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 Abstract  

 
 
LDL receptor-related protein-2 (LRP-2/Megalin/gp330) was initially identified as the 

pathogenic autoantigen in a rat kidney disease known as Heymann nephritis. Hence, 

research primarily focused on the role of the protein in the kidney. LRP-2 is a 600kDa 

member of the low-density lipoprotein (LDL) receptor family, membrane proteins 

that share structural properties and functional features. The receptor is expressed on 

the apical surface of polarized epithelial cells, which show high endocytic activity. 

Although LRP-2 is a classical endocytic receptor, recent findings helped to reveal its 

prominent role in cell signaling, vitamin homeostasis, and steroid hormone function. 

To exert these different tasks, LRP-2 is a promiscuous receptor for various ligands 

including lipoproteins, vitamin-binding proteins, hormones, and enzymes.  

LRP-2, which is important for the developing and adult organism, is highly expressed 

in organs including mammalian kidney, lung, small intestine, and male and female 

reproductive tracts. During development the receptor can be found in various 

embryonic as well as extraembryonic tissues. Significantly, LRP-2 is highly 

expressed in the yolk sac, which is mostly of evolutionary importance in mammals, 

but is essential in avian embryogenesis. Therefore, the chicken serves as an excellent 

model organism not only to study lipid metabolism, but also to analyze 

embryogenesis. Although expression and functions of mammalian LRP-2 are well 

characterized, the roles of its avian homologue need further investigation.  

By analyzing chicken LRP-2 expression patterns, possible receptor functions may be 

elucidated. Here I revealed that LRP-2 is highly expressed in the chicken yolk sac, 

which is composed of an outer layer of interlinked mesenchymal cells pervaded by 

blood vessels, and an inner single layer of large endodermal endothelial cells (EEC) 

facing the yolk. To localize the receptor in the yolk sac, immunohistochemistry 

showed that LRP-2 is expressed on the surface of EECs. Western blotting 

experiments confirmed these results. LRP-2 expression in the yolk sac can be 

observed in the first week of incubation, it culminates at the beginning of the third 

week and then slowly decreases. This observation correlates with the fact that 

transport processes operate at highest levels in the last trimester of chicken 

development. Therefore, LRP-2 expression in the membrane of EECs may mediate 
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nutrient uptake from the yolk. In contrast, LRP-2 expression steadily increases during 

kidney development and persists in the adult organ. It is important to note that LRP-2 

expression levels in the adult kidney differ significantly between male and female 

animals. A possible explanation for this observation could be the influence of sex 

hormones. This notion is supported by my data showing increased LRP-2 expression 

in the rooster kidney following estrogen treatment. Future studies should provide 

better insights into the hormonal regulatory mechanisms of receptor expression. 

The data obtained from studies on aspects of chicken development support the crucial 

role of the yolk sac; the underlying mechanisms are planned to be elucidated in 

ongoing studies. 
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Zusammenfassung 

 
 
LRP-2 (Megalin/gp330) wurde ursprünglich als pathogenes Autoantigen in Nieren 

von Ratten gefunden, die an Heymann Nephritis erkrankt waren. Von diesem 

Zeitpunkt an war die Forschung auf die Funktionsaufklärung des Proteins in der Niere 

fokussiert. LRP-2 ist ein Membran-gebundenes, 600kDa großes Mitglied der LDL 

Rezeptor Familie, die sich durch strukturelle Gemeinsamkeiten und ein ähnliches 

Funktionsspektrum auszeichnet. Der Rezeptor wird an der apikalen Oberfläche von 

polarisierten Epithelzellen exprimiert, die eine hohe endozytotische Aktivität 

aufweisen. Obwohl LRP-2 hauptsächlich die Endozytose verschiedenster Liganden 

vermittelt, weisen neueste Forschungsergebnisse auf weitere Funktionen hin. Zu 

diesen neuen Wirkungsgebieten zählen Signaltransduktion, Vitamin Homöostase und 

Steroidhormonfunktion.  

LRP-2 ist nicht nur im adulten Organismus wichtig, sondern auch für die 

Embryogenese essentiell. Niere, Lunge, Dünndarm und weibliche und männliche 

Reproduktionsorgane gehören zu den Geweben mit der höchsten LRP-2 Expression in 

Säugetieren. Während der Embryonalentwicklung wird LRP-2 sowohl im Embryo als 

auch in extra-embryonalen Geweben exprimiert. In Säugetieren ist der Dottersack, in 

dem hohe Mengen an LRP-2 vorhanden sind, strukturell und funktionell weitgehend 

von evolutionärer Bedeutung. Im Gegensatz dazu ist der Dottersack ein zentraler 

Bestandteil der embryonalen Entwicklung bei Vögeln. Deshalb ist das Huhn nicht nur 

für die Erforschung des Lipidstoffwechsels, sondern auch für Studien während der 

Embryonalentwicklung ein exzellenter Modellorganismus. In Säugetieren ist die 

Expression und Funktionsweise von LRP-2 weitgehend aufgeklärt, im Huhn jedoch 

bedarf es noch gründlicher Erforschung des homologen Proteins. 

Die Analyse der Expressionsmuster von LRP-2 kann zur Funktionsaufklärung 

beitragen. Der Dottersack besteht aus zwei Schichten, einer äußeren Schicht 

mesenchymaler Zellen, die mit Blutgefäßen durchzogen sind und einer inneren 

Einzelschicht, die aus großen endodermalen Endothelzellen (EEC) zusammengesetzt 

ist und zum Dotter weist. Der Rezeptor wird im Dottersack stark exprimiert. Mit Hilfe 

von Immunhistochemie konnte LRP-2 an der Oberfläche von EECs lokalisiert 
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werden. Diese Ergebnisse konnten durch Western-Blot Experimente bestätigt werden. 

Die Expression des Rezeptors wird in der ersten Entwicklungswoche sichtbar, erreicht 

ihren Höhepunkt am Anfang der dritten Woche und sinkt dann langsam wieder ab. 

Dieses Expressionsmuster korreliert mit den intensiven Transportprozessen von 

Nahrungsbestandteilen, die im letzten Trimester der Entwicklung stattfinden. Die 

Expression von LRP-2 in der Membran von EECs ist daher wahrscheinlich an der 

Nährstoffaufnahme aus dem Dotter beteiligt.  

Im Gegensatz zur Situation im Dottersack, kommt es zu einem kontinuierlichen 

Anstieg der LRP-2 Expression während der Nierenentwicklung, die im erwachsenen 

Tier den höchsten Level erreicht. Dabei zeigt sich, dass es signifikante Unterschiede 

zwischen männlichen und weiblichen Tieren gibt. Geschlechtshormone könnten eine 

mögliche Erklärung für diese Beobachtung sein. Es zeigt sich, dass es nach Östrogen-

Injektionen zu einem starken Anstieg der LRP-2 Expression in Hähnen kommt. 

Weitere Studien könnten über die hormonellen Regulationsmechanismen der 

Rezeptor-Expression Auskunft geben. 

Die Daten, die im Zuge dieser Arbeit ermittelt werden konnten, haben einige Aspekte 

der Embryonalentwicklung des Huhns aufgeklärt und die wichtige Rolle des 

Dottersacks aufgezeigt. Die Mechanismen, die diesen Prozessen zugrunde liegen, 

sollen in weiteren Studien untersucht werden. 
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Chapter 1  

 

Introduction 

 

 

 

 

 

 

 

 

 

1.1 The Low-Density Lipoprotein (LDL) Receptor 

Family 

 

1.1.1 Overview  

 

The evolutionary conserved LDL receptor family of closely related cell-surface 

receptors can be found in mammals and other organisms as well. Initially identified as 

endocytic receptors, recent findings indicate new roles for this ancient protein family. 

LDL receptor relatives (LRs) mediate the binding, internalization, and degradation of 

various ligands, a process called receptor-mediated endocytosis [Nykjaer and 

Willnow, 2002]. Besides the regulation of lipid metabolism, LRs are involved in 

embryonic development, nutrient and vitamin transport, and signal transduction. 

Latest evidence suggests significant novel physiological roles of individual LRs, 

which have yet to be fully elucidated [May et al., 2007].  
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1.1.2 Structural Properties of the LDL Receptor Family  

 

The members of the LDL receptor family are trans-membrane glycoproteins, which 

comprise large extracellular and relatively small intracellular domains. This protein 

family shares structural motifs and functional features [Hussain, 2001].  

 

Figure 1.1. Structure of the LDL receptor family members. Most receptors on the picture 

constitute core members of the protein family. More distantly related members include LRP-

5, LRP-6, and SorLA, which are characterized by unique combinations of motifs. See text for 

more details [Willnow et al., 2007]. (source: Andersen and Willnow, 2006) 

 

There are five characteristic building blocks of LDL receptor family members, which 

constitute these proteins in various compositions. The extracellular part of the 

receptors contains ligand-binding domains, formed by cysteine-rich complement-type 

repeats. The epidermal growth factor (EGF) precursor homology domain, containing 

cysteine-rich growth factor repeats and YWTD (Tyr-Trp-Thr-Asp) sequences, is 

essential for the pH-dependent release of the ligands in the endosomes. O-linked 
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sugar domains constitute serine and threonine-rich stretches on the extracellular part 

of the receptor.  

The trans-membrane spanning domain anchors the receptor to the membrane. All 

cytoplasmic domains have unique recognition sites for adaptor proteins suggesting 

different fates for ligands internalized by individual receptors. At least one NPXY 

(Asn-Pro-Xxx-Tyr; Xxx stands for any amino acid) sequence can be found in the 

intracellular domain, which mediates the clustering of LDL receptor family members 

into clathrin-coated pits [Schneider and Nimpf, 2003; Willnow et al., 2007]. 

 

1.1.3 Functional Features of Prominent LDL Receptor Family 

Members 

 

LDL Receptor 

The first member of the LDL receptor family discovered was the LDL receptor 

(LDLR), a 160kDa protein controlling plasma cholesterol levels. The LDLR binds 

lipoproteins by the recognition of apolipoprotein E (apoE) and apolipoprotein B-100 

(apoB-100), which can be found on the surface of certain lipoprotein particles. Hence, 

receptor-mediated endocytosis is a main regulatory mechanism for cholesterol 

homeostasis. The founding member of the LDL receptor family seems to be the only 

one exclusively involved in lipid metabolism [Hussain, 2001].  

Genetic defects in the LDL receptor result in the inability to clear lipoproteins from 

the bloodstream, which leads to the accumulation of LDL particles in the circulation 

[Nykjaer and Willnow, 2002]. Autosomal, dominantly inherited familial 

hypercholesterolaemia (FH) is the disease caused by mutations in the LDLR gene, 

which comes along with early atherosclerosis and premature cardiovascular disease 

(CVD). Hundreds of mutations can be attributed to five classes of disease-causing 

mutations at the LDLR gene locus [Brorholt-Petersen et al., 2002].  

The chicken LDLR has been conserved throughout evolution, sharing characteristic 

features with the mammalian receptor; it supplies lipoprotein-derived cholesterol for 

steroid production in ovarian follicular cells [Schneider, 2007]. 
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LDLR-related Protein 

The LDLR-related protein (LRP-1) is a 600kDa multifunctional cargo receptor that 

removes its ligands from the surface of various types of cells. LRP-1 is ubiquitously 

expressed and can mostly be found in vascular smooth muscle cells (SMCs), 

hepatocytes, and neurons. The functions of the receptor range from lipoprotein 

transport to regulation of cell surface protease activity, control of tissue invasion, and 

protection against atherosclerosis. Recent studies showed a crucial role of LRP-1 in 

signaling functions including cell migration and proliferation, and the regulation of 

vascular permeability [May et al., 2007]. 

The chicken protein is conserved, showing 83% overall identity with human LRP-1. 

After post-translational cleavage, a 515kDa extracellular subunit is produced. Chicken 

LRP-1 binds Ca2+, α2-macroglobulin, and vitellogenin. The receptor is not expressed 

in oocytes, but coevolved with genes playing a role in the reproduction of avian 

species [Schneider, 2007]. 

 

VLDL Receptor, LR8 

The very low-density lipoprotein (VLDL) receptor, a member of the LDL receptor 

gene family with eight ligand-binding repeats, is predominantly expressed in 

mammalian heart, skeletal muscle, and adipose tissue [Nimpf and Schneider, 1998]. 

This highly conserved receptor (95kDa) is similar to the LDLR, just containing one 

additional complement-type repeat in the ligand-binding domain. This protein is 

involved in the extrahepatic metabolism of triglyceride-rich lipoproteins, having an 

affinity for apoE. Moreover, the VLDLR binds lipoprotein-unrelated ligands 

including urokinase-type plasminogen activator and plasminogen activator inhibitor 

complexes, thrombospondin, and reelin [Schneider and Nimpf, 2003]. 

In egg laying species, the VLDLR homologue is also termed LR8, due to its eight 

ligand-binding repeats. This endocytic receptor is crucial for reproduction by 

mediating specific uptake of VLDL and vitellogenin (VTG) into growing oocytes. 

Furthermore, LR8 is also expressed on the surface of endodermal endothelial cells 

(EECs) of the extraembryonic yolk sac, where it mediates the uptake of VLDL from 

the yolk and subsequent transport into the embryo [Hermann et al., 2000].  
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A point mutation at the lr8 locus can be observed in a mutant chicken strain, called 

“restricted ovulator” (R/O). These hens are not able to lay eggs due to the inability of 

the oocytes to enter the rapid growth phase. As a result of sustained VLDL and VTG 

synthesis in the liver, R/O females develop severe hyperlipidemia and atherosclerotic 

features [Schneider and Nimpf, 2003]. 

 

 

1.2 The Role of LRP-2/Megalin/gp330 

 

1.2.1 Overview  

 

LRP-2 is a very large, multiligand member of the LDL receptor gene family. Initially 

termed gp330, the receptor was originally identified as the pathogenic antigen in 

Heymann nephritis (HN), an autoimmune disease in rats. This rat kidney disease 

presents an excellent animal model for studying human membranous 

glomerulonephritis.   

After purification from HN rat glomeruli, the antigen was named gp330 due to the 

molecular weight estimated by its mobility during gel elecrophoresis. First, the 

receptor was found in the renal proximal tubule and in glomeruli, but subsequently 

additional epithelia expressing LRP-2 were identified. Many ligands were determined, 

including the receptor-associated protein (RAP), lipoproteins, and enzymes and their 

inhibitors [Christensen and Birn, 2001; Orlando et al., 1992]. 

When in 1994 cDNA cloning and sequencing was completed by Saito et al., the name 

megalin was suggested due to its large size. The 4660 amino acid (aa) sequence was 

expected to constitute a mature glycoprotein of 516.715kDa [Saito et al., 1994]. The 

generation of a megalin-deficient mouse was another step to gain further information 

about the role of this receptor. Megalin knockout mice manifest abnormalities in 

epithelial tissue including lung and kidney, and die perinatally from respiratory 

insuffiency. In the brain, holoprosencephaly is caused by impaired development of the 

neuroepithelium [Willnow et al., 1996]. 
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1.2.2 Structural Features of LRP-2 

 

LRP-2, a 517kDa single-chain receptor, has a large amino-terminal extracellular 

domain, one transmembrane domain, and a short carboxy-terminal cytoplasmic tail. It 

is the largest known mammalian single-chain receptor. The human gene, located on 

chromosome 2, shows 77% homology to the rat DNA sequence. The non-

glycosylated form has a molecular weight of 517kDa, but after posttranslational 

modification the receptor becomes heterogenously glycosylated with various forms of 

N-glycans and oligo/poly-α2,8-deaminoneuraminic acid is added, to result in a 

molecule with an approximate molecular mass of 600kDa. A 25 amino acid sequence, 

adjacent to the amino-terminus, represents a potential signal peptide sequence 

[Christensen and Birn, 2002].  

 

 

 

Figure 1.2. Schematic diagram depicting the modular structure of LRP-2. (Adapted from 

Christensen and Birn, 2002) 

 

Four clusters of cysteine-rich complement-type repeats constitute the ligand-binding 

regions, which are separated by a total of 17 EGF-like repeats. Eight cysteine-poor 

spacer regions contain YWTD motifs. The single transmembrane domain is connected 

to the cytoplasmic tail, which varies between different gene family members. Three 

NPXY motifs can be found on the carboxy-terminus, responsible for clustering the 

receptor into coated pits. Additionally three conserved Src-homology binding regions, 

three proteinase kinase C phosphorylation sites, and seven casein kinase II sites 

mediate the binding to cytoplasmic adapter proteins [Christensen and Birn, 2001; 

Moestrup and Verroust, 2001]. 
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1.2.3 Tissue Distribution of LRP-2 

 

LRP-2, an integral membrane protein, is expressed on the apical surface of polarized 

epithelial cells. The receptor can be found in various adult tissues including the 

intestinal brush border, gallbladder epithelium, thyroid follicular cells, and type II 

pneumocytes of the lung and in the kidney. LRP-2 is also expressed in the mammary 

epithelium, uterus and oviduct, and in the male reproductive tract [Fisher and Howie, 

2006]. 

Since LRP-2 operates in concert with cubilin, which is a peripheral membrane 

glycoprotein, a co-localization can be observed in various tissues [Christensen and 

Birn, 2002]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Organs expressing LRP-2 and cubilin. (source: Christensen and Birn, 2002) 

 

The role of this receptor during embryonic development is pinpointed by its wide 

distribution in embryonic and extraembryonic tissues. After fertilization, rapid cell 

division results in the formation of a blastocyst, which marks the endpoint of pre-

implantation development [Fisher and Howie, 2006]. LRP-2 can be detected in rat 

and mouse embryonic day 4 trophoectodermic cells, which constitute the outer wall of 
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the blastocyst and finally form the fetal part of the placenta. During development the 

primitive endoderm cells differentiate into the visceral endoderm (VE) of the yolk 

sac, in which the receptor is also present. LRP-2 is highly expressed in the 

neuroepithelium, the ventricular zone of the developing brain ventricles and the spinal 

cord, the neural retina, the sensory epithelia of the vestibular and cochlear organs, and 

the olfactory epithelium, demonstrating its crucial role in brain development 

[Christensen and Birn, 2002; Kozyraki and Gofflot, 2007]. 

In the early stages of renal development, LRP-2 can be detected in the mesonephric 

tubules and the early metanephric renal vesicles, but later on expression becomes 

restricted to glomerular and proximal tubule cells [Christensen and Birn, 2002]. 

 

1.2.4 LRP-2 is a Multifunctional Receptor 

 

LRP-2 is a multifunctional receptor, which binds and internalizes various kinds of 

ligands including lipoproteins, protease-protease inhibitor complexes, vitamin-

vitamin binding protein complexes, and hormones [May et al., 2007]. A summary of 

the so far identified ligands is given in Table 1.1. The promiscuity of the receptor can 

be partly explained by its 36 complement-type repeats, encoding many possible 

recognition sites, but the number of repeats cannot fully explain so many structurally 

unrelated ligands. The cooperation with co-receptors like cubilin could be a strategy 

to broaden its ligand spectrum [Nykjaer and Willnow, 2002]. Plasma proteins like 

apoE, lipoprotein lipase, lactoferrin, and aprotinin bind to the second ligand-binding 

region. The intracellular chaperone, receptor associated protein (RAP), is able to bind 

to several binding sites, thereby inhibiting the binding of most ligands. Ligand 

binding of LRP-2 depends on the presence of calcium, which stabilizes binding sites 

[Kozyraki and Gofflot, 2007].  

Although ligands vary in structure and function, various groups can be distinguished. 

Proteins with a carrier function for vitamins, lipids, hormones, and minerals constitute 

a group of nutritionally relevant ligands. The nutritional aspect of protein uptake by 

LRP-2 applies especially to its function in the yolk sac [Moestrup and Verroust, 

2001]. 
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Vitamin-binding proteins 
Transcobalamin–vitamin B12  
Vitamin-D-binding protein 
Retinol-binding protein 
Folate-binding protein 

Lipoproteins 
Apolipoprotein B  
Apolipoprotein E  
Apolipoprotein J/clusterin 
Apolipoprotein H  
Apolipoprotein M 

Immune- and stress-response-

related proteins 

Immunoglobulin light chains 
PAP-1  
β2-microglobulin 
 

Steroid hormone binding proteins 

Sex hormone-binding protein-
estrogens 
Sex hormone-binding protein- 
androgens 

Hormones and hormone 

precursors 
Parathyroid hormone 
Insulin 
Epidermal growth factor 
Prolactin 
Thyroglobulin 
Leptin 
 

Enzymes and enzyme inhibitors 

PAI-1  
PAI-1–urokinase 
PAI-1–tPA 
Pro-urokinase 
Lipoprotein lipase 
Plasminogen 
β-amylase 
β1-microglobulin 
Lysozyme 
 

Other carrier proteins 

Albumin 
Lactoferrin 
Hemoglobin 
Myoglobin 
Odorant-binding protein 
Transthyretin 
Metallothionein 
 

Drugs and toxins 

Aminoglycosides 
Polymyxin B  
Aprotinin 
Trichosanthin 
Somatostatin analogues 
 

Others 

RAP 
Ca2+  
Cytochrome c  
 
Bone morphogenic protein 4 
Sonic hedgehog 

Table 1.1. Ligands of LRP-2. (adapted from: http://www.recepticon.com/introduction.htm; Kozyraki and 

Gofflot, 2007) 

 

Furthermore, binding of proteins like albumin or immunoglobulin G light chains 

suggests a protein-rescuing function of the receptor. Another ligand group including 

enzymes, enzyme-protein complexes, and toxins, is cleared by LRP-2, indirectly 

regulating the toxicity of substances in tissue fluids [Moestrup and Verroust, 2001]. 

Latest findings have revealed that the endocytic uptake by the receptor is not only 

involved in cargo transport, but also mediates superordinate regulatory processes. 

LRP-2 is able to regulate the availability of signaling molecules by limiting their 

activity or by delivering signaling molecules to their target cells [May et al., 2007]. 

 

Endocytosis and the Kidney 

Because LRP-2 was initially identified as a receptor important for renal proximal 

tubule function, research primarily focused on its role in endocytosis, binding and 

internalizing dietary sterols [Fisher and Howie, 2006]. 

The renal proximal tubules are important for the recycling of various solutes after the 

filtration through the glomerulus. Low molecular weight metabolites are bound and 

internalized, which otherwise would be lost in the urine. In addition to water, other 

blood components including ions, glucose, and amino acids are absorbed in the 
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proximal tubule. Plasma proteins, like plasma carrier proteins, peptide hormones, and 

lysozyme, are also filtered through the glomerulus and subsequently reabsorbed. The 

epithelial cells of the proximal convoluted tubule (PCT) are the cells responsible for 

the uptake of macromolecules. Tissues involved in endocytic activities often increase 

their surface by the formation of microvilli, thus creating an apical brush border. 

Furthermore, clathrin-coated pits and members of the endocytic apparatus like 

endosomes, lysosomes, and dense apical tubules facilitate rapid uptake of ligands 

[Leheste et al., 1999]. 

 

Figure 1.4. A schematic illustration of the kidney and receptor-mediated endocytosis in the 

renal proximal tubule. (source: http://www.recepticon.com/megalinreceptor.htm) 

 

LRP-2 is a key receptor for the uptake of proteins in the PCT. Several grams of 

protein are internalized and degraded each day, but the rescue mechanism for protein-

bound components may be physiologically even more important [Moestrup and 

Verroust, 2001].  
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LRP-2 and Embryonic Development 

In mammals, LRP-2 is expressed prior to implantation (the attachment to the wall of 

the uterus) of the embryo. The blastocyst, composed of the inner cell mass (ICM) and 

the trophoectoderm (TE), is formed after several cell divisions. In early post-

implantation blastocysts, the receptor mediates transport of dietary sterols particularly 

into the neuroepithelium [Fisher and Howie, 2006].  

Yolk sacs can be found in all species, displaying different structures and functions. 

However, in the nematode Caenorhabditis elegans (C. elegans) for instance a LRP-2 

homologue plays an important role in growth and development, mediating sterol 

uptake. In other non-mammalian model organisms including zebrafish and fruitflies, 

LRP-2 expression is important for embryonic development. In rodents, endodermal 

cells migrate from the ICM to the blastocoelic cavity finally forming the yolk sac 

structure around embryonic day 7. After nine days it completely surrounds the 

embryo and the absorbtive surface is directed towards the maternal circulation. Until 

embryonic day 10, this remains the only interface between the mother and the 

embryo. Then, an allantoic membrane is generated [Moestrup and Verroust, 2001]. To 

conclude, LRP-2, expressed in the endodermal cells of the yolk sac, is needed for 

normal growth, nutrition, and development from pre-implantation to blastocyst 

implantation in rodents [Fisher and Howie, 2006]. 

The receptor is crucial for development not only at an early embryonic stage, it is also 

involved in proper organogenesis. During formation of the brain, the central nervous 

system (CNS), and sensory organs, LRP-2 is a crucial regulator of development. In 

epithelia of the kidney, respiratory tract, foregut, stomach, and small intestine the 

receptor is also involved in organogenesis [Fisher and Howie, 2006]. 

Recent evidence showed that LRP-2 has a biological function as a signal transducer. 

The interaction of the receptor with bone morphogenic factor 4 (BMP4) demonstrates 

an involvement in the sonic hedgehog (Shh) signaling pathway. BMP4, a negative 

regulator of Shh, accumulates in LRP-2 deficient animals, thereby reducing Shh 

signaling and causing impaired forebrain development [May et al., 2007]. 

Another mechanism involves receptor action in the kidney. In the course of a Notch-

like pathway, the cleaved intracellular domain of LRP-2 may be involved in signaling 

processes, which have to be elucidated in the future [May et al., 2007]. 
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Vitamin Metabolism 

Three vitamin-binding proteins are ligands for LRP-2. These vitamin-carriers include 

retinol-binding protein (RBP), vitamin D-binding protein (DBP), and transcobalamin-

transporting vitamin B12 [Christensen and Birn, 2002]. The carrier, bearing vitamin, is 

taken up and degraded, whereas the vitamin is internalized and recycled back to 

circulation [Moestrup and Verroust, 2001]. The vitamin in complex with its binding 

protein is reabsorbed in the renal proximal tubule during the filtration, which is 

important for the re-uptake of vital substances reducing their loss in the urine. During 

embryonic development a similar mechanism is supposed to mediate the vitamin 

transport in the yolk sac and the placenta [Christensen and Birn, 2002]. 

In the circulation, vitamin D is generally bound to DBP, a steroid-binding protein 

with high affinity for LRP-2. The receptor, in cooperation with cubilin, mediates DBP 

uptake in the kidney. This mechanism not only prevents protein excretion, but also 

leads to 25-(OH) vitamin D3 activation by the hydroxylation to 1,25-(OH)2 vitamin 

D3, thus regulating calcium homeostasis [Christensen and Birn, 2002]. 

In LRP-2 deficient mice, the loss of the receptor results in the elevated excretion of 

25-(OH) vitamin D3 and DBP in the urine. The lack of vitamin D corresponds with 

bone mineralization defects [May et al., 2007].  

LRP-2 reabsorbs vitamin A and vitamin B12 and their binding proteins in a similar 

way, thereby contributing to vitamin homeostasis [May et al., 2007]. 

 

Steroid Hormone Uptake 

Steroid hormones are regulators of vertebrate metabolism, reproduction, and 

embryonic development. These signaling molecules bind to target cells, enter them, 

and interact with transcription factors, thereby regulating gene expression. Steroids 

are bound to carrier proteins in the circulation. After reaching their target, these 

hormones are released and transverse the plasma membrane by free diffusion due to 

their small size and lipophilic nature. The classical free hormone hypothesis states 

that only unbound hormones are biologically active. However, latest research 

indicates the importance of specific mechanisms for hormone uptake [Lin and 

Scanlan, 2005]. 
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Since, LRP-2 is expressed in steroid-responsive organs of male and female 

reproductive tracts, it seems to be important for the active transport of steroid 

hormones. The receptor is responsible for the uptake of androgens and estrogens in 

complex with the sex hormone binding globulin (SHBG). Because of the lack of the 

receptor, LRP-2 knockout mice show impaired male and female reproductive tract 

development beside other defects [Hammes et al., 2005].  

Even though there are normal levels of hormones circulating in the blood, LRP-2 

deficient embryos fail to acquire enough sex steroids for reproductive tract maturation 

[Willnow et al., 2007]. 

To conclude, LRP-2 appears to be crucial for the functionality of tissues, which 

depend on high levels of steroid hormones [Lin and Scanlan, 2005]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. LRP-2 mediates the uptake of sex hormones bound to carrier proteins. Androgens 

are solubilized by the sex hormone-binding globulin (SHBG). The uptake of SHBG-bound 

androgens requires LRP-2 binding to SHBG, which is subsequently internalized by receptor-

mediated endocytosis. SHBG is degraded in lysosomes, while the hormone enters the 

cytoplasm to regulate gene expression [Willnow et al., 2007]. (source: Willnow et al., 2007) 
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1.3 The Chicken, a Powerful Model Organism to study 

Lipid Metabolism 

 

1.3.1 Introduction 

 

The chicken, Gallus gallus, is a model organism with a long history. Initially, it has 

been used for developmental biology studies, but it has also contributed new insights 

into immunology, genetics, virology, cancer, and cell biology [Stern, 2005]. 

In regards to lipid-related events, the laying hen as well as the developing embryo 

provide excellent systems for research on lipid metabolism [Speake et al., 1998]. 

 

1.3.2 Lipid Metabolism in the Laying Hen 

 

The development and growth of female germ cells in oviparous (egg-laying) species, 

called oogenesis, involves extensive lipid transport, mediated by receptor-mediated 

endocytosis [Schneider, 2007]. 

Under the control of estrogen, yolk precursors are synthesized in the maternal liver 

[Speake et al., 1998]. Receptor-mediated endocytosis is responsible for the uptake of 

precursors, including VLDL and vitellogenin (VTG), by growing oocytes. A 

repertoire of gradually sized oocytes undergoing rapid growth is generated in the 

stroma. The largest follicle, designated F1, contains the next oocyte to ovulate. The 

five largest follicles are termed F1 to F5, a discrimination of smaller ones is difficult. 

After entering the oviduct, fertilization of the oocyte occurs if the hen has been 

inseminated. Structural components develop around the oocyte during the passage 

through the oviduct [Schneider, 2007]. 

The oviduct is a long and flexible tube, which develops from the left ovary. In 

contrast the right ovary degenerates during embryonic development and is 

rudimentary present until the first day of hatching. The oviduct can be subdivided into 

five sections (see Figure 1.6), namely infundibulum, magnum, isthmus, uterus, and 

vagina [Schwarze and Schröder, 1985]. 
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While the oocyte traverses the oviduct for 25 hours, structural components, egg white 

proteins, water, egg membranes, and the shell are generated to result in a laid egg 

[Schneider, 2007]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Schematic illustration of the oocyte development. Receptor mediated endocytosis 

is responsible for the uptake of yolk precursors, produced by the maternal liver under the 

influence of estrogen. The steadily growing follicles are designated in a size-dependent 

manner, F1 to F5. The biggest follicle (F1) contains the oocyte, which is the next to ovulate. 

After ovulation and possible fertilization, the oocyte travels through the oviduct to finally 

result in the laid egg. The five sections of the oviduct indicated in the figure are infundibulum 

(I), magnum (II), isthmus (III), uterus (IV), and vagina (V).  

(adapted from: http://people.eku.edu/ritchisong/avianreproduction.html) 

 

1.3.3 Embryonic Development of the Chicken 

 

The development of the chicken embryo constitutes an outstanding model for lipid 

and lipoprotein transport mechanisms. The yolk is the exclusive source of nutrients 

for the embryo including lipids, carbohydrates, and protein [Hermann et al., 2000]. 

In the early stages of development, extraembryonic structures including amnion, 

allantois, and yolk sac are formed. The embryo floats inside the liquid-filled amniotic 

cavity. The allantois, adjunctive to the hindgut of the embryo, quickly increases in 

Ovary 
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size until the amnion and the yolk sac are enclosed [Schwarze and Schröder, 1985]. In 

the lumen of the allantois excretion products are stored. On the outside, the allantois 

fuses with the chorion to give rise to the chorioallantois. This membrane is the site for 

oxygen and carbon dioxide exchange through the pores of the eggshell [Bellairs and 

Osmond, 2005] 

The avian yolk sac is in many respects analogous to the mammalian placenta, which 

also provides nutrients for the embryo. The membrane of the yolk sac is responsible 

for the uptake of yolk constituents and their transfer into the embryonic circulation 

[Speake et al., 1998]. 

During the first two weeks of development very little lipid uptake occurs. The last 

week of embryogenesis is characterized by a massive rate of yolk lipid transport via 

the yolk sac membrane [Hermann et al., 2000]. The progressive withdrawl of the yolk 

sac into the abdominal cavity starts around day 19 and is completed before hatching.  

The yolk sac remains the only nutrient supply for several days after hatching, 

mediating the uptake of about 5 grams of yolk [Speake et al., 1998]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7. Illustration of the progressive growth and development of the chicken embryo and 

the extraembryonic membranes. The position of the three most important membranes 

including yolk sac, allantois and amnion are indicated in the picture.   

(source: http://chickscope.beckman.uiuc.edu/resources/egg_to_chick/development.html) 
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The avian yolk sac is composed of two layers, an outer layer of mesenchymal cells  

(mesoderm) pervaded by fetal blood vessels, and an inner single layer of large, yolk-

laden endodermal cells. These endodermal endothelial cells (EEC), facing the yolk 

compartment, express lipoprotein receptors [Hermann et al., 2000]. 

 

 

 

 

 

 

 

Figure 1.8. During the development of extraembryonic tissues, the yolk sac grows to finally 

enclose the yolk surface. Endothel cells (EC) line the interior surface of the blood vessels, 

which are embedded in the yolk sac membrane. Two layers constitute the yolk sac, an inner 

single layer of endodermal endothelial cells (EEC) and an outer layer of mesenchymal cells 

(Meso). LRs expressed on the surface of EECs are responsible for the uptake of nutrients 

from the yolk and their secretion into the embryonic circulation. 

Yolk Blood 
vessel 
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Chapter 2  

 

Materials and Methods  

 

 

 

 

 

 

 

 

 

2.1 Chemicals and Enzymes  

 

Chemicals obtained from Amresco, AppliChem, BioRad, Fluka, Merck, Pierce, 

Riedel-de Haën, Roche, Roth, Sigma-Aldrich, and Starlab were used for the 

production of buffers, solutions, and media. Restriction enzymes were purchased from 

Roche.  

 

Diverse polymerases were used:  

 

• DyNAzyme™ EXT DNA Polymerase from FINNZYMES 

• High Fidelity PCR Enzyme Mix from Fermentas 

• Klenow Polymerase from Amersham Biosciences 

• SUPERScript™ Rnase H− Reverse Transcriptase from Invitrogen  
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2.2 Bacterial Strains and Vector Systems  
 

 

Strain One Shot TOP10 Chemically Competent E.coli 

Genotype F- mcrA ∆(mrr-hsdRMS-mcrBC) φ80lacZ∆M15 

∆lacX74 recA1 araD139 ∆(araleu) 7697 galU galK 

rpsL (StrR) endA1 nupG 

Reference/Source Invitrogen 

Table 2.1. Properties of E.coli TOP10  

 

 

Vector pCR2.1-TOPO 

Size 3931 basepairs 

Genotype 

characteristics 

LacZα fragment, M13 reverse priming site, MCS, T7 

promoter/priming site, M13 forward priming site, f1 

origin, kanamycin resistance, ampicillin resistance, 

pUC origin  

Reference/Source Invitrogen, TA cloning kit 

Table 2.2. Properties of T/A cloning vector 
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Figure 2.1. Genetic map of the pCR2.1-TOPO vector (http://www.invitrogen.com/) 

 

 

2.3 Animals  
 

Derco brown laying hens and roosters (10-40 weeks old) were purchased from Heindl 

Co. (Vienna, Austria) and maintained on layer’s mash with free access to water and 

feed under a daily light period of 16 hours. Furthermore, a R/O (restricted ovulator) 

breeding colony was kept under the same conditions. Fertilized eggs were incubated 

at 37.5°C and 55% relative humidity for a chosen time period or until hatching. 
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2.4 Oligonucleotide Primers  
 

The designed oligonucleotides were synthesized by MWG-Biotech AG, Ebersberg, 

Germany. 

 

Name Sequence Tm (°C) 

   

T/A cloning vector   

M13fw 5’-G TAA AAC GAC GGC CAG-3’ 51.7 

M13rv 5’-CAG GAA ACA GCT ATG AC-3’ 50.4 

   

Chicken LRP-2   

Fwd.Megalin_1 5’-ATGGGAACTCGGCAGCAGACG-3’ 63.7 

Rev.Megalin_2 5’-TGACAGCGATACTGGCAGCTC-3’ 61.8 

Fwd.Megalin_3 5’-GGAGTGTTAGCGATTGGAGGC-3’ 61.8 

Rev.Megalin_4 5’-CCTCTTTAACAAGATTGGCGG-3’ 57.9 

Rev.Megalin_5 5’-CCACACTACCAGCTCCTGTTA-3’ 59.8 

   

Chicken LRP-380   

5gg.ooc.LRP 5’-TGT CCC GGG ACC CAC CAC TGC-3’ 67.6 

3gg.ooc.LRP 5’-CTG GCA GCC CGG TCA CGA TGG-3’ 67.6 

   

Standard Primers   

Oligo (dT) 5’-TTT (TTT) 2 −4TTT-3’  

Table 2.3. Primers used for PCR 
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2.5 Antibodies  
 

Name Epitope Source 

Anti-chicken LRP-2 Peptide Rabbit 

Anti-chicken LR-8 Peptide Rabbit 

Anti-rabbit IgG peroxidase conjugated (Sigma) Rabbit IgG Goat 

Anti-rabbit IgG biotin conjugated (Sigma) Rabbit IgG Goat 

Alexa Fluor 488 anti-rabbit (Invitrogen) Rabbit IgG Goat 

Table 2.4. Antibodies 

 

2.6 Molecular Biological Methods: DNA  
 

2.6.1 cDNA Synthesis 

  

SUPERScript™ RNase H- Reverse Transcriptase from Invitrogen was used to perform 

cDNA synthesis. After total RNA isolation from chicken tissue (see 2.7.1) the 

following components were mixed together in a sterile Eppendorf tube:  

 

10µl Total RNA  

1µl dNTPs (10mM each)  

1µl Oligo (dT) (500µg/ml)  

 

The mixture was heated to 65°C for 5 minutes and then cooled on ice. The following 

components were added:  

 

4µl First Strand buffer  

2µl 0.1M DTT  

 

After incubation at 42°C for 2 minutes, 1µl SUPERScriptTM II reverse transcriptase 

(200U/µl) was added and mixed by pipetting up and down. The cDNA synthesis 

reaction was performed at 42°C for 50 minutes and finally stopped by heating at 70°C 

for 15 minutes.  
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2.6.2 Polymerase Chain Reaction (PCR)  

 

A 50µl or 25µl reaction volume was used for Reverse Transcriptase PCR (RT-PCR). 

The components were kept on ice and mixed in a sterile PCR tube. PCR conditions 

depended on the primer pair used (see Tab. 2.3). A touch-down thermocycling 

program was used to optimize PCR conditions (see Tab. 2.6). All PCR products were 

analyzed by agarose gel electrophoresis. 

 

High Fidelity PCR Enzyme Mix from Fermentas: 

 

5µl 10x High Fidelity PCR Buffer with 15 mM MgCl2  

2.5µl DMSO 

1µl dNTP mix (10mM each dNTP)  

1µl Forward primer (20pM)  

1µl Reverse primer (20pM)  

1µl DNA template  

0.5µl High Fidelity PCR Enzyme Mix (5U/µl)  

xµl sterile H2Odd to a final volume of 50µl  

Table 2.5. PCR setup using the High Fidelity PCR Enzyme Mix  
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 Number of cycles Temperature Time 

Lid temperature  99°C  

Initial 

denaturation 

 94°C 5min 

Denaturation  

3 

94°C 1min 

Annealing x°C + 6°C 1min 

Elongation 72°C xmin 

Denaturation  

3 

94°C 1min 

Annealing x°C + 3°C 1min 

Elongation 72°C xmin 

Denaturation  

33 

94°C 1min 

Annealing x°C  1min 

Elongation 72°C xmin 

Final elongation  72°C 6min 

Pause  4°C ∞ 

Table 2.6. Touch-down PCR conditions 

 

2.6.3 Quantitative Real Time PCR 

 

Quantitative Real Time PCR (qPCR) was performed using the LightCycler® 480 

system (Roche), requiring the LightCycler® FastStart DNA Master SYBR Green I kit 

(Roche). After the cDNA was prepared from embryonic and adult tissues, the samples 

were diluted with water (1/20). A freshly prepared 10-1 to 10-9 serial dilution of the 

target PCR product was prepared starting from a 1/20 dilution. Every sample was 

measured twice and compared to the serial dilution, which served as an internal 

standard.  

 

A master-mix was set up in a sterile Eppendorf tube. 14µl of the mixture were 

pipetted into a LightCycler® 480 Multiwell Plate 96. The diluted sample was added 

and the 96 well plate was analyzed in the LightCycler® 480. 
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4.5µl Sterile H2Odd 

1µl Forward primer 

1µl Reverse primer 

7.5µl SYBR Green Mix 

add 1.5µl diluted template 

Table 2.7. qPCR setup using a LightCycler® FastStart DNA Master SYBR Green I kit 

 

 

 Number of cycles Temperature Time 

Denaturation  

45 

95°C 15sec 

Annealing 60°C 15sec 

Elongation 72°C 16sec 

 

Melting curve 

 

1 

95°C 10sec 

75°C 20sec 

98°C  

Cooling  50°C ∞ 

Table 2.8. qPCR conditions using a LightCycler®480 

 

2.6.4 DNA Gel Extraction  

 

The QIAquick Gel Extraction kit from QIAgen® was used for the elution of DNA 

fragments from agarose gels. This protocol allowed to extract and purify DNA of 

70bp to 10kb from standard or low-melt agarose gels in TAE or TBE buffer. All 

centrifugation steps were carried out in a table-top microcentrifuge at 13000 rpm at 

room temprature. The desired DNA band was excised from the agarose gel with a 

sterile scalpel and transferred into an Eppendorf tube. Three volumes of buffer QG 

were added to 1 volume of gel (100mg gel weight = 1 gel volume = 100µl buffer 

QG). The gel was dissolved completely by incubation at 50°C for 10 minutes and 

repeated vortexing every 2-3 minutes. In case of a desired DNA fragment size of 

>500bp or <4kb, 1 gel volume of isopropanol was added to the mixture and mixed 

well. The sample was loaded onto a QIAquick column and centrifuged for 1 minute. 

To wash, 500µl of buffer QG were added to the column, followed by centrifugation. 

Additionally, bound DNA was washed with 750µl buffer PE. After centrifugation for 
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1 minute the flow-through was discarded and the column was centrifuged for an 

additional minute to remove residual ethanol from the column. The DNA was eluted 

by adding 50µl of buffer EB, incubating for 1 minute, and finally centrifuging for 1 

minute.  

 

EB buffer  

10mM Tris-HCl pH 8.5 

 

2.6.5 T/A-Cloning  

 

Taq-polymerase has a nontemplate-dependent terminal transferase activity that adds a 

single deoxyadenosin (A) to the 3’ ends of PCR products. The linearized pCR2.1-

TOPO vector has a single, overhanging 3’ deoxythymidine (T) residue. 

Topoisomerase I is covalently bound to the vector. It allows PCR inserts to ligate with 

the vector, without the need of adding DNA ligase to the reaction. The following 

ingredients were mixed: 

 

4µl PCR product (purified by gel extraction)  

1µl Salt solution (1.2M NaCl, 0.06M MgCl2)  

1µl TOPO vector (pCR2.1)  

 

The reaction was performed for 5 minutes at RT. 2µl of the reaction were used for 

transformation.  

 

2.6.6 Transformation of Competent Escherichia coli (E. coli)  

 

One aliquot (50µl/tube) of chemically competent E. coli cells was thawed on ice. 2µl 

of the ligation mixture were directly pipetted into the vial of competent cells and 

mixed by tapping gently. The reaction was incubated on ice for 30 minutes. 

Afterwards, the cells were heated for 30 seconds at 42°C and cooled on ice for 2 

minutes. For regeneration, 250µl of provided S.O.C. medium were added and the 

cells were incubated for 1 hour at 37°C with vigorous shaking. 50µl and 150µl of the 

transformation mixture were plated onto LB-Amp/X-Gal plates and incubated o/n at 
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37°C. White colonies were checked for containing the correct plasmid by preparation 

of the plasmid DNA mini scale, followed by restriction enzyme digestion and agarose 

gel electrophoresis.  

 

LB-Amp plates  

10g Peptone from Casein  

5g Yeast Extract  

10g NaCl  

12g Agar-Agar  

H2Odd ad 1000ml  

100µg/ml Ampicillin 

 

LB-Amp plates containing X-Gal  

50µl of X-Gal solution (50 mg/ml) were plated on LB-Amp plates.  

 

2.6.7 Mini-Preparation of Plasmid DNA  

 

Preparation of plasmid DNA was carried out using the FastPlasmidTM Mini kit from 

Eppendorf. This protocol yields high purity plasmid DNA isolated from 1.5ml of E. 

coli bacterial cultures. Only a single solution for cell resuspension, lysis, and DNA 

binding is needed. All centrifugation steps were carried out in a table-top centrifuge at 

maximum speed (13000 rpm) and RT. To get an overnight-culture, a single white 

bacterial colony from a LB plate was transferred into 5ml of LB medium containing 

the appropriate antibiotic in a loosely capped eprouvette. After vigorously shaking o/n 

at 37°C, 1.5ml of the bacterial culture were transferred into an Eppendorf tube and 

harvested by centrifugation for 1 minute.  

 

The medium was removed by decanting and the cell pellet was resuspended in 400µl 

of ice-cold complete lysis solution by vigorously vortexing for a full 30 seconds. 

After the cell lysate was incubated at RT for 3 minutes, it was transferred to a Spin 

Column Assembly by pipetting and centrifuged for 1 minute. The filtrate was 

discarded. Bound DNA was washed by adding 400µl of Wash buffer followed by 

centrifugation for 1 minute. The filtrate was discarded again and the Spin Column was 
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dried by an additional centrifugation step. DNA was eluted by adding 50µl of Elution 

buffer and spinning for 1 minute.  

 

LB medium  

10g Trypton  

5g Yeast Extract  

10g NaCl  

H2Odd ad 1000 ml 

 

LB-Amp  

LB medium  

100µg/ml Ampicillin 

 

2.6.8 Restriction Enzyme Digestion 

 

For digestion of Mini-Preps the following components were mixed and incubated for 

one hour at 37°C: 

 

4µl Mini-Prep DNA 

x units Restriction enzyme 

1.5µl Appropriate 10x restriction buffer 

xµl H2Odd to a final volume of 15µl 

 

The appropriate restriction buffer was chosen according to the recommendations of 

the producer. The restriction digest was checked by agarose gel electrophoresis. 

 

2.6.9 DNA Gel Electrophoresis 

 

Separation of DNA fragments was performed by gel electrophoresis using 1% (w/v) 

agarose gels with a constant voltage of 100V for approximately 30 minutes. DNA 

samples were mixed with 5x DNA loading buffer containing Bromophenol Blue or 

Xylene Cyanol FF serving as front marker and glycerol to increase the density of the 
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sample, ensuring that DNA was evenly loaded. 1x TAE was used as electrophoresis 

running buffer. The 1kb Plus DNA Ladder from Invitrogen was used as a size marker.  

 

To visualize DNA fragments under ultraviolet light (366nm), the agarose gel 

contained the fluorescent intercalating dye ethidium bromide (40µg/100ml). 

 

50x TAE, pH 8.0 

2M Tris-HCl 

1M Acetic acid 

0.1M EDTA 

 

Ethidium bromide stock solution 

10mg/ml in H2Odd 

 

5x DNA loading buffer 

5ml 100% Glycerin 

2ml 0.5M EDTA 

12ml 50x TAE 

3ml H2Odd 

Bromophenol blue or Xylene Cyanol FF 

 

2.6.10 Radiolabelling of DNA Fragments 

 

For the labelling of DNA fragments the Amersham MegaprimeTM DNA labelling kit 

was used. The following components were mixed in an Eppendorf screwcap tube: 

 

4µl Purified PCR fragment  

24µl DEPC treated H2Odd  

5µl Primer (random hexamers provided by the kit)  

 

The mixture was heated to 95°C for 5 minutes and cooled on ice. The content was 

collected by short centrifugation. 10µl labelling buffer, 2µl Klenow Polymerase 

(5U/µl) and finally 5µl α-32P dCTP (10µCi/µl; Hartmann Analytics) were added. The 
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mixture was spun and incubated at 37°C for 1 hour. The reaction was stopped by 

heating up to 95°C for 5 minutes. Then the 32P-labelled DNA was used as a probe for 

Northern blot analysis. 

 

2.6.11 DNA Sequencing 

 

For sequence analysis Mini-preparations of plasmid DNA were sent to VBC-

Genomics Bioscience Research GmbH, Vienna, Austria. 
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2.7 Molecular Biological Methods: RNA 
 

2.7.1 Isolation of Total RNA 

 

Two different methods for total RNA isolation were used, including the NucleoSpin 

RNA II kit from Macherey-Nagel and TRI Reagent from Molecular Research Center, 

Inc. 

 

RNA Isolation with NucleoSpin
 RNA II kit from Macherey-Nagel 

 

To achieve a high purity of RNA for production of cDNA, the NucleoSpin RNA II 

kit was used for isolation. The kit allowed the purification of up to 70µg of total RNA 

from up to 50mg of tissue. All centrifugation steps were carried out in a table-top 

centrifuge at RT. 

 

• Homogenization: 30-50mg frozen tissue supplied with 350µl buffer RA1 were 

homogenized in a sterile glass potter. 

 

• Cell lysis and filtration of the lysate: The homogenized tissue was lysed by 

addition of 3.5µl β-mercaptoethanol, followed by vigorous vortexing. A 

NucleoSpin filter unit was placed in a collection tube, the lysate was added 

and centrifuged at 11000x g for 1 minute. The filter unit was discarded and 

350µl of 70% ethanol were added to the lysate to adjust the RNA binding 

conditions. 

 

• Bind RNA: The lysate was loaded onto A NucleoSpin RNA II column. The 

column was centrifuged at 8000x g for 30 seconds and then placed in a new 

collection tube. 350µl Membrane Desalting buffer (MDB) were added to the 

column, before centrifugation at 11000x g for 1 minute in order to desalt. 
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• Digest DNA: DNase reaction mixture was prepared by adding 10µl DNase I to 

90µl DNase reaction buffer and mixed by flicking the tube. 100µl of this 

mixture were pipetted onto the center of the silica membrane of the column 

and incubated at RT for 15 minutes. 

 

• Wash and dry silica membrane: For the first wash step 200µl buffer RA2 were 

added to the column, followed by centrifugation at 8000x g for 30 seconds. 

The flow-through was discarded and the column was placed into a new 

collection tube. The second wash step was performed by addition of 600µl 

buffer RA3 to the column and centrifugation at 8000x g for 1 minute. Again 

the flow-through was discarded and the column was put back into the same 

collection tube. In the third and final wash step, 250µl buffer RA3 were added 

and the column was centrifuged at 11000x g for 2 minutes to dry the 

membrane completely. The column was subsequently placed into a nuclease-

free 1.5ml Eppendorf tube. 

 

• Elution of pure RNA: To elute bound RNA, 40µl of RNase-free H2O were 

added to the column and centrifuged at 11000x g for 1 minute. The 

concentration of eluted RNA was measured (see 2.7.3) and the samples were 

stored at -80°C. 

 

RNA Isolation: TRI Reagent from Molecular Research Center, Inc. 

 

• Homogenization: 50-500mg tissue (frozen in liquid N2 and stored at -80°C) 

were homogenized in TRI reagent (1ml per 100mg tissue) in a sterile 

polypropylene Falcon tube using an Ultra-Turrax-T25 homogenizer. 

 

• Phase separation: The homogenate was incubated for 5 minutes at RT to allow 

complete dissociation of nucleoprotein complexes. After the addition of 0.2ml 

chloroform per 1ml of TRI Reagent the homogenate was covered tightly and 

vigorously shaken for 15 seconds. The mixture was incubated at RT for 15 

minutes and centrifuged at 12000x g for 15 minutes at 4°C. 
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• RNA precipitation: The aqueous phase was transferred carefully into a sterile 

Eppendorf tube. RNA was precipitated by addition of 0.5ml isopropanol per 

1ml TRI reagent. The sample was vortexed and incubated at RT for 10 

minutes followed by centrifugation at 12000x g for 30 minutes at 4°C. The 

RNA pellet was washed with 75% ethanol and centrifuged at 12000x g for 5 

minutes at 4°C. The ethanol was removed and the RNA pellet was briefly air-

dried for 3-5 minutes. RNA was dissolved at RT in an appropriate quantity of 

0.1% DEPC treated H2Odd. After determination of RNA concentration (see 

2.7.3), samples were stored at -80°C. 

 

 

DEPC treated H2Odd 

0.1% Diethyl Pyrocarbonate (DEPC) 

mixed with H2Odd and autoclaved. 

 

2.7.2 Purification of poly(A) RNA 

 

To purify poly(A) RNA the NucleoTrap mRNA kit was used. The kit allows the 

isolation of poly(A) RNA from a total RNA preparation via latex beads covalently 

modified with oligo(dT) residues. Poly(A) RNA binds to these latex beads under 

high-salt conditions and can be eluted with water or low salt buffer. 

 

250µg of total RNA, in a volume of 200-500µl DEPC treated H2Odd, were 

supplemented with the same volume of RM0 binding buffer. 15µl thoroughly 

resuspended oligo(dT) latex beads per 100µg total RNA were added. After mixing, 

the sample was heated at 68°C for 5 minutes followed by incubation at RT for 10 

minutes with 2 minute intervals of inverting the tubes. The mixture was centrifuged at 

2000x g for 15 seconds and at 11000x g for 2 minutes. All centrifugation steps were 

carried out in a table-top centrifuge at RT.  The supernatant was discarded and the 

pellet dissolved in 600µl washing buffer RM2. The oligo(dT) latex bead suspension 

was transferred onto the NucleoTrap microfilter and centrifuged at 2000x g for 15 

seconds and at 11000x g for 2 minutes. After discarding the flow-through, the pellet 

was washed with 500µl washing buffer RM3 by directly resuspending on the 
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microfilter until the suspension became milky. The tube was centrifuged at 2000x g 

for 15 seconds and at 11000x g for 2 minutes and the flow-through was discarded. 

The washing step with washing buffer RM3 was repeated and finally the 

NucleoTrap microfilter was dried by centrifugation at 11000x g for 1 minute. The 

pure poly(A) RNA was eluted by the addition of 20µl prewarmed (68°C) RNase-free 

H2O per 10µl oligo(dT) latex beads. The resuspended bead suspension was incubated 

at 68°C for 7 minutes. The eluate was collected by centrifugation at 11000x g for 1 

minute. The elution step was repeated in order to increase the yield. After 

determination of RNA concentration (see 2.7.3), samples were stored at -80°C. 

 

2.7.3 Determination of RNA Concentration 

 

For determination of RNA concentration the NanoDrop® ND-1000 

Spectrophotometer was used. Nucleic acid samples were checked for concentration 

and quality. The sample concentration in ng/µl based on absorbance at 260nm and the 

selected analysis constant was determined.  

 

The sampling arm was opened to pipette 2µl of the blank or of the sample onto the 

lower measurement pedestal. The sampling arm was closed and the spectral 

measurement initiated using the operating software on the PC. The liquid column was 

automatically drawn between the upper and lower measurement pedestals and the 

spectral measurement made. The NanoDrop® ND-1000 Spectrophotometer was 

cleaned by wiping the sample from both the upper and lower pedestals with a soft 

laboratory wipe.  
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2.7.4 Northern Blot Analysis 

 

Northern blotting was carried out using the glyoxal gel electrophoresis method and 

the urea-PAGE method with minor changes. All solutions were prepared with RNA 

grade chemicals. H2Odd was treated with 0.1% DEPC. 

 

Glyoxal gel electrophoresis method 

 

• Sample preparation: The following components were put on ice in a fresh 

sterile Eppendorf tube:  

25µg Total RNA in 6µl H2Odd 

11.8µl DMSO 

2.4µl 0.1M NaHPO4 buffer 

3.5µl 40% Glyoxal 

 

The samples were incubated at 50°C for 1 hour and subsequently put on ice 

and 6.3µl glyoxal loading buffer were added. For marker preparation 3µl 0.5-

10Kb RNA ladder (Invitrogen) were mixed with 11.8µl DMSO, 2.4µl 0.1M 

NaHPO4 buffer, 3.5µl 40% Glyoxal, and 6.5µl Glyoxal loading buffer and 

incubated at 65°C for 10 minutes. 

 

• Gel electrophoresis: 1.2% agarose gel was prepared with 10mM NaHPO4 

buffer, which was also used as Running buffer. The gel was run at 80V for 90 

minutes and the direction of the gel was changed every 30 minutes to avoid a 

pH and salt gradient. 

 

• Capillary transfer: After gel electrophoresis the gel was equilibrated in 

Equilibration buffer I for 20 minutes, in Equilibration buffer II for 20 minutes, 

and in 10x SSC for 30 minutes at RT shaking. To transfer the RNA onto the 

membrane a blot was prepared as followed: A glassplate was covered with 6 

glassplate-sized Whatman papers soaked in 20x SSC, the gel was applied 

upside down, followed by a nylon membrane (Hybond™-N for nucleic acid 

transfer from Amersham Biosciences) and 6 dry membrane-sized Whatman 

papers, one package of green towels and 0.5kg weight. Blotting o/n at RT.  
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• RNA staining: After marking the slots, the membrane was rinsed in 2x SSC, 

placed on a Whatman paper and auto-crosslinked in a Stratagene UV 

crosslinker. RNA was stained with Methylenblue for 5 minutes and destained 

with DEPC treated H2Odd. The stained membrane was photocopied and the 

replica served as size marker for 28S and 18S rRNA, which represent a 

loading control. 

 

• Hybridization: Prehybridization (to block the free positions on the membrane) 

was performed in a glass roller-bottle filled with 10ml of prewarmed 

hybridization solution for 3 hours at 65°C. The radiolabelled probe was added 

to a final concentration of 1-2x 106cpm/ml. The membrane was hybridized 

o/n at 65°C. 

 

• Washing: Washing buffers were prewarmed at 65°C. The membrane was 

washed twice with washing buffer A for 10 minutes and once with washing 

buffer B for 5 minutes. Finally, the membrane was fixed in a film cassette and 

exposed to a film (GE Healthcare, Amersham Hyperfilm™ MP) at -80°C for 

several days depending on the intensity of the signal.  
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1M Na-Phosphate Buffer 

462mM Na2HPO4 

469mM NaH2PO4 

pH 6.8 

add DEPC treated H2Odd up to 200ml 

 

Glyoxal loading Buffer 

50% Glycerol 

10mM Na-Phosphate Buffer 

0.4% Bromophenolblue 

0.25% Xylene Cyanol FF 

 

Methylenblue Staining Reagent 

0.04% Methylenblue 

0.5M NaOAc pH 5.2 

 

Equilibration Buffer I 

50mM NaOH 

150mM NaCl 

add DEPC treated H2Odd up to 250ml 

 

Equilibration Buffer II 

100mM Tris-HCl buffer pH 7.5 

150mM NaCl 

add DEPC treated H2Odd up to 150ml 

 

Strip Buffer 

0.1x SSC 

20x SSC 

3M NaCl 

0.3M Na-Citrat 

pH 7.2 

add DEPC treated H2Odd up to 250ml 

 

Hybridization Solution 

1% BSA Fraction V 

40% DEPC treated H2Odd 

7% SDS 

500mM Na-Phosphate Buffer pH 6.8 

1mM EDTA 

mixed in order shown above, 

final volume should be 10ml 

 

Washing Buffer A 

0.5% BSA 

5% SDS 

40mM Na-Phosphate buffer 

1mM EDTA 

add DEPC treated H2Odd up to 250ml 

 

Washing Buffer B 

1% SDS 

40mM Na-Phosphate buffer 

1mM EDTA 

add DEPC treated H2Odd up to 500ml 

 

0.1% SDS 
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Urea-PAGE method 

 

• Sample preparation: 10µg total RNA in 10 µl H2Odd were mixed with 2x 

RNA loading buffer and heated to 65°C for 10 minutes and subsequently put 

on ice. For marker preparation 5µl 0.5-10Kb RNA ladder (Invitrogen) were 

mixed with 2x RNA loading buffer, heated to 65°C for 10 minutes, and put on 

ice. 

 

• Gel electrophoresis: Bio-Rad Mini-PROTEAN and Hoefer miniVE systems 

were used for gel elecrophoresis. The components of the gel were mixed (see 

Tab. 2.8), the gel was poured and the comb inserted. After polymerization, the 

slots of the gel were rinsed with 1x TBE, which was also used as running 

buffer. The gel was run at 200V for 1 hour and 30 minutes. 

 

• Transfer: For transfer a peQlab PerfectBlue 'Semi-Dry' Electro blotter was 

used. Transfer of RNA from Urea-gels to nitrocellulose membranes 

(Hybond™-N Extra for optimized nucleic acid transfer, Amersham Bioscience) 

was performed in a peQlab PerfectBlue ’Semi-Dry’ Electro Blotter. The blot 

was prepared as followed: 3 Whatman papers soaked in 1x TBE were applied 

to the blotting unit, followed by the nitrocellulose membrane, the gel, and 

finally 3 more wet Whatman papers. To avoid air bubbles a falcon tube was 

rolled over the blot. The blot was covered with the lid of the blotting unit. 

Blotting was performed at 400mA per gel for 1 hour at RT. 

 

• RNA staining: After the slots were marked, the membrane was crosslinked in 

a Stratagene UV crosslinker, rinsed with 6x SSC for 10 minutes and 

crosslinked again.  

 

• Hybridization: Prehybridization (to block the free positions on the membrane) 

was performed in a glass roller-bottle filled with 10ml of prewarmed 

hybridization solution for 3 hours at 65°C. The radiolabelled probe was added 

to a final concentration of 1-2x 106cpm/ml. The membrane was hybridized 

o/n at 65°C. 
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• Washing: The membrane was washed 3x for 30 minutes, successively using 

washing buffer I, II and III. the membrane was fixed in a film cassette and 

exposed to a film (GE Healthcare, Amersham Hyperfilm™ MP) at -80°C for 

several days depending on the intensity of the signal. 

 
 
 

  4% gel 6% gel 

25% AA/BisAA (1:19) – Urea 8M 2.4ml 3.6ml 

10x TBE 1.5ml 1.5ml 

8M Urea 11.1ml 9.9ml 

10% APS 110µl 110µl 

TEMED 15µl 15µl  

Table 2.8. Composition of gels used for Urea-PAGE 
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25% Acrylamide/Bisacrylamide 

Solution (1:19) – Urea 8 M 

625ml Acrylamide/Bisacrylamide 

solution 40 % (1:19) 

8M Urea 

add DEPC treated H2Odd up to 1l 

 

2x RNA Loading Buffer 

95% Formamide 

0.025% Xylene cyanol FF 

0.025% Bromophenol blue 

12.5mM EDTA 

0.5% SDS 

add DEPC treated H2Odd up to 10ml 

 

10x TBE 

440mM Tris-base 

440mM Boric acid 

10mM EDTA 

add DEPC treated H2Odd up to 1l 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methylenblue Staining Reagent 

0.04% Methylenblue 

0.5M NaOAc pH 5.2 

 

Washing Buffer I 

25ml 20x SSC 

adjusted to 1l with DEPC H2Odd 

 

Washing Buffer II 

50ml 20x SSC 

6.25ml 20% SDS 

adjusted to 1l with DEPC H2Odd 

 

Washing Buffer III 

25ml 20x SSC 

6.25ml 20% SDS 

adjusted to 1l with DEPC H2Odd
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2.8 Molecular Biochemical Methods: PROTEIN 
 

2.8.1 Preparation of Triton
®
 X-100 Total Extracts 

 

Freshly obtained chicken tissue was placed in ice-cold homogenization buffer (4ml/g 

wet weight) and homogenized with an Ultra-Turrax T25 homogenizer 3x for 20 

seconds each. The homogenates were centrifuged for 10 minutes at 620x g at 4°C. The 

supernatant was transferred to a fresh tube and 1/20 volume of 20% Triton® X-100 was 

added. Then the mixture was incubated at 4°C for 30 minutes and finally centrifuged at 

300000x g for 1 hour at 4°C. The supernatant was aliquoted and stored at -20°C. 

Protein concentration was determined by the method of Bradford using Assay Dye 

Reagent Concentrate (BioRad). 

 

Homogenization Buffer 

20mM Hepes pH 7.4 

300mM Sucrose 

150mM NaCl 

As protease inhibitor Complete EDTA-free tablets from Roche were added. 

 

2.8.2 Preparation of Membrane Extracts 

 

For preparation of membrane extracts the use of Triton® X-100 as detergent is 

recommended. Buffer A (5ml/g wet weight) was added to the tissue samples, followed 

by homogenization using an Ultra Turrax T25 homogenizer, 3x 30 seconds at setting 

8. If necessary, homogenization was extended. The samples were centrifuged at 2000x 

g for 10 minutes at 4°C in a SS34 rotor and the supernatant was poured over 4 layers 

of cheesecloth into a fresh beaker on ice. The filtrate was centrifuged at 100000x g for 

1 hour at 4°C in a TLA 100.3 Rotor (Beckmann). The supernatant was discarded and 

the walls of the centrifugation tube were washed with H2Odd to remove lipids. The 

pellet was washed by resuspending in 3ml buffer A using a 19G needle followed by a 

23G needle. The sample was centrifuged at 100000x g for 1 hour at 4°C. The 

supernatant was discarded and the pellet was resuspended in 0.625ml buffer B, using 
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again a 19G needle and subsequently a 23G needle. Afterwards, 4% of the total 

volume of 4M NaCl were added and the sample was sonicated for 30 seconds at 

setting 6 using a Bandelin sonicator (Bandelin, Berlin, Germany). 26% of the total 

volume of sterile H2Odd and 20% of the total volume of 5% Triton® X-100 were added 

and the sample was vortexed. Finally, the sample was centrifuged at 100000x g for 1 

hour at 4°C and the supernatant was aliquoted and stored at -20°C. Protein 

concentration was determined using the method of Bradford. 

 

Buffer A 

20mM Tris-HCl, pH 8 

1mM CaCl2 

150mM NaCl 

 

Buffer B 

250mM Tris-Maleate, pH 6 

2mM CaCl2 

As protease inhibitor Complete EDTA-free tablets (Roche) were added. 

 

2.8.3 Determination of Protein Concentration 

 

The protein concentration was measured with the method of Bradford using Assay Dye 

Reagent Concentrate (BioRad). 1µl of protein-extract was incubated with 1ml of 

Bradford reagent for 5 minutes and then analyzed in an UV spectrometer at 595nm. 

Protein concentration was calculated as followed: 

 

 
 
 

 
 

 

X 
OD standard  
µg standard  

µl sample 
OD sample  

= µg/µl protein 
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2.8.4 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

 

Gel electrophoresis: Bio-Rad Mini-PROTEAN and Hoefer miniVE systems were used 

for gel electrophoresis. The components of the separating gel were mixed (see Tab. 

2.9), the gel was poured and the comb inserted. After the gel was overlaid with 

isopropanol the components of the stacking gel were mixed and poured onto the 

separating gel after complete removal of the isopropanol. The comb was inserted and 

after polymerization the slots of the gel were rinsed with H2Odd. The gels were put 

into the buffer chamber filled with electrophoresis buffer. The protein samples were 

mixed with Laemmli buffer (reducing or non-reducing). In case of reducing conditions 

the samples were incubated for 5 minutes at 95°C and loaded onto the gel. 5µl of 

Kaleidoskop Prestained Protein Standard (Bio-Rad) served as a length marker. The gel 

was run at 180V until the Bromophenolblue front reached the bottom of the gel. The 

gels were used for transfer to a nitrocellulose membrane (Western Blot Analysis) or 

staining with Coomassie Blue. 

 

 

Components (1 gel) Stacking gel 4% Separating gel 6% 

H2Odd 1.525ml 2.675ml 

Tris-HCl, pH 8.8 - 1.25ml 

Tris-HCl, pH 6.8 0.625ml - 

30% Polyacrylamide 0.325ml 1ml 

10% SDS 0.025ml 0.05ml 

10% APS 0.0125ml 0.025ml 

TEMED 0.005ml 0.005ml 

Table 2.9. Composition of gels used for SDS-PAGE 

 

 

30% Polyacrylamide 

29.2% Acrylamide 

0.8% N,N’-Methylenebisacrylamide 
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4x Laemmli Buffer (non-reducing) 

31.2% Glycerol 

6% SDS 

20mM Tris-HCl, pH 7.5 

Bromophenolblue 

add H2Odd to 20ml 

 

1x Electrophoresis Buffer 

250mM Tris-HCl 

192mM Glycine 

0.1% SDS 

 

0.5M Tris-HCl Buffer 

0.5M Tris-HCl 

pH 6.8 

 

2.8.5 Coomassie Stain 

 

The SDS-gel was stained by shaking in Coomassie Brilliant Blue solution for 1 hour. 

The gel was destained for a few hours at RT or o/n shaking at 4°C in destain solution 

before drying in a gel vacuum dryer. Alternatively, the gel was washed 15 minutes 

with H2Odd and stained by shaking in GelCode R Blue Stain reagent from Pierce for 1 

hour. The gel was destained in H2Odd for several hours or o/n at 4°C. 

 

Coomassie Solution 

10% Acetic Acid 

25% Isopropanol 

0.862g Coomassie Blue R250 

1950ml H2Odd 

 

Destain Solution 

30% Ethanol 

10% Acetic Acid 
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2.8.6 Western Blot Analysis 

 

Wet blotting: The proteins were transferred from SDS-gels to nitrocellulose 

membranes (Hybond™-C Extra for optimized protein transfer, Amersham Bioscience) 

by using a Bio-Rad Mini Trans-Blot cell. The blot was prepared as followed: 1 fiber 

pad and 3 Whatman papers soaked in 1x Transfer buffer were applied to the 

transparent side of the blotting cassette, followed by the nitrocellulose membrane, the 

gel and finally 3 more wet Whatman papers and 1 fiber pad. To avoid air bubbles a 

falcon tube was rolled over the blot. The blotting cassette was put into the electrode 

assembly, inserted in the tank and covered with the lid of the blotting unit. Blotting 

was performed at 100V for 1.5 hours on ice. To check the transfer efficiency, the 

membrane was stained with Ponceau S. Blotted proteins and the standard became 

visible by destaining with H2Odd. The lanes of the loaded samples and the standard 

were marked and excess parts of the membrane were cut off. 

 

Immunoblot: The membrane was blocked for 1 hour at RT with 5% skimmed milk 

powder in 1x TBS-T (Tris-Buffered-Saline) solution. After removing the blocking 

solution, the primary antibody was diluted in 5% skimmed milk powder in 1x TBS-T 

and the membrane was incubated o/n at 4°C with gentle agitation. The membrane was 

washed 3x 10 minutes in 1x TBS-T, followed by incubation with an HRP-conjugated 

secondary antibody diluted in 1x TBS-T. After 1.5 hours of incubation at RT with 

gentle agitation the solution was discarded and the membrane was washed another 

three times with 1x TBS-T for 10 minutes. 

 

Detection: Enhanced chemiluminescence (ECL) from Pierce was used to visualize 

proteins on immunoblots. ECL is based on enzyme-catalyzed production of light 

(horse radish peroxidase conjugated to the secondary antibody, catalyzing the 

oxidation of luminol in the presence of H2O2). Finally, the membrane was incubated 

with a 1:1 mixture of ECL solution I and II for 3 minutes at RT and put into an 

exposure cassette. Films (Pierce, CL-XPosure™Film) were exposed in the dark room 

for a few seconds up to 20 minutes, depending on the intensity of the signal and 

background. 
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1x Transfer Buffer 

25mM Tris-HCl 

192mM Glycine 

 

Ponceau S 

0.2% Ponceau S 

3% Trichloracetic Acid 

dilute with 1x TBS 

 

10x TBS 

1.37M NaCl 

0.027M KCl 

0.25M Tris-HCl 

with HCl to pH 7.4 

 

1x TBS-T 

0.1% Tween 

1x TBS 

pH 7.4 
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2.9 Histological Methods 
 

2.9.1 Immunohistochemistry 

 

Freshly isolated tissues were fixed in Tissue-Tek® O.C.T. Compound at -24°C. 

Sections of 5-10µm were cut on a Microm HM500 OM Cryostat, fixed on SuperFrost® 

slides (Menzel-Glaeser) and stored at -20°C. The slides were incubated in 1:1 

Acetone/Methanol by gentle shaking for 5 minutes and subsequently washed 3x 5 

minutes with 1x PBS. By using the DakoCytomation Pen a barrier to liquids were 

drawn. The incubation steps were done in a humid chamber. The sections were 

incubated o/n at 4°C with the appropriate antibodies in 1x PBS. 

 

• Fluorescence 

The sections were rinsed 3x 5 minutes in PBS and incubated with goat α-rabbit 

fluorescence-labeled secondary antibodies (Alexa Fluor-488 conjugated, 

1:1000 dilution, Molecular Probes) for 1 hour. Counterstaining of cell nuclei 

was performed with DAPI (1:1000, Molecular Probes). Specimens were 

mounted in fluorescent mounting media (DAKO) and analyzed by fluorescence 

microscopy (Axiovert 135, Zeiss) 

 

• Biotin 

The sections were rinsed 3x 5 minutes in PBS and incubated with biotinylated 

goat α-rabbit secondary antibody (1:250 dilution, Sigma) for 1 hour. To get a 

higher specificity the slides were incubated with Streptavidin Peroxidase 

Polymer (1:250, Sigma) for 20 minutes. To get the color reaction the sections 

were incubated with AEC+ Substrate-Chromogen (ready-to-use solution, 

DAKO). The specimens were mounted in Glycergel® Mounting Medium 

(DAKO) and analyzed by light microscopy (Axiovert 10, Zeiss). 
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Chapter 3 

 

Results 

 

 

 

 

 

 

 

 

 

3.1 Characterization of Chicken LRP-2 

 

3.1.1 Current State of Research 

 
 
A chicken-specific LRP-2 antibody has already been generated in the course of 

previous studies. After cloning of a chicken LRP-2 fragment into a pGEX-5X-1 

vector, the construct was expressed in E. coli. The GST fusion protein was purified by 

affinity chromatography and subsequently injected into New Zealand white rabbits 

for antibody production.  

The resulting polyclonal antibody is directed against the carboxy-terminus of LRP-2, 

containing three NPXY motifs. The protein sequence recognized by the chicken LRP-

2 antibody (ggGSTMegHis) is shown in Figure 3.1. 
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MPPACRCMYGGTCYIDESGLPKCKCSYGYTGDYCEIGLSKGVPPGTTAVAVLLTVILIII 4424 

 

IGVLAVGGFFNYRRTGSILPALPKLPSLSSLVKSAENGNGVTFRSGADVSMDIGGSVFEG 4484 

 

DSAIDRAMQMNENFAVESGKQPITFENPMYATRDSGAGGTSEVTVIQPTQVTGAGSVENE 4544 

 

NFENPVYASEVSPGPKEPPPRTDTPQESKWSFFKRKMKQNTNFENPIYAEMEKEQQQDTE 4604 

 

NVPPSSPSLPPKITLKRDQPLAYTATEDTFKDTANLVKEDSVV----------------- 4647 

 

Figure 3.1. This figure shows a part of the LRP-2 protein sequence (ENSGALT17651). The 

sequence used as antigen is indicated in grey. The three NPXY (Asn-Pro-Xxx-Tyr; Xxx 

stands for any amino acid) motifs are highlighted in green.  

 

3.1.2 Cloning of Chicken LRP-2 cDNA 

 

In the chicken, LRP-2 has not been clearly identified. A transcript with the length of 

13935bp in the Ensembl chicken genome database (ENSGALT00000017651) is 

designated as LRP-2 [Schneider, 2007]. A 15165bp long transcript, with the accession 

number XM_422014 can be found in NCBI Blast.  

To gain further knowledge about the amino-terminus and the potential start-codon of 

the sequence, total RNA was isolated from chicken kidney and reverse transcribed 

into cDNA using Oligo (dt) primers. The primerset Fwd.Megalin_1 and 

Rev.Megalin_2 was used to obtain a 971bp PCR fragment. This fragment was cloned 

into the pCR2.1-TOPO vector, which was subsequently transformed into E. coli 

Top10 cells. The plasmids were isolated using mini preparation, followed by 

restriction enzyme digestion with EcoRI. The fragments were analyzed on an agarose 

gel and further subjected to DNA sequencing. Afterwards, the cloned sequence was 

aligned with the existing sequences (see Figure 3.2), described above. 
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ENSGALT17651      ---------------------GGTTCCTGTAGTACATCTGCTCTTCTGAGCTCTGTACTG 39 

XM422014          --------------------------------------------------------ATGG 4 

Cloned            ATGGGAACTCGGCAGCAGACGGGTGGAAAAGCAGCAACTGCCTGCGGAGTGCTCCTGTTG 60 

                                                                             * 

 

ENSGALT17651      CTAAC---CTGCTTGTTACTTTGTTTTACTACAGGCTGTGGAGGTGGACAGTTTCGCTGT 96 

XM422014          AGGACT--CTGCATATGGACGTGGT--ACTCCAGGCTGTGGAGGTGGACAGTTTCGCTGT 60 

Cloned            CTCGCTGCGTGCATCCTGCGGGGCAGTTGCCAAGGCTGTGGAGGTGGACAGTTTCGCTGT 120 

                      *    *** *        *         **************************** 

 

ENSGALT17651      GGAAATGGTCGCTGTATTCCTGCAGACTGGAGATGTGACGGGGCTAGAGATTGCTCAGAT 156 

XM422014          GGAAATGGTCGCTGTATTCCTGCAGACTGGAGATGTGACGGGGCTAGAGATTGCTCAGAT 120 

Cloned            GGAAATGGTCGCTGTATTCCTGCAGACTGGAGATGTGACGGGGCTAGAGATTGCTCAGAT 180 

                  ************************************************************ 

 

ENSGALT17651      GATACAGATGAAGCTGGTTGTCCTCAACCTACTTGTGAGGGAAATCAGTTTCAGTGTCAG 216 

XM422014          GATACAGATGAAGCTGGTTGTCCTCAACCTACTTGTGAGGGAAATCAGTTTCAGTGTCAG 180 

Cloned            GATACAGATGAAGCTGGTTGTCCTCAACCTACTTGTGAGGGAAATCAGTTTCAGTGTCAG 240 

                  ************************************************************ 

 

ENSGALT17651      ACTGATGGTGAATGTATCCCACATTCATGGGTGTGTGATGATGAGGAAGATTGTGAAGAT 276 

XM422014          ACTGATGGTGAATGTATCCCACATTCATGGGTGTGTGATGATGAGGAAGATTGTGAAGAT 240 

Cloned            ACTGATGGTGAATGTATCCCACATTCATGGGTGTGTGATGATGAGGAAGATTGTGAAGAT 300 

                  ************************************************************ 

 

ENSGALT17651      GGATCAGATGAACATCAACAGTGTCCGGGAAGGACGTGCTCAAGTCAGCAGTTTACATGC 336 

XM422014          GGATCAGATGAACATCAACAGTGTCCGGGAAGGACGTGCTCAAGTCAGCAGTTTACATGC 300 

Cloned            GGATCAGATGAACATCAACAGTGTCCGGGAAGGACGTGCTCAAGTCAGCAGTTTACATGC 360 

                  ************************************************************ 

 

ENSGALT17651      TCAAATGGACAGTGTATCCCAAGTGCATACAGGTGTGATCGAGTAAAGGACTGCACTGAT 396 

XM422014          TCAAATGGACAGTGTATCCCAAGTGCATACAGGTGTGATCGAGTAAAGGACTGCACTGAT 360 

Cloned            TCAAATGGACAGTGTATCCCAAGTGCATACAGGTGTGATCGAGTAAAGGGCTGCACTGAT 420 

                  ************************************************* ********** 

 

ENSGALT17651      GGAACAGATGAAAGAGACTGCCGCTACCCAAGATGTGAACAGTTATCCTGTGCAAACGGA 456 

XM422014          GGAACAGATGAAAGAGACTGCCGCTACCCAAGATGTGAACAGTTATCCTGTGCAAACGGA 420 

Cloned            GGAACAGATGAAAGAGACTGCCGCTACCCAAGATGTGAACAGTTATCCTGTGCAAACGGA 480 

                  ************************************************************ 

 

ENSGALT17651      GCATGTTTTAATGCAAGCCAACGATGTGATGGCAAAGTTGATTGCAGAGATACTTCTGAT 516 

XM422014          GCATGTTTTAATGCAAGCCAACGATGTGATGGCAAAGTTGATTGCAGAGATACTTCTGAT 480 

Cloned            GCATGTTTTAATGCAAGCCAACGATGTGATGGCAAAGTTGATTGCAGAGATACTTCTGAT 540 

                  ************************************************************ 

 

ENSGALT17651      GAAGCTAATTGCACACGTGGATGTGCCAGTACGCAGTTTCAGTGTGCTAATGGAGAATGT 576 

XM422014          GAAGCTAATTGCACACGTGGATGTGCCAGTACGCAGTTTCAGTGTGCTAATGGAGAATGT 540 

Cloned            GAAGCTAATTGCACACGTCCATGTGCCAGTACGCAGTTTCAGTGTGCTAATGGAGAATGT 600 

                  ******************  **************************************** 

 

ENSGALT17651      ATCCCACAGGCCTTTATGTGTGACCATGATGATGACTGTGGAGACAGGAGTGATGAAAAC 636 

XM422014          ATCCCACAGGCCTTTATGTGTGACCATGATGATGACTGTGGAGACAGGAGTGATGAAAAC 600 

Cloned            ATCCCACAGGCCTTTATGTGTGACCATGATGATGACTGTGGAGACAGGAGTGATGAAAAC 660 

                  ************************************************************ 
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ENSGALT17651      TCTTGCACTTATGCAACCTGTAGAGGCAACTTCTTCACTTGTCCAAGTGGCCGCTGCATT 696 

XM422014          TCTTGCACTTATGCAACCTGTAGAGGCAACTTCTTCACTTGTCCAAGTGGCCGCTGCATT 660 

Cloned            TCTTGCACTTATGCAACCTGTAGAGGCAACTTCTTCACTTGTCCAAGTGGCCGCTGCATT 720 

                  ************************************************************ 

 

ENSGALT17651      CATCAGAGCTGGATATGTGATGGTGATGATGACTGTGAAGATAATGAAGATGAAAGAGGA 756 

XM422014          CATCAGAGCTGGATATGTGATGGTGATGATGACTGTGAAGATAATGAAGATGAAAGAGGA 720 

Cloned            CATCAGAGCTGGATATGTGATGGTGATGATGACTGTGAAGATAATGAAGATGAAAGAGGA 780 

                  ************************************************************ 

 

ENSGALT17651      TGTGAAAGTAGTTATCATGAATGCTACCCGGGAGAGTGGGCCTGCCCTGAGTCAGGGCAT 816 

XM422014          TGTGAAAGTAGTTATCATGAATGCTACCCGGGAGAGTGGGCCTGCCCTGAGTCAGGGCAT 780 

Cloned            TGTGAAAGTAGTTATCATGAATGCTACCCAGGAGAGTGGGCCTGCCCTGAGTCAGGGCAT 840 

                  ***************************** ****************************** 

 

ENSGALT17651      TGTATTCCAATTGGGAAAGTGTGCGATGGAGCTGCAGACTGCCCTGCAGGAGAAGATGAA 876 

XM422014          TGTATTCCAATTGGGAAAGTGTGCGATGGAGCTGCAGACTGCCCTGCAGGAGAAGATGAA 840 

Cloned            TGTATTCCAATTGGGAAAGTGTGCGATGGAGCTGCAGACTGCCCTGCAGGAGAAGATGAA 900 

                  ************************************************************ 

 

ENSGALT17651      ACGAACATCACGGCAGGCAGACATTGCAACATATCACACTGTGCTGCTCTGAGCTGCCAG 936 

XM422014          ACGAACATCACGGCAGGCAGACATTGCAACATATCACACTGTGCTGCTCTGAGCTGCCAG 900 

Cloned            ACGAACATCACGGCAGGCAGACATTGCAACATATCACACTGTGCTGCTCTGAGCTGCCAG 960 

                  ************************************************************ 

 

ENSGALT17651      TATCGCTGTCATTCTTCTCCTTCAGGAGGGATGTGTTATTGCCCTTCGGGATATACAATA 996 

XM422014          TATCGCTGTCATTCTTCTCCTTCAGGAGGGATGTGTTATTGCCCTTCGGGATATACAATA 960 

Cloned            TATCGCTGTCA------------------------------------------------- 971 

                  ***********                                                  

 

 

Figure 3.2. Nucleotide sequence alignment of two different LRP-2 sequences and the cloned 

fragment. The primers are indicated in green. The most probable start codon in frame is 

highlighted in yellow, resulting in the longest open reading frame (ORF). 

 

3.1.3 Tissue Distribution of LRP-2 Transcripts 

 

To determine the tissue distribution of chicken LRP-2 mRNA, Northern blot 

experiments were performed. RNA was prepared from different laying hen (LH) and 

embryonic tissues and subsequently used for Northern blot analysis. PCR with the 

primers Fwd.Megalin_3 and Rev.Megalin_4 generated a 655bp LRP-2 fragment, 

which was 32P radiolabeled, was used as probe. 

Hybridization signals showed high expression levels of LRP-2 mRNA in the laying 

hen kidney. Ovarian stroma was used as a negative control. The 15kb transcript was 

also present in the yolk sac and its EEC layer, but not in its mesoderm. 
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Figure 3.3. Northern blotting shows expression of transcripts in various laying hen and 

extraembryonic tissues as indicated. 15µg of total RNA extracts were electrophoretically 

separated. The blot was hybridized with a 32P labeled 655bp LRP-2 PCR fragment. Methylene 

blue staining of the 28S rRNA is shown for loading control. 

 
 
 

3.1.4 PCR Analysis of LRP-2 Tissue Distribution 

 

RT-PCR was used to further analyze LRP-2 tissue distribution. A touch-down PCR 

program was used to generate a 655bp fragment. The primer pair Fwd.Megalin_3 and 

Rev.Megalin_4 was used.  

As shown in Figure 3.4, the strong bands can be observed in the kidney, brain, and 

section V of the oviduct (see Figure 1.6) of laying hens and in all embryonic tissues 

tested. The data obtained from RT-PCR only partially correspond to the results 

obtained by Northern blot analysis. 
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Figure 3.4. RT-PCR analysis of chicken LRP-2 using a touch-down program (see Materials 

and Methods). Expression can be observed in all LH and embryonic tissues tested. Lanes 

labeled with the symbol ∅ contain PCR products obtained without cDNA. 

 
 

The PCR shown in Figure 3.4 indicates very high LRP-2 expression in the section V 

of the oviduct. To further investigate expression patterns of the female reproductive 

tract, cDNA of all sections was subjected to PCR analysis. Figure 3.5 shows that 

LRP-2 expression levels in the five segments of the laying hen oviduct differ 

significantly. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.5. RT-PCR analysis of chicken LRP-2 in the five different segments of the LH 

oviduct. The primers Fwd.Megalin_3 and Rev.Megalin_4 were used to generate a 655bp 

fragment. Segments II and V show the strongest bands. Lanes labeled with the symbol ∅ 

contain PCR products obtained without cDNA. 
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3.1.5 Quantitative Analysis of mRNA Levels 

 

Finally, a quantitative method was used to determine mRNA levels in different 

chicken tissues. Quantitative real time PCR analysis was performed with the primer 

pair Fwd.Megalin_3 and Rev.Megalin_5 using SYBR Green I. 45 cycles were 

performed in the LightCycler® 480.  The melting curve was monitored to measure the 

melting temperature. 

The efficiencies with values ranging from 1.913 to 1.932 were calculated from the 

internal standard curve. To further calculate the concentrations and standard 

deviations of the measurements, the LightCycler® Software (version 1.2) was used. 

The absolute quantification can be used to compare mRNA levels in different tissues. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6. Quantitative PCR analysis of chicken LRP-2 mRNA in various LH and 

extraembryonic tissues. High expression levels can be observed in adult kidney and brain. In 

the yolk sac of 10 day old embryos, the transcript level is 5.5 times higher than in the kidney. 

LRP-2 mRNA can also be found in other tissues, but only at marginal levels.  
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The mRNA level in the laying hen kidney was arbitrarily set to 100%. Figure 3.6 

shows that a huge amount of mRNA is present in the yolk sac of a 10-day-old 

embryo. LRP-2 mRNA expression can also be detected in the brain. Very low 

expression levels were observed in all other tissues tested. 

The quantitative PCR analysis of transcript levels largely correlates with the results of 

the Northern blotting experiments. 

 
 

3.2 Analysis of LRP-2 Protein Distribution  

 

To investigate the LRP-2 protein distribution, membrane extracts were prepared since 

LRP-2 is a transmembrane receptor. The polyclonal anti-chicken LRP-2 antibody 

described above was used for detection of the protein in various tissues. 

In laying hen tissues including heart, lung, liver, pancreas, spleen, oviduct, stroma, 

and colon receptor expression could not be detected (results not shown). In the adult 

animal, the kidney is the only organ in which LRP-2 can be found, thus serving as a 

positive control (Figure 3.7).  

  

3.2.1 LRP-2 Distribution in Chicken Embryonic Tissues 

 

The aim of these experiments was to find specific expression patterns during 

embryonic development in various tissues. First of all, we wanted to determine the 

localization of LRP-2 in the yolk sac. Therefore, the yolk sac was washed in a high 

saline buffer, and the two different layers (EECs and mesodermal cells) were torn 

apart with watchmaker forceps. Membrane protein extracts were subjected to gel 

electrophoresis and further analyzed by Western blotting. 
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Figure 3.7. For Western blotting, 50µg of chicken membrane protein were separated on a 6% 

SDS-polyacrylamide gel under non-reducing conditions. The analyzed tissues are indicated 

on the picture. The anti-chicken LRP-2 antiserum was used at 1:1000 dilution. HRP-

conjugated goat-anti-rabbit secondary antibody was diluted 1:50000. The chicken kidney 

serves as a positive control, the stroma represents the negative control. 

 
 
Figure 3.7. demonstrates the expression of LRP-2 in the yolk sac and in the 

endodermal endothelial cell layer, but not in the mesoderm. These data indicate that 

the receptor may be exclusively localized to the EECs. 

 

To analyze whether there is time-dependent LRP-2 expression in the yolk sac during 

embryonic development, tissue samples of various developmental stages were 

investigated. Yolk sacs from 5, 10, 15, and 20 day-old embryos represent a wide 

choice of developmental time points. Also yolk sacs of 1- and 3 day-old chicks were 

included in the study.  

The results of Western blot analysis (see Figure 3.8) indicate that protein expression 

starts around day 5 and gradually increases to finally peak in the last trimester of 

embryonic development. Even three days after hatching a signal can be observed. 
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Figure 3.8. Western blotting of LRP-2. 50µg of chicken yolk sac membrane protein extracts 

were separated by SDS-PAGE using a 6% gel (non-reducing conditions). The antiserum to 

chicken LRP-2 was diluted 1:1000. HRP-conjugated goat-anti-rabbit antibody was used as 

secondary antibody (1:50000). 

 
 
Several embryonic tissues were also tested for the presence of LRP-2 protein 

including brain, heart, liver, and kidney of 15 and 20 day-old embryos and of 1 day-

old chicks (data not shown). LRP-2 expression could only be detected in the 

embryonic kidney, which led to further investigations. 

A time-dependent expression pattern of LRP-2 was observed in the developing kidney 

(Figure 3.9). The receptor expression dramatically increases during progressive 

development. 

 

 

 

 

 
 
 
 
 
 

 
Figure 3.9. Western blot experiment using 30µg of chicken kidney membrane protein extracts 

separated on SDS-polyacrylamide 6% gels under non-reducing conditions. Anti-chicken 

LRP-2 antiserum was used. HRP-conjugated goat-anti-rabbit secondary antibody was diluted 

1:50000. 
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3.2.2 Sex Dependent LRP-2 Expression in the Chicken Kidney 

 
 
To determine LRP-2 protein levels in the adult chicken, Western blot experiments 

were performed. At the protein level, LRP-2 could only be detected in the kidney 

(data not shown). To further analyze receptor expression in the kidney, hen and 

rooster kidneys of wildtype and R/O animals were used. Additionally, roosters were 

treated with estrogen in order to simulate the hormonal status of the laying hen. 10mg 

estrogen/kg body weight were administered to adult roosters. After 48 or 72 hours, the 

animals were sacrificed and tissues were used for further investigation. As Figure 

3.10 shows, a significant difference between LRP-2 levels in laying hen and rooster 

can be observed. The receptor levels are higher in the kidney of female animals (see 

lane 2 and 3). In contrast, R/O roosters have higher LRP-2 levels than wildtype males 

(lane 3 and 6). Thus, estrogen causes an increase of receptor expression for 48 hours 

of estrogen treatment in male kidneys (lane 4). If males are sacrificed 72 hours after 

estrogen administration, LRP-2 levels almost returned to normal due to the hormone 

degradation (lane 5). 

 
 

 
 
Figure 3.10. Determination of LRP-2 expression in adult chicken kidneys. 20µg of membrane 

protein extracts were subjected to Western blot analysis under non-reducing conditions. The 

anti-chicken LRP-2 antiserum was used at 1:1000 dilution. HRP-conjugated goat-anti-rabbit 

secondary antibody was diluted 1:50000. 

1 2 3 4 5 6 



 

67 
 

3.3 Immunolocalization of Chicken LRP-2 in Yolk Sac 

Sections 

 
To confirm the results obtained by Western blot analysis, immunolocalization of 

LRP-2 was performed using yolk sac sections. The yolk sac of 10 day old embryos, 

fixed in Tissue-Tek® O.C.T. Compound, was sectioned (5-10µm thickness), probed 

with anti-chicken LRP-2 antiserum (1:100 dilution) and stained using two different 

methods. To visualize LRP-2, either biotinylated goat anti-rabbit secondary antibodies 

and Streptavidin-linked peroxidase for color development, or fluorescence-labeled 

secondary antibodies were used. 

Figure 3.11 shows the analysis under the light microscope. LRP-2 is indeed expressed 

in the EEC layer of the yolk sac. After fluorescence staining, shown in Figure 3.12, 

the receptor can be localized on the apical surface of the EECs. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.11. The image shows a section through the yolk sac of an 11 day-old embryo stained 

with anti-chicken LRP-2 antibody (1:100 dilution). Secondary antibody was used according 

to the protocol (see 2.9). 

 

 

 

 

 

 Mesoderm 

 Mesoderm 
 

 EECs 
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A  B 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.12. An 11 day-old chicken embryo yolk sac section was stained with anti-chicken 

LRP-2 antiserum (1:100 dilution). Goat anti-rabbit IgG fluorescence-labeled secondary 

antibodies (Alexa Fluor-488 conjugated) were diluted 1:1000. Counterstaining of cell nuclei 

was performed with DAPI (1:1000 dilution), which appear blue. LRP-2 expression is 

indicated in green. 

 
 
After separating the two layers of the yolk sac, including EECs and mesoderm, the 

individual layers were fixed in Tissue-Tek® O.C.T. Compound and stained using 

biotinylated goat anti-rabbit secondary antibodies and Streptavidin-linked peroxidase 

for development of the colored product. The result further confirms the localization of 

LRP-2 on the surface of the EECs (see Figure 3.13A). 

 
 
 

 
Figure 3.13. After separating the two layers of the yolk sac of 11 day-old embryos, membrane 

sections were stained with anti-chicken LRP-2 antiserum (1:250 dilution). Secondary 

antibodies were used according to the protocol (see 2.9). A: EECs are stained. B: In the 

mesoderm layer of the yolk sac no immunostaining was observed. 
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Chapter 4 

 

Discussion 

 

 

 

 

 

 

 

 

 

In the course of this study, the avian homologue to mammalian LRP-2 was 

characterized. The transcript ENSGALT00000017651, found in the Ensembl database 

is the designated chicken LRP-2 sequence [Schneider, 2007]. The mRNA sequence of 

the chicken receptor can be received under the accession number XM_422014 in 

NCBI Blast. These two sequences were aligned. Cloning of the N-terminus revealed 

the most probable start codon in frame by comparing it with the two different 

sequences.  

Further insights into LRP-2 expression patterns should help to elucidate the receptor 

function in the chicken. The main expression sites for LRP-2 in mammals include 

kidney, small intestine, lung, thyroid, thymus, oviduct and uterus, and the yolk sac 

[Moestrup and Verroust, 2001]. In order to get an overview of expression sites and 

levels of the receptor in the chicken, Northern blotting experiments, RT-PCR, and 

qPCR analysis were performed. Northern blotting showed rather unspecific results. 

Due to the fact that the transcript comprises about 15kb, mRNA becomes easily 

degraded, resulting in a smear. After testing different protocols, specific results, 

showing a single band with the expected size, proved LRP-2 expression in the adult 

kidney and the yolk sac. To gain more specific information about RNA expression 

levels, RT-PCR was performed. By using this method, the receptor was shown to be 
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expressed in all of the tested adult and embryonic tissues indicated in Figure 3.4. 

Hence, LRP-2 expression sites in chicken widely correspond to mammalian ones. For 

quantitative analysis qPCR was used. Very basal levels of mRNA could be detected 

in most of the tissues including laying hen stroma, heart, lung, liver, pancreas, spleen, 

small intestine, and some extraembryonic tissues. The outstanding exceptions were 

the adult kidney and brain and the yolk sac of 10 day-old embryos, showing high 

LRP-2 expression. 

LRP-2 is known to be essential for brain development, highlighted by receptor 

deficient mice, which show impaired forebrain development. Because LRP-2 is able 

to endocytose various apolipoproteins, specific roles in the adult brain were 

suggested, maybe explaining the high expression level found in the chicken brain 

[Fisher and Howie, 2006]. LRP-2 is present in endothelial cells of the brain, pointing 

at the possibility that the receptor mediates transport across the blood-brain barrier 

[Zlokovic et al., 1996]. The data obtained from qPCR experiments showed that LRP-2 

is present in the chicken brain, indicating roles in the adult animal. 

Furthermore, the receptor, which is expressed on the brush border surface of the renal 

proximal tubule, binds and reabsorbs several ligands [Leheste et al., 1999]. All 

collected data proved that LRP-2 is abundantly expressed in the adult chicken kidney. 

Therefore, LRP-2 expression in the kidney of adult animals seems to mediate equal 

recycling mechanisms. 

In mice, nephrogenesis, which can be divided into four stages, starts by day 12.5 of 

embryonic development. LRP-2 is not expressed until stage II, where it can be located 

in S-shaped bodies, the perinuclear envelope, cytoplasmic vesicles, and the apical 

surface. With the initiation of glomerular filtration the receptor is concentrated in 

clathrin-coated pits, indicating that LRP-2 is required for proper renal function. 

However, studies with LRP-2 deficient animals showed that the receptor is not 

required for kidney development [Fisher and Howie, 2006]. In the chicken, the 

glomerular anlagen of the mesonephros start to develop in the 2.5 day-old embryo 

[Schwarze and Schröder, 1985]. We are able to isolate the kidney of 5 day old 

chicken embryos. Beginning at that time point, LRP-2 expression can be detected in 

the kidney of the developing chicken. During renal organogenesis the receptor 

expression steadily increases to finally reach the highest levels after hatching. This 

expression pattern indicates that LRP-2 may not be essential for renal development 

but crucial for initiation of filtration and proper kidney function, similar to the 
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situation observed in mammals [Fisher and Howie, 2006]. 

The avian yolk sac resembles the mammalian placenta in many aspects, providing 

nutrients for the embryo and mediating the transfer of yolk components to the 

embryonic circulation [Speake et al., 1998]. The yolk sac can be found in all species, 

however displaying different structures and functions. In rodents, the yolk sac 

completely surrounds the embryo and the absorptive epithelia face the maternal 

circulation. This interface, expressing LRP-2, remains functional during the whole 

pregnancy, but around embryonic day ten, the placenta is established, taking over 

nutrient supply [Moestrup and Verroust, 2001]. The chicken yolk sac is composed of 

two membranous layers, one is composed of loosely associated mesenchymal cells 

connected to a network of blood vessels, the other contains large EECs [Hermann et 

al., 2000]. The determination of the exact localization of the receptor contributes to 

the understanding of its actions. Immunohistochemical studies of yolk sac sections 

showed that LRP-2 is expressed on the surface of the EECs facing the yolk 

compartment. This finding was confirmed by Western blotting results, showing that 

after the separation of the two yolk sac layers, the anti-chicken LRP-2 antibody 

exclusively recognizes the receptor in the EECs. LRP-2 expression on the apical 

surface of chicken yolk sac epithelial cells is consistent with its localization found in 

other tissues.  

The first two weeks of development mostly carbohydrates and proteins are taken up 

from the yolk, to be later replaced by yolk lipids [Kanai et al., 1996]. During the 

second half of embryogenesis, lipids are intensively transported across the yolk sac 

membrane, indicating the rapid growth phase. In the last days before hatching, the 

yolk sac is withdrawn into the abdominal cavity. The nutrient supply, consisting of 

lipid reserves, is maintained until the third day after hatching [Speake et al., 1998]. 

The expression pattern of LRP-2 in the yolk sac during chicken development should 

also give detailed information about the endocytic processes mediating nutrient 

supply. Western blot analysis showed that LRP-2 expression starts very early in the 

yolk sac and gradually increases to reach a plateau in the third week of 

embryogenesis. Thereupon, the protein expression slowly decreases, but can even be 

detected after hatching. All these developmental processes are reflected by the LRP-2 

expression pattern. This data leads to the suggestion that LRP-2 is an essential 

receptor for lipoprotein uptake of yolk components via endocytosis, especially during 

the growth period in the last trimester of development.  
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Yolk precursor production means a massive metabolic effort for the laying hen, 

leading to lipid synthesis from carbohydrates in the liver. The lipid secretion into the 

circulation results in 20-fold plasma VLDL concentration and in elevated levels of 

vitellogenin and yolk-specific proteins, e.g. vitamin-binding proteins.  The production 

of yolk precursors in the maternal liver is under the strict control of estrogen [Speake 

et al., 1998]. In mammals, VLDLR (termed LR-8 in the chicken) can be detected in 

various tissues including heart, muscle, brain, and adipose tissue. In chicken, LR8 is 

the major oocyte receptor, but very basal levels can be found in some tissues, 

resembling mammalian expression patterns. In R/O animals the receptor is not 

functional due to a point mutation at the lr8 locus [Schneider et al., 1998]. R/O hens 

are not able to lay eggs and develop severe hyperlipidemia and atherosclerotic 

features. R/O roosters are not affected due to the fact that LR8 is mostly located to 

oocytes [Schneider, 2007]. 

The data obtained from Western blot experiments show a significant difference 

between LRP-2 protein levels in laying hen and rooster kidneys. The highest LRP-2 

expression level can be observed in the laying hen kidney. There is an obvious sex-

dependent discrepancy of LRP-2 expression levels in the kidney. Due to the fact that 

reproductive processes are under the control of estrogen in the laying hen, LRP-2 

expression seems to be regulated by steroid hormones. This can be supported by the 

results gained from estrogen treatment of roosters, which show increased receptor 

expression after 48 hours past a single estrogen administration comparable to laying 

hen. When estrogen treated roosters are sacrificed 72 hours after the procedure, the 

receptor levels have already decreased. This observation can be explained by 

hormone degradation processes. High plasma concentrations of estrogen regulate the 

hepatic expression of genes coding for vitellogenin, apoVLDL-II, vitamin-binding 

proteins, and enzymes in laying hens and in estrogen-treated roosters [Speake et al., 

1998]. Hence, LRP-2 expression could be controlled by the same mechanism. The 

receptor upregulation in the kidney may be important for recycling processes in the 

renal proximal tubule involved in reproduction. 

On the other hand, in R/O animals another situation can be observed. There is hardly 

any difference between receptor expression levels in the laying hen and R/O females, 

but there is a big gap between LRP-2 expression observed in wildtype and R/O 

roosters. R/O males have an increased receptor expression level. Increased LRP-2 
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levels in R/O rooster kidneys and high receptor levels in R/O hen kidneys may be a 

result of LR-8 mutation, compensating the loss of functional receptors. 

Further investigation in sex differences of LRP-2 expression should give an insight in 

regulatory mechanisms of estrogen. The comparison of wildtype and R/O embryonic 

development may be able to elucidate possible rescue processes compensating for the 

loss of functional LR-8.  
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Abbreviations 

 
 
A  adenine 

aa  amino acid 

Amp  ampicillin 

APS  ammonium persulfate 

 

BM basement membrane 

bp  base pair 

BSA  bovine serum albumin 

 

C  cytosine  

°C Celsius 

Ca  calcium 

cDNA  complementary DNA 

Cl  chloride 

cpm  counts per minute 

C-terminal  carboxy-terminal 

 

Da  dalton 

DAPI  4’,6-diamidino-2-phenylindole 

DEPC  diethylpyrocarbonate 

DNA  desoxyribonucleic acid 

dNTP desoxynucleotidetriphosphate 

 

ECL enhanced chemiluminescence 

EDTA  ethylenediaminetetraacetic acid 

 

FH familial hypercholesterolemia 

Fwd forward 
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G  guanine 

g  gram or gravity 

gg  Gallus gallus 

GST glutathione-S-transferase 

 

h  hour 

HDL high-density lipoprotein 

HRP  horseradish peroxidase 

 

kb kilobases 

kDa kilodalton 

 

l liter 

LA-repeat LDL receptor type A repeat 

LB luria bertani 

LDL low-density lipoprotein 

LDLR  low-density lipoprotein receptor 

LH laying hen 

LRP low-density lipoprotein receptor-related protein 

 

M  molar 

µg microgram 

mg  milligram 

min minute 

µl  microliter 

ml milliliter 

mM  millimolar 

mRNA messenger RNA 

 

nm nanometer 

nt nucleotides 

N-terminal  amino-terminal 

 

o/n  over night 
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OD  optical density 

 

PAGE  polyacrylamide gelelectrophoresis 

PBS phosphate-buffered-saline 

PCR  polymerase chain reaction 

PMSF  phenylmethylsulfonylfluoride 

 

qPCR quantitative PCR 

 

Rev reverse 

R/O  restricted ovulator 

RNA  ribonucleic acid 

RNase  ribonuclease 

rpm rounds per minute    

RT  room temperature 

RT-PCR  reverse transcriptase-PCR 

 

s  second 

SDS  sodium dodecyl sulfate 

 

T thymine 

TAE tris-acetate-EDTA 

TBE tris-borate-EDTA 

TBS tris-buffered-saline 

TEMED  N,N,N´,N´tetramethylethylendiamine 

Tm  melting temperature 

 

U  unit 

UV  ultraviolet 

 

V  volt 

VLDLR  very low-density lipoprotein receptor 

 

X-Gal  5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside 



 

85 
 

Curriculum Vitae  

 

Personal Data 

 

Name Julia Plieschnig 

Date of birth 23.05.1984 

Family status Unmarried, no children 

Nationality Austria 

Current address Fasangasse 10/10, 1030 Wien 

Mobile +43 650 5854300 

E-mail julia.plieschnig@meduniwien.ac.at 

 

Education 

 

08/2007 – 08/2008 Master´s thesis at the Medical University of Vienna, 

Department of Medical Biochemistry, Dr. Bohrgasse 9, 

1030 Vienna 

29/06/2006 First Diploma Examination  

10/2002 – 08/2007 Undergraduate studies in Molecular Biology,  

 University of Vienna 

21/06/2002 Matura (Highschool Diploma) „summa cum laude“ 

09/1994 – 06/2002 BG/BRG Perau (Highschool), Peraustraße, Villach, 

Austria, with the focus on natural sciences 

 

Practical Experience 

 

07/2006 Practical training in the Laboratory Dr. Holzweber,  

Medical specialist for med. a. chem. laboratory 

diagnostics 

 

 

 



 

86 
 

09/2005 Laboratory for clinical microbiology, LKH Villach 

(Villach Regional Hospital), Institute for Pathology,  

 Chief physician Dr. Günter Alpi 

07/2005 Practical training in the Laboratory Dr. Holzweber, 

Medical specialist for med. a. chem. laboratory 

diagnostics 

 

Language Skills 

 

German, native language 

English, fluent 

Italian, basic knowledge 

 

Computer Skills 

 
 Touch typing 

MS Office 

Adobe Photoshop 

Online research databases 

Solid knowledge of Apple and Microsoft operating 

systems 

 

Oral Presentations 

 

J. A. Plieschnig, T. M. Bajari, W. J. Schneider, M. 

Hermann. The role of LRP-2 during embryonic 

development. Austrian Atherosclerosis Society (AAS) 

annual conference, St. Gilgen, 2008 

 

 

 


