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Zusammenfassung 
 

Alpha-Aktinin ist ein Protein des Zytoskeletts, das Aktin Filamente quervernetzt und als 

Verbindung zwischen zytoskeletalen -, Membran- und Signalproteinen fungiert. 

Abgesehen von der Bindung an Aktin Filamente interagiert es mit einer Vielzahl von 

Proteinen. Alpha-Aktinin findet sich an der Plasmamembran, wo es kortikales Aktin 

quervernetzt, an der Ablösung und Versetzung der Membran beteiligt ist und 

Transmembranproteine mit dem Zytoskelett verbindet. Die Störung von Integrin-Alpha-

Actinin Interaktionen an Fokalen Kontakten macht Osteoblasten anfällig für Apoptose. 

Alpha-Aktinin ist ein antiparalleles Homodimer, dessen Struktur von den einzelnen 

Domänen bereits gelöst wurde. Ein Monomer besteht aus einer Aktin bindenden Domäne 

am N-Terminus, die durch ein 15 Aminosäuren langes Peptid (Neck) mit dem 

stabförmigen Teil, bestehend aus vier Spektrin-ähnlichen  Domänen, verbunden ist. Der 

C-Terminus wir durch eine Calmodulin-ähnliche Domäne gebildet, die an den Neck der 

gegenüberliegenden Untereinheit des inaktiven Dimers binden kann. Noch ist es 

spekulativ, welche Aminosäurereste in der Assemblierung und Bindung der C-terminalen 

Domäne an den Neck involviert sind und wie sich die molekulare Architektur des 

gesamten Homodimers darstellt. 

Das Ziel der vorliegenden Arbeit war die Untersuchung der Bindung der C-terminalen 

Calmodulin Domäne einerseits an ein synthetisiertes Peptid des Necks und andererseits 

an den nativen N-terminalen Teil von Alpha-Aktinin Isoform 2. Bindungsstudien, 

Analyse der Komplexe als auch Kristallisationsversuche des Komplexes wurden 

durchgeführt, um die Struktur des Teils des Homodimers aufzulösen, der für die Existenz 

einer offenen als auch einer geschlossenen Konformation verantwortlich ist. 

Weiters wurden Mutationsstudien durchgeführt, im Zuge derer eine künstliche 

Aminosäure an jene Stellen der Calmodulin-ähnlichen Domäne inkorporiert wurden, die 

im Verdacht stehen für die Interaktion mit dem Neck ausschlaggebend zu sein. Diese 

Interaktionstellen wurden durch frühere Daten über die Bindung der Calmodulin-

ähnlichen Domäne an andere Interaktionspartner und durch bioinformatische Methoden, 

unter der Verwendung der Programme WHAT IF, CHARMM und Pymol, ermittelt. Die 

künstliche Aminosäure hat die Eigenschaft Aminosäurereste innerhalb eines Radius von 
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3 Ångström unter UV Bestrahlung kovalent querzuvernetzen. Durch diese 

Vorgehensweise wurde sichergestellt, dass beide Komponenten des Komplexes im 

Kristall vorhanden waren. 
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Abstract 
 

Alpha-actinin is a cytoskeletal protein that cross-links actin filaments and serves as a 

connection between the cytoskeleton and signaling and membrane proteins. Apart from 

binding to actin filaments it interacts with a tremendous number of interaction partners. 

Alpha-actinin can localize to the plasma membrane, where it cross-links the cortical 

actin, aids in membrane displacement, and links transmembrane receptors with the 

cytoskeleton. Disruption of alpha-actinin-integrin interactions at focal adhesions renders 

osteoblasts susceptible to apoptosis. 

Alpha-actinin is an antiparallel homodimer, of which the structures of several domains 

have already been solved. One monomer consists of an actin binding domain at the N-

terminal, which is connected via a 15 amino acid peptide (neck) to a rod shaped moiety 

composed of four spectrin-like domains. The C-terminal is formed by a calmodulin-like 

domain which is able to bind to the neck of the opposing subunit of dimer in an 

uninduced state. It remains putative which residues are involved in assembly and binding 

of the C-terminal domain to the neck, and what is the molecular architecture of the full-

length homodimer. 

The aim of this work was to investigate the binding of C-terminal calmodulin domain to a 

synthesized peptide of the neck as well as to a native N-terminal moiety of alpha-actinin 

isoform 2. Binding studies, complex analyses as well as crystallization trials of the 

complex were conducted, in order to solve the structure of the moiety of the homodimer 

responsible for the existence of an open and a closed conformation. 

Moreover, mutation studies were performed, in the course of which an artificial amino 

acid was incorporated into the part of the calmodulin-like domain known to interact with 

the neck at putative interaction sites. These interaction sites were determined by 

comparison with previous data of binding of the calmodulin-like domain to certain 

interaction partners and by bioinformatics methods using the software CHARMM, 

WHAT IF and Pymol. The artificial amino acid has the property to crosslink covalently 

residues within 3 Ångström under UV exposure. By this procedure it was ensured, that 

the whole complex is present in the crystal. 
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1.0 Introduction 
 

 

1.1 Alpha-actinin and the current model of two different states 
 
The cytoskeleton consists of a number of filamentous systems, composed of polymers of 

tubulin, intermediate filament proteins and actin filaments. Formation of antiparallel actin 

filaments and their anchorage by its crosslinking protein alpha-actinin [Fig. 1] is found at 

many different sites throughout the cell. This is the case in the Z-disk of striated muscle, 

(Masaki, Endo et al. 1967); (Lazarides and Granger 1978) and the cytoplasmic dense 

bodies of smooth muscle (Geiger, Dutton et al. 1981), to anchoring points of polar arrays 

of actin filaments, such as the membrane-associated adhesion plaques of smooth muscle 

(Geiger, Dutton et al. 1981) (Small 1985) and the focal adhesions of non-muscle cells 

(Burridge, Nuckolls et al. 1990) as well as to regions of poorly oriented actin filaments in 

the leading edge of motile cells (Langanger, Moeremans et al. 1986). 

 

 

Fig.1 Actin filaments (green) cross-linked by alpha-actinin (red) (from: Olivier Pelletier, Materials 
Research Laboratory, University of California) 
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The fact that alpha-actinin is able to crosslink actin filaments in various orientations 

implies a quite low specificity, whereas it remains unclear whether the arrangement of 

bipolar or unipolar formations is due to isoform-specific intrinsic crosslinking or to 

presence or interaction of other cytoskeleton proteins. The functional unit of alpha-actinin 

is an antiparallel homodimer, with an actin binding domain (ABD) at the N-terminus and 

a calmodulin-like domain (CaM) at the C-terminus which are connected via four spectrin-

like repeats (R1, R2, R3, R4) [Fig. 2], which are involved in dimerization of the alpha-

actinin homodimer [Fig. 5] (Djinovic-Carugo 1999); Spectrin repeats consist of three-

helix bundle structures which serve as a matrix for assembly of cytoskeletal and signaling 

proteins.  

 

 

 

The ABD consists of two chalponin homology (CH) domains (Franzot, Sjoblom et al. 

2005) [Fig. 3, Fig.4]. Dependent on the isoform of alpha-actinin different actin binding 

sites exist and it has been proposed that a single ABD is able to bind actin filaments in 

several conformations (Galkin, Orlova et al. 2002; Litjens, Wilhelmsen et al. 2005). A 

study of alpha-actinin suggested that at one end of the molecule the two CH domains 

were in a compact, closed conformation, while at the other end they 

were in an open, extended state (Liu et al., 2004).  

 

This may be also due to the fact, that in EM studies the several 

particles are picked, merged and averaged. This could of course 

Fig. 3 Crystal structure of ABD of alpha-actinin 3 in its closed conformation 

(Franzot, Sjoblom et al. 2005). 

Fig. 2 Crystal structure of alpha-actinin rod (Ylanne, Scheffzek et al. 2001). 
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result in an interpretation given by Liu et al. 

The current model to explain the mechanism of alpha-actinin 

regulation was proposed by Young and Gautel (2000); it 

suggests that in the uninduced state CaM of one monomer is 

bound tightly to the region between ABD and the first spectrin-like (R1) domain of the 

other monomer. This region, known as neck due to its position, consists of 15 amino 

acids.  

Upon binding of phosphatidylinositol-4,5-biphosphate (PIP2) to ABD in muscle cells, the 

inactive conformation changes into an active state, enabling the protein now to interact 

with distinct binding partners. It is proposed, that the fatty acid tail of PIP2 interferes with 

the binding of the CaM domain to the neck what results in opening of the structure and 

activation. 

While the phospholipid PIP2 is triggering these conformational changes in the muscle 

isoforms, it is proposed that in the non-muscle isoforms calcium is responsible for these 

changes, since the muscle-isoforms are calcium in-sensitive.  

In [Fig.5] the bound, uninduced state is schematized. The conformational change upon 

binding of PIP2 to ABD is illustrated in [Fig. 6]. The dissociation of the binding may 

enable the CaM domain to interact with certain interaction partners, which will be 

described below. 

 

 

Fig. 5 Uninduced state of the alpha-actinin dimer. The four spectrin-domains (R1, R2, R3, R4) are 
proposed to mediate the dimerization (Djinovic-Carugo et al., 2001). In the uninduced state the 
current opinion is, that EF12/EF34 are bound to the neck.

Fig. 4 Crystal structure of ABD of alpha-actinin 1 in its closed conformation 

(Borrego-Diaz, Kerff et al. 2006). 
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The CaM domain at the C-terminal of alpha-actinin consists of two pairs of EF hands. EF 

hands are helix-loop-helix motifs, involved in many different protein-protein interactions 

and the regulation of cellular processes (Branden C 1999). Usually, pairs of EF-hands 

form globular domains which have the ability to coordinate up to two calcium ions. Upon 

binding of calcium ions a conformational change is triggered, whereby proteins showing 

this motif exist in two different states: an “open” and a “closed” (Ikura 1996). In the open 

conformation, a hydrophobic region is exposed to the surface which allows binding to 

designated targets. The two pairs of EF-hands of alpha-actinin of muscle cells diverge, 

since they show a mutation which made them loose their ability of calcium coordination 

(Atkinson, Joseph et al. 2001) [Fig.7].  

 

 

 

The conclusion is therefore, that very similar progressions take 

place in the several isoforms, resulting always in the two possible states. Nevertheless, 

the way of triggering and changing this state is very different and isoform specific. 

Fig. 6 Change of the uninduced into an induced conformation of the alpha-actinin dimer upon 
binding of PIP2. The CaM-domain is now free to bind to distinct interaction partners like the Zr7 
repeat of titin. 

Fig. 7 Structure of EF34of alpha-actinin 2 bound to Zr7 of titin solved by 

NMR (Atkinson, Joseph et al. 2001). 
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The structure of the alpha-actinin rod domain forming a dimer has already been solved 

(Djinovic-Carugo 2001; Ylanne, Scheffzek et al. 2001), as well as EF34 in complex with 

Zr7 of titin (Atkinson, Joseph et al. 2001). Sequence alignment of alpha-actinin and titin 

shows basically no similarity, but titin Zr7 and the neck of alpha-actinin bind with 

comparable affinity to the CaM-domain. Therefore it is proposed that the C-terminal of 

alpha-actinin shows high plasticity, facilitating interaction of CaM either with the neck or 

with Zr7 of titin. 

 

The following list gives a short overview over the various isoforms of alpha-actinin and 

their physiological relevance. 

 

1.2 Isoforms of alpha-actinin 
 

1.2.1 Alpha-actinin-1 
 
Non-muscle actinin-1 has been reported to associate with cell adhesion molecules, such 

as integrin b1 and a-catenin, and is believed to play an important role in stabilizing cell 

adhesion and regulating cell shape and cell motility. It is found in focal adhesion plaques 

and adherens junctions (Honda, Yamada et al. 1998). As described above, the active state 

is triggered by binding of calcium to EF-hands. 

 
                                                

1.2.2 Alpha-actinin-2 
 
Alpha-actinin-2 is expressed in all muscle fibers and due to its more general function  

its expression in human skeletal muscle completely overlaps alpha-actinin-3. These two 

isoforms (2 and 3) are 80% identical and 90% similar (Beggs, Byers et al. 1992). In 

addition, alpha-actinin-2 and alpha-actinin-3 form heterodimers in vitro and in vivo, 

suggesting structural similarity and lack of significant functional differences between the 

two skeletal muscle alpha-actinin isoforms (Chan Y. M et al., 1998). Upon binding of 

PiP2 to ABD the conformational change into the active state is triggered. 
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1.2.3 Alpha-actinin-3 
 
Loss of alpha-actinin-3 gene function alters mouse muscle metabolism and shows 

evidence of positive selection in humans. A deficiency in alpha-actinin-3 in humans is 

associated with elite athlete status. By virtue of a knockout mouse model it is proposed 

that this is due to a shift in muscle metabolism toward the more efficient aerobic pathway 

and an increase in intrinsic endurance performance (Macarthur, Seto et al. 2007). Since 

we are dealing here again with a muscle-isoform, it is PiP2- sensitive, as described above. 

 

  

1.2.4 Alpha-actinin-4 
 
The regulation of the actin cytoskeleton plays an essential role in cell motility and cancer 

invasion. Alpha-actinin 4 exhibits tumor suppressor activity. Stable clones containing 

increased levels of alpha-actinin, isolated from highly malignant neuroblastoma stem 

after transfection with a full-length alpha-actinin-4 cDNA, show decreased anchorage-

independent growth ability, loss of tumorigenicity in nude mice, and decreased 

expression of the N-myc proto-oncogene (Nikolopoulos, Spengler et al. 2000).  

Alpha-actinin-4 is located in the cytoplasm of non muscle cells where cells are sharply 

extended and migrating. It is absent in focal adhesion plaques and adherent junctions 

(Honda, Yamada et al. 1998). As described above, this isoform is calcium-sensitive. 

 

Some atypical alpha-actinins were found in early diverging organisms, such as protozoa 

and yeast (Virel and Backman 2006; Virel, Addario et al. 2007). In these organisms the 

rod domain consists of one or two spectrin repeats, respectively. This implies that the 

four spectrin repeats, found in the modern alpha-actinin homodimer, arouse from two 

consecutive intragenic duplications from an ancestral alpha-actinin with a single repeat. 

The four human isoforms are encoded in at least four distinct genes. 
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1.3 The Alpha-actinin Interactome 
 

The numerous proteins which interact with alpha-actinin complicate the understanding of 

alpha-actinin–actin interactions [Fig.8]. These are among others the ß-integrins (Otey, 

Pavalko et al. 1990), vinculin (Wachsstock, Wilkins et al. 1987) intercellular adhesion 

molecule (ICAM)(Heiska, Kantor et al. 1996),  titin (Ohtsuka, Yajima et al. 1997); 

(Sorimachi, Freiburg et 

al. 1997)), zyxin 

(Crawford, Michelsen 

et al. 1992), CLP-36 

PDZ-LIM (Vallenius, 

Luukko et al. 2000), 

Cysteine-rich protein 

(Yao, Perez-Alvarado 

et al. 1999) and nebulin 

(Nave, Furst et al. 

1990).  

 

 

These proteins, which 

bind to different 

domains of alpha-actinin, may affect its interaction with actin in ways not yet understood. 

The huge number of interaction partners of alpha-actinin can mainly be divided into three 

groups: cytoskeletal proteins, signaling proteins and membrane proteins.  

Fig. 8:  Alpha-actinin (red) and its role in the sarcomeric Z-disk in 
concert with its interaction partners in a myocardial cell ( from: Norbert 
Frey – Ruprecht Karls University, University Hospital, Heidelberg  
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The following list shall give a short overview over the interaction partners, emphasizing 

the cytoskeletal proteins. 

 

1.3.1 Actin 
Actin is one of the most conserved proteins in eukaryotic cells; it is the monomeric 

subunit of microfilaments; its importance in cellular processes ranges from cell motility 

to muscle contraction (McGough, Way et al. 1994). Actin binding sites are found in 

alpha-actinin isoforms 1 and 2 at the CH1 domain in the C- and the N-terminal helices, 

whereas isoform 3 binds actin via the N-terminal helix and the linker part of CH2 

(Gimona and Mital 1998). Results indicate that residues 86-117 and 350-375 comprise 

distinct binding sites for alpha-actinin on adjacent actin monomers (McGough, Way et al. 

1994). 

1.3.2 FATZ 
FATZ stands for filamin-, actinin-, and telethonin-binding protein of the Z-disc of 

skeletal muscle. From yeast two hybrid experiments it was shown that the spectrin like 

repeats of alpha-actinin 2 are required to bind the C-terminal region of the FATZ as does 

gamma-filamin via its immunoglobulin-like domain 23 (Faulkner, Pallavicini et al. 2000). 

1.3.3 Myopalladin 
Myopalladin is a sarcomeric protein with multiple roles in Z-disc and I-band protein 

assemblies; tethers together the COOH-terminal Src homology 3 domains of nebulin and 

nebulette with the EF hand motifs of alpha-actinin in vertebrate Z-lines (Bang, Mudry et 

al. 2001). 

1.3.4 Titin 
Titin, also known as connectin, is a giant protein connecting muscle fibers within the 

sarcomere. Single titin molecules emanate from the Z-disk, where their N-terminal is 

located, and range to the center of the sarcomere in the M-line. Thus both ends of the 

protein are anchored to the muscle fiber. It is thought that titin plays an essential role in 

muscle assembly and is implicated in muscle elasticity by conferring passive resistance of 

the sarcomere to stretching. Z-repeats are localized in the sarcomere Z-disk near the N-

terminus of titin and in humans their number varies in different tissues. The N-terminal 
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Z-repeat 7 of titin binds to EF3/4 of alpha-actinin (Young and Gautel 2000); an additional 

binding site was described involving the region of titin directly adjacent to the last Z-

repeat and the two central spectrin repeats of alpha-actinin (Young, Ferguson et al. 1998). 

1.3.5 Nebulin 
Nebulin is an actin-binding protein anchored in the sarcomeric Z-disk via its C-terminal 

end and protrudes into I- and A-band in skeletal muscle wrapped around thin filaments; it 

is believed to regulate the length of thin filaments during sarcomere assembly 

(McElhinny, Kazmierski et al. 2003). 

1.3.6 Vinculin 
Vinculin is a membrane-associated cytoskeletal protein in focal adhesion plaques that is 

involved in linkage of integrin adhesion molecules to the actin cytoskeleton (Wachsstock, 

Wilkins et al. 1987). 

1.3.7 ZASP 
Z-band alternatively spliced PDZ protein; the PDZ domain binds to EF34 of alpha-actinin 

simultaneously with Zr7-repeat of titin (Faulkner, Pallavicini et al. 1999; Au, Atkinson et 

al. 2004). 

1.3.8 Myotilin 
Myotilin is a myofibrillar protein which resides both in the sarcomere, where it localizes 

within the Z-disk and is bound to spectrin-like repeats of alpha-actinin, as well as along 

the sarcolemmal membrane. Myotilin contains two C2-type Ig-like domains with 

considerable homology to certain Ig domains of titin (Salmikangas, Mykkanen et al. 

1999). 

1.3.9 CRP 
CRP is a cysteine-rich protein with a LIM domain, which is involved in muscle 

differentiation. CRP1 and alpha-actinin are colocalized along the actin stress fibers of 

cation exchange fibers and smooth muscle cells; the N-terminal moiety of CRP interacts 

with actin binding domain of alpha-actinin (Pomies, Louis et al. 1997). 

1.3.10 Integrin β1 
Integrins are adhesion proteins which built a linkage to the cytoskeleton; 
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Alpha-actinin binds to the cytoplasmic domain of the beta 1 subunit of integrin, 

suggesting that alpha-actinin may form a direct link between the actin cytoskeleton and 

the transmembrane fibronectin receptor (Otey, Pavalko et al. 1990). 

1.3.11 ALP 
ALP contains an N-terminal PDZ domain and a C-terminal LIM motif; it occurs in 

association with alpha-actinin-2 at the Z lines of myofibers. 

The PDZ domain of ALP binds to the C-terminal region of of alpha-actinin-2 (Xia, 

Winokur et al. 1997). 

 

This list is not exhaustive, but should give an overview over the manifold processes and 

interactions alpha-actinin is involved in. 

 

 

1.4 The objectives of this study 

The aim of this work was to investigate and verify the current model of the change of the 

alpha-actinin homodimer from a closed, uninduced state to an open, active state. The 

following outlines the attempts to solve the described issue. 

(1) Establishment of an expression and purification protocol for wild type proteins 

EF34, CaM and ABD-R1. 

(2) Complex formation with the wild type EF34 protein with a synthesized peptide of 

the neck, its analysis and crystallization. 

(3) Complex formation of wild type EF34 or CaM proteins, respectively, with ABD-

R1 and its analysis. 

(4) Creation of mutants of EF34 with an incorporated artificial amino acid residue at 

putative interaction sites, which enables photo cross-linking of mutated EF34 with 

the neck and its subsequent crystallization. 
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2.0 Materials 
 

2.1 Media 
 

LB-Media (sigma) 

SOB Media (sigma) 

GMML Media 

1 % glycerol 900 ml 

10 x M9 salts 100 ml 

1 M MgSo4 1 ml 

1 M CaCl2 100 μl 

5 M NaCl 1,7 ml 

0.3 M leucine, dissolved in  

100 mM LiOH 

1 ml 

Biotin  1 mg 

1 % Thiamine 100 μl 

 

Autoinduction Media: 

(Dubendorff and Studier 1991) 

 

Ingredients for 1L Autoinduction media 

ZY 928 ml 

1M MgSO4  1 ml 

1000 x metal mix 1 ml 

50 x 5052 20 ml 

20 x NPS 50 ml 
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Antibiotics as needed: 

Kanamycin (100 mg / ml) 1 ml 

Chloramphenicol (25 mg/ 

ml)  

1 ml 

Ampicillin (50 mg / ml) 1 ml 

 

 

ZY  

Tryptone  10 g 

Yeast extract    5 g 

 

 

20 x NPS (1 L)  

 (NH4)2SO4   66 g   (0.5M) 

 (KH2PO4 136 g     (1M) 

 Na2HPO4 142 g     (1M) 

H2O 900ml 

Add in sequence in beaker, stir until dissolved, pH 

should be ~ 6.75, autoclave 

 

 

50 x 5052 (1 L)  

Glycerol 250 g  

H2O 730 ml 

Glucose   25 g  

Lactose 100 g 

Add in sequence in beaker, stir until dissolved, 

autoclave 
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1000 x trace metals mixture (100ml) 

0.1 M FeCl3 – 6 H2O, dissolved in 

0.1 M HCL 

50 ml 

   1 M CaCl2 2 ml 

   1 M MnCl2 1 ml 

   1 M ZnSO4 1 ml 

0.2 M CoCl2 1 ml 

0.1 M  CuCl2 2 ml 

0.2 M NiCl2 1 ml 

0.1 M Na2MoO4 2 ml 

0.1 M Na2SeO3 2 ml 

0.1 M H3BO3 2 ml 

Autoclave stock solutions except FeCl3 

 

2.2 E.coli Cell Strains 
 
Cell Strains Genotype Description 

DH5α  

supE44 ΔU169 deoR 
(f80lacZAM15)hsdR17 
recA1 endA1 gyrA96 thi-1 
relA1  

High copy plasmid cell line 

XL1-blue  recA1, lac-, endA1, gyrA96, 
thi, hsdR17 (rk-, mk+), 
supE44, relA1, λ-, [F', 
proAB, lacIqZ, ΔM15, Tn10 
(tetr) 
 

 

BL21 (DE3) F- ompT hsdSB (rb- mB-) 
gal dcm (DE3)  

The (DE3) cells carry a 
chromosomal copy of the 
T7 RNA polymerase gene 
under control of the lacUV5 
promoter. This strainis used 
for protein expression of 
pET vectors. 

Rosetta (DE3) F- ompT hsdSB (rb- mB-) 
gal dcm lacY1 (DE3) 

This strain is derived from 
the Tuner cell and is used to 
enhance the expression of 
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pRARE6 (CmR) 

 

eukaryotic proteins that 
contain rare codons. This is 
accomplished by supply 
tRNAs for AGG, AGA, 
AUA, CUA, CCC, GGA 
codons on a compatible 
chloramphenicol-resistant 
plasmid.  

Rosetta (DE3) pLysS F- ompT hsdSB (rb- mB-) 
gal dcm lacY1 (DE3) 
pRARE6 pLysE (CmR) 

 

Same as above but has an 
additional vector 
transformed that produce a 
larger amount of T7 
lysozyme than that of 
pLysS. In 
Rosetta(DE3)pLysE the rare 
tRNA genes are carried on 
the same plasmids that carry 
the T7 lysozyme. 

C41 (DE3)  derived from BL21(DE3) 
BL21* (DE3) F- ompT hsdSB (rB

-mB
-) gal 

dcm rne131 (DE3) 
 

BL 21 (DE3) pLysS Genotype: 
F- ompT hsdSB (rb- mB-) 
gal dcm (DE3) pLysE 
(CmR) 

Same as above but has an 
additional vector 
transformed that produce a 
small amount of T7 
lysozyme that is used to 
suppress basal expression of 
T7 RNA polymerase prior 
to induction and thus 
reduces leaky expression.  

 

2.3 Plasmids  
 

Plasmid Resistance ORI 
 
Cloned By 
 

 
Tags 
 

 
Cleavage 
site 
 

pETM 20 Ampicillin pBR322 
 

G. Stier 
 

N-His 
C-His TEV 

pETM 13 Kanamycin pBR322 
 

G. Stier 
 C-His TEV 

pETM 30 Kanamycin pBR322 
 

G. Stier 
 

N-His 
N-GST 
C-His 

TEV 
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2.4 Buffer for molecular biology techniques 
 
TAE Buffer 
Tris-Acetate 40 mM 
EDTA    1mM 
Eisessig Add to pH 8.0 

 
Loading dye (6x) Agarosegel 
Bromphenol-blue 0.25 % (w/v) 
Saccharose    40 % (w/v)  

 

2.5 Buffers for Affinity Chromatography 
 
Binding and Wash Buffer  
Tris –HCl     100 mM  pH 8 
NaCl    150 mM 
Imidazole    10 mM 

 
Elution Buffer 
Tris-HCl    100 mM  pH 8 
NaCl    150 mM 
Imidazole    300 mM 

 
 

2.6 Buffer for Size Exclusion Chromatography 
 
Gelfiltration  Buffer 
Tris-HCl   2o mM  pH 8 
NaCl   200 mM 
2-mercaptoethanol   2 mM 

 
 

2.7 Buffer for TEV Cleavage 
 
TEV Cleavage  Buffer 
Tris-HCl   50 mM  pH 8 
EDTA   0.25 mM 
2-mercaptoethanol   2 mM 
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2.8 Buffers for TEV Purification 
 
TEV Lysis and Wash Buffer I 
Tris - HCl  20 mM pH 8 
Imidazole  10 mM pH 8 
NaCl   150 mM 
2-mercaptoethanol  2 mM 

 
TEV Wash Buffer II 
Tris - HCl  20 mM pH 8 
Imidazole  10 mM pH 8 
NaCl   1 M 
2-mercaptoethanol  2 mM 

 
TEV Wash Buffer III 
Tris - HCl  20 mM pH 8 
Imidazole  50 mM pH 8 
NaCl   150 mM 
2-mercaptoethanol  2 mM 

 
TEV Elutionbuffer 
Tris - HCl  20 mM pH 8 
Imidazole  330 mM pH 8 
NaCl   150 mM 
2-mercaptoethanol  2 mM 

 

2.9 Electrophoresis Buffer 
 
50 x TAE- Buffer 
Tris  2 M 
EDTA-Na 0.05 M 
Acetic Acid 1 M 
pH 8.5  

 
 
 
SDS – Sample Buffer (5 x) 
Tris pH 6.8  255 mM 
EDTA 12.5 mM 
SDS      5 % 
2-mercaptoethanol 700 mM 
Glycerol    50 % 
Bromphenolblue  0,35 % 
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Coomassie Stain 
Methanol 50 % 
Acetic acid 10 % 
Coomassie blue R250 0.25 % 

 
Destaining Solution 
Ethanol 30 % 
Acetic acid 10 % 
H20 distilled  60 % 

 
 

2.10 Buffers for Tricine SDS PAGE 
 
10x Anode Buffer pH 8.9 
Tris pH 8 1 M 
HCl 225 mM 

 
10x Cathode Buffer ~ pH 8,25 
(pH must not be adjusted) 
Tris pH 8 1 M 
Tricine 1 M 
SDS  1 % 

 
3x Gel Buffer pH 8.45 
Tris 3 M 
HCl 1 M 
SDS  0.3 % 

 
 

2.11 Buffers for Western Blotting 
 
10x Transfer Buffer 
Glycine 29 g 
Tris 58 g 
SDS 3.7 g 

 
 
TBPS Buffer 
(pH must not be adjusted) 
Tris 3 g 
NaCl 8 g 
KCl 0.2 g 
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Color-development Buffer 
Tris-HCl pH 9.5 100 mM 
NaCl 100 mM 
MgCl2 3.7 g 
5% Nitro Blue Tetrazolium 
in dimethylformamid 

100 μl 

 5% 5-bromo-4-chloro-3-
indolyl-phosphate in 
dimethylformamid 

100 μl 

 

2.12 Buffers for On-Column Binding Studies 
 
Binding Buffer for Ni-on column binding 
K2HPO4/KH2PO4 pH 8 50 mM 
NaCl 50 mM 
Imidazole 5 mM 
2-mercaptoethanol 20 mM 

 
Elution Buffer for Ni-on column binding 
K2HPO4/KH2PO4 pH 8 50 mM 
NaCl 50 mM 
Imidazole 300 mM 
2-mercaptoethanol 20 mM 

 

2.13 Refolding Buffers 
 
Wash Buffer 
Urea 4 M 
NaCl 0.5 M 
EDTA 1 mM 
Tris-HCl pH 8 50 mM 

 
Solubilization Buffer 
Guanidine-HCl 6 M 
DDT 10 mM 
Tris-HCl pH 8 50 mM 

 
Buffer 1 
50 mM MES pH 6.0, 9.6 mM NaCl, 0.4 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 0.75 M 
Guanidine HCl, 0.5% Triton X-100, 1 mM DTT 
Buffer 2 
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50 mM MES pH 6.0, 9.6 mM NaCl, 0.4 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 0.5 M 
arginine, 0.05% polyethylene glycol 3550, 1 mM GSH, 0.1 mM GSSH 
Buffer 3 
50 mM MES pH 6.0, 9.6 mM NaCl, 0.4 mM KCl, 1 mM EDTA, 0.4 M sucrose, 0.75 M 
Guanidine HCl, 0.5% Triton X-100, 0.05% polyethylene glycol 3550, 1 mM DTT 
Buffer 4 
50 mM MES pH 6.0, 240 mM NaCl, 10 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 0.5 M 
arginine, 0.5% Triton X-100, 1 mM GSH, 0.1 mM GSSH 
Buffer 5 
50 mM MES pH 6.0, 240 mM NaCl, 10 mM KCl, 1 mM EDTA, 0.4 M sucrose, 0.75 M 
Guanidine HC, 1 mM DTT 
Buffer 6 
50 mM MES pH 6.0, 240 mM NaCl, 10 mM KCl, 1 mM EDTA, 0.5 M arginine, 0.4 M 
sucrose, 0.5% Triton X-100, 0.05% polyethylene glycol 3550, 1 mM GSH, 0.1 mM 
GSSH 
Buffer 7 
50 mM MES pH 6.0, 240 mM NaCl, 10 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 0.75 M 
Guanidine HCl, 0.05% polyethylene glycol 3550, 1 mM DTT 
Buffer 8 
50 mM Tris-Cl pH 8.5, 9.6 mM NaCl, 0.4 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 0.4 M 
sucrose, 0.5% Triton X-100, 0.05% polyethylene glycol 3550, 1 mM GSH, 0.1 mM 
GSSH 
Buffer 9 
50 mM Tris-Cl pH 8.5, 9.6 mM NaCl, 0.4 mM KCl, 1 mM EDTA, 0.5 M arginine, 0.75 
M Guanidine HCl, 0.05% polyethylene glycol 3550, 1 mM DTT 
Buffer 10 
50 mM Tris-Cl pH 8.5, 9.6 mM NaCl, 0.4 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 0.5 M 
arginine, 0.4 M sucrose, 0.75 M Guanidine HCl, 1 mM GSH, 0.1 mM GSSH 
Buffer 11 
50 mM Tris-Cl pH 8.5, 9.6 mM NaCl, 0.4 mM KCl, 1 mM EDTA, 0.5% Triton X-100, 
1 mM DTT 
Buffer 12 
50 mM Tris-Cl pH 8.5, 240 mM NaCl, 10 mM KCl, 1 mM EDTA, 0.05% polyethylene 
glycol 3,550, 1 mM GSH, 0.1 mM GSSH 
Buffer 13 
50 mM Tris-Cl pH 8.5, 240 mM NaCl, 10 mM KCl, 1 mM EDTA, 0.5 M arginine, 0.75 
M Guanidine HCl, 0.5% Triton X-100, 1 mM DTT 
Buffer 14 
50 mM Tris-Cl pH 8.5, 240 mM NaCl, 10 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 0.5 M 
arginine, 0.4 M sucrose, 0.75 M Guanidine HCl, 0.5% Triton X-100, 0.05% 
polyethylene glycol 3,550, 1 mM GSH, 0.1 mM GSSH 
Buffer 15 
50 mM Tris-Cl pH 8.5, 240 mM NaCl, 10 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 0.4 M 
sucrose, 1 mM DTT 
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DTT 
Dissolve contents of vial in 1 ml of deionized water. Store at 4°C. 
Glutathione reduced 
Dissolve contents of vial in 1 ml of deionized water. Store at -20°C. 
Glutathione oxidized  
Dissolve contents of vial in 1 ml of deionized water. Store at -20°C. 

 

Buffer Preparation: 

Before using the Buffers add 1 ml DTT, GSH or GSSH solutions to 950 ml of the 

respective buffer as follows: 

DTT Solution: Buffers #1, 3, 5, 7, 9, 11, 13, and 15 

GSH Solution: Buffers #2, 4, 6, 8, 10, 12, and 14 

GSSH Solution: Buffers #2, 4, 6, 8, 10, 12, and 14 

2.14 Crystallization Screens 
 
JCSG (Quiagen) 

PACT HT96 (molecular dimensions limited) 

Wizard I+II (Emerald BioStructrures) 

Grid Screen MPD (Hampton research) 

JBScreen 9+10 (Hampton Research 
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3.0 Methods 
 

3.1 Molecular Biology Techniques 
 

3.1.1 Constructs 

 
 
Constructs used for this study: 

ABD-R1       

              

composed of actin-binding domain, the neck and spectrin repeat R1        

CaM Calmoduline-like C-terminal domain (two pairs of EF hands) 

EF34 One pair of EF-hands, which have been found to be sufficient to bind 

the                              neck. 

Neck synthesized peptide of the neck (15 residues) plus additional amino 

acids of the rod domain, resulting in a 28 amino acid peptide(purchased 

from invitrogen) 

 Fig. 9 Scheme of the used constructs of alpha-actinin 
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MNQIEPGVQYNYVYDEDEYMIQEEEWDRDLLLDPAWEKQQRKTFTAWCNSHLRKAGTQIE 
NIEEDFRNGLKLMLLLEVISGERLPKPDRGKMRFHKIANVNKALDYIASKGVKLVSIGAE 
EIVDGNVKMTLGMIWTIILRFAIQDISVEETSAKEGLLLWCQRKTAPYRNVNIQNFHTSW 
KDGLGLCALIHRHRPDLIDYSKLNKDDPIGNINLAMEIAEKHLDIPKMLDAEDIVNTPKP 
DERAIMTYVSCFYHAFAGAEQAETAANRICKVLAVNQENERLMEEYERLASELLEWIRRT 
IPWLENRTPEKTMQAMQKKLEDFRDYRRKHKPPKVQEKCQLEINFNTLQTKLRISNRPAF 
MPSEGKMVSDIAGAWQRLEQAEKGYEEWLLNEIRRLERLEHLAEKFRQKASTHETWAYGK 
EQILLQKDYESASLTEVRALLRKHEAFESDLAAHQDRVEQIAAIAQELNELDYHDAVNVN 
DRCQKICDQWDRLGTLTQKRREALERMEKLLETIDQLHLEFAKRAAPFNNWMEGAMEDLQ 
DMFIVHSIEEIQSLITAHEQFKATLPEADGERQSIMAIQNEVEKVIQSYNIRISSSNPYS 
TVTMDELRTKWDKVKQLVPIRDQSLQEELARQHANERLRRQFAAQANAIGPWIQNKMEEI 
ARSSIQITGALEDQMNQLKQYEHNIINYKNNIDKLEGDHQLIQEALVFDNKHTNYTMEHI 
RVGWELLLTTIARTINEVETQILTRDAKGITQEQMNEFRASFNHFDRRKNGLMDHEDFRA 
CLISMGYDLGEAEFARIMTLVDPNGQGTVTFQSFIDFMTRETADTDTAEQVIASFRILAS 
DKPYILAEELRRELPPDQAQYCIKRMPAYSGPGSVPGALDYAAFSSALYGESDL 
 

 

 

3.1.2 Primer Design 
 

Primer with specific overhangs which would introduce the needed restriction sites to the 

PCR product was designed. When a restriction enzyme is used to cut the very end of a 

DNA fragment one needs to provide the restriction enzymes additional so called buffer 

bases to ensure high restriction efficiency. To guarantee the protein is still translated in 

frame and the ATG in the forward primer is readable two bases were introduced resulting 

in an additional glycine. Because glycine is a small amino acid which should not 

influence any regulatory processes, we expected this mutation to have no effect at all. Via 

GC-rich regions at the 3’-end of the primer and the correlated higher binding affinity due 

to three hydrogen bonds instead of two which are found between an AT base pair, one 

ensures a high specific and affine binding of the primer to the template. 

 

(A+T)*2 + (G+C)*4 ~ TM 

Fig. 10 Amino acid sequence of alpha-actinin2 with the sequences used in this study as fusion proteins 
highlighted. 
CaM= rosé and violet (two pairs of EF hands) 
EF34 = violet (one pair of EF hands) 
Neck (peptide) = blue 
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The calculated annealing temperature for both was 66 °C. One should avoid annealing 

temperatures below 55 °C to prevent unspecific annealing as well as above 70 °C, 

otherwise annealing will be insufficient. 

 
Primer were checked with software available at 

www.premierbiosoft.com/netprimer/netlaunch/netprlaunch.html 

to determine  their likeliness to form dimers or hairpins. 

 

The primers designed for the mutant studies are listed below. 

 
Primers used for mutant constructs: 
 
9 Q : 5’GACACCGACACTGCCGAGTAGGTCATCGCC 3’          

         3’CTGTGGCTGTGACGGCTCATCCAGTAGCGG 5’ 

 

13 S : 5’CAGGTCATCGCCTAGTTCCGGATCC 3’                     

          3’GTCCAGTAGCGGATCAAGGCCTAGG 5’     

 

40 Y : 5’ GGATCAGGCCCAGTAGTGCATCAAGAGG 3’            

           3’ CCTAGTCCGGGTCATCACGTAGTTCTCC 5’   

 

68 Y:  5’ GTTCTCTTCCGCACTCTAGGGGGAGAG 3’              

           3’ CAAGAGAAGGCGTGAGATCCCCCTCTC 5’ 

 

70 E:  5’ GCACTCTACGGGTAGAGCGATCTG 3’                     

          3’ CGTGAGATGCCCATCTCGCTAGAC 5’ 

 

3.1.3 Standard PCR mixture 
 

1 μl template 1-50 ng 

2 μl 10X Taq Pol KCl Buffer (fermentas) 
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2 μl dNTP mix 2 mM (fermentas) 

1 μl MgCl2 25mM (fermentas) 

0.5 μl reverse primer 10 pM (sigma) 

0.5 μl forward primer 10 pM (sigma) 

0.2 μl Taq Polymerase 1u/µl (fermentas) 

Add dH2O up to 20 μl final volume  

 

If necessary, Taq Pol KCl Buffer was exchanged to Taq Pol (NH2)4SO4 buffer, which has 

a higher MgCl2 tolerance, to vary the concentration of the latter. For the first trials 

gradient PCRs were done, to examine the ideal annealing temperature for each primer. 

 

3.1.4 Standard PCR Program 
 
 
94 °C 00:04:00 

94 °C 00:00:30 

55 – 65 °C 00:00:30 

72 °C 00:01:00 

24 cycles Step 2 to 4 

72 °C 00:05:00 

4 °C hold 

 

3.1.5 Mutagenesis PCR mixture 

 
1 μl template 1-10 ng 

5 μl 10x Herculase 

reaction buffer 

(stratagene) 

1 μl dNTP mix 20 mM (fermentas) 

1 μl reverse primer 10 pM (sigma) 

1 μl forward primer 10 pM (sigma) 
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0.5 μl Herculase 

Polymerase 

5U/ μl (stratagene) 

Add dH2O up to 50 

μl final volume 

 

 

3.1.6 Vector amplifying mutagenesis PCR 
 

95 °C 00:03:00 

94 °C 00:00:30 

60 °C 00:00:30 

72 °C 00:09:00 

24 cycles Step 2 to 4 

72 °C 00:12:00 

4 °C hold 

 

Directly after PCR 1 μl DpnI was added and incubated 1 h at 37 °C. DpnI cleaves 

methylated DNA. By this procedure one gets rid of only the template DNA, since the 

newly synthesized fragments are not methylated, yet. By this methodology nicked, 

mutated vectors were obtained, which were directly transformed into E. coli, where the 

nick is ligated by the bacterial repair mechanisms. 
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3.1.7 Two Step mutagenesis method (Young and Dong 2004) 
 

This methodology combines a dual asymmetrical PCR (DA-PCR) (these two reactions 

were carried out separately) and an overhang extension. For the DA-PCR external T7 

primer together with internal 

primer coding for the mutation 

were used.  

 

 

Fig. 11 Two step mutagenesis method 

 

 

The DA-PCR products were 

incubated with DpnI to remove 

methylated DNA, the template. 

ExonucleaseI and Shrimp Alkaline 

Phosphatase were used to digest the 

residual oligo-nucleotides and to 

dephosphorylate remaining dNTPs. 

For the overhang extension equal 

amounts of DA-PCR product were 

mixed. The crude overhang extension was amplified by PCR using the two external 

primers. The full length PCR product was digested with KpnI and NcoI and ligated into 

restricted pETM30.  

 

Stratagene QuickChange Mutagenesis Kit was also used to produce mutants. 

Protocol and procedure was done like in the manual of the kit recommended. The 

polymerase provided with the kit was substituted with Herculase Polymerase.  
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3.1.8 Restriction and Ligation Enzymes (purchased from New England Biolabs 

and fermentas) 

 

Acc65I 
 

BsaI 
 

KpnI 
 

NcoI 
 

DpnI 

 
 

Classical Restriction Enzyme Reaction Conditions (enzymes and reagents purchased 

from fermentas) 

 

20 μl PCR product or 

plasmid (100 -200 

ng) 

1-10 ng 

1 μl restriction 

enzyme 

 

3 μl adequate buffer  

6 μl dH2O  

 

Restrictions were incubated for one hour at adequate temperature and in provided buffer 

for the corresponding enzyme (purchased for fermentas and New England Biolabs, 

respectively). 

If a double digest was not possible, after each restriction the mixture was purified with 

PCR- Purification Kit (Quiagen) and eluted in 25 μl dH2O. The same was done before 

ligation. To check the DNA content the absorbance at 280 nm was measured and verified 

on a 0.8 % aragose gel.  
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For a 0.8 % agarose gel the following protocol was used. 

0.16 g Agarose 

20 ml 1x TAE buffer 

2 μl ethidium 

bromide 

Sample preparation 

1 μl PCR product 

1 μl  6x Loading Dye 

4 μl dH2O 

 

To estimate the size a 1kbp Marker (Fermentas; O´Gene Ruler 1kbp DNA Ladder ready- 

to use) was used. 

The gel was run at 90-100 Volts. 

 

Fast Digest Restriction Enzyme Conditions (enzymes and reagents purchased from 

fermentas) 

 

10 μl PCR product or 

plasmid (100 -200 

ng) 

1-10 ng 

1 μl restriction 

enzyme 

10U/ μl 

2 μl adequate buffer  

17 μl dH2O  

 

The digests were performed at 37 °C for 5 min. 
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Standard Ligation Conditions (fermentas) 

 

Vector : fragment 

ratio; 

Total volume 6 μl 

1:2 to 1:8 (vector : 10-100 ng) 

1 μl T4 ligase 5 Weiss U/ μl 

1 μl buffer suppl. 

with  

10 mM ATP  

 

2 μl dH2O  

 

The ligation reaction was incubated at 16 °C over night and inactivated at 65 °C for 10 

min if necessary. 

 

Fast Ligation Conditions (fermentas) 

 

Vector : fragment 

ratio; 

Total volume 6 μl 

1:2 to 1:8 (vector : 10-100 ng) 

1 μl T4 ligase  

4 μl 5x Rapid 

Ligation Buffer 

 

4 μl dH2O  

 

The ligation reaction was incubated at 22 °C for 5 min and inactivated at 65 °C for 10 

min if necessary. 2-5 μl of ligation mixture were used for transformation. 

 

All plasmids were constructed in E.coli strains DH5α and XL1-blue. Plasmids were 

recovered by DNA extraction with fermentas MiniPrep kit. 
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3.1.9 Transformation of competent cells 
 

Competent cells were transformed by heat shock transformation.  

For the standard protocol 1 μl of plasmid (conc. 150 to 200 ng/ml) was incubated 30 

minutes on ice with 50 μl competent cells. After incubation a 90 seconds heat shock was 

performed, followed by another 2 minutes on ice. 500 μl LB Media were added and 

incubated for 1 h at 37 °C. If needed 0.5 μl 40 % PEG8000 was added to transformation 

mix to increase efficiency. Depending on the transformation efficiency obtained either 

120 μl were plated on agar PDs or the whole incubation mixture was spun down, 400 μl 

were discarded and the pellet was re-suspended in the remaining media and plated. Agar 

plates were incubated over night at 37 °C.  

For the modified protocol to transform the mutated constructs the whole PCR mixture 

was reduced with speed vac to approximately 3 μl for transformation. SOC Media was 

used for 1 h incubation at 37 °C. 

Cloning was verified by colony PCR and sequencing (carried out by VBC Genomics) 

 

3.1.10 Colony PCR 
 

Colony was picked from agar plate and re-suspended in 100 μl dH2O. If necessary, 

colony was re-plated before picking. 

Solution was incubated for 5 min at 100 °C and spun down for 5 min at 3000 rpm. 1 μl 

supernatant was used as template together with primers used prior for cloning. 
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3.2 Expression and Purification 
 

3.2.1 Expression Screen Protocol 
 
 

Plasmids and E.coli strains as listed in section 23345345 were used to test for the optimal 

expression conditions for each protein. 

 

Protocol: 

• Add into 24 well plate (optional: 96 well plate) per well 50 µl cells (various cell 

lines) + 2 µl DNA 

• Mix 

• Incubate for 30 min on ice 

• Heat shock by floating on 42 °C water bath for 90 seconds 

• Incubate samples for 5 min on ice 

• Add 1 ml of Auto Induction media, add antibiotics after 1 h, incubate at 37 °C 

over night 

• Check visually for culture growth 

• Test for expression by loading culture on a SDS gel (take 3 µl culture and dilute 

by adding 12 µl water and 5 µl 4x SDS loading dye 

 

Protein expression was analyzed by Coomassie stain or western blot 

Three 24 well plates were used at temperatures 20, 30 and 37 °C to determine the best 

expression conditions. 
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Testing soluble/insoluble fraction: 

• After 16 h growth at 37 °C (temperature can be individually chosen) spin down 

cells (multiwell plates sealed with oxygen permeable tape) 

• Re-suspend in 100 µl Bug Buster (Novagen) 

• Spin suspension at 4000 rpm for 30 min 

• Test soluble fraction by SDS-PAGE 

• Wash pellet with water, re-suspend in 500 µl water to test for insoluble protein 

• Test insoluble fraction by SDS-PAGE 

 

Once a promising condition was found one can go into large scale expression.  

 

3.2.2 Large Scale Expression 
 

The E.coli strain Rosetta pLysS was used as expression host for native alpha-actinin 

constructs. 

Standard protein expression was done in LB media at 37 °C. O/n 10 ml pre-cultures were 

diluted to 1 l with LB media, supplemented with adequate antibiotics (1 mg/100ml) and 

grown to OD600 0.6-0.8. Expression was induced with 0.5 mM IPTG, cells were 

harvested after 4-6 hours and re-suspended in Binding and Wash Buffer. 

 

Mutated alpha-actinin constructs were expressed in the E.coli strain Rosetta. 

Expression of mutant proteins was carried out starting from o/n pre-culture in LB media 

supplemented with adequate antibiotics (0.5 mg/100 ml) and 1mM pBpa. Pre-culture was 

spun down and re-suspended in pre-warmed GMML media supplemented with adequate 

antibiotics (0.5 mg/100 ml) and 1mM pBpa. Expression was induced with 0.5 mM IPTG, 

cells were harvested after 25-30 h grown at 25 – 30 °C and resuspended in Binding and 

Wash Buffer containing 20 mM 2-mercaptoethanol. 
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3.2.3 Refolding Assay 
 

In order to refold insoluble mutant protein refolding assays were performed. After lysis 

by sonication the cell extract was spun down with 20500 rpm for 30 min at 4 °C. The 

obtained pellet was washed twice with Refolding Wash Buffer, followed by another 

centrifugation step with 20500 rpm for 15 min. The pellet was resuspended in 

Solubilization Buffer at 2 ml/g and heated 15 min at 50 °C. The solution was clarified by 

centrifuging at 20500 rpm for 30 min. The mutant proteins were purified in inclusion 

bodies via Ni-NTA, using buffer as described, supplemented with 4 M urea.  

50 μl of the supernatant were added to 15 different refolding buffers provided by 

AthenaTM refolding kit. 

In another refolding attempt the neck as the binding partner of 889∆pBpa was used as 

scaffold to refold the partially unfolded mutant protein. For this purpose the Refolding 

buffer #14, which was found to work best for EF34 mutant refolding, was supplemented 

with 6M, 5M, 4M, 3M, 2M and 1M Guanidine-HCl. The protein was dialyzed in 1 h 

steps in an iterative approach into the refolding buffer with the next lower Guanidine-HCl 

concentration. At 4M Guanidine-HCl the neck was added to provide a scaffold for the 

mutant EF34 to refold. 

The success of the refolding attempts was determined by absorbance measurement at 320 

nm and analytical gel filtration. 

 

 

 

 

 

 
 



 49

 

3.2.4 Affinity Chromatography 
 

Proteins expressed as a fusion proteins with a repetition of 6x histidine the first 

purification step is usually done by a Nickel-NTA-Sepharose chromatography.  The 

principle of this method is a non-covalent and reversible binding of His-tagged protein to 

nickel. The nickel ion in turn is bound 

to a matrix. A buffer containing high 

imidazole is utilized to elute the 

protein after several washing steps. 

Imidazole competes with nickel for the 

binding to the histidine tagged protein. 

 

After a freeze-thaw cycle the cells 

were broken by sonication. If needed a 

protease inhibitor cocktail was added. 

The cell lysate was spun down with 

18000 rpm for 30 min at 4 °C, 

followed by ultracentrifugation if 

needed. 

The supernatant was loaded on a gravity His-trap (biorad), which has been equilibrated 

before with Binding and Wash Buffer. For one liter expression volume approximately 1 

ml resin was used. The Flow-through was loaded twice onto the column, followed by a 

washing step with at least 5 column volumes Binding and Wash Buffer.  Bound proteins 

were eluted in 5-10 ml Elution Buffer. 

 
 

Fig. 12 Schematized affinity chromatography 

procedure. 
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3.2.5 Buffer Exchange  
 

Depending on the amount of protein for the buffer exchange into TEV Cleavage Buffer 

either HiLoad Desalting (Amersham Bioscience) column on ÄKTApurifier or dialysis 

was used. 

Dialysis of 5-10 ml protein sample was performed in SpectraPor dialysis tubes Mw12-14 

for 1 h at 4 °C against 1 l TEV Cleavage Buffer. 

 

3.2.6 TEV Cleavage 
The tags were removed by tobacco etch virus protease (TEV protease). The cleavage was 

performed at RT for 4 h or at 4°C o/n. The cleavage was performed with in-house 

expressed and purified TEV protease, see TEV preparation. Depending on the protein 

concentration 1-2 % w/w were used for cleavage. 

 

3.2.7 Re-batch 
To separate the cleaved protein from the uncleaved plus TEV protease, the solution was 

run again over a nickel chelating column. His-tagged TEV protease and uncleaved target 

proteins remain bound while cleaved proteins can be collected in the flow through.  

The column was recovered with 5 column volumes Binding and Wash Buffer  

Procedure was as described in section 4324243. 

 

 

3.2.8 Size Exclusion Chromatography 
 
Gel filtration chromatography separates proteins by molecular radii. The sample is 

applied to a column, packed with porous beads made of hydrated, insoluble polymers, 

such as dextran or agarose. 
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Small molecules infiltrate the beads, 

whereas large molecules stay in the 

aqueous environment. Large molecules 

have a smaller volume to pass and 

consequently exit the column earlier than 

small molecules. 

 

The cleaved protein was either loaded on 

gel filtration column directly after TEV 

cleavage, or if needed, on a His-trap 

before. The flow through of the Ni-NTA 

or the TEV cleavage mixture was applied  

to size exclusion column (Superdex75 

26/60, Amersham Bioscience, on 

ÄKTApurifier). 

Analytical size exclusion runs were done to analyze the folding of the proteins and the 

complexes with the peptide, as well as its behavior in different buffers. Analytical size 

exclusion chromatography gives information about the solvation radius from which one 

can deduce the oligomerization state and the monodispersity of the sample. 

 

3.2.9 Concentration of proteins 
 
Proteins were concentrated in millipore concentrators or dialysis, respectively.  

Dialysis tubes were incubated several minutes in dH2O. The filled dialysis tube was 

placed in a plastic tray filled with PEG20000. Both, Millipore concentrator membranes as 

well as dialysis tubes were rinsed with 20 % galactose prior usage to prevent binding of 

highly sticky proteins to the membranes. 

 

Fig. 13 Schematized gel filtration (size 

exclusion) chromatography. 



 52

 

3.2.10 Complex Formation 
 

Fractions from preparative gel filtration containing pure fusion protein were collected and 

pooled, having a approximate concentration of 0.1 mM. The lyophilized peptide of the 

neck was added directly into the solution of the fusion protein EF34 in molar ratios 1:2  

(EF34:neck). The complex was incubated 30 min at 4 °C prior to further analysis. 

 

3.2.10 Preparation of recombinant TEV- protease 
 
TEV plasmid was transformed via heat shock transformation into BL21 [pLysS]. 

It was started with a 5 ml o/n culture in Kan/Cam LB 1% glucose. 

1l Kan/Cam LB were inoculated with o/n culture and grown to OD600 0.6 at 37°C. 

The culture was chilled to 25 °C and induced with a final concentration of 0.5 mM IPTG.  

Cells were harvested after 6-12 h and re-suspended in TEV Lysis Buffer 10 ml per 1g wet 

weight. 

Re-suspended cells were frozen at -20 °C and sonicated after thawing until a reduced 

viscosity was obtained. 

Cell lysate was centrifuged at 20500 rpm for 30 min at 4 °C. 

Supernatant was decanted on with TEV Lysis Buffer equilibrated Ni-chelate column with 

around 1.5 ml of resin. 

The flow-through was reloaded twice in the column before the washing steps have been 

carried out with 10 column volumes of TEV Wash Buffer I/II/III.  

It was eluted with 5 column volumes of TEV Elution Buffer. 

Protein concentration was assessed by spectro-photometry at 280nm 

The sample was diluted with 50 % glycerol to a final concentration of 1 mg/ml, shock 

frozen in liquid nitrogen and stored at -20 °C. 
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3.3 Analytical Methods 
 

3.3.1 Determination of protein concentration 
 
Protein concentration was determined by measuring the absorbance of the in 6 M 

Guanidine-HCl denatured protein at 280 nm. 

Alternatively Lowry method was used (Lowry, Rosebrough et al. 1951). 

 

3.3.2 SDS-PAGE 
 

The gels were run at 150-200V for 30-45min. Visualization of proteins was done with 

Coomassie Stain or the more sensitive Zn- Imidazole- Staining or they were used for 

Western Blotting. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 14 Protocols for SDS-PAGE gel casting 
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3.3.3 Tricine-SDS-PAGE 
 

This special kind of SDS-PAGE is commonly used for separating proteins in the mass 

range of 1-100 kDa. This can be extremely useful for analyzing complexes containing 

small peptides. For separating EF34 (8 kDa) and the bound neck (3 kDa) a 16 % 

separation gel supplemented with urea overlaid with 10 % spacer gel was used. 

An initial voltage of 30 V was used until the whole sample had entered the stacking gel; 

the remaining run was done with 90 V. (Schagger 2006) 

The gel was washed several times with dH2O to remove SDS which prevents proper 

Coomassie staining. The tricine gel was fixed in a solution containing 50 % methanol, 

10% acetic acid, 100 mM ammonium acetate, stained and de-stained with solutions 

without methanol to increase the sensitivity of the Coomassie staining.  

 

3.3.4 Coomassie- Staining  
Coomassie binds at acidic environment to the positive charged amino acids lysine, 

histidine and arginine. In the rest of the gel Coomassie diffuses out when treated with de-

staining solution. Around 100ng /band can be detected.  

For buffers and solutions see section 2.4. 

Gel was rinsed a few seconds with water, stained 5-10 min and treated with de-staining 

solution for 20-50 min. 

 

3.3.5 Imidazole- Zink- Staining 
 
This reverse staining method is around 10× times more sensitive than Coomassie staining 

and much less time consuming than silver staining.  

The method exploits the ability of proteins to bind Zn2+ and of imidazole to react with 

unbound Zn2+ to produce insoluble zinc- imidazolate. 
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The background of the gel is therefore deep- white while the protein bands are 

transparent. 

The gel was rinsed in dH2O for a few seconds and equilibrated in 100 ml 0.2 M 

imidazole solution for about 30 min for a 15 % SDS PAGE. The solution was discarded 

and the gel was stained in 100 ml 0.3M ZnCl2 solution. Stained gel was stored in dH2O. 

 

3.3.6 Western Blot  
 
Western blotting is a method to detect a specific protein within a protein mixture.  

It possesses incredible sensitivity. In fact it is possible to detect 0.5-1 ng protein by 

immunoblotting!  

Before blotting the protein mixture is separated by SDS PAGE.  Subsequently the protein 

is transferred onto a nitrocellulose membrane. For this procedure, an electric current is 

applied to the gel so that the separated, negatively charged proteins transfer through the 

gel onto the membrane (stationary phase).  The pattern stays the same as on the poly- 

acrylamide gel.  Proteins are bound through hydrophobic interactions to the nitrocellulose 

membrane 

A SDS PAGE is blotted on a nitrocellulose- membrane. With antibodies a special protein 

or a part of it can be detected. 

 

1. Run one gel for Western blotting and one for Coomassie- staining  

2. Equilibrate a suitable size of membrane and soak 2 sponges and 2 pieces of 

filterpaper in Transfer Buffer (Touch the membrane only with tweezers) 

3. Now build the Transfer- “Sandwich” beginning from the anode in the following 

order together:  

a. Sponge 

b. Filter 

c. Gel  

d. Membrane 

e. Filter 

f. Sponge 
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            The proteins travel from the cathode (black) to Anode (red). 

 

4. Place the cassette in the holder with ice cold Transfer Buffer and run the blot for 

1h at 100V while stirring; disassemble the sandwich and stain the gel as a transfer 

control 

5. Block the membrane at least for one hour in 10-20ml in Blocking Solution  

6. Wash 3×10min. in 20ml TBST 

7. Incubate for 1h  with 1st antibody (anti- his- tag antibody) 

8. Wash 3×10min. in 20ml TBST 

9. Incubate for 1h with 2nd antibody 

10. Wash 3×10min. in 20ml TBST 

11. Develop the blot in 10ml Development Buffer containing 100µl NBT (stored on –

20°C) and 100µl BCIP (stored on –80°C)  

12. Shake gently till the colour develops and the wash with water to stop the reaction 

 

3.3.7 Ni-NTA on-Column Binding Studies  
 
In order to investigate complex formation between two putative interaction partners, 

binding studies were carried out. 

 
A histidine-tagged protein, thought to complex with a certain interaction partner was 

loaded to a gravity Ni-NTA equilibrated with Binding Buffer. After a washing step with 5 

column volumes of this buffer the putative interaction partner (untagged) was loaded on 

the column. After 1 h incubation at room temperature or 4 °C, the flow through was 

collected and another washing step was carried out. The on-column formed complex was 

eluted with Elution Buffer, collected and analyzed. Alternatively, instead of eluting the 

complex an on-column TEV protease cleavage was performed. For this purpose 1 % w/w 

of TEV protease was added, incubated 4 h at room temperature, before the flow through 

was collected. 

All fractions were collected and analyzed by 15 % SDS PAGE gels. 
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3.3.8 Complex analysis 
 

The complex was freshly formed as described in section  

After 30 min incubation at 4 °C, the complex was applied to analytical gel filtration. 

This was done at pH 6 (20 mM Bis-Tris buffer pH 6, 50 mM NaCl), at pH 7.5 (20 mM 

Tris pH 7.5, 50 mM NaCl) and at pH 8 (20 mM K-Phosphate pH 8, 50 mM NaCl) and 

with varying salt concentrations from 20 mM to 200 mM NaCl. In all these conditions 

also the single components of the complex were tested to run on analytical gel filtration. 

This was done to analyze the complex in terms of which conditions are stabilizing it 

which may allow conclusions about the binding mechanisms. 

The procedure was repeated with buffers as described above but supplemented with 5 

mM 2-mercaptoethanol. The sample of the complex itself was incubated 15 min on 4 °C 

after 10 mM 2-mercaptoethanol was added. An aliquot was taken and immediately tested 

on analytical gel filtration. The rest of the sample was incubated for 1 hour, 2 hours, and 

over night, respectively, and tested again. 

The fractions of analytical gel filtration were collected and were loaded twice to an 18 % 

SDS PAGE diverging in the sample preparation. One aliquot was mixed with SDS 

loading dye, the other one with 6 % glycerol. 

 
 

3.3.9 Isothermal Tritration Calorimetry 
 
ITC is a technique to study molecular interactions – it can be used to get information 

about stoichiometry (n), binding affinity (Ka), heat of binding (∆H), entropy (∆S) and 

free energy (∆G).  It is also possible to find out the heat capacity of binding (∆C) by 

running three or more measurements at different temperatures:  

∆C = (∆H (T2) -∆H(T1)) / (T2-T1)  

Negative numbers of heat capacity indicate hydrophobic contact formation (energy 

release) and positive numbers for hydrophobic contact breaking.  Another interesting 

assay to study is the involvement of protonation in molecular interactions.  The principle 

of ITC is based upon heat measurements which evolves or absorbs when the protein and a 

hypothetical ligand are mixed.  
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The experimental set up exists of two equal cells, a discoid and a reference cell. The 

reference cell is filled with a buffer; the discoid cell contains the protein solution in the 

same volume and buffer. Before titration the temperature of the two cells is equilibrated. 

The ligand concentration should be between 100-1000 µM in a volume which is enough 

to fill the syringe and carry out 30-40 injections (minimum 320 µl) while the sample 

solution must have a volume of 1.8 ml and a concentration of 10-100 µM.  

Important to know is the exact ligand and protein concentration before starting the 

experiment. The ratio in terms of molar concentration between protein and ligand should 

be around 1:10. An additional requirement is that both components are in the same buffer 

to avoid high signals due 

to high heat of dilution.  

 

The ITC machine 

[Fig.15] measures 

temperature differences 

during titration between 

equilibrated cells. A so 

called cell feedback 

(differential power) is 

applied to maintain 

identical temperatures 

between the cells; therefore a positive feedback is a sign for an endothermic reaction 

(ligand binding requires energy) while a negative feedback allows the conclusion of an 

exothermic reaction. Thus absorption of heat is counterbalanced by an input of cell 

feedback power and the evolvement of heat leads to cooling the system. The thermal 

energy, ∆H is measured in µcalorie.  

Buffer exchange of EF34 and the neck was done on HiPrep Desalting column 

(AmershamBioScience) into ITC buffer (50 mM K-phosphate, 50 mM NaCl). The neck 

at a concentration of 0.125 mM was titrated into a 0.025 mM EF34 solution. 

 

 

Fig. 15 ITC device 
 (left) sample cell is filled and is equilibrated to working temperature. 
(right) ligand is titrated to the macromolecule in the sample cell and 
temperature changes due to heat of dilution and exothermic or 
endothermic complex formation reaction are measured.  
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3.3.10 Circular Dichroism Spectroscopy 
 

This spectroscopy method measures the differences in absorption of left-handed and 

right-handed polarized light. By usage of the “near-UV” spectral region (190-250 nm) 

information about the tertiary structure of a protein or conformational changes upon 

protein-protein interaction, respectively, can be obtained. The chromatophores at these 

wavelengths are aromatic amino acids and disulfide bonds. The signal is much weaker 

compared to “far-UV” measurements, therefore around 1 ml of protein sample with a 

concentration from 0.25- 2.5 mg/ml is needed. 

The secondary structure of a protein can be analyzed by “far-UV” spectra (250-350 nm). 

At these wavelengths the 

signal obtained is due to the 

absorption of the peptide 

bond.  

By virtue of the shape and 

magnitude of the obtained CD 

spectrum it can be concluded, 

whether the protein is well 

folded and if it contains alpha 

helices, beta sheets or random 

coils and to which extent. 

To record a far UV CD 

spectrum 20-200 μl solution 

containing protein 50 μg/ml – 1 mg/ml are needed. One should avoid using buffers with 

high absorbance at the used wavelength like imidazole, DDT or histidine. Tris - buffers 

can cause low signal to noise ratios and therefore their usage is now recommended 

(Berova 2000). 

EF34 was dialyzed into CD buffer (50 mM K-phosphate, 50 mM NaCl) and 

measurements were done at a concentration of 0.03 mM. 

 

Fig. 16 Examples for the typical profiles of a “far UV” CD 

spectra of alpha-helix (black), beta-strand (blue) and 
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Fig. 17 Standard Thermofluor melting curve (kindly provided by Patrizia 

Ambrusci) 

 

 

3.3.11 Thermofluor 
 
 
Thermofluor is a methodology which provides the possibility to investigate a buffer 

system in which a protein is most stable. 

This is done by the use of a special fluorescence dye (Sypro Orange), which is quenched 

by water molecules when unbound. It is added to a protein solution which is heated 

iteratively, resulting in successive unfolding of the protein and the exposure of its 

hydrophobic patches. The dye binds to these patches whereby its fluorescence signal 

increases. The 

more stable a 

protein behaves in 

a certain buffer 

condition, the 

later it will start to 

unfold in the 

heating process 

and the later a rise 

of the 

fluorescence 

signal will be 

observed. Therefore it can be stated, that the most right shifted curve in the thermofluor 

spectrum corresponds to the buffer stabilizing the protein analyzed best. (Ericsson, 

Hallberg et al. 2006).  

This experiment was done in a Bio Rad Real time PCR machine in 96 well plates. Water 

was added instead of protein in the control samples. Every condition was done in three 

replicates to cancel pipeting mistakes. Each well was set up as follows, performing the 

experiment either in 25 μl or 15 μl. 
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The first experiments run were dye:protein titration 

studies, to determine the ideal ratio between dye- and 

protein concentration. 

The next step was a salt-pH screen [Fig. 18] with free 

EF34 as well as EF34 in complex with the neck. The 

screen with free EF34 should suggest the best buffer 

conditions to keep EF34 as well as first hints concerning 

crystallization conditions. By a thermofluor screen with 

the complex one should be able to determine the same 

parameters as for the free protein. Moreover it can provide information about the stability 

of the complex, and maybe also about the way, the complex is formed. 
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pH 8 
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200 mM NaCl,  
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pH 8 
 

20 mM Tris, 
100 mM NaCl,  
2 mM bME 
pH 8.5 

20 mM Tris, 
100 mM NaCl,  
2 mM bME 
pH 8.5 
 

20 mM Tris, 
200 mM NaCl,  
2 mM bME 
pH 8.5 

20 mM Tris, 
200 mM NaCl,  
2 mM bME 
pH 8.5 

20 mM Tris, 
200 mM NaCl,  
2 mM bME 
pH 8.5 

 

25 μl set up  

12.5 μl buffer 

5 μl protein (2 -3.5 mg/ml) 

7.5 μl dye solution 

15 μl set up 

7.5 μl buffer 

3 μl protein (2 -3.5 mg/ml) 

4.5 μl dye solution 

Fig.18 Thermofluor salt-pH screen set up for complex analysis of EF34/neck 
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3.3.12 Dynamic Light Scattering 
 
This technique is used to determine molecular particles size.  

It is based on detecting random diffusive motion of particles (Gillespie 1996) suspended 

in liquid. In principle DLS measures how fast particles move (diffuse) through solution.  

The sample is illuminated by a laser beam (monochromatic beam of light) and in the 

manner the light is scattered it reveals average particle radius.  A very important 

parameter is the change in momentum (including speed and direction) of the particles.  

The radiation of the laser-illuminated particles is scattered to a detector and as a 

consequence of different particle detector distances within time the intensity of arriving 

photons will fluctuate. The intensity of all the scattered wavelets have a value I(t) at time 

t. A little time later- delay of time (τ)- the value will be I(t + τ) because the intensity on 

the detector will be different when the particles have a new position.  The general form of 

the function for monodisperse particles is  

 g(1)(τ) = e -DQ2τ 

D stands for the diffusion coefficient, from which particle sizes can be determined after 

Stokes-Einstein equation: D = KBT/6πŋa 

KB = Boltzmann constant, T = temperature in Kelvin, ŋ = viscosity of the solvent, a = 

radius of the beads. 

 

Before starting the experiment the samples must be prepared to have a concentration 

between 0.1-1 mg/ml.  The concentration is important because too many molecules in 

solution may interact with each other and show aggregation pattern even if there is none 

while lower concentrations will not scatter enough.  

The count rate panel displays a graph in which the y-axis shows the count rate in 

kcounts/sec and the x-axis shows the seconds since the start of measurements. The counts 

should not be above 8000 kcounts/sec, if so, the sample must be further diluted.  

The measurement panel displays a graph in which the y-axis displays the hydrodynamic 

radius in nm and the x-axis the seconds since the start of measurements. Approximately 

20-30 measurements should be taken for accurate data. If many bars become red the 

sample might be not clean enough or it is an indication for the baseline of the 

measurement exceeds the data collection tolerance. That indicates that the protein is 
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aggregated and not useful for crystallization. Be aware that dust or other impurities will 

affect your data. Clean each time before starting the experiment cuvettes thoroughly and 

if necessary filter the protein solution before applying it to the measurements. Avoid air 

bubbles when filling the protein into the cuvette.   

 
 

3.3.11 Photo Cross-linking 

 
One of the most useful photo cross-linking agents in biology are benzophenones (Chin, 

Martin et al. 2002). Upon excitation at 350-360 nm, wavelengths that avoid protein 

damage, they react with otherwise inactivated carbon-hydrogen bonds (Galardy, Craig et 

al. 1973). An orthogonal aminoacyl-tRNA Synthetase/tRNA pair was evolved, which 

allows the in vivo incorporation of p-bezoyl-L-phenylalanine (pBpa) into E.coli proteins 

in response to the amber stop codon TAG. Together with a vector providing this mutated 

construct another vector containing several repeats coding for an adequate tRNA and 

Methanococcus jannaschii tyrosyl-Bpa-tRNA synthetase are co-transformed into an E. 

coli strain of choice.   

 

 

 

The residues of choice were mutated to triplets 

coding for the artificial amino acid pBpa by the amber 

stop codon UAG in four different residues each 

containing one mutation (Xie and Schultz 2005; Wang, 

Xie et al. 2006). These constructs were co- transformed 

together with pSup-BpaRS-6TRN, which is coding for tRNA and tRNA-synthetase for 

incorporation of pBpa into Rosetta. 

For positive control the same was done with the vector pSup-MjTyrRS-6TRN [Fig. 20], 

which results in incorporation of tyrosine at the mutated site (Chin, Martin et al. 2002; 

Ryu and Schultz 2006). 

Fig. 19 Structure of p-benzoyl-L-phenylalanine 
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Expression screen were done in 

GMML and LB media containing 1 

mM pBpa, at different temperatures 

and varying IPTG concentrations. It was found that LB media at 30 °C o/n gave the best 

results. Expression and cross-linking studies were performed according to (Farrell, 

Toroney et al. 2005). 

Within this study the optimal way of photo cross-linking for the present complex was 

investigated. Two different devices, BioDoc IT-Sytem UV Transilluminator UVP and 

BLAK-Ray UVP Model B100 AP were used for cross-linking and compared. Due to the 

construction of the facility, for BioDoc IT-Sytem UV Transilluminator UVP it was not 

possible to use a cooling system. For BLAK-Ray UVP Model B100 AP a thermo-cycler 

was used for cooling the sample down to ~ 12 °C. UV exposure was accomplished in 2 

ml eppendorf tubes and, in order to minimize damaging effects of short-wavelength UV, 

polystyrene Petri dish lids or Pyrex glass was used as filter (Farrell, Toroney et al. 2005).  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 20 Vector pSup-MjTyrRS-6TRN, 

providing tRNAs for translation of amber 

stop codons to tyrosine and adequate 

tRNA synthetase 
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3.4 Crystallization 
 

3.4.1 Mechanisms of protein crystallization 
 

  Under certain circumstances protein solidify to form crystals. Crystals are formed as the 

conditions in a supersaturated solution slowly change. A protein to crystallize must 

overcome an energy barrier [Fig.21] analogous to that for conventional chemical 

reactions.  

 

 

 

In any case, if changes in the 

crystal drop are observable, like phase separation, precipitant formation et cetera, one can 

conclude, that the protein is about by some means ore other to overcome an energy 

barrier. 

 

 

The solubility of proteins can 

be represented in phase 

diagrams. The phase diagram plots the solubility curve of a protein. The horizontal axis 

shows the parameter being varied (usually precipitant concentration) and the vertical axis 

shows the protein concentration. 

 

Fig 22 Phase diagram showing the 

solubility curve of a protein (from: 

‘Crystallography made crystal clear’, 

Gale Rhodes) 

Fig.21 Energy barriers a protein has to 

overcome on its way to crystallization. 

(from: ‘Crystallography made crystal 

clear’, Gale Rhodes) 
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Saturation occurs when the rate of loss and gain of both the solid and solution phases of 

the protein are equal, and the system is in equilibrium.  

Salting-out is seen in [Fig. 22] on the right hand side of the diagram where there is a 

reduction in protein solubility as the concentration of salt increases. Salting-in is seen on 

the left hand side of the diagram where there is an increase in protein solubility as the 

concentration of salt increases. 

 

3.4.2 Set up of crystal drops and screening 
 
There are several ways to grow crystals of proteins. The one which was used in this work 

is vapor diffusion. 

In a vapor diffusion experiment, small volumes of precipitant and protein mixed together 

and the drop equilibrated against a larger reservoir of solution containing precipitant or 

another dehydrating agent [Fig. 23]. 

 

 

 

The main bottleneck a crystallographer has to 

struggle with is to grow crystals of the protein 

of interest. Therefore one has to screen a lot 

of conditions in order to find the ones which yield crystals. 

 

Incomplete factorial screening [Fig.24] is a method of 

sampling parameter space evenly and efficiently. Factor 

levels are chosen randomly and then balanced to achieve 

uniform sampling.  

Fig. 23 Hanging drop vapor diffusion (from: 

‘Crystallography made crystal clear’, Gale Rhodes) 

Fig. 24 Graphic presentation of incomplete factorial screening (from: 

‘Crystallography made crystal clear’, Gale Rhodes) 
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All two-factor interactions are sampled as uniformly as possible. Sparse Matrix screens 

[Fig. 25] involve an intentional bias towards combinations of conditions that have worked 

previously. 

 

 
 
 

3.4.3 Data collection 
 
When X-rays are beamed at the crystal, electrons diffract the X-rays, which causes a 

diffraction pattern. Using the mathematical Fourier transform these patterns can be 

converted into electron density maps. 

These maps show contour lines of 

electron density. Since electrons more 

or less surround atoms uniformly, it is 

possible to determine where atoms 

are located [Fig.26].  

To get a three dimensional picture, 

the crystal is rotated while a 

computerized detector produces two 

dimensional electron density maps for 

each angle of rotation. The third dimension comes from comparing the rotation of the 

crystal with the series of images. Computer programs use this method to come up with 

three dimensional spatial coordinates. 

 

3.4.4 Cryo-conditions 
 
In order to avoid extensive radiation damage, the crystals need to be frozen upon 

exposure to the X-ray beam. To prevent the crystal to crack and the formation of ice 

Fig. 26 Data collection of a protein crystal by 
exposing it to an X-ray beam (from: ‘Crystallography 
made crystal clear’, Gale Rhodes) 

Fig. 25 Graphic presentation of sparse matrix screening (from: 

‘Crystallography made crystal clear’, Gale Rhodes) 
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rings, the crystal has to be in a suitable cryo-solution. The optimal case is, if the mother 

liquid of the crystal contains already substances preventing formation of ice crystals, like 

MDP, PEG <3000, or glycerol. If one of these substances or something comparable is not 

present in the mother liquid, it has to be added into the cryo-solution. 

 

3.5 Nuclear magnetic resonance 

Here we stray from analogy with our senses. NMR uses much more indirect methods to 

determine 3D structure. It is based on the quantum mechanical properties of atoms, 

particularly spin, and it determines information about atoms from the fact that their local 

environment influences how they respond to applied magnetic fields. The kind of 

information that can be obtained includes the measurement of inter-atomic distances, and 

features of the spectrum (coupling constants) that can be interpreted in terms of torsion 

angles.  

One dimensional NMR is the most used structural determination methodology in 

chemistry. It is a fast and efficient way to investigate whether a protein is well folded or 

not. The chemical shift is measured in comparison to a reference substance. The spectra 

are recorded in a way, that coupling over three bonds at maximum are visible (which 

corresponds to a leap from one CH-bond to the adjacent). The atom in the protein shows 

a characteristic shift. The outcome of this is a separation of the signal characteristic for 

the atom’s environment in the protein. The distance between the smaller peaks 

corresponds to the coupling constants. Via coupling constants one can assess information 

about molecular structures. It should be mentioned, that these couplings are visible 

between C-H bonds only and are interrupted by heteroatoms like nitrogen or oxygen. 

For recording a 1D NMR-spectra at least 500 μl of 300 μM protein solution in phosphate 

buffer is needed. 
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3.6 Molecular Dynamics Simulation 

 
A principal tool in the theoretical study of biological molecules is the method of 

molecular dynamics simulations (MD). This computational method calculates the time 

dependent behavior of a molecular system by applying Newton’s equation of motion to 

the movement of proteins. MD simulations have provided detailed information on the 

fluctuations and conformational changes of proteins and nucleic acids. These methods are 

now routinely used to investigate the structure, dynamics and thermodynamics of 

biological molecules and their complexes. They are also used in the determination 

of structures from x-ray crystallography and from NMR experiments. 

Energy minimization is necessary whenever the protein is changed and/or distorted 

manually. It can repair distorted geometries by moving atoms to release internal 

constraints. 

 

In order to obtain mean distances between the C-beta atoms of the neck helix structure 

and 1H8B, molecular dynamics (MD) simulations were carried out with the 

CHARMM19 all hydrogen protein force field (MacKerell, Bashford et al. 1998) in 

CHARMM version c32a2 (Brooks, R. Bruccoleri et al. 1983). The initial structure was 

obtained by creating an ideal helix with the amino acid sequence of the neck protein 

utilizing WHAT IF 6.0. Following an energy-minimization, a MD of 200 ps was 

performed. Based on the positions of the C-alpha atoms, the neck peptide was superposed 

(Maiti, Domselaar et al. 2004) with Zr-7 of titin in PDB-Structure 1H8B, which was 

deleted thereafter to yield the receptor with the inserted neck peptide only. The following 

simulations were set up based on this complex in two stages: In the first stage, the initial 

system was heated to 900 k for a short while (20ps) in order to overcome local minima, 

while still conserving the general structure. In the following production phase, a 10 ns 

trajectory was written. The whole process was performed eight times from the initial 

structure with different random seeds for the generation of initial velocities. Distance 

matrices between the C-beta atoms were calculated for the endpoints of each trajectory 

and weighted according to their total energy. The simulations of the complex were 
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carried out with Langevin dynamics, thus granting control over the temperature. The 

friction coefficient was 25 ps-1 for all atoms and random forces were applied according to 

the target temperature of 300 K. To justify the time step of 2fs, the mass of all hydrogens 

was set to 10 amu. To include the effects of solvation, the EEF1 as solvation model was 

used (Lazaridis and Karplus 1999) and all energy parameters and modifications to the 

force field were set in accordance with this protocol. Molecular dynamics simulations 

were done by Gerhard König. 
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4.0 Results and Discussion 
 

4.1 Wild type CaM and EF34 domains 

 

4.1.1 Cloning 
 
The constructs of ABD-R1, as well as EF34 and CaM were a generous gift of Anita 

Salmazo. CaM and ABD-R1 were cloned in pETM20 (TrxA-His6, EF34 in pETM13 

(GST-His6). As it turned out to be impossible to separate cleaved TrxA from CaM, it was 

recloned into pETM30 (GST-His6). 

 

 

 

Gradient PCR of CaM was performed at temperatures 55°C, 60°C and 65°C. As the 

agarose gel shows [Fig. 27], 60 °C is the optimal annealing temperature for the primer 

used. 

 

4.1.2 Expression and Purification of CaM 
 
The native C-terminal alpha-actinin constructs were transformed and expressed in E.coli 

strain Rosetta pLysS, since it was found, that the constructs contain rare codons, which is 

served best in this strain of choice. EF34 and CaM fusion proteins were expressed and 

Fig. 27 Gradient PCR of CaM at temperatures 55°C, 

60°C and 65°C 
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cells were harvested as described in section 3.2.2. 

 

Purification of CaM 

  

 

(1) Flow through 

(2) Wash with Binding and Wash Buffer 

(3) Elution 

(4) TEV cleaved fraction  

(5) Flow through of TEV cleaved fraction      

The eluate from Ni-NTA purified CaM was subsequently dialyzed against TEV Cleavage 

Buffer. 1% v/v TEV protease was added to the dialyzed sample and left to incubate 

overnight at 4oC or 4 h at room temperature. After TEV digestion the sample was either 

re-applied to Ni-NTA resin in a re-batch protocol or directly loaded on gel filtration 

column. The flow-through from the re-batch was applied to gel filtration column. 

Fig. 28 Ni-NTA gravity column of CaM-domain. 

Fig. 29 Size exclusion chromatography diagram of CaM after TEV cleavage run on Superdex75 

26/60. The abscissa shows the elution volume in ml and the ordinate the absorption at 280 nm in 

mAu
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The fractions of gel filtration 

[Fig 29] were collected and 

analyzed on 15 % SDS PAGE 

gel. 

  

 

The pure protein was collected. As shown on the gel [Fig. 30] CaM degrades very easily. 

Since it was found that the C-terminal domain of alpha-actinin attaches strongly to any 

kind of membrane or surface, protein concentration was avoided if possible to prevent 

loss of protein. If protein concentration was necessary, membranes used were treated as 

described in method section 3.2.9. The yield of 1 l expression culture was around 20 mg 

of pure CaM. 

Purity and behavior of the protein was tested on analytical gel filtration Superdex 75 

10/300 GL [Fig. 31]. 

Fig. 31 Analytical gel filtration of CaM. The abscissa shows the elution volume in ml and the ordinate 

the absorption at 280 nm in mAu.

Fig. 30 SDS-PAGE gel of gel filtration 

fractions of CaM. 
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Fig. 33 SDS-PAGE gel of Ni-NTA fractions after TEV cleavage 

 

Due to the fast degradation of CaM, we focused our work on generation of 

EF34 construct. 

4.1.3 Expression and Purification of EF34 
 
 Expression and purification procedure was the same as described before for CaM. 

 

 

(1) Insoluble fraction 

(2) Flow through 

(3) Wash 

(4) Elution 

The yield of expressed protein was around 8 mg/l culture 

volume. TEV protease cleavage conditions were found the best 

over night at room temperature. A reasonable amount of reducing agent turned out to be 

crucial. Later on in this study evidence was found that EF34 dimerizes via disulfide 

bonds. The dimerization seems to result in a steric hindrance for the TEV protease 

cleavage, since the yield of cleaved protein was very poor in the absence of reducing 

agents. Of course the GST tag and the disulfide bonds within the TEV protease enhance 

this effect. 

 

 

(1) Control (before column) 

(2) Flow through 

(3) Elution 

It is clearly visible in [Fig. 33] comparing lane (1) before the 

column and lanes (2) and (3), that a high fraction of protein is 

lost in the affinity column. For this reason, this step was skipped and the sample was 

applied to gel filtration right after TEV protease cleavage [Fig. 34]. 

 

 

Fig. 32 SDS-PAGE gel of Ni-NTA fractions of EF34 
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Fig.34 Size exclusion chromatogram of EF34 after TEV cleavage. The abscissa shows the elution 

volume in ml and the ordinate the absorption at 280 nm in mAu. 

 

 

 

Fractions of the analytical gel 

filtration were loaded on 15 % SDS 

PAGE gel for analysis [Fig. 35] 

Lanes (1-7) contain mainly contaminants and rest of the uncleaved fusion-protein. GST 

eluted in the fractions (8-11). The pure fusion protein was collected from fractions (13) – 

(16). 

 

As described above, also EF34 was only concentrated if it could not be avoided, since we 

experienced an extreme loss of protein during concentration procedures due to EF34’s 

high affinity to any surfaces. 

 

 

Fig. 35 SDS PAGE analysis of size 

exclusion fractions of EF34.  
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4.1.4 Biophysical Analysis of EF34 
 

4.1.4.1 Analytical gel filtration 
 
For preliminary analysis pure EF34 was applied on analytical size exclusion column 

Superdex75 10/300 GL [Fig. 36]. On the base of the shape of the peak conclusions can be 

drawn concerning the folded state of the protein. Moreover it may be visible if the protein 

existed in different 

structural species by 

means of shoulders of a 

peak. 

 

4.1.4.2 1D-NMR of EF34 
A 1D-NMR spectrum of EF34 was recorded to assess whether the protein is in a well 

folded state. Generally speaking, the spectra [Fig. 37] show all characteristics of a well 

folded protein. Nevertheless the amide bonds should be visible in much higher peaks than 

obtained in this spectrum. Additionally, peaks caused by the methyl groups which was 

expected as well, is lacking. Interpretation of this spectrum is quite delicate since the rest 

of it argues for a well folded protein. Therefore this spectrum should be regarded as a 

preliminary result, further analysis would be necessary 

The signal of PEG is present in the spectrum due to the fact, that the protein has been 

concentrated via dialysis against PEG, as described in section 3.2.9. 

 

Fig. 36 Analytical gel filtration 

chromatogram of EF34. The 

abscissa shows the elution 

volume in ml and the ordinate 

the absorption at 280 nm in 

mAu. 
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4.1.4.3 Circular Dichroism of EF34 
 
Since the 1-D NMR spectrum did not give unequivocally information on the folded state 

of EF34, a “far UV” CD spectrum was recorded [Fig. 38]. 

 

 
 
 
 
 

 

 

 

 

 

 

Fig. 37 EF34 1-NMR spectrum. The chemical shift is shown on the abscissa in 
ppm.  

Fig. 38 CD spectrum of EF34. The ellipticity in mdeg is shown on the ordinate 

versus the wavelength in nm on the abscissa. 
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CD measurements were repeated 5 times and averaged, resulting in a spectrum 

confirming the expected helical secondary structure content of EF34. 

 
 

4.2 Complex formation of EF34 with the neck and its analysis 
 

4.2.1 Analytical gel filtration of the EF34/neck complex 
 

Complex was formed as described in section 3.2.10.  

Analytical size exclusion chromatography was performed to investigate the complex, its 

formation and behavior, respectively. As standards ovalbumin, chymotrypsinogen and 

RNaseA were used [Fig. 39]. 
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Fig. 39 Standard run in 20 mM Tris pH 8, 200 mM NaCl, 2 mM 2-mercaptoethanol;  

 (red) Ovalbumin 43 kDa (10.25 ml elution volume) 

          Chymotrypsinogen 25 kDa (12.21 ml elution volume) 

(blue) RNAseA 13.7 kDa (13.11 ml elution volume) 

The abscissa shows the elution volume in ml and the ordinate the absorption at 280 nm in 

mAu. 
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First, the single components of the 

complex were applied to analytical 

gel filtration to provide comparison 

data [Fig. 40], [Fig. 41]. 

According to elution volumes 

compared to those of the standards, 

13.43 ml for EF34 and 14.0 ml for 

the neck, none of the components 

runs as a monomer. EF34 seems to 

form a dimer [Fig. 41], the neck 

even a tetramer [Fig. 40].  

These finding were confirmed later 

on in this work with the 2-

mercaptoehtanol study. 

 Nevertheless, the two components 

are forming a 1:1 complex according 

to their gel filtration profile when 

mixed, eluting with 11.99 ml [Fig. 

42], which corresponds to the 

molecular weight of a dimer of EF34 

in complex with the neck (19 kDa). 

The gel filtration was repeated with varying salt concentrations (20 mM, 50 mM, 100 

mM and 200 mM NaCl) which did not have any visible effect on the complex. 

 

 

 

 

 

Fig. 41 Analytical gel filtration of EF34. The abscissa 

shows the elution volume in ml and the ordinate the 

absorption at 280 nm in mAu. 

Fig. 40 Analytical gel filtration of the neck. The abscissa 

shows the elution volume in ml and the ordinate the 

absorption at 280 nm in mAu. 
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Moreover, when this complex is stored at 4 °C for a couple of days, an additional peak in 

analytical gel filtration arises at 10.39 ml [Fig. 43], which implies that an additional 

Fig. 43 Analytical size exclusion of EF34-neck complex after 4 days storage at 4 °C. The abscissa 

shows the elution volume in ml and the ordinate the absorption at 280 nm in mAu 

Fig. 42 Analytical gel filtration of the EF34/ neck complex. The abscissa shows the elution volume in 

ml and the ordinate the absorption at 280 nm in mAu. 
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structural species is formed in the sample, which might be a dimer of the complex formed 

before, in other words a tetramer of EF34 bound to a dimer of the neck. 

The peak of unbound EF34 is not visible anymore. The additional peak after storage is 

not observed if EF34 alone is stored at 4 °C. The contrary is the case, when pure EF34 is 

stored at 4 °C - it degrades within a few days. 

 

The fractions loaded on 16 % Tricine 

SDS-Page gel enlightened the processes 

going on [Fig. 44]. It becomes obvious, 

that the additional peak contains a dimer 

of EF34 complexed with the neck. 

(1) Pooled fractions A10-B3 (11.52 ml) 

(2) Neck 

(3) Pooled fractions A1-A9 (10.39ml) 

(4) Sample of EF34-neck complex used for crystallization    

 

It was also found, that upon treatment with 10 mM 2-mercaptoethanol the dimer 

formation of the complex after storage can be reversibly disrupted.  

This fact also explains why 2-mercaptoethanol is essential during purification procedures 

of EF34. When no 2-mercaptoethanol is added in gel filtration buffers, for example, it is 

not possible to separate EF34-GST and the cleaved fusion protein. 
. 

 

4.2.2 2-Mercaptothanol studies 
 
For further investigation of the effect of reducing agents on dimer or tetramer formation 

of the single components and on the complex, a 2-mercaptoethanol assay was performed 

(see section 3.3.8). EF34 and the neck were run separately at pH 6 in analytical gel 

filtration.  

The complex between the two interaction partners was formed and loaded on analytical 

gel filtration after 30 min of incubation at 4 °C and were run at pH 6, which gave the 

Fig. 44 16% Urea-Tricine-SDS PAGE gel of 

fractions of analytical gel filtrations of EF34/neck 
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elution profile in [Fig. 45]. The fractions were loaded twice on 18 % SDS PAGE gel, 

once without reducing agent [Fig. 46a]  and once with 2-mercaptoethanol [Fig. 46b] in 

the loading dye. 

 

Apparently, the reducing environment of 1 M 2-mercaptoethanol in the loading dye 

breaks certain bondings which makes the upper bands in the SDS PAGE gel vanish. To 

lane (13) and (14) the neck alone has been applied. Strikingly, on the gel it seems to form 

a tetramer of approximately 12 kDa. This fact is quite surprising, since the present results 

Fig.45 Complex of EF34 and the neck run at pH 6. The abscissa shows the elution volume in ml 

and the ordinate the absorption at 280 nm in mAu.

Fig. 46a Fractions of analytical gel filtration 

run at pH 6 applied to 18 % SDS PAGE gel. 

Gel was loaded without reducing agents, using 

glycerol only. 

Fig. 46b Fractions of analytical gel filtration 

run at pH 6 applied to 18 % SDS PAGE gel. 

Gel was loaded with 2-mercaptoethanol. 
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imply an interaction via disulfide bonds, but the neck contains only one cysteine. Also the 

lanes (1), (2) and (3), (4), where the size exclusion fractions of the supposed complex 

were applied are hard to interpret. On the one hand, it could be again a tetramer of the 

neck (12 kDa) but also the complex of EF34 and the neck (11 kDa). To identify these 

bands, they were sent to mass spectroscopy analysis. Dimers of EF34, which also 

contains one cysteine residue, are found for sure at around 16 kDa. 

 

The next step was an analytical gel filtration run at pH 6 including reducing agents [Fig. 

47]. The dimers and tetramers disappear, and so does the complex. After 30 min 

incubation the unbound binding partners are found in the fractions. Significantly, upon 

dissociation of the complex two other peaks arise, which do not give any bands when 

loaded on SDS PAGE gel and are therefore not yet identified (elution volumes 17.47 ml 

and 19.01 ml which would approximately correspond to 4 and 2 kDa). 

Fig. 47 Analytical gel filtration of EF34/neck at pH 6 with reducing agents. The abscissa shows 

the elution volume in ml and the ordinate the absorption at 280 nm in mAu. 
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 The procedure has been repeated in pH 8 [Fig. 48]. Remarkably another peak arises at 

pH 8 at 11.23 ml (corresponds to ~20 kDa), which is absent at pH 6 (lanes (1) and (2) in 

[Fig. 49]. Upon addition of 2-mercaptoethanol the complex dissociates and the 

corresponding peaks (12.64 ml and 13.56 ml) vanish after 30 min incubation. Fractions of 

the peak at 12.62 ml were loaded on the gel at lanes (3) and (4), of 13.56 ml at lanes (5) 

and (6) [Fig. 49]. This suggests a quite low stability of the complex as well as of the 

single components at pH 8 in a reducing environment. Upon this dissociation the same 

two peaks arise as is pH 6 (17.5 ml and 19.0 ml), which are probably degradation 

products. Lanes (7) and (8) show EF34 and the neck, respectively. 

Fig.48 Analytical gel filtration of EF34/neck in pH 8 without reducing agents. The abscissa 

shows the elution volume in ml and the ordinate the absorption at 280 nm in mAu. 

Fig. 49a Fractions of analytical gel filtration 

run at pH 6 applied to 18 % SDS PAGE gel. 

Gel was loaded without loading dye, using 

glycerol only. 

Fig. 49b Fractions of analytical gel filtration 

run at pH 6 applied to18 % SDS PAGE gel. 

Gel was loaded with loading dye containing 1 

M 2-mercaptoethanol. 
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4.2.2 Thermofluor measurements of free EF34 and bound to the neck 
 
To determine the optimal buffer conditions for EF34, in which the protein in most stable 

and may form crystals with higher probability, several thermofluor experiments were 

done. 

Many attempts were done to record melting curves from EF34, without any success. Only 

when the tests were run on the complex EF34-neck, some curves with expected shape 

could be obtained. 

First of all varying dye-concentrations were titrated against increasing protein 

concentrations to determine the optimal [dye]:[protein] ratio. 

Dye dilutions used were (pink) 1:1, (green) 1:100, (blue) 1:200, (grey) 1:400, (yellow) 

1:800. Every dye dilution was tested with three different protein concentrations: 0.8 

mg/ml, 1.5 mg/ml and 2 mg/ml. The best shift was obtained by a dye dilution of 1:100  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with a final protein concentration of 1.5 mg/ml (green curve starting at 7000 RFU) [Fig. 

50]. This ratio was used for all following thermofluor screens [Fig. 51]. 

Possible explanations for this phenomenon is that already in the folded state large 

hydrophobic patches are exposed to the surface. Therefore the dye can bind in the folded 

Fig. 50 Thermofluor measurements of the EF34-neck complex. The temperature is 

given in Celsius on the x-axis, the fluorescence signal in RFU on the y-axis. 
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state to the protein and cause high fluorescence signal already at the very beginning of the 

experiment. But the lack of another raise of fluorescence during the unfolding of the 

protein disproves this theory. On the other hand the shape of the profile of the pH-salt-

screen with the EF34-neck complex shows two weak maxima at around 55 °C and 90 °C 

[Fig. 51]. This fact could be interpreted by some dye binding during unfolding of the 

protein causing a kind of melting curve. The first maxima would then indicate the 

dissociation of the complex, the second the unfolding of EF34. Nevertheless, these curves 

range in between a very weak signal to noise ratio and are therefore not highly reliable.  

 

 

 

 

 

 

 

 

 

 
 
 

 

 
 
 
 
 
 
 
 

Fig. 51 Thermofluor salt-pH screen of EF34-neck complex. The temperature is given in 

Celsius on the x-axis, the fluorescence signal in RFU on the y-axis. 
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4.2.3 ITC measurement of EF34 and the neck 
 
The present ITC result suggests a very high binding constant between EF34 and the neck 

[Fig. 52]. The fact, that only a single peak representing the binding of the neck to EF34 

could be obtained, suggests, that the EF34 solution was saturated already after the first 

titration step. Therefore 

this has to be regarded as a 

preliminary result and 

another experiment with a 

ligand solution 5 – 10 

times diluted would be 

necessary in order to gain 

more exact data. 

Nevertheless, the binding 

constant for ABD-R1 and 

CaM of 568 nM which was 

found in a former study 

(Young and Gautel, 2000) 

let us expect also a high 

binding constant for EF34 

and the neck. The 

calculated Kd from the 

present data is around 100 

nM, although with a single data point this value cannot be regarded as precise. Moreover 

a quite high heat of dilution was observed, causing the smaller peaks in the ITC spectrum. 

The negative numbers of heat capacity indicate hydrophobic contact formation (energy 

release), confirming the hypothesis that the hydrophobic patch in EF34 is involved in 

complex formation. 

Fig. 52 EF34 and neck interaction demonstrated by isothermal 

calorimetry. 
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4.3 Crystallization of EF34-neck complex 
 
The very first crystals appeared over night in conditions containing zinc ions. Later on 

crystals also grew in conditions containing other divalent cations, like calcium or 

magnesium. Subsequently, crystals in conditions with monovalent cations like lithium 

grew. 

 

 
WII E5 20% v/v 1,4-butanediol, 0.1 M HEPES pH 7.5    WII E7 30% w/v PEG-3K, 0.1 M Tris pH 7.0,  
0.2 M NaCl (final pH 7.2)    0.2 M NaCl (final pH 6.7) 

 
WII E2 35% v/v MPD, 0.1 M MES pH 6.0,                    WII F9 35% v/v MPD, 0.1 M acetate pH 4.5  
0.2 M Li2SO4 (final pH 5.8)                                            (final pH 5.1)                         

 
WII F7 1.6 M NaH2PO4/0.4 M K2HPO4, 0.1M phosphate-citrate pH 4.2 (final pH 5.2) 
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WII F5 2.5 M NaCl, 0.1 M Tris pH 7.0                          WII F8 15% v/v ethanol, 0.1 MES pH 6.0,  
 0.2 M MgCl2 (final pH 7.0)         Salt!                    0.2 M Zn(OAc)2 (final pH 6.0)                   

 
WII E8 10% w/v PEG-8K, 0.1 M Na/K phosphate         WII H1 1 M K/Na tartrate, 0.1 M Tris pH 7.0,  
 pH 6.2, 0.2 M NaCl (final pH 6.3)                                  0.2 M Li2SO4 (final pH 7.6)  

 
WII H6 30% v/v PEG-400, 0.1 M HEPES pH 7.5           WII E10  1 M (NH4)2HPO4, 0.1 M Tris pH 8.5  
0.2 M NaCl (final pH 7.4)                                                (final pH 8.4) 

 
WII G12 10% w/v PEG-3K, 0.2 M NaCl                         WII   H7 10% w/v PEG-8K, 0.1 M Tris pH 7.0,  
 0.1 M phosphate-citrate pH 4.2 (final pH 4.3)           0.2 M MgCl2 (final pH 6.6)                      
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WII H8 20% w/v PEG-1K, 0.1 M cacodylate pH 6.5,   WII H9 1.26 M (NH4)2SO4. 0.1 M MES pH 6.0  

0.2 M MgCl2 (final pH 6.2)                                                 (final pH 6.3)  

 
WII H11 2.5 M NaCl, 0.1 M imidazole pH 8.0,                 JCSGII  E6  0.2 M zinc acetate,  
 0.2 M Zn(OAc)2 (final pH 6.0)       0.1 M imidazole pH 8, 20% PEG 3000 

 
JCSGII F5 0.2 M magnesium chloride,                           WI B1 1.26 M (NH4)2SO4, 0.1 M cacodylate pH 6.5 
 0.1 M Tris pH 8.5, 50% ethylene glycol                          (final pH 6.3)                                 
  

 
WI A12 20% w/v PEG-1K, 0.1 M imidazole pH 8.0,     WI A5 30% v/v PEG-400, 0.1 M CAPS pH 10.5  
 0.2 M Ca(OAc)2 (final pH 8.0)                                       (final pH 10.5) 
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WI A9 1 M (NH4)2HPO4, 0.1 M acetate pH 4.5           WI B11  15% v/v ethanol, 0.1 M imidazole pH 8.0, 0.2 M  

(final pH 7.5)                                                                  MgCl2  (final pH 7.8)  

 
 WI C4 20% w/v PEG-3K, 0.1 M HEPES pH 7.5,            WI D8 30% v/v PEG-400, 0.1 M acetate pH 4.5,  
 0.2 M NaCl (final pH 7.4)             0.2 M Ca(OAc)2 (final pH 5.8)  

 
PACT D7 0.2 M NaCl, 0.1 M Tris pH 8,           
20% w/v PEG 6000 

 

 

After a month crystals in conditions without metal ions appeared. Refinement screens 

were performed by analyzing all conditions in which crystals grew and combining the 

different components these conditions had in common. Metal ion screens were done with 

constant PEG smear concentration of 20 % v/v with varying MgCl2, Li2SO4 or Zn(OAc)2 

concentrations, from 0- 250 mM against 20 mM Tris-HCl pH 7-pH 8.5. Refinement 

screens were repeated as described above with imidazole pH 7- pH 9 instead of Tris-HCl. 

Moreover it was screened for ammonium sulfate 1.6 mM- 2.2 mM versus varying pH, 

Fig. 53 Pictures of some crystals obtained from EF34/neck complex 
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from pH 5.5- pH 8 in 20 mM MES, 20 mM Bis-Tris and 20 mM Tris. 

Crystals from conditions PACT D7, WII H6, WII G12 and JCSGII F5  were tested for 

diffraction at European Synchrotron Facility in Grenoble and at our home X-ray source 

(small focus rotating anode XProteum8 equipped with CCD detector and cryo-cooling 

device).Nevertheless none of the tested crystals diffracted X-rays. 

 

4.4 Complex formation and analysis of CaM/ABD-R1 and EF34/ABD-R1 
 

4.4.1 Expression and Purification of ABD-R1 
 

ABD-R1 was expressed and purified as described for the C-terminal alpha-actinin 

constructs. 

The first purification step was again gravity Ni-NTA column [Fig. 54]. Nevertheless, due 

to rapid degradation if purified alone, ABD-R1 was mainly co-purified together either 

with EF34 or with CaM fusion proteins. After cells have been harvested, the pellets were 

re-suspended in Lysis Buffer and mixed in 1:1 ratio ABD-R1:EF34 and ABDR1: CaM.  

 

All other purification steps did not diverge from the standard procedure. 

 

 
 

 

(1)Cell extract 

(2) Flow through 

(3) Wash 

(4) Eluate after TEV cleavage 

 

The samples were applied to gel filtration column directly after TEV protease cleavage 

and eluted with the profile shown in [Fig. 55] for ABD-R1/CaM and [Fig. 57] for ABD-

R1/EF34. 

Fig. 54 SDS-PAGE of fractions of Ni-NTA column of ABD-R1. 
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First of all, it is obvious, that there are some 

interacting components, which elute together in 

one fraction in the preparative gel filtration. This 

refers to the shoulder of the peak eluted at 115 ml 

[Fig. 55] and the corresponding lanes (3) and (4) 

on the gel in [Fig. 56], which contain ABD-R1-

TrxA, ABD-R1, CaM-GST and GST, as well as 

to the peak eluted at 155 ml [Fig. 55] and the 

corresponding lanes (5)-(8) on the gel in [Fig. 

56], containing ABD-R1, CaM-GST, GST and 

TrxA. 

Fig. 55 Preparative size exclusion chromatogram of co-purified ABD-R1 and Cam. The 

abscissa shows the elution volume in ml and the ordinate the absorption at 280 nm in mAu.

Fig. 56 Fractions of preparative size 

exclusion of co-purified ABD-R1 and 

Cam analyzed on 15 % SDS PAGE. In 

fractions 9 and 10 the pure Cam elutes, 

but nowhere in complex with ABD-R1.  
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The clearly visible GST tag in the peak eluting at 155 ml [Fig. 55 and Fig. 57] and in the 

corresponding fractions in lanes (3) – (8) in [Fig. 56] and lanes (10)-(16) in [Fig. 58] 

indicates a successful cleavage. The fact, that both, CaM [Fig. 55] and [Fig.56] in lanes  

 

(9) and (10) and EF34 [Fig. 57] and [Fig. 58] in lanes (27) and (28), elute at 220 ml, 

although their elution volumes are usually 178 ml for CaM  and 208 ml for EF34, is quite 

peculiar and cannot be explained by now. 

Also the destination of the cleaved TrxA tag 

remains unclear. In the experiment with CaM one 

could assume that CaM elutes together with TrxA 

at 220 ml because of the same molecular weight: 

[Fig. 55] and [Fig. 56], lanes (9) and (10). 

Nevertheless in the experiment with EF34 TrxA is 

clearly absent: [Fig. 58], lanes (27) and (28).             

A successful TEV protease cleavage can be 

assumed, since cleaved ABD-R1 is clearly visible 

in lanes (3)-(6) in [Fig. 56] and lanes (9)-(16) in [Fig. 58]. 

 

Fig. 57 Preparative size exclusion chromatography of co-purified ABD-R1-EF34. The abscissa 

shows the elution volume in ml and the ordinate the absorption at 280 nm in mAu.

Fig. 58 Fractions of preparative size 

exclusion of co-purified ABD-R1 and 

EF34 analyzed on 15 % SDS PAGE. 
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Generally speaking, complex formation is only observed when the tags of the fusion 

proteins are still present, which implicates that the interaction rather involves the tags 

than the fusion protein. Another possible explanation is that the tag is necessary to bring 

the fusion protein in the conformation needed for interaction.  

In contrast, it was possible in former studies (Young, Gautel, 2000) to form this complex. 

To reproduce the results of this former study, an on Ni-column binding assay was 

performed according to that work [Fig. 59].  

 

4.4.2 On Column binding study of ABD-R1 and EF34 
 

 

 
 

(1) EF34-GST  

(2) ABD-R1 

(3) Flow through EF34-GST 

(4) Wash with 10 mM imidazole 

(5) Flow through ABD-R1        (6)  Elution of the complex 

 

Apparently ABD-R1 and EF34 show interaction in this assay visible in [Fig. 59] in lane 

(6). Nevertheless it needs to be stated, that this analysis was done with the GST-tagged 

EF34. According to the previous gel filtration data it is possible, that ABD-R1 is not 

interacting with EF34 but with GST. 

In a following experiment we tried to cleave the complex on column which would allow 

collecting the complex in the flow through. This experiment was performed at room 

temperature. It seems that the EF34-GST-His is bound to the Ni-resin in a way, that TEV 

protease is not able to cleave efficiently. 

The collected flow through of the Ni-NTA was applied to analytical gel filtration for 

further analysis. This run was done on 4 °C. 

 

Fig. 59 SDS-PAGE gel of fractions of on column binding study of EF34 and 

ABD-R1
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A small amount of untagged EF34 was found in the eluate after the inefficient on column 

TEV protease cleavage, marked as the green peak in [Fig. 60] at 13.01 ml. This indicates 

that EF34 is binding to a binding partner, which is still binding the column. ABD-R1 and 

EF34-GST are the candidates for possible interaction. So, either EF34 is able to form 

dimers on column or there is indeed binding of ABD-R1 to EF34. The fractions of the 

peak eluted at 10.50 ml contain again ABD-R1, EF34-GST and GST as in the preparative 

gel filtration [Fig. 61]. Another attempt to bind ABD-R1 to CaM or EF34, respectively, 

was to purify ABD-R1 alone and mix the pure protein with CaM or EF34. No binding 

could be detected (data not shown). 

The present results suggest that either the complex is only 

formed on room temperature, or that ABD-R1 binds to 

GST, only. 

Considering the results of the 2-mercaptoethanol study, it 

would be necessary to repeat the binding studies with low 

concentrations of reducing agents. If indeed disulfide 

Fig. 61 Fractions of analytical gel filtration of on-column TEV protease 

digested ABD-R1/EF34 

Fig.  60 Analytical gel filtration of flow through after on column TEV cleavage of ABD-R1/EF34. The 

abscissa shows the elution volume in ml and the ordinate the absorption at 280 nm in mAu. 
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bridges play a role in this interaction, this procedure could change the results 

tremendously. 

 

4.5 Mutants 834ΔpBpa and 889ΔpBpa 
 

4.5.1 Selection of mutation sites 
 
The structure of EF34 bound to Zr7 of titin (PDB entry: 1H8B) was used as a model to 

determine the putative interaction sites between EF34 and the neck. The sequence 

alignment of the C-terminal end of alpha-actinin and Zr-7 of titin shows very little 

similarity, implying a high plasticity of EF34 which enables it to bind to each of them 

(Young, Gautel, 2000). 

Moreover, it might be important to note, that Zr-7 of titin is intrinsically unfolded when 

unbound and assumes a helical structure upon binding to EF34.  

Since the secondary structure prediction of the neck is a helix, a perfect helix was built 

and was superimposed with the Zr7 of titin. The outcome of the eight 1ns molecular 

dynamics simulation of EF34 bound to the neck is illustrated in [Fig.62]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4

5 6 7 8

Fig. 62 Resulting conformations after molecular dynamics of 1 ns of EF34 (violet) 

bound to the neck (orange).  
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It is clearly visible that, as expected, that most flexible region of the neck is the unbound 

portion. Of course, these flexibilities might be impaired in the full length protein, where 

the neck is localized between two bulky domains of ABD and the rod domain. 

The five most probable residues of EF34 to interact with the neck were chosen to be 

mutated to an artificial amino acid p-benzoyl-L-phenylalanine (pBpa), which has the 

property to crosslink residues within the range of 3 Å upon UV exposure (Ryu and 

Schultz 2006). This procedure was done to ensure that the whole complex (EF34-neck) is 

stable and therefore suitable for structural studies.   

We tried to choose at least 

one residue of each of the 

three helices EF34 consists 

of. By taking into 

consideration the distance 

matrices from our data, as 

well as available information 

from former studies 

(Atkinson, Joseph et al. 

2001) we chose the most 

probable residues involved 

in interaction. These were 

the residues Q830, S834, 

Y861, Y889 and E891 [Fig. 

63]. All these residues 

except E891 were found in 

the interaction study and structure determination by Atkinson et. al to be involved in the 

interaction with Zr-7 of titin. According to the distance matrices S834 is the most likely 

to interact, even when the alpha helix of the neck breaks during molecular dynamics. 

 

 

 

Fig. 63 Structure of EF34 (PDB:1H8B). The chosen residues to 
mutate have been highlighted. The different colors indicate the 
different positions on the three alpha helices. 
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4.5.2 Cloning of mutants 
 
Successful cloning of the mutant constructs was finally achieved by PCR mutagenesis of 

the whole vector, using primer with the amber stop codon mutation and Herculase 

polymerase. The by PCR amplified mutated linear vector was incubated with DpnI for 1 

h at 37 °C to remove the native template. 20 μl PCR mixes were then reduced in the 

speed vac to approximately 3 μl, which were used to transform E. coli strain XL1-blue. 

Successful mutagenesis was achieved for the constructs 834ΔpBpa [Fig. 64], 889ΔpBpa 

and 891ΔpBpa. 

 
 
834             ----------------------TCATCGCCTAGTTCCGGATCCTGGCTTCTGATAAGCCA 
org             GACACCGACACTGCCGAGCAGGTCATCGCCTCCTTCCGGATCCTGGCTTCTGATAAGCCA 
                                      *********  *************************** 
 
834             TACATCCTGSCGGAGGAGCTGCGTCGGGAGCTGCCCCCGGATCAGGCCCAGTACTGCATC 
org             TACATCCTGGCGGAGGAGCTGCGTCGGGAGCTGCCCCCGGATCAGGCCCAGTACTGCATC 
                ********* ************************************************** 
 
834              AAGAGGATGCCCGCCTACTCAGGCCCAGGCAGTGTGCCTGGTGCACTGGATTACGCTGCG 
org             AAGAGGATGCCCGCCTACTCGGGCCCAGGCAGTGTGCCTGGTGCACTGGATTACGCTGCG 
                ******************** *************************************** 
 

 

 

4.5.3 Expression and purification of mutants 
 

Large scale expression in LB-media supplemented with 1 mM pBpa was done at 30 °C 

over night. The purification procedure was the same as for wild type EF34. 

 

 

(1) 834ΔpBpa insoluble fraction 

(2) Flow through 

(3) Wash 

Fig. 64 Sequencing result of 834ΔpBpa. The exchange of serine codon (TCC) to an amber stop codon 

(TAG) is marked in green 

Fig. 65 SDS PAGE gel of Ni-NTA fractions of 

834ΔpBpa and 889ΔpBpa



 100

(4) EF34Δ834 elution  

(7) Wash                                                                    (5) 889ΔpBpa insoluble fraction           

(8) EF34Δ889 elution                                                (6) Flow through                                                            

 

The SDS-PAGE gel [Fig.65] shows that most of the mutant fusion protein (at this point 

still tagged with GST-His) is found in the insoluble fraction. Moreover, a truncated 

version of the mutated protein was observed, which terminates at the actual pBpa 

incorporation site. EF34Δ834 (deletion in residues 834-894) precipitates when the GST – 

tag is cleaved, while EF34Δ889 (deletion in residues 889-894) is soluble but very 

unstable; it degrades rapidly at 4 °C after the tag was cleaved.  

The gel filtration profile of the truncated version obtained after TEV protease cleavage is 

diagramed in [Fig. 66].  

Fig. 66 Gel filtration profile of EF34Δ889 after TEV protease cleavage. The abscissa shows the elution 

volume in ml and the ordinate the absorption at 280 nm in mAu. 
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On the SDS-PAGE gel [Fig. 67] a comparison between the wild type EF34 and 

EF34Δ889 collected from fractions 19-21 of the gel filtration is shown. EF34Δ889 is 

clearly smaller and from the same expression 

volume only a fraction of the amount of protein 

compared to the wild type is obtained  

(2-3 mg/l). 

 

Due to the failure of expressing soluble mutant 

protein in reasonable amounts, another expression 

attempt was done in GMML media supplemented 

with antibiotics and pBpa as described above for 

LB media. The cells grew ~ 8-10 h to an OD600 of 0.5, where they were induced with 0.5 

M IPTG. Cells were harvested after 25 h of growth. Unfortunately also this procedure did 

not increase the amount of the soluble fraction of the mutant proteins. 

 

 

In the control experiment where the mutated constructs were co-transformed with pSup-

MjTyrRS-6TRN the amounts of full length mutants were comparably higher, but the 

truncated version was still present with approximately 50 % 

[Fig.68]. Moreover also this mutant was found to be poorly 

soluble. These results could indicate that not sufficient amber 

codon-recognizing-tRNA is loaded with an amino acid (either 

tyrosine or pBpa) to proceed with the translation, which 

subsequently terminates the latter. The insolubility of the 

successfully mutated control protein remains unexplained, since 

889ΔTyr should be absolutely the same as EF34. Nevertheless, 

the highly elongated expression times necessary for translation of 

the mutant proteins could possible reason for this fact. 

 

Fig.67 Comparison of EF34 and 

EF34Δ889 on 15 % SDS PAGE 

Fig. 68 Cell extract of 

889ΔTyr expressed in 

GMML media 
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All further experiments and analysis of the EF34 mutant protein were performed with the 

small soluble fraction obtained by expression in both, LB- and GMML media with 

889ΔpBpa. 

 

4.5.4 Purification of inclusion bodies and refolding assay 
 

In order to increase the amount of protein to work with, the insoluble fraction of 

889ΔpBpa was tried to refold. 

Inclusion bodies were purified as described in section 3.2.3 according to the instructions 

of AthenaTM Refolding Kit via a Ni-NTA [Fig. 69 B]. Refolding attempts were performed 

with the 889ΔpBpa mutant at a concentration of ~ 0.7 mg/ml. As described, the unfolded 

protein was diluted in several refolding buffers, incubated an analyzed. A rough analysis 

was done on a SDS PAGE, to determine the amount of soluble and insoluble fraction 

after refolding. [Fig. 69 A].Only in three buffers a pellet was visible. 

 

 

A: 

(1)- (15): dilutions of the unfolded 889ΔpBpa in refolding buffers provided in AthenaTM 

Refolding Kit (see section 2.13) 

(16): dilution of unfolded 889ΔpBpa into Gel Filtration Buffer. 

(P7)-(P9): visible insoluble fractions were found after 1 h incubation in refolding buffers 

#7, #11 and #15 after centrifugation. 

Fig.69 A: SDS PAGE gel analysis of the refolding assay of 889ΔpBpa 
           B: SDS PAGE gel fractions of Ni-NTA purification of 889ΔpBpa in inclusion bodies 
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B: 

(1) Cell extract of 889ΔpBpa 

(2) Flow through 

(3) Wash 

(4) Elution of 889ΔpBpa inclusion bodies  

 

The next step was to measure the protein concentration at 280 nm and correlate it to the 

absorption at 320 nm, which enables one to estimate if the protein is mainly aggregate or 

folded (Tresaugues, Collinet et al. 2004). Since the absorptions at 320 nm were 

considerably low (~0.05) in buffers #1, #3 and #14, these dilutions were loaded on 

analytical size exclusion for further analysis. Unfortunately the majority of the protein 

eluted as aggregate. The refolded monodisperse portion was unreasonably small; 

therefore the refolding was not followed up any further. 

 

4.5.5 Complex Formation and Photo cross-linking 
 

Complex was formed between 889ΔpBpa and the neck described before for the wild type 

construct: components of the complex were mixed in molar ratios 1:2 (889ΔpBpa:neck) 

in Gel Filtration Buffer. The complex was incubated 30 min at 4 °C. 

The best results were obtained by the BioDoc IT-Sytem UV Transilluminator UVP, 

exposing the complex 30 min to the UV light in a 2 ml eppendorf tube. 

Petri dishes and glass wear turned 

out to be unusable, since the 

heating of the sample is highly 

enhanced due to the extended 

surface, what resulted in 

precipitation of the protein. 

An irradiation time course of 

889ΔpBpa in complex with the 

neck has been carried out; lanes 

Fig. 70 Tricine gel of photo cross-linked 889ΔpBpa/neck. 

Three expected bands are visible: the monomer (8 kDa), the 

complex (11 kDa) and the dimer (16 kDa 
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1-3 show 10, 20 and 30 min of exposure [Fig. 70] (Farrell, Toroney et al. 2005). The 

samples were sent to mass spectroscopy to verify the incorporation of pBpa and the 

cross-linking. The samples were sent to mass spectroscopy to verify the incorporation of 

pBpa and the cross-linking, but unfortunately the amounts of complex in solution were 

not sufficient to perform mass-spectroscopy experiment that would unequivocally 

identify the insertion of the artificial amino acid residue in the complex. 

 

Crystal screens like for EF34 were set up, which did not give any crystals by now. 
 

4.5.6 Experiments on the truncated mutant EF34Δ889 
 

It was also tried to form the complex between the truncated version EF34Δ889 and the 

neck. If the interaction was disrupted with the mutated protein, it would have proved that 

Y889 is crucial for binding of the neck. It was found, that this truncated version 

EF34Δ889 is degrading so fast, that binding studies are not possible. 

 

The collected fractions of pure EF34Δ889 were mixed with lyophilized peptide of the 

neck and loaded on analytical gel filtration after 10 min incubation at 4 °C [Fig. 71]. The 

peak eluted around 14 ml contained the peptide of the neck, the other two peaks at 18.20 

ml and 24.12 ml corresponding to approximately 1.5 kDa and 100 Da)  were found to be 

degradation products of EF34Δ889. 
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Adding the peptide of the neck to the tagged fusion protein before TEV protease 

cleavage, did not improve the results. 
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Fig. 71 Analytical gel filtration of EF34Δ889 and the neck. EF34Δ889 degrades rapidly giving two 

peaks eluting at 18.20 ml and 24.12 ml. No binding could be detected. The abscissa shows the elution 

volume in ml and the ordinate the absorption at 280 nm in mAu. 
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5.0 Conclusions and Perspectives 
 

 

Alpha-actinin plays a dominant role in cross-linking of filamentous actin in muscle as 

well as in non muscle cells. It forms an important scaffold for numerous interaction 

partners involved in signaling and is crucial in any kind of cytoskeletal reassembly. To 

fulfill these manifold requirements and enable it to interact with many different binding 

partners, it is known, that alpha-actinin exists in two different conformations, a closed, 

uninduced state and an open, activated conformation. It is proposed, that the 

conformational change in muscle isoforms is triggered by binding of PiP2 to the ABD 

domains of the alpha-actinin homodimer. Until now it is still unclear upon which 

physiological processes PiP2 binds to alpha-actinin or if additional mechanisms are 

involved in the conformational change. Structural investigation of the closed 

conformation of the alpha-actinin, in which the CaM domain is bound to the neck 

connecting the ABD and the rod domain of the opposing subunit in the antiparallel dimer,  

shall provide further insights into the molecular architecture of the functional dimers and  

mechanisms of its regulation. 

 

Concerning the mutant studies and photo cross-linking of 889ΔpBpa and the neck, 

several changes may improve successful expression of the mutant protein. 

According to former studies (Farrell, Toroney et al. 2005) it might be helpful to re-clone 

the mutant constructs, since it was found, that the flanking nucleotides of the amber 

codon may highly influence the successful incorporation of pBpa and the solubility of the 

mutant protein. Nucleotides A or T following the amber codon were found to increase the 

probability of successful expression of the mutant protein. Alternatively, substitution of 

pBpa by p-azido-L-phenylanaline may also improve the mutant protein expression 

(Farrell, Toroney et al. 2005). 
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In this study it has been shown, that the binding between EF34 and the neck is salt 

independent, but slightly pH sensitive. Considering also the ITC results, indicating that 

the complex formation of EF34 and the neck is an exothermal reaction, we assume that 

the interaction is of hydrophobic nature. These findings are supported by presence of the 

hydrophobic patches within the neck and EF34 complex as observed in the three-

dimensional structure generated by modeling. Additionally it was found that also 

disulfide bridge formation seems to play a role in this interaction, although this still needs 

to be confirmed for ABD-R1 and the C-terminal domain. It is reasonable to assume that 

the cysteine residues forming these disulfide bonds are only accessible in the short 

constructs used for the 2-mercaptoethanol study, but not in the full length protein.  

On the other hand the present results suggest that a reducing environment supports the 

change into the active state of alpha-actinin by loosing the interaction between EF34 and 

the neck. 
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