

DIPLOMARBEIT

Titel der Diplomarbeit

Web Services Implementation of Option Valuation

Band 1 von 3 Bänden

Verfasser

Alexander Hopfgartner

angestrebter akademischer Grad
Magister der Sozial- und Wirtschaftswissenschaften (Mag.rer.soc.oec.)

Wien, 2008

Studienkennzahl lt. Studienblatt: A 175

Studienrichtung lt. Studienblatt: Wirtschaftsinformatik

Betreuer: Univ.-Prof. Dipl.-Ing. Dr. Engelbert Dockner

ZUSAMMENFASSUNG

Die Diplomarbeit beschreibt die am häufigsten verwendeten Modelle und Methoden für die
Bewertung von europäischen und amerikanischen Standardoptionen, sowie einige der
bekanntesten exotischen Optionen. Diese Modelle bilden die Basis zur Entwicklung und
Realisierung von Webservices welche die Bewertung durchführen.

Im ersten Abschnitt wird der Begriff Option definiert, und das Modell für Vermögenswerte,
welches die Basis bildet, umrissen. Der nächste Teil ist der fundamentalen partiellen
Differenzialgleichung und deren Ableitung gewidmet, die die Entwicklung aller Derivate
beschreibt, deren Profit von einem einzelnen zugrunde liegenden Vermögenswert abhängt.
Danach werden die binomialen und trinomialen Modelle von Vermögensgegenständen
beschrieben und die effiziente Bewertung von europäischen beziehungsweise amerikanischen
Optionen anhand von binomialen und trinomialen Bäumen gezeigt. Als nächstes wird die
Konstruktion von trinomialen Bäumen im Einklang mit den Marktpreisen europäischer
Standardoptionen und deren Nutzung zur Bewertung von pfadabhängigen exotischen
Optionen, wie Barrier- oder Lookback-Optionen, dargestellt.

Der zweite Abschnitt befaßt sich mit Webservices und einer Definition des Begriffs
Webservice. Es folgt eine ausführliche Beschreibung der Architektur für Webservices aus
Anwendersicht sowie der notwendigen Interaktionen und Werkzeuge. Danach wird ein
grundlegender Ansatz für die Entwicklung von Webservices aus Entwicklersicht von
Dienstanbietern und Dienstanwendern beschrieben. Dieser erklärt den Lebenszyklus, die
Operatoren, sowie die Interaktionen und Anwendungen, die notwendig sind, um Webservices
im Allgemeinen zu realisieren.

Der dritte Abschnitt zeigt die Anwendung dieser allgemeinen Konzepte und Werkzeuge unter
Verwendung der Java™-Technologie. Der Prozess der Entwicklung und der Implementierung
der Webservices für die Preiskalkulation wird erklärt und mittels kurzer Code-Beispiele
verdeutlicht. Abschließend werden Beispiele dieser Webservices zur Optionsbewertung mit
ihren Ergebnisbäumen bzw. –gittern angeführt.

I

ABSTRACT

This diploma thesis describes the most commonly used models and methods for pricing
standard European and American options, as well as some of the best known exotic options.
These models are the base to develop and implement Web Services that manage the
valuations.

In the first part the term option is defined and the model for asset prices forming the basis is
outlined. The fundamental partial differential equation is derived that describes the evolution
of all derivatives whose payoff depends on a single underlying asset. Then the binomial and
the trinomial models of asset prices are described and it is shown, how European and
American derivatives can be priced efficiently in binomial and trinomial trees, respectively.
Also, it is described how trinomial trees can be constructed to be consistent with the market
prices of standard European options and shown how they can be used to price exotic path-
dependent options such as barrier or look-back options.

The second part introduces Web Services and the term Web Service is defined. A detailed
description of the architecture for Web Services from the operator perspective, as well as
interactions and artifacts is given. Then a basic approach for developing Web Services from
the point of view of the developer of service providers and service requestors is described. It
explains the development lifecycle, operators, interactions and application development
patterns necessary to implement Web Services in general.

In the third part the development approach relates these common concepts and tools to their
application using Java™ technology. The process of creating and implementing the pricing
Web Services is explained and short code samples are given where necessary. Finally,
valuation examples of the pricing Web Service implementation are shown with their output
trees or lattices, respectively.

II

NOTATION

Symbol Description

t time

K strike or exercise price of option

T maturity date of option

usually current date will be 0 and so T will also be time to maturity

S asset price

µ drift of S

σ volatility of S

usually instantaneous standard deviation of returns

r instantaneous continuously compounded interest rate

δ continuous dividend yield on an asset

τ time discrete cash dividend paid

C() European call price

P() European put price

E[] expectation operator

dS infinitesimal increment in asset S

dt infinitesimal increment of time

dz infinitesimal increment in a standard Wiener process during dt

x natural logarithm of S (ln(S))

v risk neutral drift of x

Δt small increment of time

Δx small increment in x

u size of proportional upward move of stochastic variable, or

 subscript indicating upward move of a stochastic variable

d size of proportional downward move of stochastic variable, or

 subscript indicating upward move of a stochastic variable

III

m subscript indicating a central move of a stochastic variable

p probability of transition in a tree

 subscripted by u, m and d to indicate the direction of the transition

N number of time steps in tree

Nj number of nodes above and below current level of asset price

N(x) Standard cumulative normal distribution function evaluated at x

i time step index

j, k usually a state variable level index

H barrier level

Xrebate cash rebate associated with barrier option

Q state price

Fi,j,k path dependent variable value k at node i, j

ni,j number of path dependent variable values at node i, j

exp() ex

IV

TABLE OF CONTENTS
ZUSAMMENFASSUNG ... I

ABSTRACT .. II

NOTATION ... III

TABLE OF CONTENTS .. V

FIGURES .. VIII

TABLES ... IX

PART ONE: OPTION VALUATION MODELS

1 OPTIONS INTRODUCTION .. 1

1.1 GENESIS AND HISTORY .. 1
1.2 OPTIONS DEFINITION ... 1
1.3 CLASSIFICATION .. 2

2 BLACK-SCHOLES WORLD .. 3

2.1 BLACK-SCHOLES MODEL .. 3
2.2 DERIVATION OF THE BLACK-SCHOLES PARTIAL DIFFERENTIAL EQUATION .. 5
2.3 BLACK-SCHOLES FORMULA .. 7
2.4 NUMERICAL TECHNIQUES .. 10

3 BINOMIAL MODEL .. 11

3.1 BASICS OF THE BINOMIAL MODEL ... 11
3.2 GENERALIZATION OF THE BINOMIAL MODEL .. 15
3.3 ADDITIVE BINOMIAL MODEL ... 17

3.3.1 Pricing Underlying Asset Paying a Continuous Dividend Yield ... 18
3.3.2 Pricing Underlying Asset Paying a Known Discrete Cash Dividend .. 19

3.4 BINOMIAL MODEL AND PATH-DEPENDENT OPTIONS ... 20

4 TRINOMIAL TREES AND FINITE DIFFERENCE MODELS .. 22

4.1 TRINOMIAL TREE MODEL .. 22
4.2 FINITE DIFFERENCE MODELS .. 24

4.2.1 Explicit Finite Difference Models ... 24
4.2.2 Implicit Finite Difference Models ... 27
4.2.3 Crank-Nicolson Finite Difference Models ... 31

5 IMPLIED TREES AND EXOTIC OPTIONS .. 34

5.1 BASICS OF THE IMPLIED TREE MODEL ... 34
5.2 IMPLIED STATE PRICES .. 35
5.3 IMPLIED TRANSITION PROBABILITIES .. 36
5.4 EXOTIC OPTIONS AND IMPLIED TREES ... 38

5.4.1 Pricing Barrier Options .. 39
5.4.2 Pricing Look-Back Options ... 40

PART TWO: WEB SERVICES TECHNOLOGY

6 WEB SERVICES ... 46

6.1 WEB SERVICES INTRODUCTION ... 46
6.2 OVERVIEW OF JAVA WEB SERVICES .. 46
6.3 WEB SERVICES DEFINITION ... 46
6.4 WEB SERVICES PROPERTIES .. 47

V

7 WEB SERVICES MODEL ... 48

7.1 OPERATORS OF THE WEB SERVICES MODEL .. 49
7.2 INTERACTIONS OF THE WEB SERVICES MODEL .. 49
7.3 ARTIFACTS OF THE WEB SERVICES MODEL ... 50

8 WEB SERVICES ARCHITECTURE ... 51

8.1 WEB SERVICES PROTOCOL STACK ... 51
8.2 NETWORK LAYER .. 51
8.3 XML-BASED MESSAGING LAYER - SOAP .. 52

8.3.1 SOAP message structure ... 52
8.3.2 SOAP message example .. 53
8.3.3 XML Based Messaging using SOAP ... 54

8.4 SERVICE DESCRIPTION LAYER ... 55
8.4.1 From XML Messaging to Web Services .. 55
8.4.2 Basic Web Service Description ... 56
8.4.3 Full WSDL Syntax ... 56
8.4.4 Complete Web Service Description ... 58

8.5 PUBLICATION AND DISCOVERY OF SERVICE DESCRIPTIONS .. 59

9 WEB SERVICES DEVELOPMENT LIFECYCLE ... 60

9.1 BUILD PHASE ... 60
9.2 DEPLOY PHASE .. 60
9.3 RUN PHASE .. 60
9.4 MANAGE PHASE .. 60

10 DEVELOPING WEB SERVICES ... 62

10.1 SERVICE REGISTRY .. 62
10.2 SERVICE PROVIDER .. 62

10.2.1 Green Field Scenario ... 62
10.2.2 Top-Down Scenario .. 64
10.2.3 Bottom-Up Scenario ... 65
10.2.4 Meet-in-the-Middle Scenario .. 66

10.3 SERVICE REQUESTOR ... 68
10.3.1 Static Binding ... 68
10.3.2 Build-Time Dynamic Binding ... 70
10.3.3 Runtime Dynamic Binding .. 71

PART THREE: JAVA WEB SERVICES IMPLEMENTATION

11 WEB SERVICES AND JAVA TECHNOLOGY .. 73

11.1 WEB SERVICE TOOLS - JAVA 2 PLATFORM .. 73
11.2 J2EE 1.4 SDK ... 73
11.3 JSR 109 - IMPLEMENTING ENTERPRISE WEB SERVICES ... 74
11.4 J2EE WEB SERVICES ... 74
11.5 WORKING WITH JAX-RPC .. 75
11.6 CREATING A WEB SERVICE .. 76

11.6.1 Design and Code the Service Endpoint Interface ... 76
11.6.2 Implement the Service Endpoint Interface .. 77
11.6.3 Write a Configuration File ... 77
11.6.4 Generate the Necessary Mapping Files .. 77
11.6.5 Packaging and Deploying the Service .. 78

11.7 CREATING A WEB SERVICE CLIENT ... 78
11.7.1 Types of Web Service Clients .. 78
11.7.2 Browser-Based Client ... 79

12 PRICING WEB SERVICE ... 80

12.1 SERVICE ENDPOINT INTERFACE ... 80
12.1.1 Designing.. 80
12.1.2 Coding and Implementing .. 80

VI

12.2 CONFIGURING .. 81
12.3 MAPPING ... 81
12.4 PACKAGING AND DEPLOYING .. 83
12.5 WEB CLIENT .. 84

12.5.1 Configuring and Generating Client Stubs .. 84
12.5.2 Coding the Java Server Page ... 84
12.5.3 Packaging and Deploying .. 85

12.6 PRICING WEB SERVICE EXAMPLES .. 85
12.6.1 Multiplicative Binomial Model ... 85
12.6.2 Additive Binomial Model .. 88
12.6.3 Trinomial and Finite Difference Models .. 96
12.6.4 Implied Trinomial Tree Model ... 104

REFERENCES .. 109

CURRICULUM VITAE ... 113

VII

FIGURES

Figure 2.1: Development of an Underlying During Time ... 3

Figure 2.2: Probability Density Function of the Random Walk .. 4

Figure 2.3: Boundary Conditions for a European call option ... 8

Figure 2.4: Boundary Conditions for a European put option .. 9

Figure 3.1: Simple Binomial Model of a Call Option and its Underlying Asset ... 11

Figure 3.2: Four-step Binomial Tree for an Underlying Asset.. 14

Figure 3.3: Simple Binomial Model of the Natural Logarithm of an Asset .. 16

Figure 3.4: General Additive Binomial Tree ... 18

Figure 3.5: Binomial Tree with Adjustment for a Known Discrete Cash Dividend ... 19

Figure 3.6: Different Asset Paths for a Down-and-Out Call Option ... 21

Figure 4.1: Simple Trinomial Tree Model of an Underlying Asset .. 22

Figure 4.2: Structure of the Trinomial Tree .. 24

Figure 4.3: Lattice for Finite Difference Approach... 25

Figure 4.4: Structure of the Explicit Finite Difference Model .. 27

Figure 4.5: Structure of the Implicit Finite Difference Model .. 29

Figure 4.6: Matrix Form of Tri-Diagonal Equation Set .. 29

Figure 4.7: Structure of the Crank-Nicolson Finite Difference Model ... 32

Figure 5.1: Structure of the Implied Trinomial Tree ... 35

Figure 5.2: State Prices and Transition Probabilities .. 37

Figure 5.3: Fixed Strike Look-back Call Option Example Paths .. 41

Figure 5.4: Different Paths to the same Node in a Trinomial Tree ... 42

Figure 5.5: Structures of Nodes for the Valuation of a Path-Dependent Option ... 43

Figure 7.1: Interactions, Operators and Artifacts .. 48

Figure 7.2: Web Services Model ... 49

Figure 8.1: Web Services Protocol Stack .. 51

Figure 8.2: SOAP Message Structure with/out Attachment .. 53

Figure 8.3: XML Based Messaging using SOAP .. 54

Figure 8.4: Basic Web Service Description .. 56

Figure 8.5: Complete Web Service Description .. 58

Figure 10.1: Green Field Scenario .. 63

Figure 10.2: Top-Down Scenario .. 64

Figure 10.3: Bottom-Up Scenario ... 66

Figure 10.4: Meet-in-the-Middle Scenario .. 67

Figure 10.5: Static Binding ... 69

Figure 10.6: Build-Time Dynamic Binding .. 70

Figure 11.1: A Java Client Calling a J2EE Web Service .. 75

Figure 12.1 UML Diagram of the Pricing Web Service ... 80

Figure 12.2 Deployment Tool - Packaging the Pricing Web Service.. 83

VIII

IX

Figure 12.3: Deployment Tool – Deploying the Pricing Web Service ... 84

Figure 12.4: Web Client Java Server Page .. 85

Figure 12.5: Pricing a European Call Option with Multiplicative Binomial Tree (JSP) 87

Figure 12.6: Pricing an American Put Option with Multiplicative Binomial Tree (JSP) 88

Figure 12.7: Pricing a European Call Option with Additive Binomial Tree (JSP) ... 90

Figure 12.8: Pricing an American Put Option with Additive Binomial Tree (JSP) .. 92

Figure 12.9: Pricing an American Put Option with a Known Discrete Cash Dividend (JSP) 94

Figure 12.10: Pricing an American Down-and-Out Call Option with Additive Binomial Tree (JSP) 96

Figure 12.11: Pricing a European Call Option in a Trinomial Tree (JSP) .. 98

Figure 12.12: Pricing a European Call Option by Explicit Finite Difference Model (JSP) 99

Figure 12.13: Pricing an American Put Option by Explicit Finite Difference Model (JSP) 101

Figure 12.14: Pricing an American Put Option by Implicit Finite Difference Model (JSP) 104

Figure 12.15: Pricing an American Put Option by Crank-Nicolson Finite Difference Model (JSP) 104

Figure 12.16: Pricing Implied Trinomial Tree State Prices and Transition Probabilities (JSP) 106

Figure 12.17: Pricing an American Down-and-Out Call Option by Implied Trinomial Tree Model (JSP) 107

TABLES

Table 5.1: Different Barrier Options .. 39

Table 5.2: Different Look-Back Options ... 40

Table 10.1: Basic Methods for Service Provider Implementation ... 62

Table 10.2: Methods for Service Requestor Binding ... 68

Options Introduction

 1

1 Options Introduction

1.1 Genesis and History
The year 1973 is often called the birth of options. With the establishment of the
Chicago Board of Options Exchange (CBOE) and the introduction of options traded
to stock exchange, a central institution for the trade with standardized options was
present for the first time. Additionally the option clearing corporation which was
founded in the same year served as intermediary between the contracting parties in the
option business.

However, options are much older and have a long and well documented history.
Already the ancient Greeks knew about options and how to make their money with
options. Thus Malkiel and Quandt [1] report of a philosopher named Thales, who
earned a fortune with option contracts on the use of olive presses. In addition, in
Amsterdam around 1600, both call and put options on tulip bulb were traded [2]. The
first mention of options in the United States dates back to the year 1792 at the same
time as the New York Stock Exchange was established [3]. In Austria futures and
options are traded on the ‘Österreichische Termin-und Optionenbörse’ (OTOB).

1.2 Options Definition
Options are one of the main types of derivatives which are financial instruments
whose values depend on the value of the underlying.

‘In finance, the underlying of a derivative is an asset, basket of assets, index, or even
another derivative such that the cash flows of the (former) derivative depend on the
value of this underlying. There must be an independent way to observe this value to
avoid conflicts of interest’ [4].

An asset is a probable future economic benefit obtained or controlled by a person or
company as a result of a past transaction or event [5].

In order to be able to make a valuation from standardized options and exotic options,
it is essential to understand their nature.

The definition of an option is:

‘Options are financial instruments that convey the right, but not the obligation,
to engage in a future transaction on some underlying security, or in a futures
contract’ [6].

It is upon the option holder's choice to exercise the option, whether the party who sold
the option must fulfill the terms of the contract.

Call options provide the right to buy a specified quantity of an asset at a set strike
price at some date on or before expiration.

Put options provide the right to sell a specified quantity of an asset at a set strike price
at some date on or before expiration.

It can be seen from this definition that the price of an option is thus affected by a
number of factors:

Options Introduction

2

• The present price of the underlying asset.

• The strike price.

• The time up to the maturity (expiration date).

• The volatility or standard deviation of the underlying asset.

• The interest rate.

1.3 Classification
As a classification for the bulk of different options generally the style of an option is
used, which is usually defined by the dates on which the option may be exercised.

Therefore the following style categories exist:

• European options - may be exercised only on maturity (expiration date).

• American options - may be exercised on any trading day on or before
expiration date.

• Bermudan options - may be exercised only on fixed dates on or before
expiration date.

• Barrier options – require that the underlying asset must reach some trigger
level before the exercise can occur.

Additionally the payoff of the option is used for categorization.

For example European and American options - as well as others where the payoff is
calculated similarly - are referred to as ‘vanilla options’. Options where the payoff is
calculated differently are categorized as ‘exotic options’. Exotic options can pose
challenging problems in valuation and hedging.

Black-Scholes World

 3

2 Black-Scholes World
One of the most important sizes in evaluation models for options is the underlying.
Independently of all other parameters the price of the asset to which the option refers,
finally determines the value of the option mainly. However, a substantial basic
assumption of a multiplicity of option evaluation models is that the exact value of the
underlying does not let itself predict - not even by historical course time series or
existing evaluation models [7]. However conclusions on the average value and the
variance of course changes can be made by evaluation models or by means of these
historical course time series. Thus a probability distribution of future asset values can
be calculated.

2.1 Black-Scholes Model
Almost all option evaluation models are based on a simple model for price
movements of the underlying, i.e. the random walk1.

The model looks as follows:

At time t the asset has the value S. Within a small time interval dt it changes the value
at S to S + dS (see Figure 2.1).

That results in a relative profit of dS/S for the appropriate period. If an average value
from all relative yields during a longer time period is calculated, the average growth
rate2 μ of the asset is obtained, also known as drift or trend.

1 The random walk hypothesis is a financial theory stating that stock market prices evolve according to
a random walk and thus the prices of the stock market cannot be predicted (Wikipedia, 2008).
2 In simple models μ is assumed to be constant, or a function of S and t in more complex models.

t

S

dt

dS

Figure 2.1: Development of an Underlying During Time

Black-Scholes World

4

Moreover random changes in the price of the asset must be considered due to external
effects - e.g. unexpected messages. This happens via a random number dz which is
weighted by means of volatility σ - i.e. the standard deviation [7].

A Wiener3 process dz has the following key properties:

• dz is normally distributed with mean zero and variance dt or standard
deviation √dt

• the values of dz over two different, non-overlapping increments of time are
independent

If these two components are joined the stochastic differential equation is formed.

dzdt
S

dS
σ+μ= (2.1)

It mathematically describes the model for the asset price. The right side of the
equation contains a deterministic part μ dt and a part determined by the randomness
of σ dz.

However, (2.1) does not describe a single deterministic path for example of a share. In
fact many different evolvements, that are time series, can be generated with formula
(2.1), where each item represents a possible future course path. From these different
evolvements interesting and important information is gained concerning the
probability of the distribution of the share quotation at a specific time. As a result
skewed and bell-shaped probability density functions are obtained, as in Figure 2.2.

Figure 2.2: Probability Density Function of the Random Walk

3 The random variable, or equivalently the change dz, is called a Wiener or Brownian motion process.

Black-Scholes World

 5

If the share price obeys the model described by (2.1), the probability density function
of the random walk is log-normally distributed.

The discrete model of the random walk works very well for quite large time intervals.
However, if used in the material life, the discrete, mathematical model is changed in
to a continuous model where the size of the time interval converges towards zero -
dt→0.

2.2 Derivation of the Black-Scholes Partial Differential
Equation

The transformed mathematical model by means of Itô's lemma4 appears as follows:

dz
S
fSdt

t
f

S
fS

S
fSdf

∂
∂

σ+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

σ+
∂
∂

μ=
²

²²²2
1 (2.2)

This formula represents a substantial part during the derivation of the Black-Scholes
option valuation formula [8].

Starting point for the development of the Black-Scholes formula is the assumption
that there is an option, whose value C depends only on two sizes - i.e. the course of
the underlying S and the time t. At this time it is not yet necessary to specify whether
the option is a call or a put [7]. In accordance with the formula (2.2) deduced above
the random walk, which the option C follows, can be defined as

dz
S
CSdt

t
C

S
CS

S
CSdC

∂
∂

σ+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

σ+
∂
∂

μ=
²

²²²2
1 (2.3)

In a further step a portfolio is designed, composed of an option C and a not yet
specified quantity - Δ - of the underlying. The value of this portfolio is

SC Δ−=Π (2.4)

And the change within one time period is

dSdCd Δ−=Π (2.5)

4 In mathematics, Itô's lemma is used in Itô stochastic analysis to find the differential of a function of a
particular type of stochastic process.

Black-Scholes World

6

The random walk of this portfolio obeys the following equation:

dt
S
CSdtS

t
C

S
CS

S
CSd ⎟

⎠
⎞

⎜
⎝
⎛ Δ−

∂
∂

σ+⎟
⎠
⎞

⎜
⎝
⎛ Δμ−

∂
∂

+
∂
∂

σ+
∂
∂

μ=Π
²

²²²2
1 (2.6)

If Δ - which is not yet specified - is replaced with,

S
C

∂
∂

=Δ (2.7)

in the above formula (2.6) the random component dz can be eliminated and the
equation simplifies to

dt
S
CS

t
Cd ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

σ+
∂
∂

=Π
²

²²²2
1 (2.8)

Investing amount Π into a portfolio without risk would gain a profit of rΠdt within
one time period dt.

If the right side of equation (2.8) would be larger than the gained profit of the
portfolio without risk, an investor or arbitrageur could make a guaranteed profit
without risk by borrowing an amount Π and invest in the portfolio. The profit would
be larger than the costs of borrowing.

Also in the contrary case the arbitrageur could make a guaranteed profit without risk
by selling the portfolio from formula (2.8) and investing amount Π in the bank. The
market forces of supply and demand as well as arbitrageurs ensure that there is no
profit without risk or only very briefly. Hence the profit from the portfolio without
risk and the portfolio from formula (2.8) must be equal or approximately equal.
Mathematically that means

dt
S
CS

t
Cdtr ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

σ+
∂
∂

=Π
²

²²²2
1 (2.9)

By replacing formula (2.4) and formula (2.7) and a division through dt we finally get
the Black-Scholes partial differential equation:

0
²

²²²2
1 =−

∂
∂

+
∂
∂

σ+
∂
∂ rC

S
CrS

S
CS

t
C (2.10)

Black-Scholes World

 7

All derivatives which depend only on the price of the underlying S and the time t,
must comply with this very general formula. Therefore this equation is suitable also
for options which look at first sight complicated, for example exotic options.

The following assumptions5 are the basis to derive the equation [7]:

• The price of the asset is log-normally distributed.
• The risk-free interest rate r and the volatility σ are well-known functions

depending on the time over the lifecycle of the option
• there are no transaction costs for hedging the portfolio
• the underlying asset does not pay a dividend during the lifecycle of the

option
• there are no arbitrage opportunities
• the trade of the underlying asset takes place continuously
• short selling is permitted and the asset is arbitrarily divisible

2.3 Black-Scholes Formula
While partial differential Black-Scholes equation was derived in chapter 2.2, this
chapter shows how to solve the equation. In order to get a clear solution, the
boundaries and final conditions must be defined in a first step.

For a European call with a current value of C (S, t), a strike price K and an expiration
date T the final condition at time t = T is

() (0,max, KSTSC −=) (2.11)

This final condition corresponds to the pay-off profile at the expiry date and is well-
known with accuracy.

For the boundary conditions the two extreme cases are examined, if the price of the
underlying becomes zero, S = 0, and that value grows infinitely, S→∞. If the price of
the underlying becomes zero, S = 0, the formula (2.11) shows that also dS is always
zero and therefore the value of the underlying itself can never change. Therefore if S
= 0 the option is worthless, even in the long run. Thus, the first lower boundary
condition is

() 0,0 =tC (2.12)

If the value of the asset rises immensely it becomes more likely that the option is
exercised and the height of the exercise price becomes less important. Therefore, if
S→∞ the value of the option converges to the value of the underlying. Thus, the
second upper boundary condition is

5 Some of these assumptions can be dismissed by modifications in the model.

Black-Scholes World

8

() ∞→≈ Sif, StSC (2.13)

Figure 2.3 illustrates the conditions (2.11), (2.12) and (2.13) resulting in the shaded
area of possible option values.

Figure 2.3: Boundary Conditions for a European call option

With these conditions - (2.11), (2.12) and (2.13) - the partial differential equation can
be solved and the well-known Black-Scholes formula6 for a European call option is
obtained [8]:

() () () ()21, dNeKdNStSC tTr −−−= (2.14)

where

() ∫
∞−

−
=

x dyy
exN

2

2
1

2
1
π (2.15)

() () ()
tT

tTrKS
d

−
−++

=
σ

σ 2
2
1

1
/log (2.16)

() () ()
tT

tTrKS
d

−
−−+

=
σ

σ 2
2
1

2
/log = d1 – tT −σ (2.17)

6 See [8] for the exact derivation.

Black-Scholes World

 9

For a European put option with the value P (S, t) the final condition is again identical
to the pay-off profile at expiration date:

() (0,max, SKTSP −=) (2.18)

For the boundary condition again the two extreme cases S = 0 and S→∞ are
considered. As already mentioned above the value of S remains always zero in the
case S = 0. Therefore the pay-off of the put option at time T, the exercise price K, is
accurately determined. In order to compute the value of the put option at time t, the
exercise price K must be discounted only. Thus, the first upper boundary condition
results as the present cash value of the exercise price K

() ()tTreKtP −−=,0 (2.19)

In the second case where S→∞, the exercise of the put option is very unlikely and
thus the option gets worthless. The lower boundary condition is

() ∞→→ StSP wenn0, (2.20)

Figure 2.4 illustrates the conditions (2.18), (2.19) and (2.20) resulting in the shaded
area of possible option values.

S

P

K
Figure 2.4: Boundary Conditions for a European put option

Black-Scholes World

10

With these conditions - (2.18), (2.19) and (2.20) - the partial differential equation can
be solved and obtains the well-known Black-Scholes7 formula for a European put
option [8].

() () () ()12, dNSdNeKtSP tTr −−−= −− (2.21)

where

() ∫
∞−

−
=

x dyy
exN

2

2
1

2
1
π (2.22)

() () ()
tT

tTrKS
d

−
−++

=
σ

σ 2
2
1

1
/log (2.23)

() () ()
tT

tTrKSd
−

−−+
=

σ
σ 2

2
1

2
/log = d1 – tT −σ (2.24)

2.4 Numerical Techniques
Due to their simplicity the Black-Scholes formulas are widely used by market
participants. However, they are only applicable for standard European call and put
options and not for pricing something more complicated such as American
options.8

In order to value American-style options with their early exercise opportunities
numerical techniques such as binomial and trinomial trees and finite difference
methods must be used [7].

For exotic options especially path-dependent options, of which look-backs and
barriers are probably the best known, again much more computationally intensive
numerical techniques have to be applied. The pay-off of these options at maturity is
some known function of the path that the asset takes before the maturity date,
which can be hardly put in to a single valuation formula.

7 See [8] for the exact derivation.
8 To some extent the Black-Scholes formulae can be also adapted for pricing of other than standard
options which reduces accuracy.

Binomial Model

 11

3 Binomial Model
One of the most common and best known numerical techniques for valuing
options is the binomial model, especially for American-style options.

While European call or put options can be valued by using the Black-Scholes
formula, for American call or put options the analytical approach is not applicable.
Also for options on assets that pay dividends where the price of these options has
no closed-form solution, numerical procedures must be used to solve the Black-
Scholes partial differential equation.

Since early exercise of American options can be optimal depending on the level of
the underlying asset, the binomial model allows handling this matter. Furthermore
several extensions to price more complex options such as exotic options are possible.

3.1 Basics of the Binomial Model
In the binomial model the underlying asset price is expected to follow a binomial
process. That means that the asset price can only change to one of two possible
values at any time and so the asset price has a binomial distribution. During a time
period Δt a considered asset with a current price of S can move - following a
multiplicative binomial process - up to a new level uS or down to a new level dS.
The average behavior and volatility of the asset are specified by the parameters u
and d. Furthermore at the end of the time period Δt a considered call option on this
asset matures, which also is shown in Figure 3.1. These are the first two branches
of a binomial tree starting from its root - representing today - and evolving out in
time by one time step [8] and [10].

Figure 3.1: Simple Binomial Model of a Call Option and its Underlying Asset

Similar to the Black-Scholes model, a riskless portfolio can be set up consisting of
Δ units of the underlying asset and a short position of one call option. The value of
the portfolio needs to be the same regardless of whether the asset price goes up or
down over the period Δt:

dSCuSC du Δ+−=Δ+− (3.1)

Rearranging the equation to:

Binomial Model

12

Sdu
CC du

)(−
−

=Δ (3.2)

Since this portfolio is riskless it must earn the riskless rate of interest r
(continuously compounded).

)()(SCeuSC tr
u Δ+−=Δ+− Δ (3.3)

Substituting from equation (3.2) into equation (3.3) for Δ and rearranging for the
call price at the start of the period C, gets

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
+

−
−

=
ΔΔ

Δ−
d

tr

u

tr
tr C

du
euC

du
deeC (3.4)

Defining

du
dep

tr

−
−

=
Δ

and substituting into equation (3.4) for p, the following simpler form is achieved:

))1((du
tr CppCeC −+= Δ− (3.5)

The above formula (3.5) shows the pricing of a call option with one period to
maturity. For the valuation of a put option just the pay-off condition has to be
changed, meaning the values of Cu and Cd for a put.

Cu = max(0, K - uS)

Cd = max(0, K - dS)

Note that the actual probabilities of the stock moving up or down are never used in
deriving the option price, just as for the Black-Scholes model. This fact implies that
the option price is independent of the expected return of the stock and therefore
independent of the risk preferences of investors. This allows to interpret p and (1-p)
as risk-neutral probabilities and equation (3.4) as taking discounted expectations of
future pay-offs under the risk-neutral probabilities. Calculating the risk-neutral
probabilities directly from the asset price is quite simple - as assumed the return is
the riskless rate.

Binomial Model

 13

Analogous to equation (3.5) the expected value of the underlying asset S at the end of
the time period Δt can be written as

)1()(pdSuSpSE t −+=Δ

Rearranging the equation to

dSduSpSE t +−=Δ)()(

Substituting p

du
dep

tr

−
−

=
Δ

in to the above formula, reduces to

tr

t SeSE Δ
Δ =)((3.6)

Up to now the binomial model has comprised just one time step but it can be
expanded to use more steps [11].

In Figure 3.2 the appropriate binomial tree for an option which matures in four
periods of time is shown [9]. Each state in the tree is a node with two labels named i
which indicates the number of time steps and j for the number of upward movements
of the asset price, both measured from the beginning. So the asset price at node (i,
j) is Sij=Suidi-j and the option price is going to be Cij. For the lowest node at every
time step j is always zero. Generally it is assumed that the Nth time step corresponds
to the maturity date of the option. When all SN,j values are computed the value of the
option at the maturity date is simply the known pay-off, e.g. for a call option

),0max(,, KSC jNjN −= (3.7)

Binomial Model

14

Figure 3.2: Four-step Binomial Tree for an Underlying Asset

As with the one period example the value of the option at any node in the tree
before maturity is the discounted expected future value. The generalized formula is
defined as

))1((,11,1, jiji
tr

ji CppCeC +++
Δ− −+= (3.8)

To compute the value of the option at every node at time step N-1 the equations (3.7)
and (3.8) can be used. Reapplying equation (3.8) working backwards through the
tree, the value of the option at every node in the tree can be computed.

The valuation of a European put option is quite straight forward, just the pay-off
structure at maturity (Nth time step) changes to the known formula.

),0max(,, jNjN SKC −= (3.9)

The backward calculation remains the same as for the European call option, using
equation (3.8)

Due to the fact that American style options can be exercised not only at the
maturity date but at every time step, the computation has to include the possibility
of early exercise. Thus at every node there has to be a comparison between the
value of the option if exercised and the value if not exercised. The option value at
that node is then the greater of the two. For example an American put option

)),)1((max(,,11,1, jijiji
tr

ji SKCppCeC −−+= +++
Δ−

 (3.10)

See chapter 12.6.1 for pricing examples.

Binomial Model

 15

3.2 Generalization of the Binomial Model
When constructing a binomial tree the behavior of the real asset price should be
represented [8]. In order to reach this the parameters u, d and p should be chosen
to match the mean and variance of the underlying asset during the time interval Δt.
In the risk-neutral world the expected return from a stock is the risk-free rate r.
Thus the expected value of the asset price at the end of the time interval Δt is

SdppSuSe tr)1(−+=Δ (3.11)

or

dppue tr)1(−+=Δ (3.12)

The variance of the proportional change in the asset price for interval Δt is σ2 Δt.
Therefore it follows

[] tdppudppu Δ=−+−−+ 2222)1()1(σ (3.13)

This can be reduced to

teuddue trtr Δ=−−+ ΔΔ 22)(σ (3.14)

by substituting from equation (3.12) for p (in a stochastic process the variance of a
variable X defines as E(X²) – [E(X)]²).

For the three parameters p, u, and d two conditions – equation (3.12) & (3.13)
have been set. The third condition used is

d
u 1

= (3.15)

From these three conditions the values for the parameters are given by

du
dap

−
−

= (3.16)

teu Δ= σ (3.17)

Binomial Model

16

ted Δ−= σ (3.18)

where

trea Δ= (3.19)

to construct an appropriate binomial tree in a risk-neutral world.

The only problem with this formulation is that the approximation is only good over
a small time interval. You cannot freely choose arbitrarily large time steps. To
obtain a more general and flexible formulation the model is reformulated in terms
of the natural logarithm of the asset price (x = ln(S)).

The natural logarithm of the asset price under GBM is normally distributed with a
constant mean and variance. Applying Itô's lemma the continuous time risk-neutral
process for x can be shown to be

²
2
1

σν

σν

−=

+=

r

dzdtdx
 (3.20)

Figure 3.3 shows the discrete time binomial model for x.

The variable x can either go up with a probability of pu to a level of x + Δxu or
down with a probability of pd = 1 - pu to a level of x + Δxd. This is known as the
additive binomial process.

 x+∆xupu

x+∆xd

∆t

pd

x

Figure 3.3: Simple Binomial Model of the Natural Logarithm of an Asset

Equating the mean and variance of the binomial process for x with the mean and
variance of the continuous time process over the time interval Δt leads to:

²²²²²²][
][

ttxpxpx
txpxpx

dduu

dduu

Δ+Δ=Δ+Δ=ΔΕ
Δ=Δ+Δ=ΔΕ

νσ
ν

 (3.21)

Binomial Model

 17

As known pu + pd = 1 or pd = 1 - pu just trivially substitute and obtain two equations
in three unknowns.

The third condition is to set the jump sizes to be equal, which leads to

²²²²²
)()(

ttxpxp
txpxp

du

du

Δ+Δ=Δ+Δ
Δ=Δ−+Δ

νσ
ν

 (3.22)

and gives

x
tp

ttx

u Δ
Δ

+=

Δ+Δ=Δ
ν

νσ

2
1

2
1

²²²
 (3.23)

The disadvantage of this method is that its convergence is quite complicated.
Moreover unsatisfying is that the error can actually increase with an increase in
the number of time steps. The finite difference methods can solve this problem.

3.3 Additive Binomial Model
The structure of the general additive binomial model is similar to that of the
multiplicative model [9]. As before the nodes in the tree are identified by a pair of
indices (i,j), where j = 0,1,...,i. So every node is i periods in the future and the
asset has made j upwards moves to reach that node. Therefore the price of the
underlying at node (i,j) is

))(exp()exp(,, dujiji xjixjxxS Δ−+Δ+== (3.24)

After constructing the tree (see Figure 3.4) the value of the option at the maturity
date can be calculated at the Nth time step. Working backwards through the tree each
option price Ci,j at every node is given by

)(1,1,1, +++

Δ− Δ+Δ= jidjiu
tr

ji CxCxeC (3.25)

Binomial Model

18

Figure 3.4: General Additive Binomial Tree

See chapter 12.6.2 for pricing examples.

3.3.1 Pricing Underlying Asset Paying a Continuous Dividend Yield
If the underlying asset for the construction of a binomial tree is a stock or a stock
index that pay dividends the model has to be adapted.

In the case of a continuous dividend yield - which is mainly used for options on
stock indices – the valuation is quite straight forward. In order to take into account
the continuous dividend yield, just replace r by (r - δ) wherever it appears in the
formulas9. For the variables Δx, pu and v the general additive formula with equal
jump sizes changes to

²
2
1

2
1

2
1

²²²

σδν

ν
νσ

−−=

Δ
Δ

+=

Δ+Δ=Δ

r

x
tp

ttx

u (3.27)

Processing of the valuation is therefore the same as with an underlying asset which
pays no dividend:

1. Constructing the tree and calculating the asset prices at each node
2. Valuating the several option prices at maturity date
3. Working backwards through the tree to calculate the price of the option

today (T=0)

9 Just as the stochastic differential equation changes to

SdzSdtrdS σδ +−=)((3.26)

in the Black-Scholes world.

Binomial Model

 19

3.3.2 Pricing Underlying Asset Paying a Known Discrete Cash
Dividend

In the common case of a known cash dividend on the asset the situation becomes
more difficult. Then the binomial tree gets non-recombining for nodes after the ex-
dividend date. Figure 3.5 shows a binomial tree for an asset paying a cash amount D
at a time τ where the condition kΔt < τ < (k+1)Δt is satisfied.

Figure 3.5: Binomial Tree with Adjustment for a Known Discrete Cash Dividend

For the time prior to the dividend date the tree nodes remain unchanged.
Otherwise the value of the asset at node (i,j) becomes

DxxS du −ΔΔ)exp()exp(jij − (3.28)

The number of nodes increases dramatically - at time (k+m)Δt there are m(k+1)
nodes rather than k+m+1.

To handle this problem and obtain a recombining tree a particular assumption
about the volatility of the asset price is made. It is supposed that the asset price

 has two components. The uncertain part that is, and the certain part that is

the present value of the future dividend stream. The value of is given by

tS tS
~

~

tS

tt SS =
~

 when t > τ (3.29)

and

)(tr
tt DeSS −−−= τ

~
 when t ≤ τ (3.30)

Binomial Model

20

The volatility of is defined as and assumed to be constant. The binomial tree
parameters pu, pd, ΔXu, Δxd are calculated in the usual way, but with

tS
~ ~

σ
σ replaced by

. The binomial tree is constructed in the same way as before, where the value of
the asset is

~
σ

)(
~

)exp()exp(trji
d

j
ut DexxS −−− +ΔΔ τ when t = iΔt < τ

and

ji
d

j
ut xxS −ΔΔ)exp()exp(

~
 when t = iΔt > τ.

See chapter 12.6.2.3 for a pricing example.

3.4 Binomial Model and Path-Dependent Options
Path-dependence with options explains how the payoff structure of such an option is
limited or affected by the evolvement of the stock price of an underlying asset in
course of time, even though past stock prices may no longer be relevant. So in this
context path-dependence is used to mean simply ‘history matters’ e.g. the asset price
on a fixing date or was the asset price above or below a specific level during an
observation period (barrier option).

The binomial tree modeling even some exotic options - e.g. path-dependent options
especially barrier options - can be priced using this method. Barrier options differ
from standard options by a predetermined level H, the barrier level. If the asset
price falls below or rises above the barrier the option knocks out and pays off
nothing, or knocks in and starts to exist.

Due to the problems with accuracy, convergence and the simplicity of the tree
structure binomial trees are not ideal. However, the simple tree structure gives the
basic idea how to price those options.

Figure 3.6 gives an example how to price an American down-and-out call option
and shows following three paths of the development of the asset price:

• Path 1 does not go below the barrier level and finishes above the strike
price and therefore pays off.

• Path 2 does not go below the barrier level, but finishes below the strike
price and therefore pays off zero.

• Path 3 goes below the barrier and therefore pays off nothing even though it
finishes above the strike price.

Binomial Model

 21

The pricing of this option in a binomial tree is similar to the early exercise
problematic. At every node the value of the underlying asset must be compared to the
barrier level H and if it is triggered - below the barrier - the option price at this node
is set to zero.

See chapter 12.6.2.4 for a pricing example.

St

S0

K

H

t0 tn-1 tn tn+1 T t

Path 1

Path 2

Path 3

Different Asset Paths Down-and-Out Call Option1Figure 3.6: Different Asset Paths for a Down-and-Out Call Option

Trinomial Trees and Finite Difference Models

22

4 Trinomial Trees and Finite Difference Models
The binomial model showed some inefficiency regarding accuracy and
convergence. To obtain more significant option prices the binomial model can be
further adapted to a trinomial and implied tree structure respectively (based on [9]).

4.1 Trinomial Tree Model
The risk-neutral model of an underlying asset paying a continuous dividend yield
has the following stochastic differential equation

SdzSdtrdS σδ +−=)((4.1)

Again it is more convenient to work in terms of x = ln(S) which leads to

dzdtdx σν +=

where (4.2)

²
2
1 σδν −−= r

Figure 4.1 shows a trinomial model of an asset which, over a small time interval Δt,
can go up by Δx - the space step - stay the same or go down by Δx, with the
probabilities pu, pm and pd respectively10.

x+∆x

pu

x-∆x

∆t

pd

x pm x

Figure 4.1: Simple Trinomial Tree Model of an Underlying Asset

10 Δx cannot be chosen independently of Δt and a good choice is tx Δ=Δ 3σ .

Trinomial Trees and Finite Difference Models

 23

The relationship between the continuous time process and the trinomial process of
the drift and volatility parameters stated by Δx, pu, pm and pd are shown in the
following formulas:

txppxpx dmu Δ=Δ−++Δ=ΔΕ ν)()0()(][(4.3)

²²²²)()0(²)(²][ttxppxpx dmu Δ+Δ=Δ++Δ=ΔΕ νσ (4.4)

1=++ dmu ppp (4.5)

Solving equations (4.3) to (4.5) gives

⎟
⎠

⎞
⎜
⎝

⎛
Δ
Δ

+
Δ

Δ+Δ
=

x
t

x
tt

pu
ννσ

²
²²²

2
1

 (4.6)

²
²²²1

x
ttpm Δ

Δ+Δ
−=

νσ
 (4.7)

⎟
⎠
⎞

⎜
⎝
⎛

Δ
Δ

−
Δ

Δ+Δ
=

x
t

x
ttpd

ννσ
²

²²²
2
1

 (4.8)

The one step trinomial model as shown in Figure 4.1 can be extended to form a
complete trinomial tree (Figure 4.2) where i represents the time step and j represents
the level of the asset price relative to the initial asset price. Thus at a certain node (i
j) there is t=iΔt , and Si,j = S exp(jΔx) and the option price is Ci,j. The values of the
option at maturity (T = NΔt) is given by the known pay-off, for example for a call
option

),0max(,, KSC jNjN −= (4.9)

Trinomial Trees and Finite Difference Models

24

Figure 4.2: Structure of the Trinomial Tree

Again we can compute option values as discounted expectations in a risk-neutral
world. The option values of earlier nodes are computed by discounting their
predecessors with the corresponding probabilities.

)(1,1,11,1, −++++
Δ− ++= jidjimjiu

tr
ji CpCpCpeC (4.10)

Although much more data has to be computed within a trinomial tree it shows
advantages over the binomial tree:

• much better approximation to the continuous time process for the same
number of time steps

• easy to work with because of its more regular lattice and higher flexibility
• comfortable extension to time-varying drift and volatility parameters

See chapter 12.6.3.1 for a pricing example.

4.2 Finite Difference Models

4.2.1 Explicit Finite Difference Models
A related model approach to solve the problem of option valuation, that takes the
advantages of a trinomial tree into account, are finite difference methods. The idea
behind is simplifying the Black-Scholes partial differential equation (4.11) by
replacing the partial differentials with finite differences [12] and [13].

Trinomial Trees and Finite Difference Models

 25

rC
S
CSr

S
CS

t
C

−
∂
∂

−+
∂
∂

=
∂
∂

−)(
²

²²²
2
1 δσ (4.11)

Again it is more convenient to work in terms of x = ln(S) which leads to

rC
x
C

x
C

t
C

−
∂
∂

+
∂
∂

=
∂
∂

− νσ
²

²²
2
1

 (4.12)

Figure 4.3: Lattice for Finite Difference Approach

An approximation in equation (4.12) is used to obtain the explicit finite difference
method – for ∂C/∂t a forward difference is used and for ∂²C/∂x² and ∂C/∂x central
differences are used. Therefore, the terms of the lattice are

ji
jijijijijijiji rC

x
CC

v
x

CCC
t

CC
,1

1,11,11,1,11,1,,1

2²
2

²
2
1

+
−+++−+++++ −

Δ

−
+

Δ

+−
=

Δ

−
− σ (4.13)

which can be rearranged to

1,1,11,1, −++++ ++= jidjimjiuji CpCpCpC (4.14)

Trinomial Trees and Finite Difference Models

26

⎟
⎠
⎞

⎜
⎝
⎛

Δ
+

Δ
Δ=

xx
tpu 2²2

² νσ
 (4.15)

tr
x

tpm Δ−
Δ

Δ−=
²
²1 σ

 (4.16)

⎟
⎠
⎞

⎜
⎝
⎛

Δ
−

Δ
Δ=

xx
tpd 2²2

² νσ
 (4.17)

Equation (4.14) is equivalent to the discounted expectations approach. This can
be demonstrated by taking a slightly different approximation (to the partial
differential equation) for the value at node (i,j) rather than (i+1,j) in the last term
of equation (4.13)

ji
jijijijijijiji rC

x
CC

x
CCC

t
CC

,
1,11,11,1,11,1,,1

2²
2

²
2
1

−
Δ
−

+
Δ

+−
=

Δ
−

− −+++−+++++ νσ (4.18)

Which can be rewritten as

)(
1

1
1,1,11,1, −++++ ++

Δ+
= jidjimjiuji CpCpCp

tr
C (4.19)

⎟
⎠
⎞

⎜
⎝
⎛

Δ
+

Δ
Δ=

xx
tpu

νσ
²
²

2
1

 (4.20)

²
²1

x
tpm Δ

Δ−=
σ

 (4.21)

⎟
⎠
⎞

⎜
⎝
⎛

Δ
−

Δ
Δ=

xx
tpd

νσ
²
²

2
1

 (4.22)

, where 1/(1+rΔt) is an approximation of 1/erΔt. Therefore the explicit finite
difference method is equivalent to approximating the diffusion process by a discrete
trinomial process.

The relationship between the lattice values in equation (4.14) is shown in Figure
4.4.

Trinomial Trees and Finite Difference Models

 27

Figure 4.4: Structure of the Explicit Finite Difference Model

See chapter 12.6.3.2 for pricing examples.

Because the accuracy of this method is O(Δx2 + Δt) the error can be halved when
Δx2 + Δt is halved. Therefore the time step must be halved, but the space step only
needs to be reduced by a factor of 21 .

To ensure stability and convergence of the finite difference method the
following conditions must be fulfilled:

• the probabilities pu, pm and pd have to be positive
• the condition tx Δ≥Δ 3σ has to be satisfied
• the convergence condition, that is the discretization error – i.e. the

difference between the exact solution of the partial differential equation and
the solution of the finite difference equation – must tend to zero as space
and time steps tend to zero

• the stability condition, that is the round-off error – i.e. the difference
between the solution of the finite difference equation and the numerically
computed solution – must be small and remain bounded

4.2.2 Implicit Finite Difference Models
Again it is more convenient to work in terms of x = ln(S) which leads as before to
the well know Black-Scholes partial differential equation.

Trinomial Trees and Finite Difference Models

28

rC
x
C

x
C

t
C

−
∂
∂

+
∂
∂

=
∂
∂

− νσ
²

²²
2
1

 (4.12)

Transforming the equation (4.12) by replacing the space derivatives with central
differences at time step i rather than at i+1 gives

ji
jijijijijijiji rC

x
CC

x
CCC

t
CC

,
1,1,1,,1,,,1

2²
2

²
2
1

−
Δ
−

+
Δ

+−
=

Δ
−

− −+−++ νσ (4.23)

Which can be rearranged to

jijidjimjiu CCpCpCp ,11,,1, +−+ =++ (4.24)

⎟
⎠
⎞

⎜
⎝
⎛

Δ
+

Δ
Δ−=

xx
tpu

νσ
²
²

2
1

 (4.25)

tr
x

tpm Δ+
Δ

Δ+=
²
²1 σ

 (4.26)

⎟
⎠
⎞

⎜
⎝
⎛

Δ
−

Δ
Δ−=

xx
tpd

νσ
²
²

2
1

 (4.27)

The relationship between the lattice values is shown in Figure 4.5.

The equation (4.24) for each node (i,j) with j = -Nj+1,..., Nj-1 cannot be solved
individually for the option values at time step i. Therefore they must be considered,
together with the boundary conditions,

UNiNi jj
CC λ=−

−1,, (4.28)

LNiNi jj
CC λ=− −− + ,, 1 (4.29)

to be a system of 2Nj+1 linear equations which implicitly determine the 2Nj+1
option values at time step i. The boundary condition parameters λU and λL are
determined by the type of option being valued, for example for a call we have

1,, −
−=

jj NiNiU SSλ (4.30)

0=Lλ (4.31)

Trinomial Trees and Finite Difference Models

 29

Figure 4.5: Structure of the Implicit Finite Difference Model

The equation set has a special structure which is called tri-diagonal. Each equation
has two variables in common with the equation above and below. When writing
the equation set in matrix form the tri-diagonal structure can clearly be seen:

1 -1 0 … … … 0 Ci,Nj λU

pu pm pd 0 … … 0 Ci,Nj-1 Ci+1,Nj-1

0 pu pm pd 0 … 0 Ci,Nj-2 Ci+1,Nj-2

… … … … … … … … = …

0 … 0 pu pm pd 0 Ci,-Nj+2 Ci+1,-Nj+2

0 … … 0 pu pm pd Ci,-Nj+1 Ci+1,-Nj+1

0 … … … 0 1 -1 Ci,-Nj λL

Figure 4.6: Matrix Form of Tri-Diagonal Equation Set

Solving this tri-diagonal matrix equation can be done very efficiently. Beginning
with the boundary condition equation j = -Nj this equation is rewritten to obtain

LNiNi jj
CC λ−=

+−− 1,, (4.32)

Trinomial Trees and Finite Difference Models

30

Substituting (j = -Nj+1) into the equation above

1112 ,1,,,)(
++++ −+−−− =−++

jjjj NiLNidNimNiu CCpCpCp λ (4.33)

is obtained, which can be rearranged to

´´
12 ,, pCpCp

jj NimNiu =+
++ −− (4.34)

where

dmm ppp +=´ and LdNi pCp
j

λ+=
+−+ 1,1´

Thus the original equation with three unknowns has become equation (4.34)
with only two unknowns.

Equation (4.34) can be rewritten to

m

Niu
Ni p

Cpp
C j

j ´

´
2

1

,
,

+

+

−
−

−
= (4.35)

Substituting (j = -Nj+2) into the equation for

´´
23 ,, pCpCp

jj NimNiu =+
++ −− (4.36)

is obtained, where

d
Nm

u
mm p

p
ppp

j 1,´
´

+−

−= and d
Nm

N
Ni p

p

p
Cp

j

j

j

1

1

2
,

,1 ´

´
´

+

+

+
−

−
−+ −=

(the added subscripts to the p's indicate the application to the equation for j = -
Nj+1).

This process of substitution can be repeated all the way up to j = Nj-1 obtaining:

´´
1,, pCpCp

jj NimNiu =+
− (4.37)

Trinomial Trees and Finite Difference Models

 31

Using equation (4.35) and the boundary condition equation for j = Nj

UNiNi jj
CC λ=−

−1,, (4.38)

can be solved for both Ci,Nj and Ci,Nj-1. To obtain Ci,Nj-2 the next equation down for
j = Nj-2 and Ci,Nj-1 are used. This process called back-substitution can be repeated
all the way down to j = -Nj, thus solving the complete tri-diagonal system of
equations (Figure 4.6).

See chapter 12.6.3.3 for a pricing example.

While the accuracy of the implicit finite difference method has the same order as the
explicit finite difference method - O(Δx2+Δt) - more importantly, it is
unconditionally stable and convergent. Thus gives more freedom to trade-off
accuracy for speed by decreasing the time steps because there is no need to worry
about a stability and convergence condition. The values of pu, pm and pd can no
longer be interpreted as probabilities, pu and pd will typically be negative while pm
will be greater than one. But, it can be proofed that the implicit finite difference
approximation is equivalent to a generalized discrete stochastic process where the
asset price may jump to every node in the lattice at the next time step.

4.2.3 Crank-Nicolson Finite Difference Models
A further refinement of the implicit finite difference method is the Crank-Nicolson
method. It replaces the space and time derivatives with finite differences centered at
an imaginary time step at (i+1/2) and is also called a fully centered method. The
Crank-Nicolson finite difference equation looks as follows:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

+−++−
=

Δ

−
− −+−+++++

²2
)2()2(

²
2
1 1,,1,)1,1,11,1,,1

x
CCCCCC

t
CC jijijijijijijiji σ

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ

−+−
+ +−+−+++

24
)()(,,11,1,1,11,1 jijijijijiji CC

r
x

CCCC
ν (4.39)

Which can be rearranged to

1,1,11,11,,1,)2(−++++−+ −−−−=++ jidjimjiujidjimjiu CpCpCpCpCpCp (4.40)

⎟
⎠
⎞

⎜
⎝
⎛

Δ
+

Δ
Δ−=

xx
tpu

νσ
²
²

4
1

 (4.41)

2²2
²1 tr
x

tpm
Δ

+
Δ

Δ+=
σ

 (4.42)

Trinomial Trees and Finite Difference Models

32

⎟
⎠
⎞

⎜
⎝
⎛

Δ
−

Δ
Δ−=

xx
tpd

νσ
²
²

4
1

 (4.43)

The right-hand side of equation (4.40) consists of known option values and the known
constant coefficients pu, pm, pd and can therefore be considered a known constant.
Together with the boundary conditions,

UNiNi jj
CC λ=−

−1,, (4.44)

LNiNi jj
CC λ=− −− + ,, 1 (4.45)

the set of equations (4.40) – (4.43) for j = -Nj+1,...,Nj-1 build again a tri-diagonal
system of equations. The solution of these equations can be efficiently done very
similar to the implicit finite difference method above.

The relationship between the lattice values in equation (4.40) is illustrated in Figure
4.7.

Figure 4.7: Structure of the Crank-Nicolson Finite Difference Model

The accuracy of the Crank-Nicolson method is

Trinomial Trees and Finite Difference Models

 33

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ Δ

+ΔΟ
2

2
² tx

and is unconditionally stable and convergent. However, this method converges
much faster than the implicit or explicit finite difference methods.

Again, the values of pu, pm and pd can no longer be interpreted as probabilities, pu
and pd will typically be negative while pm will be greater than one. But, it can be
proofed that the Crank-Nicolson finite difference approximation is equivalent to a
generalized discrete stochastic process where the asset price may jump to every
node in the lattice at the next time step.

See chapter 12.6.3.4 for a pricing example.

Implied Trees and Exotic Options

34

5 Implied Trees and Exotic Options
The methods discussed so far are only applicable for standard options and some
specific exotic options such as down-and-out. Furthermore the market’s expectation
of the future in terms of market prices of standard European options is not covered
as all parameters are time constant.

Generalizing the binomial and trinomial trees by making previously constant
parameters (such as the probabilities) time dependent and implying these time-
dependent parameters is the idea behind implied trees. In this way it is recognized
that the real market is incomplete without the standard options and so the standard
options should be treated as fundamental securities which prices are observed in
the market (based on [9]).

5.1 Basics of the Implied Tree Model
The structure of the implied trinomial tree will be very similar to that of the constant
coefficient trinomial tree.

Here, at each node there is a state price Qij
11, which is interpolated and/or

extrapolated market data to obtain the required strike and maturity needed.
Furthermore instead of a single set of transition probabilities pu, pm and pd a
different set of transition probabilities pu,i,j, pm,i,j, and pd,i,j for every node (i j) is used.
The value of an option at node (i,j) will be Ci,j as before, and time step N will
correspond to the maturity date.

This has the following advantages without complicating the tree-building procedure:

• the time steps Δti can be different
• the asset price levels can vary with the time step
• convenient modeling of the tree ensuring that time steps fall on key dates

required for the exotic options

11 See Black-Scholes chapter for the derivation of state prices.

Implied Trees and Exotic Options

 35

0,0

1,1

1,0

1,-1

2,2

2,0

2,1

2,-1

2,-2

N,N

N,N-1

N,N-2

N,-N

N,-N+1

N,-N+2

j

i

Figure 5.1: Structure of the Implied Trinomial Tree

5.2 Implied State Prices
The state prices for the nodes at time step N in the tree should be computed such
that they are consistent with the market prices of standard European call and put
options. Consider the highest node in the tree (N,N) at time step N. The price of an
European call with strike price SN,N-1 - asset price at the next node down -, and with
a maturity date at time step N is

NNNNNNNN QSStNSc ,1,,1,)(),(−− −=Δ (5.1)

because for all the nodes below (N,N) the pay-off of the call option is zero. Equation
(5.1) can be rewritten to give the state price Q N,N at node (N,N) in terms of the
known call price, asset price and strike price. The price of an European option with
a strike price equal to the asset price SN,N-2 at node (N,N-2), is given by

NNNNNNNNNNNNNN QSSQSStNSc ,2,,1,2,1,2,)()(),(−−−−− −+−=Δ (5.2)

The only unknown in equation (5.2) is QN,N-1 since QN,N was previously computed.
Working down the nodes at time step N to the middle of the tree computing the
state prices the option price, for node (N,j), is given by

∑
+=

−−− −+−=Δ
N

jk
kNjNkNjNjNjNjN QSSQSStNSc

1
,1,,,1,,1,)()(),((5.3)

Implied Trees and Exotic Options

36

where everything is known except QN,J. From the bottom node of the tree working
upwards to the central node of the tree this procedure can be started using put
option prices, because of the iterative nature of the calculations numerical errors
can build up in the state prices using call prices. This method can be applied to
every time step in the tree.

5.3 Implied Transition Probabilities
From the calculated state prices at every node in the tree, where the local no-
arbitrage relationships must hold, the transition probabilities are obtained.
Assuming that the transition probabilities for all the nodes above node (i,j) are
already computed, the transition probabilities for node (i,j) can be computed
according to the following conditions:

tr

jiujimjid
tr epppe Δ−Δ− =++)(,,,,,, (5.4)

The first condition requires that the transition probabilities sum up to one.

1,,,,,, =++ jiujimjid ppp (5.5)

The second condition is that the asset price at node (i,j) has to be equal to its local
discounted expected value over the next time step.

)(1,1,,,1,,1,1,,, +++−+
Δ− ++= jijiujijimjijid

tr
ji SpSpSpeS (5.6)

Finally, the forward evolution equation for the state price at node (i+1,j+1) is:

)(,,,1,1,,2,2,,1,1 jijiujijimjijid
tr

ji QpQpQpeQ ++= ++++
Δ−

++ (5.7)

Given the transition probabilities for all the nodes above (i,j) equation (5.7) can be
rewritten to:

ji

jijimjijidji
tr

jiu Q
QpQpQe

p
,

1,1,,2,2,,1,1
,,

++++++
Δ −−

= (5.8)

As well for pm,i,j and pd,i,j

Implied Trees and Exotic Options

 37

)(
)(

1,1,1

1,11,1,,1,1,
,,

−++

−+++−+
Δ

−
−−−

=
jiji

jijijiujiji
tr

jim SS
SSpSSe

p (5.9)

jiujimjid ppp ,,,,,, 1 −−= (5.10)

The relationship diagram between the state prices and transition probabilities is
shown in Figure 5.2.

Figure 5.2: State Prices and Transition Probabilities

For the highest node (i,i) at time step i, and for node (i,i-1) equation (5.8) reduces to

ii

ii
tr

iiu Q
Qe

p
,

1,1
,,

++
Δ

= (5.11)

and

1,

,,,,1
1,,

−

+
Δ

−

−
=

ii

iiiimii
tr

iiu Q
QpQe

p (5.12)

using equations (5.9) and (5.10) to obtain pm,i,j and pd,i,j respectively pm,i,i-1 and pd,i,i-1.

Starting at the top of the tree the transition probabilities can be solved in an iterative
manner working downwards. Again to avoid numerical errors for the lower part of
the tree the process is stopped at the central node. For the lower half of the tree pd,i,j

Implied Trees and Exotic Options

38

is directly obtained from the forward evolution of the state prices, and then pm,i,j and
pu,i,j are obtained by solving the remaining two equations simultaneously.

Therefore, equations (5.8) – (5.12) become

ji

jijimjijiuji
tr

jid Q
QpQpQe

p
,

1,1,,2,2,,1,1
,,

−−−−−+
Δ −−

= (5.13)

)(
)(

1,1,1

1,11,1,,1,1,
,,

+++

++−+++
Δ

−
−−−

=
jiji

jijijidjiji
tr

jim SS
SSpSSe

p (5.14)

jidjimjiu ppp ,,,,,, 1 −−= (5.15)

ii

ii
tr

iid Q
Qe

p
−

−−+
Δ

− =
,

1,1
,, (5.16)

1,

,,,,1
1,,

+−

−−−+
Δ

+−

−
=

ii

iiiimii
tr

iid Q
QpQe

p (5.17)

To ensure that the transition probabilities remain positive it is necessary that the
explicit finite difference method stability condition (Δx > σ tΔ3) is satisfied at
every node.

])²[(²][²]var[xxtx local ΔΕ−ΔΕ=Δ=Δ σ (5.18)

A simple and robust way to meet this condition is to set the space step as follows:

tx Δ=Δ 3maxσ (5.19)

Where σmax is the maximum implied volatility from the standard options to which
the tree is being fitted.

See chapter 12.6.4.1 for a pricing example.

5.4 Exotic Options and Implied Trees
Plain Vanilla options share certain characteristics such as one underlying asset or the
fact that the payoff depends only on the underlying asset at maturity. Further they are
defined as a call option or a put option and the payoff is determined as the difference
between the asset price and the strike price.

Implied Trees and Exotic Options

 39

The particular feature of exotic options is to soften the restrictions of vanilla options.
So the payoff additionally can be dependent of the average asset price on different
fixing dates (asian option). In another case the payoff is dependent on whether the
asset price was above or below a specific level during an observation period (barrier
option). Here the path taken by these exotic options is of prime importance and
therefore they are called path-dependent options. Also it is possible that the payoff is
determined on the weighted average of several underlying assets (basket option) or
the option is not predefined as a call or put option (chooser option). A vast number of
other exotic options exist which are not categorized in to an own community.

5.4.1 Pricing Barrier Options
The difference between standard options and barrier options is that they appear or
disappear only if the underlying asset price hits a predetermined level - H - the
barrier [14].

There are three parameters to be defined:

• barrier level: defines if the barrier is below or above the current
asset price - down or up

• barrier condition: defines whether the option disappears or appears
when the barrier is crossed - out or in

• option type: as for standard options - call or put

A down-and-out call option for example, has the pay-off of a standard call option
except if the underlying asset price goes down below the barrier level H then the
option disappears and pays nothing. The pay-off of a down and out call can be
expressed as follows:

HSST
tmt

KS
>

−
),...,min(1

),0max(

In Table 5.1 all 8 possible parameter combinations are listed with a mathematical
definition of their pay-off.

Name pay-off

Down and out call max(0,ST - K) | min(St1 …. Stm)>H

Up and out call max(0,ST - K) | max(St1 …. Stm)<H

Down and in call max(0,ST - K) | min(St1 …. Stm)≤H

Up and in call max(0,ST - K) | max(St1 …. Stm)≥H

Down and out put max(0,K - ST) | min(St1 …. Stm)>H

Up and out put max(0,K - ST) | max(St1 …. Stm)<H

Down and in put max(0,K - ST) | min(St1 …. Stm)≤H

Up and in put max(0,K - ST) | max(St1 …. Stm)≥H
where |condition is the indicator function which has value one if

condition is true and zero otherwise

Table 5.1: Different Barrier Options

Implied Trees and Exotic Options

40

An example of three possible developments of the underlying asset price for an
American down-and-out call option is given in Figure 3.6 – chapter ‘The Binomial
Model’.

Barrier options are generally cheaper than standard options because of the
possibility that the option disappears or never appears. As the asset price becomes
very low relative to the strike price the chances of it finishing in the money are very
low, while with a standard option the buyer still pays for this chance. A standard
variation on the barrier family are barrier options which pay a predetermined cash
rebate (Xrebate) if an "out" option disappears or an "in" option never appears.

The procedure for calculating the barrier option price is quite similar to the pricing
of standard options except that the barrier boundary condition is added. For a down-
and-out call option this means, when stepping back through the tree at every node
where the underlying asset price is below the barrier the option price is set equal to
the rebate amount - which may be zero [9].

See chapter 12.6.4.2 for a pricing example.

5.4.2 Pricing Look-Back Options
The difference between standard options and look-back options is that either the final
asset price or the strike price is set equal to the minimum or maximum asset price
observed on one of a set of predetermined fixing dates, ti; i = 1,..., m [15].

There are two parameters to be defined:

• look-back condition: defines whether the asset price or the strike
price is replaced - fixed strike or floating strike

• option type: as for standard options - call or put

In Table 5.2 all 4 possible parameter combinations are listed with a mathematical
definition of their pay-off.

Name pay-off

Fixed strike look-back call max(0,max(St1 …. Stm)-K)

Fixed strike look-back put max(0,K-min(St1 …. Stm))

Floating strike look-back call max(0, ST -min(St1 …. Stm))

Floating strike look-back put max(0,max(St1 …. Stm)- ST)

Table 5.2: Different Look-Back Options

A fixed strike call option for example, has the pay-off of a standard call option, except
that the asset price at the maturity date is replaced by the maximum asset price that
occurred over the set of fixings specified.

Implied Trees and Exotic Options

 41

Figure 5.3 illustrates two possible paths of the underlying asset price:

• Path 1: the maximum level of the asset price at the fixing dates occurs at
fixing date t1 - this is below the strike price K and so the pay-off at T is zero.

• Path 2: the maximum occurs at fixing date t3, - is above the strike price and
so the pay-off is St3-K even though the path finishes below the strike
price.

For the floating strike look-backs, if the maturity date is a fixing date then they are
not really options since they will always be exercised. That is the worst pay-off that
can occur is zero if the price at maturity is the maximum or minimum of the
observed prices.

Look-back options thus allow the holder to buy or sell the underlying asset for the
best of the observed prices.

St

K

S0

t0 t1 t2 t3 T t

Path 1

Path 2

Figure 5.3: Fixed Strike Look-back Call Option Example Paths

Because of their path dependency the pricing of look-back options in trees is
complicated. This means, the value of the look-back option at any node in the tree
depends on the current maximum or minimum asset price, which in turn depends
on the path the asset price took to reach that node. As there can be many different
paths through a tree to a particular node (see Figure 5.4) the look-back option can
have many different values at a particular node [9].

Implied Trees and Exotic Options

42

Figure 5.4: Different Paths to the same Node in a Trinomial Tree

To compute the price of a look-back option in a tree all the possible values of the
maximum or minimum at each node must be considered. In general, the number of
paths which reach a given node increases exponentially with the number of time
steps to that node. Fortunately the number of maximum or minimum asset prices
only increases linearly with the number of time steps, but this still increases
significantly the amount of computation required.

The procedure is quite similar as for standard options. Step back through the tree in
the usual way except that at every node the range - i.e. the minimum and
maximum - of the possible maxima which can occur for every node in the tree
must be determined first. This means, at every node the minimum and maximum
possible maximum asset prices which could have occurred for all paths which reach
the node are stored. Then choose an appropriate set of values of the maximum
between the minimum and maximum possible for each node - the nodes which lie
on the upper and lower edges of the tree have only one path passing through them,
and therefore there will be only one maximum. The largest range of values will
occur in the central section of the tree. Therefore the number of values considered
should increase linearly with the number of time steps but also decrease linearly
from the central nodes of the tree down to one at the edges of the tree.

Let ni,j be the number of values stored at node (i,j) and Fi,j,k , k=1,..., ni,j be the
values of the maximum, where Fi,j,1 is the minimum and Fi,j, njj is the maximum.
Figure 5.5 illustrates the structure of the nodes.

Implied Trees and Exotic Options

 43

Qi+1,j+1 pu,i+1,j+1
 pm,i+1,j+1
 pd,i+1,j+1

Fi+1,j+1,1 Fi+1,j+1,2 ... Fi+1,j+1,n
Ci+1,j+1,1 Ci+1,j+1,2 ... Ci+1,j+1,n

Qi,j pu,i,j Qi+1,j pu,i+1,j
 pm,i,j pm,i+1,j
 pd,i,j pd,i+1,j

Fi,j,1 Fi,j,2 ... Fi,j,n Fi+1,j,1 Fi+1,j,2 ... Fi+1,j,n
Ci,j,1 Ci,j,2 ... Ci,j,n Ci+1,j,1 Ci+1,j,2 ... Ci+1,j,n

Qi+1,j-1 pu,i+1,j-1
 pm,i+1,j-1
 pd,i+1,j-1

Fi+1,j-1,1 Fi+1,j-1,2 ... Fi+1,j-1,n
Ci+1,j-1,1 Ci+1,j-1,2 ... Ci+1,j-1,n

Figure 5.5: Structures of Nodes for the Valuation of a Path-Dependent Option

If ni,j is given by

))((1, jabsin ji −+= α (5.20)

where α is typically between one and five, ni,j will always be one at the edges of
the tree (j=i and j=-i) and 1+αi in the centre of the tree. Thus, α can be increased
to improve the accuracy of the approximation by considering more values of the
maximum, whilst keeping the computational effort required under control.

In order to find the range of values of the maximum step forward through the tree
from i=0 to i=N. Having found the range of maxima for all nodes up to time step
i-1, then for any node (i,j) the minimum maximum must be the greater of the
minimum maximum of the lowest node at time step i-1 with a branch to the current
node and the asset price at the current node:

),max(1,,11,, jjiji SFF
i−= (5.21)

where node (i-1,ji) is the lowest node with a branch to node (i,j). Similarly, the
maximum maximum must be the greater of the maximum maximum of the highest
node at time step i-1 with a branch to the current node and the asset price at the
current node:

Implied Trees and Exotic Options

44

),max(,,1,, jnjinji SFF
u−= (5.22)

where node (i-1,ju) is the highest node with a branch to node (i,j).

A uniform spread for the set of ni,j values of the maximum over the range found at
each node (i,j) is given by

)1(
1

1,,,,
1,,,, −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

+= k
n

FF
FF jinji

jikji (5.23)

The value of the option at maturity at every node and for every value of the
maximum can be set, once all the values of the maximum at every node have been
computed.

nkNNjKFC kjikjN ,...,1,,...,),,0max(,,,, =−=−= (5.24)

Finally, again step back through the tree computing discounted expectations and
applying the early exercise condition at every node and for every value of the
maximum

)(,1,1,,,,1,,,1,1,,,, djijidmjijimujijiu
tr

kji CpCpCpeC i
−++++

Δ− ++= (5.25)

where Ci+1,j+1,u, Ci+1,j,m, Ci+1,j-1,d, are the values of the option at time step i+1, given
the current maximum, for upward, middle and downward branches of the asset.

For the middle and downward branches the maximum will remain the same, it
cannot be changed by the asset price decreasing.

kjimji FF ,,,,1 =+ kjidji FF ,,,1,1 =−+ (5.26)

For the upward branch the maximum is the greater of the current maximum and
the asset price at the upward branch node

),max(1,,,1,1 +++ = jkjiuji SFF (5.27)

The maxima Fi+1,j+1,u Fi+1,j,m Fi+1,j-1,d and therefore also the option values Ci+1,j+1,u,
Ci+1,j,m Ci+1,j-1,d will not, in general, be stored at the upward, middle and downward

Implied Trees and Exotic Options

 45

nodes and therefore must be obtained by interpolation. For example using linear
interpolation having

)(,1,1,1,1
,1,1,1,1

,1,1,1,1
,1,1,1,1 i

iu

iu

i kjiuji
kjikji

kjikji
kjiuji FF

FF
CC

CC ++++
++++

++++
++++ −⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
+= (5.28)

where ki and ku are such that

ui kjiujikji FFF ,1,1,1,1,1,1 ++++++ ≤≤ and .1+= iu kk

That is, the two maxima which lie closest to either side of Fi+1,j+1,u are found and a
linear interpolation between these is done to obtain an estimate for Ci+l,j+1,u and
similarly for Ci+1,j,m and Ci+1,j-1,d. This will always be possible because at every
node the minimum and maximum possible values of the maximum are stored.

Web Services

46

6 Web Services

6.1 Web Services Introduction
Web services are expected to revolutionize our life in the same way as the Internet has
during the past decade or so. The key is that Web services provide a common protocol
that Web applications can use to connect to each other over the Internet.

As a result of Web services the integration of applications is more easily and quickly
than ever before. This integration takes places at a higher level in the protocol stack
and is based on messages. The core issue of these messages is the emphasis of service
semantics and less network protocol semantics which enables the possibility of loose
integration of functions. These are ideal characteristics to connect business functions
across the Web either between enterprises as well as within enterprises.

Web services are a technology for deploying and providing access to business
functions over the Internet. There are several development platforms, tools, and kits to
help building Web services [16].

6.2 Overview of Java Web Services
From a software architect's point of view, a Web service can be considered as a
service-oriented architecture, which consists of a collection of services that
communicate with each other (and end-user clients) through well-defined interfaces.
One advantage of service-oriented architecture is that it allows the development of
loosely coupled applications that can be distributed and accessed, from any client,
across the network [17].

6.3 Web Services Definition
A Web service is ‘a software system designed to support interoperable machine-
to-machine interaction over a network’ (W3C) [18].

A Web service is ‘an interface that describes a collection of operations that are
network-accessible through standardized XML messaging’ (IBM) [19].

‘Web Services are self-describing components that can discover and engage
other Web services or applications to complete complex tasks over the Internet’
(SUN) [20].

The main advantage of Web services is that they are built on existing industry
standards. Web services are application components that are designed to support
interoperable machine-to-machine interaction over a network. This interoperability is
gained through a set of XML-based open standards, such as the Simple Object Access
Protocol (SOAP), the Web Services Description Language (WSDL), and Universal
Description, Discovery, and Integration (UDDI). These standards provide a common
and interoperable approach for defining, publishing, and using Web services.

For example, the services are described in Extensible Markup Language (XML) and
are communicated over the Hypertext Transfer Protocol (HTTP). This union is one
way to form the new industry standard called Simple Object Access Protocol (SOAP).
Publication of Web services is done via two standards, the Universal Description,
Discovery, and Integration (UDDI), and Discovery (DISCO).

Web Services

 47

6.4 Web Services Properties
The Web service interface hides the complexity of the service implementation.

This fact provides the following advantages for the service:

• Independent usage (hardware/software platform, programming language)

• Loosely coupled

• Component oriented

• All terrain implementations

The Web service description takes place through standardized formal XML
messaging.

The content of the Web service description covers the following information details:

• Interaction with the service.

• Message formats which detail the operation.

• Transport protocols.

• Location of the service.

Web Services Model

48

7 Web Services Model
The Web service model is based on interactions between three operators - service
provider, service requestor and service registry. The interactions include the,
publish, find and bind operations. Together, the interactions and operators handle the
Web services artifacts - the Web service software module and the Web service
description (see Figure 7.1) [21].

Figure 7.1: Interactions, Operators and Artifacts

A typical scenario would consist of the following steps:
1. The service provider hosts the service software module (implementation of a

Web service).

2. The service provider defines a service description for the Web service.

3. The service provider publishes the service description to the service requestor
and/or service registry.

4. The service requestor uses a find operation to retrieve the service description.

5. The service requestor uses the service description to bind with the service
provider.

6. Finally, the service requestor invokes or interacts with the Web service
implementation.

Web Services Model

 49

Figure 7.2: Web Services Model

7.1 Operators of the Web Services Model
Following operators are involved in the Web service model:

• Service provider is the owner of the service and the author of the Web service
description. This operator (platform) hosts access to the service.

• Service requestor is any kind of business with certain functions which want
to be satisfied or an application that is invoking or initiating an interaction
with the service. So the service requestor can be anyone using a browser or a
program without a user interface, for example another Web service.

• Service registry is a searchable data base where service providers publish
their service descriptions. Service requestors can find services and obtain
binding information from the service descriptions. Also other sources besides
a service registry, such as a local file, FTP site, Web site or Discovery of Web
services (DISCO) can obtain a service description. This means that the service
registry is an optional operator in the Web service model (e.g. if the service
requestor has the service description there is no need for the service registry).

7.2 Interactions of the Web Services Model
The following three elementary interactions must take place for an application to
consume the Web service:

1. Publish the service description(s).

2. Find the service description(s).

3. Bind or invoke the service(s) based on the service description(s).

Web Services Model

50

In detail, these interactions are:

• Publish. A service description is only accessible, when it is published so that
the service requestor can find it. The location where the service description is
published depends on the requirements of the application.

• Find. In the find operation, the service requestor retrieves a service
description directly from the service provider or queries the service registry
(see below) for the type of service required. This operation can occur in two
different lifecycle phases - at design time to retrieve the service's interface
description for program development, and at runtime to retrieve the service's
binding and location description for invocation.

• Bind. In the bind operation the service requestor invokes or initiates an
interaction with the service at runtime. Therefore it uses the binding details in
the service description to localize, contact and invoke the service.

7.3 Artifacts of the Web Services Model
The Web service model contains the following artifacts:

• Service. A service is a software module deployed on a network-accessible
platform to be invoked by or to interact with a service requestor. It is also
possible that the service acts as a requestor, by referring to other Web services
in its implementation.

• Service Description. The service description contains the details of the
interface and implementation of the service, including data types, operations,
binding information and network location. The service description is published
either to a service requestor or to a service registry.

Web Services Architecture

 51

8 Web Services Architecture
This section handles the role of service description in the Web services architecture
and service publication techniques supporting static as well as dynamic12 Web
services applications. Regarding to service publication, the mechanism of service
discovery is shortly discussed as well [22].

8.1 Web Services Protocol Stack
To review the Web services architecture at first, a detailed look at a conceptual stack
for Web services is taken. Included are the layers for choosing the network protocol,
XML-based messaging and extended basic XML messaging with a service
description.

In order to perform the three Web services operations publish, find and bind a Web
services stack must incorporate standards at each level. Figure 8.1 shows a conceptual
Web services protocol stack with the standards that apply at the corresponding layer.
The lower layers provide capabilities that upper layers build on, whereas the vertical
bars represent enterprise-class infrastructure requirements that must be fulfilled [19].

Figure 8.1: Web Services Protocol Stack

8.2 Network Layer
The base layer of the Web services stack is the network layer. Web services that are
publicly available on the Internet are generally described in XML and are
communicated over the existing HTTP infrastructure. Because of its omnipresence,
HTTP can be seen as the quasi standard network protocol but also supported are the

12 Depending on the Web services lifecycle when binding takes place - before runtime (static) or during
runtime (dynamic).

Web Services Architecture

52

Simple Mail Transfer Protocol (SMTP), File Transfer Protocol (FTP), e-mail, and so
on.

8.3 XML-Based Messaging Layer - SOAP
SOAP once stood for ‘Simple Object Access Protocol’ but was considered to be
misleading and therefore this acronym was dropped with Version 1.2. SOAP is a
simple XML-based protocol to exchange structured data between network
applications, normally using HTTP. SOAP therefore is the standard enveloping and
exchanging transport mechanism embedding document-centric messages and remote
procedure calls (RPC’s) using XML [23].

This protocol is chosen as the XML messaging protocol for several reasons:

• SOAP is simple and extensible - an HTTP message within an XML envelope.

• SOAP messages support publishing, finding and binding Web services
operations.

• SOAP embraces message extensions like headers and standard coding
mechanism of operations or functions, to satisfy compliance with standards at
every level.

• SOAP can be used in combination with a variety of network protocols such as
HTTP, SMTP, FTP (see above).

8.3.1 SOAP message structure
The structure of a SOAP message with/out attachment can be seen in Figure 8.2.
SOAP consists of three parts:

• The envelope that defines a framework, describing what is in a message.

• A set of coding rules to express the instances of application-specific data
types.

• Conventions to represent remote procedure calls and responses.

Web Services Architecture

 53

Figure 8.2: SOAP Message Structure with/out Attachment

8.3.2 SOAP message example

In this example, a GetStockPrice request is sent to a server. The request has a
StockName parameter, and a Price parameter will be returned in the response.
The namespace for the function is defined in ‘http://www.example.org/stock’ address
[24].

SOAP request message:
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 <soap:Body xmlns:m="http://www.example.org/stock">
 <m:GetStockPrice>
 <m:StockName>IBM</m:StockName>
 </m:GetStockPrice>
 </soap:Body>

</soap:Envelope>

SOAP response message:
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

Web Services Architecture

54

 <soap:Body xmlns:m="http://www.example.org/stock">
 <m:GetStockPriceResponse>
 <m:Price>34.5</m:Price>
 </m:GetStockPriceResponse>
 </soap:Body>

</soap:Envelope>

8.3.3 XML Based Messaging using SOAP
The main requirements for a network node to operate as service requestor or provider
are the capability to communicate over an accessible network and the capability to
build and/or parse SOAP messages. Usually, a Web application server running SOAP
performs these functions. As an alternative, a programming language-specific runtime
library can be used that encapsulates these functions within an API. Figure 8.3 shows
how SOAP (XML-based messaging) and network protocols (HTTP, FTP,...) builds
the base of the Web services architecture [25].

Figure 8.3: XML Based Messaging using SOAP

Typical scenario – Application integration using SOAP:

1. The service requestor's application creates a SOAP message. Together with
the network address of the service provider, the service requestor passes this
message to the local SOAP infrastructure (e.g., the SOAP client). The SOAP
client runtime uses an underlying network protocol (e.g. HTTP) to transmit the
SOAP message over the network.

2. The SOAP message is delivered to the service provider's SOAP runtime (e.g.
SOAP server). The SOAP server converts the XML message into
programming language-specific objects if required by the application and
routes the request to the service provider's Web service.

3. The Web service processes the request message and formulates a response, of
course also a SOAP message. The response is passed to the local SOAP

Web Services Architecture

 55

runtime specifying the service requestor as its destination, where the SOAP
message response is sent to the service requestor.

4. Finally the response message is received by the networking infrastructure on
the service requestor's node, where it is routed through the SOAP
infrastructure. Optionally the XML message is converted into objects of the
target programming language. The response message is then passed to the
application.

Neither the requestor nor the provider must be aware of the other's underlying
platform, programming language, or distributed object model (if any). The service
description combined with the underlying SOAP infrastructure hides these details
apart from the service requestor's application and the service provider's Web service.

8.4 Service Description Layer

8.4.1 From XML Messaging to Web Services
A stack of description documents defines the service description layer. This stack is
the minimum standard service description necessary to support interoperable Web
services. The Web services architecture uses the Web Services Description Language
(WSDL) standard for XML-based service description.

WSDL defines the interface and mechanics of service interaction. WSDL is an XML
document for describing Web services as a set of endpoints operating on messages
containing either document-oriented or procedure-oriented (RPC) content. The
operations and messages are described abstractly, and then bound both to a concrete
network protocol and message format in order to define an endpoint. WSDL is
extensible to allow the description of endpoints and messages, regardless of message
formats and network protocols used in the communication.

Additional description is necessary to specify high level aspects of the Web service.
The WSDL document can be complemented in order to describe the business context,
quality of service (QOS) and service-to-service relationships. For example, the
business context is described using UDDI data structures in addition to the WSDL
document [22].

Because a Web service is defined as being network-accessible via the Web service
stack and represented by a service description, the lower three layers are required to
provide or use any Web service (see Figure 8.1).

The simplest stack consists of:

1. HTTP for the network layer,

2. SOAP for the XML messaging layer and

3. WSDL for the service description layer.

This is the interoperable base stack that all inter-enterprise, or public, Web services
should support.

Web Services Architecture

56

8.4.2 Basic Web Service Description
Using WSDL in the Web services architecture divides the basic service description
into two parts - the service interface and the service implementation. Its advantage is
that each part can be defined separately and independently, and reused by other parts.

Figure 8.4: Basic Web Service Description

A service interface definition is a reusable service definition that can be referenced
and instantiated by multiple service implementation definitions. The service interface
contains WSDL elements that embed the reusable fragment of the service description
(Figure 8.4):

• The WSDL:types elements describes the use of complex data types within the
message.

• The WSDL:message element is used to define the input and output parameters
of an operation. It specifies which XML data types determine diverse parts of
a message.

• The WSDL:portType element defines the operations of the Web service. Like
an operation as a method signature in a programming language it defines the
XML messages that can appear in the input and output data flows.

• The WSDL:binding element describes protocol, data format, security and other
attributes of a specific service interface.

The WSDL document that describes how a particular service interface is implemented
by a service provider is the service implementation definition. A Web service is
modeled as a WSDL:service element, which contains a collection of WSDL:port
elements (usually one). A port associates an endpoint, for instance a network address
location or URL, with a WSDL:binding element from a service interface definition
(Figure 8.4).

Together this pair makes up a basic WSDL definition of the service containing
sufficient information to describe to the service requestor how to invoke and interact
with the Web service. Other information about the service provider's endpoint is
provided by the complete Web service description of the service [26].

8.4.3 Full WSDL Syntax
The full WSDL 1.2 syntax as described in the W3C working draft is listed below [27].

Web Services Architecture

 57

<wsdl:definitions name="nmtoken"? targetNamespace="uri">
 <import namespace="uri" location="uri"/> *
 <wsdl:documentation /> ?
 <wsdl:types> ?
 <wsdl:documentation /> ?
 <xsd:schema /> *
 </wsdl:types>
 <wsdl:message name="ncname"> *
 <wsdl:documentation /> ?
 <part name="ncname" element="qname"? type="qname"?/> *
 </wsdl:message>
 <wsdl:portType name="ncname"> *
 <wsdl:documentation /> ?
 <wsdl:operation name="ncname"> *
 <wsdl:documentation /> ?
 <wsdl:input message="qname"> ?
 <wsdl:documentation /> ?
 </wsdl:input>
 <wsdl:output message="qname"> ?
 <wsdl:documentation /> ?
 </wsdl:output>
 <wsdl:fault name="ncname" message="qname"> *
 <wsdl:documentation /> ?
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:serviceType name="ncname"> *
 <wsdl:portType name="qname"/> +
 </wsdl:serviceType>
 <wsdl:binding name="ncname" type="qname"> *
 <wsdl:documentation /> ?
 <-- binding details --> *
 <wsdl:operation name="ncname"> *
 <wsdl:documentation /> ?
 <-- binding details --> *
 <wsdl:input> ?
 <wsdl:documentation /> ?
 <-- binding details -->
 </wsdl:input>
 <wsdl:output> ?
 <wsdl:documentation /> ?
 <-- binding details --> *
 </wsdl:output>
 <wsdl:fault name="ncname"> *
 <wsdl:documentation /> ?
 <-- binding details --> *
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="ncname" serviceType="qname"> *
 <wsdl:documentation /> ?
 <wsdl:port name="ncname" binding="qname"> *
 <wsdl:documentation /> ?
 <-- address details -->
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

A concrete example for a Web service description is given in chapter 12.3.

Web Services Architecture

58

8.4.4 Complete Web Service Description
The complete Web service description answers questions about:

• The business and type of business hosting the service.

• The products associated with the service.

• The associated categories in various company and product systems.

• The provided keywords so that it is easier to find the service.

• Other aspects of the service such as Quality of Service or Security.

Finally, the top layer in the service description stack is the agreement description
using UDDI. An agreement description represents a simple coordination of Web
service invocations between two business partners to complete a multi-step business
interaction.

Figure 8.5: Complete Web Service Description

The service endpoint description adds further semantics to the service description that
apply to a particular implementation of the service. Security attributes can define the
access policy to the Web service. Quality of Service attributes will specify
performance-oriented service capabilities, for example, to respond within a certain
period of time. UDDI (Universal Description, Discovery, and Integration) therefore
provides a mechanism for holding descriptions of Web services which is not covered
more detailed.
As an example, the coordination of roles such as buyer and seller within a purchasing
protocol which outlines the requirements that each role must fulfill. For example, the
seller must have Web services that receive request for quote (RFQ) messages,
purchase order (PO) messages and payment messages. The buyer role must have Web
services that receive quotes (RFQ response messages), invoice messages and account
summary messages. This simple coordination of Web services into business roles is
essential for establishing multistep, service-oriented interactions between business
partners.

Web Services Architecture

 59

8.5 Publication and Discovery of Service Descriptions
Any action that makes a WSDL document available to a service requestor qualifies as
service publication.
A service description can be published using a variety of mechanisms. The simplest
scenario is the service provider sending a WSDL document directly to a service
requestor what is called direct publication. Direct publication, ideally via e-mail, is
useful for statically bound applications. Alternatively, the service provider can publish
the WSDL document describing the service to a private UDDI registry or UDDI
operator node.

Any mechanism that allows the service requestor to gain access to the service
description and make it available to the application at runtime qualifies as service
discovery.

The simplest scenario of discovery is static discovery where the service requestor
retrieves a WSDL document from a local file. This is usually the WSDL document
obtained through a direct publish or a previous find operation.

Web Services Development Lifecycle

60

9 Web Services Development Lifecycle
A typical end-to-end lifecycle scenario would start with the creation and publication
of a service interface (build), proceed to the creation and deployment of the Web
service (deploy), move on to the publication of the service implementation definition
and end with the invocation of the Web service by the service requestor (run).

The development lifecycle includes the following phases:

• build

• deploy

• run

• manage

Each Web service operator – service registry, service provider and service requestor –
has specific requirements for each element of the development lifecycle.

9.1 Build Phase
The build lifecycle phase involves development and testing of the Web services
implementation. Further it includes the definition of the service interface description
and the definition of the service implementation description. Locating an existing
service interface definition is also a build-time task.

The Web services implementations can be provided by creating new Web services,
transforming existing applications into Web services, or composing new Web services
from other Web services and applications.

There are some similarities between a Web service development approach and object-
oriented programming. Both use concepts such as encapsulation, interface inheritance
and dynamic binding. This means that object-oriented design methodologies can be
applied to Web services design, but it is not required to design a Web service.

9.2 Deploy Phase
The tasks of the deploy phase of the development lifecycle include the publication of
the service interface and service implementation definition, deployment of the
runtime code for the Web service as well as integration with back-end legacy systems.

9.3 Run Phase
During the run lifecycle phase, the Web service is fully deployed and operational. In
this state, a service requestor can find the service definition and invoke all defined
service operations. The runtime functions include static and dynamic binding, service
interactions as a function of Simple Object Access Protocol (SOAP) messaging and
interactions with legacy systems.

9.4 Manage Phase
The manage lifecycle phase covers continual management and administration of the
Web service application. Security, availability, performance, quality of service and

Web Services Development Lifecycle

 61

business processes must all be addressed. This document focuses on the development
of Web services and does not cover this phase of the lifecycle.

Developing Web Services

62

10 Developing Web Services
This section describes the Web service lifecycle for each operator: service registry,
service provider and service requestor.

10.1 Service Registry
Development and deployment of a service registry is not covered, because it is a
passive participant. It is assumed that the registry has been built and deployed before
it is selected for use by the service provider or service requestor.

10.2 Service Provider
The service provider in this context is software. To develop a Web service there exist
four basic scenarios to implement a service provider. Which scenario is used for the
implementation is based on the creation of a new service interface and application.
Table 10.1 provides an overview of these development scenarios [28].

 New Service Interface Existing Service Interface

New Web Service Green field Top-down

Existing Application Bottom-up Meet-in-the-middle

Table 10.1: Basic Scenarios for Service Provider Implementation

10.2.1 Green Field Scenario
The green field scenario for developing Web services describes how a new service
interface will be created for a new Web service, as shown in Table 10.1. The Web
service is created first and then the service interface definition is generated, so both
are owned by the service provider.

Developing Web Services

 63

Figure 10.1: Green Field Scenario

10.2.1.1 Build Phase
1. Develop the new Web service.

Design and implement the application that represents the Web service, and
verify that all of its interfaces work correctly.

2. Define a new service interface.

The next step is to generate the service interface definition from the
implementation of the service. The service interface should not be generated
until the Web service development is complete because the interface must
match the exact implementation of the service.

10.2.1.2 Deploy Phase
1. Publish the service interface definition before the service is deployed.

The service interface definition is used by a service requestor to determine
how to bind to the service.

2. Deploy the Web service.

Deploy the runtime code and any deployment meta data (e.g. the deployment
descriptor to deploy a SOAP service) that is required to run the service. After
a service has been deployed, it is ready to be used by a service requestor.

3. Create the service implementation definition.

Depending on how and where the service was deployed the service
implementation definition should be created, because it can contain references

Developing Web Services

64

to more than one version of the deployed Web service. This allows the service
provider to implement different levels of service for service requestors.

4. Publish the service implementation definition.

After the service implementation definition is published, a service requestor
can find the service definition and use it to bind to the Web service. Therefore
the service implementation definition contains the definition of the network-
accessible endpoint or endpoints.

10.2.1.3 Run Phase
Run the Web service.

The runtime environment for the Web service consists of the platform on
which it was deployed to run. If the Web service is a servlet, then it runs in the
context of a Web application server. If the Web service is a SOAP service,
then it runs in the context of a SOAP server.

10.2.2 Top-Down Scenario
The top-down scenario is where a new Web service can be developed matching to an
existing service interface, see also Table 10.1. Figure 10.2 shows, that the service
provider must find the service interface, implement the interface contained in this
definition, and then deploy the new Web service. Only the service implementation is
owned by the service provider.

Figure 10.2: Top-Down Scenario

Developing Web Services

 65

10.2.2.1 Build Phase
1. Find the service interface.

Locate the service interface that will be implemented by the Web service by
searching the service registry or an industry specification registry.

2. Generate the service implementation template.

An implementation template of the Web service is generated by using the
service interface definition. The template contains all of the methods and
parameters that must be implemented by the Web service to comply with the
service interface.

3. Develop the new Web service.

10.2.2.2 Deploy Phase
The only difference here, compared to the green field scenario, is that the service
interface has already been published by another operator.

1. Deploy the Web service.

2. Create the service implementation definition.

3. Publish the service implementation definition.

10.2.2.3 Run Phase
Run the Web service.
The runtime environment for the Web service consists of the platform on
which it was deployed to run.

10.2.3 Bottom-Up Scenario
As shown in Table 10.1 the bottom-up scenario creates a new service interface for an
existing application. The application can be implemented as an Enterprise Java
Bean™ (EJB), Java Bean, servlet, C++ or Java class file, or Component Object Model
(COM) class. The service interface is derived from the application's API, as Figure
10.3 shows.

Developing Web Services

66

Figure 10.3: Bottom-Up Scenario

10.2.3.1 Build Phase
Generate the service interface.

The service interface is generated from the implementation of the application
that represents the Web service.

10.2.3.2 Deploy Phase
1. Deploy the Web service.

2. Create the service implementation definition.

3. Publish the service interface definition.

The service interface definition must be published before the service
implementation definition can be published.

4. Publish the service implementation definition.

10.2.3.3 Run Phase
Run the Web service.
The runtime environment for the Web service consists of the platform on
which it was deployed to run.

10.2.4 Meet-in-the-Middle Scenario
When a service interface and an application implementing the Web service already
exist the meet-in-the-middle scenario is used, as shown in Table 10.1.

Developing Web Services

 67

The main task here is to map the existing application interfaces to those defined in the
service interface definition. This can be done by creating a wrapper for the
application that uses the service interface definition. The wrapper contains an
implementation that maps the service interface into the existing application interface.
Figure 10.4 shows the mapping process.

Figure 10.4: Meet-in-the-Middle Scenario

10.2.4.1 Build Phase
The first two build steps are similar as those for the top-down scenario.

1. Find the service interface.

Locate the service interface that will be implemented by the Web service by
searching the service registry or an industry specification registry.

2. Generate the service implementation template.

3. Develop the service wrapper.

The service wrapper is designed and implemented by using the service
implementation template created in the previous step.

10.2.4.2 Deploy Phase
The deployment steps for the meet-in-the-middle scenario are similar to those of the
bottom-up scenario the only difference is that the service interface definition is
already published.

1. Deploy the Web service.

2. Create the service implementation definition.

Developing Web Services

68

3. Publish the service implementation definition.

10.2.4.3 Run Phase
Run the Web service.
The runtime environment for the Web service consists of the platform on
which it was deployed to run.

10.3 Service Requestor
The service requestor passes through the same lifecycle as the service provider, but
the requestor performs different tasks during each phase. The build time tasks for the
service requestor are dictated based on the method for binding to a Web service.

From the service interface a service proxy or stub is generated which contains all of
the code that is required to access and invoke a Web service. For example, if the Web
service is a SOAP service, the service proxy will contain all of the SOAP client code
that is required to invoke a method on the SOAP service.

As Table 10.2 shows, there are three methods for binding to a specific service. Static
binding is used only at build time, whereas dynamic binding can be used either at
build time or runtime. Static binding cannot be used at runtime, because it requires all
of the information needed to bind to a service at build time [28].

 Static Binding Dynamic Binding

Build Static binding Build-time dynamic binding

Run [not applicable] Runtime dynamic binding

Table 10.2: Methods for Service Requestor Binding

10.3.1 Static Binding
When there is only one service implementation that will be used at runtime a service
requestor will use static binding (see Figure 10.5). The static binding is done at build
time by locating the service implementation definition for the single Web service. The
service implementation definition contains a reference to the service interface, which
will be used to generate the service proxy code. The service proxy contains a
complete implementation of the client application that can be used by the service
requestor to invoke Web service operations.

Developing Web Services

 69

Figure 10.5: Static Binding

10.3.1.1 Build Phase
1. Find the service implementation definition.

At build time, the service requestor must find the service implementation
definition for the Web service which contains a reference to the service
interface definition, and the location where the service can be accessed.

2. Generate the service proxy.

Both, the service interface definition and the service location information are
used to generate the service proxy implementation. The service proxy will try
to access the Web service always at the same location and will match with the
service interface.

3. Test the service proxy.

To verify that the service proxy can interact correctly with the specified Web
service, it should be tested.

10.3.1.2 Deploy Phase
Deploy the service proxy.

After testing, it is deployed with the client application in the client runtime
environment.

10.3.1.3 Run Phase
Invoke the Web service.

Developing Web Services

70

Run the requestor application which will invoke the Web service via the
service proxy.

10.3.2 Build-Time Dynamic Binding
This binding method is used when a service requestor wants to use a specific type of
Web service, but the implementation is not known until runtime or it can change at
runtime. The type of service is defined in a service interface definition.

Figure 10.6: Build-Time Dynamic Binding

10.3.2.1 Build Phase
1. Find the service interface definition.

First the service interface definition for the type of service that will be used by
the service requestor must be found. The service interface contains only the
abstract definition of the Web service operations.

2. Generate the generic service proxy.

The service interface definition is used to generate a generic service proxy
which can be used to access any implementation of the service interface.
Unlike the service proxy generated for static binding, this proxy will not
contain knowledge of a specific service implementation. So the generic
service proxy will contain code to locate a service implementation by
searching a service registry.

3. Test the service proxy.

Developing Web Services

 71

Just find an implementation of the service interface for testing.

10.3.2.2 Deploy Phase
Deploy the service proxy.

If the service proxy passed testing and works correctly it should be deployed
within the runtime environment. This process can also include the deployment
of the requestor application that will use the service proxy. The application
must have access to the service registry that will be searched for an
implementation of the service interface.

10.3.2.3 Run Phase
1. Find the Service implementation definition.

An implementation of the service must be located in the service registry
before the service proxy can invoke a service.

2. Invoke the Web service.

After a service implementation has been found, the service proxy can be used
to invoke the Web service.

10.3.3 Runtime Dynamic Binding
Runtime dynamic binding is similar to build-time dynamic binding the only
difference is that the service interface is found at runtime. A service interface is used
to generate a general service proxy interface that can be used to invoke any
implementation of the service interface. Generally this binding method would be used
with a user interface, because machine-to-machine interactions cannot be absolutely
dynamic.

10.3.3.1 Build Phase
Build the service requestor application.

The service requestor application is built using a dynamic binding runtime
interface. This interface is used to find a service implementation, and then
retrieve the service interface associated with the service implementation.

10.3.3.2 Deploy Phase
Deploy the service requestor application.

The service requestor application is deployed so that it will run and use the
Web service runtime environment.

10.3.3.3 Run Phase
1. Find the service implementation definition.

To find a service implementation definition the service requestor application
uses runtime environment. Different methods can be used to locate a service
implementation in a service registry. It can be found by first locating a
business or type of business, and then determining the services offered by
those businesses. The service implementation could also be located by

Developing Web Services

72

searching for a classification of service, or by first locating a type of service
(or service interface). If the service interface is target of a search operation,
then it is used to locate the implementations of service interface.

2. Generate and deploy the service proxy.

The service proxy code that will be used to invoke the service is generated
using the service interface associated with the service implementation. After
the code generation, it is compiled and made available in the runtime
environment.

3. Invoke the Web service.

The generated service proxy code is used to invoke the Web service.

Web Services and Java Technology

 73

11 Web Services and Java Technology

11.1 Web Service Tools - Java 2 Platform
A set of several developing platforms, tools, and kits can be used to help build these
scenarios. Development tools automate various aspects of Web service development
simplifying design, deployment and integration [17] and [29].

The Java 2 Platform, Enterprise Edition (J2EE) version 1.4 provides comprehensive
support for Web services. Existing J2EE components can be easily exposed as Web
services.

The following implementations use the tools provided with the J2EE environment for
several reasons:

• Interoperability
Web services are integrated through the JAX-RPC 1.1 API, which can be used
to develop service endpoints based on SOAP. JAX-RPC 1.1 provides
interoperability with Web services based on the Web Services Description
Language (WSDL) and Simple Object Access Protocol (SOAP).

• Portability

J2EE 1.4 supports the WS-I Basic Profile to ensure that Web services are
portable not only across J2EE implementations, but are also interoperable with
any Web service developed, using any platform that conforms to the WS-I
standards.

• Scalability

J2EE containers provide transaction support, database connections, life cycle
management, and other services that are scalable and require no code from
application developers.

• Reliability

• No single-vendor lock-in

11.2 J2EE 1.4 SDK
The J2EE 1.4 SDK gives access to several tools, including wscompile, which takes
the service definition interface and generates the client-side stubs or server-side
skeletons, or a WSDL description for the provided interface [30].

The J2EE 1.4 SDK includes the following tools:

• J2EE 1.4 Application Server

• Java 2 Platform, Standard Edition (J2SE) 1.4.2_01

• J2EE Samples

• Sun ONE Message Queue

• PointBase Database Server

Web Services and Java Technology

74

11.3 JSR 109 - Implementing Enterprise Web Services
The process of developing and deploying Web services is coupled with the runtime
system. The JSR 109 specification promotes building portable and interoperable Web
services in the J2EE 1.4 environment. JSR 109 leverages J2EE technologies to
provide an industry standard for developing and deploying Web services on the J2EE
platform, and it provides a service architecture that is familiar to J2EE developers
[31]. This specification outlines the lifecycle of Web services to include:

• Development: Standardizes the Web services programming model as well as
the deployment descriptors.

• Deployment: Describes the deployment actions expected of a J2EE 1.4
container.

• Service publication: Specifies how the WSDL is made available to clients.

• Service consumption: Standardizes the client deployment descriptors.

11.4 J2EE Web Services
JAX-RPC is a Java API for XML-based Remote Procedure Calls (RPC’s). An RPC is
represented using an XML-based protocol such as SOAP, which defines an envelope
structure, encoding rules, and convention for representing RPC calls and responses,
which are transmitted as SOAP messages over HTTP [29] and [32].

See also Figure 8.2 chapter Web Services Architecture.

The advantage of JAX-RPC is that it hides the complexity of SOAP messages from
the developer.

Here how it works:

The developer specifies the remote procedures (Web services) that can be invoked by
remote clients in a Java programming language interface; the developer implements
the interface. The client view of a Web service is a set of methods that perform
business logic on behalf of the client. A client accesses a Web service using a Service
Endpoint Interface as defined by JAX-RPC. Client developers create the client - a
proxy or a local object that represents the remote service that is automatically
generated - and then simply invoke the methods on the proxy. Generating or parsing
SOAP messages is all taken care of by the JAX-RPC runtime system.

Note that J2EE Web services can be invoked by any Web service client, and any J2EE
Web service client can invoke any Web service.

Figure 11.1 shows how a Java client communicates with a Java Web service in the
J2EE 1.4 platform. J2EE applications can use Web services published by other
providers, regardless of how they are implemented. In the case of non-Java
technology-based clients and services, the Figure would change slightly.

Web Services and Java Technology

 75

Figure 11.1: A Java Client Calling a J2EE Web Service

Note that a Web service client never accesses a service directly; it does so through the
container. This is a good thing, since it allows a Web service to benefit from the
added functionality that the container provides -- such as security, enhanced logging,
and quality-of-service guarantees.

11.5 Working with JAX-RPC
When working with JAX-RPC, remember that it maps Java types to XML/WSDL
definitions. Knowing all the details of these mappings is not needed, but you should
be aware that not all J2SE classes can be used as method parameters or return types in
JAX-RPC [32].

JAX-RPC supports the following primitive data types:

• boolean

• byte

• double

• float

• int

• long

• short

• string

• array

In addition, it supports the following wrapper and utility classes:

• java.lang.Boolean

• java.lang.Byte

• java.lang.Double

Web Services and Java Technology

76

• java.lang.Float

• java.lang.Integer

• java.lang.Long

• java.lang.Short

• java.lang.String

• java.math.BigDecimal

• java.math.BigInteger

• java.net.URI

• java.util.Calendar

• java.util.Date

JAX-RPC also supports something called a value type, which is a class that can be
passed between a client and a service as a parameter or return value.

A value type must follow these rules:

• It must have a public default constructor.

• It must not implement java.rmi.Remote.

• Its fields must be JAX-RPC supported types.

• Also, a public field cannot be final or transient, and a non-public
field must have corresponding getter and setter methods.

11.6 Creating a Web Service
Building an XML-RPC style Web service using the J2EE 1.4 platform involves the
following five steps [29] and [31]:

1. Design and code the Web service endpoint interface.

2. Implement the service endpoint interface.

3. Write a configuration file.

4. Generate the necessary mapping files.

5. Packaging the service in a WAR file and deploy it using the deployment tool.

11.6.1 Design and Code the Service Endpoint Interface
The first step in creating a Web service is to design and code its endpoint interface, in
which you declare the methods that a Web service remote client may invoke on the
service.

Developing such an interface, must ensure that:

• It extends the java.rmi.Remote interface.

Web Services and Java Technology

 77

• It does not have constant declarations such as public static final.

• Its methods throw the java.rmi.RemoteException or one of its
subclasses.

• Its method parameters and return data types are supported JAX-RPC types.

11.6.2 Implement the Service Endpoint Interface
The next step is to implement the interface and compile the .java files to generate
the .class files.

Here the respective command:
prompt> javac -d build *.java

See chapter 12.1.2 for an example.

11.6.3 Write a Configuration File
The next step is to define a configuration file to be passed to the wscompile tool.

This file tells wscompile to create a WSDL file with the following information:

• The service name.

• The WSDL namespace.

• The package where the classes for the service are specified.

• The service endpoint interface.

See chapter 12.2for an example.

11.6.4 Generate the Necessary Mapping Files
Now, use the wscompile tool to generate the necessary files.

Consider the following command:
prompt> wscompile -define -mapping build/mapping.xml -d
build -nd build -classpath build config.xml

This command, which reads the config.xml file created earlier, creates the
*.wsdl file and mapping.xml.

The command line options or flags are:

-define: instructs the tool to read the service endpoint interface and create a WSDL
file.

-mapping: specifies the mapping file and where it should be written.

-d and -nd: specifies where to place generated output files and non-class output
files.

Now a Web service that is ready to be packaged and deployed has been built.

Web Services and Java Technology

78

The WSDL file, generated by the wscompile tool, provides an XML description
(based on WSDL) of the service that clients can invoke. To understand the details of
the file you need some knowledge of WSDL.

See chapter 12.3 for an example.

The mapping file, mapping.xml, generated by the wscompile tool follows the
JSR 109 standard for Java WSDL mappings. The structure of the JAX-RPC
mapping file matches closely with the structure of the WSDL file - note the
relationship between Java packages and XML namespaces. Each service offered is
represented as a service-interface-mapping element. This element contains
the mapping for the fully qualified class name of the service interface, WSDL service
names, and WSDL port names. In addition, the JAX-RPC mapping file provides
mappings for WSDL bindings, WSDL port types, WSDL messages, and so on.

11.6.5 Packaging and Deploying the Service
A JAX-RPC Web service is a Web component, in J2EE terminology, and hence you
can use deploytool to package and generate all the necessary configuration files,
and to deploy the service.

Behind the scenes, a JAX-RPC Web service is implemented as a servlet. Because a
servlet is a Web component, you run the New Web Component wizard of the
deployment tool utility to package the service.

During this process the wizard performs the following tasks:

• Creating the Web application deployment descriptor.

• Creating a WAR file.

• Adding the deployment descriptor and service files to the WAR file.

See chapter 12.4 for an example.

11.7 Creating a Web Service Client
A client invokes a Web service in the same way as it invokes a method locally.

11.7.1 Types of Web Service Clients
There are the following three types of Web service clients:

• Static Stub: A Java class that is statically bound to a service endpoint
interface. A stub, or a client proxy object, defines all the methods that the
service endpoint interface defines. Therefore, the client can invoke methods of
a Web service directly via the stub. The advantage of this is that it is simple
and easy to code. The disadvantage is that the slightest change of Web service
definition lead to the stub being useless and this means the stub must be
regenerated. Use the static stub technique if you know that the Web service is
stable and is not going to change its definition. A static stub is tied to the
implementation which means, it is implementation-specific.

• Dynamic Proxy: Supports a service endpoint interface dynamically at
runtime. Here, no stub code generation is required. A proxy is obtained at
runtime and requires a service endpoint interface to be instantiated. As for

Web Services and Java Technology

 79

invocation, it is invoked in the same way as a stub. This is useful for testing
Web services that may change their definitions. The dynamic proxy needs to
be re-instantiated but not re-generated as is the case with stub.

• Dynamic Invocation Interface (DII): Defines javax.xml.rpc.Call
object instance for dynamic invocation. Unlike a stub or proxy, it must be
configured before it can be used. A client needs to provide: operation name,
parameter names, types, modes, and port type. As you can tell, much more
coding is involved here. The major benefit is that since Call is not bound to
anything, there is no impact of changes on the client side whenever the Web
service definition changes.

11.7.2 Browser-Based Client
Finally, develop a Web client in which the Web service is invoked from a browser-
based form (Java Server Page). For the implementation the static stub client method is
used. The client calls the method through a stub, or a local object that acts as a client
proxy to the remote service. It is called a static stub because the stub is generated
before runtime by the wscompile tool.

Consider the following steps:

1. Before developing the Java client itself, you need to write a configuration file
(in XML) that describes the location of the WSDL file.

The URL in the configuration file identifies the location of the WSDL file. If
you try this URL, you'd see the appropriate WSDL service file, assuming the
Web service is deployed.

See chapter 12.5.1 for an example.

2. Once you have written the configuration file, you are ready to generate client
stubs, using the following command:
prompt> wscompile -gen:client -d build -classpath
build config-wsdl.xml

This commands reads the *.wsdl (the location of which is specified in the
config-wsdl.xml), then generates files based on the information in the
WSDL file and on the command-line flags.

The -gen:client instructs wscompile to generate the stubs, as well as
other runtime files needed such as serializers and value types.

3. The next step is to write the Web client as a servlet or a Java Server Pages
technology page (JSP).

See chapter 12.5.2 for an example.

4. The last step is to package and deploy the Web client as a JSP Web
component using the deploytool. The specified URL is to be used to
access the service.

See chapter 12.5.3 for an example.

Pricing Web Service

80

12 Pricing Web Service
The idea behind this Web service is to implement the presented models in the J2EE
1.4 platform and to use it for the valuation of options [29], [33] and [34].

12.1 Service Endpoint Interface

12.1.1 Designing
Due to the variety of models different services with partly dependencies among each
other exist. Here the power of Web services is demonstrated by one service using or
better supporting the other with its valuation results.

In Figure 12.1 the conceptual design of the Pricing Web service is given.

Figure 12.1 UML Diagram of the Pricing Web Service

12.1.2 Coding and Implementing
The interface file named Verfahren.java looks as follows:
package pricing;

import java.lang.*;
import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Verfahren extends Remote
{
public abstract Lattice pricing(Instrument inst) throws
RemoteException;
}

Pricing Web Service

 81

12.2 Configuring
To describe the name of the service, its namespace, the package name and the name
of the interface a configuration file is necessary.

This file named config.xml has the following look:
<?xml version="1.0" encoding="UTF-8"?>
<configuration
 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">
 <service
 name="BS"
 targetNamespace="urn:Foo"
 typeNamespace="urn:Foo"
 packageName="pricing">
 <interface name="pricing.Verfahren"/>
 </service>
</configuration>

12.3 Mapping
The WSDL file, generated by the wscompile tool, provides an XML description of
the service that clients can invoke and looks as follows:
<?xml version="1.0" encoding="UTF-8"?>

<definitions name="BS" targetNamespace="urn:Foo" xmlns:tns="urn:Foo"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
 <types>
 <schema targetNamespace="urn:Foo" xmlns:tns="urn:Foo"
xmlns:soap11-enc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
 <complexType name="Instrument">
 <sequence>
 <element name="alpha" type="double"/>
 <element name="derivativ" type="tns:Derivativ"/>
 <element name="dx" type="double"/>
 <element name="underlying"
type="tns:Underlying"/></sequence></complexType>
 <complexType name="Derivativ">
 <sequence>
 <element name="b" type="double"/>
 <element name="barrier" type="boolean"/>
 <element name="barrierCondition"
type="tns:BarrierCondition"/>
 <element name="barrierDirection"
type="tns:BarrierDirection"/>
 <element name="k" type="double"/>
 <element name="n" type="double"/>
 <element name="optionType" type="tns:OptionType"/>
 <element name="optionn" type="tns:Optionn"/>
 <element name="reb" type="double"/>
 <element name="t" type="double"/></sequence></complexType>
 <complexType name="BarrierCondition">
 <sequence>

Pricing Web Service

82

 <element name="value" type="int"/></sequence></complexType>
 <complexType name="BarrierDirection">
 <sequence>
 <element name="value" type="int"/></sequence></complexType>
 <complexType name="OptionType">
 <sequence>
 <element name="value" type="int"/></sequence></complexType>
 <complexType name="Optionn">
 <sequence>
 <element name="value" type="int"/></sequence></complexType>
 <complexType name="Underlying">
 <sequence>
 <element name="div" type="double"/>
 <element name="payDiv" type="boolean"/>
 <element name="r" type="double"/>
 <element name="s" type="double"/>
 <element name="sig"
type="double"/></sequence></complexType>
 <complexType name="Lattice">
 <sequence>
 <element name="m" type="int"/>
 <element name="n" type="int"/>
 <element name="results"
type="tns:ArrayOfArrayOfNode"/></sequence></complexType>
 <complexType name="ArrayOfArrayOfNode">
 <complexContent>
 <restriction base="soap11-enc:Array">
 <attribute ref="soap11-enc:arrayType"
wsdl:arrayType="tns:ArrayOfNode[]"/></restriction></complexContent></
complexType>
 <complexType name="ArrayOfNode">
 <complexContent>
 <restriction base="soap11-enc:Array">
 <attribute ref="soap11-enc:arrayType"
wsdl:arrayType="tns:Node[]"/></restriction></complexContent></complex
Type>
 <complexType name="Node">
 <sequence>
 <element name="empty" type="boolean"/>
 <element name="values"
type="tns:ArrayOfdouble"/></sequence></complexType>
 <complexType name="ArrayOfdouble">
 <complexContent>
 <restriction base="soap11-enc:Array">
 <attribute ref="soap11-enc:arrayType"
wsdl:arrayType="double[]"/></restriction></complexContent></complexTy
pe></schema></types>
 <message name="Verfahren_pricing">
 <part name="Instrument_1" type="tns:Instrument"/></message>
 <message name="Verfahren_pricingResponse">
 <part name="result" type="tns:Lattice"/></message>
 <portType name="Verfahren">
 <operation name="pricing" parameterOrder="Instrument_1">
 <input message="tns:Verfahren_pricing"/>
 <output
message="tns:Verfahren_pricingResponse"/></operation></portType>
 <binding name="VerfahrenBinding" type="tns:Verfahren">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="rpc"/>
 <operation name="pricing">
 <soap:operation soapAction=""/>

Pricing Web Service

 83

 <input>
 <soap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
use="encoded" namespace="urn:Foo"/></input>
 <output>
 <soap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
use="encoded" namespace="urn:Foo"/></output></operation></binding>
 <service name="BS">
 <port name="VerfahrenPort" binding="tns:VerfahrenBinding">
 <soap:address
location="REPLACE_WITH_ACTUAL_URL"/></port></service></definitions>

12.4 Packaging and Deploying
To package and generate all the necessary configuration files within a *.war Web
application archive, deploytool is used.

Figure 12.2 Deployment Tool - Packaging the Pricing Web Service

Finally deploytool is used to deploy the service.

Pricing Web Service

84

Figure 12.3: Deployment Tool – Deploying the Pricing Web Service

12.5 Web Client

12.5.1 Configuring and Generating Client Stubs
To describe the location of the service WSDL file and package name a configuration
file is necessary.

This file named config-wsdl.xml has the following look:
<?xml version="1.0" encoding="UTF-8"?>
<configuration
 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">
 <wsdl location="http://localhost:8080/bs-service/bs?WSDL"
 packageName="pricing"/>
</configuration>

12.5.2 Coding the Java Server Page
The next step is to write the Web client as a Java Server Pages technology page (JSP).

This page with the form to enter the input variables for the Pricing Web Service has
the following look:

Pricing Web Service

 85

Figure 12.4: Web Client Java Server Page

12.5.3 Packaging and Deploying
To package the Web client as a JSP Web component and generate all the necessary
configuration files within a *.war Web application archive, deploytool is used
again. The specified URL is to be used to access the service.

12.6 Pricing Web Service Examples

12.6.1 Multiplicative Binomial Model

12.6.1.1 Pricing a European Call Option with Multiplicative Binomial Tree
Pricing a at-the-money European call option with one-year maturity and a current
asset price of 100. The binomial tree has four time steps and up and down
proportional jumps of 1.1 and 0.9091 respectively. The continuously compounded
interest rate is assumed to be 4 per cent per annum -

i.e. K = 100, T = 1, S = 100, r = 0.04, N = 4, u = 1.1, and d = 1/u = 0.9091.

Figure 12.5 illustrates the numerical results, where nodes in the tree are
represented by the boxes in which the upper value is the asset price and the lower
value is the option price.

Pre-computing the constants:

Pricing Web Service

86

99.0

5288.0
9091.01.1

9091.0

25.0
4
1

3333.004.0

25.004.0

===

=
−

−
=

−
−

=

===Δ

×−Δ×−

×Δ×

eedisc

e
du

dep

N
Tt

tr

tr

Computing the asset prices at maturity:

At node (4,0)

3013.689091.0100 4
0,4 =×=×= NdSS

At node (4,3)

00.121
9091.0

1.11002,43,4 =×=×=
d
uSS

Computing the option values at maturity:

At node (4,3)

00.21)00.10000.121,0max(),0max(3,43,4 =−=−= KSC

Performing discounted expectations back through the tree:

For node (3,3)

095.3400.21)5288.01(41.465288.0(99.0))1((3,44,43,3 =×−+××=×−+××= CpCpdiscC

For node (0,0) - today -

1115.9014.3)5288.01(7171.145288.0(99.0))1((0,11,10,0 =×−+××=×−+××= CpCpdiscC

Pricing Web Service

 87

Figure 12.5: Pricing a European Call Option with Multiplicative Binomial Tree (JSP)

12.6.1.2 Pricing an American Put Option with Multiplicative Binomial
Tree

Pricing an at-the-money American put option with one-year maturity and a current
asset price of 100. The binomial tree has four time steps and up and down
proportional jumps of 1.1 and 0.9091 respectively. The continuously compounded
interest rate is assumed to be 4 per cent per annum -

i.e. K = 100, T = 1, S = 100, r = 0.04, N = 4, u = 1.1, and d = 1/u = 0.9091.

Figure 12.6 illustrates the numerical results, where nodes in the tree are
represented by the boxes in which the upper value is the asset price and the lower
value is the option price.

Pre-computing the constants:

99.0

5288.0
9091.01.1

9091.0

25.0
4
1

3333.004.0

25.004.0

===

=
−

−
=

−
−

=

===Δ

×−Δ×−

×Δ×

eedisc

e
du

dep

N
Tt

tr

tr

Computing the asset prices at maturity:

At node (4,0)

3013.689091.0100 4
0,4 =×=×= NdSS

at node (4,3)

Pricing Web Service

88

00.121
9091.0

1.11002,43,4 =×=×=
d
uSS

Computing the option values at maturity:

At node (4,1)

3554.17)6446.8200.100,0max(),0max(1,41,4 =−=−= SKC

Performing discounted expectations back through the tree:

For node (3,1)

0909.9)9091.9000.100,0959.8max())),)1((max((1,31,42,41,3 =−=−×−+××= SKCpCpdiscC

For node (0,0) - today -

848.5)00.10000.100,848.5max())),)1((max((0,00,11,10,0 =−=−×−+××= SKCpCpdiscC

Figure 12.6: Pricing an American Put Option with Multiplicative Binomial Tree (JSP)

12.6.2 Additive Binomial Model

12.6.2.1 Pricing a European Call Option with Additive Binomial Tree
Pricing a at-the-money European call option with one-year maturity and a current
asset price of 100 and volatility of 20 per cent. The continuously compounded
interest rate is assumed to be 4 per cent per annum and the binomial tree has four
time steps -

i.e. K = 100, T = 1, S = 100, r = 0.04, N = 4, sig = 0.20.

Pricing Web Service

 89

Figure 12.7 illustrates the numerical results, where nodes in the tree are
represented by the boxes in which the upper value is the asset price and the lower
value is the option price.

Pre-computing the constants:

99.0

475.0525.011

525.0
1001.0

25.002.0
2
1

2
1

2
1

2
1

1001.0
1001.0)²25.002.0(25.0²20.0)²(²

02.0²20.0
2
104.0²

2
1

25.0
4
1

==

=−=−=

=⎟
⎠
⎞

⎜
⎝
⎛ ×

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

Δ×
+=

−=Δ−=Δ

=×+×=Δ×+Δ×=Δ

=−=−=

===Δ

Δ×− tr
ud

u
u

ud

u

edisc

pp
x

tp

xx
ttx

r

N
Tt

ν

νσ

σν

Computing the asset prices at maturity:

At node (4,0)

9985.66100)1001.0(4*
0,4 =×=×= −×Δ eeSS dxN

At node (4,1)

8526.819985.66))1001.0(1001.0()(
0,41,4 =×=×= −−Δ−Δ eeSS du xx

Computing the option values at maturity:

At node (4,3)

1708.22)1001708.122,0max(),0max(3,43,4 =−=−= KSC

Performing discounted expectations back through the tree:

For node (3,2)

5232.11)0.0475.01708.22525.0(99.0)(2,43,42,3 =×+××=×+××= CpCpdiscC du

Pricing Web Service

90

For node (0,0) - today -

4503.9)1128.3475.03659.15525.0(99.0)(0,11,10,0 =×+××=×+××= CpCpdiscC du

Figure 12.7: Pricing a European Call Option with Additive Binomial Tree (JSP)

12.6.2.2 Pricing an American Put Option with Additive Binomial Tree
Pricing an at-the-money American put option with one-year maturity and a current
asset price of 100 and volatility of 20 per cent. The continuously compounded
interest rate is assumed to be 4 per cent per annum and the binomial tree has four
time steps -

i.e. K = 100, T = 1, S = 100, r = 0.04, N = 4, sig = 0.20.

Figure 12.8 illustrates the numerical results, where nodes in the tree are
represented by the boxes in which the upper value is the asset price and the lower
value is the option price.

Pre-computing the constants:

Pricing Web Service

 91

9047.0

2216.1

47025.0475.0*99.0*
51975.0525.0*99.0*

99.0

475.0525.011

525.0
1001.0

25.002.0
2
1

2
1

2
1

2
1

1001.0
1001.0)²25.002.0(25.0²20.0)²(²

02.0²20.0
2
104.0²

2
1

25.0
4
1

1001.0

))1001.0(1001.0()(

===

===

===
===

==

=−=−=

=⎟
⎠
⎞

⎜
⎝
⎛ ×

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

Δ×
+=

−=Δ−=Δ

=×+×=Δ×+Δ×=Δ

=−=−=

===Δ

−Δ

−−Δ−Δ

Δ×−

eeedxd

eeedxud

pdiscdpd
pdiscdpu

edisc

pp
x

tp

xx
ttx

r

N
Tt

d

du

x

xx
d

u

tr
ud

u
u

ud

u

ν

νσ

σν

Computing the asset prices at maturity:

At node (4,0)

9985.66100)1001.0(4*
0,4 =×=×= −×Δ eeSS dxN

At node (4,1)

8526.819985.66))1001.0(1001.0()(
0,41,4 =×=×= −−Δ−Δ eeSS du xx

Computing the option values at maturity:

At node (4,1)

1474.18)8526.81100,0max(),0max(1,41,4 =−=−= SKC

Performing discounted expectations back through the tree:

For node (3,1)

5338.81474.1847025.00.051975.01,42,41,3 =×+×=×+×= CdpdCdpuC

Computing the asset price

Pricing Web Service

92

4724.90
9047.0
8526.811,4

1,3 ===
edxd
S

S

Applying the early exercise test

5276.9)4724.9000.100,5338.8max(),max(1,31,31,3 =−=−= SKCC

For node (0,0) - today -

2045.6)100100),8637.1047025.01074.251975.0max((),max(0,00,00,0 =−×+×=−= SKCC

Figure 12.8: Pricing an American Put Option with Additive Binomial Tree (JSP)

12.6.2.3 Pricing an American Put Option with a Known Discrete Cash
Dividend

Pricing an at-the-money American put option with one-year maturity and a current
asset price of 100 and volatility of 20 per cent. The continuously compounded
interest rate is assumed to be 4 per cent per annum and the binomial tree has four
time steps. The asset pays a discrete cash dividend of 3 after six months -

i.e. K = 100, T = 1, S = 100, r = 0.04, N = 4, σ = 0.20, D = 3, τ = 0.5.

Figure 12.9 illustrates the numerical results, where nodes in the tree are
represented by the boxes in which the upper value is the asset price and the lower
value is the option price.

Pre-computing the constants:

Pricing Web Service

 93

9047.0

2216.1

47025.0475.0*99.0*
51975.0525.0*99.0*

99.0

475.0525.011

525.0
1001.0

25.002.0
2
1

2
1

2
1

2
1

1001.0
1001.0)²25.002.0(25.0²20.0)²(²

02.0²20.0
2
104.0²

2
1

25.0
4
1

1001.0

))1001.0(1001.0()(

===

===

===
===

==

=−=−=

=⎟
⎠
⎞

⎜
⎝
⎛ ×

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

Δ×
+=

−=Δ−=Δ

=×+×=Δ×+Δ×=Δ

=−=−=

===Δ

−Δ

−−Δ−Δ

Δ×−

eeedxd

eeedxud

pdiscdpd
pdiscdpu

edisc

pp
x

tp

xx
ttx

r

N
Tt

d

du

x

xx
d

u

tr
ud

u
u

ud

u

ν

νσ

σν

Computing the asset prices at maturity:

At node (4,0)

0248.65)0.3100()()1001.0(45.004.0
0,4 =×−=×−= −××−Δ××− eeeeDSS dxNr τ

At node (4,2)

0594.972216.14457.791,42,4 =×=×= edxudSS

Computing the option values at maturity:

At node (4,1)

5543.20)4457.79100,0max(),0max(1,41,4 =−=−= SKC

Performing discounted expectations back through the tree:

For node (3,0)

1285.279716.3447025.05543.2051975.00,41,40,3 =×+×=×+×= CdpdCdpuC

Computing the asset price

Pricing Web Service

94

8764.71
9047.0
0248.650,4

0,3 ===
edxd
S

S

Applying the early exercise test

1236.28)8764.71100,1285.27max(),max(0,30,30,3 =−=−= SKCC

For node (0,0) - today -

8757.70196.1347025.03719.351975.00,11,10,0 =×+×=×+×= CdpdCdpuC

Computing the asset price

0322.10000.3
9047.0
812.87)25.05.0(04.0)(0,1

0,0 =×+=×+= −−−− eeD
edxd
S

S tr τ

Applying the early exercise test

8757.7)0322.100100,8757.7max(),max(0,00,00,0 =−=−= SKCC

Figure 12.9: Pricing an American Put Option with a Known Discrete Cash Dividend (JSP)

Pricing Web Service

 95

12.6.2.4 Pricing an American Down-and-Out Call Option with Additive
Binomial Tree

Pricing an at-the-money American down-and-out call option with one-year maturity
and a current asset price of 100 and volatility of 20 per cent. The barrier is set at
110, the continuously compounded interest rate is assumed to be 4 per cent per
annum and the binomial tree has four time steps -

i.e. K = 100, T = 1, S = 100, r = 0.04, N = 4, σ = 0.20, H = 110.

Figure 12.10 illustrates the numerical results, where nodes in the tree are
represented by the boxes in which the upper value is the asset price and the lower
value is the option price.

Pre-computing the constants:

9047.0

2216.1

47025.0475.0*99.0*
51975.0525.0*99.0*

99.0

475.0525.011

525.0
1001.0

25.002.0
2
1

2
1

2
1

2
1

1001.0
1001.0)²25.002.0(25.0²20.0)²(²

02.0²20.0
2
104.0²

2
1

25.0
4
1

1001.0

))1001.0(1001.0()(

===

===

===
===

==

=−=−=

=⎟
⎠
⎞

⎜
⎝
⎛ ×

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

Δ×
+=

−=Δ−=Δ

=×+×=Δ×+Δ×=Δ

=−=−=

===Δ

−Δ

−−Δ−Δ

Δ×−

eeedxd

eeedxud

pdiscdpd
pdiscdpu

edisc

pp
x

tp

xx
ttx

r

N
Tt

d

du

x

xx

d

u

tr
ud

u
u

ud

u

ν

νσ

σν

Computing the asset prices at maturity:

At node (4,0)

9985.66100)1001.0(4
0,4 =×=×= −×Δ× eeSS dxN

At node (4,2)

00.1008526.81))1001.0(1001.0()(
1,42,4 =×=×= −−Δ−Δ eeSS du xx

Pricing Web Service

96

Computing the option values at maturity:

At node (4,3) S4,3 > H and therefore

1708.22)1001708.122,0max(),0max(3,43,4 =−=−= KSC

Performing discounted expectations back through the tree and applying the barrier
condition:

At node (0,0) S0,0 < H and therefore

0.00,0 =C

Figure 12.10: Pricing an American Down-and-Out Call Option with Additive Binomial Tree

(JSP)

12.6.3 Trinomial and Finite Difference Models

12.6.3.1 Pricing a European Call Option in a Trinomial Tree
Pricing a at-the-money European call option with one-year maturity and a current
asset price of 100 and volatility of 20 per cent. The continuously compounded
interest rate is assumed to be 4 per cent per annum, the asset pays a continuous
dividend yield of 3 per cent per annum, the trinomial tree has four time steps
and the space step is 0.2 -

i.e. K = 100, T = 1, S = 100, r = 0.04, N = 4, σ = 0.20, δ = 0.03, Δx = 0.2.

Figure 12.11 illustrates the numerical results, where nodes in the tree are
represented by the boxes in which the upper value is the asset price and the lower
value is the option price.

Pre-computing the constants:

Pricing Web Service

 97

99.0

119.0
2.0

25.00098.0
²2.0

²25.0²0098.025.0²2.0
2
1

²
²²²

2
1

7498.0
²2.0

²25.0²0098.025.0²2.01
²

²²²1

1312.0
2.0

25.00098.0
²2.0

²25.0²0098.025.0²2.0
2
1

²
²²²

2
1

2214.1

0098.0²02.05.003.004.0²
2
1

25.0
4
1

2.0

==

=⎟
⎠
⎞

⎜
⎝
⎛ ×

−
×+×

=⎟
⎠
⎞

⎜
⎝
⎛

Δ
Δ

−
Δ

Δ+Δ
=

=⎟
⎠
⎞

⎜
⎝
⎛ ×+×

−=⎟
⎠
⎞

⎜
⎝
⎛

Δ
Δ+Δ

−=

=⎟
⎠
⎞

⎜
⎝
⎛ ×

+
×+×

=⎟
⎠
⎞

⎜
⎝
⎛

Δ
Δ

+
Δ

Δ+Δ
=

===

=×−−=−−=

===Δ

Δ×−

Δ

tr

d

m

u

x

edisc
x
t

x
ttp

x
ttp

x
t

x
ttp

eeedx

r

N
Tt

ννσ

νσ

ννσ

σδν

Computing the asset prices at maturity:

At node (4, 4)

9329.44100 2.04
4,4 =×=×= ×−Δ×−

− eeSS xN

At node (4,3)

8812.542214.19329.444,43,4 =×=×= −− edxSS

Computing the option values at maturity:

At node (4,2)

1825.49)00.1001825.149,0max(),0max(2,42,4 =−=−= KSC

Performing discounted expectations back through the tree:

2227.22)0.0119.01403.227498.01825.491312.0(99.0
)(0,41,42,41,3

=×+×+××

=×+×+××= CpCpCpdiscC dmu

At node (0,0) - today -

3314.7)7626.0119.00761.67498.01332.231312.0(99.0
)(0,11,12,10,0

=×+×+××

=×+×+××= CpCpCpdiscC dmu

Pricing Web Service

98

Figure 12.11: Pricing a European Call Option in a Trinomial Tree (JSP)

12.6.3.2 Pricing a European Call Option by Explicit Finite Difference
Model

Pricing a at-the-money European call option with one-year maturity and a current
asset price of 100 and volatility of 20 per cent. The continuously compounded
interest rate is assumed to be 4 per cent per annum, the asset pays a continuous
dividend yield of 3 per cent per annum, the trinomial tree has four time steps
and the space step is 0.2 -

i.e. K = 100, T = 1, S = 100, r = 0.04, N = 4, σ = 0.20, δ = 0.03, Δx = 0.2.

Figure 12.12 illustrates the numerical results, where nodes in the lattice are
represented by the boxes in which the upper value is the asset price and the lower
value is the option price.

Pre-computing the constants:

1189.0
2.0

0098.0
2.0
2.025.0

2
1

2
1

75.025.004.0
2.0
2.025.011

1311.0
2.0

0098.0
2.0
2.025.0

2
1

2
1

2214.1

0098.0²02.05.003.004.0²
2
1

25.0
4
1

22

22

22

2.0

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛××=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ
−⎟

⎠
⎞

⎜
⎝
⎛

Δ
Δ=

=×−⎟
⎠
⎞

⎜
⎝
⎛×−=Δ−⎟

⎠
⎞

⎜
⎝
⎛

Δ
Δ−=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛××=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ
+⎟

⎠
⎞

⎜
⎝
⎛

Δ
Δ=

===

=×−−=−−=

===Δ

Δ

xx
tp

tr
x

tp

xx
tp

eeedx

r

N
Tt

d

m

u

x

νσ

σ

νσ

σδν

Pricing Web Service

 99

Computing the asset prices at maturity:

At node (4,-4)

9329.44100 2.04
4,4 =×=×= ×−Δ×−

− eeSS xN

At node (4,-2)

032.672214.18812.543,42,4 =×=×= −− edxSS

Computing the option values at maturity:

At node (4,2)

1825.49)00.1001825.149,0max(),0max(2,42,4 =−=−= KSC

Performing discounted expectations back through the tree:

At node (3,1)

2242.22)0.01189.01403.2275.01825.491311.0)(0,41,42,41,3 =×+×+×=×+×+×= CpCpCpC dmu

At node (0,0) - today -

3793.7)7755.01189.01195.675.01505.231311.0)(1,10,11,10,0 =×+×+×=×+×+×= −CpCpCpC dmu

Figure 12.12: Pricing a European Call Option by Explicit Finite Difference Model (JSP)

Pricing Web Service

100

12.6.3.3 Pricing an American Put Option by Explicit Finite Difference
Model

Pricing an at-the-money American put option with one-year maturity and a current
asset price of 100 and volatility of 20 per cent. The continuously compounded
interest rate is assumed to be 4 per cent per annum, the asset pays a continuous
dividend yield of 3 per cent per annum, the trinomial tree has four time steps
and the space step is 0.2 -

i.e. K = 100, T = 1, S = 100, r = 0.04, N = 4, σ = 0.20, δ = 0.03, Δx = 0.2.

Figure 12.13 illustrates the numerical results, where nodes in the lattice are
represented by the boxes in which the upper value is the asset price and the lower
value is the option price.

Pre-computing the constants:

1189.0
2.0

0098.0
2.0
2.025.0

2
1

2
1

75.025.004.0
2.0
2.025.011

1311.0
2.0

0098.0
2.0
2.025.0

2
1

2
1

2214.1

0098.0²02.05.003.004.0²
2
1

25.0
4
1

22

22

22

2.0

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛××=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ
−⎟

⎠
⎞

⎜
⎝
⎛

Δ
Δ=

=×−⎟
⎠
⎞

⎜
⎝
⎛×−=Δ−⎟

⎠
⎞

⎜
⎝
⎛

Δ
Δ−=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛××=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ
+⎟

⎠
⎞

⎜
⎝
⎛

Δ
Δ=

===

=×−−=−−=

===Δ

Δ

xx
tp

tr
x

tp

xx
tp

eeedx

r

N
Tt

d

m

u

x

νσ

σ

νσ

σδν

Computing the asset prices at maturity:

8812.54100 2.04
3,4 =×=×= ×−Δ×−

− eeSS xN

At node (4,-2)

032.672214.18812.543,42,4 =×=×= −− edxSS

Computing the option values at maturity:

At node (4,-2)

Pricing Web Service

 101

968.32)032.6700.100,0max(),0max(2,42,4 =−=−= −− SKC

Performing discounted expectations back through the tree:

At node (3,-1)

1269.18)968.321189.01269.1875.00.01311.02,41,40,41,3 =×+×+×=×+×+×= −−− CpCpCpC dmu

Applying the early exercise test:

1269.18)8731.81100,942.16max(),max(1,21,21,2 =−=−= −−− SKCC

At node (0,0) - today -

5399.6)2326.181189.04796.575.07744.01311.01,10,11,10,0 =×+×+×=×+×+×= −CpCpCpC dmu

Applying the early exercise test:

5399.6)100100,5399.6max(),max(0,00,00,0 =−=−= SKCC

Figure 12.13: Pricing an American Put Option by Explicit Finite Difference Model (JSP)

Pricing Web Service

102

12.6.3.4 Pricing an American Put Option by Implicit Finite Difference
Model

Pricing an at-the-money American put option with one-year maturity and a current
asset price of 100 and volatility of 20 per cent. The continuously compounded
interest rate is assumed to be 4 per cent per annum, the asset pays a continuous
dividend yield of 3 per cent per annum, the trinomial tree has four time steps
and the space step is 0.2 -

i.e. K = 100, T = 1, S = 100, r = 0.04, N = 4, σ = 0.20, δ = 0.03, Δx = 0.2.

Figure 12.14 illustrates the numerical results, where nodes in the lattice are
represented by the boxes in which the upper value is the asset price and the lower
value is the option price.

Pre-computing the constants:

1189.0
2.0

0098.0
2.0
2.025.0

2
1

2
1

26.125.004.0
2.0
2.025.011

1311.0
2.0

0098.0
2.0
2.025.0

2
1

2
1

2214.1

0098.0²02.05.003.004.0²
2
1

25.0
4
1

22

22

22

2.0

−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛××−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ
−⎟

⎠
⎞

⎜
⎝
⎛

Δ
Δ−=

=×+⎟
⎠
⎞

⎜
⎝
⎛×+=Δ+⎟

⎠
⎞

⎜
⎝
⎛

Δ
Δ+=

−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛××−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ
+⎟

⎠
⎞

⎜
⎝
⎛

Δ
Δ−=

===

=×−−=−−=

===Δ

Δ

xx
tp

tr
x

tp

xx
tp

eeedx

r

N
Tt

d

m

u

x

νσ

σ

νσ

σδν

Computing the asset prices at maturity:

At node (4,-3)

8812.54100 2.04
3,4 =×=×= ×−Δ×−

− eeSS xN

At node (4,-2)

032.672214.18812.543,42,4 =×=×= −− edxSS

Computing the option values at maturity:

At node (4,-2)

Pricing Web Service

 103

968.32)032.6700.100,0max(),0max(2,42,4 =−=−= −− SKC

Performing discounted expectations back through the tree and solving the tri-
diagonal system of equations:

At node (2,-2) the upper diagonal is eliminated:

4127.34))8812.54032.67()1(()1189.0(9680.32´
1411.1)1189.0(26.1´

2,42

2,

=−×−×−+=×+=

=−+=+=

−−

−

Ld

dmm

pCp
ppp

λ

At node (2,-1)

7126.211411.1/)1189.0(4127.341269.18´´

2463.11411.1/)1189.0()1311.0(26.1´

2,

2
1,41

2,
1,

=−×−=−=

=−×−−=−=

−

−
−−

−
−

d
m

d
m

u
mm

p
p
pCp

p
p
ppp

At node (3,-1) back substituting:

6203.172463.1/)8885.1)1311.0(7126.21(
´

´

1,

0,31
1,3 =×−−=

−
=

−

−
−

m

u

p
Cpp

C

Applying the early exercise test:

1269.18)8731.81100,6203,17max(),max(1,31,31,3 =−=−= −−− SKCC

Pricing Web Service

104

Figure 12.14: Pricing an American Put Option by Implicit Finite Difference Model (JSP)

12.6.3.5 Pricing an American Put Option by Crank-Nicolson Finite
Difference Model

Figure 12.15 gives a numerical example similar to the implicit finite difference
model. The calculations are virtually identical to those for the implicit finite
difference method.

Figure 12.15: Pricing an American Put Option by Crank-Nicolson Finite Difference Model (JSP)

12.6.4 Implied Trinomial Tree Model

12.6.4.1 Pricing Implied Trinomial Tree State Prices and Transition
Probabilities

Pricing state prices with one-year maturity and a current asset price of 100 and
volatility of 20 per cent. The space step is chosen to be 0.2524 so that the explicit
finite difference method stability condition is satisfied. The continuously
compounded interest rate is assumed to be 4 per cent per annum and the trinomial
tree has four time steps -

Pricing Web Service

 105

i.e. T = 1, S = 100, r = 0.04, N = 4, Δx = 0.2524.

Figure 12.16 illustrates the numerical results, where nodes in the tree are
represented by the boxes in which the upper left value is the state price and the
lower left value is the asset price. The right hand side values represent the transition
probabilities.

Pre-computing the constants:

0101.1
2871.1

25.0
4
1

25.004.0

2524.0

===

===

===Δ

×Δ×

Δ

eeinfl
eeedx

N
Tt

tr

x

Computing the asset prices at maturity:

At node (4,-4)

4365.36100 2524.04
4,4 =×=×= ×−Δ×−

− eeSS xN

At node (4,-3)

8978.462871.14365.364,43,4 =×=×= −− edxSS

Computing the state prices for each time step beginning with the upper half of the
tree and then for the lower half of the tree:

At node (3,3)

()() ()
()() ()

01370045609407011
9407.06654165229721322972134503274045606654165229721301011

0456.0
0004.0

000018.00101.1

333333

2,33,32,34,3332,33,3

33

...ppp
.-..-..-.-..

SSSSpSSinflp
Q
Q

inflp

,u,,m,,d,

,u,m,3,3

3,3

4,4
,u,

=−−=−−=
=×

=−×=

=×=×=

−−−

At node (3,-1)

Pricing Web Service

106

()
()

()() ()
()() ()

08670066608467011
846700010069347700100362660066600010069347701011

0666021010018208821000030062700298001011
/

131313

0,31,30,32,3130,31,3

2,3,3,3,13

...ppp
..-..-..-.-..

SSSSpSSinflp
../......

QQpQpQinflp

,d,,m,,u,

,d,m,3,-1

3,-13,-2m3,-3u4,-2,d,

=−−=−−=
=×

=−××=
=×−×−×

=×−×−×=

−−−

−−−−−−−

−−−

Figure 12.16: Pricing Implied Trinomial Tree State Prices and Transition Probabilities (JSP)

12.6.4.2 Pricing an American Down-and-Out Call Option by Implied
Trinomial Tree Model

Pricing an at-the-money American down-and-out call option with one-year maturity
and a current asset price of 100 and volatility of 20 per cent. The barrier is set at
110, the continuously compounded interest rate is assumed to be 4 per cent per
annum. The implied trinomial tree is similar to the example above with four
time steps and a space step of 0.2524. -

i.e. K = 100, T = 1, S = 100, r = 0.04, N = 4, σ = 0.20, H = 110, Xrebate = 1, Δx =
0.2524.

Figure 12.17 illustrates the numerical results, where nodes in the tree are
represented by the boxes in which the upper left value is the state price and the
lower left value is the option price. The right hand side values represent the
transition probabilities.

Pre-computing the constants:

99.0

25.0
4
1

==

===Δ

Δ×− tredisc
N
Tt

Pricing Web Service

 107

Computing the option values at maturity:

At node (4,-1) S4,-1 < H, 77.6934 < 110 and therefore

11,4 ==− rebateXC

At node (4,1) S4,1 > H, 128.7111 > 110 and therefore

7111.28)1007111.128,0max(),0max(1,41,4 =−=−= KSC

Performing discounted expectations back through the tree and applying the barrier
condition:

At node (1,1) S1,1 > H, 128.7111 > 100 and therefore

()
() 6837.31)1007111.128,10298.07422.30912.06465.670582.099.0max(

),max(1,10,21,1,1,21,1,2,21,1,1,1

=−×+×+×

=−×+×+××= KSCpCpCpdiscC dmu

At node (0,0) - today -S0,0 < H and therefore

10,0 == rebateXC

Figure 12.17: Pricing an American Down-and-Out Call Option by Implied Trinomial Tree Model

(JSP)

References

 109

REFERENCES

[1] Burton Gordon Malkiel and Richard E. Quandt, Strategies and Rational

Decisions in the Securities Options Market, MIT Press, 1969.

[2] Herbert Filer, Understanding Put and Call Options, John Magee, Springfield,

1959.

[3] Joseph S. Davis, Essays in the Earlier History of American Corporations,

Harvard University Press, Cambridge, 1917.

[4] Wikipedia, the free encyclopedia, Underlying – Wikipedia, the free

encyclopedia, http://en.wikipedia.org/wiki/Underlying, 2008.

[5] Wikipedia, the free encyclopedia, Asset – Wikipedia, the free encyclopedia,

http://en.wikipedia.org/wiki/Asset, 2008.

[6] Wikipedia, the free encyclopedia, Option (finance) – Wikipedia, the free

encyclopedia, http://en.wikipedia.org/wiki/Option_(finance), 2008.

[7] Paul Wilmott, Sam Howison and Jeff Dewynne, The Mathematics of Financial

Derivatives: A Student Introduction, Cambridge University Press, 1995.

[8] John Hull, Options, Futures, and Other Derivatives, Prentice Hall, 2006.

[9] Les Clewlow and Chris Strickland, Implementing Derivatives Models, Wiley,

1998.

[10] J. Cox, S. Ross and M. Rubinstein, Option Pricing: A Simplified Approach,

Journal of Financial Economics 7, 1979, 229-264.

[11] R. Rendleman and B. Bartter, Two State Option Pricing, Journal of Finance

34, 1979, 1092-1110.

[12] John Hull and A. White, Valuing Derivative Securities Using the Explicit

Finite Difference Approach, Journal of Financial and Quantitative Analysis
25, 1990, 87-100.

[13] M. J. Brennan and E. S. Schwartz, Finite Difference Methods and Jump

Processes Arising in the Pricing of Contingent Claims: A Synthesis, Journal of
Financial and Quantitative Analysis 13, 1978, 462-474.

[14] Masters 'O' Equity Asset Management, Barrier Options by

OptionTradingpedia.com,
http://www.optiontradingpedia.com/barrier_options.htm, 2008.

[15] Masters 'O' Equity Asset Management, LookBack Options by

OptionTradingpedia.com,
http://www.optiontradingpedia.com/lookback_options.htm, 2008.

References

110

[16] L. Ananthamurthy, Introduction to Web Services,

http://www.webservices.org/index.php/article/articlestatic/75, 2003.

[17] David A. Chappell and Tyler Jewell, Java Web Services: Using Java in

Service-Oriented Architectures, O'Reilly, 2002.

[18] World Wide Web Consortium, Web Services Glossary,

http://www.w3.org/TR/ws-gloss/, 2004.

[19] K. Gottschalk, S. Graham, H. Kreger and J. Snell,

Introduction to Web Services Architecture,
http://www.research.ibm.com/journal/sj/412/gottschalk.pdf, 2002.

[20] Diana Reichardt, A Field Guide to Services on Demand,

http://www.sun.com/software/whitepapers/webservices/wp-fieldguide.pdf,
2001.

[21] IBM Software Group, Web Services Architecture Overview,

http://www.ibm.com/developerworks/web/library/w-ovr/, 2000.

[22] Gustavo Alonso, Fabio Casati, Harumi Kuno and Vijay Machiraju, Web

Services: Concepts, Architectures and Applications, Springer, 2004.

[23] World Wide Web Consortium, SOAP Specification,

http://www.w3.org/TR/soap, 2000.

[24] W3Schools by Refsnes Data, SOAP Example,

http://www.w3schools.com/soap/soap_example.asp, 2008.

[25] XML Org, Focus Areas XML.org focus area community, http://www.xml.org/,

2008.

[26] World Wide Web Consortium, Web Service Definition Language (WSDL),

http://www.w3.org/TR/wsdl, 2001.

[27] W3Schools by Refsnes Data, WSDL Syntax,

http://www.w3schools.com/wsdl/wsdl_syntax.asp, 2008.

[28] Peter Brittenham, Web Services Development Concepts, IBM Software Group,

2001.

[29] Kim Topley, Java Web Services in a Nutshell, O'Reilly, 2003.

[30] Sun Microsystems, Java 2 Platform, Enterprise Edition (J2EE) 1.4,

http://java.sun.com/j2ee/1.4/, 2006.

[31] Sun Microsystems, Java Enterprise Edition Web Services Technologies,

http://java.sun.com/javaee/technologies/webservices/index.jsp, 2006.

References

 111

[32] Sun Microsystems, Building Web Services with JAX-RPC,
http://developers.sun.com/appserver/reference/techart/jaxrpc/index.html, 2006.

[33] Sun Microsystems, Java Web Services Developer Pack 1.5,

http://java.sun.com/webservices/docs/1.5/index.html, 2004.

[34] Sun Microsystems, Using Web Services Effectively,

http://java.sun.com/blueprints/webservices/using/webservbp.html, 2002.

http://onesearch.sun.com/search/clickthru?qt=j2ee+web+services&col=all-filtered&cksum=ee4b0e524f664661dca0214cb3a7e8ca&url=http%3A%2F%2Fdevelopers.sun.com%2Fappserver%2Freference%2Ftechart%2Fjaxrpc%2Findex.html&path=%2Fsearch%2Fonesearch%2Findex.jsp&hit=8

Curriculum Vitae

 113

CURRICULUM VITAE

Alexander HOPFGARTNER

Wienergasse 24/7B

2380 Perchtoldsdorf

Austria

Personal Data
Date of Birth: 6th of July 1977

Nationality: Austria

Family Status: Single

Children: None

School Education
1983-1987 Elementary School of Perchtoldsdorf

1987-1991 Secondary High School of Perchtoldsdorf

1991-1996 Technical Academy of Mödling (Management Engineering)

Academic Education
1996-2008 Study of Business Informatics

University of Vienna - Faculty of Computer Science

	1 Options Introduction
	1.1 Genesis and History
	1.2 Options Definition
	1.3 Classification

	2 Black-Scholes World
	2.1 Black-Scholes Model
	2.2 Derivation of the Black-Scholes Partial Differential Equation
	2.3 Black-Scholes Formula
	2.4 Numerical Techniques

	3 Binomial Model
	3.1 Basics of the Binomial Model
	3.2 Generalization of the Binomial Model
	3.3 Additive Binomial Model
	3.3.1 Pricing Underlying Asset Paying a Continuous Dividend Yield
	3.3.2 Pricing Underlying Asset Paying a Known Discrete Cash Dividend

	3.4 Binomial Model and Path-Dependent Options

	4 Trinomial Trees and Finite Difference Models
	4.1 Trinomial Tree Model
	4.2 Finite Difference Models
	4.2.1 Explicit Finite Difference Models
	4.2.2 Implicit Finite Difference Models
	4.2.3 Crank-Nicolson Finite Difference Models

	5 Implied Trees and Exotic Options
	5.1 Basics of the Implied Tree Model
	5.2 Implied State Prices
	5.3 Implied Transition Probabilities
	5.4 Exotic Options and Implied Trees
	5.4.1 Pricing Barrier Options
	5.4.2 Pricing Look-Back Options

	6 Web Services
	6.1 Web Services Introduction
	6.2 Overview of Java Web Services
	6.3 Web Services Definition
	6.4 Web Services Properties

	7 Web Services Model
	7.1 Operators of the Web Services Model
	7.2 Interactions of the Web Services Model
	7.3 Artifacts of the Web Services Model

	8 Web Services Architecture
	8.1 Web Services Protocol Stack
	8.2 Network Layer
	8.3 XML-Based Messaging Layer - SOAP
	8.3.1 SOAP message structure
	8.3.2 SOAP message example
	8.3.3 XML Based Messaging using SOAP

	8.4 Service Description Layer
	8.4.1 From XML Messaging to Web Services
	8.4.2 Basic Web Service Description
	8.4.3 Full WSDL Syntax
	8.4.4 Complete Web Service Description

	8.5 Publication and Discovery of Service Descriptions

	9 Web Services Development Lifecycle
	9.1 Build Phase
	9.2 Deploy Phase
	9.3 Run Phase
	9.4 Manage Phase

	10 Developing Web Services
	10.1 Service Registry
	10.2 Service Provider
	10.2.1 Green Field Scenario
	10.2.1.1 Build Phase
	10.2.1.2 Deploy Phase
	10.2.1.3 Run Phase

	10.2.2 Top-Down Scenario
	10.2.2.1 Build Phase
	10.2.2.2 Deploy Phase
	10.2.2.3 Run Phase

	10.2.3 Bottom-Up Scenario
	10.2.3.1 Build Phase
	10.2.3.2 Deploy Phase
	10.2.3.3 Run Phase

	10.2.4 Meet-in-the-Middle Scenario
	10.2.4.1 Build Phase
	10.2.4.2 Deploy Phase
	10.2.4.3 Run Phase

	10.3 Service Requestor
	10.3.1 Static Binding
	10.3.1.1 Build Phase
	10.3.1.2 Deploy Phase
	10.3.1.3 Run Phase

	10.3.2 Build-Time Dynamic Binding
	10.3.2.1 Build Phase
	10.3.2.2 Deploy Phase
	10.3.2.3 Run Phase

	10.3.3 Runtime Dynamic Binding
	10.3.3.1 Build Phase
	10.3.3.2 Deploy Phase
	10.3.3.3 Run Phase

	11 Web Services and Java Technology
	11.1 Web Service Tools - Java 2 Platform
	11.2 J2EE 1.4 SDK
	11.3 JSR 109 - Implementing Enterprise Web Services
	11.4 J2EE Web Services
	11.5 Working with JAX-RPC
	11.6 Creating a Web Service
	11.6.1 Design and Code the Service Endpoint Interface
	11.6.2 Implement the Service Endpoint Interface
	11.6.3 Write a Configuration File
	11.6.4 Generate the Necessary Mapping Files
	11.6.5 Packaging and Deploying the Service

	11.7 Creating a Web Service Client
	11.7.1 Types of Web Service Clients
	11.7.2 Browser-Based Client

	12 Pricing Web Service
	12.1 Service Endpoint Interface
	12.1.1 Designing
	12.1.2 Coding and Implementing

	12.2 Configuring
	12.3 Mapping
	12.4 Packaging and Deploying
	12.5 Web Client
	12.5.1 Configuring and Generating Client Stubs
	12.5.2 Coding the Java Server Page
	12.5.3 Packaging and Deploying

	12.6 Pricing Web Service Examples
	12.6.1 Multiplicative Binomial Model
	12.6.1.1 Pricing a European Call Option with Multiplicative Binomial Tree
	12.6.1.2 Pricing an American Put Option with Multiplicative Binomial Tree

	12.6.2 Additive Binomial Model
	12.6.2.1 Pricing a European Call Option with Additive Binomial Tree
	12.6.2.2 Pricing an American Put Option with Additive Binomial Tree
	12.6.2.3 Pricing an American Put Option with a Known Discrete Cash Dividend
	12.6.2.4 Pricing an American Down-and-Out Call Option with Additive Binomial Tree

	12.6.3 Trinomial and Finite Difference Models
	12.6.3.1 Pricing a European Call Option in a Trinomial Tree
	12.6.3.2 Pricing a European Call Option by Explicit Finite Difference Model
	12.6.3.3 Pricing an American Put Option by Explicit Finite Difference Model
	12.6.3.4 Pricing an American Put Option by Implicit Finite Difference Model
	12.6.3.5 Pricing an American Put Option by Crank-Nicolson Finite Difference Model

	12.6.4 Implied Trinomial Tree Model
	12.6.4.1 Pricing Implied Trinomial Tree State Prices and Transition Probabilities
	12.6.4.2 Pricing an American Down-and-Out Call Option by Implied Trinomial Tree Model

