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Zusammenfassung

Die vorliegende Arbeit widmet sich den verschiedenen möglichen Arten, im Mehrdi-
mensionalen reell analytisch zu definieren und deren Zusammenhang mit der Eigen-
schaft (DN). Das Ziel ist es zu ermitteln, unter welchen Bedingungen die verschiede-
nen Begriffe reell analytischer Abbildungen zusammenfallen. Unglücklicherweise
reicht dazu die Eigenschaft (DN) alleine nicht aus.

Der erste Teil des Werkes dient der Einführung in die verwendete Notation und
der benötigten Grundlagen. Kapitel 1 widmet sich grundlegenden Eigenschaften
lokalkonvexer Räume und (beschränkter) stetiger linearer Abbildungen zwischen
diesen. Kapitel 2 führt induktive und projektive Limiten lokalkonvexer Räume ein.
Das letzte einleitende Kapitel befasst sich mit der Charakterisierung des Raumes
holomorpher Funktionen.

Die nächsten beiden Kapitel liefern wichtige nicht elementare Ergebnisse für
die primären Aussagen der Arbeit. Kapitel 4 befasst sich mit der Grothendieck-
Köthe-Silva Dualität, einer Charakterisierung des Dualraums des Fréchet Raumes
H(U). Kapitel 5 führt den Raum der schnell fallenden Folgen ein und geht auf den
Zusammenhang mit der Nuklearität ein.

Im folgenden Teil wurden die unabdingbaren Ideen und Methoden zur Lösung
der grundlegenden Fragestellung zusammengefasst. Während Kapitel 6 reell ana-
lytische Funktionen (von R nach R) behandelt, erweitert Kapitel 7 die Betrachtung
auf reell analytische Abbildungen von R in einen lokalkonvexen Raum E. Schließlich
geht Kapitel 8 auf Folgenräume und exakte Sequenzen von Folgenräumen ein.

Kapitel 9 zeigt die Korrelation zwischen Folgenräumen und der Eigenschaft (Ω).
Insbesonders ist ein Fréchet Raum mit der Eigenschaft (Ω) isomorph zu einem
Quotientenraum von `1(I)⊗̂s (für geeignetes I).

Die Kapitel 10 bis 12 widmen sich den Bedingungen an Fréchet Räume, unter
denen jede stetige lineare Abbildung beschränkt ist. Für die Resultate muss en-
tweder der Definitions- oder der Zielraum ein Folgenraum sein. Diese Einschränkung
wird allerdings im nächsten Kapitel behoben. Kapitel 13 liefert diese wichtigen
Zwischenresultate, die für sich alleine betrachtet werden können. So etwa die
Verallgemeinerung des Hauptresultats von Kapitel 9, Cω(R, F ) = Cωt (R, F ) and
Hω(B,F ) = H(B,F ) (unter dort spezifizierten Voraussetzungen).

Das letzte Kapitel zeigt schließlich die folgenden beide Sätze: Einen Fréchet
Raum F hat die Eigenschaft (DN) genau dann, wenn Cω(E,F ) = Cωt (E,F ) für alle
nuklearen Fréchet Räume E beziehungsweise Fréchet-Schwarz Räume mit Eigen-
schaft (Ω̃) gilt. Und zweitens, dass für Fréchet Räume F mit Eigenschaft (LB∞)
Cω(E,F ) = Cωt (E,F ) für alle reellen Fréchet Räume E gilt.

Im Appendix finden sich jene technischen Details, die den Aufbau der Ar-
beit unnötig beschwert hätten. Appendix A liefert alle in der Arbeit verwendeten



äquivalenten Beschreibungen der Eigenschaften (DN) und (Ω̄). Außerdem werden
die Implikationen zwischen den Eigenschaften bewiesen. Appendix B ist ein Exkurs.
Er liefert eine Verallgemeinerung eines Satzes aus Kapitel 11 zusammen mit der Be-
weisskizze. Leider konnte der Beweis nicht in allen Details gegeben werden und
wurde deshalb aus dem Hauptteil genommen. Appendix C listet die grundlegenden
Sätze der Funktionalanalysis auf, die hier verwendet wurden.



Abstract

This work is about real analytic curves, their different definitions, and the property
(DN). My aim is to give a complete record under which conditions the different
notions of real analytic mappings coincide. Unfortunately, the property (DN) is
not sufficient to accomplish this.

It is traditional to start books with an introductory chapter. I dedicated three
chapters to introduce the notation and the basic principles needed thereafter. While
Chapter 1 lays down the basic qualities of locally convex spaces and the (bounded)
continuous linear mappings between them, Chapter 2 focuses on projective and in-
ductive limits of locally convex spaces. Chapter 3 introduces holomorphic functions
and characterises the space of holomorphic functions.

The next two chapters reproduce non-trivial findings which are essential later
on. Chapter 4 proves the Grothendieck-Köthe-Silva duality, a characterisation of the
dual space of the Fréchet space H(U). In Chapter 5 the space of rapidly decreasing
sequences is introduced and the connection to nuclear spaces is laid down.

In the following three chapters I have collected the indispensable ideas and tools
necessary for the main findings. While in Chapter 6 real analytic functions (from R
to R) are set forth, Chapter 7 expands the range to real analytic curves (from R to
a locally convex space E). Chapter 8 takes a step back and revisits sequence spaces
and exact sequences of sequence spaces are considered for later use.

In Chapter 9 the correlation between quotients of sequence spaces and the prop-
erty (Ω) is laid down. Notably, a Fréchet space with property (Ω) is isomorphic to
a quotient space of `1(I)⊗̂s (for suited I).

The Chapters 10 to 12 present conditions for Fréchet spaces under which every
continuous linear map is bounded. The results require a sequence space as either the
domain or the co-domain, but this restriction will be relieved in the next chapter. As
the name suggests, Chapter 13 lists those results that are noteworthy on their own,
such as a generalisation of the main statement from chapter 9, Cω(R, F ) = Cωt (R, F )
and Hω(B,F ) = H(B,F ). (Note that I have not mentioned here the prerequisite
conditions.)

Chapter 14 finally states the two main findings: That for a Fréchet space F with
property (DN) we have Cω(E,F ) = Cωt (E,F ) for all either nuclear Fréchet spaces
or (FS)-spaces E with property (Ω̃). And alternatively, that for a Fréchet space F
with property (LB∞) we get Cω(E,F ) = Cωt (E,F ) for all real Fréchet spaces E.

In order to avoid polluting the main work with lengthy technical details, I have
transferred those chunks of knowledge into the Appendices. In Appendix A equiv-
alent descriptions of the properties (DN) and (Ω̄) are presented in any case for
the mentioned instances. Additionally the dependencies/implications among the
properties are offered. Appendix B contains an excursion; a more general form of



a theorem from chapter 11 is presented together with an outline of its proof. Un-
fortunately, I was not able to give a complete proof and hence didn’t include it in
the main part of the work. Appendix C collects the well-known theorems which are
referred to in the prior chapters.
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Chapter 1

Locally Convex Spaces

Definition 1.1 A vector space E is said to be a locally convex topological vector
space, or simply locally convex space, if it is a topological space and has a family
of semi-norms such that a net (xν)ν∈I in E with index set I converges to x if and
only if ‖xν − x‖p −→

ν∈I
0 for all semi-norms ‖.‖p in this family.

An arbitrary family of semi-norms on a vector space E determines a unique
topology on E, given by the condition of the preceding paragraph. This topology
is called the locally convex topology.

Definition 1.2 A locally convex topology defined by the family of semi-norms is
called Hausdorff if it satisfies the norm condition

‖x‖p = 0 ∀‖.‖p ⇒ x = 0.

All locally convex spaces are considered Hausdorff unless explicitly otherwise
stated.

Definition 1.3 Let E be a locally convex space. A subset K is called precompact
if for every neighbourhood U of 0 there exists a finite set F with K ⊆ U + F .

Lemma 1.4 ([Kri02], 6.14 Lemma) Let E be a Fréchet space and A a subset of E.
A is precompact if and only if there exists a sequence (xn)n∈N converging to 0, such
that A is contained in the closed convex hull of the sequence.

Proof. Let (Un)n∈N be a neighbourhood basis of 0 consisting of absolutely convex
closed subsets of a Fréchet space E such that 2Un+1 ⊆ Un and U0 = E. We now
contrive a sequence (An)n∈N of precompact subsets and finite sets Fn ⊆ An for all
n ∈ N. Let A0 := A and An already be conceived. Then there exists a finite set
Fn ⊆ An with An ⊆ Fn + 1

2nUn. We now put

An+1 := (An − Fn) ∩
1
2n
Un.

This set is precompact. Let xkn+1, . . . , xkn+1 be the Elements of 2nFn. Since we
have

Fn ⊆ An ⊆
1
2n
Un ⊆

1
2n−1

Un−1

and (xn)n∈N converges to 0. Now choose a ∈ A = A0 ⊆ F0 + 1
20U0. Then there exist

a0 ∈ F0 and u0 ∈ U0 such that a = a0 +u0. Since a−a0 = u0 ∈ (A0 − F0)∩ 1
20U0 =

1
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A1 ⊆ F1 + 1
21U1, there exist a1 ∈ F1 and u1 ∈ U1 such that a =

∑
i<n ai + 1

2nun.
Since (un)n∈N converges to 0,

∑
i ai converges to a. Now there exist ki < k(i) ≤ ki+1

such that ai = 1
2ixk(i). If we put λk(i) := 1

2i and otherwise 0, then a =
∑

i λixi is
contained in the closed convex hull of the xi.

Conversely, we show that the closed absolutely convex hull 〈B〉 of a precompact
subset B is itself precompact. Therefore let B be precompact and put V := 1

3U ,
where U is a closed and absolutely convex subset in E. Then, by definition, there
exists a finite set M such that B ⊆M + V and hence

〈B〉 ⊆ 〈M〉+ V,

since 〈M〉 is precompact as the continuous image of the unit ball in `1(M). Again
by definition, we have a finite set M1 with 〈M〉 ⊆M1 + V . Finally we get

〈B〉 ⊆M1 + 2V ⊆M1 + 2V + V ⊆M1 + U,

hence 〈B〉 being precompact. �

Definition 1.5 Let E be a locally convex space, A an absolutely convex subset of
E. We define the Minkowski functional ‖.‖A : span(A)→ R as

‖x‖A := inf {λ > 0 : x ∈ λA} .

If additionally span(A) = E, then ‖.‖A is a semi-norm on E.
If A is bounded in E, then ‖.‖A is a norm on span(A).

Definition 1.6 Let E be a locally convex space and B a closed absolutely convex
bounded subset. The linear span of B in E equipped with the Minkowski functional
of B as its norm is denoted by EB.

In general, EB is a normed space but if E is sequentially complete, EB is a
Banach space.

Remark 1.7 If not otherwise stated, sequences of scalars will be in F, being one
of the scalar fields R or C.

Lemma 1.8 For each m ∈ N let limn∈N µn,m = 0. Then there exists a monotonous
sequence (λn)n∈N with limn∈N λn = 0 such that{

µn,m
λn

: n ∈ N
}

is bounded for each m ∈ N.

Proof. For k ∈ N put

nk := max
{
k, sup

{
n : ∃ m ≤ k : |µn,m| >

1
k

}}
,

i.e. k|µn,m| ≤ 1 for m ≤ k and n ≥ nk. Then nk −→
k→∞

∞ monotonously. Now define

λn := 1
k for nk ≤ n ≤ nk+1. Clearly λn −→

n→∞
0. Furthermore, for each m we have

|µn,m|
λn

= k|µn,m| ≤ 1

provided n is so large that nm < n and hence k with nk ≤ n ≤ nk+1 satisfies
m ≤ k. �



3

Lemma 1.9 Let E be a Fréchet space. For each absolutely convex compact subset
B of E we can find an absolutely convex compact subset B1 of E such that B is
compact in EB1.

Proof. By 1.4 there exists a sequence (xn)n∈N converging to 0 ∈ E with B contained
in the closed absolutely convex hull of the sequence. By 1.8, there exists a sequence
(µn)n∈N → ∞ such that yn := µnxn still converges to 0. We put B1 := 〈(yn)n∈N〉.
Therefore B1 is an absolutely convex bounded subset of E and (xn)n∈N → 0 ∈ EB1 ,
since ‖xn‖B1 = 1

µn
. Ergo B is compact in EB1 . �

Definition 1.10 Let E and F be two locally convex spaces, then we put

L(E,F ) := {A : E → F : A is linear and continuous}

and L(E) := L(E,E).
Furthermore we define

LB(E,F ) := {A ∈ L(E,F ) : A is bounded on some neighbourhood of 0}

and LB(E) := LB(E,E).

Remark 1.11 For E and F being two normed spaces with closed unit balls U and
V , the topology of L(E,F ) is obtained from the norm

‖T‖ := inf {% > 0 : T (U) ⊆ %V }

for T ∈ L(E,F ). ‖.‖ is called operator norm on L(E,F ).

Remark 1.12 Let E and F be two locally convex spaces then for every element
T ∈ LB(E,F ) the following assertions hold:

(i) There exists a neighbourhood U of 0 in E such that T (U) is bounded in F .

(ii) There exists a neighbourhood U of 0 in E and a bounded absolutely convex
subset B ⊆ F such that T (U) ⊆ B.

(iii) There exists a bounded absolutely convex subset B ⊆ F such that the map
TB : E → FB exists and is continuous.

(iv) For every linear map L : E → F there exists a bounded subset B ⊆ F and a
neighbourhood U of 0 in E such that T (U) ⊆ B.

Thus we have shown that

LB(E,F ) =
⋃
B

L(E,FB)

where B runs through all bounded absolutely convex subsets of F .

Definition 1.13 Let X and Y be locally convex spaces. A linear mapping T :
X → Y is said to be compact if T maps a neighbourhood V of 0 in X to a relatively
compact set in Y .

In this case, an arbitrary neighbourhood W of 0 in Y absorbs the bounded set
T (V ), i.e. [0, ρ]T (V ) ⊆W for some ρ > 0. And so T−1(W ) absorbs V . Hence, T is
continuous.

Let A : X1 → X and B : Y → Y1 be continuous linear mappings. Then A−1(V )
is a neighbourhood of 0 in X1, and B(T (V )) is a relatively compact set in Y1, and
so the product BTA is also compact.
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Lemma 1.14 ([Kom99], Lemma 1.2) Let X and Y be locally convex spaces. A
linear mapping T : X → Y is compact if and only if there is a Banach space N such
that T can be decomposed into the product of two continuous linear mappings

X
T1−→ N

T2−→ Y,

where the image T2(B) of the unit ball B in N is compact. Moreover, if T is
injective, then T1 and T2 can be chosen to be injective.

Proof. Sufficiency is clear.
If T is compact, then T maps an absolutely convex neighbourhood V of 0 in X

into a compact set B = T (V ), where the right hand side denotes the closure in Y .
Let N be the normed space generated by B with B as its unit ball. Then a Cauchy
sequence in N converges under the weak topology in Y , and hence converges also
in N , i.e. N is a Banach space. Letting T1 : X → N be the mapping included by T ,
and T2 : N → Y be the embedding mapping, we obtain the desired decomposition.�

Lemma 1.15 ([Kom99], Lemma 1.3) Let Y be a linear subspace of a locally convex
space X. If V is an absolutely convex neighbourhood of 0 in Y , then there is an
absolutely convex neighbourhood U of 0 in X such that V = U ∩ Y . If Y is closed,
then for any x0 ∈ X\Y , the neighbourhood U may be chosen such that x0 /∈ U .

Proof. Since V is a neighbourhood of 0 in the relative topology, there is a neigh-
bourhood W of 0 in X such that W ∩ Y ⊆ V . Without loss of generality, we may
assume that V and W are absolutely convex. Let U be the convex hull of the union
of V and W . Since V and W are absolutely convex, U consists of all elements u
which can be expressed as u = λv + (1− λ)w, with v ∈ V , w ∈ W and 0 < λ < 1.
Consequently, U ∩ Y is the convex hull of the union of V and W ∩ Y , and hence
coincides with V . On the other hand, U is a neighbourhood of 0 in X since it
contains W , and it is also clear that U is absolutely convex.

If Y is closed, we can choose W so small such that the canonical image of W in
the Hausdorff space X\Y does not contain the canonical image of x. Then the set
U constructed above does not contain x0. �



Chapter 2

Projective and Inductive Limits
of Locally Convex Spaces

Note that in exception to the rest of this work, locally convex spaces are not neces-
sarily Hausdorff in this chapter.

The statements in this chapter can be found in any profound book on functional
analysis, e.g. [MV92], [Köt69a] or [Jar81].

Definition 2.1 Let {uα : X → Xα}α∈A be a family of linear mappings of a vector
space X into locally convex spaces Xα. Then there exists the weakest locally convex
topology on X under which all uα are continuous. This topology is called the
projective locally convex topology relative to the system (Xα, uα)α∈A. If ℘α is a
family of semi-norms defining the topology of an Xα, then

℘ = {‖uα(.)‖pα : α ∈ A, ‖.‖pα ∈ ℘α}

is a family of semi-norms defining the projective locally convex topology. This
topology is not necessarily Hausdorff.

If X =
∏
Xα is a vector space represented as the product of locally convex

spaces Xα, and if uα : X → Xα are the canonical projections, then the projective
locally convex topology is called the product locally convex topology , and the product
space X endowed with this topology is called the product of locally convex spaces
Xα.

Furthermore, if X is a linear subspace of a locally convex space Y , and if u :
X → Y is the inclusion, then the weakest locally convex topology under which u is
continuous is no other than the relative topology on X as a subspace of Y .

If the projective locally convex topology is Hausdorff, then it is a combination
of the above two special cases in the following sense: Define

u : X →
∏
α∈A

Xα : u(x) = (uα(x))α∈A;

then u is an injection because of the assumption that X is Hausdorff. The projec-
tive locally convex topology on X is then the same as the relative topology on X
identified with a linear subspace of

∏
α∈AXα under u. Conversely, if the mapping

u defined above is injective, then the projective locally convex topology on X is
Hausdorff.

5
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On the other hand, projective limits of locally convex spaces are defined as
follows. Let A be a directed set and suppose that for each α ∈ A a locally convex
space Xα is specified together with continuous linear mappings uα,β : Xα → Xβ

defined for all pairs (α, β) with α > β, and satisfying uα,γ = uβ,γ ◦ uα,β whenever
α, β, γ ∈ A and α > β > γ. Such a system (Xα, uα,β) is called a projective system of
locally convex spaces. Then, we define the projective limit of locally convex spaces
Xα to be the projective limit

lim←−
α∈A

Xα :=

{
(xα) ∈

∏
α∈A

Xα : uα,β(xα) = xβ

}

of vector spaces Xα equipped with the weakest locally convex topology under which
the canonical mappings uα : lim←−α∈AXα → Xα defined by (xα) 7→ xα are continuous.

Suppose that (Xα, uα,β) and (Yα, vα,β) are projective systems of locally convex
spaces with the same directed set A as their index set. If a continuous linear
mapping Tα : Xα → Yα is given for each α, and satisfies vα,β ◦Tα = Tβ ◦ uα,β for all
α > β, then a continuous linear mapping T : lim←−α∈AXα → lim←−α∈A Yα is defined by
T (xα) = (Tαxα), which we call the projective limit of the mappings Tα.

Let (Xα, α ∈ A) be a projective system of locally convex spaces. If α : Λ → A
is an order-preserving mapping of a directed set Λ with a cofinal image α(Λ) in A,
then the projective system (Yλ, λ ∈ Λ) defined by Yλ = Xα(λ) is called a subsystem
of the original projective system. In this case, it is easy to verify that

lim←−
λ∈Λ

Yλ = lim←−
α∈A

Xα

in the sense of a canonical isomorphism.
It follows from the continuity of uα,β that lim←−α∈AXα is a closed linear subspace

of
∏
α∈AXα.

Remark 2.2 If Xα are complete (respectively quasi-complete or sequentially com-
plete), then the projective limit lim←−α∈AXα is also complete (respectively quasi-
complete or sequentially complete).

If the directed set A is the set N of natural numbers, we only have to specify
continuous linear mappings uj+1,j : Xj+1 → Xj for all j ∈ N. The other mappings
are determined as compositions of those mappings. In this case, we often denote
the projective system by the diagram:

X1
u2,1←− X2

u3,2←− X3 ←− . . .←− Xj
uj+1,j←− . . . . (1)

If all Xj are Banach spaces, then the projective limit lim←−j∈NXj is complete and
metrizable as a locally convex space whose topology is defined by a countable family
of semi-norms.

The projective limit of a sequence of Banach spaces Xj is a Fréchet space.
Conversely, every Fréchet space can be expressed as the projective limit of a sequence
of Banach spaces.

Definition 2.3 An arbitrary locally convex space X is isomorphic to a dense linear
subspace of a projective limit lim←−α∈AXα of Banach spaces. Moreover, if we can
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choose a projective system such that for any α > β, uα,β : Xα → Xβ are not only
continuous but also compact, then X is said to be a Schwartz space.

A Fréchet space, which is also a Schwartz space is called an (FS)-space for short.

Remark 2.4 A locally convex space X is an (FS)-space if and only if it can be
expressed as the projective limit of a sequence of Banach spaces Xj such that every
uj+1,j : Xj+1 → Xj in (1) is compact.

Closed linear subspaces and quotient spaces of (FS)-spaces are (FS)-spaces.
Products

∏
j∈NXj and projective limits lim←−j∈NXj of a countable number of (FS)-

spaces are also (FS)-spaces.

Definition 2.5 Let X be a vector space and {uα : Xα → X}α∈A be a family of
linear mappings from locally convex spaces Xα. Then the strongest locally convex
topology on X under which all uα are continuous is called the (generalised) induc-
tive locally convex topology of the system (Xα, uα)α∈A. A semi-norm ‖.‖p on X is
continuous under this locally convex topology if and only if ‖uα‖p is a continuous
semi-norm on Xα for every α ∈ A. However, this locally convex topology is not
necessarily Hausdorff even if {uα(Xα) : α ∈ A} generates X. We remark also that
it is, in general, different from the inductive limit topology as a topological space,
that is, the strongest topology under which all uα are continuous.

Definition 2.6 Let X =
⊕

α∈AXα be a vector space which is expressed as a direct
sum of locally convex spaces Xα and let uα : Xα → X be the canonical injections.
Then the inductive locally convex topology on X is called the locally convex direct
sum topology and the direct sum X equipped with this topology is called the direct
sum of the locally convex spaces Xα. If ℘α is the family of all continuous semi-norms
on Xα, then the locally convex direct sum topology is the locally convex topology
defined by all semi-norms of the form

‖xα‖p =
∑
α∈A
‖xα‖pα ,

where pα ∈ ℘α. In particular, a locally convex direct sum topology is Hausdorff.
The quotient topology on a quotient space X/Y of a locally convex space X

is also the inductive locally convex topology relative to the canonical projection
X → X/Y .

If {uα(Xα) : α ∈ A} generates X then the general inductive locally convex topol-
ogy relative to a system (Xα, uα)α∈A is a combination of the above two classes.
Namely, in this case, the mapping

u :
⊕
α∈A

Xα → X with u(⊕xα) :=
∑
α∈A

uα(xα)

is surjective, andX may be regarded as a quotient space of the direct sum
⊕

α∈AXα.
The inductive locally convex topology on X is then identified with the quotient
topology of the locally convex direct sum topology.

Definition 2.7 Let {Xα}α∈A be a family of locally convex spaces with a directed
set A as its index set and {uα,β : Xα → Xβ}α<β be a family of continuous linear
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mappings satisfying uα,γ = uβ,γ ◦ uα,β whenever α, β, γ ∈ A and α < β < γ. Then
the inductive limit of the vector spaces Xα is the quotient space

lim−→
α∈A

Xα =
⊕
α∈A

Xα/ ∼, (2)

where ∼ is the linear subspace generated by all elements whose entry at the index
α is xα ∈ Xα, the entry at the index β is −uα,β(xα) for a pair α < β, and all other
entries are 0. We define the canonical mapping uα : Xα → lim−→α∈AXα to be the
mapping which sends xα ∈ Xα to the equivalence class containing the element whose
entry at the index α is xα, and 0 elsewhere. The inductive limit lim−→α∈AXα equipped
with the strongest locally convex topology under which all canonical mappings are
continuous is called the inductive limit of locally convex spaces Xα. As can be seen
from (2), this is the same as a quotient space of the direct sum of locally convex
spaces. However, in this case, the continuity of uα,β does not, in general, imply that
the linear subspace ∼ is closed, and so the inductive locally convex topology is not
necessarily Hausdorff.

Definition 2.8 Let X be a locally convex space and V a subspace of X. If for
every x ∈ X there exists an ρx > 0 such that [0, ρx]x ⊆ V , then V is called an
absorbent subset of X. If V is an absolutely convex, closed and absorbent subset of
X, then V is called a barrel in X.

A locally convex space X is called barrelled , if every barrel in X is a neigh-
bourhood of 0. Furthermore, a locally convex space is called quasi-barrelled if every
barrel which absorbs every bounded subset is a neighbourhood of 0. Trivially, every
barrelled space is quasi-barrelled and every sequentially complete quasi-barrelled
space is barrelled.

Strengthening the condition on quasi-barrelled spaces, a locally convex space
is called bornological if every semi-norm is continuous provided that it is bounded
on each bounded set. It is called ultrabornological if every semi-norm is continuous
provided that it is bounded on each Banach disc.

Remark 2.9 If the locally convex spaces Xα are barrelled (respectively quasi-
barrelled or bornological) for all α ∈ A, then the inductive limit lim−→α∈AXα is
also barrelled (respective quasi-barrelled or bornological).

Definition 2.10 An inductive system of a sequence of locally convex spaces can
be expressed by the diagram

X1
u1,2−→ X2

u2,3−→ X3 −→ . . . −→ Xj
uj,j+1−→ . . . . (3)

If uj,j+1 : Xj → Xj+1 is an isomorphism onto its image for all j, then the
sequence is called a strict inductive sequence. In this case, each Xj may be identified
with a linear subspace ofXj+1 under the isomorphism uj,j+1, and the inductive limit
X can be regarded as the union X =

⋃
j∈NXj .

Remark 2.11 If (3) is a strict inductive sequence of locally convex spaces, then
the canonical mapping uj : Xj → lim−→j∈NXj is an isomorphism onto its image for
every j. In particular, the inductive limit lim−→j∈NXj is Hausdorff.
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If, in addition, the image uj,j+1(Xj) is a closed linear subspace of Xj+1 for every
j, then the canonical image uj(Xj) in lim−→j∈NXj is a closed linear subspace for every
j. Moreover, every bounded set B in lim−→j∈NXj is the image uj(Bj) of a bounded
set Bj in Xj for some j.

Definition 2.12 A locally convex space X is said to be an (LF )-space if it can
be expressed as the strict inductive limit of a sequence of Fréchet spaces Xj . In
particular, if all Xj are (FS)-spaces, then X is said to be an (LFS)-space.

Remark 2.13 We now consider the case where the mappings uj,j+1 in the inductive
sequence (3) are compact linear injections. Then, by 1.14, we can find Banach spaces
Yj between Xj and Xj+1 and injections vj,j+1 : Yj → Yj+1 such that the diagram

X1
u1,2 //

  B
BB

BB
BB

B X2
u2,3 //

  B
BB

BB
BB

B X3
//

!!B
BB

BB
BB

BB
. . .

Y1
v1,2 //

>>||||||||
Y2

v2,3 //

>>||||||||
. . .

commutes and that the image vj,j+1(Bj) of the unit ball Bj in Yj is compact in
Yj+1 for every j. Clearly we have the canonical isomorphism lim−→j∈NXj = lim−→j∈N Yj
including the topology.

Definition 2.14 If a locally convex space E has a sequence of Bj of bounded sets
with the property that every bounded set in E is contained in some Bj , then the
strong topology of E′ is defined by a countable number of semi-norms

pj(x′) = pBj (x
′)

and so the strong dual E′ is metrizable. A countable quasi-barrelled space satisfying
this property is called a (DF )-space.

The strong dual of a (DF )-space is a Fréchet space. On the other hand, the
strong dual of a metrizable locally convex space is a (DF )-space.

Definition 2.15 If a locally convex space X is expressed as above as an inductive
limit of a sequence of locally convex spaces with compact injections uj,j+1, we say
that X is a (DFS)-space.

Without further explanation, please accept that these spaces are reflexive (DF )-
spaces.

Definition 2.16 Let Y = lim←−α∈AXα. Then Y can be expressed as a limit of a
projective system (Xα)α∈A in which the image uα : lim←−α∈AXα → Xα is dense for
all α ∈ A. Such a projective system is said to be reduced .

Remark 2.17 If (Xα)α∈A is a reduced projective system of locally convex spaces,
then the dual of its projective limit is, as a vector space, canonically isomorphic to
the inductive limit of the duals X ′

α of Xα(
lim←−
α∈A

Xα

)′
= lim−→

α∈A
X ′
α.

Moreover, the weak topology on lim←−α∈AXα coincides with the projective limit topol-
ogy of the weak topologies of the Xα.
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Remark 2.18 Let (Xα)α∈A be a reduced projective system of locally convex spaces
Xα. If for each α there exists a β ≥ α such that uβ,α maps every bounded set into
a relatively weakly compact set, then lim←−α∈AXα is semi-reflexive, and there is a
natural isomorphism (

lim←−
α∈A

Xα

)′
β

= lim−→
α∈A

(Xα)′β .

Remark 2.19 As for the dual of an inductive limit of locally convex spaces, there
is a canonical isomorphism as vector spaces(

lim−→
α∈A

Xα

)′
= lim←−

α∈A
X ′
α.

If every bounded set in lim−→α∈AXα is the image of a bounded set in some Xα,
then we have the natural isomorphism where the spaces considered are locally convex
spaces (

lim−→
α∈A

Xα

)′
β

= lim←−
α∈A

(Xα)′β .

Remark 2.20 The strong dual of an (FS)-space is a (DFS)-space. The strong
dual of a (DFS)-space is an (FS)-space.

Since these spaces are reflexive and bornological, it follows also that they are
complete as the strong dual of bornological spaces.

Remark 2.21 Closed linear subspaces and quotient spaces of (DFS)-spaces are
also (DFS)-spaces. Countable direct sums

⊕
j∈NXj and inductive limits lim−→j∈NXj

of sequences of (DFS)-spaces are (DFS)-spaces.



Chapter 3

Holomorphic Functions

Definition 3.1 Let V be an open set in the complex plane C. We denote by H(V )
the vector space of all holomorphic functions on V .

The space H(V ) is usually endowed with the topology of uniform convergence
on compact sets; i.e. the locally convex topology determined by the family of semi-
norms

‖φ‖K := sup {|φ(z)| : z ∈ K} ,

as K runs through the family of all compact sets in V . In practice, choose a
sequence K1 ⊆ K2 ⊆ . . . ⊆ V of compact sets Kj with Kj compact in Kj+1 such
that

⋃
j∈NKj = V . Then, the topology of H(V ) is determined by the sequence of

semi-norms ‖.‖Kj since every compact set in V is contained in some Kj .

Definition 3.2 For a compact set K in C, we denote by HC(K) the vector space
of all continuous functions on K which are holomorphic in the interior of K. This
is a Banach space with the norm

‖φ‖HC(K) := sup
z∈K
|φ(z)|.

Remark 3.3 By the definition of the topology of H(V ), we have the isomorphisms

H(V ) = lim←−
K⊂V

HC(K) = lim←−
j∈N

HC(Kj)

as locally convex spaces (note that here K runs through all compact subsets of V
and (Kj)j∈N be a sequence of compact sets like in the definition). The restriction
mappings HC(Kj+1) → HC(Kj) are compact by Montel’s theorem (the classical
result of complex analysis will work in this settings). Thus H(V ) can be expressed
as the projective limit of a sequence of Banach spaces with compact linear mappings.

Hence the vector space H(V ) of all holomorphic functions on an open set V ⊆ C
is an (FS)-space under the topology of uniform convergence on compact sets.

Definition 3.4 Let M be a topological, N a locally convex space, and let A ⊆M
be an arbitrary subset. We consider all continuous mappings f : Uf → N , where
Uf is some open neighbourhood of A in M . Then we put f ∼A g if there is some
open neighbourhood V of A with f |V = g |V . This defines an equivalence relation
on the set of functions considered. The equivalence class of a function f is called
the germ of f (along A) and we denote it by [f ].

11
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Analogously, we can consider germs of smooth, holomorphic or real analytic
mappings, sufficiently nice M provided.

Definition 3.5 For a compact subset K ⊂ C, we denote by H(K) the vector space
of all germs of holomorphic functions on a neighbourhood V of K. In other words,
we have

H(K) = lim−→
V⊃K

H(V ) (1)

in the sense of the inductive limit relative to the direct set of all open neighbourhoods
V of K. Here, we may take only relative compact open neighbourhoods V , and then
H(V ) may be replaced by HC(V ).

Furthermore, if we choose a sequence of compact sets K1 ⊇ K2 ⊇ . . . ⊇ K
such that

⋂
j∈NKj = K, where Kj are closed subsets with non-empty interior, Kj

compact in Kj−1, and each connected component of the interior of Kj intersects K,
then we have the representation

H(K) = lim−→
j∈N

HC(Kj), (2)

where the restriction mappings HC(Kj)→ HC(Kj+1) are compact linear injections.
Such a sequence of compact neighbourhoods can be constructed as follows. Assum-
ing that Kj has already been constructed, choose, for each x ∈ K, a closed disc Dx

of radius less than 1/j, with centre at x, and contained in the interior of Kj . Since
K is compact, there is a finite number of Dx whose interiors cover K. Then let
Kj+1 be the union of these Dx.

The space H(K) is endowed with the locally convex topology as the inductive
limit (1) of locally convex spaces H(V ). This topology coincides with the inductive
limit locally convex topology defined by (2) because (1) and (2) are equivalent
inductive limits.

Remark 3.6 Let K ⊆ C be a compact set. Then, the space H(K) equipped with
the above inductive limit locally convex topology is a (DFS)-space.

A sequence (φj)j∈N in H(K) converges if and only if the φj are represented by
holomorphic functions defined on a common open set V ⊃ K and the representatives
converge uniformly on V .

A set B ⊆ H(K) is bounded if and only if there is a common neighbourhood
V ⊃ K such that each φ ∈ B is represented by a holomorphic function on V which
is uniformly bounded on V .

A (linear) mapping f from H(K) into a locally convex space X is continuous if
and only if for each convergent sequence (φj)j∈N → φ, f(φj) converges to f(φ).

If H(K) is represented as in (2), the mapping HC(Kj)→ HC(K) is injective, so
that φ ∈ H(K) and its representative holomorphic function in HC(Kj) are in one
to one correspondence.

Definition 3.7 We introduce some standard notations.

C(Rm,F) := {f : Rm → F : f is continuous}
C1(Rm,F) :=

{
f : Rm → F : f ′ exists and is continuous

}
...

C∞(Rm,F) := {f : Rm → F : f is smooth}
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Alternatively,
C∞(Rm,F) :=

⋂
i∈N

Ci(Rm,F).

Let K ⊂ Rm be a compact subset of Rm.

CnK(Rm,F) := {f ∈ Cn(Rm,F) : supp(f) ⊆ K}

Furthermore, we define

S :=
{
f ∈ C∞(Rm,F) : max

s≤k
max
x∈Rm

(
(1 + ‖x‖2)n|f (k)(x)|

)
<∞ ∀n ∈ N

}
.

And finally
D(Rm,F) :=

⋃
K⊆Rm

C∞K (Rm,F)

as K runs through all compact subsets of Rm and

DK(Rm,F) := {f ∈ D(Rm,F) : supp(f) ⊆ K} = C∞K (Rm,F).

Definition 3.8 Let U ⊆ C be an open subset. By H∞(U) we denote the space of
bounded holomorphic functions.

Equipped with the supremum norm, H∞(U) is a Banach space.

Definition 3.9 Let U ⊆ C be open, E a locally convex space and let E′ denote its
dual. A function f : U → E is called weakly holomorphic if for every x′ ∈ E′

x′ ◦ f : U → C

is holomorphic in the usual sense.
By Hω(U,E) we denote the space of weakly holomorphic functions from U into

E.

Definition 3.10 A subset U of a vector space E over C is said to be finitely open
if U ∩F is open in the Euclidean topology of F for each finite dimensional subspace
F of E.

Definition 3.11 Let U be a finitely open subset of a vector space E over C and F
a locally convex space. A function f : U → F is Gâteaux holomorphic if for each
ξ ∈ U, ν ∈ E and ϕ ∈ F ′ the C valued function of one complex variable

λ→ (ϕ ◦ f) (ξ + λν)

is holomorphic on some neighbourhood of 0 in C. We let HG(U,F ) denote the set
of all Gâteaux holomorphic mappings from U into F and write HG(U) in place of
HG(U,C).
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Definition 3.12 Let U be an open subset of a Fréchet space E and F a locally
convex space. A function f : U → F is called holomorphic if f is continuous and
Gâteaux holomorphic on U .

We let H(U,F ) denote the set of all holomorphic mappings from U into F and
write H(U) in place of H(U,C).

Now let B be a compact subset in a Fréchet space E and F a locally convex
space. By the standard notation H(B,F ) denotes the space of germs of holomorphic
functions on B with values in F equipped with the inductive limit topology.

Recall that f ∈ H(B,F ) if there exists a neighbourhood V of B in E and a
holomorphic function f̂ : V → F whose germ on B is f .

Definition 3.13 Let U and V denote open subsets of Banach spaces E and F ,
respectively, and suppose f : U × V → C. The function f is called separately
holomorphic if for each x ∈ U the function fx : y ∈ V → f(x, y) is holomorphic and
for each y ∈ V the function fy : x ∈ U → f(x, y) is holomorphic.



Chapter 4

The Grothendieck Köthe Silva
Duality

Lemma 4.1 ([Kri02], first Lemma in 4.6) Let E be a one dimensional locally convex
space and a ∈ E, a 6= 0, then the mapping f : F→ E : t→ at is an isomorphism of
locally convex spaces.

Proof. Since {a} is a basis of the vector space E, f is bijective and every linear
isomorphism f : F → E looks like this with a := f(1). Because the scalar multi-
plication is continuous, so is f . Using that E is separated there exists a semi-norm
‖.‖q with ‖a‖q ≥ 1. Then

|f−1(at)| = |t| = ‖at‖q
‖a‖q

≤ ‖at‖q,

hence |f−1| ≤ ‖.‖q. Therefore f−1 is continuous. �

Lemma 4.2 (Continuous linear functionals) ([Jar81], Proposition 2.3.4 or cf.
[Kri02], second Lemma in 4.6) Let E be a locally convex space and f : E → F a
non-trivial linear functional on E. The following statements are equivalent:

(i) f is continuous.

(ii) |f | is a continuous semi-norm.

(iii) ker(f) is closed.

Proof. (i) ⇒ (ii) is clear, since |.| is a continuous norm on F.
(ii) ⇒ (iii) follows from the fact that ker(f) = ker(|f |).
(iii)⇒ (i) Since f is non-trivial, it maps E onto F. ker(f) is closed by hypothesis,

hence E/ ker(f) is a locally convex space, too. Since f |ker(f)= 0, f factorizes over
the according quotient map π : E → E/ ker(f) to a linear map f̃ : E/ ker(f) → F.
Because f is onto, so is f̃ . Moreover, f̃ is one to one since 0 = f̃(π(x)) = f(x), hence
x ∈ ker(f) and therefore π(x) = 0. By 4.1 f̃ is an isomorphism of locally convex
spaces. Finally f = f̃ ◦ π is continuous as composition of continuous mappings.

Now let f be non-continuous, i.e. ker(f) not closed and a ∈ ker(f)\ ker(f).
Without loss of generality, let f(a) = 1. The map f̂ : ker(f)×F→ E : (x, t)→ x+at
is continuous, linear and bijective, since E → ker(f) × F : y → (y − af(y), f(y)) is
clearly the right-inverse to f̂ . The image of f̂ is in ker(f), hence it is all of E. �

15
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Remark 4.3 In the following, we will denote by C∞ the complex manifold C∪{∞}
also known as the Riemannian sphere. By R := R∪{∞} ∼= S1 we denote the closure
of R in C∞. And by D we denote the unit disk in F.

Lemma 4.4 ([Con90], III.8.2 or [Kri02], 7.18 Sublemma) If µ is a complex-valued
regular Borel measure on a compact subset K of C, then

µ̂(w) =
∫

dµ(z)
z − w

is holomorphic on C∞\K, and µ̂(∞) = 0.

Proof. To show that µ̂ is holomorphic on C∞\K, let w,w0 ∈ C\K and note that

µ̂(w)− µ̂(w0)
w − w0

=
∫
K

dµ(z)
(z − w)(z − w0)

.

As w → w0,
1

(z−w)(z−w0) →
1

(z−w0)2
converges uniformly for z in K, so that µ̂ has a

derivative at w0 and
dµ̂

dw
(w0) =

∫
K

dµ̂(z)
(z − w0)2

.

So µ̂ is holomorphic on C\K. To show that it is holomorphic at infinity, note that
µ̂→ 0 as z →∞, so infinity is a removable singularity. �

Theorem 4.5 ([Con90], IV.4.1 or [Kri02], 7.18) Let X be completely regular. If
L : C(X)→ C is a continuous linear functional, then there is a compact set K and
a regular Borel measure µ on K such that L(f) =

∫
K fdµ for every f in C(X).

Conversely, each such measure defines an element of C(X)′.

Proof. By C.6, each measure µ supported on a compact set K defines an element
of C(X)′. In fact, if L(f) =

∫
K fdµ, then

|L(f)| ≤ ‖µ‖‖f |K ‖∞,

and so L is continuous.
Now assume L ∈ C(X)′. There are compact sets K1, . . . ,Kn and positive num-

bers α1, . . . , αn such that

|L(f)| ≤
n∑
j=1

αj‖f |Kj ‖∞

(see 4.2). Let K =
⋃n
j=1Kj and α = max {αj : 1 ≤ j ≤ n}. Then

|L(f)| ≤
n∑
j=1

α‖f |K ‖∞.

Hence if f ∈ C(X) and f |K= 0, then L(f) = 0.
Define F : C(K)→ F as follows. If g ∈ C(K), let g̃ be any continuous extension

of g to X and put F (g) = L(g̃). To check that F is well defined, suppose that g̃1 and
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g̃2 are both extensions of g to X. Then g̃1− g̃2 = 0 on K, and hence L(g̃1) = L(g̃2).
Thus F is well defined.

Since L is a continuous linear functional and the restriction to K is surjective,
F : C(K)→ F is linear. If g ∈ C(K) and g̃ is an extension on C(X), then

|F (g)| = |L(g̃)| ≤ α‖g̃ |K ‖∞ = α‖g‖,

where the norm is the norm of C(X). By C.6 there is a measure µ on K such that
F (g) =

∫
K gdµ. If f ∈ C(X), then g = f |K∈ C(K) and so

L(f) = F (g) =
∫
K
fdµ.

Theorem 4.6 (GKS-duality) ([Con90], IV.4.2) L ∈ H(D)′ if and only if there is
an r < 1 and a unique function g holomorphic on C∞\rD with g(∞) = 0 such that

L(f) =
1

2π i

∫
γ
fg (1)

for every f in H(D), where γ(t) = ρei t, 0 ≤ t ≤ 2π, and r < ρ < 1.

Proof. Let g be given and define L as in (1). If K = {z ∈ C : |z| = ρ}, then

|L(f)| = 1
2π i

∣∣∣∣∫ 2π

0
f(ρei t)g(ρei t) i ρei tdt

∣∣∣∣ ≤ 1
2π i
‖f |K ‖∞‖g |K ‖∞2πρ.

So if c = ρ‖g |K ‖∞ then |L(f)| ≤ c‖f |K ‖∞ and L ∈ H(D)′.
Now assume that L ∈ H(D)′. The theorem of Hahn-Banach C.2 implies there

is an F in C(D)′ such that F |H(D)= L. By 4.5 there is a compact set K contained
in D and a measure µ on K such that L(f) =

∫
K fdµ for every f in H(D). Define

g : C∞\K → C by g(∞) := 0 and

g(z) := −
∫
K

1
w − z

dµ(w)

for z ∈ C\K. By 4.4, g is holomorphic on C∞\K. Let ρ < 1 such that K ⊆ ρD. If
γ(t) = ρei t, 0 ≤ t ≤ 2π, then Cauchy’s integral formula implies

f(w) =
1

2π i

∫
γ

f(z)
z − w

dz

for |w| < ρ; in particular, this is true for w ∈ K. Thus,

L(f) =
∫
K
f(w)dµ(w)

=
∫
K

(
ρ

2π

∫ 2π

0

f(ρei t)
ρei t − w

ei tdt

)
dµ(w)

=
ρ

2π

∫ 2π

0
f(ρei t)ei t

(∫
K

1
ρei t − w

dµ(w)
)
dt

=
1

2π i

∫
γ
f(z)g(z)dz.
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To prove the uniqueness of g, we show that from
∫
γ fg = 0 for all f ∈ H(D) it

follows that g = 0. We set f(z) := 1
z−a . For a /∈ D it is 1

z−a ∈ D. Hence

0 =
∫
γ

g(x)
z − a

dz = 2π i g(a),

the latter from Cauchy’s integral theorem (see 4.9). �

Definition 4.7 Let U ⊆ C be open. A 1-chain is a formal linear combination
c :=

∑
j kjcj of curves cj : [0, 1]→ U with coefficients kj ∈ Z. The set of all 1-chains

forms an Abelian group regarding the component-wise addition. The boundary ∂c
of a 1-chain is a 0-chain, i.e. a formal linear combination of points defined by
∂c :=

∑
j kj(cj(1) − cj(0)). A 1-chain is called a cycle if ∂c = 0. That is, if all cj

are closed curves. The set of all cycles is a subset of the 1-chains.
The integral for 1-forms ω on 1-cycles c is defined as∫

c
ω :=

∑
j

kj

∫
cj

ω,

the index is defined respectively as

n(c, z) :=
∑
j

kj
1

2π i

∫
cj

dω

ω − z

for all z /∈ c ([0, 1]) :=
⋃
j cj ([0, 1]).

Definition 4.8 Let U ⊆ C be open. A 1-cycle c is called 0-homologous in U , if
n(c, z) = 0 holds for all z /∈ U .

Two cycles c1 and c2 are called homologous in U , if n(c1, z) = n(c2, z) holds for
all z /∈ U . The 0-homologous cycles form a subgroup of the 0-cycles.

The quotient group H1(U,Z) is called 1st homology group of U with quotients
in Z.

Theorem 4.9 (Integral theorem and integral formula of Cauchy) Let U ⊆
C be open, f : U → F holomorphic. For arbitrary cycles c1 and c2 homologous in
U ∫

c1

f(z)dz =
∫
c2

f(z)dz

holds. For a 0-homologous cycle c in U

f(z)n(c, z) =
1

2π i

∫
c

f(ω)
ω − z

dω

holds for all z ∈ U\im(c).

Reference. A proof can be found in [Kri03], Theorem 9.21.

Lemma 4.10 (Jordan-System) Let U ⊆ C be open and K ⊆ U compact. Then
there exists a 1-cycle c =

∑
j cj of smooth closed curves cj in U\K with pairwise
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disjoint images such that n(c, z) ∈ {0, 1} for all z /∈ im(c). We define the inside
and the outside of c by

inn(c) := {z /∈ im(c) : n(c, z) = 1}
out(c) := {z /∈ im(c) : n(c, z) = 0}

respectively.
Then K ⊆ inn(c) ⊆ U or equivalently C\U ⊆ out(c) ⊆ C\K. This is named

Jordan-System.

Reference. A proof can be found in [Kri03], Lemma 9.22.

Theorem 4.11 (GKS-duality) ([Kri02], 7.19) Let U ⊆ C be open. The dual
space of the Fréchet space H(U) can be identified with H0(C∞\U), the space of the
germs of holomorphic functions f on C∞\U with f(∞) = 0.

Proof. Let [g] ∈ H0(C∞\U), i.e. g holomorphic on a neighbourhood W of C∞\U .
Without loss of generality, let the boundary of W be parameterisable by finitely
many C1-curves ck. Resulting,

µg(f) :=
∑
k

1
2π i

∫
ck

f(z)
z − w

dz

defines a linear functional on C(U) ⊇ H(U). This definition depends only on the
germ [g] of g following from Cauchy’s integral theorem 4.9.

Conversely let µ ∈ H(U)′ and according to C.2 µ ∈ C(U,C)′. From C(K,C) ⊆
C(U,C) for a compact subset K ⊆ U we get C(U,C)′ ⊆ C(K,C)′. Thus the
support of µ is a compact subset K ⊆ U , i.e. µ ∈ C(K,C)′. Due to 4.4 the map
µ̂ : C∞\K → C is holomorphic and according to Cauchy’s integral formula 4.9

µ(f) = −
n∑
k=1

1
2π i

µ

(
z →

∫
ck

f(ω)
ω − z

dω

)

= −
n∑
k=1

1
2π i

µ

(∑
i

f(c(ti))
c(ti)− z

c′(ti)|Ii|

)

= −
n∑
k=1

1
2π i

∑
i

f(c(ti))µ
(

1
c(ti)− z

)
c′(ti)|Ii|

= −
n∑
k=1

1
2π i

∫
ck

f(ω)µ
(
z → 1

ω − z

)
dω

= −
∑
k

1
2π i

∫
ck

f(ω)µ̂(ω)dω

with f ∈ H(U) holds. Therefore µ is given by an ”inner product” with µ̂ ∈
H0(C∞\K). �
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Chapter 5

Nuclear Spaces

Definition 5.1 For two arbitrary normed spaces E and F , An(E,F ) for n ∈ N
denotes the collection of all mappings A ∈ L(E,F ) whose range is at most n-
dimensional.

For an arbitrary mapping T ∈ L(E,F ) we designate

αn(T ) := inf {‖T −A‖ : A ∈ An(E,F )}

as the n-th approximation number of T . Clearly, we always have

‖T‖ = α0(T ) ≥ α1(T ) ≥ . . . ≥ 0.

Theorem 5.2 ([Pie72], 8.1.2 Proposition 5) Let E,F and G be normed spaces. For
two mappings T ∈ L(E,F ) and S ∈ L(F,G) we have

αn+m(ST ) ≤ αn(S)αm(T ).

Proof. For an arbitrary positive number σ we determine mappings B ∈ Am(E,F )
and A ∈ An(F,G) with

‖T −B‖ ≤ αm(T ) + σ

and
‖S −A‖ ≤ αn(S) + σ.

Then since A(T −B) + SB ∈ An+m(E,G), we have the estimate

αn+m(ST ) ≤ ‖ST −A(T −B)− SB‖
= ‖(S −A)(T −B)‖
≤ ‖S −A‖‖T −B‖
≤ (αn(S) + σ)(αm(T ) + σ),

from which we get the required inequality by taking the limit as σ → 0. �

Definition 5.3 Let E and F be normed spaces and p a positive number. We
consider the collection lp(E,F ) of all mappings T ∈ L(E,F ) for which∑

n∈N
αn(T )p <∞.

Clearly, lp(E,F ) is a linear space (cf. [Pie72], 8.2.2).
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Definition 5.4 By

%p(T ) :=

(∑
n

αn(T )p
)1/p

we define on lp(E,F ) a real valued function with the following properties

(i) %p(T ) ≥ 0,

(ii) from %p(T ) = 0 it follows that T = 0,

(iii) for all numbers λ we have %p(λT ) = |λ|%p(T ), and

(iv) for some number σp ≥ 1 we have the inequality

%p(S + T ) ≤ σp (%p(S) + %p(T ))

for S, T ∈ lp(E,F ).

On the basis of the properties stated above, %p(T ) will be designated as a quasi-
norm. We obtain a metric topology on lp(E,F ) by using the sets

Uε(T ) := {S ∈ lp(E,F ) : %p(S − T ) ≤ ε}

with ε > 0 as a fundamental system of neighbourhoods of the mapping T .

Theorem 5.5 ([Pie72], 8.2.7) For E, F and G three normed spaces, T ∈ lp(E,F ),
and S ∈ lq(F,G) it follows that ST ∈ ls(E,G) with

1
s

=
1
p

+
1
q
.

Proof. By applying the generalised Hölder inequality (cf. e.g. [Kri02], 2.3)(∑
n∈N
|ξnηn|s

)1/s

≤

(∑
n∈N
|ξn|p

)1/p(∑
n∈N
|ηn|q

)1/q

and 5.2 we get the estimate

%s(ST ) =

(∑
n∈N

αn(ST )s
)1/s

≤

(
2
∑
n∈N

α2n(ST )s
)1/s

≤

(
2
∑
n∈N

(αn(S)αn(T ))s
)1/s

≤ 21/s

(∑
n∈N

αn(S)q
)1/q (∑

n∈N
αn(T )p

)1/p

= 21/s%q(S)%p(T ).

Therefore the product ST belongs to ls(E,G). �
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Definition 5.6 Let E be a locally convex space and E′ its topological dual. Further
let A ⊆ E and B ⊆ E′ be two subsets. Then by

A◦ :=
{
x′ ∈ E′ : |x′(x)| ≤ 1,∀x ∈ A

}
respectively

B◦ :=
{
x ∈ E : |x′(x)| ≤ 1,∀x′ ∈ B

}
we define the polar of A respectively B.

By A◦◦ := (A◦)◦ we denote the bi-polar of A. Obviously, we have A ⊆ A◦◦.

Lemma 5.7 ([Pie72], 8.4.1 Lemma 1) Let E be a normed space and U its closed unit
ball. For each n-dimensional linear subspace F of E there are elements x1, . . . , xn ∈
F and linear forms a1, . . . , an ∈ E′ with ‖xi‖U = 1, ‖ak‖U◦ = 1 and ak(xi) = δi,k,
where δi,k denotes the Kronecker delta. Then we have

x =
n∑
i=1

ai(x)xi

for all x ∈ F .

Proof. We consider an arbitrary system of linearly independent elements y1, . . . , yn
in F and set

δ(b1, . . . , bn) := |det (bk(yi))|

for b1, . . . , bn ∈ U◦. Then δ is a continuous function on the compact n-fold topolog-
ical product of the weakly compact unit ball U◦ of E′. Consequently, there must
exist elements a1, . . . , an ∈ U◦ for which δ(a1, . . . , an) takes the maximum δ0, which
certainly must be greater than 0, since expanding y1, . . . , yn to a basis and getting
the dual basis b1, . . . , bn yields δ(b1, . . . , bn) = 1.

If the elements x1, . . . , xn ∈ F are the uniquely determined elements of the
solution set of the system of equations

n∑
j=1

aj(yi)xj = yi

for i = 1, . . . , n, we then have
ak(xj) = δj,k.

Since
n∑
j=1

aj(yi)bk(xj) = bk(yi)

for b1, . . . , bn ∈ U◦, we get

δ(a1, . . . , an) |det (bk(xj))| = δ(b1, . . . , bn)

from the multiplication of determinants. Therefore, the inequality

|det (bk(xj))| ≤ 1
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holds for b1, . . . , bn ∈ U◦. If for fixed i we set bk = ak with k 6= i and bi = b ∈ U◦,
we then obtain

|b(xi)| ≤ 1

for b ∈ U◦ or ‖xi‖U ≤ 1. Since ‖ai‖U◦ ≤ 1 holds by hypothesis, it follows from

1 = ai(xi) ≤ ‖xi‖U‖ai‖U◦ ,

that ‖xi‖U = 1 and ‖ai‖U◦ = 1.
Since the elements x1, . . . , xn form a linearly independent basis in F we can

write each element x ∈ F uniquely as a linear combination

x =
n∑
i=1

ξixi.

Here we have

ak(x) =
n∑
i=1

ξiak(xi) = ξk

and hence the desired result. �

Lemma 5.8 ([Pie72], 8.4.1 Lemma 2) Let E and F be two normed spaces and U ,
V the closed unit balls in E respectively F . Each mapping T ∈ An(E,F ) can be
represented in the form

Tx =
n∑
i=1

λiai(x)yi

with linear forms ai ∈ U◦ and elements yi ∈ V so that the inequality

|λi| ≤ ‖T‖

holds for the numbers λi, 1 ≤ i ≤ n.

Proof. For the n-dimensional range of T we determine elements yi ∈ range(T ) and
linear forms bi ∈ F ′ with the properties presented in 5.7. The identity

Tx =
n∑
i=1

T ′bi(x)yi

then holds for x ∈ E and we have

λi = ‖T ′bi‖U◦ > 0.

Finally, if we set

ai =
T ′bi
λi

,

we get the representation

Tx =
n∑
i=1

λiai(x)yi

for the mapping T . Moreover, we have ai ∈ U◦, yi ∈ V and |λi| ≤ ‖T‖. �
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Theorem 5.9 ([Pie72], 8.4.2) Let E, F be normed spaces with closed unit balls U
and V . Each mapping T ∈ lp(E,F ) with 0 < p ≤ 1 can be represented as

Tx =
∑
n∈N

λnan(x)yn

with linear forms an ∈ U◦ and elements yn ∈ V , such that the inequality(∑
n∈N
|λn|p

)1/p

≤ 22+3/p%p(T )

holds for the numbers λn, n ∈ N.

Proof. For n ∈ N we determine the mappings An ∈ A2n−2(E,F ) with

‖T −An‖ ≤ 2α2n−2(T )

and set
Bn := An+1 −An.

Then the statements
dn = dim(range(Bn)) ≤ 2n+2

and
‖Bn‖ ≤ ‖T −An‖+ ‖T −An+1‖ ≤ 4α2n−2(T )

are valid. Consequently, we have

dn‖Bn‖p ≤ 22p+n+2α2n−2(T )p.

Since the sequence (αm(T ))m decreases monotonically, the inequality

∑
n∈N

2n−1α2n−2(T )p ≤
∑
n∈N

2n−2∑
m=2n−1−1

αm(T )p =
∑
m∈N

αm(T )p = %p(T )p

holds. Therefore, the estimate∑
n∈N

dn‖Bn‖p ≤ 22p+3%p(T )p

is valid.
Using 5.8 we write the mappings Bn in the form

Bnx =
dn∑
i=1

λni a
n
i (x)y

n
i

where ani ∈ U◦, yni ∈ V and |λni | ≤ ‖Bn‖ for any given n. Consequently, we have

∑
n∈N

dn∑
i=1

|λni |p ≤
∑
n∈N

dn‖Bn‖p ≤ 22p+3%p(T )p.

Our assertion is thus proved because for all x ∈ E the identity

Tx = lim
m→∞

Am+1x =
∑
n∈N

Bnx =
∑
n∈N

dn∑
i=1

λni a
n
i (x)y

n
i

is true. �
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Definition 5.10 Let E and F be two arbitrary normed spaces with closed unit
balls U and V . A mapping T ∈ L(E,F ) is called nuclear if there are continuous
linear forms an ∈ E′ and elements yn ∈ F with∑

n∈N
‖an‖U◦‖yn‖V <∞

such that T has the form
Tx =

∑
n∈N

an(x)yn

for x ∈ E.
For each nuclear mapping T we set

ν(T ) := inf

{∑
n∈N
‖an‖U◦‖yn‖V

}
,

where the infimum is taken over all possible representations of T .

Lemma 5.11 ([Pie72], 8.4.3) Let E and F be two normed spaces. Every mapping
T ∈ `1(E,F ) is nuclear and we have ν(T ) ≤ 25%1(T ).

Proof. This is an immediate consequence of 5.9 and definition 5.10. �

Definition 5.12 A locally convex space E is called nuclear if for any convex bal-
anced neighbourhood V of 0 there exists another convex balanced neighbourhood
U ⊆ V of 0 such that the canonical mapping from EU onto EV is nuclear.

We designate as dual nuclear all locally convex spaces whose strong topological
dual is nuclear.

Definition 5.13 A sequence of numbers (λi)i∈N is called rapidly decreasing if the
sequences of numbers

(
(i+ 1)kλi

)
i∈N is bounded for all k ∈ N.

By a small computation, we can conclude that if (λi)i∈N is a rapidly decreasing
sequence of numbers the inequality∑

i∈N
(i+ 1)k|λi|p <∞

holds for all k ∈ N and p > 0.
The space of the rapidly decreasing sequences is denoted by s (see 8.4).

Definition 5.14 For two normed spaces E and F we consider the collection s(E,F )
of all mappings T ∈ L(E,F ) for which the inequality∑

n∈N
αn(T )p <∞

holds for every positive number p, and we say that these mappings are of type s.
We have

s(E,F ) =
⋂
p>0

lp(E,F )

and therefore s(E,F ) is a linear space.
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Remark 5.15 Let E and F be two normed spaces. A mapping T ∈ L(E,F ) is of
type s if and only if the sequence of its approximation numbers is rapidly decreasing.

Theorem 5.16 ([Pie72], 8.5.6) Let E and F be two normed spaces with closed
unit balls U and V . A mapping T ∈ L(E,F ) is of type s if and only if it can be
represented in the form

Tx =
∑
n∈N

λnan(x)yn

with linear forms an ∈ U◦, elements yn ∈ V and a rapidly decreasing sequence of
numbers (λn)n∈N.

Proof. First we prove necessity. If T is a mapping in s(E,F ), we determine the
mappings An ∈ An(E,F ) with

‖T −An‖ ≤ 2αn(T )

for n ∈ N. Then the statements

dn := dim(range(Bn)) ≤ 2n+ 1

and
‖Bn‖ ≤ 4αn(T )

are valid for the mappings
Bn := An+1 −An,

and we have ∑
n∈N

dn‖Bn‖ ≤ 2 4p
∑
n∈N

(n+ 1)αn(T )p <∞

for all p > 0. Using 5.8, we put the mapping Bn in the form

Bnx =
dn∑
i=1

λni a
n
i (x)y

n
i

where ani ∈ U◦, yni ∈ V and |λni | ≤ ‖Bn‖. Consequently, we have

∑
n∈N

dn∑
i=1

|λni |p ≤
∑
n∈N

dn‖Bn‖p <∞

for all p > 0, and for all x ∈ E the identity

Tx = lim
m→∞

Am+1x =
∑
n∈N

Bnx =
∑
n∈N

dn∑
i=1

λni a
n
i (x)y

n
i

holds. We have thus shown that the mapping T can be represented as

Tx =
∑
m∈N

λmam(x)ym

with linear forms am ∈ U◦ and elements ym ∈ V such that for each integer m the
inequality ∑

m∈N
|λm|p <∞
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holds. Since we can always reorder N such that |λ0| ≥ |λ1| ≥ . . . ≥ 0, the sequence
(λm)m∈N is rapidly decreasing.

Now to sufficiency. We consider a mapping T ∈ L(E,F ) which can be repre-
sented in the given way. Since the mapping A with

Ax =
n−1∑
m=0

λmam(x)ym

for x ∈ E belongs to An(E,F ), we have

αn(T ) ≤ ‖T −A‖ ≤
∞∑
m=n

|λm|.

Consequently, for all p between 0 and 1, the inequality

αn(T )p ≤

( ∞∑
m=n

|λm|

)p
≤

∞∑
m=n

|λm|p

is valid, and we get the estimate

∑
n∈N

αn(T )p ≤
∑
n∈N

∞∑
m=n

|λm|p =
∑
m∈N

(m+ 1)|λm|p <∞.

Therefore T is of type s. �

Theorem 5.17 ([Pie72], 8.6.1) A locally convex space E is nuclear if and only if
for some, hence each, positive number p the following statement is valid.

For each neighbourhood U of 0 in E there is a neighbourhood V of 0 in E with
V ⊆ U such that the canonical mapping from EV onto EU is of type lp.

Proof. To prove necessity, we determine for an arbitrary neighbourhood U = U0

of 0 neighbourhoods U1, . . . , U4n of 0 with U4n ⊆ . . . ⊆ U1 ⊆ U0 such that the
canonical mappings EUk

→ EUk−1
are absolutely summing, and set V = U4n. Then

the mapping EV → EU equals

EU4n → EU4n−1 → . . .→ EU1 → EU0

and is of type l1/n by 5.5, because we can combine each pair of consecutive mappings
in the sequence to obtain a mapping of type l2.

If p is an arbitrary positive number, we choose n greater than 1/p. Then the
canonical mapping EV → EU is of type lp.

We now prove sufficiency. If the stated assertion is satisfied for some posi-
tive number p, we determine for a neighbourhood U = U0 of 0 neighbourhoods
U1, . . . , U4n of 0 with U4n ⊆ . . . ⊆ U1 ⊆ U0 such that the canonical mappings
EUk

→ EUk−1
are of type lp. Here, the natural number n is assumed to be greater

than p. We now set V = Un. Then the mapping EV → EU equals

EUn → EUn−1 → . . .→ EU1 → EU0

and is of type lp/n by 5.5. But since p/n < 1, EV → EU must be nuclear by 5.11.�
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Theorem 5.18 ([Pie72], 8.6.6) For a nuclear or dual nuclear locally convex space
E, all canonical mappings EA → EU with A bounded in E and U a neighbourhood
of 0 in E are of type s.

Proof. If V is an arbitrary neighbourhood of 0 in E with V ⊆ U we have

EA → EV → EU .

On the basis of 5.17 we can, in the case of a nuclear space, choose V in such a way
that EV → EU is of type lp for an arbitrary positive number p. Consequently (see
5.14), the canonical mapping EA → EU must be of type s.

The proof of our assertion for dual nuclear locally convex spaces proceeds in the
same way if we write the canonical mapping EA → EU in the form

EA → EB → EU

with a bounded set B in E. �
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Chapter 6

Real Analytic Functions

Definition 6.1 A function f , with domain U ⊆ R open and range F, is called real
analytic at α ∈ U if the function f may be represented by a convergent power series

f(x) =
∞∑
j=0

aj(x− α)j

on some interval of positive radius centred at α. The function is said to be real
analytic on V ⊆ U if it is real analytic at each α ∈ V .

The linear space of all real analytic functions f : R → C will be denoted by
Cω(R).

Now we want to provide a topology on Cω(R). But there is no elementary
topology at hand which results in a complete linear Fréchet space. The next obvious
thing to do is to consider inductive and projective limit topologies.

Definition 6.2 Let A be an arbitrary subset of a complex analytic manifold V .
By HP,A(V ) we denote lim←−K⊆A lim−→U⊇K H(U) as U runs through all open neigh-

bourhoods of K and K runs through all compact subsets of A in V .
And by HI,A(V ) we denote lim−→U⊇AH(U), as U runs through all open neigh-

bourhoods of A in V .

Lemma 6.3 ([Mar63], Proposition 1.1) Let V be a complex analytic manifold. Ev-
ery element of H(V )′ can be represented by a measure with compact support, i.e.
there exists a measure µ with compact support such that for all φ ∈ H(V ) we have

〈T, φ〉 =
∫
V
φdµ.

Proof. This is an application of the theorem of Hahn-Banach C.2. More precisely,
the map µ → T (µ) is a topological vector homomorphism from C(V )′, equipped
with its strong dual topology, to H(V )′. One easily can verify that C(V )′ is an
(LF )-space. As we know, H(V )′ is itself an (LF )-space and hence the application
µ→ T (µ) which is surjective by C.3, is a homomorphism. �

Lemma 6.4 ([Mar63], Proposition 1.2) If A is a compact or open subset of a com-
plex analytic manifold V , then we have HI,A(V )′ = HP,A(V )′.

31
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Proof. The injection from HI,A(V ) to HP,A(V ) being continuous, it follows imme-
diately that HP,A(V )′ ⊆ HI,A(V )′.

If A is compact we have by definition HP,A(V ) = HI,A(V ). If A is an open
subset of V , by definition we have HI,A(V ) = H(A). If T ∈ H(A)′, by 6.3 there
exists a measure with compact support K included in A and µT such that for all
φ ∈ H(A) we have

〈T, φ〉 =
∫
A
φdµT .

Hence T is continuous on H(A) through the inductive topology on HK(V ), in
consequence belonging to HP,A(V )′. �

Since we now know that the two possible approaches to equip the space of real
analytic functions with a topology coincide, we are free to choose.

Remark 6.5 The topology we will use is given by the following equality

Cω(R) := lim←−
K⊆R

lim−→
U⊇K

H(U),

asK runs through all compact subsets of R and U runs over all open neighbourhoods
of K in C∞. We can consider only sequences of K’s and U ’s and we usually put

Cω(R) := lim←−
N∈N

H([−N,N ]) = lim←−
N∈N

lim−→
n∈N

H(UN,n),

where UN,n := [−N,N ] + 1
nD.

The inductive topology on Cω(R) will be denoted by

Cωi (R) := lim−→
U⊇R

H(U),

as U runs through all open neighbourhoods of R in C.

Theorem 6.6 ([BD98], Proposition 4 (1)) A subset B ⊆ Cω(R) is bounded if and
only if for every compact interval I in R there is an n ∈ N such that

C := sup

{∣∣∣∣∣φ(i)(x)
i! ni

∣∣∣∣∣ : φ ∈ B, x ∈ I, i ∈ N

}
<∞.

Proof. If B is bounded, for every compact interval I ⊆ R the set B is bounded in
H(I) = lim−→n∈NH

∞ (I + 1
nD
)
. Since this inductive limit is regular, there are n ∈ N

and M > 0 such that each φ ∈ B can be extended to a

φ̃ ∈ H∞(I +
1
n

D)

with
sup

z∈I+ 1
n

D
|φ̃(z)| ≤M.

By the Cauchy inequalities, for x ∈ I and i ∈ N, we have∥∥∥∥∥ φ(i)(x)
i! (2n)i

∥∥∥∥∥ ≤ max
|z|= 1

2n

|φ̃(x+ z)| ≤M.
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Conversely, we fix a compact interval I in R and select n satisfying the prereq-
uisite. Define

φ̃(z) :=
∞∑
i=0

1
i!
φ(i)(x)(z − x)i

for x ∈ I, z ∈ I + 1
2n ⊆ C. Since φ is real analytic,

φ̃ ∈ H∞(I +
1
2n

D)

is well defined and extends φ with norm less or equal to C. Thus B is bounded in
Cω(R). �

Theorem 6.7 ([Mar66], Proposition 1.2 and Proposition 1.7) The strong dual space
Cω(R)′β coincides topologically with lim−→N∈NH([−N,N ])′β and it is a complete nu-
clear (LF )-space. Both Cω(R) and its strong dual Cω(R)′β are reflexive.

Proof. Since Cω(R) is a complete Schwartz space, Cω(R)′β is ultrabornological by
C.8.

The topology of the dual space Cω(R)′β is weaker than the inductive limit topol-
ogy of lim−→N∈NH([−N,N ])′β; i.e. the map from lim−→N∈NH([−N,N ])′β to Cω(R)′β is
continuous and hence has a closed graph. By Runge’s theorem (cf. [Kri02], 7.18)
the projective limit lim←−N∈NH([−N,N ]) is a reduced projective system and we can
apply 2.17 to obtain that lim−→N∈NH([−N,N ])′β ∼= Cω(R)′β is a bijection. There-
fore the inverse exists and has a closed graph. Since Cω(R)′β is ultrabornological,
by Grothendieck’s closed graph theorem the inverse is continuous too. Hence the
spaces must coincide.

Since Cω(R) is ultrabornological, Cω(R)′β = L(Cω(R),R) and hence the strong
dual is complete.

The nuclearity of H(C∞\[−N,N ]) implies the reflexivity and nuclearity of both
Cω(R) and Cω(R)′β via 4.11. �

Theorem 6.8 ([BD98], Proposition 4 (2)) Let δx be the Dirac functional associated
to x which is given by δx(ϕ) = ϕ(x). The linear span H of the set {δx : x ∈ R} is a
sequentially dense subset of Cω(R)′β.

Proof. Fix u ∈ Cω(R)′β. By 6.7 there is N ∈ N with u ∈ H([−N,N ])′β. The linear
span HN of {δx : x ∈ [−N,N ]} is dense in H([−N,N ])′β, because it is clearly weak-
star dense and H([−N,N ]) is a reflexive nuclear (DF )-space. Since H([−N,N ])′β
is a Fréchet space, we can find a sequence (uj)j∈N in HN , hence in H, such that
the sequence converges to u ∈ H([−N,N ])′β. Therefore (uj)j∈N converges to u ∈
Cω(R)′β. �

Theorem 6.9 ([BD98], Proposition 3) The space Cω(R) is isomorphic to a projec-
tive limit of a sequence of spaces isomorphic to H(D) and Cω(R)′β is isomorphic to
an inductive limit of a sequence of spaces isomorphic to H(D).

Proof. First consider the composition operator with the map

ϕ : D→ C∞\[−N,N ] : ϕ(z) :=
N

2

(
z +

1
z

)
, (1)
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which yields the following isomorphisms

H(C∞\[−N,N ]) ' H(D) ' H(C∞\D).

From the GKS-duality 4.11 we have H([−N,N ])′β ' H(C∞\[−N,N ]) which, by
(1), is isomorphic to H(C∞\D). Applying the GKS-duality again gives

H(C∞\D) ∼= H(D)′β.

Utilising the reflexivity of H(D)′β to use the bi-polar theorem, we get

H([−N,N ]) ∼= H(D).

The conclusion for Cω(R)′β follows from the GKS-duality 4.11 to get

H([−N,N ])′β ' H(C∞\[−N,N ])

and 6.7. �

Lemma 6.10 Let I ⊆ R be an open interval and µ ∈ Cω(R)′β. If I 6= R suppose

supp(µ) = {0}. Assume that for some r : C → R+ with r(x)
x → 0 for |x| → ∞ µ

satisfies

(*)
|=(z)| ≤ r(|z|) ∀z ∈ C with µ̂(z) = 0,

where µ̂ denotes the Fourier transform of µ.

(E) For all x ∈ R exists t ∈ C such that

|x− t| ≤ r(x) and |µ̂(t)| ≥ e−r(t)

(3.10) For every x ∈ i R± exists t ∈ C such that

|x− t| ≤ r(x) and |µ̂(t)| ≥ eHG(t)−r(t)

where G := 〈supp(µ)〉 denotes the convex hull of supp(µ) and HG(z) :=
sup {=(ξz) : ξ ∈ G}.

Then Tµ : Cω(I − G) → Cω(I) has a continuous right inverse, where Tµ is the
convolution operator given by Tµ(f)(x) := 〈y, f(x− y)〉.

Reference. The proof can be found in [Lan94], 3.2 Lemma.

Theorem 6.11 ([BD98], Proposition 5) The space of the periodic real analytic
functions Cω2π(R) is complemented in Cω(R).

Proof. Let µ := δπ − δ−π. Then Tµ(f)(x) = (µ ? f)(x) = f(x − π) f(x + π) and
hence Cω2π(R) = ker(Tµ). Now we apply 6.10 to I = R and constant r = 1. We have
µ̂ = Tπ(δ)− T−π(δ) : z 7→ eiπz − e− iπz = 2 i sin(πz) and µ̂−1(0) = Z. Thus the first
condition is satisfied.
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We have supp(µ) = {π,−π}, hence G = [−π, π] and I − G = R. Furthermore
HG(z) = π|=(z)|. Note that

|µ̂(x+ i y) = |eπ(ix−y) − e−π(ix−y)|
= |e−πy(cos(πx) + i sin(πx))− eπy(cos(πx)− i sin(πx))|
≥ e−πy| cos(πx) + i sin(πx)| − eπy| cos(πx)− i sin(πx)|
= e−πy − eπy

= − sinh(πy).

Hence, the two other conditions are satisfied.
Now let σ : Cω(R)→ Cω(R) be a continuous linear right inverse for Tµ given by

6.10. Then q := 1−σ◦Tµ has image in ker(Tµ), since Tµ◦q = Tµ−Tµ◦σ◦Tµ = 0, and
is a left-inverse for the inclusion of ker(Tµ) in C∞(R), since q |ker(Tµ)= 1− 0 = 1.�

Theorem 6.12 The space Cω2π(R) of 2π periodic real analytic functions is isomor-
phic to H(D).

Proof. Cω2π(R) is isomorphic to the space of real analytic functions on the unit circle.
By using the Laurent series representation, this is isomorphic toH(D)×H(C∞\D) ∼=
H(D)×H(D).

Now we identify H(D) with Λ1(α) by [MV92] 29.4.(3), following from 27.27,
27.25 and 27.16.(1) for which the isomorphism Λ1(α) × Λ1(α) ∼= Λ1(α) (for shift-
stable α) holds by [MV92] §29, example 3(b). From the GKS-duality 4.11 we obtain
H(D)×H(D) ∼= H(D). Finally, take the duals. �

Theorem 6.13 Cω(R)′β has a complemented subspace isomorphic to H(D).

Proof. By 6.12 Cω(R) has a complemented subspace isomorphic to H(D). Taking
the duals and applying the GKS-duality 4.11 gives the desired result. �
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Chapter 7

Real Analytic Curves

Definition 7.1 Let E be a locally convex space. A curve c : R → E is called real
analytic if l ◦ c : R→ R is real analytic for all l ∈ E′.

By Cω(R, E) we denote the space of all real analytic curves from R to E.

Definition 7.2 Let E be a locally convex space. A curve c : R → E is called
topologically real analytic if c is locally given by a power series converging with
respect to the locally convex topology.

By Cωt (R, E) we denote the space of all topologically real analytic curves from
R to E.

Definition 7.3 Let E be a locally convex space. A curve c : R → E is called
bornologically real analytic if c factors locally over a topologically real analytic curve
into EB for some bounded absolutely convex set B ⊆ E.

By Cωb (R, E) we denote the space of all bornologically real analytic curves from
R to E.

Theorem 7.4 ([BD98], Proposition 10.(2)) Let E be a complete locally convex
space, f : R→ E be given. The following assertions are equivalent.

(i) f ∈ Cωt (R, E).

(ii) f ∈ Cω(R, E) and for every compact interval I ⊆ R there is an n ∈ N such
that for all continuous semi-norms ‖.‖p on E

sup
x∈I

sup
i∈N

∣∣∣∣∣‖f (i)(x))‖p
i!ni

∣∣∣∣∣ <∞.
Proof. (i) ⇒ (ii) By hypothesis, for all x ∈ I there exists an r > 0 depending on x

such that for all h > 0 with |h| ≤ 2r the power series
∑

i∈N
f (i)(x)
i! hi converges. Put

Ur(x) := {y ∈ R : |y − x| < r} .

Then {Ur(x) : x ∈ I} is an open covering of I. Hence there exists a ρ > 0, called
Lebesgue-number, such that for every subset A with a diameter less than ρ there

37
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exists an x ∈ I such that A ⊆ Ur(x). Therefore for all x ∈ I the Taylor series
converges for |h| < ρ

2 . Using Cauchy’s integral formula, we get

f (n)(ω)
n!

hn =
∫
γ
2π

f(z)
(z − ω)n+1

hndz = 2π‖u ◦ f‖∞

where γ is a circle with radius h around ω. Applying ‖.‖p proves the statement.

(ii) ⇒ (i) Let n be as in the hypothesis and |h| ≤ r < 1
n . Then

∑
i∈N

f (i)(x)
i! hi

converges uniformly and absolutely for |h| < r and x ∈ I. In fact, consider∑
i∈N

∥∥∥∥∥f (i)(x)
i!

hi

∥∥∥∥∥
p

≤
∑
i∈N

∥∥∥f (i)(x)
∥∥∥
p

1
i!

(rn)i
1
ni
.

The right side converges absolutely, since

‖f (i)(x)‖p
i! ni

is bounded. �

Lemma 7.5 ([Köt69a], 29.1.(5)) Let E be a locally convex and metrizable space
and (Bn)n∈N a sequence of bounded subsets of E. Then there exist positive scalars
ρn, n ∈ N such that

⋃
n∈N ρnBn is also bounded.

Proof. If V1 ⊇ V2 ⊇ · · · is a base of absolutely convex neighbourhoods of 0 in E,
and if ρnBn ⊆ Vn, then

⋃∞
n=m ρnBn ⊆ Vm for each m ∈ N, and hence

⋃
n∈N ρnBn is

bounded. �

Theorem 7.6 ([BD98], Proposition 12) If F is a Fréchet space, then the spaces
Cωt (R, F ) and Cωb (R, F ) coincide.

Proof. First we observe that every f ∈ Cωt (R, F ) is locally a bornologically real
analytic function for an arbitrary locally convex space F . Indeed, from 7.4, for an
arbitrary compact interval I ⊆ R, we get n ∈ N such that

C :=

{
f (i)(x)
i! ni

: x ∈ I, i ∈ N

}
is bounded in F . We denote by B the closed absolutely convex hull of C. Then it
is easy to see that for all x ∈ I and a suitable ε

f(t) =
∞∑
i=0

f (i)(x)(t− x)i (1)

for all t ∈ ]x− ε, x+ ε[, and the series converges in FB.
To conclude, we fix f ∈ Cωt (R, F ) and we assume that F is a Fréchet space. For

each n ∈ N there are a closed absolutely convex bounded subset Bn of F and an
εn > 0 such that for all x ∈ [−n, n] equation (1) holds for ε = εn and the series
converges in FBn . By 7.5 in metrizable spaces there is for each sequence of bounded
sets another bounded set absorbing all the sets in the sequence. Hence there is a
closed absolutely convex bounded set B ⊆ F and λn > 0 such that Bn ⊆ λnB for
all n ∈ N . Thus, for all x ∈ R, the series in (1) converges in FB with a positive
radius of convergence. �
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Theorem 7.7 ([BD98], Lemma 14) If f ∈ Cω(R, E), then for every compact in-
terval I ⊆ R and every continuous semi-norm ‖.‖p on E there is an n ∈ N such
that

sup

{∣∣∣∣∣(u ◦ f)(i)(x)
i! ni

∣∣∣∣∣ : |u(x)| ≤ ‖x‖p, u ∈ E′, i ∈ N, t ∈ I

}
<∞.

In particular,
B :=

{
u ◦ f : |u(x)| ≤ ‖x‖p, u ∈ E′

}
is bounded in Cω(R) for all continuous semi-norms ‖.‖p on E.

Proof. Since f is smooth, u ◦ f is smooth for all bounded u : E → R and satisfies
(u ◦ f)(i)(t) = u(f (i)(t)). Furthermore, by hypothesis we have |u(x)| ≤ ‖x‖p. Hence
it suffices to show

sup


∥∥∥∥∥f (i)(x)

i!ni

∥∥∥∥∥
q

: |u(x)| ≤ ‖x‖p, u ∈ E′, i ∈ N, t ∈ I

 <∞

for f : R → ̂E/ ker(‖.‖q). The range being a Banach-space, we can apply [KM97]
9.6. to ensure that f ∈ Cωt (R, E).

From 7.4, for an arbitrary compact interval I ⊆ R, we get n ∈ N such that{
f (i)(t)
i! ni

: t ∈ I, i ∈ N

}

is bounded in E. Hence we have

u

({
f (i)(t)
i! ni

: t ∈ I, i ∈ N

})
=

{
(u ◦ f)(i)(t)

i! ni
: t ∈ I, i ∈ N

}
.

This proves the hypothesis, since the right hand side is bounded as the image of a
bounded set under a bounded map.

Inserting (u ◦ f) into 6.6 assures that the set B is bounded in Cω(R). �

Theorem 7.8 ([BD98], Theorem 16) Let E be a sequentially complete locally con-
vex space. The spaces Cω(R, E) and Cω(R)⊗̂E = L(Cω(R)′β, E) are algebraically
isomorphic in a canonical way.

Moreover, this isomorphism maps Cωb (R, E) onto LB(Cω(R)′β, E).

Proof. We define
∆ : R→ Cω(R)′β : ∆(x) := δx.

Since g ◦∆ = g for all g ∈ Cω(R) =
(
Cω(R)′β

)′
, we have ∆ ∈ Cω(R, Cω(R)′β). This

clearly implies that the map

φ : L(Cω(R)′β, E)→ Cω(R, E) : φ(W ) := W ◦∆

is well-defined and linear (see [KM90], 1.9).
We put

H := span ({δx : x ∈ R}) ⊆ Cω(R)′β,
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and endow it with the topology induced by Cω(R)′β. For f ∈ Cω(R, E) we denote
by

ψ(f) : H → E : ψ(f)(δx) := f(x),

for all x ∈ R. We check that ψ(f) is continuous. Fix a continuous semi-norm ‖.‖p
on E. By 7.7 and 6.6,

B :=
{
u ◦ f : |u(x)| ≤ ‖x‖p, u ∈ E′

}
is bounded in Cω(R). If y ∈ H belongs to the polar B◦ taken in Cω(R)′β we have

sup
|u(x)|≤‖x‖p

|u(ψ(f)(y))| = sup
|u(x)|≤‖x‖p

|〈y, u ◦ f〉| ≤ 1.

By 6.8, H is sequentially dense in Cω(R)′β. Since E is sequentially complete, there
is the unique continuous extension ψ(f) : Cω(R)′β → E. Clearly, ψ(f) ∈ Cω(R)⊗̂E.
Furthermore ψ : Cω(R, E)→ Cω(R)⊗̂E is well-defined and linear. Now, both φ ◦ψ
and ψ ◦ φ coincide with the identity in the corresponding space. Therefore both
are linear isomorphisms. Observe that (ψ ◦ φ)(W ) = W has to be checked only on
{δx : x ∈ R} for each W ∈ L(Cω(R)′β, E).

To see the second part, observe that f ∈ Cωb (R, E) if and only if f ∈ Cω(R, EB)
for some closed absolutely convex bounded subset B of E. By the proof given above,
for the Banach space EB,

ψ(f) ∈ L(Cω(R)′β, EB) ⊆ LB(Cω(R)′β, E).

Conversely, if W ∈ LB(Cω(R)′β, E) there is a B with

W ∈ L(Cω(R)′β, EB).

Thus φ(W ) ∈ Cω(R, EB) ⊆ Cωb (R, E). �



Chapter 8

Sequence Spaces

Definition 8.1 Let M be a set, a : M → F with a(t) ≥ 1 for all t ∈M . We set

Λ∞(M,a) :=
{
x : M → F : ‖x‖k := sup

t∈M
|x(t)|a(t)k <∞ ∀k

}
and

Λ1(M,a) :=

{
x : M → F : ‖x‖k :=

∑
t∈M
|x(t)|a(t)k <∞ ∀k

}
.

Remark 8.2 Equipped with the respective semi-norms ‖.‖k, k ∈ N, Λ∞(M,a) and
Λ1(M,a) are Fréchet spaces, since for each semi-norm k the mapping Ek → Ek+1

is compact and hence the spaces are projective limits of Fréchet spaces.

Remark 8.3 In definition 8.1, put M = N (here N is meant explicitly without 0)
and a(n) = eαn , where 0 < αn ≤ αn+1, for all n ∈ N and supn∈N

log(n)
αn

=: q < ∞.
Then

Λ∞(N, (eαn)n∈N) = Λ1(N, (eαn)n∈N) =: Λ∞(α)

is called power series space of infinite type. Λ∞(α) is nuclear (see [MV92], 29.6.(1)).

Remark 8.4 If we put M = N and a(n) = n in the definition 8.1, then

Λ∞(N, (n)n∈N) = Λ1(N, (n)n∈N) =: s

is the space of rapidly decreasing sequences. It is the special case αn = log(n + 1)
of 8.3.

Remark 8.5 For M = I ×N, where I is an arbitrary non-empty set and a(i, n) =
eαn with α as in 8.3 we get the following isomorphisms in a canonical way (see
[Vog85], 1. Example (3)).

Λ∞(I × N, (eαn)i∈I,n∈N) ∼= `∞(I)⊗̂Λ∞(α)
Λ1(I × N, (eαn)i∈I,n∈N) ∼= `1(I)⊗̂Λ∞(α)

Because of the nuclearity of Λ∞(α) the tensor products ⊗̂ε and ⊗̂π coincide. There-
fore we can write in this case ⊗̂ for both.

41
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Theorem 8.6 ([Vog85], Proposition 1.1) Let I be an infinite index set and (αn)n∈N
an increasing sequence with supn∈N

αn+1

αn
=: p < ∞. Then the following isomor-

phisms hold:

`∞(I)⊗̂Λ∞(α) ∼= `∞(I)⊗̂s,
`1(I)⊗̂Λ∞(α) ∼= `1(I)⊗̂s.

Proof. By 8.5 it suffices to identify the spaces Λ∞(M,a) and Λ∞(M, b) (respectively
Λ1(M,a) and Λ1(M, b)) where M = I × N and a(i, k) := eαk , b(i, k) := k. We give
the isomorphism by means of a bijection of M onto itself.

We put n0 = 0, nk := [keαk ] and mk := nk−nk−1 for all k ∈ N. For every k ∈ N
the set I can be written as a disjoint union of subsets Ik,j , j ∈ I with |Ik,j | = mk.
We put Ik,j = {ik,j,µ : µ = 1, . . . ,mk} and define

φ(ik,j,µ, k) := (j, nk + µ)

for ik,j,µ ∈ Ik,j . Furthermore put q := supn∈N
log(n)
αn

. Then φ is a bijection of M
onto itself with the following properties

b(φ(i, k)) = nk + µ ≤ nk+1 ≤ (k + 1)eαk+1 ≤ e(q+1)αk+1 ≤ e(q+1)pαk

≤ (a(i, k))(q+1)p ,

b(φ(i, k)) = nk + µ ≥ nk ≥
1
2
(nk + 1) ≥ k

2
eαk ≥ 1

2
eαk

≥ 1
2
a(i, k).

Hence the map x → x ◦ φ defines an isomorphism of Λ∞(M,a) onto Λ∞(M, b)
(respectively Λ1(M,a) onto Λ1(M, b)). �

Definition 8.7 A sequence (en)n∈N of elements in a locally convex space E is called
basis if for each element x ∈ E there is a uniquely determined sequence of numbers
(ξn)n∈N such that

x = lim
m→∞

m∑
n=0

ξnen.

For each basis the correspondence x 7→ ξm defines linear forms fm on E with
ξm = 〈x, fm〉. Here we have

〈en, fm〉 = δn,m

for n,m ∈ N.

Definition 8.8 We say that a basis (en)n∈N of a locally convex space E is equicon-
tinuous if for each zero neighbourhood U there exists a zero neighbourhood V for
which the inequalities

| 〈x, fn〉 |‖en‖U ≤ ‖x‖V

are valid for all x ∈ E and all n ∈ N. In particular, all linear forms fn are continuous.

Remark 8.9 Each basis in a Fréchet space is equicontinuous (c.f. [Pie72], 10.1.2.
Theorem).
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Definition 8.10 We call an equicontinuous basis (en)n∈N absolute if for each zero
neighbourhood U there is a zero neighbourhood V for which the inequalities∑

n∈N
| 〈x, fn〉 |‖en‖U ≤ ‖x‖V

hold for all x ∈ E. Then for all elements x ∈ E we have the identity

x =
∑
n∈N
〈x, fn〉 en,

where the series on the right hand side is absolutely summable.

Theorem 8.11 ([Pie72], 10.1.4. Theorem) Each complete locally convex space E
with an absolute basis (en)n∈N can be identified with a sequence space Λ.

Proof. We set
P := {(‖en‖U )n∈N : U ∈ U(E)}

where U(E) denotes the set of zero neighbourhoods in E. We now construct the
associated sequence space Λ, whose locally convex topology is obtained from the
semi-norms

‖(ξn)n∈N‖U :=
∑
n∈N
|ξn| ‖en‖U

with U ∈ U(E). Since, by hypothesis, there is for each zero neighbourhood U ∈
U(E) a zero neighbourhood V ∈ U(E) with∥∥(〈x, fn〉)n∈N

∥∥
U

=
∑
n∈N
|〈x, fn〉| ‖x‖U ≤ ‖x‖V

for all x ∈ E, the expression

Ax := (〈x, fn〉)n∈N

defines a one to one continuous linear mapping from E into Λ. Since all families
(ξnen)n∈N with (ξn)n∈N ∈ Λ in E are absolutely summable, we can set

x =
∑
n∈N

ξnen.

But then the relation Ax = (ξn)n∈N is valid and we have shown that A is also a
mapping onto Λ. Finally, the continuity of the inverse mapping A−1 follows from
the inequality

‖
∑
n∈N

ξnen‖U ≤
∑
n∈N
|ξn| ‖en‖U = ‖(ξn)n∈N‖U

which is valid for (ξn)n∈N ∈ Λ and U ∈ U(E). �

Remark 8.12 Since the unit vectors en := (δn,m)m∈N form an absolute basis in
every sequence space Λ, we get from 8.11 that the collection of all complete locally
convex spaces in which there is an absolute basis coincides with the collection of all
sequence spaces.
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Remark 8.13 ([Pie72], 10.3.4. - 10.3.9.) In the nuclear locally convex space S the
Hermitian functions

hr(t) = et
2/2 d

r

dtr
(e−t

2
)

form a basis. See [Jar81], 14.8.5.(d)

Remark 8.14 In the nuclear locally convex space D[−1,1] the transformed Hermi-
tian functions

gr(t) = hr

(
tan

(π
2
t
))

form a basis since the correspondence

[f(t)]→
[
f
(
tan

(π
2
t
))]

is an isomorphism between the spaces S and D[−1,1].

Lemma 8.15 The nuclear locally convex spaces C∞[−1,1],D[−1,1] and S can all be
identified with the nuclear sequence space s. In other words we have

s ∼= C∞[−1,1]
∼= D[−1,1]

∼= S

Outline of the proof. Using the transformation in 8.11 we immediately get the de-
sired result.

Reference. A complete proof is given in [MV92], 29.5.(2)-(4).

Theorem 8.16 (Borel’s theorem) ([KM97]) If (ak)k∈N is an arbitrary sequence
of real numbers, then there exists a smooth function F such that F (k)(0) = ak for
all k ∈ N.

Proof. Let φ ∈ C∞ with

φ(x) =
{

0 : |x| > 1
1 : |x| < 1

2

and let

bk := k +
k∑

m=0

|ak|.

The function

F (x) :=
∞∑
m=0

ak
k!
xkφ(bkx)

has the required properties. Only finitely many terms of the series are nonzero
on any closed interval [c, d] not containing the origin, since φ(bkx) vanishes for
|x| > 1

bk
, a quantity which converges to 0. Thus F is smooth in a neighbourhood

of any nonzero x, and we have to show that it is equally regular at the origin. We
form the derivatives. If x is not 0 these are given by the convergent series

F (n)(x) =
∞∑
k=0

n∑
j=0

n!ak
(n− j)! j! (k − j)!

φ(n−j)(bkx)b
n−j
k
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and we shall show that this series of continuous functions converges uniformly on
the real axis using the Weierstraß M -test.

Let Mn = maxj≤n ‖φ(j)‖∞ and suppose k ≥ n + 1. Since only terms for which
|x|bk < 1 will contribute to the sum we have

|ak||x|k−jbn−jk ≤ |ak|bn−kk ≤ bn+1−k
k ≤ 1.

Accordingly∣∣∣∣∣∣
∞∑
k=0

n∑
j=0

n!ak
(n− j)! j! (k − j)!

xk−jφ(n−j)(bkx)b
n−j
k

∣∣∣∣∣∣ ≤
∞∑
k=0

2nMn
1

(k − n)!
.

Hence the sum of the terms is given for which k ≥ n+ 1 is bounded by

2nMn

∞∑
k=n

1
(k − n)!

= e2nMn.

Since the series giving F (n) converges uniformly on the axis, that function may
be extended to x = 0 in such a way that it becomes continuous and F (n−1), if
so extended, is differentiable at the origin and its derivative is F (n)(0). But this
number is just an. �

Definition 8.17 By ω we denote the space of all sequences (sometimes referred to
as FN).

Lemma 8.18 ([Vog85], Lemma 1.4 or [Vog77a], Lemma 1.6 or [Vog77b], Lemma
3.1) There exists an exact sequence

0→ s→ s→ ω → 0.

Proof. Let
∆ : D[−1,1] → ω : φ→ (φ(0), φ′(0), . . .).

Then according to 8.16 ∆ is surjective. The kernel of ∆ is isomorphic to D[−1,0] ×
D[0,1]. Since D[a,b] can be isomorphically mapped to D[−1,1] for all a < b then by
8.15 we have D[a,b]

∼= s for all a < b. Furthermore we have s× s ∼= s and hence the
exact sequence

0→ D[−1,0] ×D[0,1] → D[−1,1] → ω → 0

leads to an exact sequence

0→ s→ s→ ω → 0.

Lemma 8.19 Let E, F and G be Fréchet spaces, A ∈ L(E,F ) and B ∈ L(F,G).
The sequence

0 −→ E
A−→ F

B−→ G −→ 0

is exact if and only if the dual sequence

0 −→ G′
B′
−→ F ′

A′
−→ E′ −→ 0

is exact.
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Reference. The proof can be found in [MV92] 26.4.

Lemma 8.20 (Canonical Resolution) ([Vog85], Lemma 1.5, [MV92], 26.14 Def-
inition and following) Let E be a Fréchet space. There is an exact sequence, called
canonical resolution

0→ E
π−→
∏
k∈N

Êk
σ−→
∏
k∈N

Êk → 0

defined by π(x) := (πk(x))k where πk : E → Êk is the canonical dense mapping and
by σ ((xk)k) := (xk − πk+1,k(xk+1))k where πk+1,k ◦ πk+1 = πk with ‖πk+1,k‖ ≤ 1.

Proof. Clearly,
∏
k∈N Êk is a Fréchet space. From the continuity of πk and πk+1,k

and the properties of the product topology we get as a consequence the continuity
of π and σ. By 8.19, it suffices to prove the hypothesis for the dual exact sequence

0→

(∏
k∈N

Êk

)′
σ′−→

(∏
k∈N

Êk

)′
π′−→ E′ → 0.

We recall that (∏
k∈N

Êk

)′
=
⊕
k∈N

Êk
′

with
y(x) =

∑
k∈N

yk(xk)

for y ∈
⊕

k∈N Êk
′
and x ∈

∏
k∈N Êk. If we put

Uk := {x ∈ E : ‖x‖k ≤ 1} ,

then π′k : Êk
′
→ E′ is an isometric bijection between Êk

′
and E′U◦

k
as can be seen

from the following diagram

E
πk //

l2 ��

Êk

l1
��

R

since l1◦πk ∈ E′U◦
k

if and only if l1◦πk |Uk
is bounded, which it is, as the conjunction

of bounded functions. On the other hand, if l2 is bounded on Uk we have l2 |ker(πk)=

0 hence there exists an l1 ∈ Êk
′
. We therefore identify Êk

′
with E′U◦

k
. Hence, for

y ∈
⊕

k∈N Êk
′
we have

π′(y) =
∑
k∈N

yk

and
σ′(y) = (yk − yk−1)k∈N
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with y0 := 0. From this, we immediately get that π′ is onto and σ′ is one to one.
Clearly, π′ ◦ σ′ = 0 and therefore σ′

(⊕
k∈N Êk

′)
⊆ ker(π′). To prove kerπ′ ⊆

σ′
(⊕

k∈N Êk
′)

, choose a y ∈ ker(π′). Then

η :=

ηk :=
k∑
j=1

yj


k∈N

is in
∏
k∈N Êk

′
. If yk = 0 for all k > m, we have

ηk =
k∑
j=1

yj =
m∑
j=1

yj = π′(y) = 0.

Hence, η ∈
⊕

k∈N Êk
′
and obviously we have σ′(η) = (yk)k∈N = y. �
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Chapter 9

The Property (Ω)

Definition 9.1 Let F be a Fréchet space with a topology defined by an increasing
system of semi-norms (‖.‖k)k∈N. We say that F has property (Ω) if for every p there
exists a q such that for all k there exists a C > 0 and we have

‖u‖2Uq
≤ C‖u‖Uk

‖u‖Up

for u ∈ F ′.
Recall that ‖u‖Uk

:= sup {|u(x)| : x ∈ Uk} ∈ [0,∞] where Uk is the unit ball
in F , i.e. Uk := {x ∈ F : ‖x‖k ≤ 1}. These ‖.‖Uk

are not to be confused with the
continuous semi-norms on F ′.

Lemma 9.2 ([Vog85], Lemma 1.3 and [Vog77b], Theorem 2.3) If

0→ E → F
q−→ Λ1(M,a)→ 0

is an exact sequence of Fréchet spaces, E having property (Ω) and Λ1(M,a) be-
ing nuclear, then the sequence splits, i.e. the mapping q : F → Λ1(M,a) has a
continuous right inverse.

Proof. For sake of simplicity, we only consider the case Λ1(M,a) = s. We assume
that E is a subspace of F and let Wk ⊇ Wk+1 be a basis of absolutely convex
neighbourhoods of 0 in F . Then we define inductively Vk as a neighbourhood basis
of 0 in E by

Vk := Wk ∩ E,

such that
Vk ⊆ rνkVk+1 +

1
r
Vk−1 (1)

for all k ∈ N and r > 2 by using property (Ω) in an equivalent form derived from
A.10 (ii”’) and with appropriate νk ∈ N. Note that in the iteration step k − 1 we
can choose Vk freely (by property (Ω)) but we must take care that for Vk+1 the
conditions are met in respect to the next iteration step.

If ej is the j-th unit vector in s, then, using the canonical norms,

‖x‖k :=
∑
j

jk|xj |

49
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and we have ‖ej‖k = jk. By the open mapping theorem C.15, q(Wk) ⊆ s is open.
Hence, for every k there exists an nk ∈ N and a Ck ≥ 1 with

{x : ‖x‖nk
≤ 1} ⊆ Ckq(Wk).

Using
ej
jnk
∈ Ckq(Wk)

we find a sequence (dkj )j∈N in F such that

dkj ∈ CkjnkWk,

q(dkj ) = ej

for all j ∈ N. We can assume that nk ≤ nk+1, Ck ≤ Ck+1 and that

(νk + 1)nk+1 ≤ nk+2,

Cνk+1
k 2(k+1)νk+1 ≤ Ck+1

for all k ∈ N.
Multiplying equation (1) with 2Ckjnk+1 and choosing r = 2k+1Ckj

nk+1 we obtain

2Ckjnk+1Vk ⊆ 2Cνk+1
k jnk+1+νknk+12(k+1)νkVk+1 + 2−kVk−1

⊆ Ck+1j
nk+2Vk+1 + 2−kVk−1 (2)

Since
dk+1
j − dkj ∈ 2Ck+1j

nk+1Wk ∩ E = 2Ckjnk+1Vk,

we can choose inductively a sequence (akj )k∈N in E in the following way

a0
j = 0,

akj ∈ Ckjnk+1Vk,

then dk+1
j − dkj + akj ∈ 2Ckjnk+1Vk and according to (2) we can find ak+1

j ∈
Ck+1j

nk+2Vk+1 such that dk+1
j − dkj + akj − a

k+1
j ∈ 2−kVk−1.

We define
Rkj := dkj − akj ∈ 2Ckjnk+1Wk,

then we have
Rk+1
j −Rkj = dk+1

j − dkj + akj − ak+1
j ∈ 2−kVk−1

for all j, k ∈ N. It follows that

lim
k→∞

Rkj =: Rj

exists and Rj ∈ 2Ckjnk+1Wk +Wk−1 ⊆ 3Ckjnk+1Wk−1. So we can define

R(x) :=
∑
j

xjRj
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for x := (xj)j∈N ∈ s and with ‖R(x)‖k denoting the semi-norm on F belonging to
Wk, respectively ‖x‖k the canonical norm on s, we obtain

‖R(x)‖k−1 ≤ 3Ck‖x‖nk+1
.

Therefore R ∈ L(s, F ) and, because

q(Rj) = lim
k→∞

q(Rkj ) = lim
k→∞

q(dkj ) = ej ,

we get q ◦R = id. �

Theorem 9.3 ([Vog85], Lemma 3.1) Let E be a Fréchet space equipped with an
increasing fundamental system of semi-norms. If E has property (Ω) and {xi : i ∈ I}
is dense in E, then E is isomorphic to a quotient space of `1(I)⊗̂s.

Proof. The case of a finite index set I is trivial. So let I be infinite. From 8.20 we
use the canonical resolution

0→ E →
∏
k∈N

Êk →
∏
k∈N

Êk → 0.

We choose a Banach space F such that every Êk is isomorphic to a complemented
subspace of F and such that F has a dense subset of a cardinality less than that of
I, e.g.

F :=

{
x := (xk)k ∈

∏
k∈N

Êk : ‖x‖ :=
∑
k∈N
‖xk‖k <∞

}
.

For any k let Fk be a topological complement of Êk in F , i.e.

F = Êk ⊕ Fk.

The direct sum of the canonical resolution above with the exact sequence

0→ 0→
∏
k∈N

Fk
id−→
∏
k∈N

Fk → 0

can, by utilising ∏
k∈N

Ek ⊕
∏
k∈N

Fk =
∏
k∈N

Ek ⊕ Fk = FN,

be considered as an exact sequence

0→ E → FN q1−→ FN → 0.

We now consider the continuous linear mapping

`1(I)→ F :
∑
i∈I

λiei →
∑
i∈I

λifi

for (λi)i∈I ∈ `1(I), i.e.
∑

i∈I |λi| < ∞, {ei : i ∈ I} the canonical basis in `1(I) and
{fi ∈ F : i ∈ I, ‖fi‖ ≤ 1} dense in the unit ball of F . This map is clearly onto, since



52 CHAPTER 9. THE PROPERTY (Ω)

for each y ∈ F there exists an fi0 such that ‖y − fi0‖ ≤ 1
2 and an fi1 such that

‖y − fi0 − 1
2fi1‖ ≤

1
4 ; iteration leads to∥∥∥∥∥y −

n∑
k=0

1
2k
fik

∥∥∥∥∥ ≤ 1
2n+1

.

Therefore we have an exact sequence

0→ K → `1(I)→ F → 0

where the kernel K is a Banach space which has a dense subset of cardinality
|J | ≤ |I| and hence has a map `1(J)→ K which is onto.

According to 8.18
0→ s→ s→ ω → 0

is an exact sequence. We tensor it with the previous one considered as a column
and obtain the following commutative diagram with exact rows and columns

0 0 0

0 // F ⊗̂s

OO

// F ⊗̂s

OO

// FN

OO

// 0

0 // `1(I)⊗̂s

OO

ı1 // `1(I)⊗̂s

OO

// `1(I)N

OO

// 0

0 // K⊗̂s

OO

1
// K⊗̂s

ı2

OO

// KN

OO

// 0

0

OO

0

OO

0

OO

Consider the quotient space(
`1(I)⊗̂s

)
/
(
ı1
(
`1(I)⊗̂s

)
⊕ ı2

(
K⊗̂s

))
which, by the second isomorphism theorem, equals(

`1(I)⊗̂s/ı1
(
`1(I)⊗̂s

))
/
(
K⊗̂s/1

(
K⊗̂s

))
=

(
`1(I)

)N
/KN

=
(
`1(I)/K

)N
= FN.

This results in an exact sequence(
`1(I)⊗̂s

)
⊕
(
K⊗̂s

) ı1⊕ı2−→ `1(I)⊗̂s q2−→ FN → 0.

We denote by N the kernel of q2. Thus N is a quotient of
(
`1(I)⊗̂s

)
⊕
(
K⊗̂s

)
.
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We now consider the following diagram

0 0

0 // E // FN q1 //

OO

FN //

OO

0

0 // E //

id

OO

H

p1

OO

p2
// `1(I)⊗̂s

q2

OO

// 0

N

OO

id
// N

OO

0

OO

0

OO

where
H =

{
(x, y) ∈ FN ×

(
`1(I)⊗̂s

)
: q1(x) = q2(y)

}
and

p1(x, y) = x, p2(x, y) = y.

Using 9.2 with Λ1(I×N, (n)(i,n)∈I×N) = `1(I)⊗̂s (see 8.5 and 8.6) we know that the
second row splits and we obtain from the first column the first row of the following
diagram. The right column is the same as before. The rest of the diagram is
constructed as in the previous one.

0 0

0 // N // H

OO

// FN

OO

// 0

0 // N //

id

OO

G

OO

// `1(I)⊗̂s

OO

// 0

N

OO

id
// N

OO

0

OO

0

OO

Since N is a quotient of
(
`1(I)⊗̂s

)
⊕
(
K⊗̂s

) ∼= (
`1(I)⊕K

)
⊗̂s and hence of(

`1(I)⊕ `1(J)
)
⊗̂s which is isomorphic to Λ1(M,a) for suited M and a (see 8.5 and

8.6), N has property (Ω). Therefore the second row splits and we obtain from the
first column

0→ N → G→ H → 0

which can be written as

0→ N → N ⊕
(
`1(I)⊗̂s

)
→ E ⊕

(
`1(I)⊗̂s

)
→ 0.

Hence E is a quotient of N ⊕
(
`1(I)⊗̂s

)
and therefore of(

`1(I)⊕K ⊕ `1(I)
)
⊗̂s.
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We have chosen K such that it contains a dense subset of cardinality |J |. Hence
it is a quotient of `1(I). I is infinite, so we have `1(I) ⊕ `1(I) ⊕ `1(I) ∼= `1(I) and
therefore E is a quotient of `1(I)⊗̂s. �

Theorem 9.4 Let E be a Fréchet space. E has property (Ω) if and only if H(K)′

has property (Ω) for some non-empty (respectively all) compact sets K in E.

Reference. The proof can be found in [KD97], Theorem 1.



Chapter 10

The Property (DN)

Definition 10.1 Let E be a metrizable locally convex space with the topology
defined by an increasing system of semi-norms ‖.‖1 ≤ ‖.‖2 ≤ . . .. We say that E
has property (DN) if there exists a semi-norm ‖.‖ on E such that for all k ∈ N there
exist a p ∈ N and a C > 0 with

‖.‖k ≤ r‖.‖+
C

r
‖.‖k+p

for all r > 0.
Clearly, the property (DN) does solely depend on the topology and not on the

system of semi-norms. From the postulated inequality it follows that ‖.‖ has to be
a norm.

Remark 10.2 Let E be a metrizable locally convex space with property (DN).
Then every subspace of E has the property (DN). This follows directly from the
definition.

Lemma 10.3 ([Vog77a], 1.2. Bemerkung) The space of rapidly decreasing se-
quences s has property (DN).

Proof. We check, whether for an element x of s the conditions of the property
(DN) are met. Let ‖x‖k =

∑∞
j=1 j

k|xj | and ‖x‖ =
∑∞

j=1 |xj |. We then get for
jk0 ≤ r ≤ (j0 + 1)k

‖x‖k =
j0∑
j=1

jk|xj |+
∞∑

j=j0+1

jk|xj |

≤ jk0‖x‖+ (j0 + 1)−k‖x‖2k

≤ r‖x‖+
1
r
‖x‖2k.

Thus we have proved the inequality for r ≥ 1 and p = k. The case 0 < r < 1 is
obvious. �

Definition 10.4 Let E and F be arbitrary Fréchet spaces, each equipped with an
ascending fundamental system of continuous semi-norms. For each A ∈ L(E,F ) we
define

‖A‖n,k := sup {‖Ax‖n : ‖x‖k ≤ 1} ∈ R ∪ {∞} .
Where applicable, we use this as a semi-norm on L(E,F ).

55
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Lemma 10.5 ([Vog83], 1.1) Let E and F be Fréchet spaces equipped with ascend-
ing fundamental systems of continuous semi-norms. The following assertions are
equivalent.

(i) L(E,F ) = LB(E,F ).

(ii) For each sequence (km)m∈N in N there exists a k0 ∈ N such that for every
n ∈ N exist n0 ∈ N and C > 0 with

‖A‖n,k0 ≤ C max
m=1,...,n0

‖A‖m,km

for all A ∈ L(E,F ).

Proof. We define to a given sequence (km)m∈N

G := {A ∈ L(E,F ) : ‖A‖m,km <∞ ∀m ∈ N} .

This is in a natural sense a Fréchet space. For each m we set

Hkm := {A ∈ L(E,F ) : ‖A‖n,km <∞ ∀n ∈ N} .

Hkm is also in a natural sense a Fréchet space. We have Hkm ⊆ Hkm+1 for all m ∈ N
with continuous injection. By hypothesis we get

G ⊆
⋃
m∈N

Hkm .

All occurring spaces are continuously embedded in LB(E,F ). From C.5 we get
the existence of a k0 such that E ⊆ Hk0 and such that the embedding E ⊆ Hk0 is
continuous. For all n therefore exist n0 and C such that

‖A‖n,k0 ≤ C max
m=1,...,n0

‖A‖m,km .

Conversely, let A ∈ L(E,F ). From the continuity of A we get that for all m ∈ N
exists a k(m) such that

‖A‖m,k(m) <∞.

Therefore we can choose a sequence (km)m∈N in N such that ‖A‖m,km < ∞. By
hypothesis

‖A‖n,k0 ≤ C max
m=1,...,n0

‖A‖m,km .

Hence there exists a k ∈ N such that for all n ∈ N

‖A‖n,k <∞

holds. This is equivalent to
‖Ax‖n <∞

for all ‖x‖k ≤ 1 and n ∈ N or, in other words, A({x : ‖x‖k ≤ 1}) is bounded. Since
{x : ‖x‖k ≤ 1} is a neighbourhood of 0 and its image under A is bounded, A itself
is bounded. �

Definition 10.6 Let A = (aj,k)(j,k)∈N×N be a matrix with the following properties
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(i) aj,k ≥ 0 for all j, k ∈ N,

(ii) for all j ∈ N there exists a k ∈ N with aj,k > 0 and

(iii) aj,k ≤ aj,k+1 for all j, k ∈ N.

Then A is called Köthe matrix . We define

λ1(A) :=
{
ξ = (ξn)n∈N : ‖ξ‖k :=

∑∞
j=1 |ξj |aj,k <∞ ∀k

}
,

λ∞(A) :=
{
ξ = (ξn)n∈N : ‖ξ‖k := supj |ξj |aj,k <∞ ∀k

}
.

Remark 10.7 Equipped with their canonical semi-norms ‖.‖k, λ1(A) and λ∞(A)
are Fréchet spaces. First, put Nk := {j ∈ N : aj,k 6= 0}. Then for every k ∈ N we
get a linear function fk : λ1(A) → `1(Nk) and since for every ξ ∈ λ1(A) we have
‖ξ‖k ≤ ‖ξ‖k+1, the map from `1(Nk+1) to `1(Nk) is continuous and linear. The
`1(Nk) being Banach spaces and λ1(A) being embedded into

∏
k∈N `

1(Nk), we get
λ1(A) = lim←−k∈N `

1(Nk). Finally, as the projective limit of Banach spaces, λ1(A) is
a Fréchet space.

In the nuclear case we have λ1(A) = λ∞(A). For details see [MV92], 28.16.

Remark 10.8 Interesting special cases are Λ1
r(α) := λ1(A), respectively Λ∞r (α) :=

λ∞(A) with aj,k := ρ
αj

k , and α = (αj)j∈N, αj −→
j∈N
∞ monotonously and limk∈N ρk =

r monotonously, ρk > 0 for k ∈ N with 0 < r ≤ ∞.
The spaces solely depend on α and r, not on the choice of (ρk)k∈N. For a fixed α

all spaces Λ1
r(α) (respectively Λ∞r (α)) with r < ∞ are isomorphic. Therefore only

the cases r = 1,∞ are of further interest.

Remark 10.9 The equivalence of the definitions of Λ1
∞(α) respectively Λ∞∞(α)

in 8.1 and 10.6 is obvious via λ1((e2kαj )j,k∈N) = Λ1(N, (e2αn)n∈N) respectively
λ∞((e2kαj )j,k∈N) = Λ∞(N, (e2αn)n∈N).

Definition 10.10 Let (αj)j∈N be a sequence with αj −→
j∈N
∞ monotonously. The

condition supn
an+1

an
< ∞, called shift-stability , is equivalent to Λ1

r(α) ∼= F ⊕ Λ1
r(α)

respectively Λ∞r (α) ∼= F⊕ Λ∞r (α).

Lemma 10.11 ([Vog83], 1.3) Let B be a Köthe matrix, F a Fréchet space. The
following assertions are equivalent.

(i) L(λ1(B), F ) = LB(λ1(B), F ).

(ii) For each sequence (km)m∈N in N there exists a k0 ∈ N such that for every
n ∈ N exist n0 ∈ N and C > 0 with

‖x‖n
bj,k0

≤ C max
m=1,...,n0

‖x‖m
bj,km

(1)

for all j ∈ N and x ∈ F .
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Proof. The first implication follows from the corresponding implication in 10.5 as
we apply (ii) to A : ξ → fj · x with x ∈ F and fj(ξ) := ξj for ξ = (ξn)n∈N ∈ λ1(B).

Conversely let A ∈ L(E,F ). Then A is of the form

Aξ =
∑
j

xjξj

with xj = Aej , where ej = (δj,v)v∈N is the jth unit vector in λ1(B). There exists a
sequence (km)m∈N and a family of constants {Cm}m∈N with

‖xj‖m ≤ Cm‖ej‖km = Cmbj,km (2)

for all m ∈ N. We get for arbitrary n an n0 and a C such that

‖Aξ‖n ≤ sup
j∈N

(
‖xj‖n
bj,k0

)∑
j∈N

bj,k0 |ξj | = sup
j∈N

(
‖xj‖n
bj,k0

)
‖ξ‖k0

≤ C sup
j∈N

(
max

m=1,...,n0

‖xj‖m
bj,km

)
‖ξ‖k0

≤
(
C max
m=1,...,n0

Cm

)
‖ξ‖k0

where the second inequality follows from (1) and the third from (2). Hence A is
bounded. �

Proposition 10.12 ([Vog83], 1.4) The following assertions are equivalent.

(i) L(E, λ∞(A)) = LB(E, λ∞(A)).

(ii) For each sequence (km)m∈N of integers exists a k0 ∈ N, such that for each
n ∈ N exist n0 ∈ N and C > 0 such that

aj,n‖y‖Uk0
≤ C max

m=1,...,n0

aj,m‖y‖Ukm

for all j ∈ N and y ∈ E′.

Proof. This proof is similar to the proof of 10.11. Again, let ej = (δj,v)v∈N be the
jth unit vector in λ1(B). One direction can be obtained by inserting A = ej ⊗ y
into 10.5 for all j ∈ N and all y ∈ E′.

The other direction follows also from 10.5 by

‖Ax‖n ≤ sup
j∈N

aj,n‖yj‖Uk0
‖x‖k0

≤ C max
m=1,...,n0

(
sup
j∈N

aj,n‖yj‖Uk0

)
‖x‖k0 ,

where yj = fj ◦A. This implies

‖A‖n,k0 ≤ C max
m=1,...,n0

‖A‖m,km

and thus proves the assertion. �
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Remark 10.13 That the sequence of integers in 10.12.(ii) can be chosen to be
the identity is equivalent to the condition that 10.12.(ii) holds for each system of
semi-norms on E.

Theorem 10.14 ([Vog83], 2.1) Let β := (βj)j∈N be a shift-stable sequence. The
following assertions are equivalent.

(i) L(Λ1
1(β), F ) = LB(Λ1

1(β), F ).

(ii) F has the property (DN).

Here follows (i) from (ii) without assumptions on β.

Proof. We apply 10.11(ii) on the sequence (km := m)m∈N and receive a k0 ∈ N such
that for all n ∈ N there exists an n0 ∈ N and a C > 0 with

‖x‖ne−ρk0
βj ≤ C max

m=1,...,n0

‖x‖me−ρmβj (3)

for all x ∈ F and for all j ∈ N. Thereby limm∈N ρm = 1 monotonously, ρm > 0,
m ∈ N denotes an arbitrary but fixed sequence (of radii). Therefore we have replaced
Λ1

1(β) by the isomorphic space Λ1
e(β).

We can suppose that n0 ≥ n, k0 and from (3) we get

‖x‖ne−ρk0
βj ≤ C max

m=1,...,n0

‖x‖me−ρmβj

≤ C max
m=k0,...,n0

‖x‖me−ρmβj

≤ Cmax
{
‖x‖k0 , ‖x‖n0e

−ρk0+1βj

}
.

For a fixed x we choose a j ∈ N with

‖x‖ne−ρk0
βj+1 ≤ C‖x‖k0 < ‖x‖ne−ρk0

βj

if there is such a j. Following, we get

‖x‖n ≤ C‖x‖n0e
(ρk0

−ρk0+1)βj

≤ C‖x‖n0e

ρk0+1−ρk0
pρk0

(−ρk0
βj+1)

≤ C‖x‖n0

(
C
‖x‖k0
‖x‖n

)d
,

where d = ρk0+1−ρk0
pρk0

. With D = C1+d we obtain

‖x‖1+dn ≤ D‖x‖dk0‖x‖n0 . (4)

If no such j exists, we get
‖x‖n ≤ Ceρk0

β1‖x‖k0
and by increasing D (such that D ≥ Cdedρk0

β1) (4) also holds. Hence

‖x‖n ≤ D‖x‖n‖x‖dk0 ≤ D‖x‖n0‖x‖dk0
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which is equivalent to property (DN) by A.5 (iv).
Conversely, to the given sequence (km)m∈N we put σm := ρkm and by the prop-

erty (DN) (here used in the form A.5 (iv)) we can choose m0 ∈ N and d ∈ N such
that for all n ∈ N there exists an n0 ∈ N with m0 ≤ n0 and a D > 0 with

‖x‖1+dn ≤ D‖x‖dm0
‖x‖n0 .

Then we choose a k0 > km0 such that

1− ρk0
ρk0 − σm0

< d.

For x ∈ F and j ∈ N we get either

‖x‖ne−ρk0
βj ≤ ‖x‖m0e

−σm0βj

or
‖x‖m0 < e(σm0−ρk0

)βj‖x‖n.

In the second case
‖x‖1+dn ≤ Ded(σm0−ρk0

)βj‖x‖dn‖x‖n0 .

By hypothesis d(σm0 − ρk0) ≤ ρk0 − 1 ≤ ρk0 − ρkn0
and we get

‖x‖n ≤ D‖x‖n0e
(ρk0

−ρkn0
)βj .

In any case we get

‖x‖ne−ρk0
βj ≤ D max

m=1,...,n0

‖x‖me−ρkmβj

and by 10.11(ii) finish the proof. �



Chapter 11

The Property (LB∞)

Definition 11.1 Let F be a Fréchet space equipped with a topology defined by an
increasing system of semi-norms. We say that F has the property (LB∞) if for every
strict monotonous sequence (ρn)n∈N with ρn −→

n∈N
∞ and for every p there exists a

q ≥ p such that for all n0 ∈ N there exists an N0 ≥ n0 and a C > 0 such that for
all u ∈ F ′ there exists an m with n0 ≤ m ≤ N0 such that

‖u‖1+ρm

Uq
≤ C‖u‖Um‖u‖

ρm

Up
.

Theorem 11.2 ([Vog83], Satz 5.2) Let E be a Fréchet space and α = (αj)j∈N a
shift-stable sequence. The following assertions are equivalent.

(i) L(E,Λ∞∞(α)) = LB(E,Λ∞∞(α)).

(ii) E has the property (LB∞).

Here follows (i) from (ii) without prerequisite on α.

Proof. Let ρm −→
m∈N

∞ be a given monotonous sequence and without loss of generality

let p = 1 in the property (LB∞). We apply 10.12(ii) to the spaces E and Λ∞∞, the
latter equipped with the norms ‖ξ‖m = supj∈N |ξj |eρmαj . By 10.12 we get a k0 ∈ N
such that for all n ∈ N exists an n0 ∈ N and a C > 0 with

eρnαj‖y‖Uk0
≤ C max

m=1,...,n0

eρmαj‖y‖Um (1)

for y ∈ F ′. Contemplating on n > k0, we pick a j0 such that for j ≥ j0

Ceρn−1αj < eρnαj (2)

holds. Hence we have
eρnαj‖y‖Uk0

> Ceρmαj‖y‖Um ,

for k0 ≤ m ≤ n− 1 and therefore (1) transforms into

eρnαj‖y‖Uk0
≤ C max

m=1,...,k0−1,n,...,n0

eρmαj‖y‖Um . (3)

Either we can choose a j ≥ j0 (in order to exploit (2)) with

e(ρn−ρk0−1)αj−1‖y‖Uk0
≤ C‖y‖U1 (4)
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and
C‖y‖U1 ≤ e(ρn−ρk0−1)αj‖y‖Uk0

(5)

which holds since eρk0−1−1αj ≥ eρmαj for m < k0 and ‖y‖U1 ≥ ‖y‖Um for m ≥ 1.
We suppose that the maximum is assumed on the right hand side of (3) at m. Then
by (5) m ≥ n and we get

‖y‖Uk0
≤ Ce(ρm−ρn)αj‖y‖Um

≤ Ce
s ρm−ρn

ρn−ρk0−1
(ρn−ρk0−1)αj−1‖y‖Um

≤ C‖y‖Um

(
C
‖y‖U1

‖y‖Uk0

)d
, (6)

where d := s ρm−ρn

ρn−ρk0−1
with s := supj→∞

αj+1

αj
and (6) follows from (4). This can be

written as
‖y‖1+dUk0

≤ D‖y‖Um‖y‖dU1
,

where D := Cd+1 and d ≤
(

s
ρn−ρk0−1

)
ρm. We have m ∈ {n, . . . , N0}, since from

m < k0 follows

Ce(ρm−ρn)αj‖y‖Um ≤ Ce−(ρn−ρk0−1)αj‖y‖U1 < ‖y‖dU1

which is a contradiction.
Otherwise we have

e(ρn−ρk0−1)αj0‖y‖Uk0
≤ C‖y‖U1

which leads to

‖y‖1+dUk0
≤ ‖y‖Uk0

‖y‖dUk0

≤ ‖y‖Uk0

(
Ce(ρk0−1−ρn)αj0

)d
‖y‖dU1

= D‖y‖Uk0
‖y‖dU1

.

In both cases we have ∃k0 ∀n ∈ N ∃N0, C > 0 ∃m with n ≤ m ≤ N0 such that

‖.‖1+ρm

Uk0
≤ C‖.‖Um‖.‖

ρm

U1
,

i.e. property (LB∞).
Conversely, note that the property (LB∞) does not depend on a special system

of semi-norms. We therefore can, by 10.13, assume without loss of generality (km :=
m)m∈N in 10.12(ii). Let Λ∞∞(α) be endowed with the norms

‖ξ‖n := sup
j∈N
|ξj |enαj .

We choose a sequence (ρm)m∈N with limm→∞
ρm

m = 0 and insert it and p = 1 into
(LB∞). We receive a q and for each given nc an nc0 and aC with the desired
property.
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If, for the verification of 10.12(ii), there is a given nc, we choose nc0 such that
ρm(n − 1) ≤ m − n for m ≥ nc0 . For y ∈ E′ there exists, by property (LB∞), an
m ∈ N with nc0 ≤ m ≤ n0 such that

‖y‖1+ρm

Uk0
≤ C‖y‖Um‖y‖

ρm

U1
.

Then either
enαj‖y‖Uk0

≤ eαj‖y‖U1

or

‖y‖1+ρm

Uk0
≤ C‖y‖Um‖y‖

ρm

U1

≤ C‖y‖Um‖y‖
ρm

Uk0
eρm(n−1)αj

≤ C‖y‖Um‖y‖
ρm

Uk0
e(m−n)αj

holds. In both cases

enαj‖y‖Uk0
≤ C max

m=1,...,n0

emαj‖y‖Um .

This finishes the proof. �

Definition 11.3 A smooth function h on an open set U ⊆ C is called harmonic if
∆h = 4∂2h

∂z∂z̄ = 0 on U .
A function u defined on an open set U ⊆ C and with values in R ∪ {−∞} is

called upper-semi-continuous if the set {z ∈ C : u(z) < s} is open for every s ∈ R.
An upper-semi-continuous function u : U → R∪{−∞} is called sub-harmonic if

for every compact K ⊂ U and every continuous function h on K, which is harmonic
in the interior of K and with h ≥ u on the boundary ∂K of K, we have u ≤ h in
K.

Definition 11.4 An upper-semi-continuous function ϕ : E → R is called pluri-sub-
harmonic if ϕ is sub-harmonic on every complex line in E.

Definition 11.5 A subset B ⊆ E is said to be pluripolar if there exists a pluri-
sub-harmonic function ϕ on E such that ϕ 6= −∞ and ϕ |B= −∞.

Theorem 11.6 Let D be a domain in Cn, E a compact non-pluripolar subset of
D and F a compact non-pluripolar subset in Cm. Then every separately analytic
function f defined on (D × F ) ∪ (E × Cm) has an analytic extension on D × Cm.

Reference. The proof can be found in [VZ83], Théorème 4.1.

Definition 11.7 Let F be a Fréchet space with a topology defined by an increasing
system of semi-norms. We say that F has property (Ω̃) if for every p there exists a
q such that for all k exists a C > 0 and we have

‖.‖2Uq
≤ C‖.‖Uk

‖.‖Up .

We say that F has property (Ω̃B) if for every p exist q and C > 0 such that

‖.‖2Uq
≤ C‖.‖B‖.‖Up

where ‖u‖B := sup {|u(x)| : x ∈ B} for u ∈ F ′.
Note that in the definition of (Ω̃B), by choosing q sufficiently large, we may

assume that C = 1.
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Definition 11.8 Let K be a compact subset in a complex Fréchet space E. We
say that K is a set of uniqueness if for all f ∈ H(K) with f |K= 0 follows that
f = 0.

Lemma 11.9 ([Lan00], Lemma 2.2) Let E be a nuclear Fréchet space and B a
balanced convex compact subset in E. Suppose that E has property (Ω̃B). Then B
is a set of uniqueness.

Proof. Let E have property (Ω̃B). Hence, for every x′ ∈ E′ with x′ |span(B)= 0 we
have ∀p ∃q, C > 0 such that

0 ≤ ‖x′‖2Uq
≤ C‖x′‖B‖x′‖Up = 0.

Which means ‖x′‖Uq = 0 and since x′ is linear and {x : q(x) < 1} is absorbent, we
get x′ = 0. From the theorem of Hahn-Banach C.2 we conclude that span(B) is
dense in E.

Now given f ∈ H(B) with f |B= 0, consider the Taylor expansion of f at 0 ∈ B
in a balanced convex neighbourhood W of B in E

f(x) =
∑
n≥0

Pnf(x)

for x ∈W , where

Pnf(x) =
1

2π i

∫
|λ|=δx>0

f(λx)
λn+1

dλ

for x ∈ E.
Since Pnf are homogeneous polynomials of degree n and Pnf |B= 0, it follows

that Pnf |span(B)= 0. By the continuity of Pnf and by span(B) = E, we have
Pnf = 0 for n ≥ 0. Thus f = 0 in W and hence B is a set of uniqueness. �

Theorem 11.10 ([Lan00], Theorem 2.1) Let E be a nuclear Fréchet space and B
a balanced convex compact subset in E. Assume that E has (Ω̃B). Then H(B)′β has
property (LB∞).

Proof. By 11.2 it suffices to show that every continuous linear map T : H(B)′ →
H(C) is compact.

Consider the function f : B → H(C) defined by

f(x)(λ) = T (δx)(λ)

for x ∈ B, λ ∈ C, where δx ∈ H(B)′β is the Dirac functional associated to x which
is given by

δx(ϕ) = ϕ(x),

with ϕ ∈ H(B). It follows that f is weakly holomorphic, because T ′(µ) ∈ H(B)′′ ∼=
H(B). By Grothendieck’s factorisation theorem C.5, this yields that f : B →
H∞(2D), where D is the open unit disc in C, is extended to a holomorphic function
f̂ on a neighbourhood W of B in E.

Let g : (B × C) ∪ (W × D)→ C given by

g(x, λ) =
{
f(x)(λ) : x ∈ B, λ ∈ C
f̂(x)(λ) : x ∈W, λ ∈ D .
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Obviously, g is separately holomorphic. We denote by F the family of all non-
empty finite dimensional subspaces P of EB. For each P ∈ F consider

gP := g |((B∩P )×C)∪((W∩P )×D) .

Since B∩P is the unit ball in P and D is not polar, by 11.6, gP is uniquely extended
to a holomorphic g̃P on (W ∩ P ) × C. The uniqueness implies that the family
{g̃P }P∈F defines a Gâteaux holomorphic function g̃ on (W ∩EB)×C. On the other
hand, since g̃ is holomorphic on (W ∩EB)×D, 11.6 implies that g̃ is holomorphic on
(W ∩EB)×C. Consider the holomorphic function ĝ : (W ∩EB)→ H(C) associated
to g̃. We prove that ĝ can be extended to a bounded holomorphic function on a
neighbourhood of B with values in H(C).

Let {‖.‖γ}γ∈N and {‖.‖k}k∈N be two fundamental systems of semi-norms of E
and H(C) respectively. Since H(C) has (DN) we have ∃p ∀q, d > 0 ∃k,C > 0 such
that ‖.‖1+d

q ≤ ‖.‖k‖.‖dp.
Note that by replacing k by some k′ > k, we always may assume that C = 1.

Choose α such that Uα ⊆W and

M(α, p) := sup {‖ĝ(x)‖p : x ∈ Uα ∩ EB} <∞.

Let ωα be the canonical map from E into Eα, the Banach space associated to ‖.‖α
and

A := ωα |EB
: EB → Eα.

Since E is nuclear, without loss of generality we may assume that EB and Eα are
Hilbert spaces. Then, by 5.18 and 5.16, A can be written in the form

A(x) =
∑
j≥1

λjyj(x)zj

where λ := (λj)j∈N is a rapidly decreasing sequence with λj > 0 for j ≥ 1, (yj)j∈N
is a complete orthonormal system in (EB)∗, and (zj)j∈N an orthonormal system in
Eα.

Since

A

(
yj
λj

)
= zj ∈ ωα(Uα)

for all j ≥ 1, we have
yj
λj
∈ Uα

for all j ≥ 1.
It follows that

m∑
j=1

µj
λj
yj ∈ Uα

for all m ≥ 1, where µj = δ
jk and δ > 0 are chosen such thatu ∈ Eα : u =

∞∑
j=1

ξjzj , |ξj | < µj ∀j ≥ 1

 ⊆ ωα(Uα)
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and

δ

∞∑
j≥1

1
jk
≤ 1.

We put 〈zk, z〉α as the scalar product in Eα. Then
√
〈zk, z〉α = 1 for all k ≥ 1

and

‖A∗ 〈zk, z〉α ‖B = sup
‖x‖≤1

| 〈zk, A(x)〉α |

= sup
‖x‖≤1

∣∣∣∣∣∣
〈
zk,
∑
j

λjyj(x)zj

〉
α

∣∣∣∣∣∣
= sup

‖x‖≤1
| 〈zk, λkyk(x)zk〉α |

= λk (7)

for all k ≥ 1. Recall that by the Bessel inequality |yk(x)| ≤ ‖x‖. Now put

ϕk = ω∗α 〈zk, z〉α , (8)

and choose β such that

∃C > 0 ‖.‖2Uβ
≤ C‖.‖B‖.‖Uα . (9)

For β sufficiently large, we can choose C = 1.
From (7), (8) and (9) we have

‖ϕk‖2Uβ
= ‖ω∗α 〈zk, z〉α ‖

2
Uβ
≤ ‖A∗ 〈zk, z〉α ‖B‖ 〈zk, z〉α ‖Uα ≤ λk

for all k ≥ 1. Hence for all k ≥ 1 we get

‖ϕk‖Uβ
≤ λ

1
2
k .

Let
h := ωpĝ.

Since M(α, p) < ∞ and A(Uα ∩ EB) is dense in ωα(Uα), h is holomorphically
factorized through A : Uα ∩ EB → Ûα by ĥ : Ûα → H(C)p, where Ûα denotes the
unit ball in Eα. This may be illustrated by the following diagram.

Uα ∩ EB
ĝ //

A
��

h

%%KKKKKKKKKK H(C)

ωp

��
Ûα

ĥ

// H(C)p

For each m = (m1, . . . ,mn, 0, . . .) ∈M , with

M := {m = (mj)j∈N : mj 6= 0 only for finitely many j ∈ N} ,

we put

am :=
(

1
2π i

)n ∫
|ρ1|=µ1

∫
|ρ2|=µ2

. . .

∫
|ρn|=µn

ĥ(ρ1z1 + · · ·+ ρnzn)
ρm+1

dρ
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where

ρm+1 := ρm1+1
1 ρm2+1

2 . . . ρmn+1
n ,

dρ := dρndρn−1 . . . dρ1,

then

‖am‖ ≤
M(α, p)
µm

∀m ∈M.

From the relation
k∑
j=1

ρj
λj
yj ∈ Uα ∩ EB ∀k ≥ 1,

we deduce that

ĥ

∑
j≥1

ρjzj

 = ĥA

 k∑
j=1

ρj
λj
yj

 = ωpĝ

(
ρj
λj
yj

)
.

On the other hand, by Cauchy’s theorem 4.9, we get

am =
(

1
2π i

)n ∫
|ρ1|=λ1µ1

∫
|ρ2|=λ2µ2

. . .

∫
|ρn|=λnµn

ĥ(ρ1z1 + · · ·+ ρnzn)
ρm+1

dρ.

It follows that

am =
(

1
2π i

)n ∫
|ρ1|=λ1µ1

∫
|ρ2|=λ2µ2

. . .

∫
|ρn|=λnµn

ωpĝ
(
ρj

λj
yj

)
λm+1

( ρ
λ

)m+1dρ

= ωp

(
1
λm

(
1

2π i

)n ∫
|θ1|=µ1

. . .

∫
|θn|=µn

ĝ(θ1y1 + · · ·+ θnyn)
θm+ 1

dθ

)
=: ωp(bm)

where
θj :=

ρj
λj
∀j ≥ 1.

We have

‖bm‖q ≤
N(q)
λmµm

∀m ∈M, ∀q ≥ p,

where

N(q) := sup

‖ĥ(x)‖q : x =
∞∑
j=1

ξjyj , |ξj | ≤ µj ∀j ≥ 1

 <∞,

because the set x =
∞∑
j=1

ξjyj : |ξj | ≤ µj ∀j ≥ 1


is compact in EB.
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Since H(C) has the property (DN), for every q ≥ p and d̄ := d
δ there exists a

k ≥ q and a C > 0 such that

‖.‖1+d̄q ≤ C‖.‖k‖.‖d̄p,

where 0 < δ < 1 is chosen such that

ε :=
d(1− 2δ)

2(1 + d)(δ + d)
> 0.

We may assume C = 1 again. Then

S :=
∑
m∈M

rm‖bm‖q
∞∏
j=1

‖ϕj‖
mj

Uβ

≤
∑
m∈M

rm‖bm‖q
∞∏
j=1

(λj)
mj
1+d

=
∑
m∈M

rm‖bm‖qλ2tm

=
∑
m∈M

rm (λm‖bm‖q)t λtm‖bm‖1−tq

≤ N(q)tN(k)
1−t
1+d̄M(α, p)

(1−t)d̄

1+d̄

∑
m∈M

rm
λ
m

“
t− 1−t

1+d̄

”
µ
m

“
t+ 1−t

1+d̄
+

(1−t)d̄

1+d̄

”

≤ N(q)tN(k)
1−t
1+d̄M(α, p)

(1−t)d̄

1+d̄

∑
m∈M

rm
λ
m

“
t− 1−t

1+d̄

”
µm

.

Since λ ∈ s, the sequence
(
λε

j

µj

)
is in `1 and hence for R :=

∑
j≥1

(
λε

j

µj

)
we have

2R > R >
λεj
µj

for j ≥ 1. This implies

0 < sup
{

λεj
2Rµj

}
<

1
2
.

We have

S =
∑
m∈M

rm‖bm‖q
∞∏
j=1

‖ϕj‖
mj

Uβ

≤ N(q)tN(k)
1−t
1+d̄M(α, p)

(1−t)d̄

1+d̄

∑
m∈M

(
rλε

µ

)

= N(q)tN(k)
1−t
1+d̄M(α, p)

(1−t)d̄

1+d̄

∞∏
j=1

1

1− rλε
j

µj

< ∞.

Hence the form
x 7−→

∑
m∈M

bm
∏
j≥1

(ϕj(x))mj
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defines a bounded holomorphic function ĥ1 on δUβ with δ = 1
4R such that ĥ1 |δUβ∩B=

ĝ |δUβ∩B, i.e. ĥ1(z)(λ) = g(z, λ) for z ∈ δUβ ∩B and λ ∈ D. Since span(B) = E, by
considering the Taylor expansion of ĥ1(.)(λ) − g(., λ) in z ∈ span(B) at 0 ∈ B, we
get ĥ1(z)(λ) = g(z, λ) for z ∈ δUβ ∩B and λ ∈ D.

Consider the separately holomorphic function h1 on (δUβ×C)∪(W×D), induced
by ĥ1 and g. As we have seen at the beginning of the proof, h1 is holomorphically
extended to a function h1 on W × C. Let ĥ1 : W → H(C) denote the holomorphic
function associated to h1. Since B is convex, balanced and the equality (ĥ1 −
ĝ) |δUβ∩B= 0 holds, from the Taylor expansion of (ĥ1 − ĝ) |B at 0 ∈ B it follows

that ĥ1 |B= ĝ |B.

ĥ1 is locally bounded. Thus, by shrinking W , without loss of generality, we may
assume that ĥ1(W ) is bounded. Define the continuous linear map S : H∞(W )′ →
H(C) as

S(µ)(λ) = µ(ĥ1(.)(λ))

for µ ∈ H∞(W )′ and λ ∈ C. We have

T

 m∑
j=1

αjδxj

 (λ) =
m∑
j=1

αjT (δxj )(λ) =
m∑
j=1

αjf(xj)(λ)

=
m∑
j=1

αj ĝ(xj)(λ) =
m∑
j=1

αj ĥ1(xj)(λ)

=
m∑
j=1

αjS(δxj )(λ) = S

 m∑
j=1

αjδxj


for x1, x2, . . . , xm ∈ B and α1, α2, . . . , αm ∈ C.

On the other hand, since B is a set of uniqueness and H(B) is reflexive, it follows
that S = T . Hence T is compact. �
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Chapter 12

The Property (LB∞)

Definition 12.1 Let F be a Fréchet space with the topology defined by an increas-
ing system of semi-norms.

We say that F has property (LB∞) if for every sequence (ρn)n∈N with ρn > 0
for all n ∈ N and ρn −→

n∈N
∞ there exists a p ∈ N such that for all q ∈ N there exist

n0 ∈ N and C > 0 such that for all x ∈ F there exists an m with q ≤ m ≤ n0 and
that

‖x‖1+ρm
q ≤ C‖x‖m‖x‖ρm

p

holds.

Lemma 12.2 A Fréchet space F has the property (LB∞) if and only if for every
sequence (ρn)n∈N with ρn > 0 for n ∈ N and ρn −→

n∈N
∞ there exists a p ∈ N such

that for all q ∈ N there exists an n0 ∈ N with n0 ≥ q and a C > 0 such that we have

‖x‖q ≤ C max
q≤m≤n0

(
rρm
m ‖x‖m +

1
rm
‖x‖p

)
for x ∈ F , rq > 0, · · · , rn0 > 0.

Proof. We give an indirect proof. Therefore assume that F has property (LB∞)
but for all q ∈ N there exists an n0 ∈ N with n0 ≥ q and a C > 0 such that we have

‖x‖q > C max
q≤m≤n0

(
rρm
m ‖x‖m +

1
rm
‖x‖p

)
for x ∈ F , rq > 0, · · · , rn0 > 0. It follows that for all m with q ≤ m ≤ n0 we have

‖x‖q > C

(
rρm
m ‖x‖m +

1
rm
‖x‖p

)
≥ C

1 + ρm
ρm

(ρm‖x‖m)
1

1+ρm ‖x‖
ρm

1+ρm
p

which is the minimum of the right hand side with respect to rm. This implies

‖x‖1+ρm
q > D‖x‖m‖x‖ρm

p

which leads to the desired contradiction.
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Conversely, assume that for all m with q ≤ m ≤ n0 we have

‖x‖1+ρm
q > C‖x‖m‖x‖ρm

p .

Or in other words
‖x‖q > C

1
1+ρm ‖x‖

1
1+ρm
m ‖x‖

ρm
1+ρm
p .

Then the right hand side from above can be seen as the minimum of

rρm
m ‖x‖m +

1
rm
‖x‖p

with respect to rm. Finally, we get

‖x‖q ≥ C max
q≤m≤n0

(
rρm
m ‖x‖m +

1
rm
‖x‖p

)
which concludes in the contradiction. �

Proposition 12.3 Let F be a Fréchet space with property (LB∞). Then (F ′bor)
′
β

also has property (LB∞).

Proof. By 12.2 we have that a Fréchet space F has the property (LB∞) if and only
if for every sequence (ρn)n∈N with ρn > 0 for n ∈ N and ρn −→

n∈N
∞ there exists a

p ∈ N such that for all q ∈ N there exists an n0 ∈ N with n0 ≥ q and a C > 0 such
that we have

Uq ⊇ C
⋂

q≤m≤n0

(
rρm
m Um ∩

1
rm
Up

)
for rq > 0, · · · , rn0 > 0. Applying the bi-polar theorem we get

U◦q ⊆ D

〈 ⋃
q≤m≤n0

(
rρm
m U◦m +

1
rm
U◦p

)〉

for appropriate D > 0. Here the angle brackets denote the absolutely convex hull
of the inner expression.

Let u ∈ (F ′bor)
′
β. Then

‖u‖U◦
q

= sup
{
|u(y)| : y ∈ U◦q

}
≤ sup

|u(y)| : y ∈ D
〈 ⋃
q≤m≤n0

(
rρm
m U◦m +

1
rm
U◦p

)〉
≤ D max

q≤m≤n0

{
rρm
m sup

y∈U◦
m

|u(y)|+ 1
rm

sup
y∈U◦

p

|u(y)|

}

= D max
q≤m≤n0

{
rρm
m ‖u‖U◦

m
+

1
rm
‖u‖U◦

p

}
.

Hence (F ′bor)
′
β has property (LB∞). �

Theorem 12.4 ([Vog83], 3.2 Satz) Let (βj)j∈N be a shift-stable sequence and F a
Fréchet space. The following assertions are equivalent.
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(i) L(Λ1
∞(β), F ) = LB(Λ1

∞(β), F ).

(ii) F has property (LB∞).

Here follows (i) from (ii) without prerequisite on β.

Proof. Let (ρm)m∈N be a given monotonous sequence. Then we can choose a strictly
monotonous sequence (σm)m∈N, σm −→

m∈N
∞ with

lim
m→∞

ρm
σm

= 0.

Let further Λ1
∞(β) be equipped with the semi-norms

‖ξ‖k =
∑
j∈N
|ξj |eσkβj .

We apply 10.12(ii) on the sequence (km := m)m∈N and get a k0 ∈ N such that for
all n ∈ N exists an n0 ∈ N and a C > 0 with

‖x‖ne−σk0
βj ≤ C max

m=1,...,n0

‖x‖me−σmβj (1)

for all x ∈ F and j ∈ N. Henceforward we contemplate only on n > k0. We pick a
j0, such that for j ≥ j0 we have

Ce(σk0
−σk0+1)βj < 1.

Resulting, (1) transforms into

‖x‖ne−σk0
βj ≤ C max

m=1,...,k0,n+1,...,n0

‖x‖me−σmβj .

With fixed x we choose a j ≥ j0 with

‖x‖ne−σk0
βj+1 ≤ C‖x‖k0 < ‖x‖ne−σk0

βj

if there exists such a j. In this case the maximum is taken at n < m ≤ n0 and we
get

‖x‖n ≤ C‖x‖me(σk0
−σm)βj

≤ C‖x‖me
σm−σk0

pσk0
(−σk0

βj+1)

≤ C‖x‖m
(
C
‖x‖k0
‖x‖n

)d
,

i.e.
‖x‖1+dn ≤ D‖x‖dk0‖x‖m, (2)

where d := σm−σk0
pσk0

and D := C1+d.
If there is no such j, we have

‖x‖n ≤ Ceσk0
βj0‖x‖k0
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and hence (2) with an eventually bigger D.
For a fixed n′, we apply the above to n ≥ n′ such that for m ≥ n we have

d =
σm − σk0
pσk0

≥ ρm

and we get an m with n′ ≤ n ≤ m ≤ n0 such that

‖x‖1+ρm

n′ ≤ ‖x‖1+ρm
n ≤ D‖x‖ρm

k0
‖x‖m.

Conversely, note that the property (LB∞) does not depend on a special system
of semi-norms. We therefore can assume (km := m)m∈N in 10.12(ii) without loss of
generality. Let Λ∞∞(α) be endowed with the norms ‖ξ‖k :=

∑
j∈N |ξj |ekβj .

We choose a sequence (ρm := m)m∈N and insert this into the hypothesis of
10.12(ii). Hence, we receive a k with the desired properties. If we put k0 = k + 1
and find to any fixed n a desired n0 ≥ k and a D. Let x ∈ F . Then either

‖x‖ne−k0βj ≤ ‖x‖ke−kβj

or, for suitable n ≤ m ≤ n0,

‖x‖1+mn ≤ D‖x‖mk ‖x‖m ≤ De−mβj‖x‖mn ‖x‖m

holds. In the second case we have

‖x‖ne−k0βj ≤ ‖x‖n ≤ D‖x‖me−mβj .

In any case we have

‖x‖ne−k0βj ≤ D max
m=1,...,n0

‖x‖me−mβj .

This proves the conversion. �

Corollary 12.5 Let I be a fixed index set and F a Fréchet space. Then the follow-
ing assertions are equivalent.

(i) L(`1(I)⊗̂s, F ) = LB(`1(I)⊗̂s, F ).

(ii) F has property (LB∞).

Outline of the proof. It is easily seen that this is a straight forward generalisation
of 12.4, since the necessary double indexing doesn’t interfere with that proof nor
the proof of 10.12.



Chapter 13

Intermediate Results

Lemma 13.1 ([Vog85], Lemma 1.3 and [Vog77a], Satz 1.5) Let F and E be Fréchet
spaces and assume that E has property (DN) and Λ∞(M,a) is nuclear. Then the
exact sequence

0→ Λ∞(M,a)→ F
ϕ−→ E → 0

splits.

Proof. For the sake of simplicity, we only consider the case Λ∞(M,a) = s. Let
further be s a subspace of F . We now prove that s is continuously projected into
F , i.e. there exists a subspace H of F such that F = s⊕H. Thus ϕ |H is a bijection
and hence has an inverse.

Let fj ∈ s′ with fj(x) = xj for x = (x1, x2, . . .). For each k ∈ N
{
jkfj : j ∈ N

}
is equicontinuous. By Hahn-Banach C.2 we can extend fj to fkj ∈ E′ for each k ∈ N
such that

{
jkfkj : j ∈ N

}
is equicontinuous, thus contained in U◦k for a suitable

neighbourhood Uk of 0 ∈ E. We can assume that Uk+1 ⊆ Uk for all k ∈ N.
If we put

gkj := fk+1
j − fkj

then gkj ∈ s◦ ⊆ F ′ and we get{
jkgkj : j ∈ N

}
⊆ 2U◦k+1 ∩ s◦ =: Bk.

Since s◦ ∼= E′ and E has property (DN), there exists a bounded set B ⊆ s◦ which
satisfies the conditions of A.4 for a fixed fundamental system of bounded sets in s◦.
Without loss of generality we then can assume that

Bk ⊆ rB +
2−k−2

r
Bk+1

for all r > 0 and k ∈ N. In particular we have for r = j2−k−1 and by multiplication
with 2j−k

2j−kBk ⊆ j−k+12−kB + j−k−1Bk+1. (1)

We now choose for fixed j gradually a sequence akj with akj ∈ j−kBk ⊆ s◦.
Hereby put a0

j = 0. If ak+1
j ∈ j−kBk+1 is chosen, we have

gkj + akj ∈ 2j−kBk.
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Hence by (1) there exists an ak+1
j ∈ j−k−1Bk+1 such that

gkj + akj ∈ 2kj−kB.

If we put
φkj := fkj − akj ,

we get for k ≥ 1

φk+1
j − φkj = gkj − ak+1

j + akj ∈ 2−kj−k+1B ⊆ 2−kB.

Hence (φkj )k∈N converges in F ′. We put

φj := lim
k→∞

φkj .

For k > n by φn+1
j = fn+1

j − an+1
j ∈ 3j−nU◦n+2 we have

jnφkj = jnφn+1
j +

k−1∑
ν=n+1

jn(φν+1
j − φνj ) ∈ 3U◦n+2 + 2−nB.

Therewith jnφj ∈ 3U◦n+1 + 2−nB, i.e. {jnφj : j ∈ N} is equicontinuous in F ′.
By x → (φjx)j∈N we define a continuous linear mapping φ : F → s. For x ∈ s

we have
(φx)j = φj(x) = lim

k→∞
fkj (x)− akj (x) = fj(x) = xj ,

where from akj ∈ s follows akj (x) = 0 for x ∈ s and fkj |s= fj . Therefore φ is a
continuous projection from F to s. �

Proposition 13.2 ([Vog83], 6.1 Satz) Let M be a set and let a be a function on
M with a(t) ≥ 1 for all t ∈M . Recall that

Λ∞(M,a) =
{
f ∈ FM : ‖f‖k = sup

t∈M
|f(t)|a(t)k <∞ ∀k ∈ N

}
.

A Fréchet space F has property (DN) if and only if there exists a space Λ∞(M,a)
such that F is isomorphic to a subspace of Λ∞(M,a).

Proof. Let B1 ⊂ B2 ⊂ . . . a fundamental system of equicontinuous sets in F ′, I a
set such that Bk ⊂ I for all k ∈ N. Then F can in a natural way be embedded into
(l∞(I))N.

By tensoring the exact sequence 0 → s → s → ω → 0 with l∞(I) we get the
exact sequence

0→ s⊗̂l∞(I)→ s⊗̂l∞(I)→ (l∞(I))N → 0

where (l∞(I))N =
(
F⊗̂l∞(I)

)N = FN⊗̂l∞(I) = ω⊗̂l∞(I) or, since s⊗̂l∞(I) ∼=
Λ∞(M,a) with M = N× I, a(n, i) := n we have

0→ Λ∞(M,a)→ Λ∞(M,a)
q−→ (l∞(I))N → 0.

If F is embedded in (l∞(I))N and F̃ is the preimage of F under q, we get

0→ Λ∞(M,a)→ F̃ → F → 0.

By 13.1 the sequence splits if and only if F has property (DN). We therefore get
the embedding F ⊆ F̃ ⊆ Λ∞(M,a).

Since Λ∞(M,a) obviously has property (DN), the converse follows from 10.2.�



77

Theorem 13.3 ([Vog83], 6.2 Satz) Let E and F be Fréchet spaces. If E has prop-
erty (LB∞) and F property (DN), then

L(E,F ) = LB(E,F ).

Proof. It is obvious that 10.12 still holds if we replace λ∞(A) by Λ∞(M,a). And
11.2 holds if we replace Λ∞∞(α) by Λ∞(M,a). Hence we have

L(E,Λ∞(M,a)) = LB(E,Λ∞(M,a)).

By 13.2 F is a closed subspace of a Λ∞(M,a). �

Theorem 13.4 ([BD98], Theorem 18) A Fréchet space F has the property (DN)
if and only if Cω(R, F ) = Cωt (R, F ).

Proof. The following assertion holds by 7.6 and 7.8: Cω(R, F ) = Cωt (R, F ) if and
only if

L(Cω(R)′β, F ) = LB(Cω(R)′β, F ).

First, let us assume F to have property (DN). By 6.9, Cω(R)′β = lim−→n∈NGn,
where Gn is isomorphic to H(D) for each n ∈ N. Given h ∈ L(Cω(R)′β, F ), we
can apply 10.14 to get, for each n ∈ N, a neighbourhood Un ⊆ Gn of 0 such that
h(Un) is bounded in F . Since F is metrizable, we can find a sequence of positive
constants (λn)n∈N such that

⋃
n∈N λnh(Un) is bounded. Then the absolutely convex

hull of
⋃
n∈N λnUn, which is a neighbourhood of 0 in Cω(R)′β, is mapped by h into

a bounded set in F .
Conversely, assume that this identity holds. By 6.12, there is a quotient map

q : Cω(R)′β → H(D) and hence we have

L(H(D, F )) = LB(H(D), F ).

It is easily seen that H(D) is linearly homeomorphic to Λ1
1(β) (cf. [Jar81], 2.10.10),

hence we can directly apply 10.14. As a result, F has the property (DN). �

Lemma 13.5 ([HK00], Lemma 2.2) Every compact set B in a Fréchet space E for
which H(B)′β has property (LB∞) is a set of uniqueness.

Proof. Let {Vn}n∈N be a decreasing neighbourhood basis ofB in E. Given f ∈ H(B)
with f |B= 0, choose p ≥ 1 such that f ∈ H∞(Vp). For each n ≥ p put

εn := ‖f‖n = sup {|f(z)| : z ∈ Vn} .

Then the sequence (εn)n∈N converges to 0. By hypothesis H(B)′β has property

(LB∞). Employing this with
(
ρn :=

√
log 1

εn

)
n∈N

, ρn −→
n∈N
∞ we have ∃q ∀n0 ∃N0 ≥

n0, Cn0 > 0 ∀m > 0 ∃km : n0 ≤ km ≤ N0 :

‖fm‖1+ρkm
q ≤ Cn0‖fm‖km‖fm‖

ρkm
p

which yields

‖f‖1+ρkm
q ≤ C

1
m
n0‖f‖km‖f‖

ρkm
p .
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Now choose a k with n0 ≤ k ≤ N0 such that

card {m : km = k} =∞.

Then putting Cn0 = 1 without loss of generality as m→∞ we get

‖f‖q ≤ ‖f‖
1

1+ρk
k ‖f‖

ρk
1+ρk
p .

This leads to
(εk)

1
1+ρk (εp)

ρk
1+ρk → 0

as k →∞, particularly, the limit exists.
Hence f |Vq= 0. �

Lemma 13.6 ([HK00], Lemma 2.3) Let F be a Fréchet space having property
(DN). Then (F ′bor)

′
β has property (DN).

Proof. Let (Un)n∈N be a decreasing neighbourhood basis of 0 ∈ F . Since F has
property (DN) by A.4, there exists a bounded absolutely convex set B ⊂ F ′ such
that for every k ∈ N there exist a p ∈ N and a C > 0 with

U◦k ⊆ rB +
C

r
U◦k+p

for all r > 0.
For u ∈ (F ′bor)

′
β and r > 0 we have

‖u‖U◦
k

= sup
{
|u(x′)| : x′ ∈ U◦k

}
≤ sup

{
|u(x′)| : x′ ∈ rB +

C

r
U◦k+p

}
≤ r sup

{
|u(x′)| : x′ ∈ B

}
+
C

r
sup

{
|u(x′)| : x′ ∈ U◦k+p

}
= r‖u‖B +

C

r
‖u‖U◦

k+p
.

Hence (F ′bor)
′
β has property (DN). �

Theorem 13.7 ([HK00], Theorem 2.1) Let F be a Fréchet space. Then

Hω(B,F ) = H(B,F )

holds for every compact set B in a Fréchet space E for which H(B)′β has property
(LB∞) if and only if F has property (DN).

Proof. We first prove the sufficiency. It suffices to show that Hω(B,F ) ⊆ H(B,F ).
Let f ∈ Hω(B,F ). By hypothesis F has property (DN) and H(B)′β property
(LB∞). Since B is a compact subset in the Fréchet space E, by 13.5 it is a set of
uniqueness. Hence, we can consider the linear map

f̂ : F ′bor → H(B)

given by
f̂(x′) = x̂′ ◦ f
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for x′ ∈ F ′bor, where x̂′ ◦ f is a holomorphic extension of x′◦f to some neighbourhood
of B in E. Still by the uniqueness of B using C.4 it follows that f̂ has closed graph.
On the other hand, F ′bor is an inductive limit of Banach spaces, H(B) is an (LF )-
space, so by Grothendieck’s closed graph theorem f̂ is continuous. Since f̂ maps
bounded subsets of F ′bor to bounded subsets of H(B), the dual map

f̂∗ : H(B)′β → (F ′bor)
′
β

is also continuous. By hypothesis H(B)′β has property (LB∞) and by 13.6 (F ′bor)
′
β

has property (DN). From 13.3 it follows that there exists a bounded subset L ⊆
H(B) such that f̂∗(L◦) is a bounded subset of (F ′bor)

′
β, where L◦ denotes the polar

of L in H(B)′β. Hence,
(
f̂∗ (L◦)

)◦
is a neighbourhood of 0 ∈

(
(F ′bor)

′
β

)′
β
. Put

W :=
(
f̂∗ (L◦)

)◦
∩ F ′bor.

Then W is a neighbourhood of 0 ∈ F ′bor. We have

f̂(W ) ⊆ L◦◦ ∩H(B)

where L◦◦ is the bi-polar of L. However, L◦◦∩H(B) is the closure of the absolutely
convex envelope of L and hence it is a bounded subset of H(B). This shows that
f̂(W ) is bounded in H(B). By Grothendieck’s factorisation theorem C.5 and since
B is a set of uniqueness, there exists a neighbourhood U of B in E such that f̂(W )
is contained and bounded in H(U). From the absorption of W it follows that

f̂(F ′bor) ⊆ H(U).

Now we can define a holomorphic function

g : U → (F ′bor)
′
β

given by
g(z)(x′) = f̂(x′)(z)

for z ∈ U, x′ ∈ F ′bor.
We see that g(z)(x′) = f̂(x′)(z) = f(z)(x′) for every z ∈ B, x′ ∈ F ′. This yields

g |B= f and since B is a set of uniqueness, g(U) ⊆ F .
To prove the necessity, by 13.3 it suffices to show that every continuous linear

map T from H(D) to F is bounded on a neighbourhood of 0 ∈ H(D). Consider
T ′ : F ′β → H(D)′β ∼= H(D). Since T ′(x′) ∈ H(D) for all x′ ∈ F ′β, we can define a
map f : D→ (F ′bor)

′
β given by

f(z)(x′) = δz(T ′(x′))

for x′ ∈ F ′β, z ∈ D, where δz is the Dirac functional defined by z.
From the weak continuity of T ′ and δz we infer that f(z) is σ(F ′, F )-continuous

and, hence, f(z) ∈ F . Moreover, f ∈ Hω(D, F ). Since H(D)′β has property (LB∞)
it follows that f ∈ H(D, F ). Thus there exists a neighbourhood V of D and we can
consider f ∈ H(V, F ). Now we can choose an open subset V1 which is compact in
V such that DV̄1 ⊂ V . Hence f |V̄1

is bounded in F and also B := f(V1). It is easy
to see that T ′ is bounded on B◦, since T ′(B◦) ⊆ V ◦. Put C = T ′(B◦) ⊆ H(D)′β
and U := C◦ with D ⊆ U ⊆ V̄1. Then U is a neighbourhood of 0 ∈ H(D) and
T (U) ⊆ B◦◦ is bounded in F . �
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Chapter 14

The Main Theorems

Definition 14.1 Let E and F be locally convex spaces. A mapping f : E → F
is called real analytic, denoted by Cω(E,F ) if f is real analytic along real analytic
curves and smooth along smooth curves, i.e. f ◦ c ∈ Cω(R, F ) for all c ∈ Cω(R, E)
and f ◦ c ∈ C∞(R, F ) for all c ∈ C∞(R, E).

Analogously, a mapping f : E → F is called topologically real analytic if f ◦ c ∈
Cωt (R, F ) for all c ∈ Cωt (R, E).

At last, f : E → F is called bornologically real analytic if f ◦ c ∈ Cωb (R, F ) for
all c ∈ Cωb (R, E).

Lemma 14.2 ([Vog82], Theorem 1.4) Let E be an (FS)-space with property (Ω̄).
Then there exists a bounded (hence a relatively compact) subset B such that E has
property (Ω̄B).

Proof. By A.10 (iii”’), the property (Ω̄) of E can be written in the following way.
For all p and µ with 0 < µ < 1 there exists a q such that for all k exists a C > 0
and we have

Uq ⊆ rµUk +
C

r1−µ
Up

for r > 0. Or equivalently, for all x ∈ Uq exists a y ∈ Uk and a z ∈ Up such that

x = rµy +
C

r1−µ
z.

This means, for every x ∈ Uq there exists a y ∈ Uk and a z ∈ Up such that

‖x− rµy‖p = ‖ C

r1−µ
z‖p =

C

r1−µ
‖z‖p ≤

C

r1−µ

which is equivalent to

min {‖x− rµy‖p : y ∈ Uk} ≤
C

r1−µ

for all x ∈ Uq. This can be rewritten as

r1−µ sup {min {‖x− rµy‖p : y ∈ Uk} : x ∈ Uq} ≤ C.
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Now we replace µ by µ
2 and r by r2, multiply with 1

r , and obtain (strictly speaking
we also get new C and Uq but this has no effect to our calculation)

1
r
C ≥ 1

r
(r2)1−

µ
2 sup

{
min

{
‖x− r2

µ
2 y‖p : y ∈ Uk

}
: x ∈ Uq

}
= r1−µ sup {min {‖x− rµy‖p : y ∈ Uk} : x ∈ Uq} .

Hence for each k we have

ε(r, k) := r1−µ sup {min {‖x− rµy‖p : y ∈ Uk} : x ∈ Uq} → 0

for r → ∞. Thus for all k ∈ N exists an rk such that for all r ≥ rk we have
ε(r, k) < 1

k . Without loss of generality we may assume k ≤ rk < rk+1. Now let
k(n) := max {k : rk ≤ n} <∞. Then ε(n), defined by

ε(n) := ε(n, k(n)) <
1

k(n)

converges to 0 since rk(n) ≤ n. Furthermore k(n) −→
n→∞

∞, since otherwise there
would exist a bound K and thus rK+1 > n for infinitely many n, ergo ε→ 0, i.e.

Uq ⊆ nµUk(n) +
ε(n)
n1−µUp.

Since E is an (FS)-space, we find finite sets Zn ⊆ Uk(n) with Uk(n) ⊆ Zn + ε(n)
n Up

and hence

Uq ⊆ nµUk(n) +
ε(n)
n1−µUp

⊆
(
nµZn +

ε(n)
n1−µUp

)
+
ε(n)
n1−µUp

= nµZn +
2ε(n)
n1−µ Up.

Let B be the absolutely convex hull of
⋃
n∈N Zj . Then B is bounded since it is

contained in the absolutely convex hull of Uk(n)∪
⋃
j<n Zj and k(n)→∞. Resulting

we have

Uq ⊆ nµZn +
2ε(n)
n1−µ Up

⊆ nµB +
2‖ε‖∞
n1−µ Up.

Note that without loss of generality we may assume q ≥ p, i.e. Uq ⊆ Up, and hence
for 0 < r ≤ 1

Uq ⊆ Up ⊆ rµB + Up ⊆ rµB +
1

r1−µ
Up.

Finally, if n ≤ r < n+ 1 then we have

Uq ⊆ nµB +
C

n1−µUp

⊆ rµB +
(
n+ 1
n

)1−µ C

r1−µ
Up,
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thus for C ≥ max {4‖ε‖∞, 1} we have

Uq ⊆ rµB +
C

r1−µ
Up

for all r > 0. �

Corollary 14.3 Let E be an (FS)-space with property (Ω̃). Then there exists a
bounded (hence a relatively compact) subset B such that E has property (Ω̃B).

Reference. The proof goes along the same lines as 14.2, as cited in [DMV84], Propo-
sition 3b. In this case we put µ

2 as the µ in the hypothesis and get µ = 1 in the
result.

Theorem 14.4 ([HK02], Theorem A) Let F be a Fréchet space. Then the following
assertions are equivalent.

(i) F has property (DN).

(ii) Cω(E,F ) = Cωt (E,F ) for every real nuclear Fréchet space E having property
(Ω̃).

(iii) Cω(E,F ) = Cωt (E,F ) for every real (FS)-space E having property (Ω̃) and
an absolute basis {ej}j≥1.

Proof. The implications (ii) ⇒ (i) and (iii) ⇒ (i) are proven in 13.4 by choosing
E = R.

First we prove (i) ⇒ (ii). Let E, F be as in the statement of the theorem.
By 14.3 there exists an absolutely convex compact subset L ⊆ E such that E has
property (Ω̃L). It follows that E has the property (Ω̃B) for all absolutely convex
compact subsets B with L ⊆ B. Hence, so does E ⊗ C and by 11.9 B is a set of
uniqueness in E ⊗ C.

Thus we can define the linear map SB : F ′bor → H(B) by

SB(u) = û ◦ f

for f ∈ Cω(E,F ) and u ∈ F ′bor, where û ◦ f is the unique holomorphic extension of
u◦f to a neighbourhood of B in E⊗C. Again using the uniqueness of B, by C.4, we
deduce that SB has a closed graph and, hence, it is continuous by Grothendieck’s
closed graph theorem C.3. Now by 11.10 H(B)′β has property (LB∞) and by 13.6
(F ′bor)

′
β has property (DN). Then 13.3 implies that SB is bounded on a neighbour-

hood of 0 ∈ F ′bor. We deduce from 13.7 that there exists a convex neighbourhood
WB of B in E ⊗ C and a holomorphic function

f̃B : WB → F

such that
f̃B |B= f |B .

Put W as the union of all WB where B is an absolutely convex compact subset of
E with L ⊂ B and define the function

f̃ : W → F
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given by
f̃ |WB

= f̃B.

Now we show that the function f̃ is correctly defined in this way and, hence, is
holomorphic on the interior of W in E ⊗ C. Indeed, let B and C be absolutely
convex compact subsets of E with L ⊆ B,C. Then f̃B, f̃C are holomorphic on
WB ∩WC . On the other hand, L ⊆ B ∩C then E has property (Ω̃B∩C) and, at the
same time,

f̃B |B∩C= f |B∩C .

Now using the uniqueness of B ∩ C, noticing that WB ∩ WC is connected and
B ∩ C ⊆WB ∩WC , we deduce that

f̃B |WB∩WC
= f̃C |WB∩WC

.

It remains to check that the interior ofW is contained in E and hence, f ∈ Cω(E,F ).
Assume, for the sake of obtaining a contradiction, that there exists x0 ∈ E and a
sequence

{
(xn + i yn)n∈N

}
⊆ E ⊗ C converging to x0 but xn + i yn /∈ W for n ≥ 1.

Put
B := 〈{(xn)n∈N, x0, (yn)n∈N} ∪ L〉

as the closed convex hull of the mentioned elements. Since E is a Fréchet space,
by 1.9 there exists an absolutely convex compact set B1 ⊆ E containing B such
that B is compact in EB1 . Then B1 is an absolutely convex compact subset of
E with L ⊆ B1 and WB1 is a neighbourhood of {x0} × {0} in E ⊗ C. Hence
{xn + i yn} ⊆WB1 ⊆W for sufficiently large n. This is a contradiction.

(i)⇒ (iii) Let E be as in the hypothesis an (FS)-space with property (Ω̃). Then
by 14.3 there exists an absolutely convex compact subset L ⊆ E such that E has
property (Ω̃L). Next, let B an absolutely convex compact subset and {ej}j≥1 the
absolute basis of E. Putting

B̃ :=

〈
B ∪ L ∪

⋃
j≥1

‖e′j‖Lej

〉

we get that E has also the property (Ω̃B̃). Then by B.1 H(B)′β has property (LB∞).
From here on, the proof of the implication (i) ⇒ (iii) is analogous to the proof of
(i) ⇒ (ii). �

Remark 14.5 Let E be a real Fréchet space and B an absolutely convex compact
set in E. Then B is a set of uniqueness for H(B ⊗ C) in EB ⊗ C.

Theorem 14.6 ([HK02], Theorem B) Let F be a Fréchet space having property
(LB∞) then

Cω(E,F ) = Cωt (E,F )

holds for all real Fréchet spaces E.

Proof. (i) By B(E) we denote the family of all absolutely convex compact subsets
of E. Then by 1.9, for each B ∈ B(E) we can find a B1 ∈ B(E) such that B is
compact in EB1 . Let F(B1) be the family of separable closed subspaces of EB1 and
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let M ∈ F(B1) be given. Choose a sequence (xMn )n∈N in M converging to 0 ∈ M
such that its span is dense in M . Put

BM =

〈
(B ∩M) ∪

⋃
n≥1

{xMn }

〉
.

The convex hull of
⋃
n≥1

{
xMn
}

is compact, since (xMn )n∈N is a sequence converging
to 0. Then BM is absolutely convex compact in M .

Furthermore, BM is the set of uniqueness for holomorphic functions on neigh-
bourhoods of BM in M ⊗ C. Indeed, let f be a holomorphic function on a neigh-
bourhood WB of BM in M ⊗ C such that f |BM

= 0. Then for each x ∈ BM and
ξ ∈ span

{
(xMn )n∈N

}
we have

f ′(x)(ξ) = lim
t→0

f(x+ tξ)− f(x)
t

= 0

because tξ ∈ BM for sufficiently small t ∈ R. Hence f ′(x)(u) = 0 for all u ∈M and
it implies that f ′(x)(z) = 0 for all z ∈ M ⊗ C. Thus f ′ = 0 on BM . Replacing f
by f ′ we get f ′′ = 0 on BM and continuing this process we deduce that f (n) = 0
on BM for all n ∈ N. Using the Taylor expansion of f we derive that f = 0 on a
neighbourhood of BM in M ⊗ C.

(ii) The uniqueness of BM in M ⊗ C allows us to define the linear map

f̂ : F ′bor → H(BM ) : f̂(u) = û ◦ f

where û ◦ f denotes the holomorphic extension of u◦f to a neighbourhood of BM in
M⊗C andH(BM ) is the space of germs of holomorphic functions on neighbourhoods
of BM in M ⊗C. Again using the uniqueness of BM in M ⊗C we deduce that f̂ has
a closed graph and, by Grothendieck’s closed graph theorem, it is continuous. Since
M is a Banach space, it clearly has property (Ω) and hence by 9.4 H(BM )′β has
property (Ω). From 9.3 there exists an index set I such that H(BM )′β is isomorphic
to a quotient of `1(I)⊗̂s. On the other hand, if F has property (LB∞) then by
12.3 (F ′bor)

′
β also has property (LB∞). By 12.5 we derive that every continuous

linear map from `1(I)⊗̂s and, hence, from H(BM )′β to (F ′bor)
′
β is bounded on a

neighbourhood of 0 ∈ H(BM )′β. Now as in the argument of 14.4 there exists a convex
neighbourhood WM of BM in M ⊗ C and a holomorphic function fM : WM → F
such that

fM |BM
= f |BM

.

Recall that EBM
⊗C = M⊗C where EBM

⊗C denotes the complexification of EBM

and EBM
denotes the Banach space induced by BM in EB1 . Put

WB :=
⋃
{WM : M ∈ F(B1)}

and define the function f̃B : WB → F which is given by

f̃B |WM
= fM .

First we check that f̃B is correctly defined in this way. Let M1,M2 be in F(B1).
Without loss of generality we may consider that M1 ⊆ M2. In the same notations
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BM1 ⊆ BM2 and, hence, BM1 ⊗C ↪→ BM2 ⊗C. Then WM1 ∩WM2 ⊇ BM1 ∩BM2 =
BM1 and is an open subset in EBM1

⊗ C. At the same time

fM1 |BM1
= f |BM1

= fM2 |BM1
.

By 14.5 this implies that

fM1 |WM1
∩WM2

= fM2 |WM1
∩WM2

.

Next we show that B is contained in the interior of WB in EB1 ⊗ C.
Assume, for the sake of seeking a contradiction, that there would exist an x0 ∈ B

and a sequence (zn := xn + i yn)n∈N in EB1 ⊗ C converging to x0 but zn /∈ WB for
n ≥ 1. Let

M := span {(xn)n∈N, (yn)n∈N, x0}.

Then M ∈ F(B1) and {(zn)n∈N} ⊆ M ⊗ C with zn → z0 in M ⊗ C. Notice that
x0 ∈ WM implies {(zn)n≥N∈N} ⊆ WM ⊆ WB for n sufficiently large. This is a
contradiction.

Since f̃B is holomorphic on one WM ∈ WB, it is Gâteaux holomorphic on the
interior of WB. Let {(zn)n∈N, z0} ⊆WB and zn → z0. Put

M := span {(xn)n∈N, (yn)n∈N, x0, y0}.

Then M ∈ F(B1) and let BM , defined by

BM := 〈(B ∩M) ∪ {(xn)n∈N, (yn)n∈N, x0, y0}〉,

be the convex hull of the mentioned sets. Notice that the sequences (xn)n∈N and
(yn)n∈N as well as the elements x0, y0 are contained in WM and xn → x0, yn → y0.
Hence fM (xn, yn) → fM (x0, y0). Thus fB(zn) → fB(z0) and consequently, fB is
holomorphic on the interior of WB.

(iii) By (ii) for each B ∈ B(E) we can extend f |B to a holomorphic function
f̃B on a convex neighbourhood WB in EB1 ⊗C where B1 ∈ B(E), B ⊆ B1 and B is
compact in EB1 . Again put

W =
⋃

B∈B(E)

WB.

Then W ⊆ E ⊗ C and we can find the function f̃ : W → E given by

f̃ |W= f̃B.

As in (ii), the function f̃ defined in this way is a holomorphic extension of f to the
interior of W , a neighbourhood of E in E ⊗ C. Hence, f ∈ Cωt (E,F ). �



Appendix A

On equivalent descriptions of
the Properties

Lemma A.1 The following implication holds, the reverse implication does not.

(LB∞)⇒ (DN)

Proof. The implication is obvious.
The reverse implication does not hold, since if it would, by 12.4, the identity

mapping would be compact in Λ1
∞(β). �

Theorem A.2 (Characterisation of the property (DN)) Let E be a Fréchet
space with an increasing fundamental system of semi-norms. The following charac-
terisations of the property (DN) are equivalent.

(i) There exists a continuous semi-norm ‖.‖ on E such that for all k ∈ N there
exists a p ∈ N and a C > 0 with

‖.‖k ≤ r‖.‖+
C

r
‖.‖k+p

for all r > 0.

(ii) There exists a continuous semi-norm ‖.‖ on E such that for all k ∈ N there
exists a p ∈ N and a C > 0 with

‖.‖2k ≤ C‖.‖‖.‖k+p.

(iii) There exists a system of semi-norms such that for all k ∈ N

‖.‖2k ≤ ‖.‖k−1‖.‖k+1.

(iv) There exists a bounded, absolutely convex set B in E′ such that for every k ∈ N
there exists a p ∈ N and a C > 0 with

Bk ⊆ rB +
C

r
Bk+p

for all r > 0.

87
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(v) There exists a continuous semi-norm ‖.‖ on E such that for all k ∈ N there
exists a p ∈ N and a C > 0 such that

‖.‖2k ≤ C‖.‖‖.‖p.

(vi) There exists a continuous semi-norm ‖.‖ on E such that for all k ∈ N and all
µ with 0 < µ < 1 there exists a p ∈ N and a C > 0 with

‖.‖k ≤ C‖.‖1−µ‖.‖µp .

(vii) There exists a continuous semi-norm ‖.‖ and a d > 0 such that for all k ∈ N
exists a p ∈ N and a C > 0 such that

‖.‖1+dk ≤ C‖.‖d‖.‖p.

Outline of the proof. In A.3, the equivalence of the items (i) to (iii) is proven. The
proof of the equivalence of (i) and (iv) is given in A.4. Finally, A.5 shows the
equivalence of (i) and (v) to (vii).

Lemma A.3 ([Vog77a], 2.1. Satz) Let E be a Fréchet space. Then the following
assertions are equivalent.

(i) There exists a continuous semi-norm ‖.‖ on E such that for all k ∈ N there
exists a p ∈ N and a C > 0 with

‖.‖k ≤ r‖.‖+
C

r
‖.‖k+p

for all r > 0.

(ii) There exists a continuous semi-norm ‖.‖ on E such that for all k ∈ N there
exists a p ∈ N and a C > 0 with

‖.‖2k ≤ C‖.‖‖.‖k+p.

(iii) There exists a system of semi-norms such that for all k ∈ N

‖.‖2k ≤ ‖.‖k−1‖.‖k+1.

Proof. (i) ⇔ (ii) Calculating the minimum of r‖.‖+ C
r ‖.‖k+p with respect to r > 0,

we get

min
r>0

(
r‖.‖+

C

r
‖.‖k+p

)
= 2
√
C‖.‖‖.‖k+p.

Hence, ‖.‖2k ≤ 4C‖.‖k‖.‖k+p.
(ii) ⇒ (iii) If ‖.‖2k ≤ C‖.‖‖.‖k+p holds, we can assume without loss of generality

that ‖.‖ ≤ ‖.‖k for all k ∈ N (as a continuous semi-norm, ‖.‖ ≤ ‖.‖k0 for some
k0 ∈ N and it suffices to show (iii) for all k > k0). By hypothesis, we have

‖.‖2k ≤ Ck‖.‖‖.‖k+p ≤ Ck‖.‖k‖.‖k+p,

hence
‖.‖k ≤ Ck‖.‖k+p =: ‖.‖k+1
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which leads to ‖.‖2k ≤ ‖.‖k−1 ‖.‖k+1.
(iii) ⇒ (ii) From ‖.‖2k ≤ ‖.‖k−1 ‖.‖k+1 we obtain that all ‖.‖k are norms and for

x 6= 0 from
‖x‖k
‖x‖k−1

≤ ‖x‖k+1

‖x‖k
we get for all k the inequality

‖x‖k
‖x‖0

=
k∏
j=1

‖x‖j
‖x‖j−1

≤
2k∏

j=k+1

‖x‖j
‖x‖j−1

=
‖x‖2k
‖x‖k

and hence
‖x‖2k ≤ ‖x‖0‖x‖2k

for all k ∈ N. �

Lemma A.4 ([Vog77a], Lemma 1.4) Let E be a Fréchet space and B1 ⊆ B2 ⊆ . . .
be a fundamental system of absolutely convex bounded sets in E′. Then the following
assertions are equivalent.

(i) There exists a continuous semi-norm ‖.‖ on E such that for all k ∈ N there
exists a p ∈ N and a C > 0 with

‖.‖k ≤ r‖.‖+
C

r
‖.‖k+p

for all r > 0.

(iv) There exists a bounded, absolutely convex set B in E′ such that for every k ∈ N
there exists a p ∈ N and a C > 0 with

Bk ⊆ rB +
C

r
Bk+p

for all r > 0.

Proof. From ‖.‖k ≤ r‖.‖+ C
r ‖.‖k+p we get

1
2r
U ∩ r

2C
Uk+p ⊆ Uk,

with
U := {x : ‖x‖ ≤ 1} .

By taking the polars we get

U◦k ⊆ 2rU◦ +
2C
r
U◦k+p.

To show the other direction, we put

Bk := U◦k ,

where
Uk := {x : ‖x‖k ≤ 1} ,
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since the condition does not depend on the choice of the fundamental system. If the
condition is satisfied, there exists a bounded set B and for each k ∈ N there exists
a p ∈ N and a C > 0 such that

U◦k ⊆ rB +
C

r
U◦k+p

for all r > 0. Therefore a y ∈ U◦k can be written as y = rb + C
r u with b ∈ B,

u ∈ U◦k+p, i.e.

|y(x)| ≤ r|b(x)|+ C

r
|u(x)| ≤ r‖x‖+

C

r
‖x‖k+p

for all x ∈ E. From this follows (i) by ‖x‖ = supb∈B |b(x)|. �

Lemma A.5 ([MV92], Lemma 29.10) Let E be a Fréchet space with an increasing
fundamental system of semi-norms. The following assertions are equivalent.

(ii) There exists a continuous semi-norm ‖.‖ on E such that for all k ∈ N there
exists a p ∈ N and a C > 0 with

‖.‖2k ≤ C‖.‖‖.‖k+p.

(v) There exists a continuous semi-norm ‖.‖ on E such that for all k ∈ N there
exists a p ∈ N and a C > 0 such that

‖.‖2k ≤ C‖.‖‖.‖p.

(vi) There exists a continuous semi-norm ‖.‖ on E such that for all k ∈ N and all
µ with 0 < µ < 1 there exists a p ∈ N and a C > 0 with

‖.‖k ≤ C‖.‖1−µ‖.‖µp .

(vii) There exists a continuous semi-norm ‖.‖ on E and a d > 0 such that for all
k ∈ N exists a p ∈ N and a C > 0 such that

‖.‖1+dk ≤ C‖.‖d‖.‖p.

Proof. (ii) ⇔ (v) This is obvious.
(v) ⇒ (vi) In (v), fix k ∈ N with ‖.‖k < ‖.‖. Put n1 := k and apply (v)

iteratively to get nν+1 > nν and a Cν with

‖.‖2nν
≤ Cν‖.‖‖.‖nν+1 .

Since ‖.‖ is a norm, we have for all m ∈ N(
‖.‖k
‖.‖

)m
≤

m−1∏
ν=0

‖.‖nν

‖.‖

≤
m−1∏
ν=0

Cν
‖.‖nν+1

‖.‖nν

≤

(
m−1∏
ν=0

Cν

)
‖.‖nm

‖.‖
.
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If we put Dm :=
(∏m−1

ν=0 Cν

) 1
m , we get

‖.‖k ≤ Dm‖.‖1−
1
m ‖.‖

1
m
nm .

Finally, if 0 < µ < 1 is given, we choose m ∈ N with 1
m < µ and get the desired

inequality.
(vi) ⇒ (v) Take µ = 1

2 and the square of the equation in (vi). The equivalence
is now obvious.

(vi) ⇒ (vii) This follows directly by putting 1
1+d = µ.

(vii) ⇒ (v) With fixed d > 0, by hypothesis we have that for all k there ex-
ists a p such that ‖.‖1+dk ≤ C‖.‖d‖.‖p. Reinserting k into the hypothesis yields
∃k ∀k′ ∃p′ ∃C ′ > 0 such that ‖.‖1+dk′ ≤ C ′‖.‖dk‖.‖p′ . Combining these statements
leads to:

‖.‖1+dk′ ≤ C ′‖.‖dk‖.‖p′

≤ C ′
(
‖.‖1+dk

) d
1+d ‖.‖p′

≤ C ′
(
C‖.‖d‖.‖p

) d
1+d ‖.‖p′

≤ C ′C
d

1+d ‖.‖
d2

1+d ‖.‖
d

1+d
p ‖.‖p′

≤ C ′C
d

1+d ‖.‖
d2

1+d ‖.‖
1+2d
1+d
p

where in the last step p′ = p is assumed. Thus the inequality can be transformed
into

‖.‖
1+ d2

1+2d

k′ ≤
(
C ′C

d
1+d

) 1+d
1+2d ‖.‖

d2

1+2d ‖.‖p.

Now putting D :=
(
C ′C

d
1+d

) 1+d
1+2d and d′ := d2

1+2d ≤
d
2 gives (iv) by induction also

for some d < 1. Hence also for d = 1. �

Lemma A.6 The following chain of implications holds.

(Ω̄)⇒ (Ω̃)⇒ (LB∞)⇒ (Ω)

Proof. The implication (Ω̄)⇒ (Ω̃) is obvious.
Now we prove (Ω̃) ⇒ (LB∞). In the definition of (LB∞), namely for every

monotonous sequence (ρn)n∈N with ρn −→
n∈N
∞ and for all p there exists a q ≥ p such

that for all n0 exists an N0 ≥ n0 and a C > 0 such that for all u ∈ F ′ exists an m
with n0 ≤ m ≤ N0 such that

‖u‖′1+ρm
q ≤ C‖u‖′m‖u‖′ρm

p ,

choose N0 such that ρN0 ≥ d and put N = N0 for all u ∈ F ′.
Finally to prove (LB∞)⇒ (Ω), we fix a sequence, e.g. (ρn = n)n∈N and observe

that we get
‖u‖1+N0

Uq
≤ C‖u‖Un0

‖u‖N0
Up

which is property (Ω) for k = n0 and d = N0. �
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Remark A.7 None of the reverse implications hold, as can be seen in [Vog83], the
remark after proposition 5.3.

Lemma A.8 Let k, p ≥ 0 and a, b > 0. Then

inf
r>0

(
rak +

1
rb
p

)
=

a+ b

a
a

a+b b
b

a+b

k
b

a+b p
a

a+b .

Proof. The minimum of rak + r−bp in respect to r is assumed at

rmin := min
r>0

(
rak + r−bp

)
=
(
bp

ak

) 1
a+b

as can be seen from
(
rak + r−bp

)′ = ara−1k − br−b−1p = ra−1
(
ak − bpr−(a+b)

)
.

Evaluation gives

rak + r−bp ≥ ramink + r−bminp =
(
bp

ak

) a
a+b

k +
(
bp

ak

) −b
a+b

p

=
(
bapakb

aa

) 1
a+b

+
(
abkbpa

bb

) 1
a+b

=

((
ba

aa

) 1
a+b

+
(
ab

bb

) 1
a+b

)(
kbpa

) 1
a+b

=
(
a

−a
a+b b

a
a+b + a

b
a+b b

−b
a+b

)
k

b
a+b p

a
a+b

=
(
(a+ b)a

−a
a+b b

−b
a+b

)
k

b
a+b p

a
a+b .

The infimum is attained if p, k > 0, since rak + r−bp → ∞ for r → 0 if k > 0 and
for r →∞ if p > 0. The statement is valid if p, k = 0 as well.

Note that 1 ≤ (a+ b)a
−a
a+b b

−b
a+b ≤ 2 for all a, b > 0. �

Lemma A.9 (Interpolation Inequalities) Let E be a Fréchet space with an in-
creasing system of semi-norms, Uj = {x : ‖x‖j ≤ 1}, a, b > 0 and µ := b

a+b . Then
the following statements are equivalent.

(i) ∃C1

‖.‖U1 ≤ C1‖.‖µU0
‖.‖1−µU2

(ii) ∃C2 ∀r

‖.‖U1 ≤ C2

(
ra‖.‖U0 +

1
rb
‖.‖U2

)
(ii’) ∃C ′2 ∀r

‖.‖U1 ≤ C ′2ra‖.‖U0 +
1
rb
‖.‖U2

(ii”) ∃C ′′2 ∀r

‖.‖U1 ≤ ra‖.‖U0 + C ′′2
1
rb
‖.‖U2
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(iii) ∃C3 ∀r

U1 ⊆ C3

(
raU0 +

1
rb
U2

)

(iii’) ∃C ′3 ∀r

U1 ⊆ C ′3raU0 +
1
rb
U2

(iii”) ∃C ′′3 ∀r

U1 ⊆ raU0 + C ′′3
1
rb
U2

Proof. (i) ⇔ (ii) This follows directly by A.8 with C1 = C2(a+ b)a
−a
a+b b

−b
a+b .

(ii) ⇔ (ii’) Put r = C
− 1

a
2 r′. Then

‖.‖U1 ≤ C2r
a‖.‖U0 + C2r

−b‖.‖U2

= C2

(
C
− 1

a
2 r′

)a
‖.‖U0 + C2

(
C
− 1

a
2 r′

)−b
‖.‖U2

= r′
a‖.‖U0 + C

1+ b
a

2 r′
−b‖.‖U2 .

Finally, put C ′2 = C
1+ b

a
2 .

(iii) ⇔ (iii’) Analogous to the equivalence above.

(ii) ⇔ (ii”) Put r = C
1
b
2 r

′. Then

‖.‖U1 ≤ C2r
a‖.‖U0 + C2r

−b‖.‖U2

= C2

(
C

1
b
2 r

′
)a
‖.‖U0 + C2

(
C

1
b
2 r

′
)−b
‖.‖U2

= C
1+a

b
2 r′

a‖.‖U0 + r′
−b‖.‖U2 .

Finally, put C ′′2 = C
1+a

b
2 .

(iii) ⇔ (iii”) Analogous to the equivalence above.
(ii) ⇒ (iii) From ‖.‖U1 ≤ C2

(
ra‖.‖U0 + 1

rb ‖.‖U2

)
follows for x′ ∈ E′U◦

0

sup
x∈U1

|x′(x)| ≤ C2

(
ra sup

x∈U0

|x′(x)|+ r−b sup
x∈U2

|x′(x)|
)

= C2 sup
raU0+r−bU2

|x′(x)|,

and by the bi-polar theorem we get

U1 ⊆ C2(raU0 + r−bU2),

where the closure is taken in respect to ‖.‖0. Finally, by choosing C3 > C2, we have
U1 ⊆ C2(raU0 + r−bU2) ⊆ C3

(
raU0 + r−bU2

)
.
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(iii) ⇒ (ii) Clearly, the Uj ’s are absolutely convex sets and by hypothesis we
have U1 ⊆ U0 + U2. Then for all x′ ∈ E′ we have

‖x′‖U1 = sup
{
|x′(u1)| : u1 ∈ U1

}
≤ sup

{
|x′(u0 + u2)| : u0 ∈ U0, u2 ∈ U2

}
= ‖x′‖U0+U2

≤ sup
{
|x′(u0)|+ |x′(u2)| : u0 ∈ U0, u2 ∈ U2

}
= sup

{
|x′(u0)| : u0 ∈ U0

}
+ sup

{
|x′(u2)| : u2 ∈ U2

}
= ‖x′‖U0 + ‖x′‖U2

since |x′(u0 + u2)| ≤ |x′(u0)|+ |x′(u2)|. �

Theorem A.10 (Characterisation of the property (Ω̄)) Let F be a Fréchet
space. The following characterisations of the property (Ω̄) are equivalent.

(i) ∀p ∃q ∀k ∃C > 0
‖.‖2Uq

≤ C‖.‖Uk
‖.‖Up .

(ii) ∃d > 0 ∀p ∃q ∀k ∃C > 0

‖.‖1+dUq
≤ C‖.‖Uk

‖.‖dUp
.

(iii) ∀d > 0 ∀p ∃q ∀k ∃C > 0

‖.‖1+dUq
≤ C‖.‖Uk

‖.‖dUp
.

(ii’) ∃ µ : 0 < µ < 1 ∀p ∃q ∀k ∃C > 0

‖.‖Uq ≤ C‖.‖
µ
Uk
‖.‖1−µUp

respectively
‖.‖Uq ≤ C‖.‖

1−µ
Uk
‖.‖µUp

.

(iii’) ∀ µ : 0 < µ < 1 ∀p ∃q ∀k ∃C > 0

‖.‖Uq ≤ C‖.‖
µ
Uk
‖.‖1−µUp

respectively
‖.‖Uq ≤ C‖.‖

1−µ
Uk
‖.‖µUp

.

(i”) ∀p ∃q ∀k ∃C > 0 ∀r > 0

‖.‖Uq ≤ C
(
r‖.‖Uk

+
1
r
‖.‖Up

)
.

(ii”) ∃a, b > 0 ∀p ∃q ∀k ∃C > 0 ∀r > 0

‖.‖Uq ≤ C
(
ra‖.‖Uk

+
1
rb
‖.‖Up

)
.
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(iii”) ∀a, b > 0 ∀p ∃q ∀k ∃C > 0 ∀r > 0

‖.‖Uq ≤ C
(
ra‖.‖Uk

+
1
rb
‖.‖Up

)
.

(i”’) ∀p ∃q ∀k ∃C > 0 ∀r > 0

Uq ⊆ C
(
rUk +

1
r
Up

)
.

(ii”’) ∃a, b > 0 ∀p ∃q ∀k ∃C > 0 ∀r > 0

Uq ⊆ C
(
raUk +

1
rb
Up

)
.

(iii”’) ∀a, b > 0 ∀p ∃q ∀k ∃C > 0 ∀r > 0

Uq ⊆ C
(
raUk +

1
rb
Up

)
.

(ii””) ∃µ : 0 < µ < 1 ∀p ∃q ∀k ∃C > 0 ∀r > 0

Uq ⊆ C
(
rµUk +

1
r1−µ

Up

)
respectively

Uq ⊆ C
(
r1−µUk +

1
rµ
Up

)
.

(iii””) ∀µ : 0 < µ < 1 ∀p ∃q ∀k ∃C > 0 ∀r > 0

Uq ⊆ C
(
rµUk +

1
r1−µ

Up

)
respectively

Uq ⊆ C
(
r1−µUk +

1
rµ
Up

)
.

Proof. (i) ⇒ (ii) Put d := 1
(ii) ⇒ (iii) For fixed d from (ii) we derive the assertion for every d′ ≥ d since

clearly ‖.‖Uq ≤ C‖.‖Uk

(‖.‖Up

‖.‖Uq

)d
≤ C‖.‖Uk

(‖.‖Up

‖.‖Uq

)d′
.

By hypothesis, ∃d > 0 ∀p ∃q ∀k ∃C > 0 such that ‖.‖1+dUq
≤ C‖.‖Uk

‖.‖dUp
and

∀q ∃q′ ∀k′ ∃C ′ such that ‖.‖1+dUq′
≤ C ′‖.‖Uk′‖.‖

d
Uq

. Combining these two statements,
we get ∀p ∃q, q′ ∀k, k′ ∃C,C ′

‖.‖1+dUq′
≤ C ′‖.‖Uk′‖.‖

d
Uq

= C ′‖.‖Uk′

(
‖.‖1+dUq

) d
1+d

≤ C ′‖.‖Uk′

(
C‖.‖Uk

‖.‖dUp

) d
1+d

.
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Putting k = k′ and evaluating the expressions, we get ∀q ∃q′ ∀k ∃C,C ′

‖.‖1+dUq′
≤ C ′C

d
1+d ‖.‖

1+2d
1+d

Uk
‖.‖

d2

1+d

Up
.

This leads to ∀q ∃q′ ∀k ∃C,C ′

(
‖.‖1+dUq′

) 1+d
1+2d ≤

(
C ′C

d
1+d

) 1+d
1+2d ‖.‖Uk

(
‖.‖

d2

1+d

Up

) 1+d
1+2d

,

simplified as

‖.‖
1+ d2

1+2d

Uq′
≤ C ′′‖.‖Uk

‖.‖
d2

1+2d

Up
.

Thus we have proved (iii) also for d′ := d2

1+2d ≤
d
2 .

By induction, for any given d′ > 0 we can find an n ∈ N such that d
2n ≤ d′ for

the d from the hypothesis. In this way, every d′ > 0 can be reached.
(iii) ⇒ (ii) Trivial.
(ii) ⇔ (ii’) For µ = 1

1+d we have

‖.‖1+dUq
≤ C‖.‖Uk

‖.‖dUp
⇔ ‖.‖Uq ≤ C‖.‖

µ
Uk
‖.‖1−µUp

respectively for µ = d
1+d we get

‖.‖1+dUq
≤ C‖.‖Uk

‖.‖dUp
⇔ ‖.‖Uq ≤ C‖.‖

1−µ
Uk
‖.‖µUp

.

(iii) ⇔ (iii’) Analogous to the equivalence above.
(ii’) ⇔ (ii”) and (iii’) ⇔ (iii”) Follow directly from A.9 (i) ⇔ (ii).
(ii”) ⇔ (ii”’) and (iii”) ⇔ (iii”’) Follow directly from A.9 (ii) ⇔ (iii).
(iii”) ⇒ (i”) ⇒ (ii”) and (iii”’) ⇒ (i”’) ⇒ (ii”’) Trivial. �



Appendix B

An equivalent result to
Proposition 11.10

Theorem B.1 ([HK00], Proposition 3.4) Let E be an (FS)-space with an absolute
basis. If E has the property (Ω̃) then there exists a balanced convex compact subset
B of E such that H(B)′β has property (LB∞).

Outline of the proof. Let {ej : j ≥ 1} be an absolute basis for E. From the hypoth-
esis, by 14.3 there exists a balanced convex compact set B1 in E such that

∀p ∃q, d > 0, C > 0 : ‖.‖1+dUq
≤ C‖.‖B1‖.‖dUp

(1)

On the other hand, since {ej}j≥1 is an absolute basis it follows that
(
‖e′j‖B1ej

)
j≥1

converges to 0 ∈ E. Put

B :=

〈
B1 ∪

⋃
j≥1

{
‖e′j‖B1ej

}〉

as the closure of the convex hull of the union of B1 and the sequence.
Now we prove that H(B)′β has property (LB∞). In order to prove this, by 11.2

it suffices to show that every continuous linear map T : H(B)′β → H(C) is bounded
on a neighbourhood of 0 ∈ H(B)′β. Let

T : H(B)′β → H(C)

be given. Consider the function

f : B → H(C)

defined by
f(x)(λ) = T (δx)(λ)

for x ∈ B, λ ∈ C, where δx ∈ H(B)′β is the Dirac functional associated to x which
is given by δx(ϕ) = ϕ(x), with ϕ ∈ H(B). We claim that f is weakly holomorphic.
Indeed, since E is an (FS)-space, so is H(B)′β, by [BM77] 7(a), and hence it is
reflexive. Now let µ ∈ H(C)′β then µ ◦ T ∈ (H(B)′β)

′
β
∼= H(B) which gives a

holomorphic extension of µ ◦ f . For each s > 0 let Rs : H(C) → H∞(2sD) be the

97
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restriction map where D is the unit disc in C. Recall that H∞(2sD) is a Banach
space and hence in order for a function to be holomorphic it suffices that it is weakly
holomorphic and we can consider the function hs := Rs ◦ f which hereby extends
to a bounded holomorphic function ĥs : V s → H∞(2sD) on a neighbourhood V s of
B in E. Take p ≥ 1 such that B + Up ⊆ V 1 where Up := {x ∈ E : ‖x‖p ≤ 1} and
(Ω̃B1) holds for E with this p. Let

V1 := B + Up

and define the function

ḡ : (B × C) ∪ (V1 × D)→ C

as follows

ḡ(x, λ) =

{
f(x)(λ) : x ∈ B, λ ∈ C
ĥ1(x)(λ) : x ∈ V1, λ ∈ D

.

Obviously, ḡ is separately holomorphic (see 3.13). Let F denote the family of
all finite dimensional subspaces P of EB, the Banach space induced by B. Put

ḡP = ḡ |((B∩P )×C)∪((V1∩P )×D) .

B ∩ P and D have non-empty interiors in V1 ∩ P and C respectively and hence
are not pluripolar. By 11.6, ḡP extends uniquely to a holomorphic function ĝP on
(V1 ∩ P ) × C. Since V1 ∩ EB =

⋃
{V1 ∩ P : P ∈ F} the family {ĝP }P∈F defines

a Gâteaux holomorphic function ĝ on (V1 ∩ EB) × C. On the other hand, ḡ is
holomorphic on {x ∈ B : ‖x‖B < 1} × D and ĝ, by Zorn’s Lemma, is holomorphic
on (V1 ∩ EB)× C, where V1 ∩ EB is equipped with the topology of EB.

Now we prove that ĝ can be extended holomorphically to ĝ1 on W × C, a
neighbourhood of B ×C in E ×C such that ĝ1(W × rD) is bounded for r > 0. Let
q ≥ p, d > 0, C > 0 be chosen such that (Ω̃B1) holds (see (1)).

Since B =
〈
B1 ∪

⋃
j≥1

{
‖e′j‖B1ej

}〉
we have

‖e′j‖B1‖ej‖B ≤ 1

for j ≥ 1. From the condition (Ω̃B1) in (1) we have(
1
‖ej‖q

)1+d

≤ C

‖ej‖B‖ej‖dp
. (2)

Now let δ = 1
2

(
C

1
1+d e

)−1
. Given r > 0, d > 0 we can find s,D > 0 such that

‖σ‖1+dr ≤ D‖σ‖s‖σ‖d1 (3)

for σ ∈ H(C), where
‖σ‖k = sup {|σ(z)| : |z| ≤ k} .

Write the Taylor expansion of g : V1 ∩ EB → H(C), the function associated to
ĝ : (V1 ∩ EB)× C→ C at 0 ∈ EB

g(x) =
∞∑
n=0

Png(x)
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where

Png(x)(λ) =
1

2π i

∫
|t|=1

ĝ(tx, λ)
tn+1

dt

for x ∈ V1 ∩ EB, λ ∈ C.
Since ĥs is holomorphic at 0 ∈ E for every s > 0, we infer that Png(.)(λ) is

continuous on E for every λ. Let P̂ng be the symmetric n-linear form associated
with Png. We have

∑
n≥0

|Png(x)(λ)| ≤
∑
n≥0

∑
j1,...,jn≥1

|e′j1(x)|‖ej1‖q · · · |e
′
jn

(x)|‖ejn‖q
‖ej1‖q · · · ‖ejn‖q

×|P̂ng(ej1 , . . . , ejn)(λ)|. (4)

Using (2), (3) and (4) we get

∑
n≥0

|Png(x)(λ)| ≤
∑
n≥0

∑
j1,...,jn≥1

D
1

1+dC
n

1+d |e′j1(x)|‖ej1‖q · · · |e
′
jn

(x)|‖ejn‖q

‖ej1‖
1

1+d

B · · · ‖ejn‖
1

1+d

B ‖ej1‖
d

1+d
p · · · ‖ejn‖

d
1+d
p

×‖P̂ng(ej1 , . . . , ejn)‖
1

1+d
s ‖P̂ng(ej1 , . . . , ejn)‖

1
1+d

1

≤ D
1

1+d

∑
n≥0

C
n

1+d
nn

n!
‖Png‖

1
1+d

s,B ‖Png‖
d

1+d

1,p ‖x‖
n
q

≤ D
1

1+d ‖g‖
1

1+d

B×sD‖g‖
d

1+d

Up×D

∑
n≥0

C
n

1+d
nn

n!
δn

< ∞

for x ∈ δUp and |λ| < r.
Thus ĝ is extended holomorphically to (δUq×C)∪(V1×D). By the same argument

as above g is extended holomorphically to g1 on V1 × C. Consider ĝ1 : V1 → H(C)
associated with g1. By the same argument as above it follows that ĝ1 is locally
bounded. Hence there exists a neighbourhood W of B in V1 such that ĝ1(W ) is
bounded. Define a continuous linear map S : H∞(W )′ → H(C) as

S(µ)(λ) = µ(evλ ◦ĝ1).

Put δ : B → H(B)′β with δ(x)(ϕ) = ϕ(x), x ∈ B, ϕ ∈ H(B). Since (1) holds for
B1 it holds for B, i.e. E has property (Ω̃B). This shows that B is a set of uniqueness
and we infer that span(δ(B)) is weakly dense in H(B)′β. Because H(B)′β is reflexive,
span(δ(B)) is dense in H(B)′β. Now we have

T

 m∑
j=1

λjδzj

 (λ) =
m∑
j=1

λjT (δzj )(λ) =
m∑
j=1

λjf(zj , λ)

=
m∑
j=1

λj ĝ1(zj , λ) =
m∑
j=1

λjS(δzj )(λ) = S

 m∑
j=1

λjδzj

 (λ)

for λ ∈ C.
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Hence S |H(B)′β
= T . Now reflect on the restriction map

res : H∞(W )→ H(B).

Since res is continuous, it maps the unit ball U of H∞(W ) to a bounded set res(U).
The polar res(U)◦ is a neighbourhood of 0 ∈ H(B)′β. Since res(U)◦ ⊆ res∗(U◦) and
T ◦ res∗ = S, T (res(U)◦) is bounded in S(U◦). Thus H(B)′β has property (LB∞).



Appendix C

Some Well-Known Theorems

Theorem C.1 Suppose that E is a locally convex space with the topology defined by
a family of semi-norms. A linear functional or a semi-norm ‖.‖q on E is continuous
if and only if there are a finite number of semi-norms ‖.‖p1 , . . . , ‖.‖pn and real
numbers λ1, . . . , λn such that

‖x‖q ≤ λ1‖x‖p1 , . . . , λn‖x‖pn

for all x ∈ E.

Reference. A proof can be found in [Kom99], Proposition 1.1.

Theorem C.2 (Hahn-Banach) Suppose that q(x) is a positive homogeneous sub-
additive function on a real vector space E. If a linear functional l(z), defined on a
linear subspace F , satisfies

l(z) ≤ q(z) ∀z ∈ F,

then l(z) can be extended to a linear functional u defined on the whole of E, which
satisfies

u(x) ≤ q(x) ∀x ∈ E.

If E is a locally convex space and q(x) is continuous at 0, then u is also contin-
uous.

Reference. A proof can be found in [Köt69a], 17.3.

Theorem C.3 (Grothendieck’s closed graph theorem) Let E and F be two
separated locally convex spaces, E equipped with a topology less fine than that of an
(LF )-space and F ultrabornological.

(i) Every continuous linear application from E to F is a homomorphism.

(ii) For a linear application from F to E to be continuous, it suffices that it has a
closed graph.

Reference. The original proof can be found in [Gro55].

Remark C.4 In order to show that the graph of an application f : E → F is closed,
one often verifies that for a sequence (xi)n∈N in E with the limits x = limn∈N xn
and y = limn∈N f(xn) one gets y = f(x).

101
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Theorem C.5 (Grothendieck’s factorisation theorem) ([MV92], 24.33 or cf.
[Gro55], I) Let E be a separated locally convex space, F a Fréchet space, (Fi)i∈N
a sequence of Fréchet spaces, u a linear continuous map from F to E and for all
i ∈ N be ui a linear continuous map from Fi to E. Assume that u(F ) ⊆

⋃
i ui(Fi).

Then exists an index i such that u(F ) ⊆ ui(Fi), and ui is onto. There is a linear
continuous map v from F to Fi such that u = ui ◦ v.

Proof. Let u : F → E, ui : Fi → E as in the hypothesis above. For all i, defineHi :=
{(x, y) ∈ F × Fi : u(x) = ui(y)}. Since they are closed subspaces of (a product of)
Fréchet space(s), they are also Fréchet spaces. For all i, let pi : F × Fi → F denote
the projection to the first entry. We get pi(Hi) = {x ∈ F : u(x) ∈ ui(Fi)} by the
following computation

z ∈ pi(Hi) ⇔ ∃(x, y) ∈ Hi : z = pi(x, y) = x

⇔ ∃(x, y) ∈ F × Fi : u(x) = ui(y) and z = x

⇔ ∃y ∈ Fi : u(z) = ui(y)
⇔ ∃y ∈ Fi : z ∈ u−1(ui(y))
⇔ z ∈ u−1(ui(Fi)).

By hypothesis we get F =
⋃
i pi(Hi) and by C.15 also F = pi(Hi), i.e. u(F ) = ui(Fi).

Suppose that ui is bijective, thereby for all x ∈ F there exists a unique y ∈ Fi such
that ui(y) = u(x), i.e. (x, y) ∈ Hi. This y depends obviously linearly on x, even
y = v(x). The map x → v(x) : F → Fi is continuous by Grothendieck’s closed
graph theorem since its graph Hi is closed. �

Theorem C.6 (Riesz’ representation theorem) Let u be a continuous linear
functional on C(E), where E is a compact space. Then there exists a unique regular
Borel measure µ on E such that

u(f) =
∫
E
fdµ

for all f ∈ C(E).
µ is positive if and only if u is positive. Moreover, the map u → µ establishes

an isometric isomorphism of C(E)′ onto the space of the regular Borel measures on
E.

Reference. A proof can be found in [Jar81], 7.6.1 or in [Köt69a], 17.7.4 for E a real
interval.

Definition C.7 Let E be a Hausdorff locally convex space. E is called a Schwartz
space if for every balanced, closed convex neighbourhood U of 0 in E there exists
a neighbourhood V of 0 in E such that for every α > 0 the set V can be covered
by finitely many translates of αU , i.e. there are x1, . . . , xn ∈ V such that V ⊆⋃n
i=1(xi + U).

Theorem C.8 Let E be a complete Schwartz space. Then E′ is ultrabornological.

Reference. The original proof can be found in [Sch57a]. A modern version in
[MV92], 24.23.
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Theorem C.9 If U is an open subset of a locally convex space E and F is a normed
linear space then f ∈ HG(U,F ) is holomorphic if and only if it is locally bounded.

Reference. A proof can be found in [Din99], Proposition 3.7.

Lemma C.10 The quotient space of a metrizable locally convex space L over a
closed subspace M is metrizable, and if L is complete then L/M is complete.

Reference. A proof can be found in [Sch71], I.6.3.

Lemma C.11 ([Sch71], III.2) Let L and M be metrizable locally convex spaces (e.g.
Fréchet spaces with |x| :=

∑
n∈N

1
2n

‖x‖n

1+‖x‖n
). We denote by Ur := {x ∈ L : |x| ≤ r}

and Uρ := {y ∈M : |y| ≤ ρ} the closed balls of centre 0 and radius r, ρ. Let L be
complete and let u be a continuous linear map of L into M satisfying

∀ r > 0 ∃ρ = ρ(r) > 0 : u(Ur) ⊃ Uρ. (1)

Then u(Ut) ⊃ Uρ for each t > r.

Proof. Let r and t be fixed, t > r > 0 and denote by (rn)n∈N a sequence of positive
real numbers such that r1 = r and

∑∞
n=1 rn = t. Let (ρn)n∈N be a null sequence of

positive numbers such that ρ1 = ρ and for each n ∈ N, ρn satisfies u(Urn) ⊃ Uρn .
For each y ∈ Uρ, we must establish the existence of z ∈ Ut with u(z) = y.

We define inductively a sequence (xn)n∈N such that for all n ≥ 1

|xn − xn−1| ≤ rn, (2)

|u(xn)− y| ≤ ρn+1. (3)

Set x0 = 0 and assume that for k ≥ 1 x1, x2, . . . , xk−1 have been selected to satisfy
(2) and (3). By (1), the set u(xk−1 + Urk) is dense with respect to u(xk−1) + Uρk

.
From (3) we conclude that y ∈ u(xk−1) + Uρk

; thus there exists xk satisfying |xk −
xk−1| ≤ rk and |u(xk)− y| ≤ ρk+1.

Since
∑∞

n=1 rn converges, (xn)n∈N is a Cauchy sequence in the complete space
L and thus converges to some z ∈ L. Clearly, |z| ≤ t, and u(z) = y follows from the
continuity of u and (3), since (ρn)n∈N was chosen to be a null sequence. �

Definition C.12 Let L and M be locally convex spaces. A continuous linear map
u : L→M is called homomorphism if for each open subset G ⊂ L the image u(G)
is an open subset of u(L) for the topology induced by M .

Examples of homomorphisms are for any subspace H of L the canonical quotient
map u : L→ L/H and the canonical imbedding u : H → L.

Lemma C.13 ([Sch71], III.1.2.a/b) Let L and M be locally convex spaces and let
u : L→M be a continuous linear map. With the aid of the canonical quotient map
ϕ and the canonical embedding ψ we can decompose u into

L
ϕ−→ L/u−1(0) u0−→ u(L)

ψ−→M,

where u0 is a bijective map and called the associated map with u.
Then the following assertions are equivalent.
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(i) u is a homomorphism.

(ii) For every neighbourhood base U of 0 in L, u(U) is a neighbourhood base of 0
in u(L).

(iii) The map u0 associated with u is an isomorphism.

Proof. Since u is open, every element of u(U) is a neighbourhood of 0, and u(U) is
a base at 0 in u(L) since u is continuous.

Since ϕ(U) is a neighbourhood base of 0 in L/u−1(0) for any neighbourhood
base of 0 in L, u0 has the second property and is consequently an isomorphism.

Since ϕ and u0 are continuous and open, so is u = ψ ◦ u0 ◦ ϕ, and hence is a
homomorphism. �

Remark C.14 A Baire space is, by definition, a topological space in which every
non-empty open subset is not meager. This implies that every locally convex space
L over F which is non-meager (of second category) in itself, is a Baire space. Other-
wise, there would exist a meager, non-empty, open subset of L and hence a meager
neighbourhood U of 0. Since L is a countable union of homothetic images of U
(hence of meager subsets), we arrive at a contradiction.

Theorem C.15 (Open mapping theorem) ([Sch71], III.2.1) Let L,M be com-
plete metrizable locally convex spaces and let u be a continuous linear map of L with
range dense in M . Then either u(L) is meager (of first category) in M , or else
u(L) = M and u is a homomorphism.

Proof. Suppose that u(L) is not meager in M . We continue to use the notation
of C.11. The family {Sr}r>0 is a neighbourhood of 0 in L. For fixed r, let U :=
Sr, V := S r

2
; then V + V ⊆ U and u(L) =

⋃∞
n=1 nu(V ), since V is absorbent, i.e.

for every x ∈ L there exists ρx > 0 such that [0, ρx]x ⊆ V . Since, by assumption,
u(L) is a Baire space, there exists an n ∈ N such that nu(V ) has an interior point.
Hence u(V ) has an interior point. Now

u(V ) + u(V ) ⊆ u(V ) + u(V ) = u(V + V ) ⊆ u(U)

and thus u(U) is a neighbourhood of 0 in u(L), since 0 is an interior point to
u(V ) + u(V ). Hence there exists a ρ > 0 such that u(L) ∩ Sρ ⊆ u(Sr+ε) for every
ε > 0. Thus {u(St) : t > 0} is a neighbourhood base of 0 in u(L), hence by C.13,
u is a homomorphism. The quotient space of a complete metrizable locally convex
space over a closed subspace is itself complete and metrizable. Therefore u0 is an
isomorphism of the space L/u−1(0) onto u(L). Again from C.13 it follows that
u(L) = M . �
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their duals. Monatshefte für Mathematik, 126:13–26, 1998.

[BM77] K.-D. Bierstedt and R. Meise. Nuclearity and the schwartz property in
the theory of holomorphic functions on metrizable locally convex spaces.
North-Holland Mathematical Studies, 12:93–129, 1977.

[Con90] J. Conway. A course in functional analysis. Springer Verlag, 2nd edition,
1990.

[Din99] S. Dineen. Complex analysis on infinite dimensional spaces. Springer
Verlag, 1999.

[DMV84] S. Dineen, R. Meise, and D. Vogt. Characterization of nuclear fréchet
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