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1. Objective and motivation

In recent years intra-company supply chains have been growing significantly span-
ning production sites and distribution networks all over the world. Managing supply
chains becomes a more and more important but also a highly challenging task. Im-
proved performance and ongoing optimization along the whole value chain are vital.
It is impossible to imagine neither management science nor practice without the
subject of Supply Chain Management (SCM). According to Stadtler (2005), Supply
Chain Management is defined as the task of integrating participants involved along
a supply chain and of coordinating of materials, information, and financial flows in
order to fulfill ultimate customer demands with the aim of improving competitive-
ness of a supply chain as a whole (cf. Lee and Ng (1998)). Participants may be
suppliers, manufacturing sites, warehouses, distribution centers, or any other actor
being integrated in a supply network. At the same time global competition has in-
creased, such that there is strong demand for new decision support tools on strategic,
tactical and operational levels. Strategic decisions in this context primarily refer to
supply chain design problems like, e.g., the warehouse location problem. Tactical
decisions on the other hand mainly correspond to enabling of operational processes
by, e.g., dimensioning and layout planning. Finally, operational decisions are related
to short-term planning of the operational processes themselves. Production schedul-
ing, for example, is a typical problem within the operational decision level. Biswas
and Narahari (2004) classify the relevant research on decision support systems into
three categories:

1. Optimization models mainly for multi-echelon inventory control. In most cases
these models are deterministic and used for strategic or tactical decisions.

2. Analytical performance models, which consider a dynamic and stochastic en-
vironment. They are used to investigate design or principal management de-
cisions. Such systems are represented as Markov chains, Petri nets or queuing
models.

3. Simulation and information models, which are used to analyze complex dy-
namic and stochastic situations and to understand issues of supply chain de-
cision making.

For the first and the second categories it is often necessary to make several sim-
plifications from the real-world case in order to develop solvable models. This leads
to simple optimization models being too abstract, such that the relation to the real-
world scenario is questionable. Neither is our world deterministic nor is it linear,
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1. Objective and motivation

but many planning models are based on these simplifications in order to keep them
solvable with reasonable computational effort. Nevertheless, the maximum problem
size is usually very limited. Mixed integer programming (MIP) is a commonly used
method for analyzing and improving supply chain networks. Category 3 refers to
simulation models, e.g. discrete-event models, which are used to mimic the real
behaviour of a supply chain providing a playground for various experiments. How-
ever, they do not have the ability to provide optimal solutions since they are often
too complex to apply an effective optimization technique. According to this, opti-
mization as well as simulation are widely accepted in this context, but definitively
both of them have crucial drawbacks. Although there are promising developments
of combinations of these two categories (cf. Chapter 2), many of them remain on
a strategic level and the stochastic property is considered by a small number of
different scenarios.

Most of the time during my PhD studies I focused on developing a new approach
for using LP/MIP models in the context of discrete-event simulation. The idea
was to become able to combine the advantages of both methods by considering a
detailed representation of a dynamic-stochastic environment while applying opti-
mization models in the context of Supply Chain Management. As a matter of fact
we call this hybrid approach SimOpt. The initial proposal for this field of research
was delivered by the Austrian Research Centers Seibersdorf (ARCS), with which
we had a two years interesting and productive corporation on this topic. Having
successfully implemented the combined simulation-optimization approach a second
corporation evolved. This time we were asked by a global player of the paper produc-
ing industry to analyze potential improvements within their distribution strategy.
This real world study gave valuable input concerning the model design requirements
in order to generate a method able to handle problems of realistic size. This the-
sis is partly based on publications resulting from my scientific activities during my
PhD studies: Almeder and Preusser (2004), Preusser et al. (2005a), Preusser et al.
(2005b), Gronalt, Hartl, and Preusser (2007), Almeder, Preusser, and Hartl (2008).

For our investigations we formulated a general supply chain network model with
different facilities (suppliers, manufacturers, distributors) and different transporta-
tion modes connecting these facilities. We do not take supply chain design problems
into account, but assume a predefined network structure. We furthermore act on
the assumption of having a central planner with perfect information such as for
intra-company supply chains or supply chains with a dominant member. The sup-
ply chain is represented as a discrete-event model and we developed a toolbox for
simulating operational decisions such as production, stocking, transportation, and
distribution. A simplified version is modeled as an optimization model, which might
be a linear program, a mixed integer linear program or just any kind of optimization
model being small enough to provide solutions with reasonable computational effort.
We are aiming for reduction of total costs by simultaneously optimizing the produc-
tion/transportation schedule and reducing inventory levels. Thus, the goal is to
achieve robust operations plans for supply chain networks by referring to a stochas-
tic environment and additionally combine it with classical optimization approaches.
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We do not use the optimization on top of the simulation (parameter optimization),
but include simulation and optimization into an iterative process based on consistent
mutual data exchange. We start by performing several simulation runs in order to
get average values of the parameters (e.g. unit transportation costs) which are then
fed into the optimization model. After solving the optimization model the result is
transformed into decision rules that consequently are used within the discrete-event
model. Then we start again with further simulation experiments, and so on.

Comparing the considered problem classes to the tasks in the well known supply
chain matrix (cf. Fleischmann, Meyr, and Wagner (2005)), we are facing combina-
tions of several operational tasks in production planning, distribution planning, and
transport planning. Assuming the network design as predefined we clearly remain
on the tactical and operational decision level.

The basic contribution to the already well explored field of optimization in supply
chain management, is a successful hybridization of two traditional solution meth-
ods, i.e. simulation and optimization. By reconciling the advantages of these well
established approaches we succeed in finding competitive results for supply chains
of different sizes and levels of complexity. Especially when trying to cope stochastic
elements within supply chains, our iterative combination of simulation and (mixed-
integer) linear programming finds good results in terms of computation times and
solution robustness. Since the embedded optimization model is supposed to cover
just a minimum of relevant nonlinear elements, we are able to explore real-world
settings being far to complex for traditional exact solution approaches.

This thesis is separated into three basic parts. The first one introduces, moti-
vates, and embeds this study into the existing literature. This will be followed by a
detailed implementation description and reports on the conducted numerical exper-
iments. Finally, Part III gives deep insight into the already mentioned real world
case and some interesting follow-up experiments. We conclude with a summary and
an overview of interesting fields for further research in this context.
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2. Literature review

2.1. Integrated Supply Chain Management

Aspects of the integration of transport and production planning within supply chains
have been investigated in several papers. An extensive survey on this topic is given
by Erengüc, Simpson, and Vakharia (1999). They claim that, from an operational
perspective, there are two relevant features when dealing with a supply chain: the
supply chain network, and the nature of the relationship between each stage in
the network. Based on these they identify the relevant decisions that need to be
considered for an integrated production/distribution planning. Exemplary model
formulations for each stage of such a network are presented as well.

Combined hierarchical planning approaches for different decision levels can, for
example, be found in Jayaraman and Pirkul (2001) where a combination of strate-
gic and of operational decisions is conducted. On the strategic level they consider,
among others, the location of plants and warehouses while on the operational level
the distribution strategy from plants to customer outlets through warehouses is ad-
dressed. They present a MIP model formulation and an heuristic solution procedure
utilizing the Lagrangian relaxation in order to solve this combined planning prob-
lem. Arbib and Marinelli (2005) present an integer programming model integrating
two hierarchical decision levels (short-term operations and mid-term planning) and
functional areas (production and purchase of materials). They aim for minimization
of production, holding, and transportation costs in the context of a real cutting
process with skiving option.

Further approaches for integrated planning approaches can be found in Meyr
(2002) and Schneeweiss (2003). While Meyr (2002) presents a combination of lotsiz-
ing and scheduling Schneeweiss (2003) considers two mechanisms for coordinating
supply links (cf. Kodnar (2007)). One instrument refers to the determination of an
appropriate procurement policy for the producer, and the other mechanism defines
optimal penalty costs. The type of coordination is based on the amount of private
information that is kept by the participants. Coordination of supply chains has been
investigated by several authors. Lee and Wang (1999), for example, consider the
case of decentralized multi-echelon supply chains, where site managers have to be
provided with incentives in order to align their interests. Consequently, different
performance measurement schemes are derived. Problems of decentralized supply
chains and the resulting information delays have also been addressed by Chen (1999).
Weng (1999) considers the possibility of effectively coordinating a supply chain that
is composed of one supplier and several homogeneous buyers through simultaneously
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applying quantity discounts and franchise fees. Chen, Federgruen, and Zhen (2001)
carry on with the presented idea of Weng and show that quantity discounts are not
enough to coordinate a supply chain, in case the retailers are not homogeneous.
Cachon and Lariviere (2001) focus on shared demand forecasts within a simple sup-
ply chain link where the supplier builds his capacities due to the provided demand
forecasts.

There are numerous papers dealing with linear or mixed-integer programs for sup-
ply chain networks and network flows (cf. Shapiro (1993)). Yaged (1971) discusses
in his paper a static network model which includes nonlinearities. He tries to opti-
mize the product flow by solving a linearized version of the network and to improve
the flow in the network. Paraschis (1989) discusses several different possibilities
to linearize such networks and Fleischmann (1993) presents several applications of
network flow models, which are solved through linearization. Pankaj and Fisher
(1994) showed that based on an MIP model the coordination of production and
distribution can reduce the operating cost substantially. Dogan and Goetschalckx
(1999) showed that larger supply chain design problems can be solved using de-
composition while others like, e.g., Vidal and Goetschalckx (2001) primarily focus
on the transportation aspect. A recent case study about a supply chain in the
pulp industry modeled as a MIP is given by Gunnarsson, Rönnqvist, and Carlsson
(2007). Problems solved with LPs and MIPs usually include several simplifications
in order to keep them solvable. Tsiakis, Shah, and Pantelides (2001), for example,
did some work on supply chain network design. They assume fixed manufacturing
and customer zones, but the locations of warehouses and distribution centers are
to be determined. Recent publications include stochastic elements within the opti-
mization models as well. Santoso et al. (2005) consider a stochastic programming
approach for the supply chain network design. They use a simple average approx-
imation and a decomposition method to solve design problems for a supply chain
while taking future operational costs into account. For that purpose they developed
a linear model with uncertain cost factors and demand. Although they use a fast
algorithm, realistic problems with sample sizes of up to 60 scenarios need several
hours to be solved. Alonso-Ayuso et al. (2003) consider a similar combined design
and operation problem. Their stochastic programming approach is able to solve
medium sized problems with about 100 binary decisions within one hour. Leung
et al. (2007) present a robust optimization model for a simultaneous production
planning for several sites in a supply chain under uncertainty. But still they are
restricted to rather small models and consider only four different scenarios.

Concerning the field of supply chain simulation Kleijnen (2005) gives a short
overview of simulation tools and techniques used for supply chains. He distin-
guishes between four different approaches: spreadsheet simulation, system dynamics,
discrete-event dynamic systems simulation, and business games. Clearly, discrete-
event simulation is the most powerful tool to consider complex stochastic systems,
but improving strategies for certain objectives are mainly restricted to a trial-and-
error procedure. Numerous software packages for discrete-event simulation are avail-
able, both very specialized ones for a specific part of the supply chain and general
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ones with a high functionality in modeling and visualization of supply chains (cf.
Kelton, Sadowski, and Sadowski (2002), Kuhn and Rabe (1998)). One example is
the Supply Net Simulator presented by Stäblein, Baumgärtel, and Wilke (2007). It
allows to simulate the behaviour of individual members in a supply chain network.
They use an agent-based approach, where each member optimizes its own operations
in the sense of an advanced planning system. But there is no interaction between
simulation and optimization.

2.2. Simulation and optimization

Most of today’s simulators include possibilities to do a black-box parameter op-
timization of a simulation model. Glover, Kelly, and Laguna (1999) present the
successful development of OptQuest ( c© OptTek Systems1), an optimization tool-
box containing different algorithms (mainly metaheuristics) designed to optimize
configuration decisions in simulation models. The simulation model is used only for
the evaluation of the objective value, no further structural information is considered.
However, long computation times for evaluating the simulation-based objective make
classical search procedures inefficient. Swisher et al. (2000) describe key issues for
doing parameter optimization within a simulation model and Fu (2002) gives a sur-
vey on the available software solutions in this context. Both of them state in their
papers, that there still is a big gap between optimization methods for simulation-
based optimization used in commercial software and methods available in research
literature. Truong and Azadivar (2003) developed an environment for solving supply
chain design problems, where they combine simulation with genetic algorithms and
mixed integer programs. Strategic decisions regarding facility location and partner
selection are considered. The work by Lee and Kim (2002), possibly the most re-
lated work in the context of this thesis, shows a real combination of simulation and
optimization for the case of a production-distribution system. They use simulation
to check the capacity assumptions used for a simpler linear model in a more realistic
environment with stochastic machine break-downs and for updating these capacity
parameters for the optimization. After several iterations they end up with a solu-
tion of the optimization model which is also within the constraints of the stochastic
simulation model. Their method is quite similar to our approach, but they aim
for more realistic capacity estimation for the optimization model. In contrast, we
try to find a robust plan for production, stocking, and transportation considering
stochastic and nonlinear operations and costs by estimating delays and cost factors
based on simulation experiments.

1www.opttek.com
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3. Introduction

In order to solve large scale supply chain problems we developed SimOpt, a new
hybrid solution approach by applying an LP/MIP formulation in the context of
discrete-event simulation. In order to profit from advantages of both categories,
i.e. simulation and optimization, we couple a detailed reproduction of the given
supply chain setting with an optimization model which is basically provided with
the structural information of the problem. Our approach provides the possibility
to model and solve more realistic problems (incorporating dynamism and uncer-
tainty) in an acceptable way. Thus, we are aiming for a trade-off between finding a
good approximation of the optimal decisions within a model being close to reality
but even so having reasonable computation times. For this purpose we combine
a simulation model representing the best possible reproduction of the real setting,
i.e. including all nonlinearities (step functions, binary decisions, etc.) and stochas-
tic elements, with an exact LP/MIP model which represents the simplified, maybe
even the linearized, reproduction of reality. In an iterative process where informa-
tion is handed over from simulation to optimization and reversed we approximate
a good solution concerning operational and tactical decisions of the complete net-
work. The total cost of operation is used as the objective function to be minimized.
Total cost includes production cost, transaction cost, storage cost, transportation
cost, and penalty cost for late deliveries. The simulation model includes nonlinear
and stochastic elements, whereas the optimization model just represents a simplified
version of the given setting. Figure 3.1 illustrates the interactive cycle of activities
between simulation and optimization.

collected data

estimations

decision rules

optimal solution

simulate

aggregate

optimize

transform

Figure 3.1.: General procedure of the combined simulation-optimization approach

The simulation is the master process of the whole procedure and the general course
of an experiment is as follows: based on a set of initial simulation runs different
parameters, i.e. costs and delays, are estimated and handed over to the optimization
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3. Introduction

model. Based on these values the optimization model, which is also provided with
all necessary information on the network structure and relevant general parameters,
computes the optimal solution and translates it into decision rules, e.g., ordering
and transportation plans, which are intended to be applied within the forthcoming
set of simulation runs. Aiming for an improvement of the overall performance of the
network the next set of simulation runs is conducted and the collected data is used for
new estimations of special parameters like costs and delays. Again, an optimization
run is performed based on the updated parameter estimations. The solution of
this run is again translated into decision rules and fed into the simulation which is
going to use it for its next set of runs. Clearly, due to the changed decision rules
provided by the optimization we might be in a completely different situation which
in turn necessitates a recalculation of the parameters and consequently a further
optimization run. As long as the objects in the simulation model do not have input
from the optimization, i.e. during the initial runs, they act according to autonomous
decision rules, e.g., an (s,S)-policy for ordering decisions. This procedure is applied
iteratively until the solution of both the simulation and the optimization do not
change anymore, i.e. until we reach a stable solution. We are aiming for a robust
solution in the sense that we want to find good solutions while considering impacts
of stochastic elements. Thus, we want to get the biasing effects of uncertainty under
control. More details on this concept will be discussed in Chapter 5.

Clearly, taking nonlinearities into account within the optimization part as well
is definitely preferable for finding good solutions but the increase of computation
time for solving a MIP instead of an LP model is not negligible, and has to be
explicitly considered. Thus, the challenge is to find the best trade-off between the
best possible approximation of an optimal solution in a reasonable amount of time.
It is apparent that at least essential decisions that may lead to a high increase of
costs should be taken into account within the optimization model. This implication
is verified based on numeric examples in Chapter 6. As a matter of fact stochastic
elements are solely considered within the simulation part. In the following a SimOpt
experiment is called SimLP if a pure LP model is connected to the simulation, and
it is called SimMIP in case the optimization part refers to nonlinear elements as
well, i.e. if a MIP model is connected to the simulation model instead of a pure
linear model.

The question of convergence of this looping procedure cannot be answered in
general. We are able to construct special examples, where we got trapped in an
cycle and hence no convergence is possible (see Section 6). However, all experiments
on realistic and randomly generated instances lead to fast convergence, i.e. the gap
between the results of the simulation and the optimization is decreasing and after 3-4
iterations it reaches an acceptable low level of less than 1%. Clearly, a stable solution
does not guarantee an optimal one. Therefore, we tried to evaluate the solution
quality based on a set of small test instances. For them we find good solutions
quite quickly which means after less than four iterations. All this is presented and
discussed in Chapter 6.

Our framework is based on a general supply chain network model with different
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facilities (suppliers, manufacturers, customers) and different transportation modes
connecting these facilities. Figure 3.2 displays the key elements of the supply chain
model within a schematic illustration.

supplier

transport

production
transaction

customer

customer

customer

production
transaction

production
transaction

production
transaction

transporttransport

supplier

supplier

Figure 3.2.: Schematic illustration of a supply chain network

We assume that there is a central planning with perfect information like in intra-
company supply chains or networks with a dominant member. Due to its general
formulation the model is open for a wide range of adaptions according to the given
supply chain setting. The basis for our supply chain model is a predefined network,
i.e., the locations of all participants and the connections between them are given.
Within the network we differentiate between four types of participants connected
by transportation links:

• suppliers providing raw materials

• production/warehouse sites where production, stocking, and transshipment
takes place

• customers who demand certain products at a specific time

• transportation objects connecting the other participants

The supply nodes have a given supply and an outbound inventory. They are used
as source for raw materials, which are then sent to production/warehouse sites. The
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3. Introduction

latter can neither be located a the very beginning nor at the downstream end of a
supply chain and therefore act always as intermediaries between other nodes. Each
intermediate node disposes of both an inbound and an outbound inventory. The
former is needed for storing incoming products until they are either used within
a production process or simply transacted to the outbound inventory. From there
they are sent to another intermediate node or to the downstream end of the supply
chain, i.e. the customer nodes. The latter have a given demand and an inbound
inventory used for buffering premature deliveries which may occur due to stochastic
elements, until they are used for the satisfaction of the customer’s demand. So these
premature deliveries result in a positive inventory at the customer which of course
is penalized. Backorders, i.e. a negative inventory status at the customer, are also
possible but they are penalized as well.

The whole supply chain is order-driven, which means that products are manu-
factured, transshipped, or transported only if a subsequent member of the supply
chain requests it. So the origin for all activities is the predefined deterministic de-
mand of the customers. All activities are based on time periods, which might be
days or shorter time periods since we are focusing on operational decisions. Each
participant, each transportation mode and also each product type can be identified
by a unique numeric ID.

Since the aim was to construct an easy-to-handle general framework for diverse
network settings we decided to build-up our own supply chain management simu-
lation library on a modular basis by implementing a set of suitable object classes.
These classes just provide a basic building block; when used within a simulation
project a huge number of parameters (e.g., cost functions) can easily be adjusted
within the instances themselves. These user-defined fine-tuning options will be listed
for each class separately. In the following this supply chain management library will
be denoted by SCMLib.

We developed SCMLib using the simulation tool AnyLogic 5.5 ( c© XJ Technolo-
gies1) which is a multi-paradigm simulation software. It can be applied for discrete-
event, as it had been done for our purpose, but also for continuous or hybrid kinds
of simulation. The language for user-defined functionalities is Java. The object-
oriented model design provides for modular construction of simulation models. We
created an object class for each type of participant of the supply chain network plus
a general control class necessary for managing the simulation experiments as well as
the communication with the optimization model. Simulation experiments based on
our library are conducted by creating a new project, i.e. a working unit in AnyLogic,
and including predefined objects such that the considered supply chain network can
be represented best possible. A project is displayed as root object in the Project
window of the user interface. The optimization model is written in Xpress-Mosel ( c©
Dash Optimization2) and solved by the Xpress-Optimizer ( c© Dash Optimization2).

In the following an extensive description on the implementation and functionality

1www.xjtek.com
2www.dashoptimization.com
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of SCMLib as well as on the creation of a fully functional SimOpt setting will be
given. The presentation of results referring to different sized test instances will
conclude this chapter.
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4. Object classes and their
features

It has already been mentioned above that we implemented a special library destined
for simulating supply chain networks. We defined some object classes for our own
purpose, but certainly used a number of predefined classes as well. The most relevant
among them will be mentioned in the course of this chapter.

In AnyLogic the project internal communication can be organized using Java
objects which are exchanged between objects. These interchangeable objects are
called Messages. Sometimes they are also used for information exchange within one
and the same object. One has to define one or more message classes in order to
make use of message objects. Typically objects exchange messages like commands
or signals but also entity units like virtual products or people are possible. These
interchangeable Java objects are prepared to store a predefined set of information
and are also quite useful for measuring the duration of certain processes within
the network (e.g., transportation times, waiting times, etc.). They are routed via
connection lines which can be inserted between any two objects that are intended
for data exchange. For this purpose special elements, called Ports, are provided
which can either be used for receiving ingoing and for sending outgoing messages1.
SCMLib knows three message classes:

• Message class Lot

• Message class Product

• Message class Request

The first one is solely used for objects that are involved in production or trans-
action. Instances of Lot specify a production or transaction lot. Whenever such a
message is created by an object it will be automatically fed with the current product
ID, the size of the lot, and the lot’s starting time (i.e. creation time). Later on this
information is used for recording production and transaction times. Instances of this
class are not intended for exchange between different objects but for virtual product
interchange within one and the same object.

Message class Product is, similar to the previously described one, assigned to
entity flow. In principle it is used exactly the same way but unlike the first one it
is assigned to data exchange between different objects. Additional to the already

1www.xjtek.com
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mentioned input parameters of an instance of Lot, which are again necessary, the
creating object automatically fills in information on the lot’s source (i.e. its own
ID), the destination (i.e. ID of the receiving object), and the ID of the transport
mode chosen to execute the delivery.

As already mentioned above the whole supply chain network is order-driven and
the entity flow is triggered by requests sent from objects to their predecessors within
the network. For the according inter- and also intra-signaling mechanism we use a
message class called Request. Therefore, a request is created whenever an object
invites another one to send products. The same mechanism is used for requests
between the outbound and the inbound inventory of intermediate nodes. Here the
output inventory generates an instance of Request whenever it needs to be supplied
with new products from the inbound inventory. In each case the message is auto-
matically provided with the ID of the requested product and the amount needed,
source and destination of the potential delivery, and finally the ID of the transport
mode that should be chosen.

Another important predefined class in AnyLogic is called Timer and it is used to
manage timeouts and delays. AnyLogic differs between dynamic and static timers.
Both of them have a their own characteristics and fields of applications, but to put it
simply the difference between them is that the dynamic ones delete themselves after
expiry and static ones survive and can be restarted. The start and later restarts of
a static timer are always of an user-defined form. The run-time of a dynamic timer
starts whenever it is constructed, i.e. started, by an object. Timeout is passed
to the timer’s constructor, which makes them very useful for time measurements.
Both types have been used in our implementation several times. We incorporated
static ones for almost all cyclic activities (e.g., updates of costs, stock levels, or
waiting queues, etc.). Since dynamic ones are predestinated for time measurement
we primarily used them for measuring transportation, production and transaction
delays. For this purpose we implemented different dynamic timer classes each being
assigned to a specific object class. During the simulation run instances of those
classes are created by particular objects, which in turn will learn about the timer’s
timeout and therefore the length of its active time2.

Throughout the network we have to handle occurring waiting queues, e.g., prod-
ucts waiting for transportation, which is done by using java.util.List as an inter-
face for creating Java lists. Entities waiting for processing are inserted into specific
lists which are then by and by reduced according to first-come-first-serve prioriza-
tions.

The external exchange of data, i.e. the communication between simulation and
optimization model, is done by using an external database. In the following we differ
between three categories of data:

1. Network structure: information about the network configuration including the
number of actors and the according links between them. The number of prod-
ucts and the number of considered time periods are also to be assigned to this

2www.xjtek.com
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category. These values are certainly needed by both simulation and optimiza-
tion model and are imported by both of them. This import happens once in
the beginning of each experiment.

2. Global parameters: fixed predefined values (e.g., capacity limitations, resource
parameters, bill-of-materials, predefined supply at the suppliers and predefined
demand at the customers, etc.) that are also imported from the database
once at the beginning of each simulation or optimization run. They are used
for simulation as well as for optimization and are never changed during the
experiments.

3. Estimations: values that are collected and then aggregated by the simulation
model (e.g., costs, delays, etc.) in order to be exported to the database. The
optimization model uses the current entries for forthcoming optimizations.
Clearly it may happen that for one or the other parameter no estimation can
be made because, for example, the corresponding node or mode has not been
in use during the last simulation run. Reporting zero for this parameter would
strongly influence the solution of the next optimization run in the sense that
all unused connections or nodes would seem to be extra attractive for the cost
minimizing optimization model. Since this implication is not desirable and
will probably lead to a cycling behaviour we implemented a mechanism for
automatically generating a reasonable estimation in this case. In fact, the
object concerned creates a fictive lot and uses it to measure the missing data.
After that the faked lot disappears and has no further relevance. Estimations
might be done by simply calculating the mean of a certain sample of values.
However, for critical parameters that have a strong influence on the objective,
e.g., delay parameters, we prefer to make a distinct statistical analysis and
to determine appropriate values based on the current sample. This issue is
addressed in more detail later in this part.

4. Decision variables: values calculated by the optimization model (e.g., trans-
portation plans, production plans,..) composing the optimal solution of an
optimization run. As soon as the optimal solution is found the values are
written to the database to be used by the simulation model. Due to this
values each actor of the network arranges the timetable of its activities (e.g.,
when to start the production of a lot, etc.).

A more detailed description of the connection between simulation and optimiza-
tion model will be presented in Chapter 5. Each of the following sections is dedicated
to an object class appearing in SCMLib. Since the corresponding formulations used
within the optimization model will also be mentioned there it seems useful to give a
few introducing words on this issue at this point: the optimization model is formu-
lated in a quite general way enabling the possibility to make adaptions according
to the particular setting. Especially if and where to include nonlinear costs can be
decided as the case may be. So the optimization model can be specified as pure LP
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or as MIP model. The goal should be to describe a simplified deterministic version
of the considered network setting. Including nonlinearities, i.e. using a MIP model,
should always happen in awareness of the, possibly significant, increase of computa-
tion time. Nevertheless it definitely makes sense to consider, primarily substantial,
decisions within the optimization model. This issue will be further addressed in
Chapter 6.

Within the optimization model the sets of supply, intermediate, and customer
nodes are denoted by JS, JI , and JC , respectively. Accordingly the set of all par-
ticipants in a network is denoted by J. P is the set of products, and T the number
of periods. The transportation modes are represented by set V. Figure 4.1 shows
an exemplary and schematic illustration of a supply chain network in this context.
Selective inclusion of variables serves an improved comprehensibility.
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Figure 4.1.: Illustration of a supply chain network in the context of the optimization
model

For clarity reasons only one type of decision variables is included in this illustra-
tion, which is vxp

ij(t). It represents deliveries of product p from node i to node j done
by transportation mode v starting in time period t. The amount of time periods
needed for a delivery from node i to node j by transportation mode v is denoted by
vτij. The general formulation of the optimization model will be addressed piece by
piece in the following sections of this chapter. Exemplary model adaptions in order
to develop a SimMIP experiment, i.e. for considering nonlinearities within the opti-
mization model as well, are suggested in Chapter 6. In there we show how to adapt
the model formulation in order to cope best possible with the actual given setting.
Please see Appendix A for a concise list of the notation used for the optimization
model’s formulation.
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The following sections focus on object classes building the body of SCMLib. As
superclass we defined BaseNodeClass which in turn is derived from the predefined
class ActiveObject provided by AnyLogic. BaseNodeClass has the subclass SCM-
ControlClass where we implemented a number of general methods and defined some
public attributes. These essential methods and attributes are used by instances of
all our self-defined object classes. The major task for instances derived from SCM-
ControlClass is to control SimOpt experiments. They allow automated alternation
between simulation and optimization and are furthermore used for administrating
the corresponding data exchange.

4.1. SCMControlClass

Methods being valid for all existing objects are combined in their own class which is
called SCMControlClass. Each simulation project should have exactly one instance
of SCMControlClass, which is usually called SCMControlObject. The essential part
of this class is that it is responsible for the management of all activities. For this
purpose we use an external command file, which is the interface between user and
SCMControlClass. Here the user basically defines the setting and the schedule
of experiments that shall be executed. To some extent the user has to specify
commands by a numerical entry. All commands are read in by SCMControlClass
and are further used as public attributes, i.e. they are valid for all objects. AnyLogic
calls them Parameters. Commands are passed to the particular objects which in turn
have access to the necessary methods defined in SCMControlClass. A huge number
of commands can be specified in the command file and not all of them are worth
mentioning here. Nevertheless some of them should be listed at this point to give a
brief insight:

• useODBCInterface(): definition of the used database interface by handing
over its name.

• load_lpsolution(): one can decide if the recent information provided by
the optimization model should be used for the forthcoming simulation run or
not by handing over parameter 1 or 0, respectively. Typically optimization
solutions cannot be used for the first initial runs since no optimization runs
have been conducted yet.

• setVerbose(): determines how much information should be written into the
logfile. This is regulated by inserting a parameter between 0 and 100. The
higher the value the more information is provided.

• setRoundingFactor(): this command is used for the data aggregation after
each simulation run. For some parameters, e.g., transportation times, it would
not be reasonable to pass averaged values to the optimization model. For these
parameters we use this command in order to make proper estimations. We go
into this issue in Section 4.3.
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• setSmoothParameter(): in most cases it makes sense not only to report the
recent estimation of parameters to the optimization model but also to take
previous ones into account. Especially for critical estimations like delays it
seems more reasonable to use something like exponential smoothing. This can
be done by using the given command and handing over any desired smoothing
parameter between 0 and 1 (the higher the factor the lower is the impact of
old values). Sometimes this increases the speed of convergence and dampens
unwanted oscillations. For selected cases we even use exponential smoothing
for non-critical parameters, i.e. cost parameters, trying to avoid oscillations.

• mRun_wSave(): the number which is handed over specifies the number of sim-
ulation runs in a row.

• useResFile(): giving the opportunity to create a clearly arranged solution
report we use result files with a predefined structure. These can be commanded
by the given expression. Handing over 1 activates the generation of result files,
0 deactivates it.

Additionally, SCMControlClass contains some essentials methods that are not
directly influenced via the command file. They are globally used and automatically
executed in any case. The most important among them are:

• Network initialization: import of network structure (number of suppliers, inter-
mediates, customers, products, transportation modes, and length of planning
horizon), global parameters (capacities, bill-of-materials, etc.), and allocation
of IDs at the beginning of each simulation experiment.

• Cost update: every object has to check up its cumulated cost values (includ-
ing total cost) and a few additional parameters, e.g., particular stock levels,
production volume, etc., which are used for the final aggregation step and for
a complete solution output. This update is restarted after each time unit by
a static timer.

• Write status: each time period every object has to report its current status
which will then be used to provide the relevant information which is then
written to the logfile. Again, a static timer has been included for calling the
function periodically.

• Aggregation and estimation: after a set of simulation runs each object has to
aggregate the gathered data in order to provide parameter estimations for the
optimization model. Estimations are basically done for two types of parame-
ters: costs and delays. For cost parameters we generally calculate average per
unit costs, which means that, for example, the production cost occurring in a
certain production object for a certain product type are accumulated for the
whole planning horizon and then divided by the number of products manufac-
tured. Delays are estimated on behalf of a more complex calculation taking
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variances of the observations into account. This happens in instances of class
Production and will be explained in the corresponding section.

• Save to database: each object is called to save the aggregated data and its own
total cost into the corresponding tables of the database. The control object
itself saves the calculated total cost of the whole network into the database.
This value is essential because it is used to evaluate solution quality.

Another component of the controlling class are Algorithmic Functions. In Any-
Logic one uses this expression when defining mathematical functions which are im-
plemented as Java methods. Accordingly they can be accessed by other objects. In
SCMLib they are solely used for more complex calculations of parameter estima-
tions. All of them are defined as static functions implying that objects can use them
directly by accessing the corresponding class.

4.2. The Supplier class

This class is used for supplier nodes which are able to generate products, hold them
in its storage, and deliver them if demanded. Objects of this class have an input
port to receive requests for products and an output port to send products. If a
request is received through the input port the object tries to satisfy the demand as
soon as possible. If the amount exceeds the current inventory level, only the avail-
able amount is sent. The remaining part of the order is inserted into a list, called
SendingList, which corresponds to a waiting queue for non-satisfied requests. Every
time unit a static timer checks if reductions of the queue are possible. Reductions
become feasible as soon as new products are available, i.e. required products are on
stock. The appearance of new products is due to given parameters which are im-
ported from the database in the beginning of each simulation experiment. Products
that are not sent away are stored in the object’s outbound inventory.

Storage of products causes inventory cost which at the same time is the only
cost arising in this module. Inventory cost functions may have any user-defined
functional form. Each supplier object may have its own cost functions which can
furthermore vary between different types of products. Considering fixed holding
costs is as well possible as incorporating cost functions depending on stock levels,
points in time, or product IDs. The functions have to be defined in specific fields in
the objects themselves.

Supplier nodes are sparsely involved in data collection. After the initialization
procedure they only have to retrieve the list of occurring supply from the database.
They do not use any information provided by the optimization model but they have
to report the average of their holding costs. This is done by saving the cumulated
inventory cost as well as the cumulated inventory levels for each product type. The
periodically restarting cost updating procedure, which has already been presented
in Section 4.1, gathers the relevant data based on the user-defined cost functions
mentioned above. In the aggregation step at the end of a simulation run the division
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of the cumulated inventory cost by the cumulated inventory level leads to the average
holding costs per time unit for each product type which are then inserted into the
database together with the object’s total cost.

The representation of the supplier’s behaviour in the optimization model can be
formulated as follows (JS denotes the set of supplier nodes within the network, P
the set of products, and T the number of time periods):

TCS
i =

∑
p∈P

T∑
t=1

outHp
i (outlpi (t)) ∀i ∈ JS (4.1)

outlpi (t) = outlpi (t− 1)− outfp
i (t) + Sp

i (t) ∀i ∈ JS, t = 1, . . . , T, p ∈ P (4.2)

outlpi (t) ≥ 0 ∀i ∈ JS, t = 1, . . . , T, p ∈ P (4.3)

The overall cost of supplier i is denoted by TCS
i consisting of the sum of holding

cost defined by the cost function outHp
i (·) referring to its output inventory. The cost

function has a user-defined form and depends on the inventory level outlpi (t) of each
product p in each period t. This is expressed by the right-hand side of Equation (4.1).
Equation (4.2) is an inventory balance equation. The inventory level of product p
in period t must be equal to the corresponding level in the previous period minus
outfp

i (t) which is the amount of product p that has been sent to other nodes in period
t plus Sp

i (t) denoting the predefined replenishment of product p in period t. Clearly,
inventory levels can never be less than zero which is guaranteed by Constraint (4.3).

Figure 4.2 illustrates the activities of a supplier object within the simulation.
Selective inclusion of some of the optimization model’s variables serves the purpose
to improve transparency of interference between simulation and optimization. The
only direct connection between instances of class Supplier and the optimization
model, i.e. information that effectively is collected by the simulation model and
then used by the optimization model, are the averaged inventory costs as it has
been explained above.

4.3. The Production class

This class is the basis for all intermediary nodes which have the task to produce
or to transact products. A lot of essential features are implemented in this class
and therefore it can be seen as the core of our library. All instances of Produc-
tion represent both a production site and a transshipment point and they dispose
of a capacitated input and capacitated output storage. Incoming items are either
used for production of new items according to a bill-of-materials, or simply trans-
ferred from the input to the output storage. Instances of Production have an input
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Figure 4.2.: Logical structure and process sequence for an instance of class Supplier
where some variables used within the optimization model have been
included as well

port and an output port for requests, as well as an input and an output port for
receiving or for sending products. The input storage is primarily replenished by
ordering products from a supplier or another intermediate object. When sending
a request the object also determines the transportation mode which should exe-
cute the ordered delivery. If no optimization solution is used (which would include
the information which transportation mode to use anyway), this is done by using
the parameter StandardTransportMode which has to be defined in a predefined field
within the simulation project. Thus, the user determines the default transportation
mode (possibly depending on the ordered product type) which will be transmitted
to potential delivery sources within the corresponding sent requests. The same is
available for the question where to send a request to, if no optimization solution
is used. Accordingly, we included the parameter StandardProductSource which has
to be provided with the default receiver of the object’s requests (again this can be
defined as a function which depends on the ordered product type), i.e. the default
product source. We incorporated an additional possibility for replenishment which
is used in order to avoid empty storages in the first or the last couple of periods.
This is done by a special parameter representing the work-in-progress in period 0.
When using this parameter one has solely to define the amount of products and the
point in time when products should arrive at the outbound inventory of the pro-
ducer node. Since the arrival of these extra inflows to the storage can be scheduled
to any period of the planning horizon it is possible to start simulation runs with
full storages throughout the whole network instead of waisting the first couple of
periods by waiting until the first regular deliveries have arrived at all nodes. Empty
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storages at the end of a planning horizon can be avoided by simply using negative
values for this parameter which will lead to compensating orders by the affected
outbound inventories and therefore to the desired inventory levels. Of course, if this
mechanism is not used the solution will most probably be one with low inventory
levels in the end of the planning horizon since the optimization model will have no
reason to provide solutions with useless inventory levels. The solution will tend to
the, in most cases, unrealistic situation of empty storages in the final phase of a
planning. Thus, it is quite reasonable to enforce filled storages. A similar mecha-
nism is provided for the inbound inventories of intermediate nodes. This is managed
by the Transport class and will be mentioned in the respective section.

Ordering policies of intermediate nodes may either be autonomous (e.g., an (s,S)-
policy or any user-defined policy) or, in case the solution from an optimization run is
available, determined by these. However, we have to distinguish between dispatching
orders sent to any connected node, i.e. intermediate nodes or supplier nodes, and in-
ternal production or transaction orders which are sent from an intermediate object’s
outbound inventory to its own inbound inventory. The former start with a request
sent through the output port for requests and result in product deliveries entering
the object through the input port for products and finally arriving at the input
inventory. Products on stock are available for satisfaction of internal production or
transaction orders. These internal orders are placed by the output inventory (again
this is either autonomous or based on the solution of the optimization model), by
sending a request to the inbound inventory. The final outcome are product arrivals
in the outbound inventory coming either from the production or the transaction
line. Production and transfer have limited capacities and furthermore production
is restricted to the availability of raw materials. If any restriction does not allow
producing (or transferring) an ordered lot as a whole, it can be split into several
batches which are processed at the earliest possible. Non-processed batches or lots
are saved in the waiting queue WaitList which is checked every time unit for pos-
sible reductions. The delay for production and transfer is a user-defined function.
It may contain stochastic elements and depend on other parameters like the size
of the currently transported batch, the size of the complete lot, or the percentage
of capacity consumption during the current activity. Through the input port for
requests the module receives orders from other intermediate or customer objects.
These are satisfied as far as possible by sending products through the output port
for products. Clearly, incoming orders can only be fulfilled according to availabil-
ity of products on stock. In case of product shortages deliveries can also be split
into batches. Unsatisfied orders or batches of orders are inserted into waiting queue
SendingList which is checked up for possible shortenings after each time unit. Of
course, products that are not scheduled for delivery yet are kept on stock for the
time being.

In productions objects costs arise for inventory holding (input and output), for
production, and for transfer. The cost functions for all of these components may
have any user-defined form. Again, they can be defined for each intermediate object
separately and may also differ for each product type. Considering fixed holding costs
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is as well possible as incorporating cost functions which amongst others depend on
stock levels, product IDs, points in time, or capacity consumption.

Instances of Production have to handle a huge amount of data. First of all they
have to get the information about the general network structure from the database
and are subsequently provided with their ID. Additionally, intermediate nodes gather
data concerning the bill-of-materials, the work-in-progress, and the capacity restric-
tions. For instances of Production we provide the possibility to consider different
capacity consumption factors depending on different products. Each object finds
this information, which is used for cost calculations and capacity usage evaluations
in production, transaction and storage. Assumed that the solution of an optimiza-
tion run is available and needed for the forthcoming simulation runs they have to
be read in as well since the object has to arrange its activities according to this
information. To be considered in this context are the transportation, production,
and transaction plans. Intermediate nodes are not responsible for the transportation
of products between actors of the network but they need to have the information
about the currently calculated optimal transportation plan anyway. This is because
transports are always initiated by the demander of a delivery. This implies that in-
termediate nodes need to know the point in time a delivery to themselves should be
started according to the calculations of the optimization model in order to transmit
the corresponding request to the object being the source of the delivery in time. The
plans referring to production and transaction provided by the optimization model
are processed the same way. Accordingly, the intermediate’s outbound inventories
use the information about optimal production and transaction starting times and
amounts for transmitting corresponding requests in time. Due to stochastic pro-
duction, transaction, or transportation delays it is not always possible to follow the
schedules provided by the optimization model. This may lead to out-of-stock or
other problematic situations. However, allegations from the optimization model are
executed best possible.

Furthermore intermediate nodes have an essential task which is to record of some
critical parameters, i.e. the estimation of delay parameters. More precisely, they
have to measure and process data on delays for production and transaction activ-
ities. This, and also the collection of production and transaction costs, is done by
dynamic timers as they have already been introduced in Section 4.1. Whenever
a lot, or a part of a lot, is released for production or transaction, an instance of
the corresponding dynamic timer class, i.e. ProdDelay for production activities or
TransDelay for transaction activities, is created. On expiry, which is determined
by the user-defined function for the corresponding time delay, it checks whether a
whole lot has been completed or if just a part of a lot has left the production or
transaction line. This check-up is done by automatically generating an instance of
message class Lot and providing it with the relevant information (i.e. original lot
size, current lot size, starting time, etc.). In case just parts of a still unfinished lot
have been proceeded the timer just reduces the current lot size by the proceeded
amount and finally disappears. If a whole lot has been completed it updates the
object’s production/transaction cost and some parameters needed for the aggrega-
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tion step where average per unit costs for production and transaction are finally
calculated. Additionally, the timer updates some time-referenced data (e.g., total
processing time, variance, etc.) by calling the corresponding algorithmic functions
in the Control class. Of course, instances of Production also calculate estimations
for their storage cost. These is done completely apart from dynamic timers. Instead
they are calculated by a simple accumulation and linearization as it has already
been explained for the holding costs of supplier nodes.

Since the simulation model may contain stochastic and nonlinear elements, it is
necessary to perform several simulation runs and combine these results. This is
usually done by calculating averaged per unit costs. For parameters having a direct
influence on the material flow (especially delays), the use of average values would
most probably lead to bad results. In about half of the cases the delay would be
longer than assumed and this would consequently lead to further delays in subse-
quent operations. Therefore, it seems reasonable to use, e.g., a 90%-quantile (assum-
ing a normal distribution with estimations of the mean and the variance calculated
based on the last simulation runs) for the estimations of such delay parameters. For
this purpose the command setRoundingFactor() mentioned in Section 4.1 has to
be set by filling in a parameter of 0.9. This will result in an overestimation of the
delays for the optimization model, because the value is determined such that 90%
of the occurred delays are shorter than this value, but it ensures that a smooth
material flow through the network is possible. Any other value between 0 and 1 can
be handed over instead and will lead to estimations based on the selected quantile
and rounded to the next bigger or smaller integer value. Furthermore it seems useful
to combine results from the previous iterations with actual ones, in order to enlarge
the sample size and to get better estimations of the mean and the variance. This
is done with the command setSmoothingFactor() which is used to hand over a
smoothing factor between 0 and 1. The higher the factor the lower the impact of
old values. Therefore, a factor of 1 will lead to the complete neglection of previous
estimations. This complete neglection of old values is primarily done during the very
beginning of an experiment where the estimations are done based on rather simple
autonomous decisions rules and should preferably not be considered for more than
one iteration. Together with the object’s total cost all these values are written into
the database.

In the optimization model intermediate nodes are represented using the following
formulations, where the set of intermediate nodes in the network is denoted by JI :

TCI
i =

∑
p∈P

T∑
t=1

W p
i (mp

i (t)) +
∑
p∈P

T∑
t=1

Zp
i (up

i (t))

+
∑
p∈P

T∑
t=1

inHp
i (inlpi (t)) +

∑
p∈P

T∑
t=1

outHp
i (outlpi (t)) ∀i ∈ JI

(4.4)

mp
i (t) ≤ prodCapp

i (t) ∀i ∈ JI , t = 1, . . . , T, p ∈ P (4.5)
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∑
p∈P

ap
i ·m

p
i (t) ≤ prodCi(t) ∀i ∈ JI , t = 1, . . . , T (4.6)

up
i (t) ≤ taCapp

i (t) ∀i ∈ JI , t = 1, . . . , T, p ∈ P (4.7)

∑
p∈P

dp
i · u

p
i (t) ≤ taCi(t) ∀i ∈ JI , t = 1, . . . , T (4.8)

inlpi (t) = inlpi (t− 1) + infp
i (t)−

∑
p′∈P

αp
i (p

′) ·mp′

i (t)

− up
i (t) + rp

i (t) ∀i ∈ JI , t = 1, . . . , T, p ∈ P
(4.9)

outlpi (t) = outlpi (t− 1)− outfp
i (t) + χt≥δp

i
·mp

i (t− δp
i )

+ χt≥σp
i
· up

i (t− σp
i ) + sp

i (t) ∀i ∈ JI , t = 1, . . . , T, p ∈ P
(4.10)

inlpi (t) ≤ invinCapp
i (t) ∀i ∈ JI , t = 1, . . . , T, p ∈ P (4.11)

∑
p∈P

qp
i · inlpi (t) ≤ inLi(t) ∀i ∈ JI , t = 1, . . . , T (4.12)

outlpi (t) ≤ invoutCapp
i (t) ∀i ∈ JI , t = 1, . . . , T, p ∈ P (4.13)

∑
p∈P

qp
i · outlpi (t) ≤ outLi(t) ∀i ∈ JI , t = 1, . . . , T (4.14)

mp
i (t), u

p
i (t),

inlpi (t),
outlpi (t) ≥ 0 ∀i ∈ JI , t = 1, . . . , T, p ∈ P (4.15)

The overall cost of an intermediate node i is represented by TCI
i as it is shown

in Equation (4.4). It is defined by the production cost function W p
i (·) depending

on production amount mp
i (t) of product p in time period t, the transaction cost

function Zp
i (·) depending on transaction amount up

i (t) of product p in time period
t, the cost function for the inbound inventory inHp

i (·) depending on inventory level
inlpi (t) of product p in time period t, and finally the cost function for referring to
the outbound inventory which is denoted by outHp

i (·) and depends on inventory level
outlpi (t) of product p in time period t. All these functions are open to any user-defined
specification. Equations (4.5) and (4.6) assure that the given production capacities
prodCapp

i (t) and prodCi(t) denoting an individual restriction valid for product type p
in time period t as well as a global restriction for the cumulated production amount
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4. Object classes and their features

over all products p in time period t, respectively, is not exceed by the according
production amount mp

i (t) of product p in time period t. For restricting the global
production volume the production amounts of products p are multiplied by a cor-
responding factor ap

i representing the corresponding resource requirements. The
compliance of the time-specific capacity restrictions in transaction activities is guar-
anteed by Equations (4.7) and (4.8), where up

i (t) denotes the amount of transacted
products p in period t, and taCapp

i (t) and taCi(t) the available capacities in period
t for each product p individually and the global upper bound for them all together,
respectively. Again, for the global restriction the amounts, in this case the trans-
action amounts up

i (t) are multiplied by a consumption factor for product p which
is here denoted by dp

i . The distinction between individual capacity constraints for
each product and global capacity constraints are necessary to cover general situ-
ations where product-specific resources as well as common resources are used for
production or transaction. Equation (4.9) is an inventory balance equation for the
input inventory level inlpi (t) of product p in time period t. This has to be equal
to the according inventory level in the previous period plus the inflow (infp

i (t)) of
product p sent by all other nodes and arriving in time period t, minus the required
raw materials for producing amount mp′

i (t) of product p’ in period t . Variable
αp

i (p
′) represents the units of raw material p that are necessary to produce one unit

of product p’. The right hand side of the inventory balance equation is completed
by subtracting the transaction volume up

i (t) of product p in time period t as well as
by adding some external inflow (rp

i (t)) which may either be deliveries from periods
previous to period t or any kind of external inflow arriving from outside the system.
However, the products arrive at intermediate node i in time period t. The simula-
tion model knows these extraordinary inflows as well but there they are considered
within class Transport. Primarily this parameter is used in order to avoid empty
storages in the beginning or in the end of the planning horizon. The latter can be
avoided by using negative values for this parameter. Equation (4.10) is the inven-
tory balance equation for the outbound inventory and is very similar to the previous
one. This time we balance the inventory level outlpi (t) of product p in period t with
the corresponding inventory level in the previous period reduced by the outflow of
product p in period t, which is denoted by outfp

i (t). Furthermore we have to consider
the production and transfer delays (δp

i , σ
p
i ). Since the inventory level of product p

can only be increased in period t by lots whose production process has been started
δp
i periods or whose transaction process has been started σp

i periods ago. This is
formulated by using the indicator functions χt≥δp

i
·mp

i (t− δp
i ) and χt≥σp

i
· up

i (t− σp
i ),

respectively. The previous one becomes 1 as far as the current period t has a higher
value than δp

i and otherwise is set to 0. Accordingly, the second indicator function
becomes 1 if the current period t is higher than σp

i and 0 otherwise. This formulation
assures that production or transaction lots do not increase the outbound inventory
level before they are finished. Finally, we add a parameter representing the already
mentioned work-in-progress to the equation’s right hand side. Thus, sp

i (t) considers
production or transaction lots that are already on their way during the run-up, i.e.
before period 1. Of course, this can also be used to avoid empty inventories in the
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4.3. The Production class

beginning or the in the end of the planning horizon. Equation 4.11 and Equation
4.12 are used to restrict the stock of the inbound inventory of product p in time
period t which is denoted by inlpi (t). Again, we differ between the individual capac-
ity invinCapp

i (t) implying an upper bound for each product type p being on stock in
time period t and the global value (inLi(t)) referring to the total volume of stocked
entities in time period t. The capacity consumption factor, indicating the space
used by each entity of a certain product type p, is denoted by qp

i . Similar we formu-
late the capacity restrictions for the outbound inventory level outlpi (t) in Equation
(4.13) and Equation (4.14) for product type p in period t. Accordingly, we have
the time-specific and product-specific individual capacity constraint which bounds
the stock level of product p in period t to a maximum of invoutCapp

i (t), and the
accumulated and solely time-specific one considering the consumption factor qp

i for
each product p. These restrictions can be used to model dedicated-storage as well as
random-storage policies. Equations (4.15) ensure the non-negativity of production
amounts (mp

i (t)), transaction amounts (up
i (t)), and inventory levels (inlpi (t),

outlpi (t))
for product p and time period t.

Figure 4.3 illustrates an instance of Production and its activities within a simula-
tion run. Again, some variables used within the optimization model’s formulation
have been included as well.
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Figure 4.3.: Logical structure and process sequence for an instance of class Produc-
tion where some variables of the optimization model’s formulation have
been included as well

Instances of Production are connected to the optimization model by all cost fac-
tors of Equation (4.4), i.e. production, transaction, inventory holding cost, and by
production and transaction delays (δp

i and σp
i ). In the simulation model these can

have any user-defined functional form possibly containing stochastic and nonlinear
elements. On the other hand simulation and optimization are connected by results
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4. Object classes and their features

provided by the optimization model, i.e. production plans (mp
i ) and transaction

plans (up
i ).

4.4. The Customer class

This class is used to represent the customers’ behaviour. Objects of Customer
dispose of an input port for products and an output port for sending requests to
intermediate nodes. Due to stochastic features within the simulation it is not pos-
sible to plan deliveries exactly. Therefore, the customer has an input inventory for
keeping products on stock. According to a given demand table the customer orders
products which on arrival are either used to promptly satisfy the demand or are
stocked in the inventory. The inventory may account for shortages as well as for
oversupply situations, in both cases high penalty costs occur. If no results from
the optimization model are available the requests are sent according to the given
demand. For this purpose the user has to define a StandardTransportDelay which is
the amount of time periods one expects a delivery to last. Clearly here again it is
essential to determine a StandardProductSource and a StandardTransportMode as it
has already been explained in the previous section. These parameters can be defined
as functions depending on the ordered product type and have to be inserted into the
provided field of the project. The resulting expected delivery delay determines the
point in time an object will transmit the corresponding request, which will conse-
quently be the period which is exactly StandardTransportDelay periods prior to the
period where the demand for the requested product will occur. In case the solution
of the optimization model is taken into account within the simulation the requests
are transmitted according to the transportation plan provided by the optimization
model. This is because deliveries are initiated by the object demanding it, as it has
already been explained in the previous section. Thus, instances of Customer need
to know the points in time transportation lots should be launched by the sending
object in order to transmit the corresponding request in time.

Instances of Customer solely consider costs arising in their input inventories. Here
we distinguish between costs due to a positive inventory level, i.e. oversupply, and
those caused by a negative inventory status, i.e. unsatisfied demand. Both can have
any user-defined functional form taking fixed costs, product types, stock levels (of
a certain product type or cumulated for all product types), or points in time into
account. According to the formulation of the optimization model customers are
interpreted as just-in-time actors and therefore it is prohibited to cause oversupplies
at customer objects within the optimization. Nevertheless we weakened this just-in-
time assumption within the simulation model, and thus allow premature deliveries
there. The reason is that otherwise we would end up with the unrealistic situation
that early deliveries caused by stochastic transportation times do not influence the
total cost at all. So we avoid this scenario by incorporating high inventory costs for
handling premature deliveries.

So the estimated inventory cost which will be reported by the customer objects to
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4.4. The Customer class

the optimization model are always based on costs which have arised due to undersup-
ply of a customer. Costs occurring due to a positive stock level do not have a direct
impact on the forthcoming optimization solution. Although they are not explicitly
considered within the optimization model they may have an implicit influence on
the result anyway.

Data processing activities in this object class can be explained quickly. The usual
initialization of objects is followed by the import of two essential sets of parame-
ters. The first set consists of the given demand values, determining the amounts
and periods for stock reducing movements in an object’s inventory. Furthermore
customer nodes import a part of the optimization’s results, i.e. the transportation
plans for deliveries between intermediate nodes and themselves. These are needed
for initiating deliveries on time, as it has already been explained for the intermedi-
ate nodes. Customer objects cumulate arising costs for unsatisfied demand, i.e. for
inventory shortages. Based on these the corresponding per unit costs for backorders
for each product type are calculated by average determination and are exported to
the database together with the object’s total cost. Within the optimization model
these values are going to be interpreted as penalty costs for backorders per period
and per unavailable product.

The optimization model for the customers’ behaviour is formulated as follows (the
set of intermediate nodes in the network is denoted by JC):

TCC
i =

∑
p∈P

T∑
t=1

Rp
i (

inbi
p
(t)) ∀i ∈ JC (4.16)

inlpi (t)− inbpi (t) = inlpi (t− 1)− inbpi (t− 1) + infp
i (t)

−Dp
i (t) + rp

i (t) ∀i ∈ JC , t = 1, . . . , T, p ∈ P
(4.17)

inlpi (t) = 0 ∀i ∈ JC , t = 1, . . . , T, p ∈ P (4.18)

In Equation (4.16) the formulation for costs arising at customer nodes is given.
Here we use cost function Rp

i (·) depicting the penalty costs for backorders depending
on the amount of backorders for product p in time period t which are denoted
by inbi

p
(t). These backorders are also the essential component of the customer’s

inventory balance equation (4.17). Here the inventory level inlpi (t) of product p in
time period t reduced by the open backorders inbi

p
(t) for product p in period t must

be equal to the corresponding inventory level inli
p
(t − 1) of the previous period

minus the open backorders of the previous period (inbi
p
(t − 1)) plus infp

i (t), which
are the incoming units of product p in time period t. As already mentioned above
the stock level is decreasing with occurring demand. Therefore, we have to subtract
the demand Dp

i (t) for product p in time period t from the right hand side of the
inventory balance equation. Finally we add inflows arriving from outside the system.
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4. Object classes and their features

Hence, external deliveries or transportation lots having been sent away from an
intermediate node prior to the first period of the planning horizon are considered by
rp
i (t), denoting the amount of product p arriving in period t. Within the simulation

model such extraordinary deliveries are implemented in class Transport. As already
mentioned above we assume, within the optimization model, all customers as just-
in-time customers. Therefore, Constraint (4.18) ensures that no oversupply (positive
stock level) is possible, i.e. inventory level inlpi (t) has to be equal to 0. This just-in-
time assumption may, depending on the given setting, just as well be dropped and
holding costs for positive stock, as we consider them within the simulation model,
may be included.

Figure 4.4 illustrates an instance of Customer used within the simulation. Addi-
tionally some of the optimization model’s variables have been added.
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Figure 4.4.: Logical structure and process sequence for an instance of class Customer;
some variables used within the optimization model have been added as
well

The direct connection between the simulation model and its representation as an
optimization model is solely the estimated penalty cost factor for delayed deliveries.
This is the only parameter that is calculated within the simulation and then handed
over to the optimization model.

4.5. The Transport class

This object class is used for simulating the material flow through the network. Each
transport node is connected to exactly one product source, i.e. supplier objects or
intermediate nodes, and exactly one destination node, i.e. intermediate nodes or
customers. Objects of Transport receive products from their source through their
input ports and, according to capacity availability, either hold them in their queue
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4.5. The Transport class

WaitingList or proceed them to their output ports. If capacities are short it is
also possible to split shipments and send them by and by. This again is organized
by a static timer checking up the queue periodically. Transports are subject to a
time delay, which may be stochastic and may depend on other parameters like the
transported product type, the size of the current load, the original order amount of
the current shipment (in case an order has had to be split in partial deliveries), the
type of the used transport mode, current capacity consumption, or the current time
period. The corresponding function determining the delays is again user-defined. It
has already been mentioned above that consider deliveries from outside the system
and, which actually is the main intention for their application, for avoiding empty
inbound storages at the beginning or at the end of the planning horizon. Thus, the
according parameters represent deliveries which have already been sent away before
the first period of the planning horizon. Their arrival can be scheduled for any time
period of the planning horizon. Defining them as less than zero consequently leads
to corresponding extra orders from the supplied node. Such it becomes possible to
avoid empty storages in the end of the planning horizon.

There are two types of costs arising in transportation nodes: transportation cost
and waiting cost. The latter occur in case products have entered the object but
can, due to a lack of capacity, not be proceeded in the current time period, i.e. all
products appearing in WaitingList. Both transportation cost and waiting cost may
be defined as functions depending on the currently loaded product type, amount of
loaded products, size of original amount (in case an order had to be split in partial
deliveries), point in time, transportation mode, and capacity consumption.

Business of a transport object starts with the usual initialization procedure. This
is followed by the import of some essential parameters. These are available capaci-
ties, per unit usage of capacities, and the already mentioned parameters for extraor-
dinary deliveries. There are no values provided by the optimization model for in-
stances of this class. Data reporting is limited to the per unit cost for transportation
and estimations for transportation delays. The former is straightforward: occurring
costs, i.e. cost for transport and waiting costs, determined by the user-defined func-
tions, are accumulated and finally divided by the total amount of processed products.
Estimating transportation times is more complex. Time measurement is done by
the dynamic timer class TransportDelayTimer. An instances of it is created auto-
matically whenever a transport is started. Simultaneously the object’s cumulated
waiting cost is updated. On the timer’s expiry, which is due to the user-defined
function for transportation delays, an update of the object’s total transportation
cost and amount as well as time-referenced data (transportation time and variance)
is executed. The latter is done just in case a complete transportation order or the
final split of a complete transportation order has been finished. Finally the timer
disappears. The drawback of using average values for delay estimations has already
been mentioned above. Due to these we here again generate estimations based on
quantiles, assuming a normal distribution with estimated mean and variance. For
this purpose the algorithmic functions implemented in class SCMControl are used.
Again, the command setSmoothingFactor() is used for smoothing estimations ac-
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cording to previous ones. Finally computations for delays and cost parameters and
the object’s total cost are exported to the database.

Transportation activities are controlled by the following equations of the opti-
mization model (V represents the set of transportation modes):

TCF
ij =

∑
p∈P

T∑
t=1

∑
v∈V

vCp
ij(

vxp
ij(t)) ∀i ∈ JS ∪ JI , j ∈ JI ∪ JC (4.19)

vxp
ij(t) ≤ vCapp

ij(t) ∀i ∈ JS ∪ JI , j ∈ JI ∪ JC , t = 1, . . . , T, p ∈ P, v ∈ V (4.20)

∑
p∈P

vgp · vxp
ij(t) ≤ vCij(t) ∀i ∈ JS ∪ JI , j ∈ JI ∪ JC , t = 1, . . . , T, v ∈ V (4.21)

infp
j (t) =

∑
i∈JS∪JI
vτij<t

∑
v∈V

vxp
ij(t− vτij) ∀j ∈ JI ∪ JC , p ∈ P, t = 1, . . . , T (4.22)

outfp
j (t) =

∑
i∈JI∪JC

∑
v∈V

vxp
ji(t) ∀j ∈ JS ∪ JI , p ∈ P, t = 1, . . . , T (4.23)

vxp
ij(t) ≥ 0 ∀i ∈ JS ∪ JI , p ∈ P, t = 1, . . . , T, v ∈ V (4.24)

The total transportation cost TCF
ij for deliveries from node i to node j is calcu-

lated based on the user-defined function vCp
ij(·) which depend on the transportation

amounts (vxp
ij(t)) of product p in period t between nodes i and j with transportation

mode v. This is defined in Equation (4.19). Constraint (4.20) limits the transporta-
tion amount vxp

ij(t) to a capacity limit valid for product p, transportation mode v,
transportation leg ij, and time period t, denoted by vCapp

ij(t). The capacity restric-
tion for all products together is given in Equation (4.21) and ensures that trans-
portation amount vxp

ij(t) times a product-specific and transportation-mode-specific
capacity consumption factor vgp is less or equal to the overall capacity limitation
vCij(t) for transportation mode v on transportation leg ij in time period t. Within
the optimization model for intermediate nodes we introduced the auxiliary variables
infp

j (t) and outfp
j (t). These are also used within the transportation-referenced part

of the optimization model. Equation (4.22) ensures that the product inflow (infp
j (t))

of product p arriving in time period t at node j, which can either be an intermediate
or a customer node, is equal to the sum of deliveries sent by all nodes i, i.e. sup-
plier or intermediate nodes, that have a time-specific transportation distance vτij to
node j when using transportation mode v of less than the the current time period t.
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4.5. The Transport class

Thus, the auxiliary product inflow variable infp
j (t) has to be equal to all deliveries

sent away vτij time periods ago (vxp
ij(t− vτij)). A similar equation is incorporated

for the product outflow (4.23). Here it is ensured that outgoing deliveries of prod-
uct p that are sent in any period t by node j, which can either be a supplier or an
intermediate node, is equal to the sum of transported lots of product p that are
sent from node j to any node i, which in turn can either be an intermediate or a
customer node, starting in period t and transported by any transportation mode v.
So the product outflow variable outfp

j (t) has to be equal to all deliveries starting at
node i in period t ( vxp

ij(t)). Finally, Equation (4.24) ensures that delivery amount
vxp

ij(t) of any product type p sent with using any transportation mode v in any time
period t from node i to node j is larger or equal to zero. Since deliveries can solely
be transmitted starting at supplier or intermediate nodes this equation has not to
be valid for customer nodes.

An exemplary instance of Transport as it is used within the simulation is displayed
in Figure 4.5. Again, the inclusion of some variables from the optimization model
intends to give a better insight into the parallels of simulation and optimization.
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Figure 4.5.: Logical structure and process sequence for an instance of class Transport
as it is used within the simulation; inclusion of some variables as they
are used in the optimization model intends to give a better insight

The connection between the simulation and the optimization model for instances
of Transport is established by the transportation cost function given in Equation
(4.19) and the transportation delay vτij given in Equation 4.22 on the one hand, and
the transportation amounts on the other hand. As it has already been explained
transportation amounts vxp

ij(t) are used to define ordering schemes for intermediate
and customer objects for the simulation model. All other variables, including those
appearing in Figure 4.5, are not used for direct information exchange between in-
stances of Transport and the optimization model. Indeed, resulting values of variable
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vxp
ij(t), representing the transportation amounts, are very well used directly by the

simulation model, but explicitly not by transportation objects but by intermediate
and customer objects.

4.6. The optimization model

In the previous section the components of the optimization model’s general formu-
lation have been introduced. Each of them headed by the definition of the com-
ponent’s total cost. In order to assemble these components we simply define the
objective function of the global model, i.e. for the whole supply chain network. The
global objective is the minimization of total costs referring to all participants of the
network:

min
∑
i∈JS

TCS
i +

∑
i∈JI

TCI
i +

∑
i∈JC

TCC
i +

∑
i∈JS∪JI

∑
j∈JI∪JC

TCF
ij (4.25)

So the total cost of a network simply is the sum of the suppliers’ total cost
(TCS

i ), the intermediates’ total cost (TCI
i ), the customers’ total cost (TCC

i ), and
the transportation modes’ total cost (TCF

i ). Assuming that Equation (4.25) ex-
clusively consists of pure linear functions it is possible to reformulate it as follows
(J = JS ∪ JI ∪ JC):

min
∑

i∈JS∪JI

∑
p∈P

T∑
t=1

outhp
i · outlpi (t) +

∑
i∈JI

∑
p∈P

T∑
t=1

inhp
i · inlpi (t)

+
∑
i∈JI

∑
p∈P

T∑
t=1

wp
i ·m

p
i (t) +

∑
i∈JI

∑
p∈P

T∑
t=1

zp
i · u

p
i (t)

+
∑
i∈JC

∑
p∈P

T∑
t=1

ρp
i · inbpi (t) +

∑
ij∈J

∑
p∈P

T∑
t=1

∑
v∈V

vcpij · vxp
ij(t)

(4.26)

For the linear formulation of the suppliers’ total cost we summarize the outbound
inventory levels (outlpi ) of all supplier nodes i, of all products p, and in all time
periods t while multiplying each of them with a cost factor outhp

i . The same is done
for calculating the inbound and outbound inventory costs at the intermediate nodes.
For the latter we consider inventory level inlpi and cost factor inhp

i . Total production
cost is determined by production amounts mp

i (t), which are multiplied with the cost
factor wp

i and cumulated over all production nodes i, products p, and time periods
t. Similarly we calculate total transaction cost. Here we use transaction amounts
up

i (t) times the transaction cost factor zp
i . And finally the total transportation cost

46



4.6. The optimization model

is considered by transportation amounts vxp
ij(t) times transportation cost factor vcpij

and summed up over all possible transportation legs ij, all transportation modes v,
all delivered products p, and all time periods t. The objective function is subject
to the following side constraints which have already been described in the previous
sections (please see Appendix A for a precise list describing the complete notation):

outlpi (t) = outlpi (t− 1)− outfp
i (t) + Sp

i (t) ∀i ∈ JS, t = 1, . . . , T, p ∈ P (4.27)

mp
i (t) ≤ prodCapp

i (t) ∀i ∈ JI , t = 1, . . . , T, p ∈ P (4.28)

∑
p∈P

ap
i ·m

p
i (t) ≤ prodCi(t) ∀i ∈ JI , t = 1, . . . , T (4.29)

up
i (t) ≤ taCapp

i (t) ∀i ∈ JI , t = 1, . . . , T, p ∈ P (4.30)

∑
p∈P

dp
i · u

p
i (t) ≤ taCi(t) ∀i ∈ JI , t = 1, . . . , T (4.31)

inlpi (t) = inlpi (t− 1) + infp
i (t)−

∑
p′∈P

αp
i (p

′) ·mp′

i (t)

− up
i (t) + rp

i (t) ∀i ∈ JI , t = 1, . . . , T, p ∈ P
(4.32)

outlpi (t) = outlpi (t− 1)− outfp
i (t) + χt≥δp

i
·mp

i (t− δp
i )

+ χt≥σp
i
· up

i (t− σp
i ) + sp

i (t) ∀i ∈ JI , t = 1, . . . , T, p ∈ P
(4.33)

inlpi (t) ≤ invinCapp
i (t) ∀i ∈ JI , t = 1, . . . , T, p ∈ P (4.34)
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∑
p∈P

qp
i · inlpi (t) ≤ inLi(t) ∀i ∈ JI , t = 1, . . . , T (4.35)

outlpi (t) ≤ invoutCapp
i (t) ∀i ∈ JI , t = 1, . . . , T, p ∈ P (4.36)

∑
p∈P

qp
i · outlpi (t) ≤ outLi(t) ∀i ∈ JI , t = 1, . . . , T (4.37)

inlpi (t)− inbpi (t) = inlpi (t− 1)− inbpi (t− 1) + infp
i (t)

−Dp
i (t) + rp

i (t) ∀i ∈ JC , t = 1, . . . , T, p ∈ P
(4.38)

vxp
ij(t) ≤ vCapp

ij(t) ∀i ∈ JS ∪ JI , j ∈ JI ∪ JC , t = 1, . . . , T, p ∈ P, v ∈ V (4.39)

∑
p∈P

vgp · vxp
ij(t) ≤ vCij(t) ∀i ∈ JS ∪ JI , j ∈ JI ∪ JC , t = 1, . . . , T, v ∈ V (4.40)

infp
j (t) =

∑
i∈JS∪JI
vτij<t

∑
v∈V

vxp
ij(t− vτij) ∀j ∈ JI ∪ JC , p ∈ P, t = 1, . . . , T (4.41)

outfp
j (t) =

∑
i∈JI∪JC

∑
v∈V

vxp
ji(t) ∀j ∈ JS ∪ JI , p ∈ P, t = 1, . . . , T (4.42)
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vxp
ij(t) ≥ 0 ∀i ∈ JS ∪ JI , p ∈ P, t = 1, . . . , T, v ∈ V (4.43)

outlpi (t) ≥ 0 ∀i ∈ JS, t = 1, . . . , T, p ∈ P (4.44)

mp
i (t), u

p
i (t),

inlpi (t),
outlpi (t) ≥ 0 ∀i ∈ JI , t = 1, . . . , T, p ∈ P (4.45)

inlpi (t) = 0 ∀i ∈ JC , t = 1, . . . , T, p ∈ P (4.46)

This pure linear program can be solved easily with any standard LP solver within
very short time. The general formulation provides the possibility to adapt the
optimization model in consideration of additional features like, e.g., fixed-costs in
transportation, binary decisions, step functions, etc. These adaptions lead to a
mixed-integer formulation and thus to an increase of computation time. Some ex-
amples on this issue are presented and discussed in Chapter 6.
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5. Implementing SimOpt
experiments

5.1. Creating the simulation model

The implementation of a simulation model based on SCMLib starts with the cre-
ation of a new instance of ActiveObject which has to be included in the destined
project. This instance is primarily used as a kind of drawing pad where other class
objects are going to be inserted and arranged. Hence, required objects, depending
on the given network setting, are dragged from the library’s tab and dropped on the
drawing pad. Here they can be arranged properly and are then interlinked by the
insertion of connection lines. In fact, one has to connect any two objects intended
for data exchange. Connection lines always go from an input to an output port,
or vice versa. Information flow is maintained by a direct connection line between
any two nodes that should exchange information, i.e. that send or receive requests.
Of course, one and the same object can be connected to more than one object.
Enabling material flow is slightly more complex since a particular connection ob-
ject, i.e. an instance of class Transport, has to be inserted referring to any possible
transportation leg. This is done by drawing a connection line from the output port
for products of a supplying object, i.e. a supplier or an intermediate object, to
the product input port of the provided transportation object. Finally, the output
port of this transportation object is connected by an additional line to the product
input port of the receiving object, i.e. an intermediate node or a customer. Due
to the fact that in the given implementation information channels are exclusively
used for transmission of requests, i.e. product orders, it has to be ensured that each
direct connection line has a corresponding indirect connection, i.e. a connection
via a transport object. In case an object is supplied by more than one object one
certainly has to provide a transportation object for each supplying object. This is
essential because transportation objects initialize themselves by using the unique
IDs of their source and their destination, respectively. Thus, having more than one
source or destination is not possible for transportation objects.

Finally, an instance of SCMControlClass has to be included and adjusted accord-
ing to the explanations in Section 4.1. For calibration of simulation configurations
(e.g., speed scale, stopping criterion, seed of random number generator, etc.) the
software automatically generates an item Simulation which is open for user-defined
adaptions. Since setting the random number generator is crucial whenever compa-
rable simulation runs are to be conducted it is worth mentioning here that the seed
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5. Implementing SimOpt experiments

is not necessarily defined in the project itself but it can also be passed through the
command line as well. This is quite convenient whenever multiple simulation runs
have to be batched with consistently changing seeds. Furthermore the user-defined
cost and delay functions for each object have to be specified as it has been described
above. Figure 5.1 illustrates the combination of objects derived from SCMLib’s
classes in order to simulate a simple supply chain with one supplier, one intermedi-
ate player, and one customer. Material flow and information flow are represented
by arcs with solid and dashed lines, respectively. 

 

  supplier 
production 
transaction customer 

transport transport 

Figure 5.1.: Illustration of an object configuration for a simple supply chain con-
sisting of 1 supplier, 1 intermediate node, and 1 customer; dashed lines
indicate information flow and solid lines material flow

In case one has to simulate large supply chain network problems it may happen
that due to the huge number of necessary objects (for each transportation link an
appropriate instance of Transport has to be included), complexity and memory usage
may lead to hardly solvable problems. Unfortunately it is apparently not possible to
keep AnyLogic from automatically reserving quite a huge amount of memory for each
single object of the experiment, e.g., for visualization (even if no visualization is in-
tended). This certainly directly leads to a lack of memory or unacceptable processing
times. Even the pure implementation of a large experiment without any computa-
tions may turn out to be a very time-consuming task. Especially using our model
formulation, which furthermore includes a large number of memory-consuming vari-
ables with multiple indices, not even the possibility to increase the Java heap size
provides sufficient improvement. Therefore, we implemented another class which is
used to divide large simulation models into some smaller parts. It implicitly de-
creases memory usage considerably. This class is called SCMContainerClass. An
instance of this class is something like a container that is used in order to accom-
modate other objects. A container has an input and an output port for requests
as well as an input and an output port for products. A group of objects is packed
into a container and communicates or interchanges with nodes outside the container
through the input and output ports. The content of the container is displaced to a
separate chart. This eases problems occurring due to lack of memory.

Under certain conditions, e.g., a huge number of homogeneous transportation
objects, using containers provides the possibility to reduce the number of items in
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a network because in it is no longer necessary to insert a particular transportation
object between any couple of objects that are intended for product interchange. Still
each object packed into a container needs its own transportation object for sending
or receiving products, but this single transportation object can be used for product
exchange with an indefinite number of objects positioned outside the container. In
fact, such a transportation item operates as representative for a indefinite number
of replications of itself. All of them are provided automatically with their unique
ID but beside that they have to have homogeneous characteristics regarding cost
and delay functions. This way the number of transportation items, i.e. objects and
connection lines, can be reduced considerably and the simulation model becomes
much more overviewable. Applications of this class will be presented in Part III.

5.2. SimOpt’s logical configuration

In this section we basically are going to have insight into the conceptional design
of SimOpt. The basic idea of simulation and optimization exchanging information
has already been introduced in Chapter 3. Since the two types of models have been
described in detail in the previous sections we are now going to add some information
on the connecting element between them: the database which is used for storing all
necessary information.

As the connecting element we decided to use an MS Access database using the
Open Database Connectivity (ODBC) interface. In the beginning of a SimOpt
experiment it contains a number of predefined parameters (e.g., network structure,
capacities, etc.) which are retrieved by both simulation and optimization model.
During the course of an experiment the optimization model inserts selected parts of
its results into the database. These are then imported by the simulation model and
will be taken into account for forthcoming simulation runs. In turn the simulation
model exports its parameter estimations to the database that will consequently be
the basis for the next optimization run, and so on.

Having described the basic components of SimOpt just the overall control mech-
anism needs to be outlined. SimOpt is controlled by the simulation model. In fact,
the simulation model is designed as the master process initiating data communica-
tion and calling the LP/MIP solver. See Figure 5.2 for a schematic illustration of the
logical connection between simulation and optimization focusing on data exchange
activities.

To initiate the optimization process in our system and in order to get basic in-
formation about the mean and the variances of the parameters (e.g., estimated
transportation cost per unit, estimated production delays, etc.) a few simulation
runs are performed. Missing decision rules needed in order to operate the sup-
ply chain network, which, in later iterations, are generated using the results of the
optimization model, are substituted by autonomous decision rules (like, e.g., the al-
ready mentioned (s,S)-policy for replenishment). The results of each simulation run
(e.g., estimated transportation delays, per unit production costs, etc.) are stored
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 decision rules (ordering plans, production schedules,…) 

aggregated results (transportation delays, production delays,…) 
t )

general 
parameters 

general 
parameters MS Access 

database 
(ODBC) 

simulation 
model 

(AnyLogic) 

optimization 
model 

(Xpress) 

Figure 5.2.: This scheme shows the data exchange between the simulation and the
optimization model via the intermediate database

and after the last run the new mean costs and newly estimated critical parameters,
e.g., delays, based on mean and variance are exported to the database. These first
simulation runs are only necessary to generate initial parameter values for the opti-
mization model, but their results will be ignored for the exponential smoothing in
further simulation iterations. Ignoring them is a reasonable procedure in order to
avoid unwanted biasing effects caused by the probably bad results caused by the ap-
plication of simple autonomous decision rules. Nevertheless they are exported to the
database since they are going to be used for the first optimization run. Consequently,
the next task for the simulation model is to start the optimization model. The latter
loads the predefined data and the simulation results from the database, computes
the optimal solution based on these and stores its results in the database. Then
the next five simulation runs are executed using now the currently computed results
from the optimization model, i.e. new ordering and delivery schemes etc., leading to
an update of the parameter estimations and of the objective value. This procedure
is repeated iteratively until a stable solution is reached, i.e. until the objective and
the estimated parameters do not change anymore. It has already been mentioned
that SimOpt is the collective term for SimLP, in case the simulation is coupled with
a pure linear optimization model, and SimMIP, in case the optimization is based
on a mixed-integer formulation. The pseudo code for a SimOpt experiment can be
summarized as follows:

SimOpt:
Load necessary simulation parameters from the database
Perform a few simulation runs using autonomous decision rules
Aggregate results and store them in the database
while stopping criteria are not met

Load aggregated parameters into LP/MIP solver
Solve the optimization model
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Write results to the database
Load new information into simulation model
Perform simulation runs using the new information
Aggregate results and store them in the database

end-while

Concerning the results coming from the optimization model we wish to add that
there of course are several possible ways to use them within the simulation model.
The quite simple method that we apply here is to interpret the transportation-,
production-, and transfer-specific results as new ordering plans. The precise proce-
dure has been explained in 4. More complex processing of the optimization’s results
would be, e.g., to use information provided by a sensitivity analysis (dual variables,
reduced costs) for determining some critical parameters. Observation of these pa-
rameters during the simulation runs and, in case the parameters reach a certain
threshold, a proper adaption of the provided ordering plans seems to be even more
reasonable. However, for the currently available test results we used the firstly de-
scribed simple interpretation approach for the solution provided by the optimization
model. The analysis of more complex decision rules goes beyond the scope of this
thesis and might by a subject for further research (cf. Chapter 13).
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In this chapter we are going to investigate the following research questions:

• Does this method converge in practice for realistic test cases?

• If we can observe convergence, is the result optimal or at least a good approx-
imation?

• Is this method advantageous compared with traditional planning methods?

In order to answer these questions we conducteded a number of numerical tests using
a set of self-prepared small instances. This chapter starts with some information
concerning solution convergence between simulation and optimization. It will go
on with the analysis of test runs facing both deterministic and stochastic problems.
The corresponding SimOpt results will be compared to those found by a classical
exact solution approach in order to give a statement on solution quality of SimOpt.
The chapter concludes with reports on experiments based on larger tests instances.
For these we increased the problem size such that an exact solution cannot be found
in reasonable time. By means of these larger instances we tried to find the best
setting concerning the quantile for estimating delay parameters.

6.1. Solution convergence

Although it is not possible to prove general convergence we observed fast convergence
for all our test instances where we faced realistic cost structures. For all these the
objective values converged to a stable value after only a few iterations. Figure 6.1
shows a typical course of objective values of both simulation and optimization. This
exemplary illustration is the outcome of test instance D1-L that will be described in
detail in Section 6.3. Here it simply serves as graphical demonstration of an usual
solution development within a SimOpt experiment.

In general we start with the simulation model using autonomous rules for replen-
ishing the inventories. Since we start with all inventories empty, it takes a long time,
until orders can be fulfilled. This causes high penalty cost, very long lead times,
and consequently overestimations of transportation and production delays. So the
first solutions of both simulation and LP model lead to very high total costs mainly
consisting of penalty costs for late (or even no) deliveries. Now the simulation model
ends up with an improved solution since it uses the delivery plans provided by the
optimization model. Due to the fact that the solution of the optimization model
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Figure 6.1.: Course of objective values of the optimization model and the simulation
model for each iteration of a deterministic SimLP experiment consider-
ing fixed costs for production, transfer, and transport

causes a somehow synchronized material flow the measured delays are much smaller
now and consequently costs are decreasing. After three iterations the simulation
and the linear model have converged to the same solution which stays unchanged
for the remaining iterations.

As already mentioned above convergence cannot be guaranteed. For exemplifi-
cation we constructed a fictive setting including nonlinear costs in transportation
where SimLP gets trapped in a cycle and is not able to find a stable solution. The
structure of the example is similar to that used for the previous tests. Again, we
took a very small supply chain consisting of one supplier, one intermediate, and one
customer. This test instance considers only one product which is to be transacted
at the intermediate node. Transaction lasts one period. But for this experiment we
provide two different transportation modes, a slow and a fast one, connecting the
participants. Customer demand of ten units occurs in the 5th of total six periods.
If the slow transportation mode is used, the products will arrive in the 6th period
and penalty cost will occur. If the fast mode is used the products arrive on time,
i.e. in the 5th period, at the customer. Due to capacity limitations only 5 prod-
ucts can be sent via the fast mode and eight units via the slow mode. The cost
for the fast transportation is a fixed value for the whole lot assumed that there are
at most four units loaded. This fixed value is quadrupled in case an additional 5th

unit is transported. After a few iterations SimLP comes to the solution that both
modes, the slow and the fast, should deliver 5 products. Obviously the estimated
value of customer’s per unit penalty cost at that time is higher than the per unit
transportation cost of the fast mode. In the next iteration this plan is executed
by the simulation model resulting in a rise of the estimated per unit transportation
cost for the fast mode since the critical load of 5 products has been reached which
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leads to a tremendous increase of cost. Provided with this new estimation the op-
timization model ends up concluding that the fast mode must not load 5 products
but should deliver the minimum amount of two products instead. The remaining 8
products are transported with the slow mode accepting that they arrive one period
too late which is the better choice anyway. The customer’s per unit penalty cost
is now exceeded by the fast mode’s per unit transportation cost. In the following
iteration we face the same situation as before: transporting two units with the fast
mode leads to decreased per unit transportation cost for the fast mode which in
turn are then exceeded by the customer’s per unit penalty cost. Again, it does not
pay off to accept the late arrival of 8 products but to send 5 of them with the fast
mode and such we go back to the beginning and are not able to leave this cycle.
The solutions of the linear model as well as for the simulation jump between two
values but the optimal solution of transporting four units with the fast mode will
not be reached. This kind of cycling cannot be avoided by using an exponential
smoothing technique; only the cycle length will increase. Please see Appendix B.1
for a complete list of data records used. Figure 6.2 illustrates the course of objective
values for both simulation and optimization for this special experiment.
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Figure 6.2.: Example for generating a cycle; the solution jumps between two possi-
ble realizations, because the nonlinear cost structure in the simulation
model leads to heavily fluctuating estimations for the linear model

Apart from this special constructed situation we observed fast convergence in
all test cases. Usually, the gap between the objective value determined by the
simulation and that found by the optimization decreases continuously until it reaches
an acceptable level of less than 1%.
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6.2. Design of test instances

In order to verify the quality of solutions found by SimOpt we use a self-created set
of 12 examples. For these test instances we refer to a simple supply chain consisting
of three participants (a supplier, a producer, and a customer) and a time horizon of
30 periods. For delivery of products transportation objects are used connecting the
supplier and the producer as well as the producer and the customer. Two types of
products are demanded by the customer: Product 1 which is provided by the supplier
and sent via the producer to the customer and Product 2 which is manufactured by
the producer using Product 1 as a raw material. The cost structure in the network
is designed as follows:

• Transportation costs, which are identical on both transportation legs, consist
of fixed cost per delivery, which are subject to a step function. A delivery costs
100, 200 or 300 monetary units, depending on the consumed transportation
capacity.

• Costs for production and transfer are separated into variable cost and fixed
cost. The variable production cost is set to 30 monetary units per item and
per period. The fixed part constitutes 50 monetary units per lot. Transferring
products costs 15 units per item and per period plus a fixed part of 10 units
per lot.

• Unsatisfied demand at the customer is penalized by 100 monetary units per
missing item and period.

Concerning the demand at the customer we distinguish between instances with
high demand and others with low demand. The difference lies in the frequency
of orders sent off by the customer. In high demand cases the occurring orders in
each period are around the maximum possible quantities deliverable referring to
the capacities of the supplier and the producer. In low demand models the ordered
amounts cover approximately 70% of the possible deliveries in each period. Instances
D1-L to D5-L (see Table 6.3) are low demand cases. They comply with one and the
same scheme for customer demand, but each of them referes to an unique realization
for low demand models. Accordingly, instances D6-H to D10-H consider 5 different
realizations of high demand models. Exemplary realizations of both schemes are
given in Appendix B.2. The last two instances, D1a-L and D6a-H, are modifications
of instances D1-L and D6-H, respectively. The former ones consider exactly the same
ordering amounts as D1-L and D6-H but the fixed costs for production and transfer
are increased to 1,000 respectively 500 monetary units per lot. Transportation delays
for deterministic tests are set to a value of 3 and production or transaction needs
one time period. See Appendix B.2 for precise data tables.
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6.3. Deterministic experiments

For examples of the size presented above it is definitely possible to formulate an
exact MIP model and determine the optimal solution within reasonable computation
time. This we did in order to generate benchmarks used for the evaluation of the
solutions found by SimOpt. The resulting formulation consists of 1,342 constraints,
1,080 continuous, and 300 binary decision variables. When applying SimMIP the
solution of our approach is identical to that provided by the exact MIP model. This
is clear because the MIP model embedded in SimMIP is exactly the same as the
stand-alone MIP model and we do not consider stochastic elements in here (which
would most probably lead to solution variabilities). Thus, a comparison of the exact
solution to that found by SimMIP does not lead to any interesting statement at
all. Consequently, we compared the solution found by the stand-alone MIP to the
SimLP solution. The nonlinear parts are only referred to within the simulation
model itself; the connected pure linear model does not include any of them. See
Table 6.3 for the resulting total costs established by SimLP as well as those found
by the stand-alone MIP model.

Table 6.1.: Comparison of total costs between SimLP and the exact MIP model for
deterministic test cases classified by the occurrence of customer demand
(H - high demand, L - low demand). MIP solutions marked with (*) are
best solutions found after 60 minutes calculation time; all instances were
solved on an Intel P4-M 2GHz, 768MB RAM using Windows XP

instance SimLP exact MIP difference
D1-L 53,640 52,947 1.31%
D2-L 55,032 53,860 2.18%
D3-L 52,626 52,394 0.44%
D4-L 54,442 53,600 1.57%
D5-L 55,198 54,057 2.11%
D6-H 59,885 58,830 1.79%
D7-H 61,257 60,129 1.88%
D8-H 59,028 58,347 1.17%
D9-H 60,403 59,501 1.52%
D10-H 61,436 60,365 1.77%
D1a-L 63,720 61,587 3.46%
D6a-H 76,165 73,761* 3.26%
Average 77,165 73,760 1.87%

The gap between the SimLP solutions and the optimal solutions found by exact
MIP model varies between 0.44% and 3.46% and averages in 1.87%. For instance
D6a-H the computation time for the MIP model exceeded 60 minutes and was
therefore terminated before finishing. We report the best solution found so far. As
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we would expect the two test instances with high fixed cost lead to an increased gap
of over 3%. For low demand settings the variation of the gap seems higher than for
test instances with high demand. But on average there seems to be no significant
difference in solution quality between low and high demand cases.

Based on these results we may conclude that the error caused by neglecting fixed
costs is low as long as the fixed costs are low compared with other costs. If fixed costs
increase (relatively to the other costs) the nonlinear elements should be considered
as far as possible in the optimization model used for the SimOpt experiment, i.e.
SimMIP should be conducted instead of SimLP. All in all we got promising results,
since, even while neglecting nonlinearities entirely, the solutions found with SimLP
are not too far away from the exact ones. Per default we conducted 8 SimLP
iterations for each instance which was far too much since for all of them convergence
was reached with the 3rd iteration. Concluding we want to highlight that we are able
to find these promising results in a significant shorter time compared to traditional
methods. While all SimLP experiments were finished after some seconds the stand-
alone MIP model needed up to 60 minutes computation time.

6.4. Experiments including stochastic elements

In order to measure the quality of our solutions in a stochastic environment we con-
ducted a set of test runs assuming stochasticity for the transportation times. Other
delays, i.e. those for production or transaction are still deterministic and have the
fixed value 1. We again compare solutions found by our SimLP approach with those
found by a stand-alone deterministic MIP model. Since this MIP model does not
cover stochastic features we need to provide estimated values of the transportation
times for the deterministic MIP model. Within the simulation part of SimLP we
consider uniformly distributed transportation delays between 1 and 9 for transporta-
tions from the supplier to the producer, and between 1 and 5 for transportations
from the producer to the customer. For estimating the delay parameters we decided
to perform runs using 90%-, 70%-, and 50%-quantiles. At first glance this choice may
appear unreasonable, since service levels usually are desired to range around at least
90%. However, for these small test instances there would probably be no difference
between the results of a 99%- and a 90%- quantile since both of them would always
lead to almost the same risk averse solutions. Therefore, we decided to evaluate a
high quantile of 90% referring to a risk averse behaviour, an average quantile of 50%,
representing a risky attitude, and an intermediate value of 70%. As a matter of fact
the transportation delays provided for the stand-alone deterministic MIP model are
set aligned with the used quantile. For deliveries between supplier and intermediate
we use the information about the distribution function and set the delays to 8 (90%-
quantile), 7 (70%-quantile), and 5 (50%-quantile) time units (the estimated delay
within SimLP will be based on the quantile and finally rounded to next bigger or
smaller integer value). For the second transportation leg, i.e. between intermediate
and customer, we chose delays of 5 (90%-quantile), 4 (70%-quantile), and 3 (50%-
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quantile) time units. This way we tried to make the comparison between SimLP
and the stand-alone MIP model as fair as possible. Apart from the transporation
delays the instances have exactly the same setting as those presented in the previous
section. Again, the first five instances, S1-L to S5-L (see Table 6.4), consider the
low demand case. All of them comply with the same scheme of customer demand
but each represents an unique realization of this scheme. Accordingly, instances
S6-H to S10-H refer to 5 different realizations of high demand models. Exemplary
realizations of both schemes are given in Appendix B. Instances S1a-L and S6a-H
are replications of instances S1a-L and S6a-H with distinctly increased fixed costs
in production and transaction (cf. Section 6.3). See also Appendix B.2 for complete
data tables.

The maximum runtime for the stand-alone MIP model was set to 30 minutes
while SimLP converged after a few seconds anyway. For the latter we processed 8
iterations, each consisting of five simulation runs and one LP computation which
is usually absolutely sufficient since convergence is typically reached much earlier.
Finally the solution of the stand-alone MIP model found after 30 minutes and the
solution found by SimLP have been evaluated by performing 20 independent sim-
ulation runs based on both solutions. The averaged total costs over these 20 runs
were taken as final result. As a matter of fact the seed used by the random number
generator is chosen to be identical for the comparative runs. This seed certainly dif-
fered from the seed used during the SimLP experiment since otherwise our approach
would have a clear advantage.

When conducting instances including stochastic elements a comparison between
the stand-alone MIP model and SimMIP experiments lead to interesting findings.
Therefore, we used exactly the same data setting in order to evaluate the perfor-
mance of SimMIP experiments. We simply replaced the embedded linear model by
a proper MIP model considering all nonlinear features. While we solely presented
a general formulation of SimOpt’s optimization part so far, at this point an exem-
plary MIP formulation as it could be used within SimOpt should be presented. For
this purpose we simply formulate the given test setting as MIP model which then,
coupled to the simulation model, represents a proper SimMIP environment. Ac-
cording to the given cost structure presented in Section 6.2 there are two nonlinear
aspects which are now to be considered within the mathematical formulation given
in Chapter 4. Namely, fixed-charge costs in production and transaction as well as a
step function for transportation cost have to be taken into account within the model
formulation. The additional constraints and the adapted objective function can be
formulated as follows. Please see Appendix A for a precise list of the notation used
for the formulations of the optimization model.

First we are going to formulate the extensions corresponding to the fixed costs in
production and transaction. For this purpose the respective general cost functions
W p

i (mp
i (t)) and Zp

i (up
i (t)) are further specified as follows:
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W p
i (mp

i (t)) =

{
np

i if mp
i (t) > 0

0 otherwise
∀i ∈ JI , p ∈ P, t ∈ T (6.1)

Zp
i (up

i (t)) =

{
op

i if up
i (t) > 0

0 otherwise
∀i ∈ JI , p ∈ P, t ∈ T (6.2)

So the fixed-charge part of production and transaction cost at intermediate i and
for product p is represented by np

i and op
i , respectively. In order to use these within

the objective function we introduce the binary decision variables φp
i (t) and ψp

i (t)
indicating by a value of 1 or 0 if there is a positive production amount mp

i (t) or
transaction amount up

i (t) of product p at intermediate i in period t or not:

φp
i (t) =

{
1 if mp

i (t) > 0

0 otherwise
∀i ∈ JI , p ∈ P, t ∈ T (6.3)

ψp
i (t) =

{
1 if up

i (t) > 0

0 otherwise
∀i ∈ JI , p ∈ P, t ∈ T (6.4)

Further we add the following constraints:

mp
i (t) ≤M · φp

i (t) ∀i ∈ JI , p ∈ P, t ∈ T (6.5)

up
i (t) ≤ N · ψp

i (t) ∀i ∈ JI , p ∈ P, t ∈ T (6.6)

φp
i (t), ψ

p
i (t) ∈ {0, 1} ∀i ∈ JI , p ∈ P, t ∈ T (6.7)

M represents a large value and therefore Equation (6.4) ensures that in case binary
variable φp

i (t) becomes 1 the production amount mp
i (t) in period t at intermediate

i of product p can take any value smaller or equal to M . Accordingly, Equation
(6.4) does the same as the previous one but it refers to transaction activities at
intermediate i. Equation (6.4) defines that φp

i (t) and ψp
i (t) are binary variables.

The resulting MIP model includes 2 × |JI | × |P | × |T | binary decision variables so
far.

The second nonlinear aspect which is intended to include into this MIP formu-
lation is the step function concerning the transportation costs. As it is mentioned
in Section 6.2 these costs are load-dependent and have three different fixed values.
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Whenever a predefined capacity amount is exceeded the cost jumps to the next
higher value. First of all we divide the corresponding transportation cost function
vCp

ij(
vxp

ij(t)) into three subfunctions:

vCp
ij(

vxp
ij(t)) =


vyp

ij if vxp
ij(t) ∈ (vEp

ij,
vY p

ij ]
vep

ij if vxp
ij(t) ∈ (vKp

ij,
vEp

ij]
vkp

ij if vxp
ij(t) ∈ (0, vKp

ij]

0 otherwise

(6.8)

∀i ∈ JS ∪ JI , j ∈ JI ∪ JC , p ∈ P, t ∈ T, v ∈ V

According to this definition transportation load vxp
ij(t) of product p delivered

from node i to node j with transportation mode v lying within a given interval
(vEp

ij,
vY p

ij ] lead to a fixed transportation cost of vyp
ij. Clearly, the definition of

interval (vEp
ij,

vY p
ij ] has to be done in awareness of the capacity consumption factor

vgp
i for product p transported with mode v. Assumed transportation load vxp

ij(t) is
within the given borders (vKp

ij,
vEp

ij] this causes fixed transportation costs of vep
ij.

And if the transported amount is on the lowest step of capacity consumption, i.e.
it lies in interval (0, vKp

ij], the arising fixed cost is denoted by parameter vkp
ij. For

our test instance as it has been defined above parameters vkp
ij,

vep
ij, and vyp

ij are
set to 100, 200, and 300 monetary units, respectively. Again, we have to include
binary decision variables which have value 1 whenever transportation amount vxp

ij(t)
is within their unique interval:

vγp
ij(t) =

{
1 if vxp

ij(t) ∈ (vEp
ij,

vY p
ij ]

0 otherwise
(6.9)

∀i ∈ JS ∪ JI , j ∈ JI ∪ JC , p ∈ P, t ∈ T, v ∈ V

vεpij(t) =

{
1 if vxp

ij(t) ∈ (vKp
ij,

vEp
ij]

0 otherwise
(6.10)

∀i ∈ JS ∪ JI , j ∈ JI ∪ JC , p ∈ P, t ∈ T, v ∈ V

vκp
ij(t) =

{
1 if vxp

ij(t) ∈ (0, vKp
ij]

0 otherwise
(6.11)

∀i ∈ JS ∪ JI , j ∈ JI ∪ JC , p ∈ P, t ∈ T, v ∈ V

Therefore, binary decision variable vγp
ij(t) is set to 1 if the amount vxp

ij(t) of
product p in period t transported from node i to node j with mode v is within the
highest interval of capacity consumption, and is 0 otherwise. Accordingly, vεpij(t) or
vκp

ij(t) are set to 1 if the transported amount is within the medium or lowest stage
of capacity usage, respectively. Finally a set of constraints is added to the given
formulation where parameter A denotes a given large value:
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vxp
ij(t) ≤ A · vγp

i (t) + vEp
ij ∀i ∈ JS ∪ JI , j ∈ JI ∪ JC , p ∈ P, t ∈ T, v ∈ V (6.12)

vxp
ij(t) ≤ A · vεpi (t) + vKp

ij ∀i ∈ JS ∪ JI , j ∈ JI ∪ JC , p ∈ P, t ∈ T, v ∈ V (6.13)

vxp
ij(t) ≤ A · vκp

i (t) ∀i ∈ JS ∪ JI , j ∈ JI ∪ JC , p ∈ P, t ∈ T, v ∈ V (6.14)

vγp
i (t),

vεpi (t),
vκp

i (t) ∈ {0, 1} ∀i ∈ JS ∪ JI , j ∈ JI ∪ JC , p ∈ P, t ∈ T (6.15)

Equations (6.12), (6.13), and (6.14) ensure that transportation amount vxp
ij(t) is

exclusively set to a value larger than 0 in case one of the given binary variables vγp
ij(t),

vεpij(t), and vκp
ij(t) are 1. Furthermore they ensure the allocation of transported

amounts of product p in period t between node i and node j with mode v to the
proper interval. Equation (6.15) defines vγp

ij(t), vεpij(t), and vκp
ij(t) as binary decision

variables.
The resulting model now consists of (4× |JI | × |P | × |T |+ 3× |JS| × |JI | × |P | ×

|T | × |V |+3× |JI | × |JC | × |P | × |T | × |V |) binary decision variables. The objective
function (4.26) is now defined as follows:

min
∑
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∑
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p
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∑
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i · ψ

p
i (t)

+
∑
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∑
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ρp
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∑
ij∈J

∑
p∈P

T∑
t=1

∑
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ij · vκp
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+
∑
ij∈J

∑
p∈P

T∑
t=1

∑
v∈V

(vep
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ij) · vεpij(t)

+
∑
ij∈J

∑
p∈P

T∑
t=1

∑
v∈V

(vyp
ij − vep

ij − vkp
ij) · vγp

ij(t)

(6.16)

66



6.4. Experiments including stochastic elements

This objective function is subject to Equations (4.2)-(4.3), (4.5)-(4.15), (4.17)-
(4.18), (4.20)-(4.24), and (6.1)-(6.15). Applying this exemplary adaption of the
model formulation all nonlinear elements of the previously presented declaration
of instances can be referred to within the optimization part, i.e. we are able to
conduct a SimMIP experiment. By now the difference between the SimMIP and
the stand-alone MIP is only, that in the within SimMIP delays are estimated based
on simulation experiments and for the stand-alone MIP model delays are predefined
knowing the corresponding distribution functions. This constellation is finally used
for performing the same experiments as for the pure SimLP tests. The results for all
three methods (i.e. stand-alone MIP, SimLP, and SimMIP) are displayed in Table
6.4 where negative percentage values imply that the SimMIP achieved a better result
than the stand-alone MIP model.

Table 6.2.: Difference of the mean total costs after 20 simulation runs based on the
solution found by SimMIP, SimLP, and the deterministic MIP model
classified by the occurrence of customer demand (H - high demand, L -
low demand); total costs are reported in columns cost, quantiles leading
to the best results are reported in columns quant, and the difference with
respect to the solution of the deterministic MIP is denoted in column diff

MIP SimLP SimMIP
instance cost quant cost quant diff cost quant diff

S1-L 66,400 90% 62,601 90% -5.72% 61,637 90% -7.17%
S2-L 61,338 90% 60,635 90% -1.15% 60,282 90% -1.72%
S3-L 63,323 90% 63,566 70% 0.38% 63,618 70% 0.47%
S4-L 63,122 90% 64,067 90% 1.50% 64,060 90% 1.49%
S5-L 60,954 90% 62,399 90% 2.37% 62,229 90% 2.09%
S6-H 72,485 90% 72,342 90% -0.20% 70,871 90% -2.23%
S7-H 70,928 90% 70,751 90% -0.25% 71,040 90% 0.16%
S8-H 73,257 90% 77,537 70% 5.84% 74,999 70% 2.38%
S9-H 73,501 90% 74,637 70% 1.55% 72,845 90% -0.89%
S10-H 71,606 90% 70,230 90% -1.92% 73,934 90% 3.25%
S1a-L 71,511 90% 71,686 90% 0.25% 70,350 90% -1.62%
S6a-H 88,442 70% 90,582 90% 2.42% 88,442 70% 0.00%
Avg.-L 64,441 64,159 -0.39% 63,696 -1.08%
Avg.-H 75,037 76,013 1.24% 75,355 0.44%
Average 69,739 70,086 0.42% 69,526 -0.32%

The results of SimLP are on average slightly worse compared with the deter-
ministic stand-alone MIP solutions. For low demand cases we observe that SimLP
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performs slightly better than the MIP solution but considering the variability of
results these differences are not significant. However, it should be noted that the
computation time for the stand-alone MIP varied between several minutes and sev-
eral hours, whereas the SimLP algorithm needed on average 30 seconds for each
test instance. Hence, we succeeded in finding high quality solutions within a short
computation time compared to traditional methods.

We see that applying SimMIP the solution quality can be improved for 9 out of
12 test instances and on average the result is slightly better than the deterministic
stand-alone MIP approach. In low demand cases SimMIP performs on average
1.08% better than the stand-alone MIP. Again, we want to mention that including
integer decisions into the optimization model should be done in awareness of possibly
tremendously increased computation time. Running a SimMIP experiment means
to solve several MIP models which might be a quite time-consuming task.

Even if for some instances the 70%-quantile yields the best results, the 90%-
quantile, i.e. a low risk behaviour, seems to be the best choice. Using the 50%-
quantile, i.e. using the expected value, always caused much higher costs. This
outcome is not surprising since using the 50%-quantile comes up with a quite risky
behaviour assuming the delays to be according to their expected values and, there-
fore, to high total penalty costs. Additionally we analyzed the variability of the 20
final simulation runs for each method. A list of minimum total cost, maximum total
cost, and coefficient of variance for each instance and each method is provided in
Appendix B.3.6. Summarizing we state that there is no significant difference of the
variation for all methods. The averaged coefficient of variation for the SimOpt meth-
ods are 6.91% (SimLP) and 7.63% (SimMIP). The solutions found by the stand-alone
MIP have a coefficient of variance of 6.83%.

Since SimMIP and the stand-alone MIP model had almost the same level of in-
formation one may expect that both of them conclude with the same the solution.
Nevertheless SimMIP performs worse in 3 out of 12 instances. This can be explained
by little cost differences occurring due to the fact that we have some non-integer
variables within the MIP models as well. Therefore, it may happen that the stand-
alone MIP model and the embedded MIP model provide slightly different solutions
and lead to the situation that the isolated exact approach performs a little bit
better than the combination of simulation and optimization. Maybe it seems also
questionable that in 3 cases SimLP performed better than SimMIP in three cases.
Since SimMIP includeed all information concerning the nonlinear cost in produc-
tion, transaction and transportation it definitely was able to benefit from making
aggregation decisions, e.g, by arranging transportation lots. Due to the lack of this
information SimLP had a clear disadvantage especially if high fixed costs were con-
sidered. But consequently, penalty costs caused by stochastic transportation delays,
had a much more harmful effect on total costs of SimMIP than of SimLP. While
for the latter we ended up with rather small lots arriving late the aggregation deci-
sions of SimMIP may have lead to quite huge amounts of delayed products. Clearly,
in all cases SimMIP ended up with lower operational costs compared to those of
SimLP. However, in few cases the gap of penalty costs was that large that it cannot
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be compensated by lower operational costs. This way it happens that in few cases
SimLP in total performed better than SimMIP. Disadvantages of SimLP compared
to SimMIP concerning the aggregation of lots could be softened by incorporating
period-specific costs. Based on these SimLP would recognize per unit cost variations
within one and the same run and would thus try to aggregate lots in cheaper periods
instead of partitioning them over the planning horizon. This would help SimLP to
ameliorate its results for models including fixed costs. However, an implementation
of period-specific costs has to be planned precisely since it involves some critical
questions which are not trivial to solve (e.g., data gathering becomes much more
challenging since a huge number of additional cost informations are necessary).

For larger test instances it would not be possible to solve the MIP or to apply
the SimMIP approach within reasonable computation time. In a preliminary study
Mitrovic (2006) we focused on that issue and tried to find the approximate limits of
solving MIP formulations of supply chain problems by the means of three state-of-
the-art LP/MIP solvers. These tests were conducted on a PC (Intel P4 2.4GHz, 1GB
RAM) using Windows 2000. We used a set of different sized supply chain network
problems considering fixed costs in transportation, production, and transfer. The
best performing solver succeeded in solving problems with 20 supply chain actors, 8
products, 5 periods and 2 transportation modes, considering 3,360 binary variables
before and 250 binary variables after presolving. The next in size, which included
10 products instead of 8, could not be solved within a time limit of 60 minutes.
Thus, one has to identify a good trade-off between including nonlinear elements into
the optimization part, i.e. referring to a more realistic model, and keeping down
computation time. Definitely, important decisions involving high fixed costs should
be considered within the embedded optimization model of SimOpt. However, we
mainly focus on finding good solutions by simultaneously coping with stochastic
elements. For this purpose applying SimOpt in awareness of an upper limit for
the problem complexity is a reasonable procedure. Using heuristic problem solving
methods in order to support solution finding of complex MIP models is certainly a
subject for future research as it is highlighted in the conclusion of this thesis.

6.5. Experiments on larger instances

In addition to the small instances used in the previous subsections we generated a set
of 12 instances representing larger supply chain networks. Using these test instances
we analyze the influence of the quantile used for estimating the delay parameters.
For this purpose we evaluated two different scenarios. The first one covers the case
that uncertainty is concentrated in the beginning of the supply network, and the
second focuses on the case that stochastic elements occur at the downstream end of
the network. The size and structure of these test cases are shown in Figure 6.3.

This fictitious supply chain network consists of 10 actors: 3 suppliers, 4 interme-
diate nodes, and 3 customers. The intermediate nodes are separated into two layers
and all of them are authorized to produce and also to transfer products. There
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supplier 1 
production 1 
transaction 1 

supplier 2 
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production 2 
transaction 2 
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transaction 3
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transaction 4

customer 2

customer 3

customer 1

Figure 6.3.: Structure of the increased test instances where for simplicity reasons
transport modules have been omitted

is one transportation mode available. The customers request 4 different products.
Products 1 and 2 are on the one hand final products, which have to be delivered
to the customers and on the other hand raw materials used to produce Products
3 and 4 which are as well demanded by the customers. First we refer to the case
with stochasticity concentrated at the beginning of the supply chain. Hence, for the
connection between the suppliers and the first layer of production sites we assumed
stochastic transportation times, which are uniformly distributed between 1 and 5.
The transportation times between the two layers of production nodes are uniformly
distributed between 1 and 3. For the remaining links we assume deterministic trans-
portation times of 1. The cost functions for production and transaction consist of
a fixed and a variable part. Again, we classify the instances according to occurring
customer demand (H - high demand, L - low demand). Instances L1-L to L5-L
(see Table 6.5) each refer to an unique realization of the low demand scheme. Ac-
cordingly, L6-H to D10-H consider 5 different realizations of high demand models.
Exemplary realizations of both schemes are given in Appendix B. The last two
instances, L1a-L and L6a-H, are modifications of instances L1-L and L6-H consid-
ering extra high fixed costs in production and transaction. Please see Appendix B.3
for assembled lists of data input. If all binary decisions were considered within a
proper MIP Model, this would have lead to more than 3,800 binary variables, which
is beyond the size of problems we succeeded to solve within several hours during
the preliminary study mentioned above Mitrovic (2006). In comparison, our SimLP
algorithm took about 12 minutes per test instance to converge to a solution. As
already mentioned we now focused on achieving information concerning the most
preferable quantile for estimating the delay parameters. For this purpose we evalu-

70



6.5. Experiments on larger instances

ated three different quantiles, i.e. 90%, 70%, and 50%, as they had also been used
in the previous test experiments. See Table 6.5 for the results.

Table 6.3.: Total costs of SimLP for test cases with 10 supply chain actors and
stochastic transportation delays at the beginning of the supply chain
(H - high demand, L - low demand); the results for the 90%-quantile are
taken as basic values for the remaining quantiles the percentage difference
to the corresponding basic value is given. S indicates that stochasticity
occurs near the supplier

quantile
instance 90% 70% 50%
L1-L-S 274,239 -0.19% 11.20%
L2-L-S 274,241 9.98% 6.00%
L3-L-S 274,995 5.76% 10.85%
L4-L-S 275,366 5.83% 11.51%
L5-L-S 273,214 1.33% 9.80%
L6-H-S 270,286 2.72% 10.10%
L7-H-S 270,491 2.23% 4.51%
L8-H-S 270,438 -0.59% 10.92%
L9-H-S 267,766 2.71% 8.65%
L10-H-S 270,155 -0.57% 10.12%
L1a-L-S 333,772 2.77% 4.04%
L6a-H-S 346,953 1.42% 4.52%

Total Avg. 283,493 2.78% 8.52%

In this case it seemed that the 90%-quantile is the most robust choice, although
the 70%-quantile delivers on average only slightly worse results and in some cases
even better ones. The 50%-quantile lead to the worst results for all instances. Due
to the fact that there are less stochastics near the customer, it is possible to reduce
the safety factors for the delays to some extent without increasing the costs too
much, because lost time at the beginning of the supply chain can be made up at the
downstream end. Most probably this is the reason why the results found with the
70%-quantile do not come off too badly compared to the risk minimizing strategy of
choosing the 90%-quantile. However, estimating delays the risky way, i.e. choosing
the 50%-quantile, does not pay off since underestimations arising in the beginning
of the network cannot be coped anymore and lots of deliveries arrive too late at the
customer.

We also conducted experiments where stochastic transportation delays are to be
found at the downstream end of the supply chain network. In fact, the connection
between intermediate nodes and customers are uniformly distributed between 1 and
5. Transportation times between the two layers of intermediate nodes are again
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uniformly distributed between 1 and 3 and remaining transportation times are set
to 1. The corresponding results are summarized in Table 6.4.

Table 6.4.: Total costs found by SimLP for test cases with 10 actors and stochasticity
concentrated near the downstream end of the supply network (H - high
demand, L - low demand); the results for the 90%-quantile are taken as
basic values; for the remaining quantiles the percentage difference to the
corresponding basic value is given. C indicates that there stochasticity
occurs near the customer

quantile
instance 90% 70% 50%
L1-L-C 263,957 11.70% 43.96%
L2-L-C 263,252 16.81% 45.02%
L3-L-C 263,948 13.79% 48.81%
L4-L-C 263,114 12.65% 50.60%
L5-L-C 263,707 13.98% 51.41%
L6-H-C 258,440 18.11% 52.09%
L7-H-C 257,963 14.60% 59.29%
L8-H-C 260,606 12.67% 41.68%
L9-H-C 258,762 24.74% 52.44%
L10-H-C 258,936 17.52% 43.16%
L1a-L-C 335,837 7.15% 32.56%
L6a-H-C 335,973 9.61% 32.95%

Total Avg. 273,708 14.45% 46.16%

For these instances the best choice clearly is to use the highest safety factor, i.e.
the 90%-quantile, because there are stochastic delays in the downstream end of the
supply chain network and there is no chance to catch them up later.

For test instances L1a-H-C and L6a-H-C where extra high fixed costs in produc-
tion and transaction are included, we tentatively tried to apply SimMIP but solely
included the extra high fixed costs referring to production and transaction. The rel-
atively low fixed costs in transportation were still neglected within the optimization
part. The results are presented in Table 6.5.

For all quantiles the result can be improved slightly since the optimization model
could act in awareness of the high fixed costs and benefits from the resulting crucial
aggregations of production and transaction lots. However, the calculation times were
more than 5 times longer compared to those of SimLP. This again highlights that it
is absolutely essential that the inclusion of binary decisions within the optimization
part of SimOpt has to be decided carefully.

If stochastic transportation times are assumed throughout the whole supply chain
network, i.e. all transportation delays are defined to be uniformly distributed be-
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Table 6.5.: Total costs found by SimMIP for 2 selected instances with 10 actors
and extra high fixed costs in production and transaction; all percentage
values show the difference to the corresponding results found by SimLP
as they are presented in 6.4

quantile
instance 90% 70% 50%
L1a-L-C -4.48% -10.86% -1.19%
L6a-H-C -3.47% -2.96% -0.37%

tween 1 and 5, the results for all 12 instances are similar to those in Table 6.4, i.e.
the 90%-quantile is always the best choice.

Having conducted a number of theoretical experiments using SimOpt we decided
to apply this method in a real-world environment. Joint work with a paper manufac-
turer provided a perfect possibility to evaluate SimOpt’s performance on a realistic
sized distribution network. For the first phase of this case study we simply solved an
LP model since dynamic and nonlinear aspects were omitted so far. For the sake of
completeness, a detailed description of the first project phase initiates the following
part. This is followed by an implementation description and reports on numerical
experiments referring to the second, more challenging, phase were we considered dy-
namic and nonlinear aspects as well. This increase in complexity made it necessary
to apply a more sophisticated solution method which we did by using SimOpt.
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7. Introduction

The modeling design of SimOpt is motivated by a case study dealing with the
medium-term optimization of a paper manufacturer’s distribution network. Within
this corporative project our main task was to determine production quantities and
preferable transportation links in a predefined network and for a planning horizon
of one year (cf. Gronalt, Hartl, and Preusser (2007)).

The given network consists of four European manufacturing sites (A, B, C, and
D) which deliver 10 different products (I-X) to customers that are partly located
within Europe, but also distributed in oversea regions all over the world. The sites
differ in their configuration and none of them is able to fabricate all 10 kinds of
products, but all of them have a fixed product-mix. Furthermore, they differ in
production quality which means that two of them are able to deliver high quality
while the others deliver low quality products. Distribution is done either directly
from a site to a customer or indirectly using hubs or ports as intermediate stations.
Indirect deliveries within Europe are executed using hubs, which are to be chosen
out of a set of 18 predefined locations. Deliveries to oversea destinations are forced
to pass exactly one port anyway. There is a set of 9 available ports throughout
Europe. Figure 7.1 illustrates the given network structure.

Since this case study was based on highly confidential corporate information we
consistently present distorted values of the real data. The ratio of intra-European
compared to oversea deliveries based on the total delivery quantity as well as of
direct to indirect deliveries (via hubs or via ports) are reported in Table 7.1.

Table 7.1.: Percentage of deliveries within Europe in relation to oversea deliveries;
the relation of direct to indirect deliveries is reported as well

site sum (tons) Europe oversea direct via hub via port
A 210,040 40% 60% 31% 9% 60%
B 204,130 42% 58% 13% 29% 58%
C 124,950 54% 46% 54% 0% 46%
D 89,510 88% 12% 84% 4% 12%

Due to various reasons like mergers and the strict attempt to keep traditional sup-
ply relationships alive the company, over the years, got deadlocked in a distribution
strategy which is suboptimal at first glance. Thus, a project covering a widespread
analysis of the existent network and a survey of improvement strategies became
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Figure 7.1.: Given structure of the distribution network

essential. In the initial phase of this project we determined the Quick Wins, i.e.
savings based on the elimination of clear inefficiencies within the distribution strat-
egy. Clearly, this isolated examination of the problem did not lead to a convenient
improvement and thus the development of a more sophisticated optimization method
was initiated. We decided to calculate the optimal distribution strategy by formu-
lating and solving an adequate LP model. Due to intra-company and geographical
circumstances the LP model was subject to a number of side constraints which
lead to a considerable limitation of improvement possibilities. However, we wanted
to present the whole optimization range anyway and therefore specified different
scenarios by consecutively loosening side constraints. Thus, we were finally able
to present possible reductions in transportation cost for different levels of network
modifications. Figure 7.2 illustrates the project’s course with a brief description for
each milestone.

The following chapter is going to focus on the isolated examination of each pro-
duction site’s distribution strategy (Quick Wins) and will be followed by the in-
troduction of the static LP model which we used since we aimed at getting rough
estimations of potential improvements quickly. Subsequently, the challenging task
of gathering all necessary data and the main findings of our investigations are dis-
cussed. Apart from this consulting project we conducted an interesting follow-up
analysis which will be addressed in Chapter 12. It focuses on an extended model
where we included dynamic and nonlinear aspects and faced problems like stochastic
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Figure 7.2.: Milestones of the joint project with the paper manufacturing company
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lead times and fixed production costs under changing demand behaviour. Using the
real world data we highlight the clear advantage of central planning compared to
decentral planning in this context and that the combined simulation-optimization
method (SimOpt) is able to handle real-world-sized networks sufficiently.
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In order to identify the clear inefficiencies of the system we requested lists of all
deliveries that have been processed at one of the manufacturing sites in the base
year. Using them we picked out deliveries where

• a customer got supplied with one and the same product type by more than
one production site,

• a customer requested different kinds of products at more than one site, even
if single sourcing would have been possible as well,

• a site sent deliveries to one and the same customer via different distribution
channels.

Since there are no capacity restrictions in transportation to be taken into account
all these deliveries are, at first glance, evidence for the inefficiency of the system. So
for all these cases we calculated the added transportation cost having arised due to
the insufficiently adjusted planning on the corporate level. In Table 8.1 we present
some examples of inefficiencies leading to Quick Wins.

Table 8.1.: Examples for calculations of added costs due to clear inefficiencies within
the distribution network

site customer via product cost/ton tonst Quick Wins
B AUS1 Hamburg I 160 5,288 211,520C AUS1 Hamburg I 200 5,288
A AT1 - II 6 1,015 22,330C AT1 - II 28 1,015
A D1 Salzburg III 41 148 2,812C D1 Gohfled III 60 148

We were able to identify a huge number of such apparent inefficiencies in trans-
portation planning. Discussing this topic with the logistics executives we found out
that a number of these distribution decisions were made deliberately knowing that,
due to various reasons, they are inevitable. Finally we ended up with only 17 deliv-
eries where a suboptimal distribution decision was made without any reproducible
reason leading to total added costs in transportation of e 587,000 per year.
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We extended the analysis of Quick Wins from the single customer related level to
an aggregated level considering customer regions instead. Clustering was made based
on the first two ZIP-Code digits for European customers and based on countries for
oversea ones leading to an amount of 25 European regions and 44 oversea distribution
destinations. The added value was small - we solely found 6 more cases of evident
inefficiencies leading to additional Quick Wins of e 157,300 per year. Accordingly,
an adjustment of distribution planning on manufacturing sites’ level would, in total,
have saved transportation cost of up to e 744,300 per year. Clustering of customers
to ZIP-Code-based and country-based regions was retained for all following analyses
since an optimization on the single customer level was decided to be too detailed
and unnecessary.

This initial analysis we primarily used in order to roughly estimate the optimiza-
tion potential in distribution planning to the corporate authorities. Related for the
calculation of Quick Wins we had, in contrast to the following global optimization,
the advantage that all essential data was already existent and quite easily accessible.
Determining an optimal solution on the global level was much more challenging since
we had to gather cost values for an huge number of transportation legs that have
not been used for product distribution so far. However, the result of this isolated
examination of Quick Wins could, due to the implicit ignorance of global capacity
restrictions, in most cases not hold within the global context. In the optimal solution
only a few of them are intended to be realized.
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9. Model formulation

Having finished the quite myopic determination of Quick Wins we went on with
implementing a systematic solution method aiming for the optimal solution in a
global context. In fact, we formulated an LP model considering the transportation
amounts on each leg of the network and the transaction amounts at hubs and ports
as decision variables. Our model is based on a standard network flow formulation
as it is, for example, presented in Fleischmann, Meyr, and Wagner (2005). This for-
mulation is a special case derived from the general formulation presented in Chapter
4. Some features, which we are referring to within the general model formulation,
are not relevant for this real world case. Thus, we adapted the general formulation
leading us to the following model formulation:

J = JS ∪ JL ∪ JH ∪ JE ∪ JA set of network participants
j ∈ JS manufacturing sites
j ∈ JL hubs
j ∈ JH ports
j ∈ JE European customer regions
j ∈ JA oversea customer regions
p ∈ P products

ui transaction amount at hub or port i
xp

ij amount of product p transported on leg ij
cij transportation cost factor per ton on leg ij
Dp

j demand for product p in customer region j
hi transaction cost factor per ton at hub or port i
Maxi maximum total transaction amount at hub or port i
Mini minimum total transaction amount at hub or port i
prodp

i maximum production amount of product p at site i

min
∑
i,j∈J

∑
p∈P

cijx
p
ij +

∑
i∈JL∪JH

hiui (9.1)

∑
j∈JL∪JH∪JE

xp
ij ≤ prodp

i ∀i ∈ JS, p ∈ P (9.2)
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9. Model formulation

∑
k∈JS

∑
p∈P

xp
ki = ui ∀i ∈ JL (9.3)

∑
k∈JS

∑
p∈P

xp
ki = ui ∀i ∈ JH (9.4)

∑
j∈JE

∑
p∈P

xp
ij = ui ∀i ∈ JL (9.5)

∑
j∈JA

∑
p∈P

xp
ij = ui ∀i ∈ JH (9.6)

∑
j∈JS∪JL

xp
ij = Dp

i ∀i ∈ JE, p ∈ P (9.7)

∑
j∈JH

xp
ij = Dp

i ∀i ∈ JA, p ∈ P (9.8)

ui ≤Maxi ∀i ∈ JL ∪ JH (9.9)

ui ≥Mini ∀i ∈ JL ∪ JH (9.10)

xp
ij ≥ 0 ∀ij ∈ J, p ∈ P (9.11)

ui ≥ 0 ∀i ∈ J (9.12)

The objective function (9.1) minimizes total transportation and transaction cost
while Equation (9.2) limits the amount delivered by a production site to the respec-
tive maximum production amount. Equations (9.3) and (9.4) balance the amounts
arriving at hub or port i to the amount transacted at location i. Since hubs are used
for deliveries to European customers alone, we introduced Equation (9.5) ensuring
that the transaction amount at hub i is equal to the amount transported from hub i
to European customer regions. This implicitly prohibits deliveries between hubs and
ports, which indeed is one of the company’s hard constraints. Indirect deliveries are
not allowed to pass more than one hub or port. For oversea deliveries we have the
additional specification that deliveries have to be transacted at a port from where
they are finally sent to the destined oversea region. Thus, we formulated Equation
(9.6) balancing the amount sent by port i to oversea regions with the transaction
amount of port i. Equations (9.7) and (9.8) restrict the amounts arriving at cus-
tomer regions to be exactly covering the respective region’s demand. Hubs and ports
are subject to given maximum and minimum transaction amounts. These are taken
into account by Equations (9.9) and (9.10). Finally, Equations (9.11) and (9.12)
ensure nonnegativity for the decision variables.

84



We see that this model is basically focused on the flow of products between the
actors of the supply chain. Since the production amounts at the manufacturing sites
are fixed we do not consider them within our formulation. Furthermore, we do not
explicitly consider inventory levels at the production sites. Supplier and customer
nodes do not cause any additional costs. This is due to the fact that the company
was solely interested in their internal distribution strategy, leaving procurement or
penalty costs aside. Since we do not consider any nonlinear aspects so far, this
simplified model can be easily solved by using a standard LP solver. Not until we
refer to dynamic aspects and nonlinear elements we use the combined simulation-
optimization method, SimOpt, as a solution method.

Over time we identified a number of additional restriction that we did not con-
sider within this first model formulation but took into account within the following
numeric experiments. Worth mentioning is, that for a couple of customers it is not
possible to supply them on direct distribution channels since they do not dispose
of sufficient inventory capacities for themselves. Deliveries to regions including one
of these special customers have to pass an hub anyway. Furthermore, one of the
manufacturing sites has scarce inventory capacities as well which lead to the side
constraint that the amount of products sent away directly from this site to customers
is limited to a total sum of 60,000 tons per year. Remaining products are proceeded,
just after they leave the production process, to an hub from where they are then
transported to the intended customer region.
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10. Basic data

Gathering data for a profound global optimization was a much more challenging
and time-consuming task than initially expected. Best effort was invested in order
to develop a valid, realistic, and widespread database while various inconsistencies
within the disposed data caused discouraging throwbacks. We designed a sheet
requesting detailed information on each delivery carried out in the base year. It was
proceeded to the logistics authorities of each manufacturing site. See Table 10.1 for
an exemplary excerpt of the data sheet.

Table 10.1.: Excerpt of data sheet requesting essential information about all deliv-
eries in the base year

customer ID city direct via tons total cost
RAP CI23 Yamoussoukro Hamburg 1,092 129,400
DNT UA12 Odessa X 55 11,880
TTB AT80 Graz Salzburg 84 11,088

The production capacities were directly derived from the production amounts of
the base year. Predefined limits for minor deviation of these production amounts
defined the maximum and minimum output for each manufacturing site. It has
already been mentioned above that we had to consider differences in production
quality depending on the manufacturing site. Within the implementation we dis-
tinguish between high quality and low quality products, distributed by Western
European and Eastern European sites, respectively. Customers being formerly sup-
plied with products coming from Western Europe may further on not be supplied
by Eastern European manufacturing sites. Furthermore, we had to collect data con-
cerning transaction costs at hubs and ports. In addition to the ex-post calculations
for the base year we also conducted experiments concerning the subsequent year.
Though we did not perform an additional data survey but took cost and capacity
factors from the base year and solely adapted the demand values which were for
both the base year and the subsequent year provided by the company’s distribution
department.

Finally it remained to determine the transportation cost factors for all arcs of the
distribution network. Since we knew the occurred total transportation costs of all
deliveries proceeded in the base year we simply had to adapt the costs of indirect
deliveries in the sense that we separated them into costs on arc 1, i.e. from a site
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10. Basic data

to an hub or port, and costs on Arc 2, i.e. from hub or port to the customer region.
Thus, we ended up with the total transportation costs of each already used arc in the
network and simply divided these value by the respective delivery amount in order
to have per ton cost factors for each arc. The separation of total costs into the part
arising on Arc 1 and the part arising on Arc 2 was easy, since the company provided
detailed information on transportation costs between their sites and hubs/ports as-
sumed the connecting arc has already been used at least once. The challenging task
now was to determine cost factors for arcs that had been unused so far. Even after
building clusters of customers based on their geographical position we had 4,000 arcs
open for determination of costs. This huge amount of missing data eliminated the
initial idea to request an appropriate prize list from the involved freight forwarder.
However, using the standard prizes would not have been a good idea anyway since
for the existing legs the company already obtained significant rebates. Within the
optimization rebate-based arcs would always have seemed to be preferable compared
to those evaluated based on standard prizes. This certainly would have distorted all
subsequent calculations. As a matter of fact we decided to derive the missing cost
factors based on the available data values by calculating average per ton and per
kilometer costs and applying them to the, till then, unused legs. For this purpose we
developed a distance matrix using MS MapPoint. We determined the necessary per
ton and kilometer cost factors by dividing the known cost factors by the correspond-
ing distance. After calculating average values over the obtained values we simply
multiplied them with the corresponding entries in the distance matrix. Maybe it’s
worth mentioning that we sorted out very small deliveries, i.e. deliveries with a total
amount of less than 25 tons, in advance assuming that they were disproportionally
expensive cases of emergency and would have a distorting impact on the calculation
of average cost factors. Thus, we ensured that obtained rebates on existing legs were
implicitly considered for the evaluation of new ones. Due to simplicity reasons we
did not consider till then unused arcs between ports and oversea destinations. For
this part of the network solely already frequented legs were taken into account. After
some mutual reviews with the logistics authorities we finally succeeded in creating a
database agreeable for all corporation participants. Exemplary calculations of cost
factors per ton and kilometer and of transportation costs per ton are presented in
Table 10.2 and 10.3, respectively.

Of course we did not revise already existing cost values by applying these calcu-
lations, but but used their original cost factors. See Table 10.4 for an excerpt of the
resulting transportation cost matrix.

Some time after finishing this project we came across an interesting report which
probably could have saved us a lot of time and effort. Werr and Scheuerer (2007)
show how they adapted existing cost schedules on long distance traffic for the opti-
mization of a distribution network where they face, similar as we did, the problem
of cost determination for previously unused transportation legs. Using the adapted
schedules they generate an high-quality cost matrix under consideration of degres-
sive behaviour of cost in distance and load. Fruthermore, the authors address base
price levels, meaning a fixed minimum transportation cost, disregarding the delivery
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Table 10.2.: Exemplary generation of cost factors per ton and kilometer based on
transportation costs on existing legs

from/to hub SB1 region AT34 region DE15 average
A = costperton

distance
- = costperton

distance
a

B - - = costperton
distance

b

C - - - c

hub SB1 - = costperton
distance

- d

Table 10.3.: Exemplary generation of transportation costs per ton based on calcula-
tions presented in Table 10.2

from/to hub SB1 region AT34 region DE15
A - = distance ∗ a -
B = distance ∗ b = distance ∗ b -
C = distance ∗ c = distance ∗ c = distance ∗ c

hub SB1 = distance ∗ d - = distance ∗ d

Table 10.4.: Excerpt of the final transportation cost matrix (E - Europe, O - oversea)

from/to customers (E) hubs ports customers (O)
F62 HU26 h1 h2 p1 p2 Iran Taiwan

sites

A 60 29 32 38 29 74 - -
B 92 155 95 89 29 62 - -
C 52 32 48 39 35 27 - -
D 49 40 35 35 26 8 - -

hubs h1 244 226 - - - - - -
h2 90 165 - - - - - -

ports p1 - - - - - - 89 18
p2 - - - - - - 80 -
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10. Basic data

amount. This fixed transportation cost does not increase with the delivery amount
until a given threshold is reached. Having exceeded this threshold the base price
level is supplemented by a linear cost function depending on the transportation
amount.

In retrospect, we checked the transportation cost values provided by the paper
manufacturing company and figured out that the assumption of cost degression in
distance and load perfectly fits in our case. Thus, the approach proposed by Werr
and Scheuerer would most probably have lead to more realistic cost estimations
for our data gathering problem. By applying a simple kind of data exploration,
as we did, one takes the risk of loosing important characteristics of the given data
set. Nevertheless, since we cross-checked our cost estimations again and again with
different authorities, we concluded to have a valid data set and did not apply the
approach presented by Werr and Scheuerer (2007) anymore.
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11. Results

Beside the determination of the optimal solution for the basic scenario as it has
been described above we specified three additional problem settings by successively
loosening selected restrictions. These are the fixed product mix at the manufactur-
ing sites, the predefined allocation of particular customer regions to a supplier, and
finally the fixed, or almost fixed, proportional assignment of production capacities.
Though quite unrealistic, we modeled and solved the situation of complete elimi-
nation of side constraints as well. All scenarios were implemented with Xpress-MP
and solved on a 1 Ghz Pentium 3 processor within a couple of seconds. Again we
want to mention that for the following results the stand-alone LP model described
in Section 9 was absolutely reasonable and efficient. Please see Section 12 for the
more challenging computations were we used SimOpt to cope with the high level of
complexity.

11.1. Basic scenario

The huge amount of restrictions that had to be considered for the basic case reduced
the range of potential improvements considerably. In fact, the optimal solution for
this setting just lead to a reduction in total transportation cost of e 117,200 per
year, with is a marginal improvement, indeed. According to the optimal solution,
the site with the highest level of necessary modifications in its distribution strategy
is site D. Thus, for clarity reasons the following discussion of results focuses on
implications for site D. The current and the optimized distribution network of site
D are illustrated in Figures 11.1 and 11.2, respectively.

As we can in see in Table 11.1 the intra-European deliveries of site D should be
limited to five countries while the effort in oversea activities is recommended to be
increased. Especially USA, Africa, Asia and Australia should move into site D’s
distribution focus. 73% of site D’s total production volume of 71,200 tons per year
should be used for the supply of oversea countries, leaving 27%, i.e. 19,000 tons,
for intra-European distribution. Furthermore we found out that deliveries coming
from site D should not pass any European hub, but be sent directly to the European
customer regions instead. All oversea deliveries should be handled by two selected
ports. The optimal solution basically implies that site D replaces site C concerning
the supply of oversea countries committing the latter with an increased amount of
distributions within Europe. It has already been mentioned that the Quick Wins,
which we determined in the initial phase, could not hold in the global context.
Table 11.1 contains the optimized percentage rates of intra-European and oversea
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Figure 11.1.: Current distribution network of site D
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Figure 11.2.: Optimized distribution network of site D
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11. Results

deliveries, and of direct and indirect deliveries, for each manufacturing site.

Table 11.1.: Optimal distribution in percentage of deliveries within Europe and over-
sea deliveries; the relation of direct to indirect deliveries is reported as
well

site sum (tons) Europe oversea direct via hub via port
A 209,890 48% 52% 33% 15% 52%
B 200,760 37% 63% 19% 18% 63%
C 125,070 82% 18% 82% 0% 18%
D 92,940 23% 73% 27% 0% 73%

Applying the optimization model to the demand rates of the subsequent year lead
to potential reductions of transportation cost of e 561,000 per year. The quite low
optimization potential confirmed the company authorities in their opinion to leave
the distribution network unchanged for the moment. For us this result was not
surprising since, given the huge amount of side constraints, the range of possible
changes within the distribution strategy was fairly tight. Especially the strict as-
signments of production amounts for each site diminished a number of improving
strategies considerably. Thus, we decided to conduct some further calculations and
thus to evaluate scenarios based on different relaxations of side constraints. Beside
that we implemented a sensitivity analysis in order to use the optimization model’s
dual information as well. In fact, we tried to figure out which of the manufactur-
ing sites should be favorized in case of possible capacity extensions. The sensitivity
analysis showed high shadow prices for sites A and D which lets us conclude that the
increase of production capacities for sites A and D is more preferable than for sites
B and C. This was confirmed by the results of the subsequent calculations where we
evaluated scenarios with loosened capacity restrictions.

11.2. Flexibility scenarios

The first scenario focused on the predefined product mix for each site. This re-
strictive assumptions we relaxed by adding product IX, a very high demanded one,
to the portfolio of manufacturing site A. The examination of this setting was re-
quested by the company since the extension of site A’s product portfolio was at that
time an open issue for them. Our calculations lead to the conclusion that realizing
this setting would be a good idea; in the optimal case site A would no longer have
product V in its portfolio but adopted the complete amount of product IX instead.
Manufacturing of product V is completely overtaken by site D. This scenario lead
to reductions of distribution cost of e 1,295,000 in the base year and of e 1,522,000
in the subsequent year. These high reductions are due to the fact that product
IX is highly demanded in Central Europe, which is the location of site A as well,
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11.2. Flexibility scenarios

and almost not demanded in Northern Europe where site D, the single supplier of
product IX in the current situation, is settled.

A further extension of this setting is specified as the second flexibility scenario. In
addition to the increased product portfolio of site A we eliminated all side constraints
related to individual requests of single customers (e.g. the strict prevention of direct
deliveries to some customers). The already mentioned limitation of direct deliveries
from one of the sites to a total amount of 60,000 tons per year was omitted within
this scenario as well. This time we ended up with reduced transportation costs of
e 313,000 in the base year and of e 713,000 in the subsequent year.

Within the third scenario we implemented the consideration of variable production
costs. In order to enable shirtings of production volumes between sites we doubled
the capacities for all of them. Due to missing detail information on production costs
we assumed that variable costs do not differ in product type. The optimization model
found a solution leading to a reduction of total transportation cost of e 300,000 in
the base year and e 500,000 in the subsequent year. Furthermore, we were able to
identify a reflection of the information provided by the sensitivity analysis: sites A
and D ended up with significantly increased production volumes while sites B and
C provided a strongly decreased output. However, the quite small savings in terms
of distribution cost prove the reasonable assignment of production capacities in the
current situation.

For the final scenario we loosened all side constraints related to the product port-
folios at all manufacturing sites by assuming that all sites are provided to supply all
kinds of products. The differences concerning product quality between the sites was
neglected as well, all being e 2,092,000 under those of scenario 3. Hence, compared
to the basic case we reached a transportation cost reduction of e 4,000,000 for the
base year. For the subsequent year Scenario 4 lead to an additional cost reduction of
e 1,765,000 in comparison to scenario 3, and of e 4,500,000 compared to the initial
case. See Table 11.2 for an overview of the cost reductions found for each scenario.
The respective bar diagram is illustrated in Figure 11.3.

Table 11.2.: Potential reductions of total transportation cost for each scenario com-
pared to the basic scenario

scenario description reduction reduction
(base year) (subsequent year)

1 extended product mix a site A e 1,295,000 e 1,522,000
2 relaxed customer specific constraints e 1,608,000 e 2,235,000
3 increased production capacities e 1,908,000 e 2,735,000
4 relaxed remaining constraints e 4,000,000 e 4,500,000

An implementation of one of those scenarios in reality is, due to company internal
reasons, difficult at the moment. The analysis was worth the effort anyway, since it
distinctively reflects optimization potential for different strategic directions.
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Figure 11.3.: Bar diagram illustrating potential cost reductions (in Euros) for all
scenarios
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12. Dynamic aspects

Based on the previously described examinations we decided to additionally take the
dynamic complexity into account. After extending the available database by various
aspects we face dynamic and stochastic settings including nonlinear cost functions
in production. Since finding an optimal solution for a problem of such a complexity
is not possible within reasonable computation times we used SimOpt for generating
heuristic solutions and furthermore aimed at getting rid of negative effects, e.g.
Bullwhip effect, while simultaneously reducing total operational cost and delayed
deliveries. We finally compared the results of our combined approach to those of
a comprise stand-alone method. This comparison was used to give further proof
that applying SimOpt definitively makes sense even, or rather primarily, for highly
complex networks. Especially the superiority of central planning instead of decentral
planning is once more highlighted.

12.1. Data for dynamic-based analyses

Beside the fact that almost all parameters had to be redefined on a time-period-
based level conducting experiments under consideration of dynamics meant to make
a number of adaptions within our database. Not all of them are worth mentioning
here but the most critical of them should be listed anyway:

• model extension by a set of (in the static model unconsidered) raw material
suppliers aiming at a better alignment with the current SimOpt implementa-
tion

• calculation of reasonable initial inventory levels for each product type and each
participant

• determination of cost and capacity values for each time period and each partic-
ipant; this was primarily done by using estimations based on the given static
data set

• generating the customer’s demand rate within the planning horizon; here we
used the delivery schedules provided by the sites’ logistics authorities to esti-
mate the points in time where customer demand occurs

• estimation of transportation time delays for all legs within the network based
on the previously generated distance matrix; within the simulation these are
extended by a stochastic component
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• due to simplification reasons and in order to facilitate solution analysis we
did not allow direct deliveries from manufacturing sites to customers for all
dynamic-based calculations; thus, all transportation lots were forced to pass
exactly one hub or port on their way to the customers; further adaptions were
made to generate uniformly distributed demand occurrence

• we omitted the fixed product portfolios, i.e. we assumed that each product
type can be manufactured at each of the four manufacturing sites

• as a matter of fact we estimated fixed production costs for each manufacturing
sites

Clearly, due to the complexity of this model, especially while taking binary de-
cisions into account, it was inevitable to apply a SimLP approach, i.e. to couple
the simulation model with a pure linear optimization model. By applying SimLP
we succeed in finding a solution for this complex planning problem within a com-
putation time of approximately 10 minutes. However, we were not able to provide
a valuable contribution here since there are no alternative solutions available. Even
a comparison to the result obtained for the static case makes no sense. Too much
adaptions and assumptions have already distorted the underlying data sets. Thus,
we wanted to change the direction and conducted experiments used to quantify im-
plications of changing customer behaviour on operational decisions of the supply
chain participants. For this purpose we defined two different scenarios: (i) all cus-
tomer’s request products continuously over time and with no significant changes in
their order amounts; (ii) customers’ requests still occur continuous in time but the
ordering amounts are highly fluctuating. In fact, for case (ii) demand is concen-
trated in the middle of the planning horizon where really large order amounts arise.
Very small lots are requested before and after this peak in demand. However, in
both situations we face the same total demand and average order size. The planning
horizon is 50 time periods. In Appendix C the demand schedules for both ordering
situations are displayed.

In order to generate significant statements on the dynamic experiments our study
was twofold:

• we examined the implications of continuous and of bundled demand, i.e. situa-
tions (i) and (ii), on operational costs and decisions by means of a stand-alone
simulation model; this model was mainly characterized by more sophisticated
decisions rules compared to those usually used within our SimOpt applications

• we applied SimLP to the dynamic-based dataset and again figured out implica-
tions on operational costs and decisions when facing bundled demand instead
of continuous one

Before going into depths with the stand-alone simulation model some reasonable
innovations of the SimOpt implementation should be presented. These refer to the
class SCMContainerClass which has been introduced briefly in Chapter 5. While
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for the quite small SimOpt experiments discussed so far there was no need to use
container items, for the following they were essential. We incorporated them in
order to generate a couple of submodels instead of a single unmanageable model,
which would have lead to out-of-memory problems and an unoverviewable situation
for sure. Figure 12.1 visualizes the main view on the simulation model where,
apart of manufacturing sites and suppliers, all items are packed into containers.
Again, we have dashed lines indicating information flow and solid lines indicating
material flow. Container items (an exemplary one is illustrated in Figure 12.2)
provide the possibility to implement an helpful aggregation of the model without any
loss of precision. In our case, particularly the reduction of necessary transportation
items helped a lot. The optimization model embedded within SimOpt did not need
any adaptions at all since its general LP formulation covers the given situation
sufficiently.

 

 

  customers 

Europe  

  customers 

oversea  

 

hubs 

 

ports 

Figure 12.1.: Main view on the distribution network’s simulation model using con-
tainer items

Having adapted the SimOpt application which we implemented the stand-alone
simulation method which was intended to provide us comparable reference solutions.
So we again took our supply chain library and rebuilt the paper manufacturer’s
distribution network once more. This time we wanted to simulate the situation
assuming there is no central planning but a decentral control of participants for
themselves. This means that each intermediate object, i.e. manufacturing site,
hub, or port, determines both their unique reorder point and order quantity due to
predefined decision rules. These rules are more sophisticated than the simple (s.S)-
policy used within the initial runs of SimOpt and are based on the reorder point
policy presented by Ghiani, Laporte, and Musmanno (2004). Here the inventory is
observed continuously and an order is sent as soon as the current inventory level

99



12. Dynamic aspects

 

 

Figure 12.2.: Insight into a container item

reaches the reorder point l. Calculation of l is based on the assumption that the
inventory level is nonnegative during lead time tl with probability α and uses the
following formula:

l = d̄t̄l + zα

√
σ2

d t̄l + σ2
tl
d̄2, (12.1)

where d is the normally distributed demand rate with expected value d̄ and standard
deviation σd, tl the lead time with expected value t̄l and standard deviation σtl ,
and finally zα the value under which a standard normal random variable falls with
probability α. The latter denotes the desired service level. Since within SimOpt
we usually assume a risk averse behaviour, i.e. we estimate time delays based on a
quantile above 0.9% (cf. Chapter 3), we fixed zα with value 3 which comes up with
a service level of 99.987%. The expected lead time and standard deviation of lead
times are logged during the simulation runs and used for a periodic update of each
participant’s unique reorder point. The order quantity q∗is determined according to
the economic order quantity (EOQ):

q∗ =

√
2kd̄

h
, (12.2)

with k being the fixed reorder cost and h the variable holding cost. Both reorder
point and order quantity are usually determined on a product-based level, i.e. each
participant calculates both of them for each type of product.

In order to facilitate solution interpretations it might be useful to once more have a
look on the network structure; this time on a higher aggregation level. In Figure 12.3
we see four layers each of them representing one group of supply chain participants,
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which are raw material providers, manufacturing sites, hubs and ports, and finally
the customers at the downstream end of the chain. Each block of participants is
connected by an arc, representing a group of transportation legs, to the subsequent
layer within the network. Group T-I connecting suppliers with manufacturing sites,
group T-II representing all legs between sites and hubs or ports, and group T-III for
the connections between hubs or ports and the customer regions. It has already been
mentioned that we considered fixed costs for these experiments, these exclusively
occur at the manufacturing sites. Transportation times were deterministic for legs
T-I, but are subject to stochasticity for legs T-II and T-III.

 

T-I T-II T-III

 

sites suppliers hubs/ports customers 

Figure 12.3.: Layers of the given distribution network

For the stand-alone simulation model we have customers sending requests to hubs
or ports according to their given demand schedule; and hubs and ports ordering
products from manufacturing sites according to their periodically revised reorder
point policy. And finally manufacturing sites, also following an adaptive reorder
point policy, requesting products at the raw material suppliers.

12.2. Results

Using both the stand-alone simulation with the adaptive ordering policy and the
combined simulation-optimization approach we generated a solution for scenario (i),
i.e. continuous demand, on the one hand and for scenario (ii), i.e. bundled demand,
on the other hand. Thus, we tried to figure out the ability of each method to react
adaptively on changing customer behaviour. Clearly, the combined approach, i.e.
SimLP, having an advantage in information terminates with a solution that is out of
reach for the autonomous simulation. This is neither surprising nor does it provide
an interesting added value, hence, a direct comparison between these two methods
does not make much sense. Table 12.1 shows the results for both scenarios and both
methods. The given values in each case represent average values over the final 5
simulation runs.

We see that SimLP, i.e. the combined simulation-optimization method, can easily
cope the changing demand behaviour. Both the continuous and the bundled demand
situations lead to almost the same result showing no significant differences. For the
latter SimLP even found in average for all parameters slightly better solutions than
for the continuous case. This is due to the fact that the small ordering amounts
before and after the few bundled orders in the middle of the time horizon lead to
a lower capacity utilization than the continuously occurring medium sized requests.
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Table 12.1.: Results (autonomous simulation and SimLP) for the continuous demand
and the bundled demand scenario (costs in Euros, amounts in tons; hp
- hubs and ports, s - sites)

autonomous simulation SimLP
scenario (i) scenario (ii) scenario (i) scenario (ii)

total cost 34,505,450 38,257,760 9,256,401 9,194,846
invent. cost (s) 66,537 238,578 399 210

invent. cost (hp) 2,752,838 6,364,746 545,028 541,620
prod. volume 4,847 5,910 2,302 2,118
prod. orders 85 102 44 43

prod. cost 245,643 311,216 56,112 54,442
transp. cost T-I 5,050 6,435 2,250 2,066

transp. cost T-II 237,199 291,829 99,097 86,487
transp. cost T-III 233,397 244,287 151,155 166,290

delays (amount) 104 276 90 39
delays (lots) 6 9 10 5

penalties 103,800 276,400 90,400 39,400

Especially for the delayed deliveries the difference is significant. The autonomous
simulation terminated with a different outcome. Here we were not able to adapt
sufficiently on the changed demand situation and thus end up with an much worse
result for the second situation than in the continuous setting. While the difference
in total costs is just about 10% we have an increase of total inventory level at sites
of 258% and for hubs/ports of 131%. All production related parameters went up
around 20%. Transportation costs climbed up as well and total penalty costs and
delayed deliveries’ increase is far above 100%. Since we, due to the observation
of the SimLP solution, know that the bundled demand scenario actually lead to a
surplus of capacities it might be quite surprising that the autonomous simulation
could not handle the bundled situation. On the contrary, it performed really worse
compared to the balanced demand situation. Those bad results for the stand-alone
simulation occured due to a kind of Bullwhip effect, i.e. a lack of information between
all network actors (cf. Towill, Zhou, and Disney (2007)). This causes an increase
in variability of inventory levels when traveling the supply chain in the upstream
direction occurring due to anticipation of demand behaviour on various layers within
a decentralized supply chain.

We already know that orders are sent based on the previously described adaptive
reorder point policy. So each intermediate object estimates the expected lead time
and the corresponding standard deviation for each product; this worked perfectly
well in the first third of the time horizon. The situation changed shortly after the
customers had requested their bundled orders. Hubs and ports were left with almost
empty inventories and consequently started to send a number of requests in order
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to reach a level above the reorder point again. This high frequency of requests
on return overstrained transaction, transportation and production capacities within
the manufacturing sites’ and suppliers’ layers. Capacity shortages imply increased
lead times and these again forced the subsequent participants to raise their specific
reorder points. Thus, they sent even more requests and caused further increases in
lead times. Although there were just a few bundled orders, the participants winded
each other up; even though all customer orders in the third and final part of the
planning were of very small size, this circle could not be broken. It is well known
that this effect is the stronger the nearer a layer is to the final elements of a network.
Thus, we had the already mentioned significant increases in inventory costs of 131%
and 258% at hubs/ports and manufacturing sites, respectively. Central planning, of
course, enables the ability to avoid such disadvantageous oscillations and is therefore
preferable when trying to handle large supply chains efficiently. Managing them is a
challenging task but by means of the presented real world case we state that applying
the combined simulation-optimization approach SimOpt definitely is an attractive
option for generating good solutions on an operational and also tactical level.
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13. Conclusion and further
research

Analyzing and improving supply chains are challenging tasks and several approaches
have already been proposed in literature. In this thesis a new hybrid approach
combining the advantages of complex simulation models and abstract optimization
models has been presented. We implemented a toolbox allowing to easily create
simulation models for any kind of supply chain network setting. A special technique
enables the inclusion of optimization models into the simulation framework. Within
this framework it is possible to test the optimal deterministic solution concerning it’s
feasibility in the context of a more realistic stochastic representation. By conducting
an iterative procedure we are aiming on improved decisions on the tactical and
operational level.

Based on a number of numerical experiments it has been shown that this method
is able to generate competitive solutions quickly; even compared with traditional
planning approaches that are much more time consuming. The main findings can
be summarized as follows:

• In many cases the SimLP method seems to be a good trade-off between solution
quality and computation time. If the nonlinear elements in the model are
dominating it is better to apply the SimMIP approach and consider these
nonlinearities in the optimization model as along as the computation time for
solving the optimization model is acceptable.

• Furthermore, we investigated the impact of safety times for delays on the
solution quality. If we use the 90%-quantile, we can generate robust plans,
but for specific situations we might get better results with less safety time.
Only for the case where stochastic is near the customer, the 90%-quantile
is clearly the best. Nevertheless, the choice of the quantile depends on the
structure of the supply chain and has to be fine-tuned in each case.

• Using the 50%-quantile, i.e. the expected values for the delays, always leads
to pure results. If the uncertainty is concentrated far away from the customer,
the cost increase by using the expected value is about 10% whereas the increase
in case almost 50% if the uncertainty occurs close to the customer.

We used this combined simulation-optimization approach in the context of a real
world case study where we have been asked to analyze the efficiency of a global
distribution network. While the static deterministic consideration was tackled by
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the application of a pure linear network flow model, the stochastic and nonlinear
case was far too complex to be solved by a stand-alone MIP model. Thus, we used
SimLP to generate reasonable results quickly.

Further research for different aspects of this method is still possible and necessary.
Especially the aggregation step and the generation of new decision rules offer open
fields for further investigations. One possibility would be to interpret the solution of
the optimization model only as a target strategy and use adaptive decision rules to
approximate this target strategy in an uncertain environment. Thus, compensation
of stochastic customer behaviour becomes possible. The use of sensitivity results of
the optimization model might lead to improved decision rules as well. Investigations
on preferable quantiles used for the parameter estimations may lead to general find-
ings referring to safety times and safety stocks in specific stochastic environments.
Further investigations are possible for the boundaries between the simulation and
the optimization model. If more complex models are used, other fast solution meth-
ods (e.g. heuristics, metaheuristics, etc.) should be included in order to speed-up
the determination of the MIP solutions. Another possible extension would be to
take strategic decisions like, for example, location problems into account.
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A. Notation for the optimization
model

A.1. General network structure

J = JS ∪ JI ∪ JC set of supply chain participants
j ∈ JS suppliers
j ∈ JI intermediate nodes (production/transaction)
j ∈ JC customers
p ∈ P products
t ∈ T time periods
v ∈ V available transportation modes

A.2. Decision variables

mp
i (t) amount of product p manufactured in period t at interme-

diate i
up

i (t) amount of product p transacted in period t at intermediate
i

vxp
ij(t) amount of product p transported with mode v on leg ij in

period t

A.3. Costs, delays, and general parameters

ap
i capacity consumption factor for product p manufactured

at intermediate i
αp

i (p
′) amount of raw material p’ required in order to produce one

unit of product p at intermediate i
vCij(t) maximum global transportation amount of mode v on leg

ij in period t
Cp

ij(·) cost function for transporting product p with mode v on
transportation leg ij

prodCi(t) maximum global production capacity at intermediate i in
period t
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A. Notation for the optimization model

vCapp
ij(t) maximum amount of product p that can be transported

with mode v in period t
invinCapp

i (t) maximum inventory level of product p at the inbound in-
ventory of intermediate i in period t

invoutCapp
i (t) maximum inventory level of product p at the outbound

inventory of intermediate i in period t
prodCapp

i (t) maximum production amount of product p in period t and
at intermediate i

taCi(t) maximum global transaction capacity at intermediate i in
period t

taCapp
i (t) maximum transaction amount of product p in period t and

at intermediate i
Dp

i (t) demand for product p occurring at customer i in period t
dp

i capacity consumption factor for product p transacted at
intermediate i

δp
i production delay for product p at intermediate i

vgp capacity consumption factor for product p being trans-
ported with mode v

outHp
i (·) cost function for storing product p at the outbound inven-

tory of participant i
inHp

i (·) cost function for storing product p at the inbound inventory
of participant i

inLi(t) maximum global inventory level at the inbound inventory
of intermediate i in period t

outLi(t) maximum global inventory level at the outbound inventory
of intermediate i in period t

qp
i capacity consumption factor for product p being stored at

intermediate i
Rp

i (·) cost function referring to backorders of product p at cus-
tomer i

rp
i (t) extraordinary inflow of product p at the inbound inventory

of participant i in period t
Sp

i (t) supply of product p occurring at supplier i in period t
sp

i (t) extraordinary inflow of product p at the outbound inven-
tory of intermediate i in period t

σip transaction delay for product p at intermediate i
TCS

i total cost of supplier i
TCI

i total cost of intermediate i
TCC

i total cost of customer i
TCF

ij total cost on transportation leg itshape ĳ
τij transportation delay on leg ij
W p

i (·) cost function referring to the production of product p at
intermediate i
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Zp
i (·) cost function referring to the transaction of product p at

intermediate i

A.4. Auxiliary variables

inbi
p
(t) backorders product p at customer i in period t

inf
p
i (t) amount of product p arriving at participant i in period t

outfp
i (t) amount of product p sent away of participant i in period t

outlpi (t) outbound inventory level of product p at participant i in
period t

inlpi (t) inbound inventory level of product p at participant i in
period t

χt≥δp
i

indicator function which has value 1 if the production delay
of product p at intermediate i is smaller or equal to the
current period t and 0 otherwise

χt≥σp
i

indicator function which has value 1 if the transaction delay
of product p at intermediate i is smaller or equal to the
current period t and 0 otherwise

A.5. Parameters used for SimLP only

vcpij cost factor for transporting product p with mode v in leg
ij

outhp
i cost factor for storing product p in the outbound inventory

of participant i
inhp

i cost factor for storing product p in the inbound inventory
of participant i

ρp
i cost factor for backorders of product p at customer i
wp

i cost factor for producing product p at intermediate i
zp

i cost factor for transacting product p at intermediate i

A.6. Parameters used for SimMIP only

vEp
ij given bound for an interval of a step function referring to

the transportation amount of product p on mode v and leg
ij

vep
ij fixed transportation cost on leg ij in case the load of prod-

uct p on mode v is within interval (vKp
ij,

vEp
ij]

vεpij(t) binary decision variable indicating if the amount of product
p transported with mode v on leg ij in period t is within
the given limit (vKp

ij,
vEp

ij] or not
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vγp
ij(t) binary decision variable indicating if the amount of product

p transported with mode v on leg ij in period t is within
the given limit (vEp

ij,
vY p

ij ] or not
vKp

ij given bound for an interval of a step function referring to
the transportation amount of product p on mode v and leg
ij

vkp
ij fixed transportation cost on leg ij in case the load of prod-

uct p on mode v is within interval (0, vKp
ij]

vκp
ij(t) binary decision variable indicating if the amount of product

p transported with mode v on leg ij in period t is within
the given limit (0, vKp

ij] or not
M large number
N large number
np

i fixed production cost for product p at intermediate i
op

i fixed transaction cost for product p at intermediate i
φp

i (t) binary variable indicating if product p is manufactured at
intermediate i in period t

ψp
i (t) binary variable indicating if product p is transacted at in-

termediate i in period t
vY p

ij given upper bound for an interval of a step function refer-
ring to the transportation amount of product p on mode v
and leg ij

vyp
ij fixed transportation cost on leg ij in case the load of prod-

uct p on mode v is within interval (vEp
ij,

vY p
ij ]
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B. Test instances

Data records appear according to their corresponding notation used for the opti-
mization model.

B.1. Data corresponding to Figure 6.2

B.1.1. General network structure and parameters

JS = {1}
JI = {1}
JC = {1}
P = {1}
T = {1, . . . , 6}
V = {2}

B.1.2. Costs and delays

description estimated parameter value
variable inventory cost (supplier) outh1

1 1

variable inbound inventory cost (intermediate) inh1
1 2

variable inbound inventory cost (intermediate) outh1
1 3

fixed transaction cost z1
1 10

variable transaction cost z1
1 15

transaction delay σ1
1 1

fixed transport cost (<5 units on mode 2) 2c111 200

fixed transport cost (5 units on mode 2) 2c111 800

variable transport cost for mode 1 1c111 5
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B. Test instances

transport delay for mode 1 1τ11 2

transport delay for mode 2 2τ11 1

variable penalty cost ρ1
1 100

B.1.3. General parameters

Only index configurations leading to parameters larger than 0 are reported.

parameter JS JI JC P T V value
vCij(t) 1 1 [1;6] 1 10
vCij(t) 1 1 [1;6] 1 8
vCij(t) 1 1 [1;6] 2 5
vCapp

ij(t) 1 1 1 [1;6] 1 10
vCapp

ij(t) 1 1 1 [1;6] 1 8
vCapp

ij(t) 1 1 1 [1;6] 2 5
taCi(t) 1 [1;6] 100
ininvCapp

i (t) 1 1 [1;6] 100
outinvCapp

i (t) 1 1 [1;6] 100
taCapp

i (t) 1 1 [1;6] 50
dp

i 1 1 1
Dp

i (t) 1 1 5 10
vgp 1 1 1
vgp 1 2 1
inLi(t) 1 [1;6] 1,000
outLi(t) 1 [1;6] 1,000
qp
i 1 1 1

B.2. D1-L to S6a-H

B.2.1. General network structure

JS = {1}
JI = {1}
JC = {1}
P = {1, 2}
T = {1, . . . , 30}
V = {1}
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B.2.2. Costs and delays

description estimated parameter value
variable inventory cost (supplier) outh1

1 1

variable inbound inventory cost (intermediate) inh1
1) 2

variable outbound inventory cost (intermediate) outhp
1) 2

production delay δ2
1 1

transaction delay σ1
1 1

deterministic transport delay 1τ11 3

stochastic transport delay towards intermediate 1τ11 u[1;9]

stochastic transport delay towards customer 1τ11 u[1;5]

variable penalty cost ρp
1 100

B.2.3. Costs used for SimLP experiments only

description estimated parameter value
variable production cost w2

1 30

fixed production cost w2
1 50

increased fixed production cost (D1a-L, D6a-H,
S1a-L, S6a-H)

w2
1 1,000

variable transaction cost z1
1 15

fixed transaction cost z1
1 10

increased transaction cost (D1a-L, D6a-H, S1a-L,
S6a-H)

z1
1 500

fixed transport cost (low capacity consumption) 1cp11 100

fixed transport cost (medium capacity consump-
tion)

1cp11 200
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fixed transport cost (high capacity consumption) 1cp11 300

B.2.4. Costs used for SimMIP experiments only

Values marked by (*) refer to instances with increased fixed costs (S1a-L and S6a-H).

parameter JI P value
wp

i 1 2 30
zp

i 1 1 15
np

i 1 2 50
op

i 1 2 10
np

i 1 2 1,000*
op

i 1 2 500*

parameter JS JI JC P V value
vkp

ij 1 1 1 1 100

vkp
ij 1 1 1 1 100

vkp
ij 1 1 2 1 100

vep
ij 1 1 1 1 200

vep
ij 1 1 1 1 200

vep
ij 1 1 2 1 200

vyp
ij 1 1 1 1 300

vyp
ij 1 1 1 1 300

vyp
ij 1 1 2 1 300

B.2.5. General parameters

Only index configurations leading to parameters larger than 0 are reported. For the
customers’ demand only exemplary realizations of the schemes for low demand and
high cases are given.

parameter JS JI JC P T V value
ap

i 1 2 1
αp

i (p
′) 1 2 1

122



B.2. D1-L to S6a-H

vCij(t) 1 1 [1;30] 1 100
vCij(t) 1 1 [1;30] 1 60
prodCi(t) 1 [1;30] 1,000
taCi(t) 1 [1;30] 100
ininvCapp

i (t) 1 1 [1;30] 100
outinvCapp

i (t) 1 1 [1;30] 100
outinvCapp

i (t) 1 2 [1;30] 100
vCapp

ij(t) 1 1 1 [1;30] 1 100
vCapp

ij(t) 1 1 1 [1;30] 1 60
vCapp

ij(t) 1 1 2 [1;30] 1 60
prodCapp

i (t) 1 2 [1;30] 40
taCapp

i (t) 1 1 [1;30] 40
dp

i 1 1 1
vgp 1 1 1
vgp 2 1 1
inLi(t) 1 [1;30] 1,000
outLi(t) 1 [1;30] 1,000
qp
i 1 1 1
qp
i 1 2 1
Sp

i (t) 1 1 [1;30] 100

parameter JC P T value
Dp

i (t) 1 1 13 55
Dp

i (t) 1 1 16 50
Dp

i (t) 1 1 20 35
Dp

i (t) 1 1 27 40
Dp

i (t) 1 1 30 40
Dp

i (t) 1 2 14 55
Dp

i (t) 1 2 17 50
Dp

i (t) 1 2 21 35
Dp

i (t) 1 2 23 40
Dp

i (t) 1 2 28 40

parameter JC P T value
Dp

i (t) 1 1 13 59
Dp

i (t) 1 1 16 57
Dp

i (t) 1 1 17 57
Dp

i (t) 1 1 27 40
Dp

i (t) 1 1 20 33
Dp

i (t) 1 1 23 59
Dp

i (t) 1 1 24 31
Dp

i (t) 1 1 27 31
Dp

i (t) 1 1 28 33
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Dp
i (t) 1 1 30 31

Dp
i (t) 1 2 14 59

Dp
i (t) 1 2 15 31

Dp
i (t) 1 2 18 57

Dp
i (t) 1 2 19 57

Dp
i (t) 1 2 21 33

Dp
i (t) 1 2 22 31

Dp
i (t) 1 2 26 59

Dp
i (t) 1 2 29 33

Dp
i (t) 1 2 28 33

Dp
i (t) 1 2 30 31

B.3. L1-L-S to L6a-H-C

B.3.1. General network structure

JS = {3}
JI = {4}
JC = {3}
P = {1, 2, 3, 4}
T = {1, . . . , 30}
V = {1}

B.3.2. Costs and delays

description estimated parameter value
variable inventory cost (supplier) outhp

i 1
variable inbound inventory cost (intermediate) inhp

i 2
variable outbound inventory cost (intermediate) outhp

i 2
production delay δp

i 2
transaction delay σp

i 1
deterministic transport delay towards layer 1 1τij 1
stochastic transport delay towards layer 2 1τij u[1;3]
stochastic transport delay towards customer 1τij u[1;5]
variable penalty cost ρp

i 100

B.3.3. Costs used for SimLP experiments only

description estimated parameter value
variable production cost wp

i 1
fixed production cost wp

i 50
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increased fixed production cost (L1a-L-S, L6a-H-S,
L-1a-L-C, L6a-H-C)

wp
i 1,000

variable transaction cost zp
i 1

fixed transaction cost zp
i 10

increased transaction cost (L1a-L-S, L6a-H-S, L-
1a-L-C, L6a-H-C)

zp
i 500

fixed transport cost 1cpij 50

B.3.4. Costs used for SimMIP experiments only

Values marked by (*) refer to instances with increased fixed costs (L-1a-L-C and
L6a-H-C).

parameter JI P value
wp

i 1 3 1
wp

i 2 3 1
wp

i 3 4 1
wp

i 4 4 1
zp

i ∀i 1 1
zp

i ∀i 2 1
zp

i 3 3 1
zp

i 4 3 1
np

i 1 3 50
np

i 2 3 50
np

i 3 4 50
np

i 4 4 50
op

i ∀i 1 10
op

i ∀i 2 10
op

i 3 3 10
op

i 4 3 10
np

i 1 3 1,000*
np

i 2 3 1,000*
np

i 3 4 1,000*
np

i 4 4 1,000*
op

i ∀i 1 500*
op

i ∀i 2 500*
op

i 3 3 500*
op

i 4 3 500*

parameter JS JI JI JC P V value
vkp

ij ∀s 1 1 1 50

vkp
ij ∀s 2 1 1 50
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vkp
ij ∀s 1 2 1 50

vkp
ij ∀s 2 2 1 50

vkp
ij 1 3 1 1 50

vkp
ij 1 3 2 1 50

vkp
ij 1 3 3 1 50

vkp
ij 1 4 1 1 50

vkp
ij 1 4 2 1 50

vkp
ij 1 4 3 1 50

vkp
ij 2 3 1 1 50

vkp
ij 2 3 2 1 50

vkp
ij 2 3 3 1 50

vkp
ij 2 4 1 1 50

vkp
ij 2 4 2 1 50

vkp
ij 2 4 3 1 50

vkp
ij 3 ∀c ∀p 1 50

vkp
ij 4 ∀c ∀p 1 50

B.3.5. General parameters

Only index configurations leading to parameters larger than 0 are reported. For the
customers’ demand only exemplary realizations of the schemes for low demand and
high cases are given.

parameter JS JI JI JC P T V value
ap

i ∀i ∀p 1
αp

i (p
′) ∀i 3 (p’=1) 1

αp
i (p

′) ∀i 4 (p’=2) 1
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B.3. L1-L-S to L6a-H-C

vCij(t) ∀s 1 [1;30] 1 60
vCij(t) ∀s 2 [1;30] 1 60
prodCi(t) ∀i [1;30] 1,000
taCi(t) ∀i [1;30] 1,000
ininvCapp

i (t) ∀i ∀p [1;30] 1,000
outinvCapp

i (t) ∀i ∀p [1;30] 1,000
vCapp

ij(t) ∀s 1 1 [1;30] 1 60
vCapp

ij(t) ∀s 2 1 [1;30] 1 60
vCapp

ij(t) ∀s 1 2 [1;30] 1 60
vCapp

ij(t) ∀s 2 2 [1;30] 1 60
vCapp

ij(t) 1 3 1 [1;30] 1 60
vCapp

ij(t) 1 3 2 [1;30] 1 60
vCapp

ij(t) 1 3 3 [1;30] 1 60
vCapp

ij(t) 1 4 1 [1;30] 1 60
vCapp

ij(t) 1 4 2 [1;30] 1 60
vCapp

ij(t) 1 4 3 [1;30] 1 60

parameter JS JI JI JC P T V value
vCapp

ij(t) 2 3 1 [1;30] 1 60
vCapp

ij(t) 2 3 2 [1;30] 1 60
vCapp

ij(t) 2 3 3 [1;30] 1 60
vCapp

ij(t) 2 4 1 [1;30] 1 60
vCapp

ij(t) 2 4 2 [1;30] 1 60
vCapp

ij(t) 2 4 3 [1;30] 1 60
vCapp

ij(t) 1 3 1 [1;30] 1 60
vCapp

ij(t) 3 ∀c ∀p [1;30] 1 60
vCapp

ij(t) 4 ∀c ∀p [1;30] 1 60
prodCapp

i (t) 1 3 [1;30] 40
prodCapp

i (t) 2 3 [1;30] 40
prodCapp

i (t) 3 4 [1;30] 40
prodCapp

i (t) 4 4 [1;30] 40
taCapp

i (t) ∀i 1 [1;30] 40
taCapp

i (t) ∀i 2 [1;30] 40
taCapp

i (t) 3 3 [1;30] 40
taCapp

i (t) 4 3 [1;30] 40
dp

i ∀i ∀p 1
vgp ∀c ∀v 1
inLi(t) ∀i [1;30] 1,000
outLi(t) ∀i [1;30] 1,000
qp
i ∀i ∀p 1
Sp

i (t) ∀i 1 [1;30] 100
Sp

i (t) ∀i 2 [1;30] 100
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parameter JC P T value
Dp

i (t) ∀c 1 16 40
Dp

i (t) ∀c 1 17 30
Dp

i (t) ∀c 1 21 25
Dp

i (t) ∀c 1 26 45
Dp

i (t) ∀c 1 28 40
Dp

i (t) ∀c 2 22 40
Dp

i (t) ∀c 2 23 30
Dp

i (t) ∀c 2 25 45
Dp

i (t) ∀c 2 30 25
Dp

i (t) ∀c 2 16 40
Dp

i (t) ∀c 3 17 45
Dp

i (t) ∀c 3 20 25
Dp

i (t) ∀c 3 24 45
Dp

i (t) ∀c 3 30 30
Dp

i (t) ∀c 4 21 25
Dp

i (t) ∀c 4 25 40
Dp

i (t) ∀c 4 26 25
Dp

i (t) ∀c 4 28 30

parameter JC P T value
Dp

i (t) ∀c 1 15 49
Dp

i (t) ∀c 1 17 47
Dp

i (t) ∀c 1 20 47
Dp

i (t) ∀c 1 23 49
Dp

i (t) ∀c 1 25 47
Dp

i (t) ∀c 1 27 21
Dp

i (t) ∀c 1 30 21
Dp

i (t) ∀c 2 16 21
Dp

i (t) ∀c 2 19 47
Dp

i (t) ∀c 2 22 21
Dp

i (t) ∀c 2 24 21
Dp

i (t) ∀c 2 26 21
Dp

i (t) ∀c 2 27 21
Dp

i (t) ∀c 2 29 23
Dp

i (t) ∀c 3 14 21
Dp

i (t) ∀c 3 17 47
Dp

i (t) ∀c 3 18 21
Dp

i (t) ∀c 3 21 23
Dp

i (t) ∀c 3 24 10
Dp

i (t) ∀c 3 27 10
Dp

i (t) ∀c 3 28 23
Dp

i (t) ∀c 4 17 10
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Dp
i (t) ∀c 4 20 10

Dp
i (t) ∀c 4 21 10

Dp
i (t) ∀c 4 23 10

Dp
i (t) ∀c 4 25 10

Dp
i (t) ∀c 4 27 10

Dp
i (t) ∀c 4 29 10

B.3.6. S1-L to S6a-H solution analysis

Minimum (min) and maximum (max) of total cost as well as the coefficient of vari-
ance (coeff) are reported.

instance MIP SimLP SimMIP
S1-L min 61,477 55,615 53,900

max 73,197 74,995 74,860
coeff 4.57% 7.45% 9.03%

S2-L min 56,271 56,550 54,619
max 67,954 69,794 68,315
coeff 5.67% 5.52% 5.89%

S3-L min 54,769 55,030 53,822
max 77,051 74,478 83,628
coeff 9.13% 8.45% 11.48%

S4-L min 56,664 56,548 57,076
max 76,156 72,408 76,744
coeff 8.64% 7.23% 8.00%

S5-L min 55,043 56,069 57,376
max 69,121 69,071 69,721
coeff 5.29% 6.66% 5.91%

S6-H min 65,117 66,095 62,768
max 84,860 81,935 84,527
coeff 7.75% 7.57% 6.99%

S7-H min 63,451 63,578 64,246
max 81,557 82,120 81,446
coeff 7.22% 7.11% 6.37%

S8-H min 66,950 66,338 63,523
max 89,720 100,694 93,541
coeff 6.84% 10.60% 9.31%

S9-H min 65,014 67,399 63,916
max 84,574 83,571 83,248
coeff 7.78% 6.58% 7.78%

S10-H min 65,623 64,709 67,264
max 79,415 75,381 85,520
coeff 5.30% 4.42% 6.03%

S1a-L min 64,970 65,045 62,497
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max 79,037 79,985 77,510
coeff 5.81% 5.82% 6.73%

S6a-H min 73,017 82,245 73,017
max 102,937 99,475 102,937
coeff 8.03% 5.44% 8.03%

Average coeff 6.83% 6.91% 7.63%
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C. Continuous and bundled
demand

period demand
(contiuous)

8 63
9 25
10 25
11 36
12 90
13 50
14 51
15 63
17 70
18 43
19 34
20 26
21 38
22 42
24 70
25 24
26 74
27 73
28 65
29 95
30 35
31 10
32 28
33 129
34 188
35 169
36 161
37 70
38 48
39 25
40 100
41 13
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42 124
43 123
44 97
45 46
46 24
47 129
48 227
49 86
50 115

period demand
(bundled)

8 53
9 55
10 55
11 56
12 40
13 40
14 41
15 53
17 50
18 53
19 64
20 56
21 68
22 62
24 60
25 54
26 54
27 53
28 55
29 64
30 52
31 41
32 41
33 45
34 48
35 1,250
36 47
37 53
38 32
39 31
40 35
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41 51
42 48
43 35
44 44
45 26
46 24
47 29
48 27
49 26
50 15
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D. Abstract

Supply Chain Management is a popular keyword appearing in both management
science and practice regularly. Globalization and other economical developments
lead to a significant increase of large and complex supply chains spanning production
sites and distribution networks all over the world. Managing supply chains becomes
a more and more important but also a highly challenging task. The scientific world
knows a huge number of optimization methods trying to provide reasonable decision
support within large networks.

Leaving strategical decisions, like network design, aside we remain on the mid- or
short-term decision level and focus on supply chain planning. Discrete-event sim-
ulation and (mixed-integer) linear programming are widely used for supply chain
planning. Simulation models are mostly applied in order to mimic a real system
including all necessary stochastic and nonlinear elements. They are used as a play-
ground for analyzing and improving a real situation on a trial-and-error basis. A
systematic optimization method on top of a simulation model has two disadvantages:
The optimization method uses the simulation model as a black-box. Information
about the structure of the problem is not available and cannot be used for an in-
telligent optimization strategy. On the other hand pure optimization models used
for planning scenarios are usually built on a very abstract level including many as-
sumptions and simplifications. This is necessary, because otherwise we would end
up with complex optimization models which cannot be solved anymore. One pos-
sible solution out of this dilemma is to use a simple optimization model within the
framework of a complex simulation model in order to improve the overall perfor-
mance by adapting decision rules. We present a general framework to support the
operational decisions for supply chain networks using a combination of an optimiza-
tion model and discrete-event simulation. The simulation model includes nonlinear
and stochastic elements, whereas the optimization model represents a simplified
version. We developed a supply chain network library for the simulation software
AnyLogic ( c© XJ Technologies) and a linearized version as an optimization model
implemented using XpressMP ( c© Dash Optimization). Based on initial simulation
runs cost parameters, production, and transportation times are estimated for the
optimization model. The solution of the optimization model is translated into de-
cision rules for the discrete-event simulation. This procedure is applied iteratively
until the difference between subsequent solutions is small enough. This method is
applied successfully to several test examples and is shown to deliver competitive
results much faster compared to conventional mixed-integer models in a stochastic
environment. It provides the possibility to model and solve more realistic problems
(incorporating dynamism and uncertainty) in an acceptable way and it enriches the
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D. Abstract

simulation framework by a powerful tool to improve the supply chain by simultane-
ously optimizing a large number of possible decisions.

The combined simulation-optimization approach, which we call SimOpt is applied
to a real-world case study as well. We show that even in case of realistic sized supply
networks referring to dynamic and nonlinear aspects this new solution method is able
to cope with the given complexity and finds solutions with reasonable computational
effort.
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E. Zusammenfassung

Die Verschärfung der Wettbewerbssituation und die fortschreitende Globalisierung
zwingen die Unternehmen zunehmend zu einer kontinuierlichen Optimierung der
Kosten entlang der gesamten Wertschöpfungskette. Supply Chain Management
ist in diesem Zusammenhang als Lösungsansatz, sowohl in der Literatur als auch
in der Praxis, nicht mehr wegzudenken. Simulationsmodelle und (gemischt ganz-
zahlige) Optimierungsmodelle werden häufig als Lösungsmethoden herangezogen.
Beide Methoden haben ihre Vor- aber auch wesentliche Nachteile. So werden Simu-
lationsmodelle eher als Versuchsumgebung für die Evaluation bestimmter Szenarien
verwendet; eine sinnvolle Optimierung im Rahmen der Simulation ist nur bedingt
möglich. Im Gegensatz dazu verlangen Optimierungsmodelle nach wesentlichen
Vereinfachungen der realen Gegebenheiten, da Nichtlinearitäten oder dynamische
Aspekte die benötigte Zeit der Lösungsfindung massiv erhöhen. Der von uns en-
twickelte Ansatz kombiniert die beiden Methoden und zielt darauf ab die jeweiligen
Vorteile zu verbinden. Somit handelt es sich dabei um eine Kombination aus einem
möglichst realitätsnahen, ereignisorientierten Simulationsmodell und einem verein-
fachten (teilweise linearen) Optimierungsmodell. Um diese Methode auch auf andere
Lieferketten anwenden zu können, haben wir ein Modellkonzept basierend auf einer
sehr allgemeinen Definition eines Supply Chain Netzwerkes erstellt. Das Simula-
tionsmodell besteht aus mehreren Modulen, welche die einzelnen Teilnehmer einer
Lieferkette (vom Zulieferer bis zum Kunden) sowie deren Transportverbindungen
darstellen. Diese Module bilden die wesentlichen Vorgänge (Lagerhaltung, Produk-
tion, Umschlag) mit all ihren Parametern und stochastischen Eigenschaften ab. Das
Simulationsmodell wurde in AnyLogic ( c© XJ Technologies), einem Java-basierten
Simulationstool, implementiert.

Das Optimierungsmodell ist implementiert in Xpress-MP ( c© Dash Optimization)
und entspricht einer (teilweise) linearen Beschreibung der Netzwerkaktivitäten. Die
Kopplung zwischen den beiden Modellen erfolgt über eine Datenbank, die zum Infor-
mationsaustausch zwischen Simulation und Optimierung dient. Auch die globalen
Parameter, die von beiden Modellen zur Netzwerkinitialisierung verwendet werden,
werden in dieser Datenbank hinterlegt. Als Initialisierungsschritt werden einige Sim-
ulationsläufen durchgeführt um eine erste Schätzung der Kosten und Zeiten zu erhal-
ten. Diese Werte werden dann mit Hilfe der Datenbank an das Optimierungsmodell
übergeben. Die Lösung des Optimierungsmodells wird dann in Form von Entschei-
dungsregeln in das Simulationsmodell rückgeführt. Dann können weitere Simula-
tionsexperimente durchgeführt werden und die Parameter gegebenenfalls angepasst
werden. Wie Tests an kleineren Beispielen gezeigt haben, reichen insgesamt 4-5 Iter-
ationen aus um zu einer verbesserten Lösung im Simulationsmodell zu konvergieren.
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E. Zusammenfassung

Weitere Tests haben gezeigt, dass dieser Ansatz eine raschere Berechnung von ro-
busten Lösungen erlaubt als gängige Methoden unter Verwendung exakter gemischt
ganzzahliger Formulierung.

Neben der Evaluierung anhand kleinerer Testinstanzen wurde das Verfahren auch
zur Lösung eines komplexen Realitätsfalls herangezogen. Das weltweite Distribu-
tionsnetz eines Papierproduzenten wurde mitsamt der wichtigsten nichtlinearen und
dynamischen Aspekten abgebildet und für die weitere Evaluierung der simulations-
basierten Optimierung herangezogen. Auch dieser, realtitätsnahe, Komplexitätsgrad
konnte von unserem Verfahren in zufriedenstellender Zeit gelöst werden.
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