
 

DISSERTATION 

 

 
 

The central body of the cyanelles of  

Cyanophora paradoxa : 

 A eukaryotic  carboxysome?  
 

 

angestrebter akademischer Grad 

Doktorin der Naturwissenschaften ( Dr. rer. nat. ) 

 

 

Verfasserin:   Mag. Sara Fathinejad 
Matrikel-Nummer:  9627024 
Dissertationsgebiet:   Molekulare Biologie 
Betreuer:    Univ.-Prof. Dr. Löffelhardt

  
 
 

 

Wien, im Januar 2008 

 



 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 3

ABSTRACT 

 

Aquatic microorganisms contribute approximately 50% to the total CO2 fixation in the 

biosphere (Behrenfeld et al., 2001). Among them, first the cyanobacteria and then, 

after the endosymbiotic event, cyanobacteria and algae together have been 

responsible for creating the present atmosphere of 21% oxygen. Furthermore, all 

cyanobacteria investigated and most algae developed similar solutions to cope with 

the low CO2 content (0.037%; Keeling and Whorf, 2004) of the atmosphere and their 

dependence on diffusive entry of CO2 by evolving CO2 concentration mechanisms 

(CCM) different from those emerging later in C4 and CAM plants. However, the type 

of the CCM microcompartment harboring Rubisco is different in prokaryotic and 

eukaryotic oxygenic phototrophic microorganisms: carboxysomes and pyrenoids, 

respectively. Carboxysomes could have been transferred via endosymbiosis and 

then changed to pyrenoids in algae or, alternatively, carboxysomes and pyrenoids 

arose independently (Badger et al., 2006; Giordano et al., 2005). Each cyanelle is 

surrounded by two envelope membranes, their thylakoids are peripheral and 

concentrically arranged, between them intrathylakoidal phycobilisomes are 

present.The centre of the cyanelles of Cyanophora is occupied by a large electron 

dense roundish sometimes polyhedral body, which has been shown, by protein A-

gold immuno electron microscopy, to contain the bulk of ribulose- l,5-bisphosphate 

carboxylase/oxygenase (Mangeney and Gibbs, 1987). Phosphoribulose kinase 

which catalyzes the regeneration of ribulose-l,5-bisphosphate from ribulose-5-

phosphate is localized outside the carboxysome, in the thylakoid region (Mangeney 

et al., 1987). Carboxysomes of cyanelles and of cyanobacteria thus resemble 

pyrenoids in eukaryotic algae.  

Cyanophora paradoxa, the best-investigated alga of the Glaucocystophyta, contains 

plastids (cyanelles) surrounded by a prokaryote-type peptidoglycan wall, which 

represent a very early stage in organelle evolution. The unusual plastids of C. 

paradoxa display several cyanobacterial features besides the peptidoglycan wall. 

Therefore, our assumption is that the glaucocystophyte cyanelles bear a 

cyanobacterial central body for acclimation to low [CO2] by virtue of a cyanobacterial 

CCM. 
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The characterization of the central body of C. paradoxa and its CCM as well as the 

identification of homologues of cyanobacterial and algal proteins involved in 

carboxysome and/or pyrenoid biogenesis and functioning were the goals. An 

isolation procedure for central bodies was developed to be able to perform mass 

spectrometry on in-gel digested bands of SDS-PAGE gels. Two cDNA libraries, for 

conditions of low- and high [CO2], were constructed. At the University of Illinois, 

high-throughput sequencing of 4992 clones generated a collection of expressed 

sequence tags (ESTs). Genes involved in the CCM were among the abundant 

transcripts (shown by S. Burey). Through a different collaboration, phylogenetic 

analyses using EST data from C. paradoxa provided further evidence for the 

monophyletic origin of the kingdom plantae. A subset of largely unique ESTs was 

PCR-amplified and PCR products spotted on coated slides for microarray analysis 

of transcript levels at various timepoints after shift from high (5%) to low- (ambient, 

0.037%) CO2. Among the genes showing differential regulation upon high- and low- 

CO2 a number of CCM candidate genes were identified, such as Rubisco activase 

and a putative bicarbonate transporter - to date the only Ci transporter (Ci, inorganic 

carbon) candidate in C. paradoxa. Emphasis was placed on identifying various 

carbonic anhydrases (CA): a putatively cytosolic CA and two isoforms of putatively 

mitochondrial CA were described. The results presented support the existence of a 

CCM in C. paradoxa, though more data is required to support or refute our 

hypothesis of "eukaryotic carboxysomes".  

The morphology and size of the central bodies were compared for high and low CO2 

cells using a JEOL 1210 transmission electron microscope (collaboration with Dr. 

Siegfried Reipert from Department of Molecular Cell Biology). High pressure 

cryofixation (Empact HP-freezer, LEICA Microsystems) in Combination with freeze 

substitution (AFS, LEICA Microsystems) were employed to preserve both the fine 

structural details. Peptide pattern and sequence information for components of 

isolated central bodies smaller than 57 kDa were obtained after in-gel protease 

digestion bands via MALDI-TOF- and nanoelectrospray  tandem mass spectrometry, 

respectively (collaboration with Günter Allmaier and Martina Marchetti, Technical 

University of Vienna).  
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Rubisco activase was identified as a bona fide componend of the central body. In 

vitro assembly of this chaperone together with Rubisco could be show after import of 

labeled precursor into isolated cyanelles and subsequent fractionation. 
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ZUSAMMENFASSUNG 
 

 

Die Photosynthese stellt die Grundlage des Lebens auf unserem Planeten in 

seiner heutigen Form dar. Neben der Landpflanzen spielen die Algen und die 

Cyanobakterien eine wesentliche Rolle bei der globalen Kohlendioxid-Fixierung 

und tragen damit zum derzeit noch annähernd bestehenden Gleichgewicht 

zwischen der Produktion und dem Verbrauch des (Treibhaus-Gases) bei. 

Angesichts der relativ geringen Affinität des Schlüsselenzyms Ribulose-1,5-

bisphosphatcarboxylase (Rubisco) für sein Substrat ist die 

Kohlendioxidkonzentration in der Atmosphäre (0.037%) tatsächlich als zu niedrig 

anzusehen. Im Verlauf der Evolution haben zunächst die Cyanobakterien, dann 

die durch Endosymbiose aus ihnen entstandenen Algen und schließlich die 

höheren Pflanzen Kohlendioxid- Konzentrierungsmechanismen (CCM) entwickelt, 

um dieses Manko auszugleichen. 

Cyanophora paradoxa ist die am besten charakterisierte einzellige Alge aus der 

Gruppe der Glaucocystophyta. Sie enthält photosynthetisierende Plastiden 

(Cyanellen), welche von einer zwischen den Envelopemembranen liegenden 

Peptidoglykanschicht, ähnlich wie bei den Cyanobakterien, umgeben sind. Dieses 

Merkmal lässt erkennen, dass diese Plastiden eine Modell für eine frühe Stufe in 

der Evolution der Organellen darstellen. In jeder Cyanelle befindet sich ein 

elektronen-dichter Zentralkörper, der den Großteil der vorhandenen Ribulose-1,5-

bisphosphat- Carboxylase/Oxygenase (Rubisco) beinhaltet. Vermutlich ist der 

Zentralkörper von C. paradoxa die wesentliche Struktur für den CO2-

Konzentrierungs-Mechanismus (CCM) und entspricht daher den cyanobakteriellen 

Carboxysomen oder den Pyrenoiden in Algen. Ein mögliches Szenario für die 

Evolution des CCM postuliert, dass Cyanobakterien schon vor dem primären 

endosymbiotischen Ereignis Carboxysomen entwickelt haben und nach der 

Endosymbiose der cyanobakterielle CCM umgestaltet wurde zu einem Algen-

CCM. Die ungewöhnlichen Plastiden von C. paradoxa zeichnen sich neben ihrer 

Peptidoglykanschicht noch durch mehrere cyanobakterielle Eigenschaften aus. 

Daher unsere Annahme, dass die Cyanellen der Glaucocystophyta einen 
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cyanobakteriellen Zentralkörper besitzen, um sich mittels eines cyanobakteriellen 

CCM durch veränderte Genexpression an niedrig-CO2 Zustände anpassen zu 

können („Acclimation“).  

Im Rahmen dieser Arbeit sollten Zentralkörper und CCM von C. paradoxa 

erforscht werden und beteiligte Proteine (d.h. homologe Proteine zu Carboxysom- 

und/oder Pyrenoid- Komponenten) identifiziert werden. Eine Isolierungsmethode 

für Zentralkörper wurde entwickelt, um Massenspektrometrie an im Gel verdauten 

Banden aus SDS-PAGE zu ermöglichen. Zwei cDNA Libraries wurden gemacht, 

aus Zellen unter unterschiedlichen Wachstumsbedingungen, nämlich hoch- und 

niedrig-CO2. An der University of Illinois wurde mittels High-Throughput 

Sequenzierung von 4992 Klonen eine Sammlung von Expressed Sequence Tags 

(ESTs) geschaffen (durch S. Burey). Unter den häufig vorkommenden 

Transkripten befanden sich auch Gene, die möglicherweise eine Funktion im CCM 

haben. Mittels Microarray-Technologie konnte das mengenmäßige Verhältnis von 

Transkripten zu unterschiedlichen Zeitpunkten nach dem Übergang von hoch- 

(5%) zu niedrig- (0.037%) CO2 erfasst werden. Unter den Genen, die bei hoch- 

bzw. niedrig- CO2 Bedingungen unterschiedlich reguliert sind, wurden auch einige 

für CCM-Kandidaten identifiziert, wie Rubisco-Activase (der Einbau des markierten 

Proteins in isolierte Zentralkörper konnte durch import in isolierte cyanellen und 

ausschließende Fraktionierung nachgewiesen werden) und ein putativer 

Bicarbonat-Transporter, bis dato der einzige in Frage kommende Ci-Transporter 

(Ci, anorganischer Kohlenstoff). Ein weiterer Forschungsschwerpunkt war die 

Charakterisierung der Gene für Carbo-Anhydrase (CA): eine putative cytosolische 

CA und zwei Isoformen einer putativen mitochondrialen CA wurden beschrieben. 

Die dargelegten Befunde unterstützen die Existenz eines CCM in C. paradoxa, 

jedoch bedarf es weiterer Ergebnisse um unsere Hypothese von „eukaryotischen 

Carboxysomen“ bestätigen oder verwerfen zu können.  

Ein wichtiges Teilprojekt war die Etablierung der ELMI, auch in Hinblick auf 

künftige Immuno-EM. Leichte Unterschiede in Größe und Morphologie der 

Carboxysomen wurden beobachtet. Die Carboxysomenpräparation wurde 

ebenfalls untersucht. Hinweis auf quasikristalline Arrays aus Rubisco-Molekülen 

(L8S8), ähnlich wie in Cyanobakterien, wurden erhalten. 
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Die zahlreichen Aufnahmen erbrachten den eindeutiger Nachweis daß das 

Cyanellen-Mikrokompartment während der Teilung bestehen bleibt und durch das 

Septum in zwei Hälften getrennt wird. Weiters kann jetzt mit Sicherheit behauptet 

werden, daß nie Thylakoidmembranen durch den Zentralkörper gehen. 
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1. INTRODUCTION 

 

Cyanelles (muroplasts) are the peptidoglycan-surrounded plastids of 

glaucocystophyte algae. This prokaryotic wall, a clear indication of cyanelle origin 

from endosymbiotic cyanobacteria, is found in no other plastid type. Another 

cyanobacterial feature of cyanelles shared with some primitive plastids, such as 

those from red algae or cryptomonads, is the presence of light-harvesting 

phycobiliproteins encoded by clustered plastid genes. There is one large electron-

dense central body in C. paradoxa cyanelles (Figure 1). In the cyanelles of 

Glaucocystis nostochinearum the electron-dense body localizes to polar regions. 

The function of this body likely is equivalent to that of the cyanobacterial 

carboxysome or of the pyrenoid of algae, both with an important role in the CCM. 

Direct analysis of the operation of a CCM and of the effect of ambient CO2 

concentration on its induction in C. paradoxa was missing at the onset of this 

doctoral thesis. In fact there was the opinion that C. paradoxa rather does not 

possess a CCM (A. Goyal, personal communication). Meanwhile, microarray data 

on CO2–responsive genes were established and gas exchange measurements were 

performed. Mass spectrometric measurements of CO2 uptake and external CA 

activity gave five-fold and three-fold increases, respectively, upon shift to low CO2. 

(D. Sültemeyer, personal communication).  

 

C yanophora paradoxa, G laucocystophyceae

 
Fig.1.  Cryosection of a chemically fixed C. paradoxa showing a dividing cyanelle. The septum 

cleaves the ”carboxysome”. Primary antibodies are directed against peptidoglycan from E. coli 



 16

The cyanelles of Cyanophora paradoxa are the best characterized among the 

glaucocystophytes: immunoelectron microscopy with anti-Rubisco antibodies 

identified the central bodies as the major if not exclusive location of the key enzyme 

for CO2 fixation (Mangeney and Gibbs, 1987). It is not clear at present if the C. 

paradoxa “carboxysomes” are confined by a (proteinaceous) non-unit membrane but 

the polyhedral central bodies of cyanelles from the glaucocystophytes Gloeochaete 

wittrockiana and Cyanoptyche gloeocystis are enclosed by such a shell (Kies, 

1992). It is likely that the polyhedral nature, observed infrequently, and the 

surrounding shell of the C. paradoxa central bodies are camouflaged by the 

condensed cyanelle DNA covering them and the closely adjacent concentric 

thylakoids. During cyanelle division, the newly formed septum constricts and finally 

dissects the cyanelle nucleoid and the photosynthetic apparatus, i.e. separates the 

DNA, thylakoids and putative carboxysome into two halves bound for the daughter 

cyanelles (Steiner and Löffelhardt, 2002; Figure 1). An interesting hypothesis 

(Raven, 2003) recently linked the two prominent characteristics of cyanelles 

together: the presumably carboxysomal type of the CCM involves accumulation of 

HCO3
- in the cyanelles to such an extent that the cytosolic osmolarity of the fresh 

water organism would not be able to counterbalance it. The stabilizing peptidoglycan 

layer prevents the cyanelles from bursting. Thus, in the course of plastid evolution, 

both features, peptidoglycan and carboxysomes were abandoned or changed into 

pyrenoids, respectively. 

The cyanelle central bodies could also be pyrenoids that perform functions similar to 

carboxysomes in lower phototrophic eukaryotes. There are a number of 

characteristics that allow a distinction between carboxysomes and pyrenoids for 

example, the intraorganellar distribution of carbonic anhydrase (CA).  

 

1. 1. Cyanelle (muroplast) wall 

 

The cyanelle wall is lysozyme-sensitive and has been shown to consist of 

peptidoglycan in Cyanophora paradoxa (Schenk, 1970; Aitken and Stanier, 1979) 

and Glaucocystis nostochinearum (Scott et al., 1984). The fine structure of this wall 

was completely resolved (Pfanzagl et al., 1996). It exceeds that from E. coli with 
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respect to thickness (7 nm) and crosslinkage and is distinguished by an unusual 

amidation of the D-isoglutamyl moiety by N-acetylputrescine (Pfanzagl et al., 1996). 

Cyanelles as well as their protoplastid ancestor had to face the problem of 

peptidoglycan wall permeability. Based on calculations of the mesh size of the 

peptidoglycan network in E. coli, proteins larger than 50 kDa should have difficulties 

to diffuse. The modification of the cyanelle peptidoglycan with N-acetylputrescine 

might serve the purpose to render the wall permeable for the numerous proteins that 

have to be imported across the cyanelle envelope (Löffelhardt, 1998). The 

biosynthetic pathway of cyanelle murein appears to be analogous to E. coli with 

respect to intermediates, the participating enzymes and their compartmentation. 

Penicillin-binding proteins (PBPs) possess transglycosylase and/or transpeptidase 

activity and perform the last steps of bacterial peptidoglycan biosynthesis by 

introducing new monomeric building blocks into the growing carbohydrate chain and 

crosslinking the peptide side chains. Seven PBPs in the size range from 110 to 35 

kDa have been identified in the cyanelle envelope by labeling with a radioactive 

derivative of ampicillin (Berenguer et al., 1987). 

In addition, data about the membrane-bound, intermediate steps of muroplast 

peptidoglycan synthesis were obtained. Cyanelle envelope preparations 

incorporated label from 14Cputrescine or from 14C-UDP-N-acetylglucosamine into 

modified lipid II (Pfanzagl and Löffelhardt, 1999).  

 

 

 1. 2. Cyanelle genome 

 

From a comparative analysis, a standard set of approximately 80 genes emerged 

that are shared by almost all plastid types regardless of their pigment composition, 

their more primitive or more derived characteristics, or the fact that some (Euglena 

gracilis, Odontella sinensis) arose from a superimposed secondary endosymbiotic 

event. Among these common plastid genes are those for more than 30 rRNAs and 

tRNAs, 20 ribosomal proteins, 27 thylakoid proteins, 4 subunits of the RNA 

polymerase, and a few selected stromal proteins such as the LSU of Rubisco and 

the ClpP protease subunit. This minimal set is most closely displayed by E. gracilis 
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(143 kb, 97 genes), where 40% of the plastid genome is occupied by introns. The 

protoplastid, on the other hand, presumably contained genetic information higher by 

a factor of 2.5 - 3 than the standard set. This means that the major part (90%) of the 

gene transfer from the cyanobacterial endocytobiont (a phototrophic prokaryote 

comprising about 2500 genes) to the host cell nucleus had already taken place. A 

combination of the features of the extant cyanelles of C. paradoxa (136 kb, 193 

genes) and the rhodoplasts of Porphyra purpurea would most closely describe the 

protoplastid, the large rhodoplast genome (191kb) harboring the highest number of 

genes (250) thus far reported for a plastid and the peptidoglycan wall of the 

cyanelles. 

The surplus (as compared to higher plant chloroplasts) of more than 50 genes found 

on the cyanelle genome is most pronounced with respect to ribosomal proteins (36 

vs. 21 in higher plants). This is paralleled and even surpassed in the P. purpurea 

and O. sinensis plastid genomes. To the surprise of the investigators the more than 

20 genes for enzymes involved in murein biosynthesis reside on the nuclear 

genome of C. paradoxa. Only ftsW, a homolog to an E. coli cell division protein, was 

found on the cyanelle genome. Since cell division proteins of prokaryotic origin were 

also found in Arabidopsis and other algae one would assume that some "bacterial" 

features in organelle division still exist although the peptidoglycan wall has been 

abandoned in all plastid types with the exception of the cyanelles. 

Interestingly, another gene directly involved in synthesis of peptidoglycan during 

septum formation, has been detected on the plastid genome of Nephroselmis 

olivacea (Prasinophyceae; Turmel et al., 1999). At the moment it is not clear if this 

alga has also retained a rudimentary layer of peptidoglycan or if the enzyme has 

been adapted for an unknown role in the plastid biosynthetic machinery. 

 

 

1. 3. Cyanobacteria and carboxysomes 
 
 
Carboxysomes are ubiquitous inclusions of the vegetative cells and akinetes 

(spores) of cyanobacteria. 3 to 12 of these polyhedral bodies are localized in the 

nucleoplasmic region of the cell. Nitrogen-fixing heterocysts of filamentous 
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cyanobacteria do not possess polyhedral bodies. Carboxysomes are 100-200 nm in 

diameter and are surrounded by a “shell”, a proteinaceous monolayer 3-4 nm thick 

(Shively, 1988). Carboxysomes were originally described in the autotrophic sulfur 

bacterium Thiobacillus neapolitanus (Shively, 1973). These structures were further 

isolated from Anabaena cylindrica, Chlorogloeopsis fritschii, Thiobacillus thyasiris, 

Nitrosomas spp., several Nitrobacter spp., Prochloron and Prochlorothrix. 

Immunogold-labelling experiments provided evidence that carboxysomes contain 

the bulk of Rubisco (McKay et al., 1993; So et al., 2002b) making them the major 

sites of CO2 fixation in cyanobacteria (Kaplan et al., 1998; Price et al., 1998). 

Besides carboxysomal particulate Rubisco, cyanobacteria possess a soluble form of 

the enzyme. The amounts present in either form are dependent on growth 

conditions and culture age (Shively, 1988).  

 

1. 4. CCM in cyanobacteria 

 

In cyanobacteria, the CCM allows for growth at low atmospheric CO2 levels 

notwithstanding the relatively low affinity and selectivity of the cyanobacterial 

Rubisco for its substrate (Kaplan and Reinhold, 1999; Badger et al., 2006). The 

CCM comprises two phases: i) Uptake of inorganic carbon (Ci) from the environment 

and its accumulation within the cell, and ii) its utilization for photosynthesis through 

the carboxysomal microcompartment where the concentration of CO2 around 

Rubisco is raised to near substrate saturation. Cyanobacteria are now classified 

according to the type of Rubisco they carry: alpha-cyanobacteria contain form IA 

and alpha-carboxysomes, beta-cyanobacteria form IB and beta-carboxysomes 

(Badger et al., 2006). The cyanobacterial plasma membrane may contain at least 

three transporters for HCO3
-. First, an inducible (at very low Ci concentrations) ABC-

type high-affinity bicarbonate transporter, BCT1, is encoded by the genes cmpABCD 

in Synechococcus sp. PCC 7942 (Omata et al., 1999). CmpA appears to be 

identical to the long known 42 kDa plasma membrane protein synthesized under Ci-

limited conditions. This protein was shown to function as the membrane-anchored 

substrate-binding protein of the transporter (Maeda et al., 2000). The second is an 

inducible, Na+-dependent, high-affinity bicarbonate transporter, SbtA (Shibata et al., 



 20

2002), and a third one is represented by the recently identified low-affinity 

bicarbonate transporter, BicA (Price et al., 2004). 

Passive diffusion of CO2 occurs across the plasma membrane as suggested by the 

inhibitory action of a water channel blocker (Tchernov et al., 2001). In addition, two 

energized CO2 uptake systems have been shown to operate on the cytosolic side of 

the thylakoid membranes in β-cyanobacteria: a constitutive protein complex, 

mediated by NdhF4, NdhD4, and ChpX, and an inducible (by low CO2 

concentrations), high-affinity complex consisting of NdhF3, NdhD3, and ChpY 

(Shibata et al., 2002; Maeda et al., 2002). Using light energy and mediated by cyclic 

electron transport around photosystem I, CO2 is converted into bicarbonate which 

accumulates in the cytoplasm. Electrons from NAD(P)H are thought to generate a 

catalytic Zn-OH moiety as it is found in the active site of CAs (Kaplan and Reinhold, 

1999, Maeda et al., 2002). The bicarbonate then diffuses into the carboxysomes 

where it is converted into CO2 by carbonic anhydrases that are confined to these 

bodies and efficient fixation occurs. In this scenario, the carboxylase activity of 

Rubisco is maximized whereas the oxygenase activity is largely eliminated (Kaplan 

and Reinhold, 1999; Badger et al., 2006). 

The carboxysomes of chemoautotrophic bacteria, especially Halothiobacillus 

neapolitanus, were the first to be studied. They contain most of the cellular Rubisco 

surrounded by a proteinaceous shell. The cso operon encodes the shell proteins 

(Shively et al., 1998). In the genomes of the cyanobacteria Synechococcus sp. PCC 

7942, Synechococcus sp. PCC 7002, and Synechocystis sp. PCC 6803 a set of 

clustered ccm genes with sequence similarity to some of the cso genes has been 

detected (Ludwig et al., 2000). Recent structural studies allow us to imagine how 

such a polyhedral shell could be formed: carboxysomes are proposed to function not 

simply as a containment for Rubisco and CA but they appear to act as a micro-

compartment with selective and controlled permeability for metabolites, perhaps 

including CO2 and O2 (Kerfeld et al., 2005). The 70 kDa CcmM protein was found to 

be essential for carboxysome assembly (Ludwig et al., 2000). This component of the 

carboxysomal shell shows sequence similarity to (archaebacterial) gamma-type CAs 

in its N-terminal region and similarity to Rubisco activase and, less pronounced, to 

Rubisco SSU in three or four (depending on the species) repetitive domains of the 
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C-terminal region. The icfA (ccaA) gene encoding carboxysomal beta-type (E. coli, 

higher plant chloroplasts) CA was characterized using high-CO2-requiring mutants of 

Synechococcus sp. PCC 7942 (Badger and Price, 1994). The 31-kDa protein has a 

carboxy-terminal extension compared to the 24 kDa higher plant chloroplast 

enzyme. This extra domain was found to be responsible for aggregation of CA within 

the carboxysome (So et al., 2002). This is in accordance with the model that the 

dense packaging of Rubisco and CA inside the carboxysomes ensures a high 

concentration of CO2 at the site of fixation which grants activation of the enzyme and 

compensates for its relatively low affinity for CO2 and reduces loss of CO2 by 

diffusion (Kaplan and Reinhold, 1999; Badger et al., 2006). In Thiobacillus, 

Prochlorococcus, and marine Synechococcus species, all containing alpha-

carboxysomes, no gene encoding a typical carboxysomal CA has been found 

(Badger et al., 2006). Instead, one of the Thiobacillus shell proteins, CsoS3, was 

shown to possess CA activity ascribed to the new epsilon-class (So et al., 2004). 

Very recently, the structure determination of this protein, now renamed to CsoSCA, 

justified its positioning in a distinct beta-subclass (Sawaya et al., 2006). There is no 

CA sensu stricto in the cytoplasm of cyanobacteria. However, for an efficient 

operation of the CCM, a CA-like activity at the thylakoid membrane is postulated as 

a CO2-scavenger. CO2 leaking out from the carboxysomes as well as CO2 entering 

from the medium will be converted into HCO3
- against the thermodynamic potential 

(thus maintaining an inward diffusion gradient along which CO2 enters passively) at 

the expense of membrane energization (Kaplan and Reinhold, 1999).   

Rubisco activase plays an important role in photosynthetic carbon fixation of higher 

plants (Portis, 2003), but a corresponding gene has not been identified in the 

genome of Synechocystis sp. PCC 6803. Obviously, this enzyme is not absolutely 

necessary for a carboxysome-containing organism. However, heterocystous 

filamentous cyanobacteria (Anabaena, Nostoc) possess carboxysomes and Rubisco 

activase.  

This chaperone that removes prematurely bound substrate as well as substrate 

analogs and inhibitors from the active center of Rubisco and also ensures full 

carbamylation of the enzyme (Portis, 2003) is indispensable in all phototrophic 

eukaryotes. In algae, Rubisco activase localizes to the pyrenoid (McKay et al. 1991) 



 22

and also plays a role in CCM (Pollock et al. 2003). The carboxysomal CCM provides 

an optimal environment for cyanobacterial Rubisco which is fully activated and also 

less susceptible to inhibition by the misfire product, xylulose-1,5-bisphosphate 

(Pearce, 2006), whereas the “natural” inhibitor in plants, carboxyarabinitol-1-

phosphate is not formed at all in cyanobacteria. However, rca-like genes are found 

in the genomes of filamentous, nitrogen-fixing cyanobacteria (Li et al. 1999). 

Interestingly, a truncated form is contained in the gloeobacter genome. Now, one 

might speculate that filamentous cyanobacteria certainly are better candidates for 

the plastid ancestor than Synechocystis 6803. Anyway, there is convincing 

sequence identity (>50%) over a region of 300 AA between cyanobacterial and plant 

rca genes. Plant proteins contain a N-terminal extension missing in the 

cyanobacterial counterparts. On the other hand, only cyanobacterial proteins contain 

a C-terminal extension with distinct sequence similarity to the repeats of the shell 

protein CcmM (Portis, 2003). The localization of the cyanobacterial protein is 

unknown and a mechanism/function different from plant Rubisco activase is 

considered (Portis 2003, Pearce 2006). 

In a genome-wide microarray analysis conducted with Synechocystis sp. PCC 6803, 

genes for the photosystems I and II, phycobilisome components, Calvin cycle 

enzymes, and proteins of the translation apparatus were shown to be down-

regulated by a shift to low CO2, whereas genes related to the CCM were up-

regulated (Wang, Postier and Burnap, 2004). Inclusion of ndhR knockout mutants 

into this study revealed the important regulatory role of NdhR (now CcmR) in 

acclimation to low CO2. 

 

 

1. 5. CCM in green algae 

 

Among eukaryotic microorganisms, the CCM is best investigated in 

Chlamydomonas reinhardtii (Giordano et al., 2005). Even there, much less is known 

about cellular import of Ci than in cyanobacteria. Rh1, a Rhesus protein homolog 

from C. reinhardtii was recently proposed as a CO2 channel in the chloroplast inner 

envelope membrane (Soupene et al., 2004). Expression of Rh1 is down-regulated 
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by low CO2, probably to avoid CO2 efflux. Multiple CAs are a characteristic of 

eukaryotic CCMs (Mitra et al., 2004). Protein levels of all CAs increase upon a shift 

from 5% CO2 to ambient CO2 (Badger and Price, 1994; Kaplan and Reinhold, 1999). 

Periplasmic beta-type (animal) CAs and their genes containing amino-terminal 

signal peptides were characterized for C. reinhardtii (Cah1 and Cah2; Fujiwara et 

al., 1990). Two closely related genes (Ca1 and Ca2) encoding mitochondrial CAs of 

C. reinhardtii were also identified (Villand et al., 1997). A recent model (Raven, 

2001) suggested that the mitochondrial CA activity may reduce leak of respiratory 

CO2 from the cells. Cytosolic forms of CA are less well defined. Their function would 

be necessary assuming the presence of a Ci-transporter in the chloroplast envelope 

with a distinct preference for either CO2 or HCO3
- (Badger and Price, 1994). A low-

CO2-inducible chloroplast envelope protein, (LIP-36) could have a role in CO2 or 

HCO3
- transfer into the chloroplast (Chen et al., 1997). In C. reinhardtii, the 

expression ratio of a novel gene, LciA, was particularly high among low-CO2 

inducible genes (Miura et al., 2004). LciA was predicted to encode a polypeptide 

with significant sequence similarity to the formate transporter, FdhC, from 

Methanobacterium thermoformicicum and identical to Nar1;2 (Rexach et al., 2000), 

one of five Nar1-related genes. Nar1;1 is a chloroplastic nitrite transporter in C. 

reinhardtii. 

A putative chloroplast transit peptide suggests that LciA localizes to thylakoids or 

chloroplast envelope membranes in Chlamydomonas. In addition, it was shown that 

LciA expression is concomitant with CCM induction, and that its function is not 

linked to nitrite transport (Miura et al., 2004). In cyanobacteria, a well-characterized 

bicarbonate transporter showed sequence similarity to a nitrite transporter (Omata et 

al. 1999). This led Miura et al. (2004) to conclude that LciA functions as a 

transporter for bicarbonate into chloroplasts. 

An important issue is the sub-organellar localization of algal chloroplast CA. 

Pyrenoids are electron-dense structures that are found in the plastids of C. 

reinhardtii and other algae possessing a CCM, with the exception of some 

Chloromonas species (Morita et al., 1998), but the equivalent structure is absent in 

algae missing a CCM. It is accepted that the pyrenoids are functionally equivalent to 

carboxysomes (Kaplan and Reinhold, 1999; Giordano et al., 2005) but they lack the 
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quasi-crystalline appearance and the surrounding shell of the latter. In many algal 

species, unstacked thylakoid membranes traverse the pyrenoids. The pyrenoid is 

the sole location of Rubisco in Chlorella pyrenoidosa, irrespective of the light regime 

(McKay et al., 1991). The C. reinhardtii pyrenoid was shown to contain significant 

amounts of Rubisco that varied depending on growth conditions, reaching up to 90% 

of the total cellular Rubisco content when the cells were grown at ambient CO2. In 

this condition a starch layer with pores surrounding the pyrenoid becomes apparent. 

The pyrenoid also harbors Rubisco activase (McKay et al., 1991; Villarejo et al., 

1998). Insertion of a bleomycin resistance cassette into the Rca gene of C. 

reinhardtii led to a high-CO2-requiring mutant (Pollock et al., 2003). Algal Rubisco 

likely is more prone to inhibition by substrate analogs than the cyanobacterial 

enzyme. Furthermore, due to the less pronounced enrichment of Ci in a pyrenoidal 

CCM, complete activation of Rubisco might not be achieved in the absence of its 

chaperone. In contrast to beta-carboxysomes, the immediate presence of CA in 

pyrenoids is questionable (Badger and Price, 1994). The gene for a precursor to a 

chloroplastic CA (Cah3) from C. reinhardtii was found by complementation of high-

CO2-requiring mutants, indicating the importance of CA for photosynthesis at 

ambient levels of CO2 (Funke et al., 1997). Cah3 specifies an alpha-type CA that 

localizes to the thylakoid lumen. The bipartite pre-sequence consists of a transit 

peptide and a thylakoid transfer peptide with a twin arginine motif, which points 

towards a Delta pH-dependent pathway for thylakoid import. Another mutant (cia3) 

with amino acid exchanges in the vicinity of this motif was incompetent with respect 

to lumenal targeting of this CA (Karlsson et al., 1998) and also required high CO2 for 

growth. Such sub-compartmentation of chloroplast CAs is crucial for a model that 

postulates passive transport of HCO3
- through an anion channel into the thylakoid 

lumen, concomitant with light-driven H+ transport. Due to the low pH in the lumen, 

the equilibrium is shifted towards CO2 and its rapid attainment is catalyzed by CA. 

The CO2 formed will diffuse across the thylakoid membrane (thereby facilitating 

further import of HCO3
-) and will generate optimal conditions for CO2 fixation by 

pyrenoidal Rubisco (Moroney and Somanchi, 1999). Experimental proof for such a 

role of Cah3 has been obtained (Hanson et al., 2003). Furthermore, an enrichment 

of Cah3 in thylakoids traversing the pyrenoid could be demonstrated (Mitra et al., 
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2005). Recently, evidence for Cah6, a stromal CA (as found in higher plant 

chloroplasts) in pyrenoid-containing organisms was presented for C. reinhardtii 

(Mitra et al. 2004). Cah6 that localizes to the stroma at the periphery of the pyrenoid 

might have dual functions: direct supply of CO2 to Rubisco and recapturing of CO2 

escaped from the starch-covered pyrenoid (Mitra et al. 2005). To render the 

situation in Chlamydomonas even more complex, an additional CA targeted to the 

chloroplast stroma by a signal sequence was reported (Villarejo et al., 2005). 

A low-CO2-inducible CA was found associated with PSI-containing thylakoid 

membranes traversing the pyrenoid in Chlorella vulgaris (Villarejo et al., 1998). Very 

limited data exist on CAs of algae other than chlorophytes. Recently, a plastid–

targeted CA was reported to localize to particles observed at the stromal side of 

girdle band thylakoids in the diatom, Phaeodactylum tricornutum (Tanaka et al., 

2005). These aggregates are different from the more centrally located pyrenoids. 

There is no evidence for an intra-thylakoidal localization of this CA, since a second 

signal sequence necessary for thylakoid translocation is missing from the bipartite 

pre-sequence typical for complex plastids. An (essential) function of this enzyme in 

Ci import into P. tricornutum plastids has been discussed (Tanaka et al., 2005), 

assuming an analogon to the postulated thylakoid–bound CA-like complex in 

cyanobacteria (Kaplan and Reinhold, 1999; Badger and Price, 2003). 

Complementation of high-CO2-requiring Chlamydomonas mutants unable to up-

regulate the expression of low-CO2-induced genes identified a gene, Ccm1 (Cia5), 

involved in the acclimation to low CO2 conditions. The Ccm1/Cia5 protein probably 

undergoes post-translational modification (phosphorylation) at the C-terminus in 

response to exposure to low CO2 and activates transcription of several low CO2-

induced genes (Fukuzawa et al., 2001). Macroarray (Miura et al., 2004) and 

microarray (Wang et al., 2005) analyses confirmed the role of Ccm1/Cia5 as a 

master regulator in the expression of CCM-related genes. Very recently, the high 

CO2-requiring pmp1 mutation and the allelic ad1 mutation were assigned to the LciB 

gene (Wang and Spalding, 2006). In the C. reinhardtii genome a family of three 

other genes, LciC, LciD, and LciE was found, with high sequence similarity to LciB. 

All these genes are CO2-responsive (Wang and Spalding, 2006; Miura et al., 2004) 

and the gene products should be soluble proteins, likely targeted to the chloroplast. 
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Physiological measurements led Wang and Spalding to propose for LciB the role of 

a functional component somehow involved in Ci transport rather than that of a 

regulator. 

 

 

1.6. Aims of the project 
 

The aim of this project is to study the nature of the assumed CCM operating in the 

cyanelles of C. paradoxa. An isolation procedure for central bodies should be 

developed to identify components other than Rubisco via mass spectrometry. Two 

cDNA libraries, for conditions of low- and high-CO2, should be established. High-

throughput sequencing without subtraction should generate a collection of 

expressed sequence tags (ESTs). It was expected that genes of interest, i.e. 

involved in the CCM, would be among the abundant transcripts. While the 

respective types of carbonic anhydrase identified would allude towards either an 

pyrenoidal or carboxysomal kind of CCM, the presence or absence of other genes 

would also be conclusive in this regard. The following genes, for instance, which had 

not yet been identified for C. paradoxa at project commencement, would be highly 

indicative: carboxysomal shell proteins, Ci-transporter components, NADH 

dehydrogenase subunits (essential for cyanobacterial type CO2 uptake) and CCM1 

(bearing an important role in transcription regulation of low CO2-dependent genes in 

green algae).  

We also have to face the scenario that the cyanelle micro-compartments in 

glaucocystophytes are “carboxysomes” en route to their final conversion into 

pyrenoids that has already taken place in all other algae: number and size of the 

glaucocystophyte central bodies are more in line with pyrenoids. They show a 

polyhedral shape confined by a distinct “shell” in Cyanoptyche gloeocystis and 

Gloechaete wittrockiana, but not in C. paradoxa (Kies et al, 1992).  

In view of these dual properties, we proposed to generate additional biochemical 

and molecular data that will allow us to definitely support or refute the hypothesis of 

"eukaryotic carboxysomes" or to establish a hitherto undescribed link between the 

two micro-compartment types. 
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1. Electron microscopy of high vs. low CO2 grown cells should show a potential 

increase in size of the putative carboxysome. In prokaryotes which contain multiple 

carboxysomes, their numbers increase upon CO2-stress (Reinhold and Kaplan, 

1999). Isolated carboxysomes will be checked with respect to intactness, polyhedral 

appearance and recognizability of the ”shell” which might be camouflaged by 

surrounding cyanelle DNA and thylakoid membranes. Here, cryofixation should be 

superior, as chemical fixation often leads to the disappearence of the shell (Kaneko 

et al., 2006). Heterologous antisera directed against CA, rubisco activase, and shell 

proteins in combination with gold-labelled secondary antibodies should support their 

co-localization with Rubisco.  

2. Central body isolation can be seen as a compromise between purity and 

intactness. Methods suitable for the (much smaller) carboxysomes of cyanobacteria 

were not directly applicable. We will continue with the Percoll step 

gradient/detergent treatment procedure, which we developed (Fathinejad et al., 

manuscript in preparation), and, eventually, also employ a new method adapted 

from pyrenoid purification protocols (Rodríguez-Buey et al., 2005). Peptide pattern 

and sequence information for components of isolated central bodies will be obtained 

after in-gel protease digestion of protein bands via MALDI-TOF- and nano-

electrospray tandem mass spectrometry, respectively (collaboration with Günter 

Allmaier and Martina Marchetti, Technical University of Vienna). The protein 

components other than Rubisco of the cyanelle central bodies will be determined. 

keeping in mind the problems and pitfalls encountered with cyanobacterial 

carboxysomes (Long et al., 2005).  

The expected increase in parallel in Cyanophora EST sequence information will aid 

in identification.  

3. The well established in vitro import system with isolated cyanelles and the micro-

fractionation techniques available will allow to test the assembly of labeled putative 

central body components despite the preponderance of Rubisco. 
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2. MATERIALS AND METHODS 

 

 

2.1. Culture of Cyanophora paradoxa 

 

Cyanophora paradoxa (Kies-strain, 1555; Breiteneder et al., 1988) was grown in 

mineral medium without an organic carbon source.  

 

100-fold concentrated stock solutions, required for mineral medium, contained per 

liter: 

 

 Solution 1: 1.71 g   K2HPO4.3H2O   

   10 g   KNO3 

   10 g    NaH2PO4 

 

 Solution 2: 0.99 g   MgSO4.7H2O 

   0.74 g   CaCl2.2H20 

   0.20 g   MnCl2.4H20 

 

 Solution 3: 28 mg   CoSO4.7H2O 

   140 mg   ZnSO4.7H2O 

   2.4 mg  Na2MoO4.2H2O 

2.5 mg  CuSO4.5H2O 

 

Solution 4: 62 mg   H3BO3 

 

 Solution 5: 700 mg   FeSO4.7H2O 

   730 mg  EDTA 

 

 Solution 6: 2x10-4 M  Vitamin B12 
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All medium storage containers and culture flasks were sterilized by autoclaving prior 

to use. 

For the preparation of minimal medium, stock solutions 1- 4 were combined in a 

flask and distilled water used for adjustment to the total volume. After autoclaving, 

solutions 5 and 6 were added to the cold medium through a syringe equipped with a 

sterile 0.2 µm membrane filter. 

Mass cultures of C. paradoxa were grown in 1.3 l cylindrical bubble-flasks. 100 to 

300 ml of stock culture was added to each bubble-flask and filled up with the 

minimal medium. Flasks were closed with sterilized air-permeable sponge stoppers. 

Cultures grew at 26°C under a light intensity of 15 00 lux and were aerated with a 

filtered mixture of air and CO2 (2-5%). When cultures reached a higher density, they 

could be supplemented with a few ml of nitrate-rich mineral medium SA (50 mM 

Ca(NO3)2.4H20, 30 mM MgSO4.7H20, 300 mM KNO3) for continued logarithmic 

growth. 

The generation time is about 24 h. Mass cultures grow to late logarithmic or early 

stationary phase in 5-7 days and can be harvested by centrifugal separation with a 

Westfalia separator. Only cells attached to the conical inner wall of the separator 

were used. The non-axenic stock cultures were kept at room temperature without 

aeration and reinoculated into fresh medium once a week. 

 

 

2.2. Isolation of intact cyanelles from Cyanophora paradoxa 

 

Mass cultures were harvested and cells suspended in 200 ml precooled SIM 

medium on ice. The cells were broken in a Waring Blendor: 5x 1 min full speed with 

1 min cooling in ice water in between. Inspection under the light microscope should 

reveal more than 90% of broken cells. Following the addition of another 200 ml 

precooled SIM medium, the cyanelle suspension was filtered through a two layered 

MiraclothTM filter funnel and centrifuged at 3,000 rpm, 2 min, 4°C in a Sorvall RC5C 

centrifuge (GSA rotor) with the brake off. The pellet was gently resuspended in 8 ml 

1x SRM buffer on ice using a cut 1 ml tip. 4 ml of 40% Percoll cushion (in SRM 

buffer) was prepared in 15 ml Corex tubes and 4 ml of cyanelle suspension layered 
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on top. Centrifugation at 3,000 rpm, 2 min, 4°C (So rvall SS34 rotor) rendered blue-

green intact cyanelle pellets which were washed twice in 30 ml Corex tubes as 

follows: resuspension with a cut tip in 2 ml 1x SRM buffer, addition of 1x SRM to 30 

ml total volume and gentle mixing by inverting, then centrifugation at 2,400 rpm, 2 

min, 4°C. Pellets were resuspended in 1.5 ml 1x SRM  buffer, pooled and the 

chlorophyll concentration measured. For this purpose, 10 µl cyanelle suspension 

was mixed with 990 µl 80% acetone, vortexed and sonicated for 2 x 20 impulses 

(50% power). Centrifugation in a table centrifuge at full-speed for 3 min rendered a 

blue phycobilisome pellet and a green chlorophyll supernatant which could be 

spectrophotometrically measured in a 1 ml microcuvette. 

Chlorophyll a + b (µg/ml) = 20.2 x A645 + 8.02 x A663  

 

Cyanelles were kept on ice in the dark until used. 

 

SIM (Sucrose-Isolation-Medium): 

0.35 M sucrose 

25 mM Hepes 

2 mM EDTA 

pH adjusted to 7.6 with KOH 

 

5 x SRM (Sorbitol-Resuspension-Medium): 

250 mM Hepes  

1.65 M Sorbitol 

pH = 8.0 

 

 

2.3. Isolation of central bodies  

 

Cyanelles were isolated as described in chapter 2.2. 

Centrifugation steps were performed with a HB-4 swing-out rotor. 10% and 40% 

Percoll contained 1x SRM and 1x Protease-inhibitor (Complete EDTA-free protease 
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inhibitor cocktail tablets, Roche, Switzerland). Where indicated, homogenizing was 

performed using a potter. Final concentrations are noted. 

Isolated cyanelles were incubated with 300 µg/ml lysozyme for 30 min at RT (dark) 

resulting in peptidoglycan wall digestion and then homogenized. 30 µg/ml DNase I 

and 1 mM MgCl2 were added (for digestion of cyanelle DNA), the mixture incubated 

at RT (dark) for 15 min and subsequently homogenized.  

3 ml 40% Percoll in a 15 ml Corex tube was overlaid with 3 ml 10% Percoll. 1.5 ml 

digested cyanelles were layered on the Percoll gradient and centrifuged at 16,500g 

for 3-10 min at 4°C. The organelle components were separated in the following 

order: phycobilisomes (top), thylakoids (at boundary 40%/10%), starch (bottom). 

This last procedure was efficient in removing starch, which could be seen as a white 

pellet (sometimes containing thylakoid fragments).  

Recovered thylakoids could be washed for quantitative removal of phycobilisomes. 

In this case, they were washed three times with 1x SRM (3000 rpm, 3 min, 4°C).  

Thylakoids were treated with 0.1% Triton X-100, vortexed for 30 sec and layered on 

a 40%/10% (v/v) Percoll gradient. By centrifugation at 3,000 rpm for 3-10 min at 

4°C, part of central bodies separated from thylakoi ds.   

 

Collected fractions were incubated at 95°C for 3 mi n with 2x SDS-sample buffer 

(see chapter 2.10.1), centrifuged at 13,200 rpm for 2 min at RT and could be stored 

at –20°C. For loading an aliquot on SDS-PAGE gel, s amples were denatured once 

more at 95°C and centrifuged.  

“Total cyanelle extract”, cyanelles from C. paradoxa which were previously 

denatured in 2x loading buffer at 95°C for 5 min, w as loaded on gel as a control. 

Prior to loading, the “total cyanelle extract” was incubated at 60°C for 10 min. 

 

For the detection of starch, the following iodine solution was used: 

 3 g KI + 7 g I in 100 ml 92% ethanol (Jodtinktur, Gerlach, 1977) 
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2.4. Import 

 

 2.4.1. Isolation of import competent cyanelles 

 

Cyanophora cells suspended in 25 mmol.L-1 HEPES buffer, pH 7.6, 0.35 mol.L-1 

sucrose, 2mmol.L-1 EDTA were brocken in a Waring Blendor:  five times for 1 min at 

full speed with 1 min of cooling in ice water in between blendings (Steiner et al. 

2003). Inspection under the light microscope revealed more than 90% broken cells. 

Cyanelles were pelleted at 1500g (2 min in a Sorvall centrifuge, GSA rotor, with the 

brake off). The pellet was carefully suspended in 8 ml of SRM buffer (50 mmol.L-1 

sorbitol, pH 8.0) using a fine brush. Cyanelle suspension (4 ml) was layered on top 

of a cushion of 40% Percoll (in SRM buffer, 4 ml).  

After centrifugation for 7.5 min in a Sorvall SS34 rotor at 2000g, class II cyanelles 

(i.e., those not competent for protein import) and residual mithochondria remained 

on top of the cushion whereas intact cyanelles were pelleted. 

The blue- green pellet was gently dissolved in 1 ml of SRM buffer, diluted to 40 ml 

with SRM buffer, and pelleted at 1000g for 2 min. This washing procedure was 

repeated twice. 

 

2.4.2. Cyanelle Import Assay 

 

The radiolabelled precursor of Rubisco activase was synthesized by in vitro 

transcription and translation of the respective cDNA cloned into the pBAT vector as 

described. 

A cyanelle suspension in SRM buffer, equivalent to 40 µg of chlorophyll, was 

incubated with the translation mixture for 7-25 min at 25°C in a total volume of 

150µl. Cyanelle were then isolated again by centrifugation for 2 min at 800g and 

eventually treated with thermolysin to remove precursor adjacent to the envelope. 
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Cyanelle import assay: 

     x   µl cyanelles (30-50 µg chlorophyll) 

    7.5 µl 100 mM ATP 

    5    µl 250 mM methionine 

    15  µl tranlation mix 

    SRM add 150 µl 

 

 

2.5. RNA isolation and purification 

 

Unlike DNAses, RNAses do not need metal ion co-factors and can maintain activity 

even after autoclaving. The ubiquitous presence of RNAses together with the 

chemical instability of RNA necessites special precautions for RNA work. 

General working behaviour included: wearing gloves (hands are a major source of 

RNAses), using sterile plasticware, baking certain equipment such as spatulas at 

180-200°C for at least 4 hours and using untouched weigh paper. Twice autoclaved 

ddH20 was used for making solutions. Electrophoresis tanks for RNA analysis were 

cleaned with 1% SDS, rinsed with ddH20, rinsed with absolute ethanol and finally 

rinsed with ddH20 before use. For cleaning, pH electrodes were immersed for 30 sec 

in 70% ethanol, 5 min in 1 M NaOH, then rinsed with ddH20. In some cases, as 

described below, ddH20 was treated with diethyl pyrocarbonate (DEPC) (0.1%) 

which is a strong, though not absolute inhibitor of RNAses. After DEPC addition, the 

ddH20 was shaken at 37°C overnight and subsequently aut oclaved (for DEPC 

hydrolysis, releasing CO2 and EtOH as reaction by-products) for 15 min at 15 lb/sq. 

in. on liquid cycle. 

 

 

2.5.1. Isolation of total RNA 

 

Total RNA was extracted as quickly as possible after culture harvesting to avoid 

RNA degradation. DEPC-treated ddH20 was not used for any of the solutions 
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required for RNA isolation as remaining traces of DEPC might inhibit reverse 

transcription, the essential step in the construction of cDNA libraries. 

Total RNA was extracted using the Qiagen extraction protocol for plant tissue 

(Qiagen, Inc., Chatsworth, CA) and Qiagen-tips 500 for a “Maxi-prep”.  

2.5 to 4 l mass culture was harvested, cells were washed with 400 ml ice-cold 

mineral medium (chapter 2.1) and centrifuged in a GSA rotor for 5 min at 2,000 rpm 

at 4°C. The wet weight of the cell pellet was recor ded. Per preparation and 

QIAGEN-tip used, a maximum of 1 g cells was used. All following steps were carried 

out on ice. Solutions were prepared according to RNA standards described above 

and centrifugation tubes were twice autoclaved. The cell pellet was homogenized in 

a potter in 9 ml of ice-cold solution R1 (4 M guanidine thiocyanate (GIT), 100 mM 

Tris-HCl, 25 mM MgCl2, 25 mM EDTA, pH 7.5) and 9 µl solution R2 (ß-

mercaptoethanol). The homogenate was transfered in a Corex tube, 720 µl solution 

R3 (25% Triton X-100) added, mixed well by inversion and incubated for 15 min on 

ice. 9 ml ice-cold solution R4 (3 M NaAc, pH 6.0) was added, mixed well by 

inversion and incubated for further 15 min on ice. The homogenate was centrifuged 

in a SS34 rotor at 15,000x g for 30 min at 4°C. The  supernatant was decanted into a 

clean centrifuge tube and 0.8 vol isopropanol added for RNA precipitation for 5 min 

on ice. After centrifugation in a GS-3 rotor at 15,000x g for 30 min at 4°C, the 

supernatant could be carefully removed and the transparent pellet dissolved 

thoroughly in 16 ml ice-cold solution R5 (20 mM Tris-HCl, 1 mM EDTA, pH 8.0) 

using a pipette with a cut-off blue tip. The undissolved particles were removed by 

centrifugation in a SS34 rotor at 20,000x g for 15 min at 4°C and the supernatant 

transferred to a clean Corex tube. 4 ml solution R6 (2 M NaCl, 250 mM MOPS, pH 

7.0, RT) was added. In the following steps, the QIAGEN-tip was always allowed to 

empty by gravity flow. The tip was equilibrated with 10 ml buffer QAT (400 mM 

NaCl, 50 mM MOPS, 15% ethanol, 0.15% Triton X-100, pH 7.0, RT) and the sample 

applied to the tip. The tip was washed twice with 30 ml of buffer QA (400 mM NaCl, 

50 mM MOPS, 15% ethanol, pH 7.0, RT) and the RNA eluted with 20 ml freshly 

prepared buffer QRU (900 mM NaCl, 50 mM MOPS, 15% ethanol, 6 M urea, pH 7.0, 

RT. Urea should be added to the buffer just prior to use). RNA was precipitated with 

1 vol isopropanol for 10 min on ice and centrifuged in a SS34 rotor at 15,000x g for 
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30 min at 4°C. The pellet was washed with 80% ethan ol. Partial resuspension of the 

pellet could be carried out in approx. 1 ml 80% EtOH for stable storage at –70°C. 

After air drying the remaining pellet for 30 min, it could be resuspended in approx. 

500 µl ddH20. 

 

2.5.2. Concentration measurement and quality contro l of total RNA 

 

Total RNA was measured spectrophotometrically for the range 200 to 300 nm to 

determine concentration and purity. Quality control was further performed by loading 

10 µg of total RNA, which was previously denatured at 65°C for 10 min, on an 

agarose gel (1% in 1x formaldehyde gel-running buffer, FGRB). 1x FGRB was used 

as the running buffer. 

 

5x formaldehyde gel-running buffer: 

 0.1 M MOPS pH 7.0 

 40 mM sodium acetate 

 5 mM EDTA pH 8.0 

Solutions of sodium acetate and EDTA were made up with DEPC-treated ddH20 and 

the prepared buffer was sterilized by filtration through a 0.2-micron Millipore filter. 

 

2.5.3. Preparation of poly (A) +mRNA  

 

PolyA+ mRNA was isolated from total RNA (preparation: chapter 2.4.1) using the 

Qiagen Oligotex-dT kit (Qiagen, Germany).  

The Oligotex Suspension used consists of polystyrene-latex particles to which 

dC10T30 oligonucleotides are covalently linked. PolyA+ RNAs hybridize via their poly-

A tail to the dT oligomers in high-salt conditions. By lowering the ionic strength, 

mRNA is subsequently released. The Oligotex mRNA Batch Protocol (Oligotex 

Handbook 05/2002) was used. The concentration of starting total RNA was 

measured spectrophotometrically and RNA up to 0.75 mg adjusted to 500 µl with 

RNAse-free water. Oligotex Suspension was heated to 37°C, mixed by vortexing 
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and then placed at RT.  All centrifugation steps were performed in a microcentrifuge 

at 13,200 rpm at RT. 

For total RNA amounts 0.25 to 0.50 mg in 500 µl, 500 µl buffer OBB (20 mM Tris-

HCl, pH 7.5, 1 M NaCl, 2 mM EDTA, 0.2% SDS) and 30 µl Oligotex Suspension 

were added. For total RNA amounts 0.50 to 0.75 mg in 500 µl, 500 µl buffer OBB 

and 45 Oligotex Suspension were added. The sample was incubated for 3 min at 

70°C on a heating block (disrupting RNA secondary s tructure) and then placed at 

RT for 10 min (for hybridization between mRNA and particles). Oligotex-mRNA 

complexes were pelleted for 2 min and the supernatant carefully removed. Loss of 

Oligotex particles could be avoided if 50 µl supernatant was left in the tube. The 

pellet was resuspended two times in 1 ml buffer OW2 (10 mM Tris-HCl, pH 7.5, 150 

mM NaCl, 1 mM EDTA) by vortexing, centrifuged for 2 min and the supernatant 

removed. Complete supernatant removal was required the second time. 20 µl 

elution buffer OEB (5 mM Tris-HCl, pH 7.5) preheated to 70°C was quickly added, 

the particles resuspended by pipetting 3-4 times and centrifuged 2 min. The 

supernatant containing eluted polyA+ RNA was transfered to a fresh tube and for 

maximum yield, 20 µl buffer OEB was taken for a second elution. The eluates were 

pooled.  

The mRNA concentration was measured spectrophotometrically for the range 200 to 

300 nm. 

For concentrating isolated mRNA by precipitation, 1/10 vol 3M Na-acetate and 2.5 

vol ice-cold EtOH were added to the pooled eluate, mixed, incubated at –20°C for 1 

h, then centrifuged at high speed for 30 min at 4°C . Dried pellets were resuspended 

in 10 µl or less RNAse free ddH20. 

 

2.6. Construction of cDNA libraries 

 

In principal, isolated polyA+ RNA may be converted to dsDNA and cloned into a 

plasmid vector for the construction of a cDNA library. Further, upon transformation 

and plating of E. coli on selective medium, bacterial colonies each contain a different 

cloned transcript. Transcripts can be sequenced (expressed sequence tag (EST) 

generation) and analyzed.  
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2.6.1. Culture conditions 

 

150 ml stock culture for each 1.3 l bubble flask was taken to start a mass culture 

(day 1). Cultures were grown at 26°C and aerated wi th air and 5% CO2 from day 1 

onwards. On day 2, light intensity was raised to 1500 lux. 5x 3 ml nitrate-rich mineral 

medium SA was added to each bubble flask over the first three days. On day 6, 

cultures generally reached an OD678 (chlorophyll peak) of 0.3 – 0.5 and the most 

dense cultures were harvested for timepoint 0 h (for the high-level CO2 library). The 

additional CO2 supply was cut immediately at timepoint 0 h, thus shifting parallel 

grown cultures to ambient CO2 (0.04%). Individual cultures were harvested after 2, 

12 and 24 h (for the low-level CO2 library).  

 

2.6.2. RNA isolation 

 

Total RNA was extracted as described in chapter 2.4.1. Quality control was 

performed by loading 10 µg total RNA on gel. PolyA+ RNA isolated (described in 

chapter 2.4.3) was on average only 0.5% of total RNA (while it was estimated that 

1% of C. paradoxa total RNA is mRNA).  

The cDNA libraries were constructed using the Stratagene cDNA Synthesis Kit 

(Stratagene, La Jolla, CA) using a modified protocol established by the group of 

Hans Bohnert. 3 µg of polyA+ RNA was taken for construction of cDNA libraries, for 

the low-level CO2 library 1 µg polyA+ RNA each from timepoints 2, 12 and 24 h were 

pooled. A control was carried out in parallel with 2.5 µg Test polyA+ RNA provided by 

the kit. Precipitation of nucleic acids was, when indicated, performed with 1/10 vol 

3M Na-acetate and 2.5 vol ice-cold EtOH. The tube was subsequently centrifuged at 

14,000 rpm for e.g. 30 min at 4°C. The pellet was w ashed with 500 µl 70% EtOH, 

centrifuged at 14,000 rpm for 5 min and air dried. Generally, following the addition of 

new components the tube was mixed gently and a quick spin-down was performed 

prior to the next incubation step. 

 

 

Stratagene cDNA Synthesis Kit: schematic summary 
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2.6.3. First-strand synthesis 

 

The polyA+ RNA was brought to 18 µl with ddH20 and 1 µl linker-primer (1.4 µg/µl) 

was added. Incubation at 70°C for 10 min denatured RNA secondary structure. 2.5 

µl 10x first-strand buffer and 1.5 µl first-strand methyl nucleotide mixture (10 mM 

dATP, dGTP, and dTTP plus 5 mM 5-methyl dCTP) were added for first-strand 

synthesis and incubated at 42°C for 10 min. 2 µl St rataScriptTM reverse transcriptase 

(50 U/µl) was added and incubated at 42°C for 90 mi n. The use of 5-methyl dCTP 

during first-strand synthesis hemimethylates the cDNA, protecting it from digestion 

with certain restriction endonucleases such as Xho I.  

 

 

 

 

 



 40

2.6.4. Second-strand synthesis 

 

The tube was placed on ice and the following components added: 10 µl 10x second-

strand buffer, 3 µl second-strand dNTP mixture (10 mM dATP, dGTP, and dTTP 

plus 26 mM dCTP), 55.5 µl ddH20, 1 µl RNase H (1.5 U/µl) and 5.5 µl DNA 

polymerase I (9 U/µl). After gently vortexing and spinning down, the reaction was 

incubated at 16°C for 2.5 h and immediately placed on ice. RNase H nicks RNA 

bound to first-strand cDNA to produce fragments which serve as primers for DNA 

polymerase I.  

 

2.6.5. Blunting 

 

For blunting, 11.5 µl blunting dNTP mix (2.5 mM dATP, dGTP, dTTP, and dCTP) 

and 1 µl Pfu DNA polymerase (2.5 U/µl) were added, the mixture gently vortexed, 

spun down and incubated at 72°C for 30 min. The mix ture was extracted once with 

an equal volume of phenol/chloroform/isoamylalcohol (PCI, 25:24:1, v/v) and once 

with chloroform. The aqueous layer was precipitated at –20°C overnight, the tube 

centrifuged for 1 h and the washed pellet air-dried.  

 

 

2.6.6. Adapter ligation 

 

The pellet was dissolved in 2.5 µl ddH20 and the following components added for 

adapter ligation: 4.5 µl Eco RI adapters (0.4 µg/µl), 1 µl 10x ligase buffer, 1 µl rATP 

(10 mM) and 1 µl T4 DNA ligase (4 U/µl). The ligation reaction was incubated at 4°C 

for 4 days and subsequently, the ligase inactivated at 70°C for 30 min. For the 

purpose of travelling, the mixture was precipitated and the pellet washed. The pellet 

covered with 70% EtOH could be kept at RT for several days.   
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2.6.7. Xho I digestion 

 

The pellet was resuspended in 10 µl ddH20. The following components were added: 

2 µl 10x ligase buffer, 1 µl T4 polynucleotide kinase (10 U/µl), 3 µl rATP (10 mM) 

and 4 µl ddH20. The tube was incubated at 37°C for 30 min, then at 70°C for 30 min 

(enzyme inactivation). 28 µl Xho I buffer supplement and 3 µl Xho I (25 U/µl) were 

added, incubated at 37°C for 2 hours, another 3 µl Xho I added for further 3 h 

incubation. Endonuclease was inactivated by incubation at 65°C for 10 min. One 

PCI and chloroform extraction each were performed with subsequent nucleic acid 

precipitation as described above.  

 

2.6.8. cDNA size fractionation 

 

Fragments larger than 500 bp were selected by cDNA size fractionation columns 

(Invitrogen, Carlsbad, CA) containing Sephacryl S-500 HR resin, eliminating residual 

adapters and shorter cDNAs. Columns were equilibrated according to instructions of 

the manufacturer. For quantification of cDNA eluate fractions, petri dishes were 

poured with agarose gel (0.8% in 1x TAE containing 1 µg/ml ethidium bromide) and 

dried at 37°C for 45 min. DNA standards were prepar ed by diluting 500 µg/ml DNA 

Bst EII digest (New England Biolabs, Beverly, MA) with ddH20 to 2, 1.5 and 1 ng/µl. 

The cDNA pellet was dried at 37°C for 10 min and di ssolved in 100 µl TEN buffer 

(10 mM Tris-HCl, pH 7.5, 0.1 mM EDTA, 25 mM NaCl) on ice. The entire sample 

was applied onto the equilibrated column, the effluent collected in tube 1. 100 µl 

TEN buffer was applied and the effluent collected in tube 2. Beginning with the next 

100 µl aliquot of TEN buffer, single drops (~ 35 µl) were collected into individual 

tubes. Using a yellow tip, the volume in each tube was measured and fractions 

collected until the cumulative volume 550 µl was reached (total of 9-10 tubes). It was 

expected that a higher percentage of small cDNA or adapters would be contained in 

fractions above this cut-off point. 

1 µl of the prepared DNA standards and 1 µl of each collected fraction were pipetted 

onto a petri dish and the inversed plate photographed under UV light. By 

comparison, the fractions with the highest cDNA amounts were identified and pooled 
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for precipitation. Washed pellets were air dried for 10 min and resuspended in 10 µl 

ddH20 at 4°C for 1 h.  

 

2.6.9. Vector preparation 

 

4 µg pBluescript II SK (+) (Stratagene) (1 µg/µl) was digested with 20 U Eco RI and 

20 U Xho I with 4 µl 10 x NEBuffer Eco RI (New England Biolabs) and 0.5 µl BSA 

(10 mg/ml) in a total volume of 40 µl. After incubation at 37°C for 4.5 h, enzymes 

were inactivated at 65°C for 20 min. The digested v ector was separated on 0.8% 

TAE gel and a 3 kb band excised. DNA was purified from gel using the QIAEX II 

Agarose Gel Extraction protocol (Qiagen, Inc., Chatsworth, CA) according to the 

instructions of the manufacturer. 2 µg purified vector was dephosphorylated by 

addition of 2 µl shrimp alkaline phosphatase (SAP, 1 U/µl) (Promega, Madison, WI) 

and 10x  SAP buffer in 50 µl total volume. Following incubation at 37°C for 15 min, 

the reaction was inactivated at 65°C for 15 min. A further step of purification was 

carried out by using the QIAquick PCR Purification Kit protocol (Qiagen, Inc.) 

according to the instructions of the manufacturer. The plasmid concentration of the 

eluate was measured by loading an aliquot on gel. 

  

2.6.10. Vector-insert ligation 

 

20 ng size-fractionated cDNA was ligated to 40 ng purified vector in 10 µl total 

reaction containing 200 U T4 DNA ligase (400 U/µl) (New England Biolabs) and 1 µl 

10x ligase buffer with 10 mM ATP. Ligation reactions were incubated at 4°C for 3 

days. Enzyme inactivation was carried out at 65°C f or 10 min.  

The total amount of size-fractionated cDNA was used for multiple ligations. The 

ligations which were not needed for bacterial transformation were pooled and 

precipitated for storage. 
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2.6.11. DNA clean up 

 

StrataCleanTM Resin was used for enzyme removal (Stratagene Inc., Cedar Creek, 

TX). Resin was vortexed for complete resuspension and 5 µl added to a ligation 

reaction. The mixture was vortexed for 15 sec and centrifuged at 15,000 rpm for 1 

min. 10 µl supernatant was transfered into a fresh tube and stored at 4°C until used.  

 

2.6.12. Bacterial transformation 

 

2 µl purified ligation was pipetted into an ice-precooled cuvette and 30 µl competent 

ElectroMAXTM DH10BTM cells (Invitrogen) added. Following two pulses at 1800 volts, 

1 ml freshly prepared SOC medium (0.99 ml SOB including 10 µl 2 M glucose) 

preheated to 37°C was added. The mixture was transf ered to a fresh tube and 

incubated at 37°C for 1 h without shaking. Aliquots  of 50-100 µl were plated on S-

Gal/LB Agar (Sigma-Aldrich, St. Louis, MO) containing 100 µg/ml ampicillin and 

plates were incubated at 37°C for 14-16 h, then at 4°C for 4 h for color development. 

Bacterial colonies containing an insert remained white while those without insert 

turned black.  

SOB: 20g Trypton, 5g Yeast Extract per liter including 10 mM NaCl and 2.5 mM KCl 

were dissolved and autoclaved. 10 mM MgCl2 and 10 mM MgS04 were added from 

sterile stock solutions. 

 

2.6.13. Colony picking 

 

White colonies were manually picked with sterile toothpicks and grown 16-18 h 

without shaking in 250 µl/well CIRCLEGROW® medium (Qbiogene, Inc., Carlsbad, 

CA) containing 125 µg/ml Ampicillin on 96-well plates covered with AirPoreTM Tape 

Sheets (Qiagen Inc.). 
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2.7. DNA analysis 

 

2.7.1. Isolation and purification of Cyanophora par adoxa nuclear 

DNA 

 

C. paradoxa cultures were harvested, the cell pellet resuspended in 100 ml minimal 

medium (chapter 2.1) and centrifuged at 4,000 rpm for 5 min at 4°C. The 

supernatant was discarded and cells frozen at –70°C  for 1 h to cause cell lysis. 

Then, the pellet was resuspended in 10 ml TE (10 mM Tris-HCl pH 8.0, 10 mM 

EDTA) and homogenized in a potter. Following centrifugation at 4,000 rpm for 20 

min at 4°C in a J-6 centrifuge, the cyanelle pellet  was discarded and buffer A (0.5% 

SDS, 10 mM NaCl, 10 mM EDTA, 10 mM Tris pH 8.0, 0.01 mol/l proteinase K 

(Merck)) added to the supernatant (nuclear DNA) to 20 ml total volume. Incubation 

of the mixture was performed at about 56°C for 3 h with occasional agitation. 

Extraction with 10 ml buffer B-saturated phenol (buffer B: 0.5% SDS, 10 mM NaCl, 

10 mM EDTA, 500 mM Tris, pH 8.0) at RT for 10 min with continuous inversion was 

performed. After centrifugation at 4,000g for 5 min at 4°C in a megafuge, the 

extraction was repeated. The upper aqueous phase in each case, containing DNA, 

RNA and carbohydrates, was retained and further, transferred into a dialysis tube 

which had been pre-treated in boiling 10 mM EDTA, pH 8.0, for 10 min. Following 

dialysis against 2 l of buffer C (10 mM NaCl, 10 mM EDTA, 50 mM Tris, pH 8.0) at 

4°C twice for 30 min, dialysis was performed agains t 4.5 l 1x TE (10 mM Tris-HCl, 1 

mM EDTA, pH 8.0) at 4°C overnight and then, against  4 l 1x TE for 2 h at 4°C.  

1/10 vol of 3 M NaAc, pH 4.8, and 2.5 vol of ice-cold ethanol abs. were added to the 

dialysate for DNA precipitation at –20°C for 4 h. A fter centrifuging at 16,500g for 10 

min at 4°C in a GSA rotor, the DNA pellet was washe d with 100 ml 70% ethanol 

(RT), centrifuged at 16,500g for 5 min at 4°C (GSA rotor), dried at RT for 20 min and 

resuspended in 7 ml ddH20. 9.273 g CsCl was added, mixed gently for complete 

dissolution, and 1x TE pH 8.0 added to a total volume of 10ml. Further, 2 µl ethidium 

bromide solution (10 mg/ml) was added. The mixture was poured into two 

Polyallomer Quick Seal centrifuge tubes (Beckman Coulter, Germany), equilibrated 

with CsCl solution (927 mg/ml) and sealed with a “quick-seal” device. Centrifugation 
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was carried out for 15 h in a L-80 ultracentrifuge (Beckmann Coulter) with a VTi 65 

rotor at 50,000 rpm at RT. UV light (302 nm) was used to determine the location of 

DNA bands. Due to their different G-C contents, remaining cyanelle DNA is located 

at the top of the gradient while the nuclear DNA is seen in the middle. The nuclear 

DNA band was carefully removed by a sterile syringe with a wide gauge needle. 

To the isolated DNA 1 vol ddH20 was added, then ethidium bromide was extracted 

by adding approximately 0.5x vol isoamyl alcohol. The upper isoamyl alcohol phase 

attained a pinkish colour and was discarded. Extraction was continued until the 

upper phase remained colourless. The lower DNA phase was precipitated at RT for 

1 h by addition of 2 vol 95% ethanol. After centrifugation at 10,000 rpm for 10 min at 

4°C with a SS-34 rotor, the pellet was resuspended in 500 µl TE and precipitated 

once more with 1/10 vol 3M NaAc and 2 vol 95% ethanol at –80°C overnight. After 

centrifugation at 14,000 rpm for 10 min at 4°C, the  pellet was washed with 70% 

ethanol (RT), centrifuged at 14,000 rpm for 5 min, dried under vacuum for 15 min 

and resuspended in 250 µl ddH20.  

The concentration and purity of DNA were determined spectrophotometrically at 

260/280 nm. 

 

2.7. 2. Plasmid quick preparation 

 

 4 ml sterile LB-medium containing 100 µg/ml ampicillin was inoculated with a single 

bacterial colony and bacteria grew overnight at 37°C while shaking. 1.5 ml of each 

culture was transferred into an Eppendorf tube and centrifuged at 8,000 rpm for 2 

min at RT. After aspiration of the supernatant with a Pasteur pipet, further 1.5 ml of 

the same culture was transferred to the bacterial pellet; centrifugation and 

supernatant removal likewise performed. To the resulting pellet 200 µl lysis buffer 

was added (25 mM Tris-HCl, pH 8.0, 10 mM EDTA, pH 8.0, 1 µg/ml RNase A) and 

the pellet resuspended by vortexing. Following 20 min incubation on ice, 400 µl 

alkaline SDS (0.2 M NaOH, 1% SDS, freshly prepared, RT) was added for 

denaturation of proteins and DNA, the tube was inverted several times for mixing 

and placed on ice for 5 min. 300 µl cold high salt solution (3 M K-acetate, pH 4.8) 

was added for precipitation of chromosomal DNA and bacterial proteins, the tube 
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inverted several times and placed on ice for 10 min. All further centrifugations were 

performed at 13,200 rpm and RT. Following centrifugation for 10 min, the 

supernatant containing the plasmid DNA was transferred into a fresh tube. For DNA 

precipitation, 600 µl 2-propanol was added, vortexed for 30 sec, placed on ice for 10 

min and centrifuged for 10 min. The supernatant was carefully removed. 400 µl 2.5 

M NH4Ac was added and the pellet removed from the tube wall with the pipette tip, 

vortexed and shaken at RT for 30 min for release of the plasmid DNA from the 

pellet. After centrifugation for 10 min, the supernatant was transferred into a fresh 

tube, 1 ml of cold (-20°C) 95% ethanol added for pl asmid DNA precipitation, 

vortexed, placed on ice for 10 min and centrifuged for 10 min. The supernatant was 

discarded, 1 ml 70 % EtOH (RT) added, incubated for 5 min for RT, centrifuged for 5 

min. After supernatant removal, the pellet was dried under vacuum for usually one 

hour and resuspended in 20 µl ddH20 containing 400 µg/ml RNase A. 

 

This plasmid purification protocol was used to verify the identity of individual clones 

of the cDNA libraries by restriction analyses. Typically, 6 quick-preps were 

performed for one bacterial clone streaked out on a selective plate. The protocol 

was also utilized for probe synthesis from the plasmid insert for Southern and 

Northern analyses. 

 

2.7.3. JETSTAR plasmid purification system 

 

Using the JETSTAR kit (GENOMED Gmbh, Germany) plasmid yields up to 20 µg 

were obtained. This purification protocol rendering plasmid preparations of higher 

purity was usually taken for sequencing of individual clones by VBC-Genomics 

GmbH (Austria). 

As described in chapter 2.8.2, 4 ml sterile LB-medium containing 100 µg/ml 

ampicillin was inoculated with a single bacterial colony for overnight growth at 37°C, 

E. coli cells were pelleted by centrifugation and the medium completely removed. All 

following steps were carried out according to the instructions of the manufacturer. A 

column was equilibrated by application of 2 ml solution E4 (600mM NaCl, 100 mM 

sodium acetate, 0.15% TritonX-100, acetic acid ad pH 5.0) and allowed to drain by 
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gravity flow. The bacterial pellet was resuspended in 0.4 ml solution E1 (50 mM Tris-

HCl pH 8.0, 10 mM EDTA, containing RNase) by vortexing. Addition of 0.4 ml 

solution E2 (200 mM NaOH, 1.0% SDS (w/v)), thorough mixing by inversion and 

incubation at RT for 5 min resulted in a homogeneous cell lysate. Longer incubation, 

possibly denaturing plasmid DNA irreversibly, was avoided. For neutralization, 0.4 

ml solution E3 (3.1 M potassium acetate, pH 5.5) was added (no surplus on pipette 

tip’s outer side) and the tube immediately inverted 5 times. Following centrifugation 

at 16,000 g, 10 min at RT, the resulting supernatant was applied to the equilibrated 

column but the transfer of potassium dodecyl sulfate particles avoided. Allowing the 

column to drain by gravity flow completely each time, wash steps were subsequently 

performed with 2x 2.5 ml solution E5 (800 mM NaCl, 100 mM sodium acetate, acetic 

acid ad pH 5.0). Plasmid DNA was eluted by application of 0.9 ml solution E6 (1.25 

M NaCl, 100mM Tris-HCl, pH 8.5). Addition of 0.63 ml isopropanol (RT) to the 

eluate, vortexing and centrifugation at 16,000 g for 30 min at 4°C produced a pellet 

which was washed with 1 ml 70 % EtOH (RT), air dried for up to 30 min and 

resuspended in 20 µl ddH20.  

 

2.8. Hybridization methods 

 

2.8.1. Southern analysis 

2.8.1.1. Digestion of genomic DNA and gel run 

 

Generally, handling of genomic DNA is performed gently; for mixing stirring with a 

yellow tip is recommended while vortexing should be avoided.  

To 10 µl (20 µg) gDNA, 7 µl suitable 10x restriction buffer and 45.5 µl ddH20 were 

added and the mixture incubated at 4°C for 2 h. 7.5  µl (10U/µl) restriction enzyme 

was added in aliquots over a period of 12 h and the reaction periodically stirring. 

Digests were performed with Bam HI, Eco RI and Bam HI/Eco RI.  

1% TAE agarose gel was prepared with wide slots. 35 µl digested DNA was loaded 

per slot and allowed to diffuse for 2 min.  Bst EII digested DNA was loaded as 

marker. Electrophoresis was performed at 5V/cm for 4 h and a photo taken of the 

gel alongside a ruler. 
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Generally, a DNA gel was made with 1x TAE by adding the percentage of agarose 

indicated. Agarose was dissolved by heating in the microwave. 0.05 µg/ml ethidium 

bromide was added before pouring into a tray. 

50x TAE (Tris-Acetate-EDTA): 2M Tris-Acetate, 0.05M EDTA pH 8.3 

 

2.8.1.2. Gel blotting  

 

The gel was shortly incubated in ddH20, then in denaturation buffer for 30 min with 

gentle agitation. After a short incubation in ddH20, gentle agitation for 30 min in 

neutralization buffer was performed. After a short incubation in ddH20, a capillary 

blot was stacked on a support in the following order (bottom upwards): 3 sheets of 

Whatmann 3M paper, gel, Nylon membrane (Hybond-N+, Amersham Biosciences), 3 

Whatmann sheets, 15 cm height paper towels, beaker with 600 ml water. Blotting 

was done overnight with 20x SSC. 

 

Denaturation buffer: 87.66g NaCl, 20g NaOH in 1 liter, autoclaved 

Neutralization buffer: 87.66g NaCl, 60.5g Trizma base in 1 liter, pH 7.5, autoclaved 

20 x SSC: 88.23 g Tri-sodium citrate, 175.32 g NaCl in 1 liter 

The membrane was dried at RT for 2 h. Then, 3 µl of a dilution series (1/10) to 

1:10,000 of the probe plasmid (positive control) and a different plasmid (negative 

control) was pipetted onto the membrane edge and the membrane UV cross-linked 

(GS Gene LinkerTM UV chamber, Bio-Rad, Austria). 

 

2.8.1.3. Probe synthesis and DIG labelling 

 

5 µg plasmid was digested at 37°C for 2 h with a co mbination of restriction enzymes 

(Roche) using 10 U enzyme per reaction volume (50 µl). Digested plasmid was 

loaded on 1 or 2% TAE agarose gel and electrophoresis performed at 80 V. Bands 

with insert fragments of the correct size were excised and DNA purified with the 

QIAEX II Agarose Gel Extraction kit (Qiagen, Inc.) according to the instructions of 

the manufacturer. DNA was eluted twice with 20 µl ddH20. 
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The following enzyme combinations were used: 

 

CY010012000e8: Eco RI, BamHI   850bp fragment  

   

 

For labelling, the DIG DNA Labelling and Detection Kit from Boehringer Mannheim 

GmbH was used. 15 µl template DNA from the first eluate was denatured for 10 min 

in boiling water, quickly chilled on ice-water and the following components added on 

ice: 2 µl hexanucleotide mix, 2 µl dNTP mixture and 1 µl Klenow enzyme. The 

reaction was briefly centrifuged and incubated for 20 h at 37°C. To stop the reaction, 

2 µl 0.2 M EDTA, pH 8.0, was added and labelled DNA precipitated by addition of 

2.5 µl 4 M LiCl and 75 µl prechilled (-20°C) ethano l. Following incubation at –70°C 

for 1 h, and centrifugation at full speed for 15 min at 4°C, the pellet was washed with 

50 µl 70% ethanol (RT). After drying the pellet at RT for 15 min, it was dissolved in 

50 µl TE-buffer.  

 

2.8.1.4. Hybridization using a DIG labelled probe 

 

The cross-linked membrane was incubated in 2x SSC for 5 min and pre-hybridized 

in a rotating chamber at 42°C for 1 h with pre-warm ed hybridization solution (20 

ml/100 cm2 membrane). 50 µl probe was denatured for 5 min by boiling, quickly 

chilled on ice-water and added to pre-warmed hybridization solution (2.5 ml/100 

cm2). The (pre-)hybridization solution was poured off and the probe solution added 

to the membrane for hybridization by rotation overnight at 42°C. 

 

Hybridization solution: “High SDS” hybridization buffer 

SDS, 7% 

Formamide, deionized, 50% 

5x SSC 

50 mM sodium phosphate, pH 7.0 

N-lauroylsarcosine, 0.1% (w/v) 

Blocking reagent, 2% (Boehringer Mannheim) 
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The membrane was washed 2x 5 min in ample 2x SSC, 0.1% SDS at RT under 

constant agitation, then 2x 15 min in 0.1x SSC, 0.1% SDS at 68°C in a rotating 

chamber. 

A DIG-labelled probe in hybridization solution could be re-used and was stored at –

20°C. 

 

2.8.1.5. Immunological detection 

 

The DIG DNA Labelling and Detection Kit from Boehringer Mannheim GmbH was 

used.  

Maleic acid buffer (0.1 M maleic acid, 0.15 M NaCl, pH 7.5) was prepared.  

The membrane was rinsed 5 min in washing buffer (maleic acid buffer, 0.3% (v/v) 

Tween 20), then incubated for 30 min in 100 ml 1x blocking solution (1% blocking 

reagent in maleic acid buffer, dissolved at 65°C). The anti-DIG-AP conjugate was 

diluted to 75 mU/ml (1:10000) in 1x blocking solution. The membrane was incubated 

for 30 min in 20 ml antibody solution, washed 2x 15 min with 100 ml washing buffer 

and equilibrated 5 min in 20 ml detection buffer (0.1 M Tris-HCl, 0.1 M NaCl, 50 mM 

MgCl2, pH 9.5). The membrane was incubated in a box in the dark with about 10 ml 

freshly prepared colour solution (200 µl NBT/BCIP stock solution added to 10 ml 

detection buffer) without shaking. The color precipitate starts to form within a few 

minutes and the reaction usually reaches completion within 16 h. When desired 

band intensities were achieved, the membrane was washed under a flowing tap for 

10 min and dried (RT, 30 min). 
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2.9. Protein techniques 

 

2.9.1. Analysis of proteins by SDS-polyacrylamide g el 

electrophoresis 

 

For separation and analysis of proteins, 12% SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) was performed using the Mini-PROTEAN II apparatus 

from Bio-Rad.  

 

 

Table 2.10.1.1. The components of two 12% SDS-PAGE minigels: 

   

    12% separating gels (10 ml)  stacking gels (2 

ml) 

ddH20    3.3  ml     1.4 ml 

30% acrylamide mix  4 ml      330 µl 

1.5 M Tris-HCl (pH 8.8) 2.5 ml      

1.0 M Tris-HCl (pH 6.8)       250 µl 

10% SDS   100 µl      20 µl 

10% APS   100 µl      20 µl 

TEMED   4 µl      2 µl 

 

30% acrylamide mix: 29g acrylamide, 1g N,N’-methylenebisacrylamide in 100 ml 

H20 

 

The 12% separating gel was prepared according to table 2.10.1.1. (APS and 

TEMED were added last), poured in between the glass plates clamped in the 

pouring stand and covered with isopropanol. After gel polymerization (30 min, RT), 

the isopropanol was discarded and the surface of the separating gel washed with 

ddH20. Excess water was removed with Whatmann 3M paper and stacking gel 

poured onto the separating gel. Immediately a comb was inserted into the stacking 
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gel. Following gel polymerization (30 min, RT), combs were removed, slots rinsed 

with ddH20 and the apparatus assembled.  

 

The gel was run in 1 x Laemmli running buffer. Samples with added 2x SDS-sample 

buffer were denatured and applied to slots using a yellow pipette tip. As a molecular 

weight standard, the Low Molecular Weight Marker (Amersham Biosciences) was 

used for subsequent Coomassie and silver staining; for blotting the Pre-stained 

Standard Low Range Marker (Bio-Rad) was loaded. Typically, electrophoresis was 

carried out at a constant current of 10 mA/gel for separation in the stacking gel and 

40 mA/gel for the separating gel. The gel was run until bromophenol blue reached 

its end. The apparatus was disassembled for either staining or blotting. 

 

 

10x Laemmli running buffer:  250 mM Tris-HCl, pH 8.4 

     1.92 M glycine  

     1% SDS 

 

2x SDS-sample buffer:  250 mM Tris-HCl, pH 6.8 

20 ml glycerol  

4 g SDS 

2 ml 2-mercaptoethanol 

0.01 g bromophenol blue per 100 ml 

 

Low Molecular Weight Marker (Amersham Biosciences) 

 

LMW (14 000-97 000)   

Protein   Mr (kDa) Source   Amount (µg)  

Phosphorylase b  97    rabbit muscle   67 

Albumin    66    bovine serum   83 

Ovalbumin    45    chicken egg white   147 

Carbonic anhydrase  30   bovine erythrocyte   83  

Trypsin inhibitor   20.1   soybean    80 
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2.9.2. Coomassie staining  

 

For staining with Coomassie, the gel was covered with Coomassie staining solution 

and agitated gently at RT for 30 min on a shaker. Then, the gel was covered with 

Destaining solution and agitated 30-45 min, until bands were clearly visible. The gel 

was incubated for 10 min in Fixing solution, placed on Whatmann 3M paper, 

covered with a plastic wrap and dried at 60°C for a t least 2 hours under vacuum. 

 

Coomassie staining solution: 50% acetic acid 

     10% ethanol 

     0.25% Coomassie brilliant blue R250 

 

Destaining solution:   500 ml dH20 

     400 ml methanol 

     100 ml glacial acetic acid 

 

Fixing solution:   10% acetic acid 

     10% ethanol 

 

2.9.3. Silver staining  

 

 

The gel was incubated in following solutions in the given order. All solutions were 

prepared with ddH20. 

 

20 min   Fixer solution (50% methanol, 5% acetic acid)  

10 min  Washing solution (50% methanol) 

2h   ddH20  

1 min exactly  Sensitizing solution (0.03 g sodium thiosulfate.5H20 in 100 ml) 

3x 20 sec  ddH20 

20 min, 4°C  Silver solution (0.1 g silver nitrate in 100 ml, fresh) 

2x 20 sec  ddH20 
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0.5-5 min  Developing solution (2 g sodium carbonate, 40 µl 35% 

formaldehyde in 100ml) 

3x 1 min  Stop solution (5% acetic acid) 

 

 

2.9.4. Western Blotting 

 

SDS-PAGE was performed as described above using the following marker: 

 

Pre-stained SDS-PAGE Standard marker, Low Range (Bio-Rad): 

 

Protein   Mr (kDa)     

Phosphorylase B  113.0   

Bovine serum albumin 91.0   

Ovalbumin   49.9    

Carbonic anhydrase  35.1   

Soybean trypsin inhibitor 28.4   

Lysozyme   20.8  

 

Following electrophoresis, the gel was briefly rinsed in water and a sandwich 

prepared with the following: 

- 3 layers Whatmann 3M paper, pre-wetted in blotting buffer 

- 1 nitrocellulose membrane (PROTRAN, 0.2 micron pore size) 

- gel 

- 3 layers Whatmann 3M paper, pre-wetted in blotting buffer 

 

The transfer was done at 140 mA, 5V-15V for 2-3 h. The following incubation steps 

were carried out at RT unless otherwise specified. 

To verify if transfer of proteins succeeded, the membrane was reversibly stained 

with Ponceau  S (10 min), surplus colour was removed by water and the membrane 

was washed 3x with TBS-T. For blocking (of unspecific binding sites), the 

membrane was incubated in 10% milk in TBS-T overnight at 4°C without agitation. 
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Membranes were washed 3x 10 min in TBS-T and incubated with primary antibody 

for 1 hour. After washing 2x 10 min in TBS-T, incubation with the secondary 

antibody for 1 h was carried out, then washing 2x 10 min in TBS-T and 10 min in AP 

buffer. Incubation with freshly prepared detection solution (10 ml AP buffer 

containing 66 µl NBT (50 mg/ml; in 70% DMF) and 33 µl BCIP (50 mg/ml; in 100% 

DMF) was carried out in the dark until bands were visible. The reaction was 

terminated by washing with ddH20. 

For detection of bands for Rubisco LSU, rabbit -LSU, diluted 1:3000, was used as 

primary antibody and goat anti-rabbit IgG alkaline phosphatase (AP) conjugate 

(Promega), diluted 1:7500, as secondary antibody. 

 

Blotting buffer: 1 x Laemmli running buffer, 10% methanol 

 

Ponceau S: 2 g Ponceau S, 30 g trichloroacetic acid, 30 g sulfoalicylic acid, 100 ml 

ddH20 

 

TBS-T: 25 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.1% Tween 20 

 

AP buffer: 100 mM Tris-HCl, pH 9.5, 150 mM NaCl, 50 mM MgCl2, freshly made 
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2. 10. Mass Spectrometry 

 

2. 10. 1. Protein analysis by mass spectrometry  

 

The spots of interest from the SDS-PAGE gels were excised manually with a 

stainless steel scalpel and subjected to in-gel digestion. using trypsin (bovine 

pancreas, modified; sequencing grade, Roche, Mannheim, Germany). Extracted 

tryptic peptides were desalted and purified utilising ZipTip® technology (C18 reversed 

phase, standard bed, Millipore). Sample preparation for MALDI mass spectrometry 

was carried out on a stainless steel target, applying the dried droplet preparation 

technique using α-cyano-4-hydroxy-cinnamic acid (Fluka, Buchs, Switzerland) as 

matrix (3 mg⋅mL-1, dissolved in acetonitrile/0.1% trifluoracetic acid 7/3). 

Positive ion mass spectra for peptide mass fingerprinting (PMF) were recorded on a 

MALDI-TOF mass spectrometer (Axima CFR+, Shimadzu Biotech, Manchester, UK) 

equipped with a nitrogen-laser (λ=337 nm) by accumulating 200-500 single 

unselected laser shots. The instrument was operated throughout all PMF 

experiments in the reflectron mode, applying 20 kV acceleration voltage and 

delayed extraction (optimized setting for ions of m/z 2000). External calibration was 

performed using an aqueous solution of standard peptides (Bradykinin fragments 1-

7 and 1-5, human Angiotensin I and II, Glu-1-fibrinopeptide, N-acetyl renin substrate 

and ACTH fragments 1-17, 18-39 and 7-38). The lists of monoisotopic m/z-values 

derived from the MALDI mass spectra of in-gel digested spots were submitted to the 

Mascot search engine for PMF search with a peptide tolerance of ± 0.03 Da. The 

search was run against all proteins and DNA sequence information from public 

databases (Swiss-Prot, NCBInr) without any species restrictions. The fixed 

modifications were set to carbamidomethyl and methionine oxidation was set as an 

allowed variable modification.  

For sequence information seamless post source decay (PSD, AXIMA CFR+) or low 

energy collision-induced dissociation (CID, Axima QIT, Shimadzu Biotech, 

Manchester, UK) experiments of at least 3 abundant tryptic peptides were 

performed by accumulating 1000 to 2000 single unselected laser shots. For PSD 

and CID experiments again the Mascot search engine was used, applying the same 
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settings for species and modifications as mentioned above and the addition of 

precursor (± 0.2 Da) and product ion tolerances  

(± 0.2 Da).  

 

2.10.2. Coomassie staining of SDS – PAGE gels for s ubsequent MS 

analysis 

 

Solution Time Volume  

Fixation 60 min 100 ml 

45 % Methanol 

5 % Acetic acid 

UHQ 

Washing 2x 1 min 
2x 100 

ml 
UHQ 

Staining 
Until bands become 

clear 
100 ml 

0,025 % Coomassie R 250 

40 % Methanol  

7 % Acetic acid 

UHQ 

Destaining I 30 min 100 ml 

40 % Methanol 

7 % Acetic acid 

UHQ 

Destaining II 
Until backround 

become clear 
 

7 % Acetic acid 

5 % Methanol 

UHQ 

Storage for 

subsequent 

analysis 

 100 mL UHQ 
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2.10. 3. In-Gel Digestion 

 

During In Gel Digestion the purest chemicals available should be used. Gloves 

should be worn to avoid contamination by human epidermal proteins (keratin). To 

beware of talcum powder or dust contamination the gloves should be carefully 

rinsed with water before use. 

The razor should be washed with water and methanol before use. 

 

2. 10. 4. Buffers and Solutions 

 

50 mM NH4HCO3: 50 mM NH4HCO3 pH 8.5 

0.395 g NH4HCO3, 100 mL UHQ, use NH3 to adjust pH 

 

Dithiotreitol solution: 10 mM 

1.54 mg DTT, 1mL 50 mM NH4HCO3 

 

Iodoacetamide: 55 mM 

10.2 mg Iodoacetamide, 1mL 50 mM NH4HCO3 

 

Digestion Buffer: 50 mM NH4HCO3, 12.5 ng trypsin / µL 

125 µg trypsin, 10 mL 50 mM NH4HCO3 

100 µL aliquots can be stored at –20 °C 

 

 

2. 10. 5. Procedure 

 

Wash the gel slab with UHQ (2 changes, 10 min each) 

Use a clean scalpel to excise the spot of interest from the gel. Cut as close to the 

protein band as possible to reduce the amount of background gel. Excise a gel 

piece of roughly the same size from a gel region which does not carry any protein to 

use it as a control. 
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Cut the excised piece into roughly 1 mm3 cubes, and transfer them to a clean 0.5 

mL microfuge tube. 

Wash the gel particles with UHQ and UHQ/ACN 1:1 (v/v) – one or two changes 

each, 15 min/change. Solvent volumes used in the washing steps should roughly 

equal to the gel volume. 

Remove all liquid and add enough ACN to cover the gel particles. 

After the gel pieces have shrunk (they become milky and stick together) remove the 

ACN and rehydrate the gel pieces in 50 mM NH4HCO3 for 5 min. 

Add an equal volume of ACN (to get 50 mM NH4HCO3 / ACN, 1:1) and incubate for 

15 min. 

Remove all liquid and dry gel particles in a vacuum centrifuge. 

Swell the gel particles in 10 mM DTT / 50 mM NH4HCO3 and incubate for 45 min at 

56 °C to reduce the protein. 

Chill tubes to room temperature. Remove excess liquid, and replace it quickly with 

roughly the same volume of freshly prepared 55 mM iodoacetamide / 50 mM 

NH4HCO3 solution. Incubate at room temperature for 30 min in the dark. 

Remove iodoacetamide solution and wash the gel particles with 50 mM NH4HCO3 

for 5 min. 

Add an equal volume of ACN (to get 50 mM NH4HCO3 / ACN, 1:1) and incubate for 

15 min. 

All the Coomassie stain should be removed at this time. The gel particles should 

appear completely transparent. If a large amount of protein is analysed (more than 

10 pmol) remaining Coomassie staining may still be visible. In this case, an 

additional 50 mM NH4HCO3 / ACN washing cycle should be performed. 

Remove all liquid and dry gel particles in a vacuum centrifuge. 

Rehydrate gel particles by adding digestion buffer. Add more buffer if all the initially 

added volume is soaked up. Incubate for 45 min. 

Remove remaining enzyme supernatant and replace it with 5-20 µL of the same 

buffer without enzyme. 

Digest overnight at 37 °C. 
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The first peptide analysis can be performed already after 3-4 h of digestion. If some 

liquid has evaporated and condensed on the side or on the lid of the microcentrifuge 

tube, centrifuge briefly to gather the liquid at the bottom of the tube. 

After overnight digestion add a sufficient volume of 25 mM NH4HCO3 to cover the 

gel pieces and incubate for 15 min. 

Add the same volume of ACN. Incubate for 15 min and recover the supernatant. 

Repeat the extraction two times with 5 % HCOOH and ACN (1:1, v/v). 

Pool all the extracts. 

Dry the sample in a vacuum centrifuge. 

Redissolve peptides in 10-30 µL of 0.1 % TFA, sonicate briefly and analyse an 

aliquot after Zip-Tip purification. 

 

 

2. 10. 6. Zip-Tip purification 

 

Wet the Zip-Tip three times with 0.1 % TFA/ACN (1:1) 

Equilibrate the Zip-Tip by wetting the Zip-Tip three times with 0.1 % TFA 

Bind the peptides by sucking in the redissolved peptides three times 

Wash the Zip-Tip three times with 0.1 % TFA 

Elute the peptides with 5 µL 0.1 % TFA/ACN (1:1) 
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2. 11. Electron Microscopy 

 

2. 11. 1. Chemical Fixation and Epoxy Resin Embeddi ng of Algae 
 

Algae were centrifuged at 1000g for 5 min to form a pellet at the bottom of a 50 ml 

Falcon tube.  Cells in the pellet were fixed in 3% glutaraldehyde in 0.15M, pH 7.4, 

for 2 h. After washing thrice with Sorensen`s buffer the pellets were postfixed in 1% 

OsO4 in Sorensen`s buffer for 1 h. Subsequently they were washed again, and 

transferred in glass vials for dehydration in a series of ethanol. Step-wise infiltration 

with epoxy resin (Agar 100) was mediated by propylene oxide. Finally, the pellets 

were transferred in embedding molds. After infiltration in pure resin over night the 

samples were polymerization in the oven at 60ºC. 

 

 

2. 11. 2. High-pressure freezing, Low-temperature F ixation and 

Epoxy Resin Embedding of Algae 

 

For cryopreparation of algae a protocol adapted to the needs for processing of cell 

suspensions was used, which has been described previously (Reipert et al. 2004; 

Nowikovsky et al. 2007). Algae were centrifuged at 2000 rpm for 2 min at a bench 

centrifuge and re-suspended in 20% bovine serum albumin in phosphate buffered 

saline (PBS) for repeated centrifugation. The supernatant was discharged and the 

enriched cells were taken for high-pressure freezing (HPF) with a LEICA EMPACT 

machine (LEICA Microsystems, Vienna, Austria).  For loading of the flat sample 

carriers (inner diameter of 1.2 mm, 200 µm in depth) cells were transferred with a 

Gilson pipette. Transfer and fitting of the sample carrier into a specimen pod, 

supported by a loading station, took about 10-15 s. Further 10-15 s are required for 

mounting of the specimen pods onto the loading device and starting of the freezing 

process at a high pressure of about 1990 bar. Cryoimmobilization of the living state 

occurred within microseconds.   
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Freeze substitution with 2% OsO4 in dried acetone was performed in an automatic 

freeze substitution unit, LEICA AFS (LEICA Microsystems, Vienna, Austria).  While 

still in the flat sample carriers, samples were transferred from liquid N2 onto the 

frozen substitution medium in Sarstedt tubes. To avoid cracks in the frozen samples 

the AFS was gradually warmed up (35 ºC/hr) from -160º to -90ºC.  Freeze 

substitution was performed at -90 ºC for 72 hrs. Low temperature-fixation was 

activated by gradual warming up of the solvent by 2 ºC/hr up to -54 ºC. This 

temperature was kept for 8 hrs before continuing the warming up at a rate of 3 ºC/h 

up to -24 ºC. Samples remained at -24 ºC for 7 hrs. Subsequently, they were 

contrasted more intensely by keeping them at 0 ºC for 1hr. Contrasting in OsO4/ 

acetone was followed by washing of the samples with acetone.  

 

For embedding, samples were infiltrated with epoxy resin/ acetone mixtures (1/3 

volume Agar 100 and 2/3 volume acetone for 1 hr at 10 ºC; 1/2 volume Agar 100 

and 1/2 volume acetone for 1 hr at 10 ºC; 2/3 volume Agar 100 and 1/3 volume 

acetone for 3 hr at 20 ºC). Under the stereo microscope, samples were separated 

from their carriers and transferred into embedding molds with pure resin Agar 100. 

After infiltration over night, samples were polymerized in the oven at 36 ºC for 36 

hrs. 

 

2. 11. 3. Thin sectioning and Contrasting for Trans mission Electron 

Microscopy 

 

Thin sections (60-80 nm) were cut with an Ultracut S ultramicrotome (LEICA 

Microsystems, Vienna, Austria). They were mounted on copper grids, contrasted by 

uranyl acetate and lead citrate and viewed at 80 kV in a JEM-1210 (Jeol Ltd Tokyo, 

Japan) electron microscope. Images were acquired using a digital camera Morada 

for the wide-angle port of the TEM and analySIS FIVE software (Soft Image System, 

Münster, Germany). 
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2. 11. 4. Buffer Preparations for electron microsco py 

 

The most commonly used buffers for EM are phosphate buffers (either sodium 

phosphate or a mixture of sodium and potassium phosphate) and buffers made from 

cacodylic acid.  Both can buffer solutions in the pH range 6.5-7.5 quite effectively 

(physiological pH range of most cells and tissues). 

 Phosphate buffers are more physiological than any other buffer, bcause they are 

found in the living systems in the form of inorganic phosphates and phosphate 

esters. However they are negatively charged and can thus interact with some 

cytochemical reagents or salts in the medium. In our lab we use Sorensen´s 

Phosphate buffer exclusively. 

 Cacodylate buffers do not possess highly reactive groups and thus are the buffer 

systems of choice when working near neutral pH with materials that contain 

positively charged meoities capable of reacting with phosphate buffers. Cacodylate 

buffers are toxic (contain arsenic) and more expensive than phosphate buffer. 

Note: Buffer stock solutions will be stored in Duran bottles. They have to be labeled 

with the molarity, the name of the buffer, the pH, the date of preparation, and the 

name of the person who made it. (If not noted otherwise the pH is measured at room 

temperature.) 

 

 

2. 11. 5. Preparation of Sorensen`s buffer pH 7.4 ( osmolarity: 440 

mosm) 

 

Prepare solution A: Dissolve 5.94 g Sodium phosphate dibasic (Na2HPO4 2H20) in 

500 ml ddw. 

Prepare solution B: Dissolve 1.82 g Potassium phosphate, monobasic (KH2PO4) in 

200 ml ddw. 

To prepare 500 ml Sorensen`s pH 7.4 take 409 ml Solution A and add 91 ml of the 

solution B. 

(For other desired pHs see Hayat: Principles and techniques of EM, 3. d ed., page 

23) 
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2. 11. 6. Preparation Epoxy Resin Agar 100 and Infi ltration Mixtures 

for Embedding 

 

Agar 100 kit from Agar (supplier Gröpl) consisting of small bottles will be used. This 

avoids long term storage of opened bottles and ensures that water content of the air 

will not jeopardize the components. 

The resin will be prepared by always using the same procedure to obtain the defined 

quantity  of 40 ml. It can be used to prepare resin-solvent mixture (2:3 and 1:2)  

To avoid trouble with this frozen left-overs stay with the following rules: 

For warming up, place it in the oven (warmed at 60 Cº) while the baker is still 

covered with aluminum foil. 

Warm the resin up for about 10 min until it reaches room temperature.  

 

 

2. 11. 7. Preparation of solvent-resin mixtures 

 

The number of infiltration steps may vary in dependence of the sample to embed. 

For easily to infiltrating samples, three infiltration steps will be performed: 

1:3 resin-solvent volume ratio, 2:3 solvent-resin volume ratio and pure resin. Other 

applications may require an additional 1: 2 solvent-resin infiltration between the first 

and second step.  

(Explanation: 1:3 resin-solvent volume ration means mixing of 1 part resin (e.g. 5ml) 

with 2 parts of the solvent (e.g. 10 ml).) 
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2. 11. 8. Epoxy Resin Embedding of Glutaraldehyde-f ixed Cell 

Pellets 

 

The protocol was suitable for mammalian suspension cells or trysinized adherent 

growing cells. It might require modifications in centrifugation to obtain a stable pellet 

for algae or bacteria. The cell material provided should allow the formation of a 

clearly visible pellet (2-3 million mammalian cells). 

Take the cells without washing and spin them down in the bench centrifuge (10 min 

at 800-1200 rpm). Decide whether or not cooling during centrifugation is required for 

the experiment. Use a tube with a conical bottom for this purpose (e.g. Greiner tube 

15 ml, Sterilin tube 15 ml). 

Pre-fixation: Remove the supernatant and add about 2 ml 3% glutaraldehyde (GA) 

in Sorensen´s buffer. Allow the fixative to stabilize the pellet for about 15 min.  

Take a wooden stick and form one of its ends to a spatula by using a razor blade. 

(Alternatively you might use a long metallic spatula with a U-shaped end.) Use the 

wooden stick to detach the pellet from the wall of the tube. This allows the fixative to 

infiltrate more easily underneath the pellet. Allow fixation for further at least further 1 

h 45 min. Alternatively, you might fix the pellet over night in the fridge. 

Wash the pellets 3 times for 10 min in Sorensen´s buffer (alternatively cacodylate 

buffer). OsO4 infiltration (toxic- use hood and gloves): Prepare 1.5 % OsO4 by 

dilution of a 4% OsO4 stock solution provided in an ampoule (see guidelines for the 

use of OsO4). Replace the buffer by 1-2 ml OsO4 in Sorensen´s or cacodylate buffer. 

Incubate for 1-2 hours. 

Wash the pellets again 3 times for 5 min in Sorensen´s buffer (alternatively 

cacodylate buffer). After the first wash, transfer the sample into a glass vial. Use a 

plastic Pasteur pipette fro this purpose with its tip widened.  

Ethanol Dehydration: Perform a gradual dehydration: 

10 min each 30%, 50%, 70%, 95% ethanol 

2x 10 min 100 % ethanol 

Propylene oxide (PO): Replace 100% ethanol by propylene oxide: 2x 10 min PO 
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Resin infiltration:  

The preparation and use of Agar 100 epoxy resin 

15 min 1:3 resin : PO (use old resin from the freezer) 

45 min 2:3 resin : PO (use freshly prepared resin) 

Transfer the pellet into an embedding mould and fill this mould with pure resin. 

Infiltrate pure resin for 2-3 h or, alternatively, overnight. 

Polymerization for 36 hours in the oven at 60°C. 

 

2. 11. 9. Lead Citrate Staining 

 

The grid with its shiny side facing up onto the LC droplet in the Petri dish and close 

the lid.  

Stain for 5 minutes (epoxy resin) or 3 minutes (Lowicryl). 

Stop the staining by taking the grid with the tweezers and 10-fold dipping into beaker 

3 filled with ddw. Continue by dipping the grid 10 times into beaker 4. 

Remove the excess water by using Whatmans filter paper and place the grid into the 

slot of the grid box. Support its release by using the filter paper to keep in the slot. 

Ensure that the grid deep enough in the slot before closing the box. Do not come 

close with your gloves since electrostatic charging might cause grids to “jump” out of 

the box. 

Wait until the grids are dried before you start microscopy. 

 

2. 11. 10. Preparation of Uranyl Acetate 

 

Fort staining of sections uranly acetate will be dissolved either in ddw.. Usually, 1% 

or 2% UA solution in ddw will be used. However, to increase the contrast, 

sometimes it becomes necessary to prepare 2% UA in methanol. While UA should 

be kept over night to dissolve in ddw, it dissolves quickly in methanol. 
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2. 11. 11. Staining by using Uranyl Acetate 

 

Staining by UA usually precedes staining by lead citrate. This combined combination 

of these stains is named Reinhold`s staining. 

Staining of epoxy resin sections    5-8 min on a drop of 1-2% UA 

Staining of Lowicryl sections    3 min on a drop of 1-2% UA 

Droplets of UA solution will be placed on Parafilm by means of a glass Pasteur 

pippette (Use every droplet just one times). Grids with sections attached to the 

tanished side will be placed with the sections facing the droplets (shiny side of the 

grid facing up). This is in particular important for staining of sections on formvar. 

Application of UA in methanol requires permanent monitoring and larger drops to 

prevent the complete evaporation of the solvent. The surface tension of such a 

droplet is low and the grid will not float. 

Staining will be followed by 10 dips in a 50 ml beaker with ddw followed by 10 dips 

in a further beaker with ddw. Access water will be removed by contacting both grid 

and the tip of the tweezers with a piece of Whatman filter paper. After that, staining 

might be continued by using lead citrate. 
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3.RESULTS 

 
 

3. 1. Central body isolation and identification of its components  
 
 
To study the composition of the central body in C. paradoxa cyanelles, a method for 

central body isolation was developed. The various approaches to finding an optimal 

method are described in this chapter. Isolated cyanelles of C. paradoxa are 

osmotically stable due to their peptidoglycan wall which is thinner than the walls of 

extant cyanobacteria. It is therefore plausible that carboxysome isolation techniques 

developed for cyanobacteria should also work for C. paradoxa central bodies if 

modified. Since lysozyme treatment has already been investigated for the 

glaucocystophyte, it was integrated into our method of carboxysome isolation.  

Cells of C. paradoxa were broken in a Waring Blendor and cyanelles isolated as 

described in section 2.2., treated with lysozyme (digestion of the peptidoglycan wall) 

and DNase (digestion of cyanelle DNA) for subsequent central body isolation: we 

isolated central bodies occluded by thylakoid membranes while excluding other 

cyanelle components through a Percoll gradient, and then aimed to separate central 

bodies from the thylakoid membranes (3.1.2.). Alternatively, we attempted to collect 

a pure central body fraction by chromatography using Sepharose CL-2B (3.1.1.). 

Fractions of isolated central bodies were loaded on SDS-PAGE gels for Coomassie- 

or Silver staining or Western analysis. The Rubisco large subunit (LSU) was used as 

a marker for the central body (band of 52 kDa). It had been previously demonstrated 

with Immuno-EM that antisera directed against Rubisco LSU primarily decorated 

central bodies (Mangeney and Gibbs, 1987).   

For carboxysome isolation from (cyano)bacteria which are surrounded by a stable 

peptidoglycan wall, cells may be broken with a French press (e.g. 110 Pa). Then 

whole cells and large membrane fragments are removed by centrifugation and 

carboxysomes are purified on a Percoll-sucrose gradient, as was demonstrated with 

Thiobacillus neapolitanus (Shively, 1988). An alternative method for Synechococcus 

PCC7942 includes incubating cells with lysozyme with subsequent use of the 

French press and then pelleting the polyhedral bodies with 20% Percoll (v/v) in the 

presence of 27 mM Mg2+ and 0.1% Triton X-100. It was argued that Percoll beads 
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aggregate with carboxysomes in the presence of Mg2+ while Triton partially 

solubilizes thylakoid membranes, which are thus left behind in the supernatant after 

centrifugation (Price et al., 1992). As described, an isolation procedure for central 

bodies via two successive Percoll step gradients was developed. The size of the 

central body and its tight connection to cyanelle DNA and thylakoids necessitated a 

step involving mild detergent treatment of the thylakoid fraction to release part of the 

bound microcompartments. Isolated carboxysomes offered the potential for a 

proteomics approach and for the identification of carboxysome proteins other than 

Rubisco.  

 
 
 
 

3.1.1. Chromatography over Sepharose CL2B  

 

Bohnert et al. (1983) previously demonstrated that cyanelle DNA could be isolated 

associated with a large electron dense particle, which according to its size and often 

polyhedral shape was assumed to be the central body. This agglomeration was 

contained in a slightly yellowish fraction of the leading front collected when 

chromatography of lysed cyanelles over Sepharose CL-2B was performed. An 

electron micrograph of the authors shows cyDNA directly attached to the central 

body. We applied lysed cyanelles on a Sepharose CL-2B column following this 

method and attempted to isolate central bodies: low amounts were found in almost 

all collected fractions (yellowish; green-thylakoids; blue-phycobilisomes) but we 

failed to collect an essentially pure fraction.  
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3.1.2. Centrifugation over a Percoll gradient  

 Figure 3.1.2.1. An isolation method for central bodies of C. paradoxa using two consecutive 

centrifugation steps on Percoll gradients. 

 

A central body isolation method consisting of two subsequent Percoll gradients was 

established (Fig. 3.1.2.1.). Lysed cyanelles were layered on a gradient of 40% and 

10% Percoll. A first centrifugation step separated thylakoids and attached central 

bodies (boundary 40%/10%) from the bulk of phycobiliproteins and starch. The 

thylakoid-central body fraction was aspired, treated with a detergent e.g. Triton or 

sonicated, and layered on a second Percoll gradient. Centrifugation achieved the 

separation of part of the central bodies from thylakoids. The central body pellet was 

collected. 

Collected central body pellets appeared white while thylakoid contamination was 

visible as green specks. Thylakoid contamination of the pellet was avoided by e.g. 

reducing the concentration of detergent or centrifuging at lower rpm. The beneficial 

effect of Mg2+ (Price et al., 1992) on aggregating the (much smaller) cyanobacterial 

carboxysomes with Percoll could not be demonstrated with C. paradoxa. 

Starch contamination (the main cytoplasmic reserve product) of central body pellets 

was considered problematic due to the attachment of Q-enzyme (branching 

enzyme) and starch synthase to starch granules. The presence of starch could be 



 72

determined by addition of iodine solution to sample fractions: brown starch particles 

were easily detected under the light microscope. Starch could be removed through a 

sucrose gradient (cyanelles are collected at the 55/50% sucrose interface) as 

demonstrated by Bohnert et al. (1982) but the reproducibility was not convincing. 

Using the method shown in Fig. 3.1.2.1., starch contamination could be eliminated 

to a large extent. 

Only a part of central bodies can be separated from thylakoid membranes. We 

aimed to improve our isolation method to increase the proportion of separated 

central bodies while avoiding harsh treatment. Central bodies, quantified by the 

Rubisco LSU 52 kDa marker band, may be separated from thylakoids purely by 

centrifugation (Fig. 3.1.2.2.A, control). Central body pellet size was found to vary 

with centrifugation speed (data not shown). Concluding from the majority of 

isolations performed, the pellet size may be increased noticeably by including a low 

amount of detergent. Thylakoids were treated with Triton in combination with 

vortexing: 0.5% Triton was comparable to use of 0.1%, whereby vortexing for less 

than 30 sec was less effective for attaining a central body pellet (Fig. 3.1.2.2.A & B). 

Sonication is another possibility for central body - thylakoid separation (Fig. 

3.1.2.2.B), rendering large central body pellets. As this method is likely to resolve 

protein complexes, it was decided not to utilize it. Antibody detection of Rubisco 

LSU revealed its presence in the pellet collected from treated thylakoids (Fig. 

3.1.2.2.C). It is interesting to note that Rubisco, besides being localized to the 

central bodies, is commonly found also in its soluble form in C. paradoxa (Fig. 

3.1.2.2.A & B, lanes c). Likely this is the result of central body disintegration during 

the isolation process. 
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Figure 3.1.2.2.  Treatment of isolated thylakoids with Triton in combination with vortexing as well as 
sonication separates part of attached central bodies. 
 
Isolated cyanelles were digested with lysozyme, layered on a Percoll gradient and following 
centrifugation (HB-4, 16500g, 10 min, 4°C) thylakoi d membranes were collected from the 40/10% 
boundary. Thylakoids were treated as indicated. Individual samples treated consisted of 150 µl 
thylakoids equivalent to 100µg chlorophyll a : Triton X-100 was added in various concentrations and 
samples vortexed or sonication performed as indicated. Treated samples and the untreated control 
were layered on 1 ml 40% Percoll and centrifuged at 3000 rpm for 3 min at 4°C. Aliquots a-d (40 µl of 
a-c; 30 µl of d) were taken from resulting layers and denatured in 2 x SDS-sample buffer.   
 

A: M, Marker; TE, total cyanelle extract; T/C, untreated thylakoids; Control, no treatment of 
thylakoids; Layers a, phycobilisomes (bands 14-21 kDa); b, thylakoids (noticeable band 83 kDa, PS I 
reaction center subunit PsaB); c, clear phase; d, central body pellet (marker band Rubisco LSU 52 
kDa). 
 
B: M, Marker; Control, no treatment of thylakoids; Treatment of thylakoids: T, triton; V, vortex; S, 
sonication. 
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C: M, Marker; T/C, untreated thylakoids; P, central body pellet from thylakoids treated with 0.1% 
Triton and vortexed 30 sec. After electrophoresis and gel blotting, a primary antibody was directed 
against Rubisco LSU was usedfor Western analysis.   
 
 
 
 
Treatments with SDS (sodium dodecyl sulphate) (0.1-0.5%) and vortexing for 30 sec 

as well as with Hepes pH 8.0 (e.g. 5 mM) were compared and showed no 

advantage to Triton.  

The nature of the interaction between central body and thylakoids is probably 

influenced by the cyanelle DNA located around the central body. During thylakoid 

isolation, digested cyanelles are incubated with 30 µg/ml DNase. Part of cyanelle 

DNA should thus be digested. Speculating that remaining DNA still could hamper 

central body isolation, DNase I (up to 100 µg/ml) was further added to thylakoids. 

Unfortunately, this had no noticeable effect (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Silver staining of cyanelle components separated on SDS-PAGE gels revealed 

bands of potential interest which were, in part, predominantly present in central body 

pellets compared to total cyanelle extract and untreated thylakoids (Fig. 3.1.2.3.).  
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Figure 3.1.2.3. Silver staining reveals bands predominantly present in central body pellets. 
  
Thylakoids were isolated from cyanelles as described for Fig. 3.1.2.2. and washed with 1 x SRM for 
removal of phycobilisomes. Individual samples treated consisted of 150 µl thylakoids equivalent to 
100µg chlorophyll (a) : Triton X-100 was added in the concentrations indicated and samples vortexed 
for 30 seconds or sonication was performed for 5 seconds. Treated samples were layered on 1 ml 
40% Percoll and centrifuged at 3000 rpm for 3 min at 4°C. Untreated thylakoids were centrifuged at 
indicated rpm for 3 min at 4°C. 40 µl of thylakoid fractions and 30 µl of collected pellets were 
denatured in 2 x SDS-sample buffer.  5 µl of each pellet and 2.5 µl TE, T/C and B was loaded on 12% 
SDS-PAGE gel. The gel was subsequently silver-stained. 
 
M, Marker; TE, total cyanelle extract ; T/C, untreated thylakoids; P, central body pellets collected from 
centrifugation of thylakoids layered on 40%/10% Percoll; 0.5%, 0.1%, 0.01%, thylakoids previously 
treated with Triton in indicated concentrations and 30 sec vortexing; 8g and 12g, 8000g and 12000g, 
centrifugation speeds for untreated thylakoids; Thy, thylakoids; S, sonicated 5 sec; 0.01%, Triton and 
30 sec vortexing.  
 
Indicated on the right side are sizes of peptides, which upon comparison of lanes, 
are putatively localized to the central body. 
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3. 2.  Rubisco activase 

 

Rubisco activase from C. paradoxa was first obtained as an EST for the microarray 

project. It corresponds to the type found in plants and C. reinhardtii as vealed if by 

the sequence of the full-lengh cDNA which was completed through 5׳ RACE 

(Fig.3.2.). Transcription of the gene is upregulated upon shift from high to low [CO2] 

(Burey et al. 2007). The protein cross-reacts with antisera directed against Rubisco 

activase from tobacco and is thus a bona fide component of the “carboxysome” as 

corroborated by mass spectrometry (Fathinejad et. al., 2007).  

 

 

5’- 
 
 

 

 

 

 

 

 

Figure 1.  Pre-Rubisco Activase from Cyanophora paradoxa showing the N-terminal transit 

sequences  typical for cyanelles. 

The putative processing  site is indicated by an arrow. The mature protein is given in bold letters.  

MS sequencing of two peptides (red color) from the 47 kDa band. Peptide map of the 47 kDa band:  

45% Coverage to above sequense. 

 

 

 

   

MAFVGTPVAALSSAPALATSSKICKVAQEVKSAKAAAFGEKKSSFFYNPIAG
AKAAAGKVEFSVQA ↓GLNPDGSFSPDGGYSAPAPAKKQGGYSDSWGSALAND
SSAGNDQLDIRRGRGMVDKKFQGAGMGLGSTHVVIQDSIEYYNTAKRTFGNI
QGDFYICPTFMDKIVLHITKNFLNLPKVKVPLILGIWGGKGQGKSFQCELVY
KSLGIEPILMSSGELEDASAGEPAKLIRQRYREAAEVIKKGKMCVLHINDLD
AGAGRMGGTTQYTVNNQMVNATLMNIADNPTNVQMPGMYNAEELPRVPIVVT
GNDFATLYAPLIRDGRMEKFYWNPTREDRIGVCWGIFKEDGISEQDVAALVD
AFPDRSIDFFGSLRSRVYDDEIRKFIEKTGVENLSKRIVNTKDPLPEFTKPH
ITLQTLMTYGQRLSNEMRLVQEVKLAEEYVANLADERTIAADLRARGVKSRM
AGLNDDGSDDY 
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3. 3. Import  

 

Cyanelles can be used as “honorary Cyanobacteria”: microcompartment assembly 

processes, e.g. the incorporation of linker polypeptides into isolated, intact 

phycobilisomes (Steiner et al, 2003) can be studied in vitro. 

Import of the labelled pre-Rubisco activase into isolated cyanelles and subsequent 

fractionation revealed an incorporation of 25-30% into the central body fraction 

within an incubation time of 30 min. This indicates a dynamic structure for the 

microcompartment which is expected to expand and shrink according to CO2 

availability. 

 

3.3.1. Small scale isolation of central bodies afte r import 

experiment 

 

The import reaction was stopped by the addition of 1 ml ice-cold SRM buffer 

followed by centrifugation at 800g and 4°C for 2 mi n. The cyanelle pellet (without 

thermolysin treatment) was washed in SRM, resuspended in 1 ml 2x SRM, and 

incubated for 25 min at room temperature with 30 µl of a 10 mg.ml-1 lysozyme stock 

solution, which led to digestion of the peptidoglycan wall and cyanelle lysis. After 

DNAse treatment, the lysate was layered on top of a step gradient consisting of two 

percoll layers (10% and 40% respectively) and centrifuged. Thylakoid membranes 

with bound central bodies banded at the interface. The thylakoid layer was carefully 

removed and after that was treated with SRM buffer containing 0.1% Triton X-100, 

and loaded on top of a second gradient of analogous composition. After 

centrifugation, a whitish pellet was obtained indicating that mild detergent treatment 

resulted in partial release of the central bodies from the thylakoid membranes. 

 

 

3. 3. 2. Gel electrophoresis 

 

Proteins from intact cyanelles and from the stroma, thylakoid, and central body 

fractions were separated on SDS-polyacrylamide gradient gels (10-18%). Import 
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data were analyzed using a PhosphoImager and the Molecular Dynamics IMAGE 

QUANT version 3.3 program, ensuring that all the signals remained in the linear 

detection range. 

 

 

 

 
 

Figure: 3.3.2. In vitro assembly of Rubisco activase in the central body.Tr- translation mix  

1. Cyanelle import of Pre-Rubisco activase +/-  with and without thermolysin   

2. Cyanelle lysis and fractionation  

 St.  Stroma, Th. Thylakoids, Th/T. Thylakoids treated with Triton X-100 

3. Cyanelle lysis and fractionation 

 Central body pellet   
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3. 4. Mass spectrometry 

 

Fractions of isolated central bodies were loaded on SDS-PAGE gels for Coomassie 

and Silver staining. After Coomassie staining and destaining the gels were sent for 

analysis to the MALDI-MS/MS lab. Bands of interest,i .e. those that were enriched 

during central body preparation or that yielded signals on western blots were further 

investigated. 

Peptide masses from the (major) 52 and 103 kDa bands and partial amino acid 

sequences generated via MS/MS of selected peptides corresponded to Rubisco 

large subunit (LSU), and to the phycobilisome core-membrane linker polypeptide 

ApcE, respectively. ApcE, together with a 50 kDa band assumed starch synthase, 

were contaminants of the isolated fraction. However the presence of shell proteins, 

encoded by ccm genes, thus far could not be shown for C. paradoxa. They would be 

profound evidence for a “eukaryotic carboxysome” in this glaucocystophyte. It could 

be argued that the use of Triton effectuates the (partial) loss of the shell of these 

delicate microcompartments. Due to their relatively large size and tight association 

with the thylakoids, their isolation has to be a compromise between intactness and 

purity.  

The sensitivity of the mass spectrometric method is sufficient to characterize even 

minor bands. Nevertheless, we estimate that more EST data for C. paradoxa will 

enable the discrimination between bona fide components of the central body and 

contaminating proteins. 2D-gel analysis could also be carried out. The identification 

of a cyanelle CA would be of prime importance in this respect.  

In the case of Cyanophora, we could unequivocally demonstrate a tight association 

of Rubisco activase with its substrate, Rubisco, in the cyanelle microcompartment. 

Interestingly, while Rubisco LSU is highly conserved, i.e. the identity scores 

between the cyanelle protein and its cyanobacterial counterparts lie between 83 and 

84%, a BLAST search with the cyanelle Rubisco LSU against Cyanobase 

nevertheless produced top ranking hits for the filamentous, nitrogen-fixing and 

activase-containing cyanobacterial species Anabaena 7120, Nostoc punctiforme 

and Trichodesmium erythraeum (data not shown). The catalytic mechanism of 

cyanobacterial Rubisco activase might somewhat differ from that of the eukaryotic 
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enzyme (Portis, 2003), which raises the question about the catalytic mechanism of 

the plant-type Cyanophora activase vis-à-vis its cyanobacterial-type substrate. 

In a first series of experiments, several bands ranging in size from 30 to 103 kDa 

were subjected to in-gel digestion (see figures). Peptide masses from the (major) 

52- and 103-kDa bands and partial amino acid sequences generated via MS/MS of 

selected peptides corresponded to Rubisco and to the phycobilisome core-

membrane anchor polypeptide ApcE (a contaminant), respectively. 

45% peptide coverage was reached and sequenced peptides proved to be identical 

to Rubisco activase sequences (see figures). 

This is the first demonstration of Rubisco activase in a carboxysome-like 

microcompartment. 

No conclusive results have been obtained from database searches either with 

respect to peptide pattern or to partial sequences for the other bands investigated. 

In particular neither a carbonic anhydrase nor a shell protein could be identified. 

 

 

 

 
 

 
 
 
 
Figure 3.4.1.  Coomassie Staining 

SDS- PAGE of the central body pellet, several bands ranging in size from 30 to 97 kDa were 

subjected to in-gel digestion. 
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In a second series of experiments, similar conditions were adopted and some bands 

were reinvestigated, together with some new determinations (Fig. 3.4.2.) in the hope 

to identify a carbonic anhydrase. This goal was not achieved, a second slightly 

smaller band was also correlated with Rubisco activase. Glyceraldehyde phosphate 

dehydrogenase (contaminant) was made likely. RbcL and ApcE could be confirmed, 

all other bands gave in part nice peptide patterns but at present identification via 

existing databases was not possible (Table 3). 

 
 
 

 

 

Figure 3.4.2.  Coomassie Staining 

SDS- PAGE of the central body pellet, several bands ranging in size from 30 to 130 kDa were 

subjected to in-gel digestion. 

Thylakoids were isolated from cyanelles as described for Fig. 3.1.2.2. and washed with 1 x SRM for 
removal of phycobilisomes. Individual samples treated consisted of 150 µl thylakoids equivalent to 
100µg chlorophyll (a ): Triton X-100 was added in the concentrations indicated and samples vortexed 
for 30 seconds or sonication was performed for 5 seconds. Treated samples were layered on 1 ml 
40% Percoll and centrifuged at 3000 rpm for 3 min at 4°C. Untreated thylakoids were centrifuged at 
indicated rpm for 3 min at 4°C. 40 µl of thylakoid fractions and 30 µl of collected pellets were 
denatured in 2 x SDS-sample buffer.  The gel was subsequently Coomassie-stained. 
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1, Marker; 2, 2xSRM without DNAse with Triton ;3, 2xSRM with DNAse and with Triton  ; 4, 2xSRM 
washed central body; 5, Empty 
6,and 7, pellets collected from centrifugation of thylakoids layered on 40%/10% Percoll (Treatment 
with sodiumcarbonate and sonication), 8, pellets collected from centrifugation of thylakoids layered 
on 40%/10% Percoll (Treatment with carbonat and 2xSRM- DNAse + Mg2+  ), 9, 2xSRM sonication, 
10, 2xSRM Triton and DNAse + Mg2+    
 

Spot MW Protein Comment 

Spot F 50kD RUBISCO Confirmed 

       
Spot 
A 
Spot 1 

38kD ? 
both bands have same level and size at the Gel, PMF 

identical, as 1 Spot treated,  
Not compatible to Carbonic Anhydrase  

       
Spot 
B 
Spot J 

Spot 2 

36kDa 
Glyceraldehyde-3- 

phosphate 
dehydrogenase ? 

1 peptide sequence indicated by BLAST   
GAP-Dehydrogenase with E-value 2.3 

3 further peptids not compatible from PMF –  
More than 1 Protein? 

       

Spot 8 

Spot 5 
Spot 
C 
Spot 
D 

45kDa RUBISCO Activase 

All  bands from the same size level, measured at 2 
days,  

slightly different PMF (8=5=C, D), D had 1 more peptid 
but not compatible to  Activase  

Confirmed 

       
Spot 
G 
Spot 
E 

>45kDa RUBISCO Activase 
Separately treated from 8,5,C,D , because of location 

above them 
2 peptides not contained in Activase 

       

Spot 3 34 kDa ? 

     

Spot 9 26 kDa ? 

     

Spot 6 68 kDa ? 

     

Spot 7 70 kDa ? 

     

Spot 4 32 kDa ? 

PMFs  of the three smaller proteins not compatible to  
Carbonic Anhydrase 

No distinct identification possible 

       

 

Spot 
H 

95 kDa 
Phycobilisome 

Linker  
Confirmed  

 

 

Table 3.  Mass spectrometric interpretation of isolated bands of the central body from C. paradoxa 

cyanelles. 
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Third series: This time a gradient gel was used to achieve better separation in the 

low MW range (Fig. 3.4.3.). Comparison of the results with individual bands from 

series 1 and 2 were done where ever possible (Table 4). Rubisco activase and 

Rubisco LSU were confirmed again and the 10-12 kDa band could be clearly 

identified as Rubisco SSU. Lysozyme, used for cyanelle lysis, was shown to be the 

14 kDa contaminant. The other bands did not allow the identification of Carbonic 

anhydrase (CA) or shell protein candidates. 

 

 

 

 

 

Figure 3.4.3 . Coomassie Staining 

Gradient-Gel (4-12% , Bis-Tris). The central body pellet, several bands ranging in size from 30 to 130 

kDa were subjected to in-gel digestion. 

Thylakoids were isolated from cyanelles as described for Fig. 3.1.2.2. and washed with 1 x SRM for 
removal of phycobilisomes. Individual samples treated consisted of 150 µl thylakoids equivalent to 
100µg chlorophyll (a): Triton X-100 was added in the concentrations indicated and samples vortexed 
for 30 seconds or sonication was performed for 5 seconds. Treated samples were layered on 1 ml 
40% Percoll and centrifuged at 3000 rpm for 3 min at 4°C. Untreated thylakoids were centrifuged at 
indicated rpm for 3 min at 4°C. 40 µl of thylakoid fractions (lanes2-4) and (lanes 6-9) 30 µl of 
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collected pellets were denatured in 2 x SDS-sample buffer.  The gel was subsequently Coomassie-
stained. 
 
1, Marker; 2, 2xSRM without DNAse with Triton ;3, 2xSRM with DNAse and with Triton  ; 4, 2xSRM 
washed central body; 5, Empty 
6,and 7, pellets collected from centrifugation of thylakoids layered on 40%/10% Percoll (Treatment 
with sodiumcarbonate and sonication), 8, pellets collected from centrifugation of thylakoids layered 
on 40%/10% Percoll (Treatment with carbonat and 2xSRM- DNAse + Mg2+  ), 9, 2xSRM and 
sonication, 10, 2xSRM Triton and DNAse + Mg2+    
 

 

 

Spot  MW  Gel Protein Comment Comparison with other gels 

CP-
11 

49 kDa 
Ribulose biphosphate 

carboxylase large chain 
RUBISCO LSU 

as control a digestion 
without PSDs  

PMF (Peptid Mass Fingerprint) equivalent Spot F 

        

CP-4 10 kDa 
Ribulose biphosphat  

carboxylase small chain 
RUBISCO SSU 

  Nonexistent- MS very small (undersized) 

        

CP-5 14 kDa Lysozym   Nonexistent- MS very small (undersized) 

        

CP-7 45 kDa Activase   Peptid Mass Fingerprint comparable with 
Spot 8/5/C/D/G/E 

        

CP-1 12 kDa 
Possibly RUBISCO SSU 

 rates 
 

  Nonexistent- MS very small (undersized) 

        

CP-2 20 kDa ?   Nonexistent- MS very small (undersized) 

        

CP-6 42kDa ?   
No possibllity for comparison of Peptid Mass 
Fingerprint  with Spot 8/5/D/C/G/E (Activase)  and 
also not with Spot A (n. id). 

        

CP-8 62 kDa ? Peptid Mass Fingerprint 
similar zu CP-9 

 2 peaks from  Peptid Mass Fingerprint accord to 
peaks of Spot 6 

        

CP-9 60 kDa ?   2 peaks from  Peptid Mass Fingerprint accord to 
peaks of Spot 6 

        

CP-3 32 kDa ? GAVTNQST[278]F or 
F[278]TSQNTVAG 

Peptid Mass Fingerprint not comparable with  B/J/2 

 

 

Table 4.  Mass spectrometric interpretation of isolated bands of the central body from C. paradoxa 

cyanelles. 
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3. 5. Carbonic anhydrases 

 

For attaining an improved depiction of the C. paradoxa CCM, isolation and 

characterization of carbonic anhydrase (CA) genes was focused on. 

Provided a cyanelle CA could be found for C. paradoxa, a ß-type enzyme would 

imply carboxysomal origin while a β-type would point to an algal chloroplast CA. A 

N-terminal transit sequence would allude to a cyanelle localization of the protein 

while a transit sequence with an additional thylakoid transfer domain would indicate 

localization in the thylakoid lumen, as is the case for Chlamydomonas reinhardtii 

(Hanson et al., 2003).  

Evidence for a “eukaryotic carboxysome” in C. paradoxa would be co-packaging of 

Rubisco and carbonic anhydrase whereby the CA would be distinguished by a C-

terminal extension. 

PCR amplification of a potential C. paradoxa cyanelle CA from genomic DNA using 

degenerate primers designed according to consensus regions of all comparable 

carboxysomal CA sequences available to this date (Synechococcus PCC7002, 

Synechococcus PCC7942, Nostoc punctiforme and Synechocystis PCC6803) was  

not successful and it was made by a different PhD student. 

Various fractions of lysozyme-digested cyanelles of C. paradoxa including isolated 

carboxysomes were loaded on SDS-PAGE gel and blotted to a nitrocellulose 

membrane. Western analysis was performed with CcaA (IcfA) directed against the 

Synechocystis PCC6803 carboxysomal ß-type CA (received from George S. Espie) 

as primary antibody and Anti-Rabbit IgG (Fc) conjugate as secondary antibody 

using the method according to So and Espie, 1998. A protein of approx. 28 kDa 

should be detected. As a positive control Synechococcus sp. PCC6301 (gift from 

Georg Schmetterer) was used. Unfortunately, many unspecific signals e.g. from 

Rubisco LSU were obtained. Using higher dilutions of primary and secondary 

antibody, results were not improved. To date, a cyanelle CA for C. paradoxa has not 

been identified. 
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3. 6. Electron microscopy  

 

The morphology and size of the central bodies and the distribution of Rubisco 

throughout the cyanelles were compared for high- and low-CO2 cells using a JEOL 

1210 transmission electron microscope. In addition to conventional methods, high 

pressure cryofixation (Empact HP-freezer, LEICA Microsystems) in combination with 

freeze substitution (AFS, LEICA Microsystems) was employed to preserve the fine 

structural details. The “carboxysome” pellets obtained after (modified) purification 

were also inspected by EM. 

 

 

3.6.1. The central body of glaucocystophyte cyanell es in EM 

 

The number of existing electron micrographs (EMs) of C. paradoxa is relatively 

small. We wanted to fully confirm that no thylakoids penetrate the central body (CB)   

and to find indications for a polyhedral structure. If possible, we would like to 

demonstrate a shell also for C. paradoxa cyanelles. A major goal was to define 

eventual differences in CB morphology between cells grown under high and low 

[CO2].  

In no case are these microcompartments traversed or penetrated by thylakoid 

membranes (see e.g. Fig.3.6.1). They remain stable during cyanelle division and are 

neatly halved through the peptidoglycan septum. In C. paradoxa the 

microcompartment mostly has a rounded shape though sometimes polyhedral 

elements become apparent (Fig 3.6.2.). Under high [CO2] the contours of the CBs 

are not clearly defined. Electron-dense material (storage carotenoids?) is a bundant 

among thylakoids proteinal to the center. Cyanelle ribosomes appear around the 

central body (for Rubisco synthesis) and between the thylakoid (for phycobiliprotein 

synthesis) membranes. (Figs. 3.6.1. and 3.6.2.). 
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Figure 3.6.1.  Transmission electron micrograph of a Cyanophora cell grown under high [CO2]. 

Electron-dense regions around the innermost thylakoids are notable. (scale bar, 1µM). Chemically 

fixed and epoxy resin embedding. CB, central bodies; Env, envelope.  
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Figure 3.6.2.  Transmission electron micrograph of a Cyanophora cell grown under high [CO2]. 

Chemically fixed and epoxy resin embedding. Electron-dense regions around the innermost 

thylakoids are notable. (scale bar, 1µM). Ribosomes around central body and between thylakoids.  

A flagellar basal body was accidentally cut showing the (9+2) structure (arrow).  
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Figure 3.6.3.  Transmission electron micrograph of a Cyanophora cell grown under low [CO2]. (scale 

bar, 1µM). Chemically fixed and epoxy resin embedding. CB,  central body; S, starch granule; arrows 

indicate the onset of septum growth. Indication for a polyhedral shape of CB. Cyanelle ribosomes 

concentrated around CB. 

 

 

For low [CO2] cells, the average size of the central bodies is increased (Figs. 3.6.3. 

and 3.6.4.). 

The concentration of ribosomes around the central body indicates their main 

occupation with Rubisco biosynthesis whereas ribosome density in the thylakoid 

region is less than under high [CO2]. Also, the CB is better defined and the number 

of starch granules seems to be higher, compared to high [CO2] cells. With chemical 

fixation, no proof for the existence of a shell could be obtained, regardless of the 

[CO2]. 

 

 

 

 

S 

CB 
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Figure 3.6.4.  Transmission electron micrograph of a Cyanophora cell grown under low [CO2].  

(scale bar, 1µM).  

Chemically fixed and epoxy resin embedding. CB,  central body; N, nucleus;  The onset of septum 

growth is observed.  Indication for a polyhedral shape of CB (arrows). 
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Under cryofixation vacular structures are better preserved. 

Also the periplasmic space is exposed. Polyhedral elements of the CB are seen 

sometimes. The boundaries of the CB are some what better defined under low 

[CO2], although shell-like contours could not be demonstrated (Figs. 3.6.5. and 

3.6.6.). 

 

 

 

 

Figure 3.6.5. Transmission electron micrograph of a Cyanophora cell grown under high [CO2].  

(scale bar, 1µM). High-pressure freezing. (Cryofixation) 
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Figure 3.6.6 .Transmission electron micrograph of a Cyanophora cell grown under low [CO2].  

(scale bar, 1µM). High-pressure freezing. (Cryofixation) 
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It was also important to inspect the state of the purified CBs. Carboxysomes as well 

as pyrenoids are known as delicate structures and with detergent treatment was 

inevitable to get the CBs off the thylakoid membranes. Indeed, fig 3.6.7. shows a CB 

with an electron translucent center without the usual smooth bondaries. 

This preparation also contained membranous contaminations. The cleaner 

preparation in fig 3.6.8 depics the isolated CB of a dividing cyanelle. The higher 

magnification allows to better recognize the granular, quasi-crystalline substructure 

known from cyanobacterial carboxysomes (Kaneko et al., 2006). 

Negatively stained CB preparations (figs, 3.6.9. and 3.6.10) appear to be collapsed, 

showing the individual Rubisco molecules with some tendencytowards self-

assembly. This largely parallels reports on negatively stained cyanobacterial 

carboxysome preparations (Orus et al., 1995). 

                                    

 

 

 

Figure 3.6.7. Transmission electron micrograph of a central body preparation from Cyanophora.  
Chemically fixed and agar-resin embedded. 
 
Some contaminations are contained. The central body (CB) shows a granular substructure. 
Scale bar 500 nm.  
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Figure 3.6.8.  Transmission electron micrograph of a central body preparation from Cyanophora.  

Chemically fixed and agar-resin embedded. 

Central body (CB) from a dividing cyanelle: partially disintegrated, granular substructure. 

scale bar 250 nm.  
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Figure 3.6.9. Negatively stained central body preparation from Cyanophora paradoxa.  

Samples of isolated central bodies were negatively stained by floating carbon- coated grids onto a 

sample drop for 4 min, followed by refloating onto a 2% solution of uranyl acetate for 50 seconds. 

Grids were observed in a Jeol transmission electron microscope at higher magnification than in 

figures 3.6.7. and 3.6.8. ( scale bar 100 nm ). 
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Figure 3.6.10. Negatively stained preparation of central bodies from Cyanophora paradoxa.  

Quasi crystalline aggregates (Rubisco?) become apparent. 

Samples of isolated carboxysomes were negatively stained by floating carbon- coated grids onto a 

sample drop for 4 min, followed by refloating onto a  2% solution of uranyl acetate for 50 seconds. 

Grids were observed in a Jeol transmission electron microscope. ( scale bar 100 nm ). 
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4. DISCUSSION 

 

 

4.1. Proteomics:  

4.1.1. Central body isolation and identification of  its components    

( Mass Spectrometry ) 

 
 

The only carboxysomal proteins identified werde the large (52 kDa) and small 

subunits (12 kDa) of Rubisco and Rubisco Activase (45 kDa). 

For comparison, proteomics of cyanobacterial carboxysomes was not very 

successful either: One-dimensional ELPHO and N-terminal sequencing identified 

Rubisco SSU only (Rodriguez-Buey et al, 2005) whereas two-dimensional 

separation and MS yielded three genuine components, RbcL, RbcS, and CcmM 

(Long et al., 2005). It could be argued that the use of Triton effectuates the (partial) 

loss of the shell of these delicate microcompartments as indicated by EM of central 

body preparation. Due to their relatively large size and tight association with the 

thylakoids, their isolation has to be a compromise between intactness and purity.  

Also, cyanelle DNA sticks to the CB, therefore DNAse treatment is necessary, too. 

The sensitivity of the mass spectrometric method is sufficient to characterize even 

minor bands, which in most cases will represant contaminating material (Long et al, 

2005). Nevertheless, we estimate that more EST data for C. paradoxa will enable in 

the future the discrimination between bona fide components of the central body and 

contaminating proteins. The identification of a cyanelle CA would be of prime 

importance in this respect. Also, the presence of shell proteins, encoded by ccm 

genes, could not yet be shown for C. paradoxa. They would be profound evidence 

for a “eukaryotic carboxysome” in this glaucocystophyte.  
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4.1.2. Rubisco activase 
 
 
MS/MS also clearly identified Rubisco activase as a central body component in C. 

paradoxa. Its gene was in the EST library established and was completed by 5΄-

RACE of a truncated cDNA, revealing a typical cyanelle transit sequence. Moreover, 

when 35S-labelled pre-Rubisco activase was imported into cyanelles in vitro, 

incorporation of the mature protein into central bodies was demonstrated to increase 

over time (7 min: 10%, 25 min: 25%). Among cyanobacteria, Rubisco activase is 

found in filamentous, nitrogen-fixing species (the likely ancestors to chloroplasts) but 

not in unicellular ones, with the exception of Gloeobacter violaceus PCC 7421 

(Cyanobase). The Cyanophora enzyme possesses the N-terminal extension of 

higher plants and green algae while the C-terminal extension, bearing sequence 

similarity to cyanobacterial CcmM repeats, is absent. The central part is well 

conserved for all of the oxygenic phototrophs with Rubisco activase that have been 

examined. The location of the cyanobacterial activase is assumed extra-

carboxysomal (Friedberg et al., 1993), which is questioned by others (A. Portis, 

personal communication), whereas immunoelectron microscopy showed an 

association of this enzyme with pyrenoids in algae (McKay et al., 1991). In the case 

of Cyanophora, we could unequivocally demonstrate a tight association of Rubisco 

activase with its substrate, Rubisco, in the cyanelle carboxysome-like 

microcompartment. Interestingly, while Rubisco LSU is highly conserved, i.e. the 

identity scores between the cyanelle protein and its cyanobacterial counterparts lie 

between 83 and 84%, a BLAST search with the cyanelle Rubisco LSU against 

Cyanobase nevertheless produced top ranking hits for the filamentous, nitrogen-

fixing and activase-containing cyanobacterial species Anabaena 7120, Nostoc 

punctiforme and Trichodesmium erythraeum (data not shown). The catalytic 

mechanism of cyanobacterial Rubisco activase might somewhat differ from that of 

the eukaryotic enzyme (Portis, 2003), which raises the question about the catalytic 

mechanism of the plant-type Cyanophora activase vis-à-vis its cyanobacterial-type 

substrate. MS data point towards the possibility of two enzyme forms of slightly 

different size in Cyanophora paradoxa (Portis et al. 2003). 
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4.2. Carbonic anhydrases 

 

The identification of the gene(s) for cyanellar CA in Cyanophora could not be 

achieved. In the case of incorporation of CA into the central body, the latter could be 

considered a carboxysome. Instead, two isoforms of a putatively mitochondrial CA 

(with highest homology to mCA2, Cah5 of C. reinhardtii) and a putatively cytosolic 

CA (lacking a N-terminal transit sequence), all β-type carbonic anhydrases, were 

identified for C. paradoxa.  

Microarray results (from s. Burey) of the putatively cytosolic carbonic anhydrase of 

Cyanophora point towards a late (24 h) induction of <2-fold (20G10, Fig. 3.2.4.2 A, 

B), while Northern analysis indicates an almost ten-fold up-regulation at 1 h upon 

shift. It is unclear whether this CA is involved in the CCM. A cytoplasmic CA would 

be necessary if we assume the presence of a Ci-transporter in the chloroplast 

envelope with a distinct preference for either CO2 or HCO3
- (Badger and Price, 

1994) such as the putative cyanelle bicarbonate transporter encoded by 

CPL00000417. For C. reinhardtii, a cytoplasmic carbonic anhydrase was recently 

identified: CAH9 is related to bacterial CAs (Moroney and Ynalvez, 2007).  

C. paradoxa was grown under continuous light of low intensity. Under these 

conditions, mitochondrial respiration plays a minor role only (though this has been 

questioned), explaining the much lower effect on expression of mitochondrial CA 

(Fig. 3.2.4.2.) compared to C. reinhardtii (Mca) where a factor of about 100 was 

reported (Miura et al., 2004). Also, high light was shown to increase the expression 

of CO2  responsive genes. 

Northern analyses of the putatively mitochondrial CA isoforms I and II indicated an 

early (1 h) two-fold induction upon low-CO2 with a subsequent gradual reduction 

(microarray results show slight continuous induction of isoform I). It is thought that 

two isoforms of CA in C. reinhardtii, Cah4 and Cah5, which were shown to be highly 

dependent upon changes in the ambient [CO2] (Moroney and Chen, 1998) recycle 

both respiratory and photorespiratory CO2 by converting it to HCO3
- in the 

mitochondrial matrix (Raven, 2001), which is subsequently available for the CCM by 
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transport into the chloroplast stroma. The finding that Ci limitation induces both 

putatively mitochondrial CA isoforms in Cyanophora allows for a similar scenario. 

 

 

4.3. Electron Microscopy  

 

It is not clear at present if the C. paradoxa “carboxysomes” are confined by a 

(proteinaceous) non-unit membrane but the polyhedral central bodies of cyanelles 

from the glaucocystophytes Gloeochaete wittrockiana and Cyanoptyche gloeocystis 

are enclosed by such a shell (Kies, 1992). It is likely that the polyhedral nature, 

observed infrequently, and the surrounding shell of the C. paradoxa central bodies 

are camouflaged by the condensed cyanelle DNA covering them and the closely 

adjacent concentric thylakoids.  

Alternatively, a (partial) conversion from carboxysome to pyrenoid could have 

occurred within the glaucocystoohytes. The CBs of C. gleocystis and G. wittrockiana 

still represent (eukaryotic) carboxysomes whereas those of C. paradoxa and G. 

mostochinearum might have arrived of an intermediate state between the two 

microcompartment types. Electron microscopy of high vs. low [CO2] grown cells 

showed a potential increase in size of the putative carboxysome. In prokaryotes 

which contain multiple carboxysomes, their numbers increase upon CO2-stress 

(Reinhold and Kaplan, 1999). The increase in starch granules observed for low 

CO2–grown cells parallels the appearance of a starch sheath around the pyrenoid in 

C. reinhardtii (Mitra et al., 2005). Ribosomes are found distributed through the 

thylakoid system under high [CO2], likely occupied with phycobiliprotein synthesis 

which are major proteins in the cyanelles. In low [CO2] cells ribosomes are 

concentrated around the CB: this is in accordance with the results of Wang et al. 

(2003) who observed a decrease in phycobiliprotein and PSI and II protein synthesis 

and an increase in Rubisco synthesis upon shift of Synechocystis sp. 6803 to low 

[CO2]. 

Isolated carboxysomes were checked with respect to intactness, polyhedral 

appearance and quasi-crystalline substructure. It was obvious that delicate 

structures were subjected to stepwise disassembly which was less pronounced 



 101

when chemical fixing and embedding was adopted but complete when the 

preparations were treated with negative staining. The emerging substructure of 

individual, ordered Rubisco molecules very much reminds to the situation with 

isolated carboxysomes from cyanobacteria.  However, it must be kept in mind that 

such experiments have not yet been with isolated pyrenoids. 

 

 

 

4.4. Summary of the C. paradoxa project 

 

The question of a ,,eukaryotic carboxysome,, in C. paradoxa still has to be await a 

cocclusive answer. Raven’s hypothesis (2003) is appealing to us since it offers a 

“raison d’etre” for the eukaryotic peptidoglycan of glaucocystophytes. However, it 

remains to be shown that bicarbonate is indeed enriched in cyanelles by a factor of 

1000 or more. 

High-throughput EST sequencing revealed a number of novel interesting genes, 

which in future can be investigated with diverse means. A large number of suitable 

ESTs contributed to an extensive phylogenetic analysis. A subset of largely unique 

ESTs were spotted on coated slides for microarray analysis. Genes showing 

differential regulation upon high and low CO2 were identified, among them CCM 

candidate genes. In summary, genetic and biochemical data allowed the 

identification of homologues of cyanobacterial and algal proteins (putatively) 

involved in carboxysome and/or pyrenoid functioning, including carbonic 

anhydrases, Rubisco activase and a likely bicarbonate transporter. Nevertheless, 

highly indicative genes for determining the type of CCM such as a cyanelle CA, 

carboxysomal shell proteins and other Ci-transporter components are still 

unidentified. Thus, the present data does not allow us to fully support the hypothesis 

of “eukaryotic carboxysomes”. The bulk of Rubisco and activase seems to be 

concentrated in the central body, which should play a major role in the CCM. 

Possibly, the cyanelle central body represents an intermediate step in the evolution 

from a carboxysomal-type CCM towards a pyrenoidal-type CCM.  
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4.5. Perspectives 

 
The genome of C. paradoxa is expected to be completely sequenced in the near 

future. Transit sequence prediction is more straightforward for cyanelles than for 

chloroplasts (Steiner and Löffelhardt 2005). Thus a cyanellar CA should be easily 

identified once the gene or EST is available. In vitro import and fractionation should 

show an eventual assembly of the protein into the “carboxysome”. The presequence 

will tell us also if a localization to the thylakoid lumen is possible, though in this case 

the mechanism must be different from that in C. reinhardtii, since microcompartment 

and photosynthetic membranes are strictly separated in cyanelles. We will also 

continue mass spectrometric identification of individual bands in the hope to identify 

a CA-like protein by this way. 

We will put more effort into electron microscopy to elaborate on specific features of 

(immuno-EM) low [CO2] grown cells: There might be a higher number of starch 

grains which are deposited in the cytoplasm of C. paradoxa and, in the cyanelles, 

slight increases in microcompartment size and in the number of surrounding 

ribosomes. Also, the boundaries of the microcompartment from low [CO2] conditions 

seem to be better defined with sometimes slight polyhedral features which might be 

camouflaged through the covering cyanelle DNA. Antibodies directed against novel 

carbonic anhydrases, such as Cah8, could be tested on cyanelle protein blots. 

Measurements of O2 evolution and CO2 consumption (e.g. with a portable gas 

exchange system) upon a shift to low-CO2 would be beneficial as well as 

determining the HCO3
- concentration within cyanelles at low CO2. 

Glaucocystophytes are niche organisms: C. paradoxa is the best–investigated 

species since it is the only one with a reasonable growth rate (generation time 20 

hours). G. nostochinearum grows slower and all others at a very low rate. Thus it is 

no advantage to keep the organelle wall, unless there is an absolute necessity for 

that. Continued protein analysis of the central body of C. paradoxa cyanelles veering 

towards a classification of the CCM would be very valuable. Mass spectrometric 

determination of CA activity for isolated purified cyanelles should be performed. 

Absent enzymatic activity though does not always exclude enzymatic presence as 

there exist several cases of inactive enzymes.  
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The effect of higher light intensity on CCM induction could be investigated with 

microarray analysis. A future approach will be to further exploit the low-CO2 library 

by subtraction (excluding in particular ribosomal proteins) and to follow the 

expression pattern of potentially interesting genes via RT-PCR. Another goal will be 

to find and characterize the gene(s) for the elusive cyanelle CA as well as for 

bicarbonate transport and CO2 uptake systems.  
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