Lniversitat
wien

DIPLOMARBEIT

Titel der Diplomarbeit
Web Services Implementation of Option Valuation

Band 1 von 3 Banden

Verfasser

Alexander Hopfgartner

angestrebter akademischer Grad
Magister der Sozial- und Wirtschaftswissenschaften (Mag.rer.soc.oec.)

Wien, 2008
Studienkennzahl It. Studienblatt: A 175
Studienrichtung It. Studienblatt: Wirtschaftsinformatik

Betreuer: Univ.-Prof. Dipl.-Ing. Dr. Engelbert Dockner

ZUSAMMENFASSUNG

Die Diplomarbeit beschreibt die am hdufigsten verwendeten Modelle und Methoden fiir die
Bewertung von europdischen und amerikanischen Standardoptionen, sowie einige der
bekanntesten exotischen Optionen. Diese Modelle bilden die Basis zur Entwicklung und
Realisierung von Webservices welche die Bewertung durchfiihren.

Im ersten Abschnitt wird der Begriff Option definiert, und das Modell fiir Vermogenswerte,
welches die Basis bildet, umrissen. Der nidchste Teil ist der fundamentalen partiellen
Differenzialgleichung und deren Ableitung gewidmet, die die Entwicklung aller Derivate
beschreibt, deren Profit von einem einzelnen zugrunde liegenden Vermdgenswert abhingt.
Danach werden die binomialen und trinomialen Modelle von Vermdgensgegenstinden
beschrieben und die effiziente Bewertung von européischen beziehungsweise amerikanischen
Optionen anhand von binomialen und trinomialen Bdumen gezeigt. Als ndchstes wird die
Konstruktion von trinomialen Bidumen im Einklang mit den Marktpreisen europiischer
Standardoptionen und deren Nutzung zur Bewertung von pfadabhidngigen exotischen
Optionen, wie Barrier- oder Lookback-Optionen, dargestellt.

Der zweite Abschnitt befalit sich mit Webservices und einer Definition des Begriffs
Webservice. Es folgt eine ausfiihrliche Beschreibung der Architektur fiir Webservices aus
Anwendersicht sowie der notwendigen Interaktionen und Werkzeuge. Danach wird ein
grundlegender Ansatz fiir die Entwicklung von Webservices aus Entwicklersicht von
Dienstanbietern und Dienstanwendern beschrieben. Dieser erklirt den Lebenszyklus, die
Operatoren, sowie die Interaktionen und Anwendungen, die notwendig sind, um Webservices
im Allgemeinen zu realisieren.

Der dritte Abschnitt zeigt die Anwendung dieser allgemeinen Konzepte und Werkzeuge unter
Verwendung der Java™-Technologie. Der Prozess der Entwicklung und der Implementierung
der Webservices fiir die Preiskalkulation wird erkldrt und mittels kurzer Code-Beispiele
verdeutlicht. Abschliefend werden Beispiele dieser Webservices zur Optionsbewertung mit
ihren Ergebnisbdumen bzw. —gittern angefiihrt.

ABSTRACT

This diploma thesis describes the most commonly used models and methods for pricing
standard European and American options, as well as some of the best known exotic options.
These models are the base to develop and implement Web Services that manage the
valuations.

In the first part the term option is defined and the model for asset prices forming the basis is
outlined. The fundamental partial differential equation is derived that describes the evolution
of all derivatives whose payoff depends on a single underlying asset. Then the binomial and
the trinomial models of asset prices are described and it is shown, how European and
American derivatives can be priced efficiently in binomial and trinomial trees, respectively.
Also, it is described how trinomial trees can be constructed to be consistent with the market
prices of standard European options and shown how they can be used to price exotic path-
dependent options such as barrier or look-back options.

The second part introduces Web Services and the term Web Service is defined. A detailed
description of the architecture for Web Services from the operator perspective, as well as
interactions and artifacts is given. Then a basic approach for developing Web Services from
the point of view of the developer of service providers and service requestors is described. It
explains the development lifecycle, operators, interactions and application development
patterns necessary to implement Web Services in general.

In the third part the development approach relates these common concepts and tools to their
application using Java™ technology. The process of creating and implementing the pricing
Web Services is explained and short code samples are given where necessary. Finally,
valuation examples of the pricing Web Service implementation are shown with their output
trees or lattices, respectively.

II

Symbol

C0
20
E[]
dS
dt

dz

At

Ax

NOTATION

Description
time
strike or exercise price of option

maturity date of option

usually current date will be 0 and so 7 will also be time to maturity
asset price

drift of S

volatility of §

usually instantaneous standard deviation of returns
instantaneous continuously compounded interest rate
continuous dividend yield on an asset

time discrete cash dividend paid

European call price

European put price

expectation operator

infinitesimal increment in asset S

infinitesimal increment of time

infinitesimal increment in a standard Wiener process during dt
natural logarithm of S (In(S))

risk neutral drift of x

small increment of time

small increment in x

size of proportional upward move of stochastic variable, or

subscript indicating upward move of a stochastic variable

size of proportional downward move of stochastic variable, or

subscript indicating upward move of a stochastic variable

III

N(x)

IV

subscript indicating a central move of a stochastic variable

probability of transition in a tree

subscripted by u, m and d to indicate the direction of the transition
number of time steps in tree

number of nodes above and below current level of asset price
Standard cumulative normal distribution function evaluated at x
time step index

usually a state variable level index

barrier level

cash rebate associated with barrier option

state price

path dependent variable value k at node 7, j

number of path dependent variable values at node 7, j

X
e

TABLE OF CONTENTS

ZUSAMMENFASSUNG I
ABSTRACT 1T
NOTATION I
TABLE OF CONTENTS v
FIGURES VI
TABLES IX

PART ONE: OPTION VALUATION MODELS

1 OPTIONS INTRODUCTION 1
1.1 GENESIS AND HISTORYuuuuviiiiiiiiiiiiieeieee e e eeeiee e e e e eeeee et e e e e s e eaaateeeeeesesssaaaeeeeesssesasaaeseessessnnesseeeeesssnnnes 1
1.2 OPTIONS DEFINITIONvviiiiiiiitieieeeeeeeeeetieeeeeeeeeeestateeeeeeeseesssaseeesesseesasseseeesseessssassesesesesssraseeseesssanareeseeessn 1
R T O 07N 1) (67N 1 (0 RSP 2

2 BLACK-SCHOLES WORLD 3
2.1 BLACK-SCHOLES MODELcccouttiiiieeiieiitieeeeeeeeeeeitteeeeeeeeesetaereeeeeeeeetsereeesesensstssseeesessenstaresesesesnsssrreseeesenn 3
2.2 DERIVATION OF THE BLACK-SCHOLES PARTIAL DIFFERENTIAL EQUATIONccvvviiiiiiiiirieeeeeeieiireeeeeeenn 5
2.3 BLACK-SCHOLES FORMULAuuvtiiiiiiiiiiitiieie e eeeeiteeeeeeeeeeetaee e e e e eeeeataaeeeeeeeeenataasaeeeeeeeeataseeeeeeeenssareeeaeeaan 7
2.4 NUMERICAL TECHNIQUES.......cccttutttteeeeeiiiitreeeeeeeeeeiitreeeeeeeeesitsraseeeeeeesetarseeeseeeaestssssesseeeeestssreseeeseensssrseeens 10

3 BINOMIAL MODEL 11
3.1 BASICS OF THE BINOMIAL MODELcuuvviiiiiiiiiiiiieeeeeeeeeeiaeeeeeeeeeeeitveeeeeeeeeeetaeaeeeeeeesetasaeseeeeeeennrreeeaeeens 11
3.2 GENERALIZATION OF THE BINOMIAL MODELuuuviiiiiiiiiiiiieeeeeeeeceieeeee e e eeeeeaaaeeeeeeeeesntaaeeeesesssnnnsseeeeeesas 15
3.3 ADDITIVE BINOMIAL IMODEL.......uuuuuuuuuuttututeeeeeessessessssesssssesssssesssssesesesssseseeeseeeeeeeeeee.eeseee.ee..————..———————.. 17

3.3.1 Pricing Underlying Asset Paying a Continuous Dividend Yieldc.ccccccoeoinvinvnncnnnnnn. 18
3.3.2 Pricing Underlying Asset Paying a Known Discrete Cash Dividend....................c.ccccceneenn... 19
3.4 BINOMIAL MODEL AND PATH-DEPENDENT OPTIONS......uuuutiiiieeiiiiiteeeeeeeeeeiisieeeeeeeeeiessesesesesssnsnsresseeses 20

4 TRINOMIAL TREES AND FINITE DIFFERENCE MODELS 22
4.1 TRINOMIAL TREE MODELccooituvtiiiieeiieiiieeee e e e eeeeaeeeeeeeeeeeeaaeseeeeeeesstaereeeeeeeeetsaseeeeeseeessareseeeseenssrreres 22
4.2 FINITE DIFFERENCE IMODELSuvviiiiiiiiiiiitieeeeeeeeeiieeeeeeeeeesittereeeeeeeseaaereeeseeeentsasseseeseensssresesesesnnnnnenees 24

4.2.1 Explicit Finite Difference MOAELS..................cccccoocvivieiiiiiiiiiieiieieeieeie e 24
4.2.2 Implicit Finite Difference MOAELS..................cccccoociiiiaiiiiiiiieiieeeee et 27
4.2.3 Crank-Nicolson Finite Difference MOdelsccocoomvmiiiiiiiiiiiiiiiiiieeeet e 31

5 IMPLIED TREES AND EXOTIC OPTIONS 34
5.1 BASICS OF THE IMPLIED TREE IMODELuuuuuuuuueuueuutuusususeseeeeeseessesssssssssssssseessessssssessssssseeseesseessesessseee. 34
5.2 IMPLIED STATE PRICESiteiiiiiie ettt ettt e e ettt e e e e e ettt et e e e s e s maaaeeeeesessensasseeeseesssnnesseeeeeenas 35
5.3 IMPLIED TRANSITION PROBABILITIESuvviiiiiiiiuuueeeeeeeieeitateeeeeseeesiassereeesesessssssseessssessssssssesesssmssssesseesss 36
5.4 EXOTIC OPTIONS AND IMPLIED TREESccciitiiiuiiiiieeeiiiiiieeeeeeeeeeeiteeeeeeeeeeesaaaeeeeeeseesessaesesesessensnseseeseesss 38

5.4.1 Pricing Barrier OPHONScccoioiiiiieeee ettt ettt ettt e e s 39
5.4.2 Pricing LOOK-BaACK OPIIONSc..ccoevvieiiiciiiiieieeit ettt eae s sne e s 40

PART TWO: WEB SERVICES TECHNOLOGY

6 WEB SERVICES 46
6.1 WEB SERVICES INTRODUCTIONcettiiuttitieeeeeiiiieeeeeeeeeeeeseeteeeeessessasseseeesseessnssssseessessssessseessssssssssseeeeesss 46
6.2 OVERVIEW OF JAVA WEB SERVICESuvvviiiiiiiiiiiieeeeeeeeeeiiaeeeeeeeeeesitteeeeesssessassseesssessssassssesesssnssssesseesss 46
6.3 WEB SERVICES DEFINITIONuuviiiiiiiiitttireeeeeeeiitieeeeeeeseeessareresesseesiasssseessssssssssssesssesmmsssssssesessomsisssesseesss 46
6.4 WEB SERVICES PROPERTIESevvviiiiiiiititieeieeeeiiiiiteeeeeeeeeesaareeesesseesisssesssesssessssssssesssessssssssssesessomsisssesseesss 47

7 WEB SERVICES MODEL 48

7.1 OPERATORS OF THE WEB SERVICES IMODELuuuvtiiiiiiiiiiireeeeeeeeeiiireeeeeeeeeeitseeeeeeeeesesssssesesesesssssseseeeees 49
7.2 INTERACTIONS OF THE WEB SERVICES MODEL.......ccccciiiiiiiuiiiieeeeeeiiireeeeeeeeeeiiaeeeeeeeeesestsesesesesssnssnsesseeses 49
7.3 ARTIFACTS OF THE WEB SERVICES MODELcuuviiiiiiiiiiiiiieeeeeeeeeiiireeeeeeeeeeetaeeeeeeeeesesseseseseseesssnrseeeeeeens 50
8 WEB SERVICES ARCHITECTURE 51
8.1 WEB SERVICES PROTOCOL STACKuuttiieieeiiitrireeeeeeeeeiiteeeeeeeeeeiisreeeeeeeeesitssseeseeeeessisssseseseessissssesesessnnsses 51
8.2 NETWORK LAYER ...ooiiiiiiiiiiiiiiee ettt ettt e ettt e e e e e e ettt e e e e e eeeeeataaaeeeeeeeeetasseaeseeeeesssreeeeeeeanaes 51
8.3 XML-BASED MESSAGING LAYER = SOAPouviiiiiiieeeeeeeee ettt e e e e e e e eennes 52
8.3.1 SOAP MESSAZE SIUCIHUTC ...ttt et ettt at ettt e ae e et e bt enbeeneeseeenees 52
8.3.2 SOAP MeSSAZE @XAMPIEc..oeiiieeee ettt ettt 53
8.3.3 XML Based Messaging uSing SOAPcccoouevimiaiieiiie ettt 54
8.4 SERVICE DESCRIPTION LAYERooouuttiiiiiiiiiiiiieeeee e e eeeeeee e e e e eeetaaeeeeeeeeeesaaaaeesseeseesasaeseeesseesssrssesesesssnnes 55
8.4.1 From XML MesSaging t0 Web SeFVICESccccouuiiiieiieiiie ittt 55
8.4.2 Basic Web Service DESCEIDIIONc..cc.cccveeuiecieeiiaiieieeeeeeesie et sae et saeesseenseesne s 56
8.4.3 FUII WSDL SYREGXoooveeiieiieiieie ettt ettt ettt seesb et eaeeeseesseenseenseessensaesses 56
8.4.4 Complete Web Service DeSCEIDIIONc..ccoevueeieeiieiieieeeeeieeeieesie et ese e esse s ssaene s 58
8.5 PUBLICATION AND DISCOVERY OF SERVICE DESCRIPTIONScuvviiiieiiiiiinreeeeeeeeeiiirneeeeeeeeesiisnrreseeeeseenns 59
9 WEB SERVICES DEVELOPMENT LIFECYCLE 60
Q.1 BUILD PHASE ...ttt ettt e ettt e e e e e e ettt eeeeeeeetaaaeaeeeeeeeataaeeeeeeeeennsreseeeeens 60
L D) 2] g 50)4 & & VN 2RO 60
0.3 RUN PHASE ..ottt ettt e e e ettt e e e s e et e et e e e s eesataaseeeeeessansaaaeeeeeesasnnnateeeeessesnnnstaneeeeeas 60
LY N X €) S 5 VN ORI 60
10 DEVELOPING WEB SERVICES 62
10.1 SERVICE REGISTRY ..evvvveiiiieiiiiiiiieieeeeeeeitteeeeeeeeeeeataeteeeeeesesaaaeeeeeeeseeaaaseseeesssessasaeeseesseasssseseeesssennnareseeeesas 62
10.2 SERVICE PROVIDER.......cciiiiiiiiititieieeeeeeeiiteeeeeeeeeeeiaereeeeeeeeestaasteeseeeeesasresseeeeensasaesseeseensisrsreeeseeessrrereseees 62
10.2.1 GIEEN FIel SCONATIO ... e et 62
10.2.2 TOP-DOWI SCONATIO.......ccueeeiieeiii ettt ettt et ettt e ettt et e et e e saaeeteeennaeenneas 64
10.2.3 Bottom-Up SCERAFTOcccccouiiiiiiiiiiiiiiiiiicit et 65
10.2.4 MECt-IN-TNE-MIAALIE SCONAFTO. ... e 66
10.3 SERVICE REQUESTOR.......cccuuttiiieeeieeiiireeeeeeeeeeitteeeeeeeeesisseeeeeeeeeeetseeeseeeeesesssaeeeeeeeaesssssseeeeeeaessrrseeeeeesannses 68
10.3.1 STALIC BINAING ...ttt ettt en et an 68
10.3.2 Build-Time Dynamic BildINgcccoucuiiiiiiii ittt 70
10.3.3 Runtime Dynamic BindiNg..............ccocoiiiiiiii ittt 71

PART THREE: JAVA WEB SERVICES IMPLEMENTATION

11 WEB SERVICES AND JAVA TECHNOLOGY 73
11.1 WEB SERVICE TOOLS = JAVA 2 PLATFORMccoiuiiieiiuiieeeeteeeeeeee e et eeaee e e e e et eeaaeeeeenaeeeeeaneeeennns 73
L1.2 J2EE LA SDK ..ot ettt e et e e e e e s et e e e et e s e aaeee s et e e e ssaeeessaaeeesaaeeesanes 73
11.3 JSR 109 - IMPLEMENTING ENTERPRISE WEB SERVICEScoiiiiiieieitieeeeeeeeeeeteeeeeeteeeeeeaeeeeeeeeeeeaneeeennees 74
11.4 J2EE WEB SERVICEScciiutiieietiieeeitteeeeeteeeeeteeeeeetaeeeeetseaeeeaaaeeeeeasseeeeaseseeesssseeesesesenssessensseseesseeeansseeeanns 74
11.5 WORKING WITHJAX-RPC ..o ettt e e e et e e eeatae e e eaanaens 75
11.6 CREATING A WEB SERVICE........0iiiiitiieiiiieeeeitteeeeitteeestteeeatseseaesseeessssseaasssesesasssesssssssesssssesssssssessssssasnns 76

11.6.1 Design and Code the Service Endpoint INterface....................ccccovevvevievieeciiieiieseeeeeieeeenes 76
11.6.2 Implement the Service Endpoint INTETfACE.................cc.ccuevcviviieiieiieieciieceeie e 77
11.6.3 Write a CORfIGUFALION FTLEoccoeiiiiiiiiiiiii ittt 77
11.6.4 Generate the Necessary Mapping Files...............cccccciuniiiiiiiiiiiiiieeeee et 77
11.6.5 Packaging and Deploying the ServiCe..............ccucuieeiiniiiiiiiiiiiiieieeeee ettt 78
11.7 CREATING A WEB SERVICE CLIENTuuviiiieiieeeeiteeeeeeteeeeeeeeeeeeaeeeeeeteeeeeeaeeeeeaeeeeesaeeeeesneeeeenseeeeasreeeenns 78
11.7.1 Types Of Web Service CIIERLS..............ccccoeieeiieet ettt 78
11.7.2 BrOWSEr-BaSE CLICHL.............cccoeeiiiiieeeeeeeeeeeeeeeeeee ettt 79

12 PRICING WEB SERVICE 80

12.1 SERVICE ENDPOINT INTERFACEcuuiiiiiiiieeitiieeeeiteeeeetteeeeeteeeeeteeeeeeaaeeeeeaaeeeeeseseeensseseenaseeseessseesasseaeanns 80
12.1.1 DI@SIGIING. ...ttt ettt 80
12.1.2 Coding and IMPIEMERLINGcc.coeveeiiieiieie ettt eae e ense e 80

VI

| B ©10)\) 3 (€]6123 1 (€ TSR 81

12.3 IMIAPPING .ottt sttt ettt sttt ettt b e sh e b e e bt ettt e s e bt s bt e a et b et e bt bt e a et enn e a et nesae e 81
12.4 PACKAGING AND DEPLOYINGcoutitiiiiitiniiriteiietetente sttt ettt et ste st sbesaeene oo e saesaesbesaeese et ennesnesaensesaees 83
12.5 WEB CLIENT ..ouiitiiitiettett ettt ettt sttt et ettt st eh ettt b e saeeb et e et a e bt saeeb e e st enne s eaenbesaeeneeneen 84
12.5.1 Configuring and Generating CLent STUDScccccoevvevieciieiieiiiieeeeee e 84
12.5.2 Coding the Java Server PAZEcc.cceevueeiaiiieiieiesiieeieeeie e sse e saeese s e 84
12.5.3 Packaging and DePIOYingc..cccccvecieiiiiieeiieiieieeie ettt 85

12.6 PRICING WEB SERVICE EXAMPLESc.coiiiiiiiiiiiiiiiiieicieteie sttt s 85
12.6.1 Multiplicative Binomial Model....................c.ccccooiviiiiiiniiiiiiiiiiieiieeee e 85
12.6.2 Additive Binomial MOdEL.......................cccoeiiiiieieiiiiiieeeeeeeee e 88
12.6.3 Trinomial and Finite Difference Modelsc.ccoccoioiiiiiiiiiiieiiiiieeee et 96
12.6.4 Implied Trinomial Tree MOdelccoooiioiiiiiiiie et 104
REFERENCES 109
CURRICULUM VITAE 113

VII

FIGURES

Figure 2.1: Development of an Underlying During Timeccueoueriiiriiiiieieieeie et 3
Figure 2.2: Probability Density Function of the Random Walk............coccooiiiiiiiiiiiieeeee e 4
Figure 2.3: Boundary Conditions for a European call Optionccecieeiiriiiieneeniieie e 8
Figure 2.4: Boundary Conditions for a European put OPtiONc.eeeeriieciiecierieneeieeie e seesreereeneeseesseessaesseennes 9
Figure 3.1: Simple Binomial Model of a Call Option and its Underlying ASSet...........cccevvverierieriieceesienreenieennens 11
Figure 3.2: Four-step Binomial Tree for an Underlying ASSEt..........cecveierieriieiieierie et 14
Figure 3.3: Simple Binomial Model of the Natural Logarithm of an ASSet...........ccceeveririreriieiienieiienenenenceene 16
Figure 3.4: General Additive Binomial TTEE........cceevuiiieriieiieiieiieie ettt ettt e e enseeneeas 18
Figure 3.5: Binomial Tree with Adjustment for a Known Discrete Cash Dividendccoccoveeiieiieiiniincennen. 19
Figure 3.6: Different Asset Paths for a Down-and-Out Call Optionccecceeiieiierieiieniere e 21
Figure 4.1: Simple Trinomial Tree Model of an Underlying ASSEtcccverieiiereriieiiereene e 22
Figure 4.2: Structure of the TrinomMIal TIEEcceiiiieieieieeee ettt sttt et et e e see e saeeeeeneens 24
Figure 4.3: Lattice for Finite Difference Approach...........ccocoiiiiiiiiiiiiiiiieeeeee et 25
Figure 4.4: Structure of the Explicit Finite Difference Modelcccoooiiiiiiiiiiiiiieeeeee e 27
Figure 4.5: Structure of the Implicit Finite Difference Modelccoevviiiiiieniieciiiiecieeee e 29
Figure 4.6: Matrix Form of Tri-Diagonal EQUAation Set...........cccccveriieiiiiiiiiesieeciecie e esie e esse e 29
Figure 4.7: Structure of the Crank-Nicolson Finite Difference Modelccocveciivieiiinieniiiicieceeeee e 32
Figure 5.1: Structure of the Implied Trinomial TTEE........c.cccveruieriieciieieeieeee ettt 35
Figure 5.2: State Prices and Transition Probabilitiesc..ccuerierieriiesiieiieie ettt 37
Figure 5.3: Fixed Strike Look-back Call Option Example Paths...........cccooceiiiiiiiiiiiie e 41
Figure 5.4: Different Paths to the same Node in a Trinomial TTeecceecueriirieiieieiii et 42
Figure 5.5: Structures of Nodes for the Valuation of a Path-Dependent Option............ccecceevieeiirienienieieeieneeens 43
Figure 7.1: Interactions, Operators and ATLITACESceiiieieriieie ettt 48
Figure 7.2: Web Services IMOGEL.......couiiuiiuiiieieieee ettt ettt ettt e e eesbesaeeaeeneens 49
Figure 8.1: Web Services ProtoCol StACKoiiiiiiiieieeeeee ettt 51
Figure 8.2: SOAP Message Structure with/out AttaChment...........cc.eecveeieiierieiieierieee e 53
Figure 8.3: XML Based Messaging using SOAP........cccccieriiiiiiiiiiiesiiete ettt ste e eae e ssae e saeesseeseesseesseas 54
Figure 8.4: Basic Web Service DESCIIPLIONc.ceivieriiiiieieiiieeiieit et eteettesteeieesessessaesteesseesseessesssesseesseessesssenssens 56
Figure 8.5: Complete Web Service DeSCIiPtion.........cccveicverieriieriieieeieeiesieeieeteetesteesseesseessesaeseeesseesseeseensennsens 58
Figure 10.1: Green Field SCENATIOc.eeveiiiiieiieie ettt ettt ae st s esseesseesaesneesseaseenseenseensens 63
Figure 10.2: TOP-DOWN SCENATIO........eccuiriertieriieieeiestesteseteste et eteeteesseeteesseesseesaesseeseensesnsessnesnsesseeseensennsennsens 64
Figure 10.3: BOttOmM-UP SCENATIOcuueeutieeieitieitiete ettt sttt ettt et eat et e e bt eete et e eseess e e bt enseemaesneesneesneesseeseenseeneeas 66
Figure 10.4: Meet-in-the-Middle SCENATIO.ciiiiiiiiieie ettt ettt ettt esee et eneeas 67
Figure 10.5: Static BINAINgcouieiiieieeieeeee ettt sttt et e ae et e et esae e st e teenteeneeas 69
Figure 10.6: Build-Time Dynamic BIndingcccooieieiiiiieieie ettt e 70
Figure 11.1: A Java Client Calling a J2EE Web SerVICeccceriiiiirieieieieese ettt 75
Figure 12.1 UML Diagram of the Pricing Web ServiCecccioiiiiirieieieiie et 80
Figure 12.2 Deployment Tool - Packaging the Pricing Web Service.........ccovvvivviirienieniieieeiesieieeieeeeeeeieenenn 83

VIII

Figure 12.3:
Figure 12.4:
Figure 12.5:
Figure 12.6:
Figure 12.7:
Figure 12.8:
Figure 12.9:

Figure 12.10:
Figure 12.11:
Figure 12.12:
Figure 12.13:
Figure 12.14:
Figure 12.15:
Figure 12.16:
Figure 12.17:

Deployment Tool — Deploying the Pricing Web Servicecccevoirieiienieiieeeeeeeceeeeee e 84

Web Client Java SEIVET PAZE.........coiiiiiiiiieiieee ettt ene s 85
Pricing a European Call Option with Multiplicative Binomial Tree (JSP).......cccocoviiiiiiiicninnee. 87
Pricing an American Put Option with Multiplicative Binomial Tree (JSP)......cccccooveiiiinincninnen. 88
Pricing a European Call Option with Additive Binomial Tree (JSP)cccoceviiiiieiieniiinicce 90
Pricing an American Put Option with Additive Binomial Tree (JSP)ccccoceviiiniiiiiiiiiniince 92
Pricing an American Put Option with a Known Discrete Cash Dividend (JSP)........ccoccocevinininnne 94

Pricing an American Down-and-Out Call Option with Additive Binomial Tree (JSP).................. 96
Pricing a European Call Option in a Trinomial Tree (JSP)ccccoivininininiiniiiinicncnenencnceee 98
Pricing a European Call Option by Explicit Finite Difference Model (JSP)c..ccccovenincncninnne 99
Pricing an American Put Option by Explicit Finite Difference Model (JSP)ccccceveenvennnnee. 101
Pricing an American Put Option by Implicit Finite Difference Model (JSP)........cccccvevvenvennnee. 104
Pricing an American Put Option by Crank-Nicolson Finite Difference Model (JSP) 104
Pricing Implied Trinomial Tree State Prices and Transition Probabilities (JSP).........c.cccceeenenee. 106
Pricing an American Down-and-Out Call Option by Implied Trinomial Tree Model (JSP)........ 107

TABLES

Table 5.1: Different Barrier OPtionsccceecuieierieriieieeieeee sttt ettt sttt ettt e st eeteeeeeeeenes 39
Table 5.2: Different Look-Back OPtioNSc.eecuieieriiriieiiee ettt 40
Table 10.1: Basic Methods for Service Provider Implementationccecceeveevienieninieienceneeee 62
Table 10.2: Methods for Service Requestor Bindingcoocoveiiiiiiiiiiieieeee e 68

IX

Options Introduction

1 Options Introduction

1.1 Genesis and History

The year 1973 is often called the birth of options. With the establishment of the
Chicago Board of Options Exchange (CBOE) and the introduction of options traded
to stock exchange, a central institution for the trade with standardized options was
present for the first time. Additionally the option clearing corporation which was
founded in the same year served as intermediary between the contracting parties in the
option business.

However, options are much older and have a long and well documented history.
Already the ancient Greeks knew about options and how to make their money with
options. Thus Malkiel and Quandt [1] report of a philosopher named Thales, who
earned a fortune with option contracts on the use of olive presses. In addition, in
Amsterdam around 1600, both call and put options on tulip bulb were traded [2]. The
first mention of options in the United States dates back to the year 1792 at the same
time as the New York Stock Exchange was established [3]. In Austria futures and
options are traded on the ‘Osterreichische Termin-und Optionenbdrse’ (OTOB).

1.2 Options Definition

Options are one of the main types of derivatives which are financial instruments
whose values depend on the value of the underlying.

‘In finance, the underlying of a derivative is an asset, basket of assets, index, or even
another derivative such that the cash flows of the (former) derivative depend on the
value of this underlying. There must be an independent way to observe this value to
avoid conflicts of interest’ [4].

An asset is a probable future economic benefit obtained or controlled by a person or
company as a result of a past transaction or event [5].

In order to be able to make a valuation from standardized options and exotic options,
it is essential to understand their nature.

The definition of an option is:

‘Options are financial instruments that convey the right, but not the obligation,
to engage in a future transaction on some underlying security, or in a futures
contract’ [6].

It is upon the option holder's choice to exercise the option, whether the party who sold
the option must fulfill the terms of the contract.

Call options provide the right to buy a specified quantity of an asset at a set strike
price at some date on or before expiration.

Put options provide the right to sell a specified quantity of an asset at a set strike price
at some date on or before expiration.

It can be seen from this definition that the price of an option is thus affected by a
number of factors:

[1

Options Introduction

e The present price of the underlying asset.

e The strike price.

e The time up to the maturity (expiration date).

e The volatility or standard deviation of the underlying asset.

e The interest rate.

1.3 Classification

As a classification for the bulk of different options generally the style of an option is
used, which is usually defined by the dates on which the option may be exercised.

Therefore the following style categories exist:
e European options - may be exercised only on maturity (expiration date).

e American options - may be exercised on any trading day on or before
expiration date.

e Bermudan options - may be exercised only on fixed dates on or before
expiration date.

e Barrier options — require that the underlying asset must reach some trigger
level before the exercise can occur.

Additionally the payoff of the option is used for categorization.

For example European and American options - as well as others where the payoff is
calculated similarly - are referred to as ‘vanilla options’. Options where the payoff is
calculated differently are categorized as ‘exotic options’. Exotic options can pose
challenging problems in valuation and hedging.

Black-Scholes World

2 Black-Scholes World

One of the most important sizes in evaluation models for options is the underlying.
Independently of all other parameters the price of the asset to which the option refers,
finally determines the value of the option mainly. However, a substantial basic
assumption of a multiplicity of option evaluation models is that the exact value of the
underlying does not let itself predict - not even by historical course time series or
existing evaluation models [7]. However conclusions on the average value and the
variance of course changes can be made by evaluation models or by means of these
historical course time series. Thus a probability distribution of future asset values can
be calculated.

2.1 Black-Scholes Model

Almost all option evaluation models are based on a simple model for price
movements of the underlying, i.e. the random walk'.

The model looks as follows:

At time ¢ the asset has the value S. Within a small time interval dt it changes the value
at Sto S + dS (see Figure 2.1).

ds

dt

Figure 2.1: Development of an Underlying During Time

That results in a relative profit of dS/S for the appropriate period. If an average value
from all relative yields during a longer time period is calculated, the average growth
rate” 4 of the asset is obtained, also known as drift or trend.

' The random walk hypothesis is a financial theory stating that stock market prices evolve according to
a random walk and thus the prices of the stock market cannot be predicted (Wikipedia, 2008).
? In simple models 4 is assumed to be constant, or a function of S and # in more complex models.

| 3

Black-Scholes World

Moreover random changes in the price of the asset must be considered due to external
effects - e.g. unexpected messages. This happens via a random number dz which is
weighted by means of volatility o - i.e. the standard deviation [7].

A Wiener process dz has the following key properties:

e dz is normally distributed with mean zero and variance df or standard
deviation Vdt

e the values of dz over two different, non-overlapping increments of time are
independent

If these two components are joined the stochastic differential equation is formed.

< = udt + odz (2.1)

It mathematically describes the model for the asset price. The right side of the
equation contains a deterministic part ¢ dt and a part determined by the randomness
of odz.

However, (2.1) does not describe a single deterministic path for example of a share. In
fact many different evolvements, that are time series, can be generated with formula
(2.1), where each item represents a possible future course path. From these different
evolvements interesting and important information is gained concerning the
probability of the distribution of the share quotation at a specific time. As a result
skewed and bell-shaped probability density functions are obtained, as in Figure 2.2.

Figure 2.2: Probability Density Function of the Random Walk

3 The random variable, or equivalently the change dz, is called a Wiener or Brownian motion process.

4 |

Black-Scholes World

If the share price obeys the model described by (2.1), the probability density function
of the random walk is log-normally distributed.

The discrete model of the random walk works very well for quite large time intervals.
However, if used in the material life, the discrete, mathematical model is changed in
to a continuous model where the size of the time interval converges towards zero -
dt—0.

2.2 Derivation of the Black-Scholes Partial Differential
Equation

The transformed mathematical model by means of Itd's lemma* appears as follows:

2
df = (usi v 1o 8L L Py b o5 Dy (2.2)
as o8> ot as

This formula represents a substantial part during the derivation of the Black-Scholes
option valuation formula [8].

Starting point for the development of the Black-Scholes formula is the assumption
that there is an option, whose value C depends only on two sizes - i.e. the course of
the underlying S and the time ¢. At this time it is not yet necessary to specify whether
the option is a call or a put [7]. In accordance with the formula (2.2) deduced above
the random walk, which the option C follows, can be defined as

2
dC = (uSa—C + %02526—(3 + 8_Cde + GSa—Cdz (2.3)
oS 0S? ot oS

In a further step a portfolio is designed, composed of an option C and a not yet
specified quantity - A - of the underlying. The value of this portfolio is

M =C - AS (2.4)

And the change within one time period is

dll = dC - AdS (2.5)

* In mathematics, It's lemma is used in It6 stochastic analysis to find the differential of a function of a
particular type of stochastic process.

| 5

Black-Scholes World

The random walk of this portfolio obeys the following equation:
oC C oC oC
dll = |uiS— + 16288— + — - dt + oS— - Aldt 2.6
(HS s T %0 am P HAS] 55(=] (2.6)

If A - which is not yet specified - is replaced with,

oC
A = — 2.7
2S 2.7)

in the above formula (2.6) the random component dz can be eliminated and the
equation simplifies to

2
an - [ﬁ " %GZSZEJdt (2.8)
ot 0S8?

Investing amount /7 into a portfolio without risk would gain a profit of »//dt within
one time period dt.

If the right side of equation (2.8) would be larger than the gained profit of the
portfolio without risk, an investor or arbitrageur could make a guaranteed profit
without risk by borrowing an amount /7 and invest in the portfolio. The profit would
be larger than the costs of borrowing.

Also in the contrary case the arbitrageur could make a guaranteed profit without risk
by selling the portfolio from formula (2.8) and investing amount /7 in the bank. The
market forces of supply and demand as well as arbitrageurs ensure that there is no
profit without risk or only very briefly. Hence the profit from the portfolio without
risk and the portfolio from formula (2.8) must be equal or approximately equal.
Mathematically that means

2
L, 15829 det (2.9)

rlde = (+ 3
Ot 082

By replacing formula (2.4) and formula (2.7) and a division through df we finally get
the Black-Scholes partial differential equation:

2
1o C L % e — (2.10)
ot 0S? oS

6 |

Black-Scholes World

All derivatives which depend only on the price of the underlying S and the time ¢,
must comply with this very general formula. Therefore this equation is suitable also
for options which look at first sight complicated, for example exotic options.

The following assumptions® are the basis to derive the equation [7]:

. The price of the asset is log-normally distributed.
e The risk-free interest rate » and the volatility o are well-known functions
depending on the time over the lifecycle of the option

. there are no transaction costs for hedging the portfolio

o the underlying asset does not pay a dividend during the lifecycle of the
option

o there are no arbitrage opportunities

o the trade of the underlying asset takes place continuously

o short selling is permitted and the asset is arbitrarily divisible

2.3 Black-Scholes Formula

While partial differential Black-Scholes equation was derived in chapter 2.2, this
chapter shows how to solve the equation. In order to get a clear solution, the
boundaries and final conditions must be defined in a first step.

For a European call with a current value of C (S, ?), a strike price K and an expiration
date T the final condition at time # = T'is

(s, T) = max(S - K, 0) (2.11)

This final condition corresponds to the pay-off profile at the expiry date and is well-
known with accuracy.

For the boundary conditions the two extreme cases are examined, if the price of the
underlying becomes zero, S = 0, and that value grows infinitely, S—oo. If the price of
the underlying becomes zero, S = 0, the formula (2.11) shows that also dS is always
zero and therefore the value of the underlying itself can never change. Therefore if S
= () the option is worthless, even in the long run. Thus, the first lower boundary
condition is

c, 1) =0 2.12)

If the value of the asset rises immensely it becomes more likely that the option is
exercised and the height of the exercise price becomes less important. Therefore, if
S—o0 the value of the option converges to the value of the underlying. Thus, the
second upper boundary condition is

> Some of these assumptions can be dismissed by modifications in the model.

| 7

Black-Scholes World

s, 1) = § if S - (2.13)

Figure 2.3 illustrates the conditions (2.11), (2.12) and (2.13) resulting in the shaded
area of possible option values.

K

Figure 2.3: Boundary Conditions for a European call option

With these conditions - (2.11), (2.12) and (2.13) - the partial differential equation can
be solved and the well-known Black-Scholes formula® for a European call option is
obtained [8]:

s, 1) = S Nd) - K "9 N(d,) (2.14)
where
1 Tl
N(x) = T3 fe? (2.15)
4 = log(S/K) + (r + %(72) (T - 1) (2.16)
0\/T -t

log(S/K) + (r -

d, = to?) (T -) —di—-oJT - ¢ (17
0'\/T -t

% See [8] for the exact derivation.

8 |

Black-Scholes World

For a European put option with the value P (S, ¢) the final condition is again identical
to the pay-off profile at expiration date:

P(S, T) = max(K - S, 0) (2.18)

For the boundary condition again the two extreme cases S = 0 and S—»c are
considered. As already mentioned above the value of S remains always zero in the
case S = (. Therefore the pay-off of the put option at time 7, the exercise price K, is
accurately determined. In order to compute the value of the put option at time ¢, the
exercise price K must be discounted only. Thus, the first upper boundary condition
results as the present cash value of the exercise price K

P, 1) = Ke'" ~ Y (2.19)

In the second case where S—oo, the exercise of the put option is very unlikely and
thus the option gets worthless. The lower boundary condition is

PS, 1) > 0 wenn § — (2.20)

Figure 2.4 illustrates the conditions (2.18), (2.19) and (2.20) resulting in the shaded
area of possible option values.

K

Figure 2.4: Boundary Conditions for a European put option

Black-Scholes World

With these conditions - (2.18), (2.19) and (2.20) - the partial differential equation can
be solved and obtains the well-known Black-Scholes’ formula for a European put
option [8].

P, 1) = K "~ N(-d) - S N(-d) (2.21)
where

1 f 7% v ody
N(x) = o [e (2.22)

i = log(S/K) + (r - éctfz) (r - f):d,_a,/T — ¢ (229

2.4 Numerical Techniques

Due to their simplicity the Black-Scholes formulas are widely used by market

participants. However, they are only applicable for standard European call and put

options and not for pricing something more complicated such as American
.8

options.

In order to value American-style options with their early exercise opportunities
numerical techniques such as binomial and trinomial trees and finite difference
methods must be used [7].

For exotic options especially path-dependent options, of which look-backs and
barriers are probably the best known, again much more computationally intensive
numerical techniques have to be applied. The pay-off of these options at maturity is
some known function of the path that the asset takes before the maturity date,
which can be hardly put in to a single valuation formula.

7 See [8] for the exact derivation.
¥ To some extent the Black-Scholes formulae can be also adapted for pricing of other than standard
options which reduces accuracy.

10 |

Binomial Model

3 Binomial Model

One of the most common and best known numerical techniques for valuing
options is the binomial model, especially for American-style options.

While European call or put options can be valued by using the Black-Scholes
formula, for American call or put options the analytical approach is not applicable.
Also for options on assets that pay dividends where the price of these options has
no closed-form solution, numerical procedures must be used to solve the Black-
Scholes partial differential equation.

Since early exercise of American options can be optimal depending on the level of
the underlying asset, the binomial model allows handling this matter. Furthermore
several extensions to price more complex options such as exotic options are possible.

3.1 Basics of the Binomial Model

In the binomial model the underlying asset price is expected to follow a binomial
process. That means that the asset price can only change to one of two possible
values at any time and so the asset price has a binomial distribution. During a time
period At a considered asset with a current price of S can move - following a
multiplicative binomial process - up to a new level uS or down to a new level dS.
The average behavior and volatility of the asset are specified by the parameters u
and d. Furthermore at the end of the time period A4z a considered call option on this
asset matures, which also is shown in Figure 3.1. These are the first two branches
of a binomial tree starting from its root - representing today - and evolving out in
time by one time step [8] and [10].

uS, C,=max(0,uS-K)

S, C
dS, C4=max(0,dS-K)

»

A

At

Figure 3.1: Simple Binomial Model of a Call Option and its Underlying Asset

Similar to the Black-Scholes model, a riskless portfolio can be set up consisting of
A units of the underlying asset and a short position of one call option. The value of
the portfolio needs to be the same regardless of whether the asset price goes up or
down over the period A¢:

-C,+AuS=-C, +AdS (3.1)

Rearranging the equation to:

Binomial Model

A_ Cu_Cd

s (3.2)

Since this portfolio is riskless it must earn the riskless rate of interest r
(continuously compounded).

(=C, + AuS) = ™ (~C + AS) (3.3)

Substituting from equation (3.2) into equation (3.3) for 4 and rearranging for the
call price at the start of the period C, gets

rAt rAt
et —d u—e
C=e (— C,+ — CdJ (3.4)
Defining
_erAt_d
P u—d

and substituting into equation (3.4) for p, the following simpler form is achieved:

C=e"™(pC,+(1-p)XC,) (3.5)

The above formula (3.5) shows the pricing of a call option with one period to
maturity. For the valuation of a put option just the pay-off condition has to be
changed, meaning the values of C, and Cy for a put.

C, = max(0, K - uS)
Cys=max(0, K - dS)

Note that the actual probabilities of the stock moving up or down are never used in
deriving the option price, just as for the Black-Scholes model. This fact implies that
the option price is independent of the expected return of the stock and therefore
independent of the risk preferences of investors. This allows to interpret p and (7/-p)
as risk-neutral probabilities and equation (3.4) as taking discounted expectations of
future pay-offs under the risk-neutral probabilities. Calculating the risk-neutral
probabilities directly from the asset price is quite simple - as assumed the return is
the riskless rate.

12 |

Binomial Model

Analogous to equation (3.5) the expected value of the underlying asset S at the end of
the time period 4¢ can be written as

E(S,) =uSp+dS(1-p)

Rearranging the equation to

E(S,) =Spu-d)+dsS

Substituting p
~ At d
P u—d

in to the above formula, reduces to
E(S,)=Se™ (3.6)

Up to now the binomial model has comprised just one time step but it can be
expanded to use more steps [11].

In Figure 3.2 the appropriate binomial tree for an option which matures in four
periods of time is shown [9]. Each state in the tree is a node with two labels named i
which indicates the number of time steps and j for the number of upward movements
of the asset price, both measured from the beginning. So the asset price at node (i,
J) is S;=Su'd"” and the option price is going to be Cj. For the lowest node at every
time step j is always zero. Generally it is assumed that the N time step corresponds
to the maturity date of the option. When all Sy; values are computed the value of the
option at the maturity date is simply the known pay-off, e.g. for a call option

Cy, =max(0,§, —K) 3.7)

Binomial Model

Figure 3.2: Four-step Binomial Tree for an Underlying Asset

As with the one period example the value of the option at any node in the tree
before maturity is the discounted expected future value. The generalized formula is
defined as

Ci,_j =e ™ (pCi+1,_/+1 +(1- p)Cm,j) (3.8)

To compute the value of the option at every node at time step N-/ the equations (3.7)
and (3.8) can be used. Reapplying equation (3.8) working backwards through the
tree, the value of the option at every node in the tree can be computed.

The valuation of a European put option is quite straight forward, just the pay-off
structure at maturity (N time step) changes to the known formula.

Cy,;=max(0,K-S,) (3.9)

The backward calculation remains the same as for the European call option, using
equation (3.8)

Due to the fact that American style options can be exercised not only at the
maturity date but at every time step, the computation has to include the possibility
of early exercise. Thus at every node there has to be a comparison between the
value of the option if exercised and the value if not exercised. The option value at
that node is then the greater of the two. For example an American put option

Ci’j = max(eimt (pCi+l,j+l + (1 - p)Ci+1,j):K - Si,j) (3 | 0)

See chapter 12.6.1 for pricing examples.

14 |

Binomial Model

3.2 Generalization of the Binomial Model

When constructing a binomial tree the behavior of the real asset price should be
represented [8]. In order to reach this the parameters u, d and p should be chosen
to match the mean and variance of the underlying asset during the time interval At.
In the risk-neutral world the expected return from a stock is the risk-free rate r.
Thus the expected value of the asset price at the end of the time interval At is

Se™ = pSu+(1— p)Sd (3.11)
or
e™ = pu+(1-p)d (3.12)

The variance of the proportional change in the asset price for interval At is o° At.
Therefore it follows

pi + (1= p)d® —|pu+(1- p)d*|= c*At (3.13)
This can be reduced to
M u+d)—ud—e™ =’ At (3.14)

by substituting from equation (3.12) for p (in a stochastic process the variance of a
variable X defines as E(X?) — [E(X)]?).

For the three parameters p, u, and d two conditions — equation (3.12) & (3.13)
have been set. The third condition used is

u=— (3.15)

a—d

- 3.16
P=_— (3.16)
u=e”" (3.17)

Binomial Model

d=e '™ (3.18)
where
a=e™ (3.19)

to construct an appropriate binomial tree in a risk-neutral world.

The only problem with this formulation is that the approximation is only good over
a small time interval. You cannot freely choose arbitrarily large time steps. To
obtain a more general and flexible formulation the model is reformulated in terms
of the natural logarithm of the asset price (x = In(S)).

The natural logarithm of the asset price under GBM is normally distributed with a
constant mean and variance. Applying Itd's lemma the continuous time risk-neutral
process for x can be shown to be

dx =vdt +odz
(3.20)

v=r——o?
2

Figure 3.3 shows the discrete time binomial model for x.

The variable x can either go up with a probability of p, to a level of x + 4x, or
down with a probability of p; = I - p, to a level of x + 4x,. This is known as the
additive binomial process.

X+AXx,
Py !
X
Pd X+Axy
< T >

Figure 3.3: Simple Binomial Model of the Natural Logarithm of an Asset

Equating the mean and variance of the binomial process for x with the mean and
variance of the continuous time process over the time interval A¢ leads to:

E[Ax] = pquu +pdAxd :VAt

E[AX?] = p,Ax,? + p,Ax,? = G?Al + VAL (3-21)

16 |

Binomial Model

As known p, + ps = 1 or ps = I - p, just trivially substitute and obtain two equations
in three unknowns.

The third condition is to set the jump sizes to be equal, which leads to

P, (Ax) + p, (=Ax) = VAt

P AX* + p,Ax* = 0*At + VAL (3.22)
and gives
Ax =oAL + VAL

1 vAt (3.23)

1
pu - 2 2 Ax
The disadvantage of this method is that its convergence is quite complicated.

Moreover unsatisfying is that the error can actually increase with an increase in
the number of time steps. The finite difference methods can solve this problem.

3.3 Additive Binomial Model

The structure of the general additive binomial model is similar to that of the
multiplicative model [9]. As before the nodes in the tree are identified by a pair of
indices (i,j), where j = 0,1,...,i. So every node is i periods in the future and the
asset has made j upwards moves to reach that node. Therefore the price of the
underlying at node (i,)) is

S, =exp(x, ;) =exp(x+ jAx, + (i — j)Ax,) (3.24)

After constructing the tree (see Figure 3.4) the value of the option at the maturity
date can be calculated at the N time step. Working backwards through the tree each
option price C;; at every node is given by

—rAt
Ci,j =e (Aqui+1,j+l +Axdci,j+l)

(3.25)

Binomial Model

NN
N—?,N—f<
11 2,2 N.N-1
j |00 2,1 N.2
N-1,1
1.0 2,0 N,1
N-1,0

N0

L J

Figure 3.4: General Additive Binomial Tree

See chapter 12.6.2 for pricing examples.

3.3.1 Pricing Underlying Asset Paying a Continuous Dividend Yield

If the underlying asset for the construction of a binomial tree is a stock or a stock
index that pay dividends the model has to be adapted.

In the case of a continuous dividend yield - which is mainly used for options on
stock indices — the valuation is quite straight forward. In order to take into account
the continuous dividend yield, just replace » by (» - §) wherever it appears in the
formulas’. For the variables Ax, p, and v the general additive formula with equal
jump sizes changes to

Ax = A0 2At + VAL

1 vAt

|
272 Ax (3.27)

v:r—§—la2
2

b, =

Processing of the valuation is therefore the same as with an underlying asset which
pays no dividend:

1. Constructing the tree and calculating the asset prices at each node

2. Valuating the several option prices at maturity date

3. Working backwards through the tree to calculate the price of the option
today (7=0)

? Just as the stochastic differential equation changes to
dS = (r—0)S8dt + o5dz (3.26)

in the Black-Scholes world.

18 |

Binomial Model

3.3.2 Pricing Underlying Asset Paying a Known Discrete Cash
Dividend

In the common case of a known cash dividend on the asset the situation becomes
more difficult. Then the binomial tree gets non-recombining for nodes after the ex-
dividend date. Figure 3.5 shows a binomial tree for an asset paying a cash amount D
at a time 7 where the condition k4¢ < t < (k+1)A¢ 1s satisfied.

Ex-dividend date
where u=exp(Ax,), d=exp(Axy)

Figure 3.5: Binomial Tree with Adjustment for a Known Discrete Cash Dividend

For the time prior to the dividend date the tree nodes remain unchanged.
Otherwise the value of the asset at node (7,j) becomes

Sexp(Ax,)’ exp(Ax,)' ™ =D (3.28)

The number of nodes increases dramatically - at time (k+m)At there are m(k+1)
nodes rather than k+m+1.

To handle this problem and obtain a recombining tree a particular assumption
about the volatility of the asset price is made. It is supposed that the asset price

S, has two components. The uncertain part that is, S; and the certain part that is

the present value of the future dividend stream. The value of S : 1s given by

S, =S, when t>7 (3.29)
and
S, =S —De" ™™ when t<z (3.30)

Binomial Model

The volatility of S . 1s defined as o and assumed to be constant. The binomial tree
parameters p,, pa, AX,, 4x, are calculated in the usual way, but with o replaced by

o . The binomial tree is constructed in the same way as before, where the value of
the asset is

S, exp(Ax,)’ exp(Ax,)~/ + De "0 when t =idt <t

and

S’t exp(Axu)j exp(Axd)i*f when ¢ = idt > 1.

See chapter 12.6.2.3 for a pricing example.

3.4 Binomial Model and Path-Dependent Options

Path-dependence with options explains how the payoff structure of such an option is
limited or affected by the evolvement of the stock price of an underlying asset in
course of time, even though past stock prices may no longer be relevant. So in this
context path-dependence is used to mean simply ‘history matters’ e.g. the asset price
on a fixing date or was the asset price above or below a specific level during an
observation period (barrier option).

The binomial tree modeling even some exotic options - e.g. path-dependent options
especially barrier options - can be priced using this method. Barrier options differ
from standard options by a predetermined level H, the barrier level. If the asset
price falls below or rises above the barrier the option knocks out and pays off
nothing, or knocks in and starts to exist.

Due to the problems with accuracy, convergence and the simplicity of the tree
structure binomial trees are not ideal. However, the simple tree structure gives the
basic idea how to price those options.

Figure 3.6 gives an example how to price an American down-and-out call option
and shows following three paths of the development of the asset price:

e Path 1 does not go below the barrier level and finishes above the strike
price and therefore pays off.

e Path 2 does not go below the barrier level, but finishes below the strike
price and therefore pays off zero.

e Path 3 goes below the barrier and therefore pays off nothing even though it
finishes above the strike price.

20 |

Binomial Model

S
Path 1

s W/\/W

v

to th1 t a1 T

Figure 3.6: Different Asset Paths for a Down-and-Out Call Option

The pricing of this option in a binomial tree is similar to the early exercise
problematic. At every node the value of the underlying asset must be compared to the
barrier level H and if it is triggered - below the barrier - the option price at this node
is set to zero.

See chapter 12.6.2.4 for a pricing example.

Trinomial Trees and Finite Difference Models

4 Trinomial Trees and Finite Difference Models

The binomial model showed some inefficiency regarding accuracy and
convergence. To obtain more significant option prices the binomial model can be
further adapted to a trinomial and implied tree structure respectively (based on [9]).

4.1 Trinomial Tree Model

The risk-neutral model of an underlying asset paying a continuous dividend yield
has the following stochastic differential equation

dS = (r —0)Sdt + oSdz 4.1)
Again it is more convenient to work in terms of x = /n(S) which leads to
dx =vdt + odz

where (4.2)

1
v=r—-0—-——o’

Figure 4.1 shows a trinomial model of an asset which, over a small time interval 4,

can go up by 4x - the space step - stay the same or go down by Ax, with the

probabilities p,, p and py respectively'°.

X+Ax
Py
X Pm X
Pd
x-Ax

Figure 4.1: Simple Trinomial Tree Model of an Underlying Asset

' Ax cannot be chosen independently of Ar and a good choice is Ax = o +/3At .

22 |

Trinomial Trees and Finite Difference Models

The relationship between the continuous time process and the trinomial process of
the drift and volatility parameters stated by 4x, p,, p» and p,; are shown in the
following formulas:

E[Ax] = p, (Ax) + p,, (0) + p, (Ax) = VA? (4.3)
E[Ax’] = p,(Ax*) + p,,(0) + p,(Ax?) = 02 At + VAL (4.4)
Put D, +tP;=1 (4.5)

Solving equations (4.3) to (4.5) gives

1(&m+wmaymj

Py :5 Ay Ax (4.6)
1 oAt + VAL

Pn = A 4.7)
(oAt +v2Ar? VAL

Ol v (4.8)

The one step trinomial model as shown in Figure 4.1 can be extended to form a
complete trinomial tree (Figure 4.2) where i represents the time step and j represents
the level of the asset price relative to the initial asset price. Thus at a certain node (i
Jj) there is t=idt , and S;; = S exp(j4x) and the option price is C;;. The values of the
option at maturity (7 = NA¢) is given by the known pay-off, for example for a call
option

Cy,; =max(0,S, ;- K) (4.9)

[23

Trinomial Trees and Finite Difference Models

N,N
) N,N-1
A 52 N,N-2
1.1 2,1
0,0 /1,0>< 2’0
o<
2,-1
\2L-\2 N,-N+2
T~ N,-N+1
i
> N,-N

Figure 4.2: Structure of the Trinomial Tree

Again we can compute option values as discounted expectations in a risk-neutral
world. The option values of earlier nodes are computed by discounting their
predecessors with the corresponding probabilities.

C,= e_rAt(qu+1,j+l + P0Gty + iCia jr) (4.10)

L]

Although much more data has to be computed within a trinomial tree it shows
advantages over the binomial tree:

e much better approximation to the continuous time process for the same
number of time steps
e casy to work with because of its more regular lattice and higher flexibility

e comfortable extension to time-varying drift and volatility parameters

See chapter 12.6.3.1 for a pricing example.

4.2 Finite Difference Models

4.2.1 Explicit Finite Difference Models

A related model approach to solve the problem of option valuation, that takes the
advantages of a trinomial tree into account, are finite difference methods. The idea
behind is simplifying the Black-Scholes partial differential equation (4.11) by
replacing the partial differentials with finite differences [12] and [13].

24 |

Trinomial Trees and Finite Difference Models

oC 1. .oC oC
L€ _16:029C L _5)59C 0
G20 T g TS (4.11)

Again it is more convenient to work in terms of x = /n(S) which leads to

a1 oc o
o 20 e ox (4.12)

N,Nj
N,Nj-1
N.Nj-2
ON-N -
b 2,1
0,0
1,0 i
1,1 il
2,)

N,-Nj+2
N,-Nj+1
N,-Nj

Figure 4.3: Lattice for Finite Difference Approach

An approximation in equation (4.12) is used to obtain the explicit finite difference
method — for 0C/0¢t a forward difference is used and for ?C/0x? and 0C/0Ox central
differences are used. Therefore, the terms of the lattice are

_ Ci+1,jA_ Ci,j _ %(72 Ci+1,j+1 - 22:;,] + Ci+1,j—1 iy Ci+1,j+12;xci+l,jl _ VC;'H ; (4. 13)
p .

which can be rearranged to

Ci,j = puCi+l,j+1 + meHl,j + pdCiJrl,j—l (4.14)

| 25

Trinomial Trees and Finite Difference Models

= At o +
Py A IAx (4.15)
0-2
pm:I—Atsz—rAt (4.16)
2
Pa=Af o 4.17)
2Ax* 2Ax '

Equation (4.14) is equivalent to the discounted expectations approach. This can
be demonstrated by taking a slightly different approximation (to the partial
differential equation) for the value at node (7,j) rather than (i+1,j) in the last term
of equation (4.13)

cC.. —C. . c.,..=-2C... +C., . c.. —-C ..
_ 1+1,]At i,j :%0_2 i+1,j+1 A:;,j i+1,j-1 ey l+1,/+12Ax i+1,j-1 _rq’j (418)
Which can be rewritten as
1
i 1+ AL (puCHl,jJrl + mei+1,j +pdci+1,j—1) (4.19)
_ 1A o? v
pu= A T (4.20)
0-2
pm=1—AtAx2 (4.21)
B 1A o? 14
D4 _E t sz_E (4.22)

, where 1/(1+rAt) is an approximation of 1/¢”". Therefore the explicit finite
difference method is equivalent to approximating the diffusion process by a discrete
trinomial process.

The relationship between the lattice values in equation (4.14) is shown in Figure
4.4.

26 |

Trinomial Trees and Finite Difference Models

A
Xj
Cis1j+1
Cij Civ1,
Cis1)1
Ax
>
-« » ti

At

Figure 4.4: Structure of the Explicit Finite Difference Model
See chapter 12.6.3.2 for pricing examples.

Because the accuracy of this method is O(4x” + A¢) the error can be halved when
Ax’ + At is halved. Therefore the time step must be halved, but the space step only

needs to be reduced by a factor of 1/ V2.

To ensure stability and convergence of the finite difference method the
following conditions must be fulfilled:

e the probabilities p,, p,» and p,; have to be positive

e the condition Ax > o+/3A¢ has to be satisfied

e the convergence condition, that is the discretization error — i.e. the
difference between the exact solution of the partial differential equation and
the solution of the finite difference equation — must tend to zero as space
and time steps tend to zero

e the stability condition, that is the round-off error — i.e. the difference
between the solution of the finite difference equation and the numerically
computed solution — must be small and remain bounded

4.2.2 Implicit Finite Difference Models

Again it is more convenient to work in terms of x = /n(S) which leads as before to
the well know Black-Scholes partial differential equation.

[27

Trinomial Trees and Finite Difference Models

a1 Ec
a 2% e U ax (4.12)

Transforming the equation (4.12) by replacing the space derivatives with central
differences at time step i rather than at i+/ gives

C,.-C. 1 .C. -2C . +C, _ Cin—C

_—LJAI Lo 1 N -y — 12Ax L —rC, (4.23)

Which can be rearranged to

puCi,_/+1 + pmci,j + pdCi,j—l = Ci+1,j (4.24)
1 A co* v

P,) 4 Ar? +E (4.25)

0-2

p, =1+At A +rAt (4.26)
1 A o* v

Pi= 5 4 A Ax (4.27)

The relationship between the lattice values is shown in Figure 4.5.

The equation (4.24) for each node (i,j) with j = -N;+1,..., N;-1 cannot be solved
individually for the option values at time step i. Therefore they must be considered,
together with the boundary conditions,

Ci,Nj - Ci,zvj,l =y (4.28)

Con, — Ci,—Nj =4 (4.29)

J

to be a system of 2N;+/ linear equations which implicitly determine the 2N;+/
option values at time step i The boundary condition parameters Ay and A; are
determined by the type of option being valued, for example for a call we have

Ay = Si,Nj - Si,NH (4.30)

A, =0 (4.31)

Trinomial Trees and Finite Difference Models

A
X;
Cijer
Cij Cis1f
Cij1
Ax
|

«— » ti

At

Figure 4.5: Structure of the Implicit Finite Difference Model

The equation set has a special structure which is called tri-diagonal. Each equation
has two variables in common with the equation above and below. When writing
the equation set in matrix form the tri-diagonal structure can clearly be seen:

1 -1 0
Pu Pm Pd
0 pu DPnm
0

Figure 4.6: Matrix Form of Tri-Diagonal Equation Set

0
pa 0
Pu Pm Pd
0 Pu DPm
0 1

0

Da
-1

Cin
Cinj-1

Cinj-2

Ci,-Nj+2
Cinj+1

Ci-nj

Au
Ci+1,Nj-1

Ci+1nj-2

Cit1,-Nj+2

Ci+1-Nj+1

AL

Solving this tri-diagonal matrix equation can be done very efficiently. Beginning
with the boundary condition equation j = -N; this equation is rewritten to obtain

(4.32)

[29

Trinomial Trees and Finite Difference Models

Substituting (7 = -N;+1) into the equation above
puci,—N,+Z + mei,—NjH + D, (Ci,—NM —A)= Ci+1,—Nj+] (4.33)

is obtained, which can be rearranged to

puCi,—Nj+2 +p, Ci,fNM =p (4.34)
where
D w=Pnt+ Dy and p’= Ci+l,—Nj+1 + Py

Thus the original equation with three unknowns has become equation (4.34)
with only two unknowns.

Equation (4.34) can be rewritten to

p-p.C_y
Cy = (4.35)
JH p m
Substituting (7 = -N;+2) into the equation for
PC oy, tPuCiy, =P (4.36)

is obtained, where

(the added subscripts to the p's indicate the application to the equation for j = -
N+1).

This process of substitution can be repeated all the way up to j = N;-1 obtaining:

P.Cn, +0,Ciy,, =P (4.37)

30 |

Trinomial Trees and Finite Difference Models

Using equation (4.35) and the boundary condition equation for j = N;
Cn —Civ,, =h (4.38)

can be solved for both C; y; and C; nj.;. To obtain C; y;.» the next equation down for
j = N;-2 and C; y;.; are used. This process called back-substitution can be repeated
all the way down to j = -N,, thus solving the complete tri-diagonal system of
equations (Figure 4.6).

See chapter 12.6.3.3 for a pricing example.

While the accuracy of the implicit finite difference method has the same order as the
explicit finite difference method - O@Ux’+4t) - more importantly, it is
unconditionally stable and convergent. Thus gives more freedom to trade-off
accuracy for speed by decreasing the time steps because there is no need to worry
about a stability and convergence condition. The values of p,, p, and p; can no
longer be interpreted as probabilities, p, and p; will typically be negative while p,,
will be greater than one. But, it can be proofed that the implicit finite difference
approximation is equivalent to a generalized discrete stochastic process where the
asset price may jump to every node in the lattice at the next time step.

4.2.3 Crank-Nicolson Finite Difference Models

A further refinement of the implicit finite difference method is the Crank-Nicolson
method. It replaces the space and time derivatives with finite differences centered at
an imaginary time step at (i+//2) and is also called a fully centered method. The
Crank-Nicolson finite difference equation looks as follows:

C

ML Ci,j l 2 (Ci+1,j+l _2Ci+1,j + Ci+1,j—1)) + (Ci,j+1 _2Ci,j + Ci,j—l)
At 2 2Ax?
ey (Ci+1,j+1 - Ci+1,j71) + (Ci,j+1 - C[,j—l) _y Ci+1,j + Ci,j (4.39)
4Ax 2
Which can be rearranged to
puCi,j-*-l + Dy Ci,j + pdCi,j—l =—D. Ci+l,j+1 —(p, - 2)Ci+1,j — Dy Ci+l,j—l (4.40)
1 A o’ v
Pu==7 t Ax2+E (4.41)
o’ rit
=1+ At +—
D,)) (4.42)

| 31

Trinomial Trees and Finite Difference Models

_ 1A o? 1%
pd__Z t AxZ_E (4.43)

The right-hand side of equation (4.40) consists of known option values and the known
constant coefficients p,, p., ps and can therefore be considered a known constant.
Together with the boundary conditions,

w, = Cin,y = A (4.44)
Cinpu =Cin, =4 (4.45)
the set of equations (4.40) — (4.43) for j = -N;+1,...,N;-1 build again a tri-diagonal

system of equations. The solution of these equations can be efficiently done very
similar to the implicit finite difference method above.

The relationship between the lattice values in equation (4.40) is illustrated in Figure
4.7.

X;
Cije1 Cis1,j+1
Cij Cis1)
Ci,j—7 Ci+1,j—7
Ax
«» ti

At

Figure 4.7: Structure of the Crank-Nicolson Finite Difference Model

The accuracy of the Crank-Nicolson method is

32 |

Trinomial Trees and Finite Difference Models

20)

and is unconditionally stable and convergent. However, this method converges
much faster than the implicit or explicit finite difference methods.

Again, the values of p,, p,, and p; can no longer be interpreted as probabilities, p,
and p, will typically be negative while p,, will be greater than one. But, it can be
proofed that the Crank-Nicolson finite difference approximation is equivalent to a
generalized discrete stochastic process where the asset price may jump to every
node in the lattice at the next time step.

See chapter 12.6.3.4 for a pricing example.

| 33

Implied Trees and Exotic Options

S5 Implied Trees and Exotic Options

The methods discussed so far are only applicable for standard options and some
specific exotic options such as down-and-out. Furthermore the market’s expectation
of the future in terms of market prices of standard European options is not covered
as all parameters are time constant.

Generalizing the binomial and trinomial trees by making previously constant
parameters (such as the probabilities) time dependent and implying these time-
dependent parameters is the idea behind implied trees. In this way it is recognized
that the real market is incomplete without the standard options and so the standard
options should be treated as fundamental securities which prices are observed in
the market (based on [9]).

5.1 Basics of the Implied Tree Model

The structure of the implied trinomial tree will be very similar to that of the constant
coefficient trinomial tree.

Here, at each node there is a state price Q;'', which is interpolated and/or
extrapolated market data to obtain the required strike and maturity needed.
Furthermore instead of a single set of transition probabilities p, p, and p,; a
different set of transition probabilities p, ;;, pm.i;, and p,;; for every node (i j) is used.
The value of an option at node (i,j) will be C;; as before, and time step N will
correspond to the maturity date.

This has the following advantages without complicating the tree-building procedure:

e the time steps A4¢; can be different

e the asset price levels can vary with the time step

e convenient modeling of the tree ensuring that time steps fall on key dates
required for the exotic options

' See Black-Scholes chapter for the derivation of state prices.

34 |

Implied Trees and Exotic Options

N,N
- N,N-1
\ 55 - N,N-2
1.1 21
il 00 7’0>< 2.0
1,-1>< 21
\25\2\ N,-N+2
RN N,-N+1
I > N,-N

Figure 5.1: Structure of the Implied Trinomial Tree

5.2 Implied State Prices

The state prices for the nodes at time step N in the tree should be computed such
that they are consistent with the market prices of standard European call and put
options. Consider the highest node in the tree (N,N) at time step N. The price of an
European call with strike price Sy n.; - asset price at the next node down -, and with
a maturity date at time step N is

c(Syn1> NAD) =(Sy n =Sy v1)Ovn (5.1)

because for all the nodes below (N,N) the pay-off of the call option is zero. Equation
(5.1) can be rewritten to give the state price O yn at node (N,N) in terms of the
known call price, asset price and strike price. The price of an European option with
a strike price equal to the asset price Sy n., at node (N,N-2), is given by

C(SN,N—Z’ NA?) = (SN,Nfl - SN,N—2)QN,N—1 + (SN,N - SN,N—Z)QN,N (5.2)

The only unknown in equation (5.2) is Qyn.; since Qyy was previously computed.
Working down the nodes at time step N to the middle of the tree computing the
state prices the option price, for node (N,j), is given by

N
C(SN,j—l’NAt) = (SN,j _SN,j—l)QN,j + Z(SN,k _SN,j—l)QN,k (5.3)

k=j+1

| 35

Implied Trees and Exotic Options

where everything is known except Oy . From the bottom node of the tree working
upwards to the central node of the tree this procedure can be started using put
option prices, because of the iterative nature of the calculations numerical errors
can build up in the state prices using call prices. This method can be applied to
every time step in the tree.

5.3 Implied Transition Probabilities

From the calculated state prices at every node in the tree, where the local no-
arbitrage relationships must hold, the transition probabilities are obtained.
Assuming that the transition probabilities for all the nodes above node (i,j) are
already computed, the transition probabilities for node (i,j)) can be computed
according to the following conditions:

—rAt

e (pd,i,j 2 pu,i,j) =e (5.4)
The first condition requires that the transition probabilities sum up to one.

PajjtPui;tPuij= 1 (5.5)

The second condition is that the asset price at node (7,j) has to be equal to its local
discounted expected value over the next time step.

—rA
Si,j =e t(pd,i,jSi+1,j—1 + pm,i,jSi+l,j + pu,i,jSi+l,j+1) (5.6)
Finally, the forward evolution equation for the state price at node (i+1,j+1) is:
—rA
Qi+1,j+1 =e t(pd,i,j+2Qi,j+2 + pm,i,j+1Qi,j+1 + pu,i,jQi,j) (5.7)

Given the transition probabilities for all the nodes above (7,j) equation (5.7) can be
rewritten to:

rAt
€ Y~ pd,i,j+2Qi,j+2 - pm,i,_j+1Qi,j+1

Qi,j

pu,i,_/ = (58)

As well for p,,;; and pa;

36 |

Implied Trees and Exotic Options

rAt
e Si,j _Si+1,j—1 —Puj (Si+1,j+1 _Sm,H)
(Si+1,j - Si+l,j—l)

Pai; =1 = Pui; = Puij (5.10)

pm,i,j = (59)

The relationship diagram between the state prices and transition probabilities is
shown in Figure 5.2.

Qi+1,j+2

Qi1 jo1

Qiv1,

Qiv1jo1

Figure 5.2: State Prices and Transition Probabilities

For the highest node (7,i) at time step i, and for node (,i-1) equation (5.8) reduces to

At
er

i+1,i+1
pu,i,i = 51 1
0, (-11)
and
» _ e™ i _pm,i,iQi,i 510
w,ii-1 .
0., (5-12)

using equations (5.9) and (5.10) to obtain p,,;; and pg;; respectively py, i i.; and pa ;-1

Starting at the top of the tree the transition probabilities can be solved in an iterative
manner working downwards. Again to avoid numerical errors for the lower part of
the tree the process is stopped at the central node. For the lower half of the tree py;

| 37

Implied Trees and Exotic Options

is directly obtained from the forward evolution of the state prices, and then p,, ;; and
Puij are obtained by solving the remaining two equations simultaneously.

Therefore, equations (5.8) — (5.12) become

rAt

€ 0o = Puij29 2 = P jr Qi

Pai; = (5.13)
Qi,_j

» _ erAtSz‘,j - Si+1,j+l ~Pai; (Si+1,j—1 _Si+l,j+1) (5.14)
Y (Sm,_j - Si+1,j+1) '

P :l_pm,i,j ~Pai; (5.15)

» _ e i+1,—i-1 516
di-i = A~)

0, (5.16)

p _ e i+Hl—i pm,i,—in’,—i (5 17)
d,i,—i+l — .

Qi,—i+1

To ensure that the transition probabilities remain positive it is necessary that the
explicit finite difference method stability condition (4x > o~/3A¢) is satisfied at
every node.

var[Ax] = 02, At = E[Ax?] - (E[Ax])* (5.18)
A simple and robust way to meet this condition is to set the space step as follows:
Ax =0, V3At (5.19)

Where 6,4, 1s the maximum implied volatility from the standard options to which
the tree is being fitted.

See chapter 12.6.4.1 for a pricing example.

5.4 Exotic Options and Implied Trees

Plain Vanilla options share certain characteristics such as one underlying asset or the
fact that the payoff depends only on the underlying asset at maturity. Further they are
defined as a call option or a put option and the payoff is determined as the difference
between the asset price and the strike price.

38 |

Implied Trees and Exotic Options

The particular feature of exotic options is to soften the restrictions of vanilla options.
So the payoff additionally can be dependent of the average asset price on different
fixing dates (asian option). In another case the payoff is dependent on whether the
asset price was above or below a specific level during an observation period (barrier
option). Here the path taken by these exotic options is of prime importance and
therefore they are called path-dependent options. Also it is possible that the payoff is
determined on the weighted average of several underlying assets (basket option) or
the option is not predefined as a call or put option (chooser option). A vast number of
other exotic options exist which are not categorized in to an own community.

5.4.1 Pricing Barrier Options

The difference between standard options and barrier options is that they appear or
disappear only if the underlying asset price hits a predetermined level - H - the
barrier [14].

There are three parameters to be defined:

e barrier level: defines if the barrier is below or above the current
asset price - down or up

e barrier condition: defines whether the option disappears or appears
when the barrier is crossed - out or in

e option type: as for standard options - call or put

A down-and-out call option for example, has the pay-off of a standard call option
except if the underlying asset price goes down below the barrier level H then the
option disappears and pays nothing. The pay-off of a down and out call can be
expressed as follows:

max(0,S,; — K)

min(S,;,...,S,,) >H

m

In Table 5.1 all 8 possible parameter combinations are listed with a mathematical
definition of their pay-off.

Name pay-off
Down and out call max(0,S7 - K) | min(S, S,)>H
Up and out call max(0,S7 - K) | max(S, ... Sw)<H
Down and in call max(0,S7 - K) | min(S, ... S,)<H
Up and in call max(0,57 - K) | max(Si ... Sw)=H
Down and out put max(0,K - S7) | min(S, S,)>H
Up and out put max(0,K - S7) | max(S ... Sw)<H
Down and in put max(0,K - S7) | min(S, S,)<H
Up and in put max(0,K - St) | max(s,, ... S,)=H
where |condgition 18 the indicator function which has value one if

condition is true and zero otherwise

Table 5.1: Different Barrier Options

Implied Trees and Exotic Options

An example of three possible developments of the underlying asset price for an
American down-and-out call option is given in Figure 3.6 — chapter ‘The Binomial
Model’.

Barrier options are generally cheaper than standard options because of the
possibility that the option disappears or never appears. As the asset price becomes
very low relative to the strike price the chances of it finishing in the money are very
low, while with a standard option the buyer still pays for this chance. A standard
variation on the barrier family are barrier options which pay a predetermined cash
rebate (X.epare) if an "out" option disappears or an "in" option never appears.

The procedure for calculating the barrier option price is quite similar to the pricing
of standard options except that the barrier boundary condition is added. For a down-
and-out call option this means, when stepping back through the tree at every node
where the underlying asset price is below the barrier the option price is set equal to
the rebate amount - which may be zero [9].

See chapter 12.6.4.2 for a pricing example.

5.4.2 Pricing Look-Back Options

The difference between standard options and look-back options is that either the final
asset price or the strike price is set equal to the minimum or maximum asset price
observed on one of a set of predetermined fixing dates, #; i = I,..., m [15].

There are two parameters to be defined:

e Jook-back condition: defines whether the asset price or the strike
price is replaced - fixed strike or floating strike
e option type: as for standard options - call or put

In Table 5.2 all 4 possible parameter combinations are listed with a mathematical
definition of their pay-off.

Name pay-off
Fixed strike look-back call max(0,max(S;; Si)-K)
Fixed strike look-back put max(0,K-min(Sy; Sim))

Floating strike look-back call max(0, S7-min(Sy; Sy))
Floating strike look-back put max(0,max(Sy; Sm)- Sr)

Table 5.2: Different Look-Back Options

A fixed strike call option for example, has the pay-off of a standard call option, except
that the asset price at the maturity date is replaced by the maximum asset price that
occurred over the set of fixings specified.

40 |

Implied Trees and Exotic Options

Figure 5.3 illustrates two possible paths of the underlying asset price:

e Path 1: the maximum level of the asset price at the fixing dates occurs at
fixing date ¢, - this is below the strike price K and so the pay-off at 7 is zero.

e Path 2: the maximum occurs at fixing date #;, - is above the strike price and
so the pay-off is S7;-K even though the path finishes below the strike
price.

For the floating strike look-backs, if the maturity date is a fixing date then they are
not really options since they will always be exercised. That is the worst pay-off that
can occur is zero if the price at maturity is the maximum or minimum of the
observed prices.

Look-back options thus allow the holder to buy or sell the underlying asset for the
best of the observed prices.

St
Path 1
Path 2
K _j\
So
to t1 t2 t3 T g

Figure 5.3: Fixed Strike Look-back Call Option Example Paths

Because of their path dependency the pricing of look-back options in trees is
complicated. This means, the value of the look-back option at any node in the tree
depends on the current maximum or minimum asset price, which in turn depends
on the path the asset price took to reach that node. As there can be many different
paths through a tree to a particular node (see Figure 5.4) the look-back option can
have many different values at a particular node [9].

Implied Trees and Exotic Options

Figure 5.4: Different Paths to the same Node in a Trinomial Tree

To compute the price of a look-back option in a tree all the possible values of the
maximum or minimum at each node must be considered. In general, the number of
paths which reach a given node increases exponentially with the number of time
steps to that node. Fortunately the number of maximum or minimum asset prices
only increases linearly with the number of time steps, but this still increases
significantly the amount of computation required.

The procedure is quite similar as for standard options. Step back through the tree in
the usual way except that at every node the range - i.e. the minimum and
maximum - of the possible maxima which can occur for every node in the tree
must be determined first. This means, at every node the minimum and maximum
possible maximum asset prices which could have occurred for all paths which reach
the node are stored. Then choose an appropriate set of values of the maximum
between the minimum and maximum possible for each node - the nodes which lie
on the upper and lower edges of the tree have only one path passing through them,
and therefore there will be only one maximum. The largest range of values will
occur in the central section of the tree. Therefore the number of values considered
should increase linearly with the number of time steps but also decrease linearly
from the central nodes of the tree down to one at the edges of the tree.

Let n;; be the number of values stored at node (i,j) and Fijx , k=1,..., n;; be the
values of the maximum, where F;;; is the minimum and F;; ,; 1s the maximum.
Figure 5.5 illustrates the structure of the nodes.

Implied Trees and Exotic Options

Qf+1,j+1 Pui+lj+1
Pmji+1j+1

Pdi+1j+1

Fi+1J+l,1 Fi+1J+l,2 Fi+1J+l,n

Cisrjirg Cisrjrrz oo Civpjrrn

QA/ Duij Qi+1,/ Pui+lj
DPmij Pmitij
Paij N Pdi+lj
F Ll
Fiji Fij2 .. ijn Fiirjr Figjz oo Figjn
C:;j,l Ci,j,Z = Cix].y" C,-+1J;1 Ci+l‘j‘2 Ci+l‘j‘l1
Qis1jl Puitlj
Pmi+1,j-1
Pai+1j-1
Fisrjg Figjaz oo Figjan
J J J
Civtji Cirtjrz oo Cisrjorn

Figure 5.5: Structures of Nodes for the Valuation of a Path-Dependent Option
If n;; is given by

n,, =1+a(i—abs(j)) (5.20)

where « is typically between one and five, n;; will always be one at the edges of
the tree (j=i and j=-i) and /+ai in the centre of the tree. Thus, a can be increased
to improve the accuracy of the approximation by considering more values of the
maximum, whilst keeping the computational effort required under control.

In order to find the range of values of the maximum step forward through the tree
from i=0 to i=N. Having found the range of maxima for all nodes up to time step
i-1, then for any node (7,j) the minimum maximum must be the greater of the
minimum maximum of the lowest node at time step i-/ with a branch to the current
node and the asset price at the current node:

F:’,j,l = maX(F;‘—l,jL,l) Sj)

(5.21)

where node (i-1,j;) is the lowest node with a branch to node (i,j). Similarly, the
maximum maximum must be the greater of the maximum maximum of the highest

node at time step i-/ with a branch to the current node and the asset price at the
current node:

| 43

Implied Trees and Exotic Options

F;, =max(F,,, ,.S,) (522)

where node (i-1,/,) is the highest node with a branch to node (i,j).

A uniform spread for the set of n;; values of the maximum over the range found at
each node (i,j) is given by

E,j,n _Fi,j,l
F:‘,j,k = E,j,l + T (k _1) (5.23)

The value of the option at maturity at every node and for every value of the
maximum can be set, once all the values of the maximum at every node have been
computed.

Cy,s=max(0,F, ,, —K),j==N,.,N,k=1..,n (5.24)

Finally, again step back through the tree computing discounted expectations and
applying the early exercise condition at every node and for every value of the
maximum

_ Ay
Ci,j,k =e (pu,i,jci+1,j+1,u + pm,i,jCi+1,j,m + pd,i,jCHl,j—l,d) (5.25)

where Ciyy,jv10 Civ1jm Citij-1.4 are the values of the option at time step i+/, given
the current maximum, for upward, middle and downward branches of the asset.

For the middle and downward branches the maximum will remain the same, it
cannot be changed by the asset price decreasing.

F,

i+l,j,m

=F

i.j:k

Fo g = Fiju (5.26)

For the upward branch the maximum is the greater of the current maximum and
the asset price at the upward branch node

F

i+, j+1u

=max(F, ;,,S;.,) (5.27)

The maxima Fiyjjrsu Fivijm Fivij.14 and therefore also the option values Ciiy,j11.4,
Ci+1,jm Ci+1,-1,¢ Will not, in general, be stored at the upward, middle and downward

44 |

Implied Trees and Exotic Options

nodes and therefore must be obtained by interpolation. For example using linear
interpolation having

c.,...—-C. .
_ i+1,j+1,k, i+1,j+1.k;
Ci+1,j+1,u = Ci+1,j+1,kl- + F r (i+, j+Lu _E'+1,j+1,k,) (5.28)
i+, Lk, il Lk

where k; and k, are such that

F:'+1,j+l,k[< F;'+l,j+1,u < F;+1,j+1,ku and k, =k +1.

That is, the two maxima which lie closest to either side of Fj:;,+;, are found and a
linear interpolation between these is done to obtain an estimate for Ciy;;+;, and
similarly for Cj:j,;m and Ciiy,14. This will always be possible because at every
node the minimum and maximum possible values of the maximum are stored.

Web Services

6 Web Services

6.1 Web Services Introduction

Web services are expected to revolutionize our life in the same way as the Internet has
during the past decade or so. The key is that Web services provide a common protocol
that Web applications can use to connect to each other over the Internet.

As a result of Web services the integration of applications is more easily and quickly
than ever before. This integration takes places at a higher level in the protocol stack
and is based on messages. The core issue of these messages is the emphasis of service
semantics and less network protocol semantics which enables the possibility of loose
integration of functions. These are ideal characteristics to connect business functions
across the Web either between enterprises as well as within enterprises.

Web services are a technology for deploying and providing access to business
functions over the Internet. There are several development platforms, tools, and kits to
help building Web services [16].

6.2 Overview of Java Web Services

From a software architect's point of view, a Web service can be considered as a
service-oriented architecture, which consists of a collection of services that
communicate with each other (and end-user clients) through well-defined interfaces.
One advantage of service-oriented architecture is that it allows the development of
loosely coupled applications that can be distributed and accessed, from any client,
across the network [17].

6.3 Web Services Definition

A Web service is ‘a software system designed to support interoperable machine-
to-machine interaction over a network’ (W3C) [18].

A Web service is ‘an interface that describes a collection of operations that are
network-accessible through standardized XML messaging’ (IBM) [19].

‘Web Services are self-describing components that can discover and engage
other Web services or applications to complete complex tasks over the Internet’
(SUN) [20].

The main advantage of Web services is that they are built on existing industry
standards. Web services are application components that are designed to support
interoperable machine-to-machine interaction over a network. This interoperability is
gained through a set of XML-based open standards, such as the Simple Object Access
Protocol (SOAP), the Web Services Description Language (WSDL), and Universal
Description, Discovery, and Integration (UDDI). These standards provide a common
and interoperable approach for defining, publishing, and using Web services.

For example, the services are described in Extensible Markup Language (XML) and
are communicated over the Hypertext Transfer Protocol (HTTP). This union is one
way to form the new industry standard called Simple Object Access Protocol (SOAP).
Publication of Web services is done via two standards, the Universal Description,
Discovery, and Integration (UDDI), and Discovery (DISCO).

46 |

Web Services

6.4 Web Services Properties

The Web service interface hides the complexity of the service implementation.

This fact provides the following advantages for the service:

Independent usage (hardware/software platform, programming language)
Loosely coupled
Component oriented

All terrain implementations

The Web service description takes place through standardized formal XML
messaging.

The content of the Web service description covers the following information details:

Interaction with the service.
Message formats which detail the operation.
Transport protocols.

Location of the service.

[47

Web Services Model

7 Web Services Model

The Web service model is based on inferactions between three operators - service
provider, service requestor and service registry. The interactions include the,
publish, find and bind operations. Together, the interactions and operators handle the
Web services artifacts - the Web service software module and the Web service
description (see Figure 7.1) [21].

Publish

Interactions
Operators
Service Service
Provider Registry
Artifacts

Figure 7.1: Interactions, Operators and Artifacts

A typical scenario would consist of the following steps:

1.

The service provider hosts the service software module (implementation of a
Web service).

The service provider defines a service description for the Web service.

The service provider publishes the service description to the service requestor
and/or service registry.

The service requestor uses a find operation to retrieve the service description.

The service requestor uses the service description to bind with the service
provider.

Finally, the service requestor invokes or interacts with the Web service
implementation.

48 |

Web Services Model

Service
Registry

Bind

Service Service
Provider Requestor

Figure 7.2: Web Services Model

7.1 Operators of the Web Services Model

Following operators are involved in the Web service model:

e Service provider is the owner of the service and the author of the Web service
description. This operator (platform) hosts access to the service.

e Service requestor is any kind of business with certain functions which want
to be satisfied or an application that is invoking or initiating an interaction
with the service. So the service requestor can be anyone using a browser or a
program without a user interface, for example another Web service.

e Service registry is a searchable data base where service providers publish
their service descriptions. Service requestors can find services and obtain
binding information from the service descriptions. Also other sources besides
a service registry, such as a local file, FTP site, Web site or Discovery of Web
services (DISCO) can obtain a service description. This means that the service
registry is an optional operator in the Web service model (e.g. if the service
requestor has the service description there is no need for the service registry).

7.2 Interactions of the Web Services Model

The following three elementary interactions must take place for an application to
consume the Web service:

1. Publish the service description(s).
2. Find the service description(s).

3. Bind or invoke the service(s) based on the service description(s).

Web Services Model

In detail, these interactions are:

Publish. A service description is only accessible, when it is published so that
the service requestor can find it. The location where the service description is
published depends on the requirements of the application.

Find. In the find operation, the service requestor retrieves a service
description directly from the service provider or queries the service registry
(see below) for the type of service required. This operation can occur in two
different lifecycle phases - at design time to retrieve the service's interface
description for program development, and at runtime to retrieve the service's
binding and location description for invocation.

Bind. In the bind operation the service requestor invokes or initiates an
interaction with the service at runtime. Therefore it uses the binding details in
the service description to localize, contact and invoke the service.

7.3 Artifacts of the Web Services Model

The Web service model contains the following artifacts:

Service. A service is a software module deployed on a network-accessible
platform to be invoked by or to interact with a service requestor. It is also
possible that the service acts as a requestor, by referring to other Web services
in its implementation.

Service Description. The service description contains the details of the
interface and implementation of the service, including data types, operations,
binding information and network location. The service description is published
either to a service requestor or to a service registry.

50 |

Web Services Architecture

8 Web Services Architecture

This section handles the role of service description in the Web services architecture
and service publication techniques supporting static as well as dynamic'> Web
services applications. Regarding to service publication, the mechanism of service
discovery is shortly discussed as well [22].

8.1 Web Services Protocol Stack

To review the Web services architecture at first, a detailed look at a conceptual stack
for Web services is taken. Included are the layers for choosing the network protocol,
XML-based messaging and extended basic XML messaging with a service
description.

In order to perform the three Web services operations publish, find and bind a Web
services stack must incorporate standards at each level. Figure 8.1 shows a conceptual
Web services protocol stack with the standards that apply at the corresponding layer.
The lower layers provide capabilities that upper layers build on, whereas the vertical
bars represent enterprise-class infrastructure requirements that must be fulfilled [19].

uDDI
[
2 -
g @
3 £ 5

WSDL s 3 S
z |& |5
e =
(€]

SOAP

HTTP, FTP,

SMTP, email...

Figure 8.1: Web Services Protocol Stack

8.2 Network Layer

The base layer of the Web services stack is the network layer. Web services that are
publicly available on the Internet are generally described in XML and are
communicated over the existing HTTP infrastructure. Because of its omnipresence,
HTTP can be seen as the quasi standard network protocol but also supported are the

"2 Depending on the Web services lifecycle when binding takes place - before runtime (static) or during
runtime (dynamic).

| 51

Web Services Architecture

Simple Mail Transfer Protocol (SMTP), File Transfer Protocol (FTP), e-mail, and so
on.

8.3 XML-Based Messaging Layer - SOAP

SOAP once stood for ‘Simple Object Access Protocol’ but was considered to be
misleading and therefore this acronym was dropped with Version 1.2. SOAP is a
simple XML-based protocol to exchange structured data between network
applications, normally using HTTP. SOAP therefore is the standard enveloping and
exchanging transport mechanism embedding document-centric messages and remote
procedure calls (RPC’s) using XML [23].

This protocol is chosen as the XML messaging protocol for several reasons:
e SOAP is simple and extensible - an HTTP message within an XML envelope.

e SOAP messages support publishing, finding and binding Web services
operations.

e SOAP embraces message extensions like headers and standard coding
mechanism of operations or functions, to satisfy compliance with standards at
every level.

e SOAP can be used in combination with a variety of network protocols such as
HTTP, SMTP, FTP (see above).

8.3.1 SOAP message structure

The structure of a SOAP message with/out attachment can be seen in Figure 8.2.
SOAP consists of three parts:
e The envelope that defines a framework, describing what is in a message.

e A set of coding rules to express the instances of application-specific data
types.

e Conventions to represent remote procedure calls and responses.

Web Services Architecture

SOAP Message (XML document)

SOAP Part

SOAP Envelope

SOAP Message (XML document) SOAP Body
XML SOAP Fault
SOAP Part content (optional)

SOAP Envelope

Attachment Part (optional)

SOAP Body -

XML SOAP Fault
content (optional) Content XML or non-XML

Figure 8.2: SOAP Message Structure with/out Attachment

8.3.2 SOAP message example

In this example, a Get StockPrice request is sent to a server. The request has a
StockName parameter, and a Price parameter will be returned in the response.

The namespace for the function is defined in ‘http://www.example.org/stock’ address
[24].

SOAP request message:

<?xml version="1.0"7?>

<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.example.org/stock">
<m:GetStockPrice>
<m:StockName>IBM</m:StockName>
</m:GetStockPrice>
</soap:Body>

</soap:Envelope>

SOAP response message:

<?xml version="1.0"7?>

<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-encoding">

| 53

Web S

ervices Architecture

<soap:Body xmlns:m="http://www.example.org/stock">
<m:GetStockPriceResponse>

<m:Price>34.5</m:Price>

</m:GetStockPriceResponse>

</so

</soap

ap:Body>

:Envelope>

8.3.3 XML Based Messaging using SOAP

The main requirements for a network node to operate as service requestor or provider

are the

capability to communicate over an accessible network and the capability to

build and/or parse SOAP messages. Usually, a Web application server running SOAP
performs these functions. As an alternative, a programming language-specific runtime
library can be used that encapsulates these functions within an API. Figure 8.3 shows
how SOAP (XML-based messaging) and network protocols (HTTP, FTP,...) builds
the base of the Web services architecture [25].

Service Requestor Service Provider

SOAP SOAP

Reduest

Bgspénse .
— Request
R

Response

Figure 8.3: XML Based Messaging using SOAP

Typical scenario — Application integration using SOAP:

1.

The service requestor's application creates a SOAP message. Together with
the network address of the service provider, the service requestor passes this
message to the local SOAP infrastructure (e.g., the SOAP client). The SOAP
client runtime uses an underlying network protocol (e.g. HTTP) to transmit the
SOAP message over the network.

The SOAP message is delivered to the service provider's SOAP runtime (e.g.
SOAP server). The SOAP server converts the XML message into
programming language-specific objects if required by the application and
routes the request to the service provider's Web service.

The Web service processes the request message and formulates a response, of
course also a SOAP message. The response is passed to the local SOAP

54 |

Web Services Architecture

runtime specifying the service requestor as its destination, where the SOAP
message response is sent to the service requestor.

4. Finally the response message is received by the networking infrastructure on
the service requestor's node, where it is routed through the SOAP
infrastructure. Optionally the XML message is converted into objects of the
target programming language. The response message is then passed to the
application.

Neither the requestor nor the provider must be aware of the other's underlying
platform, programming language, or distributed object model (if any). The service
description combined with the underlying SOAP infrastructure hides these details
apart from the service requestor's application and the service provider's Web service.

8.4 Service Description Layer

8.4.1 From XML Messaging to Web Services

A stack of description documents defines the service description layer. This stack is
the minimum standard service description necessary to support interoperable Web
services. The Web services architecture uses the Web Services Description Language
(WSDL) standard for XML-based service description.

WSDL defines the interface and mechanics of service interaction. WSDL is an XML
document for describing Web services as a set of endpoints operating on messages
containing either document-oriented or procedure-oriented (RPC) content. The
operations and messages are described abstractly, and then bound both to a concrete
network protocol and message format in order to define an endpoint. WSDL is
extensible to allow the description of endpoints and messages, regardless of message
formats and network protocols used in the communication.

Additional description is necessary to specify high level aspects of the Web service.
The WSDL document can be complemented in order to describe the business context,
quality of service (QOS) and service-to-service relationships. For example, the
business context is described using UDDI data structures in addition to the WSDL
document [22].

Because a Web service is defined as being network-accessible via the Web service
stack and represented by a service description, the lower three layers are required to
provide or use any Web service (see Figure 8.1).

The simplest stack consists of:
1. HTTP for the network layer,
2. SOAP for the XML messaging layer and
3. WSDL for the service description layer.

This is the interoperable base stack that all inter-enterprise, or public, Web services
should support.

| 55

Web Services Architecture

8.4.2 Basic Web Service Description

Using WSDL in the Web services architecture divides the basic service description
into two parts - the service interface and the service implementation. Its advantage is
that each part can be defined separately and independently, and reused by other parts.

Service
olemental

Service
Interface
Definition

Figure 8.4: Basic Web Service Description

A service interface definition is a reusable service definition that can be referenced
and instantiated by multiple service implementation definitions. The service interface
contains WSDL elements that embed the reusable fragment of the service description
(Figure 8.4):

o The WSDL:types elements describes the use of complex data types within the
message.

e The WSDL:message element is used to define the input and output parameters
of an operation. It specifies which XML data types determine diverse parts of
a message.

e The WSDL:portType element defines the operations of the Web service. Like
an operation as a method signature in a programming language it defines the
XML messages that can appear in the input and output data flows.

e The WSDL:binding element describes protocol, data format, security and other
attributes of a specific service interface.

The WSDL document that describes how a particular service interface is implemented
by a service provider is the service implementation definition. A Web service is
modeled as a WSDL:service element, which contains a collection of WSDL:port
elements (usually one). A port associates an endpoint, for instance a network address
location or URL, with a WSDL:binding element from a service interface definition
(Figure 8.4).

Together this pair makes up a basic WSDL definition of the service containing
sufficient information to describe to the service requestor how to invoke and interact
with the Web service. Other information about the service provider's endpoint is
provided by the complete Web service description of the service [26].

8.4.3 Full WSDL Syntax
The full WSDL 1.2 syntax as described in the W3C working draft is listed below [27].

56 |

Web Services Architecture

<wsdl:definitions name="nmtoken"? targetNamespace="uri">

<import namespace="uri" location="uri"/> *

<wsdl:documentation /> ?

<wsdl:types> ?
<wsdl:documentation /> ?
<xsd:schema /> *

</wsdl:types>
<wsdl:message name="ncname"> *
<wsdl:documentation /> ?
<part name="ncname" element="gname"? type="gname"?/> *
</wsdl:message>
<wsdl:portType name="ncname"> *
<wsdl:documentation /> ?
<wsdl:operation name="ncname"> *
<wsdl:documentation /> ?
<wsdl:input message="gname"> ?
<wsdl:documentation /> ?
</wsdl:input>
<wsdl:output message="gname"> ?
<wsdl:documentation /> ?
</wsdl:output>
<wsdl:fault name="ncname" message="gname"> *
<wsdl:documentation /> ?
</wsdl:fault>
</wsdl:operation>
</wsdl:portType>
<wsdl:serviceType name="ncname"> *
<wsdl:portType name="gname"/> +
</wsdl:serviceType>
<wsdl:binding name="ncname" type="gname"> *
<wsdl:documentation /> ?
<-- binding details --> *
<wsdl:operation name="ncname"> *
<wsdl:documentation /> ?
<-- binding details --> *
<wsdl:input> ?
<wsdl:documentation /> ?
<-- binding details -->
</wsdl:input>
<wsdl:output> ?
<wsdl:documentation /> ?
<-- binding details --> *
</wsdl:output>
<wsdl:fault name="ncname"> *
<wsdl:documentation /> ?
<-- binding details --> *
</wsdl:fault>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="ncname" serviceType="gname"> *

<wsdl:documentation /> ?
<wsdl:port name="ncname" binding="gname"> *
<wsdl:documentation /> ?

<-- address details -->
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

A concrete example for a Web service description is given in chapter 12.3.

| 57

Web Services Architecture

8.4.4 Complete Web Service Description

The complete Web service description answers questions about:
e The business and type of business hosting the service.
e The products associated with the service.
e The associated categories in various company and product systems.
e The provided keywords so that it is easier to find the service.

e Other aspects of the service such as Quality of Service or Security.

Finally, the top layer in the service description stack is the agreement description
using UDDI. An agreement description represents a simple coordination of Web
service invocations between two business partners to complete a multi-step business
interaction.

Figure 8.5: Complete Web Service Description

The service endpoint description adds further semantics to the service description that
apply to a particular implementation of the service. Security attributes can define the
access policy to the Web service. Quality of Service attributes will specify
performance-oriented service capabilities, for example, to respond within a certain
period of time. UDDI (Universal Description, Discovery, and Integration) therefore
provides a mechanism for holding descriptions of Web services which is not covered
more detailed.

As an example, the coordination of roles such as buyer and seller within a purchasing
protocol which outlines the requirements that each role must fulfill. For example, the
seller must have Web services that receive request for quote (RFQ) messages,
purchase order (PO) messages and payment messages. The buyer role must have Web
services that receive quotes (RFQ response messages), invoice messages and account
summary messages. This simple coordination of Web services into business roles is
essential for establishing multistep, service-oriented interactions between business
partners.

58 |

Web Services Architecture

8.5 Publication and Discovery of Service Descriptions

Any action that makes a WSDL document available to a service requestor qualifies as
service publication.

A service description can be published using a variety of mechanisms. The simplest
scenario is the service provider sending a WSDL document directly to a service
requestor what is called direct publication. Direct publication, ideally via e-mail, is
useful for statically bound applications. Alternatively, the service provider can publish
the WSDL document describing the service to a private UDDI registry or UDDI
operator node.

Any mechanism that allows the service requestor to gain access to the service
description and make it available to the application at runtime qualifies as service
discovery.

The simplest scenario of discovery is static discovery where the service requestor
retrieves a WSDL document from a local file. This is usually the WSDL document
obtained through a direct publish or a previous find operation.

Web Services Development Lifecycle

9 Web Services Development Lifecycle

A typical end-to-end lifecycle scenario would start with the creation and publication
of a service interface (build), proceed to the creation and deployment of the Web
service (deploy), move on to the publication of the service implementation definition
and end with the invocation of the Web service by the service requestor (run).

The development lifecycle includes the following phases:

o Dbuild

o deploy
o run

* manage

Each Web service operator — service registry, service provider and service requestor —
has specific requirements for each element of the development lifecycle.

9.1 Build Phase

The build lifecycle phase involves development and testing of the Web services
implementation. Further it includes the definition of the service interface description
and the definition of the service implementation description. Locating an existing
service interface definition is also a build-time task.

The Web services implementations can be provided by creating new Web services,
transforming existing applications into Web services, or composing new Web services
from other Web services and applications.

There are some similarities between a Web service development approach and object-
oriented programming. Both use concepts such as encapsulation, interface inheritance
and dynamic binding. This means that object-oriented design methodologies can be
applied to Web services design, but it is not required to design a Web service.

9.2 Deploy Phase

The tasks of the deploy phase of the development lifecycle include the publication of
the service interface and service implementation definition, deployment of the
runtime code for the Web service as well as integration with back-end legacy systems.

9.3 Run Phase

During the run lifecycle phase, the Web service is fully deployed and operational. In
this state, a service requestor can find the service definition and invoke all defined
service operations. The runtime functions include static and dynamic binding, service
interactions as a function of Simple Object Access Protocol (SOAP) messaging and
interactions with legacy systems.

9.4 Manage Phase

The manage lifecycle phase covers continual management and administration of the
Web service application. Security, availability, performance, quality of service and

60 |

Web Services Development Lifecycle

business processes must all be addressed. This document focuses on the development
of Web services and does not cover this phase of the lifecycle.

Developing Web Services

10 Developing Web Services

This section describes the Web service lifecycle for each operator: service registry,
service provider and service requestor.

10.1Service Registry

Development and deployment of a service registry is not covered, because it is a
passive participant. It is assumed that the registry has been built and deployed before
it is selected for use by the service provider or service requestor.

10.2Service Provider

The service provider in this context is software. To develop a Web service there exist
four basic scenarios to implement a service provider. Which scenario is used for the
implementation is based on the creation of a new service interface and application.
Table 10.1 provides an overview of these development scenarios [28].

New Service Interface Existing Service Interface
New Web Service Green field Top-down
Existing Application Bottom-up Meet-in-the-middle

Table 10.1: Basic Scenarios for Service Provider Implementation

10.2.1 Green Field Scenario

The green field scenario for developing Web services describes how a new service
interface will be created for a new Web service, as shown in Table 10.1. The Web
service is created first and then the service interface definition is generated, so both
are owned by the service provider.

Developing Web Services

Publish

AN o
/' 25573'?3 N\

Develop

Service
Provider

Figure 10.1: Green Field Scenario

10.2.1.1Build Phase

1. Develop the new Web service.

Design and implement the application that represents the Web service, and
verify that all of its interfaces work correctly.

2. Define a new service interface.

The next step is to generate the service interface definition from the
implementation of the service. The service interface should not be generated
until the Web service development is complete because the interface must
match the exact implementation of the service.

10.2.1.2Deploy Phase
1. Publish the service interface definition before the service is deployed.

The service interface definition is used by a service requestor to determine
how to bind to the service.

2. Deploy the Web service.

Deploy the runtime code and any deployment meta data (e.g. the deployment
descriptor to deploy a SOAP service) that is required to run the service. After
a service has been deployed, it is ready to be used by a service requestor.

3. Create the service implementation definition.

Depending on how and where the service was deployed the service
implementation definition should be created, because it can contain references

| 63

Developing Web Services

10.2.1.

10.2.2

to more than one version of the deployed Web service. This allows the service
provider to implement different levels of service for service requestors.

Publish the service implementation definition.

After the service implementation definition is published, a service requestor
can find the service definition and use it to bind to the Web service. Therefore
the service implementation definition contains the definition of the network-
accessible endpoint or endpoints.

3Run Phase

Run the Web service.
The runtime environment for the Web service consists of the platform on
which it was deployed to run. If the Web service is a servlet, then it runs in the

context of a Web application server. If the Web service is a SOAP service,
then it runs in the context of a SOAP server.

Top-Down Scenario

The top-down scenario is where a new Web service can be developed matching to an
existing service interface, see also Table 10.1. Figure 10.2 shows, that the service
provider must find the service interface, implement the interface contained in this
definition, and then deploy the new Web service. Only the service implementation is
owned by the service provider.

o CICIE)

Publish

. S
e
¥4 N

Service
Provider

Figure 10.2: Top-Down Scenario

64 |

Developing Web Services

10.2.2.1Build Phase
1. Find the service interface.

Locate the service interface that will be implemented by the Web service by
searching the service registry or an industry specification registry.

2. Generate the service implementation template.

An implementation template of the Web service is generated by using the
service interface definition. The template contains all of the methods and
parameters that must be implemented by the Web service to comply with the
service interface.

3. Develop the new Web service.

10.2.2.2 Deploy Phase

The only difference here, compared to the green field scenario, is that the service
interface has already been published by another operator.

1. Deploy the Web service.
2. Create the service implementation definition.

3. Publish the service implementation definition.

10.2.2.3Run Phase
Run the Web service.

The runtime environment for the Web service consists of the platform on
which it was deployed to run.

10.2.3Bottom-Up Scenario

As shown in Table 10.1 the bottom-up scenario creates a new service interface for an
existing application. The application can be implemented as an Enterprise Java
Bean™ (EJB), Java Bean, servlet, C++ or Java class file, or Component Object Model
(COM) class. The service interface is derived from the application's API, as Figure
10.3 shows.

Developing Web Services

Service
- nterface
Publish —4
[

Service
Registry

Service
nterface

Service
Provider

Figure 10.3: Bottom-Up Scenario

10.2.3.1Build Phase
Generate the service interface.
The service interface is generated from the implementation of the application
that represents the Web service.

10.2.3.2Deploy Phase
1. Deploy the Web service.

2. Create the service implementation definition.
3. Publish the service interface definition.

The service interface definition must be published before the service
implementation definition can be published.

4. Publish the service implementation definition.

10.2.3.3Run Phase
Run the Web service.

The runtime environment for the Web service consists of the platform on
which it was deployed to run.

10.2.4 Meet-in-the-Middle Scenario

When a service interface and an application implementing the Web service already
exist the meet-in-the-middle scenario is used, as shown in Table 10.1.

66 |

Developing Web Services

The main task here is to map the existing application interfaces to those defined in the
service interface definition. This can be done by creating a wrapper for the
application that uses the service interface definition. The wrapper contains an
implementation that maps the service interface into the existing application interface.
Figure 10.4 shows the mapping process.

Publish

Service 7\ —
Registry \

Service

ajelausn)

v Service
Provider

Figure 10.4: Meet-in-the-Middle Scenario

10.2.4.1Build Phase

The first two build steps are similar as those for the top-down scenario.
1. Find the service interface.

Locate the service interface that will be implemented by the Web service by
searching the service registry or an industry specification registry.

2. Generate the service implementation template.
3. Develop the service wrapper.
The service wrapper is designed and implemented by using the service

implementation template created in the previous step.

10.2.4.2Deploy Phase

The deployment steps for the meet-in-the-middle scenario are similar to those of the
bottom-up scenario the only difference is that the service interface definition is
already published.

1. Deploy the Web service.

2. Create the service implementation definition.

[67

Developing Web Services

3. Publish the service implementation definition.

10.2.4.3Run Phase
Run the Web service.

The runtime environment for the Web service consists of the platform on
which it was deployed to run.

10.3Service Requestor

The service requestor passes through the same lifecycle as the service provider, but
the requestor performs different tasks during each phase. The build time tasks for the
service requestor are dictated based on the method for binding to a Web service.

From the service interface a service proxy or stub is generated which contains all of
the code that is required to access and invoke a Web service. For example, if the Web
service is a SOAP service, the service proxy will contain all of the SOAP client code
that is required to invoke a method on the SOAP service.

As Table 10.2 shows, there are three methods for binding to a specific service. Static
binding 1s used only at build time, whereas dynamic binding can be used either at
build time or runtime. Static binding cannot be used at runtime, because it requires all
of the information needed to bind to a service at build time [28].

Static Binding Dynamic Binding
Build Static binding Build-time dynamic binding
Run [not applicable] Runtime dynamic binding

Table 10.2: Methods for Service Requestor Binding

10.3.1Static Binding

When there is only one service implementation that will be used at runtime a service
requestor will use static binding (see Figure 10.5). The static binding is done at build
time by locating the service implementation definition for the single Web service. The
service implementation definition contains a reference to the service interface, which
will be used to generate the service proxy code. The service proxy contains a
complete implementation of the client application that can be used by the service
requestor to invoke Web service operations.

68 |

Developing Web Services

Service
Registry

Service Service
Provider Requestor

Figure 10.5: Static Binding

10.3.1.1 Build Phase

1.

Find the service implementation definition.

At build time, the service requestor must find the service implementation
definition for the Web service which contains a reference to the service
interface definition, and the location where the service can be accessed.

Generate the service proxy.

Both, the service interface definition and the service location information are
used to generate the service proxy implementation. The service proxy will try
to access the Web service always at the same location and will match with the
service interface.

Test the service proxy.

To verify that the service proxy can interact correctly with the specified Web
service, it should be tested.

10.3.1.2Deploy Phase

Deploy the service proxy.

After testing, it is deployed with the client application in the client runtime
environment.

10.3.1.3Run Phase

Invoke the Web service.

Developing Web Services

Run the requestor application which will invoke the Web service via the
service proxy.

10.3.2 Build-Time Dynamic Binding

This binding method is used when a service requestor wants to use a specific type of
Web service, but the implementation is not known until runtime or it can change at
runtime. The type of service is defined in a service interface definition.

’ ﬂ Service .
|:| / Regisltry N
nterface

Service Service

Provider Requestor
Figure 10.6: Build-Time Dynamic Binding

10.3.2.1 Build Phase

1. Find the service interface definition.

First the service interface definition for the type of service that will be used by
the service requestor must be found. The service interface contains only the
abstract definition of the Web service operations.

2. Generate the generic service proxy.

The service interface definition is used to generate a generic service proxy
which can be used to access any implementation of the service interface.
Unlike the service proxy generated for static binding, this proxy will not
contain knowledge of a specific service implementation. So the generic
service proxy will contain code to locate a service implementation by
searching a service registry.

3. Test the service proxy.

70 |

Developing Web Services

Just find an implementation of the service interface for testing.

10.3.2.2Deploy Phase
Deploy the service proxy.
If the service proxy passed testing and works correctly it should be deployed
within the runtime environment. This process can also include the deployment
of the requestor application that will use the service proxy. The application

must have access to the service registry that will be searched for an
implementation of the service interface.

10.3.2.3Run Phase
1. Find the Service implementation definition.

An implementation of the service must be located in the service registry
before the service proxy can invoke a service.

2. Invoke the Web service.

After a service implementation has been found, the service proxy can be used
to invoke the Web service.

10.3.3Runtime Dynamic Binding

Runtime dynamic binding is similar to build-time dynamic binding the only
difference is that the service interface is found at runtime. A service interface is used
to generate a general service proxy interface that can be used to invoke any
implementation of the service interface. Generally this binding method would be used
with a user interface, because machine-to-machine interactions cannot be absolutely
dynamic.

10.3.3.1Build Phase
Build the service requestor application.
The service requestor application is built using a dynamic binding runtime

interface. This interface is used to find a service implementation, and then
retrieve the service interface associated with the service implementation.

10.3.3.2Deploy Phase
Deploy the service requestor application.

The service requestor application is deployed so that it will run and use the
Web service runtime environment.

10.3.3.3Run Phase
1. Find the service implementation definition.

To find a service implementation definition the service requestor application
uses runtime environment. Different methods can be used to locate a service
implementation in a service registry. It can be found by first locating a
business or type of business, and then determining the services offered by
those businesses. The service implementation could also be located by

| 71

Developing Web Services

searching for a classification of service, or by first locating a type of service
(or service interface). If the service interface is target of a search operation,
then it is used to locate the implementations of service interface.

Generate and deploy the service proxy.

The service proxy code that will be used to invoke the service is generated
using the service interface associated with the service implementation. After
the code generation, it is compiled and made available in the runtime
environment.

Invoke the Web service.

The generated service proxy code is used to invoke the Web service.

Web Services and Java Technology

11 Web Services and Java Technology
11.1Web Service Tools - Java 2 Platform

A set of several developing platforms, tools, and kits can be used to help build these
scenarios. Development tools automate various aspects of Web service development
simplifying design, deployment and integration [17] and [29].

The Java 2 Platform, Enterprise Edition (J2EE) version 1.4 provides comprehensive
support for Web services. Existing J2EE components can be easily exposed as Web
services.

The following implementations use the tools provided with the J2EE environment for
several reasons:

e Interoperability

Web services are integrated through the JAX-RPC 1.1 API, which can be used
to develop service endpoints based on SOAP. JAX-RPC 1.1 provides
interoperability with Web services based on the Web Services Description
Language (WSDL) and Simple Object Access Protocol (SOAP).

e Portability

J2EE 1.4 supports the WS-I Basic Profile to ensure that Web services are
portable not only across J2EE implementations, but are also interoperable with
any Web service developed, using any platform that conforms to the WS-I
standards.

e Scalability

J2EE containers provide transaction support, database connections, life cycle
management, and other services that are scalable and require no code from
application developers.

e Reliability

e No single-vendor lock-in

11.2J2EE 1.4 SDK

The J2EE 1.4 SDK gives access to several tools, including wscompile, which takes
the service definition interface and generates the client-side stubs or server-side
skeletons, or a WSDL description for the provided interface [30].

The J2EE 1.4 SDK includes the following tools:
e J2EE 1.4 Application Server
e Java 2 Platform, Standard Edition (J2SE) 1.4.2 01
e J2EE Samples
e Sun ONE Message Queue

e PointBase Database Server

Web Services and Java Technology

11.3JSR 109 - Implementing Enterprise Web Services

The process of developing and deploying Web services is coupled with the runtime
system. The JSR 109 specification promotes building portable and interoperable Web
services in the J2EE 1.4 environment. JSR 109 leverages J2EE technologies to
provide an industry standard for developing and deploying Web services on the J2EE
platform, and it provides a service architecture that is familiar to J2EE developers
[31]. This specification outlines the lifecycle of Web services to include:

¢ Development: Standardizes the Web services programming model as well as
the deployment descriptors.

e Deployment: Describes the deployment actions expected of a J2EE 1.4
container.

e Service publication: Specifies how the WSDL is made available to clients.

e Service consumption: Standardizes the client deployment descriptors.

11.4J2EE Web Services

JAX-RPC is a Java API for XML-based Remote Procedure Calls (RPC’s). An RPC is
represented using an XML-based protocol such as SOAP, which defines an envelope
structure, encoding rules, and convention for representing RPC calls and responses,
which are transmitted as SOAP messages over HTTP [29] and [32].

See also Figure 8.2 chapter Web Services Architecture.

The advantage of JAX-RPC is that it hides the complexity of SOAP messages from
the developer.

Here how it works:

The developer specifies the remote procedures (Web services) that can be invoked by
remote clients in a Java programming language interface; the developer implements
the interface. The client view of a Web service is a set of methods that perform
business logic on behalf of the client. A client accesses a Web service using a Service
Endpoint Interface as defined by JAX-RPC. Client developers create the client - a
proxy or a local object that represents the remote service that is automatically
generated - and then simply invoke the methods on the proxy. Generating or parsing
SOAP messages is all taken care of by the JAX-RPC runtime system.

Note that J2EE Web services can be invoked by any Web service client, and any J2EE
Web service client can invoke any Web service.

Figure 11.1 shows how a Java client communicates with a Java Web service in the
J2EE 1.4 platform. J2EE applications can use Web services published by other
providers, regardless of how they are implemented. In the case of non-Java
technology-based clients and services, the Figure would change slightly.

74 |

Web Services and Java Technology

Req uést

Response

!/7

| Assembles SOAP messageJ

Maps Java to XML

‘\\
SOAP Handler actions I

r/ Maps XML to Java

\ message

Disassembles SOAP ‘
N A

AX-RPC client-side runtime

\

/ Maps XML to Java \%
~.

Disassembles SOAP
message

L~
(SOAP Handler actions
Container servlets

e

Maps Java to XML P
Assembles SOAP message |

S

Figure 11.1: A Java Client Calling a J2EE Web Service

JAX-RPC in J2EE container

“>._soap.?

message

“Request

Response
—

Note that a Web service client never accesses a service directly; it does so through the
container. This is a good thing, since it allows a Web service to benefit from the
added functionality that the container provides -- such as security, enhanced logging,
and quality-of-service guarantees.

11.5Working with JAX-RPC

When working with JAX-RPC, remember that it maps Java types to XML/WSDL
definitions. Knowing all the details of these mappings is not needed, but you should

be aware that not all J2SE classes can be used as method parameters or return types in
JAX-RPC [32].

JAX-RPC supports the following primitive data types:

e Dboolean

e Dbyte

e double
e float
e int

e long

e short

e string

e array

In addition, it supports the following wrapper and utility classes:

e Jjava.
e java.
e Jjava.

lang.Boolean
lang.Byte

lang.Double

Web Services and Java Technology

e java.lang.Float

e java.lang.Integer

e Jjava.lang.Long

e java.lang.Short

e java.lang.String

e Jjava.math.BigDecimal
¢ java.math.BigInteger
e java.net.URI

e java.util.Calendar

e java.util.Date

JAX-RPC also supports something called a value type, which is a class that can be
passed between a client and a service as a parameter or return value.

A value type must follow these rules:
e It must have a public default constructor.
e It must not implement java.rmi.Remote.
o Its fields must be JAX-RPC supported types.

e Also, a public field cannot be final or transient, and a non-public
field must have corresponding getter and setter methods.

11.6Creating a Web Service

Building an XML-RPC style Web service using the J2EE 1.4 platform involves the
following five steps [29] and [31]:

1. Design and code the Web service endpoint interface.
Implement the service endpoint interface.
Write a configuration file.

Generate the necessary mapping files.

A I

Packaging the service in a WAR file and deploy it using the deployment tool.

11.6.1Design and Code the Service Endpoint Interface

The first step in creating a Web service is to design and code its endpoint interface, in
which you declare the methods that a Web service remote client may invoke on the
service.

Developing such an interface, must ensure that:

e [textends the java.rmi.Remote interface.

76 |

Web Services and Java Technology

e It does not have constant declarations such as public static final.

e Its methods throw the java.rmi.RemoteException or one of its
subclasses.

e Its method parameters and return data types are supported JAX-RPC types.

11.6.2Implement the Service Endpoint Interface

The next step is to implement the interface and compile the . java files to generate
the . class files.

Here the respective command:
prompt> javac -d build *.java

See chapter 12.1.2 for an example.

11.6.3 Write a Configuration File

The next step is to define a configuration file to be passed to the wscompile tool.
This file tells wscompile to create a WSDL file with the following information:
e The service name.
e The WSDL namespace.
e The package where the classes for the service are specified.

e The service endpoint interface.

See chapter 12.2for an example.

11.6.4Generate the Necessary Mapping Files

Now, use the wscompi le tool to generate the necessary files.

Consider the following command:

prompt> wscompile -define -mapping build/mapping.xml -d
build -nd build -classpath build config.xml

This command, which reads the config.xml file created earlier, creates the
* .wsdl file and mapping.xml.

The command line options or flags are:

-define: instructs the tool to read the service endpoint interface and create a WSDL
file.

-mapping: specifies the mapping file and where it should be written.

-d and -nd: specifies where to place generated output files and non-class output
files.

Now a Web service that is ready to be packaged and deployed has been built.

[77

Web Services and Java Technology

The WSDL file, generated by the wscompile tool, provides an XML description
(based on WSDL) of the service that clients can invoke. To understand the details of
the file you need some knowledge of WSDL.

See chapter 12.3 for an example.

The mapping file, mapping.xml, generated by the wscompile tool follows the
JSR 109 standard for Java <> WSDL mappings. The structure of the JAX-RPC
mapping file matches closely with the structure of the WSDL file - note the
relationship between Java packages and XML namespaces. Each service offered is
represented as a service-interface-mapping element. This element contains
the mapping for the fully qualified class name of the service interface, WSDL service
names, and WSDL port names. In addition, the JAX-RPC mapping file provides
mappings for WSDL bindings, WSDL port types, WSDL messages, and so on.

11.6.5Packaging and Deploying the Service

A JAX-RPC Web service is a Web component, in J2EE terminology, and hence you
can use deploytool to package and generate all the necessary configuration files,
and to deploy the service.

Behind the scenes, a JAX-RPC Web service is implemented as a servlet. Because a
servlet is a Web component, you run the New Web Component wizard of the
deployment tool utility to package the service.

During this process the wizard performs the following tasks:
e Creating the Web application deployment descriptor.
e Creating a WAR file.
e Adding the deployment descriptor and service files to the WAR file.

See chapter 12.4 for an example.

11.7Creating a Web Service Client

A client invokes a Web service in the same way as it invokes a method locally.

11.7.1Types of Web Service Clients

There are the following three types of Web service clients:

e Static Stub: A Java class that is statically bound to a service endpoint
interface. A stub, or a client proxy object, defines all the methods that the
service endpoint interface defines. Therefore, the client can invoke methods of
a Web service directly via the stub. The advantage of this is that it is simple
and easy to code. The disadvantage is that the slightest change of Web service
definition lead to the stub being useless and this means the stub must be
regenerated. Use the static stub technique if you know that the Web service is
stable and is not going to change its definition. A static stub is tied to the
implementation which means, it is implementation-specific.

e Dynamic Proxy: Supports a service endpoint interface dynamically at
runtime. Here, no stub code generation is required. A proxy is obtained at
runtime and requires a service endpoint interface to be instantiated. As for

78 |

Web Services and Java Technology

invocation, it is invoked in the same way as a stub. This is useful for testing
Web services that may change their definitions. The dynamic proxy needs to
be re-instantiated but not re-generated as is the case with stub.

Dynamic Invocation Interface (DII): Defines javax.xml.rpc.Call
object instance for dynamic invocation. Unlike a stub or proxy, it must be
configured before it can be used. A client needs to provide: operation name,
parameter names, types, modes, and port type. As you can tell, much more
coding is involved here. The major benefit is that since Call is not bound to
anything, there is no impact of changes on the client side whenever the Web
service definition changes.

11.7.2 Browser-Based Client

Finally, develop a Web client in which the Web service is invoked from a browser-
based form (Java Server Page). For the implementation the static stub client method is
used. The client calls the method through a stub, or a local object that acts as a client
proxy to the remote service. It is called a static stub because the stub is generated
before runtime by the wscompi 1e tool.

Consider the following steps:

1.

Before developing the Java client itself, you need to write a configuration file
(in XML) that describes the location of the WSDL file.

The URL in the configuration file identifies the location of the WSDL file. If
you try this URL, you'd see the appropriate WSDL service file, assuming the
Web service is deployed.

See chapter 12.5.1 for an example.

Once you have written the configuration file, you are ready to generate client
stubs, using the following command:

prompt> wscompile -gen:client -d build -classpath
build config-wsdl.xml

This commands reads the * .wsdl (the location of which is specified in the
config-wsdl.xml), then generates files based on the information in the
WSDL file and on the command-line flags.

The -gen:client instructs wscompile to generate the stubs, as well as
other runtime files needed such as serializers and value types.

The next step is to write the Web client as a servlet or a Java Server Pages
technology page (JSP).

See chapter 12.5.2 for an example.

The last step is to package and deploy the Web client as a JSP Web
component using the deploytool. The specified URL is to be used to
access the service.

See chapter 12.5.3 for an example.

Pricing Web Service

12 Pricing Web Service

The idea behind this Web service is to implement the presented models in the J2EE
1.4 platform and to use it for the valuation of options [29], [33] and [34].

12.1Service Endpoint Interface

12.1.1Designing

Due to the variety of models different services with partly dependencies among each
other exist. Here the power of Web services is demonstrated by one service using or

better supporting the other with its valuation results.

In Figure 12.1 the conceptual design of the Pricing Web service is given.

winterfaces
java.rmi.Remote

Initialization
ainterfaces S InitAssetPrices()
Verfahren = nitOptionValues()
+pricing() +round()
BlackScholes Binomial_multi Trincmial Trinomial_IFD
#pricing) #pricingy) +pricing() +pricing()
AT
: Implied Binomial_add Trinomial_EFD Trinomial_CNFD
L
+pricingy() +pricing() +pricing(} +pricing)
Figure 12.1 UML Diagram of the Pricing Web Service
12.1.2Coding and Implementing
The interface file named Verfahren. java looks as follows:
package pricing;
import Jjava.lang.*;
import Jjava.rmi.Remote;
import java.rmi.RemoteException;
public interface Verfahren extends Remote
{
public abstract Lattice pricing (Instrument inst) throws
RemoteException;

}

80 |

Pricing Web Service

12.2Configuring

To describe the name of the service, its namespace, the package name and the name
of the interface a configuration file is necessary.

This file named config.xml has the following look:

<?xml version="1.0" encoding="UTF-8"?>
<configuration
xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">
<service
name="BS"
targetNamespace="urn:Foo"
typeNamespace="urn:Foo"
packageName="pricing">
<interface name="pricing.Verfahren"/>
</service>
</configuration>

12.3Mapping

The WSDL file, generated by the wscompi le tool, provides an XML description of
the service that clients can invoke and looks as follows:

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="BS" targetNamespace="urn:Foo" xmlns:tns="urn:Foo"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
<types>
<schema targetNamespace="urn:Foo" xmlns:tns="urn:Foo"
xmlns:soapll-enc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
<complexType name="Instrument">
<sequence>
<element name="alpha" type="double"/>
<element name="derivativ" type="tns:Derivativ"/>
<element name="dx" type="double"/>
<element name="underlying"
type="tns:Underlying"/></sequence></complexType>
<complexType name="Derivativ">
<sequence>
<element name="b" type="double"/>
<element name="barrier" type="boolean"/>
<element name="barrierCondition"
type="tns:BarrierCondition"/>
<element name="barrierDirection"
type="tns:BarrierDirection"/>
<element name="k" type="double"/>
<element name="n" type="double"/>
<element name="optionType" type="tns:OptionType"/>
<element name="optionn" type="tns:Optionn"/>
<element name="reb" type="double"/>
<element name="t" type="double"/></sequence></complexType>
<complexType name="BarrierCondition">
<sequence>

| 81

Pricing Web Service

<element name="value" type="int"/></sequence></complexType>
<complexType name="BarrierDirection">
<sequence>
<element name="value" type="int"/></sequence></complexType>
<complexType name="OptionType">
<sequence>
<element name="value" type="int"/></sequence></complexType>
<complexType name="Optionn">
<sequence>
<element name="value" type="int"/></sequence></complexType>
<complexType name="Underlying">
<sequence>
<element name="div" type="double"/>
<element name="payDiv" type="boolean"/>
<element name="r" type="double"/>
<element name="s" type="double"/>
<element name="sig"
type="double"/></sequence></complexType>
<complexType name="Lattice">
<sequence>
<element name="m" type="int"/>
<element name="n" type="int"/>
<element name="results"
type="tns:ArrayOfArrayOfNode"/></sequence></complexType>
<complexType name="ArrayOfArrayOfNode">
<complexContent>
<restriction base="soapll-enc:Array">
<attribute ref="soapll-enc:arrayType"
wsdl:arrayType="tns:ArrayOfNode[]"/></restriction></complexContent></
complexType>
<complexType name="ArrayOfNode">
<complexContent>
<restriction base="soapll-enc:Array">
<attribute ref="socapll-enc:arrayType"
wsdl:arrayType="tns:Node[]"/></restriction></complexContent></complex
Type>
<complexType name="Node">
<sequence>
<element name="empty" type="boolean"/>
<element name="values"
type="tns:ArrayOfdouble"/></sequence></complexType>
<complexType name="ArrayOfdouble">
<complexContent>
<restriction base="soapll-enc:Array">
<attribute ref="soapll-enc:arrayType"
wsdl:arrayType="double[]"/></restriction></complexContent></complexTy
pe></schema></types>
<message name="Verfahren pricing">
<part name="Instrument 1" type="tns:Instrument"/></message>
<message name="Verfahren pricingResponse">
<part name="result" type="tns:Lattice"/></message>
<portType name="Verfahren">
<operation name="pricing" parameterOrder="Instrument 1">
<input message="tns:Verfahren pricing"/>
<output
message="tns:Verfahren pricingResponse"/></operation></portType>
<binding name="VerfahrenBinding" type="tns:Verfahren">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="rpc"/>
<operation name="pricing">
<soap:operation soapAction=""/>

82 |

Pricing Web Service

<input>
<soap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
use="encoded" namespace="urn:Foo"/></input>
<output>
<soap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
use="encoded" namespace="urn:Foo"/></output></operation></binding>
<service name="BS">
<port name="VerfahrenPort" binding="tns:VerfahrenBinding">
<soap:address
location="REPLACE WITH ACTUAL URL"/></port></service></definitions>

12.4Packaging and Deploying
To package and generate all the necessary configuration files within a * .war Web
application archive, deploytool is used.

& Deployment Tool: BS.war - |EI|5|
File | Edit Toolz Help
ey b 2pplication. ..
Ald to Application p| Application Client...
Cpen... Connector Resource Adapter .. Resource Ref's r Security r Wieh Services r Weh Service Ref's |
Close Enterprize Bean... JSP Properties Message Destinations r hizg Dest Ref's
- Wiigh Componert. . rtext | EJBRefs | Env.Ertries | Eventlisteners | FieRefs
ave)

= Weh Service... PP ———!
Save Az = {¥ieh Component... st
Save A | AR File:
) SerEr... H:Etudiumivebservices MFLBSES war
Remove Server .. WAR Display Matne:
Set Current Target Server | BS |
Exit i

| Cortest Root (Sun-specific):

| fhs-zervice |
rContents:
o= [WEB-INF
o [buildt
Edit Conternts...
| Sun-specific Seftings... | | Advanced Settings. .. | | 0 Dezcription... | | lehs ...

Figure 12.2 Deployment Tool - Packaging the Pricing Web Service

Finally deploytool is used to deploy the service.

Pricing Web Service

& Deployment Tool: BS.war o |EI|5|
File Edt |Todls | Help

Al r—— k)

9 Ij File| Edit Updste Search Paths... Resource Env. Ref's r Resource Ref's r Security r Wb Services r ‘Web Service Ref's |
T Yerify J2EE Compliance... Filter Mapping r J5P Properties r Wessage Destinations r =g Dest Ref's
? General r Context r EJE Ref's r Env. Ertries r Evert Listeners r File Ref's
Descriptor Wiewer...]
¢ @. Servers AR Naming®

AR File:
H:Etudiumivebservices MFLBSES war

<+ localhost 4545

WAR Display Marne:
S |

Context Roaot (Sun-specific):
| fhs-zervice |

Contents:

o=] WEB-INF
o [build

Edit Conternts...

Sun-specific Settings. .. | | Aclvanced Settings. . | | D Description. .. | | lcanz...

Figure 12.3: Deployment Tool — Deploying the Pricing Web Service

12.5 Web Client

12.5.1Configuring and Generating Client Stubs

To describe the location of the service WSDL file and package name a configuration
file is necessary.

This file named config-wsdl.xml has the following look:

<?xml version="1.0" encoding="UTF-8"?>
<configuration
xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">
<wsdl location="http://localhost:8080/bs-service/bs?WSDL"
packageName="pricing"/>
</configuration>

12.5.2Coding the Java Server Page
The next step is to write the Web client as a Java Server Pages technology page (JSP).

This page with the form to enter the input variables for the Pricing Web Service has
the following look:

84 |

Pricing Web Service

oo |
oo _______|
O
oo _____|
O
R
oo |
o |
I
[
o
»
L]
»
»

Figure 12.4: Web Client Java Server Page

12.5.3Packaging and Deploying

To package the Web client as a JSP Web component and generate all the necessary
configuration files within a * . war Web application archive, deploytool is used
again. The specified URL is to be used to access the service.

12.6Pricing Web Service Examples

12.6.1 Multiplicative Binomial Model

12.6.1.1Pricing a European Call Option with Multiplicative Binomial Tree

Pricing a at-the-money European call option with one-year maturity and a current
asset price of 100. The binomial tree has four time steps and up and down
proportional jumps of 1.1 and 0.9091 respectively. The continuously compounded
interest rate is assumed to be 4 per cent per annum -

ie. K=100,7=1,85=100,»=0.04, N=4,u=1.1,and d = 1/u = 0.9091.

Figure 12.5 illustrates the numerical results, where nodes in the tree are
represented by the boxes in which the upper value is the asset price and the lower
value is the option price.

Pre-computing the constants:

| 85

Pricing Web Service

ar=L -1 _¢25
N 4
<At 0.04x0.25
p:e d:e 0'909120.5288

u—d 1.1-0.9091

. —rxA —0.04x0.3333
disc=e " =™ =0.99

Computing the asset prices at maturity:

At node (4,0)
S,o=8Sxd" = 100x0.9091* = 68.3013

At node (4,3)

1.1

u
S..=8,. x—=100x ~121.00
R 0.9091

Computing the option values at maturity:
At node (4,3)

C,, =max(0,S, , — K) = max(0,121.00 ~100.00) = 21.00

Performing discounted expectations back through the tree:

For node (3,3)

Cys = disc x(pxCyy+(1= p)x C,) =0.99% (0.5288 x 46.41 + (1-0.5288) x 21.00 = 34.095

For node (0,0) - today -

Cyo =discx(pxCy, +(1= p)x C,) = 0.99% (0.5288 x14.7171 + (1-0.5288)x3.014 =9.1115

86 |

Pricing Web Service

00
21115

1100
147171

902091
2014

1210
a20801

1000
57567

B2 6846
oo

1331
34095

1100
10005

a0 2091
g

751315
in

14641
4641

826446
g

683013
in

Figure 12.5: Pricing a European Call Option with Multiplicative Binomial Tree (JSP)

12.6.1.2Pricing an American Put Option with Multiplicative Binomial

Tree

Pricing an at-the-money American put option with one-year maturity and a current
asset price of 100. The binomial tree has four time steps and up and down
proportional jumps of 1.1 and 0.9091 respectively. The continuously compounded

interest rate is assumed to be 4 per cent per annum -

1e. K=100,7=1,5=100,r=0.04, N=4,u =1.1,and d = 1/u=0.9091.

Figure 12.6 illustrates the numerical results, where nodes in the tree are
represented by the boxes in which the upper value is the asset price and the lower
value is the option price.

Pre-computing the constants:

T 1

At=—=—=0.25
N 4

=0.5288

erxAl _ d e0.04><0.25 _ 0 9091
P Td T 11209091
dlSC — e—rXAt — e—0404><0.3333 — 0 99

Computing the asset prices at maturity:

At node (4,0)

A =Sxd" =100x0.9091* = 68.3013

at node (4,3)

Pricing Web Service

u
S.,. =8, x—=100x
R 0.9091

1.1

=121.00

Computing the option values at maturity:

At node (4,1)

C,, =max(0,K - §,,) = max(0,100.00 —82.6446) =17.3554

Performing discounted expectations back through the tree:

For node (3,1)

Cy, = max((disc x (px C,, + (1= p)x C,), K — ;) = max(8.0959,100.00 — 90.9091) = 9.0909

For node (0,0) - today -

Cyo = max((disc x (px C,, + (1= p)x C, 1)), K — S,) = max(5.848,100.00 —100.00) = 5.848

00
ap48

1100
10782

Q09091
102162

1210
00

1000
4 2407

826446
173554

808091
80809

751315
24 8685

826446
1732554

683013
316987

Figure 12.6: Pricing an American Put Option with Multiplicative Binomial Tree (JSP)

12.6.2 Additive Binomial Model

12.6.2.1Pricing a European Call Option with Additive Binomial Tree

Pricing a at-the-money European call option with one-year maturity and a current
asset price of 100 and volatility of 20 per cent. The continuously compounded
interest rate is assumed to be 4 per cent per annum and the binomial tree has four

time steps -

1.e. K=100,7=1,5=100, r = 0.04, N =4, sig = 0.20.

88 |

Pricing Web Service

Figure 12.7 illustrates the numerical results, where nodes in the tree are
represented by the boxes in which the upper value is the asset price and the lower
value is the option price.

Pre-computing the constants:

At = =0.25

r_1

N 4
1 1

v=r—-—0*=0.04--0.20>=0.02
2 2

Ax, =Ja2x At + (v x At)* =,/0.202x 0.25+(0.02x 0.25)2 = 0.1001
Ax, = —Ax, =—0.1001
:l_'_l(vatJ:l l[o.ozxo.zs
2 20 Ax,) 2 20 o0.1001
p,=1-p =1-0.525=0.475
disc=e " =0.99

pu]:O.st

Computing the asset prices at maturity:

At node (4,0)
Sp0=Sxe" ™ =100x ™" = 66.9985
At node (4,1)

S4,1 — S4’0 Xe(Axu—Axd) — 66.9985x6(0.1001—(—0.1001)) —81.8526

Computing the option values at maturity:

At node (4,3)

C, = max(0,S, , — K) = max(0,122.1708 —100) = 22.1708

Performing discounted expectations back through the tree:
For node (3,2)

Cy, =discx(p, xCyy+ pyxCyy) =0.99x(0.525x22.1708 +0.475x 0.0) = 11.5232

| 89

Pricing Web Service

For node (0,0) - today -

Cyo = disc x (p, xCy, + pyxCp) = 0.99% (0.525x15.3659 + 0.475x 3.1128) = 9.4503

140257
40357
1250365
260281
1221708 1221708
24 1449 221708
110 5309 110 5309
153659 115232
00 1000 1000
94503 59891 on
Q0474 Q0474
31128 g
8125260 8125260
00 00
40541
g
660025
00

Figure 12.7: Pricing a European Call Option with Additive Binomial Tree (JSP)

12.6.2.2Pricing an American Put Option with Additive Binomial Tree

Pricing an at-the-money American put option with one-year maturity and a current
asset price of 100 and volatility of 20 per cent. The continuously compounded
interest rate is assumed to be 4 per cent per annum and the binomial tree has four
time steps -

ie. K=100,7=1,5=100,r =0.04, N =4, sig = 0.20.

Figure 12.8 illustrates the numerical results, where nodes in the tree are
represented by the boxes in which the upper value is the asset price and the lower
value is the option price.

Pre-computing the constants:

90 |

Pricing Web Service

At = =0.25

r_1

N 4
1 1

y=r——0>=0.04——0.20>=0.02
2 2

Ax, = /o2 x At + (VX At)? = 1/0.202x 0.25+(0.02x 0.25)2 = 0.1001
Ax, = —Ax, =—0.1001
X . X V.
po gy |- g () 09
p,=1-p =1-0.525=0.475
disc=e* =0.99
dpu =disc* p, =0.99%0.525=0.51975

dpd = disc* p, =0.99*%0.475=0.47025
(A, =A%) _ ,(01001-(-0.100D) _ | 9914

edxud =e
edxd = e =" =0.9047

Computing the asset prices at maturity:
At node (4,0)

S,0=Sxe" ™ =100x ™1 = 66.9985
At node (4,1)
Suy =Sy x @) = 66.9985x ¢ *10 41O — 81 8526

Computing the option values at maturity:
At node (4,1)

C,, =max(0,K —§,) =max(0,100 —81.8526) =18.1474

Performing discounted expectations back through the tree:
For node (3,1)

Cy, = dpuxC,, +dpd x C,, = 0.51975x0.0+0.47025 x18.1474 = 8.5338

Computing the asset price

| 91

Pricing Web Service

S, 818526

= = =90.4724
©edxd 0.9047

Applying the early exercise test

C,, =max(C,,,K —5,,) = max(8.5338,100.00 — 90.4724) = 9.5276

For node (0,0) - today -

Cyp =max(Cy o, K — S,) = max((0.51975 x2.1074 +0.47025 x 10.8637),100 — 100) = 6.2045

149257
00
1350365
in
1221702 1221702
g 00
1105309 110 5309
21074 in
00 00 1000
63045 44200 00
904724 904724
108637 9.5276
212526 818526
12,1474 121474
740541
259459
660025
320015

Figure 12.8: Pricing an American Put Option with Additive Binomial Tree (JSP)

12.6.2.3Pricing an American Put Option with a Known Discrete Cash
Dividend

Pricing an at-the-money American put option with one-year maturity and a current

asset price of 100 and volatility of 20 per cent. The continuously compounded

interest rate is assumed to be 4 per cent per annum and the binomial tree has four

time steps. The asset pays a discrete cash dividend of 3 after six months -

1e. K=100,7=1,5=100,r=0.04, N=4,0=0.20,D=3,7=0.5.

Figure 12.9 illustrates the numerical results, where nodes in the tree are
represented by the boxes in which the upper value is the asset price and the lower
value is the option price.

Pre-computing the constants:

92 |

Pricing Web Service

At = =0.25

r_1

N 4
1 1

y=r——0>=0.04——0.20>=0.02
2 2

Ax, = /o2 x At + (VX At)? = 1/0.202x 0.25+(0.02x 0.25)2 = 0.1001
Ax, = —Ax, =—0.1001
X . X V.
po gy |- g () 09
p,=1-p =1-0.525=0.475
disc=e* =0.99
dpu =disc* p, =0.99%0.525=0.51975

dpd = disc* p, =0.99*%0.475=0.47025
(A, =A%) _ ,(01001-(-0.100D) _ | 9914

edxud =e
edxd = e =" =0.9047

Computing the asset prices at maturity:
At node (4,0)

S4)0 — (S N D « e—rxr)eNxAxd — (1 OO _ 30 % e—0.04><0.5)e4><(—0.1001) — 650248

At node (4,2)

S, =S, xedud =79.4457 x1.2216 = 97.0594

Computing the option values at maturity:

At node (4,1)

C,, = max(0,K — S,) = max(0,100 — 79.4457) = 20.5543

Performing discounted expectations back through the tree:
For node (3,0)

Cyy =dpuxC,, +dpd xC, , = 0.51975 x 20.5543 +0.47025 x 34.9716 = 27.1285

Computing the asset price

| 93

Pricing Web Service

S, 65.0248

=71.8764

0 edxd 0.9047

Applying the early exercise test

Cyy = max(Cy o, K — S, ,) = max(27.1285,100 — 71.8764) = 28.1236

For node (0,0) - today -

Coo=dpuxC,,+dpd xC, ;=0.51975x3.3719 +0.47025x13.0196 = 7.8757

Computing the asset price

S
S, = W0 Dxe 0 =

edxd

87.812
0.9047

Applying the early exercise test

———+3.00xe

-0.04(05-025) _ 10)().0322

Cyo =max(Cy,,K - §,,) =max(7.8757,100 —100.0322) = 7.8757

70594
TBIST

107 2806
33719

87212
130194

118 5782
06504

970594
6 4509

T 4457
205542

1310656
oo

107 2806
1383

@ral2
12188

T1aT6d
281236

144 368
oo

1185782
oo

A7 0594
29406

o457
205543

650284
340716

Figure 12.9: Pricing an American Put Option with a Known Discrete Cash Dividend (JSP)

94 |

Pricing Web Service

12.6.2.4Pricing an American Down-and-Out Call Option with Additive
Binomial Tree

Pricing an at-the-money American down-and-out call option with one-year maturity
and a current asset price of 100 and volatility of 20 per cent. The barrier is set at
110, the continuously compounded interest rate is assumed to be 4 per cent per
annum and the binomial tree has four time steps -

1e. K=100,7=1,5=100,r =0.04, N=4,0 =0.20, H=110.

Figure 12.10 illustrates the numerical results, where nodes in the tree are
represented by the boxes in which the upper value is the asset price and the lower
value is the option price.

Pre-computing the constants:

At = =l=0.25
4

T

N
1 1

v=r——0?=0.04--0.202=0.02
2 2

Ax, = \Jo2x At + (v x At)* = 1/0.202x 0.25 +(0.02 x 0.25)2 = 0.1001

Ax, = —-Ax, =-0.1001
=l+l(vat):l l(o.ozxo.zs

2 2\ Ax, 2 20 o0.1001

p,=1-p, =1-0.525 = 0.475

disc =e " =0.99

dpu = disc * p, =0.99%0.525 = 0.51975

dpd = disc * p, =0.99*0.475 = 0.47025

edxud = e *) = (1010100 _ 1 9516

edxd = e™ = e "1 =0.9047

P)= 0.525

Computing the asset prices at maturity:
At node (4,0)

S4’0 — S « eNxAxd — IOOX e4><(—0.1001) — 669985
At node (4,2)

S4,2 — S4’1 Xe(Axquxd) — 81.8526X6(0'10017(70'1001)) ~100.00

| 95

Pricing Web Service

Computing the option values at maturity:
At node (4,3) S43 > H and therefore

C,; =max(0,S,; — K)=max(0,122.1708 —100) = 22.1708

Performing discounted expectations back through the tree and applying the barrier
condition:

At node (0,0) Spo < H and therefore

Cyo=0.0
142257
49257
1350365
360281
1221708 1221708
24 1449 221708
110 5309 1105309
125400 115232
100 00 1000
nn oo on
904724 190 4724
00 nn
818526 818526
nn on
740541
nn
660985
on

Figure 12.10: Pricing an American Down-and-Out Call Option with Additive Binomial Tree
(JSP)

12.6.3 Trinomial and Finite Difference Models

12.6.3.1Pricing a European Call Option in a Trinomial Tree

Pricing a at-the-money European call option with one-year maturity and a current
asset price of 100 and volatility of 20 per cent. The continuously compounded
interest rate is assumed to be 4 per cent per annum, the asset pays a continuous
dividend yield of 3 per cent per annum, the trinomial tree has four time steps
and the space step is 0.2 -

ie. K=100,7=1,8=100,r =0.04, N=4,0 =0.20,6 =0.03, 4x = 0.2.

Figure 12.11 illustrates the numerical results, where nodes in the tree are
represented by the boxes in which the upper value is the asset price and the lower
value is the option price.

Pre-computing the constants:

96 |

Pricing Web Service

At =

=0.25

=[~
S

v=r —5—%62 =0.04-0.03-0.5x0.02> = 0.0098

edx =e™ =" =1.2214

1(G2At+v2A2 VALY 1(0.22%0.25+0.0098x0.25 0.0098x0.25
p,=—| 2 o + ~0.1312

2T A Ax) 2 0.22 0.2

2 2 2 2 2 2
b [TARVAC) | (025025100098 x0257) e
Ax? 0.2
_1(PAvAR vAL)_1(027x0.25+0.0098'x0.25 _0.0098x025) _ o

L Ax) 2 0.22 0.2 '

disc =e "™ =0.99

Computing the asset prices at maturity:
Atnode (4, 4)

S, 4=8x% e M =100x e ™" = 44.9329

At node (4,3)

Sy 3 =8, 4 xedx =44.9329x1.2214 = 54.8812

Computing the option values at maturity:
At node (4,2)

C,, = max(0,S, , — K) = max(0,149.1825 —100.00) = 49.1825

Performing discounted expectations back through the tree:

G, =discx(p,xCy,+p,xC, +p,xCy) =
0.99x(0.1312x49.1825+0.7498%x22.1403+0.119x0.0) = 22.2227

At node (0,0) - today -

Cop = discx(p, x C,+p,xC+p,x Cl,O) =
0.99x(0.1312x23.1332+0.7498x6.0761+0.119%x0.7626) = 7.3314

[97

Pricing Web Service

1222119
a1a454
1491525 149 1825
[teot1s oezs
112 1403 122.1403 122.1403
231332 22 fi0gd 222227
1000 1000 1000 1000
T334 60761 4 5481 26047
18731 315731 B18731
07626 03064 an
67032 a7 032
nn on
542212
an

Figure 12.11: Pricing a European Call Option in a Trinomial Tree (JSP)

B

22554
1225541

:

:

1223119

I
i3
L
=

1491325
40,1225

i

]
%)
=
=
o)

“ _

22.1403

000

il

SRIEE
bboi:i:
]]
@ 3]
=

44 5329

il

12.6.3.2Pricing a European Call Option by Explicit Finite Difference

Model

Pricing a at-the-money European call option with one-year maturity and a current
asset price of 100 and volatility of 20 per cent. The continuously compounded
interest rate is assumed to be 4 per cent per annum, the asset pays a continuous
dividend yield of 3 per cent per annum, the trinomial tree has four time steps

and the space step is 0.2 -

ie. K=100,7=1,5=100,r =0.04, N=4,0 =0.20, 6 =0.03, 4x = 0.2.

Figure 12.12 illustrates the numerical results, where nodes in the lattice are
represented by the boxes in which the upper value is the asset price and the lower

value is the option price.

Pre-computing the constants:

At = =0.25

r_i
N 4
V= r—5—%a2 =0.04-0.03-0.5x0.02>=0.0098

edx=e™ =e"* =1.2214

2 2
puzlm O V2 00K [22 00098151
2 Ax Ax 2 0.2 0.2

o\ 0.2Y’
po=1-Af | —rAr=1-025%| —= | —0.04x0.25=0.75
Ax 0.2
2 2
o =Lad[S 2= L0205« [QJ _00098 | _ 1189
Ax Ax) 2 0.2 0.2

Pricing Web Service

Computing the asset prices at maturity:

At node (4,-4)

S, s =Sxe ™ =100xe™"* = 44.9329

At node (4,-2)

S, =S, ;xedr=548812x12214 = 67.032

Computing the option values at maturity:

At node (4,2)

C,, =max(0,S, , — K) = max(0,149.1825 ~100.00) = 49.1825

Performing discounted expectations back through the tree:

At node (3,1)

Cyy = (Py X Cyy+ o xCyy + pyxCyo)=0.1311x49.1825+0.75% 22.1403 +0.1189x0.0) = 22.2242

At node (0,0) - today -

Coo=(py*xCyy + X Cro+ pyxCp,) =0.1311x23.1505+0.75x6.1195+0.1189x0.7755) = 7.3793

=5
NI
[l
ba | Lo
i
=S
=i

20940

140,125
43 8430

i

1221403
237375

EH

7

000

=
Ly
&
=
b

212731
13054

i

)
3
=
=
k=)

=

11105

54 2212
(JUIEEY

i

44 0330
(JUIEEY

i

|54 2212
on

4 0320

oo
b

22235541

315140

1401825
4238431

H

1221403

i

226173

T

oo

=
L
&
2
A

212731
03122

i

T3

542212
00

ilH

449320
00

il

=5
A
[
[
i
B
el i

21 3453

1491825
49 0636

i

1221403

28

222242

pulig)
Jopive)

218731
on

el 55

54 2212
on

M

44 0320
on

il]

=
i)
B3| 63
G|
i
==

1822119
822119

i

140.1825
491825

i

122.1403
221403

i

000

NH

@
I
=
el

i

EEIEE
Dbni:i:
2]
2]
i

S|
D\o
sl
o
E

Figure 12.12: Pricing a European Call Option by Explicit Finite Difference Model (JSP)

[99

Pricing Web Service

12.6.3.3Pricing an American Put Option by Explicit Finite Difference
Model

Pricing an at-the-money American put option with one-year maturity and a current
asset price of 100 and volatility of 20 per cent. The continuously compounded
interest rate is assumed to be 4 per cent per annum, the asset pays a continuous
dividend yield of 3 per cent per annum, the trinomial tree has four time steps
and the space step is 0.2 -

ie. K=100,7=1,8=100,r =0.04, N=4,0 =0.20,6 = 0.03, 4x = 0.2.

Figure 12.13 illustrates the numerical results, where nodes in the lattice are
represented by the boxes in which the upper value is the asset price and the lower
value is the option price.

Pre-computing the constants:

At = =0.25

1
4

=z~

vV=r —5—%0‘2 =0.04-0.03-0.5x0.02> = 0.0098

edx=e™ =e"* =1.2214

2 2
=L L 2 00| [92] 000981631y
2 Ac] 2 0.2 0.2

2

e a

02)’
—rAt=1-025x 0 —0.04%0.25=0.75

2 2
b= tar _ Vot 00sx (EJ _O00981_ 4 1189
2 Ax) 2 02) 02

Computing the asset prices at maturity:

e la

e a

S, 3=8x eV =100x e % = 54.8812

At node (4,-2)

S, =8, _3xedx=54.8812x1.2214 = 67.032

—

Computing the option values at maturity:
At node (4,-2)

100 |

Pricing Web Service

C, , =max(0,K - S, ,)=max(0,100.00 - 67.032) = 32.968

Performing discounted expectations back through the tree:
At node (3,-1)

Cy = puxCyy+puxCyy+pyxCy, =0.1311x0.0+0.75x18.1269 +0.1189x 32.968) = 18.1269

Applying the early exercise test:

C, , =max(C, ,,K -5, ,)=max(16.942,100-81.8731) =18.1269

At node (0,0) - today -

Coo = PuXCpy+ Py X Cro+ pyxCy_, = 0.1311x0.7744+0.75x5.4796 +0.1189 x18.2326) = 6.5399

Applying the early exercise test:

0

1o =max(Cy,, K =S, ,) = max(6.5399,100—100) = 6.5399

2235541 222 5541 2225541 2235541 222 5541
0005+ i) 0o oo i)
1822119 1522118 1822119 1822119 1522118
0005+ i) 0o oo i)
1491925 1491825 149,125 1491925 1491825
0132 041 0o oo i)
1221403 1221403 122.1403 1221403 1221403
12971 n774s 03123 oo i)

1000 1000 1000 1000 [100s]
65399 54796 4.1397 23792 [on
a15731 pLam3l 12731 a15731 pLam3l
184699 182336 181269 181269 151269
67032 s7032 67032 67032 s7032
52980 52968 32988 52980 52968
54 5812 545812 54 3812 54 5812 545812
451100 451188 451180 451100 451188
445329 449328 443329 445329 449328
550871 550671 550871 550871 550671

Figure 12.13: Pricing an American Put Option by Explicit Finite Difference Model (JSP)

[101

Pricing Web Service

12.6.3.4Pricing an American Put Option by Implicit Finite Difference
Model

Pricing an at-the-money American put option with one-year maturity and a current
asset price of 100 and volatility of 20 per cent. The continuously compounded
interest rate is assumed to be 4 per cent per annum, the asset pays a continuous
dividend yield of 3 per cent per annum, the trinomial tree has four time steps
and the space step is 0.2 -

ie. K=100,7=1,8=100,r =0.04, N=4,0 =0.20,6 = 0.03, 4x = 0.2.

Figure 12.14 illustrates the numerical results, where nodes in the lattice are
represented by the boxes in which the upper value is the asset price and the lower
value is the option price.

Pre-computing the constants:

At = =0.25

=
e

—5—%0‘2 =0.04-0.03-0.5%x0.02> =0.0098

edx=e™ =" =1.2214

uz_l ‘7 L:__xozs 0.2 +0'0098 —_0.1311
2 Ax A 2 02 0.2

2
—1+At(aj +rAt—1+025x(02j +0.04x0.25=1.26
Ax 02
o= La ("j 008k (Ozj 000981 _ 41189
27\ Ax) A 2 02 02

Computing the asset prices at maturity:
At node (4,-3)

S, 5 =Sxe ™ =100xe™"? =54.8812

At node (4,-2)

S, =S, ;xedr=548812x1.2214 = 67.032

Computing the option values at maturity:
At node (4,-2)

102 |

Pricing Web Service

C, , =max(0,K - §, ,)=max(0,100.00 — 67.032) = 32.968

Performing discounted expectations back through the tree and solving the tri-
diagonal system of equations:

At node (2,-2) the upper diagonal is eliminated:

D'a= Do+ Py =126+(=0.1189) =1.1411
P 2=Cyy+pyx Ay, =32.9680+(=0.1189)x ((—1)x (67.032— 54.8812)) = 34.4127

Atnode (2,-1)

D= Py =2 p, =1.26—(0.1311)x(=0.1189)/1.1411=1.2463

m,—2

p.=C, L2 p =18.1269-34.4127x(~0.1189)/1.1411=21.7126

m,—2

At node (3,-1) back substituting:

_ p.-p, C3,0
p,m,—l

C3 -1

=(21.7126 —(-0.1311)x1.8885)/1.2463 =17.6203

Applying the early exercise test:

C, , =max(C, ,K —S, ,)=max(17,6203,100 —81.8731) = 18.1269

[103

Pricing Web Service

2025541 2225541 2025541 222 5541 2225541
00547 0027 00104 00024 on
1223119 1822119 1223119 1822119 1823119
00547 0027 o104 00024 on

05221
lo00 w00 lo00 w00 1000
STT34 4709 34331 13883 on
ElET3L 513731 ElET3L 513731 515731
18,1269 12.1269 18,1269 12.1269 18.1269
67 032 67032 67 032 67032 67 032
32068 32068 32068 32068 32068
54 3812 54 3312 54 3812 54 3312 54 3512
451138 4511388 451138 451138 451138
44 9320 449320 44 9320 449320 44 9320
550671 550671 550671 550671 55 0671

Figure 12.14: Pricing an American Put Option by Implicit Finite Difference Model (JSP)

12.6.3.5Pricing an American Put Option by Crank-Nicolson Finite
Difference Model

Figure 12.15 gives a numerical example similar to the implicit finite difference

model. The calculations are virtually identical to those for the implicit finite

difference method.

2225541 2223341 2223541 2225541 2223541
00293 onlls 0031 4 0E4 on
1322119 1522119 1822119 1822119 1322119
0020z anlls 00zl 4 IE4 on
1491825 40,1825 1401825 1401825 1491225
02095 0105 nnss1 00071 on
1221403 122.1403 1221403 1221403 1221403
13244 03545 04357 0.1221 on
1000 mon 1000 1000 1000
6,130 S0624 F 7455 20068 on
214731 BLa731 818731 818731 818731
131269 151269 135.1269 13.1269 131269
67 032 67032 67032 67032 67032
32 068 32968 33 968 32068 32068
54 2212 54 2212 |54 2212 542212 54 2812
451188 451188 451188 451188 451188
44 8329 445329 44 5329 448320 44 8329
550671 550671 1350671 350671 550671

Figure 12.15: Pricing an American Put Option by Crank-Nicolson Finite Difference Model (JSP)

12.6.4Implied Trinomial Tree Model

12.6.4.1Pricing Implied Trinomial Tree State Prices and Transition
Probabilities

Pricing state prices with one-year maturity and a current asset price of 100 and
volatility of 20 per cent. The space step is chosen to be 0.2524 so that the explicit
finite difference method stability condition is satisfied. The continuously
compounded interest rate is assumed to be 4 per cent per annum and the trinomial
tree has four time steps -

104 |

Pricing Web Service

ie. 7=1,5=100,r =0.04, N=4, 4x = 0.2524.

Figure 12.16 illustrates the numerical results, where nodes in the tree are
represented by the boxes in which the upper left value is the state price and the
lower left value is the asset price. The right hand side values represent the transition
probabilities.

Pre-computing the constants:

=0.25

L1
N 4
edx = e™ =" =1.2871

lnﬂ — erxAt — 60.04X0‘25 — 1.0101

Computing the asset prices at maturity:
At node (4,-4)

S, 4 =8Sxe M =100x e =36.4365
At node (4,-3)

S, s =S, 4 xedx =36.4365x1.2871 = 46.8978

Computing the state prices for each time step beginning with the upper half of the
tree and then for the lower half of the tree:

At node (3,3)

Qus =1.0101 xw = 0.0456
0.0004

Pusz = infl x

33

Puszz = (mﬂ XS35-835 - Puss (S3,4 =-S5,))/(S3,3 - Ss,z):
(L0101 x 213.2297-165.6654-0.0456(274.4503-213.2297))/(213.2297-165.6654) = 0.9407
Puss = 1= Poss = Puss = 1-0.9407 —0.0456 = 0.0137

At node (3,-1)

[105

Pricing Web Service

Piza = (mﬂ XQy 3= Pus3XD55 " Pus2 05,)/ 0;, =

(1.0101x0.0298 - 0.0627 x 0.0003 — 0.8821x 0.0182)/0.2101 = 0.0666
Pms1= (lnﬂ X85 -850 -Paza X (S3,—2 -85))/(S3,—1 -850) =

(1.0101x 77.6934-100.00-0.0666(60.3626-100.00))/(77.6934-100.00) = 0.8467
Puss == Pos = Pusy =1-08467-0.0666 = 0.0867

oo oo

oo

2744503 o)

4054+ |[o0ese nonie_|[on

joss07 oo

2132207 o137 2132207 o

ooms0 |[oners voz6 |[onsez 0003 |[on

o337 po11e oo

1656654 [0.0165 163 6634 [10298 1656634 [00

136 |[onsea 2wz |[on7as p23s1|[onsos oztss |[on]

oo12 0577 pze o

1257111 (00298 1287111 (00495 1287111 |[00591 1287111 00

10 |p1s7s 06773 [0.1031 o533 [p0966 04317 [0004, joa277 [uo]
06642 08093 08241 083 00
1000][o152 1000 [ae7s 1000 |[nares 1000 Joors 1000 |[o0]
0.1565 (00718 01953 (0082 02101 (00867 02136 E

5208 as7e 08467 oo

17 5034 [one74 77 5034 [onsos 17 5034 00868 176034/ 00

o007 |[onees o018z |[ooria o0zs |00

o 29s 08521 oo

60 3026 [0 0377 60 3026 [0 0466 603026/ [00

505+ |[00e27 00011 oo

05016)

(46 8978 [0 0357 46 8978 (00

oo |0

no

364365 [0

Figure 12.16: Pricing Implied Trinomial Tree State Prices and Transition Probabilities (JSP)

12.6.4.2Pricing an American Down-and-Out Call Option by Implied
Trinomial Tree Model

Pricing an at-the-money American down-and-out call option with one-year maturity
and a current asset price of 100 and volatility of 20 per cent. The barrier is set at
110, the continuously compounded interest rate is assumed to be 4 per cent per
annum. The implied trinomial tree is similar to the example above with four
time steps and a space step of 0.2524. -

1e. K=100,7=1,5=100,r=0.04, N=4,0 =0.20, H =110, Xyepare = 1, 4x =
0.2524.

Figure 12.17 illustrates the numerical results, where nodes in the tree are
represented by the boxes in which the upper left value is the state price and the
lower left value is the option price. The right hand side values represent the
transition probabilities.

Pre-computing the constants:

At = :l=0.25
N 4

disc=e ™ =0.99

106 |

Pricing Web Service

Computing the option values at maturity:

At node (4,-1) S4.1 <H, 77.6934 < 110 and therefore

Coy =X =1

— rebate

Atnode (4,1) S4; > H, 128.7111 > 110 and therefore

C,, = max(0,,, — K) = max(0,128.7111-100) = 28.7111

Performing discounted expectations back through the tree and applying the barrier
condition:

Atnode (1,1) S;; > H, 128.7111 > 100 and therefore

C,= max(disc x (pu,l,l XCyyt P XCo+ Py XCyy)’ S - K)=
max(0.99(0.0582 X 67.6465+0.912x30.7422 + 0.0298 x 1),128.71 11-100) =31.6837

At node (0,0) - today -Spo < H and therefore

Coo = X e =1

rebate

oo E
oo
1744503 fon
105+ |[00456 oo ool
05407 T
1142243 o137 1132207 o
[pogza |[ooers pozz6 [onsea [pos0z |[oa]
09357 09119 00
[67 5463 [0 a1ss [e5.5508 [o.289 [65.5554 [0
o136z [p0se2 o102 o073 2361 [00308 [p 2465 o]
po1z 0877 ze 00
516837 [00298 o742/ [oees 20,7646 00391 periitfon
[0 o157 05778][0.1031 o553 [unsee 04217 [0 094 pezrrfon
e 05093 paan 23 oo
10 oz 10 |[onoers 1o [nss 10 o7 1o |pn
01565 |00718: [0.1953 0082 02101 |0 0867 02136 E
5508 [pasme pase fon]
10 |[ooers 10 [onsos 10 |[onsss 10 |on
[o0073 [onses 015200712 jonzse]jon]
pass = [oal
10 [onar 10 |[onses 10 s
505+ [ansa [poo11fon
ns016 [oa]
10 |[pezsT 1 |jon]
ool foa]
[
10/os]

Figure 12.17: Pricing an American Down-and-Out Call Option by Implied Trinomial Tree Model
(JSP)

[107

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

Burton Gordon Malkiel and Richard E. Quandt, Strategies and Rational
Decisions in the Securities Options Market, MIT Press, 1969.

Herbert Filer, Understanding Put and Call Options, John Magee, Springfield,
1959.

Joseph S. Davis, Essays in the Earlier History of American Corporations,
Harvard University Press, Cambridge, 1917.

Wikipedia, the free encyclopedia, Underlying — Wikipedia, the free
encyclopedia, http://en.wikipedia.org/wiki/Underlying, 2008.

Wikipedia, the free encyclopedia, Asset — Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Asset, 2008.

Wikipedia, the free encyclopedia, Option (finance) — Wikipedia, the free
encyclopedia, http://en.wikipedia.org/wiki/Option_(finance), 2008.

Paul Wilmott, Sam Howison and Jeff Dewynne, The Mathematics of Financial
Derivatives: A Student Introduction, Cambridge University Press, 1995.

John Hull, Options, Futures, and Other Derivatives, Prentice Hall, 2006.

Les Clewlow and Chris Strickland, Implementing Derivatives Models, Wiley,
1998.

J. Cox, S. Ross and M. Rubinstein, Option Pricing: A Simplified Approach,
Journal of Financial Economics 7, 1979, 229-264.

R. Rendleman and B. Bartter, Two State Option Pricing, Journal of Finance
34,1979, 1092-1110.

John Hull and A. White, Valuing Derivative Securities Using the Explicit
Finite Difference Approach, Journal of Financial and Quantitative Analysis
25, 1990, 87-100.

M. J. Brennan and E. S. Schwartz, Finite Difference Methods and Jump
Processes Arising in the Pricing of Contingent Claims: A Synthesis, Journal of
Financial and Quantitative Analysis 13, 1978, 462-474.

Masters 'O' Equity Asset Management, Barrier Options by
OptionTradingpedia.com,
http://www.optiontradingpedia.com/barrier options.htm, 2008.

Masters 'O' Equity Asset Management, LookBack Options by
OptionTradingpedia.com,
http://www.optiontradingpedia.com/lookback options.htm, 2008.

[109

References

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

L. Ananthamurthy, Introduction to Web Services,
http://www.webservices.org/index.php/article/articlestatic/75, 2003.

David A. Chappell and Tyler Jewell, Java Web Services: Using Java in
Service-Oriented Architectures, O'Reilly, 2002.

World Wide Web Consortium, Web Services Glossary,
http://www.w3.org/TR/ws-gloss/, 2004.

K. Gottschalk, S. Graham, H. Kreger and J. Snell,
Introduction to Web Services Architecture,
http://www.research.ibm.com/journal/sj/412/gottschalk.pdf, 2002.

Diana Reichardt, A Field Guide to Services on Demand,
http://www.sun.com/software/whitepapers/webservices/wp-fieldguide.pdf,
2001.

IBM Software Group, Web Services Architecture Overview,
http://www.ibm.com/developerworks/web/library/w-ovr/, 2000.

Gustavo Alonso, Fabio Casati, Harumi Kuno and Vijay Machiraju, Web
Services: Concepts, Architectures and Applications, Springer, 2004.

World Wide Web Consortium, SOAP Specification,
http://www.w3.org/TR/soap, 2000.

W3Schools by Refsnes Data, SOAP Example,
http://www.w3schools.com/soap/soap _example.asp, 2008.

XML Org, Focus Areas XML.org focus area community, http://www.xml.org/,
2008.

World Wide Web Consortium, Web Service Definition Language (WSDL),
http://www.w3.org/TR/wsdl, 2001.

W3Schools by Refsnes Data, WSDL Syntax,
http://www.w3schools.com/wsdl/wsdl_syntax.asp, 2008.

Peter Brittenham, Web Services Development Concepts, IBM Software Group,
2001.

Kim Topley, Java Web Services in a Nutshell, O'Reilly, 2003.

Sun Microsystems, Java 2 Platform, Enterprise Edition (J2EE) 1.4,
http://java.sun.com/j2ee/1.4/, 2006.

Sun Microsystems, Java Enterprise Edition Web Services Technologies,
http://java.sun.com/javaee/technologies/webservices/index.jsp, 2006.

110 |

References

[32]

[33]

[34]

Sun Microsystems, Building Web Services with JAX-RPC,
http://developers.sun.com/appserver/reference/techart/jaxrpc/index.html, 2006.

Sun Microsystems, Java Web Services Developer Pack 1.5,
http://java.sun.com/webservices/docs/1.5/index.html, 2004.

Sun Microsystems, Using Web Services Effectively,
http://java.sun.com/blueprints/webservices/using/webservbp.html, 2002.

[111

http://onesearch.sun.com/search/clickthru?qt=j2ee+web+services&col=all-filtered&cksum=ee4b0e524f664661dca0214cb3a7e8ca&url=http%3A%2F%2Fdevelopers.sun.com%2Fappserver%2Freference%2Ftechart%2Fjaxrpc%2Findex.html&path=%2Fsearch%2Fonesearch%2Findex.jsp&hit=8

Curriculum Vitae

CURRICULUM VITAE
Alexander HOPFGARTNER
Wienergasse 24/7B
2380 Perchtoldsdorf
Austria
Personal Data
Date of Birth: 6th of July 1977
Nationality: Austria
Family Status: Single
Children: None
School Education
1983-1987 Elementary School of Perchtoldsdorf
1987-1991 Secondary High School of Perchtoldsdorf
1991-1996 Technical Academy of Mddling (Management Engineering)

Academic Education
1996-2008 Study of Business Informatics

University of Vienna - Faculty of Computer Science

[113

	1 Options Introduction
	1.1 Genesis and History
	1.2 Options Definition
	1.3 Classification

	2 Black-Scholes World
	2.1 Black-Scholes Model
	2.2 Derivation of the Black-Scholes Partial Differential Equation
	2.3 Black-Scholes Formula
	2.4 Numerical Techniques

	3 Binomial Model
	3.1 Basics of the Binomial Model
	3.2 Generalization of the Binomial Model
	3.3 Additive Binomial Model
	3.3.1 Pricing Underlying Asset Paying a Continuous Dividend Yield
	3.3.2 Pricing Underlying Asset Paying a Known Discrete Cash Dividend

	3.4 Binomial Model and Path-Dependent Options

	4 Trinomial Trees and Finite Difference Models
	4.1 Trinomial Tree Model
	4.2 Finite Difference Models
	4.2.1 Explicit Finite Difference Models
	4.2.2 Implicit Finite Difference Models
	4.2.3 Crank-Nicolson Finite Difference Models

	5 Implied Trees and Exotic Options
	5.1 Basics of the Implied Tree Model
	5.2 Implied State Prices
	5.3 Implied Transition Probabilities
	5.4 Exotic Options and Implied Trees
	5.4.1 Pricing Barrier Options
	5.4.2 Pricing Look-Back Options

	6 Web Services
	6.1 Web Services Introduction
	6.2 Overview of Java Web Services
	6.3 Web Services Definition
	6.4 Web Services Properties

	7 Web Services Model
	7.1 Operators of the Web Services Model
	7.2 Interactions of the Web Services Model
	7.3 Artifacts of the Web Services Model

	8 Web Services Architecture
	8.1 Web Services Protocol Stack
	8.2 Network Layer
	8.3 XML-Based Messaging Layer - SOAP
	8.3.1 SOAP message structure
	8.3.2 SOAP message example
	8.3.3 XML Based Messaging using SOAP

	8.4 Service Description Layer
	8.4.1 From XML Messaging to Web Services
	8.4.2 Basic Web Service Description
	8.4.3 Full WSDL Syntax
	8.4.4 Complete Web Service Description

	8.5 Publication and Discovery of Service Descriptions

	9 Web Services Development Lifecycle
	9.1 Build Phase
	9.2 Deploy Phase
	9.3 Run Phase
	9.4 Manage Phase

	10 Developing Web Services
	10.1 Service Registry
	10.2 Service Provider
	10.2.1 Green Field Scenario
	10.2.1.1 Build Phase
	10.2.1.2 Deploy Phase
	10.2.1.3 Run Phase

	10.2.2 Top-Down Scenario
	10.2.2.1 Build Phase
	10.2.2.2 Deploy Phase
	10.2.2.3 Run Phase

	10.2.3 Bottom-Up Scenario
	10.2.3.1 Build Phase
	10.2.3.2 Deploy Phase
	10.2.3.3 Run Phase

	10.2.4 Meet-in-the-Middle Scenario
	10.2.4.1 Build Phase
	10.2.4.2 Deploy Phase
	10.2.4.3 Run Phase

	10.3 Service Requestor
	10.3.1 Static Binding
	10.3.1.1 Build Phase
	10.3.1.2 Deploy Phase
	10.3.1.3 Run Phase

	10.3.2 Build-Time Dynamic Binding
	10.3.2.1 Build Phase
	10.3.2.2 Deploy Phase
	10.3.2.3 Run Phase

	10.3.3 Runtime Dynamic Binding
	10.3.3.1 Build Phase
	10.3.3.2 Deploy Phase
	10.3.3.3 Run Phase

	11 Web Services and Java Technology
	11.1 Web Service Tools - Java 2 Platform
	11.2 J2EE 1.4 SDK
	11.3 JSR 109 - Implementing Enterprise Web Services
	11.4 J2EE Web Services
	11.5 Working with JAX-RPC
	11.6 Creating a Web Service
	11.6.1 Design and Code the Service Endpoint Interface
	11.6.2 Implement the Service Endpoint Interface
	11.6.3 Write a Configuration File
	11.6.4 Generate the Necessary Mapping Files
	11.6.5 Packaging and Deploying the Service

	11.7 Creating a Web Service Client
	11.7.1 Types of Web Service Clients
	11.7.2 Browser-Based Client

	12 Pricing Web Service
	12.1 Service Endpoint Interface
	12.1.1 Designing
	12.1.2 Coding and Implementing

	12.2 Configuring
	12.3 Mapping
	12.4 Packaging and Deploying
	12.5 Web Client
	12.5.1 Configuring and Generating Client Stubs
	12.5.2 Coding the Java Server Page
	12.5.3 Packaging and Deploying

	12.6 Pricing Web Service Examples
	12.6.1 Multiplicative Binomial Model
	12.6.1.1 Pricing a European Call Option with Multiplicative Binomial Tree
	12.6.1.2 Pricing an American Put Option with Multiplicative Binomial Tree

	12.6.2 Additive Binomial Model
	12.6.2.1 Pricing a European Call Option with Additive Binomial Tree
	12.6.2.2 Pricing an American Put Option with Additive Binomial Tree
	12.6.2.3 Pricing an American Put Option with a Known Discrete Cash Dividend
	12.6.2.4 Pricing an American Down-and-Out Call Option with Additive Binomial Tree

	12.6.3 Trinomial and Finite Difference Models
	12.6.3.1 Pricing a European Call Option in a Trinomial Tree
	12.6.3.2 Pricing a European Call Option by Explicit Finite Difference Model
	12.6.3.3 Pricing an American Put Option by Explicit Finite Difference Model
	12.6.3.4 Pricing an American Put Option by Implicit Finite Difference Model
	12.6.3.5 Pricing an American Put Option by Crank-Nicolson Finite Difference Model

	12.6.4 Implied Trinomial Tree Model
	12.6.4.1 Pricing Implied Trinomial Tree State Prices and Transition Probabilities
	12.6.4.2 Pricing an American Down-and-Out Call Option by Implied Trinomial Tree Model

