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Preface

Some years ago, while I was working in the EU-SILC team at Statistik Austria, I had to

calculate the reliability of at-risk-of-poverty rate estimates for federal provinces (Bun-

deslaender). To my surprise, the confidence intervals were quite large, indicating little

reliability of the regional estimates. Since there is large demand from the public not

only for estimates for federal provinces, but even for smaller regional units, I considered

the large sampling error of the regional estimates as a major problem.

Since then, during my study of statistics at the University of Vienna, I have learned

a lot about mathematical statistics and estimation theory. I took particular interest

in estimation methods and the comparison of estimators. I also concerned myself with

methods of small area estimation. From that viewpoint, I decided to use my master

thesis to try to find an improved estimator for the at-risk-of-poverty rate in small sam-

ples, without calling for unrealistic large auxiliary information or giving user-unfriendly

complicated formulae.

I started working on the topic in the spring of 2007 and finished in March 2008. I spent

most of the time with the derivation of formulae, and also invested a lot in theoretical

considerations and in simulation studies. What I can say with certainty is that never

before during my studies have I learned so much about the scientific subject of statistics.

A substantial improvement in my own knowledge and also a positive outcome that might

be beneficial for the public compensate for the many hours spent with paper and pencil.

I would like to extend my gratitude to my supervisor, Prof. Andreas Futschik, for

all the technical support he has given me. Special thanks go to my parents Anneliese

and Gottfried Klotz for financial and emotional support during my studies. Without

their help, writing the current thesis would not have been possible. Last but not least,

I would like to thank my longtime companion Katharina for all the love and affection I

receive from her from day-to-day.
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Abstract

The thesis generally deals with a parametric estimator of the at-risk-of-poverty rate,

assuming lognormally distributed income data. In the first chapter, state-of-the-art

nonparametric estimation of that indicator is reviewed and the motivation for developing

an alternative estimator is explained. Chapter 2 deals with parametric modelling of

income distributions as well as the basic properties and main advantages of the lognormal

distribution. In the following three chapters formulae for parametric point and interval

estimators and their asymptotic properties are derived, and in chapter 6 the applicability

of the large-sample results in the small-sample case are examined in a Monte Carlo study.

Simulation is also used in the subsequent chapter to compare the performance of the

parametric with the nonparametric estimator applied to real life datasets. The last two

chapters in the thesis deal with variance inflation caused by estimating for persons in

households as well as by complex sampling designs and nonresponse.

The main finding of the thesis is that usage of the parametric estimator might sub-

stantially improve the accuracy of estimates if the sample size is small, whereas it is

not recommended if the sample size is large. Concerning medium sample sizes, the

performance of the parametric compared to the nonparametric estimator depends on

the deviation from the theoretical lognormal assumption in the actual dataset. We in-

vestigate two empirical distributions, indicating a better performance of the parametric

estimator up to a sample size of about 150 observations in the first dataset and up to a

sample size of about 2,000 observations in the second dataset.
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Abstract in German

Die vorliegende Magisterarbeit behandelt ein parametrisches Verfahren zur statisti-

schen Schaetzung von Armutsgefaehrdungsquoten. Im ersten Kapitel wird der aktuelle

Stand der nichtparametrischen Schaetzung wiederholt und die Motivation zur Entwick-

lung eines alternativen Schaetzers dargelegt. Kapitel 2 behandelt das parametrische

Modellieren von Einkommensverteilungen sowie die grundlegenden Eigenschaften und

Vorzuege der Lognormalverteilung. In den folgenden drei Kapiteln werden parametrische

Punkt- und Intervallschaetzer und deren asymptotische Eigenschaften hergeleitet, worauf

in Kapitel 6 mittels einer Monte-Carlo-Studie die Anwendbarkeit der asymptotischen

Ergebnisse in endlichen Stichproben geprueft wird. Eine Simulationsstudie wird auch

im darauffolgenden Kapitel verwendet, um die Effizienz des parametrischen Schaetzers

im Vergleich zum nichtparametrischen Schaetzer angewandt auf empirische Datensaetze

zu untersuchen. In den letzten beiden Kapiteln der Magisterarbeit wird der Einfluss des

Schaetzens fuer Personen in Haushalten einerseits sowie von komplexen Stichprobenver-

fahren und Antwortausfall andererseits auf die Intervallschaetzer behandelt.

Das wichtigste Ergebnis der Arbeit lautet, dass die Verwendung des parametrischen

Schaetzers die Genauigkeit von Schaetzwerten bei kleiner Stichprobengroesse erheblich

verbessern kann, waehrend sie fuer grosse Stichprobengroessen nicht empfohlen wird. Be-

treffend Stichproben mittlerer Groesse haengt die relative Effizienz des parametrischen

Schaetzers vom Grad der Abweichung von der theoretischen Lognormalverteilungsan-

nahme im konkreten Datensatz ab. Bei der Untersuchung zweier empirischer Einkom-

mensverteilungen zeigt sich ein geringerer mittlerer quadratischer Fehler des parametri-

schen Schaetzers im ersten Datensatz bis zu einer Stichprobengroesse von ca. 150

Beobachtungen und im zweiten Datensatz bis zu einer Stichprobengroesse von ca. 2.000

Beobachtungen.
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1 Introduction

1.1 Definition of the indicator

In scientific research on relative poverty and social exclusion in developed countries, an

important indicator for the prevalence of relative poverty is the proportion of elements

below a given fraction of a quantile of the income distribution. For instance, EUROSTAT

defines a low wage as one below 60% of the national median monthly wage (Berger and

Skinner, 2003). The most frequent quantile used in this context is the median, since it is

a measure of central tendency, and a deviation from the median therefore indicates devi-

ation from the “average” or “relative standard”. As Preston (1995) mentions, “Statistics

on proportions of populations falling below given fractions of average income have come

to play a central role in the discussion of poverty”. Till (2006) points out that in social

research disposable income is taken as a measure for the expected standard of living.

The proportion of persons living in households below 60% of the national median annual

disposable household income is one of the “Laeken indicators”, i.e. common statistical

indicators for social inclusion in the European Union (EUROSTAT, 2003).

It should be noted at this point that according to different requirements both “ele-

ments” and “income” may have different meanings. Elements may be persons, house-

holds, families, employment relationships, or persons in households (if income is mea-

sured at household level, but the rate is estimated for persons). Income may refer to

gross income, net income, equivalised disposable income, income from certain sources

only (e.g. wage income), or even expenditures. In this thesis we shall generally refer to

households or persons in households and equivalised disposable annual household income,

as it is the case in estimating the Laeken indicators (EUROSTAT, 2003). Furthermore,

we will restrict our results to the case when the quantile is the median.

In accordance to EUROSTAT, the indicator itself will be called the “at-risk-of-poverty

rate”. Note that this terminology is not unique, as for instance Berger and Skinner (2003)
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use “low-income proportion” instead. Furthermore it should be mentioned that the at-

risk-of-poverty rate is not a “rate” as it is usually used in statistics, but a proportion

(Elandt-Johnson and Johnson, 1980, ch. 2). The fraction of the quantile will be called

the “poverty threshold” or the “poverty line”.

In a formal way, the at-risk-of-poverty rate is defined as follows. Let Y denote income

and let G denote its distribution function, i.e.

G(y) = Pr {Y ≤ y}

The counterpart of the distribution function is the quantile function,

G−1(p) = inf {y : G(y) > p}

Then the at-risk-of-poverty rate θ for a certain fraction c of a certain quantile p is

given by

θc,p = G
[
c ∗G−1(p)

]
(1.1)

Particularly, if the quantile is the median and the fraction is taken as c = 0.6, then

θ0.6,0.5 = G
[
0.6 ∗G−1(0.5)

]
= G [0.6 ∗Med(Y )]

We see that the (true) at-risk-of-poverty rate is a function of the income distribution

function. If we know the actual distribution function for the target universe, we are able

to calculate the indicator. However, the true distribution function is usually unknown

and has to be estimated from sample data. There are generally two possible ways of

estimating the indicator: nonparametric and parametric. Nonparametric means “to

estimate the population proportion below the population poverty line by the sample

proportion below the sample poverty line” (Preston, 1995). Parametric means to first

assume a certain distribution model, express the indicator as a function of the model

parameters (Graf, 2007), and then to estimate the indicator via the sample parameter

estimates.
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Table 1.1: At-risk-of-poverty rate estimates for EU member states, 2003

Country At-risk-of-poverty rate

Belgium 15

Denmark 12

Germany 15

Ireland 21

Greece 21

Spain 19

France 12

Italy . . .

Luxembourg 10

Netherlands 12

Austria 13

Portugal 19

Finland 11

Sweden . . .

United Kingdom 18

1.2 Empirical estimates

EUROSTAT (2007, ch. 4) reports nonparametric estimates for the at-risk-of-poverty rate

for the 15 member states of the European Union in 2003 (table 1.1). The poverty line was

set at 60% of the national median income, with “income” referring to annual equivalised

disposable household income after social transfers. Values are given as percentages of

persons in households.

We note that all estimates fall in the range between 10% and 21%. Relative poverty

is least frequent in Luxembourg and highest in Greece and in Ireland. High rates can

generally be seen in Southern European and Anglo-Saxon societies.

Estimates are calculated not only for the entire country but also for many subpopu-

lations such as various household types, males and females, different age groups, and so

forth. The poverty line is in these cases kept constant at 60% of the national median

income. In Austria in 2003 the poverty line was estimated to be EUR 9,425 equivalised

annual income. For domains with a very low income level this implies that the rate can
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Table 1.2: At-risk-of-poverty rate estimates for various domains of study, Austria 2003

Domain At-risk-of-poverty rate

Males 12

Females 14

0-19 years 15

20-39 years 13

40-64 years 11

65+ years 16

Austrian citizens 12

Non-Austrian citizens 27

Basic education 20

Vocational education 10

Secondary school 10

University degree 7

exceed 50%. Statistik Austria (2005) reports estimates for various domains of study in

Austria in 2003 (table 1.2).

We see that relative poverty is over-proportional among females, non-nationals, chil-

dren and retirees, and people with only basic education.

1.3 Nonparametric vs. parametric estimation

As already mentioned, sample estimates of the at-risk-of-poverty rate can be calculated

either nonparametrically or parametrically. Nonparametric estimation - to estimate

the indicator via the sample quantiles - is the usual procedure, for instance used by

EUROSTAT.

Formally the nonparametric estimator with respect to c and p is given by

θ̂c,p = Ĝ(c ∗ Ĝ−1(p)) (1.2)

One advantage of (1.2) is that the procedure is intuitively clear. Furthermore, it does

not rely on a distributional assumption concerning income, so it cannot be affected by

any violation of a distributional assumption.
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Preston (1995) derives exact small-sample and large-sample results for (1.2), with some

interesting findings: The estimator is asymptotically unbiased, and an explicit formula

for its sampling variance is available. The fact that the true poverty line is unknown and

has to be estimated too does not in general increase the sampling variance of (1.2), since

the two sampling errors tend to offset each other unless c is very small. The sampling

distribution of (1.2) in finite samples is somewhat complicated, including the incomplete

beta function.

One disadvantage of Preston’s paper is that the results are restricted to simple random

sampling from an infinite universe. The assumption of an infinite universe, though

usually wrong, is less problematical, since the sampling fractions in that context are

usually far below the conservative 5% critical level mentioned by Cochran (1963, ch.

2.5). However, the assumption of simple random sampling is a heavy constraint since it

is rarely the case in practice and violations of that assumption may cause considerable

deficiency in results (Kish and Fraenkel, 1974; Saerndal et al., 1992, ch. 2.10).

Berger and Skinner (2003) extend Preston’s results to complex probability samples,

such as stratified sampling or cluster sampling. They also consider nonresponse cor-

rection (based on known response probabilities) and the use of raking weights. One of

their findings is that ignorance of unequal design weights and nonresponse may cause

considerable underestimation of the sampling variance. Concerning variance estimation,

they refer to the linearization and residual technique proposed by Deville (1999), a tech-

nique that was also used later to establish the official EUROSTAT formulae for variance

estimation (EUROSTAT, 2005).

So if an unbiased nonparametric estimator is available and its variance is known, why

should we discuss alternative estimators? The main reason is that nonparametric esti-

mation usually gives poor estimates in small samples – “poor” in a sense that sampling

errors and confidence intervals are too large to consider point estimates satisfactory. An

intuitive explanation of that deficiency is that (1.2) relies on sample quantiles, and since

the sample distribution function is a step function, these sample quantiles are very un-

reliable when it comes to small samples. Reliable small area comparisons (where “area”

may refer to geographic areas as well as to other subdomains of the target universe) are

difficult to obtain using (1.2). One possible way to deal with that is to use additional

sample or nonsample information for model-based inference (Longford, 2005, part II).

Another possible way is to use to observed sample data only but with an alternative

estimator.
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The idea behind parametric estimation is as follows. Given we find a suitable para-

metric model for the income distribution in the target universe. Then it should be

possible to express the at-risk-of-poverty rate as a function of the model parameters

(Graf, 2007). It might appear that the sampling variability of such model parameters

is much smaller than the sampling variability of quantiles. Consequently the sampling

accuracy of a parametric estimator can be higher than that of (1.2), given the distribu-

tional assumption holds. Less formal, if we know that the income distribution can be

reasonably described by an established model, we may use this information to get an

improved estimator for the at-risk-of-poverty rate.

Of course, in practice a parametric model will rarely fit the income distribution in

the target universe exactly. Usually we will find some ranges of the distribution where

the parametric fit is suboptimal. This implies that in general a parametric estimator is

not unbiased. However, if the bias is moderate, in small samples a parametric estimator

might still perform better in terms of the mean square error than the nonparametric

estimator. This is because the decrease in sampling variance by parametric estimation

may overcompensate the corresponding introduction of bias, as long as the sample size

is modest. On the contrary, if the sample size becomes large and the differences in

sampling variance between parametric and nonparametric estimator therefore become

negligible, the nonparametric estimator might be preferred.
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2 The lognormal distribution as a

model for income data

2.1 Candidate distributions for income data

In 1897 economist Vilfredo Pareto stated his famous power law of income and wealth

distributions (Dragulescu and Yakovenko, 2000). Since then, a large number of the-

oretical distributions have been proposed as models for income data. Some of them

were created specifically for that purpose, others were already established distributions

applied to income data.

The fact that a large number of theoretical distributions have been proposed suggests

an important fact: There is no such thing as a unique distribution widely accepted as a

suitable model for income data. Scientific research on the topic is far from agreement:

“No unified theory of income distribution actually exists”, as Atkinson and Bourguignon

(2000) point out.

A large review of the topic is given by Kakwani (1980, ch. 1 and 2). He mentiones that

theories concerning the shape of the income distribution have emerged from two major

schools. The socio-economic school tries to explain the shape of the income distribution

in a society by means of economic and institutional factors (such as sex, age, occupation,

or the distribution of wealth). On the contrary, the statistical school tries to explain

income distribution via stochastic processes. We shall not track that distinction further

but concentrate on the resulting distributions proposed.

Kakwani (1980, ch. 2) classifies theoretical income distributions along whether or

not they satisfy a weak Pareto power law (that is, a power law for higher incomes).

Among the distributions satisfying the weak Pareto law we find the Burr distribution,

the Fisk (or log-logistic) distribution, the Pareto distribution of first and second kind,
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and Champernowne’s distribution. As examples of distributions not satisfying the weak

Pareto law the lognormal distribution and the Gamma distribution are given.

Based on empirical data on household income in different countries Clementi and

Gallegati (2005) suggest the use of the lognormal distribution for the lower and middle

range of income and the Pareto distribution for the highest 1-3%. They hypothesize

that the different fit for the highest income is caused by the underlying income sources:

Whereas income in the lower and middle range is usually labor income, the highest

incomes are typically capital incomes. They also mention a new distribution that should

be applicable to the entire range of income.

The concept of a combined fit is also used for personal income by Yakovenko and Silva

(2005), who propose an exponential distribution for lower und middle incomes, and again

the Pareto distribution for the rich. Furthermore, as household income is the sum of

personal incomes, they suggest the Gamma distribution as the corresponding model for

household income in lower and middle ranges. The exponential distribution as a model

for personal income data is also described by Dragulescu and Yakovenko (2001).

Much information about the lognormal distribution as a model for income data can

be found in the standard monograph by Aitchison and Brown (1957, particularly ch.

11). Graf (2007) reports about the lognormal and the Fisk distribution as parametric

models especially in the context of poverty indicators.

In this thesis we shall use the lognormal distribution as a model for income distribu-

tion. There are several reasons for doing so. Empirical evidence shows that the lognormal

curve is an appropriate model for describing the actual distribution in a wide range, par-

ticularly in the middle part. Deviations primarily occur at the margins, though there

seems to be also an asymmetric deviation, since “it tends to overcorrect for the positive

skewness” (Kakwani, 1980, p. 28). The use of the lognormal distribution as a model

for income data can also be theoretically justified by Girat’s law of proportionate effects

(Aitchison and Brown, 1957, ch. 1.2 and 3.3). However, the most important reason

for choosing the lognormal distribution is that it is strongly related to the normal dis-

tribution, which greatly simplifies all procedures concerning statistical estimation and

inference (Kakwani, 1980, ch. 2)
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2.2 Properties of lognormal distributions

All formulae in this section – partly modified – are given by Aitchison and Brown (1957,

ch. 2.2 and 2.3).

A random variable follows a lognormal distribution if and only if the logarithm of the

random variable follows a normal distribution. Therefore the lognormal distribution is

applicable for continuous random variables with positive values.

As the underlying normal distribution, the lognormal distribution has two parameters.

Let us denote the random variable of interest by Y and its logarithm by X. We write

Y ∼ LN(µ, σ2)⇔ X = log(Y ) ∼ N(µ, σ2)

We see that the parameters of the lognormal distribution are equal to those of the

underlying normal. These two parameters, µ and σ2, fully describe the shape of the

lognormal curve. Concerning X, µ refers to the expectation and σ2 to the variance.

Concerning Y , µ and σ2 are not expectation and variance, but can somewhat be inter-

preted as a location parameter and a scale parameter, respectively.

It should be noted at this point that the two-parameter distribution without truncation

or censorship is the simplest type of a lognormal distribution. More complicated types

are handled by Aitchison and Brown (1957, ch. 2 and 9) and by Thompson (1951). We

shall not track them further.

For positive values of Y the probability density function is given by

g(y) =
1√

2πσ2y
exp

(
− 1

2σ2
(log(y)− µ)2

)
For all other values, the density is zero.

Figure 2.1 illustrates some theoretical lognormal curves. In the left panel, µ = 0 is

fixed and σ2 = 0.25, 0.5, 1 varies. The magnitude reaches its highest level for σ2 = 0.25.

In the right panel, µ = 0, 0.5, 1 varies and σ2 = 0.5 is fixed. The magnitude reaches its

highest level for µ = 0.

The expectation of Y is

E(Y ) = exp(µ+ σ2/2)
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Figure 2.1: Some lognormal curves
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and its variance is

V ar(Y ) = exp
(
2µ+ σ2

) (
exp(σ2)− 1

)
The coefficient of variation is

CV (Y ) =

√
V ar(Y )

E(Y )
=
√

exp(σ2)− 1

and does therefore not depend on µ.

The coefficient of skewness is

Skew(Y ) =
E(Y − E(Y ))3

(V ar(Y ))
3
2

= exp(σ2 + 2)CV (Y )

that is, the lognormal distribution is right-skewed.

Concerning the quantiles of the lognormal curve, the following important relationship

holds: If zp is the p-quantile of the standard normal, that is,

zp = Φ−1(p)

then the p-quantile of the lognormal distribution equals

G−1(p) = exp(µ+ zpσ)

Particularly, the median of Y , which for lognormal distributions equals the geometric

mean, is given by

Med(Y ) = G−1(0.5) = exp(µ) (2.1)

2.3 Agreement of the model with real data

As it was pointed out in section 2.1, the lognormal model may be more or less appropriate

to describe the shape of an empirical income distribution. Kakwani (1980, ch. 2) suggests

that a poor fit might be observed towards the tails, Clementi and Gallegati (2005) report

deviations primarily in the upper tail.

We fit a lognormal curve for two datasets, namely the SILC data and the ADMIN

data. The parameters are estimated via maximum likelihood (Limpert et al., 2005;
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Aitchison and Brown, 1957, ch. 5.2). Then we graphically compare the estimated

lognormal quantiles with the actual quantiles using a QQ-plot. Since a function for a

normal QQ-plot is by default implemented in R, version 2.6.1., we in fact compare on

the logarithmic scale.

The SILC data (n = 4, 623) refers to equivalised annual disposable household income,

collected in the Austrian EU-SILC 2003 survey (Statistik Austria, 2005). Since it is

a voluntary survey, some values are imputed or partly imputed. The ADMIN data

(n = 29, 644) refers to a 1% sample of matched administrative data on Austrian employee

wage incomes in 2003 (Klotz, 2005).

To eliminate extremely high or low incomes in both datasets, a top-bottom recoding

was carried out as follows. All incomes greater than 10 times the median income were

imputed at random by an observed value greater than 2.5 times the median income.

On the opposite side incomes lower than 0.1 times the median income were replaced

by an observed value lower than 0.4 times the median income. It should be noted that

parameter estimation of the lognormal curve is more affected by extremely low incomes.

However, the top-bottom recoding was done not only to achieve a better fit but also

because there is in fact reason to believe that some of the extreme incomes (especially

lower incomes in the SILC data and higher as well as lower incomes in the ADMIN data)

are in fact erroneous. Top-bottom recoding changed 33 low and 2 high observations in

the SILC data and 173 low and 156 high incomes in the admin data, so in both cases

appeared to about 1% of the sample.

Figure 2.2 shows the QQ-plots for the lognormal fit for the SILC data (the left panel

refers to the original data, the right panel to the data after top-bottom recoding). We

see that a huge deviation from the normal curve on the logarithmic scale (and therefore

a deviation from the lognormal curve on the original scale) can be observed especially

towards the lower tail of the distribution. A smaller deviation is also found for the

upper tail. Good coverage can be observed for about 70-75% of the data before and

about 80-85% after top-bottom recoding.

A poor fit towards the tails is not a surprise, since this phenomenon generally observed

for lognormal income data fits (Kakwani 1980, p. 28). However, what is surprising is

that especially the lower tail of the distribution is badly covered, since Clementi and

Gallegati (2005) suggest the opposite. Possible explanations for this are e.g. systematic

unit nonresponse and/or systematic item nonresponse in the survey, furthermore data

collection and measurement errors, imputation errors, and of course true deviations.
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Figure 2.2: Normal QQ-plot for the logarithmic SILC data
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Figure 2.3: Normal QQ-plot for the logarithmic ADMIN data
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Figure 2.3 gives the QQ-plots for the ADMIN data (analogous to the SILC data).

We observe a poor fit towards both tails of the distribution. Compared with the SILC

the deviation is higher in the upper tail, whicht might be explained by the different

data source (administrative data where nonresponse does not occur). We again see a

substantial improvement in the fit by the top-bottom recoding: Before the procedure, a

good fit can be observed for about 75-80% of the data, whereas this value increases to

about 85-90% after top-bottom recoding (though the procedure itself appeared to only

about 1% of the data).

We conclude that for both the SILC data and the ADMIN data the lognormal assump-

tion seems justified for a large center part of the distribution, but is somewhat invalid

towards the tails. More to the point, the empirical tails are “too heavy” compared with

the theoretical tails. This fact should be kept in mind since the at-risk-of-poverty rate

deals primarily with the lower tail of the income distribution.
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3 Domain poverty threshold

In this chapter we stress estimating the at-risk-of-poverty rate when the poverty thresh-

old is defined specifically for the domain of interest. That is, if we are interested in the

at-risk-of-poverty rate of single person households, then the poverty threshold is set as

60% times the median income of single person households, or, more generally, a factor c

times the median income of single person households.

Usually the factor c is chosen so that 0 < c < 1. Common values, besides 0.6, are 0.5,

0.4, and 0.7 (Statistik Austria, 2005, p. 120). A value c ≤ 0 will not make sense if we

assume that the disposable household income is a positive number (as it is frequently

the case, cf. Kakwani, 1980, p. 12). Clearly, if c = 1, then the at-risk-of-poverty rate

equals 50% - the half of all households that lies below the median. A value c > 1 is

also imaginable, but will be rarely used in poverty research. It is worth noting that the

estimation rules that will be established now work for any c ≥ 0.

Estimation for a domain poverty threshold is important for at least three reasons:

First, what might happen is that for some domains one is in fact interested the so defined

at-risk-of-poverty rate. This will be essentially the case when the domain coincides with

the population, but maybe also for some subpopulations like major geographic areas.

Second, the formulae for a domain poverty threshold allow for a very clear and intuitive

interpretation of the target indicator and the parameters of the lognormal distribution.

Particularly, we will see that the at-risk-of-poverty is solely a measure of relative income

inequality. And third, the derivations of the formulae in the case of a population poverty

threshold is much easier if one has once understood them for domain poverty threshold.

3.1 Derivation of the true value

The at-risk-of-poverty rate, θ, is defined as the proportion of households with an income

that is lower than c times the median income (cf. (1.1)). In terms of probability theory,
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we can think of income as a random variable. Then θ equals the probability that a

realization of that random variable is lower than c times the median realization.

Formally

θ = Pr {Y < c ∗Med(Y )}

where Y refers to income (as a random variable) and Med(Y ) to its median. Note that

this definition holds in general and does not depend on any distributional assumption

on Y .

Let us now further assume that Y follows a lognormal distribution with parameters µ

and σ2, respectively. That is,

Y ∼ LN(µ, σ2)⇔ X = log(Y ) ∼ N(µ, σ2)

Referring to (2.1) we may write

θ = Pr {Y < c ∗ exp(µ)}

Applying the formulae from 2.2 the at-risk-of-poverty can be written as

θ = Pr {Y < c ∗ exp(µ)}

= Pr {X < log [c ∗ exp(µ)]}

= Pr {X < log(c) + µ}

= Pr {X − µ < log(c)}

= Pr

{
X − µ
σ

<
log(c)

σ

}
= Φ

(
log(c)

σ

)
2

where Φ(·) refers to the distribution function of the standard normal distribution (Sahai

and Ageel, 2000, p. 605 et seq.).

Note that the eventual formula

θ = Φ

(
log(c)

σ

)
(3.1)

gives θ as a proportion, that is, a value between 0 and 1. If we want to express θ as a

percentage – as it is usually the case when publishing results – we have to multiply that

proportion by 100%.
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3.2 Discussion of the formula

In the previous section we have derived the formula for the true at-risk-of-poverty rate

for a domain poverty threhold, provided that the lognormal assumption holds. Let us

now briefly discuss the eventual formula (3.1).

First, as θ is a value of a cumulative distribution function, it lies in the range between

0 and 1 (Hogg and Craig, 1978, ch. 1.7). For estimation purposes this means that if we

estimate θ by distribution function value, the resulting estimate will be an admissible

value between 0 and 1.

Next note that the formula for θ does not contain the location parameter of the lognor-

mal distribution, µ, but only the scale parameter, σ. (Strictly speaking, it contains the

square root of σ2.) This indicates that the at-risk-of-poverty rate is a measure of relative

poverty, based on the extent of relative inequality in the income distribution. Berger

and Skinner (2003) refer to the at-risk-of-poverty rate as the “low-income proportion”.

Independence of µ can also be shown for other indicators of income inequality (Graf,

2007; Aitchison and Brown, 1957, ch. 11.5, with a special reference to the Gini coeffi-

cient, there called the Lorenz measure). Kakwani (1980, p. 85) mentions the standard

deviation of log-income as a “widely used, single measure of inequality”.

A practical application of the independence of µ is that if the scale parameters of two

or more domains are equal, then also the at-risk-of-poverty rates are equal.

Formally,

σA = σB ⇔ θA = θB (3.2)

For instance, consider the case that all incomes within a society double. We can

express this by introducing a new random variable, Y̌ , so that

Y̌ = 2Y

Then the scale parameter for Y̌ is the same as for Y :

V ar(log(Y̌ )) = V ar(log(2Y )) = V ar(log(2) + log(Y ))

= V ar(log(Y )) = V ar(X) = σ2
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Table 3.1: Theoretical values of θ

c

σ 0.4 0.5 0.6 0.7

0.35 0.4 2.4 7.2 15.4

0.40 1.1 4.2 10.1 18.6

0.45 2.1 6.2 12.8 21.4

0.50 3.3 8.3 15.3 23.8

0.55 4.8 10.4 17.7 25.8

0.60 6.3 12.4 19.7 27.6

and so from (3.2) we know that also the at-risk-of-poverty rate is the same. In general,

any multiplicative transformation Y̌ = bY does not affect the at-risk-of-poverty rate.

For instance, if we measure income in Cents instead of Euros, θ remains unchanged.

Let us now discuss some special cases of c. If c = 0, then log(c) = −∞ and conse-

quently θ = 0. On the other hand, if c = 1, then log(c) = 0 and so θ = 0.5. For any

0 < c < 1, log(c) is a negative value, so is log(c)/σ, and therefore 0 < θ < 0.5.

For a given c an increase in σ decreases log(c)/σ in absolute value. So if 0 < c < 1

the at-risk-of-poverty rate θ is the higher the higher σ is. In the (rare) case that c > 1

an increase in σ coincides with a decrease in θ.

Table 3.1 gives some hypothetical θ values, depending on c and σ, respectively. The

values were calculated in MS EXCEL and are expressed as percentages. Given c = 0.6,

we see that for σ = 0.45 the at-risk-of-poverty rate equals 12.8%, what is approximately

the (person-weigthed) nonparametric estimate for EU-SILC-Austria in 2003 (Statistik

Austria, 2005, p. 13).

3.3 Point estimation

Given (3.1), if we knew the true σ, then we could calculate the true θ. Usually σ is

unknown and has to be estimated from sample data. Given an admissible estimator for

σ, we may insert this estimator into (3.1) to get an admissible estimator for θ:

θ̂ = Φ

(
log(c)

σ̂

)
(3.3)
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Note that c is not estimated since it is not random.

The most widely used estimator for σ is the sample standard deviation, that is, the

square root of the sample variance (Hogg and Craig, 1978, ch. 4.1). For simple random

sampling from an infinite universe it is

σ̂ =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2

where xi refers to the logarithmic income of the i’th household in the sample, x̄ to the

sample mean of the xi’s and n to the sample size.

The resulting estimate is then plugged into (3.3).

To evaluate an estimator we investigate its sampling distribution. Desirable properties

of an estimator are unbiasedness, consistency, efficiency, and sufficiency (Bortz, 1999,

ch. 3.3).

Calculating the small-sample distribution of θ̂ would be very laborious, since the

sampling distribution of σ̂ is quite complicated and θ̂ is a complex transformation of σ̂.

However, concerning the large-sample case, we can state the following important result:

Since σ̂2 is a consistent estimator for the true σ2, and σ̂ is a continuous function of σ̂2,

we know from Slutsky’s theorem that also σ̂ is a consistent estimator of σ (Judge et al.,

1988, p. 85). Correspondingly, as θ̂ is a continuous function of σ̂ (because it refers to

the cumulative distribution function of the standard normal), θ̂ is a consistent estimator

of θ as well.

In other words, given a sufficiently large sample size, (3.3) will produce an estimate

that lies arbitrarily close to the true at-risk-of-poverty rate, provided that the lognormal

assumption holds. We also say that for a lognormal distribution θ̂ is asymptotically

unbiased (ibid.):

E(θ̂) = θ n→∞

for lognormally distributed income.

Note that this result holds for any consistent σ̂ for a given sampling design. Concerning

estimation of σ̂ in case of other designs than simple random sampling from an infinite

universe the reader may refer to Saerndal et al. (1992, ch. 5.9). Some basic ideas are

also given in chapter 9 of this thesis.
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In finite samples, (3.3) is in general not unbiased. A Monte Carlo study on the

amount of bias in finite sample is presented in chapter 6, indicating that for a lognormal

distribution the bias is modest, even for small samples. This implies that the large-

sample results might serve as good approximations for the small-sample case. Given the

lognormal assumption holds, (3.3) will produce an estimate that on average lies close to

the true value. Of course, if the target income distribution is far from lognormal, (3.3)

in general is biased, no matter how large the sample size is. A study on the bias of (3.3)

in real world examples is presented in chapter 7.

So far we have stressed the expectation of θ̂. Another important characteristic of the

sampling distribution of θ̂, its variance, is discussed in the following section.

3.4 Interval estimation

Concerning the variance of (3.3), we again use the fact that θ̂ is a continuous (and twice

differentiable) function of σ̂. Therefore we can calculate the asymptotic variance of θ̂ by

the δ-method. This method relies on a first order (linear) Taylor series expansion and

is described in detail by Wolter (1985, ch. 6). The general formula for the asymptotic

variance of a function of a statistic ζ̂ is

V ar(f(ζ̂)) = (f ′(ζ))2 ∗ V ar(ζ̂)

(ibid.), and this large-sample results is frequently found to be a useful approximation

for the finite-sample case (Saerndal et al., 1992, ch. 5.5).

Applied to (3.3) we get

V ar(θ̂) = V ar(g(σ̂)) ≈ (g′(σ))2 ∗ V ar(σ̂)

The derivative of (3.3) with respect to σ̂ is

dθ̂

dσ̂
= φ

(
log(c)

σ̂

)
∗ log(c) ∗

(
−1

σ̂2

)
where φ(·) refers to the ordinate of the standard normal distribution (Aitchison and

Brown, 1957, p. 162).
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The variance of σ̂ depends on the sampling design. For simple random sampling from

an infinite universe it is

V ar(σ̂) = σ2/2n

(Bortz, 1999, p. 92)

So the asymptotic variance of θ̂, given simple random sampling from an infinite log-

normal population, is

V ar(θ̂) ≈
[
φ

(
log(c)

σ

)
∗ log(c)

−σ2

]2

∗ σ
2

2n

=

[
φ

(
log(c)

σ

)]2

∗
(

log(c)

σ

)2

/2n2

Since the exact value of σ is unknown, we replace it by the sample estimate and get

an estimator of the variance of (3.3):

V̂ ar(θ̂) =

[
φ

(
log(c)

σ̂

)]2

∗
(

log(c)

σ̂

)2

/2n (3.4)

The estimated standard error of θ̂ is the square root of (3.4), namely

ŜE(θ̂) = φ

(
log(c)

σ̂

)
∗
∣∣∣∣ log(c)

σ̂

∣∣∣∣ /√2n (3.5)

Since the sampling distribution of θ̂ converges to a normal distribution as n → ∞
(Bortz, 1999, ch. 3.2), we can calculate an asymptotic (1-α)*100% confidence interval

for θ̂ as

CI1−α(θ̂) =
[
θ̂ − z1−α/2 ∗ ŜE(θ̂), θ̂ + z1−α/2 ∗ ŜE(θ̂)

]
where zp refers to the p-quantile of the standard normal distribution (Sahai and Ageel,

2000, p. 607).

For n → ∞ such an interval will cover the true θ except for a α ∗ 100% chance of

error, given the lognormal assumption holds. It should be mentioned that for moderate

deviations from the lognormal distribution and a consequently moderately biased θ̂, the

actual coverage probability of a calculated confidence interval will still be very close to

the desired (1-α)*100%, especially in small samples (Cochran, 1963, 1.7).
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The behavior of the asymptotic estimator (3.5) in finite samples is investigated in

chapter 6. We will see that the asymptotic standard error is a fairly good approximation

for the finite sample standard error, even for modest sample sizes.

Interval estimation for sampling designs other than simple random sampling from an

infinite universe is discussed in chapter 9. Since only the variance of σ̂, but not the

derivative of θ̂ with respect to σ̂ is affected by the sampling design, it makes sense to

use the results from the current section as a point of reference.
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4 Population poverty threshold: Equal

within-domain dispersion

In the previous section we stressed the case when the poverty threshold is set (and

estimated) specifically for any domain of study. This is not usually the case, except

perhaps in international comparisons. The more important case is when the poverty

threshold is estimated at the population level and equally applied to all domains.

We use the term “population” to indicate the superdomain that is divided into the

domains of study. In most practical settings this superdomain will be a country. On the

contrary, we use “universe” to indicate the target population we want to make inferences

about. According to circumstances we can think of a universe referring to the domain

of study (e.g. all households in Vienna) as well as a universe referring to the population

(e.g. all households in Austria).

In this chapter we discuss the case when the within-domain dispersion of income,

measured by σ, is equal among all domains. A more general case, when the within-

domain dispersion of incomes can vary among domains, is treated in the next chapter.

4.1 Derivation of the true value

The poverty threshold is set for a population denoted by U . The income in U is denoted

by Y , and its logarithm by X.

Suppose that U can be fully divided into q disjoint subpopulations. These disjoint

subpopulations - the domains of interest - are denoted by U1, U2, . . . , Uq.

“Disjoint” means that
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U1 ∪ . . . ∪ Uq = U

and that

Uj ∩ Uj′ = ∅ j 6= j′

Famous examples for disjoint subpopulations are geographic area, family type (on

household level), or age group (on personal level). Note that the sizes of the subpopu-

lations (and the corresponding sample sizes) may differ substantially. Furthermore note

that the sample sizes are usually unknown a priori, except for the case of stratified sam-

pling (Cochran, 1963, ch. 5; Saerndal et al., 1992, ch. 3.7). The assumption of a full

division into disjoint subpopulation can be made without any loss of generality, since it

is always possible to create a residual category covering all elements that do not belong

to a specified domain.

Now assume that the income distributions within the domains are lognormal distri-

butions with different location parameters but equal dispersion parameter.

That is,

Y1 ∼ LN(µ1, σ
2)

...

Yq ∼ LN(µq, σ
2)

Practical situations are found to agree with that assumption. For instance, Aitchison

and Brown (1957, ch. 11.3) report similar variation of log-incomes among different

economic sectors.

Note that on the logarithmic scale we have

X1 ∼ N(µ1, σ
2)

...

Xq ∼ N(µq, σ
2)

and that this is equivalent to the assumptions of the famous one-way analysis of

variance (ANOVA) procedure (Sahai and Ageel, 2000, ch. 2.2).
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What can we say about the distribution of X ? Since the number of domains is finite,

we have a finite mixture of q normals. Substantial information on the topic can be found

in Everitt and Hand (1981, ch. 2) or Titterington et al. (1985). An important finding is

that “a ’non-degenerate’ finite mixture of normal distributions cannot itself be normal”

(Titterington et al., 1985, p. 39). Special reference to infinite mixtures of normals is

given by Teichroew (1957) and by Barndorff-Nielsen et al. (1982).

The general formula for the density function of X is

f(x) =

j∑
i=1

f(xj)
Nj

N
(4.1)

If we think of the µj’s as realizations of a random variable M with expectation µ0 and

variance σ2
0, then the following results hold:

1. E(X) = µ0

2. V ar(X) = σ2
0 + σ2

3. if the number of domains, q, is large, and M is approximately normally distributed,

then X follows a normal distribution.

The proof for 3. is analogous to that given in Aitchison and Brown (1957, p. 110.).

The proofs for 1. and 2. are given below.

E(X) =

∫
X

xf(x)dx

=

∫
X

x

(∑
j

f(x|µj)hM(µj)

)
dx

=
∑
j

(∫
X

xf(x|µj)dx
)
hM(µj)

=
∑
j

µjhM(µj)

= µ0 2
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V ar(X) =

∫
X

(x− µ0)2f(x)dx

=

∫
X

(x− µ0)2

(∑
j

f(x|µj)hM(µj)

)
dx

=
∑
j

(∫
X

(x− µ0)2f(x|µj)dx
)
hM(µj)

=
∑
j

(∫
X

(x− µj + µj − µ0)2f(x|µj)dx
)
hM(µj)

=
∑
j

(σ2 + σ2
0)hM(µj)

= (σ2 + σ2
0)
∑
j

hM(µj)

= σ2 + σ2
0 2

Note that in terms of the ANOVA model, we can regard to σ2
0 as the between-domain

variation and σ2 the within-domain variation of log-incomes (Sahai and Ageel, 2000, ch.

2.3 and 2.12).

So if 3. is fulfilled, we have

Y ∼ LN(µ0, σ
2
0 + σ2) (4.2)

The assumption of normally distributed domain location parameters is not unrealistic.

A practical interpretation is that when the number of domains is large, we will find a

majority of domains with average incomes around the overall average, and some domains

with average incomes considerably higher than the general average (Statistik Austria,

2007, p. 238 et sqq.).

In practice the applicability of (4.2) will depend on the situation. For the remainder

of this thesis we shall assume that (4.2) approximately holds. This will be especially the

case if the between-domain variation is relatively small compared with the within-domain

variation (Aitchison and Brown, 1957, p. 111).

Now we write the at-risk-of-poverty rate for domain Uj in terms of probability theory:

θj = Pr {Yj < c ∗Med(Y )}

28



Analogous to the derivation in chapter 3, we get

θj = Pr {Yj < c ∗ exp(µ0)}

= Pr {Xj < log [c ∗ exp(µ0)]}

= Pr {Xj < log(c) + µ0}

= Pr {Xj − µj < log(c) + µ0 − µj}

= Pr

{
Xj − µj

σ
<

log(c) + µ0 − µj
σ

}
= Φ

(
log(c) + µ0 − µj

σ

)
2

4.2 Discussion of the formula

For interpretational purposes, let us re-write the eventual formula

θj = Φ

(
log(c) + µ0 − µj

σ

)
(4.3)

as

θj = Φ

(
log(c) + dj

σ

)

where dj = µ0−µj equals the difference between the expected log-income in the entire

population and the expected log-income in the study domain.

If the expected log-income in the study domain is lower than in the entire population,

then dj > 0 and consequently log(c) + dj > log(c). For practical purposes this means

that the at-risk-of-poverty rate is higher than if it was calculated for the same domain

but with a domain poverty threshold.

In other words, given equal dispersion within the study domains, the at-risk-of-poverty

rate is the higher the lower the median income in the study domain is. This property of

(4.3) does well agree with what we demand of a poverty measure.

Since dj is a difference of expectations on the logarithmic scale, because of (2.1) it

corresponds to a ratio of medians on the original scale. For instance, dj = 0.3 implies

that Med(Y )/Med(Yj) = exp(0.3) ≈ 1.35. Note that such a ratio of medians is scale-

free, so we can interpret the at-risk-of-poverty rate as a combined measure of income
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Table 4.1: Theoretical values of θD

dj = µ0 − µj
σ 0.70 0.40 0.20 0.10 - -0.10 -0.20 -0.40 -0.70

0.35 70.6 37.6 18.7 12.0 7.2 4.0 2.1 0.5 0.0

0.40 68.2 39.1 21.9 15.2 10.1 6.3 3.8 1.1 0.1

0.45 66.3 40.3 24.5 18.1 12.8 8.7 5.7 2.1 0.4

0.50 64.7 41.2 26.7 20.6 15.3 11.1 7.8 3.4 0.8

0.55 63.5 42.0 28.6 22.8 17.7 13.3 9.8 4.9 1.4

0.60 62.4 42.7 30.2 24.7 19.7 15.4 11.8 6.5 2.2

inequality and the relative income level in the study domain compared to the entire

population.

For a low income domain, where µj is much smaller than µ0, the at-risk-of-poverty

rate can reach or even exceed 50% also if c < 1. If dj = − log(c), then the indicator is

always 50%, regardless of σ.

Table 4.1 gives some illustrative population values of the at-risk-of-poverty rate, de-

pendent on the arguments dj and σ, respectively. The factor c is constant 0.6. All values

were calculated in MS EXCEL and are expressed as percentages. We see that for a given

σ, already a moderate difference in the median incomes of about 10% considerably in-

fluences θj.

4.3 Point estimation

Let us now turn to the situation when µ0, µj, and σ have to be estimated from sample

data.

Again, we use the plug-in technique by inserting admissible estimators µ̂0, µ̂j, and σ̂,

respectively, into (4.3):

θ̂j = Φ

(
log(c) + µ̂0 − µ̂j

σ̂

)
(4.4)

As we divide the entire population U into domains U1, . . . , Uq, let us denote the cor-

responding domain sample sizes by n1, . . . , nq. If the sample is a simple random sample,
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then the nj’s are random numbers unknown before sampling. On the contrary, if the

sample is a stratified random sample with the domains serving as strata, then the nj’s

are constants. In any case,

n =

q∑
j=1

nj

Random sample sizes increase the sampling error of a statistic (Saerndal et al., 1992,

ch. 2.10). For the remainder of this chapter we shall assume that we are able either to

draw a stratified random sample with proportional allocation (ibid., ch. 3.7.4), or, in

case of a simple random sample, to calculate expected domain sample sizes. The latter

is achieved by using auxiliary information, particularly the universe totals of the domain

sizes:

E(nj) =
Nj

N
(4.5)

Auxiliary information for (4.5) may be available e.g. from census data.

We estimate µj by the arithmetic mean of log-income in the study domain:

µ̂j = x̄j =
1

nj

nj∑
i=1

xi (4.6)

If income is lognormally distributed, then log-income is normally distributed and

consequently the arithmetic mean is the (most) efficient estimator for the expectation

(Judge et al., 1988, p. 73 et seq.). Its sampling variance is approximately

V ar(µ̂j) ≈ σ2/E(nj) (4.7)

If nj is random and its expectation is very small, then the approximation in (4.7)

may be crude. However, if E(nj) is very small, it might be anyway preferable to use

an alternative estimator for the domain mean. Such alternative estimators (“small-

area estimators”) are treated by Longford (2005, part II). We shall not track this point

further.

The population mean of log-income, µ0, is estimated by the (post-)stratified mean of

the domain means, that is,

µ̂0 =

(
q∑
j=1

E(nj)µj

)
/n (4.8)
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In the case of a simple random sample with poststratification its sampling variance is

V ar(µ̂0) = σ2/n (4.9)

(Bortz, 1999, p. 91).

In the case of stratified sampling (4.9) usually overestimates the actual sampling

variance of µ̂0 (Saerndal et al., 1992, ch. 3.7), so using (4.9) we might play it safe.

If poststratification of a simple random sample is not possible, then µ0 is estimated

by the crude sample mean. In such a case the variance of µ̂0 equals (σ2
0 + σ2)/n.

The additional term, σ2
0/n, can be interpreted as additional variation caused by the

randomness of domain sample sizes (ibid.). We shall not track this case further since

poststratification is almost always possible.

The estimator of σ is the square root of the (post-)stratified mean square within,

σ̂ =

√√√√ 1

n− 1

q∑
j=1

E(nj)

nj

nj∑
i=1

(xi − µ̂j)2 (4.10)

and its sampling variance is approximately

V ar(σ̂) ≈ σ2/2n (4.11)

(Bortz, 1999, p. 92).

All three estimators, (4.6), (4.8), and (4.10), are consistent. Referring to Slutsky’s

theorem (Judge et al., 1988, p. 85; already mentioned in 3.3), we know that also (4.3)

is consistent.

4.4 Interval estimation

To estimate the asymptotic variance of (4.3), we use again the δ-method. The general

formula for the asymptotic variance of a function of several statistics Ẑ = (ζ̂1, . . . , ζ̂p) is

V ar(f(Ẑ)) =

p∑
s=1

p∑
t=1

∂f

∂ζ̂s

∣∣∣∣
Z

∂f

∂ζ̂t

∣∣∣∣
Z

Cov(ζ̂s, ζ̂t)

(Wolter, 1985, ch. 6).
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Applied to (4.3) we get

V ar(θ̂j) = V ar(g(µ̂0, µ̂j, σ̂))

≈

(
∂θ̂j
∂µ̂0

∣∣∣∣
µ0,µj ,σ

)2

V ar(µ̂0)

+

(
∂θ̂j
∂µ̂j

∣∣∣∣
µ0,µj ,σ

)2

V ar(µ̂j)

+

(
∂θ̂j
∂σ̂

∣∣∣∣
µ0,µj ,σ

)2

V ar(σ̂)

+ 2
∂θ̂j
∂µ̂0

∣∣∣∣
µ0,µj ,σ

∂θ̂j
∂µ̂j

∣∣∣∣
µ0,µj ,σ

Cov(µ̂0, µ̂j)

+ 2
∂θ̂j
∂µ̂0

∣∣∣∣
µ0,µj ,σ

∂θ̂j
∂σ̂

∣∣∣∣
µ0,µj ,σ

Cov(µ̂0, σ̂)

+ 2
∂θ̂j
∂µ̂j

∣∣∣∣
µ0,µj ,σ

∂θ̂j
∂σ̂

∣∣∣∣
µ0,µj ,σ

Cov(µ̂j, σ̂)

The variances of the estimators are given by (4.7), (4.9), and (4.11), respectively.

Further required are the estimators’ covariances and the partial derivatives.

Since the estimated mean and the estimated variance of a normal distribution are

stochastically independent (Hogg and Craig, 1978, ch. 4.8) and independence holds for

functions random variables too (ibid., ch. 4.3), we conclude that

Cov(µ̂0, σ̂) = Cov(µ̂j, σ̂) = 0

On the contrary, the covariance between µ̂0 and µ̂j is not zero since the sampling

elements in Uj contribute to both µ̂0 and µ̂j. To derive the covariance, we first re-write

µ̂0 as a weighted sum of two independent domain means:

µ̂0 = wjµ̂j + w−jµ̂−j

where U−j = U \ Uj and the weights correspond to the expected domain fractions (that

is, the expected domain sample sizes divided by the overall sample size). The derivation
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is now straightforward.

Cov(µ̂0, µ̂j) = Cov(wjµ̂j + w−jµ̂−j, µ̂j)

= E(wjµ̂
2
j + w−jµ̂−jµ̂j)− (wjµj + w−jµ−j)µj

= wjE(µ̂2
j) + w−jµ−jµj − wjµ2

j − w−jµ−jµj
= wj

[
E(µ̂2

j)− µ2
j

]
= wjV ar(µ̂j)

≈ E(nj)

n

σ2

E(nj)

= σ2/n 2

One can discover that

Corr(µ̂0, µ̂j) =

√
E(nj)

n

Finally we have to calculate the partial derivatives. For simplicity we define

κ =
log(c) + µ0 − µj

σ̂
(4.12)

The partial derivatives are given by

∂θ̂j
∂µ̂0

∣∣∣∣
µ0,µj ,σ

= φ(κ)
1

σ

∂θ̂j
∂µ̂j

∣∣∣∣
µ0,µj ,σ

= φ(κ)
−1

σ

∂θ̂j
∂µ̂0

∣∣∣∣
µ0,µj ,σ

= φ(κ)κ
−1

σ

So the asymptotic variance of (4.3) is

V ar(θ̂j) ≈ [φ(κ)]2
[

1

σ2

σ2

n
+

1

σ2

σ2

E(nj)
+ κ2 1

σ2

σ2

2n
+ 2

(
−1

σ2

)
σ2

n

]
= [φ(κ)]2

[
κ2/2n+

(
1

E(nj)
− 1

n

)]
2

with κ given by (4.12).
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The variance estimator for (4.3) is

V̂ ar(θ̂j) =

[
φ

(
log(c) + µ̂0 − µ̂j

σ̂

)]2

(4.13)

∗

[(
log(c) + µ̂0 − µ̂j

σ̂

)2

/2n+

(
1

E(nj)
− 1

n

)]
(4.14)

It is easy to verify that if the study domain coincides with the entire population, that

is, µj = µ0 and E(nj) = n, then (4.13) reduces to (3.4).

If there is not actually between-domain variation of incomes and the median income

in the study domain Uj equals the median income in the entire population, then (3.3)

and (4.4) produce the same estimates, but their variances differ. More precisely, the

variance of (4.4) exceeds that of (3.3) since(
1

E(nj)
− 1

n

)
> 0
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5 Population poverty threshold:

Unequal within-domain dispersion

In the previous chapter we examined the at-risk-of-poverty rate in the case of different

domain location parameters but equal within-domain dispersion parameters. Let us

now discuss the general case when both the expectation and the standard deviation of

log-income differ among the domains of interest.

5.1 Derivation of the true value

Formally we consider the case

Y1 ∼ LN(µ1, σ
2
1)

...

Yq ∼ LN(µq, σ
2
q )

or, equivalently,

X1 ∼ N(µ1, σ
2
1)

...

Xq ∼ N(µq, σ
2
q )

Note that the model in the previous chapter can be seen as the special case with

σ2
1 = . . . = σ2

q

The compound distribution of X is again a finite mixture of normal distributions

(Everitt and Hand, 1981, ch. 2). The general definition is given by (4.1).
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We may think of (µj, σ
2
j ) as realizations of a random vector (M,Σ) with expectation

(µ0, σ̄2). If the two components of the random vector are statistically independent and

the distribution of M is symmetric with variance σ2
0, then the following results hold:

1. E(X) = µ0

2. V ar(X) = σ2
0 + σ̄2

The proofs are given below.

E(X) =

∫
X

xf(x)dx

=

∫
X

x

(∑
j

∑
j

f(x|µj)f(x|σ2
j )hΣ(σ2

j )hM(µj)

)
dx

=
∑
j

[∑
j

(∫
X

xf(x|µj)dx
)
hM(µj)

]
hΣ(σ2

j )

=
∑
j

[∑
j

µjhM(µj)

]
hΣ(σ2

j )

=
∑
j

µ0hΣ(σ2
j )

= µ0

∑
j

hΣ(σ2
j )

= µ0 2
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V ar(X) =

∫
X

(x− µ0)2f(x)dx

=

∫
X

(x− µ0)2

(∑
j

∑
j

f(x|µj)f(x|σ2
j )hΣ(σ2

j )hM(µj)

)
dx

=
∑
j

[∑
j

(∫
X

(x− µ0)2f(x|µj)dx
)
hM(µj)

]
hΣ(σ2

j )

=
∑
j

[∑
j

(∫
X

(x− µj + µj − µ0)2f(x|µj)dx
)
hM(µj)

]
hΣ(σ2

j )

=
∑
j

∑
j

(σ2
j + σ2

0)hM(µj)hΣ(σ2
j )

=
∑
j

(
σ2

0 +
∑
j

σ2
jhΣ(σ2

j )

)
hM(µj)

=
∑
j

(σ2
0 + σ̄2)hM(µj)

= (σ2
0 + σ̄2)

∑
j

hM(µj)

= σ2
0 + σ̄2 2

Note that in terms of the ANOVA model, we can regard to σ̄2 as the expected mean

square within (Sahai and Ageel, 2000, ch. 2.5 and 2.20).

If the distribution of M is normal and the variation in Σ tends towards zero, then as

the limiting case we get (4.2).

For practical purposes

Y ∼ LN(µ0, σ
2
0 + σ̄2) (5.1)

can be a useful approximation.

The actual shape of the compound distribution depends on the number of domains,

the variation in M and Σ, and the statistical dependence of M and Σ. If the latter

are correlated, then the distribution of X is asymmetric. A practical interpretation of

positive (negative) correlation between M and Σ is that domains with over-proportional

average income tend to have over-proportional (under-proportional) within-domain dis-

persion.
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For the remainder of this thesis we shall assume that (5.1) approximately holds. In

section 6.3 we exemplify and discuss the effect of statistical dependence between M and

Σ on the accuracy of the estimators.

If (5.1) holds, then the derivation of the at-risk-of-poverty rate in domain Uj is

straightforward.

θj = Pr {Yj < c ∗ exp(µ0)}

= Pr {Xj < log [c ∗ exp(µ0)]}

= Pr {Xj < log(c) + µ0}

= Pr {Xj − µj < log(c) + µ0 − µj}

= Pr

{
Xj − µj
σj

<
log(c) + µ0 − µj

σj

}
= Φ

(
log(c) + µ0 − µj

σj

)
2

5.2 Discussion of the formula

Let us re-write the eventual formula

θj = Φ

(
log(c) + dj

σj

)
(5.2)

as

θj = Φ

(
log(c) + µ0 − µj

σj

)
= Φ

(
log(c) + dj

σ̄

σ̄

σj

)
(5.3)

where σ̄ equals the square root of the expected mean square within:

σ̄ =

√√√√ 1

N

q∑
j=1

E(nj)σ2
j

The domain scale parameter σj in (5.2) can therefore be seen as an average parameter

σ̄ times an inflation factor, where the latter is given by the ratio σ̄/σj. If σj > σ̄, that

is, income distribution is more unequal in the domain of interest than on the average,

then σ̄/σj < 1 and so the at-risk-of-poverty rate is larger (except for the rare case when
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Table 5.1: Theoretical values of θD

dj = µ0 − µj
σj σ̄/σj 0.40 0.20 0.10 - -0.10 -0.20 -0.40

0.30 1.50 35.6 15.0 8.5 4.4 2.1 0.9 0.1

0.40 1.13 39.1 21.9 15.2 10.1 6.3 3.8 1.1

0.45 1.00 40.3 24.5 18.1 12.8 8.7 5.7 2.1

0.50 0.90 41.2 26.7 20.6 15.3 11.1 7.8 3.4

0.60 0.75 42.7 30.2 24.7 19.7 15.4 11.8 6.5

0.70 0.64 43.7 32.9 27.9 23.3 19.1 15.5 9.7

the argument of Φ(·) in (5.3) is positive). As a hypothetical special case, if σj → ∞,

then θj = 0.5 generally holds.

Note that both the deviation in the location parameters, dj, and the ratio of the actual

dispersion parameter over the expected parameter, σ̄/σj, have an impact on θj. The

practical message is that a low income level (measured by dj) may be counterbalanced

by little income inequality (measured by σ̄/σj). We may observe that for a domain with

median income below average the at-risk-of-poverty rate is lower than for the entire

population, and vice versa. This feature of the indicator is illustrated by table 5.1. We

hold c = 0.6 and σ̄ = 0.45 fixed and compute the true θj’s for various pairs of values

of dj and σj. Again, the θj-values were calculated in MS EXCEL and are expressed as

percentages.

5.3 Point estimation

Applying the plug-in technique, we insert admissable estimators for µ0, µj, and σj and

get an admissable estimator for (5.2):

θ̂j = Φ

(
log(c) + µ̂0 − µ̂j

σ̂j

)
(5.4)

The estimators for µ0 and µj are given by (4.6) and (4.8), respectively. Adapting the

variances estimators (4.7) and (4.9) to the case of unequal within-domain dispersion, we

get

V ar(µ̂j) ≈ σ2
j/E(nj) (5.5)
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and

V ar(µ̂0) = σ̄2/n (5.6)

The domain scale parameter σj is estimated by the square root of the estimated

domain variance, that is,

σ̂j =

√√√√ 1

nj − 1

nj∑
i=1

(xi − µ̂j)2 (5.7)

and its sampling variance is approximately

V ar(σ̂j) ≈ σ2
j/2E(nj) (5.8)

If the (expected) domain sample size is relatively small in relation to the overall sample

size, then (5.8) is considerably larger than (4.11). It might be the case that using (4.10)

as an estimator for σj, though in general biased, leads to a smaller mean square sampling

error than (5.7). The practical consequence is that if we have reason to believe that the

within-domain scale parameters do not differ tremendously, it might be preferable to

use (4.10) or a tailored estimator or a combined estimator (Longford, 2005, ch. 6)

instead of (5.7). Another approach would be to build clusters of domains for which it

can be assumed that the within-domain scale parameters are similar and to estimate

σj clusterwise. Such a clustering could be based e.g. on theoretical considerations, on

a pilot survey, or on auxiliary information. For the remainder of this thesis we shall

assume that (5.8) is a suitable estimator for σj.

5.4 Interval estimation

The derivation of the variance of (5.4) is analogous to the procedure in section 4.4. We

skip the detailed calculation and just present the results.

The covariance of µ̂0 and µ̂j equals

Cov(µ̂0, µ̂j) =
E(nj)

n
V ar(µ̂j) ≈ σ2

j/n
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and the corresponding correlation is

Corr(µ̂0, µ̂j) =

√
E(nj)

n

σ2
j

σ̄2

The covariances between µ̂0 and σ̂j and between µ̂j and σ̂j, respectively, are zero

(Hogg and Craig, 1978, ch. 4.3 and 4.8).

The asymptotic variance of (5.4) is

V ar(θ̂j) ≈
[
φ

(
log(c) + µ0 − µj

σj

)]2

∗

[
1

σ2
j

σ̄2

n
+

1

σ2
j

σ2
j

E(nj)
+

(
log(c) + µ0 − µj

σj

)2
1

σ2
j

σ2
j

2E(nj)
−
(

2

σ2
j

)
σ2
j

n

]

=

[
φ

(
log(c) + µ0 − µj

σj

)]2

∗

[(
log(c) + µ0 − µj

σj

)2

/2E(nj) +

(
1

E(nj)
−

2− σ̄2/σ2
j

n

)]

The variance estimator of (5.4) is therefore

V̂ ar(θ̂j) =

[
φ

(
log(c) + µ̂0 − µ̂j

σ̂j

)]2

∗

[(
log(c) + µ̂0 − µ̂j

σ̂j

)2

/2E(nj) +

(
1

E(nj)
− 2− ¯̂2σ/σ̂j

2

n

)]
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6 Finite sample behavior of the

estimators in chapters 3-5

In chapters 3 to 5 we developed parametric point and interval estimators of the at-

risk-of-poverty rate under different conditions. We saw that the point estimators are

asmyptotically unbiased and derived large-sample formulae for their variances. When-

ever we deal with real life data, the sample is finite and consequently we should know

about the estimators’ behavior in finite samples. Particularly we are interested in how

the large-sample formulae approximate the behavior in finite samples. One way of ex-

amining this is the Monte Carlo technique.

The approach is as follows. Given an artificial lognormal population (in fact a sample

of 100,000 random numbers), we draw 10,000 samples of a specified sample size (with

replacement). To each sample the parametric point and interval estimator are applied.

We are interested in the distribution of the respective 10,000 pairs of estimates.

The question is how good do the asymptotic results on expectation and variance

approximate the behavior in finite samples. From a “good” approximation we would

expect that

• the mean of the 10,000 point estimates should conform to the true population

value (which is calculated nonparametrically),

• the theoretical (asymptotic) standard error for the given sample size and parame-

ters should conform to the standard deviation of the 10,000 point estimates, and

• about 9,500 of the 10,000 estimated 95% confidence intervals should cover the true

value.

Note that the last item does not only depend on correct point and interval estimation

but also on the degree of deviation of the statistic’s distribution from normality.
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6.1 Domain poverty threshold

We draw repeated samples of size n = 30, 50, 100, 200, 500, and 1,000. As parameter

values we choose first σ = 0.40, c = 0.6, then σ = 0.60, c = 0.6, and finally σ = 0.60, c =

0.4. In all cases µ = 9.00 is held fixed. The computations were done in R, version 2.6.1.

The results are given in table 6.1. The true value was computed nonparametrically.

The mean estimate is in general lower than the true value, so the estimator is biased

downwards in finite samples. However, the size of bias is relatively small and decreases

with increasing sample size. For n = 1,000, the absolute value of bias is about 0.1

percentage points and its relative size about 2% of the true value, what is a fairly

acceptable deviation (Cochran, 1963, ch. 1.7).

The asymptotic standard error agrees very well with the empirical standard deviation

of the point estimates, even for modest sample sizes. We conclude that the asymptotic

formula is highly valid in finite samples.

The actual coverage frequency of the asymptotic confidence intervals increases first

with increasing sample size, as the bias decreases. However, from a sample size of 500

onwards the coverage frequency does not seem to increase further, but is in any case at

least 93%. For small samples, the value is usually smaller, probably as a result of bias.

6.2 Population poverty threshold: Equal within-domain

dispersion

The entire population consists of 10 domains each of equal size 100,000. We use stratified

random sampling with proportional allocation, that is, the total sample size is 10 times

the domain sample size. The domain location vector is

~µ = (8.70, 8.80, 8.88, 8.94, 8.98, 9.02, 9.06, 9.12, 9.20, 9.30)

so µ0 = 9.00 and σ2
0 ≈ 0.03. The within domain variance of the log-incomes, σ2, is

taken first 0.16 and then 0.36. The factor c is fixed at 0.6. As domains of interest, first

domain j =1 with location parameter 8.70 (so µ0 − µj = 0.30) and then domain j =8

with location parameter 9.12 (so µ0 − µj = −0.12) were chosen.

46



Table 6.1: Finite sample behavior of θ̂

n Mean of es-

timate

True value Asymptotic

S.E.

S.D. of es-

timate

C.I. cover-

age proba-

bility

σ = 0.40, c = 0.6

30 9.80 10.22 2.91 2.87 91.4

50 9.90 10.22 2.25 2.21 92.9

100 9.96 10.22 1.59 1.58 93.7

200 10.02 10.22 1.13 1.12 94.1

500 10.03 10.22 0.71 0.71 94.0

1,000 10.05 10.22 0.50 0.51 93.0

σ = 0.60, c = 0.6

30 19.27 19.84 3.05 3.16 93.2

50 19.43 19.84 2.36 2.41 93.9

100 19.61 19.84 1.67 1.71 94.4

200 19.68 19.84 1.18 1.19 94.5

500 19.73 19.84 0.75 0.75 94.6

1,000 19.74 19.84 0.53 0.53 94.4

σ = 0.60, c = 0.4

30 6.25 6.45 2.45 2.37 90.2

50 6.29 6.45 1.90 1.87 91.8

100 6.32 6.45 1.34 1.34 92.9

200 6.33 6.45 0.95 0.95 93.7

500 6.34 6.45 0.60 0.59 94.3

1,000 6.36 6.45 0.42 0.43 93.9
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What makes estimation in the case of a domain poverty threshold different from esti-

mation in the case of a population poverty threshold is that in the latter case we do not

actually know whether income in the entire population follows a lognormal distribution.

In chapter 4 we used (4.2) as an approximation. The goodness of the estimators also

depends on the goodness of that approximation.

Opposite to the previous results, the mean decreases with increasing sample size and

the bias does not in general tend towards zero (table 6.2). However, the relative bias in

the worst case is less than 3%.

The theoretical standard errors are almost equal to the empirical standard deviations

in repeated samples, so we conclude that the asymptotic variance estimator is well

suitable for variance estimation in finite samples. The actual coverage frequencies of the

asymptotic 95% confidence intervals are very close to the desired level. All values were

far beyond 90%, but not too large.

6.3 Population poverty threshold: Unequal

within-domain dispersion

We apply the same sampling procedure and the same ~µ as in the previous section. For

the vector of the within-domain variances we first use a random permutation of the

sequence 0.16 (0.02) 0.34, resulting in ~σ2 = (.32, .26, .20, .16, .24, .30, .18, .34, .28, .22).

A random permutation indicates that ~µ and ~σ2 are stochastically independent (the

sample correlation is -0.07). For the average mean square within we have σ̄2 = 0.25 and

σ̂ = 0.50. Again c is fixed at 0.6. We investigate three domains of interest, j = 1, 5, 9,

with parameters (8.70,0.32), (8.98,0.24), and eventually (9.20,0.28).

Note that for estimation in the case of a population poverty threshold and unequal

within-domain dispersion we used (5.1) as an approximation. For the case of stochasti-

cally independent ~µ and ~σ2 this assumption is more justified than if the two parameter

vectors are not statistically independent.

We see (table 6.3) that the means of the point estimates are again very close to the

true values. In detail, no relative bias is larger than 2%. However, analogous to the

previous section, convergence of the mean estimate to the true value with increasing

sample size cannot be observed.
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Table 6.2: Finite sample behavior of θ̂D

nj (n =

10nj)

Mean of es-

timate

True value Asymptotic

S.E.

S.D. of es-

timate

C.I. cover-

age proba-

bility

µ0 − µj = 0.30, σ = 0.40

30 29.98 29.68 6.06 6.07 93.6

50 29.96 29.68 4.69 4.64 94.7

100 29.87 29.68 3.32 3.33 94.8

200 29.84 29.68 2.35 2.37 94.8

500 29.78 29.68 1.48 1.47 95.0

1,000 29.80 29.68 1.05 1.05 95.0

µ0 − µj = 0.30, σ = 0.60

30 36.45 36.52 6.52 6.48 93.9

50 36.44 36.52 5.05 4.99 94.6

100 36.47 36.52 3.57 3.54 94.7

200 36.46 36.52 2.52 2.56 94.2

500 36.39 36.52 1.60 1.60 94.7

1,000 36.38 36.52 1.13 1.13 94.8

µ0 − µj = −0.12, σ = 0.40

30 5.98 5.83 2.13 2.18 92.4

50 5.88 5.83 1.65 1.66 93.0

100 5.82 5.83 1.16 1.18 93.6

200 5.77 5.83 0.82 0.83 93.6

500 5.75 5.83 0.52 0.52 94.1

1,000 5.75 5.83 0.37 0.37 93.3

µ0 − µj = −0.12, σ = 0.60

30 14.95 14.77 4.10 4.15 92.8

50 14.90 14.77 3.17 3.20 94.1

100 14.73 14.77 2.24 2.25 94.3

200 14.68 14.77 1.59 1.58 94.3

500 14.67 14.77 1.00 1.01 94.1

1,000 14.66 14.77 0.71 0.71 94.6
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Table 6.3: Finite sample behavior of θ̂D

nj (n =

10nj)

Mean of es-

timate

True value Asymptotic

S.E.

S.D. of es-

timate

C.I. cover-

age proba-

bility

µ0 − µj = 0.30, σ2
j = 0.32

30 35.44 35.64 6.61 6.68 93.8

50 35.50 35.64 5.12 5.15 94.6

100 35.49 35.64 3.62 3.64 94.5

200 35.57 35.64 2.56 2.58 94.7

500 35.54 35.64 1.62 1.63 94.8

1,000 35.54 35.64 1.15 1.14 94.6

µ0 − µj = 0.02, σ2
j = 0.24

30 15.89 15.98 5.23 5.19 92.0

50 15.85 15.98 4.05 4.04 92.6

100 15.83 15.98 2.86 2.86 93.8

200 15.86 15.98 2.03 2.01 94.8

500 15.87 15.98 1.28 1.28 94.6

1,000 15.87 15.98 0.91 0.90 94.9

µ0 − µj = −0.20, σ2
j = 0.28

30 9.16 9.05 3.95 3.92 90.5

50 9.13 9.05 3.06 3.11 91.7

100 9.06 9.05 2.17 2.18 93.2

200 9.01 9.05 1.53 1.53 94.1

500 9.02 9.05 0.97 0.96 95.1

1,000 9.01 9.05 0.68 0.70 94.0
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The theoretical asymptotic standard error again conforms very well to the empirical

standard deviation of the point estimates. As a result, the actual coverage frequencies

of the asymptotic confidence intervals are very good, especially for n ≥ 100 (all values

between 94.0% and 95.1%).

As a second case we consider now stochastical dependence between domain location

and within-domain dispersion, namely ~σ2 = (.16, .18, .20, .22, .24, .26, .28, .30, .32, .34),

so ~µ and ~σ2 are positively correlated (the sample correlation is 0.99). In this case the

approximation (5.1) is not very realistic. Rather the log-incomes in the entire population

are positively skewed.

What we observe here (table 6.4) is far different from the previous results. In partic-

ular, the point estimators are considerably biased, up to a relative amount of 8%. For

large sample sizes the bias even exceeds the standard deviation of the point estimates.

This clearly results in much lower coverage frequencies (Cochran, 1963, ch. 1.7). For

instance, the actual coverage frequencies for sample size 1,000 lie between 66.7% and

85.0%. On the contrary, for small samples the procedure still gives good results.

We conclude that the validity of the parametric estimator highly depends on the

validity of (5.1). Furthermore we see — what is somewhat surprising — that the actual

coverage frequency of the asymptotic confidence intervals in general does not become

better with increasing sample size.
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Table 6.4: Finite sample behavior of θ̂D

nj (n =

10nj)

Mean of es-

timate

True value Asymptotic

S.E.

S.D. of es-

timate

C.I. cover-

age proba-

bility

µ0 − µj = 0.30, σ2
j = 0.16

30 29.88 28.16 6.63 6.69 93.6

50 29.78 28.16 5.14 5.15 93.9

100 29.91 28.16 3.63 3.61 92.7

200 29.88 28.16 2.57 2.58 90.3

500 29.90 28.16 1.62 1.64 81.5

1,000 29.92 28.16 1.15 1.14 66.7

µ0 − µj = 0.02, σ2
j = 0.24

30 15.75 14.93 5.23 5.17 93.0

50 15.87 14.93 4.05 4.00 94.3

100 15.87 14.93 2.86 2.88 94.3

200 15.83 14.93 2.03 2.01 94.1

500 15.84 14.93 1.28 1.27 90.1

1,000 15.85 14.93 0.91 0.90 84.0

µ0 − µj = −0.20, σ2
j = 0.32

30 10.55 9.80 4.27 4.18 92.6

50 10.58 9.80 3.31 3.28 94.0

100 10.57 9.80 2.34 2.30 94.7

200 10.54 9.80 1.65 1.64 94.3

500 10.53 9.80 1.05 1.04 90.8

1,000 10.53 9.80 0.74 0.73 85.0
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7 A comparison of parametric and

nonparametric estimation

7.1 Data and methods

In chapter 6 we examined the properties of the parametric estimators in finite samples.

These samples were drawn from artificial lognormal universes. Real life datasets do

not exactly follow a theoretical curve. Indeed, the lognormal distribution is a model

that may be more or less appropriate to describe an empirical income distribution.

Consequently, the parametric estimators may be less or more biased. It is widely agreed

that a moderately biased estimator can be accepted if the estimator performs well in

sampling variance (Cochran 1963, ch. 1.7; Saerndal et al., 1992, ch. 5.2). On the

other hand, it is generally agreed that greatly biased estimators should be avoided,

since “...greatly biased estimates are poor no matter what other properties they have”

(Saerndal et al., 1992, p. 164).

In this chapter we inspect the performance of the new parametric estimator in real

life datasets. We restrict to the situation of estimating the at-risk-of-poverty rate for

the entire universe (cf. chapter 3). As a point of reference we take the established

nonparametric estimator (Preston, 1995).

We use the SILC data and the ADMIN data after top-bottom recoding (cf. chapter

2). The entire SILC data and the entire ADMIN data, respectively, as regarded as target

universes, that is, as fictive populations for which we want to make inferences about.

Consequently, the nonparametric estimates for the entire datasets are regarded as true

values.

To evaluate the performance of the parametric estimator compared to the nonpara-

metric estimator for different sample sizes, we investigate samples of size 30, 50, 100,
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200, 500, 1,000, and 2,000. For each sample size, a number of 10,000 repeated samples

is drawn (without replacement) from the imaginary target universe. Then for each re-

peated sample, we compute both the parametric and the nonparametric point estimator.

The comparison of the estimators is then done on characterisitics of the corresponding

point estimate distribution.

To judge the goodness of an estimator, we compute the following measures:

• mean estimate, bias and squared bias,

• standard deviation, variance and mean square error, and

• the empirical 2.5% and 97.5% quantiles (that is, the 250th smallest and the 9750th

smallest estimate).

Note that as we are sampling without replacement, the nonparametric estimate per

definition coincides with the true value if the sample size equals the universe size.

7.2 SILC data

Table 7.1 gives the results for the SILC data, computed with R, version 2.6.1. Values

are given as percentages, respectively percentage points and squared percentage points

(squared bias, variance, and mean square error). Note that for n = 500 onwards, the

sampling fraction exceeds 5%, so the reduction of the sampling variance by doubling the

sample size is more than 50% (Cochran 1963, ch. 2.4 and 2.5).

The “true value” equals 14.38%.

We see that both the parametric and the nonparametric estimator are biased in small

samples. However, the bias of the nonparametric estimator is much smaller in absolute

value. Additionally, it tends to zero as the sample size increases, whereas the bias of

the parametric estimator does not only not vanish with increasing sample size but even

increases in absolute value. That phenomenon is observed also for the ADMIN data in

the next subsection and cannot readily be explained.

As expected, the standard deviation of the parametric point estimates is smaller than

of the nonparametric estimates. Regardless of the sample size the reduction in sampling

variance is about 50%.
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Based on the empirical mean square error, the parametric estimator performs 20%

better for a sample of size 100 and 20% worse for a sample of size 200. Concerning the

parametric estimates, we see that for n = 500 onwards the empirical 2.5% quantile is

larger than the true value.

7.3 ADMIN data

The results for the ADMIN data are given in table 7.2. Interpretation is analogous to

the previous section, but the sampling fraction exceeds 5% only for n = 2, 000 (about

7%).

The “true value” equals 19.83%.

Again we see that both estimators are biased in small samples, and that the bias of

the nonparametric estimator vanishes with increasing sample size, whereas the bias of

the parametric estimator increases. However, compared with the SILC data, the excess

bias of the parametric estimator is much smaller in the ADMIN data. We conclude that

for this dataset the lognormal model fits the data better.

The reduction in sampling variance because of parametric estimation is larger in the

ADMIN data than in the SILC data: about 2/3. One possible explanation is that

because of the good agreement of the model with the data, the theoretical gains in

accuracy (e.g. because of estimating the expectation by the arithmetic mean) can be

better achieved.

The empirical mean square error of the parametric estimator is smaller in all considered

sample sizes, with approximate equivalence for n = 2, 000. For n = 200, the mean square

error of the parametric estimator is more than 60% smaller than of the nonparametric

estimator. Remember from the previous section that for the SILC data for n = 200 we

observed a higher mean square error for parametric estimation.

We conclude that the use of parametric estimators may result in substantial improve-

ment of the estimates if the lognormal curve fits the data quite well and the sample size

is small or medium. On the contrary, if the agreement of the data with the distributional

assumption is poor, nonparametric estimation does substantially outperform parametric

estimation, except for small samples. Therefore in small samples the parametric estima-

tor should be generally preferred, whereas it should be avoided in large samples and is

in general not recommended in medium samples.
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Table 7.1: Comparison of parametric and nonparametric estimator for the SILC data

Estimator Mean Bias Sq.Bias S.D. Variance MSE 2.5%

quan-

tile

97.5%

quan-

tile

n = 30

Parametric 15.72 1.34 1.79 4.02 16.13 17.92 7.78 27.46

Nonparam. 13.95 -0.43 0.19 5.85 34.18 34.37 3.33 40.00

n = 50

Parametric 15.98 1.60 2.56 3.14 9.83 12.39 9.55 26.62

Nonparam. 14.18 -0.20 0.04 4.54 20.61 20.66 6.00 32.00

n = 100

Parametric 16.19 1.80 3.26 2.25 5.08 8.33 11.66 24.09

Nonparam. 14.27 -0.11 0.01 3.22 10.36 10.37 8.00 31.00

n = 200

Parametric 16.28 1.89 3.58 1.57 2.47 6.05 13.14 21.17

Nonparam. 14.33 -0.05 0.00 2.24 5.03 5.04 10.00 24.00

n = 500

Parametric 16.36 1.98 3.92 0.95 0.91 4.83 14.48 19.75

Nonparam. 14.33 -0.05 0.00 1.38 1.91 1.91 11.60 20.40

n = 1, 000

Parametric 16.38 1.99 3.96 0.64 0.41 4.37 15.12 19.02

Nonparam. 14.33 -0.06 0.00 0.92 0.84 0.84 12.50 17.90

n = 2, 000

Parametric 16.39 2.01 4.02 0.38 0.15 4.17 15.64 17.62

Nonparam. 14.33 -0.05 0.00 0.55 0.31 0.31 13.25 16.20
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Table 7.2: Comparison of parametric and nonparametric estimator for the ADMIN data

Estimator Mean Bias Sq.Bias S.D. Variance MSE 2.5%

quan-

tile

97.5%

quan-

tile

n = 30

Parametric 19.78 -0.04 0.00 3.63 13.19 13.19 11.92 30.34

Nonparam. 19.32 -0.51 0.26 6.17 38.03 38.29 6.67 40.00

n = 50

Parametric 20.08 0.25 0.06 2.82 7.96 8.03 13.99 28.02

Nonparam. 19.49 -0.33 0.11 4.82 23.20 23.31 10.00 38.00

n = 100

Parametric 20.26 0.44 0.19 1.94 3.76 3.95 16.19 26.46

Nonparam. 19.72 -0.11 0.01 3.43 11.76 11.77 13.00 34.00

n = 200

Parametric 20.32 0.50 0.25 1.36 1.86 2.11 17.51 25.16

Nonparam. 19.75 -0.08 0.01 2.44 5.95 5.96 15.00 31.00

n = 500

Parametric 20.39 0.56 0.32 0.86 0.75 1.06 18.64 23.51

Nonparam. 19.81 -0.01 0.00 1.55 2.40 2.40 16.80 25.80

n = 1, 000

Parametric 20.41 0.59 0.36 0.60 0.36 0.71 19.21 22.53

Nonparam. 19.82 -0.01 0.00 1.10 1.21 1.21 17.70 24.80

n = 2, 000

Parametric 20.42 0.60 0.42 0.38 0.17 0.53 19.61 22.02

Nonparam. 19.84 0.02 0.75 0.55 0.56 0.56 18.40 22.75
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8 Estimation for persons in households

8.1 Principal considerations

In the previous chapters we have stressed the at-risk-of-poverty rate for households, that

is, the proportion of households below a fraction of the median household income, and

how to estimate that indicator from sample data. An important complement is the at-

risk-of-poverty rate for persons in households. This means that income is measured

at household level, but the proportion is measured at personal level, so rate describes

how many persons live in households below a given fraction of median household income.

It is easy to see that in general the rate for households and the rate for persons in

households are not be the same. More precisely, if household size (that is, the number

of persons in a household) and income are correlated, then the rate for households will

be different from the rate for persons in households. For instance, if the equivalized

disposable household income decreases, on average, with increasing household size, then

the rate for persons in households will be higher than the rate for households, since the

households below the poverty line are on average larger than the households above the

poverty line. This is not an unrealistic assumption, as one could think e.g. of households

of migrant families. So if we have income data for households but are in fact interested

in the prevalence of poverty among persons, we have to take household size into account.

Be ware that it is not allowed to simply adapt the formulae from chapters 3 to 5 as if

persons were equal to households (for instance, by replacing the number of households,

n, with the number of persons). Why is this the case? The reason is that so far we have

assumed that the household incomes are independent of each other. If we estimate at

personal level, this is by far not true. Quite the contrary, the intra-household correlation

of equivalized disposable household income is 100%, since the observed household income

in equally applied to all household members.
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One possibility to handle the problem is to interpret the household size as an estima-

tion weight in estimation at household level. This technique is in principal also used by

EUROSTAT (2005) in variance estimation. The advantage of doing so is that we can

still apply the formulae for households and have to adapt only for estimation weights.

8.2 Estimation of a location parameter

Given n sample households, let us denote with h1, h2, . . . , hn the corresponding household

sizes. We interpret these household sizes, or weights, as realizations of a random variable

H. Then the sample total of persons is

τH =
n∑
i=1

hi

and the sample average household size is

h̄ = τH/n

The persons-in-households-estimator of a location parameter µH in case of simple ran-

dom sampling is then the person-weighted mean of the logarithmic household incomes,

that is,

µ̂H =

∑n
i=1 hixi∑n
i=1 hi

(8.1)

Note that this definition for a weighted mean holds not only for weighting by the num-

ber of persons but for any comparable weigthing procedure. Estimation on household

level can be seen as the special case where all weights equal 1.

Since both the xi’s as well as the hi’s are random variables, we can interpret µ̂H as

a ratio of two random sums. The general formula for the asymptotic simple random

sampling variance of a ratio of two random variables is a special application of the

linearization method (Wolter, 1985, ch. 6) and given by

V ar

(
S

T

)
=

1

T 2

[
V ar(T ) +

(
S

T

)2

V ar(S)− 2

(
S

T

)
Cov(S, T )

]

(ibid., p. 229)
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Applied to (8.1) we get

V ar(µ̂H) ≈ 1

τ 2
H

[
V ar

(∑
i

hi

)
+ µ̂2

HV ar

(∑
i

hixi

)
− 2µ̂HCov

(∑
i

hixi,
∑
i

hi

)]

Since the sample households are independent of each other, we may write

V ar(µ̂H) ≈ 1

τ 2
H

[∑
i

V ar(hi) + µ̂2
H

∑
i

V ar(hixi)− 2µ̂H
∑
i

Cov(hixi, hi)

]
=

1

τ 2
H

[
nV ar(H) + µ̂2

HnV ar(HX)− 2µ̂HnCov(HX,H)
]

=
1

τH h̄

[
V ar(H) + µ̂2

HV ar(HX)− 2µ̂HCov(HX,H)
]

So the variance estimator for (8.1) is

V̂ ar(µ̂H) =
1

τH h̄

[
V̂ ar(H) + µ̂2

H V̂ ar(HX)− 2µ̂HĈov(HX,H)
]

(8.2)

We see that the variance of (8.1) is influenced by both the variance of the log-income

and the variance of the household size. Furthermore, it is influenced by the algebraic sign

of the correlation between HX and H. In case of a negative correlation the variance

increases, in case of a positive correlation it decreases. A practical interpretation is

that the sampling variance in the number of persons below the poverty line is larger if

poverty primary affects large households than smaller if it primary affects single-person

households.

Simulation shows that if income and household size are uncorrelated, so the true rate

for persons in households equals the true rate for households, then the variance of the

person-weighted estimator is higher than the variance of the unweighted estimator. An

informal explanation for that phenomenon is that the introduction of needless weights

causes additional sampling variability. By contrast, situations can be simulated where

the correlation between weights and income leads to a sampling variance of the weighted

estimator compared with the unweighted estimator.
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8.3 The concept of weighting effect and variance

inflation

As mentioned above, the sampling variance of the persons-in-households-estimator of a

location parameter, given by (8.2), may be higher or lower than the sampling variance

of the corresponding unweighted estimator at household level, V ar(µ̂).

Let us now introduce a (scale-free) relative measure of sampling variability of the

weighted mean, the weighting effect:

Weff (µ̂H) =
V ar(µ̂H)

V ar(µ̂)
(8.3)

The idea is analogous to the design effect for various sampling designs (Kish and

Fraenkel, 1974; Saerndal et al., 1992, ch. 2.10): The weighting effect describes the

ratio of the variance of the weighted mean to the variance of the unweighted mean.

A value of 1 stands for no variance inflation caused by weighting, whereas a value ¿1

indicates variance inflation. As mentioned before, if income and the number of persons

are uncorrelated, then Weff (µ̂P ) is greater than 1.

The reason for introducing the weighting effect is as follows. Whenever we have to

estimate for persons in households a more complicated sampling variation, for instance

the sampling variance of a person-weighted standard deviation or the sampling covari-

ance between a person-weigthed domain mean and a person-weighted population mean,

it might be a good practice to calculate the corresponding sampling variability for esti-

mation at household level and inflate it by (8.3). An analogous procedure for variance

inflation caused by complex sampling designs and/or nonresponse is proposed by Kish

and Fraenkel (1974), discussed by Saerndal et al. (1992, ch. 13.3), and reviewed in this

thesis in chapter 9.

For instance, in case of simple random sampling the persons-in-households-estimator

of a scale parameter σH is the person-weighted standard deviation of the logarithmic

household incomes,

σ̂H =

√√√√ 1

τH − 1

n∑
i=1

hi(xi − µ̂H)2

and its sampling variance can be approximated by

V ar(σ̂H) ≈ σ2

2n
Weff (µ̂H)
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9 Other sources of variance inflation

9.1 Overview

So far we have assumed that the data came from a simple random sample from an

infinite universe, if need be a stratified random sample with proportional allocation.

This assumption is meaningful in as much formulae for point and interval estimators

can be derived easily. However, in real life, the data frequently do not come from

a simple random sample from an infinite universe. This is particularly the case in a

survey.

The assumption of an infinite universe is discussable. On the one hand, sampling

elements are drawn from a finite frame. On the other hand, the target population does

not necessarily coincide with the sampling frame (or some modification of the sampling

frame) because it is possible to interpret the sampling frame as a random sample of a

fictive infinite target universe (Saerndal et al., 1992, ch. 13.6). However, this discussion

is mostly of little importance since in poverty research the sampling fraction is usually

quite small. We shall not track this point further.

The more serious problem is the validity of point and especially interval estimators

when the sample differs from a simple random sample. Reasons for such a deviation

that frequently occur are

• complex sampling designs,

• unit nonresponse,

• item nonresponse, and

• the use of auxiliary variables in estimation (e.g. post-stratification and raking)

An extensive discussion of the topic is beyond the scope of this thesis. The reader

may refer to the standard reference by Saerndal et al. (1992). A very useful textbook,

particularly for introductory purposes, is also Cochran (1963). A brief overview may be

found in Wolter (1985, ch. 1.3 and 1.4). We shall review some basic results concerning

complex sampling designs and unit nonresponse.
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9.2 Probability sampling, the π estimator, and the

design effect

Let us assume that the class of possible sampling designs is restricted to probability

sampling (Saerndal et al., 1992, 1.3). Informally speaking, probability sampling means

that all elements in the finite target universe have known positive probabilities of being

included in the sample. These (first order) inclusion probabilities are not necessarily

equal for all elements, but they are all different from zero (ibid.).

Famous examples of probability sampling designs are simple random sampling, strat-

ified random sampling, cluster sampling, two-stage sampling, and systematic sampling

(ibid., ch. 3 and 4). An example of a non-probability sampling design is quota sampling

(ibid., ch. 14.4).

Let us denote the finite target universe by U and the sample set of elements by S.

Given probability sampling we can for any element k in U and for any pair of elements

k, l in U define first order respectively second order inclusion probabilities:

πk = Pr(k ∈ S) (9.1)

πkl = Pr(k&l ∈ S) (9.2)

The calculation of the inclusion probabilities is given by Saerndal et al. (1992, ch.

2.4). In general the second order inclusion probability is not equal to the product of

the corresponding first order inclusion probabilities.

Then the total of a random variable Y , which we shall denote tY , can be estimated

via the π estimator (sometimes referred to as the Horvitz-Thompson estimator):

t̂Y =
∑
k∈S

yk
πk

(9.3)

and its estimated sampling variance is

V̂ ar(t̂Y ) =
∑
k∈S

∑
l∈S

(
1− πkπl

πkl

)
yk
πk

yl
πl

(9.4)

(Deville, 1999).
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The general forms of (9.3) and (9.4) can be applied to the specific sampling design to

get more explicit formulae. For instance, the π estimator for simple random sampling is

t̂Y |SRS = Nȳ

and its sampling variance may be estimated by

V̂ ar(t̂Y |SRS) = N2 1− f
n

V̂ ar(Y ) (9.5)

where N refers to the size of the target universe, n to the sample size and f to the

sampling fraction, that is, n/N (Saerndal et al., 1992, p.46).

The concept of the design effect (ibid., ch. 2.10; Kish and Fraenkel, 1974) is now

as follows. Given a certain probability sampling design ∆, we estimate the variance

V̂ ar(t̂Y |∆) according to (9.4). Then we compare this variance estimate with the variance

estimate for a simple random sample of equal size and refer to the ratio as the design

effect:

D̂eff (∆) =
V̂ ar(t̂Y |∆)

V̂ ar(t̂Y |SRS)
(9.6)

The design effect of a specific sampling design may be greater or less unity. The

importance of (9.6) is that whenever we have to estimate the variance (strictly speaking,

the design variance) of a more complex statistic that is difficult to calculate explicitly for

the given sampling design, it is usually a good procedure to first calculate the variance

for simple random sampling and then inflate it by the design effect. Kish and Fraenkel

(1974) report, based on a large Monte Carlo study, that the resulting implicitly calculated

variances for various complex statitics were mostly conservative approximations of the

actual Monte Carlo variances, so using the variance inflation technique we might play it

safe without becoming unrealistic (in their paper they calculate the design effect with

regard to the arithmetic mean, what makes little difference to the total). A summary is

given by Saerndal et al. (1992, ch. 13.4) who also report some theoretical design effects.

In a formal way, the variance of a complex statistic ψ̂ under a specific sampling design

∆ can be approximated as

V̂ ar(ψ̂|∆) ≈ V̂ ar(ψ̂|SRS) ∗ D̂eff (∆) (9.7)
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9.3 Correction for unit nonresponse

An important phenomenon in surveys that has considerable impact on the accuracy of

sample estimates is unit nonresponse. Unit nonresponse means that for some of the

sample elements (say, households) no data is available, e.g. because the household is

not accessible or refuses to answer. Particularly when the survey is voluntary, unit

nonresponse plays a central role in the validity of estimators because in general we

cannot assume independence between response behavior and the target variable (e.g.

Cochran, 1963, p. 356).

Advanced statistical models to correct for unit nonresponse had not been established

for a long time. For instance Cochran (1963, p. 357) reports that “We are left in

the position of relying some guess about the size of bias...” However, since the 1970’s

statisticians have developed more useful techniques to deal with the problem, particularly

because in several countries nonresponse proportions in surveys increased sharply around

1970 (Saerndal et al., 1992, p. 552).

A general model to correct for unit nonresponse is the introduction of response prob-

abilities. Given U the target universe and S the set of included sampling units, let us

denote by R the set of responding sampling units (that is, R is a subset of S). Let πk

and πkl be defined according to (9.1) and (9.2), respectively. Then we define the first

and second order response probabilities:

pk = Pr(k ∈ R|k ∈ S) (9.8)

pkl = Pr(k&l ∈ R|k&l ∈ S) (9.9)

Let us first assume that these response probabilities are known. Then the expanded

π estimator of the total of Y is

t̂Y =
∑
k∈R

yk
πkpk

(9.10)

and its estimated sampling variance is

V̂ ar(t̂Y ) =
∑
k∈R

∑
l∈R

(
1− πkπl

πkl

)
1

pkl

yk
πk

yl
πl

+
∑
k∈R

∑
l∈R

(
1− pkpl

pkl

)
yk
πkpk

yl
πlpl
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(Deville, 1999).

In general the true response probabilites are unknown and have to be estimated ei-

ther from the current sample (Saerndal et al., 1992, ch. 15.6.2) and/or using auxiliary

information (Berger and Skinner, 2003).

A useful model is to partition S into G groups for which response behavior is likely

to be similar within the groups. An important criterion for partitioning may be the

geographic location (e.g. urban or rural; cf. Statistik Austria, 2005). Then let us assume

that the response probability within a group is constant, whereas different groups have

different response probabilities, and that sampling elements respond independent of each

other. This model is known as the response homogeneity group (RHG) model

and described in detail by Saerndal et al. (1992, ch. 15.6.2).

Let us denote the achieved response size in group g by ag. The natural estimator for

the response probability in group g is the response fraction,

p̂k|k ∈ Sg = ag/ng

and because of independent response we have

p̂kl = p̂kp̂l (9.11)

Note that the ag’s are random, even if the ng’s are fixed.

The overall sampling process is then modeled as a kind of two-phase sampling: The

first phase is equivalent to the respective sampling design, and a second phase with

stratified Bernoulli sampling serves as a model for response (Saerndal et al., 1992, ch.

9.8).

The expanded π estimator for the RHG model is

t̂Y =
G∑
g=1

1

p̂g

∑
k∈Rg

yk
πk

and its sampling variance may be estimated by

V̂ ar(t̂Y ) =
∑
k∈R

∑
l∈R

(
1− πkπl

πkl

)
1

p̂kl

yk
πk

yl
πl

+
G∑
g=1

(
1

p̂2
g

− 1

p̂g

)∑
k∈Rg

(
yk
πk

)2
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(ibid.; EUROSTAT, 2005)

Saerndal (1992, ch. 15.6.3) also proposes a modification applied especially to esti-

mated response probabilities. In a nutshell, the approach is to condition on the achieved

response sizes a1, . . . , aG and interpret sampling phase two as stratified random sampling.

Doing so, (9.11) does not hold.

The concept of the design effect, introduced in 9.2, can be extended to account for

both the sampling design and unit nonresponse. In a somewhat comparable application

Berger and Skinner (2003) use the term “misspecification effect”.
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