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Notation 

0   .................. present time, i.e. evaluation time 

T   .................. time units in the VaR horizon 

t   .................. any point in time between 0 and T 

c  ..................  VaR confidence level 

αc ..................  standard normal variate  quantile  for chosen confidence level 

μ   ................. drift term in mean log portfolio  asset  return 

σ   ................. volatility of log portfolio  asset  return 

, ................  portfolio  asset  return from t  to T 

    .................. mean log portfolio  asset  return     

ε   .................  residual, error or innovation in a portfolio  asset  return process 

Pt   .................. portfolio value at time t 

P0  .................. portfolio present value at time 0 

 .................. quantile  of  portfolio  value  distribution  at  time  T  for  chosen  confidence 

level 
 
 
Unless otherwise mentioned the equations listed in this thesis will be in line with the listed 

variable definitions. 
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1. Introduction 

The concept of Value at Risk (VaR) has been around for more than fifteen years and has 

undergone vast advances from its conception up to present times, however the time horizon of 

interest in VaR models has for the most part remained very short.1 The reasons for limiting 

the perspective of VaR calculations to a few days can be ascribed to the fact that, for the 

longest time the only institutions which implemented VaR models were banks and other 

financial institutions whose primary perspective in their risk management functions is for 

short horizons. The reasons for this emphasis on short time horizons are divers, but some key 

factors are the growing complexity and volatility of financial instruments and markets, and 

related financial "disasters" on the one hand2 and the regulatory requirements set forth by 

institutions such as the Securities and Exchange Commission (SEC), the Bank for 

International Settlements (BIS), and the Global Association of Risk Professionals (GARP), 

which banks must adhere to.3 In recent years however, the user group of VaR measures has 

expanded extensively; in the financial sector different investment and pension funds have had 

increased demand for such measures, but this demand has also reached the risk management 

functions of non-financial corporations. These new user groups have turned to Value at Risk 

to asses market risks in their portfolios and contrary to the initial user group have 

fundamentally different priorities as to which time horizons are of interest to them. Non-

financial corporations usually report their financial statements quarterly and or annually and 

are therefore interested in potential volatility of portfolio values at these time horizons. Due to 

the nature of their business, pension funds tend to look even further into the future, as both 

their assets and their liabilities are usually defined for very long time horizons going far 

beyond a single year.4 With these new users comes a demand for VaR models that can provide 

reliable measures of market risk for the horizons which are relevant for these users. 

                                                 
1 The first time the term “Value at Risk” was mentioned in a publication was in the Group of Thirty report of 

1993. For a detailed history of the development of Value at Risk please refer to Holton (2002 & 2003), Field 

(2003) and Jorion (2001). 
2 For information on the evolution of derivatives see Chance (1995 & 1998) and for examples of such financial 

disasters refer to Stulz (2000) or part IX of Field (2003).  
3 Further information on these regulations and guidelines can be found in Dale (1996) and Dimson & Marsh 

(1995) pertaining to the SEC, Wagster (1996) and Crouhy et al (2006) concerning the BIS and Middleton (1996) 

and Fight (2003) on GARP. 
4 Bodie et al. (2005), pp. 874-880 
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This is exactly the topic which this thesis focuses on: presenting means of obtaining valid 

long-run Value at Risk figures. To facilitate this core topic the reader will initially be 

familiarized with the basic VaR methodology and standard short-run Value at risk models as 

presented in the definitive VaR and risk management literature. In a second step the 

shortcomings of these short-run models with regard to their applicability for longer time 

horizons will be identified and discussed. Using the VaR foundation and these highlighted 

factors as a starting point, the main part of this thesis will present different means of 

calculating long-run VaR, ranging from simple extensions of short-run models to specific and 

in some cases highly complex long-run Value at Risk models, as present in up-to-date finance 

publications. After a survey of these different methods of calculating long-run Value at risk, 

the final part of the thesis will again turn its attention to the initially identified key factors for 

long-run VaR and attempt to summarize feasible and, where possible, optimal solutions, 

sketching an ideal long-run Value at risk methodology encompassing necessary models, 

parameters, and assumptions. 
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2. Laying the Groundwork 

2.1. Overview 

This part will provide the reader with a solid basis for the ensuing treatment of long-run Value 

at Risk, the core topic of this thesis. This will be achieved by initially presenting the 

conceptual framework of Value at Risk, including the basic elements contained in any VaR 

model or calculation method. After the brief general discussion of VaR, the standard short-run 

Value at Risk models contained in the normative literature on financial risk management will 

be described to outline the foundation upon which any extensions or modifications for long 

time horizons are built upon. 

Drawing from these standard short-run VaR models, the final part of this part of the thesis 

will highlight those parameters and assumptions present in these models which are most 

relevant and oftentimes problematic when one is concerned with VaR models for the long run. 

 

2.2. The Value at Risk Methodology 

Before describing specific means of calculating Value at Risk, a general description of the 

basic concept which underlies all of the different VaR models has to be presented. 

Fundamentally, Value at risk is a measure of financial market risk.5 The primary source of 

such market risk in financial markets is the fluctuation of market prices and rates either in 

absolute terms or as compared to a predetermined benchmark.6 Laubsch and Ulmer (1999), 

however, specify so-called residual market risks which are also sources of market risk, 

although not directly caused by fluctuations in market prices.7 

Value at Risk, which is conceptually rooted in modern portfolio theory including the Capital 

Asset Pricing Model (CAPM), going back to the landmark publications by Markowitz (1952), 

                                                 
5 Jorion (2001, p. 15) distinguishes between five categories of financial risks: market risk, credit risk, liquidity 

risk, operational risk, and legal risk. Value at risk is primarily concerned with market risk although the 

boundaries between categories are often blurred (Holton, 2003, p. 21). 
6 Longerstaey (1996), page 24 
7 For example: spread risk (the risk caused by changes in the difference between two asset prices), basis risk (the 

risk caused by changes in the correlation of different asset prices), or volatility risk (the risk of changes in 

volatility of asset prices and not by the level of volatility itself). 
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Roy (1952), Tobin (1958), Treynor (1999), and Sharpe (1964) among others, provides a 

methodology of quantifying such market risks for single assets and large portfolios alike.8 

Two formal definitions of Value at Risk are: 

“Value-at-Risk is a measure of the maximum potential change in value of a portfolio of 

financial instruments with a given probability over a pre-set horizon. VaR answers the 

question: how much can I lose with x% probability over a given time horizon.”9 

Jorion (2001) defines VaR as a measure for the worst loss over a target horizon with a given 

level of confidence, or “More formally, VaR describes the quantile of the projected 

distributions of gains and losses over the target horizon.”10 

From these definitions the three main cornerstones of any VaR calculation can be inferred: 

• The confidence level or probability, which represents the level of statistical confidence of 

the calculated VaR figure. 

• The forecast horizon of the VaR calculation, which is the focus of this paper. 

• And the base currency in which the value, i.e. the Value at Risk is measured. This is 

usually the home currency of the investor or company calculating VaR.11 

With these three parameters defined, one can specify the components of the VaR 

methodology which represent the elements or steps necessary for any VaR calculation 

independent of the model which is chosen to calculate VaR.12 

After having defined the confidence level, forecast horizon, and time horizon for the VaR 

calculation, the first step is marking to market the portfolio at hand. That is, calculating the 

present value of the portfolio, denominated in the chosen base currency. 

In most cases this present value serves as the benchmark to which the potential portfolio value 

fluctuations are compared.13  
                                                 
8 Holton (2003), pp. 15-16 
9 Longerstaey (1996), page 6 
10 Jorion (2001), page 22 
11 Laubsch & Ulmer (1999), pp. 10-11 
12 The following listing of these VaR elements is based on Jorion (2001), pp. 108, Longerstaey (1996), pp. 105, 

and Laubsch & Ulmer (1999), page 105. 
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Either during the process of calculating the present value or afterwards, one must identify and 

select the risk factors which will be considered when estimating the fluctuation of portfolio 

value over the VaR horizon. A straightforward choice is selecting every market rate or price 

which was necessary or used for the initial present value calculation, for example the price or 

price change (i.e. return) of every single asset contained in the portfolio. Beside the fact that 

modelling every asset price as a distinct risk factor would make calculations for large 

portfolios extremely cumbersome14, in many cases it is neither necessary nor the optimal 

choice. This is precisely where the next essential element of a VaR calculation, mapping, 

comes into play. 

Mapping encompasses the identification of relevant and necessary risk factors and the 

specification of the functional dependencies of future asset values in relation to these risk 

factors for all assets contained in a portfolio. The main aim of mapping is to reduce the 

number of risk factors to a manageable number whilst maintaining accuracy of the resulting 

VaR calculation. The following diagram contained in Figure 1 depicts a graphical 

representation of mapping to illustrate the purpose of mapping in VaR calculations. 

                                                                                                                                                         
13 There are two exceptions: On the one hand a relative VaR can be calculated by comparing the portfolio value 

fluctuation to a predetermined benchmark portfolio; on the other hand one can relate these value fluctuations to 

the expected portfolio value at the end of the VaR horizon. The latter issue will be covered in the next part of the 

thesis. 
14 In extreme cases it can make a VaR calculation close to impossible because the derivation of a valid 

correlation matrix becomes extremely difficult for large numbers of risk factors (Jorion (2001), page 168). 
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Holton (2003)15 devotes two chapters to an extensive discussion of mapping in general and 

various techniques, but in the treatment at hand only two of the most common examples for 

mapping will be presented. The most prominent mapping technique presented in the 

RiskMetrics documents is cash flow mapping to model interest rate risk.16 In this mapping 

technique a select number of key interest rates in the form of zero coupon rates or discount 

factors for the essential maturities are selected as risk factors. Then every asset or instrument 

in the portfolio is dissected into the cash flows it generates and these cash flows are mapped 

into so-called “time-buckets”17 whereby each key rate maturity represents one of these 

buckets. After mapping all assets in the portfolio into these time buckets, the sensitivity of the 

entire portfolio with respect to each of the risk factors is identified in an aggregated form and 

any Value at Risk calculation is simplified by substantially reducing the number of risk 

factors. 

A second example of a mapping technique for VaR calculations is index mapping, which is 

primarily applied to equities. In this mapping technique, the prices or returns on equity 

indices18 are selected as risk factors and the individual stocks mapped onto these indices by 
                                                 
15 Chapters 8 and 9 in Holton (2003), pp. 275-354 
16 Longerstaey (1996), pp. 117-121; Laubsch & Ulmer (1999), pp. 105-110; Mina & Xiao (2001), pp. 41-46 
17 Longerstaey (1996), page 39 
18 These indices can be determined geographically, by sector or even a combination of the two (Laubsch & 

Ulmer (1999), pp. 108-109). 

Figure 1 – Mapping - Source: Jorion (2003), page 376
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calculating the beta factors for each stock with respect to the relevant index in line with the 

CAPM. As can be imagined for portfolios containing large numbers of different stocks this 

can provide considerable advantages with regard to the complexity of the VaR model. There 

are also similar mapping approaches for other asset classes which follow the same basic 

principles. 

After having identified both the relevant risk factors themselves and the exposures to these 

risk factors for the portfolio under investigation, the next step is estimating the development 

of these risk factors up to or over the selected VaR horizon. 

This element is basically the cornerstone of the whole VaR methodology, as the accuracy and 

validity of these estimates ultimately determine the quality of the resulting VaR figures. 

Therefore, risk factor forecasting or estimation for long time horizons will be one of the focal 

points of the next part of this thesis. 

Determining the risk factor estimates differs both in complexity and in the actual “mechanics” 

of deriving them for the various VaR models and will therefore be covered in the next section. 

The three components of this step in the VaR process, however, are the same for all models. 

Based on market data19, an assumption is made which distribution the risk factors, or their 

changes, follow. This assumption is oftentimes made implicitly by default due to the specific 

VaR model choice. The most common choice is the standard normal distribution and this 

choice will be discussed extensively throughout the thesis. 

The next component is determining the specific risk factor distributions based on the market 

data, either by estimating the necessary distributional parameters or by estimating the entire 

risk factor distribution, which is the case in historical simulation models. And finally, these 

risk factor distributions are used to generate forecasts for the developments of the risk factors, 

for the category of simulation-based VaR models this is referred to as scenario generation.20  

The penultimate element in a VaR calculation is determining the effect of the forecast risk 

factor fluctuations on portfolio value at the end of the VaR horizon. There are two classes of 

                                                 
19 For example, directly observable current spot market prices for the risk factors, derivatives based on these 

assets, historical developments of these market rates, or other financial or economic data. 
20 Longerstaey (1996), page 151 
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VaR models which distinguish themselves as to the way in which this effect on portfolio 

value is calculated, local valuation and full valuation models. 

The difference between the two is that whereas local valuation models only approximate the 

actual portfolio value at the VaR horizon, the full valuation models perform a full portfolio 

revaluation for the forecasted risk factor scenarios. Local valuation methods have advantages 

regarding computational intensity and simplicity, because for these methods one must only 

calculate or estimate sensitivities of the portfolio or the contained assets, respectively, with 

regard to the selected risk factors once for a given asset, which is usually done in line with the 

mapping procedure. The effect of the risk factor fluctuations on portfolio value can then be 

projected relating the sensitivities to the estimated risk factor scenarios. The main advantage 

of local valuation is that the sensitivities only need to be calculated once and can then be used 

for calculating the effect of multiple different estimated risk factor scenarios, the disadvantage 

is that the method only calculates approximations of the real effect of the risk factor changes 

on portfolio value.21 

Full valuation methods, however, perform a full revaluation with the actual pricing functions 

for the portfolio assets, taking the previously identified mapping relationships into account. 

Such a revaluation must be performed specifically for every single different risk factor 

scenario so that the increase in precision comes at the price of a greater computational load. 

Once the effect of the estimated risk factor fluctuations on portfolio value has been estimated 

one can determine the “worst case” risk factor scenario which is in line with the specified 

VaR confidence level and in the final step of any VaR calculation, this “worst case” portfolio 

value is related to the portfolio’s present market value to determine the “worst case” loss for 

the selected horizon and confidence level which is the quantification of market risk that a 

Value at Risk figure represents. 

Summarizing these elements and steps in any VaR calculation: 

1. VaR parameter definition (currency, horizon, confidence level) 

2. Calculation of the portfolio’s present value (marking to market) 

3. Mapping (assets and exposures to risk factors) 

                                                 
21 In the most common case, a linear approximation of the actual pricing functions is applied. For details please 

see Longerstaey (1996), page 26. 



14 
 

4. Risk factor estimation or forecasting (distributions, parameters and scenarios) 

5. Revaluation of the portfolio (local or full valuation in line with steps 3 and 4) 

6. Calculation of the VaR figure (relating “worst case” value to relevant benchmark) 

These steps are necessary for every VaR calculation and therefore present in any VaR model, 

whereby the first two steps are exactly the same for every model, but the other four steps are 

where the models differ.  

Before focussing on the specific VaR models, a brief and very simple numerical example will 

be provided to promote a basic understanding of the concepts just presented. 

• An investor located in Euroland holds a portfolio containing 10 shares of a 

specific company’s stock whose present value is EUR 10 per share. 

• The present value of the portfolio is therefore obviously EUR 100. 

• It is assumed that the expected one-day return for these stocks is zero percent 

and the expected volatility of the one-day returns is 10 %. 

• For additional simplification it is also assumed that these stock returns are 

drawn from a normal distribution. 

By taking these assumptions into account one can state that the expected portfolio value in 

one day is EUR 100. 

A one-day Euro VaR figure can provide an estimate of a potential loss in portfolio value 

which will not be breached with a specific level of confidence expressed in a probability 

percentage. 

Again drawing from the just presented information and assumptions one can calculate a one 

day Euro 95% VaR by calculating that one day portfolio return which will be surpassed with a 

probability of 95% (i.e. the probability of the return falling below this return is 5%) and then 

relating the corresponding portfolio value to the portfolio’s present value of EUR 100. 

Applying the simplest VaR model which will be covered in the next section, one can calculate 

the 95% “worst case” portfolio return by multiplying the volatility of the one-day return of 

10% with the 1-95% quantile of the standard normal distribution which is equivalent to -1.65. 
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The 95% “worst case” one-day return is therefore -16.5% and the corresponding 95% “worst 

case” portfolio value in one day amounts to EUR 83.5. 

This yields a one-day Euro 95% VaR of EUR 16.5 which is the difference between the 

portfolio’s present value and the 95% “worst case” portfolio value in one day’s time. 

This VaR figure gives the investor the information that with a probability of 95% the highest 

loss in portfolio value which can be incurred in one day is EUR 16.5 presenting a measure for 

the risk potential of the investment. 

After having presented this simple example as an illustration of the basic VaR concepts, the 

different standard short-run VaR models will be covered in the next section, whilst 

highlighting the simplifying assumptions contained or employed in these models.22  

2.3. Standard Short-Run Value at Risk Models 

Aside from the one primary distinction or classification of VaR models into local valuation or 

full valuation models, there is one other general differentiation for Value at Risk models. 

One distinguishes between parametric or analytical models23 on the one hand and simulation-

based approaches on the other hand.  Analytical VaR models all assume the risk factors to be 

drawn from a simple parametric distribution24 and consist of a single specific function which 

is formulated and can then yield a precise VaR figure for a given set of input parameters. The 

VaR calculations are usually fairly simple and by definition they always apply local valuation. 

Simulation VaR models are more labor intensive. These entail calculating an entire risk factor 

distribution at the end of the VaR horizon and then deriving the associated portfolio value 

distribution via full or local valuation. These models can basically incorporate any kind of risk 

factor distribution. 

 

 

                                                 
22 While the different standard short-run VaR models and classes of models will be surveyed, they will not be 

explained in great detail as the focus at hand is highlighting the inherent assumptions and limitations with respect 

to an application of these models for long time horizons. For detailed explanations and derivations of the short- 

run models, the reader should refer to any of the cited standard VaR or RiskMetrics publications. 
23 Jorion (2003), page 371 
24 The standard normal distribution is the most common and straightforward choice. 
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2.3.1. Analytical Local Valuation VaR Models 

2.3.1.1. Delta Normal VaR 

The simplest of all VaR models or methods is the delta normal VaR. As the name implies, this 

method makes use of linear mapping procedures and of the normality assumption for the 

relevant risk factors.25 This assumption has tremendous benefits in relation to simplifying the 

corresponding calculations.26 

As far as the process of calculating a delta normal VaR goes, the first two steps are standard. 

In the mapping process the assets are then mapped linearly to the risk factors to determine the 

exposures. This yields an exposure vector of so-called “delta equivalents”27. 

The next element of risk factor estimation is also highly simplified. This model assumes that 

the fluctuations or changes of the selected risk factors are normally distributed with a mean 

value of zero. Therefore the only parameter necessary to define the single risk factor 

distributions is the volatility, which is usually calculated from daily historical market returns 

and scaled to the defined VaR horizon. In addition, the other necessary element relating the 

distinct risk factor distributions amongst each other is a correlation matrix, also derived from 

historical market returns. 

The model therefore introduces some significant assumptions in this element: risk factor 

fluctuations which follow a normal distribution with a constant mean return of zero, constant 

volatilities and constant correlations across the entire VaR horizon. 

These risk factor forecasts are used to generate a covariance matrix for all determined risk 

factors and the defined VaR horizon. The actual VaR calculation then is simply a matrix 

multiplication of the exposure vector and the covariance matrix which produces a standard 

deviation of the portfolio value in units of the defined currency. VaR is finally computed by 

multiplying this standard deviation with the appropriate quantile of the standard normal 

distribution representing the defined confidence level. The simplicity of this model has 
                                                 
25 Jorion (2001), page 206 
26 Linear combinations of normally distributed variables are also normally distributed; therefore, if one assumes 

risk factors to be normally distributed and exposures are mapped to these risk factors via linear relationships, 

then the distribution of portfolio value is also normally distributed (the invariance property of normal variables – 

from Jorion (2001), page 206). 
27 Mina & Xiao (2001), page 21 
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advantages when considering computational intensity and the modification of parameters such 

as the confidence level or the time horizon, as these can be changed quickly and one must 

only perform a simple multiplication to obtain the new result. However, this high degree of 

simplicity restricts a valid application of the model significantly. Even for short time horizons 

and the associated smaller expected fluctuations of risk factors, both the linear mapping and 

the distributional assumptions are problematic in many cases, but for long time horizons they 

would have to be deemed implausible in most cases. 

2.3.1.2. Delta Gamma VaR (and other “Greeks”) 

These VaR models are extensions of the delta normal VaR method. Whereas the delta normal 

VaR applies linear approximations of the relationships between asset values and risk factors 

in the mapping process, for example in the form of the first derivative of the pricing functions 

with respect to a risk factor, the delta gamma and related VaR models expand the 

approximation to include second derivatives of the pricing function and other sensitivities to 

produce a more accurate measure of the value fluctuations with regard to risk factor 

changes.28 Mathematically this is achieved by employing a higher order Taylor series 

expansion of the pricing functions.29 

As far as the actual VaR calculation is concerned, the only difference with regard to the delta 

normal VaR is the increased complexity of the mapping and the corresponding risk factor 

estimation elements. In the most common delta gamma models two additional parameters are 

required to calculate VaR for every risk factor, however, this group of models can become 

very complex if one includes additional sensitivities. The simplest of these models is the delta 

gamma delta method which makes use of an additional simplifying assumption which makes 

the resulting VaR equations manageable. The assumption being that the first order derivative 

of the pricing function with respect to the risk factor and the second order derivative are joint 

normally distributed.30 Once the parameters and matrices have been derived, the actual VaR 

calculation is once again very straightforward and equivalent to the delta normal VaR. 

                                                 
28 Examples are the following: for a fixed income asset the delta normal VaR would use duration as a mapping 

function and the equivalent delta gamma VaR would also include convexity. For equity options the delta normal 

VaR would be expanded to include gamma or any of the other so called “greeks”. For more information on these 

Greeks please refer to chapter 14 in Hull (2003), pp. 299-329. 
29 This process is explained in Holton (2003), page 63. 
30 Jorion (2001), page 213 
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However, the advantages with regard to computational intensity that this method can have 

over full valuation methods can quickly disappear for large portfolios with different complex 

assets which lead to a dramatic increase in the number of parameters which must be 

calculated. 

2.3.2. Simulation-Based Full Valuation VaR Models 

2.3.2.1.  Monte Carlo Simulation VaR31 

Monte Carlo simulation VaR models are the most flexible VaR methods. They can basically 

model any and every risk factor distribution conceivable and provide a complete distribution 

of portfolio values subject to the different risk factor scenarios via full valuation. The 

precision of the yielded results depends solely on the assumptions underlying the simulations 

and the extent of simplification caused by the mapping procedures. 

Naturally this flexibility and precision must be weighed against the computational intensity in 

real world VaR applications or implementations, to arrive at an optimal tradeoff for each 

specific case. 

Just as in the analytical VaR models, the first two steps in the process are also the same in the 

simulation-based approaches. But the remaining elements are notably different from those in 

the analytical models. For one, mapping is not restricted to linear or second order 

approximations of the actual relations between risk factors and asset values as the portfolios 

are completely revalued for every risk factor scenario. The main difference, however, arises in 

the fourth step of risk factor forecasting. As already mentioned, contrary to the analytical 

methods, there are no restrictions as to which statistical distributions can be assumed. The 

only factors that must be kept in mind are the computational intensity and accuracy related to 

any such choice. Each distribution requires different parameters to be calibrated from market 

data and the subsequent generation of forecast scenarios from these distributions. Therefore 

the choices which are simplest to implement, whilst reflecting the actual distributions most 

accurately, must be preferred. 

                                                 
31 Monte Carlo simulations go back to Stanislav Ulam in 1946 (Eckhardt (1987) pp. 131-137) and are used in 

various fields of science to find solutions numerically by producing scenarios and evaluating the results obtained 

for every scenario. In finance the other major application is for asset valuation of derivative assets such as 

complex options. For detailed information on Monte Carlo Simulations in general please refer to chapter 5 in 

Holton (2003), pages 193 to 225. 
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  Despite the high degree of flexibility that Monte Carlo VaR models can potentially 

incorporate, the standard Monte Carlo models, as presented in Mina and Xiao (2001)32, make 

use of the same simplifying assumptions that are incorporated in the standard analytical 

models. The risk factor fluctuations or returns are assumed to follow a normal distribution 

with a constant mean of zero, constant volatility and correlation across the entire VaR 

horizon.  

These assumptions facilitate the application of the geometric Brownian motion as the process 

from which the forecast risk factor fluctuations are drawn to simulate the necessary scenarios. 

The actual simulation runs are calculated in line with the following basic equation: 33 

 , √  

This presents the statistical process for the single risk factor fluctuations (returns), where in 

the standard model the mean return is assumed to be zero, which reduces the expected return 

to a function of the volatility estimate, scaled by the relevant time horizon and multiplied by a 

random number which is drawn from the standard normal distribution.34 

In a framework where there are multiple risk factors, i.e. a multivariate setting, these distinct 

risk factor processes must be correctly related to each other. This is achieved by estimating a 

constant correlation matrix from historical market data just as in the standard analytic VaR 

methods.35 In the process of the actual risk factor scenario generation, this correlation matrix 

is initially “decomposed”36 and then applied to the random variables in order to essentially 

impose the estimated correlation structure onto the generated risk factor scenarios. At the end 

of the fourth step in the Monte Carlo VaR process, one has generated the required number of 

                                                 
32 Mina & Xiao (2001), pp. 18-21 
33 Mina & Xiao (2001), page 14 
34 These random numbers are referred to as innovations, error terms, or residuals and are the source of the 

random component in the simulation models. 
35 It is important to keep in mind that a correlation matrix is not directly dependent on the VaR horizon, but a 

covariance matrix which combines the correlations with volatilities is specified for a specific horizon just as 

single volatility estimates are. 
36 Basically the matrix is split into a triangular matrix by means of a so called Cholesky decomposition or Single 

Value decomposition, which has the necessary properties required for the actual scenario generation. For details 

on these elements of the Monte Carlo simulation please refer to Jorion (2001) pages 303-304 or Mina and Xiao 

(2001) page 19. 



20 
 

scenarios, each encompassing a simulated value for every risk factor as at the end of the VaR 

horizon. 

The next element is then simply calculating the portfolio value for every simulated scenario 

by revaluing the assets assuming the forecast risk factor values, which yields a complete 

distribution of portfolio values as at the end of the VaR horizon. 

In the sixth and final step of the VaR calculation the sought-after VaR figure can be read out 

of the portfolio value distribution by selecting the quantile which corresponds to the chosen 

confidence level and comparing this value to the relevant portfolio value benchmark, which in 

the standard model is the portfolio’s present value.37 

Although the tool of a Monte Carlo simulation provides means to create highly complex and 

flexible models which are fundamentally restricted only by the available computational 

power, the standard models subscribe to most of the simplifying assumptions which are also 

present in the simple analytical models. 

2.3.2.2. Historical Simulation VaR 

The historical simulation VaR methods are also full valuation models and can be seen as 

special implementations of a Monte Carlo simulation. The first three and final two steps 

follow the same footsteps as in any Monte Carlo simulation, whilst the difference appears in 

the process of estimating and forecasting the risk factor distributions. 

Contrary to Monte Carlo simulations, in which statistical distributions are chosen and the 

distributional parameters are then calibrated based on the market data, historical simulations 

use the actual historical return data directly for the forecast scenarios. For each simulation run 

an independent non-overlapping historical sample of the same time span as the VaR horizon is 

necessary.38 This is the greatest drawback of the method, as the sample size of relevant or 

even available data is restricted even at a one day horizon, and this problem increases 

dramatically when the VaR horizon is extended. Although Mina and Xiao (2001) present two 

possibilities of increasing the sample size for multi-day VaR horizons, neither provides 

                                                 
37 This approach is called “percentile ranking method”. Das (2006) pp. 95-96  
38 This implies that, to generate 500 runs for a one day VaR horizon one needs 500 distinct historical one day 

returns which, assuming 250 trading days in a year, is equivalent to two years of market data. 
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satisfactory relief.39 This issue will be discussed further in the next part of the thesis as there 

are some long-run VaR approaches based on historical simulation. An additional drawback of 

historical simulations is that the time period from which the data is sampled must be deemed 

representative for possible future developments, so that if the historical data covers a period of 

uncharacteristically low or high volatility the derived VaR will most certainly be 

systematically flawed. For these reasons, in any historical simulation a compromise between 

the accuracy (larger number of scenarios) and the quality of representation of the expected 

risks (shorter sample timeframe) must be found.40  

In spite of these shortcomings, historical simulations have some significant advantages over 

Monte Carlo simulations. By abstaining from making any distributional assumptions, the 

drawbacks of any distributional misspecifications can be avoided. The actual historical 

distributions of market data obviously incorporate any special empirical distributional 

characteristics which might not be reflected accurately in a standard statistical distribution 

such as the normal distribution.41 

The actual scenario generation and VaR calculation in a historical simulation model is 

performed by randomly selecting the necessary number of scenarios from the dataset of daily 

historical returns and performing a full valuation of the portfolio subject to each scenario, 

which just as in a Monte Carlo simulation provides a full distribution of portfolio values from 

which VaR can be determined.42 

2.3.3. Hybrid VaR Models 

In addition to the local valuation analytical VaR models and the full valuation simulation 

based VaR models there are VaR models which combine features from these two model 

classes which are therefore referred to as “hybrid” models in this thesis. 

                                                 
39 For details on these two options please refer to Mina and Xiao (2001), pages 26 to 27. 
40 Jorion (2001), pp. 223-225 
41 Examples which are commonly discussed in finance publications are the skewness and heavy tails present in 

financial time series. For an overview of the history of return distributions, please see Malevergne and Sornette 

(2006), pages 37 to 43. 
42 Das (2006, pp. 95-96) also suggests an alternative for calculating a VaR figure from the simulated portfolio 

value distribution, in which, similar to the delta normal method, a sample mean and standard deviation are 

calculated and VaR is computed from these parameters. 
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Two such VaR models are the Delta-Gamma-Monte Carlo method and a so-called Grid 

Monte Carlo method. The Delta-Gamma Monte Carlo method is no different from a standard 

Monte Carlo VaR model except for the fact that for every simulated risk factor scenario only a 

local valuation based on the Delta-Gamma models is performed. This procedure could also be 

applied when scenarios are derived via historical simulation. The grid Monte Carlo method on 

the other hand reduces the computational load by only performing full valuations for a small 

number of risk factor scenarios, so called “grid points” and then applies linear interpolation of 

portfolio values between these grid points.43 

These hybrid methods try to provide a compromise solution in the tradeoff between the 

accuracy of simulation-based approaches and the computational efficiency of local valuation 

models. 

2.4. Essential Parameters and Assumptions in Standard VaR Models 

In the final section of this part, the parameter choices, explicit, and implicit assumptions in the 

standard short-run VaR models that were just presented will be summarized and critically 

evaluated with regard to their validity and applicability in long-run VaR calculations. 

The first three parameters are those which define any VaR figure and must be defined in the 

first step of any VaR calculation: the base currency, confidence level, and time horizon. 

2.4.1. Base Currency 

The choice of base currency can in general be deemed straightforward and unproblematic, 

irrespective of whether one is concerned with a short or a long time horizon. 

2.4.2. Confidence Level 

The choice of confidence level on the other hand can pose problems or, at the very least, must 

be kept in mind when extending the VaR horizon significantly. On the one hand some models 

such as the historical simulation can become prone to large estimation errors for very high 

confidence levels with this problem increasing as the sample size decreases due to longer 

sample intervals. On the other hand, different VaR models achieve different levels of 

                                                 
43 Jorion (2001), pp. 210-215 
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precision for the different levels of confidence, so that this issue should be kept in mind when 

choosing the VaR model and determining the confidence level to be calculated.44  

2.4.3. VaR Horizon 

The third of these parameters goes to the heart of this thesis. The VaR horizon in standard 

models usually lies between a single day and one month, with the most common choices 

being 1 day, 5 days, or 10 days - the time horizon set forth in the BIS’s regulatory 

requirements. The time horizons this paper focuses on are of a much greater dimension than 

the standard short-run choices, specifically, horizons in the range between 3 months and 2 

years where the focal point lies at a time horizon of 12 months.45 

The fact that the time horizons are not limited to a few days is the dominant reason why most 

of the standard assumptions and parameters cannot be deemed feasible in long-run VaR 

calculations. 

2.4.4. Constant Portfolio Composition 

This is one of the critical, implicitly made assumptions present in all standard short-run VaR 

models. The portfolio is evaluated and marked to market in the second step of any VaR 

calculation and all ensuing evaluations of the effect of market rate fluctuations are performed 

assuming the portfolio composition remains unchanged throughout the VaR horizon.46 

This assumption might seem trivial and unproblematic for the short horizons of 1 to 10 days, 

but for longer time horizons some critical issues arise in connection with this assumption. 

Many if not most assets yield intermediate cash flows during their existence, some at 

predefined and others at unforeseeable points in time.47 Other assets, on the other hand, can 

require additional inflows during their term, where a textbook example is a margin call in 

                                                 
44 The most common choices are 95% and 99%. 
45 These time horizons are of relevance for the primary user groups of such long run VaR figures, as will be 

explained in the next part of the thesis. 
46 Composition remains constant in the sense that the number and/or nominal value of the assets which are 

contained in any portfolio stay fixed. Obviously the composition as far as market values are concerned can 

change in different scenarios. 
47 Standard examples include equity dividends or fixed income coupon payments. 
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connection with a futures contract.48 Such cash flows could cause substantial shifts from or 

into a potential cash position in a portfolio or even a liquidation of assets to cover potential 

cash shortfalls. Although this aspect can be neglected for a one day horizon because portfolio 

revaluations usually take place at daily intervals, they cannot be ignored for longer time 

horizons, let alone horizons of a year or longer. 

A closely related issue is that very many financial assets have a specific term and an either 

fixed or maximum maturity date.49 For a twelve month time horizon the probability of a 

portfolio containing such assets is obviously relatively high. These are just a few examples of 

possible events that could force a change in portfolio composition, the other element that 

certain underlying strategies or restrictions might lead to an active change in composition.50 

Holton (2003) refers to such occurrences as “intra-horizon events”.51 

2.4.5. Standard Distributional Assumptions and Parameters 

As previously mentioned, all standard short-run VaR models except for the historical 

simulations employ the assumption that risk factor fluctuations (returns) are drawn from a 

multivariate normal distribution with a constant mean of zero, constant volatility, and constant 

correlation. The normality assumption is not even without criticism for short horizons, but its 

validity for long-run VaR models must and will be evaluated. As far as the distributional 

parameters are concerned, the assumption which is most questionable is the zero mean 

assumption. This simplification goes against fundamental principles of financial theory, 

because if a risk-bearing asset has an expected return of zero, this would violate any risk-

return considerations and remove any financial incentive of holding such assets.52 Assuming 

constant volatilities and correlations over such long time horizons is also by no means 

unproblematic, however as will be illustrated in the next part of the thesis, any deviations 

from these simplifications are quite complex. A related issue is how these distributional 

parameters, most importantly the volatilities, are estimated. The standard models rely solely 

                                                 
48 Reilly & Brown (2003), page 908 
49 Most fixed income and derivative instruments have predetermined maturities, with some derivatives such as 

American options being exercisable at any point in time up to maturity. 
50 If a portfolio is managed in line with a predetermined strategy, certain events could lead to a required 

adjustment of the portfolio composition. 
51 Holton (2003), page 290 
52 Cuthbertson & Nitzsche (2005), pp. 124 & 381-383 
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on historical spot market data and calculate one day volatilities either by an equally weighted 

historical average or an Exponentially Weighted Moving Average (EWMA).53 When 

estimating a volatility forecast for horizons in excess of a single day, the one day estimates are 

simply scaled to the required horizon by the so called “square root of time rule”.54 This simple 

scaling approach can lead to very poor results and as the volatility estimates are without a 

doubt the most critical parameter in any VaR calculation, this issue will be thoroughly 

discussed in the next part. Furthermore, the development of different volatility estimation 

models and approaches has made significant advances over the past few years so that any 

implementation of these simple approaches should be carefully assessed.55 

This concludes both the current section, which highlighted the critical issues which must be 

considered when dealing with VaR for long time horizons, and also the second part which 

should provide the reader with a fundamental understanding of both VaR in general and the 

standard short-run VaR models and their deficiencies in particular. 

  

                                                 
53 Mina & Xiao (2001), pp. 14-16; Longerstaey (1996), pp. 78-82 
54 Longerstaey (1996), page 87 
55 For examples of such models please refer to Dunis et al. (2005), pp. 129-292 
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3. Long-Run Value at Risk Models 

3.1. Overview 

After having presented and discussed basic short-run value at risk models to provide the 

reader with a solid understanding of the related theories and framework in the previous part of 

this thesis, this part will treat the core topic of Value at Risk for long time horizons. 

 

At first the simple approaches for calculating long-run VaR figures will be surveyed and 

critically evaluated. These simple approaches generally make use of a short-run VaR approach 

or model and merely extend the time horizon to the desired length by applying a multiplicator 

to the short-run VaR itself or to an input parameter of the model. 

Then, in the second section of this part of the thesis, specific long-run VaR models will be 

treated, placing special emphasis on their critical differences compared to the simple 

approaches. 

 

3.2. Simple Extensions of Short-Run VaR to Long Time Horizons 

3.2.1. Scaling VaR Quantiles Directly with the Square Root of Time Rule 

The simplest extension of short-run VaR to a longer time horizon is using a VaR figure 

calculated for a short time horizon such as a single day and then scaling up this 1 day VaR 

figure to the desired time horizon by multiplying it with the square root of the number of days 

in the desired VaR horizon. 

 

   , %     , %   √  

 

Interestingly, although the most simplistic, this approach is listed as permissible in the BIS 

documents on the Basel Capital Accord56 which are regulatory documents setting forth rules 

for banking risk management systems.57 Some of the first publications on VaR refer to this 

approach as the appropriate means of calculating a long horizon VaR and mention horizons up 

                                                 
56 BIS (2005), page 40 
57 These recommendations and guidelines were adopted as law within the European Union in the summer of 

2004, further increasing their relevance. (Brummelhuis & Kaufmann, 2007, page 39) 
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to one month as illustrations.58 This method is also listed in other prominent publications on 

the subject.59 It should be noted, however, that even the original RiskMetrics Technical 

Document of 1996, although mentioning this approach as allowed according to the “Basel 

proposals”60,does not favor the technique. Daníelsson, Hartmann and de Vries (1998) are very 

critical of some of the Basel proposals including the multiplicator, going so far as to state that 

these proposals provide incentives to underestimate VaR as much as possible.61 

Contrary to the BIS the United States Federal Reserve does not support this scaling method.62 

 

Although the Basel framework chooses a VaR horizon of ten days as its benchmark in which 

this crude extension might not deviate too much from the results of more precise methods, it 

does not restrict the use of this means of horizon extension to only ten days. 

 

Fundamentally, this VaR scaling method is based on the more prominent and less restrictive 

approach of scaling volatility estimates to the desired VaR horizon by the square root of time 

rule63 which are then used as inputs in VaR calculations.  

These two methods are only equivalent, however, when calculating VaR with the simplest 

VaR model, the analytical Delta Normal VaR approach. 

If: 

   , %   .  

And: 

         √  

Then: 

   , %       √ .   √   

 

When calculating the underlying short-run VaR with any other model, these two approaches 

are no longer equivalent.64 In such cases, the obtained VaR figures are even more imprecise 

                                                 
58 Smithson & Minton (1996a), pp. 25-27; Smithson & Minton (1996b), pp. 38-39; Jordan & Mackay (1997), pp. 

292-294 
59 For Example: Jorion (2001), pp. 112, 252; Das (2006), page 50; Duffie & Pan (1997), page 34 
60 Longerstaey (1996), page 37 
61 Daníelsson et al. (1998), pp. 101-103 
62 Laubsch & Ulmer (1999), page 12 
63 Jorion (2003), page 66 
64 Iacono & Skeie (1996), page 8 
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and the additional implicit assumptions (e.g. distributional stationarity)65 of the approach are 

even more problematic than those inherent when scaling volatilities by the square root of 

time. 

This specific fact is one of the points of criticism brought forth in the literature against this 

practise.66 

 

In their paper on time-scaling of risk, Daníelsson and Zigrand67 discuss this approach of 

scaling quantiles of the portfolio value profit and loss or return distribution in great detail. 

The authors argue that the underlying distributional assumptions made when scaling quantiles 

of a return distribution are even more restrictive than when scaling volatilities and that these 

assumptions “are violated in most, if not all, practical applications.”68 

Daníelsson and Zigrand go on to analyse the performance of the square-root-of-time rule 

(applied to quantiles) for returns following different data generating processes, such as 

GARCH69, stable but non-normal or jump diffusion processes.70 They find that applying this 

scaling of quantiles underestimates VaR for almost every assumed return process with the 

underestimation increasing with the time horizon and confidence level. 

They also analyse the effect of time scaling when a positive drift is assumed and discover that 

even in such cases risk, i.e. VaR, is underestimated for longer horizons. However, their results 

show that when a positive drift is present, the square root of time rule does perform best when 

scaling to around ten days, due to the fact that at this time horizon the systemic 

underestimation caused by the approach is balanced by the overestimation of risk induced by 

a positive drift. This result could temper the criticism of the Basel guidelines to some extent. 

 

One of the most interesting results of their analyses is that the shortcomings of time scaling of 

quantiles are not due to the potential insufficiencies caused by time scaling of volatilities. The 

shortcomings of this approach would arise on top of or independent of potential shortcomings 

due to time scaling of volatilities, which will also be discussed in this thesis. 

                                                 
65 Culp et al. (1998), page 26 
66 Dowd (2005), pp. 157, 184 
67 Daníelsson & Zigrand (2006) 
68 Daníelsson & Zigrand (2006), page 2702 
69 GARCH = Generalized Autoregressive Conditional Heteroskedasticity  
70 For an introduction and detailed information on different data generating processes please refer to Schmid and 

Trede (2006). 
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Summing up their findings, the time scaling of VaR quantiles underestimates VaR in almost 

all analyzed cases and “configurations” and this underestimation is not caused by potential 

failures caused by time scaling of volatilities. 

 

Contrary to these results Blake, Cairns and Dowd (2000) argue that the square root of time 

rule applied to VaR quantiles grossly overestimates the actual VaR even at short horizons 

such as five or ten days with the error increasing with the time horizon. Their results however 

are deduced from the fact that they assume a positive mean return for the portfolio, so that the 

two analyses are not directly comparable.71 

In short, research results on direct scaling of VaR quantiles are by no means unambiguous. 

 

3.2.2. Scaling Volatility Estimates in VaR Calculations 

A more common and potentially more precise extension of short-run VaR figures or models to 

longer time horizons is the application of the square root of time rule in its original form. That 

is, scaling the volatility parameter used in a VaR model directly to the desired time horizon 

and then calculating VaR with this input variable. 

This approach of extending the VaR horizon is definitely the most widely discussed method in 

the risk management and VaR literature.72 However, the square root of time rule extends 

beyond VaR and is notably present in other fields of finance.  

 

This type of time scaling of volatility originates from the geometric Brownian motion73, 

which is a continuous time stochastic process oftentimes chosen as the process which equity 

price changes are assumed to follow.74 One of, if not the most prominent application of this 

assumption, is the Black-Scholes formula for the pricing of European equity options.75 The 

Black-Scholes formula contains a volatility estimate which, similar to a VaR calculation, is 

the most critical input variable. This estimate can be derived by calculating a 1 day volatility 

                                                 
71 Blake et al. (2000), pp. 3, 7 
72 For example: Jorion (2001) and Longerstaey (1996) 
73 This process was introduced in the previous part of the thesis. 
74 Luenberger (1998), pp. 308-309 
75 Black & Scholes (1973), pp. 637-654 
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estimate and then scaling it by the square root of time to an annualized figure.76 The time 

scaling of volatility estimates by the square root of time rule can also be found in other 

models of option pricing, such as Monte Carlo simulation for the pricing of complex 

derivatives which was mentioned in the discussions on the analogous VaR method.77 

Although slightly less restrictive than a direct scaling of VaR quantiles, applying the square 

root of time rule to volatility estimates does garner its share of criticism. 

 

Diebold et al. (1998)78 devote an entire article to a detailed analysis of volatility scaling via 

the square root of time rule and highlight the major weaknesses of this approach. The authors 

illustrate that such volatility scaling implies strict statistical assumptions which are 

consistently violated by asset return data and therefore lead to inappropriate long horizon 

volatility estimates. Furthermore they argue that this scaling of volatility does not generate 

volatility estimates which are generally too high, too low, or too conservative, but rather 

amplifies volatility fluctuations when it should in fact dampen the larger volatility fluctuations 

which are present in short horizons. However, Diebold and colleagues do not completely 

condemn the approach as totally unsuitable or biased to either produce estimates which are 

always too low or too high. They highlight the fact that in spite of its shortcomings, the 

square-root-of time rule produces results which are correct on average and due to its 

simplicity does have its place, but that if possible one should implement more precise scaling 

methods or volatility estimates for long time horizons calculated directly from long run 

returns. 

 

In another publication which covers time scaling of volatility estimates, Gopikrishnan et al. 

(2000) analyze time scaling in financial time series in a general framework and find that for 

some asset classes such time scaling can be valid for horizons up to sixteen days, but that such 

scaling breaks down for longer time horizons.79 

 

An important point to consider when, or rather, before scaling volatility estimates, is which 

model is used to calculate the short-run volatility estimate80 and if scaling would be a grave 

                                                 
76 Reilly & Brown (2003), page 978 
77 Hull (2003), pp. 410-414 
78 Diebold et al. (1998), pp. 104-107 
79 Gopikrishnan et al. (2000),  page 364 
80 i.e. which process or distribution the volatility itself or the underlying returns are assumed to follow. 
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violation of the applied model. Daníelsson (2002) states that applying the square root of time 

rule to a short-run volatility estimate generated from a conditional volatility model would 

imply a complete absence of proficiency in statistical concepts of risk estimation.81 

 

Christoffersen and Diebold (2000)82 also take up this issue in their publication on volatility 

forecastability. They argue that the evaluations of volatility forecastability present in the 

literature are usually flawed in the sense that any results are not only dependent on the data 

and different time horizons but on the chosen or assumed volatility model. Therefore, one 

could not be certain that any results obtained by such an analysis are really due to the data, but 

rather could be due to the choice of model. In their own work the authors aim to assess 

volatility forecastability for different horizons without making model assumptions, thereby 

avoiding any potential distortion of their results caused by a potentially incorrect model 

choice.83 

In the first part of their analysis the authors formulate and test their model of a general 

assessment of volatility forecastability. Their general results are that the forecastability is very 

strong at short horizons and although it decreases with the horizon, the results for horizons up 

to twenty trading days are still reasonable. In the second part of their analysis, Christoffersen 

and Diebold (2000) apply their framework to financial market data, including foreign 

exchange, equity, and bond market return data for daily intervals. As far as equity and foreign 

exchange returns are concerned they find that for these markets volatility is significantly 

forecastable for horizons up to ten trading days with forecastability of up to three weeks in 

some markets. The bond markets are covered separately due to the fact that the underlying 

historical market data is usually in the form of annual yields as opposed to bond prices, so that 

exact returns cannot be calculated in a straightforward fashion. Therefore, in a first step an 

approximation is performed to obtain bond return data from bond yields. The calculated 

returns are then used to assess volatility forecastability. The results for bond returns are 

stronger that those for equity and foreign exchange, with forecastability present for horizons 

up to fifteen or twenty trading days, although the authors mention that some of this additional 

                                                 
81 Daníelsson (2002),  page 1285 
82 Christoffersen & Diebold (2000) 
83 For detailed information on the methods and analyses please refer to the original publication. (Christoffersen 

& Diebold, 2000) 
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forecastability could be due to the structural differences between bond markets and other 

capital markets.84 

 

Summarizing their findings, they state that when the relevant time horizons exceed ten or 

twenty trading days, depending on the markets, volatility forecasts are no longer reliable and 

therefore cannot be of grave significance for risk management applications due to a lack of 

precision. They also highlight in which respects their conclusions contradict certain research 

on the topic such as some of the propositions regarding the forecast performance of ARCH 

models contained in the RiskMetrics framework85 or Jorion (1995)86. On the other hand, they 

list different articles which seem to support their results. For example, they cite West and Cho 

(1995) who use a different approach in their analysis of foreign exchange market data but 

come to the similar conclusion that volatility in these markets is forecastable for horizons up 

to five trading days.87 Finally Christoffersen and Diebold cite those studies of volatility which 

are based upon intraday (very high frequency) data such as five minute intervals, and at first 

glance would seem to support forecastability for very long time horizons.88 They infer that 

when these time steps are in line with the data which is used to calculate the forecasts, i.e. five 

minute steps, then the resulting time horizon in days for five thousand five minute periods 

would be around seventeen days, which would also support their findings. 

 

With regard to the topic at hand, time scaling of volatility estimates to long time horizons, 

these results are somewhat positive in the sense that they would support the calculation of a 

volatility estimate based upon daily market data for horizons exceeding a single day. On the 

other hand, this paper focuses on time horizons which are much longer than the five to twenty 

days which are propagated as the boundaries of such estimates, so that for long horizons such 

scaling would seem to fail.89 

 

                                                 
84 It is proposed that yield curve models (e.g. Brennan and Schwartz (1979) or Cox et al. (1985)) provide some 

explanations for the differences in volatility forecastability. 
85 Longerstaey (1996) 
86 Jorion (1995) 
87 West & Cho (1995) 
88 Up to 1000 or even 5000 time steps as presented in Andersen and Bollerslev (1997) for example. 
89 Christoffersen & Diebold (2000), pp. 12-22 
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In addition to the more general treatments of time scaling and forecastability of volatility 

estimates for longer time horizons which were just presented, there is also literature on time 

scaling of volatility estimates for various specific volatility models or processes. 

 

Andersen and Bollerslev (1998)90do not treat time scaling of volatility estimates per se, but 

assess the quality of volatility estimates produced by ARCH models in general and 

GARCH(1,1) models as a specific example and argue that the forecast quality for daily 

volatility forecasts can be improved by using high frequency intraday data. They also liken 

this approach to work done by Schwert (1989, 1990)91 and Schwert and Seguin (1990)92 in 

which daily return data is used to calculate monthly volatilities. One of Andersen and 

Bollerslev’s (1998) conclusions is that their approach could be extended to longer horizons. 

The authors do point out however, that when extending to longer horizons, correct modelling 

of long-term dependencies in volatility gains substantially in importance, and refer to research 

on this subject by Baillie et al. (1996).93 

 

In his articles on ARCH volatility models, Engle (2001 & 2004)94 discusses issues to consider 

when extending a VaR horizon from one day to longer time horizons if the volatility estimate 

is calculated via an ARCH95 model calibrated to daily return data. In his analysis he points out 

that when forecasting volatility many steps ahead with such a dynamic volatility model, 

eventually the long run volatility dominates the forecast and the day to day noise loses 

relevance. In Engle (2001) he describes a way to generate a long horizon volatility forecast 

when implementing a GARCH(1,1) model. The approach is straightforward: one generates 

sequential daily volatility forecasts step by step until the desired horizon is reached. 

Ultimately the volatility forecast will move closer and closer to the long run average 

volatility.96 This is also one of the two main issues Engle highlights in his 2004 paper, as he 
                                                 
90 Andersen & Bollerslev (1998),  pp. 885-905 
91 Schwert (1989), pp. 1115-1153; Schwert (1990), pp. 77-102 
92 Schwert & Seguin (1990), pp. 1129-1155 
93 Baillie et al. (1996), pp. 3-30 
94 Engle (2001), pp.157-168; Engle (2004), pp. 405-419 
95 In his 2001 paper he focuses his investigations on GARCH(1,1) models which is one of the most common 

variations in financial applications, and in his 2004 paper he uses a TARCH model (=Threshold ARCH) as 

discussed in Zakoian (1994), which is an asymmetric volatility model. 
96 This is one of the three parameters in such a volatility model, next to the previous period’s forecast and new 

information in the form of the most recent squared residual. 
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points out that when forecasting ahead for longer than a single day, the level of current 

volatility in relation to the long run average is relevant. If the current volatility is above a long 

run average it can be expected to decrease as the horizon increases and vice versa. The second 

important consideration, which he deems more relevant, is the effect of asymmetry in 

volatility estimates in a multi-period horizon.97 He illustrates this phenomenon with a 

binomial tree, which is replicated in Figure 2.  

  
   

     

    

The probability of a positive return occurring is equal to that of a negative return in every 

period or day, i.e. the distributions are symmetric at every time step. The volatility in the next 

period however depends upon the direction of the previous move – if the return was negative 

the subsequent volatility is higher and if it was positive the volatility is lower. This 

relationship between return direction and volatility introduces asymmetry of volatility in a 

multi-period setting and would lead to a substantial increase of risk with respect to VaR, 

because this risk measure focuses on precisely those cases in which negative returns arise.  

When implementing a long horizon or multi-period VaR that reflects this volatility 

asymmetry, simple time scaling is not possible. Engle proposes a simulation based approach 

which simulates the daily moves and corresponding changes in volatility up to the end of the 

VaR horizon, similar to the standard Monte Carlo simulation method.98 

                                                 
97 Engle refers to research by Nelson (1991) who finds that negative returns lead to higher subsequent volatility 

than equivalent positive returns 
98 Engle (2004), pp. 405-419 

Low variance

High variance

Figure 2 – Asymmetric Volatility – Source: Engle (2004), page 416 
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A different and frequently cited method of “scaling” volatility estimates calculated from 

GARCH models was proposed by Drost and Nijman (1993).99 The authors analyse the 

relations between short horizon GARCH models based on high frequency, e.g. daily, data and 

longer horizon GARCH models based on lower frequency, e.g. weekly or monthly, data and 

whether or not one can obtain valid long horizon volatility estimates from a model calibrated 

to high frequency data. They argue that in applications of GARCH models it is usually 

assumed that a GARCH process at a short horizon is consistent with a GARCH process at a 

longer horizon, by making assumptions as to the independence of the innovations in the 

process. However, according to Drost and Nijman, these assumptions are not valid, so that 

simple scaling techniques as previously presented in this paper are not applicable to GARCH 

volatility estimates. 

Their analyses are performed for GARCH models in general and are not limited to financial 

market data. However they do place a special emphasis on the GARCH(1,1) models and test 

their findings on exchange rate data so that the relevance and applicability of their findings for 

financial markets is illustrated. Basically Drost and Nijman develop means to derive the 

GARCH parameters for long horizon (e.g. monthly) volatility estimates from the parameters 

of a short horizon GARCH model which was calibrated with high frequency (for example 

daily) data.100 

 

Summarizing their results it can be stated that in general, generating weekly volatility 

estimates by using the proposed equations and daily data provides estimates that are very 

close to estimates calculated directly from weekly data and seem to be even better than the 

direct estimates. The results for generating monthly estimates from either daily or weekly data 

are similar, with the inferred volatility estimates seemingly outperforming the direct estimates 

based on monthly data. 

 

These results would have to be deemed favourable for long horizon VaR models as the data 

availability of high frequency data is obviously greater than that of lower frequency data. 

 

                                                 
99 Drost & Nijman (1993), pp. 909-927 
100 For the proofs and derivations of the authors’ model please refer to the original text. 
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In other research on this topic one can come across both support for101 and criticism of102  

Drost and Nijman’s model and findings. However those articles which are critical of the 

approach do not propose any alternatives. Therefore Drost and Nijman’s model remains one 

of the few published means of generating long horizon GARCH volatility estimates from a 

short horizon GARCH model. 

 

To conclude the discussions on time scaling or horizon extension of volatility forecasts, a very 

extensive comparative study on the subject will be reviewed. Embrechts and colleagues 

(2005)103 evaluate various methodologies which can be applied to model the development of 

market risk factors for a one year horizon and test these on financial market data. Due to the 

fact that their article focuses on a time horizon of one year, which is exactly in the range that 

is the focus of this paper, and that they cover the main volatility models which have been 

taken into consideration in the treatment of volatility scaling that was just presented, their 

article serves as a very useful summary of this topic. Their analysis encompasses four 

different classes of processes which can be employed to model risk factors: random walks, 

autoregressive processes, GARCH(1,1) models and a static process originating from extreme 

value theory which replicates heavy-tailed distributions. 

The authors treat each one of these model classes by describing or deriving an appropriate 

scaling rule to extend the time horizon from that of the applied data to the annual horizon and 

then providing the necessary equations to calculate both a VaR figure as well as an expected 

shortfall measure. After providing the means to obtain both scaled volatility estimates as well 

as VaR figures for long time horizons, the different models are tested for forecasting accuracy 

with regards to various classes of financial market data, including foreign exchange, equity 

indices, ten year government bonds and single stocks. 

One of the interesting general issues that are brought forth by Embrechts et al. is that when 

trying to find the optimal data frequency for the calibration of any risk factor process, the 

tradeoff between the increase in sampling error due to smaller sample sizes104 and the 

estimation improvement due to a decrease of data dependence with lower frequency data must 

be considered. Although this issue is also brought up in other publications such as Daníelsson 

                                                 
101 Diebold et al. (1998) 
102 Christoffersen & Diebold (2000) 
103 Embrechts et al. (2005), pp. 61-90 
104 Jordan and Mackay (1997) present a bootstrapping technique which can be applied to mitigate this problem 

on page 268. 
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(2002)105, the authors illuminate this issue further by pointing out that for random walk 

processes, lower frequency data are the better choice due to the normality assumption and that 

for GARCH(1,1) processes the opposite is true, as lower frequency data tend to violate 

necessary stationarity conditions so that these models should only be calibrated to data with 

horizons shorter than one month.106 

 

As far as the specific scaling methods for the random walk and GARCH processes are 

concerned, the authors proceed in line with the volatility scaling methods which have already 

been presented. For the random walk model the returns are adjusted for the mean return (i.e. 

“normalized”) and then the square root of time rule is applied to the short horizon volatility 

estimates to obtain annual volatility estimates. With regard to the GARCH(1,1) model, the 

Drost and Nijman approach, which was just discussed, is implemented.  

The other two models have not yet been discussed in this paper, therefore the necessary steps 

for time scaling when applying these models will be explained briefly. 

For autoregressive processes107 returns are “detrended” initially (i.e. the trend is subtracted 

from the returns), similar to the procedure performed in the case of a random walk. The AR(p) 

process is then fitted or calibrated to the “detrended” return data and from this short horizon 

process scaled returns are estimated for the required time horizon and finally a long horizon 

volatility estimate is calculated from these scaled returns. The exact step by step procedures 

including the necessary equations can be found in the text of Embrechts and co-workers.108 

The fourth class of risk factor processes discussed is that of heavy-tailed distributions as 

derived from Extreme Value Theory (EVT).109 A heavy-tailed distribution is defined by its 

tail index usually denoted with the greek letter alpha (α). This parameter is descriptive of the 

shape of the distribution’s tail. In their publication the authors use the “Hill estimator”110 to 

calculate α. In simplified terms, the “Hill estimator” describes the shape of the tail (those 

returns which fall below a certain threshold, for example below a 95% confidence level) by 

relating the average return in the tail to the return at exactly the threshold level. 

                                                 
105 Daníelsson (2002), page 1285 
106 Kaufmann & Patie (2003), pp. 1-61 
107 Kim et al. (1999), page 9 
108 Embrechts et al. (2005), page 65 
109 For detailed information on EVT refer to Beirlant et al. (1996), Embrechts (2000) and Embrechts et al. 

(2003). 
110 Hill (1975), pp. 1163-1174 
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For financial market return data, alpha commonly takes on values between two and five.111 

The scaling approach presented for these heavy-tailed processes is applied directly to the VaR 

quantiles as opposed to the other models for which the volatility estimates are scaled. 

The scaling factor is k1/α, with k being the number of periods to scale up to. This approach 

will be covered in more detail in the next section on alternative VaR quantile scaling methods. 

Therefore, it will not be further elaborated upon in this section of the thesis. 

 

For the analysis itself and the evaluation regarding which of the four processes and in which 

form, as far as the data calibration is concerned, is optimal, Embrechts et al. (2005) use three 

different measures of forecasting precision. Two of these measures examine the quality of 

expected shortfall figures, which are not of direct interest as far as VaR is concerned. On the 

other hand one could confidently assume that a volatility forecast which leads to accurate 

expected shortfall estimates would also produce accurate VaR figures. In addition, the third 

criterion (the frequency of exceedances112) is related directly to VaR and is employed by the 

Basel committee on Banking Supervision when evaluating the quality of banks’ VaR systems. 

The authors backtest the models by calculating these measures for numerous financial market 

data sets.113 As far as the calibrations go, the random walk and AP(p) process are calibrated to 

daily (1 day), weekly (5 days), monthly (22 days), quarterly (65 days) and annual (261 days) 

data, the GARCH(1,1) process to daily and weekly data, and the heavy-tailed distribution to 

daily, weekly, and monthly data. 

 

 

 

 

 

                                                 
111 See Dacorogna et al. (2001) and Straetmans (1998) for empirical analyses. 
112 The number of times that the actual return in the backtesting period exceeded the forecast VaR figure is 

counted and should be as close as possible to the chosen confidence level - i.e. for a 95% VaR ideally there 

should be five exceedances in one hundred forecasts 
113 Including time series for four exchange rates, five stock indices, government bonds issued by five countries 

and twenty two different single stocks which were elements of one of the analyzed indices. 
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The results across data and model, including the optimal calibration and over- or 

underestimation tendencies, if present, are summarized in the Table 1:114 

 Exchange Rates Bonds Stock Indices Single Stocks 

Random walk 

++++ 

22 & 65 days 

minor overest. 

++++  

65 days or less 

minor overest. 

++++ 

65 days or less 

minor overest. 

+++ 

261 days 

underest. 

AR(p) 

+++ 

22 & 65 days 

underest. 

+++ 

22 days or less 

Underest. 

++ 

1 day 

underest. 

+ 

65 days 

underest. 

GARCH(1,1) 

+++ 

5 days 

minor overest. 

++ 

1 day 

overest. 

++++ 

1 day 

minor underest. 

++++ 

5 days 

minor underest. 

Heavy-tailed 

++++ 

22 days 

minor overest. 

+ 

22 days 

major underest. 

+++ 

22 days 

minor overest. 

++ 

22 days 

minor underest. 
Table 1 – Source: Embrechts et al. (2005), pp. 80 

 

The interpretation of this table should be fairly straightforward. The number of plusses (+) 

designates the quality of the estimates with four plusses being the best, the number of days 

listed are the optimal calibration of each model for the specific class of data and the under- 

and or overestimation tendencies are listed differentiated from minor to major. 

As can be deduced from this table, the random walk model with a constant trend and normal 

innovations, calibrated on monthly or quarterly data is the best performing model for three of 

the four classes of data. The random walk also performs very well for the forth class of data 

although in this case the optimal calibration is to annual data directly. The GARCH(1,1) 

model also performs very well on average and is the optimum model for the single stock and 

stock index data sets. Interestingly the heavy-tailed distribution model always yields the best 

results when calibrated to monthly data and produces very accurate forecasts for foreign 

exchange and stock index data. The AR(p) model generates above average estimates for 

exchange rate and bond data when scaled to monthly returns but shows a distinct tendency to 

underestimate risk across all analyzed asset classes. 

                                                 
114 The detailed results of all measurements for all models and calibrations can be found in the original text in 

tables 1 to 4 on pages 80 and 81.  
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In addition to presenting these results the authors perform further tests on the four models, 

including the testing of a simulated random walk115, replacing the normally distributed 

innovations by Student-t distributed innovations116, and variance analysis which focuses 

directly on the evaluation of the variance estimates and respective confidence intervals. The 

results of these additional tests and criteria increase the specificity of and reinforce the initial 

results. Surprisingly, rather than improving the results, Student-t distributed innovations in the 

random walk model decrease the quality of forecasts, so that the choice of normal innovations 

is affirmed. The variance analysis shows that volatility estimates generated by GARCH(1,1) 

models calibrated to daily or weekly data can fluctuate dramatically, leading to very wide 

confidence intervals and that those produced by AR(p) models are also unsatisfactory, as the 

confidence intervals are very asymmetric and in some cases do not even contain the “real” 

standard deviation of the underlying distribution. The estimates and confidence intervals for 

the random walk model, however, are superior and moderately stable. The simulation and 

variance tests also establish that the optimal calibration data for forecasts of a one year 

horizon are weekly or monthly returns. 

 

These results might seem surprising as the most basic process which makes use of the 

simplest scaling rule seems to provide the best results when looking to estimate market risks 

for a horizon of one year. Two interesting issues are pointed out, however, on the one hand 

the fact that calibration to weekly or monthly data yields the best results and, on the other, that 

a good estimate of the trend of the returns must be found to achieve valid results. 

 

This subsection presented research on the topic of time scaling of volatility estimates 

generated by different models or processes and the restrictions and problems associated with 

the various approaches. Summing up the main conclusions to be drawn from the surveyed 

literature, it can be noted that the key issues for achieving accurate long-run volatility 

estimates are choosing an appropriate scaling method for the chosen volatility or return model 

and calibrating the chosen model to return data at an intermediate horizon. Much of the 

criticism levied against scaling of volatilities by means of the square root of time rule 

originates from studies that scale daily volatility estimates to longer horizons and point to the 
                                                 
115 This aims to eliminate any distortions in the results that might stem from a miscalibration or misspecification 

of the random walk process by using a simulated process - i.e. it is correctly specified ex-definition.  
116 Student-t distributions exhibit fatter tails than normal distributions. 
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large fluctuations of the estimates and the exaggeration of long-run volatility produced by this 

approach.117 As was suggested by Diebold et al. (1998) and then proven by Embrechts et al. 

(2005), this issue is mitigated by using data at weekly or monthly horizons as a basis for 

ensuing scaling procedures. 

 

3.2.3. Other Scaling Approaches for VaR Quantiles and Models 

After having devoted a significant amount of attention to the scaling of volatility estimates, as 

this parameter is the most important in any VaR model, the final subsection in this section on 

extensions of short horizon VaR models to long time horizons will present alternative VaR 

scaling approaches. One such approach was already touched upon in the discussion of 

Embrechts and colleagues’ 2005 paper. These scaling methods can be applied to VaR figures 

or quantiles directly but are somewhat more complex or less restrictive than scaling quantiles 

by the basic square root of time rule. 

 

A minor modification of the simple square root of time rule approach for the scaling of VaR 

quantiles was suggested by Al Janabi118. He proposes the following scaling relationship: 

        

This scaling factor is derived from the consideration that the minimum VaR horizon should be 

the period that it would take to unwind a position in an asset119 and its primary aim is to 

reflect the additional risk posed by illiquid market conditions. His argument supporting this 

factor is that in such conditions a position would be unwound by selling off equal parts 

linearly over the course of t-days until the entire position has been unwound.120 Although his 

argument and scaling factor is tailored towards such liquidity risk, he extends the applicability 

of his scaling factor to “calculate the VAR for any time horizon.”121 

                                                 
117 Diebold et al. (1998) 
118 Al Janabi (2007), pp. 41-42 
119 Daníelsson (2002), page 1285 
120 In their article on Optimal Execution of Portfolio Transactions, Almgren and Chriss (2001) take liquidity risk 

and its potential effect on VaR during the unwinding of a position into account and provide a modified VaR 

model taking such liquidity risk into account (L-VaR).  
121 Al Janabi (2007), page 42 
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This proposed scaling factor would generate substantially lower VaR figures than those 

produced by the standard square root of time rule. However, as no additional arguments in 

support of this approach are given, an implementation should be considered with care. 

 

Another alternative scaling method for VaR quantiles was already mentioned briefly in the 

previous subsection when the VaR scaling approach for heavy-tailed distributions as 

presented in Embrechts et al. (2005) was discussed. 

The so called “alpha-root rule” originates from Extreme Value Theory, where alpha reflects 

the tail index of a distribution. This scaling technique is explained in detail in a publication by 

Daníelsson and de Vries (2000). 

In their article, they present a VaR model which combines historical simulation with a 

modelling of the distributional tails in line with EVT. The authors argue that independence 

conditions which are present when returns are assumed to follow a normal distribution are in 

fact present in tail distributions. They point to empirical evidence which shows that the 

occurrence of one “tail event”, i.e. an extreme negative return, is not indicative of a second 

sequential tail event, so that the independence assumption holds when focussing on the tails of 

return distribution. However, the probability of an extreme return occurring is significantly 

higher than in normal distributions. As far as the time scaling of VaR quantiles for their model 

is concerned, the authors point to work on heavy-tailed distributions by Feller (1971). The 

scaling factor derived from Feller’s analysis is the following: 122 

           √   

 

For alpha equal to two this scaling factor is exactly the standard square root of time rule 

which stems from normal distributions of returns. For values of alpha below two the volatility 

is infinite.123 However, for financial time series, alpha is generally above two, in line with the 

assumption of a heavy-tailed distribution. Daníelsson and de Vries state that for the 

distributional tails of these heavy-tailed distributions, the self-additivity property, which is the 

basis for applying the square root of time rule on normal distributions, is also present. This is 

their basis for the alpha-root rule. 

                                                 
122 Derived from Daníelsson and de Vries (2000). 
123 Fama & Miller (1972), page 270 
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The scaling factor is related to the shape of the distributional tail, represented by the tail 

index. Due to the fact that this approach is applied for values of alpha which are greater than 

two, the scaling factor is smaller than the square root of time rule. 

This fact seems contradictory to statements that normal distributions underestimate the VaR in 

relation to heavy-tailed distributions. However, as the authors explain, the probability of tail 

events is higher in heavy-tailed distributions leading to higher one period VaR figures.  This 

effect balances the effect of a smaller multiplicator when VaR figures are scaled to longer 

time horizons. For time scaling from a one day VaR to a ten day VaR this issue can be 

illustrated by the following Table 2: 

 

VaR confidence level 95% 99% 99.5% 99.9% 99.95% 99.995%

heavy-tail 

VaR 

1 day $ 0.9 $ 1.5 $ 1.7 $ 2.5 $3.0 $ 5.1 

10 day (alpha root) $ 1.6 $ 2.5 $ 3.0 $ 4.3 $ 5.1 $ 8.9 

“normal” 

VaR 

1 day $ 1.0 $ 1.4 $ 1.6 $ 1.9 $ 2.0 $ 2.3 

10 day (square root) $ 3.2 $ 4.5 $ 4.9 $ 5.9 $ 6.3 $ 7.5 
Table 2 – Source: Daníelsson & de Vries (2000)  

 

This table shows VaR figures (in millions of U.S. Dollars) for an analysis that Daníelsson and 

de Vries performed on a portfolio with one hundred million U.S. Dollar portfolio value. 

The results are in line with what could be expected. For lower confidence levels (95% and 

99%) “normal” VaR is greater than the heavy-tail VaR at both one and ten day horizons. With 

increasing confidence levels the normal VaR increasingly underestimates tail risk and the 

VaR figures fall below heavy-tail VaR, first at the one day horizon (99.5%) and eventually 

also for the ten day horizon (99.995%). 

In their tests of the approach on empirical equity data the authors calculated an average alpha 

of 4.6 which leads to a scaling factor of 1.7 for ten days as opposed to the square root of ten 

which is 3.7. 

This approach is an appropriate alternative to the standard square root of time rule when 

assuming a heavy-tailed distribution. Although Daníelsson and de Vries only analyse scaling 

of daily values to horizons of ten days, the alpha-root rule can produce good results for long 

time horizons when calibrated to monthly data, as was previously mentioned.124 

 

                                                 
124 Embrechts et al. (2005) 



44 
 

A somewhat similar and yet significantly different VaR quantile scaling methodology is 

presented in two papers by McNeil (1999 & 2000), one of which is co-authored by Frey 

(2000).125 They conceive a short horizon VaR model which is also based on Extreme Value 

Theory to reflect a heavy-tailed return distribution. However, contrary to Daníelsson and de 

Vries (2000) who assume a historical distribution for their volatility estimate and apply a Hill 

estimator to model the distributional tails, McNeil and Frey (2000) calibrate the historical 

return data to a GARCH(1,1) model and then go on to apply a different technique to estimate 

the distributional tails. The reasons given for choosing a GARCH model to generate the 

volatility estimate, which is then used to estimate the tail distribution, are in line with standard 

arguments in support of GARCH models - i.e. they more accurately reflect the tendencies of 

volatility clustering seen in financial market return data. For the tail distribution itself they 

select a Generalized Pareto Distribution (GPD)126 as the distribution function, which is the 

alternative model aside from the Hill estimator within the Peaks-Over-Threshold (POT) group 

of models for implementations of heavy-tailed distributions in line with Extreme Value 

Theory. The authors argue that a GPD approach for heavy-tail modelling has advantages over 

applying the Hill estimator, such as the fact that it produces results which are more stable in 

the face of different data sets and that it is more flexible, as it can be applied to heavy-tailed 

distributions as well as to distributions which do not exhibit heavy tails, whereas the Hill 

estimator is explicitly tailored towards heavy-tailed distributions. They support these 

arguments with backtesting results for VaR quantiles at a confidence level of 99% or above. 

Based on this short horizon VaR model they go on to propose a Monte Carlo simulation 

approach to produce scaled VaR forecasts for longer time horizons. In this simulation they use 

their short horizon model to generate a distribution of residuals, go on to draw from this 

distribution to compute sequential return estimates for each day up to the selected horizon and 

then use the same technique, which was originally applied to the underlying daily return 

data127, to obtain the long horizon VaR quantiles. 

                                                 
125 McNeil (1999), pp. 93-113; McNeil & Frey (2000), pp. 271-300; It should be noted that although McNeil 

(1999) was published before McNeil and Frey (2000), the work presented in the 1999 publication draws from a 

preprint version of the 2000 publication. 
126 For details on this distribution function and the authors’ estimation procedure, please refer to the original text 

and for details on GPD in general, see Embrechts et al. (1998), pp. 96-100. 
127 I.e. calibrate a GARCH model to the generated distribution and estimate the tail distribution via GPD. See 

McNeil & Frey (2000), pp. 296-297 for details.  
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To evaluate the performance of their scaling methodology, McNeil and Frey (2000) compare 

the accuracy of the approach with that of applying the square root of time rule to the initial 

one day VaR figures produced by their model. Backtesting is performed for five different 

empirical data sets, including returns for two equity indices, one single stock, a foreign 

exchange rate, and a commodity price. The forecast quality with regard to these five time 

series is assessed for scaling horizons of five and ten days and confidence levels of 95% and 

99%. The results of their comparisons are that the simulation approach outperforms the square 

root of time method for the majority of the tested time series. However, when taking a closer 

look at the detailed backtesting results, one cannot completely agree with the dominance 

which McNeil and Frey (2000) attest to their model. For one of the equity indices the square 

root of time rule underestimates VaR drastically, whereas the simulated values only produce 

minor underestimations. As far as the other data sets are concerned, the results are not so one-

sided. For the foreign exchange and commodity data the forecast quality is similar with 

relative advantages amongst the two approaches depending upon the chosen confidence level 

and scaling horizon. For the single stock and the second equity index, the simulation method 

does outperform the square root of time rule noticeably, as this scaling technique significantly 

underestimates VaR for this asset class.  

Based on the simulated, scaled VaR quantiles, the authors derive so-called “implied scaling 

factors” (λ - lambda) for different volatility regimes128 and confidence levels, which can be 

applied in a VaR scaling relationship for time horizons up to fifty days: 129 

      

 

The implied scaling factors are presented in the Table 3 below: 

  Confidence level 

  95% 99% 

Volatility regime 

Low volatility 0.65 0.65 

Average volatility 0.60 0.59 

High volatility 0.48 0.47 
Table 3 – Source: McNeil (1999), page 104 

 

                                                 
128 In support of a differentiation of VaR scaling dependent on current volatility levels, McNeil (1999) cites a 

publication by Hull and White (1998). 
129 Based upon McNeil (1999), page 104.  
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Relating this lambda scaling relationship to the square root of time rule and the previously 

discussed alpha-root rule leads to the following conversions 

for the square root of time rule: 

          .  

for the alpha root rule in general: 

    

and per definition: 

 2        0.5 . 

 

Interpreting these results the authors propose that if one were to apply a simple time scaling 

factor, the exponent should be greater than one half, which is the exponent used in the square 

root of time rule, except for cases in which volatility is high. They go on to criticize the alpha-

root rule130, which typically produces even smaller scaling factors. 

Putting these results and the proposed VaR scaling model in general into perspective with 

respect to long time horizons, it has to be noted that extension of the methodology to time 

horizons which are significantly longer than the proposed ten or fifty days could be 

problematic. It would seem that some of the elements of the approach, such as use of GARCH 

models, are strongly dependent on calibration to daily data, and applying the model to very 

long time horizons (i.e. well beyond fifty days) with data calibration to weekly or monthly 

returns, could turn out to be quite laborious if not superfluous, due to the fact that for such 

time horizons, a GARCH volatility forecast is dominated by the long-run average as opposed 

to current volatility levels. Additionally, the quality of results would need to be validated 

separately for such scenarios. 

 

The last publication which will be covered in this subsection is also the most recent. 

Brummelhuis and Kaufmann (2007)131 analyse and compare different approaches for the time 

scaling of VaR quantiles when the return distribution is assumed to follow either a random 

walk, GARCH(1,1), or AR(1)-GARCH(1,1) process. They perform their analysis for three 

different error or innovation distributions to differentiate between the standard normal 

distribution and heavier-tailed distributions, represented by two different Student-t 

distributions. For these nine different combinations of return processes and error distributions 

                                                 
130 Daníelsson & de Vries (2000) 
131 Brummehuis & Kaufmann (2007), pp. 39-94 
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they initially compare the performance of seven different scaling approaches for one day, 99% 

VaR quantiles to a horizon of ten days when the data set available for calibration of the 

selected model is limited to 250 daily log returns. The choices of the 99% confidence level 

and the ten day horizons are motivated by the regulations in the Basle Capital Accord.132 

The seven included scaling methods provide an overview of some of the approaches which 

were previously discussed and others which are interesting alternatives. The benchmark is the 

standard square root of time rule. Two of the approaches do not really apply scaling 

techniques, but are simple procedures which highlight the problems associated with a limited 

data basis in long horizon VaR. One is simply calculating non-overlapping ten day returns 

from the 250 data points, which yields a sample of only 25 ten-day returns on which to base 

the VaR calculations. This approach is obviously an extreme example of limited underlying 

return data. The second of these approaches is calculating 241 overlapping ten-day returns 

from the 250 days of data, which in the literature is also discarded as inherently flawed as it 

introduces serious problems related to serial correlation in the derived return data. The next 

three approaches are variants of the bootstrapping technique previously mentioned 133 which 

provides a means of mitigating the issues related to limited datasets. This technique, similar to 

a historical simulation approach, generates a distribution of ten-day returns by sequentially 

selecting ten daily returns from the original data set and simply summing up these ten log 

returns to compute one data point in a ten-day return distribution. This procedure is repeated 

until 10000 ten-day returns are generated, which are then used as the distributional basis for 

VaR calculations. The three variants of this approach are created by variations in the selection 

procedure for the ten drawings for each of the ten-day returns. The first procedure of 

“Random resampling”134 is based on combination with repetition.135 The second selection rule 

is defined to ensure independence amongst the ten daily returns chosen to generate a single 

ten-day return. This is achieved by ensuring that the time span between each of the drawn 

daily returns is at least ten days. The third and final variation is set up in exactly the opposite 

manner. It aims to ensure dependence amongst the ten selected daily returns by selecting the 

ten returns out of 231 successive subsets of twenty consecutive daily values. This procedure is 

repeated 44 times to produce 10000 data points for dependent ten-day returns. 

                                                 
132 BIS (2005), page 40 
133 Jordan & Mackay (1997), page 268 
134 Brummelhuis & Kaufmann (2007), page 48 
135 i.e. Randomly and with repetition - every one of the 250 daily returns can be selected in every drawing. 
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The final scaling method is very similar to the EVT approaches implemented by McNeil and 

Frey (2000)136 and Daníelsson and de Vries (2000)137 in that the tails (the top ten and bottom 

ten percent) of the assumed daily return distribution are modelled to a GPD process and the 

middle part of the distribution is derived from the 250 daily returns. From this distribution of 

daily returns 10000 simulation runs of ten daily returns per run are calculated to generate a 

ten-day return distribution. 

For their performance evaluations of the different scaling techniques Brummelhuis and 

Kaufmann (2007) first calculate a “true” ten-day Value at Risk for each of the nine process 

and error term combinations. They go on to calculate six different performance measures for 

each possible scaling procedure applied to every one of these nine combinations. Their prime 

performance criterion is a comparative measure relating the mean deviation of the scaled VaR 

figures from the true ten-day VaR to the mean deviation resulting from the ten-day VaR 

calculated via the square root of time rule, which serves as the benchmark. In total for each 

process and error term combination, six relative performance assessments are completed.138 

 

The results of this, in effect empirical analysis, are as follows. The two approaches which 

apply a calculation of actual ten-day returns (overlapping and non-overlapping) from the 

underlying dataset distinctly underperform the square root of time rule for all process and 

error term combinations. It can be observed, however, that the relative performance of these 

methods improves for the heavier tailed error term distributions. These results are in line with 

the problems associated with these two approaches – serial correlation and insufficient data 

set, respectively. The third method, which performs poorly in relation to the square root of 

time rule, although it does outperform the first two approaches, is the bootstrapping based 

method with dependent sampling. Unfortunately the authors do not derive or provide an 

explanation for this underperformance, although it would seem counterintuitive. 

The results of the performance analyses for the remaining three scaling approaches are 

summarized in the following Figure 3139 which shows the mean relative deviations from the 

true VaR figures. 

 

                                                 
136 McNeil & Frey (2000), pp. 271-300 
137 Daníelsson & de Vries (2000), pp. 236-269 
138 i.e. everyone of the six alternative scaling procedures is benchmarked against the square-root-of-time rule. 
139 Brummelhuis & Kaufmann (2007), page 62 
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Figure 3 – Source: Brummelhuis & Kaufmann (2007), page 62 

  

Basically the three approaches, random resampling, independent resampling, and the EVT 

method achieve very similar results across processes and innovation distributions. The only 

significant differences are present for Student-t4 distributed innovations, whereby the EVT 

method underperforms the other two scaling techniques. The best results are achieved for the 

combinations of the random walk process with the Student-t distributed errors. 

As far as the relative performance of these approaches in relation to the benchmark, the square 

root of time rule, is concerned, the performance is equal to the benchmark for all processes 

when implementing normally distributed errors, and in the case of the AR(1)-GARCH(1,1) 

process also for the Student-t distributed errors. On the other hand, the three scaling 

approaches significantly outperform the square root of time rule for Student-t distributed 

errors in combination with a random walk process, and also show measurable performance 

advantages for the GARCH(1,1) process. These advantages stem from the fact that the square 

root of time rule overestimates ten day VaR for heavy-tailed distributions. 

In their presentation of the performance results, Brummelhuis and Kaufmann (2007)140 go on 

to interpret the additional information contained in the other performance measures which 

they applied. These show that the alternative scaling approaches display a tendency to 

                                                 
140 Brummelhuis & Kaufmann (2007), pp. 61-65 
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underestimate VaR, whereas the square root of time rule tends to overestimate VaR. As 

previously mentioned, this tendency, inherent in the square root of time rule, is amplified for 

the random walk process with Student-t innovations. For the AR(1)-GARCH(1,1) process all 

scaling rules show a tendency of underestimation independent of the chosen error distribution, 

with the square root of time rule exhibiting the smallest bias. 

Fundamentally, the other performance measures support the initial assessment of relative 

performance, i.e. the square root of time rule performs very well in relation to all other scaling 

approaches, providing results equal in accuracy to those achieved by the random resampling, 

independent resampling, and EVT approaches in most cases, only being outperformed in 

some instances with heavy-tailed innovations. As far as these three alternative scaling 

approaches are concerned, the authors argue that the random resampling approach has 

advantages over the other two, because it attains the same level of precision whilst exhibiting 

significantly simpler implementation properties. 

When evaluating these results in general and comparing them to those presented by McNeil 

and Frey (2000)141, one should keep in mind that they are related specifically to a ten day 

horizon and a 99% confidence level, and that Brummelhuis and Kaufmann (2007) analyse 

unconditional VaR estimates as opposed to McNeil and Frey who deal with conditional VaR 

estimates.142 

In addition to their research on time scaling of 99% VaR quantiles to ten day horizons, which 

is the main focus of their paper, the authors provide some insights into a few general issues 

which are of great relevance for long-run VaR calculations. As their main analysis assumes a 

zero trend in the underlying return data, one of the issues they investigate is how a non-zero 

trend could be properly integrated into the VaR calculation and scaling procedure. The 

suggested procedure is very similar to the one proposed by Embrechts, Kaufmann and Patie 

(2005)143.  

First, a one day trend is derived by calculating the mean daily return from the dataset of daily 

returns. Then the original daily return data is “de-trended” (normalized or centered) by 

subtracting the one day trend from the return data. This modified dataset serves as the basis 

for a ten day VaR calculation and in a final step one simply subtracts the ten day trend144 from 

                                                 
141 McNeil & Frey (2000), pp. 271-300 
142 The authors also point to additional research on conditional VaR estimates by Brummelhuis and Guégan 

(2005). 
143 Embrechts et al. (2005), pp. 61-90 
144 The ten day trend is simply the one day trend multiplied by ten. 
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the VaR figure to produce an adjusted ten day VaR figure which accurately reflects a non-zero 

trend in the underlying return data. The second issue discussed is the potential presence of 

auto-regression in the underlying return data, which is relevant in AR(1)-GARCH(1,1) 

processes. 

They argue that for a stationary AR(1) daily log-return process (Xt) in the form:145 

       | | 1     
. . .
~   ,  

one can calculate a ten day VaR with the following formula: 

     , % % . 

The ten day square-root-of-time VaR estimate is given by: 

   , %   % 

where % represents the 99% quantile of the standard normal distribution. 

 

By relating the two latter equations for calculating a ten day VaR to one another, the authors 

derive a quotient for the relative underestimation of true ten day VaR by the scaled VaR given 

by: 

   , %   , %

  , %
0.68  . 

For large values of lambda (λ) this could lead to significant underestimations of VaR if the 

square root of time rule is applied. However, the authors cite empirical results for returns of 

different financial asset classes which on average generated lambda values around 0.04 so that 

any underestimation tendencies would seem to be rather limited. 

The final generalisation presented by Brummelhuis and Kaufmann (2007)146 is also the most 

relevant for this paper. They derive a fairly simple formula to scale one day VaR quantiles to 

T-day VaR quantiles with a fixed confidence level, for AR(1)-GARCH(1,1) processes, which 

they argue outperforms the square root of time rule. 

Building on the AR(1) process (Xt) which was just presented, the AR(1)-GARCH(1,1) process 

is defined as follows. 

  

 

                                                 
145 All relevant equations are drawn from page 71 in Brummelhuis and Kaufmann (2007) and slightly modified. 
146 Brummelhuis & Kaufmann (2007), pp. 74-78 
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This process reduces to a standard GARCH(1,1) process for lambda equal to zero, so that the 

scaling formula can easily be applied to such a process. 

The authors’ derivations yield the following result. 

 %,  
%  ∞  

So that for large values of T, i.e. very long time horizons, the scaled VaR quantile can be 

defined as 

 %,     % 

with 

             . 

 

This provides a closed form approach to scale unconditional VaR quantiles to long time 

horizons, which uses quantiles of the standard normal distribution. An analogous formula for 

conditional VaR quantiles is also presented in the original text. 

 

Summing up the most important findings contained in Brummelhuis and Kaufmann’s (2007) 

extensive publication brings forth evidence that the square root of time rule for scaling VaR 

quantiles performs very well for various combinations of underlying return processes and 

assumed innovation distributions. For heavy-tailed distributions and GARCH(1,1) or AR(1)-

GARCH(1,1) processes some alternative scaling models tend to outperform the square root of 

time rule, but when it is outperformed, this simple scaling approach usually errs on the “safe” 

side in the sense that it tends to overestimate VaR. 

Finally the authors derived general scaling formulas for AR(1)-GARCH(1,1) processes with 

which both unconditional and conditional VaR quantiles can be scaled to very long time 

horizons, although unfortunately the authors did not provide backtesting results for horizons 

longer than ten days. 

 

This concludes the section on simple methods of extending a short horizon VaR model to long 

time horizons in the form of various scaling approaches applied either directly to VaR 

quantiles or to volatility estimates which serve as the pivotal input parameter in any VaR 

calculation. 

The simplest scaling approach in the form of the square root of time rule, applied to volatility 

estimates as well as quantiles, was compared to multiple alternative scaling techniques 

applicable to quantiles or volatility estimates for different possible return processes, such as 
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random walks, GARCH processes (including or excluding an autoregressive component), 

models based on EVT, and others. Research on the effects of implementing an assortment of 

possible innovation or error distributions within these different processes was also presented. 

Somewhat surprisingly, when taking all of the presented research into account, the square root 

of time rule must be deemed an acceptable and fairly accurate scaling approach for the long 

horizons in the focus of this thesis. The approach is outperformed in some cases by alternative 

approaches depending on the horizon, confidence level, and foremost the underlying return 

process; however, across all possible combinations of processes and different asset classes, 

the approach performs very well for very long time horizons. Where possible it seems that 

scaling volatility estimates rather than VaR quantiles directly should be preferred as this 

procedure is less restrictive. And finally, the limited research on very long time horizons, as 

opposed to that on horizons up to a few weeks, points out that when possible, the return 

process should be calibrated to intermediate returns such as weekly or monthly if the available 

time series history is sufficiently long, and that trends in the return data should be accounted 

for. 

This section on simple extensions of short-run models to long time horizons was fairly 

elaborate. The reasons being that, on the one hand, if such a simple extension can provide 

acceptable results it has vast advantages in any implementation due to the fact that it can 

simply be applied on top of any short-run VaR systems already in place, and does not require 

the implementation of a distinct and entirely new model and system for calculation of long-

run VaR figures. Additionally, the amount of research performed and published on scaling 

approaches of VaR and volatility estimates is much more extensive than the publications on 

specific long-run VaR models which are the subject of the next section. Lastly, the subsection 

on the time scaling of volatilities is a very important element in the discussions on long-run 

VaR in general and will be very useful in the ensuing treatment of explicit VaR models, as 

every long-run VaR model needs a forecast for long-run volatility. 
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3.3. Specific Long-Run Value at Risk Models 

Although the literature on different aspects of Value at Risk has grown to become quite 

extensive throughout the years, there are few publications specifically dealing with Value at 

Risk for long time horizons. After an extensive literature search there were a few publications 

to be found which either present long-run VaR models explicitly or as part of the discussion 

of a related issue. 

 

In a first part of the treatment of long-run Value at Risk models, the approaches and models 

presented in these publications will be surveyed and critically evaluated, keeping in mind the 

critical issues and assumptions highlighted in the previous part of the thesis. 

 

3.3.1. “A tale of two VaRs”147 - Which VaR should be considered? 

One of these critical issues, that of a zero mean return for assets or risk factors, is of distinct 

importance in computing a long-run VaR, because there are two different methodical 

approaches to calculating VaR. These are equivalent in a short-run or zero mean return 

environment, but very different in a long-run context. The two approaches, which are 

discussed in Kupiec (1999)148 differ with respect to which asset or portfolio value the VaR-

quantile of the portfolio value at the end of the VaR horizon is compared to when calculating 

the VaR. One can either compare this “worst case” portfolio value to the present value of the 

portfolio at the time of evaluation, or to the expected mean value of the portfolio at the end of 

the VaR horizon. 

Expressed in equations the two different measures are: 149 
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In short-run horizons and when a mean return of zero is assumed, these two different Value at 

Risk metrics are identical. When extending to long time horizons and assuming a positive 

mean return, the two different approaches lead to very different results, with the difference 

increasing with both the time horizon and the assumed mean return or drift. 

                                                 
147 Kupiec (1999), page 42 
148 Kupiec (1999), pp. 41-52 
149 Kupiec (1999), page 42 with modifications. 
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Obviously the expected mean value of a portfolio increases with time when a positive mean 

return is assumed, whereas the present value is set at the time of the evaluation. The 

distribution of portfolio values at the end of the VaR horizon depends on various 

distributional assumptions and parameters, but in the simple log-normal case for given 

positive mean return or drift, it depends upon the volatility of the returns. 

For this case the detailed equations presented are as follows: 
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Summarizing arguments brought forth by Kupiec150, both approaches can produce 

problematic results. When calculating VaR in relation to the initial portfolio value, the 

positive mean return can, with increasing time horizon, dominate the risk element and lead to 

a negative VaR figure, whereby the VaR “worst case loss” is in fact a profit.151 

On the other hand, when VaR is calculated vis-à-vis the mean expected portfolio value at the 

end of the horizon, the VaR increases with time just as the mean terminal value does and the 

resulting VaR figure can exceed the initial portfolio value. Such a result is not appealing as it 

would imply that the loss can exceed the amount which was invested, a scenario which is 

“counter-intuitive (if not absurd)”152 as Kupiec puts it and not possible in a limited liability 

context.153 

 

The difference between these two methodical approaches to VaR must be kept in mind when 

looking into long-run VaR models. 

 

 

 
                                                 
150 Kupiec (1999), pp. 42 - 44 
151 i.e. the VaR quantile of the terminal portfolio Value distribution is greater than the present value of the 

portfolio. 
152 Kupiec (1999), page 43 
153 There are of course portfolio elements such as short positions in certain assets which could in fact lead to such 

unbounded losses, but not for “real assets” held in long positions, e.g. holding bonds or equity. 
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3.3.2. MaxVaR154 

The first of the specific long-run VaR models covered is titled “MaxVaR” and focuses on the 

effects of interim risk in a mark to market environment. This source of risk was already 

discussed in the comments on the assumption of constant portfolio composition in the 

previous part of the thesis. The framework Boudoukh et al. (2004) develop aims to quantify 

this interim risk with so called MaxVaR figures which represent “worst case” loss estimates 

on or before the end of the VaR horizon. 

MaxVaR therefore “considers the probability of seeing a given low cumulative return on or 

before the terminal date”155 as opposed to VaR, which only considers the probability of seeing 

a given low (cumulative) return on the terminal date. Interesting by-products of their results 

are adjustment factors for regular VaR calculations, subject to different specific calculation 

parameters, to come up with an approximation for MaxVaR based upon a certain VaR figure. 

 

The model assumes that the asset or portfolio value follow a log-normal process, just as the 

standard VaR models do. It does however consider the possibility and effects of a non-zero 

positive drift parameter. The fundamental difference between MaxVaR and VaR is that, with 

Pt being the relevant asset or portfolio value at time t156, VaR only takes the distribution of PT, 

specifically, a certain quantile of this distribution, into account, whereas MaxVaR focuses on 

the worst case path Pt could follow between 0 and T. Basically, instead of only looking at the 

“lowest level” of S at the end of the VaR horizon, MaxVaR aims to identify the lowest value 

S reaches at any point throughout the entire VaR horizon. To formulate their model in terms 

of an equation or theorem, Boudoukh et al. define a minimum cumulative continuously 

compounded return over the VaR horizon as the return between the minimum value St takes 

over the entire VaR horizon and S0. Their theorem in turn defines the probability of this 

minimum cumulative return lying below a certain threshold level, which leads to the result of 

identifying a MaxVaR figure for a given threshold and confidence level. For details on the 

derivation and proofs of their model and theorem please see the authors’ original article. 

 

The authors then calculate MaxVaR and associated VaR figures in terms of multiples of time 

and the standard deviation of asset or portfolio value, for different confidence levels and 

                                                 
154 Boudoukh et al. (2004), pp. 14-19 
155 Boudoukh et al. (2004), page 14 
156 t ranging from 0, the time of evaluation, to T, the end of the VaR horizon.   
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different levels of expected mean return or drift. To summarize their findings they present a 

quotient of MaxVaR to VaR for every considered parameter combination and show that for a 

zero expected return MaxVaR can exceed VaR by between approximately eleven and 

nineteen percent depending on the confidence level.157 

Interestingly, for zero expected return these results are independent of both the horizon and 

volatility. For the case of zero expected return the authors also present MaxVaR figures for 

discrete interim sampling158 and show that this reduces MaxVaR inversely related to the 

number of samples taken, “regular” VaR being at one end of the spectrum with a single 

sample taken and their general MaxVaR taking infinite samples at the other end of the 

spectrum. Their explanation for this relationship is that the discrete sampling can lead to 

“missing” the lowest asset value.  

 

The results for positive expected returns are the following. Although both VaR and MaxVaR 

decrease in absolute terms due to the positive drift, the relationship between VaR and 

MaxVaR changes substantially. Fundamentally, the relationship is no longer independent of 

the horizon and volatility, due to the fact that the positive drift has a greater effect on the 

distribution of PT than on any Pt before the end of the VaR horizon (T). In general terms: the 

effects of interim risk, as defined by the authors, increase with drift and time but decrease 

with volatility. For the parameters chosen they show that depending on the chosen confidence 

level, analogous to the zero expected return case, MaxVaR can exceed VaR by between 

nineteen and seventy-five percent.159 These differences are without a doubt substantial and for 

certain assets and long time horizons, the authors look at one year, they could exceed even 

these high levels. 

 

Summarizing this approach in terms of the focal points of this thesis, it can be stated that the 

proposed model deviates from the standard VaR models in terms of two elements. On the one 

hand it includes the possibility of integrating a non-zero mean expected return for a VaR 

calculation, which is a very important point for long time horizons. The other element, which 

is the essence of the MaxVaR concept, is that the authors quantify the probability of reaching 

certain threshold value levels at any time during the VaR horizon and thereby quantify 

“interim risk” or, as previously mentioned, certain elements of intra-horizon events or risk. 
                                                 
157 The factor decreases as the confidence level increases, 19% for 95% confidence and 11% for 99% confidence. 
158 As opposed to the continuous approach generally followed in their framework. 
159 Boudoukh et al. (2004), page 18 
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 This extension of standard VaR models is valuable in long-run scenarios and can be easily 

applied to improve such standard models; however, due to the simplicity of the approach it 

seems to be quite limited in its application. It could, for example, give the user an indication 

of the probability that a certain asset or risk factor value would be breached within the 

considered VaR horizon, so that one could get an idea of how probable the risk of a margin 

call is, but the model does not provide means to integrate potential effects of such an event 

directly into the model. Such an event would, among other things, cause portfolio composition 

to change and this effect could not be directly reflected as MaxVaR conforms to the standard 

assumption of constant portfolio composition. 

 

The authors do discuss some of the standard assumptions160 they apply, deeming them to be 

markedly problematic. However these discussions merely cite some of the common 

arguments against these assumptions but leave potential solutions up to future research. As far 

as the distinction between the two different VaR methodologies is concerned, this approach 

calculates VaR or MaxVaR by comparing the potential losses to the present value of the 

portfolio. 

 

3.3.3. Long-Term Value at Risk161 

The next approach was published in 2004 and the basic analysis underlying the presented VaR 

model has distinct similarities to the findings contained in Kupiec (1999)162 for the VaR 

methodology relating to the portfolio’s present value. 

  

                                                 
160 For example, the assumptions of independent log-normal return distributions with constant parameters 

(correlation, standard deviation, drift) or constant portfolio composition. 
161 Dowd et al. (2004), pp. 52-57 
162 Kupiec (1999), pp. 41-52 
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Dowd and collaborators define VaR as: 163 

 √   
with: 

h   .................. timeunits in the VaR horizon 

P   .................. current portfolio value 

cl  ..................  VaR confidence level 

μ   .................  random mean log portfolio return  0  

σ   .................  volatility 

Pcl ..................  1‐cl  percentile of the terminal portfolio value 

αcl ..................  standard normal variate for chosen confidence level 

 

In terms of the standard variable definitions for this text, this formula is adjusted to the 

following: 

 √  

This is basically the standard random-walk VaR model with normally distributed returns. The 

authors do not restrict their findings to this assumption, however, mentioning that the 

distribution of returns could be substituted to accommodate empirically proven characteristics 

of financial return data, such as heavy tails, without altering their main conclusions.164 

They do not perform any analyses as to potential effects of such modifications, however, 

leaving these issues up to further research. 

 

Obviously the essence of their analysis is not embodied in the equation presented for their 

long-run VaR model. However, with this basic model as a foundation, Dowd et al. (2004) 

compare the effect of different volatility and mean return levels on the development of VaR 

figures across time horizons and confidence levels and find that with a positive mean return, 

for increasing time horizons VaR initially increases then tapers off and eventually decreases 

indefinitely.165 This is due to the effect of the mean return and its compounding, which 

eventually dominates the increase of volatility. 

For the case of zero mean return, VaR increases with time and approaches its upper bound of 

100% of the initial portfolio value. 

                                                 
163 Equation 2 in Dowd et al. (2004), page 53 
164 They mention Student-t distributed returns, or other alternatives to incorporate phenomena such as mean 

reversion or volatility clustering (GARCH). Dowd et al. (2004), pp. 53, 57 
165 i.e. the VaR (“worst case”) loss is in fact a profit. 
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This is also the main point of criticism the authors raise with respect to scaling VaR quantiles 

by the square root of time rule. They argue that this approach gravely overestimates VaR and 

that, when applying this rule, VaR has no such upper bound and increases to infinity with 

time.166 

The derivation of the input parameters, mean return and volatility, for their VaR model is 

where the authors differentiate themselves from other related treatments. They argue against 

the estimation of these parameters for smaller sub-periods, such as single days, and then 

applying these estimates to sequential sub-periods for the entire VaR horizon. Their reasoning 

revolves around possible trends in the return data, as the scaling of such a trend with 

increasing time horizons would eventually lead to an unrealistically high or low value and 

erroneous VaR figures. If, on the other hand, the data are best described by a zero trend, 

forecasting the variables for multiple sub-periods would be unnecessary as with increasing 

time horizon the value would eventually level out at some long-run average, yielding the sub-

period forecasts unnecessary.167 For these reasons the authors suggest simply applying an 

estimated mean return and volatility for the entire VaR horizon. Unfortunately, they do not 

provide suggestions as to how one could derive such long run average estimates. 

These arguments are somewhat in line with the results presented by Embrechts et al. (2005) 

who find that the best results for calculating volatility and return estimates for a one year 

horizon are achieved with data at intermediate horizons. 

In addition to the issues of parameter estimation and return distribution assumptions, Dowd et 

al. (2004) also examine the assumption of constant portfolio composition throughout the VaR 

horizon. Although they also subscribe to this simplifying assumption168, they do not do so 

without briefly discussing it and providing a suggestion for deviating from this restriction, 

which is in contrast to most arguments in the relevant publications. The authors argue that an 

additional instrument could be added to the portfolio, thus providing a means of accurately 

representing a predetermined asset allocation strategy. As an alternative they suggest a 

                                                 
166 The approach presented by Brummelhuis and Kaufmann (2007) to integrate a non-zero mean return can 

provide relief regarding this issue, however, when the mean return is or is assumed to be zero, this approach 

cannot be applied. 
167 A good example in support of this argument is the approach of producing sequential volatility estimates for a 

GARCH process, whereby eventually the volatility estimates converge to the long-run average component.  
168 This is achieved by implicitly reinvesting intermediate cash flows into the portfolio in a way which maintains 

the relative weights among the contained assets. 



61 
 

simulation approach which estimates VaR by calculating sequential sub-periods; however, 

this procedure is a contradiction to their general line of argumentation. 

Fundamentally this article does not present any groundbreaking results, but does cover some 

of the essential elements and assumptions necessary for an accurate long-run VaR model and 

provides some valuable insights on long-run VaR. 

 

3.3.4. A Term Structure of Risk 

In contrast to the three previously presented articles which focused on a few specific issues 

when calculating a long-run VaR, Guidolin and Timmermann (2006a) present research and a 

comparative study for different possible long-run VaR models, some of which provide 

possibilities to handle or incorporate many of the identified critical issues present in a long-

run VaR calculation, which the aforementioned models cannot.169 

For their analyses they use monthly return data from markets in the United States of America 

for three asset classes. Specifically they focus on equity data in the form of a value weighted 

portfolio for the New York Stock Exchange (NYSE), T-bills170, and ten year U.S. Treasury 

bonds. 

 

The authors focus on the equity and bond data, however, and base all their models and 

calculations on the excess returns of equity or bonds above the respective monthly T-bill 

rates, by subtracting these T-bill rates from the gross monthly returns of these two assets.171 

Applying these data the authors calibrate five different VaR models and compare their 

performance for monthly horizons ranging from one month to two years, and two confidence 

levels, 95% and 99%. 

The VaR models differ in their flexibility with regard to five different elements: Incorporation 

of time varying mean asset returns, time varying volatility, time varying correlations, flexible 

portfolio composition, and accurate reflection of the fat tails seen in empirical return data. 

Regarding the flexibility of portfolio composition, the differentiation among the models is a 

fundamental one. If portfolio composition is assumed to be constant, the models are tailored 

                                                 
169 Guidolin & Timmermann (2006a) 
170 T-bills are short term government debt securities issued by the U.S. Treasury. The authors make use of T-bills 

with one month, i.e. thirty day maturities. 
171 For their asset return calculations they include possible dividend or coupon payments during a month. 
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directly to portfolio returns and are therefore univariate. When keeping portfolio composition 

flexible, the models describe single asset returns and must be multivariate. 

 

Guidolin and Timmermann (2006a) estimate three different multivariate models. A fairly 

basic multivariate model is defined as the benchmark. It implements constant mean returns, 

correlations, and volatilities with standard normal innovations and provides a means to 

incorporate serial correlation in asset returns by including an autoregressive component. This 

model is moderately restrictive in comparison to the presented alternatives but, due to its 

multivariate nature, can allow for changing portfolio composition from month to month. In 

contrast the most flexible of all models under investigation is a multivariate Markov regime 

switching model.172 This model can integrate flexibility regarding all five of the just 

mentioned issues. Although mean return, volatility, and correlations are fixed for each state, 

the necessary flexibility is created by modeling the different states accordingly. For example, 

one could model a more probable “regular” state in which volatilities and mean returns are 

average and correlations reflect average market situations and a second state of market turmoil 

in which returns are negative, volatilities high and standard correlations break down, which 

occurs with a small probability. The challenge of producing a precise and efficient model lies 

in its calibration and the identification of significant different states in line with the underlying 

data.173  

The third multivariate model is a GARCH(1,1)-M model, based on Engle and Kroner (1995), 

with Student-t distributed innovations to replicate heavy tails. This model is similar to the 

univariate models which have been presented in this paper and is only restricted with regard to 

correlations, which are constant. 

 

Aside from these three multivariate models which can model all asset returns separately, the 

authors include a univariate two component GARCH(1,1) model drawn from Engle and Lee 

                                                 
172 Regime switching models assume a discrete number of different regimes, i.e. states which have a certain 

probability of occurring. For each state a specific multivariate model is defined with distinct mean returns, 

volatilities, and correlations. In the model at hand Guidolin and Timmermann (2006a) define the four different 

regimes as a “realization of a first-order Markov chain with constant transition probabilities.” (Guidolin & 

Timmermann (2006a), page 287) The transition probabilities, which are summarized in a transition matrix, state 

the probability of moving from one state to another. 
173 For more information on multivariate regime switching models the authors refer to publications by Ang and 

Bekaert (2002) and Guidolin and Timmermann (2006b). 
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(1999) This model differs from basic GARCH models in two respects. On the one hand, the 

two component feature allows both the short-run element of volatility as well as the long-run 

average volatility to fluctuate, which provides additional advantages in replicating the heavy 

tails present in the relevant empirical distributions. On the other hand, this GARCH model 

includes the asymmetry feature that was previously mentioned. 

The final method the authors include in their survey is a nonparametric block bootstrap, which 

draws a large number of samples equivalent in length to the VaR horizon and derives risk 

measures by calculating averages across the samples.174 

 

Guidolin and Timmermann (2006a) perform their evaluation of VaR measures based on the 

different models for five different portfolios to assess differences in performance and 

accuracy related to the three asset classes. The five portfolios are 50% stocks and 50% bonds, 

50% bonds and 50% T-bills, 100% bonds, 50% stocks and 50% T-bills, and finally 100% 

stocks. In the first step of their analysis the authors use Monte Carlo simulations to calculate 

so-called “term structures of risk” for all models and portfolios at both the 95% and 99% 

confidence levels.175 A general observation made with regard to the benchmark model is that 

VaR rises at first for the shorter time horizons until it reaches its peak and falls slowly after 

this peak. This is in line with the conclusions presented by Dowd et al. (2004). The initial 

analysis of unconditional VaR shows that the fluctuations across models and time horizons 

can be very large, with the greatest variations occurring at the longest time horizons. 

Depending on the portfolio, the 24 month VaR predicted by the five different models can 

range from approximately 0% to more than 30% for the 50% bonds and 50% T-bills portfolio 

or take values between approximately 20% and 43% for the 100% equity portfolio. As far as 

general tendencies for specific models are concerned, one can observe that the benchmark 

model has a propensity to generate the smallest VaR estimates for all time horizons and 

portfolios, except the 100% bond portfolio for which the regime switching model produces 

even smaller VaR figures. The multivariate GARCH(1,1)-M model produces the highest VaR 

estimates at long time horizons for four of the five portfolios and in general does not exhibit 

the universal tendency of reaching a peak and declining subsequently. It shows steady 

increases with time for all portfolios with distinct differences in the slope of the increases 
                                                 
174 This method can be classified in the historical simulation category. For more information on block bootstrap 

methods in general please refer to Lahiri (1999) or Lahiri (2003). 
175 i.e. they chart the VaR figures over the entire time horizon up to the 24 month limit for every model and 

portfolio to highlight the different evolution of VaR over the full horizon for the various models. 
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amongst the portfolios. The univariate GARCH model tends to lead to the highest VaR 

figures at short horizons, but declines slowly for longer horizons and the bootstrap method 

produces average results across time horizons and portfolios. Based on these results one 

would have to take the asset classes and specific time horizon into account when choosing a 

model to implement. 

 

As these results were unconditional VaR figures independent of the exact situation regarding 

the relative volatilities and current state at the time of evaluation, the authors evaluate 

potential effects of varying the initial states or volatilities at the time of evaluation to compare 

differences between unconditional and conditional VaR across time horizons. 

These deviations can only occur in the regime switching and GARCH models, of course. The 

analysis shows that the effect is greatest for variations in the initial state of the regime 

switching model and smaller for the GARCH models, with noticeable differences amongst the 

portfolios. The results also contradict the arguments commonly brought forth regarding the 

irrelevance of initial states when looking at large time horizons, as even at the longest time 

horizon of two years the differences caused by varying starting points remain very 

significant.176 

 

Aside from these general and descriptive analyses of the distinct characteristics of the 

different VaR models for different time horizons, starting points, and portfolio compositions, 

the authors evaluate the predictive performance and precision by comparing out of sample 

forecasts with the actual empirical returns for horizons up to twelve months and confidence 

levels of 95% and 99%. 

To assess the performance of the different models Guidolin and Timmermann (2006a) 

compare the actual number of exceedances to the expected number for the chosen confidence 

level and an additional measure as proposed by Christoffersen and Diebold (2000). 

The results of the performance evaluations do not identify a single model as unambiguously 

optimal. The relative performance depends upon the asset class, horizon, and confidence 

level. The benchmark model tends to underestimate VaR especially at horizons longer than 

six months. The multivariate GARCH model overestimates VaR distinctly for all portfolios 

containing bonds across all time horizons but performs well for the 100% equity portfolio at 

                                                 
176 It is argued that these differences are related to the fact that the cumulative return is of importance so that 

initial differences would not be evened out as time tends to infinity. 
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the 99% confidence level. The univariate GARCH model achieves better results at shorter 

horizons, but underestimates VaR at longer horizons for the 99% confidence level and across 

time horizons for 95% confidence. The bootstrap model outperforms the other models across 

portfolios and time horizons for the 95% confidence level, for which the other approaches 

exhibit a tendency of underestimating VaR. At the 99% confidence level the overall top 

performing model is the multivariate regime switching model. 

In summary the bootstrap model is the top performer for a confidence level of 95%, whereas 

at 99% the regime switching model shows the highest level of precision. 

 

This result is encouraging because when looking at the higher confidence levels, above 95%, 

the model that provides the most flexibility and can best deal with the critical issues for long-

run VaR as highlighted in this paper is also the most precise. 

 

3.3.5. Wavelet VaR177 

In two articles on applications of wavelet analysis178 with regard to the calculation of 

CAPM179 parameters and estimation of returns via the proposed CAPM implementations, 

Fernandez (2005 & 2006) presents VaR calculations for different time horizons. These two 

publications are focused on CAPM specific issues and only deal with VaR as a byproduct, so 

they will only be covered in a few words. 

Basically, after estimating CAPM parameters from daily return data for the different time-

scales, which are horizon intervals derived from the wavelet analysis180, the author calculates 

VaR estimates for the underlying data for horizons up to one year. Due to the fact that these 

VaR calculations are based on CAPM models estimated to very specific emerging markets, 

the general applicability of the VaR element of the performed research is very limited. The 

only assets covered are stocks and exchange rates and no other asset class could even be 

included in the model as the CAPM is only applied to foreign and domestic equity. 

Additionally, when implementing such a VaR model one would automatically be restricted to 

                                                 
177 Fernandez (2005) and Fernandez (2006) 
178 For detailed information on wavelet methods in general and in relation to financial markets Fernandez points 

to other publications such as Ramsey (1999 & 2002) or Ramsey and Zhang (1997). 
179 Capital Asset Pricing Model originally proposed by Sharpe (1964), Lintner (1965) and Mossin (1966). 
180 Seven different time scales are presented: 2 to 4 days, 4 to 8 days, 8 to 16 days, 16 to 32 days, 32 to 64 days, 

64 to 128 days, and finally 128 to 256 days which is equivalent to one year. 
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assuming the CAPM as the mapping function for the stocks included in the portfolio VaR 

calculation at hand. This would restrict the approach even further and force all restrictions and 

potential flaws of the CAPM onto the VaR model. In spite of these cautionary comments, the 

results of the VaR analyses will be summarized briefly. Fernandez calculated 95% VaR 

figures measured in U.S. Dollars portfolio value per day for time scales 1 to 6, i.e. for 

horizons up to 128 days, and found that these values decreased steadily with increasing time 

horizons. Although the horizons are aggregated into time intervals and the analysis is limited 

to the 95% confidence level and a horizon of 128 days, these results are in line with other 

empirical evidence which suggests that VaR increases with time at a rate less than linear. 

3.3.6. RiskMetrics Long-Run VaR Methodologies 

3.3.6.1. LongRun VaR 

The first of the two long-run VaR approaches conceived by the RiskMetrics Group can be 

derived from some of the Technical Documents published up to the year 2001, specifically the 

original Technical Document of 1996181, the Return to RiskMetrics document (2001)182, the 

CorporateMetrics Technical Document (1999)183 and most importantly, the LongRun 

Technical Document (1999)184 which is the key to calculating any risk measure for long time 

horizons in line with the RiskMetrics methodology. 

Basically the model is a Full Valuation Monte Carlo Simulation method, as presented in the 

previous part of the thesis, with a time horizon of up to two years. 

 

The elements of the calculation are the same as in the short run. The value of the assets is 

mapped to risk factors, these risk factors are simulated for the VaR horizon, and the 

distribution of portfolio values at the end of the VaR horizon depending on the generated 

scenarios is calculated from which VaR can then be estimated. Fundamentally, the building 

blocks are identical except for the risk factor scenario generation, which is more complex and 

detailed in the LongRun Technical Document (1999).185 

                                                 
181 Longerstaey (1996) 
182 Mina & Xiao (2001) 
183 Lee et al. (1999) 
184 Kim et al. (1999) 
185 Kim et al. (1999) 
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The scenarios include daily price paths from the time of evaluation up to the end of the VaR 

horizon; the process is split up into two separate steps. 

 

The first part is so-called Level I simulation. This entails estimating exact distributions186 for 

all risk factors at all Level I dates or horizons. The standard choice for these Level I dates or 

horizons are monthly intervals, so that for a VaR horizon of one year there would be twelve 

Level I dates from one up to and including twelve months. 

Aside from the distinct distributions for all risk factors at all Level I horizons, the second 

element necessary for completing Level I simulations is a covariance matrix. 

This covariance matrix, however, is massively more complex than in the simple case of 

estimating an equivalent matrix for a single time horizon. 

In fact the necessary covariance matrix can be interpreted as a large matrix consisting of many 

smaller matrices, which can also be referred to as a tensor, in the following form: 187 

   

This matrix contains ‘n’ times ‘n’ sub matrices with ‘R’ times ‘R’ elements188, respectively, 

representing all correlations amongst all risk factors across all Level I horizons. 

In two extreme cases this matrix simplifies to two common covariance matrices. If ‘R’ is 

equal to one, i.e. there is only one Level I date, the matrix reduces to the simple covariance 

matrix for any standard VaR calculation, as every one of the sub matrices only contains a 

single element. In the other extreme case of ‘n’ equalling one, i.e. only one risk factor is 

considered, the matrix only contains autocovariances for a single risk factor across different 

Level I horizons. In the general cases the full covariance matrix is present, containing not only 

the covariances across risk factors for a single date or across all dates for a single risk factor 

but also all combinations of different risk factors at different dates with other risk factors at 

other dates. 

However, as the estimation of ‘n’ squared times ‘R’ squared covariance values would be 

extremely laborious if not impossible in many cases, RiskMetrics presents some 
                                                 
186 The document does provide flexibility, but the basic assumption is a multivariate normal distribution for asset, 

i.e. risk factor returns, so that the distributions are defined by estimating means and variances (Kim et al. (1999), 

page 137). 
187 Equation 5.2 in Kim et al. (1999), page 138 
188 ‘n’ being the number of risk factors and ‘R’ the number of Level I horizons 
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simplifications that reduce the complexity of estimating all elements of the matrix 

substantially while preserving the consistency of the estimation approach in general.189 

 

With this covariance matrix and the expected means and volatilities for the risk factors at all 

Level I dates, one can generate simulation paths containing risk factor scenarios for all Level I 

dates that are in line with the correlation structure and the respective risk factor distributions. 

 

The second element of the scenario generating procedure is the Level II simulation which fills 

in the “gaps” between the Level I horizons so that every scenario contains a complete path for 

every risk factor for every single day from the evaluation date up to the end of the VaR 

horizon. 

 

It is assumed that the daily risk factor values follow a random walk between two Level I dates 

but take the values generated from the Level I simulations at the Level I dates. The 

intermediate random walk is therefore in line with the estimated volatility. As the risk factors 

are assumed to follow a random walk with normally distributed innovations, i.e. a Geometric 

Brownian Motion, this procedure is called a “Brownian bridge”190. 

The scenarios for these Brownian bridges are simulated between Level I dates by letting the 

distributional parameters, means, variances, and covariances gradually move from those of 

one Level I horizon to those of the subsequent Level I horizon in line with an algorithm which 

is presented in the LongRun Technical Document (1999)191. 

After performing both Level I and Level II simulations, the end result is a complete 

distribution of risk factors for every single day in the VaR horizon. From these risk factor 

scenarios and distributions, associated portfolio values can be calculated for each date and 

scenario and thereby the paths of portfolio value across the entire VaR horizon. 

This property of the proposed VaR model is unique amongst the presented long-run VaR 

approaches. It provides possibilities of implementing flexibility regarding some of the 

restrictive assumptions that are not possible for other methods, computational resources 

permitting. As full valuation can be performed for any point in time in the VaR horizon, the 

                                                 
189 The details regarding the covariance matrix estimation are presented on pages 138 to 141 and procedures to 

ensure the positive definiteness of the matrix are described on pages 151 to 152 of the LongRun Technical 

Document (Kim et al. (1999)). 
190 Kim et al. (1999), page 143 
191 Kim et al. (1999), page 145 
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restriction of constant portfolio composition can be relaxed and daily portfolio changes are 

possible without any additional modifications of the VaR model itself. Time varying means, 

volatilities, and correlations can also be implemented. 

 

Aside from presenting this forecasting approach for calculating a long-run Monte Carlo 

simulation VaR, the LongRun Technical Document192 also outlines different methods for 

estimating the necessary distributional parameters of volatility and mean for various risk 

factors associated with the main asset classes of equity, foreign exchange, interest rates, and 

commodities. 

The authors distinguish two main approaches: 

• The first is classified as “Forecasts based on current market prices”193 and derives the 

distributional parameters directly from market data on the specific risk factors or 

assets themselves, such as spot prices and derivative instruments including forwards, 

futures, and options. This approach makes use of fundamental concepts of financial 

market and asset pricing theory194 to derive market expectations for future 

distributions of asset prices from the current market prices of these different 

instruments. For example, forward and futures prices are used to estimate mean 

returns of risk factors and option prices to derive estimates of future volatility for 

various time horizons. The authors propose three different combinations of deriving 

the distributional parameters for a long-run VaR model from these current market 

prices. The simplest approach is the same as in standard short-run models. A zero 

mean return is assumed and the volatility estimate generated from historical return 

data. The other two approaches both assume the expected return to equal the forward 

premium, one generating the volatility estimate from historical data and the purely 

forward looking approach deriving it from implied volatilities. 

 

• The second main approach of generating the distributional parameters for forecast 

generation is “based on economic structure”195. This approach is more complex and 

elaborate, as risk factor distributions are not forecast from market data directly related 

                                                 
192 Kim et al. (1999) 
193 Kim et al. (1999), pp. 15-80 
194 e.g.: The efficient markets theory, risk neutral valuation, cost-of-carry concepts, and the expectation 

hypothesis. 
195 Kim et al. (1999), pp. 81-122 



70 
 

to the risk factors themselves, but an entire system of historical macroeconomic and 

financial data is assembled and modelled econometrically. The amount of utilized 

time series data is much more extensive, and in a way, the risk factors’ distributions 

are mapped to the econometric model in similar fashion as the assets are mapped to 

the risk factors.196 Such “mapping”, which basically defines the relationships amongst 

the time series or risk factors, is necessary to generate forecasts for the risk factor 

distributions. The economic structure created by relying on fundamental economic 

concepts197 is an essential component of such econometric forecasting models. Kim et 

al. (1999) also provide a survey of many publications which analyzed such 

relationships for various asset classes in the derivation of their own model.198 The 

specific econometric model upon which the authors focus their attention is a Vector 

Error Correction Model (VECM), a combination of a Vector AutoRegressive Model 

(VARM) and an Error Correction Model (ECM). This econometric model can 

incorporate both autoregressive features of time series and the cointegrating 

relationships present among the different time series.199 An additional feature of the 

selected model is that it can generate forecasts for many time series simultaneously, 

which is a very important feature in the multivariate case. In their paper on risk 

assessment for pension funds, Bosch-Príncep et al. (2002) present an implementation 

of such a VECM VaR model and calibrate it to data from the Spanish market. 

 

                                                 
196 For example the proposed model only integrates equity index data directly so that forecasts for specific stocks 

must be generated by relating them to the equity index data and other relevant time series in the econometric 

model. 
197 e.g. purchasing power parity (PPP) or monetary theory for foreign exchange rates (Kim et al. (1999), page 

104) 
198 On pages 105 to 108 Kim et al. (1999) refer to MacDonald & Taylor (1994), MacDonald & Marsh (1997) and 

Mark & Choi (1997) among others regarding foreign exchange; to Edwards & Khan (1985), Hall et al. (1992) 

and Caporale & Pittis (1997) among others regarding interest rates; Lee (1996) in relation to equity, and finally 

Pindyck (1993) and Pindyck & Rotemberg (1990) with regard to commodities. 
199 Such a cointegrating relationship is present when two or more different time series appear to follow a random 

walk when observed individually but the differences between the different time series are somewhat stable. For 

further details on the precise derivation and selection of the chosen econometric model, please refer to the 

original text. 
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In addition to the flexibility provided in estimating the parameters for the risk factor 

distribution forecasts, the model presented in the LongRun Technical Document200 can also be 

expanded to incorporate economic regime switches or the possibility of structural breaks in 

markets and, although the normal distribution is assumed in the model, the authors provide 

information on possible deviations from this assumption, further increasing the flexibility of 

their model. 

 

Concluding the remarks on this model, it can be noted that the framework which is presented 

by Kim et al. (1999) provides vast flexibility with regard to all of the critical issues identified 

in the previous part of the thesis, but naturally, the more flexible such a model is designed to 

be, the more complex it becomes in conception, implementation, and also maintenance. 

3.3.6.2. RiskMetrics 2006 

The final and at the same time most current long-run VaR model presented is also proposed 

by the RiskMetrics Group in their publications on the RiskMetrics 2006 methodology.201 

This methodology, published in the first half of 2007, is the first drastic methodological 

innovation brought forth by the RiskMetrics Group since the original document of 1996202.  In 

contrast to the LongRun model which was just presented, the RiskMetrics 2006 

methodologies main aim is not to provide long horizon VaR figures but to provide a 

significant increase in accuracy for VaR calculations across all time horizons up to horizons 

of twelve months. Given that the majority of the literature surveyed in this thesis seems to 

focus on horizons up to twelve months as well, with a few exceptions covering even longer 

time horizons, this approach fits perfectly into the current discussions. 

The benchmark Zumbach uses as a point of reference in the comparisons of his model is the 

basic RiskMetrics VaR approach including the refinements presented in Mina and Xiao 

(2001). 

This benchmark model has the following features: it is derived from a random walk, the mean 

return is assumed to be zero, volatility estimates are generated by an Exponentially Weighted 

                                                 
200 Kim et al. (1999) 
201 Zumbach (2007a), Zumbach (2007b) and Zumbach (2007c) 
202 Longerstaey (1996) 
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Moving Average (EWMA) or equally weighted process for daily volatilities, and innovations 

are drawn from a standard normal distribution.203 

 

The RiskMetrics 2006 approach also relies on the basic random walk equation to model the 

risk factor return process, but differentiates itself as to how the mean returns, volatilities, and 

innovations are derived. The main aim is to fully incorporate the empirical insights on the 

specific features of financial time series which have been gained in recent years, fat tails, and 

volatility clustering in particular. An additional motivation mentioned by Zumbach204 is to 

achieve the improvements in accuracy without introducing too many additional parameters in 

contrast to approaches based on GARCH(1,1) processes which contain a long-run mean 

volatility as one of its parameters which clearly differs across different risk factors. 

 

The VaR approach is based on an ARCH model, originally introduced by Zumbach (2004 & 

2006), which extends an I-GARCH205 process to a so-called Long-Memory ARCH (LM-

ARCH) process. The main feature is that the weights assigned to the squared returns are not 

related linearly to the lag as in the EWMA approach, but decay logarithmically with 

increasing lags. The weights are also dependent upon the horizon for which the volatility is to 

be estimated. This element of the model reflects what Zumbach (2007b)206 calls an intuitive 

assumption, that is, that short horizon forecasts depend more on recent data and volatility 

forecasts for longer time horizons place more emphasis on data which lie further in the past. 

Moreover, the Long-Memory ARCH process, as proposed in the Riskmetrics 2006 

methodology, takes risk factor data up to six years back into account207 as opposed to the 

equally weighted volatility which uses one year of historical data and the EMWA approach 

which, depending on the decay factor, reflects information going back up to approximately 

one year, for a decay factor of 0.97. Figure 4 presented below illustrates these points nicely. 

 

                                                 
203 The model is set up as a multivariate model for short horizons of less than three months, so that the zero mean 

return assumption is deemed unproblematic with reference to evidence presented in Kim, Malz and Mina (1999). 
204 Zumbach (2007b), page 2 
205 With an Exponentially Weighted Moving Average decay factor of 0.94 or 0.97. 
206 Zumbach (2007b), page 7 
207 Zumbach (2007a), page 25 
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Figure 4 - Source: Zumbach (2007a), page 11 

 

 Zumbach208 also compares his approach to those of Embrecht et al. (2005) and McNeil and 

Frey (2000) which were presented in the previous section. He criticizes the facts that their 

approaches implement a GARCH(1,1) process which has the drawbacks that an exponential 

decay factor is implemented, that the time aggregation rule which is used209 cannot be applied 

to a different volatility process, and that the number of required parameters grows drastically 

with the number of risk factors when calibrating a VaR model. 

 

The complete derivations and equations necessary for any implementation of Zumbach’s 

proposed VaR model can be found in Zumbach (2007a)210 and the results of the extensive 

backtesting which was performed to calibrate and verify the model are detailed in Zumbach 

(2007c). In this presentation of his model the focus will lie upon the key features he conceives 

that lead to the substantial improvements in accuracy of this VaR model. 

One of these elements is the LM-ARCH process which produces volatility estimates that 

differ with respect to the time horizon but can be calibrated in its main parameters once, 

retaining validity across different risk factors. As already mentioned, this sensitivity with 

respect to the forecast horizon is achieved by adjusting the weights to place more emphasis on 

more recent or on the increasingly lagged data. Aside from this flexibility with respect to the 
                                                 
208 Zumbach (2007a), page 6 
209 The Drost and Nijman approach published in 1993. 
210 Specifically in the appendices A and B (pp. 51 – 57). 
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time horizon, the main innovative feature of this approach is the fact that the volatility process 

has three main parameters all independent of the specific risk factors and only one additional 

parameter which must be adjusted to reflect the specificities of each risk factor. The volatility 

process is proposed and calibrated in a way that incorporates the critical empirical features 

common to most if not all financial time series such as heavy tails and volatility clustering, 

while also integrating the long memory of these data sets but without over-fitting to single 

assets which would diminish the valuable property of generality, and necessitate deriving 

multiple specific process parameters for the different risk factors. This is a significant 

improvement in comparison to other methodologies such as the RiskMetrics LongRun 

approach in which a mean return and volatility estimate for each Level I date has to be 

estimated separately. 

 

The second element is incorporating the autoregressive tendencies that sequential returns for 

financial time series exhibit and non-zero expected mean returns. Although Zumbach 

(2007a)211 argues that any autoregressive trends should be zero for liquid and free floating 

assets, because if this were not the case market participants would exploit any such 

correlations until they were eliminated by market forces, one cannot deny their presence in the 

empirical data. As an example, short-term interest rates are mentioned which are fixed by 

central banks and the timing and extent of any changes is usually fairly predictable for time 

horizons in the area of a month and trends for longer periods can usually be foreseen in line 

with economic policy in the respective regions.212 As far as the zero mean return assumption 

is concerned, the other contradictory example which is listed are returns on stocks and equity 

indices which require an expected mean return above zero in line with their risk profile. 

Zumbach (2007a) performs an empirical analysis on this issue and finds that for most asset 

classes no significant autocorrelation can be identified, but that for interest rate data two 

interesting phenomena present themselves. On the one hand, there seems to be significant 

positive autocorrelation for time horizons between ten days and three months in line with the 

central bank argument, but on the other hand, for longer horizons above a year, the time series 

exhibit negative autocorrelation which can be explained by mean reversion tendencies. The 

incorporation of an non-zero expected mean return and autoregressive features of returns into 
                                                 
211 Zumbach (2007a), page 29 
212 This argument was somewhat contradicted empirically by the events in financial markets in the fall of 2007 

when particularly short-term interest rates displayed extreme and unpredictable fluctuations caused by liquidity 

problems in the financial markets. 
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the model, which significantly increases the complexity of the model, is presented in 

Appendix B of Zumbach (2007a)213. 

The third essential feature of the proposed methodology is the extensive treatment of the 

innovations or errors contained in the random walk process. Zumbach (2007a)214 performs a 

detailed analysis of these errors. The starting point for his analysis is calculating empirical 

error distributions from the numerous financial time series he employs throughout his papers 

by relating the returns forecast by his model to the actual ex-post returns for the relevant 

periods. Using these empirical error distributions as the database, he performs different 

analyses on these distributions with the aim of identifying any distinctive and/or detrimental 

features which would need to be corrected, and also of determining which of the commonly 

assumed statistical distributions most accurately replicates them. First he tests for 

autocorrelation within these error distributions, to verify the assumption that any 

autocorrelation in these time series would be modelled in the volatility and mean return 

forecasts, so that the errors should not display any such behaviour. The results of the analysis 

for the different asset classes confirm the assumption that no meaningful autocorrelation is 

present in the error distributions, so that no modification or correction in this regard is 

necessary. The next issues are the mean and variance of the error distributions, which are 

required to be equal to 0 and 1, respectively.215 

In his analysis Zumbach (2007a) confirms that the mean of the empirical error distributions 

across asset classes does not measurably deviate from zero, validating the mean return 

forecasts produced by the model. As for the variance, on the other hand, there are large 

deviations from 1 with increasing time horizons for some asset classes. To reduce this 

systematic overestimation of risk caused by very high variances in the empirical error 

distributions, an additional component is included in the model. This element is a scaling 

factor216 dependent on the forecast horizon which corrects the residuals and significantly 

reduces the problem of variances exceeding the ideal value of 1. 

After analysing the properties of the empirical error distributions, these distributions are 

compared to some standard distributions often implemented in VaR models, such as the 

standard normal distribution or Student-t distributions with different degrees of freedom. 

                                                 
213 Zumbach (2007a), pp. 53-56 
214 Zumbach (2007a) pp. 32-45 
215 If this were not the case, it would introduce a systematic bias into any VaR calculations. 
216 The scaling factor is presented in equation 17 on page 13 of Zumbach (2007a). 
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Obviously, for applications in VaR models, the consistency of the distributional tails is of 

primary relevance. 

The results of these comparisons are that for very short time horizons the standard normal 

distribution significantly underestimates risk in the tails and is outperformed notably in 

replicating the empirical distributions by a Student-t distribution with 5 degrees of freedom217.  

For increasing time horizons, particularly in excess of three months, the results are no longer 

so clear and one cannot attest advantages of correct replication to either a standard normal or a 

Student-t distribution. In an additional analysis on this issue Zumbach finds that choosing a 

heavy-tailed distribution improves the results, but that introducing a time dependence feature 

into the number of degrees of freedom does not provide any considerable advantages and that 

the sensitivity of results for Student-t distributions with relation to the chosen degrees of 

freedom is very low in the interval between 4.5 and 8. 

In short, when choosing amongst standard distributions, one should select a Student-t 

distribution with degrees of freedom between five and eight. 

In a final benchmarking of the three key elements of the described RiskMetrics 2006 

methodology against the standard RiskMetrics VaR approach, Zumbach (2007a)218 highlights 

the contribution of each of the three elements to the improvement in accuracy of the VaR 

model and the cumulative improvement achieved by including all three elements. 

Concluding the presentation of this VaR model three points must be made: 

 

• Firstly, comparing the accuracy of this approach to the standard VaR models as 

presented in the previous RiskMetrics documents219 across time horizons, the 

backtesting results which are presented in Zumbach (2007c) show that the 

improvements are dramatic for all presented measures of accuracy. For some, the 

improvement is of such a magnitude that the new methodology is more accurate at 

time horizons up to three months than the standard model is at a one day horizon. 

The following graph in Figure 5, depicting one of the accuracy measures220, illustrates 

this point nicely.  

 

                                                 
217 Three degrees overestimate tail risk, while eight underestimate it. 
218 Zumbach (2007a), pp. 48-50 
219 Longerstaey (1996) and Mina & Xiao (2001) 
220 An aggregated error measure derived in Zumbach (2007a) on page 45, for which values as close as possible to 

zero are most desirable. 
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Figure 5 – Aggregated Error Measure – Source: Zumbach (2007c), page 28 

 

• Second, the model is univariate and Zumbach does not present a means of extending 

the framework to a multivariate case. This diminishes the practical use significantly 

until such an extension is provided. One could apply the standard extension to a 

multivariate framework by applying a correlation structure to the errors of the single 

risk factors but this would require additional backtesting. Alternatively, the approach 

could be applied to aggregated portfolio returns. This would, however, introduce the 

restrictions regarding correlation and portfolio compositions inherent with these 

approaches into any such VaR calculations. 

 

• Finally, the RiskMetrics 2006 framework is based on daily data, as opposed to the one 

presented by Dowd et al. (2004) and Zumbach (2007b) argues that basing such a 

model directly on returns for longer time horizons would equate to “essentially 

throwing away most of the information.” 221 Taking the results which are presented 

into account, one would have to agree with Zumbach as his model seems to 

incorporate the advantages of complex VaR models based on ARCH approaches, 

without being exposed to their drawbacks which usually present themselves at longer 

time horizons. 

 

 

 
                                                 
221 Zumbach (2007b), page 12 
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3.4. Reviewing the Critical Issues for an Optimal Long-Run VaR Model 

To conclude the elaborate presentation of approaches for calculating long-run VaR, ranging 

from very simple scaling approaches to very complex models, the final section of this part of 

the thesis will revisit the main restrictive issues, parameters and assumptions inherent in short-

run VaR models which were pointed out in the previous part and summarize the possible 

improvements which were presented in the previous section. This could provide something of 

an outline as to which features an ideal long-run VaR model could or should incorporate. 

 

3.4.1. Constant Portfolio Composition 

Although this is a critical issue the models and approaches which provide flexibility with 

regard to this restriction are scarce. The MaxVaR approach brought forth by Boudoukh et al. 

(2004), provides a simple approach of quantifying some of this additional intra-horizon risk, 

but as far as an explicit modelling of flexible or adaptive portfolio composition is concerned, 

only those models that model the complete paths of risk factor development across the entire 

VaR horizon can really incorporate such flexibility. Examples would be the LongRun 

methodology222 or some of the models presented in Guidolin and Timmermann (2006a). All 

multivariate models and scaling approaches cannot deviate from the constant portfolio 

composition assumption and implicitly do not accurately model the actual portfolio 

composition for long time horizons due to the reasons which were identified in the previous 

part of the thesis. 

3.4.2. Standard Distributional Assumptions and Parameters 

Quite a few models provide means of incorporating error distributions that are not so 

restrictive as the standard normal distribution and the analyses which were presented showed 

that in some cases choosing another distribution with heavier tails can be advantageous; 

however, surprisingly in some of the approaches the standard assumption performed best so 

that one cannot discard it as generally inferior. 

As far as constant volatilities and mean expected returns are concerned, there are both 

univariate and multivariate models that can introduce flexibility with regard to these 

parameters and these were shown to perform very well. Regime switching models for 

                                                 
222 Kim et al. (1999) 
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example or the two RiskMetrics approaches can incorporate varying volatilities and mean 

expected returns. Deviating from the constant correlation, on the other hand, can only be 

achieved with multivariate models, but especially the regime switching models can achieve 

this in a way that can accurately replicate actual empirical behavior of financial time series. 

 

The scaling approaches, conversely, cannot incorporate flexibility with regard to time varying 

distributional parameters or portfolio composition, but as was shown, the relative performance 

of some of these approaches can be fairly good. Of course one should try to start with a 

precise and realistic short-run VaR model and attempt to incorporate as much precision and 

consistency within these approaches to get the most out of these simpler approaches. 
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4. Conclusion 

The demand for accurate and efficient long-run Value at Risk models has grown over the last 

few years leading to an increase in publications on the topic and also in proposed models able 

to handle the special challenges that appear when extending a VaR horizon to horizons of a 

year or more. In a first step, this thesis identified the critical issues and shortcomings which 

are present and in some cases inherent in standard short-run VaR models and approaches. 

Building on this foundation, the simple approaches of extending the horizon of a VaR 

calculation while implementing a short-run model, by means of scaling either the VaR 

quantiles directly or the volatility estimates used to calculate VaR, were surveyed and 

somewhat surprisingly, comparative studies show that these approaches can perform well 

despite their restrictive assumptions. One assumption that must be amended, however, is that 

of a mean return of zero, because this would contradict fundamental concepts of financial 

theory when covering time spans of multiple months or even years. Of course, ideally, an 

implementation of a long-run VaR model should strive to be as realistic as possible and an 

assumption such as constant portfolio composition over a horizon of a year cannot be deemed 

realistic for reasons mentioned at the outset. This issue as well as some of the other critical 

issues such as constant correlation volatility or mean return can be accurately accommodated 

by some of the specific long-run VaR models. This increase in realism and flexibility comes 

at a cost of increased complexity and computational demands, however, so that as with any 

VaR model the tradeoff along these two criteria must always be considered. 

Concluding, it can be stated that although there are some models and approaches which are 

shown to outperform others in the literature, there is no single model or approach that can be 

deemed superior for all possible combinations of portfolios, horizons, or even confidence 

levels. Various models perform better or worse than others depending on the assets which are 

contained in the respective portfolio, perform better or worse depending on which level of the 

distributional tails one is most interested in and, very importantly of course, how long the 

actual VaR horizon of interest is. The optimal VaR model for a specific implementation must 

be found by taking the special criteria of each individual situation into account but 

maintaining some degree of flexibility to adapt to changes in the demands or external factors. 

 

As Zumbach puts it “To some extent, building a risk methodology is an engineering problem: 

one has to pick the important parts and neglect smaller or particular effects. …. This approach 



81 
 

contrasts with an academic study, where often a rigorous answer to a well posed question is 

sought after.”223 

 

  

                                                 
223 Zumbach (2007a), page 7 
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Appendix 

Abstract – English Version 
The Value at Risk (VaR) methodology which was originally developed by banks and other 

financial institutions with their own riskmeasurement and management needs in mind was and 

remains the foundation for numerous VaR calculation methods, approaches, and models that 

were conceived over the past fifteen years. Naturally these approaches and models catered to 

the needs of the user group and as these institutions all had a risk management focus aligned 

towards very short time horizons of a single day up to a week, or a month at the very most, the 

models aimed to produce reliable results for precisely these short time horizons. Therefore the 

models themselves, the underlying assumptions, and the necessary input parameters were 

determined in a way that achieved optimal results for the needs at hand whilst keeping the 

approaches as simple as possible to facilitate efficient VaR calculations. 

Over time, risk management functions in non-financial corporations and other financial 

institutions expanded and evolved leading to increased demand for riskmeasurement tools that 

could serve their needs. The time horizons relevant to these market participants, namely, 

periods of three months up to two years, exceeded by far those which the existent models and 

approaches were geared towards. 

This led to an increasing demand for adequate modifications to existing models and 

innovative approaches and models that could produce accurate results for these longer VaR 

horizons. 

This thesis is focused upon possibilities of calculating long-run VaR figures and the 

approaches and models that can be implemented to achieve accurate risk-measurements for 

long time horizons. 

Initially, the general elements and aspects of the VaR methodology are presented and the 

standard short-run VaR models are surveyed and analyzed with regard to their applicability or 

even expandability towards the longer VaR horizons. During this evaluation the 

simplifications present in these short-run models are highlighted and critically evaluated as to 

their validity in long-run scenarios. 

After providing for a fundamental understanding of the basic VaR concepts, standard VaR, 

and critical issues with regard to long-run VaR, the main part of this thesis presents an 

extensive survey of possible approaches and models for calculating long-run VaR for horizons 

up to and in excess of a twelve month horizon. These approaches range from straightforward 

extensions of short-run VaR models by means of applying a simple scaling factor to short-run 
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VaR figures, over specific but fairly intuitive long-run VaR models, up to the most current 

state of the art long-run VaR approaches and models which are rather complex both 

conceptually and also in implementation. 

Throughout these discussions various comparative studies evaluating the accuracy of different 

approaches and their results are presented in an attempt to determine an optimal or 

fundamentally best-suited approach or model for calculating long-run VaR. 

Somewhat surprisingly, under certain conditions, even the most simple approaches can 

produce very accurate results and thereby outperform more complex models with regard to 

efficiency.  

Finally, although certain critical issues which are highly relevant in a long-run setting are 

identified and should be taken into account when calculating long-run VaR, no approach or 

model can be deemed dominant or generally superior, due to the fact that the relative 

performance of various approaches depends greatly upon the specific situation and needs of 

the respective institution looking to implement such a long-run VaR model. 
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Abstract – German Version 
Die Value at Risk (VaR)-Methodologie, welche ursprünglich von Banken und anderen 

Finanzinstituten unter Berücksichtigung ihrer eigenen Anforderungen an Risikomessung und 

Risikomanagement entwickelt wurde, war damals und ist nach wie vor die Grundlage für 

unzählige VaR-Berechnungsmethoden und –Modelle. Diese wurden im Laufe der 

vergangenen fünfzehn Jahre entwickelt. Grundsätzlich sind diese Methoden und Modelle alle 

auf die Bedürfnisse der ursprünglichen Benutzergruppe ausgerichtet. Da der 

Risikomanagementfokus dieser Institutionen auf sehr kurzen Zeithorizonten, d.h. von einem 

einzigen Tag, einer Woche bis hin zu maximal einem Monat lag, sollten die entwickelten 

Modelle zuverlässige und präzise Ergebnisse für exakt diese kurzen Zeiträume generieren. 

Aus diesem Grund wurden die VaR-Modelle selbst, die Basisannahmen und die notwendigen 

Input-Parameter derart angelegt und bestimmt, dass sie in Hinblick auf die Anforderungen der 

Anwender optimale Ergebnisse lieferten. Gleichzeitig wurden die Methoden so unkompliziert 

wie möglich gehalten um die Berechnungen optimal effizient  zu gestalten. 

Im Laufe der Zeit wurde dem Risikomanagement jedoch auch in anderen Gruppen von 

Finanzinstituten und Unternehmen außerhalb des Finanzsektors größere Bedeutung 

beigemessen, sodass diese Unternehmen einen größeren Bedarf an solchen adäquaten 

Risikobewertungsinstrumenten hatten, die ihren Bedürfnissen bzw. Anforderungen gerecht 

wurden. Die Zeithorizonte, welche für diese neuen Anwendergruppen relevant waren und 

nach wie vor sind, und zwar drei Monate bis hin zu zwei Jahren, gingen weit über jene hinaus 

auf denen die bestehenden Modelle und Methoden ausgerichtet waren. Dies führte zu einer 

verstärkten Nachfrage nach geeigneten Modifikationen und Erweiterungen für bestehende 

Modelle bzw. nach innovativen Methoden und Modellen, die präzise Ergebnisse für diese 

längeren VaR Zeithorizonte liefern könnten. 

Der Fokus dieser Magisterarbeit richtet sich auf Möglichkeiten VaR für lange Zeithorizonte 

zu berechnen und auf den Methoden und Modellen die implementiert werden können, um 

präzise Risikomessungen und -kennzahlen für lange Zeiträume zu ermitteln. 

In einem ersten Schritt werden die allgemeinen Elemente und Aspekte der VaR-Methodologie 

dargelegt und die Standard VaR-Modelle für kurze Zeithorizonte untersucht und in Hinblick 

auf ihre Anwendbarkeit und Ausbaufähigkeit für längere VaR Zeithorizonte analysiert. Im 

Rahmen dieser Evaluierung werden die Vereinfachungen, welche in den VaR-Modellen für 

kurze Zeithorizonte angenommen werden, hervorgehoben und in Bezug auf deren Gültigkeit 

bei längeren Zeithorizonten kritisch bewertet. 
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Nach der Vorstellung der grundlegenden VaR-Konzepte, der Standard VaR-Modelle und der 

kritischen Aspekte in Bezug auf „long-run“- VaR, wird im Hauptteil der Magisterarbeit ein 

umfassender Überblick über mögliche Methoden und Modelle zur Berechnung von VaR für 

lange Zeithorizonte von bis zu zwölf Monaten und darüber hinaus gegeben. Diese Methoden 

reichen von einfachen Erweiterungen der Standard VaR- Modelle für kurze Zeithorizonte, 

welche simple Multiplikatoren einsetzen um „long-run“ VaR zu berechnen, über spezifische 

und dennoch einfache „long-run“ VaR Modelle bis hin zu speziellen „state of the art“ 

Modellen die sowohl konzeptionell als auch in der Umsetzung hoch komplex sind. Im 

Rahmen dieser Darstellung werden verschiedene Vergleichsstudien welche sich mit der 

Präzision von verschiedenen Methoden beschäftigen vorgestellt, um zu eruieren, ob es 

Modelle oder Ansätze gibt, die bei der Berechnung von „long-run“ VaR fundamental 

überlegen sind. 

Überraschenderweise können auch die einfachsten Methoden in gewissen 

Rahmenbedingungen sehr präzise Ergebnisse liefern und dadurch in Bezug auf Effizienz 

komplexere Modelle übertreffen. Letztlich kann man festhalten, dass kein Ansatz oder Modell 

als allgemein überlegen oder dominant bezeichnet werden kann, da die relative Performance 

verschiedener Ansätze sehr stark von der speziellen Situation und den Bedürfnissen der 

Institution abhängen, die ein „long-run“ VaR-Modell implementieren möchte. Man sollte 

jedoch gewisse kritische Bereiche, welche in der Betrachtung von langen Zeithorizonten 

hochrelevant sind, auf jeden Fall bei der Berechnung von „long-run“ VAR berücksichtigen. 

 

 

 

 

 

 

 

 

 

 

 

 



86 
 

About the Author 
Erich Arthur Stark, a citizen of Austria and the United States of America, was born, reared, 

and schooled in Vienna, Austria. He attended the Volksschule Boersegasse and then the 

Bundesgymnasium Wien IX Wasagasse. After graduation with the Matura in 1996 he enrolled 

at the University of Vienna where during the first few semesters he pursued interests in the 

fields of International Business Administration, Law, and Business Informatics by attending 

corresponding courses. 

He then focused on Business Administration with an emphasis on corporate finance, financial 

management, and operations management and attained his bachelor’s (Bakk. rer. soc. oec.) 

degree in 2004. 

He continued his studies at the University of Vienna for his Master’s degree in Business 

Administration, specializing in banking, risk management, and financial economics - 

graduation pending. 

In 2006 he co-authored two publications in the series “Wirtschaft und Management”: 

Thomas Happ & Erich Stark: "Treasury als Instrument zur Risikominimierung in 

Corporates", published in: Risikomanagement in Unternehmen , Volume 3, Number 4 of the 

series “Wirtschaft und Management“, Mai 2006, pp. 101-114. 

Robert Schwarz, Thomas Happ & Erich Stark: "Cashflow-Modellierung: Am Beispiel der 

Telekom Austria AG", published in Risikomanagement, Volume 3, Number 5 of the series 

“Wirtschaft und Management“, November 2006, pp. 21-39. 

Since 2003 he has been working full time as a senior financial analyst in the Corporate 

Finance team of the Finance and Treasury department of Telekom Austria Group. His main 

responsibilities in that position include analysis and valuation of financial instruments and 

markets, monitoring and optimization of the company’s funding portfolio and hedging 

activities, working on various financial transactions, performing different cost of capital 

assessments, and interacting with rating agencies and investment banks.  



87 
 

Bibliography 
Al Janabi, M. A. (2007). Risk Analysis, reporting and control of equity trading exposure: 

Viable applications to the Mexican financial markets. Journal of Derivatives & Hedge Funds, 

13 (1), 33-58. 

Almgren, R., & Chriss, N. (2001). Optimal Execution of Portfolio Transactions. The Journal 

of Risk, 3 (Number 2 (Winter 2000/2001)), 5-39. 

Andersen, T. G., & Bollerslev, T. (1998). Answering the Skeptics: Yes, Standard Volatility 

Models do Provide Accurate Forecasts. International Economic Review, 4 (Symposium on 

Forecasting and Empirical Methods in Macroeconomics and Finance), 885-905. 

Andersen, T. G., & Bollerslev, T. (1997). Heterogeneous Information Arrivals and Return 

Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns. Journal of 

Finance, 52, 975-1005. 

Ang, A., & Bekaert, G. (2002). Regime Switches in Interest Rates. Journal of Business and 

Economic Statistics, 20 (2), 163-182. 

Baillie, R. T., Bollerslev, T., & Mikkelsen, H. O. (1996). Fractionally Integrated Generalized 

Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 74 (1), 3-30. 

Basel Committee on Banking Supervision. (2005). Amendment to the Capital Accord to 

incorporate market risks. Bank for International Settlements (BIS), Basel Committee on 

Banking Supervision. Basel: Bank for International Settlements (BIS). 

Beirlant, J., Teugels, J. L., & Vynckier, P. (1996). Practical analysis of extreme values. 

Leuven: Leuven University Press. 

Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal of 

Political Economy, 81 (2), 637-654. 

Blake, D., Cairns, A., & Dowd, K. (2000). Extrapolating VaR by the Square-Root Rule. 

Financial Engineering News (17), 3&7. 

Bodie, Z., Kane, A., & Marcus, A. J. (2005). Investments (5th Edition ed.). New York: 

McGraw-Hill. 

Bosch-Príncep, M., Devolder, P., & Domínguez-Fabián, I. (2002). Risk analysis in asset-

liability management for pension fund. Belgian Actuarial Bulletin, 2 (1), 80-91. 

Boudoukh, J., Richardson, M., Stanton, R., & Whitelaw, R. F. (2004). MaxVaR: Long 

Horizon Value at Risk in a Mark-to-Market Environment. Journal of Investment 

Management, 2 (3), 14-19. 

Brennan, M., & Schwartz, E. (1979). A Continuous-Time Approach to the Pricing of Bonds". 

Journal of Banking and Finance, 3, 133-153. 



88 
 

Brummelhuis, R., & Guégan, D. (2005). Multiperiod conditional distribution functions for 

conditionally normal GARCH(1,1) models. Journal of Applied Probability, 42 (2), 426-445. 

Brummelhuis, R., & Kaufmann, R. (2007). Time-scaling of value-at-risk in GARCH(1,1) and 

AR(1)-GARCH(1,1) processes. Journal of Risk, 9 (4), 39-94. 

Caporale, G. M., & Pittis, N. (1997). Domestic and external factors in interest rate 

determination. Applied Economics Letters, 7, 465-471. 

Chance, D. M. (1998). A Brief History of Derivatives. In D. M. Chance, Essays in Derivatives 

(1st Edition ed., pp. 16-20 of 333). New Hope, Pennsylvania: Wiley. 

Chance, D. M. (1995). A Chronology of Derivatives. Derivatives Quarterly, 2 (Winter 1995), 

53-60. 

Christoffersen, P. F., & Diebold, F. X. (2000). How Relevant is Volatility Forecasting for 

Financial Risk Management? The Review of Economics and Statistics, 82 (No. 1), 12-22. 

Cox, J., Ingersoll, J., & Ross, S. (1985). A Theory of the Term Structure of Interest Rates. 

Econometrica, 53, 385-408. 

Crouhy, M., Galai, D., & Mark, R. (2006). The Essentials of Risk Management (1st Edition 

ed.). New York: McGraw-Hill. 

Culp, C. L., Mensink, R., & Neves, A. M. (1998). Value at Risk for Asset Managers. 

Derivatives Quarterly, 5 (2), 21-33. 

Cuthbertson, K., & Nitzsche, D. (2005). Quantitative Financial Economics: Stocks, Bonds & 

Foreign Exchange (Second Edition ed.). Chichester, West Sussex, England: John Wiley & 

Sons Ltd. 

Dacorogna, M. M., Mueller, U. A., Pictet, O. V., & de Vries, C. G. (2001). Extremal Forex 

Returns in Extremely Large Data Sets. Extremes, 4 (2), 105-127. 

Dale, R. (1996). Risk and Regulation in Global Securities Markets. Chichester, U.K.: John 

Wiley & Sons. 

Daníelsson, J. (2002). The Emperor has no Clothes: Limits to Risk Modelling. Journal of 

Banking & Finance, 26, 1273-1296. 

Daníelsson, J., & de Vries, C. G. (2000). Value-at-Risk and Extreme Returns. Annales 

d'Economie et de Statistique, 60 (Special Issue (2000)), 236-269. 

Daníelsson, J., & Zigrand, J.-P. (2006). On time-scaling of risk and the square-root-of-time 

rule. Journal of Banking & Finance, 30, 2701-2713. 

Daníelsson, J., Hartmann, P., & de Vries, C. G. (1998, January). The Cost of Conservatism: 

Extreme Returns, Value-at-Risk, and the Basle Multiplication Factor. Risk, 101-103. 



89 
 

Das, S. (2006). Risk Management (Third Edition Revised). Singapore: John Wiley & Sons 

(Asia) Pre Ltd. 

Diebold, F., Hickman, A., Inoue, A., & Schuermann, T. (1998). Scale Models. Risk, 11, 104-

107. 

Dimson, E., & Marsh, P. (1995). Capital Requirements for Securities Firms. Journal of 

Finance, 50 (3), 821-851. 

Dowd, K. (2005). Measuring Market Risk (Second Edition). West Sussex, England: John 

Wiley & Sons Ltd. 

Dowd, K., Blake, D., & Cairns, A. (2004). Long-Term Value at Risk. Journal of Risk 

Finance, 2 (5), 52-57. 

Drost, F. C., & Nijman, T. E. (1993). Temporal Aggregation of GARCH Processes. 

Econometrica, 61 (4), 909-927. 

Duffie, D., & Pan, J. (1997). An Overview of Value at Risk. The Journal of Derivatives, 4 (3), 

7-49. 

Dunis, C. L., Laws, J., & Naim, P. (2005). Applied Quantitative Methods for Trading and 

Investment. (C. L. Dunis, J. Laws, & P. Naim, Eds.) Chichester, West Sussex: John Wiley & 

Sons Ltd. 

Eckhardt, R. (1987). Stan Ulam, John von Neumann, and the Monte Carlo Simulation. Los 

Alamos Science (Special Issue (15)), 131-137. 

Edwards, S., & Khan, M. S. (1985). Interest rate determination in developing countries: a 

conceptual framework. IMF Staff Papers, 32, 377-403. 

Embrechts, P. (2000). Extremes and Integrated Risk Management. (P. Embrechts, Ed.) 

London, U.K.: Risk Books. 

Embrechts, P., Kaufmann, R., & Patie, P. (2005). Strategic Long-Term Financial Risks: 

Single Risk Factors. Computational Optimization and Applications, 32, 61-90. 

Embrechts, P., Klueppelberg, C., & Mikosch, T. (2003). Modelling extremal events for 

insurance and finance (corr. 4th printing edition ed.). Berlin [u.a.]: Springer. 

Embrechts, P., Resnick, S., & Samorodnitsky, G. (1998). Living on the Edge. Risk, 11 (1), 96-

100. 

Engle, R. F., & Kroner, K. F. (1995). Multivariate simultaneous Generalized ARCH. 

Economic Theory, 11 (1), 122-150. 

Engle, R. F., & Lee, G. G. (1999). A long-run and short-run component model of stock return 

volatility. In H. White, R. F. Engle, H. White, & R. F. Engle (Eds.), Cointegration, Causality, 



90 
 

and Forecasting: a Festschrift in Honour of Clive W.J. Granger (pp. 475-497). Oxford, U.K.: 

Oxford University Press. 

Engle, R. (2001). GARCH 101: The Use of ARCH/GARCH Models in Applied 

Econometrics. Journal of Economic Perspectives, 15 (4), 157-168. 

Engle, R. (2004). Risk and Volatility: Econometric Models and Financial Practice. The 

American Economic Review, 94 (3), 405-419. 

Fama, E. F., & Miller, M. H. (1972). The Theory of Finance. Hinsdale, Illinois: Dryden Press. 

Feller, W. (1971). An Introduction to Probability Theory and Its Applications (2nd Edition 

ed., Vol. II). New York, New York: John Whiley & Sons. 

Fernandez, V. P. (2006). The CAPM and value at risk at different time-scales. International 

Review of Financial Analysis, 15, 203-219. 

Fernandez, V. P. (2005). The International CAPM and a Wavelet-Based Decomposition of 

Value at Risk. Studies in Nonlinear Dynamics & Econometrics, 9 (4), 1-27. 

Field, P. (2003). Modern Risk Management: A History. (P. Field, Ed.) London: Risk Books. 

Fight, A. (2004). Understanding International Bank Risk (1st Edition ed.). Chichester: John 

Wiley & Sons. 

Global Derivatives Study Group. (1993). Derivatives: Practices and Principles. Group of 

Thirty, Global Derivatives Study Group. Washington D.C.: Group of Thirty. 

Gopikrishnan, P., Plerou, V., Liu, Y., Aramal, L., Gabaix, X., & Stanley, H. (2000). Scaling 

and correlation in financial time series. Physica A, 287, 362-373. 

Guidolin, M., & Timmermann, A. (2006a). Term structure of risk under alternative 

econometric specifications. Journal of Econometrics, 131, 285-308. 

Guidolin, M., & Timmermann, A. (2006b). An econometric model of nonlinear dynamics in 

the joint distribution of stock and bond returns. Journal of Applied Econometrics, 21, 1-22. 

Hall, A. D., Anderson, H. M., & Granger, C. W. (1992). A cointegration analysis of treasury 

bill yields. The Review of Economics and Statistics, 116-125. 

Hill, B. M. (1975). A Simple General Approach to Inference About the Tail of a Distribution. 

The Annals of Statistics, 3 (5), 1163-1174. 

Holton, G. A. (2002). History of Value-at-Risk: 1922-1998. Working Paper, 0207001, 27. 

Holton, G. A. (2003). Value-at-Risk: Theory and Practice (1st ed.). San Diego: Academic 

Press. 

Hull, J. C. (2003). Options, Futures, and Other Derivatives (Fifth Edition) (5th Edition ed.). 

Upper Saddle River, New Jersey: Prentice Hall - Pearson Education Inc. 



91 
 

Hull, J., & White, A. (1998). Incorporating volatility updating into the historical simulation 

method for value-at-risk. Journal of Risk, 1 (1), 5-19. 

Iacono, F., & Skeie, D. (1996, October 14). Learning Curve (R) Translating VaR Using 

{square root} T. Derivatives Week, 8. 

Jordan, J. V., & Mackay, R. J. (1997). Assessing Value at Risk for Equity Portfolios: 

Implementing Alternative Techniques. In R. J. Schwartz, C. W. Smith, R. J. Schwartz, & C. 

W. Smith (Eds.), Derivatives Handbook: Risk Management and Control (pp. 265-309 (of 

650)). New York, New York: John Wiley & Sons. 

Jorion, P. (2003). Financial Risk Manager Handbook (Second Edition). Hoboken, New 

Jersey, United States of America: John Wiley & Sons, Inc. 

Jorion, P. (1995). Predicting Volatility in the Foreign Exchange Market. Journal of Finance, 

50, 507-528. 

Jorion, P. (2001). Value at Risk: The New Benchmark for Managing Financial Risk (Second 

Edition). New York, New York, United States of America: McGraw-Hill. 

Kaufmann, R., & Patie, P. (2003). Strategic long-term financial risks - The one dimensional 

case. ETH Zurich, RiskLab. Zurich: ETH Zurich. 

Kim, J., Malz, A. M., & Mina, J. (1999). LongRun Technical Document (First Edition ed.). 

New York, New York: RiskMetrics Group. 

Kupiec, P. H. (1999). Risk Capital and VaR. Journal of Derivatives, 7 (2), 41-52. 

Lahiri, S. N. (2003). Resampling Methods for Dependent Data (1. Edition ed.). New York, 

New York, U.S.A.: Springer. 

Lahiri, S. N. (1999). Theoretical Comparisons of Block Bootstrap Methods. The Annals of 

Statistics, 27 (1), 386-404. 

Laubsch, A. J., & Ulmer, A. (1999). Risk Management - A Practical Guide. RiskMetrics 

Group. 

Lee, A. Y., Kim, J., Malz, A. M., & Mina, J. (1999). CorporateMetrics Technical Document 

(First Edition ed.). New York, New York: RiskMetrics Group. 

Lee, B.-S. (1996). Comovements of earnings, dividends, and stock prices. Journal of 

Empirical Finance, 3, 327-346. 

Lintner, J. (1965). The Valuation of Risk Assets and the Selection of Risky Investments in 

Stock Portfolios and Capital Budgets. (H. U. Government, Ed.) Review of Economics and 

Statistics, 47 (1), 13-37. 

Longerstaey, J. (1996). RiskMetrics - Technical Document (Fourth Edition ed.). New York, 

New York: J.P.Morgan / Reuters (Morgan Guaranty Trust Company of New York). 



92 
 

Luenberger, D. G. (1998). Investment Science. New York, New York: Oxford University 

Press Inc. 

MacDonald, R., & Marsh, I. W. (1997). On fundamentals and exchange rates: a Casselian 

perspective. The Review of Economics and Statistics, 655-664. 

MacDonald, R., & Taylor, M. P. (1994). The monetary model of the exchange rate: long-run 

relationships, short-run dynamics and how to beat a random walk. Journal of International 

Money and Finance, 13, 276-290. 

Malevergne, Y., & Sornette, D. (2006). Extreme Financial Risks: From Dependence to Risk 

Management. Berlin: Springer. 

Mark, N. C., & Choi, D.-Y. (1997). Real exchange-rate prediction over long horizons. Journal 

of International Economics, 43, 29-60. 

Markowitz, H. (1952). Portfolio Selection. Journal of Finance, 7 (1), 77-91. 

McNeil, A. J. (1999). Extreme Value Theory for Risk Managers. In P. i. Association, Internal 

Modelling and CAD II: Qualifying and Quantifying Risk within a Financial Institution (1st 

ed., pp. 93-113 (of 140)). London, UK: Risk Books. 

McNeil, A. J., & Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic 

financial time series: an extreme value approach. Journal of Empirical Finance, 7, 271-300. 

Middleton, P. (1996). GARP: Generally Accepted Risk Principles. Coopers & Lybrand Global 

Financial Risk Management Practice. Leicester: Septre Litho. 

Mina, J., & Xiao, J. Y. (2001). Return to RiskMetrics: The Evolution of a Standard (First 

Edition ed.). New York: RiskMetrics Group. 

Mossin, J. (1966). Equilibrium in a Capital Asset Market. Econometrica, 34 (4), 768-783. 

Nelson, D. B. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. 

Econometrica, 59 (2), 347-370. 

Pindyck, R. S. (1993). The present value model of rational commodity pricing. The Economic 

Journal, 103, 511-530. 

Pindyck, R. S., & Rotemberg, J. J. (1990). The Present value model of rational commodity 

pricing. The Economic Journal, 100, 1173-1189. 

Ramsey, J. B. (1999). Regression over Timescale Decompositions: A Sampling Analysis of 

Distributional Properties. Economic Systems Research, 11 (2), 163-183. 

Ramsey, J. B. (2002). Wavelets in Economics and Finance: Past and Future. Studies in 

Nonlinear Dynamics & Econometrics, 6 (3), 1-29. 

Ramsey, J. B., & Zhang, Z. (1997). The analysis of foreign exchange data using waveform 

dictionaries. Journal of Empirical Finance, 4 (4), 341-372. 



93 
 

Reilly, F. K., & Brown, K. C. (2003). Investment Analysis & Portfolio Management (Seventh 

Edition) (7th ed.). Mason, Ohio: Thompson - South-Western. 

Roy, A. D. (1952). Safety First and the Holding of Assets. Econometrica, 20 (3), 431-449. 

Schmid, F., & Trede, M. (2006). Finanzmarktstatistik. Heidelberg, Germany: Springer. 

Schwert, G. W. (1990). Stock Volatility and the Crash of '87. Review of Financial Studies, 3, 

77-102. 

Schwert, G. W. (1989). Why Does Stock Market Volatility Change Over Time? Journal of 

Finance, 44 (5), 1115-1153. 

Schwert, G. W., & Seguin, P. J. (1990). Heteroskedasticity in Stock Returns. Journal of 

Finance, 45 (4), 1129-1155. 

Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium Under 

Conditions of Risk. Journal of Finance, 19 (3), 425-442. 

Smithson, C., & Minton, L. (1996a). Value-at-Risk. Risk, 9 (1), 25-27. 

Smithson, C., & Minton, L. (1996b). Value-at-Risk (2). Risk, 9 (2), 38-39. 

Straetmans, S. T. (1998). Extreme Financial Returns and their Comovements. Tinbergen 

Institute Research Series, Ph.D. thesis no. 181, Erasmus University, Tinbergen Institute, 

Rotterdam. 

Stulz, R. M. (2000, June 27). Why risk management is not rocket science. Financial Times, p. 

10. 

Tobin, J. (1958). Liquidity Preference as Behaviour Towards Risk. Review of Economic 

Studies, 67, 65-86. 

Treynor, J. L. (1999). Toward a Theory of Market Value of Risky Assets (1962). In R. A. 

Korajczyk, & R. A. Korajczyk (Ed.), Asset Pricing and Portfolio Performance (1st Edition 

ed., p. 320). London: Risk Books. 

Wagster, J. D. (1996). Impact of the 1988 Basle Accord on International Banks. Journal of 

Finance, 51 (4), 1321-1346. 

West, K., & Cho, D. (1995). The Predictive Ability of Several Models of Exchange Rate 

Volatility. Journal of Econometrics, 69, 367-391. 

Zakoian, J. M. (1994). Threshold Heteroskedastic Models. Journal of Economic Dynamics 

and Control, 18 (5), 931-955. 

Zumbach, G. (2007a). The RiskMetrics 2006 methodology. RiskMetrics Group. New York: 

RiskMetrics Group. 

Zumbach, G. (2007b). A gentle introduction to the RM 2006 methodology. RiskMetrics 

Group. New York: RiskMetrics Group. 



94 
 

Zumbach, G. (2007c). Back testing risk methodologies from one day to one year. RiskMetrics 

Group. New York: RiskMetrics Group. 

Zumbach, G. (2006). Relevance of volatility forecasting in financial risk management. In M. 

K. Ong, & M. K. Ong (Ed.), Risk Management: A Modern Perspective (Vol. 1, pp. 583-606). 

Burlington, Massachusetts: Academic Press (Elsevier). 

Zumbach, G. (2004). Volatility processes and volatility forecast with long memory. 

Quantitative Finance, 4 (1), 70-86. 

 

 

 

 

 

 

 

 

 


