3 OntoStudio .. 46
3.3.4 WebOnto ... 46
3.3.5 Protégé 2000 .. 47
3.3.6 Direct tool comparison .. 48
3.3.7 Detailed description of the selected ontology development tool 50

3.4 Interactive ontology building process .. 53
3.4.1 Taxonomy definition ... 56
3.4.2 Ontology reasoning ... 70
3.4.3 OWL syntax .. 73

On semantic timecard based project portfolio management 3

4 Web-service based component integration .. 76
4.1 SOA and web-services basics ... 77
4.2 Java web-services with Tomcat/Axis ... 79

4.2.1 Apache Axis .. 81
4.2.2 Java web-service for ontology integration... 82

4.3 Web-service based back-end application logic integration 85
4.3.1 Coldfusion application server .. 85
4.3.2 Allaire Spectra framework .. 87
4.3.3 Coldfusion web-service for back-end logic integration 88

5 Semantic timecard application .. 91
5.1 Semantic timecard architecture .. 94
5.2 Semantic timecard functionality ... 96
5.3 Portfolio inaccuracies and difficulties .. 104
5.4 Semantic timecard enhancement capabilities ... 106

6 Summary ... 107
7 References ... 109
8 Table of Figures .. 113
9 Index of Tables .. 115

4 Dmitry Diyachenko (0300077)

Executive summary

In der heutigen komplexen Geschäftswelt werden in den Unternehmen viele
Projekte, welche meistens Abhängigkeiten und Auswirkungen aufeinander aufweisen,
parallel durchgeführt. Die Hauptaufgaben des IT-Projekt-Portfolio-Managements sind
die Komplexität des projektübergreifenden Managements in den Griff zu bekommen
und das Management in die Auswahl und die Abwicklung der IT Projekte mehr zu
integrieren.

Das Ziel dieser Diplomarbeit war es, zu überlegen, wie das IT-Projekt-Portfolio-
Management von Software Lösungen unterstützt werden könnte. Für diesen Zweck
wurde eine Ontologienwissensbasis entwickelt, die ausgewählte Begriffe der IT
Domäne und deren Zusammenhänge standardisiert definiert und zuordnet. Diese
Ontologie wird anschließend mit Hilfe von Web-Services in einen Timecard
Prototypen integriert, welcher ebenfalls im Rahmen dieser Diplomarbeit entwickelt
wurde, um dem Management erweiterte Technologien- und Dienstleistungs-
portfolioberichte zur Verfügung stellen zu können. Diese Portfolioberichte basieren
auf den Zeitaufzeichnungsdaten, welche von den Mitarbeitern in deren Timecards
eingetragen werden und auf den Ontologienkomponenten, die anschließend diese
eingetragenen Daten zu bestimmten Technologien- und Dienstleistungskategorien
zuordnen. Aus diesen Portfolioberichten kann das Management dann ableiten, auf
welche Technologien und Dienstleistungsarten ihr Unternehmen vorwiegend setzt,
um dementsprechend passende IT Projekte für die weitere Realisierung auszuwählen.
Aufgrund dieser Daten können ebenfalls Umschulungen rechtzeitig angeordnet
werden, um bestimmten technologischen Trends und Herausforderungen zu genügen.

Im Zuge dieser Diplomarbeit konnte festgestellt werden, dass wohl definierte und
aussagekräftige Portfolioberichte nur sehr schwierig zu realisieren sind. Die größten
Herausforderungen stellen dabei das eindeutige Zuordnen von IT Technologien und
ein standardisiertes Befüllen von Timecard Formularen dar.

On semantic timecard based project portfolio management 5

Executive summary

The project portfolio management is a very important concept, first of all, for the
organizations dealing with a large number of projects simultaneously. [PR04] A lot of
tasks, like control and overview of all projects, comprehensive resource allocation
and, consequently, well-arranged and cost-cutting expertise and components reuse,
ensuring business strategy alignment, reporting to business executives etc., can be
accurately accomplished by the effective deployment of the project portfolio
management.

The main focus of the current diploma thesis was to consider how the IT project
portfolio management could be effectively supported by the software solutions. For
that purpose a semantic timecard prototype and ontology knowledge base were
designed. The semantic timecard prototype was implemented primarily to support
technology and service portfolios. The ontology knowledge base was thereby built to
define the standardized terms of the IT domain and their mutual relations, as well as
interconnections. The ontology components were integrated via web-services into the
timecard prototype to provide extended portfolio reports, considering technology
structures and interrelations. On the basis of the report data provided, the management
becomes able to discover which technologies and services their organizations are
specialised in and how those trends and tendencies actually change over time. That
information enables management to take customer orders, dealing exclusively with
similar technologies to assure expertise and technologies reuse. On the basis of the
well-investigated trends, essential educational trainings can be afterwards initiated,
too.

While developing the semantic timecard application, one can notice that some
challenges, such as clear IT technology classification and standardized timecard form
completion, are to be faced to provide high quality and accurate portfolio reports.

6 Dmitry Diyachenko (0300077)

1 Introduction

Nowadays the complexity of business processes is increasing rather rapidly
because of the extremely challenging and ambitious customer requirements and
business interconnectedness. Considering globalization aspects and the development
of international trading, the organizations should be able to deal with much more
competitors than several years ago. Those competitors might even have certain
country-specific advantages that allow them to offer similar products at smaller
prices. Customers’ extensive demands and requirements are changing constantly and
have to be met as fast as possible by organizations to survive in that highly
competitive environment. Customer demands not only have to be met fast, but also
with the required quality and within a certain budget. External environment and trends
are changing faster and faster as well. Thus, the business cycles become shorter and
have to be accomplished faster, too.

Due to these facts, the organizations have to be able to adapt to the changing
business environment quickly to ensure their competitiveness in future and to expand
their business activities. It means that organizations have to act flexibly, to be able to
respond to customers’ demands in time and up to standard, to carry out their business
processes and resource allocation proceedings effectively, have control of all business
activities and conform to clearly defined business strategies, goals, responsibilities
and corporate guidelines, as well as standards. To achieve the acceptable flexibility
and effectiveness levels, general concepts have to be reconsidered and improved.
Companies have to switch from hierarchical, fixed line organizations to cooperative
project- and process-oriented corporate structures. Project-oriented corporate
structures allow to perform complex risky tasks and to satisfy customer demands in
flexible and effective ways. [PR04] If such customer demands need to be satisfied,
projects with temporary teams have to be launched. Projects are led by project
managers, have clearly defined goals, responsibilities and requirements. Due to the
high level of complexity of the tasks, comprehensive project management has to be
absolutely essentially initiated to ensure the successful completion of projects by
organizations and the resulting satisfaction of customers. More precisely, project

On semantic timecard based project portfolio management 7

management is actually responsible for the planning, scheduling and monitoring of
projects. [PR04]

In today’s business structures projects have dependencies and impacts on each
other, some projects are interrelated or redundant. It is not enough to control and
manage single projects to achieve maximal overall return. Thus, comprehensive multi
project management must be applied additionally. Multi project management is a very
important concept, first of all, for the organizations dealing with a large number of
projects simultaneously. [PR04] A lot of tasks mentioned above, like control and
overview over all projects, comprehensive resource allocation, ensuring of the
business strategy alignment, reporting to the business executives etc. can be
accurately accomplished by the effective deployment of multi project management.
[D03]

The importance of multi project management, that helps to maximize overall return
considerably, has already been realized by many organizations. This thesis deals with
the subject of portfolio management of IT projects. Portfolio management is a specific
concept of multi project management. All the terms will be specified and explained in
detail in chapter 2 “Project Portfolio management”. Another point that has to be
considered is how project portfolio management could be improved and supported by
software applications. For this purpose timecard application will be implemented. The
main part of this diploma thesis deals with considerations about how implementing
timecard could be extended to the semantic component through specified ontology
knowledge base. Building of ontology knowledge base and its integration is thereby
the most challenging procedure.

1.1 Motivation

As it has been mentioned above, project portfolio management is an essential issue
for the organizations dealing with a large number of projects simultaneously. In fact a
lot of organizations do not have a full control over their project portfolios and make
use of poorly organized, chaotic planning processes. [D03] According to the recent
AMR research report, approximately 75% of IT organizations apply project portfolio
management poorly or do not apply it at all. Those companies do not have any clear
idea of what is happening in their project portfolios, which projects are currently
running in their organizations, and there is no clear understanding of the actual value
of those projects for the business. [AMR] In these conditions project portfolio

8 Dmitry Diyachenko (0300077)

management and its adequate use still represent noticeable challenge for many
organizations. It happens, in the first place, because of the lack of understanding
which business advantages could be achieved by project portfolio management and
how it should be applied correctly and effectively. On the other hand, there is no
comprehensive software solution on the market that would completely support
portfolio management activities in an appropriate way. Several independent software
solutions have to be integrated and combined. Generally, it is a very complex and
costly process that can not always be successfully realized. [D03]

Due to these facts, it has to be analyzed how project portfolio management could
be applied within an organization in the best possible way, how it could add value to
the business and help to gain control over the internal projects and business activities
and finally how its deployment could be supported by applying software in an
adequate way. A very important part of this diploma thesis is to implement semantic
timecard application supporting several project portfolio management activities. The
semantic of the timecard application mentioned will be provided by ontology
knowledge base that will be developed within the present thesis, too.

1.2 Content of the thesis

The content of this diploma thesis is restricted to the IT project portfolio
management. It has to be considered how its processes could be improved by creating
a guideline defining a well considered project portfolio management procedure.

Afterwards the timecard application has to be implemented in order to support IT
portfolio management activities. That timecard application should facilitate project
billing and invoicing, and also generate personalized reports concerning single
projects and project portfolios for all roles possibly interacting with our timecard tool.
Therefore it has to be considered which roles will actually interact with the timecard
application and which information could be valuable or interesting for them at all. In
order to deliver extended and high quality reports to all participating roles, certain
semantic components will be added to our timecard application.

This semantic will be provided by the ontology knowledge base including certain
IT technology components, as well as business service categories. The complex
process of the development of the intended ontology will thereby make up the main
part of this diploma thesis. Afterwards the ontology knowledge base will be tested for
its adequate expressiveness level and consistency by the Reasoner server application.

On semantic timecard based project portfolio management 9

It also has to be tested and proved that the modelled ontology is able to deliver
sufficient and required information to our semantic timecard application. After all the
tests are executed successfully, the ontology knowledge base will be integrated into
our timecard application via web-services. It has to be mentioned that the core
timecard functionality will be covered by Coldfusion web-services. Java web-
services, in turn, will be used to integrate semantic components provided by the
ontology knowledge base. All those web-services and their technology architectures
will also be implemented and presented in detail in this diploma thesis.

Finally, the functionality of our timecard application, as well as generated
personalized high quality reports, will be demonstrated and explained in the
circumstantial way.

10 Dmitry Diyachenko (0300077)

2 Project portfolio management

Project portfolio management is a part of multi project management concept. All
the projects in organization can be grouped on the basis of certain criteria (for
example, based on their type or business sector). Projects operating in the same
business area might be classified as follows:
• Procurement projects
• IT projects
• Greenfield projects
• Logistic projects
• Marketing projects
• Investment projects
• Construction projects
• Research projects [PR04]

Each project category represents a project portfolio. That project portfolio includes
projects that operate in the same business area and therefore may use many resources
in common, but might possibly have different complexity levels, budgets, duration,
goals and priorities. [PR04 p. 403] The task of project portfolio management is to
select, manage and monitor projects of a specific portfolio. [PR04] This diploma
thesis only deals with the issue of the IT project portfolio management.

Many different project management definitions are available in various existing
publications. To avoid misinterpretations, the most important project management
terms are going to be defined for our thesis. For our purposes the most applicable
definitions of terms will be cited from the literature references. The significant
differences between them will be demonstrated and explained, too.

To speak about management of multiple simultaneously executed projects, the
actual meaning of a single project and its management has to be understood and
defined at first. Many definitions exist in various project management books
explaining what a project actually means. In my opinion, the most comprehensive and
complete definition of the term project is as follows:

On semantic timecard based project portfolio management 11

A project
• is time restricted
• has definite goals
• is a one-time intention
• is a complex task including subprojects and multiple activities
• includes risky tasks and challenges
• requires comprehensive department collaboration; experts and professionals

from different departments have to collaborate and to cooperate to achieve
common project goals and objectives

• requires a project manager, coordinator and a team [K00 p. 3]

Project management is actually responsible for planning, scheduling and

controlling of those activities that must be performed to achieve project goals and
objectives. [L00 p. 7]

In large organizations dealing with multiple projects simultaneously, it is not
enough just to implement project management and manage tasks, as well as various
activities, in single projects. Management of multiple projects has to be applied in
order to allocate restricted resources effectively, to set up projects aligning with
business objectives, to maximize overall return. [H02] Several multi project
management terms often used in literature references are presented below:

Multi project management – is responsible for management of all the starting and
already running projects within an organization. All the projects and their objectives
have to be considered to ensure comprehensive and qualitative multiple project
management. [H02 p. 25]

Program management – manages multiple projects with the common goals and
business objectives in order to fulfil a higher-level intention (e. g. build an airport
complex) [CK83 p. 159]

Project portfolio management – manages portfolio of similar projects (projects
operating in the same business area) using many resources in common, but with
possibly different goals and objectives [PR04 p. 403]

As already mentioned above, this thesis only deals with the IT project portfolio

management issue. Other multi project management terms were presented to
demonstrate the limits of project portfolio management tasks and responsibility areas
precisely.

12 Dmitry Diyachenko (0300077)

2.1 Increasing value trough project portfolio management

Nowadays a lot of business leaders do not have a clear idea of what projects are
running in their companies and what is going on in their organizations at all. More
and more companies tend to ask questions, which IT projects are going to start soon,
which ones are actually running and which ones have been already completed, why in
fact those projects have been chosen, which profit they brought to the business and
whether these concrete projects align with the corporate objectives? Which current IT
projects have a high degree of importance and are the necessary resources for their
implementation available?

These questions are coming up because of the lack of adequate management
integration during the execution of IT projects. Because of this lack of information the
stakeholders and business executives are often not able to understand and to follow
the importance of the IT projects and their impact on the organizational structures and
development. The IT officers, on the other hand, are not always well informed about
the status and changes of the business strategy. Thus, they are not really able to select
projects aligning with the business objectives and strategies in a satisfactory manner.
Looking at these facts and conditions it is quite easy to understand why many IT
projects failed or were not started: their strategic importance for the future
development of the organization was not recognized or resources for the execution
were not available in time.

Failed projects may cause high additional costs, customer dissatisfaction and
notable reputation damage. Not recognizing the importance of certain strategic
projects can lead to strong business disadvantages resulting in considerable losses of
market share. The consequences might be fatal and can lead to serious financial losses
or, at worst, even to the bankruptcy of the organization.

Consistent and accurate deployment of project portfolio management does not only
help to avoid the situations described above. It also gains overall return of the projects
in certain portfolios through comprehensive resource allocation among the projects,
and also knowledge and components reuse and transparency assurance.

One important task of project portfolio management is to integrate management
into the IT projects in an appropriate way and to improve interaction between the
business leaders and IT officers.

The IT project portfolio management also:

• provides an abstract overview of the starting IT projects [H02]

On semantic timecard based project portfolio management 13

• provides an abstract overview of the currently running IT projects and what is
actually happening in these projects [H02]

• ensures the selection of the projects aligning with the business objectives [PR04]
• grants an overview of all available resources [PR04]
• guarantees handling and selecting projects based on their importance and priority

for the organization, while low priority projects have to wait in queue or get
dropped at all [PR04]

• supports effective allocation of the project comprehensive resources; important
resource sets have to be assigned to the projects with the highest strategic priority
as first. Some resources might be used by several projects at a time. [PR04]

• enables effective reuse of knowledge and existing components, functionalities
already implemented or designed in other projects might be reused and integrated
too [PR04]

• helps to reduce the number of redundant projects and to kill problematic or
hopeless projects [PR04]

• facilitates project accounting, billing and invoicing [PR04]
• supports project tracking and monitoring [PR04]
• demonstrates project dependencies and impacts on the organization or on each

other [PR04]
• generates reports and provides the project stakeholders with transparent and

personalized information, like project costs, effort, duration, development status,
profits for the organization etc. [H02]

Project portfolio management is an essential issue for the organizations dealing

with a large number of projects simultaneously. In fact a lot of organizations don’t
have control and full overview over their project portfolios and conduct poorly
organized, chaotic planning processes. [D03] As AMR research reports,
approximately 75% of IT organizations apply project portfolio management poorly or
do not apply it at all. These companies do not have any clear idea of what is
happening in their project portfolios, which projects are currently running in their
organizations and there is no clear understanding which profit those projects actually
bring to the business. [AMR]

14 Dmitry Diyachenko (0300077)

2.2 Guideline for portfolio management deployment

There is no single absolutely right way to do the IT project portfolio management.
There are a lot of methodologies developed by academic institutions, different
consulting companies and large corporate groups. [D03] This part of diploma thesis
will try to provide a possible guideline of how IT project portfolio management could
be done well.

The following steps are crucial for the successful project portfolio management:
• Gather relevant information, establish project inventory
• Evaluate and prioritize the projects
• Manage the project portfolio actively, using, among other things, portfolio

monitoring and adaptation to the regularly changing business priorities and
external environment [PR04]

2.2.1 Project inventory preparation

First of all, it is necessary to get a holistic overview of all the activities and projects
running within an organization. All the projects (projects scheduled to start soon,
projects starting, currently running projects, already finished projects) and the detailed
information about them, like duration, funding source, approximate costs, ROI,
business objective and benefits etc., have to be listed and documented in the project
inventory. [D03] The project inventory provides business leaders an outstanding
opportunity to look at all the projects in the IT portfolio and to understand which
goals and business objectives the projects are following, which resources are required
for the implementation etc. Based on well established project inventory, the project
evaluation and prioritization can be applied next.

2.2.2 Project evaluation and prioritization

After the project inventory is established in an appropriate way, it is absolutely
necessary to evaluate and to prioritize projects included in that portfolio
systematically. Business executives have to check to what extent projects listed in IT
project inventory are aligning with the defined business strategies and objectives, how
important single projects are for the business, how certain projects are interrelated and
dependent on each other etc.

On semantic timecard based project portfolio management 15

Usually there are much more projects on master schedule than the organization is
actually able to apply. Thus, on the basis of specified criteria the most important
projects have to be selected and funded. Those defined prioritization criteria are also
used to build the project queue and to determine which projects will be applied first.
[CK83]

If some running projects don’t align with the business strategy at all and also do
not provide acceptable value to the organization, potential consequences, as well as
further proceedings, have to be considered. Those problematic projects might even get
cut off or assigned as low priority projects. Detected redundant or overlapping
projects should be reconsolidated. The comprehensive resource allocation among
projects using similar resources has to be optimized, too. [PR04]

The prioritization criteria can depend on the following items:
• Alignment to business strategy – the project has to achieve business objectives and

strategies
• Project dependencies – dependencies between the projects, impacts on other

projects and organization, e. g. some projects have to be done to set up next
important projects

• Strategic importance - the project is important to ensure the future competitiveness
in a specific business sector

• Urgency – e. g. extra funds might be received from the government or other
financial institution, if the project meets specially defined requirements (e. g. has to
start or to end before certain date)

• Realization probability - what is the probability that the project might include risky
tasks, unsolvable challenges etc.

• Profitability – does the project bring high profits to the business
• Cost and duration risks – it is difficult to calculate the expected costs and duration

of the project, potential cost explosions have to be considered etc.
• Impacts on the environment – how intensive the impacts of the project on external

environment, on employees, on relationships with the customers, on the
organization itself (management of change) are

• Resource availability – whether the resources necessary for the project are
available, whether there are similar projects running to optimize comprehensive
resource allocation, which software components already exist and might be reused
[K06; PR04]

16 Dmitry Diyachenko (0300077)

The level of importance of prioritization criteria might differ in various
organizations because of their varying business strategies. According to their business
strategies and objectives, the business executives have to evaluate the above-
mentioned criteria and their significance within an organization. [CK83] After that
criteria evaluation the prioritization of the projects can be performed. Some
organizations are willing to accept more risky projects in order to achieve higher
outcome. Organizations with conservative business strategies prefer to invest in less
risky projects. The final project priority might also be manipulated by other criteria
like its urgency, strategic importance, realization probability etc. [PR04]

Due to the fact that organisations usually have more projects on schedule than
resources available to implement them, the projects most relevant for the business
need to be selected for immediate realization. The remaining projects form a queue
based on their prioritization and wait for their turn. The irrelevant projects with
unacceptable profit expectations even have to be kicked out of the master schedule at
all. This proceeding is called project funnelling. [K06]

Currently running projects

Figure 1: Project funnelling

The currently running projects are also handled on the basis of their prioritization.
The projects most important and crucial for the organization have priority in
comprehensive resource allocation process, too. [CK83]

2.2.3 Portfolio monitoring and adaptation

Business strategies may change and be adapted in organizations. These changes
have an impact on the prioritization criteria and therefore also on the project

On semantic timecard based project portfolio management 17

priorities. All these changes have to be recognized in time and project priorities need
to be updated regularly. Some projects may be killed as a result of new priority
definitions. [PR04] The status (cost, deadlines etc.) of the projects have to be tracked
continuously and reported to the participating stakeholders (e. g. top management) in
definite intervals. [PR04] The so called project management office is responsible for
the monitoring of project portfolios based on information received from the project
managers [PR04]. The project management office is also responsible for:
• tracking project portfolios
• the development of potential project managers
• support and coaching of project manager in critical situations
• reporting to the top management
• assurance of project management quality
• introduction of project management standards and guidelines [K06]

2.2.4 Portfolio management barriers

Project portfolio management is able to deliver high value to the business by doing
it well, but there are some barriers which may cause complications in portfolio
management process execution.
• Democracy is not always accepted. The decisions are made by group consensus

and not only by business leaders anymore. Often it is very hard for business
executives to share the power with other participants. However this group decision-
making is crucial to ensure the quality of the portfolio. [D03]

• There is no software that completely supports portfolio management and is able to
solve all the required tasks. To apply portfolio management optimally, several
selected software suites have to be merged and integrated (which is rather costly).
[D03]

• It is really difficult to get accurate information (project status, resource
requirements, technology costs etc.) [D03]

• It is always hard to make tough decisions and kill useless projects, especially
projects with high investment costs already running for a long time. [D03]

• Business executives often don’t have enough time to participate in portfolio
management process. [D03]

18 Dmitry Diyachenko (0300077)

These barriers strongly interfere with the accurate project management execution.
They might be resolved through adequate corporate culture and the openness of
management’s attitudes.

2.3 Improving project portfolio management trough the semantic timecard
application

Project portfolio management can be supported by various applications and tools.
There are tools for single project planning, monitoring and tracking, resource
management tools, document management tools, financial management components,
risk management components, project evaluation tools by its prioritization, executive
dashboard components etc.

The task of this diploma thesis is to develop semantic timecard tool supporting
project portfolio management as follows:
• Control over the whole project portfolio - a list of all the projects including detailed

project information
• Project progress and status monitoring
• Comprehensive resource allocation support
• Project billing and invoicing support – transparent cash flows within projects,

facilitating understanding what the money was spent on (project expenditures),
supporting automatic employees billing

• Personalized reports for project staff, project managers, project management office,
and for top management (technology used, performed services reports, capacity
utilization etc.)

The most important part of this thesis is extending the above-mentioned timecard

application with a semantic component. To fulfil this purpose the ontology based
knowledge base prototype has to be designed and implemented. This knowledge base
prototype will consist of different IT technologies (java technology, PHP, XML etc.)
and service categories (software architect, programmer, consultant etc.). The
challenge is to acquire all these technologies, group them, create hierarchies and
relations of the listed technology groups, store designed ontology and adequately
integrate it in timecard application. It is very important to keep in mind that the
knowledge base design has to guarantee its easy extensibility. The integration of the

On semantic timecard based project portfolio management 19

ontology should be realized via web-services to enable flexible component reuse in
various other applications.

The relations between technology components should ensure extended, high
quality management reports and facilitate the completion of timecard forms for
project collaborators.

If a project collaborator wants to report completed tasks, he has to fill in a timecard
form. This timecard form contains input fields like date, project name, task name, task
description, technology and software used, work duration in hours, service type. The
tasks to be fulfilled can be imported from project management application like MS
project. It is very important that task names in the timecard are given according to the
names defined in project planning application to deliver accurate project progress and
project status information. The project collaborators should know in the knowledge
base acquired technology and service categories components. Ideally, timecard
application should import personalized technology and service types from the
ontology based on project data (collaborator participates in certain projects, only
technologies assigned to those projects should be imported to facilitate selection of
technology used to fulfil certain project task).

If specific technology is assigned to the project that is not specified in the
knowledge base, the ontology has to be extended to this new component. The
employees only have to select technology they used as well as service type they
performed in order to fulfil certain task. They don’t need to describe these
technologies and fill in more fields to specify relations to other technology categories
explicitly. The relations between all these technologies have to be covered by the
ontology knowledge base.

On the basis of these relations between different technologies and hierarchical
structures, extended management reports can be generated. Management might be
interested in which services (highly paid, routine services) the organization has been
selling and which technologies are dominating internal IT projects. Through ontology
it becomes possible to extract certain information even if that information is not
asserted explicitly. If the query has to find out, how many hours the employees
worked with specific technology like JAVA, all the technologies belonging to JAVA
technology or are interrelated with JAVA in any way need to be considered. It is only
possible to perform such kind of queries if the hierarchies and relations between the
technology components are accurately defined. The building of ontology is absolutely
necessary to describe the IT technologies used to accomplish project tasks. In this
way the collaborator only has to enter the technology terms explicitly. Other

20 Dmitry Diyachenko (0300077)

information that might be useful for certain management reports can be derived by
ontology knowledge base inference mechanisms. The ontology database can be used
for other purposes and be integrated in other applications, too.

2.3.1 Roles participating in the timecard application

To create the design of the semantic timecard and ontology knowledge base that
would be acceptable and would satisfy all stakeholders, it is crucial to understand the
environment around the application, as well as roles participating and interacting with
our semantic timecard. The issue of this section is to discover who is interacting with
the timecard tool and in what way. It is also very important to visualize the
environment around the intended application and its dependencies.

Project

Semantic Timecard

Tasks

Resources

Technology

Work Type

Staff
Personal View

Project Portfolio

Executive Management
View

Project Manager
View

Figure 2: Semantic timecard environment

The following roles might interact with the semantic timecard application:
• Project manager
• Project staff
• Management

The project team members are interacting directly with the timecard application.
They fill in a timecard form and document their solved tasks. These project team

On semantic timecard based project portfolio management 21

members can also benefit from timecard application. The timecard tool is
documenting all the activities of the employees and project staff: how much they
worked, in which projects they participate and which projects have been already
settled by them, for what tasks and activities the project members are responsible,
what type of work has been done by a specific employee. The timecard reports enable
the project members and employees to observe their career development and their
progress in the hierarchical structures of organization. They can keep track of their
personal development (e. g. project member -> project manager) and the development
of their work activities (e. g. programmer -> design architect -> consultant).

Project manager is interested in completing the project he is responsible for in
time, in budget and up to quality standards. The timecard application might help the
project manager to track and to monitor the progress of his project. After the project
staff have filled in their finished tasks, the project manager is able to perform
target/actual comparison. In this way project manager might discover deviations from
the schedule and take corrective measures in time.

For management it is very important to observe the project portfolio in the
organization. Management wants to ensure that projects initiated in the company are
aligning with business strategy and objectives. For management the following
information is important:
• Overview of all projects and their status
• Service categories sold to the customers (programming, design, consulting)
• Technologies used in current projects

It might be valuable information for the management, which technologies are
dominating in current projects and becoming more and more important, which
services and at which ratio the business actually offers (e. g. consulting, design,
programming), which projects are going on schedule and where delays might occur.
All these information units are stored in the timecard application and could be
delivered on request. Extended, not explicitly defined information might be extracted
from the ontology knowledge base in turn.

22 Dmitry Diyachenko (0300077)

3 Building the ontology knowledge base

In this section the complex process of the ontology knowledge base building will
be documented and explained in detail. The knowledge (terms) of IT technology and
IT service categories domains will be explicitly represented in the form of the
ontology knowledge base prototype. The ontology will not cover all the terms of
above mentioned domains. It should just represent a prototype where selected
concepts, properties, relationships and hierarchies will be defined. This chapter rather
provides a kind of guideline how the ontology knowledge bases could be
conceptualized, modelled, stored, documented, maintained and integrated in various
applications. The quality of the knowledge base will increase through its use. The
knowledge base has to be maintained during its entire life cycle carefully.
Maintaining the knowledge base means that previously incorrect modelled concepts
are to be revised and remodelled, the ontology knowledge base needs to be extended
as new concepts are coming up during the daily business operations or through the
integration of other external ontologies. The ontology also might be adapted or
extended to suit certain application requirements. This section will analyse ontology
reasoning and querying mechanisms and their opportunities in detail, too.

To show all the steps of how to build the ontology knowledge base, that is to be
considered and mentioned, a generic ontology building process will be defined below
using Adonis business process modelling tool. This process visualizes all the steps
that will be mentioned in this chapter and are necessary for successful ontology
creation and maintenance. This generic process can also be seen as a guideline
showing the structure of this chapter. Afterwards all the process activities and their
possible dependencies, as well as interrelations, will be described in detail.

On semantic timecard based project portfolio management 23

Figure 3: Generic ontology building process

24 Dmitry Diyachenko (0300077)

At first it is very important to analyse the requirements for the ontology knowledge
base. It is necessary to find out which roles are interacting with the semantic timecard
application, which information might be important for those roles, in which way those
roles interact with the semantic timecard prototype, which information in turn might
or should be provided by the ontology knowledge base. In order to specify the
detailed requirements for the ontology knowledge base the use case diagram is going
to be drawn in order to visualize all the roles that might have something to do with
future ontology and the information that might be interesting for those participating
roles. Gathering information appropriate for the ontology requirements is crucial to
ensure the adequate and correct conceptual ontology design. If the goals and needs of
the interacting users and the applications, that will use this ontology in future, are
understood well and, therefore, the ontology conceptual design could be developed in
the way requested, then the ontology might considerably improve the information
quality processed by the application, and thus deliver substantial value to the
business.

In this thesis the ontology mark-up languages necessary to encode the ontology
have to be analysed for their expressiveness level, computational speed and facilities.
Afterwards the adequate ontology mark-up language that best fits our ontology
requirements has to be selected.

The next step is to check the existing comprehensive ontology editors supporting
the ontology modelling, visualization, querying and integration of other software
components. The ontology modelling editor that best fits our needs has to be selected.
Afterwards the conceptual ontology design and its building process have to be
considered and realized. This activity is modelled as subprocess call in our generic
ontology modelling process and will be described in the chapter 3.4. “Interactive
ontology building process” in detail.

After the ontology knowledge base is built it is very important to consider how the
created ontology could be stored. Ontology repositories enable storage of large
ontologies. They provide better ontology integration, maintenance and querying
options as well as improved scalability and performance facilities. Simple ontologies
with low integration and maintenance requirements might be stored in files, too.

Afterwards the ontology consistence, querying and inference tests have to be
performed by selected reasoner server application. Possible concept inconsistencies or
modelling mistakes (it is not possible to indicate the necessary information by
querying mechanisms) have to be corrected and adapted by modifying and improving

On semantic timecard based project portfolio management 25

the conceptual modelling design. This cycle has to be run through till satisfactory data
delivery results are achieved.

It is very important to note that the maintenance plays a very important role in the
ontology knowledge base development lifecycle. The quality of the knowledge base
increases through its use. All new terms coming up in the business activities and the
concept improvements have to be considered in the maintenance phase regularly. All
the extended constructs, new improved expertise as well as best practice experiences
have to be integrated in the ontology knowledge base during its use.

3.1 Introduction to the ontology concept and the need for it

It is very important to understand what ontology actually is, its differences to other
concepts like taxonomy, thesaurus etc, what purposes the ontology could be used for
and how the ontology could improve knowledge management facilities and deliver
value to the business. This section will provide general information about ontologies,
their possible usage fields and opportunities as well as out of it resulting information
processing advantages.

The definition of the ontology:

„An ontology is a formal, explicit specification of a shared conceptualization.

Conceptualization refers to an abstract model of some phenomenon in the

world by having identified the relevant concepts of that phenomenon. Explicit

means that the type of concepts used, and the constraints on their use are

explicitly defined. Formal refers to the fact that the ontology should be

machine-readable. Shared reflects to the notion that an ontology captures

consensual knowledge, that is, it is not private of some individual, but

accepted by a group.” [SBF98, p. 185]

In other words, ontology is used to represent the information about real world
concepts with all their relations and constraints explicitly and formally in order to
provide machine understandable constructs accepted by a group.

Ontology generally includes the following constructs:
• classes (i.e. concepts)
• attributes (i. e. properties)
• relations (described through properties)

26 Dmitry Diyachenko (0300077)

• instances (i.e. individuals). [NM01]

Before explaining the constructs listed above in detail, I would like to compare

ontology with other knowledge representation approaches to clarify the advantages of
ontologies in their expressiveness power compared to other concepts with similar
purpose, namely explicit knowledge representation.

The figure below demonstrates different approaches to knowledge representation
and their expressiveness power facilities. They are ordered in accordance with the
rising level of their expressiveness power.

Glossary

Ontology

Taxonomy

Thesaurus

Figure 4: Evolution of knowledge representation approaches [adapted according to AUM04]

The figure shows four possible approaches for representing information about the
real world or parts of it. Controlled vocabulary approach has thereby the lowest
expressive power, ontology the highest.

Glossary just represents a limited number of specific domain terms. The meaning
of these terms is described in natural language. Glossaries can be created by the
information acquisition to define which possible terms exist in certain domains and
what those terms mean.

Taxonomy builds hierarchies of certain domain terms. There are generic concepts
(super classes) and sub concepts (subclasses). The subclasses have to be assigned to
appropriate super classes. Generally it’s not that easy to perform these assignments
because of different views in certain domains. [AUM04]

On semantic timecard based project portfolio management 27

Thesaurus contains not only hierarchies of limited domain terms but also simple
relations between them. However these relations can only define the similarity
between the domain terms, but they cannot describe themselves. [AC04]

Ontology allows defining hierarchies of concepts, their attributes, individuals
(class instances), arbitrary complex relationships, cardinalities and constraints.
Ontology approach provides the most expressive power for the real world information
modelling. [VK05] If the ontology is well defined and its powerful concepts are used,
new knowledge can be inferred and provided by ontology reasoners. Reasoners are
also able to perform complex ontology queries to derive necessary information.
[HM03]

The process of the ontology creation is rather complex, time- and resource-
consuming. In order to accept this considerable effort, is rather important to
understand major reasons of the ontology building and how ontology might add value
to the business. One important task of ontologies is to define common vocabulary for
data sharing and exchange in certain domains. [M92] Also there might be following
advantages achieved by using ontologies:

Sharing common information structures among people and intelligent
software agents is one of the most important tasks in developing ontologies. The
ontology enables people and software agents to communicate in the same domain
language. All the terms, interpretations and relations are well defined and understood
by participating roles. It becomes easier for people and intelligent agents to process,
aggregate, extract, integrate or share the information necessary for different purposes.
[M92] [G93]

Reuse of domain knowledge is a common goal of the ontology development, too.
It is very important to provide ontologies publicly to improve their quality and
acceptance. As mentioned above, formal knowledge definition is a very costly and
time-consuming process. A lot of time and money could be saved by integrating
already existing domain specific ontologies (medical ontologies) or common
ontologies like UNSPSC. Several small ontologies might also be integrated to
describe portions of a large domain. [M92]

Explicit representation of domain assumptions also represents a very important
issue of the ontology development. It’s crucial to document all the domain knowledge
and expertise to ensure its further processing, improvement and use. It has already
been a considerable challenge of artificial intelligence discipline to extract experts’
knowledge in certain domain and make it accessible for other people or intelligent

28 Dmitry Diyachenko (0300077)

agents. The documented domain knowledge allows the participating groups to
understand the domain specification and its refinements. [NM01]

Domain knowledge analysis can be performed once all terms, definitions and
interrelations of the real world concepts are well defined. All the structures, concepts,
dependencies and interrelations can be analyzed and checked for their consistency by
machines; new knowledge and assumptions might be derived and inferred. Those
facts might lead to better domain understanding, knowledge gaining, as well as to
more effective and efficient processes. [MFRW00]

Of course, software agents might also use domain independent ontologies for
certain purposes by integrating several different knowledge bases. [NM01]

3.1.1 Adding semantics to the timecard application

The ontology knowledge base is created in order to provide additional semantic to
our timecard application. The ontology prototype will contain specially selected IT
technology components and in the organization presented IT service categories. All
the relations, dependencies and restrictions between these terms have to be considered
and implemented.

The conceptual design phase is crucial for the successful ontology development
and its future use. The domain knowledge acquisition is one important task. Another
important task is to consider how this knowledge should be represented. Hierarchical
structures and concept interrelations might differ depending on the ontology’s
purpose and use. [HKRSW04] The primary task of our ontology is to add meaningful
semantic to the data used by the timecard tool and to provide high quality information
for the timecard end-users.

It’s very important to analyze which information is required by the timecard tool
and what kind of data is essentially important for the timecard users. To indicate and
to visualize user interactions with the ontology knowledge base and their expectations
the use-case diagram will be drawn below. Afterwards all the activities and
dependencies will be explained in detail.

On semantic timecard based project portfolio management 29

Figure 5: Ontology use-case diagram

30 Dmitry Diyachenko (0300077)

As visualized in the figure above the requirements for the ontology knowledge
base have to be gathered first. The ontology developer (author) has to consider and to
include all the needs of the participating roles. [GFC03] In this case project staff, PM
office and management are interacting with the semantic timecard application. After
collecting and evaluating data provided from our participating roles the developer has
to specify requirements definitions for the further ontology development.

The requirements specification is used by ontology conceptual design development
afterwards. To model the ontology concepts in required way, the requirements data
always has to be kept in mind. The ontology concept should suit users’ needs in the
best way. In the figure is specified that management might be interested in currently
used technologies. It is also very important for management to keep track of services
currently sold and their relative proportions to each other. This information allows
management to identify some kind of trends (which services are in demand at the
moment and which technologies become more important or are new on the market).
For the project managers and PM office this information might help to recognize the
service and technology trends as well. Therefore they could react on changing market
situations and perform educational programs and seminars for employees in time. The
project managers also might shift the main focus of their projects based on this
information (the importance of certain technology increases rapidly, it has to be
integrated or excessively forced).

The employees might be interested in their career development too. The career
development information could show the employees how their responsibilities,
functions or positions changed during certain period of time, where are they placed in
the career hierarchy, how fast did they improve and increase their career status in the
organization.

The project manager might also be interested in the status of his project or projects
and the PM office in the status of the project portfolio (is the project status according
to schedule, where are delays, resource deficits or other difficulties). This information
is able to be provided by the timecard application; however the quality of that
information cannot be improved by the ontology knowledge base.

But the ontology could improve the quality of information on technologies that are
currently in use and on sold service categories (programming, consulting, architect
etc.). The ontology knowledge base could provide extended information for all
participants considering not only the domain terms but also their interrelations,
dependencies, sub categories and properties. Summarizing, the ontology would enable
more complex and expressive queries providing for users detailed high quality

On semantic timecard based project portfolio management 31

information as well as new inferred knowledge. However the ontology could only
deliver all these advantages if its requirements were specified carefully and integrated
into the conceptual phase in appropriate way.

The ontology framework was designed to provide a generic idea of the ontology
knowledge base environment and its components. This framework consisting of
certain layers visualizes how the components interact and depend on each other.

Consumption Layer

Semantic timecard Other applications

Ontology design

Conceptual Layer

Requirements acquisition layer

Ontology Building Layer

Ontology modeling tool

Ontology visualization

Formal ontology representation

Ontology API

Ontology web-services Back-end services
Integration Layer

Gather requirements

Racer Reasoner

Figure 6: Ontology development framework

32 Dmitry Diyachenko (0300077)

This framework shows how the entire life cycle of an ontology could look like. It
shows, in which way the ontology’s development, visualization, storage,
modification, integration and consumption components interact with each other.

As first the design of the ontology derived from its requirements (identified in the
requirements acquisition layer) has to be realized in the conceptual layer.

Afterwards the ontology has to be defined in a formal way with the help of the
necessary constructs provided by ontology mark-up languages. That modeling process
could be supported by the ontology modeling tool including comfortable graphical
interface and powerful modeling and integration constructs. Some tools can also be
used for ontology visualization for certain documentation purposes. After defining
ontology in a formal way the ontology consistency and expressiveness power should
be inspected by the reasoner (ontology querying). Ontology might be stored in
repository to improve its scalability, performance, querying and modification
facilities.

Most part of ontology modeling tools and repositories provide API for ontology
querying, modification and integration purposes. That API could be used by
applications or web-services to process the ontology knowledge base. In our case the
web-services for ontology integration will be implemented to ensure interoperability
and to enable flexible as well as extensible ontology integration in various other
applications. That means that the developed ontology also might be used for other
purposes (not only for semantic timecard application) in the organization. Among
other things, the ontology designed could gain and improve understanding of IT
technology domain, too, assuming that the ontology maintenance process is
performed in an appropriate way. It is also very important to mention that the
ontology knowledge base archives and documents all the best practice experiences
and expertise of organizations and enables their further use for different purposes.

3.2 Ontology mark-up languages

As has been mentioned above, the ontology is necessary to structure and to
describe different terms of a specific domain. That information described has to be
machine readable and processible. There are some specifications (languages) enabling
formal ontology modelling. Those languages differ in their degree of expressiveness,
design and syntax constructs.

On semantic timecard based project portfolio management 33

The most widespread ontology languages for web applications are RDF/S and
OWL. In the present section these mark-up ontology languages will be analyzed for
their construct facilities, concepts, simplicity and expressiveness level. After that
comprehensive analysis for our purposes appropriate ontology language will be
selected.

3.2.1 RDF/S

RDF (Resource Description Framework) is a model using XML based syntax and
was developed to describe resources granting them machine-understandable semantic.
The RDF metadata model is based upon the general idea of making statements about
resources in order to describe themselves, their dependencies and relations. In the
World Wide Web Consortium (W3C) specification those statements represent
subject-predicate-object expressions, also called RDF triples. [B04]

Predicate
Object Subject

Figure 7: RDF triple [B04]

This graph could be interpreted as follows: the subject can be interpreted as
resource to be described, the predicate represents a property (defined relationship
between the subject and object), the object is the second resource describing subject
in some way. [B04]

As has been said above, RDF represents some kind of model explaining how the
resources could be meaningfully described trough their attributes and relations to each
other, but RDF does not provide possibilities to describe those attributes and
relationships between resources. RDF does not provide classes, subclasses and super-
classes concepts either. The building of taxonomies and hierarchical structures is
therefore not possible. [BG04]

For the purpose of simple ontology creation the RDF schema using RDF syntax
was specified by W3C consortium. The RDF schema is providing some concepts to
describe simple ontologies. It enables to build and to describe hierarchical structures
and interrelations between them by using classes and properties. [BG04] RDF’s
vocabulary description language, RDF Schema can be also considered as semantic
extension of RDF providing more expressive power. [BG04] RDF schema is

34 Dmitry Diyachenko (0300077)

applicable for web ontologies development because of its easy integration,
extensibility and simplicity. [BG04]

The unique namespaces are used to declare the vocabulary of RDF and RDFS
specifications. RDFS is using rdfs namespace to define its core vocabulary and rdf
namespace to include RDF resource definitions. [BG04]

RDF schema defines a considerable amount of concepts; these concepts can be
generally divided into Classes and Properties.

The most important RDF and RDFS classes are listed and explained below:
• rdfs:Resource - the class resource is used to design everything. All other classes are

subclasses of Resource class.
• rdfs:Literal – this class is representing literal values, e.g. textual strings, integers,

dates
• rdfs:Class – with this concept it is possible to define classes (i.e. group of

resources) of certain domain, it is also possible to build hierarchies of classes using
property (relationship) rdfs:subClassOf. The classes can be interrelated to each
other through their properties.

• rdf:Property – use of rdf:Property class enables modeling and describing different
relationships between specified Classes, using the tag rdfl:subClassOf also enables
creating of hierarchies between the properties. It is important to keep in mind, that
subclasses inherit all the attributes and instances of their superclasses. Properties
are also used to describe classes and, in turn, other properties.

• rdfs:Datatype – this tag is used to define the data types of the classes (e. g. strings,
integers, dates, floating point numbers), the predefined XML-schema data types
are used for that purpose

• rdf:Statement - the class of RDF statements is necessary to model the above-
mentioned RDF statements containing subject (instance of rdf:Resource)-predicate
(instance of rdf:Property)-object (instance of rdfs:Resource), also called RDF
triples

• rdf:Bag – this tag is used to define unordered enumerations, rdf:Bag class is
subclass of rdf:Container class (opened collection)

• rdf:Seq – this tag is employed while modeling ordered sequences, rdf: Seq class is
subclass of rdf:Container class (opened collection)

• rdf:Alt – this class can be used for declaring possible alternatives, rdf: Alt class is
subclass of rdf:Container class (opened collection)

• rdf Collections – are the opposite of container classes (seq, bag, alt), namely, they
represent closed collections (i.e. restricted amount of members) [BG04]

On semantic timecard based project portfolio management 35

The properties in RDF schema are not only used to describe classes and their

relationships, but also other properties and their dependencies. To define relationships
between resources two main concepts - rdfs:domain and rdfs:range - are used. These
two concepts define from which resource (domain) to which restricted resources
(range) the relationship is set. [BG04]

In RDF Schema some properties are specified to create and to define hierarchical
structures:
• rdfs:subClassOf
• rdfs:subPropertyOf [BG04]

Properties responsible for resource description are listed below:
• rdfs:comment
• rdfs:label
• rdfs:seeAlso
• rdfs:idDefined
• rdf:value
• rdf:type [B04]

36 Dmitry Diyachenko (0300077)

Figure 8: Simplified sample of RDFS constructs [BG02]

RDFS provides vocabulary for describing properties and classes of RDF resources.
However, the expressiveness power of those description concepts is too low (no
strong cardinality restrictions, no disjoint classes, no symmetric or recursive
properties etc.). [MH04] Therefore they can only be applied for modelling simple
ontologies, where extended reasoning aspects are not absolutely necessary.

To model complex ontology structures and to define interrelations between
different terms in more expressive way, the web ontology language OWL was
developed by W3C consortium. OWL also fits the requirements for an entire WEB
ontology language and represents W3C recommendation since February 2004.
[MH04]

3.2.2 OWL

OWL was designed by W3C consortium to provide semantic meaning to specific
content of information. The described information becomes therefore machine-

On semantic timecard based project portfolio management 37

understandable and can be processed by applications and not only by humans.
[MH04]

The main task of this web ontology language is to provide expressive vocabulary
in order to describe resources on the web and their interrelations to each other
(provide explicit meaning to the content). This could also be expressed as mapping of
real world concepts to machine-understandable language that should facilitate
automatic information integrating and processing available on the web. [MH04] To
enable extensible reasoning facilities web ontology language has to fulfil numerous
modelling criteria and design goals. In the following subsections those criteria
necessary for appropriate web ontology language will be listed and explained. Three
in W3C consortium defined owl sublanguages (OWL Lite, OWL DL and OWL Full)
will be described in detail as well.

3.2.2.1 Web ontology language design goals and requirements
W3C community specified several design goals for the web ontology language OWL
and also in which areas and sectors this concept might be used and may play an
important role. In fact the ontology is very important for all sectors, where large
amounts of data and information need to be processed and exchanged. Ontology
facilitates content structuring, interrelating and integrating that can afterwards be
processed by applications for certain purposes. Actually, well-engineered ontology
language should fit the following concepts:
• shared ontologies – all the ontologies should be publicly available. It is very

important to be able to extend existing ontologies and to integrate several external
sources in one ontology knowledge base. One important task of the ontology
language is to support the concept of knowledge reuse effectively. For this purpose
every ontology has to include unique id and has to be described through meta
information tags. It should be possible to identify all the resources within a specific
ontology only by using URI reference. [H04]

• ontology evolution – application, technology and therefore knowledge base
requirements are changing frequently. There can also be some changes in ontology
design preferences, and mistakes in prior versions might be indicated. Therefore
the ontology structure has to be adapted and modified to follow the changes of
external environment. The task of ontology evolution concept is to provide
ontology versioning, relations between the revised versions and to make
compatibility possible between resources that are committed to different ontology
versions. [H04]

38 Dmitry Diyachenko (0300077)

• ontology interoperability – there are different possible ways of modelling domain
knowledge. Different organizations and domains have different ideas and concepts
of how knowledge units have to be represented and how terminologies should look
like. This fact might lead to the same information being represented in different
ways structurally. The issue of ontology interoperability is to ensure that ontology
languages provide primitives for relating different representation types. The
following proceeding allows to transform data into the appropriate representation
format used in the required ontology (i.e. concept mapping). To fulfill this task
effectively and accurately classes and their properties have to be described in an
adequate way (e. g. subclasses relations, complement relations, transitive or
symmetric relations etc.). Class, property and individual equivalencies have to be
defined, it should be possible to attach specific information to defined statements
and treat classes as instances in specific cases. All these facilities should be
provided by the entire ontology language. [H04]

• inconsistency detection – while ontologies with different concept views are
imported and combined, there might be some inconsistencies between different
ontologies or their conceptual views. Even false or incorrect information or
relations might be provided. The task of inconsistency detection concept is to
ensure completely automated ontology inconsistency detection through extended
reasoning components. To enable adequate persistence checking facilities it should
be possible to define class and property definition primitives (e. g. unionOf,
complementOf, intersectionOf etc.), as well as arbitrary cardinality restrictions.
[H04]

• balance of expressivity and scalability – generally there are two conflicting
requirements every well-engineered ontology language should fulfill, namely it has
to provide a wide variety of knowledge modelling concepts and guarantee their fast
computation at the same time. It has to be considered which concepts are
absolutely vital and therefore have to be included as well as which concepts,
providing extended expressiveness power but dramatically slowing ontology
computation, could be included optionally. For this purpose there are three types of
OWL mark-up languages providing different levels of expressiveness and
computational speed that can be chosen by organizations for their special needs
and requirements. [H04]

• easy of use – the language should be natural and easy understandable by humans
working with the syntax directly to enable easier querying as well as reasoning of
ontology knowledge bases. The language should have clear concept and meaning

On semantic timecard based project portfolio management 39

definitions. It should be easy to learn as well. For this purpose easy-to-understand
data types have to be used or defined and multiple alternative user-displayable
labels (e. g. displaying of concepts in different natural languages) need to be
supported by the ontology language. [H04]

• compatibility with other standards – compatibility with other industrial
standards facilitates tool and language development. The web ontology language
should be especially compatible with commonly used web standards like XML and
other XML related standards (RDF, RDF schema etc.). Compatibility with
widespread modeling standards like UML is also desirable. [H04]

• internationalization – the ontology language has to provide concepts enabling
ontology modeling in the multilingual mode. It should be possible to define
different ontology views that optimally fulfill requirements of different cultures
with different knowledge expression techniques. Thus, the ontology language
should necessarily support user-displayable labels, a character model as well as
uniqueness of Unicode strings. [H04]

3.2.2.2 OWL Lite
As mentioned above the OWL consists of three sublanguages providing different
expressiveness power. Organizations have to consider which sublanguage best suits
their needs before they actually start to develop their ontology knowledge bases.
OWL Lite provides less expressive concepts than OWL DL and OWL Full. However
the processing speed of querying and reasoning can be considerably improved by
using this sublanguage for modelling knowledge bases. OWL Lite also provides quick
integration paths and has lower formal complexity than OWL DL and Full. [MH04]

OWL Lite includes numerous features and constructs, which will be explained in
detail below.

The following OWL Lite features related to RDF schema are included:
• Class – defines a group of individuals that belong together based on their similar

properties
• rdfs:subClassOf – makes it possible to build class hierarchy
• rdf:Property – enables modelling of relations. There are DatatypeProperties (e. g.

relation to data type Integer) and ObjecttypeProperties (relations between
instances)

• rdfs:subPropertyOf – for creation of property hierarchies
• rdfs:domain – limits the individuals to which the property can be applied
• rdfs:range – limits the individuals that may be represented in the property value

http://www.w3.org/TR/2004/REC-owl-features-20040210/#subClassOf
http://www.w3.org/TR/2004/REC-owl-features-20040210/#property
http://www.w3.org/TR/2004/REC-owl-features-20040210/#subPropertyOf
http://www.w3.org/TR/2004/REC-owl-features-20040210/#domain
http://www.w3.org/TR/2004/REC-owl-features-20040210/#range

40 Dmitry Diyachenko (0300077)

• Individual – instances of the classes

OWL Lite equality and inequality constructs:
• equivalentClass – is used to declare two equivalent classes that have the same

instances and is helpful for ontology integration and reasoning.
• equivalentProperty – necessary to declare equal properties that interrelate same

individual sets
• sameAs – allows to create many names actually belonging to the same individual
• differentFrom – allows to declare that one individual is different from another,

improves extended ontology consistency checking and reasoning facilities
• AllDifferent or distinctMembers – enable to create a set of individuals and to

declare that these individuals are different from each other [MH04]

OWL Lite property characteristics and restrictions:
• inverseOf – useful to define inverse properties, e. g. hasChild is inverse to

hasParent
• TransitiveProperty – defines transitiveness of properties. If e. g. ancestor

property is declared as transitive, than reasoner can deduce following: a ancestorOf
b, b ancestorOf c a ancestorOf c

• SymmetricProperty – allows to declare properties’ symmetry (if a isFriendOf b
 b isFriendOf a)

• FunctionalProperty – property can have for each individual at most one value or
even be empty

• InverseFunctionalProperty – meaning that the inverse property may have at most
one value; enables additional reasoner deduction options, too

• allValuesFrom – restricts values of the property to be instances of the same class
(i. e. if this property comes upon within a relation, certain class is only allowed to
be related to the instances of one specific class through the specified relation, other
classes are not allowed to be represented in this relation)

• someValuesFrom – doesn’t restrict all the values of the property to be instances of
the same class, at least one value or more of the property has to be instance of the
specified class (i. e. certain class has to be related to the specific class. However
this class is also allowed to be related with the instances of other classes in
arbitrary way) [MH04]

http://www.w3.org/TR/2004/REC-owl-features-20040210/#Individual
http://www.w3.org/TR/2004/REC-owl-features-20040210/#equivalentClass
http://www.w3.org/TR/2004/REC-owl-features-20040210/#equivalentProperty
http://www.w3.org/TR/2004/REC-owl-features-20040210/#sameAs
http://www.w3.org/TR/2004/REC-owl-features-20040210/#differentFrom
http://www.w3.org/TR/2004/REC-owl-features-20040210/#AllDifferent
http://www.w3.org/TR/2004/REC-owl-features-20040210/#AllDifferent
http://www.w3.org/TR/2004/REC-owl-features-20040210/#inverseOf
http://www.w3.org/TR/2004/REC-owl-features-20040210/#TransitiveProperty
http://www.w3.org/TR/2004/REC-owl-features-20040210/#SymmetricProperty
http://www.w3.org/TR/2004/REC-owl-features-20040210/#FunctionalProperty
http://www.w3.org/TR/2004/REC-owl-features-20040210/#InverseFunctionalProperty

On semantic timecard based project portfolio management 41

OWL Lite provides several features for ontology versioning (versionInfo,
priorVersion, incompatibleWith etc.) and notation (rdfs:label, rdfs:comment etc.). It
also has to be mentioned that OWL Lite just provides restricted cardinality constructs
(only 0..1). Modeling of arbitrary cardinalities is only possible in OWL DL and OWL
Full. [MH04]

3.2.2.3 OWL DL and OWL Full
OWL DL and OWL Full provide additional features for ontology reasoning like:
• oneOf – enables enumeration of the class members; there are exactly as many

members in the class as there are enumerated individuals (no more, no less)
• hasValue – a property can be required to have a specific individual as a value
• disjontWith – set of classes may be stated to be disjoint from each other, disjoint

classes cannot have any instances in common
• unionOf – allows to create classes containing things from several classes (logical

or operator)
• complementOf – allows to create classes containing things that are not included in

specified classes (e. g. class “nonVegetarianPizza” can be created; it is only
allowed to contain pizzas that don’t belong to the “vegetarianPizza” class)

• intersectionOf - allows intersections of named classes and restrictions (logical and
operator)

• unrestricted cardinality constructs – the cardinality constructs are allowed to be
defined in an arbitrary manner (0..1, 0..n, 1..5 etc.) [MH04]

While selecting adequate OWL sublanguage for ontology building, it needs to be

mentioned that OWL Full allowing maximum expressiveness and syntactic freedom
of RDF (arbitrary complex class description, Boolean combinations, property
restrictions, allows to treat classes as instances, too, etc.) has no computational
guarantees, i.e. it is not guaranteed that the ontology knowledge base including all
OWL Full constructs can be processed in finite time. [MH04]

For users who need maximum expressive power while retaining computational
completeness OWL DL might best suit. [MH04] OWL DL will be used in this thesis
to define our IT technology and service categories ontology knowledge base in an
expressive way. Computational completeness is vital for our timecard application as
well.

42 Dmitry Diyachenko (0300077)

3.3 Evaluation of ontology development tools

Ontology modeling tools should facilitate ontology development process by hiding
the complexity of ontology mark-up languages. Ideally the user should be able to use
and define complex ontology concepts by using convenient and intuitive graphical
interface. In this chapter for the purpose of ontology knowledge base development
potential development tools will be evaluated. The appropriate tool for development
of our ontology will be selected afterwards. Finally, the functionality and features of
that tool are going to be described in detail.

The following criteria and features are going to be analyzed while looking for the
intuitive and powerful modelling tool that is best suitable for the development of our
ontology base:
• Usability and convenient user interface: one important criterion for ontology

development tool is usability and its simple deployment. It should be easy to install
and to use. Intuitive graphical interface for different modeling or modification
purposes should be provided by the tool. The graphical ontology representation for
its navigation, editing and documentation should be enabled as well. Detailed tool
documentation, comprehensive tutorials and circumstantial demonstrative
examples may have considerable impacts on the ontology modeling tool selection
process. [GF02] All these features necessarily have to be included in the selected
modeling tool.

• Integration and merging of external ontologies: the modeling tool should
provide components supporting integration of external ontologies. Ideally it should
be possible to convert, to merge and to adapt existing ontologies in order to build
composed ontology knowledge base. The ontology development tool should be
able to import and export ontology in various ontology formats (OWL,
OIL+DAML, RDF/s) too.

• Extensibility of the development tool: ontology modeling tool has to be
extensible to additional functionalities. Those new functionalities or already
existing external components have to be integrated in the form of plug-ins easily.
At best, the ontology modeling tool has to be developed and maintained by a large
community providing a considerable amount of different plug-ins for certain
purposes and functionalities.

• Interoperability with other ontology tools and languages: the ontology
modelling tool should be able to interact with other relevant tools supporting the

On semantic timecard based project portfolio management 43

ontology development process (ontology reasoning tools, storage tools, querying
tools, ontology merging and converting tools, evaluation tools etc.) [GF02]

• Ontology storage and querying: the ontology modelling tool should provide
scalable ontology storage capabilities. Ideally, powerful querying engines have to
be integrated to extract needed knowledge from the ontology knowledge base, too.
[GF02]

• Inference services attached to the tool: for consistency checking and knowledge
evaluation purposes the inference services should be provided by the ontology
modeling tool. Through these extended inference services new implicit knowledge
can be derived and analyzed. Usually those inference services are provided by the
so-called reasoner applications. Therefore the ontology modeling tool has to be at
least interoperable with the relevant reasoner applications. The inference and
consistency checking functions are very important in the ontology development
and usage life cycle. [GF02]

• Integration of the ontology knowledge base in applications: the ontology
modeling tool or ontology repositories have to provide certain API to make the
ontology knowledge base accessible to applications or web-services. That API
should necessarily offer ontology modification, querying and maintenance options.

The following candidates have been selected for the ontology modeling tools

evaluation and selection process:
• Apollo
• Ontolingua
• WebODE
• OntoEdit
• Protégé 2000 [GF02]

All these tools are widespread in the ontology design and development sector and
are accepted by relatively large communities. These tools also provide the minimum
necessary functionality supporting the ontology development process. Tools that are
irrelevant or not accepted enough will not be considered in the present diploma thesis
at all.

The functionalities and main features of these five modeling tools must be
analyzed in short. Afterwards the features of the most appropriate and therefore
selected tool will be presented and explained in detail.

44 Dmitry Diyachenko (0300077)

3.3.1 Apollo

Apollo is an ontology modelling tool with user-friendly interface. This tool was
developed in cooperation with several industry partners to support the modelling of
simple ontology concepts. It was very important for the developers to create tool that
would support basic ontology modelling techniques and would provide easily useable
and understandable syntax, as well as ontology development environment. [Apollo]

The internal model is built as a frame system according to the internal model of the
OKBC protocol. This frame based modeling system enables definition of classes,
properties, instances, hierarchies, functions, rules and simple relations. Modelling,
navigation, editing and definition processes are supported by the convenient graphical
user interface with different possible views. Apollo performs full consistency
checking while modeling the ontology knowledge base. [Apollo]

Apollo is an extensible tool. Additional functionalities might be implemented and
integrated as plug-in components. However the Apollo community is not large
enough and there are not many existing plug-ins that might be integrated for the
further use. There is no detailed documentation, demonstrative tutorials and samples
either. Apollo is a frame based ontology modeling tool and therefore does not support
strongly expressive OWL constructs. The expressive power of the knowledge
representation is not strong enough and extended querying facilities are therefore not
available.

Apollo has its own internal language for storing the ontologies (files only), but can
also export the ontology into different representation languages, as required by the
user. Apollo is implemented in Java and provides specific API enabling ontology
access and integration. [Apollo]

Apollo provides restricted ontology modeling constructs (OWL is not supported),
it is not interoperable with other ontology development tools, it does not provide
inference engines; the ontology might get exported in limited formats, Apollo does
not have strong community maintaining and improving this application; there are no
satisfied documentation and tutorials available as well. [Apollo] Due to these facts
Apollo cannot be considered as a potential modeling tool for development of our
ontology knowledge base.

On semantic timecard based project portfolio management 45

3.3.2 WebODE

WebODE is a service that strongly supports ontology development, usage and
integration processes. WebODE has been built using 3-tier architecture (client tier-
application server-database tier). [WebODE]

Figure 9: WebODE three-tier architecture [WebODE]

The application server (middle tier) provides high extensibility and usability by
allowing easy addition of new services and the use of already existing services.
WebODE provides well-defined service-oriented API to access and to integrate the
ontology knowledge bases into different applications. The ontologies are stored in the
relational database (database tier). WebODE ontology development tool supports
exports and imports in many different formats (OWL, RDF/s, DAML+OIL,
WebODE’s XML). Thus, the ontology bases might be integrated and merged easily.
[ACFG01]

A convenient and intuitive graphical user interface is provided to define term
structures and relations. WebODE supports not only hierarchy definitions and simple
relationship concepts but also expressive and powerful modelling constructs (among
other things, reflexive and symmetric properties, predefined relations like disjoint
classes, unionOf or complement relationships, multiple inheritance, rule definitions
etc.). [WebODE]

WebODE also offers consistency checking, inference, reasoning, merge and
comprehensive documentation services. It additionally supports collaborative
ontology development environment. Synchronization mechanisms allow parallel
ontology editing by multiple users. [ACFG01]

46 Dmitry Diyachenko (0300077)

However there are not many tutorials, wikis and demonstrative ontology modelling
samples available and discussed. This tool is also not freely available (temporal free
web access only). [WebODE]

3.3.3 OntoStudio

OntoStudio successor of OntoEdit supports the ontology development process in a
comprehensive manner by using graphical means and various extended features. The
tool is based on a flexible plug-in framework and is interoperable with other ontology
development tools. Additional functionality and features can be integrated for certain
purposes. A lot of plug-in based components (inference engines or reasoners,
collaborative multi-user ontology editing facilities, import and export plug-ins etc.)
are publicly available and might be used in the OntoStudio development application
in order to customize this tool for required scenarios and purposes. Ontologies might
be stored in files or in relational databases. [OntoStudio]

Short time ago a powerful OWL reasoner OntoBroker was implemented. The main
task of the OntoBroker engine is to process expressive OWL DL and RDF/s mark up
languages. OntoBroker checks OWL ontology’s consistency, infers new implicit
knowledge, integrates ontologies originated from different sources as well as provides
API for ontology access, modification and integration. [OntoStudio]

There are also comprehensive documentations of most features, extended customer
support, as well as tutorials available. [OntoStudio]

However, OntoStudio and OntoBroker server are commercial software releases and
are not freely available. [OntoStudio]

3.3.4 WebOnto

WebOnto is a JAVA-Applet supporting collaborative browsing, creation and
editing of ontologies. The ontologies created are represented in the knowledge
modelling language OCML. The collaborative development is supported by the
convenient graphical user interface. A lot of ontologies are provided by WebOnto
service and are publicly accessible. [D98]

WebOnto does not support the OWL mark up language constructs. [D98] The
modelling of complex relations and expressions is therefore not possible. This tool is
not extensible and not interoperable with other ontology development or reasoning

On semantic timecard based project portfolio management 47

engines. Documentation, demonstrative samples and tutorials are poorly described or
not provided at all.

Due to its restricted functionality facilities WebOnto won’t be used for the
ontology development in this thesis.

3.3.5 Protégé 2000

Protégé provides a powerful graphical and interactive environment for the ontology
and knowledge base development. Protégé has a very large community around the
world. A lot of industries (e. g. medical sector) are using this tool for ontology
conceptual design and development. Protégé has the component-based architecture.
Additional functionality can be integrated in the form of plug-in components.
Community members all over the world have implemented a considerable number of
certain plug-ins that are publicly available and might be integrated fast and
unproblematic. Large Protégé community provides many detailed and intuitive
described tutorials. All the features of this tool are carefully documented and
demonstrated, too. There are also numerous wikis, mailing lists for questions and
support, as well as forums for discussions available. There are a lot of ontologies that
were created by using this tool. Most of them are publicly accessible and might be
used for one’s own purposes. [Protégé]

Protégé is used by large communities that build ontologies containing considerable
amounts of data. Very important advantages of Protégé are its scalability and
extensibility. Therefore, Protégé allows to build and to process large ontologies in an
efficient manner. Through its extensibility Protégé might be adopted and customized
to suit users’ requirements and needs. [Protégé]

Protégé provides powerful constructs facilitating building of large ontologies. It
includes outstanding graphical tree navigation as well as extended zoom facilities that
allow seeing the ontology in an abstract or detailed manner. Protégé also provides
back-end plug-ins for storage of the large ontology knowledge bases, as well as API
libraries for ontology modification, reasoning and integration. [Protégé]

Protégé provides powerful graphical and ontology merging plug-ins as well. It
supports all established and relevant ontology import and export formats (OWL,
RDF/s, XML etc.) and is interoperable with many other tools considerably
contributing to the ontology design and development processes. [Protégé]

48 Dmitry Diyachenko (0300077)

3.3.6 Direct tool comparison

In the previous part of the thesis five ontology development tools were evaluated
and their capabilities were described in general. The point of this chapter is to
compare the tools evaluated and their functionalities directly to show their advantages
and disadvantages in certain areas. On the basis of this comparison, ontology
development tool appropriate for our purposes is going to be selected.

The criteria of the comparison and ontology development tool features are shown
in the table below:

Feature Protégé OntoStudio WebODE Apollo WebOnto

Developers SMI (Stanford
University

Ontoprise Ontology
group (UPM)

KMI (Open
University)

KMI (Open
University)

Availability Open source Software
license

Software
license,
temporal free
web access

Open source Free web
access

SW
architecture

Standalone,
Client/Server

Standalone,
Client/Server

3-tier Standalone Client/Server

Extensibility Plug-ins Plug-ins Plug-ins Plug-ins No

Ontology
storage

Files, DBMS Files, DBMS DBML Files Files

Import
formats

XML-Schema,
XML,
RDF(s),
OWL

XML-Schema,
XML,
RDF(s)
OWL
FLogic

XML,
RDF(s)
CARIN

Apollo meta-
language

OCML

Export
formats

XML-Schema,
XML,
RDF(s)
OWL,
HTML,
Java,
Clips,
FLogic,

XML-Schema,
XML,
RDF(s),
OWL,
FLogic,
SQL-3,

XML-Schema,
XML,
RDF(s)
OWL,
HTML,
Java,
Clips,
FLogic,
Prolog,
CARIN

OCML
CLOS

OCML,
Ontolingua,
RDF(s),
OIL

On semantic timecard based project portfolio management 49

Axiom
language

PAL FLogic WAB Unrestricted OCML

Inference
engine

PAL OntoBroker Prolog No Yes

Consistency
checking

Yes Yes Yes Yes Yes

Graphical
support

Yes Yes Yes Yes Yes

Zooms Yes Yes No No No

Collaborativ
e working

Yes Yes Yes No Yes

Ontology
libraries

Yes Yes No Yes Yes

Table 1: Ontology development tool comparison [GF02]

While comparing the ontology tools, two powerful and well documented ontology
development environments were identified: Protégé and OntoStudio. These tools
provide powerful and interactive ontology modeling concepts, are interoperable with
other important ontology development tools, have large community behind them, are
well maintained and documented, have support and mailing lists available, provide
powerful ontology reasoning engines and support OWL ontology modeling language.
OWL support is one of the most important criteria in this tool selection process,
because the mark up language mentioned was selected for the modelling of complex
ontology constructs and relations.

These two tools provide similar functionality and scalability level. Their
functionality facilities may be extended in an arbitrary way and also customized to the
developers’ needs and requirements easily. Both tools provide convenient and
intuitive but also powerful graphical user interface with different views. However
Protégé is open source software and is used in many large projects. Therefore Protégé
has larger community maintaining its labs regularly and providing considerable
number of useful and powerful plug-ins. Protégé community also offers many useful
experiences and guidelines for ontology conceptual design and its development as
well as its later integration. Due to these facts the Protégé ontology editor will be
selected to develop our ontology conceptual design and afterwards to build the
ontology knowledge base required for our timecard application.

50 Dmitry Diyachenko (0300077)

3.3.7 Detailed description of the selected ontology development tool

As has been mentioned above, Protégé is an extensible and powerful application
supporting complex ontology development process in a comprehensive way. Protégé-
Frame editor (compatible with the Open Knowledge Base Connectivity protocol
OKBC) represents the core component of this ontology development tool. In the
course of time Protégé OWL plug-in was developed by Stanford University enabling
usage of complex OWL mark up language (semantic web standard) constructs. The
OWL editor represents a complex extension of Protégé that fits the semantic web
requirements and needs. [KFNM04] This OWL editor plug-in is going to be used to
specify our ontology concepts in expressive way. In this chapter the OWL plug-in and
other relevant plug-ins supporting ontology visualization and merge as well as
reasoner server are going to be described in detail.

3.3.7.1 OWL plug-in
Ontology development is a very time-consuming and complex process. The ontology
development tool should provide intelligent assistance for developers and facilitate
the development process through convenient user views hiding complex OWL syntax,
consistency checking, ontology design inspections and visualization facilities. All
these features are provided by the OWL plug-in. Furthermore, Owl editor is able to
integrate already existing plug-ins (ontology testing, querying, integrating services) to
customize the OWL ontology development tool and its power to the developers’
needs. Highly scalable Protégé might be used to store large ontologies, multi-user
mode based on client/server architecture might be reused for collaborative working.
Other applications for the ontology processing (Jena) and reasoning (Racer server)
can be included, too. [KFNM04]

To build simple ontology concepts like classes, properties, simple relations,
individuals the Protégé core system components might be reused. However the core
Protégé API enabling ontology access and manipulation should be extended to the
OWL API supporting OWL ontology development. This extended Protégé OWL API
implements OWL Lite and OWL DL constructs completely and OWL Full constructs
(including meta-classes) partly. [KFNM04]

The OWL plug-in extension and its interaction with other Protégé components are
shown in the figure 10 below:

On semantic timecard based project portfolio management 51

Figure 10: OWL plug-in as extension of Protégé core system [KFNM04]

The OWL plug-in extends the core system components and API to the classes that
can implement OWL specification.

The Protégé core API is used to implement the core Protégé user interface
(ontology access and manipulation). The Protégé OWL API inherits the functionality
of the Protégé core API and extends this API with custom-tailored Java classes for the
various OWL class types (unionOf, complementOf, subsectionOf constructs etc.).
Afterwards this extended OWL API is used to implement the OWL editor user
interface. It’s possible for developers to use extended OWL APIs for developing
customized plug-ins and therefore provide additional functionality for the OWL
editor. [KFNM04] Numerous plug-ins for OWL visualization, OWL ontology merge,
querying etc. were already implemented and are publicly available.

OWL plug-in provides comprehensive mapping between its extended API and the
standard OWL parsing library Jena. Loaded Jena model is synchronized with all the

52 Dmitry Diyachenko (0300077)

changes performed in Protégé OWL plug-in. All the objects defined in OWL plug-in
are presented in Jena terms, too. Therefore the Protégé user might integrate arbitrary
Jena parsing, querying, and reasoning services. Defined ontologies (Jena objects) are
able to be serialized to file in OWL format by using Jena API. There were also several
mechanisms implemented to maintain traditional semantics of frame-based Protégé in
spite of using OWL syntax. [KFNM04]

Several important plug-ins for OWL editor are presented and superficially
described in the following chapters.

3.3.7.2 OWLViz plug-in
OWLViz plug-in was designed by Mathew Horridge at the University of Manchester
for further use in Protégé OWL plug-in. The main task of OWLViz is to visualize
OWL ontology class hierarchies and its relations (asserted class hierarchies as well as
inferred class hierarchy). It enables an overview of generic classes, navigation in the
tree hierarchy, quick structure changes and detailed views provided through
outstanding zoom facilities. OWLViz provides an easy comparison of the both class
hierarchies (asserted class structure and inferred class structure), too. [OWLViz]

In OWLViz certain class hierarchy trees might be exported to various graphics
formats like jpeg, png and svg too. This feature is rather useful for certain project
specific documentation purposes. [OWLViz]

3.3.7.3 Promt plug-in
Ontology is changed through the constant evaluation process regularly. Ontologies
sometimes have to be adapted to different application requirements, modeling
concepts or domain interpretations might change over time, design mistakes must be
eliminated. Due to these facts appropriate tools for efficient ontology evaluation
management are required. Promt plug-in designed for Protégé OWL editor should
provide mechanisms facilitating ontology evaluation management. [SAS05]

Protégé provides concrete mechanisms for ontology versioning, comparison of
different ontologies and their versions, definition of relations between certain
ontology versions. These functions allow developers to store different ontology
versions, define relationships, extract differences between certain versions and
compare different ontologies. On the basis of that well-structured information
ontology incompatibilities can be resolved, and ontology integrations, partly
extractions, merges might be performed by Promt plug-in automatically. [SAS05]

On semantic timecard based project portfolio management 53

3.3.7.4 Racer reasoner
OWL plug-in provides direct access to description logic (DL) reasoners such as Racer
server [HM03]. Following functionalities are provided by this OWL DL ontology
reasoning engine that will be used to infer domain knowledge in our ontology project,
too:
• Consistency checking: on the basis of the defined relations and restrictions the DL

reasoner checks if instances and classes were asserted logically correctly [HM03]
• Classification (inference): on the basis of the described relations and term

definitions the reasoner derives new knowledge, adds appropriate instances to
certain classes satisfying their restrictions, restructures class and property
hierarchies in an appropriate way (new classification and concept reorganization
according to the defined rules and restrictions) [HM03]

Ontology reasoning tools perform one of the most important tasks in ontology usage
process, namely, generating new assumptions and cognitions that are not defined in
the ontology knowledge bases explicitly. [HM03]

3.4 Interactive ontology building process

An important part of this diploma thesis is to create the ontology knowledge base
that is to be integrated in an already existing timecard application. That ontology
knowledge base will contain partly selected terminology of IT sector (IT
technologies, programming languages, developers' software, as well as IT software
engineering and consulting services – provided within Siemens Austria AG). The
actual ontology development process, numerous modeling decisions and ontology’s
structure as well as its content are going to be documented and explained in the
current chapter in detail.

The comprehensive ontology building process will be presented below. It should
visualize all the steps that are necessary to build a useful ontology knowledge base
successfully. Afterwards single steps and activities are going to be explained in a
more detailed way.

54 Dmitry Diyachenko (0300077)

Figure 11: Ontology building process [HKRSW04]

On semantic timecard based project portfolio management 55

The first important step is to understand what our domain of interest is, i.e. it has to
be considered which information is required by the timecard application. In our case
IT domain represents a high level of importance. The timecard application has to be
able to process terminology of IT sector such as IT technologies, as well as IT
engineering and consulting services. Programming languages, different kinds of
developers’ software, databases, internet technologies etc. and their interrelations are
going to be modeled in our IT technology knowledge base. The software engineering
and consulting service categories will be included in our ontology, too.

It is also very helpful to inspect and analyze the already existing ontologies to get
the feeling about general ontology structures and modeling patterns, as well as
constructs. Ontologies covering similar domains of interest might be imported and
reused. However, for our needs ontology integration and adaptation processes are
rather complex and time-consuming. It is possible to get advantages of external
ontology imports if really considerable ontology fragments might be reused. For the
building of our IT technology knowledge base concepts and content of following
ontologies will be included and adapted to the needs of the timecard application:
• DMOZ ontology (computers section) – provides internet links for all possible IT

tools, technologies, methodologies, architectures, tutorials etc. All the IT
components are grouped in classes and hierarchies. A lot of dependencies and
interrelations are defined and publicly maintained. Ontology editors may register
and publish their links (represent instances) for appropriate categories. They are
also allowed to add new IT components and categories. Therefore DMOZ ontology
is regularly extended and maintained by registered ontology editors contributing
their expertise. The consistency checking might be regularly performed by DMOZ
ontology providers. [ODP]

• ITEC categorisation – IT engineering and consulting service categorisation
internally used in Siemens Austria AG. That standard defines various software
engineering and consulting services provided within Siemens Austria AG. The
paper mentioned includes service categories such as Software engineer, consultant,
design or solution architect, project manager, program manager, principal etc.

In order to get a general idea about the ontology scope, it is very helpful to list

important terms and concepts. That list helps to understand the structure and elements
of the ontology more clearly, too. After the ontology scope and composition are
mostly clear, classes and their hierarchies have to be specified as entirely as possible.

56 Dmitry Diyachenko (0300077)

Some properties might be defined to describe specified classes accurately and to
enable advanced querying facilities during further ontology use and processing. One
of the most important tasks is to consider and to specify interrelations as well as
dependencies between the classes represented. Extensible rules have to be defined
that assign class restrictions, interrelations, cardinalities and dependencies. According
to those rules the reasoner server applications can infer new facts, perform taxonomy
classification and provide qualified, as well as logically proved, assumptions.

Classes represent a set of instances that might be created in the final ontology
building phase and described through the already defined properties.

3.4.1 Taxonomy definition

As first it is very important to mention that there are many alternatives to model
ontology knowledge bases describing certain domains. There is no completely correct
alternative because of the different views, interests, interpretations and needs.
[HKRSW04] You are on the best way to model the ontology successfully if you
periodically have application, further using the ontology mentioned, in mind, as well
as its needs and specified requirements. If the ontology delivers required data sets and
can fit the needs of the application, then the ontology model was specified in the best
way. [HKRSW04]

Ontology modelling is an iterative process. The conceptual shortcomings become
visible in the course of the actual use of a certain ontology by applications. Those
defects are to be corrected, and the conceptual decisions must be adapted carefully
and deliberately. [HKRSW04] In this way the ontology knowledge base is going to be
extended and updated regularly during its use.

To make the ontology processing by humans, as well as by machines, easier, it is
necessary to name classes, their properties, interrelations and instances close to the
real world objects (close to the domain of interest terms and relations). [HKRSW04]

The top-down approach is going to be used to classify our taxonomy. As first the
most general concepts are to be considered, as well as their siblings. These siblings
have to be inspected and, if necessary, grouped into a certain general concept. This
way they become subclasses. It is very important to keep balance. On the one hand,
the ontology is not defined concretely enough if generic classes have too many
subclasses. Thus, detailed information might not be extracted by application. On the
other hand, it is counterproductive and not really meaningful to have only one

On semantic timecard based project portfolio management 57

subclass. It also has to be considered that the ontology might be extended during its
use, and additional subclasses or siblings might be inserted.

While modelling the ontology knowledge base, it is very important to follow a
consistent naming strategy for the further maintaining and processing reasons.
[HKRSW04] All the classes will start with capital letters, and properties - with lower
case characters (e. g. hasStatus). Spaces are going to be represented as underlines (e.
g. Programming_Languages). A constant naming strategy should facilitate the
ontology processing, querying and navigation by humans. [HKRSW04]

The IT ontology will include three top level classes. The ITTechnology class is
going to include the IT concepts important and useful in our case. Business_Services
class will include the IT engineering and consulting service categories, according to
the ITEC standard. The service categories mentioned determine the charging level for
performed services. Professionals might be engaged in complex and responsible tasks,
and therefore ask for higher hourly earnings. Management might be interested to
follow labor market trends and analyse proportion changes of cleared complex tasks
to the routine tasks. If complex tasks requiring highly qualified experts gain
importance, additional educational seminars and programs are to be initiated to adapt
employees’ qualification level urgently or external labor forces must be contracted in
time. The third top level class Employee_Status is irrelevant and is just used to
determine the employee classification and their charging amounts indirectly.

These top level classes include various subcategories that are going to be shown in
the figure below. This figure also gives a look at the Protégé ontology editor used to
model our ontology knowledge base.

58 Dmitry Diyachenko (0300077)

Figure 12: Generic IT ontology structure shown in Protégé editor

The core class of this ontology is ITTechnology concept. This class, its subclasses,
as well as dependencies and interrelations, will be described in detail. OWLViz plug-
in will be used to visualize those concepts and reasoner activities.

In order to facilitate ontology maintenance and avoid redundancies class lists are
going to be declared and described (e. g. lists of programming languages, developers’
or users’ software, various IT components etc.). Afterwards data categories, necessary

On semantic timecard based project portfolio management 59

or relevant for the timecard application, are going to be created (e. g.
Scripting_Languages, ObjectOriented_Languages, ServerSide_Languages,
LogicBased_Languages, Commercial_Application_Servers or databases etc.).
According to the logic-based concept descriptions, the reasoner will be able to
classify the defined classes and move them to the appropriate categories in the class
hierarchy. Used approach allows adding new IT components, software or
programming languages easily. After a new class has been added, logic-based concept
description has to be accomplished. Automatic concept classification performed by
the reasoner will integrate the classes added into appropriate tree hierarchies. In this
way arbitrary additional properties might be defined to describe classes in a more
expressive way and therefore infer new arbitrary knowledge, if required by the
timecard application.

In this section the most important concepts will be picked up to show the general
ontology building constructs and patterns, reasoner power, as well as logic-based
concept description facilities and further automated ontology classification.

Firstly, it is very helpful to determine the general concept restrictions.
[HKRSW04] Through these restrictions reasoner server becomes able to perform
basic ontology consistency checking and reasoning activities. The following basic
restrictions might get defined in the initial modeling phase:
• Define disjoint classes of certain concept – the concept can not share the same

individuals with its disjoint classes
• Define possible Union restrictions – a concept may include individuals of several

classes defined in the union property (logical or)
• Define possible intersection restrictions – a concept may include individuals

representing intersection of several classes (logical and)

Union restrictions and intersection restrictions might be declared through logic-

based rules or by using owl:intersectionOf as well as owl:unionOf commands.
Protégé OWL plug in provides direct constructs to define disjoint classes that are
shown in the figure below.

60 Dmitry Diyachenko (0300077)

Figure 13: Defining disjoint classes

Category Named_Languages is a subcategory of Programming_Languages. It
includes all programming languages defined in our ontology knowledge base. All
these languages are described through the already defined properties:
• belongsTo – this property defines how concepts belong to each other, to which

groups, super categories, vendors, producers etc.
• isRelatedWith – this property is symmetric and transitive. It defines which

technologies are related with each other in any way.

The property belongsTo defines to which technologies and concepts Ajax belongs.
This information can be used by Racer Server Reasoner to move Ajax concept to the
appropriate defined categories and technology groups (e. g. Racer can add Ajax to
internet client side languages, scripting languages, Racer can assume that Ajax is part
of Java technology etc.). Depending on the application needs, rule definitions and

On semantic timecard based project portfolio management 61

properties quantity might be extended to express certain concepts in more detail in
order to extract additional information.

Figure 14: Protégé properties view

After the technologies and certain programming languages, as well as software
units, were defined the reasoner server might be integrated to check the consistency
and to classify the ontology in an adequate way. All the logical rules were defined as
the necessary conditions to describe the explicit asserted technologies. Ajax is, for
example, a subclass of Named_Languages, that belongs to certain technology groups
or vendors or is necessarily related with several technologies. Afterwards it is
necessary to consider which information is required by the timecard application.
Management is interested in the technology portfolio. Regarding programming
languages, it would be interesting to group them in relevant categories. It could help
us to extract some information about usage proportions of certain programming
language categories within an organization. The following concepts might be created
in our ontology:
• Internet languages
• Object-oriented languages
• Procedural languages
• Client-side languages
• Server-side languages
• Logic based languages
• Open source languages
• Scripting languages

62 Dmitry Diyachenko (0300077)

• Distributed programming languages etc.
The above-mentioned programming language categories might be used to classify

the programming languages explicitly entered into the timecard. These categories
could be integrated in management portfolio for technologies to illustrate their
importance and how intensively they are used in IT projects within an organization. In
the figure below explicit asserted programming language categories are partly shown.

Figure 15: Asserted programming language categories

On semantic timecard based project portfolio management 63

To add appropriate programming languages to the asserted categories, necessary
& sufficient conditions must be defined for every specified category. For example the
category “internet languages” includes two subclasses ClientSide and ServerSide
programming languages. Specific rules are to be defined, giving the reasoner server
information that only internet or (internet and client side) or (internet and server side)
languages are allowed to represent the sub classes of given internet languages
category. As already mentioned above the necessary conditions of all explicit defined
programming languages must declared before that. Inferred ontology classification
after defining necessary & sufficient rules for each programming language category:

Figure 16: Partial cutout of the inferred programming language categories

64 Dmitry Diyachenko (0300077)

Another very important subcategory of the IT technology class is software. In the
subclass Named_Software many different software products were defined and clearly
described through given properties. For technology portfolio inspection it might be
interesting, if commercial or open source software products are mostly preferred, and
also which kind of web servers, databases, application servers or developers’ software
are intensively used within departments. The software units can be described through
logic-based definitions arbitrarily. On the basis of those rules, the required
information might be inferred in the following way. In our ontology it is clearly
defined through the necessary conditions, if the software units belong to the
databases, browsers, application servers, web servers, commercial or open source
software type, editors of different kinds etc. These conditions also might be combined
to infer an additional knowledge. For example, specific software might be described
as database, commercial, belonging to certain vendor, used in server side applications
etc. to enable reasoner classification to move the described software unit to
appropriate category groups. Editors might also represent commercial software, rich
internet application development environments, belong to certain vendor, be used to
develop internet applications, support distributed programming etc.

After the software products are described through logic-based rules, they become
able to get distributed to defined categories by the Racer server reasoner. The
category classifications were created according to the timecard application
requirements. Through those categories it becomes possible to group technologies
explicitly inserted in the timecard and developers’ software products. Thus, the
following categories were defined in the ontology knowledge base to group software
products:
• Application Servers – commercial and open source application servers
• Databases – commercial and open source databases
• Artificial intelligence
• Distributed programming
• Internet software – clients as browser, ftp, ssh, utilities. Servers as web servers, but

also ftp or ssh servers etc.
• Rich internet software – also represents sub category of internet class
• Web-Service enabling software – is also classified as part of internet concept
• Java technology – java commercial or open source editors, J2EE application server

implementations, Java micro edition software, java software products etc.
• Component frameworks – software used to support and realize component-based

programming

On semantic timecard based project portfolio management 65

• .NET software products – web servers, application servers, databases, web-service
enabling products, remote programming enabling software, commercial or open
source editors etc.
Partial cutout of the asserted software products is shown in the figure below:

Figure 17: Partial cutout of the asserted software products

66 Dmitry Diyachenko (0300077)

After reasoner reorganization and classification the defined software products were
added to the specified categories. You can partially see the inferred commercial
software concept in the figure below.

Figure 18: Partial cutout of the inferred commercial software products

On semantic timecard based project portfolio management 67

In the screenshot above only a small cutout of the inferred ontology, as well as
commercial software products, is presented. The commercial software category
consists of commercial application servers, commercial editors and commercial
da

epts, the following
io:

n the IT projects?

l, open source)?

rs?

• ow many hours were the rich internet technologies used?
•

al concepts and logic-based descriptions must be specified to extract
ne

su

tabases with their subcategories. They, in turn, also have their instances that were
added from the named software concept during the reasoning process.

After specified software products are grouped to certain conc
questions could be analyzed for the technology management portfol
• To what extent is commercial software used i
• To what extent is open source software used in our IT projects?
• Which kind of databases is commonly used?
• Which kind of the application servers is mostly used (commercia
• What are the popular software vendors in our IT projects?
• Which IT technologies are offered by certain software vendo
• Which software vendors offer open source technologies?

H
How intensive are the Java technologies used in internal and external IT projects?

After all that information is defined in our ontology knowledge base, the timecard

user ideally just has to enter technology name or software product used to accomplish
a certain task. Through technology description the timecard application will be able to
generate management reports demonstrating e.g. usage proportions of open source
software to commercial software, even if this information was not inserted in the
timecard application explicitly. If other information for the management reports is
required, addition

cessary information. In this way the ontology might be extended during its life
cycle regularly.

It has to be mentioned that our top level ontology categories also include other
bcategories with appropriate content. That content is partly asserted by the ontology

editor directly and partly imported during the above-mentioned reasoning process.
The internet top level category includes its clients and servers. The content of

client and server subcategories partly represents the software products that are
automatically added during the reasoning process. The internet category also has
internet languages (divided in server-side and client-side languages) subcategory that
is filled with the programming languages already defined in the category
programming_languages. Web-services category (sub category of internet concept)
becomes filled while reasoning process with the web-services enabling software, web-

68 Dmitry Diyachenko (0300077)

service programming languages. Rich internet application category will be filled with
the already defined RIA software, RIA programming languages and other RIA
technologies that are partly inferred by the reasoner but also explicitly asserted by
ontology editor. Of course, all the rules must be defined in the ontology knowledge
base beforehand. It also has to be defined what kind of content should be included in
certain categories and its sub categories. On the other hand, the structure of internet
co

ries. All the data are already defined
in

he similar way and
pa

ices provided. Experienced professionals generally
ha

er all general employee information and rules are defined, the following

nning or already

jects?

ware engineering services were performed etc.?
• rbitrary service proportions and their changes might be derived to forecast future

ncept and information like web-service specifications have to be asserted by the
ontology editor explicitly.

The databases category consists of commercial databases, open source data bases
and database programming languages subcatego

other categories (software, programming languages) and will be added to the
databases concept during the reasoning process.

Remaining IT technology top level concepts are defined in t
rtially consist of the asserted or inferred knowledge (knowledge imported from

other categories through certain rules and constraint definitions).
Business services represent the second important part of our ontology. In that

concept the IT engineering and consulting service categories are defined. Specified
categories are used to determine the professional status of employees and therefore
their charging level for the serv

ndle complex tasks with high responsibility level and are, therefore, usually highly
paid for the services performed.

The Employee status class is used in our ontology to define employees' status and,
consequently, their charging level. The employee status is defined through hasStatus
property. Aft
information might be extracted for the management reports in the timecard
application:
• How many highly paid services were provided in the actually ru

finished projects (in hours)?
• How many cheap services were performed during the pro
• What is the proportion of certain services?
• How many consulting services were charged (in hours)?
• How many design services were charged?
• How many soft

A
service trends

On semantic timecard based project portfolio management 69

All those answers and reports may be provided by the timecard application. The
employee does not need to insert additional information in the timecard application.
Ideally he only has to enter service category listed in the business service concept.
The remaining information will be inferred by the ontology knowledge base, where
all those service categories are accordingly described. Structure of the business
service category is partially visualized in the figure below:

Fi

ild adequate taxonomy and concept interrelations. The Racer server

gure 19: Subcategories of the business service category

In our IT ontology approximately 250 named classes were explicitly asserted by
the ontology editor. Many additional classes were inferred through logic-based rules
by the Racer server reasoner. About 450 restrictions and rule definitions were
specified to bu

70 Dmitry Diyachenko (0300077)

was used to check the ontology consistency and to perform its taxonomy
classification.

3.4.2 Ontology reasoning

In this section the already mentioned reasoning process and its facilities will be
shortly demonstrated and explained on the basis of a small example. This example
should provide basic idea of how the information processed by the reasoner must be
declared and, therefore, which possible ontology modeling constructs or patterns
could be implemented.

The short example will show how necessary constraints must be defined to
describe certain concepts. It is very important to mention that necessary constraints
might be declared in arbitrary complexity. Firstly it has to be considered which
information is necessarily required by the application further using the ontology
knowledge base. Afterwards certain constraints must be defined to express the
concepts in the required way. On the basis of these constraints, the relevant
information might be extracted by querying the ontology knowledge base. The role of
necessary & sufficient constraints is going to be explained, too. These constraints
provide crucial information for the reasoner tool that will be used during the ontology
processing activity.

The Racer server reasoner is used in the thesis to perform ontology consistency
checking and classification processes. Racer server is available for download from
http://www.sts.tu-harburg.de/~r.f.moeller/racer/ and can process the OWL DL
ontologies. [MH04] Racer provides TCP service on port 8088 and HTTP service on
port 8080. The HTTP service is enabled by default. [HM03] This way the ontology
could be sent via HTTP service to the RACER server reasoner for the further
processing. Manually constructed class hierarchy is called asserted class hierarchy in
Protégé OWL editor. The asserted class hierarchy is going to be sent to the reasoner.
Racer performs consistency checking of the asserted ontology and infers new class
hierarchy based on the defined constraints and rules. So called inferred class
hierarchy is sent back to the Protégé OWL editor via HTTP service. [HKRSW04]

In our example certain software products will be picked up to demonstrate basic
rule definitions and constraints provided by the OWL DL specification. The necessary
constraints are used to define concepts and to specify which members or subclasses
are allowed to belong to the specific concept. If some classes or subclasses fulfill the
constraints defined in a certain concept, then they become allowed to represent

http://www.sts.tu-harburg.de/%7Er.f.moeller/racer/

On semantic timecard based project portfolio management 71

concept’s member and to be placed in its subcategories. Simple rule definition sample
is visualized in the figure below:

Figure 20: Necessary constraints of MySQL database concept

 just some constraints are defined because of the incompleteness
of t is not

o define following restrictions:

lasses fulfilling those constraints must be added to a certain concept
 an appropriate way (reasoning process produces inferred class hierarchy)

MySQL database necessarily has NamedSoftware as its superclass, belongs to
open source software class (some ->belongs at least to one open source software) and
to databases class. Some restrictions mean that certain class might belong to open
source class, databases class and to other arbitrary classes that might be defined later.
[HKRSW04] It is possible to perform so-called closure axiom. This axiom enables to
define the completeness of a certain concept. [HKRSW04] In case of MySQL concept
closure axiom would look as follows -> MySQL belongsTo only (open
source software or databases). In this case MySQL might only belong
to open source software or to databases class. The class is completely defined and is
not allowed to represent other classes at all. Closure axioms are rather useful for the
so-called excluding querying mechanisms, [HKRSW04] e. g. show me all software
products not representing commercial software products. Reasoner will include
MySQL in the query result, because of its clear definition (only belongs to open
source or only to databases classes, and nothing else). Reasoner will not add MySQL
to the query results if

 the concept. MySQL might also belong to commercial software products if i
excluded explicitly.

Necessary & sufficient constraints are used t
• Only classes fulfilling necessary & sufficient constraints are allowed to be

members of a certain concept [HKRSW04]
• All ontology c

in
[HKRSW04]

72 Dmitry Diyachenko (0300077)

The figure below demonstrates the necessary & sufficient constraint in the
databases concept:

Figure 21: Necessary & Sufficient constraints of the open source databases concept

The necessary & sufficient constraints shown above provide the following
information for the Racer reasoner server:
•

 changes are visible in the inferred class hierarchy compared to the
sserted class hierarchy:

only concepts belonging to the class databases and belonging to the class open

l)

ed to open source software concept, too

source software are allowed to be added to the open source databases concept (both
constraints have to be fulfilled in paralle

• all the concepts available in the IT ontology knowledge base and fulfilling these
constraints in parallel have to be added to the open source databases concept

• open source databases concept must be add
• as the necessary condition open source databases have their super class called

databases

After defining the rules and performing ontology classification presented above,
the following
a

On semantic timecard based project portfolio management 73

Figure 22: Asserted vs. inferred class hierarchy

As visualized in the figure above, several software products fulfilling defined
constraints were added to the open source databases concept. Open source and
co

 this way arbitrary constraint definitions are allowed to be performed to
det be added or necessarily have to be added to
ce

3.4

Protégé OWL editor facilitates ontology modeling process dramatically. Ontology
con ormat and then get integrated in
oth ocessed by arbitrary applications. Protégé is
us ropriate API that allows navigating, modifying
an tology integration and querying
pro onstrated in detail in chapter 4 “Web-service
based component integration”.

out is shown below to demonstrate the OWL syntax and
ho ike:

mmercial databases concepts were added to the open source and commercial
software concepts, too.

In
ermine which concepts are allowed to

rtain categories.

.3 OWL syntax

structed in Protégé might be exported in OWL f
er ontology knowledge bases or pr

ing the Jena model to provide app
d querying the OWL ontology knowledge bases. On
cesses will be explained and dem

Small OWL ontology cut
w OWL ontology describing the real world concepts actually looks l

74 Dmitry Diyachenko (0300077)

<owl:Class rdf:ID="NET">

onent_Frameworks"/>

rce_Languages">

entClass>

ion">

Property>

rogramming_Languages"/>

tionOf>

 </owl:Class>

 </owl:equivalentClass>

 </owl:Class>

<owl:Class rdf:about="#DatabaseProgramming_Languages">

 <rdfs:subClassOf rdf:resource="#Databases"/>

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Comp

 </rdfs:subClassOf>

 <owl:disjointWith>

 <owl:Class rdf:ID="EJB"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Corba"/>

 </owl:disjointWith>

 </owl:Class>

 <owl:Class rdf:ID="OpenSou

 <owl:equival

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collect

 <owl:Restriction>

 <owl:on

 <owl:ObjectProperty rdf:ID="belongsTo"/>

 </owl:onProperty>

 <owl:someValuesFrom
rdf:resource="#OpenSource_Languages"/>

 </owl:Restriction>

 <owl:Class rdf:ID="P

 </owl:intersec

 <owl:equivalentClass>

On semantic timecard based project portfolio management 75

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collection">

 <owl:Restriction>

 <owl:someValuesFrom
rdf:resource="#DatabaseProgramming_Languages"/>

 <owl:onProperty rdf:resource="#belongsTo"/>

 </owl:Restriction>

 <owl:Class
rdf:about="#Programming_Languages"/>

 </owl:intersectionOf>

 </owl:Class>

 </owl:equivalentClass>

 </owl:Class>

This OWL syntax describes defined .NET, open source programming languages

and database programming languages concepts.

76 Dmitry Diyachenko (0300077)

4 Web-service based component integration

In the following chapter the procedure and approaches, that are used to integrate
necessary components in our timecard application, will be described and
demonstrated. For improved maintenance, extensibility and flexibility reasons, the
distributed software development approach will be used to implement the
functionality of our timecard application. More precisely defined service-oriented
architecture (SOA) has to be applied in our timecard implementation to ensure loose
coupling and independency of the software components used. Functionality provided
via web-services can also be reused in other applications for different purposes.

Firstly, the implementation of Coldfusion web-services was considered to integrate
the back-end application logic. Due to the fact that current Coldfusion application
server version (7.02) only supports java virtual machine version not higher than 1.4*
and Protégé OWL java library for ontology integration not lower than 1.5*, further
incompatibility problems can be definitely prognosticated. After numerous tests the
incompatibilities between Protégé and Coldfusion were proven. Thus, a workaround
is necessary to integrate in Protégé modelled OWL ontology knowledge base by using
its java library successfully.

After in-depth research, an effective and efficient alternative to Coldfusion
application server could be found for ontology integration reasons. The Apache
Tomcat web server in combination with soap enabled Apache Axis application server
represent a scalable and stable environment for the building and publishing of java
web-services. That platform can be set up easily and facilitates web-service creation
dramatically, too. The timecard back-end application logic and database queries will
be provided by the Coldfusion web-services. The following strategy encapsulates the
whole application back-end functionality, as well as ontology integration, totally, and
therefore can be integrated in other applications for various reasons easily, too.

To provide basic understanding about distributed software development approach,
the SOA (service oriented architecture) and web-services concept will be shortly
explained in the following subsection. Afterwards the environments for java web-
services and Coldfusion web-services, as well as their architectures, will be described

On semantic timecard based project portfolio management 77

in detail. Finally, the web-services themselves and their functions are going to be
described in a circumstantial way.

4.1 SOA and web-services basics

The distributed approach enables an easy and flexible functionality integration, as
well as process-oriented proceeding. Simplified expressed, functions available in
intranet or internet should be consumed to implement process activities. In reality
complex web-service interaction procedures, security, service quality and
composition issues must be considered and applied. [W04, p. 111] To improve the
understanding of the web-services concept, simple service-oriented architecture
constructs need to be mentioned and explained, first of all.

 Basically, the service-oriented architecture concept is rather simple. There are
service suppliers and consumers. The services are implemented by supplier and
registered in the public directory UDDI (universal description, discovery and
integration). In that public directory service type, category, vendor, functionality etc.
are clearly described. On the basis of the information provided, service consumers can
search for the required and relevant services, as well as integrate the found services
that best fit their needs. [HL04, p. 14] The SOA concept and its role interactions can
be visualized more precisely and clearly in the following way:

Figure 23: Service oriented architecture [HL04, p. 16]

78 Dmitry Diyachenko (0300077)

The figure above shows that the public UDDI directory just provides web-service
publishing and discovery opportunities. The consumer can extract service address
(end point) and therefore find out where the necessary service is actually located.
Service requests and responses might follow afterwards. Web-service function
computing is performed by the service provider’s server. The computing results are
finally sent to the service requestor. [HL04, pp. 14-16] The SOA idea must also be
realized through concrete specifications and approaches. The web-services concept is
seen as new distributed approach that might potentially fulfil challenging SOA
requirements in appropriate way. [DJMZ05, p. 25]

Web-service technologies, standards and certain specifications are already
widespread and used in many organizations. Web-services enable flexible process-
oriented proceeding and can be adapted to the changing environment quickly. They
allow fast and uncomplicated integration of external services and functionality reuse.
Through the standardization of xml, certain communication protocols, as well as web-
service description, platform and programming language independent interactions
became possible. The computing power can be distributed among many machines by
using web-services. That fact might increase computing performance and scalability
in the required way. The organizations are also not necessarily made to implement
complex functionalities (e. g. maps with road works in certain regions), but just
integrate the already existing services providing that functionality for certain charge.
That proceeding allows the organizations to concentrate on their core business and to
avoid high expenses for secondary purposes. [V05, pp. 403-405]

Many advantages of the web-services were presented above. Anyway, it is still not
enough to deserve the acceptance of the business world completely. Many issues, like
web-service composition, semantic machine processible description, quality of
service, permanent availability, security, transaction management and controlling etc.
are still inconsistently defined. The W3C consortium and industry global players are
working hard on these topics. Many, or maybe even too many, standards and
specifications referring to those issues have already been produced. However many of
them are partially redundant or contradictory and make the potential users insecure in
this way. [W04, pp. 108-111] Due to the fact that web-services don’t represent the
core topic of this thesis, it is not relevant to go into detail of those extended web-
service standards. Just core web-service standards, that are also partly used for back-
end logic components integration, will be mentioned and shortly described.

The core web-service components that are crucially necessary for web-service
description, consumption, publication and messages exchange are:

On semantic timecard based project portfolio management 79

• SOAP - is simple XML based message exchange protocol, basically using HTTP
transport protocol. SOAP enables web-service communication (request, response)
in a standardized format.

• WSDL – describes methods, for processing necessary parameters, result
composition in XML format. Thus, the consumer can inspect methods provided by
web-service, required arguments and expected results.

• UDDI – describes public directory and web-services listed in there (web-service
category, vendor and its contact information, functionality provided or additional
information concerning offered web-service etc.). It enables web-service
publication and its facilitated discovery. [G03, pp. 163-177]

4.2 Java web-services with Tomcat/Axis

To provide the appropriate environment for java web-services development, as
well as deployment, the following infrastructure was installed:
• JDK (java development kit) version 1.5.0_06) – can be downloaded from

http://java.sun.com/
• Apache Tomcat 5.5.12 used as servlet container – open source software,

downloadable from http://tomcat.apache.org/
• Apache Axis 1.3 for soap messages processing - open source software,

downloadable from http://ws.apache.org/axis/
• Apache Ant build tool with Axis and Tomcat tasks – open source component,

downloadable from http://ant.apache.org/
• Eclipse IDE (optional with web-service plug in) – comprehensive open source java

editor and development environment, downloadable from http://www.eclipse.org
[M04, p. 9]

Firstly, the home variables of Apache Tomcat, JDK and Apache Axis, as well as

necessary classpaths, need to be set. The Axis soap engine must be integrated into the
Apache Tomcat web server. Soap web-services provided from Axis will therefore be
deployed as web applications. [Apache] All necessary java libraries as well as Protégé
java libraries have to be copied into the Axis lib directory.

After Apache Server was started axis test might be performed to check installation
status. The Axis happiness page http://localhost:8080/axis/happyaxis.jsp should give

http://java.sun.com/
http://tomcat.apache.org/
http://ws.apache.org/axis/
http://ant.apache.org/
http://www.eclipse.org/
http://localhost:8080/axis/happyaxis.jsp

80 Dmitry Diyachenko (0300077)

ok if all necessary and optional components are found in their expected locations.
[Apache]

Tomcat/Axis architecture is simplified visualized in the figure below:

(SOAP)

Figure 24: Tomcat/Axis web-service environment [Apache]

Apache Tomcat is a servlet container that includes build-in support for Java
servlets. JSP might be transformed within Tomcat to the servlets and therefore hosted
in the Tomcat servlet container too. Summarized, Apache Tomcat is responsible for
hosting of web applications and indirectly of web-services, as well as their
processing. [Apache] Web applications are hosted in CATALINA_HOME/webapps
directory, web-services, in turn, are in CATALINA_HOME/webapps/axis directory.

Axis is, basically, a SOAP engine that is responsible for handling and routing of
SOAP messages (requests and responses). For that purpose Axis needs to understand
various transport protocols and standards. [Apache] The most important features and
functionalities of Axis will be described in the following subtopic in detail.

On semantic timecard based project portfolio management 81

4.2

nstructing clients, servers

cription Language (WSDL), generates

•

e processing node. [Axis]
ows defining and adapting the

in Axis message processing node to the users’
needs. [Axis]

.1 Apache Axis

Axis is essentially a soap engine and can be used for co
and gateways [Axis].

Beside these features Axis also includes:
• a simple stand-alone server

rvlet engines such as Tomcat • a server which plugs into se
• extensive support for the Web-Service Des

WSDL code on the basis of existing java classes
• emitter tooling that generates Java classes from WSDL.
• ome sample programs s

a tool for monitoring TCP/IP packets
• various transport protocol support (HTTP, FTP, Mail)
• components enabling enterprise java bean access [Axis]

Axis application server is generally responsible for web-service deployment and

hosting, as well as soap messages handling, but also provides various flexibly
extensible components (transport listener, router, serializer/deserializer, dispatcher,
and handler objects) included in the so-called messag

WSDD (web-service deployment descriptor) all
chain sequence of components installed

A message flow could look at runtime as follows:

Figure 25: Axis server message path [Axis]

82 Dmitry Diyachenko (0300077)

Transport listener receives incoming messages in a specific transport format and
converts them into the format appropriate for further processing. The message flows
through several chains of handlers that potentially might alter the original message
construction. It has to be mentioned that those handlers might be customized and
extended to the users’ needs in an arbitrary way. Own handlers allowing arbitrary
soap message manipulation might be included too. In this way Axis handles SOAP
requests and routes them to the necessary web-service for further proceedings.
Afterwards web-service is going to be invoked by a dispatcher to perform the request
and to return the computed result. This result will finally be converted into soap

sent to the service requester in a
certainly requested format. [Axis]

wards Axis has to be introduced to transform the implemented java classes to
ou

 order to create extended reports, providing additional implicit
inf

Protégé API providing several ontology querying
an

response by Axis message processing node and

4.2.2 Java web-service for ontology integration

As it has already been mentioned, eclipse IDE (interactive development
environment) will be used to implement required java classes and methods.
After

r java web-services. The Axis engine will automatically create WSDL files, too.
Finally, those services have to be deployed by the Axis application server for further
use.

Java web-services are necessary for integrating ontology components in our
timecard application in

ormation for the management and other participating roles. Thus, java web-
services will be integrated into our timecard application. Adobe Flex 2.0 IDE will be
used for that purpose.

Firstly, it has to be mentioned that certain java virtual machine parameters have to
be set if a proxy server is used to access the internet. This action is absolutely
necessary if the ontology is stored on the web and not on a local machine. Precisely,
proxy host name and proxy port have to be passed as arguments to the java virtual
machine to enable access to the required ontology published on the web. If all the
settings are carried out successfully,

d modification functions can be invoked for our purposes. It’s very important to
understand how Protégé manages all the ontology components before starting the
actual web-service implementation.

Protégé is tightly integrated with the Jena tool. Jena is responsible for ontology
storage and querying. All the classes and concepts created in Protégé OWL are also

On semantic timecard based project portfolio management 83

rep

tc. There are also
so rtain
sel red
reso

Those methods will be listed and their functionality shortly explained below:

y

as array

y

gedtAllSubClasses (className:String):Array – returns

getRangeOfProperty (propertyName:String):Array –

ed

resented in Jena model as java objects. This Jena model is integrated in Protégé
OWL and is always running in parallel. Protégé API actually allows accessing the
Jena model and therefore the whole ontology represented in java objects. [KFNM04]

Implemented java web-service OntologyWS.jws contains several methods
providing general information about our ontology such as its properties’ number,
individuals’ number, classes’ number, RDF resources’ number e

me methods returning superclasses as well as subclasses or individuals of a ce
ected class. Other methods provide information about asserted or infer

urces, their interrelations and dependencies on each other, too.

getAllResources():Array – returns all RDF resources

specified in the ontology knowledge base as array

getAllProperties():Array – returns all RDF properties

specified in the ontology knowledge base as arra

getAllInidividuals():Array – returns all individuals

(instances) specified in the ontology

getAllClasses():Array – returns all defined classes in

the ontology knowledge base as array

getDirectSublcasses(className:String):Array – returns

only direct subclasses of certain class as arra

all the subclasses of certain class (also the

subclasses of the subclasses, processing till nil)

getDirectSuperClasses (className:String):Array –

returns direct superclasses of certain class as array

returns classes, to which certain property is allow

to be connected

84 Dmitry Diyachenko (0300077)

getDomainsOfProperty(propertyName:String):Array –

returns classes, from which certain property is allow

to be defined

ed

)

ng)

l their subclasses, to

which certain class is related through certain

red

getAllInferredSubclasses (className:String):Array –

ing till nil)

eb-service. All the modifications and ontology
updates can be performed within Protégé OWL editor, if required. It has to be
mentioned that just several web-service functions will be used in our timecard

 timecard extension
reasons or used by other applications.

getDirectRelationsOfClass(class:String,property:String

:Array – returns classes, to which certain class is

related through certainly specified property

getAllRelationsOfClass(class:String,property:Stri

:Array – returns classes and al

property. This function might be important to discover

if two classes are interrelated somehow through

certainly specified property.

getDirectInferredSubclasses(className:String):Array –

returns subclasses of certain class that were infer

by Racer reasoner server (not asserted explicitly)

returns all subclasses of certain class that were

inferred by Racer reasoner application (also the

subclasses of the subclasses, process

getDirectInferredSuperClasses(className:String):Array –

returns superclasses of certain class that were

inferred by Racer reasoner as array

To reduce the complexity of ontology processing, only basic ontology query

functions were implemented in our w

application. Other methods might be included for various future

On semantic timecard based project portfolio management 85

4.3 Web-service based back-end application logic integration

The semantic timecard tool is a rich data-driven internet application. All the
timecards and their detailed information, as well as personalized user reports, will be
generated on request dynamically. For this purpose the back-end logic has to be
implemented to coordinate necessary database transactions, such as timecard storage
and querying of necessary data. That back-end application logic will be provided by
web-services to ensure interoperability and easy extensibility of our timecard
functionalities. Those services might also be easily reused in other applications for

 and facilities of the Coldfusion application server used for the
we

ilitate their storage and maintenance
dr

rful J2EE technology
platform and is therefore tightly integrated with the Java technology components. The

andalone solution or be easily integrated
into already existing Java application servers such as Bea Weblogic, IBW Webshpere
etc

various purposes.
In the current chapter it is explained in general how the web-services providing

back-end application logic are actually implemented, and how they interact with the
database used for the timecard objects storage.

The architecture
b-service implementation and publication will be accurately explained in this

chapter, too. The proceedings of Allaire Spectra framework used to map timecard
objects to the database tables, in order to fac

amatically, will be presented as well. Finally, the actual web-service methods and
their functionalities are going to be explained in a detailed way.

4.3.1 Coldfusion application server

The Coldfusion MX application server is based on the powe

Coldfusion application server can run as st

. [Adobe]
The abstract Coldfusion MX architecture is shown in the figure below:

86 Dmitry Diyachenko (0300077)

Figure 26: Coldfusion application server architecture [Adobe]

This architecture presents two Coldfusion MX editions (standalone and integrated)
providing the same functionalities. For our purposes a standalone Coldfusion

on server
ldfusion applications, but

d on Jrun technology. Due to the fact that Coldfusion

ory services and other
im ortant runtime services in the scalable way. [Adobe]

A objects into the Coldfusion applications in arbitrary way. [Adobe] To be
mo

•

application server will be used and then described. The Coldfusion applicati
includes the entire infrastructure necessary to run the Co
also embedded Java server base
is implemented on top of J2EE platform, many J2EE services are used to perform
complex tasks such as database connectivity, naming and direct

p
The Coldfusion applications consist of simple CFML mark-up language and

object-oriented CFC components (used to create classes) that might be integrated into
the CFML pages as objects. At the runtime, the CFC components are finally
transformed to the JAVA objects for further processing. This fact allows integrating
other JAV

re precise, the following JAVA components might be included in Coldfusion
applications for further processing:
• Custom JSP (java server pages) tags might be used from the JSP libraries
• JSP pages might be included in Coldfusion applications

Java servlets might be used
• Custom and defined java objects including J2EE Java API, JavaBeans and

Enterprise JavaBeans might be used and integrated [Adobe]

Summarizing, Coldfusion application server takes many advantages from a

scalable and powerful J2EE platform and hides its complexity through simple and
easy-to-use scripting environment. If required, extended functionality might be

On semantic timecard based project portfolio management 87

integrated through external objects (Java objects, COM objects, CORBA objects).
[Adobe]

Additionally, the Coldfusion application server is capable of interacting with a
nu

nd other HTTP servers. [Adobe]
The Coldfusion application server also supports Flash remoting that might be

n timecard application. Flash client consuming
Coldfusion services might integrate remote Flash objects directly. That proceeding
wo

 Spectra is an open source framework incredibly facilitating interactions
wi

s. The first table defines and stores all the user objects’ types. It is defined,
wh

red in the second database table. These
objects might be accessed by their ID for the further processing. All the simple and

mber of external data sources, including databases (via JDBC and ODBC), Verity
collections, LDAP directories, POP3 and SMTP mail servers, SOAP-based web-
services, FTP servers, a

rather relevant for our data-drive

uld increase transfer speed noticeably compared to web-service integration. In our
timecard application a lot of data will be sent for personalized reports and timecard
overviews. The remote objects are sent in a binary format, which is rather chunkier
than bloated XML format used by SOAP based messaging. However, our back-end
functionality will be implemented as web-service to provide it for other applications,
too. But our timecard application client will invoke that service as remote object to
speed up the data transfer and, therefore, considerably improve the performance of
our timecard application.

The Allaire Spectra framework will be used to facilitate the database storage and
maintenance. Operating mode of that framework will be shortly presented in the
following subchapter.

4.3.2 Allaire Spectra framework

Allaire
th the databases and their management. Usually it is rather time-consuming to build

an appropriate database design for a certain application. The functionalities and
expectations of the applications change frequently. Thus, the database necessarily
needs to be maintained and adapted, too. This fact generates high additional costs that
are not accepted by the customers and developers as well. First of all, for simple data-
driven and non-sophisticated web applications, frameworks, such as Allaire Spectra
dramatically facilitating database storage and maintenance, could be very useful. To
be more precise, Spectra generates three database tables handling all the application
object

ich structure the objects actually have (e. g. timecard type can be specified). The
actual timecard instances (objects) are sto

88 Dmitry Diyachenko (0300077)

complex properties of those objects are stored in the third database table in turn.
[A

y way. The querying results may be integrated into various applications. In
ou
int s and presents all the data in a convenient
way.

e
ch

4.3.

es and
me
and update functionalities. Several querying functions are provided to extract the
necessa

ng
me

ard

Number,

username:String):Object – the arguments year, month,

 are

d

s

d for further processing.

pes.

certain work types might be selected afterwards.

dobe]
In short, you do not need to care about database transactions. They are all handled

by Allaire Spectra framework. The developer can define his objects with their
customized properties in a specified format (e. g. timecard object with start date, end
date, duration, technologies, work type, user properties etc.). The timecard objects
will be stored in a specified format and are able to be queried by the Allaire Spectra in
an arbitrar

r case, the results will be sent to Coldfusion web-services and afterwards integrated
o our Flash client that finally aggregate

The complete semantic timecard architecture will be presented and explained in th
apter 5 “Semantic timecard application”.

3 Coldfusion web-service for back-end logic integration

In the current subchapter the actual Coldfusion back-end service functionaliti
thods will be explained in detail. This web-service provides basic timecard storage

ry timecard information for personalized user reports, too.
The back-end application logic web-service actually consists of the followi
thods:

getCard(id:String):Object – returns a specific timec

based on its ID as object

getCardsMulti(year:Number, month:Number, day:

day and username are optional. If these arguments

specified, timecards for specific period of time an

for certain user will be returned. If these argument

are empty the timecards of all users for the whole

period of time will be returne

getWorkTypes():Object – returns all defined work ty

This function might be useful to fill combo box where

On semantic timecard based project portfolio management 89

getTechnologies():Object – returns all the defined

technologies as object. Ideally, it should be assigned,

which technologies are used in which projects in order

tTasks():Array – returns all the tasks

assigned for the currently running projects. Many

signed to that

project are listed as array.

ject.

deleteTimecard(objectID:String):Object – deletes a

:Object – returns individual work type

report for a specific period of time (which services

rtain

month:Number, day:Number,

username:String):Object – returns individual technology

getRepProject(year:Number, month:Number, day:Number,

, in

to facilitate technology selection process.

getProjec

project objects will be returned. Each project has

property tasks, where all tasks as

addTimecard(stData:object):Object – adds timecard

filled in by the project member. If some exceptions

occur while this proceeding, notification will be

returned as an ob

updateTimecard(stData:object):Object – updates the data

of a certain timecard. Errors will be returned as

object.

certain timecard based on its ID

getRepWorkType(year:Number, month:Number, day:Number,

username:String)

were performed by certain project member in ce

period of time)

getRepTechnology(year:Number,

report for a specific period of time (which

technologies were used by certain project member)

username:String):Object – returns list of projects

90 Dmitry Diyachenko (0300077)

which a certain employee was participating in a ce

period of time

getRepPro

rtain

jectTask(year:Number, month:Number,

Functions getWorkTypes, getTechnologies and getProjectTasks are used to fill in

the combo boxes. Ideally, the work types, used technologies and tasks need to be
assigned to a certain project and to a certain employee in the project planning phase
already. All that data asserted in those project planning tools just could be imported
and reused in our timecard application. Thus, the project members might select only
to the projects assigned tasks, technologies and service types. That proceeding could
considerably facilitate the completion of the timecard form and increase the quality of
extended personalized reports because of the performed terms standardization. If
specific project is selected by a certain user, all the above-mentioned combo boxes
have to be filled with the already to this project and to this user assigned data. The
completion of the timecard can be performed by the user very simply in that way. The
ontology can also expect entered information and perform the technology and service
type matches accurately.

day:Number, username:String):Object – returns tasks

that were performed by certain user in his projects

while certain period of time

validateUser(username:String, password:String):Object –

performs user authentication. The authentication result

is returned as an object.

getTechnoStats(username:String):Object – returns

comprehensive technology statistics for a specific

user. On the basis of this method it is possible to

visualize which technologies become more or less

important for certain employee and in which way

individual technology usage changed over the whole

career.

On semantic timecard based project portfolio management 91

5 Semantic timecard application

The prototype of semantic timecard is a rich web-service based internet
application. Flash client (implemented in Adobe Flex 2.0) uses several services to
integrate the back-end application logic and ontology components enabling extended
portfolio reports. All the integrated data will be aggregated and represented by Flash
client in an appropriate way.

The semantic timecard prototype is primarily implemented to demonstrate the
integration of our ontology knowledge base. It has to be shown, how developed
ontology could provide extended technology and services portfolio reports and add
semantic to our timecard application. The basic functionalities like timecard creation,
modification, storage and querying will be provided by our timecard application, too.
Personalized user and portfolio reports will be analyzed and created on the basis of
the user comprehensive timecard data and ontology components. All the reports will
be visualized by well-arranged diagrams.

If the services performed by employees would be quantified in terms of money,
project billing and invoicing might be supported by our timecard application in an
effective way, too. However, the information on charging for the performed services
is not available. Thus, this functionality will not be considered furthermore.

It would be also possible to inspect the progress of currently running projects on
the basis of the timecard data entered. For this purpose, MS project server data has to
be integrated into our timecard application in order to perform the target/actual
comparison. Due to the high complexity and missing project planning data, this
functionality will not be covered by our timecard prototype, too.

The whole functionality, as well as the roles participating in our semantic timecard
application, will be presented by the use-case diagram below and described in detail
afterwards.

92 Dmitry Diyachenko (0300077)

Figure 27: Semantic timecard use-case diagram

On semantic timecard based project portfolio management 93

The project staff should have the ability to edit their timecards. In particular, they
should be able to enter new timecards, update the already inserted timecards or delete
incorrectly acquired timecards. They also should be able to present their timecards for
a specific time segment in order to overview their activities for this period of time.
This function could be helpful to prove faithful tasks completion in disputes with the
cu

 get information

ts did thereby represent my core activities?

• hich service categories (consulting, software engineering, controlling etc.) did I

ect management office, but possibly also project staff might

portant;
lly offers (e. g. consulting,

esign, programming etc.);
•

gement and for project management office to have
an

Siemens Austria AG is not

stomer or supervisors over the unexpected project delays and other irregularities,
too.

Project staff is also interested in individual graphical statistics to
on the following questions:
• In what projects did I participate within a certain period of time?
• Which projec
• Which kind of tasks did I perform in the projects mentioned, how long and at

which ratio?
• Which technologies did I use to handle certain tasks in specific projects during a

specified period of time?
W
perform to accomplish my tasks, how many hours, and at which ratio?

All the answers to the questions presented above will be generated and accurately

visualized by our timecard application.
Management and proj

be interested in the technology and service portfolio reports. These reports could
provide information on:
• Which technologies are dominating in the currently running projects and are

becoming more and more im
• Which services and at which ratio the business actua

d
How technology and service trends change over time.

It might be interesting for mana
 overview over all the currently running projects within a specific department or

even the whole organisation, too.
As it has been mentioned above, the project progress/status reports as well as

project billing and invoicing reports will not be covered by our timecard application,
in order to reduce the complexity of the timecard tool prototype. The information
such as project planning data and charging structures of

94 Dmitry Diyachenko (0300077)

ac

n the following subchapter
the holistic timecard architecture will be presented to show how all those technologies
are actually interconnected and dependent on each other.

5.1

 implement this tool will be mentioned
and provided with an explanation. It naturally has to be mentioned for what purpose
each technology is actually responsible, too.

cessible for this diploma thesis, too. Due to these facts, it was considered to exclude
the functionality highlighted red in our use-case diagram.

It is very important to show which technologies are involved in the timecard
implementation process and how they interact with each other. The technologies used
to implement the semantic timecard prototype were partly mentioned and described in
chapter 4 "Web-service based component integration". I

 Semantic timecard architecture

This subchapter will present the holistic architecture of the semantic timecard
prototype, where all the technologies used to

On semantic timecard based project portfolio management 95

Rich internet application (Flex 2.0)
Presentation layer

Integration layer

Ontology API

Ontology web service Back-end service

Preparation layer

Data layer

Microsoft SQL Server

Rich internet application (Flex 2.0)

Figure 28: Semantic timecard architecture

As visualized in the figure above, data layer is responsible for the storage of the
timecard objects and ontology concepts. The Microsoft SQL Server is thereby used to
enable persistent storage of complex timecard objects. Protégé OWL plug-in is in turn
responsible for the accurate storage and management of numerous knowledge base
components.

The Allaire Spectra framework is responsible for the object mapping and database
maintenance. All new properties or components attached to our timecard application
will be managed by the Allaire Spectra framework. Allaire Spectra is responsible for
appropriate storage and querying of those components, too. Ontology API provided
by the Jena model provides comprehensive ontology querying facilities. That API will
be used by the ontology java web-service in order to perform the ontology component

96 Dmitry Diyachenko (0300077)

integration. Coldfusion web-service, as mentioned in chapter 4, was implemented to
integrate complete back-end application logic, such as timecard modification, storage,
querying, report data delivery etc.

All the data delivered by web-services is processed by Flash client and presented
by means of tables and convenient graphs. The Flash client is implemented using
Adobe Flex 2.0 IDE (integrated development environment). Flex 2.0 consists of
certain already implemented components and scripting environment (actionscript).
[Adobe] Flex components might be used to determine application design and user
interface. Actionscript might be introduced to generate application content
dynamically and to aggregate, as well as to process, data units delivered by the
external web-services.

5.2 Semantic timecard functionality

The timecard application should provide the possibility to archive employees’
activities within an organization. Through this timecard tool the employees are able to
track their career development and observe numerous individual statistics concerning
the services performed by them, the technologies used and project participations, as
well as their functional responsibilities. On the basis of the timecard data and
ontology concepts, management can observe project comprehensive technology and
service portfolios for given periods of time. In that way, it is also possible to follow
technology developments and their changes over time.

This semantic timecard prototype will just show some samples of how service or
technology portfolios could look like. The timecard’s data can provide more
information and extend portfolio reports if required, too.

The complete timecard’s functionality will be described in this chapter in detail.
Some screenshots will be shown to facilitate functionality description process and to
give an idea of how this rich internet application actually looks like. In the end of this
chapter some problems and considerations, concerning timecard form completion
process and the corresponding portfolio report quality, will be addressed and
discussed, too.

The semantic timecard prototype basically consists of five tabs. The first tab
provides basic timecard functionalities such as personal timecards listing, timecard
deletion, saving and editing. The second and the third tabs provide numerous
individual statistics for specific time segments. The forth and the fifth tabs generate

On semantic timecard based project portfolio management 97

possible technology and service portfolio reports. It has to be mentioned that the
portfolio reports might be expanded in order to provide additional portfolio
information, if necessary.

The interface of the first tab is looking as follows:

Figure 29: Semantic timecard form

98 Dmitry Diyachenko (0300077)

After a certain user has passed the authentication process successfully, he becomes
able to load his personal timecards for specific month or just for today. All the
timecards are listed in the table and sorted by date. It is possible to sort the timecards
by duration, work type, project and technology, too. The user can arrange his interface
as he likes. Ideally, if certain project is selected in the combo box, the combo boxes
task and service type should be filled with the specified data assigned to the selected
project automatically. In our case only specific tasks are defined for certain project
and will therefore be set if a certain project is selected in an appropriate way. It means
that the user can only select the tasks assigned to his project. That proceeding enables
some kind of standardized form completion. Standardized term definitions increase
the accuracy and quality of reports.

A user can fill in a form. This form completion process has to be accomplished as
fast as possible. For that reason some automatic settings were integrated (current date,
usual work time) and can be chosen, if required. Several irregularities, such as
incorrect start/end date or time inputs, are thereby intercepted by appropriate
exceptions. As long as one form field is filled in or changed, the save or update button
will be activated. The timecard saving or updating might therefore be performed. The
timecard list and all the statistical graphs will be updated immediately. Thus, the
timecard changes have an immediate impact on the whole timecard application. The
timecard application must not even be reloaded manually.

The timecard data grid (table) doesn’t provide all the timecard information. Some
irrelevant fields are hidden. To see the complete timecard information, specific data
grid row needs to be clicked. All the form input fields will automatically be filled
with the data of the selected timecard. Now, the selected timecard might be deleted,
updated or just observed by the user.

In the figure above user timecards for March 2007 are shown. User naturally might
change the date and look at his timecards for the past. All the individual and portfolio
statistics will be adapted to the new date automatically.

The second tab “individual statistics" consists of several graphs showing certain
user-specific statistics for a specified period of time:

On semantic timecard based project portfolio management 99

Figure 30: User-specific statistics

Individual statistics tab provides user-specific reports for a certain time segment. In
this case March 2007 is selected. A user can change the date and observe reports for
different time segments and their changes as well. User can extract the following
information from the graphs presented above:
• How much did I work for a certain project in hours and in percent in March 2007?
• Which technologies did I use to accomplish project tasks and at which ratio?
• Which service types in hours and in percent did I perform in March 2007?
• Which tasks and at which ratio (in hours or in percent) did I accomplish within a

certain project?

100 Dmitry Diyachenko (0300077)

It also has to be mentioned that “Tasks performed” graph is generated dynamically.
If user clicks a certain project within “Projects” graph, tasks data of the selected
project will be extracted. The tasks performed by a certain user in the selected project
will be calculated in order to fill in “Tasks performed” graph in an appropriate way.
In that way, the user can see which tasks and for how long he actually performed
within a certain project in the specified period of time.

The tab individual technology statistics provides a user-specific overview of how
the technology usage developed and changed over his whole career. The end-user is
therefore able to observe how his technology focuses and strengths actually changed
over time. On the basis of that data, user's profiles concerning their technology
specialisations could be created, too. An individual technology statistics graph could
look as follows:

Figure 31: User-specific technology report

On semantic timecard based project portfolio management 101

This graph shows how a certain employee’s technology usage changed over the
years of his employment. In this specific case, it is possible to observe that, for
example, CFMX7 (Coldfusion MX7) was used for 220 hours (10 % of the whole
work time for this period). Coldfusion MX in turn made up approx. over 400 hours
(20 % of the whole work time). One year later the CFMX technology became less
important for the tasks completion (10 % of the whole work time), while improved
Coldfusion MX7 technology rapidly gained in importance and its deployment was
therefore doubled. It is also clearly visible that Flash MX technology considerably
gained in importance over years, too.

The technology and service portfolio tabs provide user comprehensive reports for a
specific time segment. A lot of data sets need to be evaluated and compared to
perform these portfolio reports. For performance reasons just monthly portfolio
reports will be generated in our semantic timecard prototype.

For test purposes technology portfolio tab presents several figures showing the
programming languages report, java technology vs. .NET technology report and
software report (commercial software vs. open source software).

Figure 32: Technology portfolio reports

102 Dmitry Diyachenko (0300077)

The programming language categories defined in our ontology knowledge base
will be loaded by the ontology web-service. The programming languages asserted in
the ontology will be compared with the technologies entered in the timecard
application afterwards. That comparison procedure is based on simple match
operations. Those match proceedings might cause several inaccuracies. For example,
Javascript programming language was entered in the timecard application. The
ontology might interpret this technology correctly and assign it to the correct
programming language categories (to internet language, client-side language etc.).
But Javascript would also match with Java programming language and therefore be
assigned to wrong programming language categories, too. The portfolio reports just
provide general information and analyse a huge amount of data. Thus, irrelevant
deviations could be accepted. These and other portfolio report problems, as well as
considerations, will be addressed and discussed in the chapter 5.3 “Portfolio
inaccuracies and difficulties” in more detail.

The same procedure will be performed to generate technology and software
comparison reports. The second figure shows the proportion of Java-related
technologies to the .NET-related technologies that are used in the projects within a
certain period of time.

The third figure visualizes which software type (commercial software vs. open
source software) is dominating in the projects within an organization. It can be
observed, how software proportions actually change over time, too.

It has to be mentioned that the technology portfolio reports might be expanded
according to the management’s needs. If required, it also might be accurately
visualized, which types of databases are introduced in the currently running projects,
how intensive web-service enabling technologies are actually used etc.

The service portfolio report is generated in a similar way. The service portfolio tab
is shown in the figure below:

On semantic timecard based project portfolio management 103

Figure 33: Service portfolio report

The above-presented figure shows the service proportions for test purposes. The
management might observe, in which way the organizational service structures are
changing and developing. On the basis of that service portfolio data, the changes over
time and therefore future trends might be derived; systematic educational trainings
can be identified and initiated in time, too.

If the services performed within an organization are quantified in terms of money,
other portfolio reports regarding the service value and responsibility level could be
generated and analysed.

It has to be mentioned that the ontology concepts were introduced to generate this
service report, too. The ontology knowledge base asserts which services actually
might belong to the engineering and to the consulting service concepts. Those
services were matched with the services entered in the timecards. Services that

104 Dmitry Diyachenko (0300077)

su

 fields.
Th

ny difficulty. The complete
flash movie is only loaded once. Thus, the whole application content may be
immediately accessed without additional site downloads.

5.3

t need to be discussed in this subchapter: the timecard
fo

er how
the y group and

ccessfully matched with the ontology concepts were added to the appropriate
service category and finally shown in the service portfolio report.

The main focus of the timecard design should be usability and intuitive user
interface. Some functions were integrated into the timecard prototype to speed up the
form completion process. The actual date and standard work times may be selected
immediately. The timecard form provides intuitive and well-described input

e number of those fields was reduced to the minimum to speed up the timecard’s
completion process and therefore to increase user satisfaction and acceptance.

All the individual and portfolio reports are updated automatically, if some new
information is entered into the timecard application. If a user selects a date for a
specific individual report, all the reports (individual and portfolio reports) will be
updated to the chosen date (data updates only, flash movie will be loaded once). The
report switches might be performed quickly and without a

 Portfolio inaccuracies and difficulties

There are two main topics tha
rm completion process and the technology as well as service matches for our

portfolio reports.
Firstly, it has to be considered how the timecard form completion process could be

optimized in the best way. On the one hand, the completion process should be fast and
uncomplicated; otherwise employees will not accept the timecard application. On the
other hand, the technologies entered in the timecards should be precisely defined to
enable qualitative and accurate portfolio reports. It is also necessary to consid

 completion process could be standardized to allow only defined b
expected technology entries and to avoid uncontrolled technology definitions.

The following technology portfolio evaluation problems might occur:
• Inaccurate interpretation of the technology capabilities – javascript might be used

to perform the client-side script programming, but also the server-side script
programming in some cases. This technology may be used in certain projects for
the client-side programming reasons only. The ontology is not able to derive this
information. It can see javascript as server-side or as client-side programming
language. Additional fields might be added to the timecard form to specify the used

On semantic timecard based project portfolio management 105

technology more precisely. However, that proceeding would cause more
complexity and confusion in the timecard completion process, because many
employees are not willing to fill in many form fields and even sometimes don’t
know all the technology finesses. Thus, they often are not able to define precisely
enough which type of technology (server, client etc.) they actually used. Wrong
form completions would cause portfolio inaccuracies, too. Due to these conditions,
it was decided to create two form fields: technology and software product.
Software product is an optional field and might be filled in, if possible. The
technology used will not be specified precisely. Portfolio just provides abstract
reports, and a lot of user-comprehensive data is evaluated (partial mistakes or
single inaccuracies may be accepted). The employees are often inaccurate

rms. The naming of IT technologies might differ

ss. Some possible procedures
concerning this issue will be discussed in the chapter 5.4 "Semantic timecard

data is analysed and evaluated for that purpose. In the most cases minimal

concerning their tasks and durations, too. Thus, minimal inaccuracies will always
be given and have to be accepted.

• Incorrect technology matches – as mentioned in the previous chapter, the incorrect
technology matches might occur as well. For example, the database Microsoft SQL
Server would be handled not only as a commercial database, but also as a SQL
database querying language, while ontology concepts match. Thus, Microsoft SQL
Server would be added to the commercial software, commercial database software,
Microsoft software, but also to database programming language categories. In fact,
Microsoft SQL Server does not belong to the database programming language
category. It was decided to perform simple matches (not exact matches such as
Microsoft SQL Server = Microsoft SQL Server) because of the missing
standardization of technology te
among employees. In order to achieve the highest match rate, simple match
operations are to be performed.

• Unexpected technology and software entries – the timecard entries might be
unpredictable for the ontology knowledge if the timecard form completion process
is not predefined in an adequate way. To achieve an appropriate level of the
standardization certain technology and software presets should be defined and
provided while timecard forms completion proce

enhancement capabilities" in a more detailed way.

It has to be mentioned that IT portfolios generally provide abstract information for
the stakeholders concerning certain technology and service trends. A large amount of

106 Dmitry Diyachenko (0300077)

inaccuracies are irrelevant and should not be considered furthermore. However,
noticeable portfolio deviations should be taken into consideration and further
applicable actions need to be attempted.

5.4 Semantic timecard enhancement capabilities

 process. Following features might be included in

logy terms entered in the timecard application are defined in the expected

ontribute to the ontology maintenance process and ensure its quality sustainably.

portfolio reports might be
easily expanded according to the management’s needs, too.

As it was already mentioned in the previous sub chapter certain portfolio
inaccuracies might occur because of possible unexpected timecard data entries and,
consequently, falsified ontology matches. The functionality of the semantic timecard
application might be extended to increase the quality of the portfolio reports and to
support the ontology maintenance
the semantic timecard prototype:
• Standardization of the timecard completion process - the standardization of IT

technology terms within an organization is a very important step towards high
quality and accurate individual, as well as portfolio, reports. Ideally, specific tasks,
technologies, service types and software products need to be assigned to a specific
project and to a certain employee performing certain tasks in his projects. All that
information might already be defined in the project planning tool. The timecard
application should be able to import and to process that data in the necessary way.
The complex project structures and rather deep task hierarchies, that are changing
frequently, make it rather difficult and time-consuming for the organizations to
realize and to maintain that project planning environment. For many organizations
accurate project management environment and its maintenance still represent a
considerable or sometimes unsolvable challenge. However, form input presets
would enable high quality reports and well-defined technology matches if
techno
way.

• Analysing of unmatched technologies – it is also rather useful to analyse
unmatched technologies and their importance (measured in hours). Important
expressions or even new technologies might be discovered in this way and entered
into the ontology knowledge base. That proceeding would therefore considerably
c

If already mentioned in the several previous chapters the

On semantic timecard based project portfolio management 107

6 Summary

In today’s business structures projects have dependencies and impacts on each
other, some projects are interrelated or redundant. It is not enough to control and
manage single projects to achieve the maximum overall return. Thus, comprehensive
project portfolio management must be additionally applied. Project portfolio
management is a very important concept, first of all, for the organizations dealing
with a large number of projects simultaneously. [PR04] A lot of tasks, like control
and overview of all projects, comprehensive resource allocation and, consequently,
effective and cost-cutting expertise and components reuse, ensuring business strategy
alignment, reporting to business executives etc. can be accurately accomplished by
the effective deployment of project portfolio management.

The main focus of the current thesis was to consider how IT project portfolio
management could be effectively supported by software solutions. For that purpose a
semantic timecard prototype and ontology knowledge base were designed. The
semantic timecard prototype was implemented primarily to support technology and
service portfolios. The ontology knowledge base was thereby built to define the
standardized terms of the IT domain and their mutual relations, as well as
interconnections. Furthermore a comprehensive ontology development and
integration guideline was specified and explained in a detailed way. That guideline
covers ontology design, building, inference, testing, storage and integration processes.
The ontology components were integrated via web-services into the timecard
prototype to provide extended portfolio reports considering technology structures and
interrelations. On the basis of the report data provided, management becomes able to
discover which technologies and services their organizations are specialised in, and
how those trends and tendencies actually change over time. That information enables
management to take customer orders, dealing exclusively with similar technologies to
assure expertise and technology reuse. On the basis of the well-investigated trends,
essential educational trainings might be performed in time, too.

While developing the semantic timecard application, it could be noticed that some
difficulties and challenges are to be faced to provide high-quality and accurate
portfolio reports. On the one hand, it is rather complicated to extract the knowledge of

108 Dmitry Diyachenko (0300077)

experts and to define the terms of the IT domain accepted by all the experts within an
organization. Various experts might have different views on technology facilities and
capabilities. Thus, it is sometimes rather complex to classify a certain IT technology
uniquely. Some compromises have to be accepted. On the other hand, it is rather
difficult to force standardized timecard form completion in order to perform accurate
ontology matches and, consequently, highly qualitative portfolio reports. To achieve
comprehensive standardization of the timecard form completion, all tasks, resources,
technologies and service types need to be assigned to the defined projects and project
staff. For that purpose a project planning environment has to be established and
frequently maintained. However, for many organizations that proceeding may
represent a considerable or sometimes unsolvable challenge.

On semantic timecard based project portfolio management 109

7 References

[AC04] Aitchison Jean, Clarke Stella Dextre: The Thsaurus: Historical Viewpoint, with a Look

to the Future; Cataloging & Classification Quarterly vol. 37 issue (3-4), 2004, pp. 5-21

[ACFG01] Arpirez Juan Carlos, Corcho Oscar, Fernandez-Lopez Mariano, Gomez-Perez

Asuncion: WebODE - a Scalable Workbench for Ontological Engineering, First

International Conference on Knowledge Capture (KCAP01), Victoria, Canada, 2001

[AMR] AMR research is leading advisory firm focused on the intersection of business

processes with supply chain and enterprise technologies, http://www.amrresearch.com,

requested on 28.01.2007

[AUM04] Angele Jürgen, Ullrich Mike, Maier Andreas: Taxonomie, Thesaurus, Topic Map,

Ontologie—ein Vergleich, Ontoprise GmbH, Whitepaper, 2004

[Adobe] Adobe Systems Incorporated, further information available on http://www.adobe.com,

requested on 01.03.2007

[Apache] Apache Software Foundation: http://apache.org, requested on 01.03.2007

[Apollo] Ontology building editor developed by Knowledge Media Institute, The Open

University, further information available on http://apollo.open.ac.uk/

[Axis] Apache Software Foundation: Apache Axis: http://apache.org/axis, requested on

01.03.2007

[B04] Backett Dave: RDF/XML syntax specification, W3C Recommendation 2004

[BG02] Brickley Dan, Guha Ramanathan: RDF Vocabulary Description Language 1.0: RDF

Schema, W3C Working Draft, 2002

[BG04] Brickley Dan, Guha Ramanathan: RDF Vocabulary Description Language 1.0: RDF

Schema, W3C Recommendation, 2004

[CK83] Cleland David, King William: Project Management Handbook, Van Nostrand Reinhold

Company Inc., New York, USA, 1983

[D98] Domingue John: Tadzebao and Webonto – Discussing, Browsing and Editing Ontologies

on the Web, in Proceeding of Eleventh Knowledge Acquisition Workshop (KAW98), Banff,

Canada, 1998

[D03] Datz Todd: Portfolio Management How to Do It Right, CIO Magazine, issue Mai. 1,

2003

http://www.amrresearch.com/
http://www.adobe.com/
http://apache.org/
http://apollo.open.ac.uk/
http://apache.org/axis

110 Dmitry Diyachenko (0300077)

[DJMZ05] Dostal Wolfgang, Jeckle Mario, Melzer Ingo, Zengler Barbara: Service-orientierte

Architektur und Web Services, Elsevier GmbH, München, Deutschland, 1. Auflage, 2005

[G93] Gruber Thomas: A translation approach to portable ontology specifications, Knowledge

Acquisition (pp. 199-220), Academic Press Ltd, London, UK, 1993

[G03] Gläßer Lothar: IT-Lösungen im E-Business, Publics Corporate Publishing, Erlangen,

Deutschland, 2003

[GF02] Gomez Perez Asuncion, Fensel Dieter: Ontology-based information exchange for

knowledge management and e-commerce (Deliverable 1.3: A survey on ontology tools),

2002, published within OntoWeb project founded by European Union, further information

available on http://www.ontoweb.org/

[GFC03] Gomez-Perez Asuncion, Fernandez-Lopez Mariano, Corcho Oscar: Ontological

Engineering (Advanced Information and Knowledge Processing), Springer Verlag, London,

UK, 2003

[H02] Hiller Mark: Multiprojektmanagement: Konzept zur Gestaltung, Regelung und

Visualisierung einer Projektlandschaft, FBK Produktionstechnische Berichte, Universität

Kaiserslautern, Deutschland, 2002

[H04] Heflin Jeff: OWL Web Ontology Language (Use Cases and Requirements), W3C

Recommendation, 2004

[HKRSW04] Horridge Matthew, Knublauch Holger, Rector Alan, Stevens Robert, Wroe Chris:

A Practical Guide To Building OWL Ontologies Using The Protégé Owl Plug-in and CO-

ODE Tools, The University Of Manchester, Stanford University, 1st Edition, 2004

[HL04] Hauser Tobias, Löwer Ulrich: Web Services- Die Standards, Galileo Press GmbH,

Bonn, Deutschland, 1. Auflage, 2004

[HM03] Haarslev Volker, Moeller Ralf: Racer - A Core Inference Engine For The Semantic

Web, 2nd International Workshop on Evaluation of Ontology-based Tools (EON-2003),

Sanibel Island, FL, 2003.

[K00] Kerber-Kunow Annette: Projektmanagement und Coaching, Hüthig GmbH Heidelberg,

Germany, 2000

[K06] Kagl Alexander: Multiprojektmanagement, Wien, Östrereich, 2006

[KFNM04] Knublauch Holger, Fergerson Ray, Noy Natalya, Musen Mark: The Protègè OWL

Plugin – An Open Development Environment for Semantic Web Applications, Third

International Semantic Web Conference (ISWC 2004), Springer Berlin/Heidelberg,

Germany, 2004

[L00] James Lewis: The Project Manager’s Desk Reference: A Comprehensive Guide to

Project Planning, Scheduling, Evaluation and Systems, McGraw-Hill Companies, New-

York, USA, 2000

http://www.ontoweb.org/

On semantic timecard based project portfolio management 111

[LAS05] Liang Yaozhong, Alani Harith, Shadbolt Nigel: Ontology Change Management in

Protégé, AKT DTA Colloquium, Milton Keynes, UK, 2005

[M93] Musen Marc: Dimensions of Knowledge Sharing and Reuse, Computers and

Biometrical Research 25 (pp. 435-467), Academic Press Professional Inc, San Diego, USA,

1992

[M04] Maffeis Silvano: Einführung in Soap Web Services anhand von Apache Axis, Java Web

Services conference initiated from Java User Group Switzerland, Zürich, Switzerland 2004

[MFRW00] McGuinness Deborah, Fikes Richard, Rice James, Wilder Steve: An Environment

for Merging and Testing Large Ontologies, Principals of Knowledge Representation and

Reasoning: Proceedings of 7th international conference (KR 2000), Morgan Kaufmann

Publishers, San Francisco, CA, 2000

[MH04] McGuinness Deborah, Harmelen Frank: OWL Web Ontology Language (Overview),

W3C Recommendation, 2004

[NM01] Noy Natalya, McGuinness Deborah: Ontology Development 101: A Guide to Creating

Your First Ontology, Stanford University, California, USA, 2001

[ODP] Open Directory Project administrated by Netscape Communication Corporation,

provides comprehensive open source web sites categorization, further information available

on http://dmoz.org/

[OntoStudio] Comprehensive ontology building environment developed by Ontoprise GmbH,

further information available on http://www.ontoprise.de/content/

[OWLViz] Ontology visualization plug-in for Protégé OWL editor, developed by Matthew

Horridge, The University Of Manchester, further information available on: http://www.co-

ode.org/downloads/owlviz/co-ode-index.php

[PR04] Patzak Gerold, Rattay Günter: Projektmanagement: Leitfaden zum Management von

Projekten, Projektportfolios und projektorientierten Unternehmen, Linde Verlag Wien

GmbH, Wien, Österreich, 2004

[Protégé] Protégé ontology editor developed by Stanford Medical Informatics, Stanford

University School of Medicine, further information available on: http://protege.stanford.edu/

[SBF98] Studer Rudi, Benjamins Richard, Fensel Dieter: Knowledge Engineering: Principles

and Methods, Elsevier Science Publishers B. V, Amsterdam, Netherlands, 1998, pp. 161-

197

[V05] Vonhoegen Helmut: Einstieg in XML, Galileo Press GmbH, Bonn, Deutschland, 3.

Auflage, 2005

[VK05] Vouros George, Kotis Konstantinos: Extending HCONE-Merge by Approximating the

Intended Meaning of Ontology Concepts Iteratively, 2nd European Semantic Web

Conference ESWC 2005 pp. 198-210, Springer Verlag, Berlin, Deutschland, 2005

http://dmoz.org/
http://www.ontoprise.de/content/
http://www.co-ode.org/downloads/owlviz/co-ode-index.php
http://www.co-ode.org/downloads/owlviz/co-ode-index.php
http://protege.stanford.edu/

112 Dmitry Diyachenko (0300077)

[W04] Wiehler Gerhard: Mobility, Security und Web Services, Publics Corporate Publishing,

Erlangen, Deutschland, 2004

[WebODE] Ontology building editor developed by Artificial Intelligence Department,

Technical University of Madrid, further information available on

http://webode.dia.fi.upm.es/WebODEWeb/index.html

http://webode.dia.fi.upm.es/WebODEWeb/index.html

On semantic timecard based project portfolio management 113

8 Table of Figures

Figure 1: Project funnelling .. 16
Figure 2: Semantic timecard environment ... 20
Figure 3: Generic ontology building process ... 23
Figure 4: Evolution of knowledge representation approaches 26
Figure 5: Ontology use-case diagram ... 29
Figure 6: Ontology development framework ... 31
Figure 7: RDF triple [B04] ... 33
Figure 8: Simplified sample of RDFS constructs [BG02] 36
Figure 9: WebODE three-tier architecture [WebODE] .. 45
Figure 10: OWL plug-in as extension of Protégé core system [KFNM04] 51
Figure 11: Ontology building process [HKRSW04] .. 54
Figure 12: Generic IT ontology structure shown in Protégé editor 58
Figure 13: Defining disjoint classes ... 60
Figure 14: Protégé properties view .. 61
Figure 15: Asserted programming language categories ... 62
Figure 16: Partial cutout of the inferred programming language categories 63
Figure 17: Partial cutout of the asserted software products 65
Figure 18: Partial cutout of the inferred commercial software products 66
Figure 19: Subcategories of the business service category 69
Figure 20: Necessary constraints of MySQL database concept 71
Figure 21: Necessary & Sufficient constraints of open source databases concept . 72
Figure 22: Asserted vs. inferred class hierarchy .. 73
Figure 23: Service oriented architecture [HL04, p. 16] .. 77
Figure 24: Tomcat/Axis web-service environment [Apache] 80
Figure 25: Axis server message path [Axis] ... 81
Figure 26: Coldfusion application server architecture [Adobe] 86
Figure 27: Semantic timecard use-case diagram .. 92
Figure 28: Semantic timecard architecture ... 95
Figure 29: Semantic timecard form .. 97
Figure 30: User-specific statistics .. 99

114 Dmitry Diyachenko (0300077)

Figure 31: User-specific technology report .. 100
Figure 32: Technology portfolio reports .. 101
Figure 33: Service portfolio report ... 103

On semantic timecard based project portfolio management 115

9 Index of Tables

Table 1: Ontology development tool comparison [GF02] 49

	Executive summary
	Executive summary
	1 Introduction
	1.1 Motivation
	1.2 Content of the thesis

	2 Project portfolio management
	2.1 Increasing value trough project portfolio management
	2.2 Guideline for portfolio management deployment
	2.2.1 Project inventory preparation
	2.2.2 Project evaluation and prioritization
	2.2.3 Portfolio monitoring and adaptation
	2.2.4 Portfolio management barriers

	2.3 Improving project portfolio management trough the semantic timecard application

	3 Building the ontology knowledge base
	3.1 Introduction to the ontology concept and the need for it
	3.1.1 Adding semantics to the timecard application

	3.2 Ontology mark-up languages
	3.2.2 OWL

	3.3 Evaluation of ontology development tools
	3.3.1 Apollo
	3.3.2 WebODE
	3.3.3 OntoStudio
	3.3.4 WebOnto
	3.3.5 Protégé 2000
	3.3.6 Direct tool comparison
	3.3.7 Detailed description of the selected ontology development tool

	3.4 Interactive ontology building process
	3.4.1 Taxonomy definition
	3.4.2 Ontology reasoning
	3.4.3 OWL syntax

	4 Web-service based component integration
	4.1 SOA and web-services basics
	4.2 Java web-services with Tomcat/Axis
	4.2.1 Apache Axis
	4.2.2 Java web-service for ontology integration

	4.3 Web-service based back-end application logic integration
	4.3.1 Coldfusion application server
	4.3.2 Allaire Spectra framework
	4.3.3 Coldfusion web-service for back-end logic integration

	5 Semantic timecard application
	5.1 Semantic timecard architecture
	5.2 Semantic timecard functionality
	5.3 Portfolio inaccuracies and difficulties
	5.4 Semantic timecard enhancement capabilities

	6 Summary
	7 References
	8 Table of Figures
	9 Index of Tables

