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1 Introduction 
 

1.1 German Abstract 
 

Ziel dieser Arbeit ist es, einen Überblick über die verschiedenen Techniken zur Datenanreicherung 

und Optimierung im Falle eines Fund of Hedge Funds Portfolios darzustellen, zu diskutieren und 

anhand von Experimenten zu illustrieren. Besonderes Augenmerk liegt dabei auch auf der Bewertung 

des Zusammenspiels der verschiedenen Datenanreicherungs- und Optimierungs-techniken. Erste 

Bausteine für ein integriertes computergestütztes Anwendungstool werden bereitgestellt und 

dokumentiert. Zudem werden Ideen für weitere Entwicklungen und Forschung vorgestellt. Zwei 

wesentliche Punkte unterscheiden diese Arbeit von ähnlichen, nämlich dass sie hauptsächlich auf 

Fund Level arbeitet und dass sie den gesamten Prozess, beginnend mit der Datenaufbereitung, über 

die Optimierung bis zur sachgerechten Evaluierung der Ergebnisse behandelt. 

 

Im ersten Teil wird das Thema im Kontext der Finanzwirtschaft verortet, der Begriff Hedge Fund 

definiert und die Relevanz der Aufgabenstellung erörtert. Neben dem schnellen Wachstum der 

Hedge Fund Industrie ist besonders das zunehmende Interesse von institutionellen Investoren ein 

wichtiger Grund quantitative, auf wissenschaftlichen Erkenntnissen aufbauende Methoden zur 

Unterstützung der Entscheidungsfindung bei der Auswahl von Hedge Funds bereitzustellen.  

 

Der zweite Teil beschäftigt sich mit der Frage der Datenaufbereitung. Generell gilt, dass der Output 

eines Optimierungs Algorithmus nur so gut sein kann, wie die Qualität der Input Daten mit denen er 

gefüttert wird. Dies trifft insbesondere auch auf den Fall von Hedge Funds zu, da die Datenlage hier 

als eher schwierig zu bezeichnen ist: Es werden nur monatliche Renditezahlen zur Verfügung gestellt 

und Informationen über Risiko Exposures sind nur schwer zu erhalten.  

 

Nachdem ein kurzer Literaturüberblick über die Hedge Fund spezifischen Datenprobleme und 

Verzerrungen gegeben wird werden die verwendeten Datenbanken anhand von einigen deskriptiven 

Merkmalen beschrieben. Besonderes Augenmerkt wird bei der Datenaufbereitung der hohen 

Autokorrelation in den Hedge Fund Renditen und dem Auffüllen kurzer Performance Zeitreihen 

gewidmet. Ersteres weil eine hohe Autokorrelation fundamentalen Prinzipien der modernen 

Finanzwirtschaft  widerspricht, zweiteres weil es zu einer besseren Einschätzung des Risikoprofils der 

betrachteten Hedge Funds führt.  
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Zum Zwecke der Datenauffüllung werden im Einzelnen Ansätze über Faktormodelle und 

Clusteranalyse besprochen. Nach einer Übersicht über die in der Literatur vorgeschlagenen 

Risikofaktoren wird ein zentraler Gesichtspunkt, nämlich ist die Modellierung von nichtlinearen 

Zusammenhängen z.B. über Optionsstrukturen, genauer beleuchtet. Wichtige eigene Beiträge in 

diesem Kapitel sind die ökonomische Interpretation und Motivation des favorisierten 

Optionsstrukturmodells sowie Vorschläge und erste Experimente zur automatischen Modellselektion 

und zur Einbindung qualitativer Daten via Clusteranalyse. 

 

Der dritte Teil ist der Optimierung gewidmet. Die Hauptherausforderung ergibt sich aus der Tatsache, 

dass die Renditen von Hedge Fund Investments meist nicht normalverteilt sind. Da die traditionellen 

Konzepte der Finanzwirtschaft aber genau auf der Annahme von normalverteilten Renditen 

aufbauen, müssen alternative Konzepte angewandt werden.  

 

Nach einem kurzen Überblick über die klassische Mean-Variance Optimierung und Möglichkeiten 

robustere Ergebnisse zu bekommen, werden im Wesentlichen zwei Arten vorgestellt wie mit nicht 

normalverteilten Renditen umgegangen werden kann: parametrische Ansätze, die die höheren 

Momente (Schiefe und Kurtosis) der Verteilung berücksichtigen und nichtparametrische Ansätze, die 

mit historischen oder simulierten Szenarien und den sich daraus ergebenden diskreten Verteilungen 

arbeiten. Die Präferenzen des Investors können dabei über ein Dispersions- oder ein Quantilsmaß 

oder einer Kombination aus beidem erfasst werden.  

 

Danach werden Überlegungen angestellt wie einfache lineare und komplexere logische 

Nebenbedingungen eingesetzt und wie die vorgestellten Konzepte integriert werden können, speziell 

welche Datenaufbereitungstechniken mit welchen Optimierungsverfahren zusammenpassen. Im 

letzten Kapitel von Teil drei werden aufwendige Optimierungsexperimente durchgeführt und die neu 

gewonnen Erkenntnisse interpretiert. Die zentralen Erkenntnisse sind, dass die Wahl des 

Risikomaßes kaum Einfluss auf das letztinstanzliches Bewertungskriterium, die risikoadjustierte Out-

Of-Sample Performance, hat und dass das Auffüllen von kurzen Performance Zeitreihen das Risiko 

Out-Of-Sample signifikant verbessert.  

 

Abschließend werden die Ergebnisse zusammengefasst und ein Ausblick auf zukünftige 

Forschungsarbeit gegeben. 
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1.2 English Abstract 
 

The aim of this thesis is to provide an overview and brief discussion, including some experiments, of 

techniques for data enhancement and optimization techniques for a fund of hedge funds. Special 

emphasis is placed on the interaction of the different data enhancement and optimization 

techniques. First building blocks for a computer based asset allocation tool are provided and 

documented. In addition it provides some ideas about future development and research. The two 

main points that distinguish this thesis from papers that treat a similar theme are that it operates on 

individual fund level and that it covers the whole process beginning with questions of data 

enhancement and parameter estimation up to proper evaluation of the outcomes.  

 

In the first chapter the theme is put in a broader context of finance, the term “hedge fund” gets 

defined and the relevance of the problem is reasoned. Besides the rapid growth rates in hedge fund 

industry the fact that more and more institutional investors invest in hedge funds is an important 

reason to provide decision support methods based on quantitative models and scientific findings.  

 

The second chapter deals with data enhancement. In general the proverb “garbage in – garbage out” 

holds true for every optimization algorithm, but it is especially true in the case of hedge funds as the 

data situation is very difficult in this field: only monthly data is provided and there is only little 

information about risk exposures.  

 

After a short literature overview about hedge fund specific data problems and biases descriptive 

statistics are provided for the two databases used in this thesis. With the data enhancement special 

emphasis is put on the high autocorrelation in hedge fund returns and on filling up track records of 

funds that are alive for a short time. The former because high autocorrelation is contradictory to 

fundamental principles of modern finance, the latter because it leads to a better understanding of a 

funds risk profile.  

 

For the purpose of filling up track records, factor model approaches and the use of cluster analysis 

are proposed. After a short literature overview about the risk factors considered in literature, the 

modeling of non linear dependencies, for example via option structures, is discussed on a broader 

basis as this topic is central in this thesis. Important own contributions in this context are the 

motivation and economic interpretation of the favored option structure model and some first 

experiments on automatic model selection and on integrating qualitative data via cluster analysis.  
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The third chapter talks about optimization. The main challenge is the fact that hedge fund returns are 

not normally distributed. But as traditional concepts are based exactly on the assumption of normally 

distributed returns alternative concepts have to be used.  

 

After a short overview of classical mean-variance optimization and possibilities to get more robust 

outcomes, essentially two alternative concepts are introduced: parametrical approaches, that take 

higher moments (skewness and kurtosis) into account, and non parametrical approaches, that work 

with historical or simulated scenarios and with the discrete distributions resulting of these scenarios. 

With the second approach the preferences of an investor can be captured via a dispersion- or a 

quantile measure, or a combination of both.  

 

Then, different ways how linear and more complex logical constraints can be used are considered, 

and procedures how to integrate the concepts presented are discussed, especially which data 

enhancement and which optimization technique may fit together. In the last part of chapter 3 

extensive optimization experiments are conducted and the outcome interpreted. The central findings 

are that the choice of the risk measure has no significant impact on the out of sample performance, 

which is the ultimate evaluation criterion; Filling up short track records on the other hand 

significantly improves the out of sample risk.  

 

Finally the findings are summarized and an outlook for future research is given.  

  



14 
 

1.3 Definitions and Setting of the Topic 
 

Hedge funds are a subunit of alternative investments (AI). There are many different definitions for AI 

of which a lot do not define it directly, but rather inversely by pointing out that AI are non-traditional 

investments. But the border of what is considered as traditional is moving as many of the newer 

investment vehicles get accepted on a broader basis. Other definitions are itemizations of relevant 

investments. Accordingly AI include besides hedge funds for example managed futures, real estate, 

commodities and derivative contracts1, direct investments in private equity, venture and mezzanine 

capital and leveraged buyouts. But as the number of vehicles grows from year to year, such 

exhaustive itemizations get antiquated quite fast. Alternatively AI could be characterized according 

to their return characteristics: “AI are investments that provide unique risk and return properties not 

easily found in traditional stock and bond investments” (Phillips & Surz, 2003). 

 

In this thesis alternative investments are defined as everything else but long positions in money, 

stocks or bonds.  

 

To define hedge funds, a list of typical features of hedge funds is provided.2 Clearly not all of the 

items have to be the case, but typically they are. 

 

 Hedge funds are allowed to go short and/or to use leverage. 

 They require a high minimum investment, often this is 100.000 USD.  

 Hedge funds are less regulated that mutual funds, they have to meet only very loose 

disclosure rules.  And as they do not want others to discover their secrets, they have only 

limited incentives to report voluntary. As this leads to very low transparency, hedge funds 

are often considered to be a black box, even for investors that have invested in the fund.  

 The manager of a hedge fund has much more freedom in deciding where to invest the 

money compared to a mutual fund manager, who is typically restricted to a very limited set 

of assets. This freedom gives the hedge fund manager the opportunity to act in an 

opportunistic way.  

 As hedge funds often invest in illiquid assets and managers need stability in the funding if 

they want to act flexible, hedge funds are an illiquid investment themselves. There are 

several features in the redemption conditions for this purpose: long lock up periods (ranging 

                                                           
1
 See (http://www.investopedia.com/dictionary/default.asp).  

2
 The list is based on the introduction chapters of the books of (Lhabitant, 2004), (Lo, 2008), (Stefanini, 2006) 

and (Gregoriou, 2006) as well as on the experience of fund of hedge fund managers with longtime experience.  
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from half a year to two years, hard and soft ones), early redemption fees, notice periods, 

gates (if too many investors want to withdraw their money at the same time).  

 For the freedom the investor gives to the manager and for the illiquidity of the investment, 

the investor expects compensation, such as returns than with mutual funds and/or positive 

returns also in bad market conditions (“absolute return”). 

 Because many hedge funds try to exploit inefficiencies their strategies are often not scalable: 

If too much capital tries to exploit an arbitrage opportunity, it closes this opportunity by 

exploiting it. That means that some of the best funds are closed to new investors and that 

new funds often communicate from the beginning on limits for their assets under 

management.  

 Hedge funds charge very high performance fees. Most of the time the investor has to pay 2% 

of the investment (management fee) and 20% of the performance (performance fee) each 

year.  On top of this funds of hedge funds normally charge one and ten percent, respectively. 

These high fees get mitigated a little bit by a high watermark. This means performance fees 

have to be paid only for gains with respective to the last high. With the rising number of 

funds and the competition by investable indices and replication strategies there is a trend to 

lower fees.  

 The size of hedge funds in terms of assets under management differs from one million to 

several billions (the 20% top funds control 80% of assets).3 

 Trading strategies are proprietary and therefore must be jealously guarded, even within the 

organization. This means also that with the departure of a key person the fund is no longer 

the same one and not seldom the fund gets closed down with the departure – often the 

general partner is the fund.   

 Most of the time the general partners own the hedge fund themselves or they invest 

considerably amount of own money into the fund. 

 Many hedge funds are domiciled in tax havens like the Caymans. In terms of assets under 

management only one third of the funds are onshore.4  

 Hedge funds have a relatively short lifetime, there is a high turnover. At the high peak in 

2005 more than 2000 fund were launched and 850 liquidated.5 

 

As in this paper only hedge funds are considered, they are repeatedly simply called funds. 

 

                                                           
3
 (Hedge Fund Research Inc, Q2 2008).  

4
 (Hedge Fund Research Inc, Q2 2008). 

5
 (Hedge Fund Research Inc, Q2 2008). 
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1.4 Relevance 
 

Numbers for the size of the industry differ quite substantially because of in-transparency. 

Estimations over the last five years differ from 6000 to 9000 funds, with a clear upward trend. At the 

moment there may exist around 10.000 hedge funds that can be found in one of the hedge funds 

databases and at least 400 that do not report.6 The Economist (2008, March 22nd) talks about 

quintupled assets held by hedge funds since 2000. The assets under management (AUM) are by now 

surely over 1 trillion USD (Lo, 2008, p. 1). The recent HFR industry report estimates nearly 2 trillion 

AUM for Q2 2008. This is still small compared to mutual funds which manage around 14 trillion USD, 

but the growth rates of the AUM of hedge funds are around 20% compared to 9% for mutual funds.  

 

Besides the size of the industry and the impressive growth rates hedge funds get more and more 

relevant because of the fact that they are no longer only accessible, interesting and designed for high 

net worth individuals, foundations and family offices. Inflows come more and more from 

institutional investors like insurances and pension funds. Via investable hedge fund indices the asset 

class gets accessible even for small private investors.  

 

The focus of this work lies on the needs of institutional investors. They want hedge funds especially 

for their capability to generate absolute, uncorrelated return. But especially middle and smaller 

institutional investors do not have the capability to deal with the difficulties that go along with 

investing in hedge funds. Therefore many of them take the investment via a fund of hedge funds. It is 

estimated that 16% of the hedge fund assets are administrated by funds of hedge funds.  

 

The difficulties arise manly from the in-transparency of the market and methodological questions. 

The first issue can only get solved by long experience in the market. The focus of this thesis lies on 

the second issue: As hedge fund returns are highly non-normal distributed and the dependences to 

risk factors are often non-linear because of the use of derivative instruments and dynamic trading 

strategies, the traditional concepts of portfolio management cannot be applied. In addition to this 

one has to be careful when applying new concepts designed to resolve the mentioned problems as 

they are designed for stock markets with their high frequency data, their high liquidity and their 

relative stable factor representations.  

 

At the end this thesis wants to give ideas for a software tool for a fund of hedge funds quantitative 

analysis. This tool should be able to prepare data for an optimization algorithm and then run this 

                                                           
6
 According to a fund of hedge funds manager with longtime experience. 
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algorithm to get recommendation for an asset allocation. Although such tools already exist, they rely 

mainly on techniques developed for traditional asset classes and are implemented in a fixed way, so 

no own ideas can be implemented or tested.7 Therefore, given the concept developed after intense 

literature research and talks to practitioners some methods that can be used in such a tool got 

implemented in MATLAB and were tested with real data.  

  

                                                           
7
 See (http://www.alternativesoft.com/) and (http://www.pertrac.com/per0020/web/me.get?web.home).  
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2 Data Enhancement 
 

 

Although it is not the focus of this thesis, one has to deal with data preparation in any case, 

particularly with regard to the special data situation for hedge funds. The main aim in this section is 

to provide the optimization algorithms with the appropriate data. In practice this meanly means to 

find methods to fill up short track records. Clearly this is a crucial point, as garbage in leads to 

garbage out. 

 

First we will give a literature overview of hedge fund specific biases. Next we describe the databases 

we use for our analysis and provide some summary statistics on them. Later, we discuss filtering 

techniques considered in literature and propose two own filters. The following section deals with 

serial correlation. We test if this phenomenon exists in our databases and examine the question 

whether serial correlation is a problem in asset allocation or not. We discuss the unsmoothing 

approach of (Davies, Kat, & Lu, 2005) and propose directions of further research in this area. Finally 

we propose a peer group based approach of measuring performance persistence.  

 

The next section (2.5) discusses the usage of factor models to fill up short track records. After briefly 

discussing other ways to use factor models in the case of hedge funds we summarize and discuss the 

potential risk factors proposed in literature. Following this, we discuss ways to model the 

dependencies between the risk factor in a flexible way and illustrate the methods with some 

experiments using own data. The main challenge is to model non-linear dependencies between funds 

and factors. Our focus lies on the option structure approach: we propose ways to come up with 

option prices if no historical data is available and propose motivation and technical reasons why to 

assume constant prices. Based on literature review we then recommend to use certain option 

profiles. The last but one topic on factor models is principal component analysis. We introduce this 

technique, do exploration with own data and propose directions on future research. Finally, we 

consider problems with model selection. 

 

Another method for filling up track records is developed in section 2.6. First, the usage of a peer 

group approach and the inclusion of qualitative data are motivated. Next, a method to get a 

proximity matrix out of the qualitative data and future research topics are proposed. Afterwards, two 

methods of cluster analysis get introduced: Agglomerative hierarchical and k-means clustering. We 

illustrate both methods with little experiments using return characteristics of the funds for the 
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proximity matrix. Finally we propose a procedure to come up with an individual peer index, which 

can be used to fill up the track record of a certain fund.  

 

2.1 Hedge Fund specific Problems and Biases  
 

When dealing with hedge funds in a quantitative way, there occur some problems that one does not 

have to deal with in traditional assets classes. The following section discusses these problems and 

provides some thoughts about how to solve them, if possible.  

 

The first group of problems can be considered as technical problems, which to solve is one important 

aim of this thesis:  

 

 Hedge funds report their performance in general just once a month, i.e. there are only 12 

data points per year one can work with. This means that all the inter month fluctuations 

cannot be seen in the data, what may lead to an underestimation of risk when compared to 

annualized ratios taken from daily return series. One nice example which demonstrates this 

effect is the behaviour of many quant funds in august 2007, when funds recovered large 

parts of their losses at the end of the month. In general there is no way to get around this 

problem; one has to work with monthly data.8 

 

 Related to this is the multi period sampling bias: analysis often is restricted to funds that 

have a minimum amount of history available. Clearly quantitative analysis has to have a 

minimum amount of data to work with, but to set this minimum threshold too high belittles 

the investment universe/opportunities and restricts the analysis to more established funds, 

which are said to have different characteristics than younger funds. One way to deal with the 

problem would be to estimate the parameters for the optimization with a missing value 

algorithm. But this would lead to severe imbalances between funds: For example a fund 

who’s volatility gets estimated from the one (say very quiet) year it is alive is definitely 

superior to a similar fund which experienced the last but one (say very turbulent) year. We 

try to mitigate the problem by filling back track records via regression analysis and clustering 

approaches. This provides the optimization algorithm with the information about how the 

fund (modeled as risk factor exposures or via its peers) would have performed under past, 

maybe more stressful market conditions. For details see 2.5 and 2.6.  

                                                           
8
 Although most times the investor gets weekly estimates of the net asset value for funds she is invested in, 

there is no way to include non-invested funds in the analysis on a weekly basis. 
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 Another main issue is the fact that most of the time returns of the hedge funds are not 

normally distributed. This is a major problem, because “modern” portfolio theory holds only 

in the case of normally distributed returns or quadratic preferences. As the assumption of 

quadratic preferences will not be applied in this thesis, alternative ways of portfolio 

optimizations will be implemented. Section 3 discusses some of these newer methods.  

 

 As hedge funds employ derivative instruments and follow dynamic trading strategies the 

dependencies to the underlying risk factors are often not linear. In addition to this the fact 

that hedge fund managers often act very opportunistic in changing market conditions causes 

very unstable factor model representations. Sections 2.5.4 and 2.5.5 discuss these problems.  

 

 Hedge Funds often have a short lifetime i.e. they have a very short track record. This can 

mean that the fund did not experience stressful market events, and this may underestimate 

risk substantially, as no one knows how the fund performs in stormy market conditions. The 

distributions, correlations and what else estimated or fitted from this short track record will 

not be accurate. How to fill up the missing history for such a fund will be treated in sections 

2.5 and 2.6. 

 

 An effect that is more a “risk bias” is the one that a quite high serial correlation can be 

observe in the returns of some hedge fund (strategies). Section 2.4 discusses ways to handle 

this problem.  

 

The second group of problems are all in some sense “return biases” 9 that arise from problems with 

the database used. But as we consider only hedge funds in our analysis these database biases are not 

so important for us as we do not have to compare with assets that are not affected by the below 

mentioned biases. Nonetheless these biases should be kept in mind as the outcome of portfolio 

optimization experiments is likely to be effected by some of these biases in the sense that the same 

experiment setting will lead to different conclusions when applied to a biased and a unbiased 

sample.  

 

 Related to the topic of short track records are the so called the instant history bias, as this 

bias occurs when fund managers try to provide longer track records for their new funds. The 

                                                           
9
 The most heavily cited papers about biases in the hedge fund world are (Fung & Hsieh, 2002) and (Fung & 

Hsieh, 2000). 
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bias occurs if a fund enters a database with a track record built up in an incubation time, 

were the fund managed a little amount of money from the manager’ friends or the company 

mother. If this track record is good, the fund reports it to the database, if not the track 

record will not be reported and another of this test funds will be created. This biases 

accounts for 1.4% of overestimating hedge fund returns, according to (Fung & Hsieh, 2000). 

To get around this bias one can just delete the first year track record or replace it by own 

estimates for this period.  

 

But there may be other reasons for the fact that a fund’s return is higher in the first year 

than in the following years: often hedge fund managers come from prop trading desks of big 

investment banks and after some years of successful trading there they decide to start up an 

own fund. But at the prop desk they had all the information sources and connections from 

the investment bank. For some time they are able to feed on these sources but as time goes 

by they get cut off from the hot info.10 Or it may be that the managers detected a new 

arbitrage opportunity they could exploit in the beginning and then this opportunity closes.  

 

 The survivorship bias, which occurs if only alive funds are taken into account, is more 

relevant in the case of hedge fund indices and when comparing hedge funds to other asset 

classes. Here it’s estimated that this bias accounts for up to 3% overestimating hedge fund 

returns (Fung & Hsieh, 2000). For this paper it is not so relevant, as the optimization horizon 

is just one month and we only consider hedge funds in the optimization. If it happens that a 

fund selected by the optimization algorithm at time t stops reporting exactly at t+1 one can 

set its performance to a defined number in the evaluation. The problem with choosing this 

number now is, that we don’t know if the fund stopped reporting because  

o it was liquidated or  

o it decided to stop the (voluntary) reporting because the performance was so bad 

that it would have negative impact on the marketing for other funds from the same 

company or  

o it stopped reporting because the performance was so good that it does not have to 

attract new capital anymore.  

 

Clearly there is a higher chance that the fund got liquidated if it had negative returns and/or 

capital outflows just before it stopped reporting. For details how to estimate the probability 

of liquidation see the paper by (Horst & Verbeek, 2007). 

                                                           
10

 According to a fund of hedge funds manager with longtime experience. 
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 Another fact that can be named a “return bias” is that most of the hedge funds are 

denominated in USD, which makes it necessary for an EUR investor to either take the 

currency risk into account in the optimization or to hedge the currency risk. In this thesis only 

use funds that are denominated in USD will be used for the calculations. Clearly here would 

be room for improvement. 

 

2.2 The Database 
 

In this study two different databases are used. The first is the in-house database of Benchmark 

Capital Management GmbH. It’s well maintained and contains over 750 funds and more than 250 

indices. For all funds there are monthly returns reported, for some of them detailed qualitative data 

is available. One nice thing about the Benchmark database is that it is free from survivorship (dead 

funds stay in the database) and instant history bias (performances are checked before they enter the 

database). 

 

The second database is much broader. It’s a spreadsheet (Excel) image of a commercial hedge fund 

database provided by Hedge Fund Intelligence (HFI) and it contains more than 4500 funds, out of 

which 711 haven a focus on asia, 1782 in Europe and the rest (2034) in the US. Monthly returns of 

the funds and a set of qualitative data are available for all funds. For the HFI database we have data 

from June 1998 to March 2008 available. In the Benchmark database the first entries start in 1990, 

but to get comparable results and because for the early and mid 90ies there are only a few funds we 

use the same time period as with the HFI database for our calculations.  

 

Unfortunately the HFI database is not free of survivorship bias therefore comparisons between the 

two databases have to be interpreted with caution.  

 

To give an idea about the characteristics of the two databases some summary statistics are provided, 

but instead of printing a table with a lot of numbers we rather plot histograms with the distribution 

of the characteristics among the funds. The blue bars are for the Benchmark database funds and the 

red ones for the HFI database.  
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Figure 1, Minimum and Maximum Monthly Fund Return 

 

The first two figures show the distribution of the minimum and the maximum monthly return of the 

funds. It can be seen that a large fraction of funds face losses of over 10% per month at least once in 

their lifetime (B: 19%, HFI: 26%), losses of over 20% occur for a considerable fraction of funds (B: 4%, 

HFI: 5%). The mean minimum return is (B: -6.6%, HFI: -7.7%), the median is (B: -4.7%, HFI: -6.1%). The 

worst losses were (B: -70%, HFI: -78%). On the other hand also the upside is there: (B: 24%, HFI: 31%) 

of the funds had a maximum monthly return of over 10% and (B: 8%, HFI: 10%) over 20%. The 

absolute best monthly returns are impressive (B: 83%, HFI: 254%). Mean and median are (B: 8.4%, 

HFI: 9.9%) and (B: 6.1%, HFI: 6.9%), respectively. It seems that the Benchmark database contains 

more defensive funds than the broader HFI database. This impression is confirmed if one looks at the 

next figure that shows two measures of dispersion.  

 

 

Figure 2, Dispersion of Fund Returns 

 

In both cases the mean and the median are lower for the Benchmark funds:  

 Max-Min Volatility (allualized) 

mean (B: 15.1%, HFI: 17.6%) (B: 9.4%, HFI: 12.1%) 

median (B: 11.3%, HFI: 13.6%) (B: 7.3%, HFI: 9.6%) 
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Figure 3, Maximum Drawdown  

 

Nonetheless the expected annualized return is higher with the Benchmark funds (B: 12.5%, HFI: 

11.7%), median (B: 10.6%, HFI: 9.5%): 

 

 

Figure 4, Expected Fund Return 

 

But there may be a bias in the Benchmark database: as mainly funds with an impressive past track 

record are considered for further analysis and as they are included with their full (live) track record in 

the Benchmark database it is likely that the database contains a considerable upward bias. 

 

If one looks at the distributions of the skewness and the kurtosis of the funds one could have the 

impression that the coefficients just fluctuate randomly around zero and that for the hedge fund 

industry as a whole the assumption of normally distributed returns may be justified. One may argue 

that the fluctuations mainly come from the fact that only a little number of observations is available 

to estimate the moments. Indeed the mean and the median are close to zero for the skewness in 
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both database: (B: -0.17%, HFI: -0.1%) and (B: -0.18%, HFI: -0.11%), respectively. Also with the 

kurtosis the values are relatively close to zero:11 For the mean we observe (B: 3.3%, HFI: 2.4%) and (B: 

1.6%, HFI: 1.1%). The mean is in this case not the best summary as the kurtosis is (similar to the 

volatility) right skewed by construction and high outliers like 107 (the maximum observed kurtosis in 

both databases) bias the mean upwards.  

 

 

Figure 5, Higher Moments of Fund Returns 

 

But the impression from the figures is wrong. First also hedge fund indices show negative values of 

skewness and high positive values of kurtosis, even indices that aim to cover the whole industry like 

the HFR Fund Weighted Composite (-0.6, 3), the HFR Fund of Fund (-0.27, 4.23), the HFI Absolute 

Return Composite (-0.49, 1.44) and a simple average index of the Benchmark database funds (-0.46, 

3.67). From our point of view one explanation for this phenomenon can be that the large negative 

values in certain common months that account for the negative skewness in the left skewed funds 

cannot be offset by the return of the funds with positive kurtosis during these months. The positive 

skewness funds may have no severe drops in these months (otherwise their own skewness would be 

negative, too) but they seem to face also small drops, at least they do not offset the severe drops of 

the left skewed funds by high gains. In other words the left tail correlation among positive and 

negative skewness funds must be positive, otherwise the central limit theorem would lead on the 

aggregate level to a normal distribution.  

 

The second argument is that for 58% of the funds in the Benchmark database and for 46% in the HFI 

database the hypothesis of normally distributed returns is rejected by the Jarque-Bera-Test at a 95% 

level. Still 44% and 34%, respectively, are rejected even on a 99.9% level. As the Jarque-Bera-Test 

account for the number of observations in our calculations on fund level and as on index level 

relatively long time series are available the argument that non normality comes from short track 

records does not hold true either.  

                                                           
11

 We calculated the excess kurtosis. 
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2.3 Filtering  
 

The first question is to work on fund or on index level. For this thesis we decided to work manly on 

fund level. This distinguishes this thesis from other works that deal with optimization in the case of 

hedge funds because these papers mainly just use hedge fund indices for their calculations. 

 

One way to perform the optimization would be to use all the funds available in the database. 

However there are ways and good reasons to filter funds before doing the data enhancement and 

the optimization. The following filter approaches are considered in literature: 

 

 In most of the databases there are funds denominated in different currencies available. If 

one does not want to deal with currency risk, one hast to work only funds that report their 

returns in one certain currency, normally in USD. We will also do so in our studies.  

 

 Another filter frequently used is to restrict the sample to fund that have a certain minimum 

amount of assets under management.  

 

 One natural way to filter funds is to rank them by their alpha and then just use the best say 

100 funds for the optimization. It is even possible to get an asset allocation decision by 

allocating 1/n out of the n best funds from the alpha ranking. The challenge here is to 

determine the alpha. For this question see 2.5. (Alexander & Dimitriu, 2005) focus on the 

filtering according to alphas and conclude that the alphas from different models, although 

different in their values, lead to a similar outcome in terms of the ranks. The out of sample 

performance of their alpha ranked minimum variance portfolios is superior to an equally 

weighted portfolio of all funds and to that of randomly selected MVPs.  

 

 Another approach is to rank the funds according to their Hurst exponent. The Hurst 

exponent can be considered as a measure of persistence or autocorrelation. (Amenc, Bied, & 

Martellini, 2003) use it just to demonstrate that there is persistence in hedge fund returns 

and then focus on predictability in lagged economic variables for hedge fund returns. As a 

filtering tool it is used only in (Olszewski, 2005). But as the outcomes described there are not 

very convincing we will not use the Hurst exponent as a filtering tool. How we will address 

for autocorrelation will be described in section 2.4.  

 

 There is also a way to filter funds driven by more technical considerations. As with the 

mentioned problems with hedge fund quantitative data it may be a good idea to just work 
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with funds that have a sufficient amount of data (attention, this lead to the so called multi 

period sampling bias) 

 

In addition we want to propose the following filters: 

 

 A more qualitative filter is to use only funds that are already invested and such that have 

passed the due diligence process and were considered as investable or eligible. This can be a 

first and easy way to get qualitative information into the optimization process.12  

 

 Only use funds for quantitative analysis that show strong and reliable patterns in the factor 

model representation or that are good to assign to a peer group in the cluster analysis – in 

other words: funds that are relatively easy to handle in a quantitative way. Out of these 

funds one can construct a core portfolio about which we can make statements with relatively 

high certainty. Around this portfolio the newer funds and such that follow very exotic 

strategies can be allocated by hand.  

 

2.4 Illiquidity and Serial Correlation 
 

Most of the problems one has to deal with in the context of hedge funds are more of a technical 

kind, like going away from the assumptions of normality and linearity. Serial correlation on the other 

hand is more an economic problem: it violates the Random Walk Hypothesis; with the presence of 

autocorrelation there is unexploited predictability in the data; (spurious) serial correlation leads to 

underestimation of beta coefficients, overestimates the risk adjusted performance as measured by 

the Sharpe Ratio for example and it leads to wealth transfers between new, existing and departing 

investors.  

 

The problem with predictability in returns is that this implies that the manager’s investment policy is 

not optimal: if there is a higher probability for his returns to be positive next month, he should take 

advantage of this forecast and increase his positions and vice versa.13 A counterargument could be 

that the strategy the manager follows is not scalable or that there are other restrictions that prevent 

an increase in the position. Normally other market participant then would take advantage of this 

opportunity, but maybe there are reasons that prevent them from doing so. In this case market 

                                                           
12

 One problem we faced with this approach is that we do not have information about when the fund entered 
the investable universe. As it is very likely that only funds that performed well over a longer period of time 
enter we may import a sustainable bias. 
13

 For more detailed explanations see (Lo, 2008, p. 64). 
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inefficiencies like barriers to entry, illiquidity or lack of information would be the cause of the serial 

correlation and the reason why the market is not able to arbitrage it away. 

 

(Lo, 2008) argues in his recent book that serial correlation is most likely the result of illiquid 

securities that are contained in the fund. This is consistent with our argument as illiquidity forestalls 

quick changes in positions. But this slow adaption may explain serial correlation only to a smaller 

extent as the market would find ways to speed up adaption to exploit the profit opportunity if it is 

too attractive. A more important explanation for serial correlation caused by illiquid instruments is 

the lack of market prices. Prices then get extrapolated from older prices always using some kind of 

smoothing profile. In particular (and in addition) (Getmansky, Lo, & Makarov, 2004) talk about “linear 

extrapolation of prices for thinly traded securities, the use of smoothed broker-dealer quotes, 

trading restrictions arising from control positions and other regulatory requirements, and, in some 

cases, deliberate performance-smoothing behavior” and stale pricing resulting from large non-

trading intervals. Empirical support for the illiquidity theory is given by the fact that “funds with the 

highest serial correlation tend to be the more illiquid funds, e.g., emerging market debt, fixed income 

arbitrage” (Getmansky, Lo, & Makarov, 2004).  

 

The question now is: is it necessary to deal with serial correlation in the investment process and if 

yes, what to do about it? First we will test if the phenomenon of serial correlation can be found in 

the databases we use, too. We find the following distributions of serial correlation14: 

 

 

Figure 6, Autocorrelation with Indices  

                                                           
14

 The autocorrelation was calculated over the whole lifetime of the index or the fund respectively. On fund 
level we only considered funds with a minimum amount of 36 observations.  
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The figure clearly shows that hedge fund indices show more positive serial correlation than other 

indices like stock market-, regional-, commodity and currencies indices. Especially the number of 

indices that show autocorrelation coefficients that are significant different from zero at a 95% level 

(autocorrelation lager than approximately 0.2)15 is much larger in the hedge fund universe. The next 

figure shows the distribution of the autocorrelation coefficients for individual hedge funds.  

 

 

Figure 7, Autocorrelation with Funds  

 

Here we also observe positive autocorrelation. As the funds have very different lifetimes an overall 

confidence level would be too imprecise. Therefore we computed the percentage of funds that have 

autocorrelation coefficients significantly different from zero. In the Benchmark database 37% show 

significant serial correlation, in the HFI database 28%. This supports the optical impression that the 

Benchmark database is somehow biased to more illiquid funds.  

 

The second question to ask is whether serial correlation is a problem for an optimization algorithm or 

not. Clearly most optimization techniques will favor funds with high positive autocorrelation as they 

have lower volatility with same expected return and lower beta coefficients to the overall market as 

their counterparts with no autocorrelation.  

 

But is this a bad thing? If the picked funds behave similar to the risk free rate but with a higher 

expected return there would be no problem. But, as with risky bonds for example, one could assume 

                                                           
15

 This number was calculated a little bit inaccurate because of the fact that the indices have different lifetimes 
and the level of significance in calculated by 1.96/√(average number of observations per index). 
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that the higher expected return is compensation for a higher default risk. In the case of hedge funds 

it could also be a higher probability of a sharp drop in the net asset value. This sharp drop can be for 

example due to a realized loss with an investment object that was in the books for years with nicely 

increasing linear extrapolated prices. 

 

The assumption that high autocorrelation goes along with high tail risk would also be consistent with 

the finding that many hedge funds have option like returns, especially similar to short put options: 

under normal market conditions these funds produce high stable income but if the market gets hit 

they get hit even more. Factor models with option structure will be discussed in section 2.5.5.  

 

Here we will just perform a short check and test whether there is a relation between serial 

correlation and the probability of a sharp drop, defined as a 3-sigma or worse event. We regressed 

the number of 3 sigma events on the dummy variable significant autocorrelation. This time we 

include all funds, also the one with less than 36 entries as it is not unlikely that a fund gets liquidated 

after such an event even if it is very young.  

 

And indeed we find a significant relationship between the existence of significant autocorrelation 

and the number of 3 sigma events for all the hedge fund samples: the hedge fund indices, the funds 

in the Benchmark database and the funds in the HFI database. Only for the traditional indices we 

could not find a significant relationship, but this is due to the fact that there is hardly any significant 

autocorrelation. The following table shows the statistics for the pool of all hedge fund indices.  

 

 

Dependent Variable: THREESIGMA  

Method: Least Squares   

Date: 09/05/08   Time: 11:01   

Sample: 1 138   

Included observations: 138   
     
     
 Coefficient Std. Error t-Statistic Prob.   
     
     

C 0.363056 0.097164 3.736513 0.0003 

AUTOCORREL 1.195339 0.392463 3.045737 0.0028 
     
     

R-squared 0.063854     Mean dependent var 0.608696 

Adjusted R-squared 0.056971     S.D. dependent var 0.655519 

S.E. of regression 0.636572     Akaike info criterion 1.948949 

Sum squared resid 55.11050     Schwarz criterion 1.991373 

Log likelihood -132.4775     Hannan-Quinn criter. 1.966189 

F-statistic 9.276516     Durbin-Watson stat 1.955776 

Prob(F-statistic) 0.002788    
     
     

Figure 8, Regression Statistics  
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If there is risk inherent in auto correlated returns, calculating performance statistics like the Sharpe 

ratio out of the observed data can lead to serious misspecifications. (Getmansky, Lo, & Makarov, 

2004) propose ways to calculate adjusted Sharpe ratios. In an optimization framework illiquidity can 

be taken into account via a limit on the illiquidity, among other. Illiquidity can be measured for this 

purpose as the autocorrelation of the funds or as the liquidity terms of the fund, like the lock up in 

months.16  

 

Another way to deal with autocorrelation is to “unsmooth” the return series. (Davies, Kat, & Lu, 

2005) propose the following procedure: 

 

 

 

where  is the unsmoothed return and  is the observed smoothed return and they propose to set 

 equal to the first order autocorrelation coefficient. The resulting time series   has the same 

expected return as the observed one, but a higher volatility and no autocorrelation. This procedure 

implicitly assumes that the hedge fund managers use a single exponential smoothing approach of the 

form  

 

 

 

The economic intuition why fund managers are assumed to exactly use a single exponential 

smoothing is not of interest in our context, the procedure will be simply used to increase the risk of 

autocorrelated funds. A problem that could occur with this is if the unsmoothing procedure is only 

applied to funds with significant autocorrelation, the funds with high, but insignificant 

autocorrelation would have an unjustified advantage and there could emerge spurious 

dependencies. Therefore the procedure has to be applied to all funds.  

 

Another problem with the unsmoothing of the return series is that the risk that cannot be seen in the 

smoothed return series, but that is assumed to be there, gets redivided over the whole observation 

period, as can be seen below. But as argued before it is more likely that this risk will appear as a 

sharp drop. To model this would require a simulation approach and further research about when to 

assume this sharp drop.  

 

                                                           
16

 It is a good guess that funds with long lock up and notice periods will also have a high illiquidity exposure. 
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Figure 9, Unsmoothed Returns 

 

Whether this procedure improves the out of sample performance of the optimization algorithm or 

not will be shown at the end of section 3.4.3. To give a short preview: it does not! 

 

Another comment on serial correlation: It is closely related to performance persistence17 (which 

usually implies positively auto correlated returns) and significant beta coefficients for lagged index 

returns18, two phenomena that are documented in the academic literature.  

 

In an in-house study (Haberfelner & Kappel, 2007) performed a test for performance persistence 

with the following design: the measure for performance was “number of months in the top quartile 

of a peer group in terms of the Sharpe ratio during one year”. Then the influence of the fact that a 

fund was more than 9 months in the top quartile in year t-2 19 on the probability of again being in the 

top quartile for more than 9 months in year t was measured: For an average fund the probability of 

being a top performer in the above sense was a little below 10%, for a fund that was a top performer 

already in t-2 it was above 20%. The nice thing with this study is, that it uses a relative performance 

measure, comparing funds within a homogenous peer group, all acting on the same markets, using 

similar strategies and therefore exposed to the same risks. Our measure is therefore better in 

capturing manager skill than an alpha where important sources of risk may not be taken into 

                                                           
17

 See for example (Agarwal & Naik, 1999).  
18

 See for example (Asness, Krail, & Liew, 2001). 
19

 The reason why we had to take two years difference was because the rolling Sharpe ratio was calculated with 
a one year window.  
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account. With this relative robust measure of manager skill we found performance persistence across 

all strategies, in the liquid ones as well as in the illiquid ones.  

 

2.5 Factor Models  
 

2.5.1 Introduction  

 

As mentioned in section 2.1, one of the most severe problems when dealing with hedge funds in a 

quantitative way is the limited amount of data. If the analyst limits her analysis to funds that have a 

longer track record (say over 48 data points) she is likely to import the above described multi period 

sampling bias. We propose two different ways to deal with this problem: the first one is based on 

regression, the second one on cluster analysis.  

 

The idea behind the regression approach is to find a factor model representation out of the data we 

have available for the fund and then calculate the predicted return for the fund out of the known 

past returns of the factors. We will use some “tricks” to model nonlinear dependencies between 

fund and factor. The factor model representation gives us an idea how the strategy the fund seems 

to follow according to our analysis would have performed under stressful past market events. 

 

The second approach takes account of the problem that factor model representations may not be 

stable over time. Here we do not try to find risk factors that explain the funds return but we try to 

find funds that are similar to the one we observe but have a longer track record. Out of the n- most 

similar funds we try to find characteristics for the observed fund and write back its track record. This 

method will be discussed in section 2.6 in detail.  

 

But factor models can be used not only for filling up the track record of a fund. Another application 

can be to use not the actual but the risk adjusted return as an input for the optimization algorithm. In 

addition one can use factor models to determine its alpha and to check its strategy or regional 

classification. We will discuss these additional applications in brief beneath. 

 

Regression analysis can be used to determine the alpha of a fund as a measure of manager skill. (For 

a more sophisticated approach the analyst can also look for patterns in the residuals – at the end the 

alpha and these patterns are what the investor pays the high fees for). By using hedge fund specific 

factors it is even possible (to some extent) to distinguish between “true alpha” (real manager skill, 

exploiting arbitrage opportunities and inefficiencies) and taking “non mainstream risks” that looks 
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like alpha in a regression with traditional risk factors. One can use the alpha to filter funds before the 

optimization algorithms get applied and to construct a simple 1/n portfolio out of the n “alpha best” 

funds as one possible method to come up with an asset allocation.  

 

Maybe even more useful regression analysis is in checking if the fund manager really does what he 

says he’s doing; in checking if the fund is classified right; in detecting non-reported style drifts and 

changes in leverage via rolling regressions. But as this application is used in a more in depth analysis 

of a single fund, we will not discuss it here in detail. 

 

2.5.2 Risk Factors 

 

The problem with factor models like the one of Sharpe20 and especially when used with traditional 

indices, is that they were designed to explain the return of long only managers of mutual funds. 

Clearly linear factor models with long only indices of equity and bond markets as regressors will not 

be able to explain significant proportions of hedge fund returns, that are generated using OTC-

derivatives, bets on firm and macro events, leverage, short positions and a lot of other trading 

strategies.  

 

On the other hand it is also clear that no model will ever be able to fully explain the well protected 

secret strategies of hedge fund managers. Nonetheless there exist ways to at least better explain 

hedge fund returns as with the traditional factors and models. We will now discuss potential risk 

factors considered in literature to explain hedge fund returns.  

 

A first step on the equity side could be to include the factors proposed by (Fama & French, 1992). 

These factors are HML (high minus low book to market ratio), SMB (small minus big firm size). 

Another well known factor in academic literature is the one proposed by (Carhart, 1997), the 

momentum factor or WML (winner minus loosers). (Chen, Roll, & Ross, 1986) propose unanticipated 

changes in industrial production and in inflation, as these factors drive the expected dividend 

payments. Many hedge funds, especially the ones that act in emerging markets, are specialists for 

one particular region or country. Therefore it will be useful to include regional indices, too. MSCI 

provides us with a large number of regional indices, even subdivided into value and growth indices.21 

22  

                                                           
20

 See (Sharpe, 1988) or (Sharpe, 1992). 
21

 See (http://www.mscibarra.com/). 
22

 The link between value/growth and the Fama-French/Momentum factors is that an aggrssive growth 
portfolio will manly contain small size stocks with low book to market ratios and high momentum. Confer 
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Other factors could be the dividend yield on the S&P500 as a proxy for time variations in the 

unobservable risk premium, sector indices (like the ones provided by MSCI), traded volume as a 

proxy for liquidity (NYSE cumulated volume), implied volatility indices (like the VIX for options on the 

S&P 100)23 as a measure of the market’s expectations about future volatility and the intra month 

volatility on equity and bond markets as a measure for current stability. As rolling volatility is highly 

auto correlated by construction it is better to use changes in volatility instead. From our point of view 

volatility is especially relevant for hedge funds as it is a mayor input for all kinds of hedging 

instruments like options for example and it therefore determines significantly the cost of many 

strategies applied by hedge funds. 

 

On the bond side useful factors, besides the traditional ones like short, mid and long term 

government bond and corporate bond indices, could be: The term spread (difference between long 

term government and treasury bond yields) and the default yield spread (“Baa and under” bond 

return minus long term government bond). These factors are not only useful because fixed income 

hedge funds take bets on them, but also because they influence the discount rate in a discounted 

cash flow framework for stock prices.24 And the yield on the 3-month treasury bill rate is negatively 

correlated with future stock market returns, thus it can serve as a proxy for the expectations about 

the economic outlook.25 In addition the cost of capital is essential for many hedge fund strategies as 

many of them need high leverage to be profitable.  

 

Especially global macro hedge funds and CTAs (Commodity Trading Advisors) trade also on 

commodity and FX (foreign exchange) markets. Therefore it would be a good idea to include 

commodity indices and exchange rates as risk factors, too.  

 

There is also strong evidence that there is predictability in lagged factors as shown for example in  

(Amenc, Bied, & Martellini, 2003). They use a broad multi factor model and then show the utility in 

using the predictive power of the lagged factors for asset allocation decisions. (Asness, Krail, & Liew, 

2001) also find significant exposure to lagged factors; they argue that the beta of a factor and its 

lagged betas should be summed up to get the real exposure to a certain factor.  

                                                                                                                                                                                     
(Lhabitant, 2004, S. 215). As many long short equity and relative value hedge funds focus on either value or 
growth stocks and/or take bets on differences between them it may also be a good idea to include these 
indices, too. 
23

 It has been shown by (Schneeweis & Spurgin, 1999) that the last two factors have explanatory power for 
hedge fund returns.  
24

 For details see (Chen, Roll, & Ross, 1986). 
25

 For details see (Fama, 1981) and (Fama & Schwert, 1977) 
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Using all these factors in a regression analysis essentially means nothing else but mapping the 

strategies that are used by hedge funds on a set of liquid and investable securities. And indeed there 

are attempts to replicate hedge fund index returns with this or similar techniques, the so called 

hedge fund clones. One of the most prominent proponents is Harry M Kat who designed a product 

called FundCreator26 and by now all the big investment houses have similar products on offer. But is 

it really possible on fund level to capture the risks inherent in some fancy hedge fund strategies that 

act in illiquid and insular markets or to capture the return drivers in special arbitrage strategies with 

indices built upon market prices of liquid securities? If one looks at the R²s of regressions with these 

proposed factors, which lie normally around 30%27 the answer is no.  

 

A pragmatic way to solve this problem is to use some aggregate hedge fund returns as factors. As 

managers assign themselves to certain strategies, if they are listed in a database, it is possible to 

construct indices for these strategies and for the whole hedge fund universe. Although also the funds 

within a certain strategy are far away from being a homogenous group, it is likely that on an 

aggregate level the idiosyncratic risk cancels out and the index provides us with an approximation of 

the systematic risk inherent in the strategy. Meanwhile there are a lot of differently calculated hedge 

fund indices available from different database vendors and universities and some of these indices 

are even investable by now. Based on our experience these hedge fund indices better explain the 

hedge fund returns and we will also include them in our set of regressors. (Keep in mind that we do 

not want to come up with an economic model for hedge fund returns, we simply want to fill up short 

track records.) A way to construct a customized index for a single hedge fund will be discussed in 

section 2.6.4.  

 

2.5.3 Modeling Dependencies between Risk Factors 

 

An interesting question that arises with the use of factor models is how to model the dependencies 

between the risk factors. The simplest way is to use the historical realizations. But if the historical 

scenarios are insufficient (because there are simply not enough of them to estimate parameters 

needed in the optimization reliable), one can think about how to generate new scenarios for the risk 

factors, which then could be used to generate scenarios for the individual funds. 

 

                                                           
26

 Mr Kat enhanced the initial linear factor approach by using copulas. He explains his views iter alia in (Kat, 
2007), (Kat & Palaro, 2005); (Kat & Palaro, 2007) and (Kat & Palaro, 2006). 
27

 According to our experience. 
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(Lo, 2008) proposes to model the dependencies between the factors based more on experience and 

on economic intuition than to try to detect them empirically. This may be right, but as we want to 

focus on quantitative methods we will propose some techniques how to estimate and to model 

dependencies between a smaller group of variables in a very individual way.  

 

The most “data driven” approach would be some kind of n-dimensional scatter plot smoothing or 

nonparametric density estimation as the fewest assumptions about the structure of the data have to 

be made. For a nice overview see for example (Scott & Sain, 2005). Although they extent their 

calculations only to the four dimensional case they argue that, kernel methods are feasible in as 

many as six dimensions. They do not say anything about the amount of input data needed for the 

different techniques, but just from looking at the figures they provide it is surely more than we can 

deliver in our case. As we have a very large number of possible risk factors and only a little amount of 

data for some of them, these techniques are not appropriate for our needs.28  

 

If one is willing to assume a multivariate normal distribution one can use the Cholesky 

decomposition to generate random outcomes. But as it is not very likely that all the above 

mentioned factors are normally distributed and as it is even more unlikely that they are multivariate 

normal distributed, we will consider other techniques as well.  

 

(Morton, Popova, & Popova, 2005) use the so called NORTA (normal-to-anything) method of (Cario & 

Nelson, 1997). The general idea behind this concept is to generate in the first step multivariate 

normal correlated random numbers via the Cholesky decomposition. Then they set this numbers in 

the distribution function of a standard univariate normal distribution to get correlated numbers in 

the interval [0,1]. Then they set these numbers in the inverse distribution function of the marginal 

distributions of the original data. Mathematically this looks like follows: 

 

 

Figure 10, (Morton, Popova, & Popova, 2005), Formula NORTA Method 

                                                           
28

 The amount of input data needed grows exponentially with the number of dimensions. 
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The problem here is that after this procedure the generated random numbers have another 

correlation matrix ( ) than the initial input matrix  because of the different marginal distributions 

(only if all the marginals are normal the correlation matrix would stay the same). So the trick is to 

find a  which leads to a  that is identical with the correlation matrix of the original data. This can 

be done numerically.  

 

We implemented the procedure for the bivariate case in Excel, using the Excel Solver to do the 

numerical part. The first figure shows the original data (it is the HFR Merger Arbitrage vs MSCI 

World), the second one 3000 random numbers generated with the NORTA procedure. 

 

 

Figure 11, Original Data 

 

 

Figure 12, Random Numbers Generated with the NORTA Method 
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The way this method works can now be seen here very well: as we use the discrete empirical 

distributions as marginals it generates around each point new points according to the correlation and 

the marginal distribution along the horizontal and the vertical axis. If we would use some smoothed 

functions as marginals instead the figure would look a little bit nicer, but the fact that we observe a 

lot more independent extreme negative outcomes and less co-movement in the extreme negative 

outcomes than in the original data would remain. 

 

Another way to model dependencies very flexible is to use copulas. We used the MATLAB functions 

copulafit and ksdensity to fit the copula and the marginal distributions respectively and then 

generated random outcomes with the copularnd MATLAB function to get the following figure: 

 

  

 

 

Figure 13, Original Data and Random Numbers Generated with Copulas 
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the extreme negative outcomes. Both the t- and the Gaussian Copula are not able to capture this 

feature adequately (very much like the NORTA method), because the rho as a measure of the 

strength of the relationship is manly determined by the big cloud of independent points. Only the 

Clayton Copula is able to capture the tail dependency, as it is designed model this effect. To quantify 

this effect: in the original dataset 2.44% of the observations lie in the -1.8% / -4.8% quadrant. With 

the NORTA method its 1.2%, with the t- copula it is 1.4%, with the Gaussian copula it is below 1.0% 

and with the Clayton copula it is 2.3%. 

 

Concluding we can state that it is not so easy to find the right model by hand and it is even harder 

when trying to do so automatically. And this experiment was just for the bivariate case. Clearly here 

is a lot room for future research, but for our analysis we will simply use the discrete empirical 

distribution of the risk factors. This assumes that the future has only and exact these 118 historical 

states we have observation for, but for the time being this is the best guess we can make.  

 

2.5.4 Non-Linear Dependencies  

 

One issue that is frequently mentioned with factor models in the case of hedge funds is that 

dependencies between the funds and the underlying risk factors often seem to be non linear because 

of the use of derivative instruments and/or dynamic trading strategies. There are several ways to 

deal with this problem: 

 

 Estimate two betas, one for upward markets and one for downward markets. This method is 

quite illustrative and enlightening for hedge fund indices or funds with a very long track 

record, but as we will use regression analysis mainly to fill up short track records this 

approach does not make sense as we may end up with 2 or three data points to estimate the 

down- market beta. 

 

 Include squared and higher order terms. This is straightforward to implement but not so easy 

to interpret. On the first view one could think about the squared term as dependency to the 

risk factors volatility, but in fact this dependency is measured via the coskewness of the fund 

and the factor. To get an idea about this just insert instead of in the 

formula for the estimator of the beta. More formally this can be shown via the extension of 

the CAPM to the so called Higher Moment CAPM. There is also a link to market timing: a 

manager who shifts successful between market and risk free asset will decrease his exposure 

on the downside and increase on the upside, leading to a convex function of market 
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returns.29 Higher Moments seem to be also related to the Fama-French factors as the Fama-

French factors become insignificant when higher order terms are added in the regression.30 

 

 Apply option structures on the risk factors. This most frequently used approach in hedge 

fund literature will be discussed in more detail in the following section 2.5.5. 

 

Other techniques like copulas31, smoothing techniques like LOESS32  or phase locking models33 may 

work well in a low dimensional case or if the analyst has an idea about the nature of the relationship 

between fund and factor but they are not appropriate when trying to model dependencies 

automatically out of a bulk of hundreds of factors.  

 

 

2.5.5 Option Structure  

 

 

The procedure for the option structure approach is very simple in general: take a risk factor (typically 

an index), simulate the returns of an option on this index and then calculate the fund return by 

weighting the index and the option returns. Which options to use will be discussed below. The 

implicit assumption behind this is to hold the index at a constant level and to buy an option (that 

expires in one month) at the begin of the month and then execute it at the end of the month, buy a 

new option and so on, rolling over the hole observation period. The weighting between index and 

option can be done simply by using both as factors in an OLS regression. So instead of modeling the 

dependency of fund and risk factor in a complex manner, simply a second return series is generated 

as an economical reasonable function of the return series of the risk factor. Together the two return 

series now describe the dependency between risk factor and fund. 

 

The effect (besides the nonlinear dependency) is that the distribution of the generated fund return is 

no longer normally distributed, a feature frequently observed in reality. The combination of the index 

and a put on the index for example gives a right skewed distribution. To get a picture of a realistic 

portfolio we simulated outcomes of three (correlated) indices and of at the money long put options 

on these indices.  The resulting distribution is the left histogram of the figure below. This is a very 

                                                           
29

 For details see (Treynor & Mazuy, 1966 ). 
30

 For Details see (Chung, Johnson, & Schill, 2006). 
31

 Used for the case of hedge funds for example by (Kat & Palaro, 2005). 
32

 Used for the case of hedge funds for example by (Favre & Galeano, 2006). 
33 For details see (Lo, 2008, pp. 18-19). 
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desirable feature for many investors, because it limits the downside risk. The complementary 

position (a short put) gives a left skewed distribution (right histogram), talking the tail risk for the 

protective put strategy. All the distributions are constructed (by adjusting the price for the option) to 

have the same expected return for reasons of comparability.  

 

 

Figure 14, Distributions of Strategies Including Options 

 

A not so trivial question is how to get the price for the option. In principle there are three 

possibilities: assume fix costs, try to replicate real option prices via the Black Scholes Formula or use 

real option prices: 

 

The following figure shows the return of a long put versus the underlying asset assuming fixed costs 

of the option. This provides us with a bilinear function on the underlying. For calculating the fixed 

cost we propose to assume that the overall return (over the whole observation period) of this option 

is zero. For a long call this would mean to subtract from the payoff each month. 

By doing so the alpha keeps its interpretation as manager skill in the following sense: The 

interpretation of manager skill in this context would be that the manager was able to generate an 

“option like” payoff at lower costs than the fair price with perfect foresight.  

 

 

Figure 15, Option Payoff – Fixed Costs 
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In the next figure the cost of the option is calculated with the Black Scholes formula, taking the 

historical volatility as input. The index used here is the S&P500 and we used a one year rolling 

window over the monthly returns to calculate the historical volatility. The typical kink is still 

observable, although a lot “noisier”. For the Black Scholes formulas see for example (Hull, 2006, S. 

361) or (Wilmott, 2001, S. 192). The VBA Code used can be found in appendix 5.1.  

 

 

Figure 16, Option Payoff – Black-Scholes Historical Volatility 

 

For the next figure the implied volatility calculated from put options on the S&P 500 as provided by 

Bloomberg with the Ticker “HIST_PUT_IMP_VOL” was used.  We see even more fluctuations and 

observe that the real prices for the put options are substantially higher than the ones calculated with 

the historical volatility. The term real price is not totally correct as the implied volatility is averaged 

from prices of put options with different maturities and strike prices. But, as we do not have access 

to historical option prices with our Bloomberg account, to use the historical implied volatility is the 

best way to reconstruct the original option prices.34  

 

 

Figure 17, Option Payoff – Black-Scholes Implied Volatilities 

                                                           
34

 The implied volatility is backed out from the Black Scholes Formula knowing every input factor (including the 
observed price of the option) but the volatility. By inserting the implied volatility in the Black Scholes formula 
one can reconstruct the price the implied volatility was calculated with.  
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The last figure shows the return of a 3 month 5% out of the money put option on the DAX. It is 

backed out from a really executable option strategy that is represented by the DAXplus Protective 

Put Index.35 Here the option payoff characteristics are quite hard to observe, especially the high 

prices for the put in volatile markets make the relationship more linear.  

 

 

Figure 18, Option Payoff – DAXplus Protective Put 

 

We decided to use the bilinear function with assumed constant costs. We did so because it turned 

out to be extremely difficult to replicate real option returns with just having information about the 
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other hand the use of the bilinear functions sometime was able to push the R² in a meaningful way 

quite substantially.  

 

There are also several other advantages of the “option – bilinear function” approach: It can easily be 

extended to the multivariate case. It is not dependant of a single price for a specific option but 

generates “option-like” returns. The interpretation of manager skill as the ability to create “option-

like” returns at lower costs than the fair price with perfect foresight is not implausible. In contrast to 

                                                           
35

 See (http://deutsche-boerse.com/) 
dbag/dispatch/de/binary/gdb_content_pool/imported_files/public_files/10_downloads/50_informations_servi
ces/30_Indices_Index_Licensing/40_downloads/50_Strategy_Indices/M_FL_PP_e.pdf; The calculation of this 
index includes funding costs and takes real prices of one specific option. 
36

 Unfortunately a Bloomberg professional account is necessary to get historical option prices. 
37

 For the S&P 500 and the Nikkei such indices are not available. Nonetheless we constructed, based on the 
methodology of the DAXplus und EUROSTOXX indices, our own indices. But they also did not provide 
meaningful results.  
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other techniques to model nonlinear dependencies the analyst keeps an economic intuition as 

dynamics of options are well known; it is easy to implement via OLS; it is very flexible via the 

combination of different option types, setting different moneyness and different weights on the risk 

factor and the option respectively. To demonstrate this flexibility the following figures are provided: 

 

 

 

 

Figure 19, Dependency Structures Created with Option Payoffs 
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expected return for RV2 is the same in figure one as in figure two. In the lower left panel investor 

two holds long puts with strike price 0.4 in addition. This panel is quite illustrative as the marginal 

distributions are (more or less) normal, but the dependency structure is quite unusual. Just using the 

standard dependency measure beta, which is linear, would lead to outcomes similar to figure one. In 

the lower right panel investor one invests in long puts with strike zero in addition.  

 

The second set of figures should compare the option structure approach to the copula technique. 

Therefore we plot the “copula” that would be required to generate the above dependency structures 

when assuming normal marginal distributions. This can be done by standardizing the variables and 

then map them on the [0,1] interval by computing the cumulative probabilities of the standard 

normal distribution for the standardized returns.  

 

 

Figure 20, “Copulas” of Dependencies Created with Option Structures 

    

The first penal really is a copula, a Gaussian one, generating – together with the normal distributed 

marginals – the multivariate normal distribution of the upper left panel in Figure 19. The next panels 

show that quite unusual copulas would be necessary for the dependency structures in Figure 19. To 

my knowledge there is no copula that even looks similar to penal three. To be precise the last three 

panels cannot be copulas as they are not uniform distributed, a feature required for a copula.38 But 

this problem is not hard to circumvent in the end, one simply has to assume the empirical 

distributions as marginals. The difference is shown for figure four: 

 

 

Figure 21, “Copulas” with Empirical Marginals vs “Copula” with Normally Distributed Marginals 

                                                           
38

 For an exact definition of a copula see for example (McNeil, Frey, & Embrechts, 2005, S. 185) 
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Besides the fact that the option structure approach is very flexible and allows us to keep an economic 

intuition, there are some interesting findings on the option structure approach in the literature. The 

central one is that most hedge fund strategies are similar to writing a put on a broad, traditional 

index.39 A right- skewed distribution like produced by the protective put strategy like exhibited in the 

left panel of Figure 14 is very desirable for most investors and therefore relatively expensive. Hedge 

funds seem to take the counter position here: they are willing to take downside risk and therefore 

get a premium under normal market conditions – at the end this is a provision of insurance against 

extreme market events.   

 

This may explain the high turnover and short lifetimes in the hedge fund industry: the fund gets its 

premium for taking downside risk and generates impressive excessive return.40 With such an 

excellent track record the company markets the fund heavily and earns high fees for the high alpha 

they seem to be able to generate. When a significant negative market event takes place the fund 

realizes a huge loss and gets liquidated.41 The company behind creates a new fund, and starts aver 

again. Clearly this is a very critical view on the hedge fund industry but at least for part of the 

industry there surely is some truth in it.  

 

Another frequently cited finding is the one of (Fung & Hsieh, 2001). They use lookback straddles to 

explain the return of funds following “trend following” strategies. Both, returns from (lookback) 

straddles42 and trend following strategies have strong positive skewness and positive returns during 

extreme up and down moves in the markets. And as the payout profile of a perfect market timer is 

like a portfolio of bills and a call option43 we propose to use a put, a call and a straddle profile to 

model the hedge fund returns.  

 

 

 

                                                           
39

 See for example (Agarwal & Naik, 2004) 
40

 The simplest example for such a strategy is to write out of the money puts on the S&P 500. (Lo, 2008, p. 7) 
calculates the returns of this strategy for the timeframe January 1993 to December 1999 and compares it to 
the returns of holding the index: 3.6% monthly mean return versus 1.4%, 6 negative months versus 36. 
41

 -18,3 and -16,2% in August and September 1998 in the case of the (Lo, 2008, p. 7) example. 
42

 Emirically it does not make much difference if lookback straddles or normal straddles are used to explain the 
fund’s returns. The lookback straddle has the additional feature of path dependency. Confer (Fung & Hsieh, 
2001). 
43

 Confer (Merton, 1981). 
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2.5.6 Principal Component- and Factor Analysis 

 

The methods described above rely not only on the quantitative data given but also on some 

assumptions about the economic structure behind, i.e. there are certain risk factors, chosen by the 

researcher, that determine the return of a fund. Hedge fund indices go away from this assumption, 

using only the data given by the funds themselves. We argued that via the aggregation we may be 

provided with systematic risk factors inherent in the hedge fund world. But there are other 

techniques - than more or less simply taking (weighted) averages - that are able to extract factors 

from the data, like the factor analysis and the principal component analysis.  

 

The first one we want to discuss is the principal component analysis (PCA). PCA is a method to detect 

the (unknown) factor structure that is hidden in a data set and to reduce the number of variables. 

The idea behind the PCA is to find a new set of coordinates (one axis per variable) in a way that 

information is best reflected. The first coordinates or “principal component is the linear combination 

of the original variables that accounts for as much variation in the data as possible. Each succeeding 

principal component is the new linear combination of the original variables that accounts for as much 

of the remaining unexplained variation as possible” (Lhabitant, 2004, S. 186) and stands orthogonal 

on (=is independent of) the preceding principal components.44  

 

As the PCA is frequently used to visualize high dimensional data in a low dimensional space the 

following sentence gives a nice interpretation: “If a multivariate dataset is visualized as a set of 

coordinates in a high-dimensional data space (1 axis per variable), [the first two principal 

components supply] the user with a 2D picture, a shadow of this object when viewed from its most 

informative viewpoint.”45 

 

One idea how to use the PCA with hedge fund data is to perform the PCA to find factors that then 

can be used to explain the fund’s returns. If we are lucky the principal components reflect the risks 

inherent in the hedge fund industry, not only the ones that could be modeled with available indices, 

too, but also the hidden ones like liquidity risks.  

 

We performed a little experiment to check whether the PCA is able to find powerful factors on fund 

level or not. We use the ‘only USD’ HFI database for this purpose. The analysis is performed in 

MATLAB using the princomp function.  

 

                                                           
44

 For a mathematical precise discussion of PCA see (Fahrmeir, Hamerle, & Tutz, 1996, S. 661-677). 
45

 See (http://en.wikipedia.org/wiki/Principal_component_analysis). 
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In the first turn we use only funds that have entries for the whole observation period (Jun 1998 to 

Mar 2008). This leaves us with a sample of 336 funds having each 118 monthly returns. For 

robustness reasons the analysis was repeated with funds that have entries for the last 36 months 

(sample size: 1650) and with standardized data.46 The results are similar. The following figure shows 

the marginal (bars) and cumulative (line) variance explained by the first 20 principal components and 

was generated using the MATLAB pareto function: 

 

 

Figure 22, Pareto Plot of Variance Explained of the First 20 Principal Components 

 

There seem to be at least two relevant factors. To test if the PCs are significant in a statistical sense 

we follow the approach by (Johnstone, 2001) who calculates the distribution of the eigenvalues 

under the assumption of a purely random correlation matrix. To be on the safe side one would only 

accept PCs with a corresponding eigenvalue higher than the maximal eigenvalue of the random 

matrix. In our case this would mean that the first seven PCs are non random, although PC 6 and 7 are 

very close to the limit.  

 

                                                           
46

 To use standardized data mitigates an effect not always intended: the PCA interprets high variance as high 
level of information. 
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To find out if the principal components have an economic interpretation we try to find indices that 

are highly correlated with them. The first principal component (PC) seems to capture the broad 

movements of the hedge fund universe, an aggregate factor that is most highly correlated to the 

CSFB Multi Strategy Index (0.956) and the Eurekahedge Fund of Funds Index (0.948). The second PC is 

more or less uncorrelated with all available indices, as well as fourth and fifth PC. Only the third one 

has a significant correlation, namely 0.804, to the bund future. But as it is unlikely that the bund 

future reflects a driving risk factor this more likely is a statistical artifact. With standardized data the 

second PC was highly correlated to the MSCI Directional Trading (0,937) and EuroHedge Managed 

Futures USD Index (also 0,937) but on the other hand the first two PCs were able to explain only 

slightly above 30% of the variance.  

 

There could be done a lot of further analysis like examining which kinds of funds (strategy) contribute 

mainly to which PC. (Fung & Hsieh, 1997) did so their “classical” paper from 1997 (indeed it is the 

most heavily cited paper in the literature about hedge funds) and they really were able to assign 

meaningful names to the first fife PCs by checking the strategy self description of the funds that are 

highly correlated with the PCs. But as this their PC did only account for 12% of the variance and the 

first five ones together only for 43% it can be doubted that there really is much information in them.  

(Christiansen, Madsen, & Christiansen, 2003) did a similar analysis six years later and their first five 

PCs explained more than 60%. Our explanation for this effect is that this is a sign for consolidation in 

the hedge fund industry as more funds seem to be highly correlated among each other letting the 

PCA find more powerful PCs. High correlation indicates that these funds follow similar common 

strategies, no longer offering a unique return profile.  

 

Another way how to determine the usefulness of the PCA can be found in (Alexander & Dimitriu, 

2005). They calculated minimum variance portfolios with the best funds in terms of alpha. For the 

calculation of the alpha they used different factor models, one of which had the PCs as factors. They 

conclude that the alpha ranked minimum variance portfolios based on PC factors are best performing 

out of sample in terms of information ratio and turnover compared to factor models that have an 

economic interpretation.  

 

For our study we conclude that the PCA is able to extract one factor that reflects quite well the 

overall movement of a sample, but that the other PCs seem to be statistical artifacts rather than real 

risk drivers. Clearly the PCs that are uncorrelated to the known risk factors and hedge fund indices 

could reflect some unknown, hidden factor but as a lot of research is done on risk factors it is quite 

unlikely that the PCs two to five all capture unknown factors.   
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There are several reasons why the PCA can fail:  

 The PCA assumes linearity between the PCs and the data. As argued above linearity between 

risk factors and fund returns must not hold true for hedge funds. To use a kernel PCA 

(Schoelkopf, Smola, & Mueller, 1998), which would solve this problem, would be an 

interesting research project. 

 PCA only works optimal “under the Gaussian assumption. For non-Gaussian or multi-modal 

Gaussian data, PCA simply de-correlates the axes.”47 Hedge fund returns are often not 

normally distributed. 

 PCA assumes that large variances reflect important dynamics. By column wise 

standardization we accounted for this problem.  

 

But there are better ways to use PCA than trying to extract hidden risk factors out of a sample of 

individual hedge funds. One example is to apply the PCA not on fund but on index level. (Amenc & 

Martellini, 2002) did such an analysis that was the basis for a new set of hedge fund indices, the 

EDHEC alternative indices.48 They argue that the databases (out of which the available hedge fund 

indices are calculated) each account only for a fraction of the hedge fund universe and hence the 

indices do not reflect the whole universe adequately. But instead computing an equal or value 

weighted “hyper“index they suggest to weight in such a way that the largest possible fraction of 

information is captured, the “best possible one-dimensional summary”. This is nothing else but the 

first PC.  

 

Together with our finding that the first PC on fund level reflected some overall movement we 

recommend to use the PCA to extract a one dimensional summary, too, but in a different way. As the 

main aim of this section is to fill up track records we developed the following idea: for the fund you 

want to fill up find the n-most similar funds that have a longer track record and then extract the best 

one dimensional summary out of their returns. How to come up with the n-most similar funds will be 

discussed in section 2.6.  

 

Like the PCA the Factor Analysis is a data reduction or structure detection method. The main 

difference is that with factor analysis orthogonality is not required.49 In some cases this makes it 

easier to interpret the factors economically. The problem we faced with factor analysis was that the 

                                                           
47

 http://en.wikipedia.org/wiki/Principal_components_analysis  
48

 See (http://www.edhec-risk.com/ ).  
49

 In a mathematical more correct sense PCA and factor analysis are two very different approaches: PCA is an 
analysis of the eigenvalues of the covariance matrix and factor analysis uses a maximum likelihood estimator.  

http://en.wikipedia.org/wiki/Principal_components_analysis
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factoran MATLAB function requires a positive definite covariance matrix of the data. As we have 

more variables (336) than observations (118) the covariance matrix is not guaranteed to be positive 

definite and it definitely was not for our sample.  

 

2.5.7 Model Selection 

 

The big question that remains is how to come up with a meaningful factor model out of the huge 

amount of possible factors we discussed. In all papers that concern factor models the authors restrict 

themselves to a limited, carefully selected set of risk factors. What we have done in the previous 

sections was nothing else but to collect and order the risk factors discussed in the different papers. 

At the end we are left with more than 100 risk factors to choose, in the Benchmark database there 

are 270 ones, including several sets of hedge fund indices. If we want to account for non linearity the 

number of possible factors growths dramatically on top of this: Clearly it does not make too much 

sense to assume nonlinear relationships to hedge fund indices, but there are still more than 100 

equity, currency, commodity and fixed income indices were nonlinear dependencies are possible. To 

add squared returns doubles the number of possible regressors, as well as with the use of lagged 

factors. When adding option payoffs the number gets multiplied by 9 if we use three types of payoff 

profiles (put, call and straddle) and three different strike prices. 

 

We did some first experiments to find out what procedure is able to come up with a meaningful 

result. The design was as follows: we took a set of funds that all had return data for a certain time 

window (say 48 months).50 Then we took one fund out of those and used only a proportion of the 

data to fit the model (say 12 months) and then checked the quality of the model with the remaining 

data. To use all possible factors as regressor clearly would not be sensible, we used the MATLAB 

stepwisefit function to select the appropriate regressors instead. 

 

The experiments with the option structure approach showed very unsatisfactory outcomes: In 

sample there was nearly perfect fit, out of sample the results did not make sense at all. This was 

mainly due to very high coefficients for the option payoffs. Although we were able to produce good 

and meaningful results with the option structure approach when having an idea about the funds risk 

exposures and specifying the model by hand we were not able to find an automatic model selection 

procedure that can do so as well by now. Also with the squared returns and the lagged factors we 

                                                           
50

 For robustness reasons we did not use only the last 48 months but a 48 months period randomly chosen over 
the whole observation period.  
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had similar difficulties. It seems that it is necessary to feed some kind of prior information about 

what the fund is doing and on which markets it acts to get practicable results.  

 

 At the end we did find that to use all indices (hedge funds and traditional) as possible regressors and 

to set very tight parameters51 for the stepwisefit command produced the best results. Clearly a 

stepwise fitting is very likely to stop at a local minimum, but this is want we want it to do in sake of 

robustness, because the perfect in sample fit would lead to meaningless results out of sample. The 

MATLAB code can be found in appendix 5.4.  

 

2.6 Cluster Analysis and Qualitative Data 
 

2.6.1 Introduction 

 

In the section above some techniques that can be used to fill up the track record of a hedge fund 

based on factor models were discussed. The remaining problem is, if the fund for example has two 

years of track record, we have only 24 data points to estimate the factor model as hedge funds 

report their return only on a monthly basis. Another problem that arises is that the factor model 

representations are often not stable over time as many funds, especially global macro and multi 

strategy, act very opportunistically across the different markets. The easiest way to see this is to look 

at rolling correlations. A nice example here is the dependency of the CS/Tremont Multi-Strategy 

Index versus the S&P 500: In the early 2000s the correlation was negative but then with the 

enormous inflows of money into multi strategy funds it became more and more difficult for 

managers to generate uncorrelated returns and the correlation of the index became positive (around 

+0.5). Another explanation for the augmented correlation can be that multi strategy funds 

opportunistically increased their exposure to the rising stock markets. Evidence for this explanation 

comes from the fact that correlations are now very low again.  

 

So fitting a model with a relatively short time window and then assuming stable parameters for the 

past may not be the best approach. An idea to overcome this problem could be to look for funds that 

are similar to the one considered but that have a longer track record. Clearly this assumes that fund 

managers that fall into one cluster always act in a similar way and shift their exposures more or less 

simultaneous, but this assumption is more realistic than stating stable risk factor exposures over 

time.  

                                                           
51

 Include only factors with a p-value of 0.01 and kick them out with a p-value of 0.025. 
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The easiest way to incorporate this idea is to use hedge funds with a longer track record as 

regressors in a univariant regression analysis and to take the two or three best fitting ones to 

calculate an “individual index” for the fund. Clearly the betas should be positive and around one as it 

is not possible to go short on hedge funds and a different leverage level stable over a longer time 

period is very unlikely, too. A multivariate analysis would also not make too much sense as a factor 

model representation with hedge funds as factors is even more unlikely to be stable than with 

indices reflecting certain risks. The question why not to simply use readymade hedge fund strategy 

indices can be answered by the fact that funds within a certain strategy still are a very 

inhomogeneous group and that such an index may be not specific enough to capture the behavior of 

a certain fund. 

 

The problem that remains also with univariate regression on hedge funds is that we have only a very 

limited number of data points to estimate the coefficients. Fortunately there is not only return series 

available in most databases but also qualitative information about the hedge funds that can be used 

to pool the funds into smaller and more homogeneous groups.  

 

In the HFI database we have information about the strategy self classification, the assets under 

management, the administrator, the prime broker, the CEO, the marketing manager, the main office 

location, the domicile, management- and performance fee, hurdle rate and high water mark, 

minimum investment, whether the fund is still open to investment or not, the legal advisors, 

subscription and redemption terms, the auditor, lockup period, currency and data vendor name.  

 

The Benchmark database has similar entries and in addition some interesting items about the 

assessment of the hedge fund analysts about the funds risk exposures. There are also text files 

available – a detailed strategy description and a short summary. Unfortunately  we will not be able to 

use this text information at this stage, but the in house classification according to market risk, trading 

strategy, status (is the fund investable for Benchmark), regional exposure and the assigned peer 

index will be used to group similar funds together.  

 

Besides the data available in commercial databases there might be other qualitative information 

relevant for risk and return. One can think of the ownership structure of a firm, incentive structures 

for the managers, if the key managers invest considerable amount of own money in the fund and so 

on. There are quite long due diligence questionnaires that try to find out more about the funds 

organizational stability, its IT infrastructure, the investment philosophy, the investment process, the 
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accounting and reporting and so on. Even things like marital status, the car driven by the managers 

and other private information is considered by large fund of hedge funds that invest so much money 

that the managers are willing to answer such question. Information that can be used also by a 

smaller fund of funds is if a university endowment is invested in a fund or not. Normally this is a good 

sign and funds advertise this. 

 

The question if the qualitative data is considered to be useful or not was not discussed yet. It is not 

unlikely that this information has, as some kind of idiosyncratic risk, no influence on the returns. At 

least for characteristics like fund size and fund age there exist several studies that show their 

significant influence on the fund’s returns. (Lhabitant, 2004, S. 195) for example states for fund size: 

“For bond arbitrage and market neutral performance (Sharpe ratio) degrades rapidly as fund size is 

increased, while this effect is not as dramatic or reversed for other strategies.” And for fund age: 

Younger funds have a significant better Sharpe ratio, “perhaps due to size and nimbleness * … But+ 

these results should be taken with caution, because younger funds are likely to be subject to a 

greater reporting bias.” 

 

(Zhong, 2008) finds that “fund-level flow has a positive (negative) impact on a fund's future  

performance for smaller (larger) funds, while strategy-level flow (flow into the strategy to which a 

fund belongs) always has a negative impact on the fund's future performance.” Unfortunately we do 

not have a time series on the assets under management available.  

 

(Favre & Galeano, 2006) find a significant albeit weak relationship (R² 0.035) between hedge fund 

returns and the redemption delay: The longer the delay, the higher the return (up to ten days, then 

the sign shifts). This is plausible insofar as redemption delay may be a proxy for illiquidity exposure 

and the higher return an illiquidity premium.  

 

2.6.2 Missing Data and (Dis-) Similarity for Qualitative Data 

 

There were two problems with the Benchmark database: it is “written” in Oracle and not all fields are 

really filled for all funds as the funds are in different stages of the due diligence process. Therefore in 

a first step the oracle data get imported and ordered into a .mat file. In the next step the non-

numeric data gets transformed into numeric one (e.g. the entry in the field “strategy”: “event driven” 

was transformed into 302, were the 3 indicates the category “strategy” and the 02 the attribute 

“event driven”).  
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Next the vector, that contains the numerically coded qualitative information (e.g. *104 201 …+), gets 

transformed into a binary vector. This works as follows: The initial binary vector contains only zeros 

and has the length (number of different attributes for category 1) + (number of different attributes 

for category 2) + … . Then the vector gets filled with ones according to the attributes of the specific 

fund. The number of different attributes for category 1 (“currency”) is 4: USD, EUR, JPY and ZAR. If 

the currency of the fund is EUR the first four entries of its binary vector are [0 1 0 0]. The next 

category is “strategy” with nine different attributes. If the fund has the second strategy the first 13 

entries of the binary vector are [0 1 0 0 0 1 0 0 0 0 0 0 0]. If an attribute is missing all entries for the 

category stay zero.  

 

As not all information is equally important, this vector gets multiplied with a weights vector of the 

same length. If currency is not so important and strategy is very important, this weight vector could 

look as follows *0.2 0.2 0.2 0.2 10 10 10 10 10 10 10 10 10 …+.  

 

With this vector one can already compute a similarity measure. As we have categorical or nominal 

variables only two measures make sense: The Simple Matching Coefficient (SMC) and the Jaccard 

coefficient (JC).52 The first one is calculated by dividing the number of matches by the number of 

attributes. Clearly this does not make too much sense in our case as there will be a lot of 0-0 matches 

by construction. Therefore it will be better to use the JC. Here only the 1-1 matches are in the 

numerator and it is divided by the sum of all entries were a one occurs (0-1, 1-0, 1-1). A JC similarity 

matrix can be calculated in MATLAB easily with the pdist and the squareform function.53 In Appendix 

5.3 the qualiMJ output gives the results.  

 

But there occurs a problem when calculating the JC in the above described way: Assume two funds 

that have only one qualitative information available and that they match in this category. Their JC is 

then 1/1 = 1. Now assume two other funds that have three qualitative information available and 

match in one category. Their JC would be 1/(2+2+1) = 0.2. Clearly this does not make too much sense 

as the probability that the first two funds match in the two unknown categories is not 1.  

 

To circumvent this problem one could simply divide the matches by the number of categories,54 or in 

the case with the weights, by the sum of the weights. The output qualiMM gives the results. But this 

                                                           
52

 See (Tan, Steinbach, & Kumar, 2005, S. 65-83) and (Fahrmeir, Hamerle, & Tutz, 1996, S. 440-452) for an 
overview of proximity measures. 
53

 The pdist function calculates the JC as a dissimilarity measure. To get the JC like described above one simply 
has to calculate 1 – JC(pdist). 
54

 This would be nothing else but the SMC on category level.  
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methods is radical in the other way round, it assumes that the unknown categories do not match for 

sure.  

 

From our point of view the best way is to take into account the probability that a certain attribute 

occurs. This can be done by adding the probability55 that a fund has the same attribute in a category 

(for which it has no entry) like the fund it get compared to (and which has an entry for this category) 

to the number of matches in the numerator. The categories where there are no entries for both 

funds still count as mismatch. The results get stored in the qualiMP matrix. 

 

The drawback of this method is that it does not take into account that some attributes within a 

category are more similar then other ones, only an exact match (or the probability for an exact 

match) counts. But in the category “trading strategy” “L/S Equity Sector” and “L/S Equity Market 

Cap” are clearly closer than “L/S Equity Sector” and “Fixed Income Arbitrage”. For future 

development one can think about defining distances between attributes within one category.  

 

With the qualiMP proximity matrix one could already run a cluster analysis or find the n-most similar 

funds for writing back a track record. But maybe it is more advisable that quantitative data is taken 

into account, too. One could think of many ways how to do this, for example doing a qualitative pre 

screening and then do the analysis solely based on quantitative data, or the other way round. One 

could calculate a proximity matrix based on quantitative criteria and one based on qualitative criteria 

and then get an overall matrix as a weighted sum of the two matrixes. This sounds a little bit easier 

then it is in the end, as different proximity measures may not be addable in a meaningful way, and 

clearly to sum up does not take into account interactions between qualitative and quantitative data. 

For the purpose of finding the n most similar funds for filling up a track record a ranking system with 

minimum limits of similarity may be the best idea. So there is a lot room for future development, for 

the time being we want to present some little experiments with clustering according to certain risk 

measures.  

 

2.6.3 Cluster Analysis with Return Characteristics 

 

In this section we present some outcome of experiments with cluster analysis among hedge funds 

along certain return characteristics. As described above one could try to integrate qualitative data by 

getting a weighted sum of the proximity matrixes, but here we want to limit ourselves to quantitative 

data.  
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 Weighted according to the “importance vector”.  
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As this experiment has manly illustrative character we limited the analysis also to funds that have 

entries for the whole observation period, out of the funds in the ‘only USD’ HFI database. This leaves 

us with 336 funds to work with. The following measures were calculated: expected return, volatility, 

worst month, (empirical) Value at Risk, (empirical) Conditional Value at Risk, correlation to the MSCI 

World Equity and the mean performance during months in which the MSCI World was negative.  

 

With the measures for all funds one can easily calculate a proximity matrix in MATLAB with the pdist 

function. This function provides a lot of different metrics to calculate a distance and the choice of the 

right metric is crucial for the quality of the outcome. See appendix 5.5 for descriptions of the metrics 

available. 

 

For the purpose of finding the n-most similar funds for filling up the track record of one specific fund 

this proximity matrix is sufficient, as the n would be quite small in this case and the proximity of the 

other funds among each other does not matter. But if one wants to create bigger peer groups, or 

divide the whole hedge fund universe in clusters one has to group funds together according to 

certain rules. In classical cluster analysis there are two main different ways how to cluster: 

hierarchical and partitional methods.  

 

With the hierarchical clustering the most common methods are the agglomerative ones in contrast 

to the divisive ones. The idea with agglomerative hierarchical clustering is to progressively merge 

funds to bigger and bigger clusters. The following figures show in a simple example how this works in 

the two dimensional space: 

 

 

       Figure 23, (http://en.wikipedia.org/wiki/Cluster_Analysis), Hierarchical Agglomerative Clustering 

 

http://en.wikipedia.org/wiki/Image:Hierarchical_clustering_diagram.png
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Always the most similar objects were merged. These objects can be funds or clusters. Among two 

funds it is easy to determine the most similar one (just look up the proximity matrix) but it is not so 

easy to say how similar two clusters are. There are several rules how to determine this and the 

MATLAB linkage function provides a number of such rules, like complete (uses the furthest distance 

between two funds in the two groups – for the example above the distance between the bc and the 

def cluster would be represented by the distance between f and c), single (the shortest distance; c 

and e in our example) or average (the average distance between all pairs). The rules seem to be 

simple, but to choose the wrong one could lead to very dissatisfactory results. 

 

There are some theoretical guidelines what metric and what linkage rule to use56 but in the end one 

has to play around with the data to see which combination of metric and linkage rule makes sense. 

The decision whether to use standardized data or not depends on whether a larger scale corresponds 

with high information value or not. In our case we found that the Euklidean distance together with 

the complete linkage and un-standardized input data brought the best results. With the dendrogram 

function the outcome can be visualized in a tree similar to the one above. 

 

 

Figure 24, Dendrogram Clustering with Return Characteristics 

 

If the tree gets cut at 0.6 (Y-axis), which can be done with the cluster command, we get 6 clusters. 

The two clusters marked with arrows are a little small, but indeed they have very special 

characteristics, as can be seen in the following figure: 
                                                           
56

 Most of the more complicated rules only work with the Euklidean distance.  
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Figure 25, Clustered Funds – Correlation vs Expected Return 

 

Unfortunately it is not possible to display all return characteristics used in the clustering procedure in 

a scatter plot, so we limit ourselves to the 2D plot57 and draw the two characteristics were the two 

small groups are separated best. With the line plot below it is possible to compare the clusters 

among all characteristics (one line stands for one fund):  

 

                                                           
57

 MATLAB provides also a very nice 3D plotting device, but without the possibility to rotate the picture it is 
hard to see things on a 2D surface.  
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Figure 26, Clustered Funds – Line Plots 

 

The most popular partitional clustering method is the k-means algorithm. The idea behind this 

technique is to assign each fund to a center and to choose the centers in such a way that the intra 

cluster variance is minimized. The following figure was produced with the kmeans command using 

the cityblock metric. Besides the distance metric one has to define the initial centers. As the k-mean 

algorithm is an iterative procedure it is sensitive on the choice of these initial centers. We used 

randomly drawn centers from the sample observations.  

 

Figure 27, Clustered Funds – Correlation vs CVaR 
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The black encircled crosses are the centers. The fact that there is overlapping of the groups can be 

explained by closer similarity in other than the displayed characteristics. The advantage with the k-

means algorithm is that it produces more equally big clusters and it is quite powerful when analyzing 

big data sets. As we have a limited amount of data and because of the intuitiveness of the dedrogram 

we recommend the hierarchical agglomerative clustering for our purposes.  The clusters then can be 

used for peer group analysis for example. 

 

There are also more modern ways of clustering that do not assign a fund to one specific cluster, so 

called fuzzy clustering. As the clusters found by the techniques above are not marked off sharply 

such techniques may make sense in the case of hedge funds and it would be an interesting research 

project to find out the proper specifications.  

 

2.6.4 Individual Peer Indices  

 

The initial notion was to come up with a technique to fill up a fund’s track record based upon peer 

funds and not upon risk factors. We propose the following procedure: 

 

a) Find the n most similar funds that have a track record long enough.  

b) Create an index out of these funds. 

 

Ad a: The first step will be to filter funds with the required minimum length. Then we propose not to 

set a fixed n, but rather to use all funds that satisfy certain requirements. This can be done in the 

following way (fund X is the fund whose track record you want to fill up):  

 

 Calculate the proximity matrix for the qualitative data as described in section 2.6.2. 

 Get the upper 10% percentile of similarity over all funds. 

 Remember the funds that fall into this upper 10% in the column of fund X. 

 Do the first three steps also for the return characteristics as described in section 2.6.3. 

 Take the funds that are in the upper 10% of the qualitative and the quantitative criteria. 

 Check if the beta of the selected funds to fund X are reasonable close to one. 

 

Ad b: For the calculation of an index out of the selected funds we suggest to get the best one 

dimensional summary out of the data via the first principal component of a PCA like discussed in 

section 2.5.6. 
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3 Optimization 
 

In this chapter first a literature overview of different risk measures considered for hedge fund data is 

provided. We critically discuss the different methods and recommend and motivate the usage of a 

certain combination of measures at this end of the section. In the next section we present different 

ways how to use linear constraints and propose ways to model more complex constraints. After this 

a flow diagram is provided to illustrate the complexity of integrating different filtering, data 

enhancement and optimization techniques. Then we provide the outcome of some first portfolio 

optimization experiments and conclude them by recommendations about certain input parameters 

and propositions for future research.  

 

 

The dataset we get out of the data enhancement procedure next has to be optimized over the 

weights of the portfolio. A critical question is how to model the preferences of the person we do the 

optimization for. There are a lot of risk measures that try to capture these preferences and they will 

be discussed in the next section, but first we want to talk about how to quantify reward. 

 

In general the reward will be measured as the expected return. This is the most natural and most 

frequently used measure and we will use it in this thesis, too. In the hedge fund literature only 

(Morton, Popova, & Popova, 2005) choose another approach, namely the probability to outperform a 

certain benchmark. Their paper will be discussed in section 3.1.5. It is also possible to take the 

reward not into account at all and just compute a minimum risk portfolio. This is considered by 

(Amenc & Martellini, 2002) and (Alexander & Dimitriu, 2004). See section 3.1.2 for details. The most 

correct way would be to derive the measure of reward from the incentive structure of the manager’s 

contract and the reactions of his recent and possible future investors on certain events, reactions like 

a higher possibility of withdrawal if the fund is under water for a longer time.  

 

3.1 Risk Measures 
 

Unlike the reward risk is not so easy to define and even harder to measure. There is a whole body of 

literature on this theme and not all of the proposed measures can be discussed here. The focus will 

lie on popular risk measures and such that are frequently used to analyze hedge fund data. 
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3.1.1 Standard Deviation and Mean Variance Analysis 

 

The best known risk measure is definitely the standard deviation or volatility (and equivalent to it in 

terms of portfolio allocation the variance). Together with the expected return as a measure of 

reward this leads to the so called mean variance optimization or µ,σ principle. If no constraints are 

imposed the portfolio optimization problem can be solved analytically, otherwise it can be solved by 

quadratic programming.  

 

But there is a problem with the standard deviation or variance that can be described as follows: 

Markowitz justified his mean variance analysis together with Levy (Levy & Markowitz, 1979) as an 

approximation of a general utility function. This can be shown via the Taylor series expansion of the 

expectation of the general utility function: 

 

 

Figure 28, (Lhabitant, 2004, S. 279), Formula Taylor Series Expansion of a General Utility Function 

 

where U(.) is the utility function, R the returns and Rp the mean portfolio return. If variance would be 

an optimal criterion either all deviations higher than two must be zero (this implies a quadratic utility 

function) or all moments higher than two must be zero (this implies normally distributed returns). As 

shown in 2.2 the returns of most of the funds in our databases are not normally distributed and from 

our point of view a quadratic utility function is not appropriate to reflect the utility of a typical 

investor. Nonetheless mean variance optimization is so frequently used that we have to calculate its 

outcomes at least as a benchmark for the other techniques.58 

 

As the mean variance optimization is the most commonly used technique for portfolio optimization it 

is also the most heavily researched. As the quality of every optimization algorithms output depends 

mainly on its input there was put a lot of effort in estimating the parameter needed in the mean 

variance optimization. To discuss all the techniques would go beyond the scope of this thesis 

therefore hedge fund related papers that use certain methods will be discussed only very briefly:  

                                                           
58

 Details about the mean variance optimization can be found in every finance textbook. 
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As there seems to be predictability in lagged risk factors, one can use it to forecast the expected 

return, or at least to get an idea of the future direction. (Amenc, Bied, & Martellini, 2003) do so and 

find that there is much value in using these forecasts in asset allocation decisions. A prominent way 

to come up with a guess about the expected return is the model of (Black & Litterman, 1992). 

(Martellini, Vaissie, & Ziemann, 2005) extend this approach to higher moments and use it in the case 

of hedge funds. They also consider vector autoregressive models and report considerable 

improvements. (Giamouridis & Vrontos, 2007) focus on the use of different estimation approaches 

for the variance. They conclude that the use of dynamic models improves the out of sample risk 

adjusted return. 

 

Besides the fact that mean variance optimization is only correct with normal distributed returns or 

quadratic utility there is also other critique, namely that it works as an error maximizer, as remarked 

in (Michaud, 1989) and (Britten-Jones, 1999).  And indeed the outcome of the mean variance 

optimizations depends strongly on its input – the expected returns and the covariance matrix. If 

there is an estimation error that leads to an extraordinary high expected return or diversification 

benefit the algorithm will pick this stock and weigh it heavily. As errors come and go over time the 

mean variance optimization produces erratic changes in portfolio weights, not executable in stock 

markets and least of all in the hedge fund world with its long lock ups and redemption periods. The 

effect of erratically fluctuating weights can be observed not only with mean variance optimization 

but also with most of the other optimization techniques, too. Nonetheless most of the methods to 

get more robust results were developed for the mean variance case. Therefore we will discuss them 

in the next section before dealing with other optimization techniques. 

 

3.1.2 Sources of Robustness 

 

One suggestion to overcome the problem of erratic outcomes is to calculate just a minimum risk 

portfolio. With the variance as risk measure this will be the well known minimum variance portfolio 

MVP. The big advantage of this approach is that one no longer has to care about the uncertainty in 

the expected returns but just deal with covariances, which came be estimated more reliable. The 

drawback is that in a realistic problem setup always a certain level of return will be specified. 

 

(Amenc & Martellini, 2002) perform such an analysis with hedge fund indices. They find that their 

MVP had similar out of sample expected return but much lower volatility than the equally and the 

value weighted portfolio. Relative Value and arbitrage strategies were over emphasized, emerging 



67 
 

markets, global macro and long/short equity not included. (Alexander & Dimitriu, 2004) also 

compute the MVP but do not compare it to a mean variance portfolio. They focus more on the 

impact of covariance shrinkage techniques. If one does not want to abstain from the expected 

returns it is possible to shrink them towards an arbitrary “grand mean” or towards the return of the 

MVP via Bayes-Stein Estimation59.  

 

Normally the estimation of the covariance matrix is assumed to be more reliable than the one for the 

expected returns, but for a large number of funds and short time series severe problems occur. For 

example if one wants to estimate a covariance matrix for 2000 funds with a two year estimation 

window one has only 48,000 data points to estimate nearly two million parameters.  

 

To get more reliable estimators for the covariance matrix there exist also several shrinking methods 

for the covariance matrix.60 The tradeoff with these shrinkage techniques is always between 

specification and estimation error. (Amenc & Martellini, 2002) perform a principal component 

analysis and shrink the covariance matrix to the factor matrix of the significant principal components. 

(Alexander & Dimitriu, 2004) perform a very similar study and find that with a non negativity 

constraints in place the usage of the sample covariance matrix led to a better out of sample 

performance than the usage of the cleaned covariance matrix. 

 

These findings are in line with the research of (Jagannathan & Ma, 2003). They find that to imply 

constraints in the optimization, the method that is most frequently used by practitioners, produces 

very similar outcomes (in the sense of robustness) to shrinking the covariance matrix. Normally 

maximum weights for a single asset are defined and maximum and minimum weights for the 

different asset classes. How to set meaningful constraints in the hedge fund world will be discussed 

in section 3.2. 

 

Another method oriented on application is to employ a larger number of different data enhancement 

and optimization techniques. Then the outcomes can be averaged. Or, to get another source of 

robustness, one can first calculate the rank of the portfolio weights suggested by the different 

techniques and then average over the ranks. This approach helps to avoid misleading results in one 

technique.  

 

                                                           
59

 For details see (Jorion, 1986) and the initial (James & Stein, 1961). 
60

 Methodological very good papers on the subject are (Ledoit & Wolf, 2003), (Ledoit & Wolf, 2004) and (Chan, 
Karceski, & Lakonishok, 1999).  
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The final method to get more robust outcomes with mean variance optimization (or with portfolio 

optimization in general) we want to introduce is the resampling technique as discussed in (Michaud, 

1989) and (Scherer, 2002). One possible procedure works as follows: draw random outcomes for the 

asset returns (according to their correlation structure using the Cholesky decomposition) hold 

everything else constant (especially the covariance matrix) and optimize. Then repeat this procedure 

several times and calculate the mean of the resulting portfolio weights. A variation is that also the 

covariance matrix can be drawn randomly, for example from different estimations. The reason why 

this relatively simple technique is considered only relative recently is because it affords a lot of 

calculation power.  

 

(Haberfelner & Kappel, 2007a) performed a study using a variation of the resampling concept. The 

aim was to optimize hedge fund styles to come up with a recommendation for the tactical asset 

allocation of a fund of hedge funds. The problem when simply optimizing hedge funds is (besides the 

erratic fluctuations in the weights) that the hedge funds indices include hundreds of funds. A normal 

fund of hedge funds on the other hand can only include at most 5 to 10 funds to represent a certain 

strategy. But this means that the indices, because of better diversification, have a much better risk 

return profile than the 5 funds that should represent the strategy in the fund of hedge funds 

portfolio. Calculating weights with inputs that then cannot be mimicked clearly does not make sense.  

 

The idea to overcome this problem was to draw randomly 5 funds for each strategy and creating an 

index out of them, optimize these created indices and repeating the procedure 40 times61. In a sense 

this was resampling the index returns and covariance matrix simultaneously. The following figures 

show the outcome:  

 

                                                           
61

 It turned out that the tadeoff between the standard error in the averaged weights and computational effort 
was best with this number of iterations.  
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Figure 29, Resampling – Hedge Fund Strategie Weights from 1999 to mid 2007 

  

The first figure shows the weights when calculated according to the procedure described above. The 

second figure shows the outcome when optimized on fund level (without first calculating an index 

and then optimizing). The third one was calculated without using the resampling technique, 

calculating a 1/n index for each strategy. 

 

 The outcomes produced with the resampling technique are much smoother and much better 

dedicated to be used for real investment decisions. An interesting fact is also that the multi strategy 

funds get a much higher weight in the “resampling + optimization on fund level” (second figure) 

approach than with the “resampling + calculating an index + optimization on index level” approach. 

This may be because they are so diversified among themselves. It is also nice to see that the 

resampling technique was able to capture the ”return of convertible arbitrage”, whereas on the 

index level the optimizer was not able to catch this phenomenon.  
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3.1.3 Value at Risk 

 

The value at risk (VaR) summarizes, loosely speaking, “the worst loss over a target horizon that will 

not be exceeded with a given level of confidence” (Jorion, 2007). With the frequently used delta 

normal method the assumptions are normally distributed risk factors and linear dependencies. As 

argued in section 2.1 this assumptions do not hold true for hedge funds. Besides this it is not clear at 

all what the risk factors for hedge funds really are.62 

 

When calculating the VaR directly from the fund’s return distribution as z*σ, where σ is the funds 

annualized standard deviation and z confidence level, the assumption is normally distributed fund 

returns. One method to account for non normality is the so called (Cornish & Fisher, 1937) 

expansion. Instead of the confidence level from the normal distribution, z, the volatility gets 

multiplied by  

 

where S is the skewness and K the (excess) kurtosis of the distribution. Another way can be to 

calculate the VaR from the discrete historical distribution.  

 

 

Figure 30, VaR Measures – Empirical, Normally Distributed and Cornish Fisher 

                                                           
62

 If we write back track records with the factor model approach described in 2.5.7 we do a modification of the 
delta - historical simulation method. When accounting for nonlinearity, this essentially tries to capture the 
same problem like the delta-gamma method.  
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The according VaR numbers are: 

 

 

 

The Cornish-Fisher (CF) VaR always exceeds the VaR computed under the assumption of normally 

distributed returns by construction if the distribution has negative skewness and positive kurtosis. 

Nonetheless it still underestimates the risk in this (quite extreme, but real) example. Only for the 99% 

VaR the Cornish-Fisher VaR is lower, but with 72 observations the 99% empirical VaR is just the 

smallest return for the empirical distribution. The CF expansion seems to be made for the estimation 

of left tail risk, the right tail looks a little bit weird.  

 

But there are three problems with the VaR that are the same for all three approaches:63 

 

 It lacks of subadditivity, one of the properties required for a coherent risk measure in the 

sense of (Artzner, Delbaen, Eber, & Heath, 1999).64 This can be seen from a simple example: 

“Consider two independent investment opportunities each returning a $1 gain with 

probability 0.96 and $2 loss with probability 0.04. Then, 0.95-VaR for both investments are 1. 

Now consider the sum of these two investment opportunities. Because of independence, this 

sum has the following loss distribution: -$4 with probability 0.04*0.04 = 0.0016, -$1 with 

probability 2 * 0.96 * 0.04 = 0.0768, and $2 with probability 0.96*0.96 = 0.9216. Therefore, 

the 0.95-VaR of the sum of the two investments is -1, which exceeds 2, the sum of the 0.95-

VaR values for individual investments.” This means VaR may discourage diversification. 

 

 VaR may provide an inadequate picture of the risk as it does not measure the losses that 

exceed the VaR. Therefore a minimization of the VaR may lead to stretch the tail exceeding 

the VaR.  

 

 The VaR is difficult to optimize, it is a non-smooth, non-convex function of the portfolio 

weights that has multiple local extrema.  

                                                           
63

 Confer (Rockafellar & Uryasev, 2000) 
64

 The other properties are monotonicity, positive homogeneity and translation invariance. 

VaR 90% VaR 95% VaR 99%

empirical -0,036 -0,052 -0,058

standard -0,028 -0,037 -0,052

CF -0,030 -0,043 -0,068
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Figure 31, (Uryasev), Conditional Value at Risk – CVaR
+ 

and CVaR
-
 are the expected losses strictly (weakly) exceeding the 

VaR. The CVaR is a weighted average of VaR and CVaR
+
. 

 

A measure that solves this problem is the Conditional Value at Risk (CVaR), also called Mean Excess 

Loss, Mean Shortfall, Expected Shortfall or Tail VaR.65 The CVaR is defined as the expected loss given 

that the loss exceeds the VaR. Although it could be calculated from a parametric distribution, too,66 

in the multivariate case the CVaR gets calculated best from a set of scenarios with a simulation 

approach. The easiest way is to use the discrete historical distribution.  

 

 

Figure 32, (Uryasev), Risk Measures  
(Note that a loss function is displayed, therefore the negative outcomes are on the right tail) 

                                                           
65

 It was shown by (Pflug, 2000) that CVaR is a coherent risk measure.  
66

 See (Andreev, Kanto, & Malo, 2005) for details.  
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Another very nice property of the CVaR is that it can be reduced to a set of linear constraints and 

therefore optimized very efficiently by large scale linear optimizers:67  

 

The CVaR is defined as 

    (1) 

Note that  is a loss function. Adding a constant before the integral and subtraction is after the 

integral in (1) does not change the outcome: 

           (2) 

This can be rewritten as  

                  (3) 

 

 

“were a+ = max{a,0}. This function, viewed as a function of , has the following important properties 

that make it useful for the computation of VaR and CVaR: 

1.  is a convex function of . 

2.  is a minimize over  of . 

3. The minimum value over  of the function  is . 

As a consequence of the listed properties, we immediately deduce that, in order to minimize 

 over , we need to minimize the function  with respect to  and  

simultaneously” (Cornuejols & Tütüncü, 2006, S. 276-277). 

 

For a discrete empirical probability distribution based on scenarios (3) can be rewritten as 

            (4) 

The according optimization problem is:  

                           (5) 

Figure 33, (Cornuejols & Tütüncü, 2006, S. 276-277), Formulae of the Linearization of the CVaR 1 

 

                                                           
67

 Confer the initial paper by (Rockafellar & Uryasev, 2000) or the didactically very good book by (Cornuejols & 
Tütüncü, 2006, S. 273-280). 
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The trick here is: If the  gets smaller the weighted sum in (5) growths faster for a small  and 

growths slower with a high . The left part (this is only the ) is not dependent of . So there is a 

tradeoff determined by the  between the  and the weighted sum. The point where the increase 

(decrease) in  is exactly offset by the decrease (increase) in the weighted sum, there is the 

minimum. In the minimum the  is exactly the . If the  is optimal and the  are not the overall 

outcome of (5) will not be optimal, a change in  will improve the outcome. If the  are optimal for a 

given non optimal  a change in  will improve the outcome (maybe the  have to be changed too).  

 

By replacing the  in (5) by an auxiliary variable  the problem is reduced to a set of 

linear inequalities:  

 (6) 

Figure 34, (Cornuejols & Tütüncü, 2006, S. 278), Formulae of the Linearization of the CVaR 2 

 

We therefore strongly recommend using the CVaR out of the family of VaR related measures. A 

MATLAB code for portfolio optimization with CVaR constraints can be found in appendix 5.6 and in 

appendix 5.7. 

 

3.1.4 Higher Moments 

 

As argued above the CVaR approach is based on scenarios and the parametric mean variance 

optimization is only applicable in a meaningful way under the assumption of normality. But there are 

other parameterized approaches that account for non-normality.  

 

The approach of (Davies, Kat, & Lu, 2005) uses polynomial goal programming to simultaneously 

optimize the investor’s preferences on variance, skewness and kurtosis. The problem with this 

approach is that it is not clear how to set the preference coefficients for the variance, the skewness 

and the kurtosis68 and how to optimize the cubic function required to maximize the kurtosis.   

 

Another approach is considered by (Jondeau & Rockinger, 2006). They expand a CARA (Constant 

Absolute Risk Aversion) utility function with the Taylor series and then calculate a closed form 

solution for the portfolio allocation problem. The drawback from our point of view is again that we 

                                                           
68

 They are defined as the difference from an optimal minimum variance, minimum skewness and minimum 
kurtosis portfolio.  
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neither know if a CARA function really reflects the utility of the investor adequately nor do we know 

her risk aversion coefficient, if CARA is sufficient. In addition to this Jondeau and Rockinger do not 

include constraints in the sense of maximal and minimal allocations in their problem set up. 

 

A problem that goes along with all parameterized approaches is that every time higher moments are 

considered the aspect that should be captured is the tail risk. But the tail risk is better captured by 

the CVaR from our point of view. Another shortcoming is that higher co-moments are even more 

unstable as mean and covariance. Especially the odd moment, the co-skewness, is hard to capture.  

 

3.1.5 Other Techniques 

 

Achieve a benchmark 

(Morton, Popova, & Popova, 2005) do not use the expected return as reward but choose another 

approach. They argue that the reward for the fund manager is not the (risk adjusted) return but “due 

to the manner in which today’s portfolio managers are judged, we regard the probability of achieving 

the benchmark [like the S&P500 or the HFR Fund of Funds] as the reward measure and we use 

expected regret *the magnitude by which the benchmark is missed+ as the measure of risk.” The 

expected utility (a weighted sum of reward and regret) then can be optimized (after reformulation) 

as a mixed-integer linear program. Besides the fact that MATLAB does not provide a MILP solver, 

(Morton, Popova, & Popova, 2005) state themselves that neither their “utility function nor its 

expectations are concave functions. So, our utility function does not satisfy the notion of coherence” 

in the sense of (Artzner, Delbaen, Eber, & Heath, 1999).   

 

Omega 

A very interesting risk measure is the so called Omega (Keating & Shadwick, 2002). Essentially it is the 

probability weighted gains divided by the probability weighted losses. Gains and losses are both 

considered with respect to an arbitrary threshold.  

 

                                                   Figure 35, (Keating & Shadwick, 2002), The Omega Risk Measure 
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By shifting the threshold a graphic can be created, where several assets are very well comparable: 

 

Figure 36, (Slightly adapted from an Excel Sheet used by Benchmark Capital Management), Omega vs Threshold 

 

Mean Absolute Deviation  

Instead of the quadratic distances (as with the variance) the absolute distances are considered with 

the mean absolute deviation (MAD). The MAD has the nice feature that it can be transformed into a 

set of linear inequalities (Konno & Yamazaki, 1991), very similar to the CVaR, and therefore can be 

optimized also for a large number of assets with linear optimizers. In the case of a multivariate 

normal distribution the outcomes of the mean variance and the mean MAD optimization are 

identical69, and it can be shown that the mean-MAD portfolios are never stochastically dominated 

(Ruszczynski & Vanderbei, 2003). Therefore we recommend replacing the constraint on the variance 

in a “mean-variance optimization with CVaR constraint” with the MAD for applications with a lot of 

funds. The according MATLAB code can be found in appendix 5.7. 

 

Maximum Drawdown 

The maximum draw down is the maximum drop from a historical peak. More loosely speaking it is 

the maximum loss an unlucky investor can make (buying at the peak and selling at the valley). The 

special thing about maximum drawdown is that it is a loss measure with memory, as the last peak 

has to be kept in mind. A light variation is the conditional draw down, the average of the x% highest 

draw downs.  It can be reduced to a set of linear in-(equalities) and is convex in the portfolio weights 

and therefore can be optimized in a similar manner as the CVaR (Krokhmal, Uryasev, & Zrazhevsky, 

2002). 

                                                           

69
 The MAD can then be calculated as  
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3.1.6 Conclusion 

 

Clearly the most appropriate way to optimize a fund of hedge funds portfolio would be to determine 

the client’s exact preferences and then optimize with respect to this function. If the client is the fund 

of funds manager an approach similar to the one of (Morton, Popova, & Popova, 2005) could be 

used, although there would be some refinements to do. If the client is an average investor or a fund 

of fund manager who wants a tool that can be used for marketing reasons as well the best way 

would be to do mean-variance optimization with a constraint on the VaR, because when average 

investors talk about risk, they are used to express it in term of volatility and Value-at-Risk. If they 

have worked with these measures for a longer time they get a quite good feeling about what level of 

risk they can tolerate expressed in these measures. And in the end this setup is not the worst one as 

there is a measure of dispersion and one that controls for asymmetry.  

 

The only challenge is to put it in a way that optimization algorithms can handle the problem. As 

argued above there are good reasons to replace the VaR by a CVaR constraint, reasons that can be 

communicated to investors, too. The other adaption would be to use the MAD instead of the 

volatility in cases with a large universe, as the MAD is linearisable and therefore much faster to 

optimize than the volatility. Another advantage is that the mean – MAD/CVaR optimization is based 

on scenarios (stochastic programming), which makes it very flexible in determining dependency 

structures.  

 

3.2 Limit Architecture 
 

Frequently there are constraints for the portfolio optimization coming for considerations of the fund 

of fund manager or form bounds defined in strategic asset allocation. But to imply constraints also 

makes sense for robustness reasons: it helps to avoid corner solutions and leads to a better tradeoff 

between specification and sampling error, very similar like the shrinkage of the covariance matrix 

(Jagannathan & Ma, 2003). 
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3.2.1 Linear Constraints 

 

Normally group constraints will be imposed on risk blocks in the sense that only a certain proportion 

of the portfolio is allowed to be exposed to a certain risk factor. This risk block can be: 

 Regional risks 

 Market risks  

 Hedge fund strategies  

 Liquidity  

 Leverage 

The key determinant here clearly is a carefully acquired matrix that contains the risk exposures of the 

funds. This matrix is normally generated in a more qualitative process by reading fund prospects and 

talking to managers. Information about a funds “hedge fund strategy”, its regional exposure and its 

liquidity terms can be found in most databases.  

 

 

 

The exposure vector for “hedge fund strategy: convertible arbitrage” may contain zeros and ones 

depending on if the fund is convertible arbitrage or not. The limit is in terms of “percent of the 

portfolio”. If one want to set a limit on the number of funds this would require mixed integer linear 

programming (MILP). With other buckets like regional and market risks one may want to assign a 

fund not only to a single attribute, as a fund may act on different markets and in different regions. To 

account for this is no problem for the technical side; the exposure vector then gets filled with the 

according fraction, e.g. the entry for the “Europe” vector for one specific fund could be 0.4 and for 

the “US” vector 0.6. If one assumes leveraged exposures the entries must not even sum up to one. To 

define subordinate buckets (like “equity-like” and “bond-like” for the hedge funds strategies) is also 

no problem, this means simply to create two new exposure vectors. As linear programming is 

efficient also for very large optimization problems, one must not care about the number of exposure 

vectors.  

 

As it is not possible to short hedge funds and as the usage of leverage for a fund of hedge funds is 

quite unusual a non-negativity and a full-unlevered-investment constraint are useful. To ensure that 

the portfolio does not get too concentrated and that a certain minimum number of funds is 

guaranteed a upper bound for the individual fund weights is advisable, too.  
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Another useful constraint is to set the weight of funds that are already in the portfolio to their actual 

values if they should stay in the portfolio. A similar constraint can be imposed for funds that are 

planned to enter the portfolio with a certain target weight because of more qualitative reasons. The 

optimization algorithm then is able to allocate new funds around a core portfolio.  

 

 

 

Constraints on the turnover can be implemented in the following way: 

 

 

 

A constraint especially suitable for a fund of hedge fund is a market neutrality constraint. As the beta 

of a portfolio is just the sum of the betas of its constituents this is also a simple linear constraint.  

 

 

 

A constraint normally used for mutual funds is a tracking error constraint. If a fund of hedge funds is 

designed to map a certain hedge fund index this makes sense in the hedge fund case, too. 

Unfortunately the tracking error is a quadratic function and therefore would require quadratic 

programming. Fortunately there is a way to replace it by a set of linear equations.70  

 

3.2.2 Logical and Cardinality Constraints  

 

An interesting set of constraints are the ones that model logical conditions. There may occur the case 

that if one investment is made, another one has to be made, too. If we define  and  as integer 

variables, being one if the investment is made and zero if not we can model the problem as 

 

 

                                                           
70

 For details see (Cornuejols & Tütüncü, 2006, S. 181-184). 
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The restriction “if one investment is made the other one cannot” would look as follows 

 

 

 

Restrictions like “in the portfolio 50% of the funds are allowed to have a lockup of over one year, but 

only if 80% out of these funds have a volatility smaller than 0.1” can be handled by defining three 

binary vectors, one for “has lockup above one year”, one for “has volatility smaller than 0.1” and one 

for “is in the portfolio”. The three vectors have to be multiplied element wise and the elements of 

the resulting vector have to be summed up. This sum has then to be divided by the sum of elements 

of the “is in the portfolio” vector. If this number is smaller then 0.8*0.5 the constraint is fulfilled. The 

only aspect that would require integer variables that change with the optimization process is the “is 

in the portfolio” vector. If one replaces “50% of the funds” and “80% out of these funds” by “50% of 

the portfolio” and “80% of this fraction” the problem is a simple linear constraint.  

 

 

 

were  is the element wise multiplication,  the indicator if the fund was volatility above 0.1 or 

not,  the indicator for lockup above one year and  the weight of the fund in the 

portfolio (or the indicator whether the fund is in the portfolio or not). 

 

A minimum number of funds in the portfolio can easily be ensured by setting an upper bound of the 

fund weights. To ensure that a maximum number of funds is not exceeded is not so easy. Just setting 

a lower bound will not work if the number of funds exceeds . Instead a limit has to 

be defined in the form of “only if the fund is in the portfolio, it must have a minimum weight”. A 

similar constraint is the minimum transaction lot: only execute a change in portfolio weights if the 

change is higher than for instance 1%. In the first case an indicator is required whether a fund is in 

the portfolio or not, in the second one if the size of the transaction is higher than 1% or not. These 

problems can be solved by a branch and bound algorithm, that creates a tree by setting a portfolio 

weight violating the conditional constraint either to 0 or to the bound (minimum weight and 

minimum transaction lot, respectively) at each node (Cornuejols & Tütüncü, 2006, S. 224-226). 

 

Even harder the problem gets if one requires a fixed number of funds in the portfolio. This leads to 

the so called cardinality constrained portfolio optimization. To get a really exact solution all possible 

combinations of funds should be considered. The efficient frontier is then a patchwork of the 
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efficient frontiers of all the possible subsamples. For the case of two out of four assets we have  

 possible portfolios.  

 

 

Figure 37, (Chang, Meade, Beasley, & Sharaiha, 2000), Cardinality Constrained Portfolio Optimization 

  

For the realistic case of 30 out of 500 funds the number of possible combinations cannot even be 

calculated. Hence heuristics have to be used to get an approximately solution. (Chang, Meade, 

Beasley, & Sharaiha, 2000) test a genetic algorithm, a tabu search and a simulated annealing 

approach. They conclude that the best way is to use all three heuristics and to pool their results. The 

best performing heuristic was the genetic algorithm, with the drawback that is took the longest time 

to come up with a solution. It is also possible to use a branch and bound algorithm here and if the 

unbound solution contains a similar number of funds like the required number of funds the branch 

and bound algorithm is likely to perform much faster than the above mentioned heuristics.  

 

To include such logical and cardinality constraints is clearly an interesting field for future research. 

Especially for a fund of hedge fund a minimum investment makes sense, as there are very high 

research and monitoring costs associated with each new fund.  

 

3.3 Integration of Data Enhancement and Optimization Techniques 
 

We now have introduced a large number of different filtering, data enhancement and optimization 

techniques. To get an idea of the complexity of the problem a little flow diagram is provided: 

 



 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Level 
Fund   /   Strategy 

Filtering Currency 
Only USD   /   only EUR  /  all funds 

Filtering AUM 
Only fund over 10mm  /  all funds 

Filtering Due Diligence 
Passed DD  /  all funds 

Use Quantitative Filters 
Yes  /  No 

Filtering 
Yes   /   No 

Hurst Exponent Filter 
Use filter  /  all funds 

Stable Parameters 
Use filter  /  all funds 

Alpha Filter 
Use filter  /  all funds 

Which Factor Model 
 Which Factors 

 Modeling and Estimation 

Which Model 
 Factor Model  

 Cluster Analysis 
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Which Factors 
 Traditional Factors 

 + Fama-French, Momentum 

 + Macro and Credit 
= Broad Fundamental  

 Hedge Fund Indices 

 Principal Components 

 HF Fundamentals 

 All 

Unsmooth Data 
Yes  /  No 

Factor Models Cluster Analysis 

Modeling and Estimation 
 Model non linear (Y/N) 

 Which estimation window 

Include Qualitative Data 
Yes  /  No 

Specification 
 hierarchical or k-means 

 Which proximity measure 

 Which Linkage rule 

Fill Up Track Record Data Generation 

Factor Models 
 Which Factors 

 Modeling and Estimation 

 Alpha Views 

Model Factors 
 NORTA 

 Copula 

 Historical Daily 

 Economic Intuition 

Usage 
 Observed + Filled Up 

 Risk Adjusted Return 

Data Enhancement 
Yes   /   No (Q: Input Window) 

Generate Return Views 
 Black Litterman 

 Lagged (non HF) Factors 

 VAR models 
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Figure 38, Flow Diagram 

 

Optimization 
Yes   /   1/n alpha ranked 

Reward 
E(r)   /   Outperform Benchmark   /    
No Reward (Min Risk Portfolio) 

Risk 
 Standard Deviation 

 Mean Absolute Deviation 

 VaR (normal, empirical, CF) 

 CVaR 

 4 Moment 

 Deviation from Benchmark (negative) 

 Max Draw Down 

 Max Loss 

 Lower Partial Moment 

 Omega 

Mean Variance 
 Generate Return Views? 

 How to Estimate Variance 
o simple  
o EWMA 
o GARCH 

 Shrinkage (Return / Cov)? 

 Resampling? 
 Quadratic Programming 

Mean Conditional Value at Risk 
 + Variance or + MAD 
 Stochastic Programming (Linear) 

Higher Moments 
 How to set Preferences? 
 Polynomial Goal Programming 

 monthly, quarterly, semi-, annual rebalancing 

 out of sample – apply weights 1,2,3 month later 

 evaluate portfolio turnover 

 compare optimal portfolios in bull/bear market 

 what to do with dead funds? 

Evaluation 

Limit Architecture  
 non-negative, no leverage 

 risk blocks 

 turnover 

 core portfolio  

 market neutrality 

 logical constraints 

 cardinality constraint 



 

3.4 Portfolio Optimization Experiments 
 

As the above flow diagram indicates it is simply impossible to assess all possible combinations of 

techniques and specifications, not only because of the high number of possible combinations but also 

because some of the techniques are quite time intense, especially simulation approaches. In the 

following section we provide the outcome of some first experiments that could identify at least 

directions of future research.  

 

3.4.1 General Considerations 

 

At the end all attempts will have to be assessed by the out of sample performance. But there arise 

several questions how to assess the out of sample performance:  

 

The first one is to assume monthly, quarterly or annual rebalancing. Most realistic would be 

quarterly rebalancing. Also form the angle of portfolio turnover quarterly rebalancing may be 

advisable, as the fund of fund manager has more time to execute the scheduled adjustments. 

Nonetheless we will use monthly rebalancing in our experiments to get a better idea what is going on 

when using a certain technique. 

 

The second  topic is when to apply the weights from the optimization: The final performance figures 

for the hedge funds and the hedge fund indices come in normally around the 20th of the following 

month (i.e. the figures for February are available not until March 20th). So, even if the calculation, the 

decision and the execution process could take place in a few days (what is quite unrealistic) one 

would have to accept at least a one month lag. After discussions with practitioners we find that a 

three month lag is most realistic.  

 

The third question that arises is what to do if a fund that was included in the optimized portfolio 

(optimization window t-w to t) is no longer in the database in t+1. Because we have no information 

whether a fund stopped reporting voluntarily or if it was liquidated we propose to simply set the 

performance to zero and do not include the fund in the t+1 optimization. We argue this by assuming 

that the negative effects of having chosen a very bad fund that got liquidated and the positive effects 

of the investing in a very good fund that stopped reporting because it does not have to attract new 

investors offset each other in this specific month and that the money invested in this fund is freely 

available in the next month.  
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The last issue to consider are lock up periods and other liquidity terms of a hedge fund: The investor 

has to hold the hedge fund at least for the lock up period and after that lock up time she has to 

announce redemption some months in advance. As this restrictions influence the out of sample 

performance massively, they should be considered in a “real world” evaluation, too. 

 

To have an idea about the value added (compared to throwing darts) of a certain method it is 

possible to compute different benchmark portfolios. The most simple is the 1/n portfolio with all 

funds alive. Clearly this is a very unrealistic portfolio as it holds at the end more than 2000 funds and 

is, because of the sheer number of included funds, highly diversified.71 To get more realistic 

benchmarks an approach of (Davies, Kat, & Lu, 2005) can be used: Randomly draw 5000 times 20 

funds out of the sample and calculate certain risk parameters (they use mean, standard deviation, 

skewness and kurtosis) over a given period and then take the average of this parameters. Find the 

one portfolio out of the 5000 that best matches these parameters – this is our benchmark. Another 

reasonable approach is to use a fund of hedge fund index, as this benchmark will be free from biases 

for sure (Fung & Hsieh, 2002). 

 

3.4.2 Quantile vs Dispersion Measures 

 

The main reason why to use a quantile measure like VaR or CVaR as a constraint in an optimization is 

something that could be called tail drop: without controlling for the left tail the mean variance (or 

mean MAD) optimizer will pick the more left skewed asset out of two assets that have the same 

volatility because normally the tail risk gets compensated and the left skewed asset will therefore 

have a higher expected return.  

 

To test if this is true we made the following calculations: Maximize the expected return for a given 

level of CVaR. Calculate the variance of the resulting portfolio. Maximize the expected return given 

the variance of the CVaR portfolio. Compare the CVaR and the expected return (the variance is the 

same). If the CVaR is worse72 and the expected return is higher with the mean-variance portfolio, the 

hypothesis is proven to be true. To have an indicator whether the distribution has a heavy left tail we 

                                                           
71

 For the problem of over diversified benchmarks see 3.1.2. 
72

 As VaR measures are by convention calculated from loss distributions it should say higher here. But as the 
CVaR is calculated in this thesis from the ordinary return distribution it should say lower. To not fortify 
confusion we simple say worse. 
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also report the closed form CVaR for the normal distribution.73 The following numbers were 

calculated with the HFR hedge fund indices: 

 

 

Figure 39, Table – Tail Drop Index Level 

 

For each scenario the expected return is higher and the left tail is heavier with the mean – variance 

optimization. To get an idea how the resulting distributions look like, we provide the histograms for 

the distribution under CVaR constraint (-0.025) and the histogram for the according distribution 

under the volatility constraint (0.0803).  

 

Figure 40, Distribution under CVaR Constraint and under Volatility Constraint 

 

On fund level (merged HFR and Benchmark database, only funds that are denominated in USD and 

that have observations over the whole period) we use the MAD instead the variance, because of 

computational reasons. The outcome is similar: 

 

 

Figure 41, Table – Tail Drop Fund Level 

 

                                                           
73

 For the analytical calculation of CVaR under the assumption of other distributions see (Andreev, Kanto, & 
Malo, 2005). 

MAX / MIN

CONSTRAINT

mean 0,0962 0,0988 0,1254 0,1331 0,1608 0,1643 0,1952 0,1957 0,2276 0,2284

stdev 0,041 0,041 0,0803 0,0803 0,1206 0,1206 0,1672 0,1672 0,2223 0,2223

CVaR -0,01 -0,013 -0,025 -0,0339 -0,05 -0,0547 -0,075 -0,0775 -0,1 -0,1072

CVaR ~N -0,0130879 -0,0129228 -0,0238279 -0,0233103 -0,0351837 -0,0349451 -0,049254 -0,04922 -0,0668415 -0,0667875
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MAX / MIN

CONSTRAINT

mean 0,2477 0,2642 0,2991 0,3099 0,3372 0,3469 0,3878 0,4036 0,4636 0,4673

stdev 0,0516 0,0564 0,0882 0,0908 0,1189 0,1273 0,1867 0,1951 0,3014 0,3002

MAD 0,0115 0,0115 0,0197 0,0197 0,0281 0,0281 0,0427 0,0427 0,0654 0,0654

CVaR 0 -0,0775 -0,01 -0,0233 -0,025 -0,0395 -0,05 -0,0547 -0,1 -0,1104

CVaR ~N -0,0144527 -0,0149731 -0,0226384 -0,0228517 -0,0301656 -0,0323185 -0,0496211 -0,0515716 -0,0850226 -0,0843928
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Although the differences in the return are not too big there is a consistent pattern in all the 

scenarios. We can conclude that these numbers support the hypothesis of a tail drop. An interesting 

research question is if this phenomenon can be observed out of sample, too.  

 

3.4.3 “Unconstrained” Optimization 

 

Next we want to evaluate the influence of the time window used for the optimization (12, 24, and 36 

months), the influence of the risk measure used and if it makes a big difference whether the 

optimized weights get applied one, two or three months later. Therefore we did several runs of a one 

month rolling unconstrained optimization. The term unconstrained is not totally exact as we applied 

a non negativity and a total investment/no leverage constraint. We did not use any data 

enhancement technique here; we just took all funds that have observations for the whole time 

window available with their original data. This means we started the fist optimization at b+36, were b 

is June 1998, the beginning of our records. In one setup we optimized the data b to b+36, in the 

second one b+13 to b+36, in the third b+25 to b+36. In each setup we optimized with regard to all 

risk measures considered. Then we applied the weight calculated in the different setups one, two 

and three months later and stored the return. Then we shifted everything one month into the future 

and did the whole procedure again. At time t we had the optimization windows t-35 to t, t-23 to t 

and t-11 to t and applied the weights in t+1, t+2 and t+3. The risk measures we used were variance, 

MAD and CVaR. With the optimization we minimized the risk for a given target return to get 

comparable outcomes. We used three different target returns: 10%, 15% and 20%. For the 

calculation on fund level we just used MAD and CVaR, as the quadratic programming takes far too 

long time with more than 200 funds. With three risk measures, three time windows, three weight 

lags and three target returns we had 81 different portfolios. The numbers in the following tables are 

averaged over all parameters (time window, weight lag, risk measure and target return) but the one 

that is analyzed in the table. 

 

As anticipated the out of sample performance is best when the weights get applied one month later. 

But interestingly these effects get offset by a decrease in the risk. Therefore the Sharpe ratio and the 

expected return divided by the CVaR staid almost the same. (Outcomes on index level are similar). 
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Figure 42, Table Weight Lag 

 

The other finding came little bit as a surprise: the shorter the time window, the higher the out of 

sample return. Again this effect gets reversed by a decrease in risk. (Outcomes on index level are 

similar although the difference in the risk is smaller). 

 

        

Figure 43, Table Time Window 

 

The decrease in risk with a longer estimation window is consistent with the hypothesis, that risk can 

be captured better with a longer observation period. In the case of a longer estimation window the 

chance is higher that the fund faced a dangerous market situation and we therefore have an 

indicator how it will manage the next crisis. The higher return with shorter time window can be 

explained by a momentum effect. This is consistent with the observation of high positive 

autocorrelation. Maybe there is some kind of cyclicality in the hedge fund industry: If an arbitrage 

opportunity is detected returns are high. With more and more funds exploiting the opportunity it 

closes. With small returns from the strategy funds seek other investment fields. Then the arbitrage 

opportunity opens again. If there is such cyclicality it seems to be captured best with a short time 

window.  

 

The recommendation that follows is that, if an investor wants to maximize the return regardless of 

the risk, he should just use newer information, if he wants to reduce risk, he should take into account 

all the information available.  

 

HFI funds t+1 t+2 t+3

ER 0,1253 0,1214 0,1190

CVaR -0,0083 -0,0076 -0,0078

VaR -0,0032 -0,0021 -0,0023

Std 0,0351 0,0339 0,0332

MAD 0,0077 0,0073 0,0072

Sharpe 3,6167 3,6555 3,6154

ER/CVaR 15,7794 17,5777 16,7657

Bench funds t+1 t+2 t+3

ER 0,1340 0,1272 0,1214

CVaR -0,0056 -0,0057 -0,0069

VaR -0,0008 -0,0009 -0,0016

Std 0,0294 0,0286 0,0298

MAD 0,0063 0,0062 0,0065

Sharpe 4,7367 4,6766 4,4383

ER/CVaR 43,4255 23,6505 64,6282

HFI funds 12m 24m 36m

ER 0,1380 0,1161 0,1115

CVaR -0,0080 -0,0095 -0,0062

VaR -0,0030 -0,0024 -0,0022

Std 0,0392 0,0343 0,0287

MAD 0,0084 0,0072 0,0065

Sharpe 3,5394 3,4449 3,9033

ER/CVaR 17,6951 13,6230 18,8047

Bench funds 12m 24m 36m

ER 0,1329 0,1253 0,1245

CVaR -0,0097 -0,0053 -0,0033

VaR -0,0034 -0,0006 0,0007

Std 0,0363 0,0269 0,0247

MAD 0,0078 0,0060 0,0052

Sharpe 3,7394 4,7664 5,3457

ER/CVaR 15,6553 32,5577 83,4912
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The difference between the 12 month time window and the other time windows is substantially 

higher on fund level than on index level. As the first 12 months were not used to calculate the out of 

sample performance but only for the optimization the instant history bias would only be the cause if 

the incubation time is higher than 12 months. (Fung & Hsieh, 2000) get an average incubation time of 

one year for the TASS database, unfortunately we have no numbers for the HFI database. For the 

Benchmark database on the other hand we know that it is free from instant history bias and the 

results are similar. Besides this, as argued in section 2.1, also without the instant history bias hedge 

funds seem to perform better in their early years. 

 

 

Figure 44, Cumulative Return HFI Funds 

 

The third finding is that the choice of the risk measure seems to be irrelevant for the out of sample 

performance. It seems that rather the choice of the time window determines the out of sample 

performance than the choice of the risk measure.  

 

        

Figure 45, Table Risk Measures 
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ER 0,0999 0,1015 0,1016

CVaR -0,0155 -0,0156 -0,0150

VaR -0,0082 -0,0070 -0,0066

Std 0,0430 0,0421 0,0415

MAD 0,0090 0,0087 0,0086

Sharpe 2,5862 2,7379 2,7336
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HFI funds Bench funds

Fund level CVaR MAD CVaR MAD

ER 0,1220 0,1218 0,1285 0,1266

CVaR -0,0080 -0,0078 -0,0060 -0,0062

VaR -0,0025 -0,0026 -0,0013 -0,0009

Std 0,0343 0,0339 0,0296 0,0289

MAD 0,0074 0,0073 0,0064 0,0062

Sharpe 3,6119 3,6465 4,5683 4,6661

ER/CVaR 16,5508 16,8644 37,7285 50,0743
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Finally we find that the in sample return is always higher than the out of sample return, but that in 

and out of sample return are still strongly positive correlated. Also the risk behaves like anticipated – 

the higher the required in sample return the higher the out of sample risk: 

 

       

Figure 46, Table Target Return 

 

We also made a little experiment in the same setting where we used the unsmoothed return74 for 

the optimization and then applied the weights to the observed “smoothed” returns. The results are 

mixed: the out of sample performance was not improved in most of the cases, on the contrary, it 

changed for the worse. But there seems to be a pattern, that on fund level the out of sample 

performance increases a little bit with the unsmoothing technique if a longer (e.g. 36 months) 

optimization window is used and that on index level the unsmooth technique brings advantages 

when the required return is high. But all this is likely to be random fluctuations.  

 

3.4.4 Turnover Constraints  

 

The main problem with the outcomes of an “unconstrained” optimization is that the weights 

fluctuate heavily. Quite often the algorithm suggests to invest everything in just one asset and to 

shift everything to another asset in the next month.  

 

                                                           
74

 See section 2.4 for details.  

Index level 10% 15% 20%

ER 0,0715 0,1023 0,1292

CVaR -0,0066 -0,0131 -0,0264

VaR -0,0020 -0,0054 -0,0144

Std 0,0208 0,0383 0,0674

MAD 0,0045 0,0080 0,0139

Sharpe 3,4425 2,6857 1,9296

ER/CVaR 11,0095 8,1088 4,9904

Fund level 10% 15% 20% 25%

ER 0,0936 0,1136 0,1349 0,15683647

CVaR -0,0039 -0,0054 -0,0080 -0,01074068

VaR -0,0008 -0,0014 -0,0019 -0,00313485

Std 0,0223 0,0272 0,0345 0,04275714

MAD 0,0049 0,0060 0,0074 0,00913242

Sharpe 4,3970 4,3601 4,0233 3,71232899

ER/CVaR 40,3655 43,0873 21,1240 16,6411573
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Figure 47, Weights Fluctuation with Unconstrained Optimization, CVaR 20% 

 

Clearly the figures gets nicer if the target return is lower and the optimization window is bigger, but 

still the outcome is far from being executable, especially if one takes lock up and notice periods into 

account. Therefore we test how the implementation of a turnover constraint changes the outcome, 

especially the out of sample performance.  

 

To get an approximation of a really executable portfolio we rerun the calculations above with a 

turnover constraint of 5% per asset75, starting with a 1/n portfolio. In addition we impose a maximum 

limit of 30% on the index weights.  

 

                                                           
75

 See section 3.2.1 for details.  
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Figure 48, Weights Fluctuation with Turnover Constraint, Volatility 10% 

 

Clearly the fluctuations in the weights are much lower than without the constraint and look almost 

executable. Also for the 20% target return portfolio the weights are much smoother now (although it 

seems that the optimization pushed quite often the 5% turnover constraint in the opposite direction 

in consecutive months):  

 

 

Figure 49, Weights Fluctuation with Turnover Constraint, CVaR 20% 
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What looks a little bit like the output of a gen sequencer below is an attempt to visualize the 

fluctuation in the weights on fund level. First all the funds that never were picked get deleted. In the 

case of the 10% target return, 12 month time window, mean – MAD portfolio this leaves us with 190 

out of 3245 funds. The figure is the matrix of the weights of these funds where one row stands for 

one fund, one cell is one month and the weights got colored according to their importance: the 

higher the weight the darker the red.  

 

 

Figure 50, Weights Fluctuation on Fund Level 

 

Although the algorithm seems to favor only a couple of funds quite consistently this outcome is still 

not executable. The main problem is the large number of funds that are picked with a little weight 

and just for a very short time period. Therefore on fund level it would be better to imply a constraint 

on the minimum transaction lot and on the minimum weight (conditioned on that the fund is in the 

portfolio). But as such constraints cannot be implemented as simple linear constraints we will not 

consider them at this stage.76 To use a fund level portfolio optimization in the way we did it here may 

generally be improper. From our point of view it would make more sense to search for funds that can 

be added to an existing portfolio. This can be done by applying fixed weights to the existing funds in 

the optimization.77 

 

An interesting finding was that the out of sample performance did not deteriorate with the 

constrained optimization on average, it even was improved a little bit. For the high risk index 

portfolio it was improved consistently for nearly all risk measures and all optimization windows. 

 

                                                           
76

 See section 3.2.2 for details. 
77

 See section 3.2.1 for details.  
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0 0,02 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0,01 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0,01 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0,03 0,03 0 0 0 0,04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0,06 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0,06 0 0 0 0,03 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0

0 0,04 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0,01 0,01 0 0 0 0,01 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0,01 0,08 0 0 0 0,02 0 0 0 0 0 0,01 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0,06 0 0 0 0 0 0 0 0 0,01 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0,01 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0,06 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0,04 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0,02 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0,02 0 0 0 0,01 0 0 0 0 0 0,01 0 0 0,05 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0,01 0

0 0 0 0 0 0 0 0 0 0 0,01 0,01 0 0 0 0 0 0 0 0 0,01 0 0 0 0,06 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0,06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0

0 0 0 0 0 0 0 0 0 0 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0,07 0 0 0 0 0 0 0 0 0 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0,04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0

0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0,01 0 0 0 0 0,06 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0,06 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0,01 0

0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0,01 0,03 0 0 0 0 0,04 0 0 0 0 0 0 0,01 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,04 0 0 0 0 0 0,01 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0,06 0 0 0 0 0 0 0 0 0 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0,01 0

0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0,04 0 0,01 0 0 0 0 0,07 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,04 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,04 0 0 0 0,02 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0,01 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0,04 0 0,02 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,04 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0,02 0 0 0,01 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0,01 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0,01 0,06 0 0 0 0,04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0,01 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0,05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0,01 0 0,01 0 0 0 0,07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0,01 0,03 0 0 0 0,04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0,06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0,05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0,03 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0,04 0 0 0 0,04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0,01 0 0,01 0,01 0,06 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,05 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0,03 0 0 0 0,04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0,03 0 0 0,01 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0,08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0,05 0 0 0 0,04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0,04 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0,06 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0,01 0,03 0 0 0 0,04 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0,05 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0,01 0 0 0 0 0 0,01 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,06 0 0 0,04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0,01 0 0 0 0 0 0 0,04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,06 0 0,01 0 0 0 0 0 0 0,01 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0,01 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0,03 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0,04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0,03 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0,01 0 0 0 0 0,05 0 0 0 0 0 0 0 0 0 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0,02 0 0 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0,03 0 0 0 0 0 0 0 0 0 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0,01 0 0 0 0 0 0 0,05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0,04 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0

0 0,01 0,01 0 0 0 0 0 0,01 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0,05 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0,01 0,01 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,05 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0,06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0,03 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,05 0 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0 0 0 0
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Figure 51, Table Turnover Constraint Index Level 

 

Another effect was that the out of sample performance of the different optimization setups 

(different risk measure, different optimization windows, weights applied with different lags) got 

more similar.  

 

 

Figure 52, Cumulative Return HFR Indices Unconstrained and Turnover Constraint  

 

As the weights fluctuate more heavily on fund level, the patterns are not so clear here. But still we 

can state, that the turnover constraint does not lead to a significant deterioration of the Sharpe ratio.  

 

 

Figure 53, Table Turnover Constraint Fund Level 

HFR Indices: turnover constraint - unconstrained 0,169

target return 10%CVaR 12m CVaR 24m CVaR 36m MAD 12m MAD 24m MAD 36m Vola 12m Vola 24m Vola 36m

Sharpe -0,2074 -0,0009 0,0701 -0,4798 -0,2812 -0,0534 -0,1337 -0,0066 0,1676 t+1

Sharpe -0,3025 0,0815 0,1535 -0,5173 -0,1786 0,0206 -0,3650 0,3291 0,0628 t+2

Sharpe -0,1523 0,0591 -0,1678 -0,2690 -0,1431 0,0635 -0,2305 0,2800 0,0078 t+3

target return 15%CVaR 12m CVaR 24m CVaR 36m MAD 12m MAD 24m MAD 36m Vola 12m Vola 24m Vola 36m

Sharpe -0,1919 0,2149 -0,1153 -0,4586 -0,0862 0,4305 -0,3379 -0,0844 0,4546 t+1

Sharpe -0,1619 0,0250 -0,0334 -0,2718 -0,2643 0,4170 -0,2132 -0,1833 0,4250 t+2

Sharpe 0,0131 0,2656 -0,3051 -0,1117 0,2301 -0,1918 -0,0260 0,1433 -0,2572 t+3

target return 20%CVaR 12m CVaR 24m CVaR 36m MAD 12m MAD 24m MAD 36m Vola 12m Vola 24m Vola 36m

Sharpe 0,2006 0,0112 0,1553 0,0512 0,0644 0,2336 0,0378 -0,0635 0,2378 t+1

Sharpe 0,1562 -0,1982 0,2273 0,1289 -0,1688 0,2771 0,1223 -0,1868 0,2727 t+2

Sharpe 0,2407 0,1626 0,1754 0,1562 0,2930 0,2414 0,0923 0,1087 0,0075 t+3
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BENCH Funds - turnover - original data -0,034 HFI Funds: turnover constraint - unconstrained 0,037

target return 10% CVaR 12m CVaR 24m CVaR 36m MAD 12m MAD 24m MAD 36m CVaR 12m CVaR 24m CVaR 36m MAD 12m MAD 24m MAD 36m

Sharpe 0,1069 -0,0337 -0,0845 0,0680 0,2210 0,7476 -0,0416 0,1742 -0,1275 -0,1902 0,0160 -0,0149 t+1

Sharpe 0,0771 0,1150 0,3507 0,2339 0,1524 0,1902 0,3653 -0,4081 -0,1866 0,1112 -0,3349 0,0107 t+2

Sharpe -0,1366 0,0372 -0,5111 0,1680 0,0961 0,5053 -0,1619 0,0009 0,0827 0,0294 -0,2392 0,0117 t+3

target return 15% CVaR 12m CVaR 24m CVaR 36m MAD 12m MAD 24m MAD 36m CVaR 12m CVaR 24m CVaR 36m MAD 12m MAD 24m MAD 36m

Sharpe -0,1735 0,1772 -0,5167 0,1868 0,1732 0,4090 0,0197 -0,2969 0,1421 0,0919 0,0258 -0,0510 t+1

Sharpe 0,2154 -0,2138 -0,2281 0,0457 -0,0662 0,3834 0,0154 -0,2182 0,1849 -0,0244 -0,1739 0,1549 t+2

Sharpe 0,3883 0,0461 -0,5283 -0,1090 0,1467 -0,3194 -0,1226 0,2584 0,3601 0,0153 -0,0829 0,1055 t+3

target return 20% CVaR 12m CVaR 24m CVaR 36m MAD 12m MAD 24m MAD 36m CVaR 12m CVaR 24m CVaR 36m MAD 12m MAD 24m MAD 36m

Sharpe -0,1551 0,1471 -0,2973 -0,4114 0,2478 -0,6633 0,1494 0,2181 0,0707 0,0492 -0,0423 -0,0034 t+1

Sharpe -0,0211 0,1461 -0,1245 -0,5261 -0,2621 -1,2961 0,2931 0,4961 0,2320 -0,0070 -0,0458 0,1511 t+2

Sharpe 0,2793 -0,0494 -0,0105 0,1637 0,4733 -1,1659 0,1041 -0,0755 0,2512 0,0648 -0,0027 0,2102 t+3

target return 25% CVaR 12m CVaR 24m CVaR 36m MAD 12m MAD 24m MAD 36m CVaR 12m CVaR 24m CVaR 36m MAD 12m MAD 24m MAD 36m

Sharpe -0,1835 -0,0877 0,1111 -0,2878 -0,3080 -0,4329 -0,0190 -0,0597 0,0599 -0,1633 0,2880 -0,0288 t+1

Sharpe -0,0576 0,0801 0,2058 -0,2646 -0,2833 -0,3615 0,1681 0,0495 0,1615 -0,0898 0,0513 0,1836 t+2

Sharpe 0,4333 0,1060 0,0173 0,3746 -0,0168 -0,2886 0,0743 -0,1480 0,3862 -0,0394 -0,1359 0,3130 t+3
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3.4.5 Fill Up the Track Record 

 

Next we tested if to fill up short track records, like described in section 2.5.7, improves the out of 

sample performance. In this setup we included all funds that had at least 12 months of track record 

in time t and filled up till t-35 if there were empty entries. As the algorithm for the completion of the 

track record only fills up the track record if it is able to find highly significant factors, we also have 

some kind of a “stable parameter” filter included. After the procedure all funds have 36 data points. 

 

The outcome was very promising: The return should get higher compared to the 36 month 

optimization window, as now also funds with a shorter track are included. This assumption proved to 

be true, but also the hope that the risk decreases was fulfilled: 

 

 

Figure 54, Cumulative Return HFI Funds, Fill Up the Track Record 

 

A more detailed analysis of the outcome shows that if one takes into account only the dispersion 

measure (MAD) as risk indicator the tradeoff between risk and return is perfect in terms of ranks: 

with the 12 month window the return is always highest and the risk lowest, for the 36 month window 

it is the other way round and the FTR lies in the middle. Nonetheless the Sharpe ratio is always 

highest with the FTR. And the VaR and the CVaR are always lowest with the FTR portfolio although it 

has a higher return than the 36 month window portfolio: 
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Figure 55, Table HFR Funds Fill Up the Track Record 

 

Because of the amazing results we repeated the calculations with the funds from the Benchmark 

database. Here the results are a little bit different: the return of the FTR portfolio is much nearer to 

the 36 month portfolio than to the 12 month portfolio and the reduction in risk is not that 

impressive. But still the FTR portfolio is best with respect to the CVaR and if a fund of hedge fund 

manager wishes to invest also in younger funds, she is well advised to use the FTR procedure in order 

to boost the risk adjusted return.  

 

 

                     Figure 56, Table Benchmark Funds Fill Up the Track Record 

 

average all return CVaR 12 CVaR FTR CVaR 36 MAD 12 MAD FTR MAD 36

ER 0,1399 0,1323 0,1146 0,1408 0,1303 0,1135 t+1

CVaR -0,0090 -0,0062 -0,0068 -0,0084 -0,0061 -0,0070 t+1

VaR -0,0048 -0,0023 -0,0026 -0,0040 -0,0019 -0,0028 t+1

Std 0,0408 0,0319 0,0291 0,0410 0,0313 0,0289 t+1

MAD 0,0089 0,0069 0,0066 0,0088 0,0068 0,0065 t+1

sharpe 3,4213 4,1580 3,9581 3,4249 4,1916 3,9592 t+1

ER/CVaR 15,6211 21,7267 17,6902 16,6327 22,1090 17,4448 t+1

ER 0,1353 0,1314 0,1123 0,1365 0,1295 0,1109 t+2

CVaR -0,0082 -0,0050 -0,0057 -0,0074 -0,0048 -0,0059 t+2

VaR -0,0026 0,0002 -0,0017 -0,0020 -0,0004 -0,0020 t+2

Std 0,0396 0,0304 0,0280 0,0385 0,0303 0,0277 t+2

MAD 0,0082 0,0066 0,0063 0,0083 0,0065 0,0063 t+2

sharpe 3,4361 4,4089 4,0241 3,5575 4,3276 4,0144 t+2

ER/CVaR 16,5959 30,3972 21,2713 18,5780 28,7683 19,4341 t+2

ER 0,1389 0,1320 0,1087 0,1369 0,1312 0,1093 t+3

CVaR -0,0078 -0,0052 -0,0059 -0,0071 -0,0049 -0,0062 t+3

VaR -0,0021 -0,0006 -0,0018 -0,0024 -0,0003 -0,0025 t+3

Std 0,0382 0,0315 0,0293 0,0372 0,0308 0,0294 t+3

MAD 0,0082 0,0070 0,0066 0,0080 0,0067 0,0066 t+3

sharpe 3,6770 4,2210 3,7317 3,7196 4,3025 3,7323 t+3

ER/CVaR 18,7294 27,3295 18,7409 20,0132 28,8811 18,2466 t+3

Bench funds CVaR 12 CVaR FTR CVaR 36 MAD 12 MAD FTR MAD 36

ER 0,1328 0,1257 0,1276 0,1331 0,1242 0,1214 at

CVaR -0,0098 -0,0032 -0,0031 -0,0096 -0,0030 -0,0035 at

VaR -0,0036 -0,0004 0,0009 -0,0032 0,0004 0,0006 at

Std 0,0364 0,0261 0,0255 0,0362 0,0259 0,0238 at

MAD 0,0079 0,0055 0,0052 0,0078 0,0055 0,0051 at

sharpe 3,7399 4,9322 5,1839 3,7390 4,9233 5,5075 at

ER/CVaR 15,6837 46,4803 60,2874 15,6269 48,1387 106,6950 at
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In another run we used a longer sample (starting in the mid 90ties) for the Benchmark funds and 

found that the decrease in risk with the FTR was even more impressive than with the HFI sample 

(that starts in June 1998). Interestingly also the relationship between estimation window and risk / 

return changed: the highest return was achieved with the longest estimation window and the lowest 

risk with the shortest one. But as there is only a very limited number of funds available for the years 

1995 and 1998, it is hard to generalize the result.  

 

The outcome of these experiment clearly justifies further research where individually created peer 

indices like described in section 2.6.4 can be used to fill up the track record or where the 

optimization algorithms works completely based on the factor model representation return. The only 

drawback of this method is that the weights still fluctuate too much. As argued in section 3.4.4 a 

minimum transaction lot constraint may be useful to deal with this problem.  

 

3.4.6 Conclusion 

 
The tail drop, that indicates that there is a systematic compensation for tail risk, can be observed on 

a weak (in terms of magnitude) but very consistent basis. In sample it is possible to trim the return 

distribution of a portfolio to whatever shape wished, but out of sample the use of the risk measure 

does not make a difference at all. Therefore we did not consider a CVaR/MAD constraint for further 

experiments. 

 

As anticipated the performance deteriorates if the weights get applied later, but there are ways to 

compensate for this effect. To use a longer time horizon or to fill up the track record decreases the 

risk. A shorter time window boosts the expected return. To unsmooth the return series does help 

neither in decreasing the risk nor in increasing the return. To impose a turnover constraint seems to 

have no significant effect on the out of sample performance, but leads to more executable portfolio 

adjustments. On fund level a minimum transaction lot, a minimum investment constraint and the 

definition of a core portfolio seem to be necessary to get practicable results.  

 

It would be recommendable to recalculate the outcomes with different subsamples (maybe along the 

hedge fund strategies and for volatile and calm periods) and with additional databases, as we 

sometimes find dissenting results for our small group of samples. Nonetheless we can recommend 

the use of optimization techniques in general, the use of constraints, to fill up the track record of 

younger funds and to recheck the portfolio adoptions with the latest figures before executing.  
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4 Summary 
 

In chapter 1 we motivated the topic of the thesis by the growing size of hedge fund industry and the 

increased importance of hedge funds for institutional investors. We argued that most institutional 

investors do not have the capacity to deal with the problems that go along with investing in hedge 

funds, that they should better use intermediation of specialists like funds of hedge funds, and that 

such specialists should take advantage of quantitative techniques proposed in academic literature.  

 

The main problems we identified in section 2.1 were non linear dependencies between funds and 

risk factors, non normal distributed fund and risk factor returns and in general little and sometimes 

unreliable quantitative data. In section 2.2 we found in a comparison of the two databases we used, 

that the Benchmark database is biased towards more defensive fund. Also we proposed positive tail 

correlation as explanation for the fact that aggregated hedge fund data shows heavy left tails, 

although the parameters of skewness and excess kurtosis seem to be randomly distributed around 

zero on fund level in both databases. After briefly presenting some filtering approaches in section 2.3 

we discussed the problem of autocorrelated returns in section 2.4. We found high autocorrelation in 

both databases and argued that this is, besides the violation of the random walk hypothesis, a 

problem because it goes along with a higher probability of a sharp drop in returns. We presented and 

illustrated a method to “unsmooth” the return series, but concluded that this technique is not useful 

in our context. At the end of this section we found performance persistence also in manger skill 

measured relative to a peer group. 

 

Factor models are a central topic of this thesis and they were discussed in section 2.5. First we 

motivated to use them in filling up short track records because a better estimation of a funds risk 

profile can be obtained. Then we summarized different risk factors considered in literature and 

concluded that there is no reason why to exclude one of them in an automated model selection 

procedure. Next we presented and illustrated some techniques how to model the dependencies 

among the risk factors in a very flexible manner, but concluded that further research is needed to use 

the modeled dependencies for scenario generation. After briefly summarizing some other techniques 

to model nonlinear dependencies we focused on the option structure approach. We discussed 

several methods to implement the option structure approach and concluded that the usage of a 

bilinear function is best suited, because it is not dependant on certain very specific real option prices 

and manager skill can be interpreted as the ability to create option like returns at a certain price. We 

recommended using a call, a put and a straddle profile and illustrated the flexibility of the approach 

by computing pseudo copulas. With the next topic, principal component analysis, we replicated 
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results of two papers but came to different conclusions: We argued that only the first principal 

component is relevant and that the increase of variance explained in the last years comes from a 

consolidation in hedge fund industry. In the last part of this section we had to admit that, although 

we were able to generate useful results when applying the option structure approach by hand having 

prior information about the fund, the option structure approach fails with automatic model 

selection. We proposed to use a very robust approach for automatic model selection at this stage but 

strongly recommended future research in this area.  

 

At the beginning of section 2.6 we motivated the usage of qualitative data by encouraging results 

from literature. Then we proposed ways how to come up with a proximity matrix out of the 

qualitative data and illustrated the way cluster analysis works by using different return characteristics 

for clustering. Concluding, we proposed a procedure to create individual peer indices for hedge funds 

by finding the n-most similar funds based upon qualitative and quantitative data. We recommend 

using principal component analysis to extract the information out of the set of peer funds.  

 

The first section of chapter 3 discussed and illustrated different risk measures that can be used to 

account for non-normal returns. We concluded that a combination of volatility and Value-at-Risk is 

the best approach because most investors are used to deal with these measures and because the 

combination of a dispersion- and a quantile measure is able to describe a distribution quite well. For 

computational reasons we recommended to use CVaR and mean absolute deviation on fund level 

instead. In section 3.2 we presented several linear and logical constraints that can be useful, and 

section 3.3 provided a flow diagram to illustrate the complexity of the integration of different 

filtering, data enhancement and optimization techniques. We concluded that it is not feasible to 

evaluate all possible combinations and provided the outcome of some first experiments with rolling 

optimization in section 3.4.  

 

First we found that in sample an optimization with respect to a dispersion measure always leads to a 

higher return and a heavier fat tail than an optimization with respect to a quantile measure, given 

both distributions have the same dispersion coefficient. In the second setting we did not use any 

data enhancement technique either and evaluated the out of sample influence of different 

optimization and evaluation parameter by simultaneously calculating 81 rolling portfolios. Also we 

found that a higher lag in applying the optimized weights leads to lower return, that a longer 

optimization window leads to lower return and lower risk and that a higher required return in the 

optimization leads to higher return and higher risk also out of sample. These findings did not come as 

a surprise. However, a little surprising and also disappointing was that the choice of the risk measure 
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did not make any significant difference in the out of sample, in the return, in the risk, nor in the 

shape of the distribution. In the next setup we used “unsmoothed” returns to do the optimization 

and applied the weights to the observed returns and concluded that there is no advantage in doing 

so. 

 

The main problem with the above settings was that the weights fluctuated quite heavily. Therefore 

we considered a turnover constraint in the next setup and found that it does not deteriorate the out 

of sample performance but stabilizes the weights. Another way to control for erratic changes of 

weights tested was the resampling technique, and here we also found considerable meliorations on 

index level. Unfortunately we had to conclude that both techniques are still insufficient on fund level. 

In the last setup we filled up the track record of funds that had a short track record and found 

impressive reductions in risk and increase in return. As the 81 rolling portfolios were calculated in all 

but the resampling setting, the findings can be considered quite robust.  

 

As already indicated, not all methods and combination of methods could be tested or worked in the 

way we liked them to do. Therefore there is much room for future research. Sine the results of filling 

up track records of younger funds were so successful we suggest the following issues: 

 Find a procedure for automatic model selection with lagged factors, higher order term and 

option structures. Maybe limits on the betas and a pre screening with rank correlation or 

qualitative data help. 

 Test the suggested individual peer index approach as proposed in section 2.6.4 on a broader 

basis.  

 Use only the risk adjusted returns from the factor model for the optimization. 

 

Other topics that are very important from our point of view are: 

 Add a minimum investment and a minimum transaction lot constraint in the optimization. 

From our point of view this is the only way to guarantee stable weights on fund level. As 

these restrictions cannot be implemented with simple linear constraints we did not consider 

them at this stage.  

 Program a real world evaluation were not only lags in applying weights but also lockup and 

notice periods and early redemption fees are considered. 

 Consider FX risk. We restricted our analysis on USD denominated funds. 

 

Other suggestions are: 
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 Account for illiquidity not via unsmoothing the return series, but via simulating sharp drops. 

This would need deeper research about when and how heavily to assume these sharp drops. 

Another related topic would be to find better measures of illiquidity than autocorrelation. 

 Use peer group ranking as measure of manager skill. If the peer group is selected carefully all 

managers should be exposed to the same risks and the researcher is not forced to apply a 

certain factor model, which may not reflect the risk inherent in a strategy properly.  

 Filter funds according to manager skill or according to stability of parameters before 

optimizing. 

 As there seems to be predictability in lagged risk factors one could test their usability in 

realistic asset allocation decisions, were the weights get applied two months later at the 

earliest. 

 Try to use other structure detecting methods than classical PCA to find hidden risk factors, 

like kernel PCA. 

 Refine the calculation of the proximity matrix of the qualitative data by defining distances 

between attributes within a certain category. 

 Find better way to integrate quantitative and qualitative data in the cluster analysis than 

simply adding the proximity matrixes.  

 Use more modern clustering techniques like fuzzy clustering and try to find predictability in 

being part of a certain cluster. 

 Define a core portfolio around which new funds can be allocated. As the outcome of 

experiments of this kind will heavily depend on the individual core portfolio, the results will 

not be easy to generalize. But maybe there are ways to do so. 

 

Concluding, we want to state that investment in general is rather an art but an exact science and 

therefore there always will be room to question quantitative methods. This holds true even more in 

the case of hedge funds because of in-transparency and little and unreliable quantitative data. And at 

the end of the day qualitative research, good networking to get into closed funds, asking the right 

questions in the due diligence and opening the “black box” remain the dominant part of an fund of 

hedge funds success, but from our point of view quantitative analysis can help to reduce data 

complexity, help to assess risk better and give guidelines via optimal allocations for certain 

assumptions.  
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5 Appendix 
 

 

5.1 Black Scholes VBA Code 
 

'All on this sheet (c) Paul Wilmott 2004 
'Pls feel free to use as long as credit is given 
 
Function PutOption(asset, Vol, DivYld, intrate, strike, expiry) 
    PutOption = -asset * Exp(-DivYld * expiry) * N1m(asset, Vol, DivYld, intrate, strike, expiry) _ 
        + strike * Exp(-intrate * expiry) _ 
        * N2m(asset, Vol, DivYld, intrate, strike, expiry) 
End Function 
 
Function CDFNormal(x As Double) As Double 
Dim d As Double 
Dim a1 As Double 
Dim a2 As Double 
Dim a3 As Double 
Dim a4 As Double 
Dim a5 As Double 
d = 1 / (1 + 0.2316419 * Abs(x)) 
a1 = 0.31938153 
a2 = -0.356563782 
a3 = 1.781477937 
a4 = -1.821255978 
a5 = 1.330274429 
CDFNormal = 1 - 1 / Sqr(2 * 3.1415926) * Exp(-0.5 * x * x) * _ 
                                  (a1 * d + a2 * d * d + a3 * d * d * d _ 
                                  + a4 * d * d * d * d + a5 * d * d * d * d * d) 
If x < 0 Then CDFNormal = 1 - CDFNormal 
End Function 
 
Function d1(asset, Vol, DivYld, intrate, strike, expiry) 
d1 = (Log(asset / strike) + (intrate - DivYld + 0.5 * Vol * Vol) * expiry) / Vol / Sqr(expiry) 
End Function 
 
Function d2(asset, Vol, DivYld, intrate, strike, expiry) 
d2 = d1(asset, Vol, DivYld, intrate, strike, expiry) - Vol * Sqr(expiry) 
End Function 
 
Function N1m(asset, Vol, DivYld, intrate, strike, expiry) 
N1m = CDFNormal(-d1(asset, Vol, DivYld, intrate, strike, expiry)) 
End Function 
 
Function N2m(asset, Vol, DivYld, intrate, strike, expiry) 
N2m = CDFNormal(-d2(asset, Vol, DivYld, intrate, strike, expiry)) 
End Function 
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5.2 MATLAB Code for Index Resampling 
 

% written by Wolfgang Kappel 

% (C) Benchmark Capital Management GmbH 

 
%% Eingaben 
cd('C:\Users\Wolfgang\Documents\MATLAB\PFOptimizationArbeit') 
clear; close all; 
% Daten Einlesen 
D=xlsread('UniversE.xls',1); 
[D,headertext]=xlsread('UniversE.xls',1); 
Time=headertext(1,:); 
Time(1:5)=[]; 
Name=headertext(:,1); 
Name(1)=[]; 
Region=headertext(:,3); 
Region(1)=[]; 
%Region=char(Region); 
OpenClosed=headertext(:,4); 
OpenClosed(1)=[]; 
%OpenClosed=char(OpenClosed); 
Currency=headertext(:,5); 
Currency(1)=[]; 
%Currency=char(Currency); 

  
% Simulations Parameter einlesen, bzw eingeben 
Eing=xlsread('UniversE.xls',2); 
AnzFonds=Eing(1,:); 
WWOfset=Eing(2,:); 
AACl=Eing(3,1); 
LTrack=Eing(4,1); 
FpACl=Eing(5,1);  % funds pro assetklasse 
Iter=Eing(6,1); 
%Iter=1; 
Beginn=Eing(7,1); 
%Beginn=1; 
Ende=Eing(8,1); 
%Ende=1; 

  
% Info Vektoren einrichten 
for i=1:AACl 
    StrategyNames(i,1)=headertext(WWOfset(i)+2,2); 
end 
StrategyNames=StrategyNames'; 
Regionen(1)=Region(1); 
r=1; 
for i=1:size(Region) 
    if sum(ismember(Regionen,Region(i)))==0 
        r=r+1; 
        Regionen(r)=Region(i); 
    end 
end 

  

  

  
%% Iterationen 
for monat=Beginn:Ende 
    monat 
    for h=1:Iter 
    %% Zufallsmatrix 
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        for i=1:AACl 
            %nur ein fund in der asset klasse 
            if sum(~isnan(D(WWOfset(i):WWOfset(i)+AnzFonds(i))))==1 
                j=1; 
                ZFM(j,i)=floor(rand*AnzFonds(i)); 
                l=0; 
                while l<1 
                    if 

isnan(D(WWOfset(i)+ZFM(j,i),monat))||isnan(D(WWOfset(i)+ZFM(j,i),monat+LTra

ck))==1 
                        ZFM(j,i)=floor(rand*AnzFonds(i)); 
                        l=0; 
                    else 
                        l=2; 
                    end 
                end 
                for j=2:FpACl 
                    ZFM(j,i)=ZFM(1,i); 
                end 
            % checken ob ZFZ schon mal vorkommt usw 
            else 
                for j=1:FpACl 
                    ZFM(j,i)=floor(rand*AnzFonds(i)); 
                    if j ~= 1 
                        l=0; 
                        while l<1 
                            for k=1:j-1 
                                if 

isequal(ZFM(j,i),ZFM(k,i))||isnan(D(WWOfset(i)+ZFM(j,i),monat))|| 

isnan(D(WWOfset(i)+ZFM(j,i),monat+LTrack))==1 
                                    ZFM(j,i)=floor(rand*AnzFonds(i)); 
                                    l=0; 
                                else 
                                    l=2; 
                                end 
                            end 
                        end 
                    else 
                        % only funds that are alive over the observed 

period 
                        l=0; 
                        while l<1 
                            if 

isnan(D(WWOfset(i)+ZFM(j,i),monat))||isnan(D(WWOfset(i)+ZFM(j,i),monat+LTra

ck))==1 
                                    ZFM(j,i)=floor(rand*AnzFonds(i)); 
                                    l=0; 
                            else 
                                    l=2; 
                            end 
                        end 
                    end 
                end 
            end 
        end 
        % nr (n-ter fund in der matrix D) der zufällig ausgewählten funds 
        % und info zu funds 
        for i=0:AACl-1 
            for k=1:FpACl 
                NF(i*FpACl+k)=WWOfset(i+1)+ZFM(k,i+1); 
            end 
        end 
        RegWReg=Region(NF,1); 
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    %% Performance, Index und Cov Matrix 
        for i=0:AACl-1 
            for k=1:FpACl 
                

perf(i*FpACl+k,1:LTrack)=D(WWOfset(i+1)+ZFM(k,i+1),monat:monat+LTrack-1); 
                if sum(sum(isnan(perf)))>0 
                    ERRORADRESS=[WWOfset(i+1)+ZFM(k,i+1) , monat+LTrack-1 ] 
                    error('bei den performances stimmt was nicht') 
                end 
            end 
            for m=1:LTrack 
                index(i+1,m)=mean(perf(i*FpACl+1:i*FpACl+FpACl,m)); 
            end 
        end 
        avperfIX=(prod(index(:,:)+1,2).^(12/LTrack)-1)'; 
        covM=cov(index'); 
        save avperfIX avperfIX 
        save covM covM 
    %% Optimization 
        A(1,1:AACl)=1; 
        A(2,1:AACl)=-1; 
        A(3:2+AACl,1:AACl)=eye(AACl,AACl)*-1; 
        b(1,1)=1; 
        b(2,1)=-1; 
        b(3:2+AACl)=0; 
        startpoint(1:AACl)=1/AACl; 
            options = optimset; 
            % Modify options setting 
            options = optimset(options,'Display' ,'off'); 
            options = optimset(options,'TolFun' ,0.0001); 
            options = optimset(options,'TolX' ,0.0001); 
            options = optimset(options,'LargeScale' ,'off'); 
            options = optimset(options,'NonlEqnAlgorithm' ,'dogleg'); 
            options = optimset(options,'TolCon' ,0.0001); 
        x=fmincon(@objfun,startpoint,A,b,[],[],[],[],@nonlconstr,options); 
        weights(h,:)=x; 
        PFperf(h)=x*avperfIX'; 
        % fund weights 
        for i=0:AACl-1 
            for k=1:FpACl 
                FW(i*FpACl+k)=(1/FpACl)*x(i+1); 
            end 
        end 
        % weights für info vektoren 
        for i=1:size(Regionen,2) 
            RegW(h,i)=sum(FW'.*ismember(RegWReg,Regionen(i))); 
        end 
    end 
    % gemittelte werte ermitteln 
    for n=1:AACl 
        avweights(monat-Beginn+1,n)=mean(weights(1:Iter,n)); 
    end 
    avPFperf(monat-Beginn+1)=mean(PFperf); 
    medPFperf(monat-Beginn+1)=median(PFperf); 
    for n=1:size(Regionen,2) 
        avRegW(monat-Beginn+1,n)=mean(RegW(1:Iter,n)); 
    end 
end 
% mittlere performances der betrachteten peer groups ermitteln 
for i=1:AACl-1 
    IXperf(i,:)=nanmean(D(WWOfset(i):WWOfset(i+1)-1,:)); 
end 
IXperf(AACl,:)=nanmean(D(WWOfset(AACl):size(D,1),:)); 
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%% Ausgabe 
% … 

 
function f = objfun(x) 
load avperfIX  
f = -x*avperfIX'; 

 
function [c,ceq] = nonlconstr(x) 
load covM 
c = []; 
ceq = [sqrt(x*covM*x'.*12) - 0.035]; 

 

 

5.3 MATLAB Code for the Dissimilarity Matrix for qualitative Data 
 

% (C) Wolfgang Kappel 

% Please feel free to use as long as credit is given  

  
function [qualiMJ, qualiMM, qualiMP] = QualiMatrixWeighted (DATA, weights) 

  
% the DATA structure has to be coded in integers 
% missing values replaced by 9999901, 9999902 etc. 
% weights: one entry for each variable (e.g. strategy and region -> 2  
% entries) and one entry for missing values 

  

  
uni = unique ([DATA.FundStrategy, DATA.FundRegion, DATA.FundPeerIndex, ... 
    DATA.FundDirection, DATA.FundStatus, DATA.FundMarketRisk, 

DATA.FundTradingStr, ... 
    DATA.FundMatureEmer, DATA.FundCurrency]); 
uni(isnan(uni)) = []; 
uni1            = floor(uni./100); 
uni1            = [uni1, uni]; 

  
uni2 = unique(uni1(:,1)); 
weightsV=[]; 
for i=1:max(size(uni2)) 
    weightsA = []; 
    weightsA( 1:sum(uni1(:,1)==uni2(i)) , 1) = weights(i); 
    weightsV = [weightsV;weightsA]; 
end 

     
le = size(uni,1); 
n = size(DATA.Code,1); 
qualiV = zeros(le,n); 
for i=1:n 
    qualiV(:,i) = (ismember(uni, [DATA.FundStrategy(i), DATA.FundRegion(i), 

... 
    DATA.FundPeerIndex(i), DATA.FundDirection(i), DATA.FundStatus(i), ... 
    DATA.FundMarketRisk(i), DATA.FundTradingStr(i), DATA.FundMatureEmer(i), 

... 
    DATA.FundCurrency(i)])); 
end 

  
qualiVW = qualiV .* repmat(weightsV,1,size(qualiV,2)); 

  
% Jaccard Coefficient (NaN is a zero) 
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qualiVJ                  = qualiVW; 
qualiVJ(uni1(:,1)>100,:) = []; 
qualiMJ                  = pdist(qualiVJ','jaccard'); 
qualiMJ                  = squareform(qualiMJ); 
% calculate probabilities 
uni1(:,3) = sum(qualiV,2)/n; 
% get sume of weights 
f       = sum(weights(1:end-1)); 
for i=1:size(uni2,1)-1 
    g = find(uni1(:,1)==uni2(i)); 
    h(i) = {g}; 
end 
qualiMM = ones(n); 
qualiMP   = ones(n); 
for i=1:n 
    for j=i+1:n 
        a = sum (qualiVJ ( qualiVJ(:,i) == qualiVJ(:,j) , i )); 
        qualiMM(i,j) = a / f; 
        qualiMM(j,i) = qualiMM(i,j); 
        % find the values corresponding to the NaNs 
        o = 0; 
        for k=1:size(uni2,1)-1 
            m = cell2mat(h(k)); 
            d = (qualiV(m , i)+qualiV(m , j)); 
            if sum(d,1) == 1 
                d = sum (d.*weights(k).*uni1(m,3) ,1); 
            else 
                d = 0; 
            end 
            o = o+d; 
        end 
        % get their probability 
%        e = sum(uni(ismember(uni(:,1),d),2)); 
        qualiMP(i,j) = (a+o) / f; %change if add more variables 
        qualiMP(j,i) = qualiMP(i,j); 
    end 
end 

  
% qualiMJ = ones(n) - qualiMJ; 
qualiMM = ones(n) - qualiMM; 
qualiMP = ones(n) - qualiMP; 

  
% (C) Wolfgang Kappel  

 

5.4 MATLAB Code for Stepwise Regression 
 

% (C) Wolfgang Kappel 
% Please feel free to use as long as credit is given  

  
function [fund_filledup, replicated, betasOUT, NAMEREG, ERROR] = 

fillup_stepwise_XL(fund, indices, lengthTR, NAMES) 

  
% you can change settings by changing the code easily!!! 

  
% performance and indices are in real numbers (i.e. 0.05 and not 5%),  
% is sorted in collumns (i.e. one culumn is one performance series of one 

fund) 
% is not a loss function (i.e. positive performance is a positive number) 
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% performance is a single timse series of one fund 
% indices are several indices on which you want to regress the fund  

  
% lenghtTR is the total lenth the funds track reckord shall have after the 

procedure 

  
% NAMES is the vector of te regressor names, it's a 1xn vector 
% ------------------------------------------------------------------------- 

  
% remoove the regressors which don't have enought data 
neededDATAmax = find( isnan(fund)==0 , 1, 'last' ); 
neededDATAmid = find( isnan(fund)==0 , 1, 'first' ); 
neededDATAmin = neededDATAmax-lengthTR+1; 
neededDATA    = (neededDATAmin:1:neededDATAmax); 
clearDATA     = find(sum ( isnan (indices          (neededDATA,:))) > 0); 
indices ( : , clearDATA ) = []; 
NAMES   ( : , clearDATA ) = []; 

  
% stepwise regression CHANGE PARAMETER HERE 

  
[b,se,pval,inmodel, stats]=stepwisefit(indices, fund, 'display', 'off', ... 
    'maxiter', 3, ... 
    'penter', 0.01, ... 
    'premove', 0.025); 

  
indicesincluded = sum (inmodel); %DEBUG 
betasOUT        = b   (inmodel)'; 
NAMEREG         = NAMES(inmodel); 

  
% calculate the replicated series 
EXPLindices = indices(neededDATA,inmodel); 
betas       = b(inmodel); 
replicated  = EXPLindices * betas + stats.intercept; 

  
%  check if outcome is plausible 
ERROR = 0; 
if  any (abs(betas) > 5) || any (abs(replicated) > 0.3) && ~any(abs(fund) > 

0.3) || indicesincluded == 0 
    ERROR = 1; 
    % be less restrictive on penter, but take only one index 
    [b,se,pval,inmodel, stats]=stepwisefit(indices, fund, 'display', 'off', 

... 
        'maxiter', 1, ... 
        'penter', 0.1, ... 
        'premove', 0.25); 
    indicesincluded = sum (inmodel); %DEBUG 
    betasOUT        = b   (inmodel)'; 
    NAMEREG         = NAMES(inmodel); 
    EXPLindices = indices(neededDATA,inmodel); 
    betas       = b(inmodel); 
    replicated  = EXPLindices * betas + stats.intercept; 
end 

  
% fill up the fund history 
if indicesincluded == 0 
    fund_filledup = fund; 
else 
    fund_filledup = fund; 
    fund_filledup( neededDATAmin:1:neededDATAmid-1 ,1) = replicated ( 

1:1:neededDATAmid-neededDATAmin ,1); 
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end 

     
% (C) Wolfgang Kappel  

 

5.5 Metrics for the pdist Function 
 

Given an m-by-n data matrix X, which is treated as m (1-by-n) row vectors x1, x2, ..., xm, the 

various distances between the vector xr and xs are defined as follows: 

 Euclidean distance 

 

 Standardized Euclidean distance 

 

where D is the diagonal matrix with diagonal elements given by , which denotes the 

variance of the variable Xj over the m objects. 

 Mahalanobis distance 

 

where V is the sample covariance matrix.  

 City Block metric 

 

 Minkowski metric 

 

Notice that for the special case of p = 1, the Minkowski metric gives the City Block 

metric, and for the special case of p = 2, the Minkowski metric gives the Euclidean 

distance. 

 Cosine distance 

 

 Correlation distance 
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where 

 

 and  

 

 Hamming distance 

 

 Jaccard distance 

 

(http://www.mathworks.com) 

/access/helpdesk/help/toolbox/stats/index.html?/access/helpdesk/help/toolbox/stats/pdist.html&h

ttp://www.mathworks.com/cgi-

bin/texis/webinator/search/?db=MSS&prox=page&rorder=750&rprox=750&rdfreq=500&rwfreq=500

&rlead=250&sufs=0&order=r&is_summary_on=1&ResultCount=10&query=pdist&submitButtonNam

e=Search) 

 

5.6 MATLAB Code for Mean – Variance Optimization with a CVaR 

Constraint 
 

% (C) Wolfgang Kappel  
% Please feel free to use as long as credit is given  

  
function [weights, ER, CVaR, VaR, Vola, MAD, x] = 

maxER_Vola_CVaR(performance, targetvola, targetCVaR, alpha, lbx, ubx, AA , 

bb) 

  
% performance is in real numbers (i.e. 0.05 and not 5%),  
% is sorted in collumns (i.e. one culumn is one performance series of one 

fund) 
% is not a loss function (i.e. positive performance is a positive number) 

  
% targetvola is yearly (0.13 for 13% yearly volatility) 
% targetCVaR is monthly and a negative number!!! (-0.02 for -2% 

expectedloss) 
% alpha is for example 0.9 

  
if nargin == 4 
    lbx = 0; 
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    ubx = 1; 
    AA  = []; 
    bb  = []; 
end 

  
y          = performance .* (-1);    % make it a LOSSFUNCTION 
targetCVaR = - targetCVaR;           % make it a LOSSFUNCTION 

  
ni     = size(performance,2); 
ns     = size(performance,1); 
mue    = mean (performance); 

  
wx  = 2+ns : 1+ns+ni; 
oox = 1+ns+ni; 

  
if ~isempty(AA) 
    AAA       = zeros(size(AA,1),oox); 
    AAA(:,wx) = AA; 
    AA        = AAA; 
end 

  
%% Constraints 

  
f                      = zeros(1,1+ns+ni);     
f( 1, wx )             = mue;            % for the xi (weights); 

  
% Contraites lb and ub  
% -1000 < gamma < 1000 and (xi, zi) => 0 
ub                   = zeros(1+ns+ni,1); 
ub(1)                = 1000; 
ub(2:1+ns,1)         = 1;                    % zi < 1 
ub(wx,1)             = ubx;                    % xi < 1 or another upper 

bound 

  
lb                   = zeros(1+ns+ni,1); 
lb(1)                = -1000; 
lb(2:1+ns,1)         = 0;                    % zi > 0 
lb(wx,1)             = lbx;                    % xi > 0 or another lower 

bound 

  
% Contraintes A*x < b 
% gamma + h*z1 + ... + h*zns + x1 + ... + xni < targetCVaR 
h                      = 1/(ns*(1-alpha));     % constant term that is 

multiplied with the sum 
A                      = zeros(ns+1,1+ns+ni); 
A(1,1)                 = 1;                    % for gamma=1 
A(1,2:1+ns)            = h;                    % to get the z (auxiliar 

variable) multiplied with h 
% for i=1:ns gamma + zi + x' * yi +  > 0 
A(2:ns+1,1)            = -1;                    % gamma 
A(2:ns+1,2:1+ns)       = -eye(ns);              % zi 
A(2:ns+1,wx) = y;                     % xi 
% A                      = -A;                   % from > to < 
b                      = zeros(ns+1,1); 
b(1)                   = targetCVaR; 

  
A       = [A;AA];               % add constraints from input 
b       = [b;bb]; 

  
% Constraintes Aeq*x = beq 
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% to ensure min return und sum(xi)=1 
beq                  = 1; 
Aeq                  = zeros(1,1+ns+ni); 
Aeq(1,wx)            = 1; 

  
covM1 = zeros(1+ns,1+ns); 
covM2 = zeros(1+ns,ni); 
covM3 = zeros(ni,1+ns); 
covM4 = cov(performance); 
covM  = [covM1 covM2;covM3 covM4]; 
function [c,ceq] = myconstr(x) 
c = []; 
ceq = sqrt(x'*covM*x.*12) - targetvola; 
end 

              
%% Optimization 

  
[weights] = maxER_Vola(performance, targetvola, lbx, ubx, AA , bb); 

  
startpoint                 = zeros(1+ns+ni,1); 
startpoint(1,1)            = 0.01; 
startpoint(wx,1)           = weights; 

         
options = optimset; 
options = optimset(options,'Display' ,'off'); 
options = optimset(options,'LargeScale' ,'off'); 

  
[x] = fmincon(  @(x)-f*x  ,startpoint,A,b,Aeq,beq,lb,ub,@myconstr,options); 

  
weights(1:ni,1) = x(wx,1); 
ER      = ( 1 + weights' * mue')^12 - 1; 
PFperf  = performance * weights; 
VaR     = sort(PFperf); 
VaR10   = max(floor(size(PFperf,1)/10) , 1); 
CVaR    = mean(VaR(1:1:VaR10,1),1); 
VaR     = VaR (VaR10,1); 
Vola    = sqrt(weights' * covM4 * weights * 12); 
MAD     = mad(PFperf); 

  
end 

  
% (C) Wolfgang Kappel  

 

5.7 MATLAB Code for Portfolio Optimization with a CVaR and a MAD 

Constraint 
 

% (C) Wolfgang Kappel  
% Please feel free to use as long as credit is given  

  
function [weights] = maxER_MAD_CVaR(performance, targetMAD, targetCVaR, 

alpha, lbx, ubx, AA , bb) 

  
% performance is in real numbers (i.e. 0.05 and not 5%),  
% is sorted in collumns (i.e. one culumn is one performance series of one 

fund) 
% is not a loss function (i.e. positive performance is a positive number) 
% targetreturn is yearly (0.13 for 13% yearly return) 
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if nargin == 4 
    lbx = 0; 
    ubx = 1; 
    AA  = []; 
    bb  = []; 
end 

  
y            = - performance;    % make it a LOSSFUNCTION 
targetCVaR   = - targetCVaR;           % make it a LOSSFUNCTION 
ns           = size(y,1);   % number szenarios 
ni           = size(y,2);   % number of assets 
mue          = mean (performance); 
mmue         = repmat(mue,ns,1); 

  
wx  = (1        :1:ni); 
ax  = (ni+1     :1:ni+ns); 
bx  = (ni+1+ns  :1:ni+ns*2); 
zx  = (ni+1+ns*2:1:ni+ns*3); 
gx  = (ni+1+ns*3); 
oox = ni+ns*3+1; 

  
if ~isempty(AA) 
    AAA       = zeros(size(AA,1),oox); 
    AAA(:,wx) = AA; 
    AA        = AAA; 
end 

  
%% Objective Function f and constraits 

  
f          = zeros(1,oox);     
f( 1, wx ) = - mue;            % for the xi (weights); 

  
% Contraites lb and ub  
% -1000 < gamma < 1000 and (xi, zi) =>0 
ub        = ones(oox,1); 
ub(wx,1)  = ubx;                     % or other upper bound for x 
ub(ax,1)  = inf;       
ub(bx,1)  = inf; 
ub(gx,1)  = 1000; 

  
lb        = zeros(oox,1); 
lb(wx,1)  = lbx;                     % xi > 0 or another lower bound 
lb(gx,1)  = -1000; 

  
% Contraintes A*x < b 
h             = 1/(ns*(1-alpha));     % constant term that is multiplied 

with the sum 
A             = zeros(ns+1,oox); 
A(1,gx)       = 1;                    % for gamma=1 
A(1,zx)       = h;                    % to get the z (auxiliar variable) 

multiplied with h 
% for i=1:ns gamma + zi + x' * yi +  > 0 
A(2:ns+1,gx)  = -1;                    % gamma 
A(2:ns+1,zx)  = -eye(ns);              % zi 
A(2:ns+1,wx)  = y;                     % xi 
b             = zeros(ns+1,1); 
b(1)          = targetCVaR; 

  
A       = [A;AA];               % add constraints from input 
b       = [b;bb]; 
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% Constraintes Aeq*x = beq 
% to ensure min return and sum(xi)=1 
% yt - zt - sum((rit - müi)*xi) = 0 
beq            = zeros(ns+2,1); 
beq(1,1)       = 1; 
beq(2,1)       = targetMAD*ns; 
Aeq            = zeros(2+ns,oox); 
Aeq(1,wx)      = 1;                     % sum(xi)=1 
Aeq(2,ax)      = 1;               
Aeq(2,bx)      = 1;               
Aeq(3:2+ns,ax) = eye(ns); 
Aeq(3:2+ns,bx) = -eye(ns); 
Aeq(3:2+ns,wx) = performance - mmue; 

  
%% Optimization 

  
options                  = optimset('Largescale','on'); 
x = linprog(f,A,b,Aeq,beq,lb,ub,[],options); 

  

  
%Optimal portfolio 
weights(1:ni,1) = x(wx,1); 

  
% (C) Wolfgang Kappel  
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