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Zusammenfassung

In dieser Arbeit werden verschiedene Methoden erprobt, um die statische Leitfähigkeit ionis-

cher Flüssigkeiten aus Molekulardynamik-Computersimulationen zu berechnen: die Green-

Kubo, die Einstein-Helfand und die Nernst-Einstein Formel. Der springende Punkt dabei

war einen Algorithmus für die Formeln zu finden, der einerseits große Mengen an Daten von

Trajektorien miteinbezieht, um eine große statistische Stichprobe zu umfassen, und ander-

erseits die Leitfähigkeit innerhalb eines vertretbaren Fehlers mit minimaler Rechenzeit zu

ermitteln. Ähnliche Schwierigkeiten treten bei der Berechnung des Diffusionskoeffizienten

auf, der in der Nernst-Einstein Formel proportional zur Leitfähigkeit ist. Der Diffusionsko-

effizient, eine molekulare Größe, kann jedoch von einer kleineren statistischen Stichprobe

bestimmt werden. Die untersuchten System ionischer Flüssigkeiten waren binäre Salze mit

1-butyl-3-methyl-imidazolium und 1-ethyl-3-methyl-imidazolium als Kationen, und Tetraflu-

oroborat, Hexafluorophosphat, Trifluoroacetat, Trifluoromethylsulfat, und Dicyanoimid als

Anionen.





Abstract

The goal of this study is to determine the static conductivity of ionic liquids (IL) by molecular

dynamics simulations using different approaches: The Green-Kubo formula, the Einstein-

Helfand formula, and the Nernst-Einstein relation. Thereby expressions from statistical

mechanics which involve position and velocity data from trajectories of systems of ILs are

used. In practice the pivotal point proved to be the finding of an algorithm which on one

hand analyzes large amounts of trajectory data for a high statistic accuracy and on the other

hand yields the conductivity value within an acceptable error range with minimum compu-

tational effort. The calculation of the diffusion coefficient, a single particle property, which

is the decisive factor of the Nernst-Einstein relation imposes the same constraints although

with less need for high statistics. The IL systems under investigation were binary salts of

1-butyl-3-methyl-imidazolium and 1-ethyl-3-methyl-imidazolium as the cations, and tetraflu-

oroborate, hexafluorophosphate, trifluoric acid, trifluoromethylsulfate, and dicyanoimide as

the anions.
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I. INTRODUCTION

A. RTILs

Room temperature ionic liquids (RTIL), or shorter ionic liquids (IL), define a class of

salts which remain liquid at ambient temperature, as opposed to commonly known salts,

such as the rock salt NaCl which starts to melt at 801◦Celsius.

Known since the beginning of the 20th century, ionic liquids have only attracted major

research interest in the past three decades when compounds of this class with tractable

physical properties and feasible application possibilities were first synthesized. The novel

features of these ionic liquids were largely due to their organic constituents with anisotropic

shape and diffuse charge distribution. Today’s most intensively studied ionic liquids consist

mainly of substituted imidazoliums, pyridiniums, and pyrrolidiniums, tetraalkyl ammoni-

ums, and phosphoniums as cations and organic, as well as anorganic, anions, like halides

and pseudohalides, borates, phosphates, alkyl sulfates, and sulfonates, triflates, and trifluo-

roacetates.

Introducing functional groups and combining different anions and cations opens a vast

regime of possible ionic liquids with correspondingly differing physical properties. Some

estimate the number of accessible ionic liquids as high as a trillion1 (1018). They all reveal

negligible vapor pressure which is due to their ionic nature and are therefore non-volatile.

The newest versions of ILs also show up other desireable physical properties, at least to a

certain extent, such as non-corrosivity, air- and water-stability, high thermal, chemical and

electrochemical stability and they readily dissolve hydrophobic and hydrophilic substances.

Choosing an ionic liquid with appropriate characteristics for a given problem has led to the

charming neologism “Task-Specific Ionic Liquid”.

Summing up, ionic liquids can prove as an attractive, environmentally benign replacement

for volatile organic solvents in synthesis and catalysis (e.g. reaction medium, catalysator),

biotechnology (e.g. dissolution of cellulose), process engineering (e.g. desulfurization of

oil), analytical chemistry (e.g. capillary coating, eluent additive) and electrochemistry (e.g.

conductant in batteries), to name a few.
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B. Computational and Experimental Investigation of RTILs

To predict the physical properties of the plethora of possible ionic liquids without ever

going into the trouble of synthesizing them, computer simulation of these materials - among

chemical intuition and extrapolation from known compounds - is the method of choice. It is

an excellent way to gain a deeper understanding how atomic-scale characteristics of a system

(i.e. the behavior of electrons and nuclei of molecules) determine macroscopic properties

(thermodynamic properties: density, crystal structure, melting point, heat capacity, en-

thalpy, free energy, gas solubility, water miscibility and transport properties: self-diffusivity,

viscosity, electrical and thermal conductivity). In contrast, only a few experimental methods

allow a comparably detailed examination.

Since we are dealing with mobile charged molecules electrical conductivity emerges as

topic of increased interest. Additionally, the anisotropic shape of ILs induces electric polarity

which in turn brings about electric permittivity, measurable as the dielectric constant. For

the experimentalist, these two phenomena, conductivity and dielectric response, combine to

an effect described by the term of the Frequency Dependent Generalized Dielectric

Constant Σ(ω). Specially designed implementations of dielectric spectrometers can record

the corresponding spectrum of ILs2,3.

Starting from first principles of molecular geometry and interaction computer simulation,

to be precise molecular dynamics simulation, enables as well the calculation of a dielectric

spectrum, i.e. Σ(ω). Thus one can compare experimental and simulated data and thereby

validate the model of molecular interaction, the force field. Clearly, it is possible to compre-

hend the different contributions of molecular motion, i.e. translation, rotation and vibration,

to both the frequency dependent conductivity σ(ω) and dielectric constant4 ǫ(ω).

In this work I focus on the Static Conductivity as part of the dielectric spectrum of

several ionic liquids. It can be computed from molecular dynamics simulation data, the

trajectory, on the basis of statistical physics in two ways, the Green-Kubo and the Einstein-

Helfand formula. The Nernst-Einstein relation provides an approximate link between con-

ductivity and the Diffusion Coefficient which itself can be calculated from trajectory data

using analogous Green-Kubo and Einstein expressions. The derivation for these formulas

will be explained in the Theory section and their actual implementation in programs will

be presented in the Methods section. Finally, the outcome of the calculations and a critical
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analysis and interpretation are given in the Results and Discussion Section.

It has to be added, that, experimentally, the static conductivity is not measured by

dielectric spectroscopy but by a direct current method. The diffusion constant can be

determined experimentally in various ways, like pulsed-field-gradient spin-echo NMR, or

neutron-diffraction.
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II. THEORY

A. Molecular Dynamics Simulation

With the concept of classical molecular dynamics, it is possible to simulate atomic motion

of reasonably sized systems (up to hundred thousands of atoms) and time periods (up to

tens of nanoseconds) on commodity computers and computer-clusters.

At the heart of molecular dynamics lies the Born-Oppenheimer approximation which is

a prerequisite to separate nuclear and electronic motion. In this regard, the interaction

function, or potential, is constituted by the electrons. The potential (U(r1, ..., rN) in turn is

modeled by an ansatz using empirical terms, known under the acronym force field, consisting

of terms for atom bonds, angles between two bonds, dihedral angles, and for non-bonding

interactions5,6. The resulting (Newtonian) equations of motion for the nuclei (particles), with

mi the mass of the ith nucleus, are (Bold-lettered variables denote vectors, e.g. r := ~r.):

mi

d2ri

dt2
= ∇U(r1, ..., rN) i = 1, ..., N for a N-particle system (1)

Numerical integration returns positions (ri(t)) and velocities (vi(t)) for the individual

atoms which make up a trajectory, a “curve” in 6N-dimensional space, the phase space, as

a function of time. The 6N stems from 3N dimesions for the positions and another 3N for

the velocities, or momenta, of N particles. If there are no external forces, the system is in

equilibrium.

There remain a couple of issues in computer simulation, like the long-range electrostatic

potential, the center-of-mass and energy drift due to numerical integration, temperature

fluctuations, to name a few, which can be dealt with in different ways which are treated

in the monographs 5, 7, and more sophisticated in Ref. 6. The concepts of statistical

mechanics enable to interpret and analyze these trajectories in a way that relevant physical

values can be computed, e.g. the static conductivity in our case. These theories often include

statements, such as average over the time from zero to infinity, or over all points in phase

space (almost (6N)!), which is impossible to achieve on the computer. Fortunately, for a

given accuracy an averaging over a reduced sample is often sufficient. The afore-mentioned

“reasonably sized systems and time periods” thus refer to limited available trajectory data

which nevertheless satisfyingly reproduce expected results.
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In the subsequent sections emphasis is put on the investigation of the static conductivity

of ILs by molecular dynamics simulations which is based as well on a complex theoretical

framework and requires special care upon calculation from trajectory data.

B. Static Conductivity

If an electrical field E0, where E0 stands for the Maxwell-field, is applied to a conducting

system an electrical current j can be observed. The relation between the current and a given

field is described by the empirical finding, Ohm’s Law

j = σ ·E0 (2)

where σ stands for the conductivity of the system. Thus, in experiments it is necessary

to apply an electrical field to the system to measure its conductivity which brings about

non-equilibrium conditions. Unfortunately, in computer simulations it is inconvenient to

include an external field into the equations of motions, e.g.

mi

d2ri

dt2
= ∇U(r1, ..., rN) +

∑

i

qiE(t) (3)

(with qi the charge of the ith particle) because it would either lead to a rise in temperature,

a drift in energy and center-of-mass, or it would provoke currents outside the linear response

regime8 if the field was too strong, or it would be swamped by noise if it was too weak.

Despite these difficulties also non-equilibrium computer simulations are established9.

However, the Fluctuation-Dissipation Theorem states that small fluctuations, in

other words the noise, of dynamical variables in equilibrium systems behave, or literally

relax, in just the same way as the dynamic variable in a non-equilibrium system induced by

an external field would. The mathematical explanation and proof has been brought about

by R. Kubo in 1957 for Transport Processes10, the conjugate fluxes to mechanical fields.

The Green-Kubo Formula for conductivity is

j =
〈∆J(ω)〉

V
=

(
1

V kBT

∞∫

0

eiωt〈J(t)J(0)〉 dt

︸ ︷︷ ︸

=σ(ω)

)

E(ω) (4)
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with J being the current, V the volume of the system, kB the Boltzmann constant,

T the temperature, and 〈· · · 〉 marking the time or ensemble average. For this reason it

is perfectly possible to simulate equilibrium systems, record the occurring fluctuations in

dynamical variables, in this case the current, and calculate non-equilibrium properties, the

conductivity. This property which is the proportionality factor that relates the current to

its field is called more generally the Transport Coefficient.

Another pertinent transport process is Diffusion with the diffusion constant D as trans-

port coefficient which is expressed according to the Green-Kubo Formula as

D =
1

3

t∫

0

〈vi(t)vi(0)〉 dt (5)

with vi being the velocity of the ith particle. The Nernst-Einstein relation connects

the two transport coefficients under the condition that electrolyte interaction is negligible

σ =
1

V kBT

(

z2
+e2n+D+ + z−e2n−D−

)

(6)

Here, e stands for the electron charge, z for the net charge on the ion, and n for the

total number of ions from one species. Because in ILs the electrolytes interact strongly this

relation overestimates the conductivity by roughly two thirds. The decisive part missing

in the Nernst-Einstein relation are the cross-correlations of the single particle velocities,

i.e. 〈vi(t)vj(0)〉 for i 6= j of which above all the cation-anion cross-correlations would

significantly decrease the value of the conductivity.

Kubo also pointed out the equivalence of his formula of the diffusion coefficient to the

Einstein Formula of Diffusion (equation (62)) derived from the theory of Brownian

motion, i.e. from statistical arguments (random walk). Picking up this line of reasoning

E. Helfand devised an analogous relation between the mean square displacement of the

translational dipole moment, the integral of the current MJ =
∞∫

0

Jdt, and the conductivity

σ(ω = 0) =
1

3V kBT

∞∫

0

〈J(t)J(0)〉 dt (7)

=
1

6V kBT
lim
t→∞

〈∆MJ(t)2〉

t
(8)
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In the next section the theoretical rationale behind the listed expressions for the conduc-

tivity is given.

C. Derivation of the used Formulas

To justify the calculation of conductivity from trajectory data the formulas used will be

derived in this section.

1. Green-Kubo Formula

In short, the Green-Kubo equation relates linear transport coefficients to the time-

dependence of equilibrium fluctuations in the conjugate flux of a system to an external field.

It can be derived in various ways, using the Langevin-equation (non-Markovian random

forces), the fluctuation-dissipation theorem (spontaneous entropy production), or statistical

mechanics (perturbation theory).

Here, I will take the latter approach and start out from advanced concepts of classical

and statistical mechanics to rationalize the Linear Response Theory (For an introduc-

tion to these see Ref. 11 and 9.). With the definition of correlation functions it is then

straightforward to understand the Green-Kubo Formula10,4.

In our case, we observe equilibrium fluctuations of the total current J, the conjugate

flux to an external electric field E, and link them to the transport coefficient, the static

conductivity σ.

J(vi(t)) =
N∑

i=1

qivi(t) vi(t) =
dri(t)

dt
(9)

Considering an N-particle system and using the ansatz of Perturbation Theory, we

can split up the Hamilton-function of the system (H := H(ri,pi, t) i = 1, ..., N) into an

unperturbed part H0 and the perturbation part H′(t):

H = H0 + H′(t) (10)

For simplification we assume the external field E to be homogeneous and equal to the

Maxwell-field E0. The perturbation part H′(t) can then be expressed as a product of a
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perturbing field, in our case the electric field E(t), and its coupling variable, the collective

dipole moment Mtot:

H =

∫

V

ρ(r)U(r) dr = −

∫

V

ρ(r)rE dr

= −

∫

V

ρ(r)r dr

︸ ︷︷ ︸

=Mtot

·E
(11)

For the present derivation the translational part of the total dipole moment is used (MJ =

Mtot − MD). This simplification is only justified for the static value of the conductivity

σ(ω = 0) as shown in section IIC 2.

H′(t) = −MJ (t)E(t) with MJ (rj,cm(t)) =
∑

j

qjrj,cm(t) (12)

Furthermore, the Phase-Space-Probability Density f [N ](ri,pi, t) is rewritten as:

f [N ](t) = f
[N ]
0 + ∆f [N ](t) (13)

with the condition ∆f [N ](t = −∞) = 0. Consequently,

f [N ](t = −∞) = f
[N ]
0 = e

−
H0

kBT (14)

which is a solution of the partial differential equation

∂f
[N ]
0

∂t
= {H0, f

[N ]
0 } (15)

The time evolution of f [N ](t) is described by the Liouville Equation:

∂f [N ]

∂t
= {H, f [N ]} = −iLf [N ] (16)

with the Liouville Operator L := i{H, }.

Splitting of the terms yields

∂f
[N ]
0

∂t
+

∂∆f [N ](t)

∂t

= {H0, f
[N ]
0 } + {H0, ∆f [N ](t)} + {H′(t), f

[N ]
0 )} + {H′(t), ∆f [N ](t)}

(17)
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The first term of equation 17 vanishes on both sides due to equation 15 and the last

term is quadratic in the perturbation (since both ∆f [N ](t) and E(t) appear) which can be

neglected according to linear response theory. Tidying up yields

∂∆f [N ](t)

∂t
= {H0, ∆f [N ](t)} + {−MJ(t)E(t), f

[N ]
0 }

= −iL0∆f [N ](t) + {f
[N ]
0 ,MJ(t)}E(t)

(18)

which has the formal solution

∆f [N ](t) = e−iL0t

t∫

0

eiL0s{f
[N ]
0 ,MJ(t)}E(s) ds + A (19)

where A is a constant which can be determined using the mentioned boundary conditions

of

∆f [N ](−∞) = 0 =

−∞∫

0

e−iL0(t−s){f
[N ]
0 ,MJ(t)}E(s) ds + A (20)

(where the first exponential term in equation 19 has been taken into the integral). Flip-

ping the limits of integration and inserting the expression for A into 19 gives:

∆f [N ](t) =

t∫

−∞

e−iL0(t−s){f
[N ]
0 ,MJ(t)}E(s) ds (21)

Using the definition of the Poisson brackets, the Hamiltonian equations of motion and

equation 14 the next steps become

{f
[N ]
0 ,MJ(t)} =

N∑

i=1

(
∂f

[N ]
0

∂ri

∂MJ (t)

∂pi

−
∂f

[N ]
0

∂pi

∂MJ (t)

∂ri

)

(22)

∂f
[N ]
0

∂ri

=
∂f

[N ]
0

∂H0

∂H0

∂ri

and
∂f

[N ]
0

∂pi

=
∂f

[N ]
0

∂H0

∂H0

∂pi

(23)

∂f
[N ]
0

∂H0
= −

f
[N ]
0

kBT
(24)
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dMJ

dt
=

N∑

i=1

(
∂MJ

∂ri

dri

dt
+

∂MJ

∂pi

dpi

dt

)

=

N∑

i=1

(
∂MJ

∂ri

∂H0

∂pi

−
∂MJ

∂pi

∂H0

∂ri

)

= {MJ ,H′}

(25)

Finally, we arrive at

{f
[N ]
0 ,MJ(t)} = −

f
[N ]
0

kBT
{H0,MJ(t)} =

f
[N ]
0

kBT
{MJ(t),H0} (26)

and insert this into equation 21 to get

∆f [N ](t) =
f

[N ]
0

kBT

t∫

−∞

E(s) e−iL0(t−s) dMJ

dt
ds (27)

At this point I will start up a separate track concerning our flux variable J(Γ) to

combine it later with the ongoing derivation. It has the equilibrium ensemble average

(Γ := (ri(t),pi(t)) i = 1, ..., N):

〈J(Γ)〉 =

∫

Γ

J(Γ)f
[N ]
0 (Γ) dΓ = 0 (28)

Upon perturbation the average observable changes along with the phase-space-probability

density giving an excess current

〈∆J(t)〉 =

∫

Γ

J(Γ)∆f [N ](Γ) dΓ (29)

where we have used equation 28. If we insert the expression for ∆f [N ](Γ) in equation

27 which is the outcome of linear response theory and rearrange we obtain (e−iL0(t−s) is an

hermitian operator with the property AeiLtB = (eiLt)∗AB = e−iLtAB.):

〈∆J(t)〉 =

∫

Γ

J(Γ)

(
f

[N ]
0 (Γ)

kBT

t∫

−∞

E(s) e−iL0(t−s) dMJ

dt
ds

)

dΓ

=
1

kBT
·

t∫

−∞

E(s) ds

∫

Γ

eiL0t J(Γ)eiL0s dMJ

dt
f

[N ]
0 (Γ) dΓ

(30)

The operator eiL0s shifts its argument, e.g. MJ , from one point (t = 0) in phase space to

another (t = s) and is therefore also called Shift Operator. As we have seen in (25),
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dMJ

dt
= {MJ ,H′} = iL0MJ (t) with MJ(t) = eiL0tMJ (0) (31)

Now we have to make a detour to Time Correlation Functions which offer a tool to

come closer to simulation. They can be defined as the averaged product of two observables

taken at different times t′ and t′′, e.g. A(r,p, t′) and B(r,p, t′′). The equilibrium average,

indicated as a subscript, can be taken over time (32) or over the phase-space (33) if we

assume the Ergodic Theorem to be valid:

〈A(t′)B(t′′)〉equ = lim
τ→∞

1

t

∫
∞

0

A(t′ + t)B(t′′ + t) dt (32)

〈A(t′)B(t′′)〉equ =

∫

Γ

f
[N ]
0 (Γ, t)B∗(Γ)eiL0(t′−t′′)A(Γ) dΓ

=

∫

Γ

f
[N ]
0 (Γ, t)eiL0t′′B∗(Γ)eiL0t′A(Γ) dΓ (33)

As alluded to in the previous section, computer simulations cannot reach the limit infinity

but the relation is satisfyingly fulfilled for times of length τ being longer than the period

of fluctuation. From the Ergodic Theorem follows also the time-invariance of correlation

functions:

〈A(t′)B(t′′)〉equ = 〈A(t′ + τ)B(t′′ + τ)〉equ for any τ (34)

= 〈A(t)B(0)〉equ and τ = −t′′ (35)

In the following the subscript for equilibrium correlation functions will be dropped since

there is no ambiguity. It is now easy to see the analogy in equation (30) and rewrite the

correlation function in more compact form. Furthermore, we introduce a timeshift in the

correlation function which is justified above, we divide by the volume to create intensive

variables, and we divide by 3 since we take the average of the product of the 3 components

of vectors.
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〈∆J(t)〉

V
=

1

3V kBT
·

t∫

−∞

E(s) 〈J(t)
dMJ(s)

dt
〉 ds (36)

=
1

3V kBT
·

t∫

−∞

E(s) 〈J(t)J(s)〉 ds (37)

Taking the Fourier-transformation of E(s) (which is spatially homogeneous and thus

independent of r) and picking only one term (ωk = ω0) for representation yields

E(s) =

∞∫

−∞

Ẽ(ω)e−iωs dω ≈
∑

ωk

Ẽ(ωk)e
−iωks (38)

so equation 37 becomes:

〈∆J(ω0)e
−iω0s〉

V
=

1

3V kBT
Ẽ(ω0)

t∫

−∞

e−iω0s 〈J(t − s)J(0)〉 ds (39)

Next, we exchange the integration variable t′ = t− s so that dt′ = −ds, the sign changes,

the lower and upper limit change to 0 and ∞, respectively, and e−iωs = eiωte−iωs−t =

e−iωteiωt′ :

〈∆J(ω0)e
−iω0s〉

V
=

1

3V kBT
Ẽ(ω0)e

−iω0t

∞∫

0

eiωt′〈J(t′)J(0)〉 dt′ (40)

to finally obtain by writing ω and E instead of ω0 and Ẽ

〈∆J(ω)〉

V
=

1

3V kBT
E(ω)

∞∫

0

eiωt′〈J(t′)J(0)〉 dt′ (41)

or

〈∆J(ω)〉

V
= σ(ω)E(ω) with σ(ω) =

1

3V kBT

∞∫

0

eiωt〈J(t)J(0)〉 dt (42)

where σ(ω) represents the conductivity. The second equation in (42) is just the Green-

Kubo formula for the charge transport. Also, substituting E for any other field and J the

conjugate flux, the corresponding transport coefficient can be calculated.
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2. Additional Notes on the Green-Kubo Formula for Ionic Liquids

Ionic liquids combine two important features which have already been mentioned and

which make ILs so unique: The molecules have a net charge, per definition of an ion, and

a non-uniform electron distribution which makes them polar. On the macroscopic level, ILs

therefore exhibit properties of both a conducting and a dielectric medium. This becomes

manifest in non-zero values for both the collective translational dipole moment MJ and

rotational dipole moment MD

Mtot =
∑

j

∑

α

qj,αrj,α (43)

=
∑

j

∑

α

qj,α(rj,α − rj,cm + rj,cm) (44)

=
∑

j

∑

α

qj,α(rj,α − rj,cm)

︸ ︷︷ ︸

µj

︸ ︷︷ ︸

MD

+
∑

j

qjrj,cm

︸ ︷︷ ︸

MJ

(45)

with rj,α and qj,α being the positional vector and partial charge of the α’s atom of the

jth molecule and rj,cm being the positional vector of the center of mass of the jth molecule.

Clearly, an electric field applied to a IL-system triggers both conduction and polarization

which influence each other. Therefore the response of an IL system to an external field is

more properly described by the macroscopic polarization Mtot and the “transport coefficient”

Σ(ω), the generalized dielectric constant.

〈Mtot〉E
V

=
Σ(ω)

4π
· E(ω) (46)

As stated above, the Green-Kubo relation applies to all transport processes including this

one and a derivation for the exact expression in terms of correlation functions would run

analogously but with much more terms. Also, this equation includes 4π to use SI units and

the total dipole moment Mtot. The outcome can be merged to12,13

Σ(ω) = ǫ(ω) − 1 +
4πiσ(ω)

ω
(47)

where the conductivity has the expanded form
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σ(ω) =
1

3V kBT

∞∫

0

eiωt〈J(0)J(t)〉 dt +
iω

3V kBT

∞∫

0

eiωt〈MD(0)J(t)〉 dt (48)

This has the important consequence that the conductivity of ionic liquids is also deter-

mined by the coupling between the collective rotational dipole moment and current. Even

so, the coupling term vanishes in the zero frequency limit, i.e. for the static conductivity,

where equation 48 equals 42.

3. Einstein-Helfand Formula

The Einstein-Helfand formula relates the mean square displacement of MJ to the static

conductivity and is therefore a valuable independent way to evaluate the results of calcula-

tions using the Green-Kubo relation. Nevertheless, it is possible to derive the first from the

latter14 which proves the internal consistency within the theoretic foundations used.

The collective translational dipole moment can be converted to the collective current via

MJ(rj,cm(t)) =
∑

j

qjrj,cm(t) =
∑

j

t∫

0

qi

drj,cm(t)

dt
dt

=
∑

i

t∫

0

qivi(t) dt =

t∫

0

J(vi(t)) dt

(49)

and (A function F(xi(t)) is denoted as F(t) for convenience.)

〈∆MJ (t)2〉 = 〈(MJ(t) − MJ(0))(MJ(t) − MJ(0))〉

= 2〈

t∫

0

dt′J(t′)

t∫

0

dt′′J(t′′)〉 = 2

t∫

0

dt′
t′∫

0

dt′′〈J(t′)J(t′′)〉

= 2

t∫

0

dt′
t′∫

0

dt′′〈J(t′ − t′′)J(0)〉

(50)

Changing the variables to y = t′ − t′′ which has the limits (t′′, 0) and x = t′′ gives

2

t∫

0

dx

x∫

0

dy 〈J(y)J(0)〉 (51)

Now we define
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u(x) =

x∫

0

dy 〈J(0)J(y)〉 (52)

and integrate (51) by parts

2

t∫

0

dx 1 · u(x) = 2

(

xu(x)

∣
∣
∣
∣

t

0

−

t∫

0

x
du(x)

dx
dx

)

= 2

(

t u(t) −

t∫

0

x 〈J(x)J(0)〉 dx

)

= 2

(

t

x∫

0

dy 〈J(0)J(y)〉 −

t∫

0

x〈J(x)J(0)〉 dx

)

(53)

If we integrate the second term of (53) by parts as well and take advantage of general

properties of time correlation functions (33) we get

−

∞∫

0

x〈J(x)J(0)〉 dx = t〈MJ (0)J(t)〉

∣
∣
∣
∣

∞

0
︸ ︷︷ ︸

!
=0

−

∞∫

0

〈MJ(0)J(t) dt

= −〈MJ (0)MJ(t)〉

∣
∣
∣
∣

∞

0

= 〈M2
J〉 (54)

With an exchange of x for t for clarity and taking the limit t → ∞ we approach our goal

lim
t→∞

〈∆MJ(t)2〉 = 2

(

t

∞∫

0

〈J(t)J(0)〉 dt + 〈M2
J〉

)

(55)

which is rearranged to the Einstein-Helfand formula for conductivity when compared to

equation 42

σ(ω = 0) =
1

6V kBT
lim
t→∞

〈∆MJ(t)2〉 − 2〈M2
J〉

t

=
1

6V kBT
lim
t→∞

〈∆MJ(t)2〉

t

=
1

3V kBT

∞∫

0

〈J(t)J(0)〉 dt (56)

26



4. Nernst-Einstein Formula

Here, only the expression for binary ILs with monovalent ions is given.

As already stated the Nernst-Einstein equation is a single particle approximation for the

current neglecting any interactions among the particles, i.e. the cross terms with i 6= j are

simply left out. Terms where particle i is not from the same ion species as j would contribute

most. Furthermore, we assume that the mean square displacement 〈∆rj,cm(t)2〉 is equal for

all particles of a single ion species. Thus we simplify the mean square displacement of the

collective translational dipole moment with

∆MJ (t)2 = (MJ(t) − MJ(0))2 (57)

= [

N∑

j

qj(rj,cm(t) − rj,cm(0))][

N∑

i

qi(ri,cm(t) − ri,cm(0))] (58)

≈
N∑

j

q2
j (rj,cm(t) − rj,cm(0))2 =

N∑

j

q2
j ∆rj,cm(t)2 (59)

≈
N

2
q2
+∆rcm,+(t)2 +

N

2
q2
−
∆rcm,−(t)2 (60)

= n+q2
+∆rcm,+(t)2 + n−q2

−
∆rcm,−(t)2 (61)

with n = N/2 the amount of particles of one ion species. Now, the diffusion coefficient

being the transport coefficient for particle flux can be expressed by Green-Kubo and Einstein-

Helfand equations in an analogous way to the conductivity:

D = lim
t→∞

〈∆r(t)2〉

6t
(62)

The conductivity is consequently written as

σ(ω = 0) ≈
1

6V kBT
lim
t→∞

n+q2
+∆rcm,+(t)2 + n−q2

−∆rcm,−(t)2

t
(63)

=
1

V kBT
(n+q2

+D+ + n−q2
−
D−) (64)

which is just the Nernst-Einstein relation as in equation 6 with q = ze.

27



III. METHODS

Several programs have been devised with the programming language Fortran90 to

analyze trajectories of the IL-systems [bmim][bf4], [bmim][pf6], [bmim][tfa], [emim][cla],

[emim][trif], [emim][dcyi], and [evot][dcyi], making use of the formulas described in the

Theory section (See table I for explanation of the acronyms.). The system [evot][dcyi] is

only different from [emim][dcyi] in that the charge distribution is different. This is in order

to show up the influence of electrostatic forces, i.e. charge variation.

The computation of the trajectories themselves with the molecular dynamics program

Charmm (Chemistry at Harvard Molecular Mechanics15 ,16) was not part of this thesis

and is described in Ref. 17, 18, and 19.

The implemented algorithms are presented here in a meta language resembling For-

tran90: Variables and arrays of variables are written small lettered, looping and branching

statements, as well as subroutines are noted in capitals. Variables in parenthesis after arrays

of variables indicate the dimensions of the array. Tables II, III, and IV explain the meaning

of the variables.

Unfortunately, many branches were included due to technical constraints. In terms of

computation time, this affected the calculation of the mean square displacement at most.

Acronym IUPAC name

[bmim] 1-butyl-3-methylimidazolium

[emim] 1-ethyl-3-methylimidazolium

[evot]* 1-ethyl-3-methylimidazolium

[bf4] Tetrafluoroborate

[cla] Chloride

[dcyi] Dicyanimide

[pf6] Hexafluorophosphate

[tfa] Trifluoroacetate

[trif] Trifluoromethanesulfonate (Triflate)

TABLE I: Acronyms and their full IUPAC name. All IL interactions are parametrized according

to Ref. 20. *: For [evot] the charge distribution from Ref. 21 is taken.
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variable meaning

corrsteps # of timesteps of the MSD, MSDMJ, VACF, or CACF

timesteps # of coordinateframes of a trajectory to use

inputunit 1 unit with trajectory

natom # of atoms

nmol # of molecules

rcom 1 center-of-mass position vector

msd cation, msd anion mean square displacement

timestep length of timestep in picoseconds

statement meaning

REWIND start reading a trajectory from the beginning

READFRAME read the coordinates for one timestep from the trajecotry

CALCULATE calculate subsequent variable

TABLE II: Description of variables and statements of the following algorithms.
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A. Mean Square Displacement

1. Msd A
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Algorithm 1 MSD A

DO t = 1, corrsteps

REWIND(inputunit_1,inputunit_2)

DO n = 1, timesteps - t + 1

READFRAME(inputunit_1)

IF (n = 1) THEN

DO l = 1, t

READFRAME(inputunit_2)

END DO

ELSE IF

READFRAME(inputunit_2)

END IF

DO i = 1, natom

CALCULATE rcom_1(nmol,3)

CALCULATE rcom_2(nmol,3)

IF (i = natom) THEN

msd_cation(t) = msd_cation(t) + (rcom_1 - rcom_2)**2

msd_anion(t) = msd_anion(t) + (rcom_1 - rcom_2)**2

END IF

END DO

END DO

END DO

DO t = 1, corrsteps

msd_cation(t) = msd_cation(t) / nion

msd_anion(t) = msd_anion(t) / (timesteps - t + 1)

WRITE t*timestep, msd_cation(t), msd_anion(t)

END DO
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2. Msd B

variable meaning

readlength # of timesteps to read from trajectory

iframe time interval of MSD

diffusion mean square displacement

ionspecies cation or anion

nion # of molecules of an ionspecies

TABLE III: Description of the variables of the Msd B algorithm.

Algorithm 2 MSD B

DO t = 1, readlength

READFRAME(inputunit_1)

CALCULATE rcom_1(inputunit_1,nmol)

REWIND(inputunit_2)

DO u = 1, t

READFRAME(inputunit_2)

CALCULATE rcom_2(inputunit_2, nmol)

iframe = t - u + 1

diffusion(ionspecies, iframe) =

diffusion(ionspecies, iframe)

+ DOTPRODUCT((rcom_1 - rcom_2),(rcom_1 - rcom_2))

/ (readlength - iframe + 1)

END DO

END DO

DO i = 1, readlength

WRITE j*timestep, diffusion(ionspecies, i)/nion

END DO
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B. Mean Square Displacement of the Collective Translational Dipole Moment

1. Mjmj

variable meaning

charge net charge of a molecule

mj collective translational dipole moment

mjmj mean square displacement of mj

TABLE IV: Description of the variables of the Mjmj algorithm.
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Algorithm 3 MJMJ

DO t = 1, timesteps

READFRAME

DO i = 1, natom

CALCULATE rcom(nmol)

mj(t) = mj(t) + charge(nmol) * rcom(nmol)

END DO

IF (t = corrsteps)

DO j = 1, corrsteps

mjmj(k) = mjmj(k) + (mj(1) - mj(t))**2

END DO

DO j = 1, (corrsteps - 1)

mj(t) = mj(t+1)

END DO

mj(corrsteps) = 0

END IF

END DO

DO t = 1, corrsteps

mjmj(t) = mjmj(t) / (timesteps + 1 - corrsteps)

WRITE t * timestep, mjmj(t)

END DO
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C. Auto-Correlation Function

The program Correl Velcm uses routines written by C. Schröder and G. Neumayr

which allow to correlate the time-series of dynamic variables. Moreover, they provide

methods to refine the outcome by averaging (“Running Average”), application of filters

(“Savitzky-Golay”, “High-Pass”, “Low-Pass”), and correlation, all in Fourier space. The

“Running Average”, RAVG, method was used for the results described here. The value

after RAVG indicates the range of the interval in fourier space for which the average was

taken (e.g. RAVG30 averaged an interval of 30 frequencies).
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IV. RESULTS AND DISCUSSION

In this section, the conductivity, and as an intermediate product also the diffusion co-

efficient, of a variety of ionic liquids are presented, compared to experimental values, and

eventually discussed. Results are summarized in table XI and XX.

A. Diffusion Coefficient

1. Diffusion Coefficient from the Green-Kubo Formula

a. [bmim][bf4] The diffusion coefficient of the IL system [bmim][bf4] was determined

using the Green-Kubo formula (equation 42) and by inserting this into the Nernst-Einstein

relation (equation 63) the conductivity was estimated.

First, the velocity auto-correlation functions (VACF) were calculated for a 8200ps

segment of the trajectory with the Charmm-module Correl, and the program Cor-

rel velcm, and integrated with the program Perlint (The Charmm-module and the

Correl Velcm program produced exactly the same results.). Unfortunately, the single

particle VACF decays slowly due to the cooperative effect of ILs6. Thus the long-time tail of

the VACF contributes significantly to the integral and in consequence to the diffusion coef-

ficient. The strong noise exacerbates the situation in that a very good statistic is necessary.

Figure 1 displays the correlation functions and the corresponding integrals for the cation,

bmim, and the anion, bf4, respectively.

Two points immediately attract attention, the already mentioned high noise troughout

the function and its integral, and the increase of the noise towards the end. The rise stems

from the decrease of statistics of long-time correlations. Furthermore, the system [bmim][bf4]

is highly viscous and the calculated viscosity from the very same data even overestimates

the experimental value18. This resistance to flow is reflected less in the decay of the VACF

than in the need for calculation over an extended time-interval and better statistics6.

Some groups fit the integral of the VACF to an exponential decay function as it would

be predicted by kinetic theory to extract a reliable diffusion coefficient22,5. Here, I just

calculated the mean value of the integral for 1000ps < t < 7000ps which turned out to be

(9.4±1.1)·10−6e2Å2AKMA−1 for the cation, and (9.0±1.3)·10−6e2Å2AKMA−1 for the anion

(AKMA is the internal time-unit of Charmm. 1AKMA = 0.04888ps or 20AKMA ≈ 1ps).
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FIG. 1: VACF (〈v(0)v(t)〉/Å2AKMA−2) and its integral (
∫
〈v(0)v(t)〉dt/Å2AKMA−2ps) for the

cation [bmim], and anion [bf4] for 8200ps.

Figure 2 displays arbitrarily chosen close-ups of the VACFs and VACF-integrals where one

can clearly see that the integral has converged and consequently remains constant.

The diffusion constants and the conductivity according to the Nernst-Einstein relation

are given in table V. These values are in rough accordance with those of MSD-, CACF- and

MSDMJ-calculations (see sections IVA2, IVB1, and IVB2) and of other groups23,24 (see

table XI). Moreover, the conductivity calculated from diffusion coefficients, σNE = 4.8 is

higher by a factor 1.5 than those calculated from collective properties σGK = 3.2 which is

expected in theory (section II) and visualized in figure 4.

Ion DGK

[bmim] 1.31

[bf4] 1.26

TABLE V: Diffusion coefficients calculated with the Green-Kubo formula (DGK/10−7cm2s−1).
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FIG. 2: VACF (〈v(0)v(t)〉/Å2AKMA−2) and its integral (
∫
〈v(0)v(t)〉dt/Å2AKMA−2ps) for the

cation [bmim] for two arbitrarily chosen segments. The area beneath the velocity auto-correlation

function is filled to depict its and its integral’s fluctuations.

To extract information on the molecular motion figure 3 zooms in on the initial 10ps

of the VACFs and integrals of both the anion and the cation and figure 4 compares the

normalized summed VACFs to the current auto-correlation function (CACF.) The shape of

the VACF in figure 3 can be interpreted quite straightforward: The initial value at t = 0ps

stands for the mean square velocity of the ion. The values for 〈v2〉 are given in the table VI.

A following steep decay and minimum with negative values reflect that the ion soon collides

with others and consequently moves in an opposite direction. The minimum is thus the

average time until the first collision of a molecule which is about 0.2 to 0.3ps for both ions

which is typical for condensed phases22. These and density distribution functions suggest

that the ion is surrounded by a cage built up of other molecules4.

Accordingly, the subsequent rise and fall into a second trough point to a second and a
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Ion 〈v2〉/Å2AKMA−2 〈v2〉/Å2ps−2

[bmim] 1.6 · 10−4 0.067

[bf4] 4.0 · 10−4 0.17

TABLE VI: Mean square velocity of [bmim][bf4].

third collision within the cage if the cage itself hasn’t disassembled by then. Such long-lived

cage structures are also suggested by density distribution functions. The VACF of [bmim]

appears somewhat damped compared to the VACF of [bf4] which most probably goes along

with the cation’s bigger size and mass. The values for the diffusion constant (see table V)

are in the expected order of magnitude but too rough to allow any comparisons. The inset

in figure 3 zooms in on the following course of the correlation functions and their integrals

which decay fairly quickly into a random noise pattern and converge, respectively.

The normalized single particle velocity and collective current auto-correlation functions

in figure 4 permit a direct, unit-independent comparison and indicate the link between

conductivity and diffusion as manifested in the Nernst-Einstein relation. As already stated

on page 17 the difference between the single particle and collective property auto-correlation

functions are due to the cross-correlations between different single particles figure 4. For

instance, if a pair of oppositely charged ions moves in the same direction it contributes to

the diffusion coefficient but not to the conductivity. If cross-correlations were negligible the

normalized velocity and current auto-correlation functions were expected to coincide. Closer

inspection of figure 4 also shows that the VACF is smoother than the CACF. As a general

rule, single particle property functions feature better statistics since it is possible to average

over all particles as opposed to collective property functions. This is also reflected when

comparing MSD with MSDMJ (sections IVA2 and IVB2).

39



-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0  0.5  1  1.5  2  2.5  3

V
A

C
F 

an
d 

In
te

gr
al

 o
f 

V
A

C
F

t/ps

-0.0001

-5e-05

 0

 5e-05

 0.0001

 2  3  4  5  6  7  8  9  10

VACF[bmim]
Integral of VACF[bmim]

VACF[bf4]
Integral of VACF[bf4]

FIG. 3: VACF (〈v(0)v(t)〉/Å2AKMA−2) and its integral (
∫
〈v(0)v(t)〉dt/Å2AKMA−2ps) for the

cation [bmim] and the anion [bf4] for the first 5ps.
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2. Diffusion Coefficient from the Einstein Relation

The mean square displacement (MSD) was calculated with the program Msd A and

Msd B (using equation (62)) for the trajectories of the following IL systems: [bmim][bf4],

[bmim][pf6], [bmim][tfa], and [emim][cla]. The gradient of the MSD is proportional to the

diffusion coefficient (equation 62) and can be calculated by linear regression of the linear

part of the MSD curve. The linear regression (LR) is generally included to highlight the

linear part.

a. [bmim][bf4] Calculated diffusion coefficients from the gradient of MSD-curves are

listed in table VII. For D100ps I used Msd A and averaged the MSD of 142 100ps-trajectory

slices whereas for D400ps I took Msd B and and a single 4000ps-trajectory slice. The statis-

tics become worse versus the end for all MSD-curves although less pronounced for the 100ps-

MSD-curve for which the sample was larger (cf. figure 5).

Remarkably, the slope for the short 100ps-MSD turns out to be flatter than for the

400ps-MSD which isn’t the case for [emim][cla] nor for MSDMJ calculations. However, the

longer MSD curve evaluates to a more accurate diffusion coefficient when compared with

experimental values from literature (Ref. 23, and 24, see table XI). Compared with the

results from the Green-Kubo formula, the MSD misses the diffusion coefficient by one third

to two thirds. Also, the diffusion coefficient of the heavier and bigger cation is higher just

as already reported in literature.

Ion D400ps

[bmim] 0.94

[bf4 ] 0.61

TABLE VII: Diffusion coefficients (D/10−7cm2s−1)).

42



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  50  100  150  200  250  300  350  400

M
SD

t/ps

MSD/6[bmim] for t<100ps
LR for MSD[bmim] 50ps<t<100ps: y=0.0038531*x+0.94457

MSD/6[bmim] for t<400ps
LR for MSD[bmim] 50ps<t<300ps: y=0.0056358*x+0.85998

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  50  100  150  200  250  300  350  400

M
SD

t/ps

MSD/6[bf4] for t<100ps
LR for MSD[bf4] 50ps<t<100ps: y=0.0027917*x+0.96099

MSD/6[bf4] for t<400ps
LR for MSD[bf4] 50ps<t<300ps: y=0.0036668*x+0.93983
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b. [bmim][pf6] Calculated diffusion coefficients are listed in table VIII. The MSD of

49 200ps-trajectory slices were calculated (using Msd A) and averaged which is plotted in

figure 6. Again, the increased rippling at the 200ps end of the curves are due to smaller

sampling of long time MSD values.

As for the [bmim][bf4] system, the calculated diffusion coefficients are close to results of

Ref. 23, 24 and 25 (also see table XI), and obviously the heavier and bigger cation migrates

faster.

Ion D200ps

[bmim] 0.40

[pf6 ] 0.21

TABLE VIII: Diffusion coefficients D/10−7cm2s−1.
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FIG. 6: [bmim][pf6]: MSD (〈∆r(t)2〉/Å2) of the cation, [bmim], and the anion, [pf6]. The linear

regression (LR) for the most linear part (as deduced by visual inspection) is included as well.
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c. [bmim][tfa] Calculated diffusion coefficients are listed in table X. The MSD of 250

400ps-trajectory slices were calculated for 100ps (using Msd A), averaged, and plotted in

figure 7. Here, the “Sliding Window” averaging of Msd A gave rise to a smooth curve until

the end.

The 100ps-MSD curve is fairly short and it is to be expected that the linear part hasn’t

begun within that time and the gradient is still to steep. Therefore, the calculated diffusion

coefficients are most likely overestimated. This is confirmed by comparison with experimen-

tal data from Ref. 24 (table XI).

Ion D100ps

[bmim] 2.3

[tfa ] 2.5

TABLE IX: Diffusion coefficients D/10−7cm2s−1.
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FIG. 7: [bmim][tfa]: MSD (〈∆r(t)2〉/Å2) of the cation, [bmim], and the anion, [tfa]. The linear

regression (LR) for the most linear part of the curve is given as well.
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d. [emim][cla] Calculated diffusion coefficients are listed in table X. The MSD for 50ps

of 99 50ps-trajectory slices and the MSD for 500ps and 1000ps of a single 1000ps-trajectory

slice were calculated. The respective curves are plotted in figures 8 and 9. Msd A was used

for the MSD of the 50ps-trajectory slices and Msd B for the MSD of the 1000ps-trajectory

slice. The 50ps-MSD curves of the chloride ([cla]) in figure 8 nicely demonstrate the effect

of averaging. The curve becomes smoother when the sample size is increased from 9 to

99 MSD curves and when the “Sliding Window” averaging method is used. Surprisingly,

the gradient falls and the ordinate intercept rises considerably with increasing statistics.

Nonetheless, these curves are much to short to use the gradient of their most linear part in

the Einstein formula. The 500ps-MSD becomes linear after t = 100ps until about t = 350ps

(figure 9) and the gradient of this part represents diffusion more reliable. Afterwards the

“Sliding Window” averaging has almost no effect which can be seen by the ripples and the

deviation from linearity. Therefore, these MSD-values can be neglected.

So far, few investigations on conductivity were reported for the system [emim][cla] which

has some peculiarities: First, it has a relatively high melting point of about 78◦Celsius and

therefore had to be simulated at 400K. Second and third, it is the largest system for which

the MSD was calculated and the MSD itself was calculated for the longest time interval

(500ps). Therefore, the diffusion coefficient should be calculated from a larger sample to

end up with reliable values.

Ion D500ps

[emim] 0.20

[cla ] 0.15

TABLE X: Diffusion coefficients D/10−7cm2s−1.
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FIG. 8: [emim][cla]: MSD (〈∆r(t)2〉/Å2) of the cation, [emim], and the anion [cla] (below). The

average 50ps-MSD of 9, and 99 50ps-trajectory slices, as well as a 50ps-MSD of a 1000ps-trajectory

slice are depicted in both diagrams to show the effect of averaging.
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FIG. 9: [emim][cla]: MSD (〈∆r(t)2〉/Å2) of the cation, [emim], and the anion [cla] (below), as

well as their linear regressions lines (LR).
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System D+ D− D+,exp D−,exp D+,MD D−,MD

[bmim] [bf4] 1.31 * 1.26 *

0.94 0.61 1.598 a 1.492 a 0.18 b 0.17 b

[bmim] [pf6] 0.40 0.21 0.802 a 0.586 a 0.33 b 0.24 b

0.970 c 0.882 c

[bmim] [tfa] 2.3 2.5 1.974 a 1.584 a

[emim] [cla] 0.20 0.15 3.61 *d 1.43 *d

TABLE XI: Diffusion coefficients (D/10−7cm2s−1) for the investigated ILs. Values in columns D+,

and D− are from this work and are calculated from MSD curves except values with the superscript

“*” which are calculated from VACFs. Note that results for the system [emim][cla] are valid for

T=400K. Diffusion coefficients from literature are also included in columns D+,exp, and D−,exp

for experimental results, and D+,MD, and D−,MD for molecular dynamics simulation results: “a”:

Ref. 24, “b”: Ref. 23, “c”: Ref. 26, “d”: Ref. 22.

To give an overview, the calculated diffusion coefficients are listed and compared to results

from literature, both experimental and simulated, in table XI. For the systems [bmim][bf4],

[bmim][pf6], and [bmim][tfa] the results are in a good agreement with literature although the

length of the MSDs of this work are considerably shorter. On the other hand, the sample

size from which the average MSD was calculated is higher: from 50 to 250 trajectory slices.

The system [emim][cla] sticks out in that the 500ps-MSD is the average of two strongly

differing 500ps-MSD curves, i.e. the calculated diffusion coefficient is based on insufficient

statistics. Moreover, Vega et al. report diffusion coefficients almost 20 and 10 times larger

for the cation and anion, respectively.
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Finally, in figure 10 the first picosecond of various MSD functions are displayed for com-

parison. The MSD generally rises quickly, almost exponentially, for t < 0.1 to 0.2ps which

is best seen in the MSD of chloride, [cla], in [emim][cla]. First, this reminds of the minimum

of the VACF at about 0.3ps which has been attributed the mean collision time of a single

particle. This fast process has been interpreted in Ref. 27 as the exploration of the local

energy landscape by the particle. The nonlinear subsequent MSD, e.g. for 0.2ps < t < 0.4ps

of [emim], has been interpreted as “energy basin hopping” of the particle. Finally, the curva-

ture vanishes and the MSD becomes straight which has been attributed the diffusive linear

behavior.

Additionally, figure 10 exhibits the effect of “coarse graining” in the time domain of the

MSD. The length between successive MSD values varies among the systems from 0.02ps for

[bmim][bf4] and [bmim][pf6], to 0.05ps for [emim][cla], up to 0.2ps for [bmim][tfa]. Except

for the smoothness of the curve the MSD is faithfully reproduced with longer timesteps

between successive MSD values.
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FIG. 10: Zoom-in on the first picosecond of the MSD (〈∆r(t)2〉/Å2 for t < 50ps) of [bmim][bf4],

[bmim][pf6], [bmim][tfa], and [emim][cla].
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B. Conductivity

1. Green-Kubo Formula: Current Auto-Correlation Function

The time-dependent collective current was determined with the program Add Velcm

and then its auto-correlation function (CACF) with the program Correl Velcm. The

resulting correlation function, being a collective property correlation function, revealed a

very high noise (figure 11) and had to be refined using the “Running Average” algorithm

(RAVG)(figure 12). The “Savitzky-Golay” filter as well as a “High-Pass” and a “Low-

Pass” filter didn’t prove as effective for refinement, as judged by visual inspection (data not

shown). Obviously, the integral of the CACF converges after a couple of picoseconds and

subsequently fluctuates strongly around a mean value. The worsening statistics towards the

end of the CACF and its integral are present as in the VACF. It is expected that the CACF

- being a collective property auto-correlation function - decays faster than the VACF. To be

sure, the value of the integral was averaged between 1000ps and 7000ps with the program

Perlstat for the integrals of the normal and RAVG-refined CACFs before calculating the

conductivity (table IVB1).

The results are in excellent agreement with the experimental findings of Yamamoto et

al.28 and Watanabe et al.24. As already mentioned, the Nernst-Einstein relation (sections

IVA1 and IVA2) overestimates the conductivity, in this case by a factor σNE/σGK =

4.785/3.17 = 1.5. In contrast, the Einstein-Helfand relation yields different results (section

IVB2).

Figure 13 gives a detailed picture of the first 10ps of the CACF and figure 14 of both

the CACF and its integral. The higher noise as compared to the VACF and its integral is

evident.

Refinement Integral of CACF /Å2e2AKMA−2ps σGK/10−3Scm−1

none 0.001 ± 0.001 2.37

RAVG30 0.00128 ± 5.7 · 10−5 3.17

RAVG50 0.00124 ± 3.3 · 10−5 3.06

RAVG70 0.00131 ± 2.6 · 10−5 3.23

TABLE XII: Averages of the integral of the CACF and conductivities.
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FIG. 11: [bmim][bf4]: The CACF (〈J(0)J(t)〉/e2Å2AKMA−2) and its integral

(
∫
〈J(0)J(t)〉dt/e2Å2AKMA−2ps) without any refinement.
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FIG. 12: [bmim][bf4] The CACF (〈J(0)J(t)〉/e2Å2AKMA−2) averaged with “Running Average”

using 30, 50, and 70 points (above) and their respective integrals (
∫
〈J(0)J(t)〉dt/e2Å2AKMA−2ps)

(below).
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FIG. 13: [bmim][bf4]: The first 5ps of the CACF (〈J(0)J(t)〉/e2Å2AKMA−2) and its integral

(
∫
〈J(0)J(t)〉dt/e2Å2AKMA−2ps) and a zoom-in on subsequent 5ps.
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FIG. 14: [bmim][bf4]: The CACF (〈J(0)J(t)〉/e2Å2AKMA−2) and its integral
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2. Einstein-Helfand Formula: Mean Square Displacement of the Translational Dipole Moment

The mean square displacement of the translational dipole moment, i.e. 〈∆MJ (t)2〉, or

MSDMJ in short, was calculated with the program Mjmj for the systems [bmim][bf4],

[bmim][pf6], [bmim][tfa], [emim][cla], [emim][dcyi], [emim][trif] and [evot][dcyi]. The con-

ductivity, as expressed in the Einstein-Helfand formula is proportional to the gradient of the

MSDMJ which is deduced by linear regression (LR). The LR curves are mostly included in

the diagrams to highlight the linear part of the MSDMJ curves.

a. [bmim][bf4] Figure 15 shows the MSDMJ for 100ps of a 100ps-trajectory slice. The

noise stays high throughout the whole time. Consequently, the MSDMJ was calculated

for a shorter time interval (40ps) and averaged over 140 100ps slices which brought about

better statistics by “Sliding Window” averaging and thus a smoother curve which could be

subjected to linear regression in the linear part to extract the slope (results are given in

tables XIII and XX).

This outcome is in perfect agreement with results in sections IVA1, IVA2, and IVB2

but it is almost sure that the linear part of the MSDMJ curve hasn’t begun within 40ps

as exemplified in figure 15. Calculating the LR of the average MSDMJ for 1000ps from 9

4000ps-trajectory slices revealed a substantially differing slope.

Considering that the calculated viscosity from the very same simulation data was over-

rated by about 60 %19 and assuming that Walden’s rule (ση = const) roughly applies a

conductivity reduced by a factor 1/1.6 = 0.625 would be expected. The calculated value is

even reduced by a factor σEH/σGK = 0.76/3.17 ≈ 0.24.

# of trajectory slice Length of trajectory slice Length of MSDMJ σEH

140 100ps 40ps 3.64

9 4000ps 1000ps 0.76

TABLE XIII: [bmim][bf4]: Conductivities (σEH/10−3Scm−1) from MSDMJ functions of different

lengths: 40ps and 1000ps.
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FIG. 15: [bmim][bf4]: The upper diagram demonstrates the noise in MSDMJ (〈∆MJ (t)2〉/e2Å2)

of [bmim][bf4] with (short MSDMJ curve) or without (long MSDMJ curve) “Sliding Window”

averaging. The diagram below depicts the 40ps-MSDMJ and the 1000ps-MSDMJ together with

their LR curves.
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b. [bmim][pf6] Figure 16 contains the results of the MSDMJ analysis, the averaged

200ps-MSDMJ of 50 200ps-trajectory slices. Despite the high noise a trend is perceptible

which allows to estimate a slope and conductivity. The second illustrates the 40ps-MSDMJ

of the same sample which is smoother due to “Sliding Window” averaging but with a steeper

gradient.

As for [bmim][bf4], the 40ps-MSDMJ has not reached a plateau and is too short. The

resulting values are listed in tables XIV and XX. The conductivity from the 200ps-MSDMJ

is in perfect agreement with estimates from the Nernst-Einstein relation which overrates by

a factor σNE/σEH = 0.72/0.54 = 1.3 and calculations by Kolafa et al.23.

# of trajectory slice Length of trajectory slice Length of MSDMJ σEH

50 200ps 200ps 0.54

50 200ps 40ps 1.53

TABLE XIV: [bmim][pf6]: Conductivities (σEH/10−3Scm−1) from MSDMJ functions of different

lengths: 40ps and 200ps.
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FIG. 16: [bmim][pf6]: The noise in MSDMJ (〈∆MJ(t)2〉/e2Å2) for 200ps compared to 40ps and

corresponding LR curves.
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c. [bmim][tfa] Figure 17 shows the 40ps-MSDMJ of 250 100ps-trajectory slices, the

250ps-MSDMJ of a single 4000ps-trajectory slice and the averaged 1000ps-MSDMJ of three

4000ps-trajectory slices with slopes and corresponding conductivities given in tables XV and

XX.

The 40ps-MSDMJ has to be neglected. The results for the other MSDMJ curves are in

rough accordance with literature and even rougher with estimates from the Nernst-Einstein

relation which overrates in this case by a factor σNE/σEH = 8.1/4.1 = 2 and 8.1/2.6 = 3.1.

# of trajectory slice Length of trajectory slice Length of MSDMJ σEH

250 100ps 40ps 6.64

1 4000ps 250ps 4.11

3 4000ps 1000ps 2.81

TABLE XV: [bmim][tfa]: Conductivities (σEH/10−3Scm−1) from MSDMJ curves of different

lengths: 40ps, 250ps, and 1000ps.
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FIG. 17: [bmim][tfa]: MSDMJ (〈∆MJ (t)2〉/e2Å2) and LRs for 40ps, 250ps, and 1000ps.
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d. [emim][cla] The 40ps-MSDMJ was calculated from 599 50ps-trajectory slices, and

9 2000ps-trajectory slices were evaluated to extract 250ps-, the 500ps-, and the 1000ps-

MSDMJ curves (see figure 18 and tables XVI and XX). A 2000ps-MSDMJ proved too noisy

for interpretation.

Again, the 50ps-MSDMJ has to be neglected. Though in accordance with estimates from

the Nernst-Einstein relation σNE/σEH = 0.6/0.3 = 2 the conductivities from 500ps- and

1000ps-MSDMJ are lower than reported in literature22 by a factor 20, just as the diffusion

coefficients IVA2.

# of trajectory slice Length of trajectory slice Length of MSDMJ σEH

599 50ps 40ps 1.43

9 2000ps 500ps 0.32

9 2000ps 1000ps 0.30

TABLE XVI: [emim][cla]: Conductivities (σEH/10−3Scm−1) from MSDMJ functions of different

lengths: 40ps, 250ps, and 1000ps.
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FIG. 18: [emim][cla]: MSDMJ (〈∆MJ (t)2〉/e2Å2) and LRs of 40ps, 500ps, and 1000ps.
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e. [emim][trif ] Here, the effect of the “Sliding Window”-averaging was thouroughly

tested. MSDMJ curves from a 2000ps-trajectory slice were calculated for different lengths

(200ps, 199ps, 195ps, 190ps, 175ps, 150ps, and 100ps) to follow the smoothening of the

curves with increasing statistics (cf. figure 19). The 50ps-MSDMJ was also determined for

250 50ps-trajectory slices as well as from 3 200ps-trajectory slices which is depicted in figure

19. The corresponding results are listed in tables XVIII and XX.

The 50ps-MSDMJ has to be neglected. As for the 100ps-MSDMJ, no comparisons can be

drawn to Nernst-Einstein estimates and a single reference reports a conductivity 8.4 times as

high29. The statistics of the corresponding MSDMJ curve is the lowest among the systems

in this work and therefore the calculated conductivity is not reliable.

# of trajectory slice Length of trajectory slice Length of MSDMJ σEH

250 50ps 50ps 1.62

3 200ps 50ps 1.62

1 200ps 100ps 1.1

TABLE XVII: [emim][trif ]: Conductivities (σEH/10−3Scm−1) from MSDMJ functions of differ-

ent lengths.
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FIG. 19: [emim][trif ]: MSDMJ (〈∆MJ(t)2〉/e2Å2) for 100ps and 200ps (above) and for 50ps

(below).
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f. [emim][dcyi] 500 40ps-MSDMJ curves were calculated from 200ps-trajectory slices

and averaged, as well as a 1000ps-MSDMJ curve from 5 2000ps-trajectory slices which has

quite an interesting shape with two different linear parts. The curves and values are listed

in tables XVIII and XX and figure 20.

The 40ps-MSDMJ has to be neglected. The first linear part of the 1000ps-MSDMJ results

in a conductivity slightly above the experimentally determined one whereas the second linear

part is almost 1.5 times as steep.

# of trajectory slice Length of trajectory slice Length of MSDMJ σEH

500 200ps 40ps 6.67

5 2000ps 1000ps 3.6 and 5.54

TABLE XVIII: [emim][dcyi]: Conductivities (σEH/10−3Scm−1) from the LRs of the linear parts

of the MSDMJ functions.
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FIG. 20: [emim][dcyi]: 〈∆MJ(t)2〉/e2Å2 of [emim][dcyi]
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g. [evot][dcyi] This ion pair is the same as [emim][dcyi] but simulated with a differ-

ent charge distribution21. 4 1000ps-trajectory slices were analyzed to yield a mean 500ps-

MSDMJ which was further evaluated. The results are given in table XIX and figure 21. The

gradient is close to the first linear part of the 1000ps-MSDMJ of [emim][dcyi].

# of trajectory slice Length of trajectory slice Length of MSDMJ σEH

4 1000ps 500ps 3.86

TABLE XIX: [evot][dcyi]: Conductivities (σEH/10−3Scm−1) from the LRs of the linear parts of

the MSDMJ functions.
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FIG. 21: [evot][dcyi]: 〈∆MJ (t)2〉/e2Å2 of [evot][dcyi]
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As for the MSD, the first picosecond of MSDMJ is presented in detail (figure 22). Here

as well, the time domain of the MSDMJ was “coarse grained” and the time between suc-

cessive steps of the MSDMJ evaluation was 0.001ps for [emim][trif], 0.02ps for the systems

[bmim][bf4] and [bmim][pf6], and 0.05ps for [emim][dcyi]. Again the “coarse graining” had

no effect on the overall course of the MSDMJ.
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FIG. 22: 〈∆MJ (t)2〉/e2Å2
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System σNE σEH σexp σMD

[bmim] [bf4] 4.8 * 3.17 * 3.5 a σEH = 0.55 g

3.0 0.76 3.6 b σNE = 0.7 g

[bmim] [pf6] 0.72 0.54 1.5 b σEH = 0.45 g and 0.62 g

1.46 c σNE = 1.05 g

[bmim] [tfa] 8.1 4.11 3.1 b

2.81 3.2 d

[emim] [cla] 0.6 0.32 σGK = 7.2 h

0.30 σNE = 9.2 h

[emim] [trif] 1.1 9.2 e

[emim] [dcyi] 3.6 2.8 f

5.4

[evot] [dcyi] 3.86

TABLE XX: Conductivities (σ/10−3Scm−1) for the investigated ILs. Values in columns σNE

and σEH are from this work and are calculated from the Nernst-Einstein and Einstein-Helfand

formulas, respectively. Values superscripted with “*” are obtained from the Green-Kubo formulas

for VACFs and CACFs. The system [emim][cla] was simulated at T=400K. Conductivities values

from literature are also included in columns σexp for experimental results, and σMD for molecular

dynamics simulation results: “a”: Ref. 28, “b”: Ref. 30, “c”: Ref. 31, “d”: Ref. 32, “e”: Ref. 29,

“f”: Ref. 33, “g”: Ref. 23, “h”: Ref. 22. Experimental results are obtained at T=298.1K.
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V. CONCLUSION

In this work different ways to calculate the static conductivity of ILs were tested: first, the

Green-Kubo formula, second, the Einstein-Helfand formula, and third, the Nernst-Einstein

relation for estimating the conductivity by means of the diffusion coefficient which itself can

be calculated by a Green-Kubo formula or an Einstein formula. The theoretical framework

being straightforward the task was to implement them for trajectory data generated by

Charmm in a way that ensured both accuracy and efficiency. The used exact formulas are

based on mean values of the whole sample, i.e. the whole phase space. To approximate these

values reasonably well relatively large amounts of trajectory data, up to tens of nanoseconds,

had to be analyzed. In contrast, to increase efficiency cuts on the analysis side had to be

made. The outcome of this compromise is summarized and compared to results of literature

in tables XI and XX.

All the diffusion coefficients are in qualitative agreement with findings from literature

except for [emim][cla]. The VACF and 400ps-MSD of [bmim][bf4] and the 100ps-MSD of

[bmim][tfa] accurately reproduce the experimental values. The 200ps-MSD of [bmim][pf6]

deviates by a factor 2.

It turns out that MSD curves of at least 500ps length should be used to calculate diffusion

coefficients. This minimum length ensures that the linear part of the MSD of which the

gradient is proportional to the diffusion coefficient is included. Moreover, these curves

should be well averaged over tens of non-overlapping trajectory slices since single MSD

curves - though free from high noise - can have broadly varying gradients. Finally, the time

between successive points of the MSD can be extended at least up to 0.2ps without losing

any of the required accuracy.

As for the VACF, a 8.2ns trajectory slice allows to estimate a diffusion coefficient with

a mean error of about 10% which is probably not in relation with the effort of generating a

trajectory slice that long.

The conductivities are as well within an acceptable range of results of experiments and

computer simulations from other groups. Computed from collective properties the most

imminent issue is sufficient statistic averaging where the CACF is an outstanding example

which could be controlled by the “running average” algorithm. Calculated from single par-

ticle variables and estimated by the Nernst-Einstein relation the conductivities are always
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overrated by a factor 1.5 to 3.1 due to disregard of cross-correlation between different par-

ticles. The refined CACF of [bmim][bf4] evaluates to a conductivity which meets the exper-

imentally measured value very well. This afforded a 8.2ns trajectory. The 1000ps-MSDMJ

curve of [bmim][tfa] also scores within 10% of experimental values. The conductivities from

[bmim][pf6] deviate by a factor 2 and from [emim][cla], and [emim][trif] by more than a

factor 10. The latter MSDMJ calculations evidently need to be based on higher statistics,

i.e. a larger sample of trajectory slices.

Just as for the MSD curves, firstly, it is seems to be necessary to calculate at least 500ps

of the MSDMJ to comprise a sufficiently long part of the linear rise. Secondly, the 500ps-

MSDMJ should be averaged over tens of non-overlapping trajectory slices. Finally, also

the time between successive MSDMJ steps can be extended at least up to 0.2ps without

cutbacks on the accuracy.

It is still necessary to fill the gaps in the samples of MSD and MSDMJ curves to ob-

tain more reliable results. Furthermore, a systematic analysis of the mentioned potential

economizations could show their limits clearlier.

Finally, it should be added that Charmm determines the diffusion coefficient from the

MSD by invoking a subroutine which computes correlation functions which is exact. Thereby,

Charmm optimizes the calculation. The reason why Charmm was not used for this work

lies in the fact that it was not possible to calculate the MSD of the center of mass position

vector of a molecule which excludes any rotational movement irrelevant to diffusion. A

program implementing both a Charmm-like optimized algorithm and the center of mass

position vector is on the way.
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VI. APPENDIX

A. Abbreviations

VACF 〈v(0)v(t)〉/Å2AKMA−2

VACF Integral
∫
〈v(0)v(t)〉dt/Å2AKMA−2ps

CACF 〈J(0)J(t)〉/e2Å2AKMA−2

CACF Integral
∫
〈J(0)J(t)〉dt/e2Å2AKMA−2ps

MSD 〈∆r(t)2〉/Å2

MSDMJ 〈∆MJ(t)2〉/e2Å2

RAVG Running Average (see section IIIC)

B. Units

AKMA is the internal time-unit of Charmm. 1AKMA = 0.04888ps or 20AKMA ≈ 1ps

C. Auxiliary calculations for the GK-diffusion coefficients in Phython

Conversion of the integral of the VACF to the diffusion coefficient in SI-units and calcu-
lation and calculation of the conductivity according to the Nernst-Einstein relation:

>>> 1./3*1e-8**2*0.04888**(-2)*1e12*9.4e-6

1.3114272525074489e-07

>>> 1./3*1e-8**2*0.04888**(-2)*1e12*8.8e-6

1.2277191300069736e-07

>>> 1./(1.380568e-23*300*(32.7*1e-8)**3)*1.60217733e-19**2*(108*1.3e-7+108*1.2e-7)

0.0047858889097789434

D. Auxiliary calculations for the MSD-diffusion coefficients and the NE-

conductivities in Phython

>>> 0.0056358/6

0.00093930000000000001

>>> 0.0036668/6

0.0006111333333333333

>>> 1./(1.380658e-23*300*(32.7*1e-8)**3)*1.60217733e-19**2*(108*0.0009393e-4+108*0.00061113e-4)

0.0029678871999142919
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>>> 0.0024066/6

0.00040109999999999999

>>> 0.0012666/6

0.00021110000000000001

>>> 1./(1.380658e-23*300*(38.4*1e-8)**3)*1.60217733e-19**2*(108*0.40110e-7+108*0.21110e-7)

0.0007236643926502533

>>> 0.013989/6

0.0023314999999999998

>>> 0.014954/6

0.0024923333333333334

>>> 1./(1.380658e-23*300*(34.1*1e-8)**3)*1.60217733e-19**2*(108*0.013989e-4+108*0.014954e-4)/6

0.0081426676512256196

>>> 0.0012252/6

0.0002042

>>> 0.00088591/6

0.00014765166666666667

>>> 1./(1.380658e-23*400*(60.13*1e-8)**3)*1.60217733e-19**2*(1000*0.0022167e-4+1000*0.0020738e-4)/6

0.0015288261556470719

E. Auxiliary calculations for the GK-conductivities in Phython

>>> 1./(3*32.7e-8**3*1.380658e-23*300)*1e-8**2*1.60217733e-19**2*0.04888**(-2)*1e12*0.00095902

0.0023714531734467903

>>> 1./(3*32.7e-8**3*1.380658e-23*300)*1e-8**2*1.60217733e-19**2*0.04888**(-2)*1e12*0.0012802

0.0031656632318894087

>>> 1./(3*32.7e-8**3*1.380658e-23*300)*1e-8**2*1.60217733e-19**2*0.04888**(-2)*1e12*0.0012394

0.0030647734803966047

>>> 1./(3*32.7e-8**3*1.380658e-23*300)*1e-8**2*1.60217733e-19**2*0.04888**(-2)*1e12*0.0013079

0.0032341594602313373

F. Auxiliary calculations for the EH-conductivities in Phython

>>> 1./(6*32.7e-8**3*1.380658e-23*300)*1.60217733e-19**2*1e-8**2*1e12*1.2313

0.0036373338768437391

>>> 1./(6*32.7e-8**3*1.380658e-23*300)*1.60217733e-19**2*1e-8**2*1e12*0.25653

0.00075780496989094799

>>> 1./(6*38.4e-8**3*1.380658e-23*300)*1.60217733e-19**2*1e-8**2*1e12*0.84077

0.0015337199964118315

>>> 1./(6*38.4e-8**3*1.380658e-23*300)*1.60217733e-19**2*1e-8**2*1e12*0.29647

0.00054081611776849283
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>>> 1./(6*34.1e-8**3*1.380658e-23*300)*1.60217733e-19**2*1e-8**2*1e12*2.5471

0.0066350684085439886

>>> 1./(6*34.1e-8**3*1.380658e-23*300)*1.60217733e-19**2*1e-8**2*1e12*1.5779

0.0041103507682625573

>>> 1./(6*34.1e-8**3*1.380658e-23*300)*1.60217733e-19**2*1e-8**2*1e12*1.0803

0.0028141275967767544

>>> 1./(6*60.13e-8**3*1.380658e-23*400)*1.60217733e-19**2*1e-8**2*1e12*4.0204

0.0014325819079742438

>>> 1./(6*60.13e-8**3*1.380658e-23*400)*1.60217733e-19**2*1e-8**2*1e12*0.89711

0.00031966559433458703

>>> 1./(6*60.13e-8**3*1.380658e-23*400)*1.60217733e-19**2*1e-8**2*1e12*0.84049

0.00029949029147181177

>>> 1./(6*67.0e-8**3*1.380658e-23*300)*1.60217733e-19**2*1e-8**2*1e12*3.1178

0.0010707458272543032

>>> 1./(6*67.0e-8**3*1.380658e-23*300)*1.60217733e-19**2*1e-8**2*1e12*4.7031

0.0016151852909614833

>>> 1./(6*65.2e-8**3*1.380658e-23*300)*1.60217733e-19**2*1e-8**2*1e12*17.887

0.0066658765406850682

>>> 1./(6*65.2e-8**3*1.380658e-23*300)*1.60217733e-19**2*1e-8**2*1e12*9.6426

0.0035934690630742908

>>> 1./(6*65.2e-8**3*1.380658e-23*300)*1.60217733e-19**2*1e-8**2*1e12*14.423

0.0053749615556717579

>>> 1./(6*65.2e-8**3*1.380658e-23*300)*1.60217733e-19**2*1e-8**2*1e12*10.356

0.0038593289794451031
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