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Abstract German 
 

Hintergrund: Der schrittweise Übergang von der Th2-geprägten Schwangerschaft zum 

ausgewogenen Th1/Th2-Milieu, der in den ersten Lebensjahren stattfindet, kann durch 

Umweltfaktoren, wie die mikrobielle Exposition und die Besiedlung und 

Zusammenstellung der Darmflora, beeinflusst werden. Die zytokinvermittelte 

Zellaktivierung wird von negativen Regulatoren, wie den Suppressors Of Cytokine 

Signaling (SOCS), kontrolliert. Die Hoch- oder Herunterregulation der SOCS-

Expression beeinflusst entscheidend das Ausmaß der Aktivierung als auch die Art der 

Zytokinantwort der Effektorzellen. 

Ziel der Studie: In der vorliegenden Studie wurde der Einfluss von 

Nahrungsmittelallergenen sowie zweier probiotischer und eines Gram-negativen 

Bakterienstammes auf die Zytokin- und SOCS-Expression der mononukleären Zellen 

des Nabelschnurblutes untersucht. 

Methoden: Die mononukleären Nabelschnurblutzellen von reifen, gesunden 

Neugeborenen wurden unter Zugabe von Nahrungsmittelallergenen ((Arachis hypogea 

(Ara h) 1 und 2, β-Laktoglobulin (BLG) und Ovalbumin (OVA)) sowie inaktivierten 

Bakterien (Lactococcus lactis (LL), Lactobacillus plantarum (LP) und Escherichia coli 

(EC)) kultiviert. Auswirkungen auf die Proliferation ([3H]-Thymidineinbau), 

Zytokinproduktion (ELISA) und SOCS mRNA-Expression (RPA) wurden bestimmt. 

Resultate: Die Nahrungsmittelallergene übten keinen Einfluss auf die SOCS mRNA-

Expression von Nabelschnurblutzellen aus. In Gegenwart der Gram-positiven Bakterien 

LL und LP konnte allerdings ein dosisabhängiger, Th1-gerichteter Effekt beobachtet 

werden. LP erwies sich in dieser Hinsicht als das effektivere Bakterium. Obwohl E. coli 

ebenfalls einen klaren Th1-gerichteten Einfluss ausübte, war dieser schwächer als bei 

den Gram-positiven Bakterien. Die von EC induzierte IL-5- und IL-10-Produktion war, 

verglichen mit LL und LP, deutlich erhöht, während die IL-12- und IFNγ-Produktion 

erniedrigt war. Die Zytokinproduktion erreichte ihren Höchstwert nach 24 (IL-10,  

IL-12) und 72 Stunden (IL-5, IFNγ), wohingegen die SOCS mRNA-Expression bereits 

nach 1 (EC) beziehungsweise 2 Stunden (LP) nachgewiesen werden konnte. Darüber 

hinaus induzierten die unterschiedlichen Bakterienstämme spezifische SOCS mRNA-

Expressionsmuster. 
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Schlussfolgerungen: Verschiedene Bakterienstämme führen zu differenzierter 

Zytokinexpression in Nabelschnurblutzellen. Dieser Stamm-spezifische Einfluss wird in 

Folge auch bei der SOCS-Expression deutlich. Doch bereits vor dem Ausschütten von 

Zytokinen kann eine durch Gram-positive und Gram-negative Bakterien induzierte 

SOCS-Expression der Nabelschnurblutzellen beobachtet werden, was auf eine direkte 

Aktivierung der SOCS-Gene mittels unspezifischer Immunantwort (Toll-ähnliche 

Rezeptoren) hinweist. 
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Abstract English 
 

Background: Environmental factors, such as microbial exposure and the colonization 

of the gut in terms of composition, may influence the sequential switch from a  

Th2-skewed pregnancy into a balanced Th1/Th2 milieu within the first years of life. 

However, cytokine-mediated cell activation is controlled by negative regulators, like the 

suppressors of cytokine signaling (SOCS). Up- or down-regulation of SOCS expression 

is decisive in defining the extent of activation and also the type of cytokine response of 

an effector cell population. 

Objective: The purpose of the study was to evaluate the effects of food allergens, two 

probiotic lactic acid bacteria and one gram-negative bacterial strain on the cytokine and 

SOCS expression of cord blood mononuclear cells (CBMCs). 

Methods: CBMCs from randomly chosen full-term healthy neonates were co-cultured 

either with food allergens (Arachis hypogea (Ara h) 1 and 2, β-Lactoglobulin (BLG) 

and Ovalbumin (OVA)) or inactivated bacteria (Lactococcus lactis (LL), Lactobacillus 

plantarum (LP) and Escherichia coli (EC)). Proliferation ([3H]-thymidine incorporation 

assay), cytokine production (ELISA) and SOCS mRNA expression (ribonuclease 

protection assay) were measured. 

Results: Food allergens did not impact SOCS expression. The gram-positive bacterial 

strains LL and LP exerted a strong Th1-skewing effect that was dose-dependent, and 

more prominent in the presence of LP. Although E. coli clearly induced a Th1-type 

response, it was weaker than those induced by the gram-postive strains and 

characterized by higher IL-10 and IL-5 production, as well as lower INFγ and IL-12 

production. While cytokine expression peaked at 24 hours (IL-10, IL-12) and 72 hours 

(IL-5, IFNγ), SOCS mRNA expression was induced at 1 and 2 hours by EC and LP, 

respectively. Furthermore, we observed strain-specifity in SOCS mRNA expression. 

Conclusion: Different bacteria lead to differential cytokine expression in cord blood 

which is reflected in a distinct SOCS pattern in CBMCs. However, there is some 

evidence for a modulation of SOCS expression by gram-positive and gram-negative 

bacteria before the release of cytokines, pointing to direct activation of the SOCS gene 

via the Toll-like receptor. 

 



- VII - 

Abbreviations 

 
32P 
3H 
all 
APC 
Ara h1 
Ara h2 
BLG 
C 
CAM 
CBMC 
CD 
CDR 
CFU 
CIS 
CpG 
Cpm 
Crude 
DNA 
DNase 
EC 
Foxp3 
GAPDH 
GH 
IFN 
Ig 
IL 
IU 
JAK 
KIR 
L32 
LAB 
LIF 

32P-phosphate 
tritium 

allergen 
antigen presenting cell 

Arachis hypogea (peanut) allergen 1 
Arachis hypogea (peanut) allergen 2 

β-lactoglobulin 
control 

cell adhesion molecule 
cord blood mononuclear cell 

cluster of differentiation 
complementarity-determining region 

colony forming unit 
cytokine-inducible SH2 domain-containing protein 

Cytosine plus Guanine dinucleotide motif 
counts per minute 

crude peanut extract 
Desoxyribonucleic acid 

Desoxyribonuclease 
Escherichia coli 

Forkhead Box P3 
Glyceraldehyde-3-phosphate dehydrogenase 

growth hormone 
interferon 

immunoglobulin 
interleukin 

international unit 
janus kinase 

kinase inhibitory region 
ribosomal protein L32 

lactic acid bacteria 
leukocyte inhibitory factor 



- VIII - 

LL 
LP 
LPS 
MAP 
MHC 
mRNA 
NFκB 
NK cell 
OVA 
PBMC 
PBS 
PHA 
PIAS 
RNA 
RNase 
rpm 
RTE 
SEA 
SH2 
SHP 
SOCS 
Socs 
STAT 
Tc cell 
TCR 
TGF 
Th 
TLR 
TNF 
Treg 
tRNA 
TYK 
UCC 
γc cytokine 
μCi 

 

Lactococcus lactis 
Lactobacillus plantarum 

Lipopolysaccharide 
mitogen-activated protein 

major histocompatibility complex 
messenger RNA 

nuclear factor κB 
natural killer cell 

Ovalbumin 
peripheral blood mononuclear cell 

Phosphate-buffered saline 
Phytohemagglutinin 

protein inhibitors of activated STAT 
ribonucleic acid 

ribonuclease 
rounds per minute 

recent thymic emigrant 
Staphylococcal enterotoxin A 

Src-homology 2 
SH2 domain-containing tyrosine phosphatase 

suppressor of cytokine signaling 
SOCS gene 

signal transducer and activator of transcription 
cytotoxic T cell 
T cell receptor 

transforming growth factor 
helper T cell 

Toll-like receptor 
tumor necrosis factor 

regulatory T cell 
transfer RNA 

tyrosine kinase 
Ultra Culture complete medium 

common γ cytokine 
microcurie 

 



- IX - 

Figures 

 

Fig. 3-1: Sample data for Human Cytokine and Human Cell Signaling Multi-Probe 

Template Sets. ............................................................................................... 54 

Fig. 3-2: Standard curve for hCK1. ............................................................................. 55 

Fig. 4-1: Dose dependency of allergen specific proliferative responses of cord  

blood .............................................................................................................. 59 

Fig. 4-2: RNase protection assay of IL-9 and IL-10 expression in CBMCs and  

PBMCs. ......................................................................................................... 61 

Fig. 4-3: RNase protection assay of IL-9 and IL-10 expression in CBMCs  

co-cultured with food allergens. .................................................................... 61 

Fig. 4-4: Allergen specific differences in the SOCS expression of CBMCs,  

diagrammed as ratios to the negative control. ............................................... 64 

Fig. 4-5: Ratio of SOCS1/CIS and SOCS1/SOCS3 expression of CBMCs induced  

by food allergens. .......................................................................................... 64 

Fig. 4-6: Correlation of SOCS1 and SOCS3 expression in CBMCs co-cultured  

with food allergens. ....................................................................................... 65 

Fig. 4-7: Relation between proliferation and SOCS expression in response to food 

allergens. ....................................................................................................... 67 

Fig. 4-8: IL-5 production: Kinetics and dose dependency over the course of  

3 days. ........................................................................................................... 70 

Fig. 4-9: IL-10 production: Kinetics and dose dependency over the course of  

3 days. ........................................................................................................... 71 

Fig. 4-10: IL-12 production: Kinetics and dose dependency over the course of  

3 days. ........................................................................................................... 72 

Fig. 4-11: IFNγ production: Kinetics and dose dependency over the course of  

3 days. ........................................................................................................... 73 

Fig. 4-12: Strain specific differences of cytokine patterns in the presence of  

105 CFU/mL of LL, LP and EC over the course of 3 days. .......................... 77 

Fig. 4-13: Strain specific differences of cytokine patterns in the presence of  

107 CFU/mL of LL, LP and EC over the course of 3 days. .......................... 78 



- X - 

Fig. 4-14: Ratio of IL-12/IL-5 expression of CBMCs in the presence of 105 CFU/mL  

of LL, LP and EC at day1 and day 3. ............................................................ 79 

Fig. 4-15: Ratio of IL-12/IL-5 expression of CBMCs in the presence of 107 CFU/mL  

of LL, LP and EC at day 1 and day 3. ........................................................... 79 

Fig. 4-16: Ratio of IFNγ/IL-5 expression of CBMCs in the presence of 105 CFU/mL  

of LL, LP and EC at day 1 and day 3. ........................................................... 80 

Fig. 4-17: Ratio of IFNγ/IL-5 expression of CBMCs in the presence of 107 CFU/mL 

of LL, LP and EC at day 1 and day 3. ........................................................... 80 

Fig. 4-18: RNase protection assay of SOCS expression in CBMCs co-cultured with  

LP over the course of 24 hours. .................................................................... 84 

Fig. 4-19: Kinetics of SOCS expression of CBMCs incubated with LL, LP, EC and  

SEA over the course of 24 hours, diagrammed as ratios to the negative 

control. .......................................................................................................... 86 

Fig. 4-20: RNAse protection assay illustrating strain specific differences in the  

SOCS expression of CBMCs at 16 and 24 hours. ......................................... 85 

Fig. 4-21: Strain specific differences in the SOCS expression of CBMCs over the  

course of 24 hours. ........................................................................................ 87 

Fig. 4-22: Ratio of SOCS1/SOCS3 and SOCS1/CIS expression of CBMCs induced  

by LL, LP and EC. ........................................................................................ 89 

 

Tables 

 

Table 1-1: Selected immune cytokines and their activities. ........................................... 30 

Table 1-2: Signal Transducers and Activators of Transcription (STATs). .................... 31 

Table 1-3: Selected SOCS and their functions. .............................................................. 36 

Table 4-1: Proliferation assays of CBMCs of 19 individuals co-cultured with  

3 concentrations of food allergens. ............................................................... 58 

 



- 1 - 

 

1 Literature review 
 

1.1 Allergy 
 

1.1.1 Definition of allergy 
 

Allergic reactions occur when an individual who has produced immunoglobulin E (IgE) 

antibodies in response to an innocuous antigen, or allergen, subsequently encounters the 

same allergen. The allergen triggers the activation of IgE-binding mast cells in the 

exposed tissue, leading to a series of responses that are characteristic for allergy. 

(Janeway, 2005) 

About 40% of people in Western populations are atopic, a state which is influenced by 

several gene loci. Atopic individuals have higher total levels of IgE and eosinophils in 

the circulation than non-atopic individuals. 

Initial priming of the immune system against allergens possibly occurs as early as in the 

prenatal period, which has been documented by the detection of proliferative responses 

to allergens in cord blood (Kondo, Kobayashi et al. 1992). 

 

1.1.2 T cells in allergy 
 

Utilizing the CD cell surface markers, T cells can be divided into two different 

populations: CD4+ T cells (Th cells), which facilitate the response of B- and T cells or 

induce the cytotoxic function in CD8+-cells, and CD8+-cells (Tc cells), which are able 

to lyse virus infected targets. 
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1.1.2.1 CD4+ T cells 

 

Based on the cytokines CD4+ T cells produce there are several subgroups to be 

differentiated. 

 

1.1.2.1.1 The Th1/Th2 paradigm 

 

In 1986, Mosmann et al. reported that long term murine T cell clones could be 

segregated according to their patterns of cytokine production (Mosmann, Cherwinski et 

al. 1986). The following year Snapper and Paul (Snapper and Paul 1987) reported that 

IL-4 was a switch factor for the expression of the IgE heavy chain gene and that this 

process could be inhibited by INFγ. Meanwhile, subsets comparable to murine Th1 and 

Th2 cells have been reported in rat and human (Del Prete, De Carli et al. 1991). 

The Th1-pattern is characterized by IL-2, IL-12, INFγ and TNFα production and the 

Th2-pattern is defined by IL-4, IL-5, IL-6, IL-9, and (later) IL-13 production (Maino 

and Picker 1998; Romagnani 2000). Expression of these cytokines is regulated by 

transcription factors, primarily signal transducer and activator of transcription 4 

(STAT4) and T-bet for Th1 cells and their antagonists STAT6, GATA3 and c-maf, 

which control Th2 cells (Romagnani 2006). 

 

The development of Th1 or Th2 cells from naive CD4+ T cells is mainly influenced by 

the cytokine milieu created at the level of antigen presentation. Antigen presenting cells 

(APC) produce these “conditional” cytokines early in infection. Infection by 

intracellular pathogens and the subsequent expression of IL-12 by APC and IFNγ by 

NK cells drives Th1 differentiation (Wu, Demeure et al. 1993), whereas helminth 

infection and the expression of IL-4 induces Th2 differentiation (Romagnani 2000). 

 

Th1 cells promote mainly cellular immunity, activating macrophages to a microbicidal 

state as well as supporting CD8+ antiviral effector T cells. Th1 cells induce the release 

of IgG antibodies by B cells, which mediate opsonization and phagocytosis. 
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By contrast, Th2 cells promote mainly humoral immunity, stimulating the growth and 

differentiation of mast cells and eosinophils directly and indirectly via induction of the 

production of IgE by B cells, which can mediate the activation of these cells. 

Additionally, Th2 cells play an important role in induction and maintenance of the 

allergic inflammatory cascade. Cytokines and chemokines produced by Th2 cells, as 

well as those produced by other cells in response to Th2 cytokines or as a reaction to 

Th2 related tissue damage, account for most pathophysiologic aspects of allergic 

disorders (IgE-production, IL-4 or IL-13), recruitment or activation of mast cells, 

basophils (through IL-4, IL-9 and IL-10) and eosinophils (IL-5), mucus hypersecretion, 

subepithelial fibrosis and tissue remodeling. Moreover, IL-4, IL-10 and IL-13 inhibit 

several macrophage functions and the development of Th1-cells (Romagnani 2000). 

 

1.1.2.1.2 Other CD4+ T cell subgroups 

 

Aside from Th1 and Th2 cells, other CD4+ subsets have been described. 

 

Th0 cells are an intermediate between naïve CD4+ T cells and differentiated Th1/Th2 

cells. They exhibit an unrestricted cytokine profile (Firestein, Roeder et al. 1989) while 

having the potential of either becoming Th1 or Th2 cells. 

 

Th3 cells secrete IL-10 and high levels of TGFβ, functioning as regulatory cells in the 

mucosal immune system. They have suppressive properties for both Th1 and Th2 cells 

(Weiner 2001). 

 

The IL-17 producing Th17 cells have been recently described by Harrington et al. 

(Harrington, Hatton et al. 2005). IL-17 is also expressed by other CD4+ T cells, as well 

as CD8+ and γδ T cells. In addition to IL-17, Th17 cells produce IL-17F, IL-22, IL-26, 

TNFα and various chemokines, which mediate the pro-inflammatory effects of this 

population. It has been shown that TGFβ and IL-6 are required for naïve CD4+ T cells 

to differentiate into Th17 cells (Bettelli, Carrier et al. 2006). 

Th17 cells may have a specific role in combating certain bacterial gut infections, thus 

complementing the activities of Th1 and Th2 cells in their responses against 
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intracellular pathogens and helminths, respectively. On the other hand, Th17 cells have 

been shown to play an important role in the induction and propagation of autoimmunity 

in animal models. In addition, links to several human autoimmune diseases such as 

multiple sclerosis, rheumatoid arthritis and psoriasis have been documented (Steinman 

2007). 

 

Regulatory T cells (Tregs) control self reactive T cells as well as excessive T cell 

response. They are characterized by the expression of the transcription factor FoxP3 

(Forkhead box 3). 

Tregs contribute to the regulation of Th1 and Th2 responses either via contact-

dependent mechanisms or by secreting IL-10 and TGFβ. 

 

1.1.2.2 CD8+ T cells 

 

Classical effector CD8+ T cells have been defined by their ability to lyse virus infected 

targets and to produce high levels of INFγ. Functionally much less is known about the 

role of CD8+ cells in allergic disease. 

 

Comparable to CD4+ cells, CD8+ cells are also capable of producing different cytokine 

patterns, depending on the cytokines present during primary stimulation. These CD8+ 

subpopulations can be compartmentalized along broadly similar lines to CD4+ T cells 

with INFγ secreting CD8+ cells (Tc1), IL-4 secreting CD8+ cells (Tc2) (Carter and 

Dutton 1996) and CD8+ cells with an unrestricted cytokine profile (Tc0). Tc1 and Tc2 

memory cells are stable and retain their cytokine profile after restimulation (Cerwenka, 

Carter et al. 1998).  

Although most of the experiments in this context were performed in a mouse model or 

in vitro, there were also studies performed which demonstrated that freshly isolated 

CD8+ cells from human blood have the potential to produce IL-4 at similar (Ying, 

Humbert et al. 1997), or even higher (Stanciu, Shute et al. 1996) levels than those 

produced by comparable CD4+ cells. In vitro models demonstrated an inhibitory 

effector function (Holmes, MacAry et al. 1997), as well as the potential to induce IgE 

switching (Punnonen, Yssel et al. 1997; Yanagihara, Kajiwara et al. 1999). These 
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studies also discuss the possibility that CD8+ T cells could be the initial source of a 

Type 2 cytokine profile switch. There is strong evidence that Th2-like CD8+ T cells are 

present at sites of allergic inflammation (Ying, Humbert et al. 1997) but it is not clear 

whether there is enough antigen to activate them or to which extent they contribute to 

allergic inflammation (Kemeny 1998). 

 

In summary CD8+ cells may play a major role in determining whether IgE response will 

occur or not, but their role remains to be specified. 

 

1.1.2.3 Th1/Th2 polarization in the perinatal period and the development of 

allergy 

 

The development of IgE-mediated allergy is determined by both genetic and 

environmental factors. Atopy is influenced by several gene loci, and the immunological 

events that lead to the development of allergen-related Th memory may be initiated 

already in utero. 

 

1.1.2.3.1 The prenatal period 

 

The maternal adaptive and innate immune system is radically altered during pregnancy. 

Its appropriate regulation is essential for the fetal survival. From the critical time of 

implantation onwards, a constitutive polarization of the feto-maternal interface towards 

a more Th2-type profile takes place (Wegmann, Lin et al. 1993; Raghupathy 1997). 

Although studies reject the Th2 paradigm as the major mechanism providing fetal 

allograft survival (Erlebacher 2001), there is no doubt about the abortificant role of 

typical Th1-cytokines (Raghupathy 1997). Elevated TNFα, INFγ and IL-2 levels are 

associated with recurrent spontaneous abortion (Raghupathy, Makhseed et al. 2000), 

while IL-4, IL-10, and IL-13 counterbalance their effects (Piccinni, Beloni et al. 1998). 

These Th1-damping effects may be amplified by the placenta through the synthesis of 

high levels of prostaglandin E2 (Linnemeyer and Pollack 1993), which selectively 

inhibits INFγ production and local progesterone production, stimulating IL-4 production 

(Piccinni, Giudizi et al. 1995). 
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1.1.2.3.2 The postnatal period 

 

During the first few years of life a universal skewing of the above mentioned 

intrauterine Th2 cytokine profile towards a Th1 cytokine profile, as present in adult 

non-atopic individuals, takes place. In people developing an allergy phenotype, this 

crucial time period differs substantially, leading to a Th2 dominated cytokine profile 

(Prescott, Macaubas et al. 1998). 

 

At birth T lymphocytes exhibit a relative Th2-profile, characterized by a limited ability 

to produce Th1 as well as Th2-type cytokines (Prescott, Macaubas et al. 1999). 

Throughout the first months after birth these Th-2 skewed responses are modified into 

low-level immunity predominantly expressing Th1-cytokines and IgG-antibodies, 

particularly of the IgG1 subclass. This very time seems to be essential for further 

development of allergic disease (Bjorksten 1999). 

 

Children with a family history of atopic disease seem to have a generally decreased 

capacity to produce Th1 and Th2 cytokines as well as allergen-specific Th1/Th2 

cytokines (Cairo, Suen et al. 1992). Referring to Prescott et al., the defect is most 

apparent with regard to INFγ production (Prescott, Macaubas et al. 1999). Neonates at 

high risk to develop allergy showed a reduced capacity to produce IFNγ in cord blood 

mononuclear cells (CBMCs) stimulated with phytohemagglutinin (PHA) (Tang, Kemp 

et al. 1994) and allergens (Kondo, Kobayashi et al. 1998). Additionally, Schaub et al. 

demonstrated that IL-10 expression of CBMCs exposed to microbial stimuli via the  

toll-like receptor (TLR) was significantly lower in high risk neonates (Schaub, Campo 

et al. 2006). Furthermore, elevated levels of Th2 cytokines in CBMCs of term babies 

have been correlated to atopy in several studies. Elevated IL-13 levels (Spinozzi, Agea 

et al. 2001; Ohshima, Yasutomi et al. 2002; Lange, Ngoumou et al. 2003) and IL-4 

levels, an increased IL-4/ IFNγ ratio in response to PHA at a protein level, as well as 

lower numbers of IL-12-producing cells after allergen stimulation could be observed in 

CBMCs of neonates at risk of atopy (Gabrielsson, Soderlund et al. 2001). 

In contrast, Prescott et al. (Prescott, Macaubas et al. 1998) demonstrated reduced 

allergen-specific IL-13 levels in high-risk children at a protein level. In a later study, 
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these findings were expanded by the additional Th2 cytokines IL-6 and IL-10 at protein 

level as well as IL-4 at RNA level, showing markedly reduced responses to allergens, 

compared to a non-atopic group, as well. While Th2 responses where rapidly 

suppressed in non-atopic children during their first year of life, IFNγ production which 

was low in both atopic and non-atopic children at birth was raised with age in the  

non-atopic group only (Prescott, Macaubas et al. 1999). 

 

In summary, the development from the Th2 skewed pregnancy into a balanced Th1/Th2 

milieu in the first years of life seems to be detrimental for the development of allergic 

phenotypes later on. However, skewing factors and the underlying regulatory 

mechanisms remain to be evaluated.  

 

1.1.2.4 The hygiene hypothesis and lactic acid bacteria 

 

The development of type I allergy, characterized by a dominance of Th2 cytokines  

(IL-4, IL-5, IL-13), has been linked to several factors, such as genetic predisposition 

and the nature of the allergenic protein. These factors, however, cannot solely explain 

the increased prevalence of atopic diseases. Evidence is accumulating that "western life 

style", which is associated with reduced microbial exposure due to high hygienic 

standards, significantly contributes to the constant increase of allergies (Strachan 2000). 

 

In this context, it has been demonstrated that early childhood exposure to livestock on a 

farm and ingestion of unpasteurized milk inversely correlate with the incidence of 

atopic diseases (Braun-Fahrlander, Riedler et al. 2002). Furthermore, children living on 

a farm lose their allergic sensitization more frequently than other children (Radon, 

Windstetter et al. 2004). 

Other evidence for the relevance of the hygiene hypothesis is coming from studies 

focusing on the significance of gut microbiology and the strain specific impact on the 

atopic phenotype. Based on epidemiologic data, a relationship between the composition 

of the intestinal flora and the prevalence of allergic diseases has been documented. 

Infants from countries with a high prevalence of allergy, such as Sweden, significantly 

differ with regard to intestinal colonization with certain lactic acid bacteria (LAB) 
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strains from countries where allergic diseases are less prevalent, such as Estonia. 

Additionally, it was shown that 2-year-old allergic children were less often colonized 

with lactobacilli, compared to nonallergic children, but nonallergic children had higher 

counts of coliforms and Staphylococcus aureus (Bjorksten, Naaber et al. 1999).  

 

Specific strains of LAB have been reported to exert health-beneficial or probiotic 

effects. In clinical trials, oral administration of a particular LAB strain (Lactobacillus 

rhamnosus GG) led to reduced atopic dermatitis in children with a positive family 

history of type I allergy (Kalliomaki, Salminen et al. 2001; Kalliomaki, Salminen et al. 

2003). Consequently, an anti-allergic effect was considered. In this context, it has been 

demonstrated in a mouse model of type I allergy, that selected LAB strains 

(Lactococcus lactis and Lactobacillus plantarum) have Th1-promoting capacities in 

vitro and in vivo (Repa, Grangette et al. 2003). Other studies have shown that bacteria 

are important in down-regulating inflammation associated with hypersensitivity 

reactions in patients with atopic eczema and food allergy (Isolauri 2004). Interestingly, 

clinical improvement of atopic dermatitis patients could not be linked to immunological 

changes (Kalliomaki, Salminen et al. 2001; Kalliomaki, Salminen et al. 2003). 

Although beneficial effects of LAB on atopic diseases have been suggested, evidence 

for clinical use strongly depends on the strains used and relates to studies with a 

relatively small sample size (Isolauri, Arvola et al. 2000; Kalliomaki, Salminen et al. 

2003; Rosenfeldt, Benfeldt et al. 2003). Recently published trails raised concerns about 

early probiotic supplementation reducing the risk to develop atopic dermatitis in  

high-risk infants (Brouwer, Wolt-Plompen et al. 2006; Taylor, Dunstan et al. 2007). 

Consequently, LAB have not reached an evidence level for regular therapeutic 

application. 
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1.1.3 Regulatory mechanisms of Th1/Th2 cells 
 

To assure an adequate Th1- or Th2-dominated response, cytokines produced by these 

subsets, predominantly IFNγ and IL-4, play an important role. However, the whole 

repertoire of immune cells is able to interfere via the secretion of Th1/Th2 favoring 

cytokines or regulatory cytokines. Moreover, both responses can be suppressed by 

Tregs and their associated cytokines. On a lower level, the JAK-STAT pathway 

regulates cellular responses to cytokines and growth factors, playing a central role in 

regulating the processes of proliferation, differentiation and apoptosis of Th1 and Th2 

cells. 

 

1.1.3.1 Cytokines involved in the regulation of Th1/Th2 cells 

 

Interferons (IFNs) are produced by cells which have been infected with a virus (IFNα 

and IFNβ) or certain antigen-activated T cells (IFNγ). IFNs are among the first defense 

mechanisms activated after a virus infection. 

Generally, IFNs create a higher resistance to viruses in the host cells, but IFNγ has 

numerous additional properties as well, one of them being the inhibition of proliferation 

of Th2 cells. 

 

Interleukins (ILs) are mainly produced by T cells, but also by B cells, macrophages and 

other cells of the immune system. By the expression of certain ILs Th and Tc cells are 

classified into Th1/Tc1 and Th2/Tc2, IL-2 and IL-12 being Th1/Tc1 cytokines, IL-4, 

IL-5, IL-6, IL-9 and IL-13 representing the Th2/Tc2 profile (Romagnani 2000). 

The various ILs control immune cells by influencing their proliferation, differentiation 

and activation. Their target cells include Th cells, B cells, NK cells, macrophages and 

many others. 

 

The tumor necrosis factors (TNFα and TNFβ) mediate inflammatory and cytotoxic 

responses, TNFα being a Th1 cytokine. 
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Most cytokines use the JAK-STAT pathway to transmit signals, but IL-1 uses a much 

more complex pathway. 

 

See Table 1-1 for selected cytokines and their activities. 

 

1.1.3.2 The JAK-STAT pathway 

 

The JAK-STAT pathway regulates cellular responses to cytokines and growth factors 

that play a central role in the regulation of cell proliferation, differentiation and 

apoptosis. The Janus Kinases (JAKs) and Signal Transducers and Activators of 

Transcription (STATs) transduce signals from the cell surface receptor to the nucleus, 

where transcription of their target genes is activated. 

JAKs, having tyrosine kinase activity, bind to the cytoplasmatic domains of the cell 

surface receptor. This event triggers their activation. The so activated JAKs 

phosphorylate tyrosine residues on the receptor, creating interaction sites for proteins 

that contain phosphotyrosine-binding SH2 domains. STATs, possessing SH2 domains, 

are attracted to the receptor and are themselves tyrosine-phosphorylated by JAKs. This 

triggers STAT dimerization via their SH2 domains and the STAT dimers move into the 

nucleus, acting as activator of transcription of their target genes (see Table 1-2 for 

STATs and their functions). 

 

Negative regulation of the pathway occurs at multiple levels, including removal of 

phosphates from receptors and activated STATs by protein tyrosine phosphatases and 

direct inhibition of transcriptional activation in the nucleus by Protein Inhibitors of 

Activated STATs (PIAS)). 

More recently identified Suppressors of Cytokine Signaling (SOCS) interact with and 

inhibit JAKs or compete with STATs for binding sites on cell surface receptors (Chen 

and Khurana Hershey 2007). 
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1.1.3.3 Tregs 

 

Regulatory T cells (Tregs) are defined as a T cell population that can influence other 

cell types with suppression of the immune response, controlling unwanted immune 

responses in vivo. They are characterized by expression of the transcription factor 

Foxp3 (Forkhead box P3). 

Tregs help to maintain homeostasis in the lymphoid organs by suppressing autoreactive 

T cells. After the onset of an immune response, Tregs migrate to inflamed tissues to 

limit tissue damage by inflammation. In the intestine, dendritic cells induce naïve  

T cells to differentiate into Foxp3-expressing Tregs. Induction of Tregs in the intestine 

influences, amongst others, Th1/Th2 responses and relates closely to the hygiene 

hypothesis mentioned above. 

 

Tregs utilize several mechanisms of suppression. Locally, effector T cells are shut down 

by cytokine deprivation and secretion of IL-10. Through direct interaction with APCs, 

Tregs are down-regulating the antigen-presenting activity of these cells and/or 

promoting the secretion of suppressive factors. Additionally, through expression of 

TGFβ, new Tregs are produced which spread out and promote a regulatory environment 

beyond local infection (Tang and Bluestone 2008). 
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1.2 Cord blood mononuclear cells (CBMCs) 
 

1.2.1 CBMCs and allergy 
 

Allergic sensitization is initiated by the development of Th2 cells reactive to allergens. 

Development of effector T cells, including Th2 cells, in the neonate is initiated by 

activation through antigen-presenting dendritic cells. The mechanisms leading to  

Th2-mediated allergic responses are assumed to be promoted by low activity of 

regulatory T cells, which are responsible for tolerogenic responses during the perinatal 

phase in healthy children, or poor Th1-type favouring actions. Cord blood mononuclear 

cells include premature naïve T cells and antigen-presenting cells as well as Tregs, thus 

serving as a useful model for the status of the immune system at birth (Allam, 

Zivanovic et al. 2005). 

 

1.2.2 Special features of CBMCs 
 

Cord blood T cells can be considered to represent a transitional population between 

thymocytes and adult T cells. Their immaturity becomes apparent in their proliferative 

activity to allergens, which is conducted mostly without the aid of memory cells, and 

the alleviation of cytokine production. Thus it remains unclear whether allergen-specific 

proliferation of CBMCs relates to intra-uterine priming or rather resembles an 

unspecific response of recent thymic emigrants (Thornton, Upham et al. 2004). 

Interestingly, a recent study provided evidence for antigen specific priming in utero 

following vaccination against influenza. Antigen specific T cells were detectable in cord 

blood (Rastogi, Wang et al. 2007). 

 

The cytokine profile of cord blood T cells is skewed towards a Th2 phenotype, 

exhibiting higher levels of IL-4, IL-5 and IL-13, and diminished levels of IFNγ, 

compared to adult T cells. A better understanding of decisive events in the development 

of pathognomonic T cell populations from “naïve” cord blood T cells may help to 

invent preventive strategies (Cohen, Perez-Cruz et al. 1999). 
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However, T cell based differences are more or less apparent depending on the 

stimulation system. Evidence is increasing that the aberrant cytokine responses of 

CBMCs rather relate to different regulatory properties and immaturity of the APC 

(Allam, Zivanovic et al. 2005). 

There are also pronounced differences between CD4+ CD25+ regulatory T cells from 

cord and adult blood, the former being a naïve (CD45RO- CD45RA+) population, 

contrasting with the memory (CD45RO+ CD45RA-) population found in adults (Wing, 

Ekmark et al. 2002). 

 

1.2.3 Immune responses in cord blood 
 

1.2.3.1 Allergen-induced specific response in cord blood 

 

The response of CBMCs to antigens/allergens differs clearly from the adult T cell 

response. Firstly, more than 90% of CD3+ cells in cord blood are naïve, CD45RA+ cells, 

while in adults CD45RO+ memory T cells become increasingly dominant with age 

(Cossarizza, Ortolani et al. 1996). Neonatal CD45RA+ T cells also express CD38, which 

indicates a similarity to recent thymic emigrants (RTEs). Interestingly, it was shown 

that even upon removal of the low numbers of so-called memory cells from cord blood, 

a responsiveness to allergens was measurable in 50% of the donors (Devereux, Seaton 

et al. 2001). Therefore, the proliferative reactivity of CBMCs to allergen appears not to 

depend on conventional memory T cells. It has been proposed that these unprimed 

reactions to allergen in cord blood are part of a mechanism providing a “broad range” 

response to antigens during the early postnatal period, preceding the development of 

conventional T cell memory (Thornton, Upham et al. 2004). Functionally immature T 

cells of cord blood have structural differences, such as reduced CDR3 length 

(Schelonka, Raaphorst et al. 1998) and have been observed to show reactivity to 

multiple regions of an allergen, as opposed to an average of one site or less in PBMCs 

from 5 year olds (Yabuhara, Macaubas et al. 1997). 

 

Moreover, it has been demonstrated that cytokine production is down-regulated in 

neonatal T cells. In comparison to adult T cells, TNFα production was reduced, and 
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expression of IL-3, IL-4, IL-5 and IFNγ was barely observed. These differences were 

explained through the immaturity of cord blood T cells (Allam, Zivanovic et al. 2005). 

However, it is not clear whether these down-regulations rather relate to immaturity of 

antigen presenting cells, since polyclonal responses to T cells (e.g., PHA induced 

proliferation) is not diminished in cord blood (Chipeta, Komada et al. 2000). 

 

1.2.3.2 Bacteria-induced immune response in cord blood 

 

1.2.3.2.1 Effects of probiotic on allergy 

 

The hygiene hypothesis suggests that insufficient exposure to microbes is one of the 

reasons for elevated frequency of allergic diseases in Western societies. Initially, the 

direct immunomodulatory impact of a Th1-driven infection as well as the influence of 

the diversity of microbes during establishment of the intestinal flora was thought to 

direct development away from the allergic phenotype. At present, the beneficial effect 

of environmental factors is thought to rather relate to an induction of tolerance than to a 

Th2-opposing Th1-type response. The high degree of hygiene in industrial countries, 

and the resulting absence of environmental microbial exposure may pose a problem for 

immune maturation and tolerance development in infancy. One possible approach is the 

administration of probiotics which are thought to provide the necessary microbial 

stimulation of the child’s developing immune system (Ouwehand 2007). 

 

Various effects of probiotics on individuals have been hypothesized. Firstly, probiotics 

are able to modulate the intestinal microbial flora and improve the barrier function of 

the intestinal mucosa, leading to reduced antigen exposure (Malin, Verronen et al. 

1997). Secondly, a direct modulation of the immune system through the induction of 

Th1 cytokines and inhibition of Th2 cytokines has been demonstrated in the mouse 

model (Pochard, Gosset et al. 2002; Niers, Timmerman et al. 2005). Moreover, an 

increased production of secretory IgA which can contribute to an exclusion of antigens 

from the intestinal mucosa has been described (Fukushima, Kawata et al. 1998). 
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1.2.3.2.2 Lactic acid bacteria 

 

Dietary lactic acid bacteria (LAB) are non-invasive and non-pathogenic gram-positive 

bacteria with GRAS (generally regarded as safe) status that have been used for food 

processing and preservation for centuries. The major species of LAB are used in dairy 

manufacturing: Lactobacillus (milk, meat, vegetables, and cereal), Lactococcus (milk), 

Streptococcus (milk), and Leuconostoc (vegetables, milk). Other members of LAB, 

notably lactobacilli, occupy important niches in the gastrointestinal tracts of humans and 

animals and have been reported to exert health beneficial or probiotic effects. 

A possible role of LAB in the prevention of of type I allergy and atopic dermatitis has 

been suggested (Kalliomaki, Salminen et al. 2001; Kalliomaki, Salminen et al. 2003).  

Escherichia coli are gram-negative anaerobe bacteria found in the human intestinal 

system where they constitute an important part of the essential intestinal flora. Although 

most strains of E. coli are not regarded as pathogens, they can cause infections in 

immunocompromised hosts. The pathogenic strains cause gastrointestinal illness when 

ingested. 

Endotoxins are intrinsic components of microbial structure. The gram-positive cell wall 

consists of the endotoxins peptidoglycan and lipoteichoic acid, while the gram-negative 

cell wall contains the endotoxins lipopolysaccharide (LPS) and lipoproteins. 

 

1.2.3.2.3 Lactic acid bacteria and the modulation of the innate immune response 

 

The innate immune response directs T cell differentiation, and thereby probably 

influences the development of immunological tolerance to environmental antigens. 

In particular, postnatal colonization of the gut is crucial for tolerance development. 

As mentioned above, the composition of the gastrointestinal flora seems to play an 

important role. 
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Overview of the innate immune response 

 

The innate or non-antigen-dependent immune response forms a front line protection 

against pathogens. Bacteria, viruses and parasites that overcome the epithelial surfaces 

are firstly recognized by tissue macrophages. In the gastrointestinal tract these 

macrophages are situated in the mucosal lining. They express various receptors for 

bacterial components, including CD14 and receptors of the Toll-like receptor (TLR) 

family. TLRs are able to recognize bacterial CpG-DNA, exotoxins and conserved 

microbial structures (endotoxins) such as peptidoglycan and lipopolysaccharide (LPS), 

the cell wall components of gram-positive and gram-negative bacteria. TLRs are 

expressed by monocytes, dendritic cells and various others including the intestinal 

epithelial cells. Binding of an antigen to this receptor triggers signaling pathways 

resulting in the production of inflammatory cytokines, which recruit neutrophils and 

macrophages to the site of infection. If the pathogen persists, the development of an 

adaptive immune response is initiated by transporting the antigen to the lymphoid 

organs via dendritic cells and macrophages (antigen-presenting cells), where they can be 

recognized by naïve B and T cells (Ouwehand 2007). 

 

Toll like receptors and their “instructive” cytokines 
 

Ten members of the human TLR-family have been described so far (Leulier and 

Lemaitre 2008). Among those that recognize Bacteria, TLR2, 4 and 9 are thought to be 

most important. TLR2 plays an essential role in the response to bacterial lipoprotein 

(gram-positive and gram-negative) and peptidoglycans (gram-positive), while TLR4 

mediates activation through lipopolysaccharide (gram-negative) and TLR9 reacts to 

CpG-DNA of certain bacteria. Through the recognition of pathogens or their products, 

TLRs can induce the production of Th1 cytokines in APC. Specifically, release of IFNγ 

and IL-12 has been shown to be induced via TLR (Yang, Mark et al. 1998). These 

cytokines function as "instructive" cytokines and drive naïve T cells to differentiate into 

Th1 cells. 

Additionally, counter-regulatory molecules like SOCS1 and SOCS3 were found to be 

induced by LPS or CpG–DNA stimulation in macrophages (Bode, Nimmesgern et al. 

1999; Crespo, Filla et al. 2000). 
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The innate immune system and the hygiene hypothesis 

 

Children who grow up on a farm, and are therefore exposed to higher levels of 

endotoxin than children of non-farming families, are at reduced risk of developing 

allergic diseases (Riedler, Braun-Fahrlander et al. 2001). It has been speculated that 

binding of microbial products to TLR activates antigen-presenting cells, inducing 

modifications of the adaptive immune response. These modifications are speculated to 

lead to a Th1 skewed environment. In this way, innate immunity is expected to play an 

important role in the sensitation of children to specific allergens. In another publication, 

Braun-Fahrlander et al demonstrated an association between a higher level of LPS 

exposure and a decreased risk for atopic diseases in schoolchildren (Braun-Fahrlander, 

Riedler et al. 2002). 

 

After long-term exposure to heightened levels of endotoxins, the responsiveness of the 

innate immune system to LPS is reduced, a phenomenon known as lipopolysaccharide 

tolerance. This study suggests that schoolchildren with high levels of environmental 

exposure to endotoxins show a reduced capacity of cytokine production in response to 

activation via the innate immune system. Consequently this also leads to a  

down-regulation of the resulting inflammatory responses through adaptive immunity. 

This state of tolerance may prevent the development of atopic diseases in these children 

(Braun-Fahrlander, Riedler et al. 2002). 

Furthermore, children with an increased environmental exposure to microbial 

compounds were shown to have an amplified gene expression of CD14 and TLR2 

(Lauener, Birchler et al. 2002). Interestingly, TLR4 expression was not heightened in 

the farmers’ children which parallels in vitro experiments investigating the effect of 

LPS on human blood cells (Flo, Halaas et al. 2001). 

 

Regarding regulatory T cells, it has been demonstrated that Tregs selectively express 

TLRs, directly responding to LPS via TLR4 (Caramalho, Lopes-Carvalho et al. 2003). 

Sutmuller et al. established a direct link between TLRs and regulatory T cells by 

demonstrating that TLR2 negatively controls the function of Tregs in vivo (Sutmuller, 

den Brok et al. 2006). 
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Additionally, a link between maternal atopy and Foxp3 (a gene specific for Tregs) 

induction was pointed out by Schaub et al. in 2006. The group demonstrated that IL-10 

and Foxp3 expression induced via TLR2 stimulation was decreased in CBMCs of atopic 

mothers. These potentially less effective Tregs in atopic mothers were speculated to 

have a diminished capacity to respond to microbial stimuli. (Schaub, Campo et al. 

2006). 

 

Finally, it has to be noted that the hygiene hypothesis is regarded as a model to explain 

certain observations connecting the innate immune system with the development of 

atopic diseases. Neither the exact mechanisms nor the relevant endotoxins or 

environmental factors are to date known. 

 

The innate immune system and lactic acid bacteria 

 

In contrast to pathogens, commensals in the healthy gut have been shown to control 

inflammatory responses by turning the signaling cascades down. Recognition of these 

bacteria by TLRs ensures intestinal homeostasis, integrity of the individual and has been 

shown to prevent allergic inflammation (Bashir, Louie et al. 2004). 

 

Karlsson, Hessle et al. demonstrated that LAB, being gram-positive commensals, 

induce high levels of IL-12, a key cytokine for the differentiation of naïve cells toward a 

Th1 cytokine pattern, and TNFα, a proinflammatory Th1 cytokine, in both cord blood 

mononuclear cells and adult peripheral mononuclear cells (PBMC). In contrast,  

gram-negative bacterial strains (e.g. E. coli) were shown to be poor inducers of IL-12 

and TNFα. Interestingly, high levels of IL-10 and IL-6, both Th2 cytokines, were 

induced equally by gram-positive and gram-negative bacteria in cord blood. 

However, CBMCs and PBMCs have to be regarded as model systems for the immune 

system which do not allow to draw conclusions about the intestinal immune response. 

The collected data therefore has to be treated as indirect evidence and most importantly 

highlights strain specific differences. 
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Concerning the differences between cord blood and adult mononuclear cells, it has been 

shown that neonatal cells produce higher levels of IL-6 than adult cells in response to 

most bacterial strains, including L. plantarum and E.coli. No statistically significant 

differences in the levels of IL-12, TNFα, and IL-10 were evaluated (Karlsson, Hessle et 

al. 2002). 

 

Pochard et al. complemented these observations by using a Th2 cytokine-producing 

cellular model (i.e., PBMCs stimulated with the superantigen SEA) to assess the change 

in the cytokine profile of atopic and non-atopic patients exposed to different LAB 

(Lactobacillus plantarum, Lactococcus lactis, Lactobacillus casei, and Lactobacillus 

rhamnosus GG) and E.coli. It was shown that IL-4 and IL-5 were reduced in all LAB 

treated probes, while E.coli didn’t have this effect. Interestingly, the PBMCs of atopic 

patients which were incubated with the related allergen reacted to LAB in the same 

way; IL-4, IL-5 and IL-13 levels were markedly reduced, even in patients allergic to 

aeroallergens. LAB were capable of inducing IL-12 secretion in PBMCs, as well as in 

monocytes via their TLRs. The large amounts of IL-12 produced by LAB-stimulated 

APCs lead to activation of STAT4, which is known to transactivate IFNγ directly 

(Pochard, Gosset et al. 2002). Recently, Niers et al showed that different LAB strains 

are able to decrease Th2 cytokines in PHA-stimulated PBMC cultures, mainly via 

expression of IL-10 by monocytes (Niers, Timmerman et al. 2005). 

 

In short, antigen-presenting cells in newborns seem to have the ability to respond to 

probiotics efficiently. The cytokine pattern ultimately expressed by CBMCs suggests a 

role for lactic acid bacteria in the maturation of the immune system by inhibition of an 

overwhelming Th1- as well as Th2-type response. 

On the other hand, as discussed above, an evidence level for regular therapeutic use of 

LAB in atopic and autoimmune diseases has not been reached to date. 
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1.3 Suppressors of Cytokine Signaling (SOCS) 
 

1.3.1 Introduction 
 

Regulation of the initiation, duration and magnitude of cytokine signaling occurs at 

multiple levels; one of the simplest means of attenuating a response is via a negative 

feedback loop. An important class of negative feedback inhibitors are the Suppressors 

of Cytokine Signaling (SOCS) proteins. 

SOCS1, SOCS2, SOCS3 and CIS mRNA and proteins are generally present at low 

levels in unstimulated cells, and mRNA and protein levels are rapidly induced by a 

broad spectrum of cytokines, both in vitro and in vivo, with the STATs playing an 

important part in regulating SOCS gene transcription. Apart from cytokines, pathogens 

and their products such as LPS and CpG-DNA have been shown to induce SOCS 

expression as well. However, the underlying mechanisms of activation seem to differ 

between individual SOCS (Alexander and Hilton 2004). 

 

1.3.2 The SOCS protein family 
 

The SOCS protein family consists of eight members: cytokine-inducible SH2 domain-

containing protein (CIS) and SOCS1-7. Common familial features include a central 

SH2 domain and a conserved C-terminal SOCS box. SOCS1 and SOCS3 have an 

additional kinase inhibitory region (KIR) adjacent to the SH2 domain. All SOCS 

proteins contain only few introns and can be characterized as immediate-early genes 

(Starr, Willson et al. 1997). 

 

SOCS family members have been documented to act as negative feedback regulators 

that are induced by cytokine signaling itself and subsequently shut down the respective 

signaling cascade. Numerous studies show that inhibition of signal transduction occurs 

through interaction of the SH2 domains of SOCS proteins with key phosphotyrosine 

residues in activated signaling components. SOCS1 directly interacts with JAK1, JAK2, 

JAK3, and TYK2 and, in doing so, inhibits their kinase activity by interacting with a 

key regulatory tyrosine in the activation loop of JAKs with its SH2 domain. 
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For SOCS2, SOCS3 and CIS, the evidence points towards phosphotyrosines in the 

cytoplasmatic domains of cytokine receptors being the primary site of interaction. The 

KIR of SOCS1 and SOCS3, located next to the SH2 domain, is believed to inhibit JAK 

activity. Another way SOCS proteins might inhibit signaling is by competing with 

STATs for common phosphotyrosine binding sites within the cytoplasmic domains of 

cytokine receptors. Additionally, the SOCS box acts to couple the substrate-specific 

interactions of the SH2 domains to generic components of the ubiquitin ligation 

machinery. The SOCS box interacts with Elongin-C and -B to form an E3 ubiquitin 

ligase complex with further proteins. This complex is thought to attach ubiquitin to key 

signaling proteins as JAK2 which interact with the SH2 domain of SOCS proteins, 

leading to the degradation of these proteins in the proteasome, and the termination of 

signaling (Yasukawa, Sasaki et al. 2000). 

 

The first member of the SOCS family, CIS, was identified as a negative feedback 

regulator of the STAT5 pathway in response to erythropoietin, IL-2 and IL-3. 

The second member, SOCS1, binds to all Jak family tyrosine kinases, thereby acting as 

a negative regulator of a wide range of cytokine signaling pathways which utilize 

STAT1, most importantly IFNγ. 

SOCS3 expression is induced by a wide variety of inflammatory and anti-inflammatory 

cytokines, including IFNγ, IL-3, IL-6 and IL-10 and works via the inhibition of STAT3. 

However, it has to be kept in mind that since intracellular JAK/STAT pathways are 

shared between different cytokine signaling cascades, induction of individual SOCS 

will also inhibit cytokine pathways different from the inducing signal cascade (cross-

talk inhibition) (Heeg and Dalpke 2003). 

 

1.3.3 SOCS functions 
 

The in vivo actions of SOCS proteins have been investigated by production of 

transgenic mice expressing various SOCS proteins. Additionally, studies of mice 

genetically engineered to lack functional Socs genes have been undertaken, revealing 

SOCS proteins to be important biological regulators in the adaptive and innate immune 

response. Results from these studies have clearly defined key physiological roles of 
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individual SOCS proteins, such as the essential role for SOCS1 in regulating IFNγ 

signaling and T cell homeostasis. In other areas, it is clear that no consensus has yet 

become apparent. 

 

See Table 1-2 and Table 1-3 for an overview of STATs and SOCS and their functions. 

 

1.3.3.1 SOCS1 

 

SOCS1 appears to be the most potent inhibitor of cytokine signaling and Socs1−/− mice 

show the most severe phenotype. The pathology of sick Socs1-/- mice shows similarities 

to wild-type mice administered with IFNγ, leading to the hypothesis that the disease of 

Socs1-/- mice might be due to excessive responses to IFNγ (Alexander, Starr et al. 1999). 

However, long-term studies have revealed that combined Socs1−/−Ifnγ−/− mice 

eventually succumb to a range of inflammatory diseases, which are only detectable in 

the absence of IFNγ (Metcalf, Mifsud et al. 2002). These symptoms might be due to 

abnormal signaling of other inflammatory cytokines, including IL-2, -4, -6, -12, -15, -23 

and TNFα, associating SOCS1 with a wide range of acute and chronic inflammatory 

disorders. 

 

1.3.3.1.1 Regulation of IFNγ signaling 

 

Mice lacking the Socs1-/- gene die within the first 3 weeks of life due to an uncontrolled 

fatal inflammatory disease. They display low body weight and complex pathology. The 

most striking defects in these mice are found in the acquired and innate immune system 

(Starr, Metcalf et al. 1998). Socs1-/- mice display evidence of an ongoing response to 

IFNγ including constitutive activation of STAT1 in the liver, and markedly elevated 

expression of IFNγ-inducible genes in several SOCS1-deficient tissues (Alexander, 

Starr et al. 1999). 

The reasons for the symptoms of Socs1-/- mice are rather related to the increased 

sensitivity of SOCS1-deficient tissue to IFNγ than to elevated circulating concentrations 

of IFNγ. This hypersensitivity leads to an immune response induced by much lower 

doses of IFNγ than required by wild-type cells (Alexander, Starr et al. 1999). 
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Together, these observations suggest that the actions of SOCS1 are necessary to 

attenuate the duration of IFNγ signaling in cells, preventing negative effects of an 

uncontrolled immune response while allowing IFNγ to exert its beneficial effects. 

 

1.3.3.1.2 Regulation of IL-4 signaling 

 

Dickensheets et al revealed that SOCS1 overexpression can block activation of STAT6, 

which is involved in IL-4 and IL-13 signaling, in macrophages (Dickensheets, 

Venkataraman et al. 1999). In a later study by the same group it was shown that IL-4 

and the related cytokine IL-13 directly induce SOCS1 gene expression in monocytes 

and macrophages in a STAT6 dependent process. In addition, forced expression of 

SOCS1 inhibits IL-4 signaling (Dickensheets, Vazquez et al. 2007).  

 

1.3.3.1.3 Regulation of IL-10 signaling 

 

IL-10, a key cytokine in regulating inflammatory responses, induced SOCS1  

up-regulation in various human and mouse cell lines (Ding, Chen et al. 2003). A partial 

inhibition of IL-10 signaling through STAT3 inhibition has been proposed, while 

neither SOCS1 nor SOCS3 have been shown to directly interact with the IL-10 receptor. 

 

1.3.3.1.4 Regulation of T cell homeostasis via the γc-dependent family of cytokines 

 

SOCS1 also has an important IFNγ-independent role in T lymphoid development and 

function. The common gamma (γc) cytokines, namely IL-2, IL-4, IL-7 and IL-15, 

potently induce SOCS1 via the γc receptor. T cells lacking SOCS1 showed 

hypersensitivity to signals from cytokines that act through γc, and activation of STAT5 

was evident following stimulation with significantly lower concentrations of cytokines 

than in wild type cells (Cornish, Davey et al. 2003). 

 

While the Socs1 gene appears to be transcribed at all major stages of T cell development 

in the thymus, SOCS1 expression is down-regulated during immature T cell 

development and becomes particularly high in double positive CD4+ CD8+ thymocytes. 
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At various stages of T cell homeostasis, up-regulation of SOCS1 expression has been 

hypothesized to keep T cells in a cytokine unreceptive state until they receive the 

appropriate developmental triggers to proliferate and differentiate. During positive 

selection, double positive cells cannot survive in the absence of pro-survival cytokines, 

such as IL-7. It has been speculated that SOCS1 maintains a fail-safe mechanism to 

prevent inadvertent signaling by pro-survival cytokines in double positive cells 

(Alexander and Hilton 2004). 

 

1.3.3.1.5 Regulation of T helper cell polarization 

 

SOCS1 expression has been reported to be fivefold higher in Th1 cells than in Th2 cells 

(Egwuagu, Yu et al. 2002). Nevertheless, it has been hypothesized that SOCS1 acts as a 

mutual suppressor for Th1 and Th2 cells in Th cell differentiation, depending on the 

cytokine milieu present. Fujimoto et al. showed that naïve Socs1+/- CD4+ cells 

underwent enhanced differentiation in vitro under either Th1- or Th2-polarizing 

conditions. These enhanced Th cell functions were attributed to enhanced effects of  

IL-12 and IL-4 on the cells due to lack of suppression by SOCS1 (Fujimoto, Tsutsui et 

al. 2002). Specifically, in case of high IL-12 (or IFNγ) levels, SOCS1 acts as a 

suppressor of STAT6, thus blocking IL-4 signaling, whereas in case of high IL-4 levels 

STAT1 and subsequent IFNγ signaling is suppressed. Additionally, IL-6-induced 

SOCS1 has been shown to prevent Th1 cell differentiation via blockade of IFNγ 

signaling (Diehl, Anguita et al. 2000), possibly via regulatory Th17 cells (Yoshimura, 

Naka et al. 2007). 

Taken together, these findings suggest that SOCS1 is playing a part in the resistance of 

mature Th cells to antagonistic cytokines. 

 

In 2002, Federici et al. demonstrated that biopsies from patients with psoriasis or 

allergic contact dermatitis showed high levels of SOCS1, SOCS2, and SOCS3 

(Federici, Giustizieri et al. 2002). Recently, a significant connection between SOCS1 

and allergic diseases has been found in asthmatic patients, who shared a polymorphism 

in the SOCS1 promoter which enhances the transcription of SOCS1. The resulting 

higher levels of SOCS1 in the T cells of these patients might have led to suppression of 
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Th1 cells and promotion of Th2 cells by alleviating the levels of IL-12 and IFNγ 

(Harada, Nakashima et al. 2007). However, the underlying mechanisms in the 

connection between SOCS1 and asthma are probably more complicated, because, as 

already mentioned above, SOCS1 suppresses signaling by Th2 cytokines as well. 

 

Although evidence is suggesting that SOCS1 may be involved in with the 

differentiation of naïve CD4+ T cells into Th1 cells (Cornish, Davey et al. 2003), a 

consistent model has not yet been found. 

 

1.3.3.2 SOCS3 

 

The deletion of SOCS3 resulted in embryonic lethality at midgestation, because of 

defects in the structure of the placenta possibly caused by aberrant leukocyte inhibitory 

factor (LIF) signaling (Takahashi, Carpino et al. 2003). Croker et al. revealed the key 

role for SOCS3 in the regulation of IL-6 signaling through analysis of Socs3-/- 

macrophages. Stimulation of macrophages with IL-6 lead to prolonged activation of 

both STAT3 and STAT1 as well as SH2 domain-containing tyrosine phosphatase 2 

(SHP2), relative to that observed in wild type cells (Croker, Krebs et al. 2003). 

Additionally, SOCS3 has been shown to inhibit STAT4 activation by binding to the 

STAT4 docking area on the IL-12 receptor (Yamamoto, Yamaguchi et al. 2003). 

Finally, Seki et al. observed that overexpression of SOCS3 in T cells leads to strong 

Th2 polarization (Seki, Inoue et al. 2003). 

 

1.3.3.2.1 Regulation of IL-6 and IFNγ signaling 

 

SOCS3 expression is induced by IFNγ and IL-6, comparable to SOCS1. The difference 

lies in the function of SOCS1 and SOCS3: while Socs1-/- cells show prolonged 

responses to IFNγ, but not IL-6, responses of Socs3-/- cells are reciprocal: although 

enforced expression of SOCS3 can inhibit responses to IFNγ, the regulation of IFNγ 

was shown to be unperturbed in livers lacking SOCS3 and IFNγ-induced STAT1 

activation was indistinguishable from wild-type livers (Croker, Krebs et al. 2003). 

There seems to exist a significant overlap between the signaling pathways triggered by 
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IL-6 and IFNγ via the restriction of STAT1 activation. Analysis of cytokine-responsive 

genes in IL-6 stimulated Socs3-/- cells revealed that a large group of these genes are 

usually attributed to IFNγ stimulation which are induced by prolonged activation of 

STAT1 (Croker, Krebs et al. 2003). A possible key role for SOCS3 is to sculpt the 

specific response observed in cells exposed to IL-6, perhaps particularly by restricting 

activation of STAT1. 

 

Apart from STAT1, SOCS3 interacts with STAT3 to suppress the IL-6 signaling 

cascade induced by TLR signaling (Bode, Nimmesgern et al. 1999). SOCS3 is induced 

by both IL-6 and IL-10, but inhibits selectively IL-6 because SOCS3 is not able to bind 

the IL-10 receptor (Yasukawa, Ohishi et al. 2003). Nevertheless, it has been shown that 

forced constitutive expression of SOCS3 inhibits IL-10 signaling via STAT3 activation 

(Berlato, Cassatella et al. 2002). 

 

Furthermore, SOCS3 suppresses inflammatory cytokine production by TLR ligands 

trough a yet unknown protein, which declares SOCS3 as a negative regulator of TLR 

signaling, and a negative regulator of the pro-inflammatory cytokine cascade 

(Yoshimura, Naka et al. 2007). 

 

1.3.3.2.2 Regulation of T helper cell polarization 

 

Like SOCS1, SOCS3 is expressed in naïve T cells. However, while SOCS1 is supposed 

to play an important role in differentiation to Th1 cells, SOCS3 protein is expressed in 

Th2 cells in 23-fold higher quantity than in Th1 cells (Egwuagu, Yu et al. 2002). 

This observation has led to an examination of the role of SOCS3 in allergies such as 

atopic asthma, which is characterized by extensive infiltration of the airways by T cells 

expressing Th2 cytokines. A positive correlation was evident between SOCS3 

expression and asthma pathology as well as serum IgE levels in patients with allergy 

(Seki, Inoue et al. 2003). 

 

Socs3+/- mice or transgenic mice expressing a dominant-negative form of SOCS3 

exhibited decreased Th2 development. Conversely, transgenic mice constitutively 
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expressing the wild-type SOCS3 protein in splenic cells showed increased Th2 

responses, and in a mouse airway hypersensitivity model of asthma exhibited enhanced 

pathological features (Seki, Inoue et al. 2003). These observations support a role for 

SOCS3 as a positive regulator of Th2 development and suggest that modulation of 

SOCS3 may represent a worthwhile therapeutic strategy in immunological diseases 

characterized by a Th1/Th2 imbalance. 

 

Together, this data suggests a model in which SOCS3 contributes to maintaining 

quiescence in T lymphocytes and that antigen-stimulated down-regulation of SOCS3 

expression allows T helper cell activation. SOCS3 appears to have an important 

supplementary role in controlling CD28-mediated responses in differentiated Th2 cells. 

 

1.3.3.3 CIS 

 

CIS (cytokine-inducible SH2 domain-containing protein) is induced by cytokines that 

activate STAT5, such as erythropoietin, growth hormone, prolactin, IL-2 and IL-3. 

Widespread expression of CIS in transgenic mice resulted in symptoms which closely 

resembled abnormalities evident in mice lacking STAT5a and/or STAT5b, like failure 

to activate STAT5 in response to IL-2 and resulting attenuation of proliferation 

(Alexander and Hilton 2004). Li et al. demonstrated that the expression of CIS is 

selectively induced in T cells after TCR stimulation. In transgenic mice, with selective 

expression of CIS in CD4+ T cells, elevated CIS has been shown to strongly promote 

TCR-mediated proliferation and cytokine production in vitro, and superantigen-induced 

T cell activation in vivo (Li, Chen et al. 2000). Additionally, T cells over-expressing 

CIS exhibited a tendency for Th2-polarized differentiation in vitro (Matsumoto, Seki et 

al. 1999). 

 

It has been suggested that CIS uses the proteasome to negatively regulate growth 

hormone (GH) signaling, likely by targeting the GH receptor/JAK2/CIS complex for 

degradation (Krebs and Hilton 2001). Nevertheless, T cell development appeared to 

occur normally in these transgenic mice and so the biological consequences on immune 

cells remain unclear. 
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1.3.3.4 SOCS and Innate Immunity 

 

The phagocytes of the innate immune system are controlled by several cytokines that 

are controlled by SOCS proteins, including IL-12 and the IFNs. Therefore, SOCS 

proteins contribute substantially to the indirect regulation of the innate immune 

response. 

The potent response of SOCS1 and SOCS3 to TLR ligands such as LPS and CpG-DNA 

has been extensively documented (Dalpke, Opper et al. 2001; Naka, Fujimoto et al. 

2005). SOCS3 has been shown to be one of the most abundantly induced proteins in 

macrophages following stimulation with LPS. In addition to indirectly regulating TLR 

signaling via STAT3 activation (and being a key regulator for the divergent activity of 

IL-6 and IL-10 following TLR stimulation), SOCS3 might have some direct effects on 

TLR signaling as well. 

 

The possibility that SOCS proteins are directly induced by microbial infection has been 

raised in various studies. LPS has been proposed to directly induce SOCS3 expression 

in macrophages (Stoiber, Kovarik et al. 1999). Expression of SOCS1 and SOCS3 

induced by bacterial CpG-DNA in macrophages and dendritic cells does not require 

protein synthesis and is observed independent of JAK-STAT signaling (Dalpke, Opper 

et al. 2001). Similarly, exposure to Leishmania donovani, a parasite, appears to directly 

induce expression of SOCS3 in human macrophages (Bertholet, Dickensheets et al. 

2003). Induction of SOCS1 and particularly SOCS3 by bacterial lipoproteins  

(e.g., peptidoglycan) via TLR2 has been demonstrated in mouse macrophages (Dennis, 

Jefferson et al. 2006). 

Some components of this activity may be indirect and due to autocrine factors induced 

by microbial infection, e.g., IFNs or IL-10. Nevertheless, it has been demonstrated that 

Socs1+/- and Socs1-/- mice show dramatically increased sensitivity to the lethal effects of 

LPS (Nakagawa, Naka et al. 2002). Further investigations have revealed that 

phosphorylation of NFκB and MAP kinase is increased in LPS-stimulated Socs1-/- 

macrophages compared to wild-type cells, and enforced SOCS1 expression blocks LPS-

mediated activation of NFκB. These observations were confirmed by Mansell et al., 

who demonstrated that SOCS1 regulates the phosphorylation of NFκB directly 
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(Mansell, Smith et al. 2006). This indicates that SOCS1 is induced by LPS and acts as a 

feedback mechanism to inhibit signals from TLR4 via a direct inhibitory loop.  

 

SOCS3 protein levels are upregulated by IL-10, a potent anti-inflammatory cytokine.  

It has been speculated that SOCS3 might have some direct effects on TLR signaling 

(Stoiber, Kovarik et al. 1999). Qasimi et al. observed suppression of LPS-induced TNFα 

and CD40 expression by SOCS3 in macrophages at a physiological level (Qasimi, 

Ming-Lum et al. 2006). Additionally, a recent report indicates that SOCS3 might be 

involved in the signal cascade controlling TLR- and IL-1-induced responses (Frobose, 

Ronn et al. 2006). 

 

Thus, in addition to the well established role of SOCS proteins as classic negative 

feedback inhibitors of signaling from the hematopoetin class cytokine receptors, SOCS 

are also a part of feedback regulation of distinct receptor classes including the TLR. 
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Cytokine Producing Cell Target Cell Function 

IL-1a 
IL-1b 

monocytes 
macrophages  
B cells  
dendritic cells 

Th cells co-stimulation 
B cells maturation and proliferation 
NK cells activation  
various inflammation, acute phase response, fever 

IL-2 Th1 cells activated T and B cells, NK 
cells growth, proliferation, activation 

IL-3 Th cells 
NK cells 

stem cells growth and differentiation 
mast cells growth and histamine release 

IL-4 Th2 cells 
activated B cells  proliferation and differentiation 

IgG1 and IgE synthesis 
macrophages MHC Class II 
T cells proliferation 

IL-5 Th2 cells activated B cells proliferation and differentiation 
IgA synthesis 

IL-6 
Th2 cells  
monocytes 
macrophages 

activated B cells differentiation into plasma cells 
plasma cells antibody secretion 
stem cells differentiation 
various acute phase response, inflammation 

IL-7 marrow stroma 
thymus stroma stem cells differentiation into progenitor B and T 

cells 

IL-8 macrophages 
endothelial cells neutrophils chemotaxis 

IL-9 Th2 cells activated T cells proliferation of T cells 

IL-10 Th2 cells 
Tregs 

macrophages inhibition of cytokine production (anti-
inflammatory properties) 

B cells activation 
T cells feedback inhibition 

IL-12 
macrophages 
B cells 
dendritic cells 

Naïve T cells Differentiation into Th1 cells 
activated Tc cells differentiation into Tc cells (with IL-2) 
T cells activation of IFNγ production 
NK cells activation 

IFN-α leukocytes various Inhibition of viral replication, 
MHC I expression 

IFN-β fibroblasts various Inhibition of viral replication, 
MHC I expression 

IFNγ Th1 cells,  
Tc cells, NK cells 

various Inhibition of viral replication 
macrophages MHC expression 
activated B cells Ig class switch to IgG2a 
Th2 cells Inhibition of proliferation 
macrophages pathogen elimination 

TNFα macrophages, mast 
cells, NK cells 

macrophages CAM (cell adhesion molecule) and 
cytokine expression 

tumor cells cell death 

TNFβ Th1 and Tc cells 
phagocytes phagocytosis, nitride oxide production 
tumor cells  cell death 

 

Table 1-1: Selected immune cytokines and their activities. 
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Gene Involved cytokines Phenotype of knockout mice 
STAT1 IFNα, -β, -γ No response to IFNs 
STAT2 INFα, -β Defective immunity to viruses 
STAT3 IL-6, IL-10 Embryonic lethal 
STAT4 IL-12 Defect in Th1-development 
STAT5a IL-2, IL-7, IL-9, prolactin Impaired prolactin signaling, defective T cell 

proliferation in response to IL-2 
STAT5b IL-2, IL-7, IL-9, growth hormone Impaired GH signaling, defective T cell 

proliferation in response to IL-2 
STAT6 IL-4, IL-13 Defect in Th2-development, dysregulation in 

Asthma and Atopic rhinitis 
 

Table 1-2: Signal Transducers and Activators of Transcription (STATs). 

 



 

 

 High transcription rate induced by: Inhibits signaling by: Consequences: 

CIS 

Cytokines that activate STAT5: erythropoietin, 
growth hormone, prolactin, IL-2 and IL-3 IL-2 via STAT5 High CIS levels lead to attenuation of proliferation 

Microbial components like LPS, peptidoglycan 
and CpG-DNA   

T cells over-expressing CIS exhibit a tendency for Th2 polarized differentiation in vitro. 

+ 
SOCS1 

T cell cytokines: IFNγ, IL-6, IL-10. 
Socs1-/- cells show prolonged responses to IFNγ, 
but not IL-6. 

IFNγ via STAT1 
 
 
 
Inflammatory cytokines like IL-2, -4, (-6), -
12, -15, -23 (similar to IL-12) and TNFα 

Induction of high SOCS1 levels by IL-6 leads to 
prevention of Th1 differentiation via blockade of 
IFNγ signal transduction 
 
Socs1-/- mice show severe diseases resulting from 
IFNγ hypersensitivity 
Socs1−/−Ifnγ−/− mice display a wide range of acute 
and chronic inflammatory disorders. 

During the T cell development in the thymus: via 
the common gamma (γc) receptor and its 
associated cytokines, namely IL-2, IL-4, IL-7 
and IL-15 

During the T cell development in the thymus: 
γc cytokines IL-2, IL-4, IL-7 and IL-15. 
 

SOCS1 keeps the cells in a cytokine-unreceptive 
state at various stages of T cell homeostasis until 
they receive the triggers to proliferate/differentiate. 

SOCS1 expression is fivefold higher in Th1 cells 
than in Th2 cells. 

IL-4 via STAT6 Restriction of IL-4 signaling in a Th1 environment 
IFNγ via STAT1 Restriction of IFNγ signaling in a Th2 environment 

LPS binds the Toll receptor TLR4 and directly 
induces expression of SOCS1, additionally to 
indirect activation via LPS induced autocrine 
factors such as IFNs. 

Signals from TLR4 in a direct inhibitory loop 
 

SOCS1 expression negatively regulates LPS 
signaling. 

Peptidoglycan binds to TLR2 and directly 
induces SOCS1 independent of JAK-STAT 
signaling. 

Cytokine and TLR signaling in macrophages  

CpG-DNA binds to TLR9 and directly induces 
SOCS 1 independent of protein synthesis. 

Regulation of JAK/STAT signaling after 
triggering of Toll-like receptor signal 
pathways. 

 

High SOCS1 levels correspond with a.) differentiation of naïve CD4+ T cells into Th1 cells (some studies deny this), 
b.) prevention of Th1 differentiation via blockade of IFNγ signal transduction, induced by IL-6 and c.) restriction of IL-4 
signaling in Th1 cells. 
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 High transcription rate induced by: Inhibits signaling by: Consequences: 

SOCS3 

T cell cytokines: IFNγ, IL-6, IL-10 
Reciprocal to SOCS1, IFNγ signaling is 
(almost) unperturbed by over-/under-expression 
of SOCS3, whereas IL-6 signaling is inhibited. 

IL-6 via STAT1 and  
STAT3. 

High SOCS3 expression corresponds with inhibition 
of IL-6 signaling. 

Th2 cells contain 23-fold higher levels of 
SOCS3 protein than Th1 cells. IL-12 via STAT4 Through blocking of STAT4, high levels of SOCS3 

impair Th1 development in Th2 cells. 
LPS binds the Toll receptor TLR4 and directly 
induces expression of SOCS3, additionally to 
indirect activation via LPS induced autocrine 
factors such as IFNs. 

IL-6 via STAT1 and STAT3 in macrophages

Mice in which the Socs3 gene has been deleted in 
macrophages show resistance to challenge with LPS 
because of unchecked IL-6 levels which enhance 
inhibition of macrophage activation. 

Peptidoglycan binds to TLR2 and directly 
induces SOCS3 independent of JAK-STAT 
signaling. 

Cytokine and TLR signaling in macrophages  

CpG-DNA binds to TLR9 and directly induces 
SOCS 3 independent of protein synthesis. 

Regulation of JAK/STAT signaling after 
triggering of Toll-like receptor signal 
pathways. 

 

 

Signaling cascade of proliferative response 
to T cell mitogens 
 
CD28-mediated cytokine production, 
especially production of IL-2, and NFκB 
activation. 

SOCS3 specifically binds to the phosphorylated form 
of CD28 and blocks signal transduction. 

SOCS3 is almost selectively expressed in Th2 cells and appears to be a positive regulator of Th2 development. 
 

Table 1-3: Selected SOCS and their functions. 
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2 Aims of the thesis 
 

The aim of the thesis is to determine the response of the immune system to food 

allergens and probiotic as well as gram-negative bacterial strains at birth and to 

delineate differences with regard to cytokines patterns and key regulators of cytokine 

signaling (suppressors of cytokine signaling (SOCS)) in vitro. 

 

To achieve this, the following approaches will be undertaken: 

 

• Proliferation of cord blood mononuclear cells (CBMCs) will be assayed in the 

presence of a panel of food allergens by thymidine incorporation assay. 

 

• Cytokine mRNA and SOCS mRNA will be detected and semi-quantified 

utilizing the ribonuclease protection assay (RPA) after stimulation with the same 

panel of food allergens and a polyclonal T cell activator (phytohemagglutinin 

(PHA)). 

 

• Cytokine production in response to 2 strains of probiotic gram-positive bacteria 

(Lactobacillus plantarum, Lactococcus lactis), a gram-negative strain 

(Escherichia coli BL 21(DE3)) and a superantigen (staphylococcal enterotoxin A 

(SEA)) will be assayed, and strain specific patterns at 3 different time points will 

be measured utilizing enzyme-linked immunosorbent assay (ELISA). 

 

• SOCS mRNA expression will be detected and semi-quantified utilizing RPA 

after stimulation with the above mentioned bacterial strains, and strain specific 

patterns at 4 different time points will be analyzed. 
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3 Materials and methods 
 

3.1 Materials 
 

3.1.1 Plastic Ware and Filters 
 

Product Company 
Cellstar® Test tubes, sterile, 50mL Greiner Austria 
Cryovial® sterile, 2mL Bibby Sterilin Staffordshire, UK 
Safe-lock micro test tubes, PCR clean, 
1,5mL Eppendorf, Hamburg, Germany 

96-well round plates Iwaki, Tokyo, Japan 
48-well flat bottom plates  BD Falcon, San José, CA 

Bottle top filter, 50mm filter unit  Nalge Nunc International, Rochester, 
NY 

Cellulose acetate syringe filter, sterile, 
0,20μm Iwaki, Tokyo, Japan 

Wallac filter mat Perkin Elmer, Weiterstadt, Germany 
Wallac sample bag Perkin Elmer, Weiterstadt, Germany 

Chromatography paper Whatman International, Maidstone, 
England 

 

 

3.1.2 Buffers and Cell culture media 
 

Experiments were performed using sterile buffers and media listed in the next 

paragraph. Sterile filtration was carried out using bottle top filters for PBS, UCC and 

ammonium chloride buffer, and syringe filters for freezing medium. 
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Buffer/Medium Abbreviation Ingredients 

Phosphate-buffered saline PBS 

8g NaCl 
0,2g KCl 
1,8g Na2HPO4 2H2O 
0,24g KH2PO4 
A.d. ad 1000mL 
pH=7,2-7,4 

Serum-free Ultra Culture complete 
medium UCC 

UC-medium 
2mM L-glutamine 
170 mg/L gentamycinsulphate

Isotonic ammonium chloride buffer  
155mM NH4Cl 
10mM KHCO3 
0,1mM EDTA 

ELISA Wash buffer  0.05% Tween 20 
PBS 

ELISA Saturation buffer  5% BSA 
PBS 

ELISA Biotinylated Diluent buffer  1% BSA 
PBS 

ELISA Antibody Diluent buffer  1% BSA 
PBS 

ELISA HRP-Streptavidin Diluent 
buffer  

1% BSA 
0,1% Tween 20 
PBS 

10x TrisBase-EDTA buffer 10x TBE 

53,9g TrisBase 
3,72g EDTA (Titriplex III) 
Boric acid until pH=8,3 
A.d. ad 500mL 

Acrylamide gel stock solution  

111,780mL Rotiphorese® Gel 
40 
50mL 10xTBE 
240,405 g Urea 
A.d. ad 500mL 

 

 

3.1.3 Chemicals and Kits 
 

Product Company 
Ethanol abs. Carl Roth, Karlsruhe, Germany 
EDTA (Ethylenediamine tetraacetic acid) Sigma Sciences, St. Louis, MO 
CBMC isolation and cell culture 
Ficoll-Paque™ PLUS GE Healthcare, Munich, Germany 
NaCl Fluka Chemica, Buchs, Switzerland 
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KCl Merck, Darmstadt, Germany 
Na2HPO4 2H2O Merck, Darmstadt, Germany 
KH2PO4 Merck, Darmstadt, Germany 
Ultra culture-medium Bio Whittaker, Walkersville, MD 
L-glutamine Sigma Sciences, St. Louis, MO 
Gentamycine sulphate  Sigma Sciences, St. Louis, MO 
NH4Cl Merck, Darmstadt, Germany 
KHCO3 Merck, Darmstadt, Germany 
RPMI 1640 medium  Sigma Sciences, St. Louis, MO 
DMSO (Dimethylsulfoxide) Merck, Darmstadt, Germany 

FCS (Fetal calf serum) Gibco, Life Technologies Inc., Rockville, 
MD 

Tuerk solution Fluka Chemica, Buchs, Switzerland 
Trypane blue solution 0,4% Sigma Sciences, St. Louis, MO 
GenElute™ Mammalian Total RNA 
Miniprep Kit Sigma Sciences, St. Louis, MO 

RNaseZap® RNase Decontamination 
Solution Ambion Inc., Austin, TX 

Proliferation assay 
Amersham [5’-3H] Thymidine, 12,8 
Ci/mmol GE Healthcare, Munich, Germany 

Scintillation solution  
ELISA 
HybriDomus Human IL-4 ELISA Pair HybriDomus, Eubio, Vienna, Austria 
Human IL-5 ELISA Bender Medsystems, Vienna, Austria 
HybriDomus Human IL-10 ELISA Pair HybriDomus, Eubio, Vienna, Austria 
HybriDomus Human IL-12 ELISA Pair HybriDomus, Eubio, Vienna, Austria 
OptEIA™ Human IFNγ ELISA Set BD Biosciences, San Diego, CA, USA 
Tween 20  
BSA (Bovine serum albumin) Sigma Sciences, St. Louis, MO 
Ribonuclease protection assay 

α-32P-UTP, 250µCi, 25µl New England Nuclear (PerkinElmer 
Life), USA 

RiboQuant™ RPA Starter Package BD Biosciences, San José, CA, USA 
hCK1 Multi-Probe Template Set BD Biosciences, San José, CA, USA 
hSOCS Multi-Probe Template Set BD Biosciences, San José, CA, USA 
Tris-saturated phenol Carl Roth, Karlsruhe, Germany 
Chloroform Merck, Darmstadt, Germany 
Isoamylalcohol Carl Roth, Karlsruhe, Germany 
Mineral oil Sigma Sciences, St. Louis, MO 
TrisBase (Trishydroxy- Merck, Darmstadt, Germany 
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methylaminomethane) 
Boric acid Sigma Sciences, St. Louis, MO 
Rotiphorese® Gel 40 (19:1) 
40 % acrylamide/bisacrylamide stock 
solution at a ratio of 19:1  

Carl Roth, Karlsruhe, Germany 

Urea Sigma Sciences, St. Louis, MO 
TEMED Sigma Sciences, St. Louis, MO 
Ammonium persulfate Sigma Sciences, St. Louis, MO 
PlusOne Repel-Silane Amersham Biosciences, NJ, USA 

Chromatography paper Whatman International, Maidstone, 
England  

 

 

3.1.4 Allergens 
 

All allergens are endotoxin free. 

 

Allergens Abbreviation Source/Company Preparation 

Peanut 
Arachis 
hypogea 
allergen 1 

Ara h1 Clare Mills (IFR 
Norwich) 

Allergen obtained 
from whole 
Virginia red 
variety peanuts as 
described by 
Eiwegger et al. 
(Eiwegger, Rigby 
et al. 2006). 

Peanut 
Arachis 
hypogea 
allergen 2 

Ara h2 

Jean-Michelle Wal 
(INRA, Laboratoire 
d’Immuno-Allergie 
Alimentaire, Paris, 
France) 

Allergen obtained 
from ground, 
roasted whole 
peanuts as 
described by 
Adel-Patient et al. 
(Adel-Patient, 
Bernard et al. 
2005). 

Milk β-Lacto-
globulin BLG 

Susanne Brix 
(BioCentrum-DTU, 
Technical University 
of Denmark, Lyngby, 
Denmark) 

Protein obtained 
from raw milk as 
described by Brix 
et al (Brix, 
Bovetto et al. 
2003). 

Egg Ovalbumin OVA Sigma Sciences, St. 
Louis, MO 

Product No. 
A5503 
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3.1.5 Bacteria 
 

Bacteria were inactivated with 1% phosphate-buffered formalin for 3 hours at room 

temperature, washed twice with sterile phosphate-buffered saline, and stored at -20°C. 

Successful inactivation was confirmed by the absence of bacterial growth after plating 

on selective agar. 

 

Bacteria Specification Abbreviation Source Preparation 

Lactobacillus 
plantarum NCIMB8826 LP 

Ursula 
Wiedermann 
(Department of 
Pathophysiology, 
Medical School, 
Vienna, Austria) 

Originally 
isolated from 
human saliva. 

Lactococcus 
lactis MG1363 LL 

Ursula 
Wiedermann (see 
above) 

As described by 
Gasson et al. 
(Gasson 1983) 

Escherichia 
coli BL 21(DE3) EC 

Ursula 
Wiedermann (see 
above) 

As described by 
Repa et al. 
(Repa, 
Grangette et al. 
2003) 

 

 

3.1.6 Other stimulants 
 

Antigen Specification Abbreviation Company Product No.

Phytohemagglutinin M Form PHA 

Gibco 
Invitrogen 
Corporation, 
NJ, USA 

10576-015 

Human 
Interleukin 2  IL-2 

Roche 
Applied 
Science, 
IN, USA 

1 147 528 

Staphylococcal 
Enterotoxin A 

Staphylococcus 
aureus SEA Sigma S9399 

Lipopolysaccharide Serotype 
055:B50 LPS Sigma L2880 
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3.1.7 Cord blood samples 
 

Human umbilical cord blood from randomly chosen full-term healthy infants  

(> 37 weeks of gestation) was analyzed. Cord blood was obtained by venopuncture of 

the umbilical vein immediately after delivery and placed in sterile sodium heparin tubes. 

The protocol was approved by the local ethical committee of the University of Vienna. 

 

3.2 Methods 
 

3.2.1 Cord blood mononuclear cell preparation 
 

At a maximum delay of five hours after birth the heparinized cord blood was diluted 1:1 

with phosphate-buffered saline (PBS) and drawn over Ficoll-Paque (Pharmacia, 

Uppsala, Sweden). Cord blood mononuclear cells (CBMCs) were isolated by density-

gradient centrifugation (30 min, 1400 rpm, no brake and room temperature, Beckman 

centrifuge). Afterwards the monocyte band was recovered and the cells were washed 

three times with PBS through centrifugation (15 min, 1400 rpm, with brake and room 

temperature, Beckman centrifuge). Isotonic ammonium chloride buffer was added to 

eliminate remaining erythrocytes. 

The CBMCs were stained with Tuerk solution and quantified using a Buerker-Tuerk 

counting chamber. Total cell count of the sample was determined using the following 

equation: 

 

500.000  x  counted cells  x  total mL of sample  x  2 (if stained)  =  total cell count 

 

3.2.2 Proliferation assay 
 

CBMCs (5x104 /200µl) were cultured in Ultra Culture complete medium (UCC) in  

96-well plates. In the presence of different allergen concentrations - Ara h1 (0,5μg/mL; 

5μg/mL; 50μg/mL), Ara h2 (0,5μg/mL; 5μg/mL; 50μ/mL), BLG (1μg/mL; 10μg/mL, 
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100μg/mL), OVA (1μg/mL; 10μg/mL, 100µg/mL) - cells were incubated in triplicates 

at 37°C in a humidified atmosphere with 5% CO2 for 7 days. 

IL-2 (25 IU/mL) was used as positive control and medium alone as negative control. 

After 6 days of culture, tritiated thymidine (Amersham; 0,5µCi per well) was added, 

and after 16 hours of incubation incorporated radioactivity (counts per minute (cpm)) 

was measured by liquid scintillation. 

Proliferation is expressed as stimulation index (SI) of the geometric mean of the 

triplicates. The SI is determined by using the following equation:  

 

SI  =  cpm in stimulated cultures  /  cpm in unstimulated cultures 

 

According to the literature, an SI>2 was considered positive (Szepfalusi, Nentwich et al. 

1998). 

 

3.2.3 Cytokine protein measurement 
 

3.2.3.1 Cell culture conditions 

 

2x106 CBMCs per mL UCC were cultured in 48-well plates, the total volume per well 

being 0,5mL. Cells were incubated at 37°C in a humidified atmosphere with 5% CO2. 

 

CBMCs were cultured with 105, 106 and 107 CFU (colony forming units) of formalin 

inactivated L. lactis, L. plantarum, or E. coli as well as SEA (2µg/mL) as positive 

control and medium alone as negative control. Cell free supernatants were obtained 

after 24, 48 and 72 hours and stored at -70°C until analysis. 

 

3.2.3.2 Enzyme-linked immunosorbent assay (ELISA) 

 

Quantitative detection of total IL-4, IL-5, IL-10, IL-12 and IFNγ in the cell free 

supernatant was performed using ELISA (Bender Medsystems, Vienna, Austria; 

HybriDomus, Eubio, Vienna, Austria; BD Biosciences – Pharmingen, San Diego, CA, 

USA) according to the manufacturers’ protocols. 
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The limits of detection were as follows: 

IL-4:  1,1pg/mL (HybriDomus) 

IL-5:  1,45pg/mL (Bender Medsystems) 

IL-10:  12,5pg/mL (HybriDomus) 

IL-12:  6,25pg/mL (HybriDomus) 

IFNγ:  12,5pg/mL (BD) 

 

3.2.4 Cytokine and SOCS mRNA measurement 
 

3.2.4.1 Cell culture conditions  

 

106 CBMCs per mL UCC were cultured in 48-well plates, the total volume per well 

being 2mL. Cells were incubated at 37°C in a humidified atmosphere with 5% CO2. 

 

Allergens 

CBMCs were cultured in the presence of different allergen concentrations - Ara h1 

(0,5μg/mL; 5μg/mL; 50μg/mL), Ara h2 (0,5μg/mL; 5μg/mL; 50μ/mL), BLG (1μg/mL; 

10μg/mL, 100μg/mL), OVA (1μg/mL; 10μg/mL, 100µg/mL) - as well as 1% PHA as 

positive control and medium alone as negative control. 

Total RNA was extracted after 1, 2, 4, 16 and 24 hours, according to the manufacturer’s 

instructions (Sigma), and stored at -70°C until analysis. 

 

Bacteria 

CBMCs were cultured with 104 CFU (colony forming units) of formalin inactivated  

L. lactis, L. plantarum, or E. coli as well as SEA (0,5µg/mL) as positive control and 

medium alone as negative control. 

Total RNA was extracted after 10, 30, 60, 90 minutes and 2, 4, 16 and 24 hours, 

according to the manufacturer’s instructions (Sigma), and stored at -70°C until analysis. 
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3.2.4.2 Total RNA extraction and quantification by UV-Spectroscopy 

 

Total cellular RNA was isolated from stimulated CBMCs and the negative control using 

the GenEluteTM Mammalian Total RNA Miniprep Kit (Sigma-Aldrich, St. Louis, MO, 

USA) according to the manufacturer’s instructions. All materials used for handling 

RNA were DNase and RNase free, and the workplace was treated with RNaseZap®. 

Total RNA concentration was determined via UV spectroscopy (wavelengths 260nm 

and 280nm). 

RNA concentration was determined by using the following equation: 

 

40µg/mL  x  ABS260nm  x  dilution factor  =  RNA concentration (µg/mL) 

 

RNA concentrations were standardized to 2µg/probe and dried in a SpeedVac® 

concentrator. 

 

3.2.4.3 Ribonuclease protection assay (RPA) 

 

For detection and quantification of cytokine RNA and SOCS (suppressors of cytokine 

signaling) RNA the RiboQuant MultiProbe RPA System (BD Biosciences - 

Pharmingen, San Diego, CA, USA) was used. 

 

A [32P]-labeled anti-sense RNA probe was transcribed in vitro from a DNA template 

using T7 RNA polymerase. Two different templates were used in the course of this 

study, hCK-1 (Human Cytokine multiprobe template set) and hSOCS (Human 

Suppressor of Cytokine Signaling multiprobe template set) (Fig. 3-1). 

The hCK-1 multiprobe template set was used to synthesize RNA probes for the human 

cytokine genes IL-2, IL-4, IL-5, IL-9, IL-10, IL-13, IL-14, IL-15 and IFNγ as well as 

the housekeeping genes L32 (ribosomal protein L32) and GAPDH (glyceraldehyde-3-

phosphate dehydrogenase). 

The hSOCS multiprobe set included templates for the signal transduction regulation 

genes SOCS1, SOCS2, SOCS3, SOCS5, SOCS6, SOCS7 and CIS as well as the 

housekeeping genes L32 and GAPDH. 
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Human Control RNA and yeast tRNA (2 μg) were included as positive and negative 

controls, respectively. [32P]-labeled probe, diluted to 1000 - 2000 cpm, was included as 

a marker. 

3 × 105 cpm of labeled probe was hybridized with 2,5μg of total RNA for 16 h at 56°C. 

After hybridization, free riboprobes and single-stranded RNA were digested with an 

RNase A plus T1 mix at 30°C for 45 min. Proteinase K treatment was used to inactivate 

the ribonucleases. The probe (protected fragment) and target RNA were resolved by 

denaturing polyacrylamide gel electrophoresis (8m urea, 4.75% acrylamide  

(19:1 acrylamide/bisacrylamide)), including positive and negative controls, as well as 

[32P]-labeled probe, diluted to 1000 – 2000 cpm (unprotected probe). 

The gel was absorbed to filter paper, dried, and exposed to a Molecular Dynamics 

detection screen overnight (Molecular Dynamics, Sunnyvale, CA, USA). 

Laser densitometry was performed using a Storm 840 PhosphorImager (Molecular 

Dynamics). 

 

      
 
Fig. 3-1: Sample data for Human Cytokine and Human Cell Signaling Multi-Probe 
Template Sets. 
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Fig. 3-2: Standard curve for hCK1. 
 

To establish the identity of each protected fragment, the known sizes and migration 

distance of the unprotected probe was used to prepare a standard curve. On semi-log 

paper, nucleotide length was plotted against migration distance. The point where the 

migration of the protected fragments intersects the curve was determined to extrapolate 

the corresponding nucleotide length (Fig. 3-1 and Fig. 3-2). 

 

The software ImageQuant (Molecular Dynamics) was used for semi-quantitative 

analysis of mRNA expression. Values were normalized for loading differences as a 

percentage of internal housekeeping gene (L32) expression. 

 

3.2.5 Statistical analysis 
 

Wilcoxon signed-rank test was used for the evaluation of significant changes between 

repeated measurements on the same sample. Correlations were tested utilizing Pearson's 

correlation coefficient. 
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4 Results 
 

4.1 Allergen-induced immune response in cord blood 
 

4.1.1 Proliferation assay 
 

Allergen specific proliferation was assessed by 3H thymidine incorporation assay. Cord 

blood mononuclear cells (CBMCs) were co-cultured for 6 days with the major peanut 

allergens Ara h1 and Ara h2, the major cows’ milk allergen β-lactoglobulin (BLG) and 

hens’ egg allergen ovalbumin (OVA). Dose dependency for each allergen was assessed 

by using 3 concentrations of allergen, ranging from 0,5µg to 50µg/mL (Ara h1 and Ara 

h2) and 1µg to 100µg/mL (BLG and OVA). According to the literature, a stimulation 

index (SI) >2 was regarded positive (Szepfalusi, Pichler et al. 2000). 

 

CBMCs from 7 out of 19 individuals showed positive proliferative response to at least 

one allergen (36,8%). Ara h1, BLG and OVA induced similar percentages of positive 

proliferation (31,6%-36,8%), while Ara h2 elicited a lower proliferation frequency of 

13,3% (Table 4-1). 

Individual CBMCs with an SI>2 to one food allergen were observed to show positive 

proliferation to other food allergens as well. In 5 out of these 7 individuals the response 

was also positive to the other food allergens tested. 

Initial stimulations with crude peanut extract (showing a proliferation frequency of 80% 

(n=5)) were withdrawn due to the impossibility of endotoxin removal to a level that 

does not affect proliferation itself (Eiwegger, Mayer et al. in press) (Table 4-1). 

 

No clear dose dependency with higher allergen concentrations inducing increased 

proliferation was observed for any of the allergens tested (Fig. 4-1). Interestingly, some 

CBMCs showed positive proliferation to one or two concentrations of a certain allergen 

only, some to the lowest or middle concentration as well. Consequently, the mean 

stimulation index did not correlate with the dose of allergen used. Based on the applied 
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amounts of allergen in the literature we decided to use the highest allergen 

concentration for further RNAse protection assays on cytokine and SOCS expression. 

 

 
n Ara h1 Ara h2 Crude BLG OVA 

1 + +  + + 

2 + +  + + 

3 +  + + + 

4 +  + + + 

5 +  + + + 

6 +  + + - 

7 - -  + + 

8 - -  - - 

9 - -  - - 

10 - -  - - 

11 - -  - - 

12 - -  - - 

13 - -  - - 

14 - -  - - 

15 - -  - - 

16 - -  - - 

17 - -  - - 

18 - -  - - 

19 -  - - - 

 31,6 % 13,3 % 80 % 36,8 % 31,6 %

 
Table 4-1: Proliferation assays of CBMCs of 19 individuals co-cultured with 3 
concentrations of food allergens. 
CBMCs were cultured in the presence of 3 different concentrations of 4 different allergens  
(Ara h1, Ara h2, BLG and OVA) for 6 days. Medium alone served as negative control,  
IL-2 [100 IU/mL] as positive control. Allergen specific response was assessed via  
3H proliferation assay. Proliferation to an allergen is shown as positive (+) if at least one 
concentration of the allergen induced an SI>2. An SI<2 for all concentrations of an allergen was 
considered negative (-). 
 
Abbreviations: CBMC: cord blood mononuclear cell; C: control with medium alone; Ara h1: Arachis 
hypogea (peanut) allergen 1; Ara h2: Arachis hypogea (peanut) allergen 2; BLG: β-lactoglobulin;  
OVA: Ovalbumin; IL-2: Interleukin 2; SI: stimulation index 
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Fig. 4-1: Dose dependency of allergen specific proliferative responses of cord blood. 
CBMCs were cultured in the presence of 3 different concentrations of 4 different allergens  
(Ara h1, Ara h2, BLG and OVA) for 6 days. Medium alone served as negative control,  
IL-2 [100 IU/mL] as positive control. Allergen specific response was assessed via  
3H proliferation assay. A SI of >2 was considered positive. 
 
Abbreviations: CBMC: cord blood mononuclear cell; C: control with medium alone; Ara h1: Arachis 
hypogea (peanut) allergen 1; Ara h2: Arachis hypogea (peanut) allergen 2; BLG: β-lactoglobulin;  
OVA: Ovalbumin; IL-2: Interleukin 2; SI: stimulation index 
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4.1.2 Allergen-induced Cytokine mRNA expression 
 

To analyze Th1-type, Th2-type and regulatory cytokine expression, total RNA of 

CBMCs was prepared after stimulation with the highest concentration of the different 

allergens and the mitogen PHA for 24 hours. Cytokine mRNA expression was  

semi-quantified relative to the housekeeping gene L32, utilizing the ribonuclease 

protection assay (RPA) for the cytokines IL-2, IL-4, IL-5, IL-9, IL-10, IL-13, IL-14, IL-

15 and IFNγ. 

 

First, evaluability of cytokine expression via RPA using different quantities of RNA  

(1; 2,5; 5 and 10µg) was investigated. Cytokine production of CBMCs and PBMCs 

(peripheral blood mononuclear cells) was induced by LPS (Fig 4-2). Cytokine as well 

as housekeeping gene (L32) expression was found to be evaluable in PBMCs at lower 

quantities of RNA, compared to CBMCs. While cytokine expression of CBMCs was 

analyzable with 2,5µg of RNA used, 10µg of RNA yielded the best results (Fig. 4-2). 

Nevertheless, with a limited amount of CBMCs and therefore RNA available, we 

standardized the quantity of RNA analyzed via RPA to 2µg per probe. 

Analyzing CBMCs co-cultured with the food allergens Ara h1, Ara h2, BLG and OVA, 

cytokine mRNA levels were found to be under the detection limit (Fig. 4-3). Likewise, 

the polyclonal T cell activator PHA did not elicit evaluable levels of cytokine mRNA, 

excepting IL-13 (Fig. 4-3).  
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Fig. 4-2: RNase protection assay of IL-9 and IL-10 expression in CBMCs and PBMCs. 
CBMCs and PBMCs were co-cultured with LPS [5µg/mL] for 6 hours. Total RNA of the 
CBMCs and PBMCs was prepared according to the protocol and quantified using  
UV spectroscopy. IL-10 and IL-9 gene expression was measured by ribonuclease protection 
assay (RPA) utilizing 4 different quantities of RNA (1; 2,5; 5 and 10µg). Cytokine expressions 
are shown above expression of the housekeeping gene L32. 
 
Abbreviations: CBMC: cord blood mononuclear cell; PBMC: peripheral blood mononuclear cell;  
LPS: Lipopolysaccharide; IL-9: Interleukin 9; IL-10: Interleukin 10; L32: ribosomal protein L32 
 

 
 
Fig. 4-3: RNase protection assay of IL-9 and IL-10 expression in CBMCs co-cultured with 
food allergens. 
CBMCs were co-cultured with Ara h1, Ara h2 [50µg/mL], BLG and OVA [100µg/mL] and the 
mitogen PHA (1%). Total RNA of the CBMCs (2 µg/probe) was prepared after 24 hours 
according to the protocol and quantified using UV spectroscopy. IL-10 and IL-9 gene 
expression was measured by ribonuclease protection assay (RPA). Cytokine expressions are 
shown above expression of the housekeeping gene L32. 
 
Abbreviations: CBMC: cord blood mononuclear cell; C: control with medium alone; Ara h1: Arachis 
hypogea (peanut) allergen 1; Ara h2: Arachis hypogea (peanut) allergen 2; BLG: β-lactoglobulin;  
OVA: Ovalbumin; PHA: Phytohemagglutinin; IL-9: Interleukin 9; IL-10: Interleukin 10; L32: ribosomal 
protein L32 
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4.1.3 Allergen-induced SOCS mRNA expression 
 

SOCS expression patterns have been linked to cytokine production and Th1/Th2-type 

response. To investigate the direct impact of allergen exposure on SOCS expression in a 

naïve in vitro system, expression of suppressors of cytokine signaling (SOCS) mRNA 

was analyzed. Total RNA of CBMCs after stimulation with the 4 allergens was 

prepared after 24 hours, and expression of CIS, SOCS1 and SOCS3 mRNA was semi-

quantified relative to the housekeeping gene L32 utilizing RPA. 

In order to highlight differences between the 4 allergens, significances were calculated 

comparing the SOCS expression of Ara h1, Ara h2, BLG, OVA as well as the 

polyclonal T cell activator PHA. 

 

Mean SOCS mRNA expression was not significantly increased by any allergen applied, 

while PHA induced elevated CIS and SOCS1 as well as reduced SOCS3 expression, 

compared to the negative control (data not shown). 

Allergen-specific differences were visualized via relative SOCS expression (ratios to the 

negative control; Fig. 4-4). Ara h1 elicited significantly higher levels of CIS mRNA 

compared to Ara h2, BLG and OVA (Fig. 4-4a). Expression of SOCS1 mRNA was 

significantly increased in CBMCs co-cultured with OVA, compared to BLG  

(Fig. 4-4b). No differences in SOCS3 expression were observed between the 4 allergens 

(Fig. 4-4c). All allergens tested induced a significantly lower CIS and SOCS1 

expression than PHA (Fig. 4-4a and b). In contrast, PHA led to a significantly lower 

SOCS3 expression than Ara h1, Ara h2, BLG or OVA (Fig. 4-4c). 

 

According to the literature that linked high CIS/SOCS1 expression to Th1-type and high 

SOCS 3 expression to Th2-type responses, ratios of SOCS1,CIS and SOCS3 expression 

were calculated. We utilized these ratios to highlight potential differences between the 

investigated food allergens not reflected by absolute SOCS expression defined by RPA. 

Data are presented in the log10 scale. 

 

The influence of PHA on CIS expression was highlighted by the significantly decreased 

SOCS1/CIS ratio (Fig. 4-5a), compared to Ara h2, BLG, OVA and the negative control. 
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Additionally, the SOCS1/SOCS3 ratio compared to all allergens tested (Fig. 4-5b) 

mirrored the impact of PHA on SOCS3 expression. Ara h1 induced a significantly 

lower SOCS1/CIS ratio than all allergens and the negative control (Fig. 4-5a), while no 

difference was observed concerning the SOCS1/SOCS3 ratio (Fig. 4-5b). 

 

Consistent with the Th1/Th2-type association of SOCS expression, the expression of 

SOCS1 and SOCS3 have been observed to be negatively correlated. On the other hand, 

SOCS1 and SOCS3 are induced by common cytokines, most importantly IL-6 and 

IFNγ. To assess if the expression of SOCS1 and SOCS3 is cytokine driven in our setup, 

SOCS1 mRNA and SOCS3 mRNA expression for each allergen and each cord blood 

was correlated using Pearson's correlation coefficient. 

 

We found a positive correlation (Pearson r=0,4683; p=0,0018) between SOCS1 and 

SOCS3 expression (Fig. 4-6). No correlation between SOCS3 and CIS expression was 

observed, while a weak negative correlation between SOCS1 and CIS expression was 

found (Pearson r=-0,3212; p=0,0295; data not shown). Generally, a Th1/Th2-type 

influence was not apparent in relative SOCS expression or in the SOCS ratios. 
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Fig. 4-4: Allergen specific differences in the SOCS expression of CBMCs, diagrammed as 
ratios to the negative control. 
CBMCs were co-cultured with Ara h1, Ara h2 [50µg/mL], BLG and OVA [100µg/mL] and the 
mitogen PHA (1%). Medium alone served as negative control. Total RNA of the CBMCs was 
prepared after 24 hours of incubation according to the protocol. The CIS (a), SOCS1 (b) and 
SOCS3 (c) gene expression was measured by ribonuclease protection assay (RPA). Data are 
presented relative to the housekeeping gene L32 and as ratios to the negative control as the 
median of the separate patients in the log 10 scale.Significance was determined by Wilcoxon 
signed-rank test (*p<0.05). 

 

 
 
Fig. 4-5: Ratio of SOCS1/CIS and SOCS1/SOCS3 expression of CBMCs induced by food 
allergens. 
CBMCs were co-cultured with Ara h1, Ara h2 [50µg/mL], BLG and OVA [100µg/mL] and the 
mitogen PHA (1%). Medium alone served as negative control. Total RNA of the CBMCs was 
prepared after 24 hours of incubation according to the protocol. The CIS, SOCS1 and SOCS3 
gene expression was measured by ribonuclease protection assay (RPA) and presented relative to 
the housekeeping gene L32. Data are displayed as the SOCS1/CIS (a) and the SOCS1/SOCS3 
(b) ratio as the median of the separate patients in the log 10 scale. Significance was determined 
by Wilcoxon signed-rank test (*p<0.05). 
 
Abbreviations (Fig. 4-4 and 4-5): CBMC: cord blood mononuclear cell; C: control with medium alone; 
Ara h1: Arachis hypogea (peanut) allergen 1; Ara h2: Arachis hypogea (peanut) allergen 2;  
BLG: β-lactoglobulin; OVA: Ovalbumin; PHA: Phytohemagglutinin; L32: ribosomal protein L32;  
CIS: cytokine-inducible SH2 domain-containing protein; SOCS1 and 3: suppressors of cytokine signaling 
1 and 3 
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Fig. 4-6: Correlation of SOCS1 and SOCS3 expression in CBMCs co-cultured with food 
allergens. 
CBMCs were co-cultured with Ara h1, Ara h2 [50µg/mL], BLG and OVA [100µg/mL]. Total 
RNA of the CBMCs was prepared after 24 hours of incubation according to the protocol. The 
SOCS1 and SOCS3 gene expression was measured by ribonuclease protection assay (RPA) and 
presented relative to the housekeeping gene L32. Data are presented as a correlation scatter plot. 
Significance was determined by Pearson's correlation coefficient (p<0,01). 
 
Abbreviations: CBMC: cord blood mononuclear cell; C: control with medium alone; Ara h1: Arachis 
hypogea (peanut) allergen 1; Ara h2: Arachis hypogea (peanut) allergen 2; BLG: β-lactoglobulin;  
OVA: Ovalbumin; PHA: Phytohemagglutinin; L32: ribosomal protein L32; SOCS1 and 3: suppressors of 
cytokine signaling 1 and 3 
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4.1.4 Relation between proliferation and SOCS mRNA expression 
 

The relation between allergen specific proliferative responses and SOCS expression of 

CBMCs was evaluated. We compared intra-individual differences in individuals with 

positive proliferation to at least one allergen (allergen that induced positive proliferation 

(SI>2) compared to allergen that induced no positive proliferation (SI<2)) and  

inter-individual differences (individuals showing proliferation to at least one allergen 

compared to individuals with a negative response to any of the allergens). 

 

Allergen-induced SOCS3 expression was higher than allergen-induced expression of the 

other SOCS in all individuals (Fig. 4-7). Regarding CIS and SOCS1 expression, we 

observed inter-individual differences independent from the proliferative status of the 

individual CBMCs (e.g., Fig. 4-7f and Fig. 4-7g). 

CBMCs stimulated with PHA showed a clearly aberrant SOCS profile from CBMCs  

co-cultured with allergens and the negative control. With the exception of one 

individual (Fig. 4-7g), CIS expression was distinctly higher than SOCS1 and SOCS3 

expression (Fig. 4-7a-f and h).  

 

Concerning intra-individual differences, we found no distinction between the influence 

of proliferation positive and negative allergens on CBMCs (Fig. 4-7). 

 

In summary, inter-individual differences in SOCS expression regardless of proliferative 

status were found to be much more distinct than any relation of proliferation to SOCS 

expression. 
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Fig. 4-7: Relation between proliferation and SOCS expression in response to food 
allergens. 
PHA- and allergen-induced CIS (blue), SOCS1 (green) and SOCS3 (red) expression of the 
CBMCs of 8 individuals are displayed in connection to the proliferative response to the same 
allergens (SI>2: filled, SI<2: hatched). CBMCs were co-cultured with Ara h1, Ara h2 (a-f), 
crude peanut extract (g-h) [50µg/mL], BLG and OVA [100µg/mL] and the mitogen PHA (1%). 
Medium alone served as negative control. Total RNA of the CBMCs was prepared after  
24 hours of incubation according to the protocol. The CIS, SOCS1 and SOCS3 gene expression 
was measured by ribonuclease protection assay (RPA). Data are presented relative to the 
housekeeping gene L32. Each graph represents the SOCS expression pattern of one individual. 
 
Abbreviations: see Fig. 4-6; SI: stimulation index 
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4.2 Bacteria-induced immune response in cord blood 
 

4.2.1 Cytokine production 
 

4.2.1.1 Kinetics and dose dependency 

 

Kinetics were assessed for each cytokine (day 1, day 2 and day 3). To analyze Th1-type 

(IL-12, INFγ), Th2-type (IL-5) and regulatory cytokine production (IL-10), the 

respective protein was measured in the cell free supernatants of CBMCs after 

stimulation with the three bacterial strains (Lactococcus lactis (LL), Lactobacillus 

plantarum (LP), Escherichia coli (EC)) and the superantigen staphylococcal enterotoxin 

A (SEA), which was described to induce a more Th2-type response (Pochard, Gosset  

et al. 2002). IL-4 levels were below the detection limit, and therefore not included.  

Dose dependency for each bacterial strain was assessed by using 3 concentrations of 

bacteria, ranging from 105 CFU/mL to 107 CFU/mL, corresponding to a bacteria/cell 

ratio from 1/10 to 10/1. 

 

IL-10 and IL-12 expression reached their highest level at day 1 irrespective of the 

bacterial strain applied and remained at this plateau at day 2 and day 3 (Fig. 4-9 and  

4-11). In contrast, both IL-5 and IFNγ expression were detected at low levels at day 1, 

while the peak was reached at day 2 in CBMCs stimulated with EC and SEA, and at  

day 3 with lactic acid bacteria (Fig 4-8 and 4-10). 

Kinetics of SEA induced cytokine production were comparable to those of EC, 

excepting IL-12 expression, which was found to be barely above the detection limit at 

any time point measured. 

 

A trend to dose dependency with higher bacterial concentrations inducing increased 

cytokine expression was observed. Higher quantities of LL, LP and EC induced 

elevated production of all cytokines measured (Fig. 4-8 to 4-10). LP was the most 

potent cytokine inducer within the group of bacteria supplied, eliciting the strongest  

IL-5 (Fig. 4-8d-f), IL-12 (Fig. 4-10d-f) and IFNγ (Fig. 4-11d-f) responses at 105 and  

106 CFU/mL. LP, applied at a concentration of 107 CFU/mL, led to a decreased 
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cumulative cytokine amount in the supernatant as compared to 106 CFU/mL (Fig. 4-8 to 

4-10d-f). Interestingly, IFNγ expression did not experience a decline at this 

concentration (Fig. 4-11d-f). 

Concerning IL-5 production, LL and LP induced elevated cytokine levels starting at  

day 2 (Fig. 4-8b and e), showing dose-dependent IL-5 production at day 3 only  

(Fig. 4-8c and f). Solely EC elicited an IL-5 response at day one (Fig. 4-8g), while 

significant dose dependency was observed at day 3 (Fig. 4-8i). 

Higher concentrations of LL and LP caused enhanced IL-10 levels from day 1 to day 3 

(Fig. 4-9), while EC elicited significantly stronger IL-10 responses in low dosage 

compared to the lactic acid bacteria at day 1 (Fig. 4-9g), showing dose dependency at 

day 2 and 3 only (Fig. 4-9h and i). 

IL-12 production increased with ascending doses of LL and LP from day 1 to day 3 

(Fig. 4-10). IL-12 levels induced by EC were low at all days, compared to the other 

bacterial strains (Fig. 4-10g-i). 

We observed an augmentation of LL- and LP-provoked IFNγ production as well as dose 

dependency of the IFNγ level from day 1 to day 3 (Fig. 4-11). The lowest concentration 

of EC didn’t lead to an IFNγ level higher than the negative control at all days, while  

106 CFU/mL and 107 CFU/mL of EC caused increased cytokine levels from day1 to  

day 3 (Fig. 4-11g-i), ascending with the dose of bacteria used at day 2 and 3  

(Fig. 4-11h and i). 
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Fig. 4-8: IL-5 production: Kinetics and dose dependency over the course of 3 days. 
CBMCs were co-cultured with LL, LP, EC at 3 different concentrations (105, 106 and  
107 CFU/mL) and the superantigen SEA [2µg/mL]. Medium alone served as negative control. 
After 24 hours (day 1), 48 hours (day 2) and 72 hours (day 3), total IL-5 in the cell free 
supernatant was quantified using sandwich ELISA. Significance was determined by Wilcoxon 
signed-rank test (*p<0.05). Subgroups with n<5 were excluded from statistical evaluation.  
For reasons of simplicity, significances between SEA and the bacteria are not presented in these 
graphs. 
 
Abbreviations: CBMC: cord blood mononuclear cell; C: control with medium alone; LL: Lactococcus 
lactis; LP: Lactobacillus plantarum; EC: Escherichia coli; SEA: Staphylococcus enterotoxin A;  
IL-5: Interleukin 5; CFU/mL: colony forming units per mL 
The limit for detection was 8pg/mL. 
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Fig. 4-9: IL-10 production: Kinetics and dose dependency over the course of 3 days. 
CBMCs were co-cultured with LL, LP, EC at 3 different concentrations (105, 106 and  
107 CFU/mL) and the superantigen SEA [2µg/mL]. Medium alone served as negative control. 
After 24 hours (day 1), 48 hours (day 2) and 72 hours (day 3) total IL-10 in the cell free 
supernatant was quantified using sandwich ELISA. Significance was determined by Wilcoxon 
signed-rank test (*p<0.05). Subgroups with n<5 were excluded from statistical evaluation.  
For reasons of simplicity, significances between SEA and the bacteria are not presented in these 
graphs. 
 
Abbreviations: CBMC: cord blood mononuclear cell; C: control with medium alone; LL: Lactococcus 
lactis; LP: Lactobacillus plantarum; EC: Escherichia coli; SEA: Staphylococcus enterotoxin A;  
IL-10: Interleukin 10; CFU/mL: colony forming units per mL 
The limit for detection was 63pg/mL. 
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Fig. 4-10: IL-12 production: Kinetics and dose dependency over the course of 3 days. 
CBMCs were co-cultured with LL, LP, EC at 3 different concentrations (105, 106 and  
107 CFU/mL) and the superantigen SEA [2µg/mL]. Medium alone served as negative control. 
After 24 hours (day 1), 48 hours (day 2) and 72 hours (day 3) total IL-12 in the cell free 
supernatant was quantified using sandwich ELISA. Significance was determined by Wilcoxon 
signed-rank test (*p<0.05). Subgroups with n<5 were excluded from statistical evaluation.  
For reasons of simplicity, significances between SEA and the bacteria are not presented in these 
graphs. 
 
Abbreviations: CBMC: cord blood mononuclear cell; C: control with medium alone; LL: Lactococcus 
lactis; LP: Lactobacillus plantarum; EC: Escherichia coli; SEA: Staphylococcus enterotoxin A;  
IL-12: Interleukin 12; CFU/mL: colony forming units per mL 
The limit for detection was 313pg/mL. 
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Fig. 4-11: IFNγ production: Kinetics and dose dependency over the course of 3 days. 
CBMCs were co-cultured with LL, LP, EC at 3 different concentrations (105, 106 and  
107 CFU/mL) and the superantigen SEA [2µg/mL]. Medium alone served as negative control. 
After 24 hours (day 1), 48 hours (day 2) and 72 hours (day 3), total IFNγ in the cell free 
supernatant was quantified using sandwich ELISA. Significance was determined by Wilcoxon 
signed-rank test (*p<0.05). Subgroups with n<5 were excluded from statistical evaluation.  
For reasons of simplicity, significances between SEA and the bacteria are not presented in these 
graphs. 
 
Abbreviations: CBMC: cord blood mononuclear cell; C: control with medium alone; LL: Lactococcus 
lactis; LP: Lactobacillus plantarum; EC: Escherichia coli; SEA: Staphylococcus enterotoxin A;  
IFNγ: Interferon gamma; CFU/mL: colony forming units per mL 
The limit for detection was 470pg/mL. 
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4.2.1.2 Strain specific differences 

 

It is known that different bacterial strains do have different effects on cytokine 

expression in vivo. To evaluate differences between LL, LP, EC and SEA, expression of 

Th1-type (IL-12, INF-γ), Th2-type (IL-5) and regulatory cytokines (IL-10) induced by 

these bacterial strains were compared. Based on the kinetics the highest (105 CFU/mL) 

and the lowest (107 CFU/mL) concentration of bacteria was expressed and discussed at 

day 1, day 2 and day 3. 

 

Generally, differentiated strain specific Th1/Th2-type cytokine expression patterns were 

observed at different concentrations. 

Regarding IL-5 and IL-10, strain specific differences were observed at the lowest 

concentration (105 CFU/mL) (Fig. 4-12), while at 107 CFU/mL cytokine expression 

induced by all bacterial strains was on a similar level (Fig. 4-13). Reversely, no 

differences with regard to the applied strain were found in the expression of IL-12 at the 

lowest concentration, excepting LP which induced significantly higher IL-12 levels in 

response to all bacterial strains (Fig. 4-12c, g and k). Similarly, IFNγ production 

showed strain specific differences only with regard to LP at day 2 and day 3 at the 

lowest bacterial concentration (Fig. 4-12h and l). 107 CFU/mL of bacteria applied, we 

observed differences in both IL-12 and IFNγ production with regard to all strains tested 

(Fig. 4-13). 

 

EC and SEA elicited higher amounts of the Th2-type cytokine IL-5 and the  

anti-inflammatory cytokine IL-10 compared to LL and LP (Fig. 4-12 and 4-13). 

The highest concentration of EC applied (107 CFU/mL), IL-5 production was 

significantly enhanced compared to the two other strains (LL and LP) at day 1  

(Fig. 4-13a). This was also observable as a trend at all other timepoints and 

concentrations but did not reach significance (Fig. 4-12 and 4-13a, e and i). SEA was 

found to be comparable to EC in the highest concentration, but no significances could 

be determined (n<5) (Fig. 4-13a, e and i). Nevertheless, SEA was found to be a potent 

inducer of IL-5, being surpassed only by the highest concentration of bacteria at day 3 

(Fig. 4-13i). 
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IL-10 production was significantly increased by EC at all concentrations and 

timepoints, compared to LL and LP (Fig. 4-12 and 4-13b, f and j). Importantly, SEA 

induced a significantly lower IL-10 production than EC (Fig. 4-12 and 4-13b, f and j). 

 

On the other hand, expression of Th1 cytokines IL-12 and IFNγ was increased in 

CBMCs co-cultured with lactic acid bacteria, compared to EC and SEA (Fig. 4-12 and 

4-13). Generally, LP was found to be a more potent inducer of cytokine expression than 

LL, as demonstrated in the lowest concentration (105 CFU/mL), where both IL-12 and 

IFNγ expression was significantly higher in cells treated with LP compared to LL  

(Fig. 4-12). 

Higher IL-12 expression elicited by lactic acid bacteria compared to EC was observed 

as early as at day 1 at 107 CFU/mL (Fig. 4-13c), while at 105 CFU/mL only LP reached 

significance (Fig. 4-12c, g and k). SEA induced significantly decreased IL-12 

production, compared to all concentrations of all bacterial strains (Fig. 4-12 and  

4-13c, g and k). 

A significantly increased production of IFNγ was observed at 107 CFU/mL as well  

(Fig. 4-13d, h and l), while at the lowest concentration only LP reached significance 

(Fig. 4-12d,h and l). SEA induced a lower IFNγ production than LL and LP at  

107 CFU/mL only, reaching significance at day 1 (LL and LP) (Fig. 4-13d) and day 3 

(LP, and EC) (Fig. 4-13l). 

At 105 CFU/mL, cytokine expression elicited by LL and LP peaked at day 3 and day 2, 

respectively (Fig. 4-12h and l), while at 107 CFU/mL both LL and LP reached 

significance at day 1, compared to EC (Fig. 4-13d). 

 

Ratios of Th1 (IL-12, IFNγ) and Th2 (IL-5) cytokine expression were calculated in 

order to highlight changes that are not reflected by absolute cytokine amounts in the 

supernatant.  

 

The IL-12/IL-5 ratios induced by both lactic acid bacterial strains were shown to be 

significantly elevated compared to EC at day 1 (Fig. 4-15a) and day 3 (Fig. 4-15b) if 

high bacterial loads (107 CFU/mL) were added. At the lowest concentration  
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(105 CFU/mL) only the most potent bacterium, LP, showed a significantly higher ratio 

than EC at day 1 (Fig. 4-14a). 

 

A similar trend is reflected by the IFNγ/IL-5 ratio. A trend to an elevated ratio of LL 

and LP compared to EC was shown at 107 CFU/mL (Fig. 4-17), reaching significance at 

24 hours (Fig. 4-17a). At the lowest concentration (105 CFU/mL), this trend could only 

be observed at day 3, not reaching significance (Fig. 4-16b), while at day 1 the  

IFNγ/IL-5 ratio was found to be very low in general (Fig. 4-16a). 
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Fig. 4-12: Strain specific differences of cytokine patterns in the presence of 105 CFU/mL of 
LL, LP and EC over the course of 3 days. 
CBMCs were co-cultured with 105 CFU/mL of LL, LP and EC and the superantigen SEA 
[2µg/mL]. Medium alone served as negative control. Total expression of IL-5, IL-10, IL-12 and 
IFNγ was quantified in the cell free supernatant using sandwich ELISA after 24 (day 1),  
48 (day 2) and 72 (day 3) hours. Significance was determined by Wilcoxon signed-rank test 
(*p<0.05). Subgroups with n<5 were excluded from statistical evaluation. 
 
Abbreviations: CBMC: cord blood mononuclear cell; C: control with medium alone; LL: Lactococcus 
lactis; LP: Lactobacillus plantarum; EC: Escherichia coli; SEA: Staphylococcus enterotoxin A;  
IFNγ: Interferon gamma; IL-5: Interleukin 5; IL-10: Interleukin 10; IL-12: Interleukin 12 
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Fig. 4-13: Strain specific differences of cytokine patterns in the presence of 107 CFU/mL of 
LL, LP and EC over the course of 3 days. 
CBMCs were co-cultured with 107 CFU/mL of LL, LP and EC and the superantigen SEA 
[2µg/mL]. Medium alone served as negative control. Total expression of IL-5, IL-10, IL-12 and 
IFNγ was quantified in the cell free supernatant using sandwich ELISA after 24 (day 1),  
48 (day 2) and 72 (day 3) hours. Significance was determined by Wilcoxon signed-rank test 
(*p<0.05). Subgroups with n<5 were excluded from statistical evaluation. 
 
Abbreviations: CBMC: cord blood mononuclear cell; C: control with medium alone; LL: Lactococcus 
lactis; LP: Lactobacillus plantarum; EC: Escherichia coli; SEA: Staphylococcus enterotoxin A;  
IFNγ: Interferon gamma; IL-5: Interleukin 5; IL-10: Interleukin 10; IL-12: Interleukin 12 
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Fig. 4-14: Ratio of IL-12/IL-5 expression of CBMCs in the presence of 105 CFU/mL of LL, 
LP and EC at day1 and day 3. 
The ratio of the Th1 cytokine IL-12 and the Th2 cytokine IL-5 expressed in CBMCs co-cultured 
with LL, LP, EC [105 CFU/mL] and SEA [2µg/mL] according to the above mentioned protocol 
was determined. Medium alone served as negative control. 
Significance was determined by Wilcoxon signed-rank test (*p<0.05). Subgroups with n<5 were 
excluded from statistical evaluation. 
 
Abbreviations: CBMC: cord blood mononuclear cell; C: control with medium alone; LL: Lactococcus 
lactis; LP: Lactobacillus plantarum; EC: Escherichia coli; SEA: Staphylococcus enterotoxin A;  
IL-12: Interleukin 12; IL-5: Interleukin 5 
 
 
 

 
 
Fig. 4-15: Ratio of IL-12/IL-5 expression of CBMCs in the presence of 107 CFU/mL of LL, 
LP and EC at day 1 and day 3. 
The ratio of the Th1 cytokine IL-12 and the Th2 cytokine IL-5 expressed in CBMCs co-cultured 
with LL, LP, EC [107 CFU/mL] and SEA [2µg/mL] according to the above mentioned protocol 
was determined. Medium alone served as negative control. 
Significance was determined by Wilcoxon signed-rank test (*p<0.05). Subgroups with n<5 were 
excluded from statistical evaluation. 
 
Abbreviations: CBMC: cord blood mononuclear cell; C: control with medium alone; LL: Lactococcus 
lactis; LP: Lactobacillus plantarum; EC: Escherichia coli; SEA: Staphylococcus enterotoxin A;  
IL-12: Interleukin 12; IL-5: Interleukin 5; 
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Fig. 4-16: Ratio of IFNγ/IL-5 expression of CBMCs in the presence of 105 CFU/mL of LL, 
LP and EC at day 1 and day 3. 
The ratio of the Th1 cytokine IFNγ and the Th2 cytokine IL-5 expressed in CBMCs co-cultured 
with LL, LP, EC [105 CFU/mL] and SEA [2µg/mL] according to the above mentioned protocol 
was determined. Medium alone served as negative control. 
Significance was determined by Wilcoxon signed-rank test (*p<0.05). Subgroups with n<5 were 
excluded from statistical evaluation. 
 
Abbreviations: CBMC: cord blood mononuclear cell; C: control with medium alone; LL: Lactococcus 
lactis; LP: Lactobacillus plantarum; EC: Escherichia coli; SEA: Staphylococcus enterotoxin A;  
IFNγ: Interferon gamma; IL-5: Interleukin 5 
 
 
 

 
 
Fig. 4-17: Ratio of IFNγ/IL-5 expression of CBMCs in the presence of 107 CFU/mL of LL, 
LP and EC at day 1 and day 3. 
The ratio of the Th1 cytokine IFNγ and the Th2 cytokine IL-5 expressed in CBMCs co-cultured 
with LL, LP, EC [107 CFU/mL] and SEA [2µg/mL] according to the above mentioned protocol 
was determined. Medium alone served as negative control. 
Significance was determined by Wilcoxon signed-rank test (*p<0.05). Subgroups with n<5 were 
excluded from statistical evaluation. 
 
Abbreviations: CBMC: cord blood mononuclear cell; C: control with medium alone; LL: Lactococcus 
lactis; LP: Lactobacillus plantarum; EC: Escherichia coli; SEA: Staphylococcus enterotoxin A;  
IFNγ: Interferon gamma; IL-5: Interleukin 5 
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4.2.2 SOCS mRNA expression 
 

4.2.2.1 Kinetics over 24 hours 

 

To analyze Th1-type and Th2-type responses which occur before the expression of 

cytokines in CBMCs, expression of suppressors of cytokine signaling (SOCS), which 

were reported to be encoded by immediate early genes, was analyzed. CBMCs were  

co-cultured with LL, LP, EC and SEA for 1, 2, 16 and 24 hours. SOCS mRNA 

expression was semi-quantified relative to the housekeeping gene L32 utilizing the 

ribonuclease protection assay (RPA) for CIS, SOCS1 and SOCS3. 

 

Expression of SOCS1 and SOCS3 was detectable in unstimulated cells at 0 hours  

(Fig. 4-18), and CIS, SOCS1 and SOCS3 expression was visible and evaluable by RPA 

at 1, 2, 16 and 24 hours in CBMCs stimulated with the three bacterial strains and SEA  

(Fig. 4-18; LP shown). 

 

In order to assess the optimal time point for each SOCS to be measured, CIS, SOCS1 

and SOCS3 expression at different time points was evaluated and relative SOCS 

expression was diagrammed as ratio to the negative control (Fig. 4-20). Since SOCS are 

encoded by immediate early genes, an initial dataset was investigated to assess an 

eventual up-regulation in the first hour. No SOCS up-regulation was observed in the  

0 to 30 minutes timeframe, excepting a slight increase in SOCS3 mRNA in cells  

co-cultured with LP and EC (data not shown). At 1 hour, only E. coli induced a distinct 

increase in relative SOCS1 and SOCS3 expression (Fig. 4-20h and i), while no 

increased SOCS expression was induced by LAB and SEA (Fig. 4-20). A slight 

increase in relative SOCS1 and SOCS3 expression was observed at the 2 hour time 

point in CBMCs co-cultured with LP (Fig. 4-20e and f). 

 

Consequently, CIS, SOCS1 and SOCS3 mRNA was quantified at 1, 2, 4 (n=3) 16 and 

24 hours. Although SOCS1 and SOCS3 expression in unstimulated CBMCs decreased 

over the course of 24 hours (Fig. 4-18), ratios of stimulated cells (LAB, E. coli and 

SEA) to the negative control reached their respective peaks at 24 hours (Fig. 4-20).  
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On closer observation, LL didn’t induce an elevated CIS or SOCS1 response compared 

to hour 0 at any timepoint (Fig. 4-20a and b), while SOCS3 expression was increased at 

24 hours only (Fig. 4-20c). With LP, EC and SEA, an increase in CIS expression 

occurred at 16 hours (Fig. 4-20d, g and j), while a raise of SOCS1 and SOCS3 mRNA 

expression over the basal level appeared not until 24 hours (Fig. 4-20). Additionally,  

E. coli induced an early CIS, SOCS1 and SOCS3 response at the 1 hour timepoint, and 

an earlier raise of SOCS1 expression at 16 hours, compared to the other stimulants  

(Fig. 4-20g-i). 

 

Because of these observations and the timepoints featured in our cytokine assay (24, 48 

and 72 hours), 24 hours was chosen as the readout timepoint for further experiments 

concerning strain specifity. 

 

4.2.2.2 Strain specific differences 

 

In order to highlight differences between the 3 strains of bacteria, significances were 

calculated comparing the SOCS expression of LL, LP, EC and SEA. 

 

Significant differences between the control and CBMCs co-cultured with bacteria and 

SEA were not observed at 16 hours (Fig. 4-21g-i), excepting a significant increase in 

CIS expression induced by SEA, while at 24 hours strain specific differences could be 

evaluated (Fig. 4-21j-l). 

 

LL elicited no significant increase in SOCS expression compared to the control at any 

time point, with the exception of SOCS3 at 2 and 24 hours (Fig. 4-21f and l). 

Additionally, LP and EC were shown to significantly increase expression of CIS, 

SOCS1 and SOCS3 compared to LL at 24 hours (Fig. 4-21j-l). A trend to increased 

expression of SOCS1 and SOCS3 was observed in CBMCs co-cultured with LP 

compared to LL from 2 to 16 hours, reaching significance at the 2 hour time point only 

(Fig. 4-21e). LP was a significantly more potent SOCS inducer then the other gram-

positive germ, LL (Fig. 4-19). 
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EC induced the highest SOCS3 response compared to LL, LP and SEA at 24 hours  

(Fig. 4-21l), showing a significantly increased SOCS3 expression compared to LL 

already at the 1 hour time point (Fig. 4-21c). In our preliminary experiment, we 

observed elevated SOCS3 expression induced by E. coli after 30 minutes (data not 

shown). 

SEA was demonstrated to elicit significantly higher CIS and SOCS1 expression than the 

3 bacterial strains at 24 hours (Fig. 4-21j and k). Importantly, SOCS3 expression 

induced by SEA was comparable to LL and LP, and significantly decreased compared 

to E. coli at 24 hours (Fig. 4-21l). 

 
Ratios of Th1 (SOCS1) and Th2 SOCS (CIS, SOCS3) expression at the 24 hour time 

point were calculated in order to highlight potential differences between the investigated 

bacterial strains and SEA not reflected by absolute SOCS expression defined by RPA. 

Data are presented in the log2 scale. 

Significant differences between CBMCs co-cultured with the different bacteria were 

found at 24 hours only, while the tendency of SOCS1/SOCS3 increase in CBMCs  

co-cultured with SEA could be already observed at 16 hours (data not shown). 

At 24 hours, the SOCS1/SOCS3 ratio in cells stimulated with LP was significantly 

increased compared to LL and EC (Fig. 4-22a). The trend of decreased Th1-type SOCS 

expression elicited by LL compared to EC observed in the SOCS1/CIS ratio should be 

treated with caution because of very low values (Fig. 4-22b). 

The effect of SEA on the SOCS1/SOCS3 as well as the SOCS1/CIS ratio was a 

significant increase compared to all bacteria and the control (Fig. 4-22). 

 

In summary, relative SOCS expressions induced by LAB, E.coli and SEA peaked at  

24 hours. E. coli was observed to induce elevated SOCS expression much earlier, at  

30 min (SOCS3) and 1 hour (CIS and SOCS1), compared to 16-24 hours in CBMCs 

stimulated with LAB and SEA. At 24 hours, LL elicited a significantly lower SOCS 

response than LP and EC, while LP induced a significantly increased SOCS1/SOCS3 

ratio compared to LL and EC. SEA led to increased CIS and SOCS1 but not SOCS3 

values, compared to all bacterial strains. 
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Fig. 4-18: RNase protection assay of SOCS expression in CBMCs co-cultured with LP 
over the course of 24 hours. 
CBMCs were co-cultured with LP (104 CFU/mL). Total RNA of the CBMCs was prepared after 
1, 2, 4 and 16 hours of incubation according to the protocol. SOCS gene expression was 
measured by ribonuclease protection assay (RPA). SOCS expressions are shown above the 
housekeeping genes L32 and GAPDH. 
 
Abbreviations: CBMC: cord blood mononuclear cell; LP: Lactobacillus plantarum; CIS: cytokine-
inducible SH2 domain-containing protein; SOCS1 to 7: suppressors of cytokine signaling 1 to 7;  
L32: ribosomal protein L32; GAPDH: glyceraldehyde-3-phosphate dehydrogenase (housekeeping gene) 
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Fig. 4-19: RNAse protection assay illustrating strain specific differences in the SOCS 
expression of CBMCs at 16 and 24 hours. 
CBMCs were co-cultured with 104 CFU/mL of the bacteria LL, LP and EC. Medium alone 
served as negative control. SOCS gene expression after 16 and 24 hours of incubation was 
determined according to the above mentioned protocol. SOCS expressions are shown above the 
housekeeping genes L32 and GAPDH. 
 
Abbreviations: CBMC: cord blood mononuclear cell; C: control with medium alone; LL: Lactococcus 
lactis; LP: Lactobacillus plantarum; EC: Escherichia coli; CIS: cytokine-inducible SH2 domain-
containing protein; SOCS1 to 7: suppressors of cytokine signaling 1 to 7; L32: ribosomal protein L32; 
GAPDH: glyceraldehyde-3-phosphate dehydrogenase (housekeeping gene) 
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Fig. 4-20: Kinetics of SOCS expression of CBMCs incubated with LL, LP, EC and SEA 
over the course of 24 hours, diagrammed as ratios to the negative control. 



- 87 - 

 
 
Fig. 4-21: Strain specific differences in the SOCS expression of CBMCs over the course of 
24 hours. 
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Fig. 4-20: Kinetics of SOCS expression of CBMCs incubated with LL, LP, EC and SEA 
over the course of 24 hours, diagrammed as ratios to the negative control. 
CBMCs were co-cultured with LL, LP, EC (104 CFU/mL) and the superantigen SEA [2µg/mL]. 
Medium alone served as negative control Total RNA of the CBMCs was prepared after 1, 2, 16 
and 24 hours of incubation according to the protocol. The CIS, SOCS1 and SOCS3 gene 
expression was measured by ribonuclease protection assay (RPA). Data are presented relative to 
the housekeeping gene L32 as the median of the separate patients. 
 
Abbreviations: CBMC: cord blood mononuclear cell; C: control with medium alone; LL: Lactococcus 
lactis; LP: Lactobacillus plantarum; EC: Escherichia coli; SEA: Staphylococcus enterotoxin A;  
CIS: cytokine-inducible SH2 domain-containing protein; SOCS1 and 3: suppressors of cytokine signaling 
1 and 3; L32: ribosomal protein L32 
 
 
 
 
 
Fig. 4-21: Strain specific differences in the SOCS expression of CBMCs over the course of 
24 hours. 
CBMCs were co-cultured with 104 CFU/mL of the bacteria LL, LP, EC and the superantigen 
SEA [2µg/mL]. Medium alone served as negative control. CIS, SOCS1 and SOCS3 gene 
expression after 1, 2, 4, 16 and 24 hours of incubation was determined according to the above 
mentioned protocol. Data are presented relative to the housekeeping gene L32 as the median of 
the separate patients. 
Significance was determined by Wilcoxon signed-rank test (*p<0.05). Subgroups with n<5 were 
excluded from statistical evaluation. For reasons of simplicity, significances between SEA and 
the bacteria are not presented in these graphs. 
 
Abbreviations: CBMC: cord blood mononuclear cell; C: control with medium alone; LL: Lactococcus 
lactis; LP: Lactobacillus plantarum; EC: Escherichia coli; SEA: Staphylococcus enterotoxin A;  
CIS: cytokine-inducible SH2 domain-containing protein; SOCS1 and 3: suppressors of cytokine signaling 
1 and 3; L32: ribosomal protein L32 
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Fig. 4-22: Ratio of SOCS1/SOCS3 and SOCS1/CIS expression of CBMCs induced by LL, 
LP and EC. 
CBMCs were co-cultured with LL, LP, EC [104 CFU/mL] and the superantigen SEA [2µg/mL]. 
Medium alone served as negative control. CIS, SOCS1 and SOCS3 gene expression after 2, 16 
and 24 hours of incubation was determined according to the above mentioned protocol.  
The ratios were calculated from SOCS expressions relative to the housekeeping gene L32. Data 
are presented as the median of the separate patients in a log2 scale. 
Significance was determined by Wilcoxon signed-rank test (*p<0.05). 
 
Abbreviations: CBMC: cord blood mononuclear cell; C: control with medium alone; LL: Lactococcus 
lactis; LP: Lactobacillus plantarum; EC: Escherichia coli; SEA: Staphylococcus enterotoxin A;  
CIS: cytokine-inducible SH2 domain-containing protein; SOCS1 and 3: suppressors of cytokine signaling 
1 and 3; L32: ribosomal protein L32 
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5 Discussion 
 

The establishment of type I allergy later in life may be supported in the perinatal period 

by environmental factors. These to date poorly understood mechanisms interfere with 

the sequential switch from a Th2 skewed pregnancy into a balanced Th1/Th2 milieu 

within the first years of life. Apart from genetic predisposition, reduced microbial 

exposure (“western life style”) has been linked to the development of allergy.  

In a broader context, the colonization of the gut in terms of composition has been shown 

to confer with the prevalence of allergy. This association has been transferred into 

preventive approaches via the application of probiotics in the perinatal period, with 

varied outcomes (Kalliomaki, Salminen et al. 2001; Kalliomaki, Salminen et al. 2003; 

Isolauri 2004; Brouwer, Wolt-Plompen et al. 2006; Taylor, Dunstan et al. 2007). 

We herein tried to define allergen and strain specific differences in a cord blood in vitro 

model simulating the immune system at birth. Importantly, we did not exclusively 

check for cytokine expression but also for key regulators in cytokine signaling and 

consequently cell activation, namely the suppressors of cytokine signaling (SOCS). 

 

Food allergens are known to induce proliferation in a relatively high number of cord 

blood samples, despite of no direct linkage to the amount of allergen exposure (Prescott, 

Macaubas et al. 1998; Edelbauer, Loibichler et al. 2004). Although more than 90% of  

T cells in cord blood are naïve, CBMCs have been demonstrated to show proliferative 

activity to allergens without the aid of memory cells (Devereux, Seaton et al. 2001), 

utilizing a “broad range” response with reactivity to much more regions of an allergen 

than adult cells (Thornton, Upham et al. 2004). Neonates with an immediate family 

history of atopy tended to show higher allergen-specific CBMC proliferative responses 

than low-risk neonates (Prescott, Macaubas et al. 1999). Accordingly, modified levels 

of Th2 cytokines in CBMCs of term babies have been correlated to atopy in several 

studies. While elevated levels of the Th2 cytokines IL-4 and IL-13 next to reduced IFNγ 

and IL-12 levels were detected by several groups in neonates at risk of atopy 

(Gabrielsson, Soderlund et al. 2001; Lange, Ngoumou et al. 2003), Prescott et al. 

demonstrated lower levels of IL-4, IL-6, IL-10 and IL-13 in high-risk children at birth 

compared to low-risk children, with low IFNγ levels in both high-risk and low-risk 
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groups (Prescott, Macaubas et al. 1999). Investigations concerning proliferation and 

cytokine expression of CBMCs in response to food allergens (BLG and OVA) have 

been undertaken (Prescott, Macaubas et al. 1998), but mostly to uncover differences 

between neonates with high and low risks of atopy. Although connections between 

atopy and SOCS proteins do exist (Seki, Inoue et al. 2003; Harada, Nakashima et al. 

2007), SOCS expression of CBMCs in response to food allergens has, to our 

knowledge, not been investigated yet. 

 

We observed positive proliferation (SI>2) in a similar range for BLG (36,8%),  

OVA (31,6%) and Ara h1 (31,6%). A proliferation frequency of approximately 40% in 

CBMCs co-cultured with either BLG or OVA has been documented (Prescott, 

Macaubas et al. 1998) and confirms that T cells are activated via the TCR, not the innate 

immune system (via LPS contamination). The frequency of cord blood samples 

proliferating to the second peanut allergen, Ara h2, was substantially lower (13,3%). 

Interestingly, in the literature, Ara h2 is described as a much more potent peanut 

allergen compared to Ara h1, concerning the induction of allergic symptoms, IgE cross-

linking and cell activation in peanut-allergic patients (Koppelman, Wensing et al. 2004; 

Palmer, Dibbern et al. 2005). However, it seems that in CBMCs, Ara h1 elicits a 

stronger proliferative response than Ara h2, possibly due to more epitopes being 

recognized by the “broad range” response utilized by the naïve T cells in cord blood. 

Individuals who show positive proliferation to Ara h2 also show positive proliferation 

to Ara h1, but to BLG and OVA as well. Crude peanut extract induced a proliferation 

frequency of 80%. This might be due to a greater variety of epitopes present, but may 

also relate to impurity and residual LPS despite of purification attempts. To exclude this 

possible confounder, crude extract was excluded from further experiments (Eiwegger, 

Mayer et al. in press). 

Examining allergen concentrations ranging from 0,5-50µg/mL and 1-100µg/mL  

(Ara h1/Ara h2 and BLG/OVA, respectively), no clear dose dependency was observed. 

The pattern of reactivity of the CBMCs to certain concentrations of allergens seems 

almost random. The small number of patients (n=19) does not allow to draw 

conclusions concerning this variance. Since most of the literature relates to the highest 

allergen concentrations applied, we decided to use the highest allergen concentration for 
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semi-quantification of cytokine and SOCS mRNA expression and subsequent relation to 

proliferation. 

According to the literature, cytokine mRNA expression is lower in CBMCs than in 

PBMCs. While LPS- and PHA-stimulated cytokine expression was evaluable with the 

ribonuclease protection assay (RPA), allergen-stimulated expression proved to be under 

the detection limit of this method. SOCS background expression, on the other hand, was 

demonstrated to be above the limit of detection of the used method. 

 

Concerning SOCS expression, we demonstrated that Ara h1 induces significantly 

increased levels of CIS compared to the other allergens. Elevated CIS levels have been 

shown to promote T cell receptor mediated proliferation (Li, Chen et al. 2000). This 

could at least partly explain the increased CIS levels induced by Ara h1 compared to 

Ara h2, as CBMCs co-cultured with Ara h1 showed positive proliferation almost  

3 times as often as Ara h2. No allergen-specific differences in SOCS1 and SOCS3 

expression were observed, apart from a slight increase of SOCS1 expression in CBMCs 

co-cultured with OVA, compared to BLG. These allergen-specific differences were 

highlighted by the SOCS1/CIS ratio, where Ara h1 induced a significantly lower 

SOCS1/CIS ratio than the other allergens and the negative control. 

PHA induced increased CIS and SOCS1 expression, but decreased SOCS3 expression, 

compared to the allergens. Aside from the general, strong T cell response via cross-

linkage of the TCR, PHA is known to be a potent Th1-inducer. This might explain the 

low SOCS3 expression; SOCS3 is reported to be selectively expressed in Th2-cells. 

SOCS1, connected with a Th1-type response, is strongly induced by PHA, compared to 

the allergens. On the other hand, CIS expression is linked to Th2-type development as 

well. Elevated expression of CIS can be explained by the selective induction of CIS in  

T cells after TCR stimulation (Li, Chen et al. 2000). We found these observations 

mirrored in the SOCS1/CIS ratio, with PHA inducing a lower ratio than the allergens 

and the negative control, and, in the opposite, in the SOCS1/SOCS3 ratio. These ratios 

point out that the Th1/Th2-type classification plays a secondary role in the SOCS1/CIS 

ratio, where the above mentioned factors play a major role. Although SOCS1 and 

SOCS3 have been connected to Th1 and Th2 polarized differentiation (Egwuagu, Yu et 

al. 2002), both SOCS are equally induced by a range of cytokines, most importantly 
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IFNγ and IL-6. Furthermore, allergen-induced SOCS1 and SOCS3 expression at  

24 hours did correlate, while the expression of CIS showed no positive correlation with 

either SOCS1 or SOCS3 expression. These findings point to induction by the same 

cytokines rather than a Th1/Th2-type activation of SOCS mRNA expression. 

 

We found no relation between positive proliferation and SOCS expression induced by a 

certain allergen, either in inter- or intra-individual comparison. While the proliferative 

properties and cytokine profiles of CBMCs differed individually, no distinction between 

the influence of proliferation positive and negative allergens on the CIS, SOCS1 and 

SOCS3 expression of CBMCs could be established. While connections between 

proliferation and the regulatory SOCS proteins are apparent (Yu, Mahdi et al. 2004), in 

our setup SOCS mRNA expression was not sufficiently activated to show any 

differences between allergen-stimulated positive and negative cells. The main reasons 

are the low proliferation frequency and the low cytokine levels induced by food 

allergens via the TCR in general, as opposed to cytokine induction via the innate 

immune system. 

 

Another question addressed in the present study was how lactic acid bacteria and E. coli 

influence the Th1/Th2 cytokine balance in cord blood mononuclear cells from randomly 

selected term newborns. 

There has been a lot of speculation about the anti-allergic effects of lactic acid bacteria 

(Isolauri, Arvola et al. 2000; Kalliomaki, Salminen et al. 2003; Rosenfeldt, Benfeldt et 

al. 2003). A Th1 skewing influence on the Th1/Th2 cytokine balance has been 

investigated in PBMCs (Pochard, Gosset et al. 2002; Repa, Grangette et al. 2003), and 

in CBMCs (Karlsson, Hessle et al. 2002). Karlsson et al. investigated the influence of 

different gram-positive and gram-negative strains, including LP and E.coli, on the 

production of IL-6, IL-10, IL-12 and TNFα. 

To gain further information about the effects of LAB on CBMCs, reactions of 

mononuclear cells to the two LAB strains (LL and LP) were compared to reactions to 

E.coli and the superantigen SEA (staphylococcal enterotoxin A). SOCS are directly 

induced by gram-positive bacteria and LPS via Toll-like receptors (Stoiber, Kovarik et 

al. 1999; Dennis, Jefferson et al. 2006) as well as by certain cytokines, including IFNγ 
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and IL-10. To our knowledge, an influence of LAB on SOCS has not been investigated 

yet. 

 

We demonstrated that in CBMCs, IL-10 and IL-12 are expressed in full quantity on  

day 1 (Bacteria and SEA), levelling off over the course of 3 days, whereas IL-5 and 

IFNγ reach their peak at day 2 (EC, SEA) to 3 (LAB), depending on the stimulant. 

An earlier expression of IL-10 and IL-12 was expected, as these cytokines are directly 

expressed by macrophages and naïve T cells, respectively, while cells secreting IL-5 

and IFNγ require activation by cytokines previously expressed by macrophages and  

T cells. Different expression patterns of these cytokines have been documented in the 

cell free supernatant of PBMCs. Hessle et al. reported that IL-10 and IL-12 expression 

by PBMCs stimulated with gram-positive and gram-negative bacteria was maximal 

after 24 hours (Hessle, Andersson et al. 2000). IL-5 and IFNγ expression has been 

shown to peak at 48 hours in PBMCs stimulated with SEA (Pochard, Gosset et al. 

2002). We confirmed these observations in CBMCs. Importantly, we demonstrated that 

LAB induce peak expression of IL-5 and IFNγ at 72 hours, while the response to E. coli 

is similar to SEA (48 hours). Possibly, these different kinetics are caused by activation 

of the innate immune system via specific TLRs by gram-positive and gram-negative 

bacteria. TLR4 is a key molecule for bacterial LPS (or endotoxin) responsiveness, while 

LAB interact primarily with TLR2 (peptidoglycan) and possibly the intracellular TLR9 

(CpG-DNA). This phenomenon was mirrored in SOCS3 expression, where E. coli 

induced elevated SOCS3 expression after 30 minutes, as opposed to 1 hour (LP) and  

2 hours (LL). 

The influence on cytokine expression was dependent on the dose of bacteria used, with 

higher bacterial doses leading to increased expression of IL-5, IL-10, IL-12 and IFNγ. 

Such a dose-response effect was reported in vitro for gram-positive and gram-negative 

bacteria in PBMCs (Hessle, Andersson et al. 2000; Pochard, Gosset et al. 2002). Dose 

dependency for LL and EC was observed in the 105-107 CFU/mL range, while for LP 

the highest cytokine levels were observed at 106 CFU/mL. We confirmed LP to be the 

most potent cytokine inducer of the bacteria tested, which was indicated by Repa et al. 

in a mouse model (Repa, Grangette et al. 2003). The decreased expression of IL-5,  

IL-10 and IL-12 we observed at the highest concentration of LP might relate to a mild 
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toxic effect of LP in this dosage, which is not reflected in thymidine incorporation 

assays (data not shown). Interestingly, IFNγ expression did not decrease at the highest 

concentration of LP. The reason for this is that, unlike the other cytokines tested, IFNγ 

accumulates in the supernatant because of its comparatively longer half-life. 

We demonstrated that lactic acid bacteria (LL and LP) effectively modulate the 

Th1/Th2 cytokine balance in cord blood. LL and LP induced increased expression of 

the Th1 cytokines IL-12 and IFNγ, and decreased expression of the anti-inflammatory 

cytokine IL-10, compared to E. coli and SEA. This is in part consistent with the 

observations made by Karlsson et al. (Karlsson, Hessle et al. 2002), who reported 

increased IL-12 and IFNγ levels in response to LP. Concerning IL-10, the same group 

demonstrated that gram-negative bacteria induce IL-10 more efficiently than gram-

positives in adult monocytes (Hessle, Andersson et al. 2000), but not in CBMCs 

(Karlsson, Hessle et al. 2002). However, it has to be kept in mind that the bacterial 

concentrations used by this group on both PBMCs and CBMCs were comparatively 

high (5x107 CFU/mL). In our study, a significant elevation of IL-10 expression was 

observed from 24 to 72 hours in response to 105 CFU/mL, while at 107 CFU/mL 

significance was barely reached. 

Finally, LAB displayed a trend towards lower expression of the Th2 cytokine IL-5 

compared to E. coli, and a significantly lower expression compared to SEA. While the 

ability of LAB to inhibit Th2 cytokine production (IL-4 and IL-5) has been observed in 

PBMCs of atopic adults (Pochard, Gosset et al. 2002), to our knowledge no data exists 

on the influence of LAB on the IL-5 expression of CBMCs. We demonstrated that IL-5 

expression in CBMCs induced by LL and LP is reduced compared to EC and SEA. 

In conclusion, these data indicate that LAB have a Th1-skewing influence on CBMCs 

through elevated induction of IL-12 and IFNγ, as well as decreased IL-5 and IL-10 

expression. In contrast, the gram-negative E. coli induces higher levels of IL-5 and  

IL-10, and lower levels of IL-12 and IFNγ, compared to LAB. These observations are 

further accentuated by Th1/Th2 cytokine ratios (IL-12/IL-5 and IFNγ/IL-5). The potent 

cytokine inducer LP showed increased expression of Th1 cytokines at lower 

concentrations than LL. Nevertheless, both LAB induced a significantly higher Th1/Th2 

ratio than EC and SEA. The Th2-skewing properties of the superantigen SEA, which 

have already been demonstrated in PBMCs (Pochard, Gosset et al. 2002), have been 
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confirmed in CBMCs, showing a similar but more pronounced cytokine profile (IL-5, 

IL-12 and IFNγ) than E. coli. Concerning IL-10 expression, SEA induced comparably 

low IL-10 levels from day 1 to day 3. 

 

SOCS are encoded by immediate early genes. Nevertheless, no distinct SOCS mRNA 

up-regulation was detected in the first 30 minutes. Relative SOCS expressions reached 

their respective peaks at 24 hours, with significantly different SOCS levels being 

induced by the diverse stimulants at this timepoint. CIS expression increased earlier 

than SOCS1/3 expression, at 16 hours compared to 24 hours. We assume that CIS 

expression is induced by IL-2, a cytokine which is expressed at 4 hours in cord blood 

(Han and Hodge 1999), earlier than IL-6, IL-10 and IFNγ which induce SOCS1 and 3. 

In CBMCs co-cultured with LP, a slight increase in relative SOCS1 and SOCS3 mRNA 

expression was observed at hour 2. This up-regulation may be attributed to an early 

innate immune reaction via peptidoglycan (TLR2) and possibly CpG-DNA (TLR9) 

(Dalpke, Opper et al. 2001; Dalpke, Eckerle et al. 2003; Dennis, Jefferson et al. 2006). 

E. coli induced a relative up-regulation of all SOCS at the 1 hour timepoint, showing an 

increase in SOCS3 and CIS levels compared to the LAB. This early CIS, SOCS1 and 

SOCS3 expression points to direct activation of macrophages and dendritic cells by LPS 

via TLR4 (Dalpke, Eckerle et al. 2003). 

At 4 to 16 hours, no significant SOCS up-regulation compared to the negative control 

was observed. Furthermore, no strain specific SOCS induction was measured until the 

24 hour timepoint. 

In the literature, SOCS1 has been connected to Th1-type and CIS and SOCS3 to  

Th2-type differentiation. Aside from the involvement in the regulation of cytokines that 

balance Th1/Th2 development, increased expression of SOCS1 and SOCS3 has been 

connected with atopic disease in clinical studies (Federici, Giustizieri et al. 2002; Seki, 

Inoue et al. 2003; Harada, Nakashima et al. 2007). As SOCS mRNA expression is 

effectively induced by bacterial compounds (Naka, Fujimoto et al. 2005), and as 

different bacterial strains have been shown to elicit Th1- or Th2-skewed responses 

(Karlsson, Hessle et al. 2002; Pochard, Gosset et al. 2002), it was of interest to observe 

the influence of these bacteria on Th1/Th2 associated SOCS expression. However, in 

our experimental setting the oversimplified system of Th1/Th2 SOCS1/SOCS3 could 
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not be reproduced. At the 24 hour timepoint, SOCS expression is influenced by a 

variety of cytokines induced by the 3 bacterial strains and SEA, Th1/Th2 cytokines as 

well as Th1/Th2-unrelated cytokines, most importantly IL-10. Pochard et al. 

demonstrated the inhibition of Th2 cytokines by LAB in an allergen-specific setup 

(Pochard, Gosset et al. 2002), while in our study the reaction of CBMCs to certain 

bacteria was tested in a polyclonal approach. Consequently, the Th1/Th2 skewing 

properties of LAB and E.coli we observed at cytokine level will not influence SOCS 

expression in the same way they would have done in an antigen specific setting. 

Generally, LL induced no elevated CIS and SOCS1 response compared to the control 

and the lowest SOCS3 response of all bacterial strains. Corresponding to the 

observations made regarding cytokine expression, LP was found to be more effective 

than LL, probably due to the potent effect of LP on IL-10 and possibly IFNγ expression 

at 24 hours. Importantly, CIS and SOCS1 expression levels induced by LP were more 

alike to EC than to LL, despite the similarities between LL and LP regarding their cell 

wall components. 

IFNγ protein levels have been shown to be low at 24 hours, while IL-10 is already 

present at its highest concentration. While both SOCS1 and SOCS3 are strongly 

induced by IFNγ, IL-10 has been shown to abundantly induce SOCS3, while inducing 

lower levels of SOCS1 (Dennis, Jefferson et al. 2006). This was confirmed by our 

observations of an elevated SOCS3 expression in cells stimulated for 24 hours with  

104 CFU/mL E.coli (induces high levels of IL-10) compared to those stimulated with 

104 CFU/mL LAB (low IL-10 levels). No difference in SOCS1 expression could be 

observed between cells co-cultured with LAB or E. coli. 

SEA induced high levels of CIS and SOCS1, but not SOCS3 at 16 and 24 hours. SEA, 

as demonstrated in our cytokine experiments, elicits generally high cytokine levels, 

excepting IL-10. The comparably low IL-10 expression by this superantigen delivers an 

explanation for the different results of SEA and E.coli. While in the E.coli group high 

IL-10 levels probably raise SOCS3 expression, in CBMCs co-cultured with SEA the 

SOCS3 level was found to be comparatively low, possibly due to the lack of IL-10. 

Interestingly, the SOCS1/SOCS3 ratio differed significantly between LP and EC.  

The SOCS1/SOCS3 ratio elicited by SEA was extremely high, owing to low SOCS3 

levels due to IL-10 suppression. 
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In summary, we demonstrated a Th1-skewing impact of LL and LP on the Th1/Th2 

cytokine balance in cord blood mononuclear cells, as well as a dose- and strain-

dependent effectiveness of LAB. Furthermore, SOCS expression is induced by gram-

positive and gram-negative bacteria before cytokines are released. This points to direct 

activation of the SOCS gene via the TLR in CBMCs. This study highlights the strain 

specificity of probiotics reflected in distinct cytokine production and SOCS expression 

patterns. 
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