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1. Introduction and Motivation

"Economics is a science which studies human behaviours as a relationship between ends and
scarce means which have alternative uses." is a well known definition of economics by Lionel
Robbins, a British economist in the 19™ century. Economics is part of everybody’s daily life,
ranging from planning the amount of individual daily food to calculating the future production
of food by a single enterprise. The worlds largest food company Nestl¢, for example, hires
more than 260.000 employees and uses highly complicated methods in order to maximize the

future profit flows.

The environment we live in and which our descendants will depend on as well, is the
fundamental basis of our existence and thus of our daily economic decisions. But since the
industrial revolution brought more welfare and broader production possibilities, the

environmental system as a hole suffered more and more.

The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report “Climate
Change 2007 states: “Warming of the climate system is unequivocal, as is now evident
from observations of increases in global average air and ocean temperatures,
widespread melting of snow and ice, and rising global average sea level.” And “Eleven of
the last twelve years (1995-2006) rank among the twelve warmest years in the instrumental
record of global surface temperature (since 1850).” Global warming has a lot of different
effects, several of them are unpredictable, but some are straight forward like the rise in sea
levels: since 1993 it has risen at an average rate of 3.1 mm/yr. Compared to the average rate
since 1991, 1.8 mm/yr, a significant increase can be noted. Further, the annual average Arctic
sea ice extend has shrunk by 2.7 percent per year, with larger decreases in summer of 7.4
percent per decade since 1978. Climate Change 2007: Synthesis Report (2007)

Global warming affects the whole planet: “Observational evidence from all continents and
most oceans shows that many natural systems are being affected by regional climate changes,
particularly temperature increases.” Climate Change 2007: Synthesis Report (2007)

One of the main aspects in climate change discussions is the fact, that there is little or no
doubt any more that it is caused by human activity. “Global greenhouse gas (GHG) emissions

due to human activities have grown since pre-industrial times, with an increase of 70 percent



between 1970 and 2004.” “Most of the observed increase in globally-averaged temperatures
since the mid-20th century is very likely due to the observed increase in anthropogenic GHG
concentrations. It is likely there has been significant anthropogenic warming over the past 50
years averaged over each continent (except Antarctica).” Climate Change 2007: Synthesis
Report (2007)

This is the point where this thesis ties up to: the economic activity of human being and its
coherence to environmental pollution. As the consequences of past actions become more and
more clear and are partly irreversible, the future is always uncertain. The increase in GHG
concentrations, for example, is irreversible, while at the time they were produced, their
impacts on the global climate system were unknown and uncertain.

Furthermore, future economic activities have to be reconsidered very properly, not at last in
order to protect our ecosystem from more damage. The earth itself, and live itself, I state, can
not be destroyed by human beings, but ecological damage causes unpredictable high future
costs. Who will be most affected and therefore will be forced to cope with the consequences
of the environmental pollution above-average is not topic of this thesis, although it is a very
important aspect.

I will mainly concentrate on a specific evaluation method of economic activities which have
an impact on the ecosystem, and on determining the optimal amount and optimal timing of
antipollution policies and ecological investments. The traditional cost-benefit analysis, which
I will explain in more detail later, can not serve to do so because it neglects three important
aspects. Two of them were already mentioned, uncertainty and irreversibility. The third is
flexibility, meaning that the decision whether to make an investment or not is often not a now
or never decision, but can be delayed. This possibility has a value which has to be taken into
account.

The optimal timing of the environmental policy has a great impact on the result of the policy.
Thus, optimal timing is an issue of this thesis, and this stochastic control problem is of the
following form: At what point should society stop emission and adopt a costly policy in order
to reduce pollution. This is called an optimal stopping problem.

The traditional cost-benefit analysis which is often used to evaluate environmental policies,
recommends such a policy if the present value of the expected flow of benefits exceeds the
present value of the expected flow of costs. But, as mentioned, this framework ignores three
important characteristics, which I will describe now in more detail.

There are two kinds of irreversibilities which have to be accounted for and which work in

opposite directions. In general, decision making is called irreversible when a decision



considerably reduces the scope of choices available for future decision-making. As we have
seen, one main reason of global warming is the concentration of GHG. Thus, an
environmental policy targeting this issue certainly would make sense. An emission reducing
policy, for example, raises a certain sunk cost on society. These sunk costs create an
opportunity cost of adopting the policy now, rather than wait for more information, and biases
the traditional cost-benefit analysis in favour of policy adoption. Pindyck (2000).

On the other hand, the environmental damage can be irreversible, totally or partially. For
example, the concentration of GHG in the atmosphere declines very slowly, and this process
can not be speeded up. Thus, adopting a policy now rather than waiting has a sunk benefit, a
negative opportunity cost, which biases traditional cost-benefit analysis against policy
adoption. Pindyck (2000). Therefore, taking these irreversibilities into account may lead to
different outcomes.

Also, two kinds of uncertainties have to be distinguished. Economic uncertainty refers to the
future costs and benefits of environmental damage and its reduction. For example, although
the increase in GHG concentration can be measured, the resulting costs to society, like
decreases in agricultural output, are unknown. The uncertainty over the evolution of the
relevant ecosystem is called ecological uncertainty. An emission reducing policy, for
example, will result in a decrease of GHG concentration, but we do not know exactly by how
much, nor do we know its impacts on global or local temperatures.

The third aspect is flexibility. The adoption of a policy can be delayed, and is rarely a now or
never proposition. Waiting for more information can make sense and may lead to a more
efficient outcome.

Waiting has a value, and this leads to the next topic. We have seen that whenever sunk costs,
uncertainties and irreversibilities are concerned, an evaluation based on the expected net
present value is not efficient. A numerical example will be presented later. Thus, another
evaluation method is needed, the real options approach, which makes it possible to deal with
these problems. It argues that policies which can be delayed to gather more information
should be given more weight. “This option has a value, called option value, similar to the
financial call or put options.” Zhao (2002). It is straight forward that an investment should not
only be valued in terms of the scale, but also by the option to postpone, i.e. the timing of the
investment plays an important role.

To give an example, assume an investment that costs $84 million and will last forever. The
payoff in the current period is given by p=$10 million, and the projects future annual payoff

is, due to uncertainties, either 0.5p=85 million or 1.5p=8$15 million. The discount rate is 10



percent. The traditional net present value (NPV) rule evaluates the expected present value of
the project by (10/0.1)-84=$16 million, and suggests investing now. Assume further that the
uncertainty holds for one year, and thus the investor faces the possibility to delay the
investment for one year and wait for more information. Then, if the payoff one year later turns
out to be 0.5p=$5 million, no investment is made, since 5/0.1-84=-$34 million. But if the
payoff turns out to be 1.5p=$15 million, the total payoff is given by 15/0.1-84=$66 million
and the project will be executed. Thus, the expected present value of the payoff of waiting in
period one is (0.5)*(66)/1.1=$30 million, given the possibility of investing in period 2. In this
example, waiting has a higher value than investing immediately. As we can see, the
investment decision has to be considered in a dynamic framework, and the possibility of
investing now has to compete with itself at a later date. For the sake of completeness it is
mentioned that the cost of delaying arises from discounting, because the earlier an investment
is undertaken, the earlier the net benefits start to account.

Zhao (2002) summarizes the conditions which make the real option approach more efficient
than the expected NPV rule: (1) the outcome of the project is uncertain; (2) future information
can be gathered helping to better evaluate the project; (3) the project or some of its
components can be delayed; and (4) there are adjustment costs in reversing the project or its

components.

The underlying thesis is structured in the following way: Chapter 2 explains the necessary
mathematical tools and basic principles which will be used throughout the work. Dynamic
programming, a framework for dynamic optimisation which is especially useful when
uncertainty is considered, as well as Brownian Motions and Ito Processes which serve to
describe stochastic processes are explained and motivated. Chapter 3 is the main part of this
thesis. A model developed by Pindyck (2000, 2002), which serves as a building plot for a lot
of scientific papers about ecological investment under uncertainty and irreversibility, is
presented and discussed in detail. A rather simple model of determining the optimal amount
and timing of an emission reducing policy is presented, which is then extended in certain
directions. Different cost and benefit functions are observed as well as the impact of economic
and ecological uncertainties, different levels of irreversibility, and the role of flexibility.

In Chapter 4 two different extensions of Pindyck’s model are discussed. First, the role of the
discount rate and its implementation on policy adoption is analysed. Special attention is given

to the income-pollution pattern and the Environmental Kuznets Curve.



The second extension of the model presented in Chapter 3 concentrates on the impacts of
environmental policy adoption when the possibility of extreme events, i.e. extreme changes in
the evolution of the ecosystem or in the future costs and benefits associated with the
environmental damage, are concerned.

In Chapter 5 some concluding remarks are given.



2. Mathematical Background

Before I will work out a detailed model of how to evaluate uncertainties and irreversibilities
in investment decisions, specifically in ecological investment, I explain the relevant
mathematical tools.

As the future of an ecological investment is uncertain, stochastic calculus is needed to model
the dynamics of the value of a project. Specifically, Brownian Motions, also known as Wiener
Processes, and a generalized form of it, the Ito Process, as well as dynamic programming, are

discussed in the following chapter.
The reader must be reminded that the purpose of this chapter is only to explain the

mathematical background, so it might be more convenient for experts to jump directly to

Chapter 3.

2.1 Dynamic programming

Throughout this thesis the main aspect which is investigated is the optimal policy and the
optimal timing of a policymaker who faces environmental and ecological costs and benefits,
and who is asked to protect the environment in order to minimize the economic costs which
resolve from pollution. As in any other investment decision, the decision maker has to
account for the current as well as future costs and benefits, thus taking into account the option
of future decisions, which are affected by uncertainties.

Dynamic programming and contingent claims analysis, which are closely related to each
other, are the most useful mathematical tools for dynamic optimization, especially if
uncertainty is regarded for. Here, only the basics of dynamic programming are presented and
then used from chapter 3 on.

“Dynamic programming breaks a hole sequence of decisions into just two components: the
immediate decision, and a valuation function that encapsulates the consequences of all
subsequent decisions, starting with the position that results from the immediate decision.”
Dixit and Pindyck (1994)

To give an intuition, assume a firm whose state is described by the variable x; which is known

and controlled by the control variable u.. All future values are unknown. The immediate profit



flow of this firm is given by m(x;, u;). Following dynamic programming, the whole
continuation period after period t is summarized into one sequence. The outcome of this
period t+1 is given by Fi1(X¢+1), which is random and thus we must take its expected value
& Fu1(Xe1)], which is often called the continuation value.

Therefore, the firm has to choose u; to maximize the outcomes of both periods:
1
F;(xt)zmax ﬂt(xt’uz)+ gt[F;H(le)] H (1)
u I+ p

where the outcome of period t+1 is discounted by the factor p.

Equation (1) is called Bellman-equation, following the Bellman’s Principle of Optimality: An
optimal policy has the property that, whatever the initial action, the remaining choices
constitute an optimal policy with respect to the subproblem starting at the state that results

from the initial situation. Dixit and Pindyck (1994)

Whether considering two periods, more periods, or infinite horizon the approach of dynamic
programming is in any case more or less the same as described above, where the choice in any
period is binary. One particular class of this mathematical tool is called “Optimal Stopping”.
Here, the decision is to stop the process to take the termination payoff, or to continue for one
period, where then a similar decision has to be made. In other words, stopping corresponds to
making the investment and continuation corresponds to waiting. We will make use of this

later.

2.2 The Wiener Process / Brownian Motion

A Wiener Process has to fulfil a set of requirements. The definitions are taken from Dixit and

Pindyck (1994):

- It is a stochastic process, which means that the variable evolves over time in a way
that is at least partially random. Examples for stochastic processes are the price of
IBM stock as well as the temperature in Vienna, whereas the former is nonstationary —

the expected value of its price can grow without bound, and the latter is a stationary
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process — the statistical properties of this variable are roughly constant over long
periods of time.

- Both examples are continuous-time stochastic processes. Suppose a stochastic process
which is defined by the probability law for the evolution of x; of a variable x over time
t. If t is a continuous variable, so is the process.

- It is a Markov process. The Markov property states, that the probability distribution
for x+; depends only on x, and not additionally on what happened before time t. In
words, the probability distribution for all future values of the process depends only on
the current value and is unaffected by past values of the process, or any other
information.

- The process has independent increments: The probability distribution for the change in
the process over any time interval is independent of any other nonoverlapping time
interval.

- Changes in the process over any finite time interval are normally distributed, with a

variance that increases linearly with the time interval.

These properties can be explained more formally.
If z(t) is a Wiener process, than any change in z, Az, corresponding to a time interval At,

satisfies the following conditions:

1. The relationship between Az and At is given by

Az =€, JAL, )

where €; 1s a normally distributed random variable with a mean of zero and a standard

deviation of 1.

2. The random variable € is serially uncorrelated, that is g[e; €] = 0 for t #s. Thus the
values of Az for any two different intervals of time are independent. [ Thus z(t) follows

a Markov process with independent increments. |

Assume now a time interval T, divided into n units of length At, with n=T/At. Then the

change over this time interval is given by:

11



z(s+T)—z(s)=Zn:el. \/E, 3)

where the €; variables are independent of each other. Thus, the change z(s+T)-z(s) is normally
distributed with mean zero and variance nAt=T which grows linearly with the time horizon.
This fact makes the Wiener process a nonstationary process.

Letting At become infinitesimal small, the increment of a Wiener process, dz, in continuous

time is
dz =¢, Jt, 4)

where €; has zero mean and unit standard deviation, &(dz) =0, and Var[dz] =& [(dz)z} =dt.

A very important aspect of the Wiener process is, that it has no time derivation in a

1
conventional sense, since Az / At =€, (At) *, which becomes infinite as At approaches zero.

2.3 Brownian Motions and Ito Process

As mentioned, the basic Wiener Process can be generalized in certain directions. Besides the
Ito Process, the Brownian motion with drift is especially important for us.

Thus, a generalization of equation (4) is

dx =adt+odz, (5)

where dz is the increment of a Wiener process, a is the drift parameter, and ¢ the variance
parameter.

Note that the expected value of a change in x, AX, over any time interval At, is

&(Ax) = oAt and its variance Var(Ax) = o At.

Another possibility to write this Brownian motion with drift is:

12



dx = a(x,t)dt +b(x,t)dz, (6)

where dz again is the increment of a Wiener process, and a(x,t) and b(x,t) are known (non-
random) functions. Here, the drift and variance coefficients are functions of the current state

and time. The process of equation (6) is also called an [to process. The expectation is

£(dz) =0, and therefore &(dx)= a(x,t)dt. The variance of dx is g[dxz]—(g[dx]z), which

3/2

contains terms in dt, in (dt)?, and in (dt)(dz), which is of order (dt)**. Assume dt infinitesimal

small, then terms in (dt)* and in (dt)3/ 2

can be ignored. The variance becomes

Var|[dx]=b"(x,t)dt, (7)

where b*(x,t) is called the instantaneous variance rate, as a(x,t) is called the expected
instantaneous drift rate of the Ito process.

This will turn out to be very useful.

The Geometric Brownian motion with drift is another type of stochastic processes, and a

generalisation of equation (6), the Ito process

dx = axdt + oxdz, 3

where a(x,t) = ax, and b(x,t) = ox, where a and ¢ are constant.

2.4 Ito’s Lemma

As mentioned in the introductory part, the aim of this thesis is to find the optimal timing and
the optimal amount by which a certain policy should be adopted in order to reduce pollution.
Brownian motion and Ito process respectively, will be used to model the unknown
development of future economic outcomes - to get uncertainty into the model. Anyway, the
Ito process is not differentiable, which would make optimization impossible. But we will
make use of Ito’s Lemma, which makes it possible to differentiate Ito processes. Specifically,

we will describe the value of the option to adopt a certain policy in the future to reduce

13



pollution. This option value will partly be determined by economic uncertainty, which itself is
represented by a Brownian motion. In this case we would want to determine the stochastic

process that the value of the option follows. To do so we will make use of Ito’s Lemma:

Consider a function x(t) that follows the process of equation (6) and a function F(x,t) that is at

least twice differentiable in x and once in t. The total differential would be

dF =6—Fdx+a—th. 9)
ox ot

Now suppose we also include higher-order terms for changes in t

1 0°F

2
oF oF laF(dx)2+— :
6 Ox

dF = —dx+—dt+——;
ox ot 2 Ox

(dx) +.... (10)

To see if the third and fourth term vanish in the limit, expand the right hand side and

substitute equation (6) for dx to determine (dx)*:

(dx)> = @’ (x,0)(dt)” +2a(x, O)b(x, £)(dt)"> + b (x,t)dt. (11)

2 and (dt)* as well as any other term which includes dt to the

And as we know, terms in (dt)
power greater than one go to zero faster than dt as it becomes infinitesimally small, so the

third an fourth term can be ignored and equation (11) becomes

(dx)* =b*(x,t)dt, (12)

and Ito’s Lemma gives the differential dF as

0°F
2
X

dF = {a—F%ra(x, t)a—F+lb2(x, 1)
ox 2

OF
dt+b(x,0) 2 dz. 13
ot 8 o % ()

14



3. Ecological Investment under Uncertainty and Irreversibility

In the following chapter the basic model from Pindyck (2000) will be discussed. Later, this
rather simple model will be expanded in certain directions, and it will be shown which

specific problem in ecological discussion it can be useful for.

As already mentioned, the analytical framework used by Pindyck (2000) is not a typical net
present value rule calculation. Rather it takes into account certain types of irreversibility,
uncertainty and flexibility using the real option approach described in the introductory part.
The aim is to determine the optimal timing and the optimal amount of an emission reducing
policy, adopted by a decision maker. The stock of pollution, as we will see within a short
time, is given and controlled by an emission rate. Thus, a costly policy concentrates on this

control variable.

3.1 Analvtical Framework

Unsurprisingly the first variable to explain is the one of environmental pollution, M;, which
summarizes one or more stocks of environmental pollutants. It might stand for the
concentration of CO; in the atmosphere, for the acid level of a lake or forest, or for something
comparable.

And of course M; is very unlikely to be constant over a longer period of time, so let E; be the
flow variable that controls M; E; might stand for the rate of CO, emission for example;
actually whenever emissions are mentioned in this thesis, which will be the case quite often, it
can be regarded as an example for any other type of pollution.

It will be assumed that E; follows an exogenous trajectory as long as no policy controls it. So,

the endogenous evolution of M, is given by

dM =[LE(t)-oM(t)]+dD(1), (1)

where de(t) is the increment of a stochastic process. As dM; characterises the ecological

evolution, de(t) will only be considered when taking into account ecological uncertainty. The

15



parameter O is the natural rate at which the stock of pollution dissipates over time, and 3

measures the quantity of emissions absorbed by the ecosystem.

M,, as the stock of pollution, is also assumed to entail a certain cost, which is specified by the
function B(M,, ©y), where B is assumed to be linear in M, and ©; shifts over time and reflects
certain changes in tastes and technology. For example, the development of new technologies
decreases the social cost of higher pollution, or on the other hand demographic changes raise
the cost. Uncertainty over the future costs and benefits of policy adoption can be reached by
letting O follow a stochastic process. This will be shown in chapter 3.2. And as we will see,

O, determines the timing of policy adoption.

Due to the fact that pollution results in costs for society, a policy has to be induced which has

an impact on the evolution of E; and therefore reduces pollution. Consider a policy at time T
which changes the evolution of E,to some new trajectory E, .

The pollution reduction can be done gradually or at once. For now consider the latter, a
reduction to a new and permanent level E;, with 0 <E; <E,.
Not only pollution leads to a certain cost, but also the induction of the policy leads to a certain

social cost, which is assumed to be completely sunk and denoted by K(E;).

It is quite trivial that the policy objective which has to be maximized involves these two
different costs, the one of pollution and the one of policy adoption which reduces pollution. It

is denoted by
W=g,[BM,0)e" —s,K(E)e ", @)
0

where g 1s the expectation at time t = 0, T is the point of time, where the policy is adopted, E,
— E; 1s the amount that emissions are reduced, and r is the discount rate.

So what has to be determined, on the one hand, is the optimal time at which the policy should
be induced - thus we deal with an optimal stopping problem, and on the other hand, by how
much emissions should be reduced, not forgetting about the dependence of M; on E;, and the

possibly stochastic evolution of M; and ©;.

16



In the next part of the thesis a model will be presented which only contains economic
uncertainty but doesn’t regard ecological uncertainty, thus ©; evolves stochastically but M;

does not. Chapter 3.4 presents a model with ecological uncertainty.

3.2 Economic Uncertainty

Now we deal with a model where the evolution of ©; includes a stochastic term, and where
the policy adoption implies a once and for all reduction from its initial level Eg to zero.

The cost of emission reduction is assumed to be a linear function of the size of the reduction,
denoted by K. The cost function depending on the pollution, B(M;, ©;) is assumed to be linear

in M, 1.e.

B(M,.0)=-6M, 3)

Equation (1) loses the stochastic part since there is no ecological uncertainty considered now,

and turns to

M
— " WPEW) - oM (@)]dt

There is economic uncertainty, described by a geometric Brownian motion, which has been

discussed in chapter 2

dO = afdt + o0dz 4)

The function B(M;, ©y) is known for some parts but for others not. The flow of social cost
from M; is known, but the flow of future cost is uncertain, and this uncertainty grows along
the time horizon.

The policy which may be adopted to reduce E from E, to zero raises a certain cost K as well.

Here, we suppose that K = kE,,
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Thus, we have to find a policy adoption rule that maximizes the net present value function of
equation (2), subject to equations (4) and (1), for the evolution of ©; and M;.

This problem will be solved by dynamic programming, which was introduced in chapter 1.
Two regions will be defined, the “no-adopt” region, indicating the time before policy adoption
in which E; = Ey, and the “adopt” region where E; = 0, denoting the time after policy adoption.
For both regions a net present value function has to be defined: WN(©, M) for the “no-adopt”

region and W*(©, M) for the “adopt” region.

Since B(M,,0) =-0,.M,, W(O, M) must satisfy the following general Bellman equation:
1
rW =—-6M + Egt(dW), (5)

where -OM is the social cost from the stock of pollutant, and the second term on the right

hand side is the expected rate of increase in W — the capital gain.

In order to find a solution for equation (5), let’s have a look at dW first, remembering

equation (10) introduced in chapter 2.4. We expand dW by Ito’s Lemma:

2
aw =D ang + g9 LW

doy’ 6
aM do 2d02( ) ©

Taking into account equation (12) from chapter 2.4, dO is given by
(d0)’ = (abdt +c0dz)’ =c°6”. (7)

Inserting equation (7) into (6) yields

2
dW:d—WdM+ou9d—Wdt+69d—Wdz+ W
dM do

1
a0 2 de?

(c°0°dt)
.. aw . .
Thus, taking into account that G@d—edz =0, the expectation of dW is given by

2
E[dW]= E[d—WdM +a9d—Wdt Ly d W;
am do 2 0

dt],
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which is now inserted into equation (5):
W =-6M + éet(dW) =—OM +[BE(t)-SM (t)|dW,, + aOW, + %O'ZGZW%.

To get the Bellman equations for the ,,no adopt“ region denoted by WN(©, M), and the
,.adopt“ region denoted by W*(©, M), respectively, we distinguish in E:

WN(©, M) must satisfy:
E =E,:
1w =—0M +(BE, -~ SMW) +abW," + %GZGZWQZ , (®)

and likewise W*(©, M) must satisfy the Bellman equation:
E =0:

W =—0M — SMW,} + abW,' + %azezwgg. 9)

These two differential equations have to be solved subject to the following set of boundary

conditions:

wh(0, M) =0, (10)
WN(e*,M) = W (6, M) - K, (11)
Wy (6", M) = W (6", M). (12)

Equation (10) simply states, that if © is zero, it will stay at zero thereafter. Equation (11) is
the so called value matching condition. It states that, if © reaches the critical level ©*, at or
above which the policy should be adopted, and society adopts the policy, a certain cost K =
kE, incurs, and the net present value is W46, M) — K. Thus, the parameter © determines the
timing of policy adoption.

Equation (12) is the smooth pasting condition. It states that if adoption is indeed optimal at the
critical value ©*, then the derivates of the value functions must be continuous at ©*.

The solutions of these two differential equations are:
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WY(O,M)= A0" - L PEL , (13)
r+0—a (r—-a)(r+o-a)

and

wio.my=—M
r+o—-a

(14)
First consider equation (13): A©' is the general (homogenous) solution of this type of
differential equation, and the other parts are the inhomogeneous solutions. Consider the
second term on the right hand side of equation (13), which is equal to the right hand side of
equation (14). The current stock of pollutant, M, decays at a rate d, and a is the growth rate of
0. Thus, the present value of the flow of social cost resulting from M is given by - 6M / (r+6-
o). As the emission reducing policy is not yet adopted in the “no-adopt” region, also the
present value of the flow of social cost that results from emission continuation has to be
considered, which is the third term on the right hand side of equation (13). The present value
of the flow of cost from emissions Ey now is BE¢0 / (r+6-a), and taking into account the cost
from emissions E, in all future periods leads to BE¢0 / (r-a )(r+06-a).

If the emission reducing policy is adopted, E = 0, and the value function W* applies.
A, ©* and y are unknowns which have to be determined. This problem can be solved using
the boundary conditions (10) — (12). Detailed calculations can be found in the technical

appendix 6.a.

Inserting equation (8) into boundary conditions (10) and (11) yields

— y-1 -l g y
=00 [(r—a)(r+§—a)7/] Fo (1)

0 =( ¥ )k(r—a)(r+5—a)
y—1 B

: (16)

where A and therefore the value of the option is linear in Ey,

Finally by using boundary equation (10) and inserting it in equation (8), we obtain the

following quadratic equation which determines vy:
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1
502}/(}/—1)+a}/—r=0. (17)

So y can now be calculated by solving the quadratic equation

1 « a 1Y 2r
S e 18
A \/(0'2 2) o’ (18)

From equation (16) we can determine when it is optimal to adopt the policy in the absence of

any uncertainty, namely if y 1s zero:

po k (19)

(r—-a)r+o-a) -

The left-hand side of equation (19) is the present value of the flow of social cost from one unit
of emissions now and throughout the future, and the right hand side is the cost of permanently
reducing emissions by one unit. This is called the standard net present value or standard cost
benefit calculation.

It can be rewritten as

_ k(r—a)(r+o—-a)
B

6 (20)

b

where 0 is increased by the factor y/(y-1) if there is uncertainty.

Let’s now compare the opportunity costs of current adoption with the opportunity “benefits”
of current adoption. To do so, we define W* as the value when the adoption is made
optimally, and Wy as the value when adoption is made immediately, and calculate W*- W,
Suppose 0 < 0%, and W* = W". We know that Wo= W* —K, and so

W* - Wo = W" -W* 4K, or

BE,0
(r—a)r+oé-a)

W' =W, =K+ A0" - (21)
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So the difference between the opportunity costs and benefits of current adoption is equal to K,
the direct cost from policy adoption, to the value of the option to adopt, which counts as an
opportunity cost of current adoption — the second term on the right hand side, minus the
present value of the additional flow of social cost from continued emissions, an opportunity

“benefit” from current adoption — the last term on the right hand side of equation (21).

Numerical example

For a better understanding of the model presented above, a numerical example is now
presented. The relevant parameter values, also used by Pindyck (2000), are summarized in

Table 1.

Parameter Interpretation Value

o expected percentage rate of growth of 6 0.0

r interest rate 0.04

) pollutant decay rate 0.02

9 volatility rate of 6 0.2

B emissions absorbed by the ecosystem 1.0

E, emission rate 300,000 tons per year
0, current social cost $20 per ton

Table 1: Parameter values

Thus, K = k*E, = $2 billion. Equation (18) yields y = 2,0, equation (15) is equal to A =
1,953,125, and equation (16) gives 0" =$32 per ton.

At the current value of 0y = $20 per ton, the value of the option to adopt it in the future is

A6] =$0.78billion and the policy should not be adopted immediately. But at the critical

value 0" = $32 per ton, 40" =$2.0 billion, and the policy should be adopted.
More precisely, equation (21) compares the opportunity costs of current adoption with the
opportunity “benefits” of current adoption:

BE,0
(r—-a)r+o-a)

W =W, =K+ A0" - = 281,350,000,

which is positive, and thus it is optimal to delay the emission reducing policy.
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The solution can also been shown graphically, as illustrated in Figure 1, where M = 0 is
assumed. Note that the critical value 8" = $32 per ton is found at the tangency of W™ and W* —

K. Assuming M > 0 rotates both curves downwards.

Figure 1: Graphical Solution for M= 0
15000000000
10000000000
— AOto the power ody
5000000000 —— -BEOO/(r-0)(r+5-a)
V\h
D) 5 1 25 30 35 40 45 50 55 60 65 70 —— W\a
-5000000000 -
-10000000000
e
Figure 1

Let’s have a look at some dynamic effects of the outcomes:

As mentioned, we consider economic uncertainty in this model, which is described by
equation (4). The more uncertainty there is, the higher is 6. Considering equation (18), as ¢
increases, y decreases, and hence 6* increases. In words, the greater the uncertainty of the
future social cost of the pollutant, the greater is the incentive to wait rather than to adopt the
policy now, in order to gather more information. Remember that 0 determines the timing of
policy adoption. Of course, the greater the current cost of pollutant, the greater the incentive
to trigger policy adoption.

Let’s have a look at the graphical solution for the case of increasing uncertainty. In Figure 1 it
is assumed that 6 = 0.2. Let’s now assume that ¢ = 0.25, and all other variables given by table

1. Then, y decreases to 1.73 and 6* increases to 37.7. This is plotted in Figure 2:
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Figure 2: Graphical Solution for M = 0; o = 0.25
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Figure 2

The same increase in 0* is true if the discount rate r increases, which also implies a greater
reduction in the present value of K.
Figure 3 shows the solution for r = 0.06 and all other variables given by Table 1. Now 0* is

56.6:

Figure 3: Graphical Solution for M= 0; r = 0,06
3000000000
2000000000
1000000000
—— AStothe power ody
O e | - BEDSY(r-0)(r+5-0)
» )4%\1&620242832364044485256606468 Wh
Wa- k

2000000000 1 Wa
-3000000000
-4000000000
-5000000000

]

Figure 3

Besides uncertainty, irreversibility plays an important role in calculating the optimal timing of

policy adoption. As the rate of “depreciation” of the stock of pollutant, J, increases, the
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reversibility of the damage form environmental pollution rises. This makes the sunk benefit of
adopting the policy now rather than waiting smaller.
Have a look at Figure 4 below: now 6 = 0.04, which is twice as large as in Figure 1. 0* is

increased to 42.6 in this case.

Figure 4: Graphical Solution for M = 0; & = 0,04
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Figure 4

Further, as a increases, 6* monotonically decreases. Having a look at equation (4) shows that
an increase in o leads to a higher future flow of social costs and thus makes an earlier policy
adoption favourable. Figure 5 shows the solution for 6* when its growth rate a is slightly

increased to 0.01. Here, 6* decreases to 24.6, thus the pollution reducing policy is adopted

earlier.
Figure 5: Graphical Solution for M = 0; alpha = 0.01
20000000000
15000000000 -
10000000000 1 ——A® to the power od y
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-10000000000 -
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-20000000000
0
Figure 5

25



Finally, 6* is independent of M, and Ey. A increases linearly with E, and augments the value
of society’s option to adopt the policy.

As an example, assume that Ey = 600,000, all other parameters stay unchanged. See figure 6
below, where 0* is still 32. Although A" increases to 3906054, W™ and W* — K don’t change,
and thus its tangency is still at 32.

Figure 6: Graphical Solution for M= 0; ED = 600,000

25000000000
20000000000 -
15000000000
; | —— ASto the power ody
| — -BEDE/(r-a)(r+5-0)
Wh
0 T Wa-k
_m)5m5\2025303540455055606570 Wa
-10000000000 |
-15000000000 |
-20000000000
(¢}
Figure 6

To see the dependency of 6" on o and & more precisely, have a look at Figure 2, for 6 = 0.01
to 0.04. As o increases, 0 increases as well, as we have already seen in figure 2. This is partly
due to the fact that a model assuming an all-or-nothing reduction is regarded, as Pindyck
(2000) states. But it shows clearly that taking uncertainty into account plays an important role

for emission reducing policy optimization.

26



6* as a function of o, = 0.01, 0.02, 0.03, 0.04
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o
Figure 7

3.2.1 Convex Costs and Partial Reduction in Emissions

Now a policy is considered which partially reduces emissions. Suppose that the sunk cost

from policy adoption is a quadratic function of the amount of reduced emissions:
K=k(E,-E)+k,(E,—E)’, (22)
where k;,k, > 0.

So a permanent 1-unit reduction in E;leads to a cost of

dK
k(E) = —EZ kl +2k2(E0 _El)‘

1
In this model, not only the optimal time of adoption, in the form of the variable 6* as in
chapter 3.2, but also the optimal amount by which the emissions should be reduced, the value
of E1, has to be found.

Again, there is an “adopt” and a “no-adopt” region, denoted by W40, M) and W0, M).

For the “no-adopt” region equation (8) still holds:

27



1
WY =—0M +(BE,— SMW,} + aW,’ +50'26?2W9Z :

: : . dM .
but, since after policy adoption = = BE, —OM because emissions are not reduced to zero,
t

an additional term, BE,W,, has to be added to equation (9):
1
W =—-0M +(BE, - SM)W,} +abW, +50'202W6,’;. (23)

Thus, the solution for W*(0, M) is

oM BE0

w(O,M)=- — : 24
(6. M) r+6—a (r—a)(r+é-a) 24)

while the solution for WN(0, M) s still

WN(O,M)=A6" - oM PESY (13)

r+d-a (r—-a)r+d-a)

To determine the optimal amount E*, by which emissions should be reduced, equations (22)

and (24) are used to maximize the net payoff of policy adoption:

oM PEO
r+6-a (r—a)(r+é-a)

mglx[WA(H,M;E)— K(E)]=- —k(E,—E)-k,(E,—E)’

oM BE,0

=— - —k(E,—E)—k,(E: —2E E +E* 25
r+é-a (r-a)(r+é-a) 1(Fo =)~k (Bo =2, ) 2
FOC: - po +k +k,2E, —sk,E=0
(r-a)(r+dé—-a)
E =+ £ (26)

"2k, 2(r-a)r+o-a)

The optimal amount of emission reduction is now found, and in the same way as in chapter
3.2, we use boundary conditions (10) and (11) and assume that p =(r—a)(r +0 — ) to find
A and the constant 6*. Detailed calculations can be found in appendix 6.b.

28



Using equation (11) yields

2 2
_ ,32 - ki Pk - 7)
M0 40 2kpl

and using equation (12) yields
(7 =2)8°0" +2p(y =) k0 + yp’ki =0. (28)

Assuming that y > 2, which is given by equation (12), and taking into account that W*(0) —
WN(0) — K(E(6*)) is convex in 0, 0* is the largest root of this quadratic equation:

,5'(7 2) (r-1

Now E*(8%) can easily be calculated with equation (26), and lies between 0 and E,. E*(6%*)

decreases as ¢ increases (and y decreases), while 6* increases in this case, as in chapter 3.2.

Numerical Example

Again, a numerical example will help to better understand the outcomes. Suppose k1 = 5000,
k2 =0.0055, and ¢ = 0.045, while all other values stay the same as given in Table 1 in chapter
3.2. Furthermore, assume that 0, is the value of § for which E* = 0, which, by equation (26)
is given as 0, = pk, / f+2pk,E,/ B, and Onin = 12, at which the policy is never adopted.
Then Bmex = 20, and equations (28) and (29) yield y = 6.8, and 0" =17, i.e., 0 < Opay. Equation
(26) gives that E* = 110,606 tons per year, which is positive.

In Figure 8 we can see the dependency of E* and 0 on o. As in chapter 3.2, 0 increases with
o, but now also the amount by which emissions are reduced depends on the degree of
uncertainty over the future benefits of a reduction. Note that, if ¢ = 0, the NPV rule applies,
and as we are assuming a = 0, 0" cannot rise if 6 = 0 as well. The parameter E” falls as o and
0" increase together, and for any value of ¢ > 0.063, E" = 0. One can also see, if 0" is smaller
than 12, emissions are not reduced at all, and as 0" increases, emissions get reduced more and
more.
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Figure 8: Partial Reduction — Dependency of E and " on &

A higher initial value of Ey does not affect 0°, thus ending in a higher ending level E”. For
example, assume that Eg= 600,000. The solution is plotted in Figure 9.

500000,00
400000,00
300000,00 =
200000,00 ——6'x10ttp.o. 4
100000,00 -
0,00 :
°©c 58 83 8855 8 85
o O O O O o o o o
o
Figure 9

*

The parameter k; is positively correlated with 6, and k, does not affect §°, but increases E .

Figure JHG shows the solution for k; = 7500, all other parameters unchanged.
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And Figure 11 shows the solution for k, = 0,007.
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Figure 11

3.2.2 Convex Benefit Function.

Until now, we assumed that the benefit function B(M,0;) is linear in M;. And we saw that the
policy adoption rule, in this case, is independent of the stock of pollutant, M;. Now, we
assume the benefit function to be convex in M;, which means that the damage from a certain
stock of pollutant rises more than proportionally. The policy adoption will not be partial but a
once and for all reduction, and the costs will not be convex, but given by K=kE,, as in chapter
3.2.

The benefit function B(M,,0;) is quadratic in M; now, i.e.

B(M,0)=-0M. (30)

t
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Again, benefit functions for the “adopt” and “no-adopt” regions have to be defined. They are
indeed only a little different from equations (8) and (9); only the term -OM is replaced by
-OM?:

rWY =—0M* +(BE, - SMW,) +aW,’ + %azangg (8)
W =—-OM? —SMW,} + bW, + %azezwgg 9

s.t. boundary equations (10) — (12).

These Bellman equations have the following solutions

2 2 2
WY (0. M) = 407 — oM~ 2B°E;0 B 2PE,OM ’
r+20-a (r—-a)(r+20-a)(r+o-a) (F+20-a)(r+o-a)
and
2
WA(e,M):—HL,
r-20-a

where A and 0 have to be determined, and vy is given by equation (18).

Now boundary equations (11) and (12) are used to determine A and the critical value 0*.

Detailed calculations can be found in appendix 6.c.

0*:(r—a)(r+25—a)(r+5—a)k}/ 31)
2B(y -DIBE, +(r—a)M]
Y E (7—1]7“ 2B°E, +2B(r—a)M ’ (32)
Uk (r—a)r+26—-a)r+8—a)y

Here, 0°depends on M,, where the higher M, the lower 6". A higher M implies a higher

marginal cost from additional emissions, and therefore an emission reducing policy will be

32



adopted earlier. A higher current value of E, (together with rising marginal costs of emission)
implies a higher value of 0, as does a higher cost of emission reduction, k, and a higher decay
rate, 0.

The convex cost function, however, does not change for the fact that uncertainty affects the
timing of the policy in the same way as without convexity, where B(My, 6;) in linear in M,
although it does affect the policy adoption rule. But the timing is determined by 6, which gets
affected by the parameter ¢ through the multiplier (y-1)/y, and vy is given by equation (18), as
in chapter 3.2.

3.3 Gradual Emission Reductions

In this modification of the basic model, I consider that there is only one possibility for a
policy implication. But, and this is the important aspect in this chapter, emissions can be
reduced gradually and continuously.

The policy maker must now sight both variables 0, and the stock variable M, to decide when
and by how much emissions should be reduced.

We assume that the cost of policy adoption is completely sunk and a quadratic function of the
amount of emission reductions, as in equation (22). The cost of a one unit reduction in E is

therefore: AK =k, +2k,(E,—E,). The benefit function B(0;, M) is assumed to be linear in 0;

and My, 1.e. B, =-0M

-
Defining m, = k, + 2k, E, and m, =2k,, gives
AK =m —m,E. (33)
A small reduction in the stock of the pollutant, AM;, leads to a benefit of AB=-0,AM;. The
stock variable M is controlled by the flow variable E;. If emissions are reduced by AE at time
t=0, M, changes by

_PAE

am, =~ 1-e ), (34)
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which now allows to define the social benefit of an incremental reduction in emissions at time

t, which is

AW, =&, [AB.e"""dr = BOAE | p, (35)
t

where p=(r—a)(r+5-a).

It has to be determined how much emissions should be reduced initially, and how much in

future periods. This last decision depends on the change in 6.

Assume that E; = E currently, and given E; together with 0; and M,, the value function is
W(E;0,M). The value of society’s option to permanently reduce E by one unit is AF, and
exercising that option results in the cost AF(E;0,M) + K(E), and the payoff AW(0). Then AF

must satisfy the Bellman equation

rAF = (BE - SM)AF,, + a0F, +%<7202AF99, (36)
subject to:

AF(E;0,M) =0, (37)
AF(E;0° ,M)=AW (6 )—-AK(E), (38)

AF,(E;0" ,M)=AW,(0),
(39)

which has the solution:

AF =a@’, (40)

where v >1 is given by equation (18). The policy of emission reductions should be exercised
whenever 0 exceeds the critical value 6*(E), with d6*/dE < 0.
The constant a and the critical value 6*(E) are determined by solving boundary equations (38)

and (39):
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9 = py(m, —m,E)
PAE(y —1)

(2] ()
o ) \m-—mkE

Detailed calculations can be found in appendix 6.d.

(41)

Consider equation (41), p(m;-myE) is the amortized sunk cost of an incremental reduction in
emissions, B is the absorption rate. Because of uncertainty, this amortized sunk cost exceeds
the threshold value without uncertainty by the multiple (y-1)/y. Furthermore, as E decreases,
0" increases and a falls. If & increases, 0" increases as well, and if d increases, 0" decreases, for
any value of E. Note that depending on the initial level of 0, it might be the best choice to
reduce emissions in period 1, and then as © reaches its threshold value 0", to gradually

continue reducing emissions.

Numerical example

Uncertainty does not only affect the level of emission reduction over time, but also the level
of initial reduction. To better understand the dependency on o, a numerical example by
Pindyck (2000) is presented. Pindyck ran a Monte Carlo Simulation to examine these impacts.
The parameter values used are the following: Ey = 300.000 tons per year, k; = 5000, and k, =
0.055,r=0.4,0=0.02, B =1, and a = 0.01, o varies from 0 to 0.15, in increments of 0.005.

The simulation is plotted in Figure 12.

35



280 320

Tt - :
= Meon E" at 1=0 years -

E* () (x10%)
120 i60 200

80

40

0.00 DOZ o.04 Q.06 0.08 0.10 o.12 0.14 0.18

o

Figure 12: Mean Optimal Emissions Level at t = 0 and 20 Years

Figure 12 shows the mean optimal emissions level initially and after 20 years. Without
uncertainty, emissions are reduced from 300.000 to about 70.000 tons per year, and then
reduced gradually to zero. If ¢ is increased, less emissions are reduced immediately, which
reflects the value of waiting. E” also increases with o over time.

The value of waiting is especially important. As Pindyck (2000) states, “because of the
possibility that 8 will not increase as much as expected, there are indeed realizations in which

it takes a very long time for 0 to grow to the point where elimination is justified.”

3.4 Ecological Uncertainty

Until now we only considered economic uncertainty, but no ecological uncertainty. To outline

this problem as well, we now keep 0 fixed, and use equation (1) for the evolution of M;:

dM =[B(E(t) - SM ()] +dD(¢). (1)

Because de(t) is the increment of a stochastic process, even if we know the trajectory of E,,

future values of M; are still uncertain.
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In addition, we assume the benefit function B(6;, M) to be convex in M;, because otherwise —
if it would be linear in M; — the stochastic evolution of M; would have no effect on the

expected marginal social return from reductions in E;, even if K were a nonlinear function.
So, B(,M)=-6M?, as already defined in chapter 3.2.2, and K = kE,.

The Bellman equations for the “adopt” and the “no-adopt” regions are

1
WY =-OM* +(BE, - SMW,} +50'2WA’4VM,

(43)
and
W =—0M* —SMW,, +%02WA;‘M. (44)
Subject to the following set of boundary conditions.
w1 (0)=0, (45)
WM =W(M")-K, (46)
Wy (M) =W (M), (47)

where M* is the critical value of My, at which the policy should be adopted, the solution of
(44) and boundary condition (45) for W* is

oM? o6

wA(M)=— — :
r+20 r(r+20)

(48)

WP, the solution from equation (43) can not be solved analytically without making certain
restrictions on the parameter values, but only numerically, which will be shown soon. First,

we consider the special case, where 6=0.
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3.4.1 Complete Irreversibility

In this chapter we assume complete irreversibility, i.e. we set 6=0. Then, equation (48)

reduces to:

-0(rM* + o)
—_—.
r

W (M) = (49)

The homogenous solution of equation (43) is W" = Be*” + B,e”", which together with the

inhomogeneous solution gives

(M’ +0°) 2PEO(BE,+rM)

WY (M) =Be™ — p > (50)

where

P [1—\/l+2ro-2/ﬁ2E§J>0, (51)
(o2

and B and M are constants which have to be determined.

Consider equation (50). The first term on the right hand side is the value of the option to adopt
the policy. The second term is the present value of the flow of social cost from the current
stock of pollutant, and the third term is the present value of the flow of social cost that would

result if emissions continued at the rate E, forever.

The constants B and M" are determined by equation (49) and the boundary conditions (46)
and (47):

_ 2ﬁE09 e_¢M”

B= , (52)
and

2 2
Moo BE, o r'K (53)

— + ,
r o BE, (1—«/1+2r0‘2 / BE? ) 2pE0
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where oM /6K >0,0M" /0r>0,0M" /00 <0, and 6M /0o > 0. So, stochastic fluctuations

in M create an incentive to delay policy adoption.

Numerical Example

The parameters are r = 0.04, K =4, E; = 0.3, B =1, and 6 = 0.002. If 6 = 0 the policy should
be adopted immediately. And if o = 1, the policy will be adopted when M > M’ = 6.74, and if
o = 4, the policy should be adopted when M>M’ = 16.21.

3.4.2 General Case

Now a more general case, where 6 > 0, is considered. As already mentioned in chapter 3.4,
WN(M) and the critical value M" can then only be found numerically.

The stock of pollutant, M, is measured in millions of tons, the emission rate in millions of
tons per year, the value and cost functions in billions of dollars, and 6 in billion
dollars/(million tons)’. The parameter values are: K =4, E)= 0.3, 0 =0.002,6=1,0=0, r =
0.04,56=0.02and = 1.

The solution for M™ is 13.05, which is not trivial to find. Pindyck (2000) derives this solution
by first using any candidate number for M’, denoted by My, equation (48), and the boundary
conditions (46) and (47) to getW " (M,)andW,Y (M,) . These are used to solve equation (43)

backwards to determine a corresponding candidate solution for WN(M) for all M between 0

and M, . The so found candidate numbers are then adjusted up and down until the conditions

W, < 0for all values of M, and W,},, <0 at M = 0, are fulfilled.
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Figure 13: Solution method for stochastic M

Figure 13 shows the solution method for stochastic M. Different candidate solutions for
WN(M) corresponding to different values of M" are plotted, as well as W*(M)-K. For
candidate values of M~ below 13.05, W,‘y (M) >0 for small values of M, and above 13.05,

W, (M) >0 for small values of M.

M*

o =0 |8=0.02
0.3 5,48 11,08
0,5 5,73 11,59
0.8 6,28 12,45

1 6,47 13,05

2 9,59 16,47

4 16,21 25,75

Table 2: Solutions for M~

Table 2 shows different solutions of M~ for values of & ranging from 0.3 to 4.0, and for &
equal to 0 and 0.02. M increases with ¢ and also with 8. A higher & implies more reversible
emissions, and therefore the drift rate of M declines. This leads to a lower present value of the

flow of social cost for any current value of M, and so a higher M is needed to justify the sunk

cost of policy adoption. Pindyck (2000)
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4. Extensions of the model

The model by Pindyck 2000 and its extension, the model of Pindyck 2002, can both be used
in several ways for further investigations of environmental problems, especially if

uncertainties and irreversibilities are concerned and if the real option approach is asked for.

4.1 Discount rate and Environmental Kuznets Curve

A paper which particularly arouse my interest and which builds up on Pindyck (2002) is “Is
the Discount Rate Relevant in Explaining the Environmental Kuznets Curve?” by Giuseppe
Di Vita (2003). The question he deals with in this paper is, in short, the role of the interest rate
in explaining the income-pollution pattern. Although Di Vita does not take into account
irreversibilities and uncertainties in particular, this model can be seen as an extrapolation of
Pindyck (2002), especially concentrating on the role of the interest rate. D1 Vita writes: “The
choice of a correct rate to make up-to-date future benefits is particularly relevant in cases
where problems of irreversibilities (for example lost of biodiversity) and uncertainties (like
future costs of pollution accumulation or climatic changes) emerge about some environmental
damage, and we want to know if it is worth implementing some environmental policy now

rather than delaying its adoption.”

4.1.1 Introduction

Before discussing this model and its implications in detail, some basic explanations about
income-pollution patterns and the theory of “Environmental Kuznets Curves” (EKC) are
presented.

Grossman and Krueger (1991) as well as Lucas, Wheeler et al. (1992) and others were the
first to analyse the correlation between income levels and adoption of a pollution abatement
policy for different countries. The hypothesis of the EKC states that pollution follows an
inverted U-shaped path with respect to economic growth, see Figure 14. An industrialising
country faces low income and high interest rates, whereas an industrialized country, as a
consequence of growth, has a high income level and faces low interest rates. These interest
rates play an important role when deciding to adopt an emission reducing policy or not, as

will be shown.
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Although there are many different theories to explain the income-pollution pattern, Di Vita
investigates the role of interest rates, and is so “making use of an argument that has never yet

been introduced in the economic debate on this issue.” Di Vita (2003).

Environmental
Degradation

Turning Poirt

Environmerit Environment
Worzens Improves

Per Capita Income

Figure 14: The Environmental Kuznets Curve

Some of the other theories which work on an explanation of the EKC are worth to be
mentioned as well. Arrow, B. Bolin et al. (1995) suggest that an economy which runs trough a
transition from a rural economy to a more polluted world as a consequence of growth and
industrialization, then, as a more developed world, may pay more for “green” services.

The change in preferences for environmental quality has also been consulted to explain the
income-pollution pattern by Di Vita (2002).

Jaeger (1998) presents a quite similar model, where as a consequence of economic growth
more emissions are absorbed and people get willing to devote scare resources to invest in less
economic but more ecological technologies. Suri and Duane (1998) and Rothman (1998)
investigate the role of transferring polluting productions from rich to poor countries. Also
differences in corruption levels have been analyzed to justify the EKC by Loépez and Mitra
(2000).

Although these are by far not all papers which address the hypothesis of EKC, as already
mentioned, Di Vita (2003) is the first paper to explain the inverse U-shaped relationship

between income and pollution through the differences in discount rates among countries.
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Now the debate is coming along about why the discount rate is high in poor and developing
countries while it is low in rich and developed ones.

Hibbs (2001) affirms that the neoclassical school of thought is not able to explain this
difference due to the following facts. In the Solow model, a fall in the discount rate is similar
to an increase in capital stock and income. Romer (1996). Joshi (1993) showed that the fact
that the discount rate is assumed to be exogenously given in the neoclassical growth model
may bias the result because it does not consider that this variable declines as income and
consumption rise.

But there are other theoretical concepts which try to clarify the question why interest rates
differ in poor and rich countries, like the scarcity of capital, the high risk premium in the
financial market, the high leverage of dept, political instability, and the necessity to devote
scare resources to satisfy present needs. All of those support the assumptions of Di Vita

(2003).

4.1.2 Analvtical Framework

As in the models of Pindyck (2000) and Pindyck (2002), a social planner has to decide at
some point in time whether to adopt a costly policy to reduce pollution or to delay this
decision to some future date. Under the net present value rule, the policy will be undertaken if
the present value of the net social benefit is positive. Taking into account irreversibilities and
uncertainties may change the outcome of these calculations but does not change for the fact

that a low discount rate encourages the policy adoption.

Thus, differences in discount rates may explain why in poor countries we find a positive
relationship between income and pollution, while in developed countries policies to protect

and preserve the ecological system are adopted.
In Chapter 3 we discussed Pindycks model from 2000 in detail. Although Di Vita uses the

analytical framework from Pindyck (2002), it is very similar to Pindyck (2000), and thus will

not be described here too precisely.

43



Similar to chapter 3, but ignoring the increment of a stochastic process, the evolution of M; is

given by

M = BE(f) - SM(¢), (1)

where the parameter 0 < § < 1 measures the quantity of emissions absorbed by the ecosystem,

and o represents the rate at which M; dissipates over time.
The social cost function is again given by equation (3) from chapter 3:
B(M,.0)=-0M,, 3)

where B is assumed to be linear, and the costs are assumed to be completely sunk.

Thus, the present value of social welfare is given by equation (2) from chapter 3:
W =5, BM,0)e" —5,K(E)e" )
0

For the moment we do not account for uncertainty and irreversibility brought about by
pollution emission, thus we are assuming that there is no ecological uncertainty. Economic
uncertainty, however, is introduced into this model by the evolution of 0. In Pindyck (2002) it
is assumed that 6, will equal @ or@ with equal probability, with 6 < @ and '4(6 + 0) = 6),,
the current value of 6. Further, 6 is assumed not to change after time T, at which the policy
will only be adopted if 6, = 6.

For the moment the policy maker can choose between two different points in time to adopt an

emission reducing policy, either now, att =0, oratt=T.

Solving equation (1) gives M; as a function of time, supposing that E; = E, for t <T, and E; =
0fort>T.

(BE,/5)(1—-e )+ M,e ™

for 0<t<T,fort>T 54
(BE, ! 8) (e —1)e™™ + M e 4

M, ={
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Thus, if the policy is never adopted, the value of the social welfare function Wy, is given by

6’o]‘/lo _ ﬂEoeo
(r+06) r(r+o)

Wy =—[6,M,e""dt =~ (55)
0

and if the policy is adopted at time t = 0, where E; = 0, the social welfare function Wy is given
by

00M0
r+o

W, =— -K. (56)

For now, the policy should be adopted if Wy > Wy, following the simple net present value
rule.
The simple framework presented just now, is extended to analyse the role of the discount rate

in determining the optimal emission reducing policy in the following chapters.

4.1.3 Role of the discount rate

The concentration will now focus on the consequences of the discount rate. Its level
determines which of the social welfare functions Wy and Wy will be greater than the other,
and so determines if a policy is implemented or not, assuming ceteris paribus conditions

concerning all other parameters.

Setting Wx = Wy gives the watershed discount rate, denoted by; which lies exactly between

the two areas where pollution will be stopped and where pollution will keep on rising on its

path given by the motion equation (1°). If r >t , it will always be true that Wy < Wy and an

emission reducing policy will be adopted, and vice versa.

WN:VK)
_eoMo_ ,BE090 :_eoMo_K
r+o r(r+5) r+o
Kr* +rKS - BE,6, =0, (57)
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Equation (57) is the quadratic equation from which we can easily obtain the values of the

watershed discount rate ; .

Di Vita (2003) uses the same parameters as in Pindyck (2002) to give a numerical example.

They are presented in Table 3.

Parameter Interpretation Value

B emissions absorbed by the ecosystem 1

K PV of costs of policy adoption $ 2000.000.000
EO emission rate 300.000 tons/year
0, current social cost $ 20 tons/year

0 pollutant decay rate 0.02

Table 3: Parameter Values

~KS5+,/K5* —4K BE,

Y% , we find two possible values forr: r =

Using equation (57), 7, =

0.04863 and 12 = -0.05586. Pindyck (2002) uses r = 0.04 for his calculations, and for all

values of r < ;1 , the positive threshold value, it is always true that Wy > Wy.

To describe the discount rate-pollution emission pattern more precisely, we take the partial

derivative of E with respect to r, using equation (56):

BE,6, = Kr* + Krd

2
E, = Kr-+Kro
B,
OE 2Kr+KS
o B,
O _g2r+9 (58)
or 56,

such that 6°K / 0r* =2K / 86, > 0. Equation (58) is presented in Figure 15.
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Figure 15: Discount rate-Pollution emission pattern

As we can see, the horizontal axis shows the discount rate and the vertical axis the evolution

of pollution emissions. The curve E(r) describes the increasing and convex discount rate-
emission pollution pattern which is divided into two parts by the threshold valuer . For any r

<r , pollution will be zero because the emission reducing policy will be adopted, and if r >t

emissions will continue to rise - M; will follow equation (1°). Considering different countries
implies that those with a discount rate lower than r will show declining emissions, whereas in

those with r > 1 the opposite will be true, assuming ceteris paribus conditions.

So far we characterized countries with the help of two parameters, the discount rate and the
income level. The first is part of Pindycks model, whereas the latter is not. Thus, income I

will be introduced now, assuming that:
K=f(IEy=I"+E"7, (59)

where the following conditions are respected: 0K /601 >0, 0K /0E <0, 0°K/0E* >0, and

0°K /8I* < 0. Thus, k is convex-decreasing in E, while the social cost of pollution abatement
policy is concave-increasing in | (output) — the cost of policy adoption rises together with
income, but K increases less than proportionally.

K is a direct function of income with 0 <a <1, and y > 1 considers pollution abatement costs

change as the emission changes.
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Given a, v, the income level I and E, equation (59) displays the social costs of environmental
policies at any time.

Substituting (59) in (57) and deriving E with respect to I gives

v
a_E:Iafla E
ol -1+y

> 0. (60)

In order to analyze the link between the discount rate and I, we again substitute (59) in (57)

and take the derivative of r with respect to I, which gives

or_ I“‘ar(r+95)
ol  (I*+E"7)2r+0o)

(61)

Equation (60) shows that pollution emissions are increasing with income. In the absence of an
emission reducing policy, as shown by Di Vita (2008) in a numerical example, income
increases more than proportionally.

Furthermore, equation (61) shows that there is an inverse relationship between r and 1. So,

countries with a low income level will face a high discount rate, and vice versa. Therefore,

growth in developing countries will lead to higher ecological damage. Only if r <r , growth

implies a reduction in emissions.

Next, we analyze the changes of M; over time with changes in I. To derive the income

pollution pattern, we substitute K for (59), (54) for Ey, and (1") for M, and get

a 1-y
(I"+E 9)’”(”"‘5) e —SM e,
0

M= (62)

_Iar(r+§) (eé'T_l)e—§t_5M e—§t
6, o

where the first row describes M when 0<t<Tand r >t , while the second row describes M

fort>Tandr>;.

Taking the first partial derivative of M with respect to I, gives
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| [ U *0) g
oM 0,

==y
ol ey, r(r+09)

(63)

where the first row counts for r >r where M is a concave-increasing function of income ,

and the second for r <r, where M is a convex-decreasing function of I.

Equation (63) states that the pollution stock increases as income does, which is described by

equation (1), while the discount rate decreases. At the point where r is equal to the watershed

value ;, M; reaches its maximum level and from that point on E; = 0 and M; will continually

decrease by oM.

-

r T

Figure 16: Income-pollution pattern

Figure 16 describes what we have just analyzed. The vertical axis reports the dynamics of the
pollution stock, and the horizontal axis reports income as well as the discount rate. As
explained before, the curve is concave-increasing until the threshold value is reached, and
then convex-decreasing. Remember that this rather unrealistic dynamic is due to the fact that
in the simple model by Pindyck it is assumed that emissions fall immediately to zero as soon

as an environmental policy is adopted.
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Furthermore, as Di Vita (2003) describes, empirical results show a different finding, where

pollution emissions first increase quickly and, after policy implementation, decline slowly.

4.1.4 Partial reduction of pollution emissions

To allow for these effects, Di Vita (2003) also develops a model where pollution emissions

are partially reduced, such that E; # 0 at the moment when r =r and the policy is adopted.

To show his outcome graphically, have a look at Figure 9:

-
~

Figure 17: Income-pollution pattern in case of partial reduction of pollution emissions

Here, M is concave-increasing in income for r >r , and convex-decreasing in income for r

<r. The figure shows an inverse U-shaped EKC, in which the decreasing part of the curve
falls more slowly than the rising one. Thus, a more realistic income-pollution pattern is

reached, although the basic results are the same in chapter 4.1.1.
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4.1.5 Uncertainty and Irreversibility

In the model described above, we used the framework of Pindyck (2002) but did not take
uncertainties and irreversibilities into account. To remember, Pindyck assumed that a policy
would be adopted, after waiting until time T, if and only if Ot =0 (where 0 is the future social
cost, that would be either highg or low@). This more complicated version of Pindyck, in

contrast to the simpler one with which is dealt here, does not change the conclusions
described above. If uncertainty and irreversibility are taken into account, the role of the

discount rate in the choice whether to adopt a costly policy or not is emphasized, and the

threshold value of r is affirmed to be even higher. Pindyck himself attests that a higher
discount rate reduces future benefits and raises future costs, thus motivating the decision to

delay adoption of the policy. Di Vita (2003).

4.1.6 Summary and Implications

On the one hand, a direct relationship between the discount rate and pollution emissions was
shown. More precisely, a threshold value of the discount rate r was found, such that for all

countries with a value of r higher than;, environmentally harmful production processes are

adopted. Contrary, countries with a lower discount rate than the threshold value, adopt
policies to reduce pollution emissions. And on the other hand, it was shown that the discount
rate and income move in opposite directions. These two dynamics of r allow a better
understanding of the relationship between pollution and the economic deployment of a
country. Countries with low levels of income and high discount rates show a positive
relationship between economic growth and pollution, whereas those with high income and
low discount rates show the opposite, a negative relationship between growth and pollution.

This was pointed out by the means of two models whose groundwork was given by Pindyck
(2002). First, a rather simple model was developed where emissions were assumed to be zero
after policy adoption, and secondly the outcomes of a model with gradual emission reduction
were shortly presented. Although the main findings were the same, the more precise model
showed a income-pollution pattern that was first concave-increasing until the threshold value
of the discount rate was reached, and from this point on convex-decreasing, thus finishing in a

more realistic behaviour of the Environmental Kuznets Curve.
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To summarize the outcome in a single sentence, the problem for the ecosystem in and for
developing countries is the fact that they face high interest rates, and as a consequence can’t
afford costly emission reducing policies. Only economic growth can lead to environmental

policies, but not directly, only through the discount rate reduction channel.

Enforcing environmentally harmful economic growth in order to reach a lower discount rate

to afford environmental policies is a dilemma, in my opinion.

4.2 The Timing of Environmental Policies in the Presence of Extreme Events

4.2.1 Introduction

The models of Pindyck 2000 and 2002 serve as an analytical framework for a lot of different
scientific papers dealing with environmental policy issues. In particular this framework is
widely used if uncertainties and irreversibilities are concerned, which is the case if the optimal
policy is determined by real option theory instead of the traditional cost benefit analysis.

In the last chapter, I concentrated on the role of the discount rate within this framework, and I
will now discuss in more detail the dynamics of uncertainty and irreversibility. The paper by
Dotsis, Makropoulou, and Psychogios “Environmental Policy Implications of Extreme
Variations in Pollutant Stock Levels and Socioeconomic Costs” will serve as the building
block in the following chapter. They investigate “the impact of jumps in carbon dioxide
emission levels and abrupt increases in pollutant-related socio-economic costs, with respect to
the optimal timing of environmental policies and the optimal emission abatement level.”
Dotsis, Makropoulou et al.) Jump diffusion processes are used to describe the evolution of

these variables.

Whenever ecological investment is regarded, uncertainties about the future have to be

accounted for. The evolution of an ecosystem also faces sudden changes. Its implementations
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for environmental policies are the issue of this chapter. To give an example, the average rise
of CO; levels has been about 1.6 parts per million by volume in the recent decades. However,
the newspaper “Independent” reported on October 11, 2004 that the levels of CO, made a
sudden jump which could not be explained by terrestrial emissions from power stations and
motor vehicles, and in the last two years the level had risen by 2.08ppm and 2.54ppm. Some
scientists argue that these jumps can be explained by the theory of “feedback mechanism”.
This theory states that climate change and global warming alters the earth’s environmental
system, changing warming to increase even faster than before. Thus, we can see that the
future evolution of the world wide ecosystem is unpredictable, and that sudden changes have
to be accounted for when exploring the optimal timing and amount of emission reducing

policies.

Dotsis et al. use the framework of Pindyck (2000, 2002) which has been discussed in detail
above. They modified the given model to investigate their questioning not very much, so |
will present their equations and assumptions as well as their findings, but I will not present the

detailed calculations since they are very similar to those discussed in chapter 3 of this thesis.

Here, two kinds of uncertainty will be regarded: first environmental uncertainty, that is,
uncertainty over the concentration of CO,, and second economic uncertainty, that is,
uncertainty over the future costs and benefits associated with the environmental change. Both
uncertainties will not be modelled simultaneously.

However, uncertainty is assumed to be endogenous, and the benefits from a reduction in

emissions depend on the current level of the stock of pollutant.

4.2.2 Ecological uncertainty

In the following section the stock of pollutant is assumed to exhibit discontinuities, and the
optimal policy has to be found. More specifically, the evolution of the stock of pollutant, M;,
is now a little different from the one Pindyck (2000) uses, and follows a Gaussian mean

reverting process augmented by jumps:

dM, =[ BE(t)— SM (1)) dt + odZ + $dq, (64)
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where dZ; is a standard Wiener process, and the jump part is controlled by compound Poisson
process (dq;) with constant parameter A, and positive jump size ¢, which is assumed to be
constant in this model. After a policy adoption, it is assumed that the probability of a jump
drops to zero. The parameters 3, 8, and ¢ are the same as in Pindyck (2000, 2002). Also the
flow variable E(t), as well as the convex social cost function B(M,, 8;)=-0M? possess the same
characteristics as in Pindyck (2000, 2002). Differences only lie in the following facts: The
parameter 0 is assumed to be constant, and whenever emissions are reduced, E(t) drops to a
new value E;, as applied before, and A becomes zero.

The cost function K, which occurs when a policy is adopted, is K = kEy, with E; = 0.

Standard dynamic programming is again used to find the optimal level of M; where an

emission reducing policy should be adopted.

The policy objective is given by

W =E, {TB(MI, 0)e"dt + K(E,)e"" } (65)

where T is the unknown time at which the policy should be adopted.

The Bellman equations for the “no-adopt” and “adopt” regions, respectively, are

[BE-sM Wy +%<72WA2/M—(r+/1)WN+ﬁWN(M+¢):9M2, (66)

[BE, —SM W, +%<72WA;‘M —(r+ AW+ AW (M +¢) =M, (67)

which have to satisfy the following set of boundary equations:

W,1(0)=0 (68)
WYXMHY=W*"(M")-K (69)
Wy (M) =W (M), (70)

where M is the critical value of M where the policy should be adopted. Also the set of the
boundary conditions has the same characteristics as in Pindyck (2000, 2002).
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To obtain a closed form solution, ¢ is assumed to be zero, i.e. the environmental damage is
completely irreversible, because otherwise only a numerical solution for the “no adopt” region

could be found, as explained in chapter 3.4.

Thus, the value function by the “no-adopt” region is given by

BEW) +%0'2WA14VM —(r+ AW+ AN (M +¢)=6M>, (71)
where the general solution is

W= C]e'”‘M + Cze’”zM , (72)

and m; and m; satisfy
1 55 mg _
EU m”+ BEm—(A+r)+1e™ =0, (73)

which can only be solved numerically.

So, the solution for the no adopt area is given by

(@ AP MO 20(BE,+ AP PE + Ap+ M)

2 3
r r

N _ m M
W" =Ce

(74)

taking into account that C, is zero. The right hand side of equation (69) is the value of the

option to adopt the policy. As k; is positive, k;, is negative, and thus as M; tends to infinity,

"™ tends to zero. But the value of the option can not tend to zero as M; tends to infinity, thus

C, 1s zero.
The value function for the “adopt” region is given by

%O'ZWA;IM —(r+ AW+ AW (M +¢) =M, (75)
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and has the solution

(G +AF M) 204(Ag+rM) (76)

r

WA(M) =

The parameters C1 and M can be determined from the boundary equations:

Similar calculations have been done in chapter 3 of this thesis.

2
TIBEOQ

Clzr—*, (77)
mlemlM

and

« 1 1 Kr?

M =———(BE.+21 , 78

" r(ﬂ 0 ¢)20ﬂE0 (78)

which is equal to the one found in Pindyck (2000), if AL = 0.

Equation (76) is decreasing in A and ¢, and therefore an emission reducing policy is adopted
earlier if the stock of pollutant is assumed to face large unexpected changes.

This is one of the main outcomes of this chapter and of the paper by Dotsis et al. They also
pay attention to the case where A is not assumed to be zero after policy adoption, but drops to

a new value 1. However this fact, even if more realistic, does not change the main findings.

4.2.3 Economic uncertainty

In the last chapter I dealt with the problem of unexpected and large changes in the pollution
rate, and found that a policy should be adopted earlier if such discontinuities are regarded.
Now, economic instead of ecological uncertainty is introduced, and again the calculations will
only be presented shortly because they are very similar to the ones in chapter 3. The policy

implications are of interest.

Economic uncertainty, as in chapter 3, is introduced by 0, which now follows a geometric

Brownian motion augmented by jumps:
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d0 = abdt + o0dz + $0dg, (79)

where the jumps are again controlled by a Poisson process with positive constant jump sizes.
The stock of pollutant is now given by
dM (t)/t = BE(t)— oM (¢). (80)

The discontinuous part of the economic costs remains, emissions are assumed to be zero after

policy implementation, and the cost function is given by: K=kE.

The Bellman equations for the “adopt” and “no-adopt” areas, respectively are given by

W =—OM —(BE, - SM)W,) +aOW,’ +%029W;g —AWN(O, M)+ AMWY (B(p+1),M) (81)

W =-OM —(BE, - SM)W,} + aOW,' +%029W9‘; — AW O,M)+ AMW*(O(p+1),M), (82)

subject to the following set of boundary conditions:

wY(O0,M)=0 (83)
WY@ ,My=w*"6@,M)-K (84)
WY@ ,M)=W," (0 ,M) (85)

The solutions are:
For the “no-adopt” area

oM BE,0

WY (O,M)= A0 - - ,
r+o—(a+id) (r—(a+id)r+0—(a+id)

(86)

where vy is characterised by
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%0'27(7—1)+a;/—(r+/1)+/1(1+¢)7 =0, (87)

and for the “adopt” area

WA(Q’M)z_Ha—g?;,w)' (88)
Finally, from the boundary conditions we get

Ak (yk_ 1 j Lr ~(a+ w))(r/i 5—(a+ 29y } ’ )
and

0 = (ﬁj b (r —(a+A)(r+8—(a+ Ad)) | B. (90)

Equation (90) is strictly decreasing in y and ¢. So the same result for environmental
uncertainty is reached as for ecological uncertainty: An increase in the probability of large
future jumps will cause an earlier adoption of environmental policies. Here, in equation (90)
these jumps concern the future flow of social costs, whereas in equation (78) the jumps
concern sudden changes in the stock of pollutant M;. Furthermore, an increase in the jumps

size will have a similar effect.

4.2.4 Summary

Pindyck (2000, 2002) investigates irreversibilities and uncertainties to determine the optimal
timing of environmental policies. He uses the real option theory instead of the traditional cost
benefit analysis. Dotsis et al. use this analytical framework to determine in more detail the

implications of uncertainties, such as taking into account sudden unpredictable changes and
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jumps in the stock of pollutant and in the social cost per unit of stock of pollutant caused by
climate change. For example, so-called “feedback mechanisms” can be made responsible for
these jumps. In both cases they find that policies are about to be adopted earlier if such
changes are accounted for. Thus, neglecting these outcomes could lead to semi-optimal timing

in environmental policies.

5. Summary and Conclusion

5.1 English Abstract

Investing in the earths ecosystem, as it is the fundament of our existence, is an absolutely
necessary undertaking, not at least because of the substantiated damage from which it already
suffered as a result of human activities. As the future is uncertain, and environmental harmful
economic actions are partly irreversible, a precise valuation of ecological investment becomes
more and more important, and part of scientific economic discussion. The traditional Net-
Present Value rule, as pointed out clearly in this thesis, is not suitable enough to account for
uncertainty, irreversibility and flexibility. Thus, the real option approach is used to evaluate
and determine the optimal timing as well as the optimal amount of an emission reducing
policy carried out by a policy maker. This approach, which refers to an option value
comparable to the financial call or put option, allows giving future possibilities of investment

a value which is not considered under the NPV-rule.

The mathematical background used in the main part of this thesis, chapter 3, is presented in
chapter 2, as dynamic programming and certain types of Brownian motion, especially the Ito-
process. The latter allows to model stochastic trends which face uncertainties and
irreversibilities. Dynamic programming is used to break the whole future which is regarded in
two sequences, the present decision and a second one which encapsulates all future

consequences and possibilities.
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Chapter 3 describes the model by Pindyck (2000): “Irreversibilities And The Timing of
Environmental Policy” in detail. First of all, the analytical framework is presented, which is
then extended to analyse the implications of ecological and economic uncertainty,
irreversibility and the possibility of delaying the investment decision, as well as the possibility

of reducing emissions at once or gradually.

Economic uncertainty together with a once and for all reduction in emissions is modelled in
chapter 3.1. Here, the greater the uncertainty over future social cost of pollution, the greater
the incentive to wait rather than adopt the policy immediately. The same incentive to wait is
given if the discount rate r increases. Under ceteris paribus conditions, a greater current cost
of pollution makes immediate policy adoption favourable, which the traditional NPV-rule
takes into account as well. The timing of an emission reducing policy is also affected by
irreversibility. In this chapter, the higher the natural rate at which pollution depreciates, which
means that pollution gets more reversible, the smaller the sunken benefit of adopting the
policy now rather than waiting, and the policymaker tends to delay the adoption. Furthermore,
the timing of policy adoption does not depend on the initial level of pollution, but the value of
society’s option to adopt the policy increases linearly with the initial level of pollution.

Numerical as well as graphical solution can be found at the end of chapter 3.2.

In chapter 3.2.1 economic uncertainty, a convex cost function, and the possibility of partial
emission-reductions are assumed. As in chapter 3.2, the more uncertainty, the later an
emission reducing policy is adopted. But now, uncertainty also determines the amount by
which emissions are reduced. The higher uncertainty, the lower the emission reduction,
whereas an increase in the convex cost function increases the amount by which emissions are

reduced.

Next, a convex benefit function together with economic uncertainty is modelled in chapter
3.2.2, in contrast to before, where the benefit function was linearly correlated with the stock
of pollutant. The higher this stock, the earlier a policy gets adopted, because a higher stock of
pollution implies a higher marginal cost of additional emissions. Besides, a higher emission
level, a higher cost of emission reduction and a higher decay rate — more reversibility, lead to

later adoption.

60



Gradual emission reduction is then assumed in chapter 3.3. Here, a policy maker faces the
possibility to reduce emissions gradually and continuously. Thus, the optimal timing and the
optimal amount of emission reduction has to be determined. The cost function is assumed to
be convex, and the benefit function is assumed to be linear. Uncertainty then affects not only

the emission reduction over time, but also the initial reduction.

From chapter 3.4 onwards, ecological uncertainty is assumed but no economic uncertainty.
After a short overview of the new analytical framework, in chapter 3.2.1 complete
reversibility is assumed in order to find an analytical solution. As ecological uncertainty is
assumed to control the stock of pollutant stochastically, the future emission rates are known
but still the evolution of the ecosystem is uncertain. This uncertainty, analogous to the
economic uncertainty, delays policy adoption. A numerical example shows that the greater

uncertainty, the later an emission reducing policy is adopted.

A more general case with ecological uncertainty is modelled in chapter 3.4.2, where
environmental damage is partly irreversible. A solution is found only numerically in this case.
The higher uncertainty over the evolution of the stock of pollutant, the later a policy is
adopted. The same delay is true for lower irreversibility. Thus, a higher pollution decay rate
implies that the stock of pollution faces a lower drift rate, and as a consequence the present
value of the flow of social cost for any current value of the pollution stock is smaller.
Therefore, to compensate for the sunk cost of policy adoption, a higher stock of pollutant is

needed to trigger policy implementation.

Summarizing chapter 3, there is a possibility to delay policy adoption, called flexibility, and if
the costs for a policy adoption are assumed to be sunk, then immediate emission reduction
imposes an opportunity cost on society. However, there is also an opportunity “benefit” of
early adoption because the stock of pollutant gets reduced, which otherwise would impose a
nearly irreversible cost on society. And the higher uncertainty of the future costs and benefits
of reduced emissions, i.e. economic uncertainty, or of the evolution of the stock of pollutant,
i.e. ecological uncertainty, is assumed, the more the policy adoption gets delayed in order to
gain more information. This is true for once and for all reduction as well as for gradual

emission reductions, and in both cases the delay gets reduced the greater irreversibility.
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This basic framework is then extended to two directions in order to analyse more precisely the
impacts of the discount rate on the one hand and of the possibility of extreme events on the

other hand. This is done in chapter 4.

First, a model by Di Vita (2003) “Is the Discount Rate Relevant in Explaining the
Environmental Kuznets Curve?” is presented and discussed. The matter of investigation is the
question how the interest rate affects environmental policies. If the discount rate is high due to
economic growth as found in developed countries, the income-pollution pattern states that
environmental policies are more likely to be adopted than in developing countries which face
high interest rates. Thus, the discount rate and income move in opposite directions, such as
the discount rate and the willingness to adopt emission reducing policies. Furthermore, the
coherence between economic growth and pollution depends on the discount rate in the
following way: countries with a low level of income and high discount rates show a positive
relationship between economic growth and pollution, whereas developed countries illustrate
the opposite. Both, a once-and-for all reduction and a gradual emission reduction were

modelled, although the main findings were the same.

In chapter 4.2 extreme variations in pollution stock levels and in the socioeconomic costs
were assumed. Again, the optimal timing and the optimal amount of an emission reducing
policy were determined, but now accounting for the possibility of sudden jumps in the
emission level and in pollutant-related socio-economic costs. Economic and ecological
uncertainties were not modelled together. First, in chapter 4.2.1 sudden jumps were assumed
in the stock of pollution. Then, in chapter 4.2.2 large and unexpected changes in the future
flow of social cost were regarded. In both cases, the possibility of sudden unpredictable

changes lead to earlier policy adoption.

This thesis gives on overview of ecological investment theory, especially if uncertainty,
irreversibility and flexibility are concerned. The real option approach is explained and two
different extensions of Pindyck’s basic evaluation method were discussed. Needless to say,
more research on this fields has to be done, and actually is done, in order to minimize the

extremely high costs which may result from environmentally harmful production techniques.
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5.2 German Abstract / Deutsche Zusammenfassung

Diese Diplomarbeit befasst sich mit dem Thema des 6kologischen Investments. Die Debatte
iiber den globalen Klimawandel und dessen Folgen stellt einen wichtigen Teil in der
derzeitigen oOffentlichen und politischen Diskussion dar. Der Einfluss der wirtschaftlichen
Tétigkeiten auf die Umwelt ist uniibersehbar, und durch zahlreiche wissenschaftliche Arbeiten
belegt. Dies wurde in der Einflihrung dieser Arbeit ausreichend aufgezeigt und dokumentiert.
Welche Folgen und welche daraus resultierenden Kosten aus dem Klimawandel resultieren
kann jedoch nur geschitzt werden. Auch die optimalen Strategien wie man dem Wandel
entgegenwirken kann, und sollte, liegen nicht auf der Hand. Wie jede Investition, so miissen
auch die Investitionen in unser Okosystem bestmdglich bewertet und verglichen werden. Jede
Reduktion von Treibhausgasen, die als einer der Hauptverursacher des Klimawandels gelten,
bedarf umfangreicher Forschungsarbeit und hohem Investitionsvolumen, sprich, kostet Geld.
Der Nutzen daraus, etwa eine langsamer voranschreitende Temperaturerhohung, entspricht
jenen Kosten, die ansonsten durch eine hohere Umweltbelastung enstanden wiren. Diese sind
jedoch unvorhersehbar, also unsicher auf der einen Seite. Auf der anderen Seite sind die
Folgen des Klimawandels teilweise irreversibel, so ist der bisherige Aussto von
Treibhausgasen nicht mehr riickgingig zu machen. Selbiges gilt fiir umweltschohnende
MaBnahmen. Deren genauer positiver Einfluf ist ebenso unsicher, und sobald diese
Investition getétigt worden ist, sind die dafiir anfallenden Kosten, zumindest teilweise,
gesunkene Kosten, also ebenfalls irreversibel.

Die Bewertung einer Investition erfolgt traditionellerweise auf Basis der Kapitalwertregel, der
net-present-value (NPV) rule. Sie besagt, dass sobald der erwartete abdiskundierte, also
gegenwartige Profit grosser ist als die erwarteten abdiskundierten Kosten, die Investition
getitigt werden soll. Unberiicksichtigt bleiben hier jedoch die angesprochene Unsicherheit
und die Irrversibilidt der Investitionen sowie die Moglichkeit diese auf einen andern Zeitpunkt
zu verschieben. Diese Moglichkeit der Flexibilitdt hat einen Wert, dhnlich dem der call- und
put-options am Aktienmarkt, etwa wenn durch die Verzogerung der Investition neue
wertvolle Informationen gesammelt werden konnen.

Um bei der Bewertung, in diesem Falle umweltschonender Investitionen, diese drei Kriterien
nicht ausser Acht zu lassen verwendet man den sogenannten real — option — approach.

Der Hauptaspekt dieser Diplomarbeit widmet sich genau dieser Bewertungsmethode. Nach
einer Einleitung, die die Unterschiede der NPV — rule und der Realoptionstheorie genau

erklart, und die Herangehensweise motiviert, erkldre ich die fundamentalen mathematischen
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Methoden die dafiir n6tig sind. Um die Unsicherheiten der getétigten Investitionen sowie der
Folgen eines erhohten TreibhausgasausstoBen zu modellieren, wird der sogenannte ,,Wiener
Process*®, auch ,,Brownian Motion‘* genannt, verwendet.

In Kapitel 3 wird das Modell von ,Irreversibilities and the Timing of Environmental
Policies”, Pindyck (2000), detailiert besprochen und verschiedene Dynamiken
unterschiedlicher Parameter dargestellt. Kurz zusammengefasst handelt es sich bei diesem
Modell um die Bewertung von Emissionsreduktionen anhand der Realoptionenmethode.
Okonomische und dkologische Unsicherheit, die Folgen von Irreversibilitit, die Moglichkeit
der Flexibilitit, sowie verschieden Kostenfunktionen werden beriicksichtigt, und deren
unterschiedlichen Implikationen untersucht um den optimalen Zeitpunkt, sowie den optimalen
Umfang der Emissionsreduktion zu bestimmen. Auch die Mdglichkeit von einmaliger sowie
gradueller Reduktionen der Treibhausgase wird modelliert, und deren Ergebnisse verglichen.
Eines der wichtigsten Ergebnisse ist, dass eine umweltschohnende Politik desto spiter
durchgefiihrt werden soll, je grosser die Unsicherheit ist. Eine Verzdgerund der Politik ist
auch dann optimal, wenn die Irreversibilitdt abnimmt.

In Kapitel 4 werden zwei Erweiterungen des in Kapitel 3 besprochenen Modelles dargestellt
und analysiert.

Anhand von Di Vita’s Modell ,Is the Discount Rate Relevant in Explaining the
Environmental Kuznets Curve? wird die Rolle der Zinsrate genauer unter die Lupe
genommen. Di Vita kommt zu dem SchluB}, dass die Unterschiede in der Zinsrate in
entwickelten Landern und Entwicklungsldndern dazu fiihrt, dass in ersteren
umweltschohnende Mafinahmen getroffen werden, in letzteren jedoch nicht. Er fiihrt dies
darauf zuriick, dass unter einer niedrigen Zinsrate eine umweltschohnende Politik eher
mdglich ist, was in Kapitel 4.1 auch modelliert wird.

Die zweite Erweiterung des zugrundeliegenden Modells beschéftigt sich mit den Folgen von
extremen Ereignissen, einerseits im Okosystem, etwa unvorhersehbaren extremen
Steigerungen von Treibhausgasen in der Atmosphire, und andererseits von extremen
Spriingen der sozial-Okonomischen Kosten die durch den Klimawandel hervorgerufen
werden. Unter Anbetracht dieser Mdglichkeiten wird, &hnlich wie in Kapitel 3, der optimale
Zeitpunkt und der optimale Umfang von treibhausgasreduzierenden Investitionen errechnet.
Je grosser die Wahrscheinlichkeit von groBen unvorhersehbaren Anderungen der Emissionen
beziehungsweise der damit verbundenen Kosten, desto frither wird eine emsionsreduzierende

Politik optimal.
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Kapitel 5.1 fasst die wichtigsten Erkenntnisse der Arbeit zusammen und vergleicht deren

Implikationen. In Kapitel 6 sind die detailierten mathematischen Kalkulation zu finden.
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6. Technical appendix

6.2)
Determining A, ©* and y from equation (13) in chapter 3.2:

First using equation (8) from chapter 3.2:

wY@O,M)=w"6,M)-K
oM BE,0 oM

A0 — - =- -K
r+é6-a (r-a)(r+é-a) r+é-a
PEO
A7 — =K
(r—a)(r+5—a)
PEO
AQ” = -K
(r—a)(r+5—a)
A= ,BEOG L_E
(r—a)(r+5—a) 0 0
PE, oK
A= 07 ——
(r—a)(r+5—a) o

Taking into account that

M PE,
r+0—a (r-a) r+o-a)

WY (O ,M)= Ay —

M

WO M=

and then using equation (9) from chapter 3.2:

WHN(Q*,M) = WQA(Q*aM)a

A}/ y-1 _ M _ ﬁEO — M
r+o—a (r-a)r+o-a) r+o-—-a
Ay’ — PE, =0
(r-a)(r+o—-a)
A}/ y-1 _ ﬂEO

C(r-a)r+8-a)

(1*)
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Inserting (1*) for A

[ :BEO 01—7 _£:| 7,57—1 — :BEO
(r-a)(r+o—-a) o’ (r-a)r+o—-a)
PE, g1 PE,
(r—-a)r+o-a) (r—-a)(r+o-a)
o BE, _

ey S S

o PE, ol
¢ _(r—a)(r+5—a)(7 1)K;/

Ky {(r—a)(wa—a)} (%)

(-1 PE,

Then inserting equation (2*) in equation (1*) to get A*:

A0 — PESY =—
(r—-a)r+oéo-a)
yK (r-a)r+é-a)| BE,0 VK (r=a)r+d-a)|__,
BE,0 (r—a)r+s—-a)| (y=1) BE,0 -

BE0 -1
_ yK _Kj( yK jy((r—a)(r+§—a)j_y
-1 - NG-D BE,0

ottt ) et
| (7=DA(r=D (r=1 (r-a)r+d-a)

o) )
yK yK (r-a)r+o—-a)

PRI pEO Y
yK yK (r-a)r+o-ao)

_;/K_(;/—l)K} BEO
yK ) |r-1 y—1 (r—-a)(r+o-a)

K BE,0 ’
yK y=1)\(r-a)(r+o-a)

1

(r=1

A( yK jy((}"—a)(l”+§—0{)jy_ yK
(r=D

A
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(21 (7/ 1) PE,0 ’

- yK K (r-a)r+dé—-a)

)2 ) it
/4 K (r—-a)r+8-a)

I =)

B y K (r—-a)r+o-a)

r { 7—1)7_] BE,0 ’
K (r—-a)r+o—-a)

(3%)

and making use of our assumption, that K = kE,, equation (2*) and (3*) become equations

(15) and (16) from chapter 3.2:

=1, B
( k ) [(r—a)(r+5—0{)}/

k(r—a)r+o—-a)

I'E,,

Inserting (10) in (8) in chapter 3.2:

WY (0,M) =0

1
rW" =—-0M +(BE, - SMW,} + aW,’ +50'202ng’

where

wh = A67;

W) =4y,

Wy =Ay(y-1)0"

— 0P Ay(y -0 7 + 04y —r40” =0

%asz(7—1)97+aA}/97—rA97 =0

Aey[éozy(y—nmy—r]:o,

receiving the following quadratic equation:

(15)

(16)

(10)
(8)
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1
562}/(}/—1)4-0{}/—1”:0,

and solving it:

2
2 L . .
y=———+ \/(—2——] +—’; which is equation (18) in chapter 3.2.

6.b)
Calcualting A and 6* from chapter 3.2.1:

W (6", M) = W*(6, M) - K, (11)
or . OM  PEO M BEO
r+o0-«a yo, r+o-a p
o PEO_ BEO
p p
A0 ——'BE°9+—’BE‘0+K:O
PP
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0
_(Eo _El)%+k1(Eo _E1)+k2(Eo _E1)2 =0

A0 +(E, E){ ’89+k+k(E El)}:o

A0 +| - ﬂ€+k+%r[k

P

k, 2k2:0 i
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2 2
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p 2p 2
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2k,p 4k2 o’ 4k2
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4k,p 4k, 2k,p
__FO Kok
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W, (6, M) = W' (6", M).
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E
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E
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Ay9""! —%(EO -E)=0

2 2
,BQ k] _ﬂgkl 0—}’}/ 7—]_£(E0_E1)=0
4k, p? 4k2 2k p P
9’ k2 Ok _
ﬁ 1 _ﬂ 1 yglzé(Eo_E])
4k2p 4k2 2k, p P
PO K _BOK) g0 B[ 50k
4k, p’ 4k2 2k,p p\ 2k,p 2k,
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4k, p° 4k2 2k,p 2k,p*  2k,p
POk _Bok), _ [0 _kpo
4k, p’ 4k2 2k,p 2k,p°  2k,p
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(y=2)B°0° +2p(y = 1) fl0 + 30’k =0.

(28)

Assuming that y > 2, and taking into account that W(8) — W™(0) — K(E(6%)) is convex in 6,

0* is the largest root of this quadratic equation (28):

. —bx+b*—4ac

g:
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o 2p(r =Dk PR =1 = y(y = 2)]

(r=2)p

o - PU=Dhk | VPRI~ ~7(y-2)]

Blr-2)

py=2)

71



_pr=Dk Jﬁkﬁ[(y—l)z ~r(r=2)]
p(r-2) B (=27
_Pr=Dk \/pzkf(y—l)z Pk =2)
pr-2 \ B~  B(r-2)
_Pk(r=D \/pzkf(V—l)z_ PRy
pr-2 N Fr-2" Fr-2)
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c) Calculating A and 6* in chapter 3.2.2:

WY (6, M) = W*(6, M) - K,

10" — oM* 2B°E,0 ~ 2BEOM __ o
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inserting equation (4*) for A:
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now inserting equation (31) in (4*) to get A:
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T

Calculating 6* and a from chapter 3.3:

ab” =—’80’AE
P

-K

(38)
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OAE
ab” ='B‘——(m1 —m,E)
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P

_PAE
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p p

[ﬂ@AE
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(m—%mwlz%?w—n
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p(m] - sz)7
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inserting in (38) yields a:
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(41)
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