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1 Introduction 
  

This section outlines the importance of logistics and combinatorial optimization 

in a profit-orientated society and very briefly discusses the relevant literature. 

Finally, it gives a short outlook on the remaining contents of the diploma thesis. 

                        

1.1 Logistics and transportation 

 

The globalization of world economy, increasing dynamics of global markets and 

of customer requirements as well as the rapid development of Asian economies 

have awarded logistics and its associated costs a completely new economical 

importance. Companies have to monitor these costs with increasing precaution 

because “distribution costs account for almost half of the total logistics costs 

and in some industries, such as food and drink business, distribution costs can 

account for up to 70% of the value added costs of goods” [5]. Only those 

companies taking advantage of global cost synergies while improving their 

customer service and therefore increasing their logistical capacity are able to 

remain competitive.  

One example, to what extent the importance and value of business logistics - 

especially in terms of transportation - has grown during the last few years, is 

shown by the fact that Maersk Line, the largest container shipping company 

worldwide, operates up to 11.5 million containers with a total value of 

approximately 250 million US-Dollars per year. The economic wealth realized 

through these transports exceeds the worldwide budget for foreign aid about 

five times. During the last year, 100 million containers were shipped from 

seaports around the world and forecasts for the next ten years lead to the 

assumption that this number will at least double. Three billion ton-kilometers 

by train, road and air transport EU wide in 2005 document the increasing 

importance of cargo transportation  [22]. 

On the other side, the role of logistics - particularly of transportation - in the 

regional sector is becoming increasingly important. The key role of public 

transportation in a nation’s economy used to result in governmental ownership 

of public transportation companies, e.g. Deutsche Bahn in Germany. The same 

can be said about postal delivery services. However, recent developments, 



Heuristic Solution Approaches for the Covering Tour Problem                                             Patrick Kubik 
 

 

 14 

especially in Central Europe, have shown a trend for these companies to go 

public, reducing the social component of their services by closing down non-

profitable branches and service lines mainly in rural regions. Still, the 

companies’ interest lies in maintaining a certain service level which leads to a 

trade-off between customer satisfaction and profit. 

Another interesting field of logistic and transportation is the effective service 

distribution of non-profit health care organizations in industrial countries as well 

as in third world countries and disaster areas. 

 

1.2 Combinatorial optimization 

 

The majority of problems in logistics and transportation are difficult and can be 

modeled as combinatorial problems. They usually deal with maximizing or 

minimizing an objective under certain constraints. One of the most important 

factors in fields like logistics, operations research or applied mathematics is 

decision making. Algorithmic approaches and computational complexity theory 

help to improve and optimize these decisions. When dealing with NP-hard1 

problems, combinatorial optimization offers three possible solution techniques 

to solve the problem: enumerative methods that lead to guaranteed optimal 

solutions but require a lot of resources, approximation algorithms running in 

polynomial time and heuristics with some a priori uncertainty concerning 

solution quality and processing time [1]. All these methods examine the 

normally large solution spaces of a combinatorial optimization problem and 

reduce it by effective exploration. 

 

1.3 The Covering Tour Problem 

 

The Covering Tour Problem (CTP) is one of the combinatorial optimization 

problems that can be applied to these real world problems. There is a given set 

of vertices (e.g., cities) that have to be visited. Further vertices exist that can 

be visited. A third set of vertices may not be visited but must be covered by a 

city that is visited. Covering means that a vertex that is visited is within a 

predefined distance of a city to be covered. The objective is to find the shortest 

                                                 

 
1
 Problems that may not be solved to optimality in polynomial time. 
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tour so that all covering and visiting requirements are met. Literature and 

solution methods on this problem are scarce. I filled a part of this gap by 

applying heuristic and meta-heuristic approaches to the problem. I performed 

extensive tests to find optimal parameter settings and to determine the best 

solution approach. 

 

1.4 Layout 

 

The diploma thesis is organized as follows. Section 2 describes in detail the CTP 

along with its model, applications and components. Section 3 is dedicated to 

the chosen solution approaches for the CTP such as Ant Colony Optimization 

(ACO) and a combination of a general insertion and post-optimization algorithm 

(GENIUS) and a set covering algorithm (PRIMAL1). Test problems and their 

computational results are discussed in section 4 while section 5 summarizes the 

findings. Appendix A and B illustrate test results. 

 

2 The Covering Tour Problem 
 

Section 2 presents the CTP with a small example and states the model. Then 

some real world applications of the CTP are described. In addition, the 

relationship of the CTP with the Traveling Salesman Problem (TSP) and the Set 

Covering Problem (SCP) is emphasized.  

 

2.1 Description 

 

First an example2: 

 

The national postal service has decided to cut costs by reducing the number of 

local post offices in the countryside. Only those post offices in more populated 

towns should remain and operate as distribution centers for rural villages 

without post offices. In order to sustain the present service level at lower costs, 

the logistic department of the national post company has decided to assign 

                                                 

 
2
 CTP elements are written in bold font. 
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each town with a number of small villages that used to have a post office and a 

number of even smaller villages that used to be serviced by those offices. A 

town office should use a vehicle to maintain postal service for the appointed 

region. This vehicle should be loaded with post destined for the region as well 

as with postal goods (stamps, envelopes, etc.) needed by the population of the 

rural villages at the town’s post office every morning. Then the vehicle 

must visit a certain number of villages (e.g.: villages with population 

above a certain limit or where frequent need of postal service is known 

from the past). It can visit some additional villages to ensure that the 

rural population is able to reach the vehicle without too much effort. 

However every village is only visited once each day. At each stop the 

population can collect their post and purchase goods needed. They also hand in 

their mail. After the vehicle has visited all mandatory destinations it 

should return to the post office. 

 

A number of transportation problems can be found in this example. First, the 

decision to close some and continue other offices is a location problem. Loading 

the vehicle is a Bin Packing problem and delivering and collecting post is a Pick-

up and Delivery problem (in our example assembly with time windows). 

However, in order to focus on the CTP, we neglect the vehicle’s capacity 

constraints and focus on the objective of covering all obliged targets at 

minimum cost. 

 

The CTP is defined on a complete undirected graph ( )EWVG ,∪=  with a set of 

vertices WV ∪  where }{ nvvV ,....,0=  is a set of vertices that can be visited, W  

defines the set of vertices that have to be covered by the tour and 

( ) }{ jiWVvvvvE jiji <∪∈= ,,:,  is the set of edges. “Covered by the tour” 

means that any vertex Wv ∈
l

 has to lie within a predefined distance of a 

vertex on the tour. The set V  includes the subset T . The subset VT ⊂  

determines the set of vertices whose visit is obligatory. Vertex 0v  represents 

the depot and belongs to the set ).( 0 TvVT ∈⊂  The distance or travel time 

matrix )( ijcC = indicates the edge length between all vertices )( WV ∪  in the 

edge set ( ) }{ jiWVvvvvE jiji <∪∈= ,,:,  while satisfying the triangle 

inequality. The triangle inequality theorem states that for any triangle, the 
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length of a given side must be shorter than the sum of the other two but 

greater than the difference between these two. This theorem holds for all 

Euclidean spaces.  

The parameter c  specifies the allowed maximum covering distance or in other 

words the maximum length of an edge between an unvisited vertex of set W  

and the nearest visited vertex of set V . 

The solution to the CTP is a minimum length tour or Hamiltonian cycle [14]. The 

tour starts and ends at the depot )( 0 Tv ∈ . The tour is defined by a certain 

subset (often referred to as S ) of V  so that all vertices of the subset T  (all 

vertices that have to be visited) are visited by the tour and each vertex of set 

W  (all vertices that have to be covered) lies within a predetermined distance c  

of a vertex belonging to the tour. The assumption that the depot )( 0 Tv ∈  does 

not cover all vertices of set W  must also hold. Consequently, if the covering 

distance c  equals zero, the CTP reduces to a TSP because then naturally every 

vertex from the set W  becomes a member of the vertex subset T  and has to 

be visited directly. Determining the Hamiltonian path or minimum length tour is 

classified as an NP-hard problem and a feasible solution can not always be 

found. 

Figure 1 shows a possible solution to the CTP. Note that the coverage circles 

around each vertex of set V  all have the same radius c  which is the 

predetermined covering distance. 
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Figure 1: A possible solution to the CTP3 
 

If the predetermined covering distance c  of every vertex equals zero, every 

vertex of set W  corresponds to a vertex of set V . The CTP then reduces to a 

TSP (Figure 2). 

 

 
Figure 2: CTP with c = 0 reduces to TSP 

                                                 

 
3
 Note that this is only a graphical example and not necessarily an optimal solution. 
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2.2 Brief literature review 

 

Not a lot of literature concerning the CTP exists today. Gendreau et al. [14] 

give a good discussion of papers related to the problem before 1997 including 

the first actual formulation by Current and Schilling [6] under the name 

Covering Salesman Problem. Gendreau et al. [14] are also the first to formulate 

a model and an exact algorithm in order to solve the problem. Hachida et al. 

[16] introduce the multi-vehicle Covering Tour Problem (m-CTP) and apply the 

heuristic used in [14]. They also present modified versions of the sweep and 

savings algorithms. Jozefowiez et al. [18] tackle the bi-objective CTP by 

combining a multi-objective evolutionary algorithm with a branch-and-cut 

algorithm. 

 

2.3 The CTP model 

 

The CTP can be formulated as a linear integer program. To start with, some 

binary variables have to be defined. 

For Vvk ∈  the binary variable ky  equals 1, if a vertex kv  of the vertex set V  is 

visited. Otherwise the variable ky  equals 0. Of course, if Tvk ∈ , then ky  must 

always equal 1. 

For Vvv ji ∈,  and ji < , the binary variable ijx  equals 1 for every edge ( )ji vv ,  

visited by the tour. Otherwise the variable ijx  equals 0.  

The binary coefficient klδ  equals 1 if and only if Wv ∈
l

 can be covered by 

Vvk ∈ . This means that the distance kc
l

 between Wv ∈
l

 (the vertex that has 

to be covered) and Vvk ∈  (the vertex that covers Wv ∈
l

) is smaller than the 

predetermined covering distance c . Otherwise the coefficient klδ  equals 0. 

The subset { }1=∈= kk VvS
ll

δ  detects all vertices of the set V  capable of 

covering a vertex Wv ∈
l

 within the predetermined covering distance for every 

Wv ∈
l

. The condition 2≥
l

S  for all Wv ∈
l

 and the infeasibility of the 

degenerate tour ( 0v ) are also necessary assumptions. 

The CTP can be stated as: 
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Minimize  ∑∑
−

= +=

1

0 1

n

i

n

ij

ijij xc        (2.1) 

 

Subject to 

  ∑
∈

≥

l
S

k
v k

y 1     Wv ∈∀
l

,  (2.2) 

  ∑
>

=+∑
< kj k

y
kj

x
ki ik

x 2   V
k

v ∈∀ ,  (2.3) 

   

    

 ( 22, −≤≤⊂ nSVS , 

T \ S
k

vS ∈∅≠ , ),  (2.4) 

  { }1,0∈ijx    nji ≤<≤∀1 ,  (2.5) 

  { }1,0∈
k

y    V
k

v ∈∀ \T ,   (2.6) 

  1=
k

y     T
k

v ∈∀ .   (2.7) 

 

The objective function (2.1) minimizes the total distance traveled to reach all 

Tvk ∈  and to cover all Wv ∈
l

. 

The first constraint (2.2) demands coverage for each vertex Wv ∈
l

 by the tour. 

Constraint (2.3) ensures that each vertex Vvk ∈  is visited only once and that it 

is entered and left again while constraint (2.4) eliminates sub-tours by making 

sure that, for every subset S  of V  there are at least two edges between any 

subset S  and the set of vertices V \ S  (set V without vertices of subset S ) 

such that subset T \ ∅≠S  and subset S  contains a vertex Svt ∈ . 

Constraints (2.5), (2.6) and (2.7) ensure that variables ijx  and ky  are binary, 

the model is integer and ky  always equals 1 if Tvk ∈ . 

∑ ≥
k

yijx 2

SVivSjvor

SVjvSiv

\,

\,

∈∈

∈∈



Heuristic Solution Approaches for the Covering Tour Problem                                             Patrick Kubik 
 

 

 21 

2.4 Applications 

 

One application of the CTP occurs in the health care sector concerning the 

deployment of a mobile medical facility in developing countries [17]. Traveling 

health care teams can only access a limited number of villages. This may be 

due to infrastructural restrictions like non-existing roads, resource restrictions 

like the tank size of the vehicle or governmental rule setting. Of course, the 

cost factor is always a barrier for non-profit organizations too. However, the 

routes of the health care teams have to be chosen in such a way that every 

person in need of medical service has the possibility to reach one of the villages 

integrated on the team’s tour by foot. Solving the CTP enables the construction 

of efficient routes for these health care teams, reducing costs by minimizing 

traveling distances and therefore petrol consumption, minimizing traveling time 

and therefore increasing the time for medical service as well as maximizing the 

patient coverage. 

 

The design of bi-level transportation networks is another common application 

where the tour chosen to reach all Tvk ∈  and to cover all Wv ∈
l

 represents 

the route of any primary vehicle and all Wv ∈
l

are within covering distance 

[14]. One example would be to locate a number of regional distribution centers 

from a set of candidates for an express delivery service (such as DHL or UPS) in 

order to minimize the cost of distributing the objects to every region from a 

central distribution centre and vice versa collecting objects from the regional 

centers. The covering tour chosen represents the tour of a primary vehicle 

(e.g.: large truck) with the central distribution centre 0v  as depot and regional 

centers as vertices (all Tvk ∈  and possibly some Vvk ∈ \T ) on the tour). On 

the secondary level the CTP does not consider how to distribute efficiently but 

ensures that the end customers of each regional centre lie within a reasonable 

covering distance (in the sense that a small delivery truck can reach all of them 

in one day and at minimum cost). The problem on the secondary level could 

then be solved as a separate TSP or vehicle routing problem. 

Other real world applications are the postal service example in 2.1, the routing 

of aircrafts for overnight delivery systems where only cities with airports are 

visited and other cities within a maximal covering distance are supplied by 

ground transportation [6] or the design of computer networks where servers 
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are the vertices and the tour is a ring network to increase the reliability. The 

covering part should minimize the cost of connecting personal computers with 

their nearest server [7]. 

 

2.5 Components of the Covering Tour Problem 

 

In order to solve the CTP, Gendreau, Laporte and Semet [14] classified it as a 

combination of the TSP and SCP. I chose to adopt this approach but used 

additional algorithms for these two problems which I combined in order to solve 

the CTP. In the next two sections a brief overview of these two problems 

follows. 

 

2.5.1 The Traveling Salesman Problem 

 

The TSP deals with the following problem: 

 

A salesman wants to visit a number of clients at different locations, starting 

from his hometown. He wants to visit every client once and then return to his 

starting point. What sequence should he choose in order to minimize his total 

traveling distance? 

 

The TSP is the most common form of all combinatorial optimization problems 

and qualifies as an NP-hard problem. The importance of the TSP is not due to 

the fact that millions of salesmen need a solution to their business problem but 

that a TSP can be applied to a great number of variations of combinatorial 

optimization and “every day” problems. There are symmetric and asymmetric 

formulations of the TSP but as the focus of this chapter lies on showing the 

components of the CTP which is discussed only for symmetric problems, the 

symmetric TSP will be introduced. An example for an asymmetric TSP would be 

route optimization with one-way streets. 

The objective is to find a sequence of vertices }{ nvvV ,....,0=  on a weighted 

graph  ( )EVG ,=  that results in the shortest tour or Hamiltonian cycle by 

visiting each vertex of V  exactly once and then returning to the starting point. 

( ) }{ jiVvvvvE jiji <∈= ,,:,  determines the edge set. Edges are used to 
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connect the vertices and their weights are given by a distance or travel time 

matrix )( ijcC = .  

As already mentioned the TSP is one of the most important problems in 

combinatorial optimization. Therefore, in the past three decades numerous 

papers on various solution methods to the TSP have been published. Exact, 

heuristic and meta-heuristic approaches have been developed. Some will be 

introduced later on when solution approaches for the CTP are described. 

 

The TSP can be stated as [8]: 

 

Minimize  ∑
< ji ijxijc        (2.8) 

Subject to 

  ∑
<

∑
>

=+
ki kj kj

x
ik

x 2   ( )Vk ∈ ,  (2.9)  

   

      33, −≤≤⊂ nSVS ,  (2.10) 

   

{ }1,0∈ijx    ( )VjVi ∈∈ , .   (2.11) 

 

The objective function (2.8) minimizes the tour length under the condition that 

vertices }{ nvvV ,....,0=  are only visited once and that each vertex is entered 

and left (2.9). Equation (2.10) eliminates subsets (sub-tours). The binary 

variable ijx  equals 1 if edge ( )ji vv ,  belongs to the tour. Otherwise the variable 

ijx  equals 0 (2.11). 

 

2.5.2 The Set Covering Problem 

 

Just like the TSP, the SCP qualifies as an NP-hard combinatorial optimization 

problem with applications in facility location and vehicle routing. The objective 

is to cover a number of rows with a set  of columns at minimum cost. 

It can be defined by a nm ×  0-1 matrix ( )
ijaA = . To solve the SCP, a subset of 

columns { }mNj ,.....,1=∈  that covers all the rows { }nMi ,.....,1=∈  in A  with 

1
,

−∑
∈

≤
S

j
v

i
v

Sijx
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minimal total costs has to be derived. Covering costs are given by an n -

dimensional cost vector ( )
j

SCP
cC = , where jc  is the cost of selecting column j  

in matrix A . A row { }nMi ,.....,1=∈  is covered by a column { }mNj ,.....,1=∈  if 

ija  equals 1. 

A good example is the problem of assigning factories producing goods to 

customers in order to satisfy their demands with minimal costs. Another 

example is airline crew scheduling.  

 

The SCP can be stated as: 

 

Minimize   ∑
∈Nj

jxjc ,       (2.12) 

Subject to   

∑
∈

≥
Nj

jxija 1    Mi ∈∀ , (2.13) 

   { }1,0∈jx     Nj ∈∀ . (2.14) 

The objective function (2.12) minimizes the total cost of covering all the rows in 

N . (2.13) ensures that every row is covered by at least one column and (2.14) 

ensures integrality. 

Again, solution methods will be introduced later when tackling the CTP but to 

highlight the relation between SCP and CTP, some adjustments have to be 

made. The objective function (2.12) changes from ∑
∈Nj

jj xc  to ∑
∈Vv

kk

k

yc . The 

set }{ nk vvVv ,....,0=∈  with subset VT ⊆  from the CTP replaces the set of 

columns { }mNj ,....,1=∈  in the SCP. The binary variable jx  becomes ky . In the 

SCP the binary variable jx  equals 1 if a column is chosen to cover one or more 

rows. In the CTP ky  equals 1 if a vertex Vvk ∈  is included into the tour. The 

variable ija  is the cost of choosing column jx  in the SCP. This is the cheapest 

cost kc  of inserting vertex Vvk ∈  in the tour in the CTP. Constraint (2.13) 

substitutes ∑
∈

≥
Nj

jij xa 1  with ∑
∈

≥
lSv

k

k

y 1  for the set Wv ∈
l

 which stands for the 
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set of rows { }nMi ,....,1=∈  in the SCP. The parameter 
l

S  equals the covering 

set { }1=∈= kk VvS
ll

δ  for every Wv ∈
l  

of the CTP. 

In addition, the value of the binary variable ky  for all vertices associated with 

subset VT ⊆  (determining the set of obligatory vertices) equals 1 which means 

that some columns are always chosen. 

 

3 Solution approaches 
 

This section introduces the concept of ACO and describes in detail the idea of 

the Ant Colony System (ACS) metaheuristic. Furthermore, the GENIUS 

algorithm for solving TSPs is specified. After that follows a presentation of the 

set covering heuristic PRIMAL1. Finally, the pieces are put together in order to 

solve the CTP and the H-1-CTP heuristic, a combination of GENIUS and 

PRIMAL1, as well as CTACS, a combination of GENI Ant Colony System (GACS) 

[19] and an ACS for the SCP (SCACS) [20] are introduced. 

 

3.1 Ant colony optimization4 

 

ACO is a nature inspired metaheurisitic for solving computational and 

combinatorial problems that deal with finding the shortest path on graphs. The 

solution strategy is based on the swarm-like behavior of real ants foraging for 

food. 

 

3.1.1 Real ants 

 

The lack of vision that characterizes the majority of ant species forces the 

individual insect to communicate with its colony by producing chemicals called 

pheromones.  Ants can sense these pheromones and use them as a form of 

indirect communication called stigmergy [12]. An individual ant may only 

perform simple tasks. However, a whole colony of ants - a highly structured 

social organization - is able to fulfill complex tasks by coordinating their 

                                                 

 
4 This section is based on [12] Dorigo, M., Stützle, T. (2004) 
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activities by modifying their environment. A particularly important chemical is 

the trail pheromone that helps ants to move in the surrounding area of their 

nest. Experiments like the double bridge experiment [9] and [15] show the 

behavior of ants foraging for food. 

 

 
Figure 3: Double bridge experiment: (a) equal length and (b) double length 
 

As figure 3 shows, the nest and the food source are connected by two bridges 

equally long in instance (a) and one longer than the other in instance (b). 

Initially, no pheromone trails are laid. Ants proceed from their nest to the first 

intersection and, in both cases (a) and (b), randomly choose one of the two 

bridges with nearly the same probability while searching for food. Still, the 

number of ants on each connection differs due to random fluctuation. Ants 

cross the bridges laying pheromone trails on the ground. On the way back from 

the food source to the nest, the amount of chemicals produced depends on the 

quality of the food, consisting of food quantity and the distance between nest 

and source. Over time, the pheromones laid in this manner evaporate. When 

other ants search for food, they will follow the pheromone trails and therefore 

abandon their random behavior more and more. In (a), one connection’s 

pheromones dominate the other’s due to initial fluctuation and after some time, 

all ants choose the same path to the food source. In (b), the pheromone trail 

on the shorter path becomes stronger than on the longer one because ants 

using the shorter branch arrive earlier at the food source. The usage is more 

frequent and the laying exceeds evaporation by far. More ants follow the most 

attractive path leading to less pheromone deposit on the longer path. After 

some time, the trails on the longer path disappear and all ants eventually 

choose the shorter path (see figure 4). 
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Figure 4: The effect of stigmergy during food foraging 

 

3.1.2 Artificial ants and ACO algorithms for the TSP 

 

In ACO, artificial ants simulate the trail laying and following procedure of real 

ants in order to build solutions to an optimization problem. Dorigo and Stützle 

[12] call ants stochastic constructive procedures that incrementally build 

solutions by performing a randomized walk on a completely connected graph 

and by adding opportunely defined solution components to a partial solution 

under construction. am  ants construct solutions to a problem which can be 

defined on a completely connected construction graph ( )LCG ,= . 

{ }ncccC ,.....,, 10=  represents the components and L  is a set of connections 

between these components on the graph. An ant sk '  move from one 

component ic  to another jc  is subject to a probabilistic decision depending on 

heuristic information ijη  and pheromone trail ijτ . After finishing a move on the 

graph, ant k  stores the found solution in its memory 
kM . 

kM  can be used to 

build feasible solutions, compute heuristic values ijη  and to evaluate the 

solution found by updating the pheromone ijτ  on the connections visited 

depending on their quality. If a pre-specified termination condition 
k

e  is met, 

ant k  ends the construction process. 
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Figure 5 demonstrates the general framework of ACO algorithms with a 

pseudo-code. ConstructAntsSolution controls the construction moves of the 

colony. UpdatePheromones manages the value of new pheromones and 

evaporation. DaeomonActions are optional measures including local search and 

global pheromone update. 

 

 
Figure 5: ACO pseudo-code 

 

The difference between global and local update will become clear in the next 

section, where the functionality of ACO algorithms applied to the TSP is 

demonstrated. The focus lies on the Ant System (AS) and especially the ACS 

algorithm. Also, other important ACO algorithms, namely Elitist Ant System, 

Ant-based Ant System and Max-Min Ant System will be addressed. Since I will 

implement ACO for the TSP (as part of the CTP), I will refer to components 

{ }ncccC ,.....,, 21=  as vertices (or cities) }{ nvvV ,....,0=  and to the connection set 

L  as edge set ( ) }{ jiVvvvvE jiji <∈= ,,:, . In all ACO algorithms, each edge is 

assigned a pheromone trail ijτ  and a heuristic value ijη  (e.g. ijij c/1=η  the 

reciprocal of the distance between two cities i  and j ) during solution 

construction. The initial pheromone value 0τ  is set to 
nn

nC/1  with n  being the 

number of cities and 
nn

C  the length of a nearest-neighbor tour. Following the 

construction process, each ant is placed at an initial city based on some 

criterion, then uses ijτ  and ijη  in the probabilistic manner described above to 

iteratively visit all the vertices and finally returns to the starting vertex. 

Afterwards, the ant passes through the found solution in the opposite order to 

assign the edges used with pheromone values. Furthermore, daemon actions 

may be executed. 
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3.1.3 Ant System 

 

The first algorithm imitating the foraging behavior was AS, introduced in [10] 

and [11]. At first there were three versions, two with pheromone updates 

directly after a move from one city to the next (ant-density and ant-quantity) 

which performed rather poorly in comparison to the third one where pheromone 

updates were related to the tour quality and executed after all ants had finished 

constructing (ant-circle). The latter is now known as AS. It consists of solution 

construction and pheromone update. An iteration draws the following pattern: 

am  ants are randomly positioned at different starting points. An ant k  moves 

from city i  to j  according to the probabilistic state transition rule: 

 

[ ] [ ]
[ ] [ ]

,
β

ητ

β
ητ

ζ

ζ

ilil
k
iNl

ijijk
ijp

∑ ∈
=      ,k

iNj ∈∀     (3.1) 

 

k
ijp  is the probability of ant k  choosing edge ),( ji  to move from city i  to j . As 

mentioned above, ijcij /1=η  is the heuristic information value, ζ  and β  are 

parameters determining the influence of pheromone values ijτ  and heuristic 

information on the decision which city to visit next. 
k

iN  is the feasible 

neighborhood of ant k  defined by not yet visited cities available at city i . If 

0=ζ , only the heuristic information and therefore the closest city is taken into 

account. If 0=β , only pheromone values determine the move and stagnation 

may occur. 

Before every move of ant k , the probability 
k
ijp  has to be calculated for all 

candidate edges and is then added up to a cumulative probability. Then the so 

called Roulette Wheel selection is performed by generating a random number 

between 0 and the probability sum of all possible moves (∑
k
ij

p ) and selecting a 

move if the corresponding cumulative probability range contains that number. 

Figure 6 demonstrates this procedure with a small example: 
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Figure 6: Decision making in ACO 

 

In addition, each ant k  possesses a memory 
kM . It stores the list of cities 

already visited in the relevant order. This serves as a basis to determine the 

feasible neighborhoods 
k

iN . Furthermore, it enables the ant to compute the 

length 
k

C  of its tour 
kT  as well as to follow the tour in the opposite way to 

deposit pheromones. The pheromone trail update includes on the one hand a 

phase of evaporation by a factor α  and on the other an update of an edge ( )ji,  

by all ants ∑
=

∆
m

k

k

ij t
1

)(τ . 

( ) ( ) ∑
=

∆+−=+
m

k

t
k
ij

t
ij

t
ij

1

)()(*11 ττατ   ),( ji∀    (3.2) 

 

A single ant k  reinforces the edge with ,/1 kk

ij C=∆τ  if edge ( )ji,  belongs to 
kT  

and not at all otherwise. Consequently, the quality (shortness) of a tour and ant 

frequency on an edge increases its pheromone level. 

Whether ants construct their solutions sequentially or in parallel doesn’t 

influence the quality of algorithmic output significantly. AS did not turn out to 
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be competitive with other solution approaches to the TSP but the idea was 

adapted and modified. 

 

3.1.4 Ant Colony System 

 

When comparing ACS to AS, the main differences are based on exploration and 

exploitation. To start with, the construction phase uses a different, more 

aggressive state transition rule. Ant k  chooses vertex j  after vertex i  

according to 

 

[ ]{ }βητ
ililk

i
Nl

j
∈

= maxarg ,  if 
o

qq ≤ ; 

,Jj =       otherwise.   (3.4) 

 

q  is a random variable uniformly distributed in [ ]1,0  and 0q ( )10 0 ≤≤ q  is a 

parameter. If 0qq ≤ , the move with the highest state transition value is 

performed. Otherwise the next step is assigned by J . J  is a random variable 

that is determined by the probabilistic state transition rule in (3.1) with 1=ζ  

and the roulette wheel decision method. Exploitation of existing knowledge 

(memorized pheromone trails and heuristic information) and therefore 

concentration on the best-so-far tour occurs with probability 0q  while 

exploration of other tours is performed with probability ( )01 q− . 

Another difference lies in the pheromone updating rule. In ACS, global and local 

updating procedures occur. Every ant performs local modification of the 

pheromone level immediately after traversing an edge. Hence, the updating 

process is partly executed during the tour construction phase for each edge. 

The local update rule is 

 

( )
0

1 ρττρτ +−=
ijij

,       (3.5) 

 

with parameters 0τ  (initial pheromone value 
nn

nC/1 ) and 10 ≤≤ ρ . ρ  regulates 

the amount of evaporation and pheromone deposit during the updating 

procedure. Local update has the effect that high frequency on an edge ( )ji,  
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leads to decreasing pheromone level ijτ . Other ants are less likely to cross this 

edge which in turn favors the exploration of new edges and avoids stagnation.  

During global update, only the ant that constructed the best-so-far tour may 

add pheromone after each iteration: 

 

( ) ,1 bs
ijijij

τατατ ∆+−=  ( ) ., bsTji ∈∀      (3.6) 

 

Naturally, now 
bsbs

ij C/1=∆τ  where 
bs

C  is the length of the best-so-far tour 
bsT . 

Only edges on this tour are affected by pheromone deposit as well as 

evaporation.  

So far, ACS implementations have shown that, using parallel construction by all 

ants does not exceed solution quality of sequential construction. Using the 

iteration best tour instead of the best-so-far tour in global updating leads to 

worse results solving larger TSP instances. For all further use of ACO, I will 

apply sequential construction and global updating according to the best-so-far 

tour. 

 

3.1.5 Other ACO algorithms 

 

Elitist Ant System 

 

The first update of AS was Elitist Ant System which uses stronger pheromone 

trail laying on the best-so-far tour 
bsT  with length 

bs
C  constructed by an ant. 

In addition to the pheromone update applied in AS (equation (3.2)), edges 

belonging to 
bsT  receive 

bs

ije τ∆  additional pheromone. Parameter e  is a weight 

for 
bsT  and 

bs

ijτ∆  equals 
bs

C/1 .  

 

Rank-Based Ant System 

 

Rank-Based Ant System sorts ants according to the quality of their solutions 

constructed and only the ( )1−w  best-ranked ants as well as the best-so-far ant 

(with rank w ) may deposit pheromone weighted according to their rank: 
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MAX-MIN Ant System 

 

In MAX-MIN Ant System, only the best ant (either the best-so-far or the 

iteration-best) lays pheromone trails. In order to prevent stagnation by 

following only one ant, limits [ ]maxmin ,ττ  for the amount of deposit are 

introduced. First, the trails are initialized with maxτ  and evaporation is small. If 

signs of stagnation emerge after some time, trails are reset to  maxτ . 

 

3.2 GENIUS algorithm 

 

GENIUS, a two phase heuristic composed of the GENI phase (abbr. for General 

Insertion) and the US phase (abbr. for Unstringing and Stringing), first 

constructs and then re-optimizes a tour [13]. 

This two-phase heuristic consists of an iterative insertion heuristic GENI and a 

post-optimization procedure US and was first applied to the TSP [13]. In the 

following sections, both heuristics will be described separately. When looking at 

a set of vertices that should belong to a tour, GENI iteratively includes them 

one by one until all vertices are visited. Afterwards, US improves the tour also 

vertex by vertex. 

 

3.2.1 GENI 

 

“Generalized insertion can be described as an insertion procedure which uses a 

limited form of incremental local search” [3]. 

The insertion procedure GENI adds a vertex v , currently not on the tour, 

between two vertices already belonging to the tour. Initially, these two vertices 

need not appear in consecutive order along the tour. However, after vertex v  

was inserted into the tour, the two vertices will be the preceding and 

succeeding neighbor of v . This procedure combines local optimization and 

insertion steps. 
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In general, any vertex hv  on any tour has a predecessor 1−hv  and a successor 

1+hv . As stated above, vertex v  should be integrated in the tour between any 

two vertices iv  and jv . 

In order to limit the search space for any vertex Vv ∈  waiting to be inserted, 

GENI checks a set of p  vertices already on the tour belonging to the p-

neighborhood ( )vN p , including only those vertices closest to vertex v  (based 

on the distance or travel time matrix )( ijcC = ). The parameter p  is usually set 

to a relative small number somewhere between 4 and 7. If a tour consists of 

less than p  vertices, all members of this tour belong to the neighborhood 

( )vN p  of a vertex Vv ∈ . GENI will investigate insertions for a given parameter 

p . 

Gendreau et al. describe two different types of insertion possibilities [13]. 

 

3.2.1.1 Type I Insertion 

 

Vertex kv  lies on the path between jv and iv  for a clockwise orientation of the 

tour. Vertices iv  and jv  must be chosen such that )(, vNvv pji ∈  and vertex kv  

such that )( 1+∈ ipk vNv . Also, ik vv ≠  and jk vv ≠  has to be taken into account.  
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Figure 7: Type I insertion procedure 

 
 

Each move demands an insertion (limited to ( )vN p ) and one 3-opt exchange. 

Figure 7 shows that after choosing vertices ji vv ,  and kv , inserting vertex v  

leads to the replacement of old edges ( ) ( )
11 ,,, ++ jjii vvvv  and ( )1, +kk vv  by new 

edges ( ) ( ) ( )
kiji vvvvvv ,,,,, 1+  and ( )

11 , ++ kj vv  in order to construct the best 

possible GENI tour. One of the latter four edges is constructed due to the 

insertion of v  and three are substitutes for the first three edges (3-opt local re-

optimization). Furthermore, paths ( )
ji vv ,1+  and ( )

kj vv ,1+  are reversed. The 

objective of type I insertion procedure is to choose the best of all possible 

moves for )(, vNvv pji ∈  and )( 1+∈ ipk vNv . 
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3.2.1.2 Type II Insertion 

 

Again, vertex kv  lies on the path between jv  and iv . Furthermore, vertex lv  is 

located on the path from iv  to jv  for a clockwise orientation of the tour. 

Vertices iv  and jv  must be chosen such that )(, vNvv pji ∈ , vertex kv  such that 

)( 1+∈ ipk vNv  and vertex lv  such that )( 1+∈ jpl vNv . Also, 1, +≠ iil vvv  and 

1, +≠ jjk vvv  has to be taken into account. 

A type II insertion of vertex v  results in the deletion of old edges 

( ) ( ) ( )111 ,,,,, +−+ jjllii vvvvvv  and ( )1, −kk vv . The following figure shows that they are 

replaced by new edges ( ) ( ) ( ) ( )111 ,,,,,,, −−+ lkjlji vvvvvvvv  and ( )ki vv ,1+  to obtain 

the best possible GENI constructed tour. Paths ( )11 , −+ li vv  and ( )
jl vv ,  are 

inverted. The difference to type I is that the local search and re-optimization is 

achieved by running a 4-opt algorithm instead of a 3-opt. 

 

 
Figure 8: Type II insertion procedure 
 

Both types of insertion are considered likewise for a clockwise and a counter-

clockwise orientation of the tour which leads to four different types of 

insertions. Moreover, for each type of insertion, the potential number of choices 

for kji vvv ,,  and lv  is 
4

n , where n  is the number of vertices in total. The 
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introduction of neighborhoods to narrow the search space reduces the 

complexity to )( 4pO , where O  describes the effect of the problem size on the 

algorithm's usage of computational resources. If )(vNv pi ∈ , an examination of 

the insertion of  Vv ∈  between two consecutive vertices iv  and 1+iv  will also be 

executed. Finally, the best overall insertion will be executed. 

 

3.2.1.3 GENI algorithm 

 

The GENI algorithm passes through the following iterations: 

 

Iteration 1:  

An initial tour is created by a random subset selection containing three vertices 

(one of them the depot 0v ).  

The p-neighborhoods for every vertex are initialized. 

 
Iteration 2:  

Random selection of any vertex Vv ∈  not yet inserted in the tour. The least 

cost insertion of the chosen vertex Vv ∈  with respect to all possible insertions 

of type I and II is selected.  

The p-neighborhoods of all remaining vertices are updated due to the insertion 

of vertex Vv ∈  on the tour. 

 

Iteration 3:  

If all vertices have been inserted, END. Else go to iteration 2. 

 

Inserting vertex Vv ∈  and updating the tour requires )(nO  time. As iteration 2 

has to be executed 3−n  times, the overall complexity for the GENI algorithm is 

)( 24 nnpO + . 

 

3.2.2 US 

 

The post-optimization algorithm US [13] can be operated on tours produced by 

any algorithm. The main feature of US is to remove a vertex (U - unstring) 

from a feasible tour and reinsert (S - string) it. While the stringing process is 
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identical with iteration 2 of the GENI algorithm, unstringing a given tour simply 

reverses the insertion procedure used by the GENI algorithm. 

Again, there are two possible options of reconnecting the members of the tour 

after the removal of any vertex iv . 

 

3.2.2.1 Type I Unstringing 

 

Vertices jv  and kv  are chosen such that ( )1+∈ ipj vNv  and ( )1−∈ ipk vNv  is a 

vertex on the path ( )11 ,...., −+ ji vv . Figure 9 demonstrates an US iteration: 

 
Figure 9: Type I unstringing of vertex iv  from the tour 

 

The old edges ( ) ( ) ( )111 ,,,,, ++− kkiiii vvvvvv  and ( )1, +jj vv  are removed and replaced 

by edges ( ) ( )
jiki vvvv ,,, 11 +−  and ( )11 , ++ jk vv . Additionally, paths ( )ki vv ,1+  and 

( )11 , ++ jk vv  are reversed. 
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3.2.2.2 Type II Unstringing 

 

As before, vertices jv  and kv  are chosen such that ( )1+∈ ipj vNv  and 

( )1−∈ ipk vNv  is a vertex on the path ( )11 ,...., −+ ji vv . Additionally, vertex lv  is 

selected so that ( )1+∈ kl vNpv  on the path ( )1,...., +lj vv . Figure 10 demonstrates 

an US iteration: 

 

 
Figure 10: Type II unstringing of vertex iv  from the tour 

 

Then, old edges ( ) ( ) ( ) ( )1111 ,,,,,,, +−+− lljjiiii vvvvvvvv  and ( )1, +kk vv  are removed and 

replaced by ( ) ( ) ( )
jijiki vvvvvv ,,,,, 1111 +−+−  and ( )1, +kl vv . Again, two paths,  ( )

11, −+ ji vv  

and ( )kl vv ,1+ , are inverted. 

 

3.2.2.3 Stringing 

 

Stringing works just like a GENI insertion but now different neighborhood 

structures possibly lead to new re-insertion positions and therefore to a 

changed vertex sequence. 
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3.2.2.4 US algorithm 

 

The following iterations demonstrate the work flow of the US algorithm: 

 
Iteration 1:  

Use an initial tour H  of cost z  created by any algorithm.  

Set the best-so-far tour HH =:*  and the best-so-far cost of the tour zz =:*  

and 1:=t ; 

 
Iteration 2: 

Randomly select a vertex iv that has not been considered yet. First, unstring 

and string using both types and possible tour orientations for vertex iv  of the 

current tour.  

The resulting tour H ’ has cost 'z .  

• If *z' z< , set ':* HH = , ':* zz =  and 1:=t ; repeat Iteration 2; 

• If *' zz ≥ , set 1: += tt ;repeat Iteration 2; 

• If 1+= nt , STOP. The best available tour is *H  with costs *z . 

 

3.3 PRIMAL1 set covering heuristic 

 

The PRIMAL1 set covering heuristic [2] was developed to solve SCPs. 

In order to keep track of what is supposed to happen during solving the CTP, I 

will adapt the formulations used in the SCP model of section 2.4.2 to the ones 

used in the CTP model in 2.2 in the next section.  

PRIMAL1 first sets 1:=ky  for all Tvk ∈  and then iteratively adds the remaining 

vertices (columns) kv  following a greedy criterion that minimizes the function 

( )kk bcf , . For each individual vertex (column) kv  with 0=ky , the parameter kb  

sums up uncovered vertices (rows) Wv ∈
l

(the set that has to be covered) with 

a binary coefficient 1=klδ . This means that all vertices (rows) Wv ∈
l

 covered 

by a vertex (column) SVvk \∈  but not by the temporary solution are added up 

to kb . Three different versions of the function ( )kk bcf ,  are considered and 

applied to the set covering problem: 
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( ) kkkk bcbcf 2log/, = , (i) 

( ) kkkk bcbcf /, = ,  (ii) 

( ) kkk cbcf =, .   (iii) 

 

Vertices (columns) Vvk ∈  are sorted according to the version of the function 

( )kk bcf ,  currently in use and the cheapest insertion is performed. At the 

beginning, criterion (i) is applied until all rows Wv ∈
l

 are covered. If at least 

one vertex (row) Wv ∈
l

 with 1=klδ  is covered by more than one vertex 

(column) Vvk ∈ , the associated vertices (columns) that overcover the row are 

deleted from the partial solution and sorted again, now according to criterion 

(ii). Once more, overcovering vertices (columns) are removed, criterion (iii) is 

applied and the final solution of the first run is obtained. 

The heuristic is run a second time with criteria sequence (i), (iii) and (ii). The 

best sequence from both runs is kept. 

 

3.4 Solving the CTP 

 

After an introduction of the CTP, of the components it can be separated into 

and of possible solution techniques for these components, this section focuses 

on solving the problem itself. I combine solution methods for the TSP and the 

SCP in order to find a good solution for the CTP. The first attempt is the same 

heuristic approach as applied by Gendreau et al. [14] which uses GENIUS and 

PRIMAL1. 

The second attempt applies ACO with GACS for the TSP and SCACS for the SCP. 

I named the combination of these two methods ACS for the CTP (CTACS). The 

algorithms created are described below.  

 

3.4.1 H-1-CTP heuristic 

 

The combination of PRIMAL1 and GENIUS results in the approximate algorithm 

H-1-CTP [16]. It passes through the following iterations twice, considering the 

same covering criteria sequence as in PRIMAL1. H  is the set of vertices 

belonging to the current TSP tour under construction, z  the cost of this tour, 



Heuristic Solution Approaches for the Covering Tour Problem                                             Patrick Kubik 
 

 

 42 

*H  the local optimum tour, *z  its cost and  ( )kk bcf ,  the current covering 

criterion.  

 
Iteration 1 - Initialization   
  

Set TH =:  and ∞=:*z , ( )kk bcf , = )(i  (PRIMAL1); 

   
Iteration 2 – Construction 
 

Using GENIUS, construct a Hamiltonian cycle over H  where z  represents the 

length of the tour; 

 

Iteration 3 – Termination 
 

If one vertex Wv ∈
l

is not yet covered by the tour over H , go to iteration 4. 

Else, if *zz ≤ , set zz =:*  and HH =:* . 

If the covering criterion (PRIMAL1) is the last one, the local optimum is given 

by *H  with cost *z . 

Else remove all vertices from H  associated with over-covered vertices of W  

and move to the next covering criterion (PRIMAL1). 

 

Iteration 4 – Selection 
   

A coefficient kc  representing the cheapest insertion of kv  in the current tour H  

is calculated for every Vvk ∈ \ H . The best vertex kv  with respect to the 

current covering criterion is inserted into H  (PRIMAL1). 

Set { }kvHH ∪=: and go to iteration 2. 

 

The better of the two runs then delivers the final solution of the CTP. 

 

3.4.2 ACS for the CTP 

 

The metaheuristic approach CTACS uses the idea of the COVTOUR Covering 

Salesman Problem heuristic [7] where the SCP was solved first and this solution 

was then used to formulate the TSP instance which was then solved separately. 

Here, I use ACS to solve the SCP and then GACS to solve the resulting TSP 

problem. The following sections introduce the two solution approaches in detail. 
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3.4.2.1 GACS 

 

The classical ACS algorithm uses a nearest neighbor approach to choose the 

next city to be visited. The next vertex to be inserted is selected according to 

the probabilistic state transition rule which incorporates the pheromone trails 

and the heuristic information. Also, the vertex will always be positioned at the 

end of a tour under construction. Without the degree of probability, ACS would 

deliver identical vertex sequences and therefore equal results for the same 

starting point. Consequently, solutions generated by the classical ACS strongly 

depend on the selection order of the cities. GACS introduces the GENI heuristic. 

Here, the next vertex to be inserted is chosen in a random fashion. However, 

now the insertion procedure is more accurate because the position of the vertex 

on the tour is chosen very carefully and is more important than the assigned 

vertex. 

Two adjustments concerning the cost of an edge and the state transition rule 

have to be made.  

First, the cost of an edge ( )ji,  now depends on its length ijc  as well as on the 

amount of pheromone ijτ  stored on it. 

The modified cost of an edge is: 

R
ij

ij
c

ij
c

τγ ⋅+
=

1
'   ( ) Eji ∈∀ ,      (3.7) 

with the relative amount of pheromone 
R

ijτ : 

( ) ( )
klElk

ijR

ij
τ

τ
τ

∈

=
,max

.        (3.8) 

 

The original cost ijc  of edge ( )ji,  is taken from the distance or travel time 

matrix )( ijcC = . 
R

ijτ  is the relative amount of pheromone on edge ( )ji,  where 

the original pheromone value ijτ  is normalized between 0 and 1 on every edge. 

If ( ) ( ) 0max , =∈ klElk τ , which is the case when no pheromone has been distributed 

on the edges, 0=R

ijτ  for every edge. Parameter γ  modifies the relative 

influence of pheromone values on an edge. Equation (3.7) assigns fewer costs 

to edges with higher pheromone values. In addition, it provides a lower and 
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upper bound on the adjusted edge costs ijc' . On the one hand it can not exceed 

the original cost ijc  and on the other it never declines to less than half of them.  

Second, the state transition rule has to be modified with respect to the GENI 

insertion method. As already mentioned, without probabilistic decision making, 

the classical ACS would produce identical selection orders for the same starting 

point, which in turn results in equivalent solutions. GACS may use different 

selection orders that still result in the same solutions. Consequently, GACS uses 

a new probabilistic state transition rule with a rank-based approach to alter the 

search space and to decide on the GENI insertion type used for the next city. In 

every iteration, the available moves consisting of all possible GENI insertions 

are reduced to a parameter 
GENI

S  in order to prevent bad choices. They are 

then ranked from the cheapest insertion with rank 
GENI

S  to the most expensive 

insertion with rank 1. An insertion with rank t  will then be selected between 1 

and 
GENI

S  according to the following state transition rule: 

 



 ≤

=
.,

,, 0

otherwiseT

qqifS
t

GENI

GENI

      (3.9) 

 

As in (3.4), q  is a random variable uniformly distributed in [ ]1,0  and parameter 

0q  is ( )10 0 ≤≤ q . 
GENIT  is a random variable with the following probability 

distribution: 

 

,
)1(

2

'
)(

1'

+
===

∑ =

SS

t

t

t
tTp

GENI
S

t

GENI
  .,.....,1 GENISt =  (3.10) 

 

In this case, the roulette wheel decision process between ranks 
GENIS,...,1  

appoints the next insertion. 

The ranking system allows better distinctions between almost equal moves and 

prevents stagnation by setting the selection probability of the best insertion 

below 1. According to these two equations, the cheapest insertion with rank 

GENI
St =  will be chosen with the highest and the most expensive insertion with 

rank 1=t  with the lowest probability. I have settled for 5=GENI
S , just like Le 

Louran et al. [19], in order to limit the search space and to prevent too intense 

diversification. 



Heuristic Solution Approaches for the Covering Tour Problem                                             Patrick Kubik 
 

 

 45 

The GACS algorithm can be summarized in the following way: 

 

 
Figure 11: GACS algorithm 

 

3.4.2.2 SCACS 

 

In general, ACO for the SCP assigns column j  a pheromone value jτ  and a 

heuristic value jη  where jτ  represents the learned desirability and jη  the 

heuristic desirability of choosing column j . A single ant starts with an empty 

memory 
kM  and constructs a solution by probabilistically adding columns step 

by step until all rows are covered. Again, the probabilistic rule of column choice 

depends on the pheromone value jτ  and the heuristic value jη . After all ants 

have constructed their solution, local search may be implemented and finally 

the pheromone trails are updated.  

However, three main differences to other ACO applications such as the TSP 

appear when solving the SCP: ants do not need the same number of iterations 

to solve the problem, the order of including columns has no influence on the 

solution and possible redundant information in intermediate solutions may be 

eliminated by local search before updating. 

For the solution of the SCP embedded in the CTP, I will use the ACS algorithm 

introduced by Lessing et al. [20] that more or less represents the ACS 

framework introduced in 3.1.2. The state transition rule for choosing the next 

column in the SCP is: 
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[ ]{ }



 ≤

= ∉

.),(

,,maxarg 0

otherwiseJdraw

qqif
j llSl k

β
ητ

    (3.11) 

 

Again, q  is a random variable uniformly distributed in [ ]1,0 , 0q ( )10 0 ≤≤ q  is a 

parameter, kS  is the partial solution obtained by ant k  and )(Jdraw  is a 

random variable that equals the probabilistic state transition rule. β  

determines the influence of the heuristic information η on the decision. The 

corresponding probability 
k

jp  of ant k  choosing column j  equals: 

 

[ ]
[ ]

,
∑

=
∉

k
Sh hh

jjk

jp
β

β

ητ

ητ
  if kSj ∉     (3.12) 

 

If 0qq ≥ , the next column will be chosen through roulette wheel just as in AS, 

ACS and GACS. Of course, if kSj ∈  then 0=k

jp . In addition, redundant 

columns have to be deleted to ensure good solution quality. 

Ant k  proceeds with the local pheromone update in order to increase 

exploration after it has added a column j  to its partial solution kS  according to 

 

,)1( 0ρττρτ +−= jj        (3.13) 

 

with parameters )/(10 GRzn ⋅=τ  where GRz  is the cost of a greedy solution and 

10 ≤≤ ρ .  

Finally, when the construction process of each ant has ended, the best-so-far 

ant updates the pheromone trails globally by 

 

,)1(
bs

jjj τατατ ∆⋅+−=   
bsSj ∈∀    (3.14) 

 

with the best-so-far solution 
bs

S , its cost 
bsz  and 

bsbs

j z/1=∆τ .  

Another important factor of SCACS is to decide on the best kind of heuristic 

information to use for the state transition. Lessing et al. [20] list seven 

different types of possible heuristic information which they categorize as static 
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and dynamic. I will focus on three approaches, namely column cost, cover cost 

and Marchiori and Steenbeek cover costs [21]. 

 

Column costs 

 

This approach, using static costs, is very straight forward because the heuristic 

information jη  is defined as the column cost reciprocal jc/1 . 

 

Cover costs 

 

When looking back at the PRIMAL1 algorithm (3.3), the parameter kb  was the 

number of rows covered by vertex k  but not by a partial solution. With cover 

costs, the heuristic information jη  equals jj cb /  for all columns not yet part of 

the solution. Subscript k  is replaced by j . 

 

Marchiori and Steenbeek (M&S) cover costs 

 

This is a variant of the cover costs above. )cov(S  is the set of rows covered by 

the columns of a partial solution S . The set of rows covered by column j  but 

not by any other column in S  is ),cov( Sj . The minimum cost )(min ic  of all 

columns covering row i  not yet part of the solution and member of ),cov( Sj  

must be determined. In order to derive the cover value ),( Sjcv  (of a column j  

with respect to a partial solution S ), )(min ic  for all rows of ),cov( Sj  have to be 

summed up: 

 

∑
∈

=
),cov(

)(
min

),(

Sji

icSjcv      (3.15) 

 

The modified cover costs ),(cov_ Sjval  are: 

 



 =∞

=
.

,0),(

),,(/

,
),(cov_

otherwise

Sjcvif

Sjcvc
Sjval

j

   (3.16) 
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The heuristic information jη  equals the (M&S) cover costs ),(cov_/1 Sjval . 

 

Three of the remaining four methods used in [20] apply normalized Lagrangean 

costs instead of column costs jc  in the above variants and the last one uses 

lower bounds. However, I decided not to include a Lagrangean approach to 

keep the scope of this thesis manageable. 

The SCACS algorithm can be summarized as: 

 

 
Figure 12: SCACS algorithm 

 

3.4.2.3 CTACS 

 

I combined the two algorithms described above to construct CTACS and to 

solve the CTP. The set V  accounts for the columns and the set W  for the rows 

in the SCP. First, a tour is constructed with GENI over all vertices within the set 

VT ∈ . The column cost for every vertex of set V \T  is determined by 

calculating the cost of a GENI insertion in the tour over T  for every vertex.  

The column coverage naturally depends on the choice of the covering distance 

c . To find an initial pheromone level for SCACS, a greedy solution is created 

and then SCACS is run. Then I use the vertices obtained by SCACS to generate 

a GENI solution to derive the initial pheromone level for GACS. GACS then 

constructs the final CTP solution over the vertices obtained from SCACS. 
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4 Computational results 
 

All algorithms described above - GENI, GENIUS, PRIMAL1, H-1-CTP, GACS, 

SCACS and CTACS – where implemented in C++ programming language. First, 

the influence of neighborhood size on GENI and GENIUS results was tested. 

Then GACS performance with different parameter values was observed. 

Furthermore, GENIUS, a multi-start GENI heuristic (mGENI) and GACS were 

compared while running on TSP instances. Parameter sensitivity of the SCACS 

was tested on a set of SCPs taken from the ORLIB [4]. I also tested the impact 

of the different types of heuristic information on solution quality. The algorithm 

was then compared to PRIMAL1.  

Finally, H-1-CTP and CTACS where run on various stochastic CTPs and 

compared to each other. 

 

4.1 Tests on the TSP part of the problem 

 

4.1.1 Neighborhood size for GENI and GENIUS 

 

In order to observe the influence of neighborhood size on the performance of 

GENI and GENIUS on TSP instances, the algorithms where tested on a set of 

four different problems. The Euclidean problems Berlin52, st70 and pr107 with 

52, 70 and 107 vertices where taken from the TSPLIB library [23] and 

downloaded from [24]. In addition, KubLE25 with 25 vertices with x and y 

coordinates randomly distributed between 0 and 100 was generated to test how 

the algorithms react to different problem sizes. The neighborhood size range 

was set between 3=p  and 9=p . For each size and problem, the algorithms 

where run ten times. The average cost of a tour generated by GENI and 

GENIUS are shown in tables 1 and 2. The best result for each data set is 

highlighted with bold font. 

 

Problem 3 4 5 6 7 8 9

KubLE25 477.85 450.69 454.53 449.77 450.16 448.39 447.49

Berlin52 8939.48 8474.93 8224.31 8116.54 8059.48 7976.81 8087.31

St70 788.71 718.96 699.79 700.93 693.19 690.58 691.31
pr107 51065.02 46691.33 46361.28 45499.44 45303.93 45512.43 45091.05

p

 
Table 1: Importance of neighborhood size for GENI 
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Problem 3 4 5 6 7 8 9

KubLE25 464.48 445.97 446.32 437.26 438.15 438.86 439.93

Berlin52 8285.78 8114.42 7939.27 7938.96 7833.34 7843.07 7872.23

St70 741.73 699.18 694.58 692.39 689.04 687.24 686.95

pr107 48721.34 46128.57 45568.39 45278.60 45163.04 45099.95 45024.90

p

 
Table 2: Importance of neighborhood size for GENIUS 
 

These results indicate that a larger search space leads to better solution quality 

up to a certain neighborhood size. It seems that increasing neighborhood size 

to excessively large neighborhoods (e.g., 7>p ) only has marginal benefit. 

From a neighborhood size of 7=p  onwards, there was a significantly higher 

increase in computation time than for smaller neighborhood sizes. 

Consequently, I settled for 7=p  for all the following algorithms including the 

GENI heuristic, which is also consistent with literature (e.g.: Gendreau et al. 

[13], Le Louran et al. [19]). The trade-off between resource cost and solution 

quality seems best with 7=p . 

 

4.1.2 Parameter analysis for GACS 

 

The impact of parameters of GACS on TSP instances was tested on the same 

set of problems. Just like Le Louran et al. [19], I took the average cost of 10 

different runs for each problem to show the solution quality of each parameter 

value. I set the number of iterations I  for each problem equal to the problem 

size (number of vertices) and the number of ants to 10=am . Parameters were 

tested one at a time and the others where fixed to the values 5.0=ρ , 5.0=α , 

5.0=γ  and 95.00 =q . I also chose to set the initial pheromone level 

GENI
C/10 =τ , where 

GENI
C  is the cost of the tour acquired by one GENI run. As 

mentioned above, 7=p . 

The results for parameter ρ  - responsible for regulating the removal of 

pheromone from edges involved in the current tour during the local update (see 

equation (3.5)) - can be found in table 3. The lowest average costs over ten 

runs where obtained with values of 75.0≥ρ  just as in the original article [19]. 

This implies that more search diversification leads to better solutions. 

Therefore, I set 75.0=ρ . 
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Problem 0 0.1 0.25 0.5 0.75 0.9 1

KubLE25 395.64 395.64 395.64 395.64 395.64 395.64 395.64

Berlin52 7561.66 7550.02 7551.98 7547.80 7546.40 7544.43 7554.55

St70 678.32 693.29 678.29 678.35 677.32 678.69 679.64
pr107 44727.77 44482.26 44516.17 44425.87 44474.28 44473.74 44477.48

ρ

 
Table 3: Influence of parameter ρ  on GACS solution quality 

 

Table 4 shows that parameter α  - used to control the amount of pheromone 

deposited on edges of the best-so-far tour during global update - provides the 

best solutions when set to 25.0=α . Consequently, the search does not focus 

too intensively on a certain solution that may only be a local optimum. This 

rather low value of α  stimulates further search diversification. 

 

Problem 0 0.1 0.25 0.5 0.75 0.9 1

KubLE25 398.06 395.64 395.64 395.64 395.64 395.64 395.64

Berlin52 7549.83 7551.57 7544.37 7547.80 7555.22 7556.81 7643.01

St70 681.41 679.73 678.54 678.81 679.59 679.52 686.70

pr107 44613.28 44656.33 44483.13 44425.87 44527.71 44528.90 45172.80

α

 
Table 4: Influence of parameter α  on GACS solution quality 

 

Parameter γ  coordinates the importance of pheromone in the evaluation of 

edge costs. Table 5 illustrates that GACS with 5.0=γ  produces the best 

solutions and confirms the positive influence of pheromone trails on solution 

quality. 

    

Problem 0 0.25 0.5 0.75 1 5

KubLE25 395.64 395.64 395.64 395.64 395.64 395.64

Berlin52 7557.16 7559.91 7547.80 7551.01 7557.99 7555.04

St70 678.48 677.30 678.35 678.63 677.51 680.53

pr107 44426.96 44471.70 44425.87 44467.34 44481.94 44595.87

γ

 
Table 5: Influence of parameter γ  on GACS solution quality 

 

Solutions for different settings of 0q  can be found in table 6. It is remarkable 

that 10 =q  - the best GENI insertion is always performed – does not necessarily 

lead to the highest solution quality. Deviation from the best insertion provides 

better results which is why I settled for 98.00 =q . 
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Problem 0.9 0.95 0.98 1

KubLE25 395.64 395.64 395.64 395.64

Berlin52 7550.25 7547.80 7544.40 7544.95

St70 679.96 678.44 677.24 677.17

pr107 44593.02 44425.87 44425.77 44426.19

0q

 
Table 6: Influence of parameter 0q  on GACS solution quality 

 

After identifying the parameter settings as 98.00 =q , 5.0=γ , 25.0=α  and 

75.0=ρ , I re-ran the problems to obtain results shown in table 7. In 2 

instances, I found better solutions than in all the proceeding tests by combining 

the optimal settings for all parameters. In the other 2 instances, the solution 

was equal to the best solution already obtained in the earlier tests. 

 

Problem Solution

KubLE25 395.64

Berlin52 7544.37

St70 677.11

pr107 44337.40  
Table 7: GACS results with best parameters  
 

A detailed summary of the test runs on each parameter can be found in 

appendix A. 

 

4.1.3 GENI variants comparison 

 

GENIUS, mGENI and GACS where tested on Euclidean problems from the 

TSPLIB with less than 300 vertices ( ≤n 300). mGENI runs through the GENI 

algorithm m times without using already obtained results during further 

solution finding. For problems of a size up to 100 vertices, each algorithm was 

given the time needed to run 2.5n  GENI iterations. GACS and mGENI both 

produced quite similar results while GENIUS lagged behind in most problems. 

Table 8 shows this comparison between GACS, mGENI and GENIUS, where 

column “Opt.” holds the best known solution from the TSPLIB, column “Total 

runtime” is the time needed for 2.5n  GENI iterations (in seconds), column 

“Gap” presents the percentage gap to “Opt.” and column “Time” shows the 

runtime (in seconds) in which the different algorithms reached their best 

solution. 
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Problem Opt. GACS Time Gap mGENI Time Gap GENIUS Time Gap

Total 

Runtime

eil51 426 428.87 367 0.67% 428.98 42 0.70% 429.12 257 0.73% 1238

eil76 538 548.43 270 1.94% 551.73 155 2.55% 553.28 341 2.84% 1638

kroA100 21282 21285.4 417 0.02% 21285.4 257 0.02% 21285.4 809 0.02% 3058

kroB100 22141 22197.3 517 0.25% 22197.3 1411 0.25% 22191.3 1328 0.23% 3065

kroC100 20749 20771.3 1100 0.11% 20750.8 944 0.01% 20852.3 2750 0.50% 3060

kroD100 21294 21337 2194 0.20% 21307.1 1395 0.06% 21404.1 521 0.52% 3061

kroE100 22068 22117 1946 0.22% 22139.8 1006 0.33% 22162.7 2327 0.43% 3055

pr76 108159 108183 710 0.02% 108234 533 0.07% 108589 1678 0.40% 2506

rat99 1211 1219.86 2124 0.73% 1224.85 577 1.14% 1236.52 1229 2.11% 2997

rd100 7910 7918.94 490 0.11% 7911.35 628 0.02% 7944.35 2969 0.43% 3045  
Table 8: Comparison of GACS, mGENI and GENIUS 

 

Therefore, I ran only GACS and mGENI on larger instances. The next table 

indicates the positive influence of pheromones on the solution quality of most of 

the problems, as GACS beats mGENI in 8 out of 10 problems. This time, 

problems up to a size of 150 were given 3 hours runtime and larger ones 4 

hours. 

 

Problem Opt. GACS Time Gap mGENI Time Gap Runtime

a280 2579 2662.63 11354 3.24% 2688.04 7569 4.23% 14400

bier127 118282 119888 6734 1.36% 120426 5051 1.81% 10800

ch150 6528 6581.02 7476 0.81% 6588.07 5607 0.92% 10800

kroA150 26524 26626.2 6224 0.39% 26647.3 4668 0.46% 10800

kroA200 29368 29698.7 10606 1.13% 29774.8 7071 1.39% 14400

kroB150 26130 26231 3010 0.39% 26253 2258 0.47% 10800

kroB200 29437 29648.6 6454 0.72% 29670 4303 0.79% 14400

pr144 58537 59710.9 6274 2.01% 59788.7 4706 2.14% 10800

tsp225 3916 3981.04 10378 1.66% 3969.11 6919 1.36% 14400

u159 42080 42600.5 6347 1.24% 42466.5 4760 0.92% 14400  
Table 9: Comparison of GACS and mGENI 
 

These results suggest that, with increasing problem size, the importance of 

using pheromones grows and GACS delivers better solution quality than mGENI 

and GENIUS. However, pheromones occupy a lot of resources and GACS 

therefore takes longer to produce its best solution. 
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4.2 Tests on the SCP part of the problem 

 

4.2.1 Parameter analysis for SCACS  

 

I tested the parameters’ sensitivity of SCACS algorithm on a set of 4 problems 

from the ORLIB. Problems SCP41, SCP43, and SCP44 are problems with 

1000=j  columns and 200=i  rows. SCP57 consists of 2000=j  columns and 

200=i  rows. Just as in my analysis of GACS, I averaged the costs of 10 

different runs for every problem to show the impact of each parameter setting. 

The heuristic information chosen for these tests is cover costs because I first 

wanted to determine the ideal ACS parameters before examining heuristic 

information. The number of iterations I  for each problem equaled the number 

of rows. I used 5=am  ants. While one parameters was tested, the others were 

kept constant at 1.0=ρ , 1.0=α , 1=β  and 9.00 =q . The initial pheromone 

level was set to GRz/10 =τ , where GRz  is the cost found by a greedy solution. 

Table 10 shows that the influence of the heuristic information jη  on the choice 

of the next column to be included in the solution is of great importance. In 

accordance, I set β  to 5 for further testing.  

 

1 3 5

SCP41 570.9 491.7 466.1

SCP43 732.4 613.4 590.1

SCP44 620.5 574.5 557.4

SCP57 589.6 509.6 498.3

β

 
Table 10: Influence of parameter β  on SCACS solution quality 

 

Although solutions in table 11 show that, with 99.00 =q , the algorithm performs 

best, I fixed 0q  to 98.0 . This ensures that a certain amount of diversification is 

created. Also, the gap between values with 99.00 =q  and 98.00 =q  was – with 

the exception of SCP57 – not very large.  
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0.9 0.95 0.98 0.99

SCP41 570.9 506.3 462.9 467

SCP43 732.4 672.9 592 590

SCP44 620.5 602.8 556.9 552.9

SCP57 589.6 371.9 351.7 332.9

0q

 
Table 11: Influence of parameter 0q  on SCACS solution quality 

 

Results for the parameters for local and global pheromone update, ρ  and α , in 

tables 12  and 13 suggest that the SCACS algorithm tends to associate those 

columns which produce good solution quality with high pheromone levels from 

the beginning. In order for the algorithm to perform well, these columns should 

be kept attractive for the further construction process. ρ  and α  limit the level 

of evaporation. Therefore, I set 1.0=ρ  and 2.0=α . 

 

Problem 0.1 0.2 0.3

SCP41 570.9 613.1 682.9

SCP43 732.4 785.3 830.2

SCP44 620.5 698.5 753

SCP57 589.6 649.5 672.1

ρ

 
Table 12: Influence of parameter ρ  on SCACS solution quality 

 

0.1 0.2 0.3

SCP41 570.9 504.2 534

SCP43 732.4 694.1 730.1

SCP44 620.5 629.8 623.2

SCP57 589.6 539.1 543

α

 
Table 13: Influence of parameter α  on SCACS solution quality 

 

Consequently, the best parameter settings are: 1.0=ρ , 2.0=α , 5=β  and 

98.00 =q . I used them in all further applications of SCACS. 

 

4.2.2 Heuristic information in SCACS  

 

After determining the best parameter settings, I compared the three types of 

heuristic information - column cost, cover costs and M&S cover costs. I ran 

SCACS only three times for each information type because a strong trend 

towards M&S cover costs developed immediately. They outperformed column 

costs and cover costs by far (table 14). 
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Problem Column Cost Cover Cost M&S Cover Cost

SCP41 1758.67 450.00 434.67

SCP43 3214 575.67 543.33

SCP44 2818.67 529.67 501

SCP57 1340.33 318.33 308.67  
Table 14: SCACS tests on heuristic information 
 

4.2.3 PRIMAL1 vs. SCACS 

 

PRIMAL1 was tested on the four problems used before to determine the optimal 

parameter settings and heuristic information as well as on some additional 

problems. In the following table the values are compared to those produced by 

SCACS and to optimal solutions. Column “Opt.” holds the best known solution 

from the ORLIB, column “Gap” presents the percentage gap to “Opt.” and 

column “Time” shows the runtime (in seconds) in which the different algorithms 

reached their best solution. 

 

Problem Opt. SCACS Gap Time PRIMAL1 Gap Time

SCP41 429 432 0.70% 310 466 8.62% 15

SCP42 512 535 4.49% 1703 556 8.59% 15

SCP43 516 541 4.84% 401 561 8.72% 15

SCP44 494 495 0.20% 482 538 8.91% 15

SCP45 512 516 0.78% 2829 542 5.86% 15

SCP48 492 542 10.16% 1771 556 13.01% 15

SCP52 302 314 3.97% 3000 335 10.93% 29

SCP54 242 247 2.07% 1230 249 2.89% 30

SCP56 213 221 3.76% 1798 245 15.02% 49

SCP57 293 304 3.75% 25 316 7.85% 30  
Table 15: PRIMAL1 vs. SCACS 
 

The results show a clear dominance of SCACS. However, this appears to be 

quite obvious as PRIMAL1 only runs through the problem six times. 

Nevertheless, SCACS delivers solutions with significantly higher quality. The 

gap between SCACS results and the optimum is acceptable in most cases but 

could be improved (for example with local search) while solution quality of 

PRIMAL1 is rather poor. 
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4.3 Tests on the CTP 

 

Unfortunately, unlike the TSP and the SCP, no test problems for the CTP exist. 

Therefore, I randomly created 5 problem instances with { }1000=⊂ WV  - 

CTP1k1 to CTP1k5 - and 5 with { }2000=⊂ WV  - CTP2k1 to CTP2k5. The 

smaller problems were tackled in the following fashion: the size of T  was set to 

3, 5 and 10 and the size of V  to 0.1, 0.15 and 0.2 times { }2000=⊂ WV  and 

( ) ( )VTWVW +−⊂=  (e.g.: for { }3=T , 3 instances were run with 

{ }200;150;100=V  and { }797;847;897=W ). Sets for the larger instances were 

chosen in a similar way: again, the size of T  was set to 3, 5 and 10 and 

( ) ( )VTWVW +−⊂= , but now the size of V  was 0.06, 0.08 and 0.1 times 

{ }2000=⊂ WV  (e.g.: for { }3=T , 3 instances were run with { }200;160;120=V  

and { }1797;1837;1877=W ). 9 different types of each problem were created.  

In my first approach, the covering distance c  was set to the minimum distance 

at which the CTP is still feasible. I applied CTACS and H-1-CTP to the problems. 

The tables below outline the results.  

As in previous tables, the cost of a tour written in bold letters represents the 

best obtained solution for an instance. In all CTP tables, column “Problem” 

specifies the test instance, “Cover distance” gives the used constant cover 

distance c , “Tour size” shows the number of tour stops and “Time” the runtime 

of the individual algorithm. The column “Gap (%)” refers to the difference in 

percentage between CTACS and H-1-CTP where a negative number implies that 

CTACS provides a better solution. Finally, “Total runtime” refers to the time 

allowed for both algorithms on an instance. This is the time needed by CTACS 

to run through the problem. The number of iterations for the SCACS part of 

CTACS equalled the size of V  while GACS iterations equalled the number of 

columns produced by SCACS (which refers to the CTACS tour size column in the 

tables). 
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Problem Tour size Time Cost Tour size Time Cost Gap

1k1 t3 v0.1 17.62 20 397 434.61 29 228 454.19 -4.31% 615

1k1 t3 v0.15 14.68 31 615 529.97 40 353 522.78 1.37% 726

1k1 t3 v0.2 14.68 30 993 518.27 42 571 551.95 -6.10% 1098

1k1 t5 v0.1 17.62 24 547 444.33 30 314 458.27 -3.04% 655

1k1 t5 v0.15 14.68 34 860 522.35 42 494 521.64 0.14% 1053

1k1 t5 v0.2 14.68 32 1540 524.71 46 885 547.26 -4.12% 1828

1k1 t10 v0.1 17.62 28 769 466.01 32 442 479.92 -2.90% 933

1k1 t10 v0.15 14.68 33 2178 522.35 43 1252 534.07 -2.19% 2640
1k1 t10 v0.2 14.68 32 2636 524.71 46 1515 528.01 -0.62% 2754

1k2 t3 v0.1 18.43 20 545 442.88 29 313 475.70 -6.90% 615

1k2 t3 v0.15 18.43 22 603 454.04 25 346 432.99 4.86% 726

1k2 t3 v0.2 13.33 40 980 570.67 45 563 577.09 -1.11% 1098

1k2 t5 v0.1 18.43 27 515 467.00 27 296 456.65 2.27% 655

1k2 t5 v0.15 18.43 24 729 447.44 27 419 459.71 -2.67% 1053

1k2 t5 v0.2 13.33 46 1402 585.88 48 806 613.67 -4.53% 1828

1k2 t10 v0.1 18.43 24 674 456.85 29 387 488.33 -6.45% 933

1k2 t10 v0.15 18.43 30 2128 459.12 28 1223 481.78 -4.70% 2640
1k2 t10 v0.2 13.33 51 2522 594.01 48 1449 613.96 -3.25% 2754

1k3 t3 v0.1 19.33 17 429 426.24 26 411 425.30 0.22% 615

1k3 t3 v0.15 13.07 38 529 515.01 47 304 567.89 -9.31% 726

1k3 t3 v0.2 12.07 41 1005 546.89 49 578 575.15 -4.91% 1098

1k3 t5 v0.1 19.33 20 381 442.52 27 219 448.33 -1.30% 655

1k3 t5 v0.15 13.07 39 778 537.36 44 447 565.76 -5.02% 1053

1k3 t5 v0.2 12.07 43 1498 580.75 50 861 572.40 1.46% 1828

1k3 t10 v0.1 13.68 40 623 559.33 44 358 573.25 -2.43% 933

1k3 t10 v0.15 13.07 44 2329 532.98 48 1338 577.51 -7.71% 2640
1k3 t10 v0.2 12.07 51 2521 572.70 49 1449 573.41 -0.12% 2754

1k4 t3 v0.1 17.86 21 608 420.02 28 350 422.16 -0.51% 615

1k4 t3 v0.15 17.77 23 599 437.08 28 344 415.51 5.19% 726

1k4 t3 v0.2 9.97 55 994 695.12 74 572 711.54 -2.31% 1098

1k4 t5 v0.1 17.86 23 402 423.97 31 231 452.30 -6.27% 655

1k4 t5 v0.15 17.77 29 782 450.80 32 450 453.62 -0.62% 1053

1k4 t5 v0.2 9.97 64 1630 710.81 79 937 745.74 -4.68% 1828

1k4 t10 v0.1 17.86 28 531 452.78 37 305 489.56 -7.51% 933

1k4 t10 v0.15 17.77 30 2410 467.30 37 1385 488.81 -4.40% 2640
1k4 t10 v0.2 9.97 71 2563 720.15 76 1473 751.08 -4.12% 2754

1k5 t3 v0.1 16.91 25 487 446.49 34 280 492.27 -9.30% 615

1k5 t3 v0.15 13.25 33 550 557.78 45 316 603.10 -7.51% 726

1k5 t3 v0.2 10.58 47 957 674.86 64 550 699.83 -3.57% 1098

1k5 t5 v0.1 16.91 32 381 481.97 34 219 472.67 1.97% 655

1k5 t5 v0.15 12.10 49 690 609.90 55 396 686.71 -11.18% 1053

1k5 t5 v0.2 10.58 58 1352 705.06 64 777 704.59 0.07% 1828

1k5 t10 v0.1 16.91 32 358 480.33 32 206 525.98 -8.68% 933

1k5 t10 v0.15 12.10 52 1992 618.09 56 1145 664.31 -6.96% 2640
1k5 t10 v0.2 10.58 59 2415 690.10 61 1388 703.55 -1.91% 2754

Total 

Runtime

Cover 

distance

CTACS H-1-CTP

 
Table 16: Results for CTACS and H-1-CTP with { }1000=⊂ WV  
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Problem Tour size Time Cost Tour size Time Cost Gap

2k1 t3 v0.06 14.43 34 1281 530.21 50 736 563.76 -5.95% 2043

2k1 t3 v0.08 13.45 37 1838 563.27 49 1056 579.86 -2.86% 2751

2k1 t3 v0.1 13.45 36 2825 554.55 53 1624 604.37 -8.24% 3713

2k1 t5 v0.06 14.43 40 1013 536.54 48 582 596.99 -10.13% 2095

2k1 t5 v0.08 13.45 37 2720 540.80 58 1563 642.61 -15.84% 3560

2k1 t5 v0.1 13.45 41 3421 551.88 54 1966 619.56 -10.93% 5150

2k1 t10 v0.06 14.43 41 1460 531.88 50 839 592.51 -10.23% 2847

2k1 t10 v0.08 13.45 45 4402 576.19 56 2530 618.26 -6.80% 4906
2k1 t10 v0.1 13.45 45 6186 572.97 56 3555 614.74 -6.79% 8505

2k2 t3 v0.06 13.04 39 959 582.07 52 551 578.36 0.64% 2043

2k2 t3 v0.08 12.61 38 1646 591.72 51 946 579.50 2.11% 2751

2k2 t3 v0.1 12.61 39 2538 575.69 54 1459 622.59 -7.53% 3713

2k2 t5 v0.06 13.04 43 1276 566.35 48 733 589.17 -3.87% 2095

2k2 t5 v0.08 12.61 47 1907 571.76 53 1096 618.83 -7.61% 3560

2k2 t5 v0.1 12.61 50 2748 577.82 51 1579 614.78 -6.01% 5150

2k2 t10 v0.06 12.61 49 953 581.64 54 548 630.22 -7.71% 2847

2k2 t10 v0.08 12.61 50 2556 588.46 55 1469 657.38 -10.48% 4906
2k2 t10 v0.1 12.61 54 7705 590.58 59 4428 658.64 -10.33% 8505

2k3 t3 v0.06 15.53 30 1599 550.55 42 919 557.59 -1.26% 2043

2k3 t3 v0.08 15.27 32 2210 539.35 44 1270 561.51 -3.95% 2751

2k3 t3 v0.1 15.27 32 3249 534.68 44 1867 576.24 -7.21% 3713

2k3 t5 v0.06 15.53 40 1107 551.16 44 636 567.42 -2.87% 2095

2k3 t5 v0.08 15.27 44 1552 565.26 39 892 543.66 3.97% 3560

2k3 t5 v0.1 15.27 43 3565 553.69 39 2049 536.18 3.27% 5150

2k3 t10 v0.06 15.27 39 1591 558.46 46 914 587.62 -4.96% 2847

2k3 t10 v0.08 15.27 46 2286 563.14 45 1314 552.39 1.95% 4906
2k3 t10 v0.1 15.27 45 6104 550.91 42 3508 555.63 -0.85% 8505

2k4 t3 v0.06 15.16 32 1540 542.11 45 885 570.80 -5.03% 2043

2k4 t3 v0.08 12.87 42 1394 602.69 58 801 640.98 -5.98% 2751

2k4 t3 v0.1 12.87 39 2569 597.27 57 1476 660.58 -9.58% 3713

2k4 t5 v0.06 15.16 39 1230 558.60 46 707 582.00 -4.02% 2095

2k4 t5 v0.08 12.87 46 1640 596.06 58 943 637.42 -6.49% 3560

2k4 t5 v0.1 12.87 47 3739 591.35 57 2149 640.92 -7.74% 5150

2k4 t10 v0.06 15.16 40 1811 549.47 46 1041 581.57 -5.52% 2847

2k4 t10 v0.08 12.87 50 2473 635.06 56 1421 650.11 -2.31% 4906
2k4 t10 v0.1 12.87 53 5593 635.84 56 3214 662.06 -3.96% 8505

2k5 t3 v0.06 18.52 24 1907 438.35 29 1096 474.72 -7.66% 2043

2k5 t3 v0.08 15.85 31 1957 491.78 33 1125 472.87 4.00% 2751

2k5 t3 v0.1 15.85 31 3471 499.48 36 1995 497.77 0.34% 3713

2k5 t5 v0.06 18.52 29 1516 417.56 32 871 481.20 -13.23% 2095

2k5 t5 v0.08 15.85 36 2681 503.65 35 1541 498.16 1.10% 3560

2k5 t5 v0.1 15.85 39 4344 496.49 38 2497 501.21 -0.94% 5150

2k5 t10 v0.06 18.52 36 2048 459.55 38 1177 507.38 -9.43% 2847

2k5 t10 v0.08 15.85 40 3733 537.09 45 2145 547.95 -1.98% 4906
2k5 t10 v0.1 15.85 40 7222 531.04 42 4151 539.34 -1.54% 8505

Total 

Runtime

Cover 

distance

CTACS H-1-CTP

 
Table 17: Results for CTACS and H-1-CTP with { }2000=⊂ WV  

 

The tests confirm that CTACS dominates H-1-CTP in the majority of the 

problems. The main reason is the far better performance of SCACS compared to 

PRIMAL1. The importance of the tour construction components GACS and 

GENIUS in these smaller problems seems to be rather low but, as I have 

demonstrated earlier (4.1.3), CTACS would also outperform H-1-CTP with 

larger tour sizes. However, H-1-CTP finds its best solutions faster than CTACS. 

In addition, the results show an obvious inverse relationship between cover 

distance and tour length. Although the minimum distance choice allows a good 

comparison of the two algorithms, it is not very helpful for comparing the 

effects of different sizes of T  and V  (inter-problem comparison). 
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Therefore I set the covering distance c  to 20 for all problems and variants in 

order to focus on inter-problem comparison and ran both algorithms a second 

time (tables 18 and 19).  

 

Problem Tour size Time Cost Tour size Time Cost Gap

1k1 t3 v0.1 20.00 18 226 398.70 26 130 405.93 -1.78% 350

1k1 t3 v0.15 20.00 17 459 408.19 30 264 396.16 3.04% 542

1k1 t3 v0.2 20.00 16 740 423.60 26 425 404.89 4.62% 818

1k1 t5 v0.1 20.00 20 359 388.20 31 206 432.27 -10.20% 430

1k1 t5 v0.15 20.00 19 575 398.62 26 330 381.07 4.61% 704

1k1 t5 v0.2 20.00 20 1016 384.34 22 584 357.91 7.39% 1206

1k1 t10 v0.1 20.00 21 528 394.88 29 303 434.70 -9.16% 641

1k1 t10 v0.15 20.00 23 1664 398.57 27 956 430.81 -7.48% 2017

1k1 t10 v0.2 20.00 21 1967 388.89 26 1130 427.66 -9.07% 2055

1k2 t3 v0.1 20.00 17 310 400.42 29 178 429.22 -6.71% 350

1k2 t3 v0.15 20.00 17 450 383.62 25 259 401.39 -4.43% 542

1k2 t3 v0.2 20.00 17 730 400.02 27 419 430.56 -7.09% 818

1k2 t5 v0.1 20.00 22 338 406.63 23 194 394.23 3.14% 430

1k2 t5 v0.15 20.00 22 487 384.80 25 280 394.51 -2.46% 704

1k2 t5 v0.2 20.00 23 925 380.13 26 531 393.14 -3.31% 1206

1k2 t10 v0.1 20.00 25 463 422.38 27 266 479.50 -11.91% 641

1k2 t10 v0.15 20.00 24 1626 413.53 28 934 484.12 -14.58% 2017
1k2 t10 v0.2 20.00 23 1882 409.14 27 1081 459.79 -11.02% 2055

1k3 t3 v0.1 20.00 18 244 420.20 26 140 420.96 -0.18% 350

1k3 t3 v0.15 20.00 19 395 404.45 21 227 372.13 8.68% 542

1k3 t3 v0.2 20.00 16 749 365.89 23 430 377.61 -3.11% 818

1k3 t5 v0.1 20.00 22 250 445.39 28 144 458.21 -2.80% 430

1k3 t5 v0.15 20.00 20 520 408.03 27 299 425.25 -4.05% 704

1k3 t5 v0.2 20.00 22 988 390.44 26 568 419.39 -6.90% 1206

1k3 t10 v0.1 20.00 21 428 439.47 28 246 451.87 -2.75% 641

1k3 t10 v0.15 20.00 21 1779 427.10 27 1022 439.23 -2.76% 2017
1k3 t10 v0.2 20.00 21 1881 428.65 25 1081 446.93 -4.09% 2055

1k4 t3 v0.1 20.00 18 346 410.46 25 199 416.91 -1.55% 350

1k4 t3 v0.15 20.00 16 447 385.05 24 257 375.63 2.51% 542

1k4 t3 v0.2 20.00 16 741 386.62 26 426 412.42 -6.26% 818

1k4 t5 v0.1 20.00 20 264 414.46 24 152 422.58 -1.92% 430

1k4 t5 v0.15 20.00 21 523 396.76 24 301 409.72 -3.16% 704

1k4 t5 v0.2 20.00 19 1075 387.91 31 618 406.17 -4.50% 1206

1k4 t10 v0.1 20.00 23 365 401.88 29 210 467.82 -14.09% 641

1k4 t10 v0.15 20.00 21 1841 406.81 29 1058 471.92 -13.80% 2017
1k4 t10 v0.2 20.00 24 1913 403.19 31 1099 469.00 -14.03% 2055

1k5 t3 v0.1 20.00 16 277 387.98 25 159 414.95 -6.50% 350

1k5 t3 v0.15 20.00 19 411 383.40 25 236 411.68 -6.87% 542

1k5 t3 v0.2 20.00 18 713 378.11 27 410 397.18 -4.80% 818

1k5 t5 v0.1 20.00 21 250 411.68 24 144 418.66 -1.67% 430

1k5 t5 v0.15 20.00 23 461 409.53 27 265 421.78 -2.90% 704

1k5 t5 v0.2 20.00 24 892 415.53 24 513 419.66 -0.98% 1206

1k5 t10 v0.1 20.00 27 246 441.38 24 141 456.33 -3.28% 641

1k5 t10 v0.15 20.00 25 1522 431.64 25 874 462.66 -6.71% 2017

1k5 t10 v0.2 20.00 27 1802 432.00 24 1035 445.84 -3.10% 2055

Total 

Runtime

Cover 

distance

CTACS H-1-CTP

 
Table 18: Results for CTACS and H-1-CTP with { }1000=⊂ WV  and 20=c  
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Problem Tour size Cost Tour size Cost Gap

2k1 t3 v0.06 20.00 19 1101 433.79 36 633 440.37 -1.49% 1162

2k1 t3 v0.08 20.00 18 1931 436.13 35 1110 476.52 -8.48% 2055

2k1 t3 v0.1 20.00 17 2662 426.40 34 1530 470.88 -9.45% 2766

2k1 t5 v0.06 20.00 22 1369 422.16 41 787 490.61 -13.95% 1376

2k1 t5 v0.08 20.00 25 2006 452.42 45 1153 474.60 -4.67% 2379

2k1 t5 v0.1 20.00 24 3026 421.89 45 1739 463.98 -9.07% 3397

2k1 t10 v0.06 20.00 28 1782 426.23 31 1024 449.44 -5.16% 1956

2k1 t10 v0.08 20.00 27 3245 430.97 35 1865 455.13 -5.31% 3748

2k1 t10 v0.1 20.00 27 6036 415.92 42 3469 447.29 -7.01% 6346

2k2 t3 v0.06 20.00 17 1109 411.80 26 637 439.58 -6.32% 1162

2k2 t3 v0.08 20.00 17 2021 429.03 26 1161 421.19 1.86% 2055

2k2 t3 v0.1 20.00 16 2731 405.74 25 1570 420.86 -3.59% 2766

2k2 t5 v0.06 20.00 23 1227 390.62 25 705 444.22 -12.07% 1376

2k2 t5 v0.08 20.00 26 2194 392.84 25 1261 418.29 -6.09% 2379

2k2 t5 v0.1 20.00 25 3210 369.51 26 1845 399.29 -7.46% 3397

2k2 t10 v0.06 20.00 24 1782 424.77 27 1024 454.22 -6.48% 1956

2k2 t10 v0.08 20.00 25 3538 408.44 29 2033 462.29 -11.65% 3748
2k2 t10 v0.1 20.00 27 6092 409.89 33 3501 466.65 -12.16% 6346

2k3 t3 v0.06 20.00 19 1031 460.90 34 593 463.89 -0.65% 1162

2k3 t3 v0.08 20.00 18 2020 460.70 34 1161 443.70 3.83% 2055

2k3 t3 v0.1 20.00 19 2729 429.96 29 1568 459.56 -6.44% 2766

2k3 t5 v0.06 20.00 26 1726 460.08 32 992 480.46 -4.24% 1376

2k3 t5 v0.08 20.00 38 1372 476.50 32 789 489.39 -2.63% 2379

2k3 t5 v0.1 20.00 29 3198 427.46 34 1838 457.84 -6.64% 3397

2k3 t10 v0.06 20.00 28 1403 469.12 35 806 474.03 -1.04% 1956

2k3 t10 v0.08 20.00 30 3090 447.69 37 1776 463.80 -3.47% 3748
2k3 t10 v0.1 20.00 30 6029 429.75 35 3465 442.29 -2.84% 6346

2k4 t3 v0.06 20.00 18 1129 411.23 31 649 481.11 -14.53% 1162

2k4 t3 v0.08 20.00 18 2046 432.81 34 1176 438.84 -1.37% 2055

2k4 t3 v0.1 20.00 18 2667 398.49 37 1533 435.26 -8.45% 2766

2k4 t5 v0.06 20.00 25 971 430.93 32 558 490.87 -12.21% 1376

2k4 t5 v0.08 20.00 27 1912 418.28 37 1099 465.66 -10.17% 2379

2k4 t5 v0.1 20.00 28 2924 425.08 38 1680 486.61 -12.64% 3397

2k4 t10 v0.06 20.00 31 1198 453.34 32 689 480.82 -5.72% 1956

2k4 t10 v0.08 20.00 29 3109 430.72 33 1787 467.03 -7.77% 3748
2k4 t10 v0.1 20.00 28 6081 438.90 30 3495 466.32 -5.88% 6346

2k5 t3 v0.06 20.00 19 1111 440.28 27 639 436.58 0.85% 1162

2k5 t3 v0.08 20.00 18 2036 398.98 28 1170 437.11 -8.72% 2055

2k5 t3 v0.1 20.00 17 2721 383.14 27 1564 417.45 -8.22% 2766

2k5 t5 v0.06 20.00 24 1209 390.05 25 695 433.07 -9.93% 1376

2k5 t5 v0.08 20.00 22 2370 382.82 28 1362 429.42 -10.85% 2379

2k5 t5 v0.1 20.00 25 3326 368.11 28 1911 424.98 -13.38% 3397

2k5 t10 v0.06 20.00 20 1685 402.43 33 968 453.36 -11.23% 1956

2k5 t10 v0.08 20.00 26 3035 402.44 34 1744 430.45 -6.51% 3748
2k5 t10 v0.1 20.00 28 6214 422.27 33 3571 402.18 4.99% 6346

Cover 

distance

Total 

Runtime

CTACS H-1-CTP

 
Table 19: Results for CTACS and H-1-CTP with { }2000=⊂ WV  and 20=c  

 

Again, CTACS dominates H-1-CTP but the interesting finding when dealing with 

a constant covering distance was that a greater pool of possible tour stops can 

lead to better solutions, even if more stops are made. On the other hand the 

solution quality may suffer if vertices of set T  that would not have been chosen 

had they been members of set V , increase the length of the tour. 
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5 Conclusion 
 

The CTP is an important problem with highly relevant issues in the public and 

private sector. It is an NP-hard combinatorial optimization problem. The 

objective is to determine a minimum length tour over a subset of vertices while 

covering another set of vertices. Good examples for CTP applications are the 

design of bi-level transportation networks or the deployment of a mobile 

medical facility in developing countries.  

This thesis shows two methods for solving the CTP. I divided the problem into 

two other optimization problems, namely the TSP and the SCP, both also NP-

hard problems. The objective of the TSP is to construct the shortest tour over a 

set of vertices and return to the starting point while in the SCP a set of columns 

that covers a set of rows at minimum cost has to be determined. I combined 

solution approaches for them in order to solve the CTP. I created the following 

algorithms with C++ programming language:  

The first approach, an approximation algorithm called H-1-CTP created by 

Gendreau et al. [14], delivers good solutions but seems to get caught in local 

optima as it only considers the best insertions. Nevertheless, especially the 

GENIUS heuristic, responsible for constructing the TSP tour, leads to better 

solutions than other heuristics due to a random choice of the next vertex to be 

inserted. 

I created the second approach called CTACS, a combination of two ACS 

algorithms for the TSP and the SCP, myself. This method outperforms the first 

one in over 82 percent of the instances because it also allows inferior steps 

during construction with a certain amount of probability. 

The main barrier of evaluating the solution quality of both algorithms was that 

no model problems exist for comparison. Consequently, I first tested the 

individual methods used to solve the TSP (namely GENI, GENIUS and GACS) 

and the SCP (namely PRIMAL1 and SCACS) and compared them to the best 

known solutions obtained from the TSPLIB [24] and ORLIB [4]. All solution 

methods using ACS and GENI as well as US returned very good results so I 

assume that, at least for CTACS, the solution quality, when dealing with CTPs, 

will be able to bear comparison with other approaches to come. 

However, the time needed to generate solutions for the CTP must be seen 

critically and can surely be improved with more C++ experience. In addition, 
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the introduction of local search especially to SCACS should improve solution 

quality a bit more, leading to optimal results. 
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Appendix A 
 

Appendix A shows detailed GACS results for every one of the four problems 

analyzed (KubLE25, Berlin52, st70 and pr107). Four tables for each problem for 

parameters  0q , γ , α  and ρ  with the results for ten runs on each parameter 

setting follow. The values which are lower or equal to the best average cost of 

each parameter are written in bold letters.  

 

KubLE25: 

 

Runs 0.9 0.95 0.98 1

1 395.64 395.64 395.64 395.64

2 395.64 395.64 395.64 395.64

3 395.64 395.64 395.64 395.64

4 395.64 395.64 395.64 395.64

5 395.64 395.64 395.64 395.64

6 395.64 395.64 395.64 395.64

7 395.64 395.64 395.64 395.64

8 395.64 395.64 395.64 395.64

9 395.64 395.64 395.64 395.64
10 395.64 395.64 395.64 395.64

Average 395.64 395.64 395.64 395.64

Minimum 395.64 395.64 395.64 395.64

Maximum 395.64 395.64 395.64 395.64

KubLE25 Parameter
0q

 
Table 20: Tests on 0q  for KubLE25 (GACS) 

 

Runs 0 0.25 0.5 0.75 1 5

1 395.64 395.64 395.64 395.64 395.64 395.64

2 395.64 395.64 395.64 395.64 395.64 395.64

3 395.64 395.64 395.64 395.64 395.64 395.64

4 395.64 395.64 395.64 395.64 395.64 395.64

5 395.64 395.64 395.64 395.64 395.64 395.64

6 395.64 395.64 395.64 395.64 395.64 395.64

7 395.64 395.64 395.64 395.64 395.64 395.64

8 395.64 395.64 395.64 395.64 395.64 395.64

9 395.64 395.64 395.64 395.64 395.64 395.64

10 395.64 395.64 395.64 395.64 395.64 395.64

Average 395.64 395.64 395.64 395.64 395.64 395.64

Minimum 395.64 395.64 395.64 395.64 395.64 395.64

Maximum 395.64 395.64 395.64 395.64 395.64 395.64

KubLE25 Parameter γ

 
Table 21: Tests on γ  for KubLE25 (GACS) 
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Runs 0 0.1 0.25 0.5 0.75 0.9 1

1 395.64 395.64 395.64 395.64 395.64 395.64 395.64

2 395.64 395.64 395.64 395.64 395.64 395.64 395.64

3 398.23 395.64 395.64 395.64 395.64 395.64 395.64

4 400.57 395.64 395.64 395.64 395.64 395.64 395.64

5 395.64 395.64 395.64 395.64 395.64 395.64 395.64

6 401.11 395.64 395.64 395.64 395.64 395.64 395.64

7 400.98 395.64 395.64 395.64 395.64 395.64 395.64

8 401.50 395.64 395.64 395.64 395.64 395.64 395.64

9 395.64 395.64 395.64 395.64 395.64 395.64 395.64

10 395.64 395.64 395.64 395.64 395.64 395.64 395.64

Average 398.06 395.64 395.64 395.64 395.64 395.64 395.64

Minimum 395.64 395.64 395.64 395.64 395.64 395.64 395.64
Maximum 401.50 395.64 395.64 395.64 395.64 395.64 395.64

KubLE25 Parameter α

 
Table 22: Tests on α  for KubLE25 (GACS) 

 

Runs 0 0.1 0.25 0.5 0.75 0.9 1

1 395.64 395.64 395.64 395.64 395.64 395.64 395.64

2 395.64 395.64 395.64 395.64 395.64 395.64 395.64

3 395.64 395.64 395.64 395.64 395.64 395.64 395.64

4 395.64 395.64 395.64 395.64 395.64 395.64 395.64

5 395.64 395.64 395.64 395.64 395.64 395.64 395.64

6 395.64 395.64 395.64 395.64 395.64 395.64 395.64

7 395.64 395.64 395.64 395.64 395.64 395.64 395.64

8 395.64 395.64 395.64 395.64 395.64 395.64 395.64

9 395.64 395.64 395.64 395.64 395.64 395.64 395.64

10 395.64 395.64 395.64 395.64 395.64 395.64 395.64

Average 395.64 395.64 395.64 395.64 395.64 395.64 395.64

Minimum 395.64 395.64 395.64 395.64 395.64 395.64 395.64
Maximum 395.64 395.64 395.64 395.64 395.64 395.64 395.64

KubLE25 Parameter ρ

 
Table 23: Tests on ρ  for KubLE25 (GACS) 
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Berlin52: 

 

Runs 0.9 0.95 0.98 1

1 7544.37 7572.85 7544.37 7544.37

2 7549.89 7544.37 7544.37 7544.37

3 7548.99 7544.37 7544.37 7544.37

4 7544.37 7549.89 7544.37 7544.37

5 7544.37 7544.37 7544.37 7544.37

6 7544.66 7544.37 7544.37 7544.37

7 7563.69 7544.37 7544.37 7544.37

8 7544.37 7544.37 7544.66 7550.19

9 7550.19 7544.37 7544.37 7544.37

10 7567.62 7544.66 7544.37 7544.37

Average 7550.25 7547.80 7544.40 7544.95

Minimum 7544.37 7544.37 7544.37 7544.37

Maximum 7567.62 7572.85 7544.66 7550.19

Berlin52 Parameter
0q

 
Table 24: Tests on 0q  for Berlin52 (GACS) 

 

Runs 0 0.25 0.5 0.75 1 5

1 7544.37 7544.37 7572.85 7544.37 7544.37 7544.37

2 7544.66 7544.37 7544.37 7544.37 7583.09 7544.37

3 7585.20 7571.62 7544.37 7571.62 7567.33 7544.37

4 7544.37 7565.87 7549.89 7544.37 7544.37 7576.25

5 7544.37 7544.37 7544.37 7544.37 7544.37 7585.20

6 7544.37 7549.29 7544.37 7544.37 7544.37 7544.37

7 7567.33 7567.33 7544.37 7544.66 7597.07 7544.37

8 7567.33 7548.99 7544.37 7544.37 7544.37 7555.40

9 7565.87 7567.33 7544.37 7544.66 7566.17 7544.37

10 7563.69 7595.58 7544.66 7582.95 7544.37 7567.33

Average 7557.16 7559.91 7547.80 7551.01 7557.99 7555.04

Minimum 7544.37 7544.37 7544.37 7544.37 7544.37 7544.37

Maximum 7585.2 7595.58 7572.85 7582.95 7597.07 7585.2

Berlin52 Parameter γ

 
Table 25: Tests on γ  for Berlin52 (GACS) 

 

 

Runs 0 0.1 0.25 0.5 0.75 0.9 1

1 7544.37 7544.37 7544.37 7572.85 7544.37 7544.37 7624.60

2 7544.66 7544.37 7544.37 7544.37 7567.33 7544.37 7651.32

3 7544.37 7544.37 7544.37 7544.37 7544.37 7549.89 7616.25

4 7544.37 7544.37 7544.37 7549.89 7544.37 7544.37 7567.62

5 7549.89 7567.33 7544.37 7544.37 7544.37 7548.99 7791.17

6 7544.37 7571.92 7544.37 7544.37 7544.37 7544.37 7670.96

7 7544.37 7544.37 7544.37 7544.37 7544.37 7544.37 7648.29

8 7544.37 7565.87 7544.37 7544.37 7629.59 7544.37 7687.40

9 7565.87 7544.37 7544.37 7544.37 7544.37 7620.37 7605.12

10 7571.62 7544.37 7544.37 7544.66 7544.66 7582.66 7567.33

Average 7549.83 7551.57 7544.37 7547.80 7555.22 7556.81 7643.01

Minimum 7544.37 7544.37 7544.37 7544.37 7544.37 7544.37 7567.33
Maximum 7571.62 7571.92 7544.37 7572.85 7629.59 7620.37 7791.17

Berlin52 Parameter α

 
Table 26: Tests on α  for Berlin52 (GACS) 
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Runs 0 0.1 0.25 0.5 0.75 0.9 1

1 7567.33 7566.83 7568.32 7572.85 7544.37 7544.37 7544.37

2 7566.83 7544.37 7544.37 7544.37 7544.37 7544.37 7544.37

3 7616.03 7544.37 7548.99 7544.37 7544.37 7544.37 7544.37

4 7544.37 7544.37 7544.37 7549.89 7544.37 7544.66 7544.37

5 7544.37 7555.40 7544.37 7544.37 7555.40 7544.37 7544.37

6 7565.87 7567.33 7548.99 7544.37 7548.99 7544.37 7544.37

7 7544.37 7544.37 7544.37 7544.37 7544.37 7544.37 7596.54

8 7544.37 7544.37 7571.62 7544.37 7544.37 7544.37 7555.40

9 7567.33 7544.37 7548.99 7544.37 7544.37 7544.37 7571.95

10 7555.70 7544.37 7555.40 7544.66 7548.99 7544.66 7555.40

Average 7561.66 7550.02 7551.98 7547.80 7546.40 7544.43 7554.55

Minimum 7544.37 7544.37 7544.37 7544.37 7544.37 7544.37 7544.37
Maximum 7616.03 7567.33 7571.62 7572.85 7555.40 7544.66 7596.54

Berlin52 Parameter ρ

 
Table 27: Tests on ρ  for Berlin52 (GACS) 
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st70: 

 

Runs 0.9 0.95 0.98 1

1 677.83 677.52 677.11 677.11

2 680.15 681.38 677.19 677.19

3 679.86 678.51 677.19 677.20

4 680.75 677.19 677.19 677.19

5 680.99 677.19 677.20 677.11

6 681.00 677.88 677.19 677.19

7 682.66 682.41 677.11 677.19

8 678.51 677.91 677.19 677.19

9 680.66 677.19 677.11 677.11

10 677.19 677.20 677.88 677.19

Average 679.96 678.44 677.24 677.17

Minimum 677.19 677.19 677.11 677.11

Maximum 682.66 682.41 677.88 677.20

st70 Parameter
0q

 
Table 28: Tests on 0q  for st70 (GACS) 

 

Runs 0 0.25 0.5 0.75 1 5

1 677.11 677.11 682.15 677.19 677.19 682.90

2 681.00 677.19 677.19 677.19 677.20 679.82

3 677.19 677.11 677.19 677.20 677.11 677.11

4 677.52 677.19 678.99 677.19 678.51 682.00

5 677.19 677.11 677.19 679.07 677.19 682.77

6 678.51 677.88 678.26 677.91 678.51 677.82

7 679.08 677.11 679.80 678.54 677.82 677.11

8 677.53 677.88 677.11 682.66 677.19 682.58

9 677.11 677.19 677.52 682.18 677.19 680.62
10 682.54 677.19 678.12 677.19 677.19 682.58

Average 678.48 677.30 678.35 678.63 677.51 680.53

Minimum 677.11 677.11 677.11 677.19 677.11 677.11

Maximum 682.54 677.88 682.15 682.66 678.51 682.90

st70 Parameter γ

 
Table 29: Tests on γ  for st70 (GACS) 

 

Runs 0 0.1 0.25 0.5 0.75 0.9 1

1 677.19 682.58 679.82 677.20 678.86 677.82 688.91

2 681.83 681.28 677.19 682.66 677.52 682.77 685.12

3 681.18 677.19 677.19 677.19 682.58 678.20 688.29

4 681.83 683.34 677.11 677.79 677.83 677.19 687.25

5 682.58 677.79 678.26 681.82 677.87 677.11 684.42

6 680.48 682.77 677.19 677.11 677.88 677.44 685.50

7 681.83 677.53 681.66 677.19 682.77 683.08 686.15

8 681.92 677.44 677.20 677.11 681.29 680.01 688.65

9 682.58 679.49 682.58 677.88 681.26 680.38 685.64

10 682.66 677.87 677.19 682.19 678.03 681.19 687.06

Average 681.41 679.73 678.54 678.81 679.59 679.52 686.70

Minimum 677.19 677.19 677.11 677.11 677.52 677.11 684.42
Maximum 682.66 683.34 682.58 682.66 682.77 683.08 688.91

st70 Parameter α

 
Table 30: Tests on α  for st70 (GACS) 
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Runs 0 0.1 0.25 0.5 0.75 0.9 1

1 677.11 695.07 677.52 682.15 677.19 682.15 682.58

2 682.58 692.37 681.92 677.19 677.11 681.29 677.11

3 677.11 700.26 677.19 677.19 677.19 677.11 682.58

4 677.11 695.74 677.11 678.99 677.83 677.11 677.82

5 677.20 691.06 677.19 677.19 677.20 678.62 677.19

6 678.12 692.35 677.88 678.26 677.19 677.19 677.11

7 677.20 689.99 677.19 679.80 677.20 677.19 677.11

8 677.11 696.37 677.11 677.11 677.19 682.01 680.31

9 677.11 691.26 677.11 677.52 677.91 677.11 681.97

10 682.58 688.39 682.66 678.12 677.19 677.11 682.58

Average 678.32 693.29 678.29 678.35 677.32 678.69 679.64

Minimum 677.11 688.39 677.11 677.11 677.11 677.11 677.11
Maximum 682.58 700.26 682.66 682.15 677.91 682.15 682.58

st70 Parameter ρ

 
Table 31: Tests on ρ  for st70 (GACS) 
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pr107: 
 

Runs 0.9 0.95 0.98 1

1 44589.00 44387.80 44417.40 44301.70

2 44555.80 44337.40 44429.30 44337.40

3 44746.90 44393.80 44379.20 44484.30

4 44545.40 44433.50 44387.80 44324.80

5 44681.50 44440.70 44442.00 44516.20

6 44575.20 44516.80 44438.10 44346.20

7 44486.70 44434.00 44390.30 44516.20

8 44551.90 44379.70 44498.80 44507.00

9 44742.60 44436.20 44432.80 44537.80

10 44455.20 44498.80 44442.00 44390.30

Average 44593.02 44425.87 44425.77 44426.19

Minimum 44455.20 44337.40 44379.20 44301.70

Maximum 44746.90 44516.80 44498.80 44537.80

pr107 Parameter
0q

 
Table 32: Tests on 0q  for pr107 (GACS) 

 

Runs 0 0.25 0.5 0.75 1 5

1 44352.1 44436.2 44387.8 44406.4 44396.6 44690.4

2 44418.8 44481.2 44337.4 44403.6 44656.6 44443.1

3 44390.3 44390.3 44393.8 44486.6 44637.8 44733.7

4 44397.7 44516.2 44433.5 44539.4 44528.5 44478.8

5 44480.1 44521.2 44440.7 44558.7 44436.2 44572.4

6 44498.4 44385.2 44516.8 44429.3 44553.2 44697.6

7 44301.7 44512.2 44434 44571.3 44566 44583.8

8 44473.2 44363.8 44379.7 44381.7 44396.6 44500.8

9 44454 44436.2 44436.2 44404.8 44301.7 44558.9
10 44503.3 44674.5 44498.8 44491.6 44346.2 44699.2

Average 44426.96 44471.7 44425.87 44467.34 44481.94 44595.87

Minimum 44301.7 44363.8 44337.4 44381.7 44301.7 44443.1

Maximum 44503.3 44674.5 44516.8 44571.3 44656.6 44733.7

pr107 Parameter γ

 
Table 33: Tests on γ  for pr107 (GACS) 

 

Runs 0 0.1 0.25 0.5 0.75 0.9 1

1 44710.80 44750.50 44536.00 44387.80 44324.80 44532.80 44968.40

2 44589.40 44742.60 44530.10 44337.40 44522.30 44506.80 45037.10

3 44577.70 44491.10 44381.70 44393.80 44722.20 44496.80 45297.10

4 44487.80 44482.80 44599.60 44433.50 44560.00 44337.40 45218.40

5 44557.70 44654.60 44301.70 44440.70 44522.00 44553.40 45253.70

6 44838.00 44598.70 44520.70 44516.80 44455.20 44601.30 45210.30

7 44850.80 44923.30 44459.40 44434.00 44532.10 44487.60 45272.10

8 44656.60 44440.00 44536.00 44379.70 44688.20 44611.40 45252.30

9 44459.20 44696.80 44490.90 44436.20 44429.60 44479.70 45384.90

10 44404.80 44782.90 44475.20 44498.80 44520.70 44681.80 44833.70

Average 44613.28 44656.33 44483.13 44425.87 44527.71 44528.90 45172.80

Minimum 44404.80 44440.00 44301.70 44337.40 44324.80 44337.40 44833.70
Maximum 44850.80 44923.30 44599.60 44516.80 44722.20 44681.80 45384.90

pr107 Parameter α

 
Table 34: Tests on α  for pr107 (GACS) 
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Runs 0 0.1 0.25 0.5 0.75 0.9 1

1 44700.6 44504.9 44647.2 44387.8 44562.5 44459.4 44638.8

2 44832.7 44486 44503.3 44337.4 44324.8 44337.4 44518.2

3 44657.1 44376.4 44491.7 44393.8 44509.3 44539.4 44301.7

4 44718.8 44430.1 44524.6 44433.5 44535.6 44440.7 44471.1

5 44603.7 44635.2 44455.2 44440.7 44440.2 44470.3 44396.6

6 44783.7 44648.1 44574.4 44516.8 44346.2 44516.2 44487.1

7 44551.8 44453.1 44491.1 44434 44400.5 44404.8 44608.7

8 44834.1 44575 44553.2 44379.7 44618.6 44561.3 44507

9 44816.8 44337.4 44375.2 44436.2 44545.9 44553.4 44465.9

10 44778.4 44376.4 44545.8 44498.8 44459.2 44454.5 44379.7

Average 44727.77 44482.26 44516.17 44425.87 44474.28 44473.74 44477.48

Minimum 44551.8 44337.4 44375.2 44337.4 44324.8 44337.4 44301.7
Maximum 44834.1 44648.1 44647.2 44516.8 44618.6 44561.3 44638.8

pr107 Parameter ρ

 
Table 35: Tests on ρ  for pr107 (GACS) 
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Appendix B 
 

Appendix B lists SCACS results for the four problems analyzed (SCP41, SCP43, 

SCP44, SCP57). Four tables for each problem for parameters  0q , γ , α  and ρ  

with the results of ten runs on each parameter setting follow. The values lower 

or equal to the best average cost of each parameter are written in bold letters.  

 

SCP41: 

 

Runs 0.1 0.2 0.3

1 585 537 467

2 520 512 577

3 541 503 586

4 689 477 516

5 528 481 537

6 508 487 500

7 539 507 598

8 490 536 531

9 706 464 554

10 603 538 474

Average 570.9 504.2 534

Minimum 490 464 467

Maximum 706 538 598

SCP41 Parameter α

 
Table 36: Tests on α  for SCP41 (SCACS) 

 

 

Table 37: Tests on β  for SCP41 (SCACS) 

 

Runs 1 3 5

1 585 455 491

2 520 482 448

3 541 523 468

4 689 472 451

5 528 481 466

6 508 552 458

7 539 475 474

8 490 505 470

9 706 457 472

10 603 515 463

Average 570.9 491.7 466.1

Minimum 490 455 448

Maximum 706 552 491

SCP41 Parameter β
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Runs 0.1 0.2 0.3

1 585 511 643

2 520 516 799

3 541 719 460

4 689 653 870

5 528 551 766

6 508 587 600

7 539 760 885

8 490 687 635

9 706 598 662

10 603 549 509

Average 570.9 613.1 682.9

Minimum 490 511 460

Maximum 706 760 885

SCP41 Parameter ρ

 
Table 38: Tests on ρ  for SCP41 (SCACS) 

 

Runs 0.9 0.95 0.98 0.99

1 585 457 453 452

2 520 508 475 485

3 541 546 463 467

4 689 514 447 450

5 528 659 480 467

6 508 445 462 458

7 539 465 452 470

8 490 495 457 470

9 706 500 480 458

10 603 474 460 493

Average 570.9 506.3 462.9 467

Minimum 490 445 447 450

Maximum 706 659 480 493

SCP41 Parameter
0q

 
Table 39: Tests on 0q  for SCP41 (SCACS) 
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SCP43: 

 

Runs Cost Cost Cost

1 709 749 884

2 703 616 902

3 662 661 634

4 777 789 722

5 977 716 734

6 726 799 614

7 769 641 707

8 745 620 657

9 583 650 708

10 673 700 739

Average 732.4 694.1 730.1

Minimum 583 616 614

Maximum 977 799 902

SCP43 Parameter α

 
Table 40: Tests on α  for SCP43 (SCACS) 

 

Runs 1 3 5

1 709 564 566

2 703 603 577

3 662 585 606

4 777 660 584

5 977 620 575

6 726 633 594

7 769 583 602

8 745 630 608

9 583 581 588

10 673 675 601

Average 732.4 613.4 590.1

Minimum 583 564 566

Maximum 977 675 608

SCP43 Parameter β

 
Table 41: Tests on β  for SCP43 (SCACS) 

 

Runs 0.1 0.2 0.3

1 709 640 770

2 703 714 769

3 662 737 889

4 777 700 1060

5 977 976 852

6 726 823 877

7 769 865 662

8 745 894 615

9 583 661 1014

10 673 843 794

Average 732.4 785.3 830.2

Minimum 583 640 615

Maximum 977 976 1060

SCP43 Parameter ρ

 
Table 42: Tests on ρ  for SCP43 (SCACS) 
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Runs 0.9 0.95 0.98 0.99

1 709 669 574 589

2 703 684 617 578

3 662 641 592 589

4 777 611 624 595

5 977 645 583 614

6 726 689 566 584

7 769 589 578 561

8 745 765 606 612

9 583 741 620 609

10 673 695 560 569

Average 732.4 672.9 592 590

Minimum 583 589 560 561

Maximum 977 765 624 614

SCP43 Parameter
0q

 
Table 43: Tests on 0q  for SCP43 (SCACS) 
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SCP44: 

 

Runs 0.1 0.2 0.3

1 595 580 707

2 613 625 681

3 562 650 614

4 623 698 616

5 584 615 656

6 696 675 622

7 540 631 624

8 732 601 603
9 713 640 561

10 547 583 548

Average 620.5 629.8 623.2

Minimum 540 580 548
Maximum 732 698 707

SCP44 Parameter α

 
Table 44: Tests on α  for SCP44 (SCACS) 

 

Runs 1 3 5

1 595 561 563

2 613 576 546

3 562 572 542

4 623 562 573

5 584 578 554

6 696 601 548

7 540 565 572

8 732 553 568

9 713 565 538

10 547 612 570

Average 620.5 574.5 557.4

Minimum 540 553 538

Maximum 732 612 573

SCP44 Parameter β

 
Table 45: Tests on β  for SCP44 (SCACS) 

 

Runs 0.1 0.2 0.3

1 595 698 777

2 613 593 845

3 562 674 932

4 623 665 750

5 584 737 636

6 696 667 771

7 540 858 693

8 732 762 675

9 713 733 755

10 547 598 696

Average 620.5 698.5 753

Minimum 540 593 636

Maximum 732 858 932

SCP44 Parameter ρ

 
Table 46: Tests on ρ  for SCP44 (SCACS) 
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Runs 0.9 0.95 0.98 0.99

1 595 551 586 524

2 613 736 572 536

3 562 611 552 529

4 623 620 521 604

5 584 589 598 576

6 696 585 542 542

7 540 613 548 545

8 732 588 589 586

9 713 582 527 559

10 547 553 534 528

Average 620.5 602.8 556.9 552.9

Minimum 540 551 521 524

Maximum 732 736 598 604

SCP44 Parameter
0q

 
Table 47: Tests on 0q  for SCP44 (SCACS) 
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SCP57: 

 

Runs 0.1 0.2 0.3

1 612 427 570

2 336 457 494

3 626 625 596

4 813 624 575

5 742 615 551

6 508 601 683

7 638 548 431

8 540 518 538

9 590 589 463

10 491 387 529

Average 589.6 539.1 543

Minimum 336 387 431

Maximum 813 625 683

SCP57 Parameter α

 
Table 48: Tests on α  for SCP57 (SCACS) 

 

Runs 1 3 5

1 612 438 521

2 336 532 534

3 626 529 536

4 813 538 536

5 742 586 351

6 508 353 429

7 638 627 544

8 540 429 550

9 590 616 521

10 491 448 461

Average 589.6 509.6 498.3

Minimum 336 353 351

Maximum 813 627 550

SCP57 Parameter β

 
Table 48: Tests on β  for SCP57 (SCACS) 

 

Runs 0.1 0.2 0.3

1 612 686 787

2 336 572 811

3 626 548 583

4 813 806 731

5 742 469 743

6 508 458 552

7 638 627 872

8 540 886 608

9 590 638 607

10 491 805 427

Average 589.6 649.5 672.1

Minimum 336 458 427

Maximum 813 886 872

SCP57 Parameter ρ

 
Table 50: Tests on ρ  for SCP57 (SCACS) 
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Runs 0.9 0.95 0.98 0.99

1 612 370 355 327

2 336 330 350 327

3 626 357 327 327

4 813 329 369 328

5 742 455 327 347

6 508 354 358 327

7 638 327 375 331

8 540 363 371 360

9 590 453 358 328

10 491 381 327 327

Average 589.6 371.9 351.7 332.9

Minimum 336 327 327 327

Maximum 813 455 375 360

SCP57 Parameter
0q

 
Table 51: Tests on 0q  for SCP57 (SCACS) 
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Appendix C 
 

C.1 German Abstract 

 

Diese Arbeit beschäftigt sich mit dem Covering Tour Problem (CTP) und 

verschiedenen heuristischen Lösungsmethoden. Dieses Problem der 

Tourenplanung zählt zu den kombinatorischen Optimierungsproblemen, welche 

sehr oft im Bereich der Distributionslogistik international agierender 

Großunternehmen auftreten und durch deren Lösung man entsprechend Kosten 

einsparen und Gewinne maximieren kann. Im Zuge der Globalisierung der 

Weltwirtschaft rückt das Problem der Distributionskosten immer mehr in den 

Mittelpunkt. 

Das CTP kann auf einem ungerichteten Graphen ( )EWVG ,∪=  definiert 

werden. WV ∪ ist eine Menge von Knoten. }{ nvvV ,....,0=  sind jene Knoten, die 

von der zu konstruierenden Tour besucht werden können. VT ⊂  ist eine 

Teilmenge von V  und beinhaltet jene Knoten, die von der Tour besucht werden 

müssen. W  ist die Menge jener Knoten, welche von der Tour abgedeckt werden 

müssen, also in einer vorgegebenen Entfernung zur Tour liegen müssen. Das 

Kantenset ( ) }{ jiWVvvvvE jiji <∪∈= ,,:,  beinhaltet die Verbindungen 

zwischen sämtlichen Knoten. Ziel ist es nun, eine möglichst kurze Tour zu 

finden, die im Punkt 0v  beginnt, alle Knoten aus VT ⊂  besucht, sämtliche 

Knoten aus W abdeckt und wieder in 0v  endet. 

Um das Problem zu lösen, wurde das CTP gemäß einer bereits angewandten 

Methode[14] in zwei Subprobleme, nämlich das Traveling Salesman Problem 

(TSP) und das Set Covering Problem (SCP) unterteilt und diese wurden 

vorgestellt. Nach einer kurzen Einführung der Ant Colony Optimierung wurden 

die Algorithmen GENI, GENIUS und GENI Ant Colony System für den TSP Teil 

und  PRIMAL1 sowie ein Set Covering Ant Colony System für den SCP Teil 

detailliert beschrieben. In weitere Folge wurde erklärt, wie man die Algorithmen 

kombinieren kann, um das CTP zu lösen. 

Sämtliche Algorithmen wurden mit Hilfe der Programmiersprache C++ simuliert 

und getestet. Zunächst wurden die Algorithmen an Instanzen einer Datenbank 

getestet und mit bereits vorhandenen Lösungen verglichen, um ihre 

Funktionalität und Konkurrenzfähigkeit zu überprüfen. Da für das CTP keine 
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Vergleichsinstanzen vorhanden sind, wurden stochastische Probleme entworfen 

und mit dem H-1-CTP Algorithmus [14] und der von mir entworfenen 

Metaheuristik Covering Tour Ant Colony System bestehend aus GENI Ant 

Colony System und Set Covering Ant Colony System gelöst und die Ergebnisse 

verglichen, um dann die beiden Lösungsansätze zu bewerten. 
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C.2 English Abstract 

 

This thesis deals with the Covering Tour Problem (CTP) and different heuristic 

solution approaches. It can be classified as a combinatorial optimization 

problem. Logistics and distribution departments of economic global players 

have to handle this sort of problems to reduce costs and maximize profit. 

Distribution costs enjoy increasing importance due to the globalization of world 

economy. 

The CTP is defined on a complete undirected graph ( )EWVG ,∪=  with a set of 

vertices WV ∪  where }{ nvvV ,....,0=  is a set of vertices that can be visited, W  

defines the set of vertices that have to be covered by the tour and 

( ) }{ jiWVvvvvE jiji <∪∈= ,,:,  is the set of edges. “Covered by the tour” 

means that any vertex Wv ∈
l

 has to lie within a predefined distance of a 

vertex on the tour. The set V  includes the subset T  which includes the vertices 

that have to be visited by the tour. The solution to the CTP is a minimum length 

tour.  The tour starts and ends at the depot and is defined by a certain subset 

so that all vertices that have to be visited are visited by the tour and all 

vertices that have to be covered lie within a predetermined distance  of a 

vertex belonging to the tour. 

In order to solve the problem, it was classified as a combination of the 

Traveling Salesman Problem (TSP) and the Set Covering Problem (SCP) and the 

components were introduced. After a short description of Ant Colony 

Optimization, algorithms GENI, GENIUS and GENI Ant Colony System for the 

TSP part and PRIMAL1 as well as Set Covering Ant Colony System for the SCP 

part were introduced in detail. Then the combinations of these algorithms for 

solving the CTP were described. 

All algorithms were simulated and tested with the help of C++ programming 

language. First, algorithms were tested individually on instances from data 

libraries to ensure their functionality and competitiveness. Then stochastic 

instances were developed for the CTP because no comparable benchmarks exist 

and the H-1-CTP algorithm as well as the Covering Tour Ant Colony System, 

that I created myself, were run on these instances and results were compared. 
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